V-System 6.0 Reference Manual

-

Distributed Systems Group
David R. Cheriton and Keith A. Lantz, Principal Investigators

Computer Systems Laboratory
Departments of Computer Science and Electrical Engineering
Stanford University

20 June 1986

Preface

The follbwing are a list of some of the major changes evident in Version 6.0 as compared to Version 5.0
® General changes:
o Support for Sun2/50’s, Sun-3's and VaxStation-II's,
o Better documentation: as you can see...
e Lots of new commands, including:

o the C program devclopment environment, including ¢¢68, 1468, and build, an enhanced
version of make

o draw has been completely redone, including Postscript support

o the Revision Control System

o x11sp, a variant of Lisp

o The family of TeX document compilers, including tex and 1atex (sorry, no sources)
e New or changed services: '

o Global authentication services: Users now authenticate themselves once and need no longer
authenticate cach “scssion” independently. This is implemented by a combination of a global
authentication server and V-to-UNIX “correspondence tables” maintained by the V scrvers
running under UNIX, .

o Decentralized object naming:"Local name servers have becn climinated in favor of cach manager
muaintaining the name space of the objects it manages. Objects arc located with group [PC.

¢ Group IPC: lLogically, messages arc now scnt to groups of processes, rather than to individual
processes. (“Singlcton™ groups are, in fact, special cased.) This permits a sender to send one copy
of a message, but have it delivered to multiple recipicnts, in response to which multiple replies
may (and can) be received.

o “RAM disk™: A V-storage-scrver-compatible server whose files are stored in main memory.
Uscful for temporary files and the like.

This reference manual attempts to be as faithful to the indicated relcase of the system as possible.
Unfortunately, there arc almost certainly many crrors — most frequently crrors of omission. The typical
solution to this problem is to read the source code, but this too has its problems. The V-System is the product
of a rescarch cffort and is constantly undcrgoing revision. 1t has not always been possible to keep released
and cxperimental versions strictly separated. Often, the source will include conditionally compiled code, or
declarations for constants and data types that arc not fully supported in the released version of the system.
‘Therefore, programmers should be wary of using features found in the code that are not documented in this
manual. In bricf:

Warning: Any part of the V-System may change without notice. As a result, this document should be regarded strictly as
advisory.

Notes for installing the Y-Systcm arc to be found in Appendix C,

Contributing authors include Lance M. Bere, Eric J. Berglund, Per Bothner, Kenneth P. Brooks, David
R. Cheriton, Stephen E. Decring, J. Craig Dunwoody, Judy L. Edighoffer, Ross S. Finlayson, Cary Gray,
Bruce L. Hitson, David R. Kaclbling, Kcith A. Lantz, 'l'imothy P. Mann, ‘Thomas Maslcn, Robert J. Nagler,

V-System 6.0 Reference Manual 16 Junc 1986

iv

William I. Nowicki, Joscph Pallas, Paul J. Roy, Jay Schuster, Michael Stumm, Marvin M. Theimer,
Christopher Zulceg, and Willy Zwacnepoel.

The following are trademarks of Digital Equipment Corporation: DEC, DECSystem-20, TOPS-20, Unibus,
VaX, VaxStation, VMs, VT-100, and MicroVAx.

Ethernet is a trademark of Xerox Corporation.,

SuN Workstation is a trademark of Sun Microsystems Inc.
UNIX is a trademark of AT&T Bell Laboratories.

V-System is a trademark of Leland Stanford Junior University.

V-System 6.0 Reference Manual 16 June 1986

S Table of Contents

Preface -

1.

introduction

1.1. The Hardware Environment
1.2. The User Model

1.3. The System Model

1.4. The Application Modet

1.5. Outline

Partl.UsingV- - - - -

2.

a o

User Interface Overview

2.1. The User Interface Architecture

2.2. Getting Started

2.3. VGTS Conventions .

2.4. Workstation Management

2.5. Line Editing Facilities

2.6. Paged Output Mode

2.7. Sending Mousc Events to Text-oriented Applications
2.8. Emulating the Mouse with the Keyboard

2.9. STS Conventions

. Using the V Executive

3.1. Introduction

3.2. Naming

3.3. Logging [n and Out

3.4. Remote Program Exccution on a Unix Scrver

3.5. Remote Excecution on V Hosts

3.6. Facilitics for Command Spccification and Modification
3.7. Support for Heterogencous Processors

. Command Summary

4.1. Workstation Commands
4.2. Commands on Non-V Hosts

.amaze: A Maze Game
. checkers '
. bits: a bitmap and font editor

7.1. Command Input

7.2. Rasters

7.3. Changing Raster Size

7.4. Bitmap 1/0

7.5. Painting

7.6. Inverting a Raster

7.7. Raster Operations (BitBIt)

V-System 6.0 Reference Manual

il
11
1-1

1-2
1-4
1-7

2-1
21
24
26
27

210
2-11
2-11
212
2-13
3-1
31
31
32
33
34
3-4
3-7
4-1
41
49
5.1
6-1

71
7-1

71
7-2
7-2
72
7-2

17 June 1986

7.8. Reflection and Rotation - 7-2
7.9. [Replace in table] 7-2
7.10. Making a Copy of the Screen ; CURRENTLY NON-WORKING 7-2
7.11. Fonts 7-3
7.12. Sample Texts 7-3
7.13. Printing a Raster 7-4
7.14. Bugs and Problems 7-4
8. build: Maintain groups of dependent programs 8-1
8.1. Macros 8-1
8.2. Including other dependency ﬁles 8-1
8.3. Conditional dependency rules 31
8.4. Search paths ’ 82
8.5. Dependency patterns: 8-2
8.6. Suggestion i 8-2
8.7. Bugs 8-2
9. debug: The V Debugger ‘ 9-1
9.1. Synopsis 9-1
9.2. Description 91
9.3. Commands 92 *
9.4, Bugs 9-6
10. draw: A DrawingEditor 10-1
10.1. Conceptual Model - 10-1
10.2. Screen Layout : 10-1
10.3. General style of interaction ' 10-3
10.4. Control Points and Sticky Points 10-3
10.5. Mouse Buttons 10-4
10.6. Verbs 10-4
10.7. Nouns . 10-5
10.8. Attributes ' 10-6
10.9. Commands 10-7
10.10. groups 10-9
10.11. Inscrting Draw pictures in text documcnts 10-9
10.12. Journalling . 10-11
11. hack: Exploring The Dungeons of Doom 111
11.1. Command format . 11-1
11.2. Description _ . . 111 °
11.3. Options . 11-2
11.4. Authors ‘ ' ’ 11-2
11.5. Files ‘ 11-2
11.6. Bugs ' 11-2
12. siledit: A Simple lllustrator 12-1
12.1. Basic Opcration c ' 12-1
12.2. Commands . o 12-1
12.3. Sclecting Alternate Fonts : 12-3

12.4. Generating Printed Copy ‘ o 12-3

V-System 6.0 Reference Manual 17 June 1986

vit

13. timeipc: A V Performance Measurement Tool 13-1
13.1. Types of Tests 13-1
13.2. Process Configurations , ©13-3
13.3. Input to timeipc 13-4
13.4. Output from timeipc 13-5
13.5. Warnings and Prccautions . 13-6

14, ved: A Text Editor Y " 14-1
14.1. Starting up 14-1
14.2. Some Notational Conventions 14-1
14.3. Special Commands 14-2
14.4. Cursor Motion _ 14-2
14.5. Paging and Scrolling . ' ' 14-3
14.6. Special Characters . 14-3
14.7. The Kill Buffer 14-3
14.8. Basic Editing Commands 14-3
14.9. Mark and Region » 14-4
14.10. C-Specific Editing Commands 14-4
14.11. Scarching and Replacing Y 14-5
14.12. File Access 14-5
14.13. Windows and Buffers 14-6
14.14. The Mouse ‘ ' 14-7
14.15. The Right Hand and the Leh 14-8
14.16. Ved Initialization 14-9
14.17. Crash Recovery ’ , 14-12
14.18. Somc Hints on Usage 14-13

15. xlisp: An Experimental Obgect Oriented Language 15-1
15.1. Introduction 15-1
15.2. A Note From the Awthor o 15-1
15.3. XLISP Command Loop 15-2
15.4. Break Command Loop 15-2
15.5. Data Types 15-2
15.6. 'l'he Evaluator 15-3
15.7. Lexical Conventions . 15-3
15.8. Objccts - 15-4
15.9. Symbols 15-6
15.10. Evaluation Functions 15-6
15.11. Symbol Functions . 15-7
15.12. Property List Functions 15-8
15.13. List Functions 15-9
15.14. Destructive List Functions 15-11
15.15. Predicate Functions 15-12
15.16. Control Functions 15-13
15.17. Looping Functions 15-14
15.18. The Program Feature ' 15-15
15.19. Debugging and Error Handling . ©15-16
15.20. Arithmetic Functions 15-17
15.21. Bitwisc Logical Functions) 15-18
15.22. Relational FFunctions 15-18
15.23. String Functions 15-19

V-System 6.0 Reference Manual 17 June 1986

viil

15.24. Input/Output Functions
15.25. File I70 Functions
15.26. System Functions

16. Standalone Commands
16.1.Vload -
16.2. Netwatch-- -
16.3. Postmortem
16.4. Diskdiag -

Partll.V Programrﬁi'ng‘
Cs

17. Program Environment Overview
17.1. Groups of Functions .
17.2. Header Files
18. Program Construction and Execution
18.1. Writing the C Program -
18.2. Compiling and Linking
18.3. Program Exccution
18.4, Program Initialization =
19. The V-System Configuration Database
19.1. Querying the Database: -
19.2. Currently Defined Keywords
19.3. Implecmentation
19.4. Usage
20. Control of Executives
21. Fields: Using an AVT as a Menu :
21.1. Formats !
21.2. The Ficld Table as a Mcnu: Sclcctmg an Action
21.3. Displaying Ficlds
21.4. Uscr Input to Ficlds
21.5. An Example:
21.6. Limitations . .-
22. Input and Qutput
22.1. Standard C 170 Routincs
22.2. V1/0 Conventions
22.3. V 170 Routines
22.4, Portabic binary integer 170
23. Intra-Team Locking '
24. Memory Management
24.1. Usc in multi-proccss tcams
25. Naming
25.1. Current Context
25.2. Descriptor Manipulation
25.3. Local Names or Aliascs

25.4. Naming Protocol Routincs
25.5. Direct Name Cache Manipulation

V-System 6.0 Reference Manual

15-19
15-21
15-21
16-1
16-1°
16-4
16-6
16-6

17-1
17-1;
17-2

18-1
18-1
18-1.
18-2
18-3

19-1
19-1
19-1
19-2
19-3

20-1

21-1
21-1
21-2
21-2
21-2
21-3
21-4

22-1
2-1
2-1
222
22-9

23-1

24-1
242

25-1
25-1
25-1
25-2
25-3
25-4

17 Junc 1986

25.6. Environment Variables 25-5
26. Numeric and Mathematical Functions 26-1
26.1. Numeric Functions 26-1
26.2. Mathematical Functions 26-1
27. Processes and Interprocess Communication 27-1
27.1. Process-Related Kernel Opcerations 271
27.2. Logical Host-Related Functions™ - - . ~27-6
27.3. Other Process-Related Furictions 277
27.4. Process Group Operations 27-8
27.5. Interprocess Communication™ 2749
28. Program Execution Functions '28-1
28.1. Program Exccution . .-28-1
28.2. Host Sclection . .28-3
28.3. Remote Exccution of Unix Commands .- 28-3
28.4. Other Program Execution Routines 1.-284
29, User Interface Functions. .29-1
29.1. Virtual Terminal and View Management 29-1
29.2. ANSI Terminal Emulation : . 29-2
29.3. Graphical Output 29-5
29.4. Graphical Input ©29-12
29.5. Miscellancous Functions 29-14
29.6. Example Program ' 29-15
29.7. Some Logistics 29-17
29.8. Rolling Your Own 29-17
30. Miscellaneous Functions 30-1
30.1. Time Manipulation Functions 30-1
30.2. Strings) 30-2
30.3. Exception Handling Functions 30-4
30.4. Other Functions 30-4

Partlll. V Servers

31. Servers Overview 31-1

31.1. The Basic Servers - In Isolation 31-1
31.2. The System in Opcration 31-5
31.3. Summary ' 31-8
32. Message Codes and Format Conventions 32-1
32.1. Message Format Conventions . 32-1
32.2. Byte-Ordering Considcerations 32-1
32.3. Standard System Request Codes 322
32.4. Standard System Reply Codes . 32-2
33. The V-System 1/0 Protocol 33-1
33.1. CREATE INSTANCE ' 333
33.2. QUERY INSTANCE 334
33.3. CREATE DUPLEX INSTANCE 334
33.4. RELEASE INSTANCE - 33-5
33.5. READ INSTANCE 33-6

V-System 6.0 Reference Manual 17 June 1986

33.6. WRITE INSTANCE

33.7. SET INSTANCE OWNER

33.8. SET BREAK PROCESS

33.9. SET PROMPT

33.10. QUERY FILE and NQUERY FILE
33.11. MODIFY FILE and NMODIFY FILE

34. The V-System Naming Protocol

34.1. Overview

34.2. Character String Names

34.3. Contexts and Context Ids

34.4. Prefix Caching

34.5. Static Context Identifiers

34.6. Generic Names and Group Names

34.7. Name Request Format

34.8. Name Lookup Algorithm

34.9. Standard CSNH Scrver Requests

34.10. Context Dircctories and Object Descriptors

35. Authentication and the Authentication Server

35.1. Authscrver
35.2. User Numbers
35.3. Authentication Library Functions
35.4. Adding a New User _
35.5. Authentication Database
36. Device Server

36.1. Ethernet
36.2. Disk
36.3. Mousc: The Graphics Pointing Device
36.4. Scrial Line '
36.5. Console
36.6. Framcbuffer
36.7. Null [)evices
37. Exception Server
38. Exec Server
39. Internet Server

39.1. Running the Internet Scrver
39.2. Accessing the Internet Scrver
39.3. DARPA Internct Protocol (IP)
39.4. DARPA T'ransmission Control Protocol (T'CP)
39.5. Adding New Protocols
39.6. Monitoring and Dcbug Facilitics
40. Memory Server
41. Pipe Server
42. Team Server

42.1. Overview

42.2. Team l.oading

42.3. 'I'cam Termination and Exit Status Valucs
42.4. Host Status

V-System 6.0 Reference Manual

33-6
337
337
33-8
33-8
33-8
34-1
-1
34-2
34-2
34-3
34-3

-5
34-5
34-6
34-9
35-1
35-1
35-1
35-2
35-4
35-4
36-1
36-1
36-2
36-2
36-3
36-3
36-3
J6-4
37-1
38-1
39-1
39-1
39-1
39-2
39-2
39-3
39-11
40-1
41-1
42-1
42-1
42-1
42-2
42-2

17 June 1986

42.5. Remote Execution
42.6. Round-Robin Scheduling
42.1. Exception Handling
42.8. Migration
43. Unix Server
43.1. Sessions
43.2. File Access
43.3. Program Execution
43.4. File Descriptors
43.5. Debugging Sessions
44, Workstation Agents
44.1. Implementation of Workstation Agents
45. Simple Terminal Server
45.1. STS Line Editing Facilities
45.2. Hardware Environment
45.3. Remote Terminal Server
46. Virtual Graphics Terminal Server
46.1. Current VGTS Versions
46.2. AVT Escape Sequences
46.3. VGTS Message Interface

46.4. Internal Organization
46.5. Dcbugging the VGTS

Part IV. Appendices

Appendix A. A V-System Bibliography
Appendix B. C Programming Style

B.1. Gencral Format
B.2. Names
B.3. Comments
B.4. Indenting
B.S5. File Contents
B.6. Parcntheses
B.7. Mcssages
Appendix C. installation Notes

C.1. V-System Distribution Tapes
C.2. Binary Distribution Tape
C.3. Source Distribution Tape

Appendix D. List of Library Functions defined in lib¢

Index

V-System 6.0 Reference Manual

42-2
42-3
42-3
42-3
43-1
43-1
432
433
433
434
44-1
44-1
45-1
45-1
45-1
452
46-1

46-1 .
46-3
46-4
46-5

A-1
B-1
B-1
B-1
B-2
B-3
B-3
B-4
B-5
C-1
C-1
C1
C-7
D-1
Index-1

17 June 1986

xii

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 10-1:
Figure 10-2:
Figure 31-1:
Figure 31-2:
Figure 31-3:
Figure 31-4:
Figure 34-1:

‘List of Figures

A workstation-based distributed system.
The distributed V kernel.
Client interfaces to the V-System
Some possible applications.
The Draw menu
An example figure . .
The V-System: A single workstation view.
VGTS process structure.,
Loading a team.
Handling an exception.
Decentralized Global Directory

V-System 6.0 Reference Manual

12
1-3 .
1-4
1-6
10-2
10-10
312
31-4
31-6
317
34-2

17 June 1986

xiii

List of Tables

Table 2-1: Accelerators for workstation management functions. 2-10

Table 2-2: Events that generate escape sequences. 2-12
Table 29-1: Encodings for graphical escape sequences. 29-4

V-System 6.0 Reference Manual 17 June 1986

1-1

—_1—

Introduction

The V-System is a message-based distributed operating system designed primarily for high-performance
workstations connected by local networks. It permits the workstation to be trcated as a multi-function
component of the distributed system, rather than solely as a intelligent terminal or personal computer.
Ultimately, it is intended to provide a general-purpose program exccution environment similar to some
degree to UNIX. The programs are intended to interact with each other, and with programs running on
traditional timesharing systems, to produce an integrated distributed system.

1.1. The Hardware Environment

The V-System is targeted for a hardware environment consisting of (see Figure 1-1):
e powerful workstations with:

o a high-resolution (c.g. 1024 by 1024) raster display;

o a general-purpose 1 MIPS (or better) processor;

o 2 Mbytes or more of local memory;

o a large (greater than 20 bits) virtual address space;

o a graphics input device, such as a mousc: and optionally, .
o a disk,

which, typically, will be dcchcatcd to a singlc user at a time;
o a fast (greater than 1 MH7) communications nctwork that will link the workstations;

e a number of dedicated processors providing printing, filc storage, general computation support, and
other services; and

& access to time-sharing or special-purpose computers and to long-haul computer networks.

This relcase of the system runs on Sun and VaxStation workstations interconnected by cither 3 or 10 Mb
Ethernet. “Guest-level™ implementations are available for 4.2BSD and 4.3BSD UNIX systems (with Stanford
cnhancements). .

1.2. The User Model

Onec of the most important functions for the workstation is to provide state-of-the-art user interface support.
The workstation should (unction as a front end to all available resources, whether local to the workstation or
remote. 'To do so, the V-System adheres to three fundiamental principles:

L. The interface to application programs is (rcasonably) independent of particular physical devices or
intcrvening networks.

2. The user is allowed to perform multiple tasks simultaneously.
3. Response to user intcraction is fast.

Adhering to these principles, the V-System supports a reasonably sophisticated “window system™. Multiple
cxccutives or shells may be run simultancously, cach of which may run one application in the “foreground”
and any number in the “background™ (u la the UNIX C-shell). Applications may run local to the workstation
or remote. Each application may be associated with onc or more scparate virtual terminals, cach of which may

V-System 6.0 Reference Manual 17 June 1986

1-2 Introduction

. Cluster . Cluster . Cluster
Network " Network Network
User E:I W User D w User D A
-8 -Bw-{ -8
G
< < Trunk
Network
8—- T = usen 9— T = teon E— P G
G Gateway Long-haul
D B o — . - e e - . Netwo[k
User W Workstation

P Printer Server ' -

9—‘8— F File Server - o ST
9_ T }— Timesharing System

Figure 1-1: A workstation-bascd distributed system.

‘be used to emulate cither a VT-100 terminal or.a 2-D “structured graphics" terminal.

1.3. The System Model

The V-Systern adheres to the server model: ‘The world consists of a collection of resources accessible by
clients' and managed by servers. A scrver defines the abstract representation of its resource(s) and the
operations on his representation. A resource may only be accessed or manipulated through its scrver.
Because servers are constructed with well-defined interfaces, the implementation details of a resource are of
concern only to its server. Note that a server frequently acts as a client when it accesses resources managed by
other servers. Thus, client and server are merely roles playcd by a process.

Clicnts and servers may be distributed throughout the (inter)network. By default, access to resources is
network transparent; a clicnt may access a remote resource with the same semantics as it accesses a local
resource, ‘The result is an environment in which clients may communicate with scrvers without regard for the

1A client is a program requesting access to a resource, typically on behalf of a human user.

V-System 6.0 Reference Manual 17 Junc 1986

The System Model 13

topology of the distributed system as a whole. However, we do not intend that a client cannot determine or
influence the location of a particular resource, rather that a transparent mechanism is available. Morcover we
allow for clicnts and servers that were not written with network-transparent access in mind.

Architecturally, then, the V-System consists of a distributed kernel and a distributed sct of server processes.

1.3.1. The Distributed Kernel

The distributed kerncl consists of the collection of kerncls resident on each participating machine (see
Figurc 1-2). Each host kernel provides process management, interprocess communication, and low-level
device management facilities. All other operating system services are implemented as (collections) of
processcs outside the kernel, A host kernel may be implemented at a base level (as on the SUN workstation) or
a guest level (as under 4.2BSD).

e R

workstation

distributed § kernel

n—1——1 11

“ kernel . kernel kernel I

" interkernel protocol |

I R [D

x Ethernet
- J

Figure 1-2: The distributed V kernel.

The host kernels are integrated via a low-overhead inter-kernel protocol (IKP) that supports transparent
interprocess communication between machines. IKP is a reliable request-response protocol, intermediate in
complexity between conventional datagram and virtual circuit protocols.

1.3.2. Servers

Servers include:

virtual graphics terminal server
Provides all terminal management functions, including VT-100 cmulation and 2-D
graphics. One per workstation.

internet server Provides network and transport level support for traditional nctwork architectures, namely,
ARPA Internct and Xcerox PUP. Higher-level protocols, such as TELNET, arc provided as
scparatc packages that interface to the internet server.,

V-System 6.0 Reference Manual 17 Junc 1986

14 Introduction

pipe server Provides asynchronous, buffered communication facilitics similar to UNIX pipes.
team server Provides team creation, destruction, and management. One per workstation.

exception server Ficlds process excci)tions and dispatches them to registered handlers, such as dcbuggers.
One per workstation, '

storage server Provides file storage.
device server(s) Interfaces to a specific physical device, such as the console, mouse, serial line, or disk.

1.4. The Application Model ')

In general, it is just as casy to writc applications to run under thc V-System as it is to write applications to
run under any traditional operating systcm, such as UNIX. A standard program environment is defined, the
principal instance of which is the C program library. The C library provides runtime support for standard C
and UNix-like library functions, including both bytc-stream and block-1/0 facilitics (see¢ Figure 1-3). In
effect, thesc libraries can be used to “hide” the underlying V-System kernel calls, thus facilitating the porting
of cxisting C programs.

4 \

User Programs

ClLibrary

Yy

Byte Stream Library

r_vx___'___ii______
1/0 Protocol l
]

e e e e —— — — — — — — —

f L —— — — —— N —— AE—— — — E— A—— N
Kernel Message Format .

L—_—_———Tf—_f—_'———'

Kernel Stub Library

L

Kernel
\. ‘ J

Figure 1-3: Client intcrfaces to the V-System

On the other hand, an application programmer may choose to take advantage of the cnhanced facilitics
provided by the V-System. ‘These facilities fall in two major categorics: user interaction and concurrent
programming. Additional advantage accrucs from the fact that applications may be distributed across
multiple machines.

V-System 6.0 Reference Manual 17 Junc 1986

The Application Model ‘ . 15

1.4.1. User interaction

With respect to user intcraction, the V-System provides two principal enhancements over traditional
UNix-like systems. First, a program may manipulatc multiple virtual terminals (windows) simultancously.
Second, an application may cmploy structured graphics. Specifically, a graphical object can be defined in
terms of other objects, which can in turn be defined in terms of yct other objects. Thus, the VGTS supports
structured display fifes rather than the morc common segmented display files. The resulting virtual graphics
terminal protocol (VGTP) is a high-level object-oricnted protocol that minimizes both the frequency of
communication between application and VGTS and the amount of data transmitted at any one time.

1.4.2. Concurrent Programming

Using the distributed kernel well requires understanding the model of processes and messages that the
kernel provides, and how they are intended to be used. Processes represent logical activities within the
application. They are intended to be sufficiently inexpensive to allow the usc of multiple processes to achieve
the desired 'evel of concurrency. In particular, multiple processes may share the same address space or team,
to facilitate fine-grain sharing of code and data. A tcam must be entirely contained on a single machine.

Processcs can be dynamically created and destroyed. When a process is created, it is assigned a unique
process identifier that is uscd subsequently to specify that process.

Synchronous message-passing facilitates communication betwcen processes that looks to the sender like a
procedure call. That is, the sender blocks until a reply to his request is received. Greater flexibility is
provided to the receiver to allow scheduling of requests. Mcssages are addressed to the process identifier of
the recipient; there is no concept of a mailbox or port distinct from a process.

Messagcs are short and fixed-length. To facilitate transfer of large amounts of data, a separate data transfer
facility is provided. Specifically, a process can pass, in a message,; access to an area in its tcam space. This
facility foltows the procedure paradigm in being uscd primarily to access what are logically “call-by-
reference™ parameters. Synchronization between the two processes involved in the data transfer is guaranteed
by virtue of the fact that the recipient will not reply to the sender (and hence awaken him) until the transfer is
complete.

The kernet also provides process groups and group interprocess communication. Each process can create,
join, and lcave groups dynamically, and can bclong to many groups simultancously. A message sent to a
group is delivered reliably to the first group member to reply, and unreliably to the rest. Replics subscquent
to the first may be reccived (unrcliably) by the sender, or ignored, at its option.

Process scheduling is strictly priority-based. The effective priority of a process is the sum of its process
priority and its team priority. Tcam prioritics are dynamically varied by the tcam server to provide time-
slicing. ' '

1.4.3. Classes of Applications

From the previous discussion it should be apparent that applications may run local to the user’s workstation
or on any other host accessible via the various nctwork protocols, Ultimately, all applications must
communicate with the user via the virtual graphics terminal server (VG'T'S) resident on the user’s workstation.
‘The application interface to the VG'I'S is referred to as the virtual graphics terminal protocol (VG'TP).

The VGTP is constant over all applications. However, some applications have no knowledge of the VG TP
and some applications arc running on machincs that do not support the interprocess communication
mechanisms underlying the VGTP. The following situations arisc (sce Figure 1-4, in which cach inter-
machine arc is labeled with an examplc (presentation protocol, transport protocol) pair):

o Application A runs on the workstation and communicates via the VGTP. Current cxamples include text
cditors, document illustrators, and design aids, many of which are documented here.

e Application B runs on a machinc that supports V kerncl services, specifically, network-transparent

V-System 6.0 Reference Manual 17 Junc 1986

16 ' Introduction

VAX
SUN) VLS| Layout
Compiler Editor
® ()
ve;'P VGTP
DEC-20
VAX
Local

Text Editor llustrator Distributed

Game

@ Teinet Custom c
TCP NGP

Figure 1-4: Somc possible applications.

interprocess communication via IKP. B communicates with the VGTS via the VGTP, as in the case of a
application A. ~

e Application C runs on a machinc that does not support IKP, but docs support a traditional network
architccture such as the Internct protocol family. In addition, a VGTP interface package is available
that cncapsulates the VG'T'P within the appropriate transport protocol. Similarly, a local agent for the
application, C", is crcated on the workstation to decapsulate the VGTP. Thus, the application may still
be written in terms of the VG'I'P and ncither it nor the VGTS have any knowledge that the other is -
remote. Our VLSI layout cditor, for cxample, can be run in this fashion under VAX/UNIX.

e Application D has no knowlcdge of the VG'T'S or the VGTP; it wishes to regard the workstation as just
another terminal. The local agent, D', is “user TELNET” and performs the appropriate translations
between TELNET and VGTP. Any pre-cxisting application that runs on a remote host falls into this
class. : :

e Application £ 'is distributed between the workstation and onc or more other machines. The local agent,
E’, is responsible for representing the multitude o the VG'1'S. It must perform the appropriate sct of
protocol conversions indicated above., In addition, it may wish to perform application-specific
functions. such as caching. In that case, the protocol used to communicate with the remote applications
may require morc than simple transport service. The Amaze game documented herein is an cxample of
such an application.

V-System 6.0 Reference Manual 17 June 1986

The Application Model 1-7

1.5. Outline
The remainder of this manual consists of four parts:

Part1l Using V: describes the user interface and available application programs. .

Part 2 V Programming: defines the V-Systcm program environment in terms of the existing C
program library.

Part 3 V Servers: defines the standard message formats, request and reply types, and protocols;
presents the various server-specific protocols; and gives some implementation details.

Part 4 Appendices: a V-System bibliography, notes on programming style, installation notes, and

a list of where the various library functions are defined.

V-System 6.0 Reference Manual 17 June 1986

Part I:
Using V

21

S,
User Interface Overview

This chapter presents an overview of what it is like for the uscr to interact with the V-System. Details of
terminal emulation or graphics support are not discussed, since that is best described by the programmer’s
interface in Chapter 29. Rather, the basic stylistic conventions are presented, including an overview of how
applications’ actions are manifested to the user, Also included is a discussion of the the basic architecture of
the user interface, in the hope that it will enable the uscr to better understand the style of interaction and the
facilities available to him. The user who is “in a hurry” to get started may skip this discussion, at lcast on first
reading, and begin with Section 2.2. The following chapter discusscs command interpretation in some detail.

2.1. The User Interface Architecture

In a typical operating system, the user is presented with the illusion of interacting with a single, unified
front cnd, often referred to as an “executive” or “shell”. However, in contemporary workstatmn-based
systéms, this front end actually provides three basic levels of intcraction:

1. device [70: Manipulation of input devices and generation of output on output devices.

2. command interpretation: Command (or argument) spec:ﬁcauon and responsc handling, and invocation
of applications.)

3. window management: Management of multiple simultancous applications (in separate “windows™).

Rather than combine thesc three levels of function in onc module, the V-System dlstmgulshes three
scparatc software components — respectively:

1. thc workstation agent,
2. the executive, and
3. the workstation manager.

'This separation was inspired by a dcsirc to be able to configure cach component independent of the others.
While this release of the V- Systcm docs not reflect the ideal realization of this scparation, it nevertheless fits
the basic framework.

Warning: The workstation agent was originally referred to as the rerminal agent, The two terms are used interchangeably.

-

"~ 2.1.1. Workstation Agents

The workstation agent providcs the lowest-level interface between the hardware and the rest of the system.
One of its principal functions is to hide any |dlosyncrasxcs of that hardware — through a virtual terminal
intcrface.

2.1.1.1. Virtual Terminals

Rather than dealing with the “raw™ hardware, applications interact with a virtual terminal. They request
input from a virtual keyboard or mousc, for cxample, and writc output to a virtual storc. Depending on the
“class™ of rcal terminal (workstation) being cmulated, the characteristics of the virtual input and output
devices may vary widely. In the simplest implementation, cach workstation agent emulates exactly one class
of real terminal; emulating a different terminal requires a new workstation agent. More sophisticated
workstation agents emulatc multiple classes of crminals simultancously. Note that the number of classes of
terminals cmulated is independent of the number of virtual terminals being cmulated at any once time.

Using V 17 June 1986

2-2 . . . User Interface Overview

Historically, the most common class of terminal emulated has been the page-mode (character) terminal —
excemplificd by the DEC VI-100. Even in this casc, the workstation agent can be thought of as emulating
diffcrent types of terminals, corresponding to the various input and output modes provided by a VT-100 —
character-at-a-time versus block transmission, local editing facilities, and the like. In gencral, the workstation
agent, through its virtual terminals, providcs a set of facilities that might be referred to as “cooked 1/0” —
ranging from character cchoing to linc-cditing to page-cditing to graphics-cditing. These faclhucs are cnabled
and disabled on a virtual terminal by virtual terminal basis.

True to its name, a virtual terminal nced have no physical, real-world manifestation. In particular, it is
possible to write output to a virtual terminal without secing that output displayed on the screen. Hence, any
application may run and change the storc of any virtual terminal at any time,

While it is common for multiple applications to be generating output simultaneously, it has historically (if
erroneously) been thought lcss desirable to permit the user to direct input to multiple applications
simultancously. True to this historical bias, the V-System currently restricts input to one application at a time.
We refer to the application and associated virtual terminals as being “selected™ (for input). Selection for
input has no effect on the underlying application’s ability to generate output. As with output, however, it is
possible to generate keyboard input for a virtual terminal without having the virtual terminal mapped to the
screen; users should be wary of the possible consequences!

2.1.1.2. Views

In order for the user to actually see the output from or gencrate graphical input to a virtual terminal, the
virtual terminal must be mapped to the screen through a view. A view defines the portion of the virtual
terminal's store that should be displayed, the arca on the screen in which it should be displayed, and the
transformation that should be applicd when mapping the store to the screen. Using traditional graphics
terminology, the store is referred to as the display file, the portion of the store is a window, the arca of the
screen is a viewport, and the transformation is a viewing transformation.” Viewports-arc invariably rectangular, ..
although there is no conceptual reason for this to be the case.

Typically, an application will crcatc one view of a virtual tcrminal at the same time it creates the virtual
terminal. Neverthelcss, views arc maintained as entitics distinct from virtual terminals because, in general,
cach virtual terminal may have morc than onc view associated with it. When using the VGTS, for example,
the same picture, maintaincd as onc c¢ntity by the program, may appear in two scparatc viewports on the
screen, possibly with different viewing transformations. ‘That is, a second view may look upon a different
portion of the virtual tcrminal’s store from the first, or at a diffcrent magnification.

Note: Because a view is the physical manifestation of a virtual terminal on the display screen, we will tend o use the tem
“view" rather than “virtual terminal” when discussing screen management issues. Where necessary to be cven more
specific, we will use the term “viewport™,

So. a virtual terminal may be associated with more than one view. On the other hand, because the virtual
tcrminal is independent of its physical manifestation, there need be no views associated with it. Destruction
of all vicws docs not in any way affect the virtual terminal, though it w1l| make it rather difficult for the user to

sce what is going on.

One common policy is that views arc the domain of the user. A program that crcates a virtual terminal
should create a view of it, so that the user knows that it exists, but alter that, in the ordinary course of things,
the program should Icave the view alone. ‘The program should not depend on the continue cxistence of that
view, nor nced it be aware of any other views of the virtual terminal that the user chooses to create. Let the
user decide where on the screen he wants views to be, and how big, and with what vicwing transformations.
That is what the workstation manager is for.

2Unl‘ortun:m:ly. traditional “window system™ tcrminology tends to usc the word “window” to mecan any or all of window (as just
defincd), viewport, view, or virtual terminal.

17 June 1986 V-System 6.0 Reference Manual

The Uscr Interface Architectufe 23

2.1.1.3. V-System Agents _ . " s

The V-System currently supports two workstation agents, the simple terminal server (STS) and the virtual
graphics terminal server (VGGTS). The STS provides basic text terminal emulation by making the workstation
appear as a single, traditional, page-mode terminal — compatible with ANSI standard X3.64.3 Character
cchoing and linc-editing arc optional. The STS is used principally to interface to ASCII terminals, but it can
also be used over remote terminal conncections and as the interface to the normal workstation kcyboard and
display. . . S

The VGTS provides considerably greater functionality, including support of what is commonly referred to
as a window system (more on this latcr). Any “window” may cmulatc the same type of terminal provided by
the STS. Alternatively, a window may cmulate a (structured) graphics tcrminal that provides roughly the
facilities available in the ISO standard Graphical Kerncl System, together with rudimentary modeling
facilitics in the form of structured display files. Thus, the VGTS provides simultaneous support for two very
different types of real terminal. Each virtual terminal may have any number of views associated with it. Any
number of views of any number of virtual terminals can be mapped to the screen at the same time.
Applications are unawarc of the number of views or what is being displayed in them, except insofar as
graphical input events return the appropriate world coordinates. The VGTS is used when it is desired to
make the best use of devices typically found on contemporary workstations — such as bit-mapped displays,
cncoded keyboards, and mice.

While the abstractions for keyboard and mouse are common across (existing) virtual terminals, the
abstractions for the store arc quite different, as discussed in Chapter 29. When necessary to distinguish the
two classcs of virtual terminals currently supported, we will refer to the type of virtual terminal that emulates -
an ANSI standard terminal as an ANS/ virtual terminal (AVT) and the type of virtual terminal that emulates a
structured graphics terminal as a structured graphics virtual terminal (SGVT).

Warning: The “store” of an AVT is referred to as a pad. Unfortunately, that term has been most frequently (and
erroncously) used as a platccholder for the complete AVT abstraction. While this manual attempts to use cach term where it
--is appropriate, the code uscs “pad” almost cxclusively. Conscquently, many of the routines described hercin also refer to
“pad”. Similarly, the term “virtual graphics terminal” (or VGT) has been used almost exclusively in the code, rather than
the term “structured graphics virtual terminal”, In both cascs, we trust the reader will be able to make the appropriate
semantic substitutions, .

The bulk of the discussion to follow assumes use of the VGTS.

2.1.2. Workstation Managers

~The workstation manager permits the user to control multiple simultancous cxecutives — with
accompanying applications. ‘Through it cxccutives are created and destroyed, programs are interrupted and
killed, and both virtual terminal and vicws arc manipulated. With respect to the last, in particular, the
workstation manager is the module that enforces the constraints on view management that the uscr desircs.,
For example, it enforces the precise position and front-to-back “ordering” of viewports.

It is crucial to appreciate the distinction between workstation managers and workstation agents. The
manager cxerts “control™ over the “facilitics™ provided by the agent, whilc at the same time using those
facilitics to interact with the user. Different users may want diflcrent styles of control. For example, onc user
may prefer to speeify all views manually, whereas another user may prefer the system o determine the “best”
view automatically; onc user may prefer his viewports to be tiled, whercas another may prefer them to
overlap. Thesc styles arc independent of the basic facilitics provided by the workstation agent.

In principle, it should be possible to define the ideal workstation manager, independent of all workstation
agents. But, just as workstation agents are limited in practice by the classes of real terminals they support,
workstation managers arc limited in practice by the availabic classes of workstation agents. For example, the
VGI'S comes with a large and powerful workstation agent, called the view manager, which is accessed via

3T‘he most widesprcad example of a terminal adhering to this standard is the Dic VT-100.

Using V 17 June 1986

24 User Interface Overview

.

popup menus. Many of its commands require the user to sclect or position viewports on the screen. Such

interaction works best in an environment with a mouse, for example, yct some workstation agents may not-

provide an efficient emulation of a mouse. The STS, on the other hand, has only a trivial vestige of a
workstation manager. Its primary function is to guarantee the existence of one executive running on the
terminal at all times, =~

X)

2.1.3. Executives VI

il

Workstation agents and managers provide the basic facilities by which the user interacts with the .

workstation. But little has been said about how the user actually specifics commands and applications. In
fact, these functions are provided by exccutives (or shells). .

Some systems permit only one exccutive, often running only one application at a time, but sometimes
capable of running multiple applications at a time — one in the “foreground” and the rest in the
“background”, for example. Under the STS, the V-System provides one executive (of the latter variety).
 Under the VGTS, multiplc executives are supported sunultaneously. the view manager is mponsxble: for
creating (and dcstroymg) them. : L arieg e e

N ‘ RN IR IR FER Y
2.1.4. Summary

We have outlined the basic concepts underlying the user interface to the V-System. The rest of this chapter
discusses the more practical details of how the user actually interacts with the system via its workstation agents
and workstation managers. Interaction with executives is discussed in the next chapter. . .

2.2, Getting Started - -~ -ius

When you come up to an idlc workstation, it may be in one of scveral states. If the screen is blank, it is
probably running V, but idle. The VGTS blanks the screen on idle workstations after a few minutes of
inactivity. Move the mousc slightly or press any key on the keyboard to restore the display. A previous user
may have lcft one or more of his sessions (sce below) active. The command

~ logout : e
will terminate them all and get you off to a frcsh start. If the workstation is running somcthing other than V,
is dcad, powered down, or the like, it will be necessary to reboot it, as described in the following paragraphs.

2.2.1. Booting the Workstation.

As previously noted, the V-System runs on a variety of workstations: Booting proccdurcs vary depending
on the manufacturer and on the model. Section 16.1 describes in detail how to boot all of the workstation
- configurations supported with this rclease. ‘The following is an overview that should cover most situations.

2.2.1.1. VaxStations

When in the PROM monitor VaxStations display a >>> prompt. If the workstation is not in this state, press
the halt button twice (once to put it in, once (o bring it out). I this doesn’t halt the maching, press reset.

These buttons arc on the front pancl of the VaxStation CPU. Once at the PROM prompt, the command b

xqa0 will causc the workstation to boot over the cthernet.

2.2.1.2. SMI Workstations

An SMI workstation in a random state can be resct to thc PROM monitor by holdmg down the kcy in the
upper left hand corner of the keyboard, and hitting the “A™ key. (The key in the upper Ieft hand corner may
be labeled cither L1, SIE-UP, or ERASLE EOF depending on the exact model.) ‘There is no reset button on SMI
workstations, so a very serious crash can make it necessary to power-cycle the workstation.

17 Junc 1986 V-Systent 6.0 Reference Manual

TR
RS RN

Getting Started ' . 25

Once you have gotten into the PROM monitor, the next thing to do is to type the k2 command, which
simulates a power-up reset. (Shortcuts are sometimes possible, but k2 is the safest route.) After the power-up
memory test is completed, the workstation will try to boot its default program. Most Sun workstations at
Stanford arc configurcd to boot the V-System with VGTS. The bootstrap program first loads the
workstation’s configuration filc (sce Chapter 19) to find out what its defaults are. It next prints “V-System” or
*xV-System™ to indicate whether the production or experimental version of V is being loadcd. then prints the
filenames. of the kernel and initial team as it loads them.

If you notice the workstation is not booting what you want it to, you can interrupt the autoboot with the
reset key sequence described above, then type in the exact boot command you want. Most of the mne, one of
the following simple commands will do the job:

b Boots the default program. R co SRR
bV Boots the production version of the V-System, with the VGTS.

b xV Boots the expcrimental version of the V-System, with the VGTS. B YT
General boot commands and the V bootstrap loader are described fully in section 16. ra

Note: Most SMI workstations at Stanford use the Sun-2 processor board, but a few Sun-1s have not been upgraded. The
above description is correct for SMI workstations with Sun-1 processors as well as Sun-2s, but the details of the general boot
command and other PROM monitor commands vary. The V kernel tickles a bug in the current Sun-3 PROMs. Rebooting a
Sun-3 usually requires power cycling the workstation.

2.2.1.3. Cadlinc Workstations

A Cadlinc workstation in a random state can be reset to the PROM monitor by typing
<CTRLXSIIFTXBREAK), pressing the reset button, or (in desperation) power-cycling the workstation. It is best
to try pressing the comma key on a Cadlinc’s numeric keypad before resetting it. If the V kerncl is active at
that point, this key instructs it to turn off the mouse, necessary for proper operation of the PROM monitor.
Otherwise, you may have to power cycle the workstation or keyboard to regain control. :

On the Cadlinc, either k1 or k2 will simulate a powerup reset. You may need to type the command twice
for it to take cffect. The Cadlinc PROM monitor uscs n in place of b in the simple boot commands abovc Sece
scction 16 for a full description of Cadlinc boot commands. .

All Cadlinc workstations usc a version of the Sun-1 processor board.

2.2.1.4. Rack-Mount Suns

Suns that have an ordinary terminal as their console can usually be brought into the PROM monitor by
hitting the terminal’s BREAK key. Somctimes there is a resct button or switch attached. Some rack-mount
Suns at Stanford contain Sun-1 processors: others use the Sun-2. Some boot using the n command; others
usc b. In most cascs, the boot commands listed above will work, and the S1'S will automatically be loaded in
place of the VGTS, but in general it is best to cheek with a wizard before rebooting a rack-mount Sun. -

2.2.2. An Overview of Subsequent Interaction

i
Note: This section is somewhat redundant with Section 2.1 since it is assumed that many people will rcad it without reading
that scction!

Once the user has booted his workstation he may communicate with onc of two cntitics: an executive or the
view manager. ‘The uscr exccutes commands (application programs) from within an cxccutive, which is
similar to the UNIX C-shell. The applications may run local to the workstation or remote. They may be
written with the particular workstation in mind, or run in “terminal cmulation”-mode. They may require [70
modalitics other than traditional text, namecly, graphics. Each apphcauon may be associated with one or more
scparate virtual terminals as discussed above. :

When the user wishcs to initiatc a new application concurrent with existing applications. he must first create

Using vV 17 June 1986

2-6 ‘ User Interface Overview

a new cxccutive. To do so, the user communicates with the view manager. The executive serves as a
command interpreter from which the desired application may be initiated. The user can create a new
executive, with associated virtual tcrminal, at any time, asynchronous to any existing activities. When a
particular application requires additional virtual terminals, it is free to create them. These virtual terminals
will be deatlocated when the application terminates.

A virtual terminal is made “visible” by mapping it to the screen. Each such mapping is termed a view.
When an application creates a new virtual terminal, the application may specify where on the screen the view
should appear or the application may rcquest that the user should specify the view interactively. Thercafter,
the user may create as many additional views as he wishes. To some extent, he may manipulate views of the
same virtual terminal independent of all other views of that virtual terminal, for example, pan or zoom one
view indcpendent of all other views of the same virtual terminals. All such virtual terminal management is
performed via the view manager.

2.3. VGTS Conventions

When using the VGTS, views appear as white overlapping rectangles on the screen, with a black border and
a “banner” across the top edge. The banner contains the following information:

® a virtual terminal identifier
* a view identifier
o the “name” of the associated application (if any)

Every view of every ANSI virtual terminal disblays the text input cursor as a small black box. An additional
cursor is associated with the mouse; it may change shape depending on what graphical input event is
expected, for example.

2.3.1. Selecting for Input

As discussed above, at most onc application is selected for input at onc time. At most one of its virtual
terminals (usually an AVT) may be sclected for keyboard input. Any subsct of its virtual terminals may be
selected simultancously for mouse input; the appllcauon may sclectively cnable and disable mousc input for
- cach virtual terminal.

All views of all virtual terminals sclected for input (of any kind) display a “blackened™ banner — white text
on black background. In addition, the virtual terminal sclected for keyboard input will display a flashing
black box at the cursor. Unsclected virtual terminals have whitened banners — black text on white
background. '

2.3.2. Using the Mouse '

There are a few conventions for using the mouse with the VGTS. First, we assume a three-button mouse.
In the discussion that follows, the buttons arc labeled simply "left”, "middlc”, and "right".

We assumc that there is always a cursor associated with the mouse. Wherever the term “cursor” is used
without qualification, we are probably tlking about the mouse cursor — rather than the keyboard cursor.
Also, we will often use the phrase “pointing to™ to mcan “the mouse cursor is in” or “the mouse cursor is
pointing to”.

A “click” consists of pressing any number of buttons down and rclcasing them at a certain point on the
screen. While the buttons are down there may be some kind of feedback, like an object which follows the
cursor. The click is usually only acted upon when all the buttons are released, so if you decide you have made
a mistake after pressing the buttons you can slide the mousc to some harmless position before relcasing the
buttons. Holding all three buttons down is also interpreted as a universal abort by most programs and the
vicw manager. The click cvent is sent to the program associated with the vucw in whu.h the event occurred
(through its virtual terminal).

17 Junc 1986 V-System 6.0 Reference Manual

VGTS Conventions 27

.

A “transition” consists of a press or a relcase of any combination of buttons. A transition event is sent to the
program associated with the view in which the event occurred. Since it typically is acted on immediately, the
VGTS provides no feedback and the universal abort feature described above does not work.

2.3.3. The Screen Saver

The VGTS will automatically disable (blacken) the screen if no keyboard or mouse events have occurred
within the preccding 10 minutes. This helps protect the screen’s phosphor. The screen is reenabled by a
subsequent keyboard or mouse event. Note that other VGTS events will not reenable the screen, so. the
screen save will work even if a program such as mon (which periodically updates the screen) is being run.

2.4. Workstation Management

Almost all workstation management functions are accessible via a set of menus managad by the view
manager. The only exception is selection of an application for input. Many view manager functions arc also
available via “accclerators™ — “appropriate” mouse clicks in “appropriate” places. Some functions are
triggered by program-gencrated requests. We discuss cach situation in turn.

2.4.1. Selection for Input

Chckung the left or middle button of thc mouse in a view of a non-selected virtual terminal will cause the
associated application to be selected for input. The view will be brought to the top. .

>

2.4.2. Using the View ManagerMenus -

The vicw manager mcnus can always be invoked by moving the cursor to the grey background area or to
any view not selected for input (except in the banner arca) and pressing the right button. The following
commands are available from the view manager menus. The commands are presented in alphabetical order,
followed by a summary of what each (sub-)menu contains.

2.4.2.1. View ManagerMenu Commands

Center Window Change the “window™ associated with a view — without changing the position of the
associated viewport. Click any button at the position in the viewport that you want to
become the center of the viewport. Doing this to AVT"s is almost always a mistake.

Create Exccutive Create a ncw executive, with associated AVT.. The cursor changes to the word "Excc”.
When you press a button, an outline of the new AVT will appcar, and will follow the
cursor as you hold the button down. Lift tho button up at thc desired position, or prcss all

three buttons to abort.
Note: Comes in two flavors, for two different deﬁault sizes of AVT (sec Sct Altcrnate Excec Size
below).
Create View Create another view of an cxisting virtual terminal. The cursor changes to the word

"View". Move the cursor to the desired position of any onc of the four corners for the new
viewport. Hold any button down, and move the cursor to the diagonally opposite corner.
An outlinc of the new view will follow the cursor as it moves with the button down. Let
the button up, and then point at the virtual terminal that you would like to sce with the left
or middlc button, or hit the right button and sclect the virtual terminal from the menu.
Normally only used with SGVT's.

Delete Exccutive Delete an exccutive. Click any button in any view associated with the executive.
Delete View Dclete a view. Click any button in the associated viewport.

Using V 17 June 1986

28 ‘ : User Interface Overview

Warning: If you delete the last view of a virtual terminal, it does nor destroy the virtual terminal or
the process associated with it. You can still create views of the virtual terminal by using the right
button menu in the Create View command.

Exec Control Select the submenu for executive and program control functions. A shbrtcut to the Exec
Control menu is obtained by pressing both the middle and right buttons while the cursor is
in the gray background or in a view not selectcd for mouse input.

Expansion Depth Set the “expansion depth” for a SGVT. For hicrarchically defined graphical symbols, this
determines how much (how dcep) of the hierarchy will be displayed. If this causes some
graphical item not to be displayed, its bounding box is displayed, possibly with a text name
(if there is room). The dcfault expansion depth is infinity, such that all levels will be
expanded. Click any button in the view whose cxpansion depth you wish to set, then select
the new expansion depth from the menu that pops up.

Graphics Commands ‘
_Select the submenu for graphics functions. A shortcut to the Graphics Commands menu is
obtained by pressing both the left and right buttons while the cursor is in the gray
background or in a view that is not sclected for mouse input.

Interrupt Program Interrupt a program, forcing it into the debugger. Click any button in any view associated
with the program.

Kill Program Kill a program. Click any button in any view associated with the program.

Make Bottom Push a view to the bottom, potentially making visible other views, Click any button in the
desired view. A shortcut to this function is obtaincd by pressing the right button while the
cursor is in the banner of the desired view.

Make Top Bring a view to the top, potentially obscuring other views, Click any button in the desired
view. Does not sclect the associated virtual terminal for input. A shortcut to this function
is obtained by pressing the left button while pointing to the banner of the desired viewport,
which action action does sclect the virtual terminal for input.

Move Edges Change the viewport associated with a view by moving one or more cdges. Scaling is not
provided, so this also changes the window (the portion of the object being viewed), but
without moving the object relative to the screen. Push any button down next to an edge or
corner, move that cdge or corner to the new position, and let the button up. The cdge
outlinc should follow the cursor as long as you hold the button down.

Move Edges + Object
Similar to Move Edges, but drags the underlying object around with the moved edge or
corner.

Move Viewport Change the viewport associated with a view by changing its position, but retaining its size.
Press any button in the desired view. While the button is being held down, the outline of
the viewport will move, following the cursor. Lift up the button at the desired position. A
shortcut to this function is obtained by pressing thc middle button while pointing to the
banner of the desired view: the viewport outline will follow the cursor until the middle
button is rclcased.

Redraw Erasc and redraw the entire screen. Should be necessary only when low-level debugging
information trashes the screen.,
Resct State Reset the state of an AVT. Click in any view of the AVT. This is cquivalent to pushing the

“reset” key on a VI-100 or most other page-mode terminals and is neccssary only in
extraordinary situations where the AVl appears to be “wedged”.

Sct Alternate Excc Size
Sct the “alternate™ size for exccutives. Type in the size to the VGTS window. Exccutives
of the new size can then be created using the Exec Control submenu.,

17 June 1986 V-System 6.0 Reference Manual

Workstation Management _ . 29

Toggle Grid -

Toggle the background grid in a view of SGVT. Click once to turn the grid on if it is off,
or off it is on in the view you sclect. The grid dots are every 16 screen pixcls, and always
line up with the origin.

Toggle Paged Output Mode |

Zoom

Enable or disablc paged-output mode in a AVT. Click in any view of the AVT.

Invoke “zoom mode” in an SGVT. The cursor changes to the word "Zoom™. You can get
out of this mode in two diffcrent ways: First, clicking the left or middle buttons when the
cursor is inside a view of an AVT rcturns from the view manager and selects that AVT for
input. As a side cffect that view is also brought to the top. Sccondly, you can click the
right mouse button. The cursor should change back to the normal arrow.

The left and middle buttons in Zoom mode zoom out and in respectively. That is, the left
button makes the object look smaller, and the middle button makes it look larger. You can
remember this because the “outer” (left) button zooms out, and the “inner” (middle)
button zooms in. A shortcut to this mode is available by clicking the middle and left
buttons at the same time while the cursor points to the gray background or to a view not
sclected for mouse input.

2.4.2,2, Assignment of Commands to Menus

The top-level view manager menu contains the following commands:

Create View

Dclete View

Exec Control

Graphics Commands
Make Bottom

Make Top

Move Viewport

The "Excc Control” sub-mcenu contains:

Create Exccutive (two flavors!)
Delete Executive

Interrupt Program

Kill Program

Resct State

Sct Alternate Exec Size
Toggle Paged Output Mode

The "Graphics Commands” sub-menu contains:

Center Window
Expansion Depth
Move Edges

Move Edges + Object
Redraw

Toggle Grid

Zoom

2.4.3. Summary of Accelerators

The workstation management functions available though mouse clicks are listed in Table 2-1. Sce also

scction 2.7.

Using V

17 Junc 1986

2-10 » User Interface Overview

Mouse

Buttons Where Effect

LMR

x . . Inbanner Make Top and select
X . Inbanner Move Viewport

. . x Inbanner Make Bottom

x . . Innon-sclected viewport Make Top and sclect
x . Innon-selected viewport : Make Top and select
. X Ingray or non-selected viewport Top-level menu

. x x Ingray or non-selected viewport Exec Control

x . x Ingrayornon-selccted viewport Graphics Commands

x x . Ingray ornon-selected viewport Zoom

x x x During any workstation management command Abort

Table 2-1: Accelerators for workstation management functions.

2.4.4. Program-generated Requests

When a program requcsts the creation of a view, the VGTS enters the same intcraction cycle as described
for the Create View command above. However, since the virtual terminal will have been specified in the
function call, you do not nced to sclect the virtual terminal, and universal abort typically will not work,

When a program requests the creation of an AVT, the cursor will change to the word “Pad” (sorry about
that). At this point, hold down any button, and an outline of the viewport that will be created will be tracked
on the screen. Position the viewport where desired, and let go of the button.

2.5. Line Editing Facilities

Keyboard input can be edited with Emacs-stylc line-cditing commands. More specifically, the commands
listcd below arc available. CTRL-x means holding down the Control key and the x key simultancously; ESC-x
mecans striking the Escape key and then the x key.

" CTRL-a Move cursor to beginning of the command line.

CTRL-b Move cursor back one character.

crrL-c Kills the Break Process, usually the command running in the current exccutive.
CrrL-d Delete character under the cursor.

CTRL-¢ Move cursor to the end of the command line.

CTRL-f Move cursor forward one character.

CTRL-g Abort thc command. The linc cditor will pass the command line, followed by a CTRL-g, to the client
program, which is rcsponsible for detecting the CTRI. -g and reacting to it. (The standard cxecutive
responds to such a line by printing “XXX".)

CIRL-h Delete the character before the cursor, Liquivalent to the DEL key.

CTRL-i Inscrt an appropriatc number of spaccs, to simulate a TAB character, Equivalent to the TAB key.
CTRL-k Dclete the command linc from the cursor to the end of the line,

CTRL-t Transposc the two characters preceding the cursor.

CrRL-u Dclete the command linc up to the cursor.

CTRL-w Delete from the cursorto the bcginhing of the current word.

CTRL-z Causcs an End of File indication to be sent to the application reading the line. This will terminate

17 Junc 1986 V-System 6.0 Reference Manual

Line Fditing Facilities ' 211

the Exccutive if no application is running. -
ESC-b Move cursor to the beginning of the current word.
rsc-d Delete from the cursor to the end of the current word.
ESC-f Move cursor past the end of the current word.
ESC-h Delete from the cursor to the beginning of the current word. Same as CTRL-w.

CR Return the linc-edited text to the client. Even if struck in the middle of the “line”, the entire line
will be returned. .
Printing characters are normally inserted at the cursor. .

2.6. Paged Output Mode

When paged output mode is on, the workstation agent stops writing to an AVT when the AVT fills up with
output. The workstation agent then displays the message "Type <space> for next page” in the banner and
waits for the user to issuc a command that unblocks the AVT.

Most commands are optionally preceded by an integer argument k. Defaults arc in brackets. Star (*)
indicates that the argument becomes the new default.

<space> Display the next & lines fcurrent page size]

zZ Display the next k lincs [current page size]*

CR,LF Display the next & lines [1] '

q.Q Throw away all output until the next time input is sent to the application program.

] Scroll forward k lines [1]

S Scroll forward to the last line
f Scroll forward k pages [1]

F Scroll forward to the last page

BS, DEL. Erase the last character of the numeric argument
Repeat the previous command

If the user types a character that is not a valid command, the character is trcated as a normal input
character. If linc-cditing mode is on, the CTRL-c and CTRL-z commands (see scction 2.5) have their usual
cffect here.

2.7. Sending Mouse Events to Text-oriented Applications

Many applications cxist that have not been written expressly for the V-System, but can be accessed via the
text terminal emulation protocol. A few minor additions to this protocol permit applications to reccive a
number of mousc clicks as cscape scquences that they may interpret as they wish. ‘The precise escape
scquences generated are given in Chapter 29.

A complete list of the events that gencrate cscape scquences, and the use to which the UNIX EMACS text
cditor puts them, is given in Table 2-2. The actual cscape sequences generated arc given in Section 29.2.2.

Using V 17 June 1986

12) ' . User Interface Overview

Mouse .

Buttons Emacs Interpretation
LMR

X Position the cursor at the position of the click.
x x . Sctthe mark to the clicked position,
x . x, Delete from the mark to the clicked position.
. x x Insert the kill buffer at the clicked position.

Table 2-2: Events that generate escape sequences.

2.8. Emulating the Mouse withthe Keyboard

For the benefit of hardware configurations without a working mouse, the VGTS can interpret certain
keyboard escape sequences as mouse input.

2.8.1. Workstation Management

The input virtual terminal can be changed by using CTRL-t (octal 036) followed by a single command
character. The only command characters interpreted by the VGTS are 1-9 to select the given virtual terminal
for input.

2.8.2. Graphics Events

The VGTS also interprets certain character scquences as mouse movements or button transitions.
However, the VGTS will only intercept these cscape sequences if they are sent as a rapid burst of characters,
as is the case when they are sent by pressing a function key. [f the escape sequences are typed manually, the
VGT'S detects the space between characters and passes them through in the normal fashion.

The following is a list of the cscape scquences used and the function keys with which they are normally
associated on an ANSI (VT100-stylc) keyboard:

ESC-{ A (ANSI DDown Arrow) :

Move the mouse cursor down,
15C-[B (ANSI Up Arrow)

Move the mouse cursor up.
ESC-{ C (ANSI Right Arrow)

Move the mouse cursor to the right.

ISC{D (ANSI Left Arrow)
Move the mouse cursor to the left.

ESC-OP (ANSIPF1)
Toggle the valuc of the left mouse button. The new value of the left mouse button is
displayed in the view manager window.
ESC-O Q (ANSIPEF2)
Toggle the value of the middic mouse button. The new value of the middle mousc button
is displaycd in the view manager window.
ESC-OR (ANSIPF3)
Toggle the value of the right mousc button. The new value of the right mouse button is
displayed in-the view manager window.
ISC-O S (ANSI PF4) ‘ .
Toggle mousc cmulation mode. When mouse ecmulation mode is OFF, all cscape
scquences except this one arc passed through as normal, allowing the associated function

17 Junc 1986 _ V-System 6.0 Reference Manual

Emulating the Mouse with lhe.Keylboard 213

keys to perform application-defined functions. The new state of mouse emulation mode is
displayed in the view manager window.

When the VGTS reccives input from a "real” mouse, this type of emulation is permanently disabled. If
your mouse fails, you must use the "newterm” command to crcatc a new VGTS in order to use mouse
cmulation. .

Warning: These sequences only work on Sun-100's,

2.9. STS Conventions

The bulk of the discussion thus far has assumed the availability of the VGTS. However, therc arc occasions
when users may have the interact with the STS instead. In that case, the user sces exactly one view of exactly
one terminal associated with exactly onc exccutive. That view occupies the entire screen. The uscr interacts
with this exccutive exactly as he would with an exccutive running under the VGTS. Linc-editing facilities and
output paging arc provided.

Using V 17 Junc 1986

31

—3—
Using the V Executive

3.1. Introduction

The V exccutive is the part of the V system that accepts user commands from the keyboard and causes them
to be executed. It corresponds to the Unix shell or Tops-20 Exec. The exccutive is available as a program and
as a service provided by the exec server. Each exccutive usually runs in a virtual terminal provided by the
workstation agent — either the STS or the VGTS. See the description of the STS in scction 45 and the
description of the Excc Control menu of the VGTS View Manager in scction 2.4.2.

The basic operation of the cxecutive is to read command lines and executc commands. The first field on a
command linc is the command namc; the rest are arguments to be passcd to the command. Ficlds are .
scparated by spaces, except when quoted (sce section 3.6.6). A command name can be a built-in cxec
command, the name of a file containing a program compiled to run undcr the V system, or the name of a
program to be run on a server, such as Unix. The exccutive provides a simple scarch path mechanism for
commands. By default, it looks first for a V program in the current context (i.e., current working dircctory),
then in the [bin] context. You can specify a different scarch path using the PATH environment variable
(scction 3.6.7). If the command is not found on your scarch path, the excc will try to execute it remotcly, on
the server that is providing your current context.

The cxecutive waits for cach command to exit, unless the last field on the command line is the single
character & In this case, the command runs in the background, whilc the exccutive continucs to accept
commands from the keyboard., The View Manager and STS provide mechanisms for stopping or interrupting
a command running in the foreground. A program running in the background may be terminated using the
destroy command (sce chapter 4).

Other cxec features arc described in section 3.6,

3.2. Naming

A context in the V system is similar to the directories provided by other systems such as Unix. Each process
(and thus cach cxccutive) has its own current context, i.c., current working directory. A filename is normally
interpreted in the current context, unless it begins with a squarc bracket (‘['). The square bracket flags the
name as being cither an absolute name, or a local alias.

In V, the first component of an absolute name generally specifics the fype of object or service being namcd.
The sccond component often specifics a particular server, For example,
[storage/pescadero]/etc/passwd

names the file /etc/ pas'iwd on the storage scrver pescadoro The closing squarc bracket is optional
here. Most servers accept it as an alternative to the standard slash character ('/°) used to scparatc name
compongents.

Users can define their own local aliascs for cdntexts, using the def ine and undefine commands. For
example,
define g [storage/gregorio]/user/mann

dcfines, [g] as an abbreviation for uscr Mann’s home dircctory on the storage server Gregorio. The
command

undefine g

Using V 7 Junc 1986

32 ‘ : Using the V Exccative

removes this definition. The command
printdef

lists the local aliases that are currently defined. Several other standard aliases are automatically defined by the
exccutive when you log in. These include

[home] The logged-in user’s home dircctory.

[sys] " The dircctory containing standard V-System files.

[(bin] The directory from which standard V-System commands are loaded. Normally the same as
[sys]bin.

vl The directory containing standard production V-System files. The same as [sys] if you
are running the production V-System.

[xVv] The dircctory containing standard experimental V-System files. The same as [sys] if you
are running the experimental V-System.

[homex] The “home” server used for program executmn Normally [team/local], the local

team server. See section 3.6.9.

When running with the VGTS, aliases defined in any excc created by the view manager are global to all such
exccs, since all the execs run on the same tcam. A program run undcr the exec inherits a copy of the cxec's
aliases. Later changes to the exec’s aliascs do not affect it.

3.2.1. Changing the Current Context -
The cd (change dircctory) command can be used to change the current context for an exec. The command
format is
cd pathname

The pathname is interpreted in the (previous) current context., If the pathname is omitted, [home] is assumed.
When an cxec is created, its current context is set to the current value of [home].

The pwd command prints the absolute name of the current context,

3.3. Logging In and Out

3.3.1. Login

The 1ogin command is uscd to authenticate a user to the V-System. The command format is
login flags username
The optional flags arc described below.

The login command prompts for a password. The password is not ecchoed when typed. An crror message is
printed if the user types an invalid name or password, or cannot be authenticated for some other reason.” If
authentication is successful, the given user is registered with the exec server and tcam server as the primary
uscr of this workstation. ‘The cxcc then forces any gucst programs running on the workstation to migrate
clscwhere,

The exce next defines the local alias [home] to be the uscr’s preferred home context, as recorded in the
system authentication database, and undcfines all other uscr-defined aliases. Thus, if user Mann's home
context is [storage/teton]/ds/mann, after logging in, he can. refer to the file

4'lhc message “Server nol responding” indicates that no authentication server could be contacted. The command authserver &
will start onc locally, after which it should be possible to log in.

7 Junc 1986 V-System 6.0 Reference Manual

Logging In and Out ' 33

/ds/mann/phone-numbers under the name [home Jphone-numbers. In this case it would be possible
to get at the “root” dircctory on Tcton by using a / immediately following the alias, for example,
[home]/usr/V/misc/termcap. '

Next, the cxec changes its current context to be the new value of [home]. Finally, the exec executes a
command script from the file [home].Vin1t, if such a file exists.

The login command’s behavior can be modified by specifying one or more of the following flags on the
command line:

-v Verbose flag. Commands in .Vinit are echoed as they are executed.
-q Quick flag. Prevents.Vinit from being executed.
-X Exclusive flag. Normally, when a user is logged in to a workstation, that workstation is

registered as being unavailable for remote execution of commands, but if some other
workstation insists on requesting remote exccution there, the team server will still grant the
request. If the exclusive flag is given to the login program, the local tcam server is
instructed to refuse all requests for remote execution,

-r Remote flag. Register the workstation as being fully available for remote execution, as
though no one were logged in.

-f Finish flag. Allow guest programs currently executing on the workstation to finish. If this
flag is not given, gucst programs arc forced to migrate to another workstation.

After a uscr has logged in to a workstation, all further exccs created on that workstation using the View
Manager run as that user. The su command can be used to authenticate individual execs as some other user.
The command format is-

SuU username

Like the 10g1in command, the su command prompts for a password, which is not cchoed. However; it only
authenticates the exec in which the command is typed. It docs not affect the exee server's record of the
primary logged-in uscr, or perform any of the other actions of Togin.

Exccs created when no one is logged in to a workstation run as the unknown user. Most system scrvers place
severe restrictions on what the unknown user is allowed to do.

3.3.2. Logout

Give the Togout command when you are donc using a workstation. The command format is
lTogout username ...

where the user names arc optional. If no name is given, the user owning the exec in which the command was
typed is logged out. If onc or more uscr names arc given, the given users arc logged out. If the flag -a is
given in place of the list of user namecs, all uscrs with authenticated exccs on the workstation arc logged out.
(The latter two options arc restricted to the primary logged-in user.)

Logging out a uscr destroys all exces authenticated as that uscr, and hence all foreground programs run by
that user. Do not log out if you want such programs to continue running,

3.4. Remote Program Execution on a Unix Server

If the exccutive fails to find an appropriate load file for a command, it will attempt to exccute the command
on the scrver providing its current context by invoking the fexecute program. Thus, for cxample, whena vV
scrver on Unix is providing the current context, all the standard Unix commands like finger, man, or ps are
available. "the output of the Unix command is printed on the standard output file,

You can also supply input to rcmote commands. ‘The character cchoing and line editing on this input are

Using Y 7 Junc 1986

34 Using the V Executive

done on the workstation, not by the scssion server machine,

Since both the input and output arc done through pipes, and input is a line at a time, many Unix programs
which expect to be run on tty devices (such as emacs, more, etc.) do not work in this mode. Such programs
can only be run by logging in to the Unix machine, perhaps using the V telnet program to connect to it (see
chapter 4).

The V servers do not provide execution of Unix commands to uscrs who are not logged in to V or do not
have a Unix account. If the exccutive tries to execute a Unix command for such a user, the V server returns
an “No permission” error.

3.5. Remote Execution on V Hosts

A command can also be executed remotely by designating either a specific remote V host or any remote V
host. A specific host can be specified cither by the process id of its team server or by its string name (e.g.
sun-mj416). (Syntax details are described in 3.6.9.) Remote execution of this type is transparent to the user in
that 170 is still dirccted to the local host.

3.6. Facilities for Command Specifiqation and Modification

‘The exccutive provides various facilities for specifying commands and for redefining various aspects of
command execution. The syntax and scmantics of each is described below.

3.6.1. Line Editing Facilities
Command lines can be edited as dgscribed in Scction 2.5.

3.6.2. Pattern Expansion

A command argument that contains onc or more asterisks (*) is considercd a partern, and is replaced by a
list of cxisting filcnames that match the pattern, unless it is quoted with "® or * * (scction 3.6.6). The asterisk
character matches any string of zero or more characters other than slash (/), right square bracket (]), or an
initial period (.). Other characters in the pattern match themselves.

3.6.3. Command History References

"The exccutive maintains a history of the last 20 command lines that the user has typed in. These command
lincs may be referenced by typing the character | immediately followed by a prefix of the desired command
linc.‘ ‘T'hus if the command line

cp /ng/ng/V/cmds/exec/exec.c /tmp/exec.¢
was typed in, then it can be referenced by typing (for example)
lcp

If a non-unique prefix is specificd then the most recent command with that prefix is taken. Another special
form of reference is |}, which references the previous command line.,

When a command line is referenced it is redisplayed for further line cditing and verification. Thus in the
previous example typing

lcp
will causc the exccutive to display
cp /ng/ng/V/cmds/exec/exec.c /tmp/exec.c

with the cursor sitting at the cnd of the line. The uscr can then hit carriage return to re-execute the line or can

7 Junc 1986 V-System 6.0 Reference Manual

Facilities for Command Specification and Modification . 35

edit it first to derive a new command.

The command history will causc the executive to list the command lines it has stored in its history
record. The most recently executed command will be at the bottom of the list.

3.6.4. Command Aliases

Command names can be aliased by means of the al4as command. Thus, for example, typfng
alias e ved
will cause the command name “e” to be replaced by “ved” in subsequent command lines. Note that aliasing

is done only for command names and not for command arguments. (Remember that the command name is
the first word of a command line.)

Aliases specify a string for replacement of the alias word. Thus one can create aliases such as
alies test /ng/mmt/test/testcopy -d .
Then typing something like
test filel filel
will cause the command
/ng/mmt/test/testcopy -d filel file2
to be submitted to the exccutive for exccution.

A list of all defined aliases can be obtained by typing alias without any arguments. The command
unalias is uscd to remove an alias definition. Specifying a new alias definition for a command name simply
replaces the old one,

3.6.5. 170 Redirection and Pipes

170 redirection and specification of pipes between two (or morc) commands is done using the same syntax
as is uscd by the Unix shells. Thus input.can be redirected to come from a file by specifying

cnd < file :
and output can be redirected to a file by specifying
cmd > file
or
cmd >> file :
The latter form specifics that the output should be appended to the filc whereas the first form will overwrite

any data alrcady cxistent in the file. Error output can be redirected by specifying >? or >>?. The forms >&
and >>& redirect both standard output and standard crror to the same file.

A special form of redirection is available for bidircctional files, such as the serial lines availablc on Suns.
Specifying
cmd <> file
causes the command's input and output to be redirccted to the same file. To be precise, the file is opened in
FCREATE mode, and standard output is redirected (o the instance thus created. Stindard input is redirected
to come from an instance whosce id is cqual to the output instance id plus 1. This matches a convention used

by scveral V-System 1/0 scrvers. The form <D & also redirccts standard crror to the same instance as standard
output.

Pipes can be sct up between several commands by separating them with a |-on the command linc. Thus,
for example, the command line

cmdl | ecmd2 | cmd3 > log
will create two pipes and redirect 70 so that the output of cmdl will be used as the input to cmd2, the output

Using V 7 Junc 1986

36 Using the V Executive

of cmd2 will be used as the input to cmd2, and the output of cmd2 will be redirected into the file 10g.

All the special characters described above must be surrounded by spaces for the executive to recognize
them. Rcdirection clauses must appear after all arguments to be passed to the command.

3.6.6. Quoting Command Arguments

Sometimes it is desirable to include a space in a single argument to a command. To do this, put a pair of
cither single quotes (') or double quotcs (") around the argument. An argument quoted by one of these may
contain the other. Unmatched quotes arc matched by the end of the line, :

3.6.7. Environment Variables

The command
setenv var value

sets the cnvironment variable var to the character-string value value. (The latter should be quoted if it
contains spaces.) As with local aliases for context names, environment variables are sharcd among all execs
creatcd by the View Manager, and are inherited by programs run under any excc.

The command
unsetenv var
removes the definition of var, while the command
printenv war
prints its definition. The printdef command with no arguments prints all cnvironment variables.
A command argument that begins with a dollar sign (‘$°) is replaced by the value of the rest of the argument

interpreted as an environment variable, if such a variable is defined. Otherwise the argument is left
unchanged.

When trying to execute a V command. thc exec determines the scarch path to be used from the
environment variable PATH, if it is sct, as do all programs that usc the standard V-System program cxccution
library routines. The valuc of PATH should be a list of context names scparated by spaces. ‘The default path,
used if PATH is not sct, is “./ [bin]".

3.6.8. Concurrent Commands

. Commands can be specificd as being concurrent by including an & at the end of the command line. This
causcs the exccutive to return immediately to the user for another command rather than waiting until the
current command complctes. Also, while nonconcurrent (foreground) commands are terminated if their
exccutive is deleted, concurrent (background) commands will continuc even if the cxccutive that initiated -
them gocs away. [n fact, concurrent commands continue to exccute cven if the uscr that initiated them logs
out, -

The & must be preceded by a space for the executive to recognize it.

3.6.9. Execution of Commands on Another Host
Commands can be designated to exccute on anothcf host by including
@ <host-designation)
on the command line. Here (hosl-des:gnanon) can be onc of thrcc things:

@ The hexadecimal process id of the host’s tcam server. This must given in the form Oxpid, i.c. as the
characters Ox followed by the hex process id.

7 June 1986 V-System 6.0 Reference Manual

Facilities for Command Specification and Modification . 37

o The string name of the host, e.g. sun-mj430.

o The string any, designating any suitable V host other than the local one. A suitable host is defined as a
~ host on which no one is logged in, and whosc unused memory and CPU time meet certain minimum
requircments. '

Remote exccution s transparent to the user in that the 170 of the command is still directed to the local host
and will be displayed in the same manner as if the command were executing locally.

The @ sign must be surrounded by spaces for the exccutive to recognize it. The remote exccution clause, if
present, must follow all arguments to the command (but may be intermixed freely with redircction clauses).

Another way to specify that commands should be cxecuted remotely is to use the ¢x command to change
the exec’s current execution context—that is, the server (and context) where commands arc ¢xecuted when a
remote exccution clause is not given. The command format is

cx [team/hosiname]

Giving the ¢x command with no arguments resets the cxecution context to [homex], the exec’s “home”
execution context, which is normally [team/local]. The command

pwX
prints the name of the current execution context,

3.7. Support for Heterogeneous Processors

The V-System currently runs on machines with two diffcrent types of processor: the Motorola 68000 family
and the DEC Vax family. More processor types may be supported in the future. Thus, scveral versions of the
same V program may exist, cach compiled for a different processor.

Diffcrent versions of the same V program that appear in the same directory may be distinguished by a
machine-specific file-name suffix. This suffix is “.m68k" for Motorola 68000-bascd machincs (in particular,
Sun workstations), and “.vax” for thc Vax. Notc, in particular, that the dircctory for installed V-System
command binaries (at Stanford, /usr/V/b1n) contains two such versions of almost every command. When
scarching for a command binary, the cxccutive automatically scarches for a file name both with and without
an appropriatc machinc-specific suffix. Thus, it is not necessary for the user to enter a machine-specific suffix
when typing a command to the cxccutive. This is truc even if the command is exccuted remotely (sce section
3.6.9) on a host with a different processor type.

In light of the above, the exccutive's scarch path mechanism needs to be cxplained further. When a
command is to be exccuted on a specific host (that is, onc that is known in advance), then the exccutive looks
down the scarch path, until it finds a version of the command that can be exccuted on this particular host.
This is the usual case. When a command is to be executed on an arbitrary host (*@ any™), then a slightly
diffcrent mechanism is used. In this casc, the exccutive looks down the scarch path until it finds any version
of this command. It then determines all versions of the command that exist in this location, and sclects a
suitable remotc host that is able to exccute onc of these versions., In most circumstances the difference
between these two mechanisms will not be noticeable, ‘

Using V 7 June 1986

+1

—_— —
Command Summary

4.1. Workstation Commands

The following briefly summarizes the currently available commands for V.

addcorr Add correspondences from your V user identity to UNIX user accounts. Each V user can
correspond to one account on each local UNIX machine that is running a V/UNIX server,
The V superuser can add correspondences for other users as well as itself. See Chapter 43
for more information about user correspondences.

amaze A multi-person distributed game. Does not (yet) run under the VGTS. See Chapter 5.
ar Constructs library files (“archives™). See the UNIX manual for documentation.
biopsy Prints information about all the processes on the workstation, sorted by team. Several

options are recognized. The -1 option also includes the filename from which each team was
loaded. (This generally makes the output longer than one screenful) The -t option
followed by a pid or the suffix of a team’s filename will cause information to be printed
only about the team associated with the pid or filename. More than one pid or filename
can be specified - information for each will be printed. To obtain detailed information
about one or more processes, invoke biopsy with just the pid(s) of the relevant process(es).

bitcompile Converts human readable bitmap specifications into initialized C data structures, Usage:
bitcompile [options] [file].
The file argument specifies the source, otherwise standard input is used. Output goes to
standard output by default.
The following options are interpreted by bitcompile:

-DBIG_ENDIAN
Order the bytes (and bits) of the bitmap for big endian machines. This
is the default.

-DBLACK_IS_1
Generate bits of 1 for black. This is the default.

-DBLACK_IS_0
Generate bits of 0 for black.

-DCOLUMN_ORDER
‘ Generate bitmaps as columns of 16 bit words.

-DLITTLE_ENDIAN
Order the bytes (and bits) of the bitmap for little endian machines.

-DNOHDR Do not place a header before each output bitmap.

-DROW_ORDER
Generate bitmaps as rows of 16 bit words. This is the default.

-DSUN100FB
Generate bitmaps for (the current implementation of) SUN 1 frame
buffers. This is equivalent to specifying -DCOLUMN_ORDER.

18 June 1986

42

bits
boise

build

cat

cc68

cd
checkers

checkexecs

18 June 1986

Command Summary

-DSUNI120FB
Generate bitmaps for (the current implementation of) SUN 2 frame
buffers. This is equivalent to specifying -DCOLUMN_ORDER.

-DVAX Generate bitmaps for (the current implementation of) MicroVax frame
buffers. This is equivalent to specifying -DLITTLE_ENDIAN
-DBLACK_IS_0.

-0 file Send the output to file.
A program for manipulating (e.g. hand-editing) bitmaps and fonts. See Chapter 7.
Prints files on the Boise laser printer.

Several switches are allowed, preceding the filenames:
T Print rotated, that is, in landscape (horizontal) mode.

-n name Use name to label the output. If this option is not given, the user’s name
is fetched from the system authentication database.

b banner Use banner in the “File:” field instead of the filename. -
-h hostname Host name to use instead of “V-System”.

‘mmode Print mode. Possible modes are . . :
0 ' Line printer. For printing ordinary text files. The

default unless the filename ends in “.dvi” or “.press”.
1 DVI. For printing TeX output. The default if the
filename ends in “.dvi”.
2 Press. Not implemented. The default if the file
name ends in *“.press”.
3 HP2680a. For files in HP2680a “spool file” format.
W File is in the Sail (“WAITS") character set instead of standard ASCIL
(Line printer mode only).
W File is in the TeX character set instead of standard ASCIL All

characters with the high-order (8th) bit set are treated as printing
characters after the high-order bit is stripped. This feature permits
access to the printing characters *hidden under” the ASCII codes for
carriage return, linefeed, etc. (Line printer mode only).

If no filenames are given, boise reads its standard input.

Automatically run programs depending on which files are out-of-date. See Chapter 8. build
is an extension of the Unix make program.

File concatenation program. Copies each named file to the standard output. A hyphen
(“-") represents standard input. If no arguments are given, standard input is assumed.
There are no flags.

Compiles € source programs for running on the m68000 processors. See the Unix man

~ page.

Change directory: change the current context. Built in to the exec.

Lets you play a game of checkers against the workstation. This is also a good
demonstration of the VGTS’s graphics capabilities. See Chapter 6.

Kill off any exec whose standard input server or standard output server has died.

V-System 6.0 Reference Manual

Workstation Commands 43

ci
clear
clock

co

cpdir

date

debug
debugvgts

define

delcorr

deléxcc

destroy

diff

Part of the Revision Control System. Described by a UNIX manual page.
Clears the AVT.

An analog clock. Understands two flags: -s (with second hand) and -t (without text, in case
you want to zoom the clock).

Part of the Revision Control System. Described by a UNIX manual page.

If two filenames are given, cp copies the first file specified to the second file (or to stdout
if the second filename is “~"), If more than two filenames are given, or the ~-d flag is
given, the last argument is assumed to be a directory name, cp copies the first -1 files
specified into that directory, forming the name of each new file by appending the last
component of the corresponding old file to the directory name. Note that this behavior is
not quite identical to that of the Unix cp program; the V ¢p program does not attempt to
determine whether the last argument “is” a directory.

Invoked as:

cpdir flags fromdir todir
copies all files in the fromdir directory to fodir. todir must previously exist. The -p flag
specifies that the copy should be recursive: the entire subtree rooted at fromdir is copied.
The -y flag suppresses copying files if a destination file of the corresponding name already

exists and is younger than the source file, i.e., has a more recent modified date. The v flag
causes a ‘verbose’ message to be printed each time a file is copied.

Changes your current execution context— see section 3.6.9. This command is built into the
exec.

Distributed version of YALE (Yet Another Layout Editor). This is a VLSI layout editor
that provides graphics editing of SILT chip descriptions. YALE is documented in a
Stanford CSL Technical Report. :

Prints the date as maintained by the local workstation kernel, and as maintained by first
responding network time server. The kernel-maintained time on a workstation is set from
a time server when the workstation is booted. The command date -s resets the kernel-
maintained time from a network time server. :

The V debugger. See Chapter 9.

Allows the user to turn on/off debugging output from the VGTS. See section 46.5 for
further details.

Defines a local name (alias) for a context. The first argument is the new name to be
defined. The last argument is a context name, specifying the value to be given to the new
name. Built in to the exec.

Delete correspondences from your V user identity to UNTX user accounts. Each V user
can correspond to one account on each local UNIX machine that is running a V/UNIX
server. The V superuser can delete correspondences for other users as well as itself. See
Chapter 43 for more information about user correspondences.

Delete an executive, specified by its exec id. The first exec created when the workstation is
booted will always have an id of 0.

Takes the name of a team (or any suffix) as an argument, and destroys the root process of
that team. If the argument begins with the characters 0x, it is taken as a process id, and
that process is destroyed. This is useful for killing processes run in the background. The
-1 flag causes the process to be interrupted (with ForceException) instead of
destroyed.

This command has the same syntax and semantics as undér Unix 4.2BSD, with the

18 June 1986

44

do

domake
dopar

internetserver
iphost

killprog
listdir
listdesc

login
" logout
mail

18 June 1986

Command Summary

addition of the =n option of the Revision Control System’s rd1ff program.

Create an exec with a named file as its input. This file should contain a list of V
commands, exactly as you would type them, one to a line. If the =v option is given, then
each command line is typed out at the time that it is executed.

A synonym for doseq (described below).

A program similar to doseq, except that it allows the executions of its command
arguments to take place in parallel on different hosts. For each context, the program
prompts for the name of a host on which to execute the command, and pops up an AVT
that acts as the command’s standard input and output. If “any” is entered as the host
name, then an arbitrary remote host will be selected. The local host can be selected by
entering “0”.

This program takes two string arguments: a list of context names, and a command to

execute. The command is executed in each context in turn. doseq is often useful in
buildfiles.

An interactive drawing program that runs under the VGTS. See Chapter 10.
Echos its arguments. The -n flag suppresses the newline at the end of the output.

Force a command to be executed on the server providing the current context, as described
in section 3.4.

Displays a bar graph showing the current percentage of free memory, and the percentage
before the last change.

For producing magnified proofs of fonts created by mf (g.v.).

Produces terminal-readable output from a gf font file. See mf.

This command has the same syntax and semantics as under Unix 4.2BSD.
A rogue-like game. See chapter 11..

Part of the Revision Control System. Described by a UNIX manual page.

A diagnostic program that prints out information about any file instances (see chapter 33)
that are being maintained by the server that is providing your current context. At present
this will work only if your current context is being provided by a Unix server (see chapter
43), :

A version of the Internet Server. See chapter 39,

If given a single host name as an argument, iphost lists all IP addresses corresponding to
that host. If no argument is given, the IP address of the local workstation is printed.

Kill the program, if any, running in the specified executive.

Lists the names defined in one or more context directories. If the -1 flag is given, listdir
prints one line of information about each object. The output is sorted by default; the -n
flag specifies “no sorting.” If no argument is given, the current context is assumed.

Prints one line of information about each named object, extracted from its object
descriptor. If no argument is given, the current context is assumed.

Login to the V system. See section 3.3.1.
Log out of the V system. See section 3.3.2..

The UC Berkeley Unix 4.2 mail program, ported to the V-system, Note that this program
is merely a front end (for composing, reading and editing mail). In order to use this
program, your current context must be on a Unix system. The program’s commands are

V-System 6.0 Reference Manual

Workstation Commands 45

memserver

migrateprog

mon

nhame

newterm

the same as in the Unix version, with the following exceptions:
1. The ~e command invokes ved by default.

2. The new command *“Quit” (or “Q” for short) behaves just like the “quit” (or “qQ™)
command, except that if new mail has arrived, you will be immediately put back in
the “mail” program so that you can read it.

3. The new command “Update” (or “U”) is like “Quit”, except that you will be put
back in “mail” even if no new mail has arrived. (This command is equivalent to
exiting the program, and then re-running it.)

4.“mail -c n»” will cause the program to check your mail file, every “n” minutes, for
the arrival of new mail. If new mail is found, the “Update” command described
above will be run automatically (unless another command is in progress at the time).

A server that allows unused main memory to be used for temporary file storage. See
section 40 for more details.

Metafont-84 is Donald Knuth's language for compiling algebraic shape descriptions into
bitmap images and fonts (m68k only). See Knuth's book The MetafontBook (Addison-
Wesley, 1986). Also note the programs gf todv1{ and gftype.

Migrate a guest program from the local machine to another machine.. Invoked as
migrateprog [-p] [-h <host-name>] [<progs>]

The unit of migration is the logical host, not individual teams. All remotely executed
programs are created in their own logical host, whereas all locally executed programs are
run in the system logical host, which never migrates. Thus only remotely executed "guest”
programs will ever migrate. Currently there is no-way to create a locally invoked program
in a separate logical host other than to invoke it remotely from another machine.

If no arguments are specified then all guest programs on a machine are migrated to “lightly
loaded” machines, where lightly loaded is defined in the same sense as any is defined
when initially executing a program remotely. The -p flag specifies that information about
what programs are being migrated where should be printed out. The -h flag allows
specification of a particular machine to migrate to. The machine to migrate to may be
specified by either the hex pid of its team server (in the form Ox(pid)) or by giving its
official string name (e.g. sun-mj416). If specific programs are specified then only those
programs are migrated. Programs may be specified by the hex pid of one of their processes
or by their full invocation name, as stored by the team server.

This program monitors resource utilization of the workstation and presents it graphically.
The -d flag specifies a vertical display ("down") instead of horizontal. The default display
shows percentage used of memory and processor, and the number of incoming Ethernet
packets per second. The flags -m, -p, and -e limit the display to only those specified. The
-f flag violates the user interface standards by putting the display in the upper right corner
of the workstation instead of requiring the user to position it with the mouse.

Prints the loginb name of the user under whose account the command is running.

Change terminal agents. Takes one argument, the filename of a new terminal agent to take
the place of the existing one. All executives running under the old terminal agent are
destroyed; the new one will presumably provide means of creating a new one. For
example, newterm sts replaces the VGTS with the Simple Terminal Server, which does no -
graphics but simply presents the workstation as an ascii terminal. If no argument is given,
it defaults to "vgts".

Warning: If the named program is not in fact a terminal agent, you will probably lose control of your
workstation. .

18 June 1986

46

pagemode

password

pc68

pwd
pwx

query

queryexec
ranlib68

resdiff

rcsmerge

rename

rlog

18 June 1986

Command Summary

Enable or disable paged output mode in the current executive. Takes one argument, which
may have one of two values: "on" or "off". When paged output mode is on, the terminal
agent stops writing to a AVT when the AVT fills up with output. The terminal agent then
displays the message "Type <space> for next page" and waits for the user to issue a
command which unblocks the AVT. The user interface for paged output mode is
described in section 2.6,

Use this program to change your V password, home directory, or personal name. The V
superuser can also use it to create new accounts or modify other users’ accounts. Uses the
f1e1ds package (section 21). To modify the displayed Name, Fname, or Home, click on
the old value with the mouse, use the normal line-editor commands to change the value,
then hit return. To make the change take effect, click on Modify and supply your old and
new passwords.

Other functions: click on find to find another user’s authentication database entry. Click
add to add a new user account (a unique user number is selected for you). Click delete to
delete the displayed account. Click exit to leave the program.

Compiles Pascal source programs for running on the m68000 processors. See the Unix
man page. The flags are similar to those of cc68.

Prints the absolute name of the current working directory. Built in to the exec.

Prints the (absolute) name of your current execution context—see section 3.6.9. This
command is built into the exec.

This is an experimental interactive functional programming language (mé68k only). See Per
Bothner (bothner@su-pescadero) for information and a user guide.

Prints out the result of performing various ‘query’ operations. In particular, query
kerne1 prints the result of the QueryKerne1() library routine (see page 27-3), query
config prints the contents of the workstation’s configuration file (see Chapter 19), and
query ethernet prints the result of querying the “ethernet” device (see section 36.1).
query ? lists the possible options. '

Find out the status of the specified executive. Useful mainly for system testing.

Identical to the UNIX ran11b command, but handles archives of either m68k or vax
binaries. This command is installed on UNIX under the name ran11b68, and on V
under both the names ran11b and ran11b68.

Part of the Revision Control System. Described by a UNIX manual page.
Part of the Revision Control System. Described by a UNIX manual page.

Part of the Revision Control System. Described by a UNIX manual page. Currently, this
program must remotely execute the rdiff3 and merge programs of RCS on a UNIX
host, since the latter have not been ported to V.

Renames the object specified by the first argument to the name given as the second
argument. Will not move objects from one server to another; there are also restrictions on
moving objects within one server (for example, from one file system to another under the
Unix server).

Part of the Revision Control System. Described by a UNTX manual page.

Takes one or more filenames as arguments, and removes each file. The ~-f flag suppresses
error messages if some of the files do not exist.

Note that in particular, rm may be used, as an alternative to the destroy command, to
destroy one or more teams (by name). For example,

rm [team/toto/[bin]internetserver

V-System 6.0 Reference Manual

Workstation Commands 47

sed
serial

show

sleep

sort
startexec

storagestats

stuffboot

tail
talk

will ‘remove’ (i.e. destroy) the program “/binjinternetserver” that was executing on host
“foto”. Unlike the destroy command, the full program name must be given.

Stream editor. Described by a UNIX manual page.

This program provides a full-duplex conversation between its standard input and output,
and a device connected to one of the serial ports of the workstation. The argument is a
device name, specifying the line to be opened. It defaults to [device/serial0 if omitted.
Names of the form [device/serialn (with n a single digit) can be abbreviated by giving only
the digit, If the serial line is connected to a modem or a terminal port on another
computer, this program allows the workstation to act as a terminal. The flag -b bitrate
can be used to specify the bit rate (baud rate) of the connection; it defaults to 9600 bps.

Displays a .dv{ file or a .press file. It creates a menu in the invoking window;
commands are normally selected with the mouse. A new window is created for displaying a
page from the .dvi or .press file. You can invoke the program with show filename, or
you can set the filename in the menu. More details are given by the "help” command
(type h or select [He1p] with the mouse). TeX generated dv1 files are handled pretty
well, except for possibly missing fonts (and perhaps speed). The press support is pretty
minimal,

Delays for a time, then exits. The delay time (in seconds) must be specified as an
argument, :

This command has the same syntax and semantics as under Unix 4.2BSD.

Create an exec in a new AVT. The new exec will have the same context as the exec from
which startexec was invoked, not the [home] context. For most purposes the view
manager’s Create Executive commands are to be preferred over this one, as the view
manager will not work on an executive created by startexec. startexec prints out
the exec id and process id of the new exec.

Obtains access statistics collected by the V storage server and disk driver. The -c flag
causes the statistics to be cleared to zero.

A program that stuffs the file named in argument 2 into the boot block of the disk named
as argument 1. The file to be stuffed normally will be Vload and is needed during auto-
boot when the boot program is read out of the boot block on the root disk device. If a third
argument is present, it is taken as the name of a file to copy into block #0 of the root
device (the disk label).

This comrmand has the same syntax and semantics as under Unix 4.2BSD.
Allows interworkstation communication among V hosts similar to talk under Unix.
Invoked as :

talk [person]

Person is optional. If person is specified, it can either be in the form user1d to specify a
user on the first host we find that user to be logged in, userid@host to specify a
particular user on a particular host, or @host to get anyone on that host.

Once inside talk, you can enter commands by first typing (ESC), and then another letter.
The available commands are:

i invite a new user. You are prompted for- who you want to invite, and
you can respond in any of the ways mentioned for person above,

1 log in AVT, This allows you to see in a temporal fashion who says what.
You are prompted for a new AVT to write the log in. Giving this
command again terminates logging.

18 June 1986

48

telnet

telnetserver
testexcept
timeipc
timekernel

18 June 1986

Command Summary

q quit. Only you quit; any other persons engaged in the conversation can
continue to do so, even-if you were the one who initiated the
conversation.

r read from file. It reads the file into the conversation such that it looks as

though you typed it all. However, there is currently no pagenation, If
what was read is very long it will quickly get overwritten.

w write to file. This is the same as “log in AVT™ above, except logging is
done to a file you specify. Giving this command again terminates
writing.

Warning: talk runs only under the VGTS. There is currently a compiled in maximum of six talkers
in one conversation. talk AVTs are fixed at 24 by 80.

Due to current VGTS restrictions, talk is forced to initiate a conversation by writing to the VGTS
AVT (the small one originally in the lower right hand corner) and then opening a new AVT, which
gives the victim a PAD cursor. To accept the invitation the AVT is placed normally; to reject the
invitation click all three mouse buttons. This is bad if the VGTS AVT is obscured—the victim will
get a beep and a AVT prompt and not know why.

IP/TCP-based telnet implementation. It can run under the STS, or in a VGTS AVT. A
destination host name or address may be given as a command argument; if none is given,
telnet prompts for one. A host name is a string of non-white-space characters starting with
a non-numeric character. ‘A host address is a string of the form a.b.c.d, where a,b,c and d
are decimal integers. Both names and addresses may be followed by a dot and a decimal
port number (with no intervening spaces).

If the -e flag is given when it is invoked, relnet recognizes a set of commands prefixed by
ctrl-t while connected to a remote host. Ctrl-t ? prints a list of all such commands. These
functions are not available by default because they sometimes interfere with higher level
protocols such as that used by the VGTS.

After disconnecting from a remote host, felnet prompts for another host. To exit felnet,
enter ctri-c or ctrl-z in response to the prompt.

If there is no internet server on your workstation when felnet is loaded, it runs one in the
background. The -1 flag inhibits loading a local server, instead looking for a pubhc internet
server running on another V host.

The -d flag enables debug mode. In this mode, all transmitted and received telnet protocol
commands are printed, and all received non-printable characters are printed in an escaped
notation. Debug mode can be toggled on and off by typing ctrl-t d while connected to a
remote host if the -e option is specified on the command line.

The -g flag enables logging mode, which implies the -d debug mode above. A file,
"telnet.loigfile” will be created in the current directory. This file will contain a complete
transcript of bothe sides of the telnet session. Lines preceded by "<" originated from the
host while those preceded by ">" originated from the workstation. All non-printing
characters are quoted and all telnet protcol commands are printed. Password input is
automatically deleted. This mode is transparent to both sides of the connection. Logging
mode can be toggled on and off by typing ctrl-t g while connected to a remote host if the -e
option is specified on the command line,

IP/TCP telnet listener. This program listens for incoming telnet connections on the local

"internetserver, spawning a remote terminal server (RTS) for each connection received.

Simple interactive program for testing the exception server.
Performs timing tests of the V interprocess communication primitives. See chapter 13.
Program to measure the time for Send/Reccive/Reply kernel primitives.

V-System 6.0 Reference Manual

Workstation Commands 49

tsort Topological sort. Identical to the UNIX program of the same name.

type Type out one or more files on the terminal. Types a page-full and then stops and waits for
input. Pressing [SPACE] brings up anothcr page, while [RETURN] brings up another line.
Hit q or +C to quit.

undefine Removes the definitions of one or more local context names (aliases). Built in to the exec.

ved A text cditor, somewhat similar to Emacs, that runs under the VGTS. Described in
3 Chapter 14.

vemacs A version of the Emacs text editor that can, among other things, make use of the window

features of the VGTS. When vemacs is invoked without any arguments, it will display a
help file describing how vemacs differs from standard Emacs.

w Lists logged-in V users throughout the network.
Counts characters, words, and lines in a text file. See the UNIX manual for full
documentation.

wh Lists hosts on the network together with information such as logical host name, free
memory, average processor usage, number of free process descriptors, host type, etc.,
sorted by host name,

whi Lists currently executing teams for each host. If one or more ‘host’ arguments are given,

then only the teams on the specified host(s) are listed. Such arguments can take the
following form: a hostname, a pid (0x. . .), or “0” (indicating the local host).

4.2. Commands on Non-V Hosts

There are also several useful commands that can be invoked on non-V hosts (usually a Vax/Unix system).
Use these commands once you have logged into a machine through a telnet connection. Most of these
commands also have versions that run locally on the workstation under the VGTS, and the Unix versions can
also be run remotely under the VGTS, using the exec’s remote execution feature (section 3.4).

dale A version of the Yale layout editor that runs under the VGTS.

draw An interactive drawing program that runs under the VGTS. See Chapter 10.

photo Reads and displays a “.sun” format raster file.

siledit A program which edits .SIL format files. SIL, a Simple Interactive Layout program, is a
graphics editor for logic designs and illustrations.

silpress A program which takes a .sil format ﬁle and produces a .press format file that can be
printed on the Dover.

18 June 1986

51

amaze: A Maze Game

Amaze is a game for two to five players which runs under the STS on a workstation with a framebuffer. If
you see the letters VGTS in a small window on your screen you arc not running the STS. See section 2.2 for
instructions on how to start up the STS.

To run amaze, type the command
amaze '

If no one clse is playing, it will type “New game starting” and then draw the maze. Otherwise it responds
with “Joining game as player number x” and then draws the maze. Your player token, called a monster, will
be sitting in the center of the screen just above a checkered flashing door. From this point, you control your
monster through the keyboard. The commands are:

-do

Move the monster up.

Move the monster down.

Move the monster left.

Move the monster right.

Hold the monster at its current position.

Let the monster's moves be selected randomly.

B X e

Fire the monster's missile up.
Fire the monster's missile down,
Fire the monster's missile left,
Fire the monster's missile right.
(Note: the missile can be fired only once every six
seconds.)

SO0

h Hide the monster from other players -- no shooting allowed
while hidden.
v Let the monster be seen again -- can shoot again, too.
(Note: monsters stay hidden for ten seconds, but once
they become visible, they remain visible for 16 seconds.)

Set monster velocity to
Set monster velocity to
Set monster velocity to
Set monster velocity to
Set monster velocity to
Set monster velocity to

-- the starting velocity.

NN O
DHEWNERO

Quit the game, but continue to watch other players.
Rejoin the game just above the door.

Rejoin the game at a random corner in the maze.
Ctr1-C Terminate your involvement with the game.)

=2 +0

R Redraw the maze and players.

Note that to leave the game cntircly you hold down the CTRL kcy and type ‘c’.

Using V 30 April 1986

52 ' amaze: A Maze Game

To rejoin the game after being shot by another monster, use either the + or the r command. The game
currently docs not keep score of the number of hits you inflict or suffer.

Problems and questions should be directed to Eric Berglund.

TN - ..

30 April 1986 V-System 6.0 Reference Manual

61

—6 —
checkers

checkers allows you to play a game of checkers against the computer. The default version of the program
executes entirely on the players workstation.)

On starting the program, the view manager will prompt you for the position of the SGVT representing the
checkerboard.

The player moves the 'red’ (white) pieces; the program’s pieces are black. You are expected to make the
first move. You can, however, force the program to move first by "passing”. (Sec the paragraph dcscribing the
menu, to follow.) To make a move, move the mouse to the square containing the picce that you wish to move,
and click either the left or the middle mousc button. If this piece can be Icgally moved, it will then be
highlighted. Complcte the move by moving the mouse to the destination square and once again clicking the
left or the middle button.

If the move that you have sclected is legal, your piece will be moved, and the program will then make its
move. Note that having selecicd a picce to move, you can abort this sclection by clicking an illegal destination
square (the source square itself, for cxample). If a capture of an opposing (ie. black) piece is possible, your
next move must be a capture. A message indicating such "forced captures” will be displayed just below the
board. In such a case, the program will not allow you to make a move that is not a capture. Multiple captures
are handled correctly - if you move a picce by making a capture, your move will not be completed until all
possible capturcs with this piece have been made,

The standard rules of checkers apply. If a picce reaches the cighth rank of the board, it is promoted to a
king; kings may move in any dircction. A side wins cither by capturing all of the opposing picces, or if the
oppusing sidc can make no legal move.

When it is your turn to move, you ‘may also use the right mouse button to sclect from a menu of options,
which arc described below:

Redraw This causes the VGTS to redraw the cntirc board. This command should rarcly be
necessary.

Pass (skip turn) This command can be used if you want the program to make the first move. You can also
usc this to avoid any capturing obligations.

Change search depth -

’ By default, the program searches 4 half-moves ahead when choosing its next move. That s,
it considers its own move, your response to this move, its next move, and your response to
that. The "Change scarch depth” command allows you to change the depth of lookahead
to any value from 1 to 8. Don't sclect any of the higher depths unless you have a lot of
patience, however. ‘The program takes about 20s (o respond to a typical opening move
when the depth is 6, about 50s when the depth is 7, and about 3 minutes when the depth is
8. (Thesc times were taken on a 10 MHz SMI workstation - Cadlincs will be slightly
slower.) Note that you may find out the current scarch depth by sclecting "Change scarch
depth”, and then clicking outside the "depth’ menu.

Edit board This command puts you into /7dit mode, which allows you to cheat by adding picccs to, or
removing picces from, the board. Edit mode is described below.

Back up onc move'This allows you to retract (cg. to correct) your last move.
Resign The quick and cowardly way to cnd the game.

Using V ’ 1 May 1986

62 , . checkers

The program chooses it's move by performing a "brute-force’ scarch, using alpha-beta pruning. It evaluates
the board positions at the ‘lcaves’ of the scarch tree using a simple heuristic based on the number and position
of pieces on each side. A ’value indicator’ to the right of the board indicates the value of the current position,
as scen by the program. (If the indicator is above the halfway mark, for cxample, then the program ‘believes’
that you are winning.) There are also counters immcdiately above and below the value indicator, giving the

number of picces on each side, ‘The value indicator and the piece counters arc updated whenever the program
completes its move.

You can makc changcs to the board (between moves) in Edit mode, In this mode, a special menu is
displayed to the right of the board. To add a piece to the board (or change an existing picce), click the square
in the menu that contains that piece. You may place a copy of this piece on any (shaded) square of the board,
by clicking that square. You may do this repeatedly; it is not necessary to sclect from the menu each time.
Note that you use the ‘empty square’ to delete one or more pieces from the board. You may remove all pieces
from the board by clicking "Clear”. When you have finished making changes to the board, click "Done" to
leave Edit mode. It will still be your turn to move next.

A distributed version of the game may be started by spccxfymg the r flag: checkers -r <NoOfSlaves). The
program will then try to create up to NoOfSlaves slave processes on lightly loaded remote workstations, that
help in the scarch of the alpha-beta search trec. As far as the player in concerned, the only two noticcable
differences to the default scquential version of the game, are the possible improved responsc times and that
the computers moves may be nondeterministic. (Note: it is only worthwhile to play the distributed version of
the game if the scarch depth is choscn greater than four.)

Mail comments and/or gripes to stumm@pescadero.

1 May 1986 V-System 6.0 Reference Manual

3%

—_7 —
bits: a bitmap and font editor

bits is a special-purpose editor for working with bitmaps and fonts. It makes intensive use of the VGTS.
The virtual terminal qof the executive under which bits is started up, is used to display various status
information, as well as being the menu of commands to execute. When started, bits will ask for you to
create a new view (of a new virtual terminal) in which the actual editing is performed. If you request to view
sample text, you will be asked to create a third virtual terminal (see below). These last two virtual termmals
are SGVT's and can be zoomed.

(Note: If you are using a Sun-120 framebuffer (including a model 50), you should read the Bugs section!)

7.1. Command Input

In this chapter, when you are asked to do the command [xxx], it means that you should sclect and click
the mouse at the ficld [xxx] of the status/command virtual tcrminal. You get the same feedback as with
pop-up menus, with the field in inverse vidco. Some of these ficlds, when activated, expect you to type in.
some number or string. In those cascs, you have the full power of the linc editor, until you typec a <rctum>
(To abort input, type CTRL-g.)

7.2, Rastefs

The important thing to remember is that bits handles pointers to bitmaps. These we call rasters. A raster
also contains size and offsct data, so it can point to part of a bitmap. You can name a raster using the [Store,
with new name] command, and later retricve it from the Table of saved rasters. You can thus
save multiple pointers to the same bitmaps under different names. If you change bits in onc of the bitmaps,
the bits will also change in the other rasters, since they refer to the same bitmaps. Use the [Save a fresh
copy]l command to make a virgin copy of‘ a bltmap. which is guarantced to have no other rasters pointing at’
it.

7.3. Changmg Raster Size.

To change the size of a raster, point at the boundary, hold down the middle button and “drag" the boundary
to where you want it. You can also change the size of a raster with the [Width] and [He ight] commands:;
To do this, sclect onc of these ficlds, and type in a number. "The absolute value typed in becomes the new
size. If the value is positive, the old and new rasters coincide at the top left corner; if the value is negative,
they coincide at the bottom right corner.

Note that when you change a raster’s size, all other rasters pointing at the same bitmap will be adjustcd to
point at whatever bits they used to point at. This is truc cven when you increase the size. (When the size is
increascd, and the undcrlying bitmap is larger than the part pointed to by the current raster, the hidden part
of the bitmap will appear. If this isn’t cnough, a new bitmap will be allocated, and all the pointers adjusted)

Using V 1 May 1986

72 ‘ » . bits: a bitmap and font editor

7.4. Bitmap 1/0

You can rcad and write bitmaps in .sun format (as used by the photo program), using the [Read
raster] and [Write raster] commands. To write a raw raster in hex suitable for putting in a C
program, use the [Write hex]command.

7.5. Painting

To set (blacken) a pixel, point at it with the mouse, and click the Jeft button. To clear (whiten) a pixel in a
bitmap, use the middle button.

7.6. Inverting a Raster

Sclecting [Invert black and white] inverts the interpretation of black and white pixels. This
interpretation is actually stored as part of the raster object, so no pixels are actually changed (except on the
display).

7.7. Raster Operations (BitBit)

You can do a general 2-operand BitBlt with thc [Raster operation] command. The current
(displayed) raster is used as one of the operands (the “destination™), so this should be sclected first. Then give
thc [Raster operation] command, after which you will be asked to select an operation. Available are
plain copy. "and’, ‘or’ (paint) and "xor’. In addition, thc [Invert Source] modificr first inverts the source.
[Invert Destination] docs thc same for the destination, which means inverting the destination
operand gnd the output result. Finally, you must select the other operand (the “source™) from the name table.

You can also sclect [Get the empty rast'er] as a sourcc. This gives you an infinite plane of white
pixels. This, together with thc [Invert Source] option, allows you to convenicntly clear or set any
rectangle.

7.8. Reflection and Rotation

Sclecting [Reflect/Rotate] will do onc of these transformations. (A popup menu asks for the
particular transformation.) Notec that the result is a “fresh™ raster: There arc no other rasters or tables
pointing at its bitmap.

7.9. [Replace in table]

This command asks you to sclect an clement in the raster table or the current font. ‘The clement is replaced
by the current raster. Ifa [Table of saved raster] clementis replaced by the Empty Raster, its space
is freed.

7.10. Making a Copy of the Screen - CURRENTLY NON-WORKING

You can make copy of the frame buffer, with a littlc bother. Sclect [Get framebuffer], which gets a
pointer to the frame-buffer. You should now usc [Height] and [Width] to reduce the time and space
required to deal with it. (The framebuffer is big.) You should [Save a fresh copy] to sce what's going
on, and then use the middic button to sclect the part that interests you. "This will be slow, since such a big
raster is involved, and you will also have to usc the VG'T'S workstation manager commands.

1 May 1986 V-System 6.0 Reference Manual

Making a Copy of the Screen - CURRENTLY NON-WORKING 73

7.11. Fonts

A font is a collection of characters. From bits’ perspective, a character is a bitmap with some extra
information. b1ts currently knows about fonts in the following formats:

o sf format (*Sun format”), which is specially optimized for the Sun-1 graphics hardware. (Will soon be
obsolete.)

o The same format, but the font is stored in an archive (library) of relocatable binary files. Thus fonts can
be linked in with programs, or read in at run time. The standard fonts are stored in
/usr/sun/11ib/11bsfonts.a.

o Pxl format, which can be generated by MetaFont78, and is used by a lot of the TeX people.
o Gf (“generic font”) format, a compact format generated by MetaFont84.

To read / write a font, select the desired field in the Read font | Write font table. Note that you
cannot write a font to an archive.

7.11.1. Displaying Fonts

When a character in a font is displayed, there are funny lines sticking out of the bitmap picture. The
intcrsection of the left and top scgments indicates the origin of the character: The left segment indicates the
bascline, and the top scgment the starting position. The intersection of the right and bottom scgments show
the “cnding position™: the vector from the origin to the ending position is the width of the character. The .
width vector is almost always horizontal, and indicatcs the spacing between adjacent characters: The “next”
character in a string should be positioned so that its origin coincides with the ending position of the current-
character.

You can select aﬁy of these lines (with the middle button), and adjust them with the mouse.

7.11.2. Font parameters

This is a section of the AVT with magic numbers about the current font. They can all be changed, but you
should know what you arc doing.

Design size is the size in points at which the font is designed for. Resolution is ratio of pixcls per
point (vertically and horizontally) at which the font is designed for. (l'o be compatible with the Altos, we
have decided that the resolution of the Sun display should be defined to be 80 pixels/inch. Older Pxl fonts
usc a magnification rclative to a default Pxl resolution of 200 pixcls/inch.) Both these are TeX/Pxl
parameters. '

[Raster alignment] is the bit boundary character bitmaps should be aligned on in st font files. It
must be 1, 8, or 16.

[Max. height]and [descent] give the maximum total height, and descent below the bascline, of all
the characters in the current font. If you change [descent], the bascline of all the characters will be
adjusted accordingly.

7.12. Sample Texts

To study how a text string would look at no magnification, sclect [Sample text]. You should then type
in the text you want displayed. This text will be placed in a new virtual terminal. To change the text, just
resclect [Sample text]: the old text will be placed in the line editor buffer, to simplify small changes. If
you cdit the font, sclect [Redraw] to update the sample.

Note that in the sample, the character '\ ! is special. [t is used to indicate special non-ascii characters, as in
C. Spccifically, '\ ' followed by a 3-digit octal number is the character with that ordinal valuc. \\ displays \,

Using V 1 May 1986

14 bits: a bitmap and font editor

and \b, \t, \e, \r and \n are Backspace, Horizontal Tab, Escape, Carriagc Return and Line Feed,
respectively. \@, \A, ... _ arc control characters: 18, A, ... *_,

7.13. Printing a Rastet.

There is a Unix program to convert a . sun fileto a . press file. To run it (on some Stanford VAXen), do:
/usr/sun/src/graphics/pix/sunpress -p X.press X.sun

This, together with the (non-working) [Get framobuffer] command, allows you to print a hardcopy of .
the screen on a Dover printer.

7.14. Bugs and Problems

. sun files usc 1 to mean ‘whitc’ while b1ts uses 0. This means that you should [Invert black and
white] after reading and beforc writing, if you want to use the bitmaps for programs like sunpress and
photo.

The are some limitations on how bitmaps arc dlsplayed by the VGTS. A bitmap can only be magnified 1, 2,
4, 8, or 16 timcs, so other zoom factors will be wrong. Also, it is over-conservative when clipping rasters,
which means that a whole row of bits could be missing. On Suns with the 120 frame-buffer, bitmaps cannot
vet be magnificd at all. BUT b1 ts still starts up with the working window magnified 8 times!

Raster operations do not take into account that rasters may be overlapping.

b1its is not very robust against things like running out of memory. Caution would imply that you save
your work often.

The whole mechanism for grabbing a copy of (part of) the frame-buffer is very unclean (and currently
docsn’t work). 1t should be done by the VGTS, not application programs.

{ May 1986 V-System 6.0 Reference Manual

&1

—8 —
build: Maintaingroups of dependent programs

build is an enhanced version of Fcldman’s make program for Unix. It runs both under V and 4.2bsd
Unix.

Except in pathological cases, bui1d is meant to be backward-compatible with make. Sece the Unix
man-page for make. In this chapter, we describe only differences between bu11d and make.

bud1d reads in a file describing dependencies. By default it looks for the files bu11df 110, makef11e or
Makef i 1e (in that order) in the current dircctory.

8.1. Macros

A dependency file can contain lines of the form:
OBJECTS=filel.b file2.b
. This defincs OBJECTS as a macro name, which can be used as in:
cc68 -r -vV $(OBJECTS)
Macro names can also be defined in the command line:
build "-DOBJECTS=filel.b file2.b"

or equivalently:
build "OBJECTS=filel.b fﬂez b"

8.2. Including other dependenéy files

A linc of the form
#include filename

will parsc the filename when reading dcpcndcncy rules. (The filename may optionally be surrounded by
<I..>or .'0.”0)

The filename is resolved rclative to the directory containing the currently-being-read file (the one
containing the #4nc¢lude), not the current working directory,

8.3. Conditional dependency rules

#ifdef name
#ifndef name
#else

#endif

Thesc act like € preprocessor dircectives. For example #1fdef X succeeds iff the macro X is defined.
NOTE: If there is white space after a”#°-sign, the linc is taken as a comment!

Using V 12 March 1986

82 C e ' buiid: Maintain groups of dependent programs

8.4. Search paths

A line of the form
VPATH=,,./68k ../m1i
or, cquivalently,
VPATH=,./68k:../mi
causes bui1d to search for files first in the current dircectory, then in the directory . ./68k and finally in

. ./m1. The first form is probably prefcrable as the VPATH macro may then also be used elsewhere in the
buildfile for other purposcs.

One use of this is for maintaining libraries for multiple machines, where most of the sources are in a
machine-dependent directory . ./mi, but some of the sources and all of the binaries are in the current
directory.

Another use is for program maintenance: The sources being worked on can be in a private directory, while
the remainder can stay in the master dircctory, if you put the master directory on the search path.

NOTE: After macro-substituting command lines, bu11d will look for words (i.e. strings between spaccs). If
there cxists an alias for a word and the file is up-to-date, it will be replaced by the alias. An alias exists for a
word, if build has scarched for the file with that name, failed in the current directory, but found it on the
search path.

This simple-mindcd algorithm will usually do the right thing, but in pathological cases it might lose.

8.5. Dependency patterns

In addition to the old way of expressing dependencies using file suffixes:

.SUFFIXES: .c .b
.c.b:
cc68 -c $*.c

you can also usc more gencral pattern-matching:
. . b H S' .C *
cc68 -c $*.c

That is: a rule for making filcs can have as its target a pattern containing at most one ***. The part of the file
name matching the *** defines the valuc of $*.

8.6. Suggestion
If there are many files, you can speed up build (quite significantly for the V version at lcast) by starting out

with a cmpty . SUFFIXES: line, and cxplicitly defining just the suffixes you need. This saves bui1d from
having to check for the cxistence of . y files cte.

8.7. Bugs
Docs not understand RCS.

12 March 1986 V-System 6.0 Reference Manual

91

—_09—
debug: The V Debugger

9.1. Synopsis ‘ _
debug [-d] [-o origin] progName progArgl progArg2 ...

9.2. Description

9.2.1. Invoking the Debugger With a Program

Debug is an assembler-level symbolic debugger for V programs. Versions exist for both the Vax and the
63000.

It can be called as acommand to the V exec and takes the following arguments:

-d If the VGTS is available, then this argument causes an AVT to be created for the debugger
which is scparatc from the one used by the program to be debugged. 'This option is a
necessity for programs which read-keyboard input via separate reader processes since these
may interfere with the debugger’s keyboard input requests,

-0 origin The origin is the location where the program to be debugged was linked to load (c.g., 1000
or 2000 in the case of the kernel). The default value is the normal team origin (currcntly
20000). This option is usually only used by kernel hackers in place of getting a symbol
table dump and assemblcr listing when debugging. They issue the command debug -o
2000 /xV/kernel/sun2+ec/sun2+ec (for cxample), and can find out cxactly what
is at thce address where it crashed. ‘The debugger disables the g. x, ctc. commands when in

this mode.
progName The namc of the program to be debugged.
progArgn The nth argument of the program to be debugged.

Thus, to debug a program which is normally invoked by:
progName argl arg2
onc types
debug progName argl arg2
If a scparate AVT is desired (for VGTS resident environments only) then one would type
debug -d progName argl arg2

9.2.2. Postmortem Debugger

The debugger can also be used as a “postmortem™ debugger. The V team server is structured so that if an
exception occurs in the program currently being run, the debugger is automatically loaded and given control.
The postmortem debugger is always run with the -d flag.

Using V 1 May 1986

92 . . debug: The V Debugger

9.2.3. Common Usage

A program invoked with the debugger will start out at the debugger's command level. Breakpoints may be
set and the program code and global variables may be cxamined. The program can then be started using the
commands described below,

A frequent “postmortem”™ use of the debugger is to obtain a stack trace to find out where a program
incurred an exception and then quit. This is donc by typing 8 after having been transferred into the
postmortem debugger to get a stack trace, and q to quit:

! prog argl arg2
Bus error on read from address f 1in process 20d0024
Instruction Program Counter Status Register/PSL

1010 10172 - 10 .
BO> 10174 4880 : main+2C extw do0
.8 : ’

stack trace
tg.

9.3. Commands

The debugger begins by displaying the line of code at which execution has paused, and then gives a period
() as a prompt. The user can then cnter commands using the keyboard. Most commands are terminated
with a carriage return; exceptions will be noted in the command descriptions. The only characters that may
be used to erase previously typed input arc backspace (\b) and delcte (DEL). The cntire line may be erased
by typing CTRL.-u. When omitting optional arguments in commands which take more than one argument,
be sure to include the correct number of commas for the command. In this way the debugger can determine
which argument is to be assumed.

9.3.1. Definitions

Within the command descriptions below, an expression is some combination of numecric constants, register
symbols, globaily visible symbols from the program being debugged, and the operators +, =, and |,
representing 2's complement addition, subtraction, and bitwisc inclusive or, respectively. Blanks arc not
significant cxcept in strings. All operations are carricd out using 32-bit arithmetic and cvaluated strictly lcft to
right. '

Register symbols are symbols which represent the various processor registers. The following symbols are
recognized on the 68000:

%d0 - %d7 Data registers 0 - 7.
" %a0 - %a7 Address registers 0 - 7.
%Ip Frame pointer (synonym for %a6).
%sp Stack pointer (synonym for %a7).
%pc Program counter,
%sr Status register.
The following symbols arc recognized on the MicroVAX:
%r0 - %r11 General registers 0 - 11,
%ap Gencral register 12 (argument pointer),
%(p General register 13 (frame pointer).

1 May 1986 V-System 6.0 Reference Manual

Commands b 93

%sp General register 14 (stack pointer). . ..
%pc General register 15 (program countcr)
%ps! ' Program status longword. ' '
%psw Program status word.

In all commands ex'ccpt the replace-register (rr) command a regiétcr symbol represents the contents of the
specificd register. In the replace-register command it represents the address of the register specified.

Globally visible program symbols are names of program routines or global program variables. Note that
the VAX C compiler prepends an underscore to the names of all global symbols. The debugger attempts to
guess the correct symbol if no underscorc is typed by the user, but it docs get confused somctimes.

REEARS

The single character ‘.’ (dot) is trcated as a symbol representing the last memory location exammed. Its
value upon cntrance to the command level of the debugger is set to the current value of the program counter..

9.3.2. Execution Control Commands |

expression, number, b :

Set breakpoint number (in the range 2-15 decimal) at expresswn expression must be a legal
instruction address. If number is omitted the first unused breakpoint number is used. [f
expression is 0 the named breakpoint is cleared, or if number is omitted then all breakpoints
are clearcd. If expression is omitted all breakpoints are printed. Note: if expression is
omitted then number must also be omitted or must be preceded by a comma in order
distinguish it from being interpreted as the expression argument.

VAX note (not applicable to the 68000): The VAX C compiler uses the calls instruction for all function calls!
This instruction expects to find a 2-bytc register mask at the address specificd and actually
transfers control to that address plus 2. Therefore you have to add 2 to the addrcss when
setting breakpoints at functions in a C program on a VAX. This may or may not apply to
subroutinc calls in asscmbly language or in code generated by other compilers, dcpcndmg
on which instruction is used.

expression, g Go. Start or resume cxccution at expression. 1f expression is omitted, then start excecution
at the current pc value,

expression, gh Go past breakpoint. Like go with no argument, except that if we are presently stopped at a
breakpoint, then expression counts the number of times to pass this breakpoint before
breaking. If expression is omitted, then 1 is assumed.

expression, X Exccute the next expression instructions, starting from the current pc and printing out all
cxccuted instructions. If expression is omitted, then | is assumed. Note: traps are exccuted
as single instructions; i.c. the instructions exccutcd in a trap routine arc not displaycd or

counted,
expression, y Samc as x cxcept that subroutine calls are cxccuted as single instructions; i.e. do not
' descend into the called subroutine. Note that breakpoints within the subroutines are
ignored. ’
XX xx is a synonym for y
' A synonym for x, except that cach instruction exccuted is displayed on the same line as the

command, providing a more compact display. No carriage rcturn is nceded to terminate
this command; the semi-colon triggers exccution.

: A synonym for y, except that cach instruction exccuted is displayed on the same linc as the
command. providing a more compact display. No carriage return is needed to terminate
this command; the colon triggers exccution.

Using vV 1 May 1986

94) . debug: The V Debugger

The typeout mode referred to in the command dcscriptions is described under the t command.

sp Toggle the flag that determines whether the whole team stops at an exccption or just the
process that incurred the exception. The debugger’s default behavior is to stop the whole
team when an exception occurs, not allowing any of its processes to proceed until one of
the above Exccution Commands restarts the team. (Of course, at that point ANY of the
processes could resume cxccution —i.e., single-stepping one process could allow another to
execute indcfinitely.) If this command is typed, an exccption in any onc process will not
halt any of the other processes on t.he team. 'I‘ypmg $p again makes the dcbuggcr go back
to its original behavior.

q ‘ Quit. Exits the debugger and kills both the debugger and the program being debugged

9.3.3. Display Commands

The following commands are executed immediately without waiting for a carriage-return (CR) to be typed,
and their output overwrites the current line. (Thxs provides a more compact display format.)

expression/

expression\ Display the contents of expression. The typcout mode used is detcrmined from the
program symbol table and the current typeout mode. The value of dot is sct to expression.
The \ command is not very useful in instruction-typeout mode on thc VAX (i.e. after
giving the "i’,tt"” command) because the VAX uscs variable length instructions and almost
every byte value is a valid op-code, thus making it impossible to tell where the previous
instruction really starts. Similar problems occur less frequently on the 68000,

BN

Display the contents of dof after having respectively incremented (/) or decremented (\) it.
The typeout mode used is determined from the program symbol table and the current
typcout mode.

@

expression@ Display the contents of the memory locations pointed to by the valuc of dot or expression,

respectively. ‘The typeout mode uscd is determined from the program symbol table and

the current typcout mode. "The value of dot is sct to the address of the memory location

just displayed. Note that %pc will yicld the contents of the memory location pointed to by

the pc register (i.c. the current instruction) and that %pc@ will attempt to place an

ae additional indircction on that mcmory. location. %pc@ is almost always an invalid
reference.

expression= Display the value of dot or expression, respectively.
The following display commands are exccuted when a carriage-return is typed.
d o Display the contents of all the registers.

expression,s Print out a stack trace describing the chain of subroutine calls and their parameters, to a
maximum of expression calls. (expression defaults to infinity.) Warning: the dcbugger's -
stack tracc cxamincs the values of paramcters as they currently exist on the stack, not as
they were when the routine was called. Routines which change the values of their
parameters will similarly affcct the stack trace output.

expression, numlines, n
Display the next numlines memory locations, “starting at expression. If expression is
omitted. then display starts at dot. 1f numlines is omitted, then 24 lines arc displayed.

expression, numlines, p

1 May 1986 - V-System 6.0 Reference Manual

Commands

bpe, t

lype, tt
base, ir
base, or

offset, of

charcount, sl

Display the previous numlines memory locations, starting at expression. If expression is
omitted, then display starts at dot. If numlines is omitted, then 24 lines are displayed.

Temporarily set typeout mode to fype where type is one of:

¢ type out bytes as ascii characters.

W type out bytes in current output radix.

'w type out words (2-bytes) in current output radix.
T type out longs (4-bytes) in current output radix.

's’, strLength type out strings. Set the maximum length of strings to be strLength.
The maximum string length determines how far the debugger is willing
to look for the end of a string, which is assumed to be a "\0’ byte. For
programming languages such as Pascal which don’t terminate their
strings with a "\0' byte this limit is important to prevent endless string
searches. The string maximum length is sticky (i.e. it necd be set to the
desired value only once). The defauit value is 80.

i type out as symbolic asscmbler instructions.

Note that the type characters must be surrounded by single quotes. If no argument is
supplicd then the default typeout mode is used. This mode tries to set the typcout mode
bascd on the type of symbol(s) being displaycd and uses ‘I’ format when the mode is not
obvious. The new typeout mode stays in effect until execution is resumed with one of the
Execution Control Commands.

Permanently set typcout mode to #ype. The typeout mode is sct to the default typeout
mode if type is omitted.

Set the input radix to base. If base is illcgal (Icss than 2 or greater than 25, dccxmal) or
omitted, then hexadecimal is assumed. (This is the default radix.)

Set the output radix to base. If base is illegal (less than 2 or greater than 25, decimal) or
omitted, then hexadecimal is assumed. (This is the default radix.)

Set the maximum offsct from a symbol to offset. If offset is illegal (less than 1) or omitted,
then hexadecimal 1000 is assumed. (This is the default offset)) This command is uscful
when examining arcas of the tcam, such as the stack, which are more accurately labeled by
hex addresses than by symbol + offsct notation.

Sct the maximum number of characters in a symbol which will be displayed to charcount.
If charcount is illegal (lcss than 1 or greater than 128) or omitted, then 16 is assumed.

9.3.4. Tracing Comd\ands

expression, w

expression, wh

w

UsingV

Watch the mcmory location at expression. When program cxccution rcsumes, the
dcbugger regains control after every instruction and checks whether the contents of the
location have changed. 1f so, a message is printed and the user gets control. Otherwise, the
program continucs. This causcs the program to run scveral hundred times slower than
normal. If expression is 0, watching is turncd off.

Watch the memory location at expression, but only at breakpoints. A breakpoint will not
stop the program if the watched location is unchanged.

Print information about watched location.

1 May 1986

96 debug: The V Debugger

8.3.5. Replacement and Search Commands

expressionl, expression2, type, t A
Replace the contents of the memory location specificd by expressionl with expression2.
expression2 is interpreted to have type fype. Note: It is not currently possible to replace
strings with this command, and instructions should be specified in 16-bit quantities and
replaced with type 'i'. If expression2 is omittcd. then the value Qis uscd.

register, expression, re
Replace the contents of the specnﬁed register with expression. If expression is omitted, then _
the value 0 is used. expression is interpreted to be a 32-bit quantity.

....&.‘ .

expression, lowlimit, highlimit, type,
Search for (find) pattern in the range lowlimit (mcluswe) to highlimit (exclusive).
expression is interpreted as an object of type type. Objccts are assumed to be aligned on
word (2-byte) boundaries except for 1-byte types and strings, which arc aligned on byte
boundaries. A mask (set with the mask command) determines how much of the expression
is significant in the search, unless expression is a string constant, The first three arguments
to the scarch command are sticky; thus if any of them are omitted then their previously
specified valuc is used. fis the only debiigger command which allows the specification of a
string constant as expression. A string constant is dclimited by the character ” on cither
side; to usc " in the string itsclf, precede it with a \. An cxample of a string is: “This is a
string with \" in it". The typcout limit of strings dctermines how much of the stnng is
significant in the search, not the search mask.

expression, m Sct the search mask to expression. 1f expression is omitted then 0 is used. -1,m forc&s a
complecte match, fim (that's hex f) checks only the Iow order 4 bits, 0,m will make the
scarch pattern match anything.

9.3.6. Help Commands
h Print a bricf description of cach of the debugger’s commands.
Print a sct of internal debugger statistics. This was implemented for the convenience of the

designers and may change frequently in content and format. [t replaces the obsolete qq
which, duc to the debugger’s unsophisticated command parsing will hehave exactly as docs
q. .

'9.4. Bugs

The debugger as it is currently implemented has some “features” onc must be aw,arcq_f'

Currently, the version of the debugger that runs on the Vax can only debug Vax brogmms, and the version
that runs on the 68000 can only debug 68000 programs. 'This limitation causes littlc, difficultly since the
debugger is ordinarily run on the same host as the program to be dcbugged. . i

The debugger assumes that any trace trap cxceptions have been caused by its own single-stepping
mechanism. ‘Though it will recognize the first one, and print an crror message, subscquent trap exceptions
can causc intolcrable behavior.

The stackdump routincs depend upon knowing the string names of the kernel routines to produce corrcct.
stack traces which include thosc routincs. nght now, this list is being kept up to date by hand. A \

Putting breakpoints in code which is sharcd by two or more processes can be hazardous to your mcntal
health. A

1 May 1986 V-System 6.0 Reference Manual

10-1

— 10 —
draw: A DrawingEditor

The draw program is a document illustrator that can be used to add figures to documents created with
programs such as Scribe. This program is looscly based on the Xerox Alto Draw and SIL programs, and the
Apple MacDraw program. Many of the same primitive objects are common to all four programs, but there
are many fcatures unique to V Draw,

10.1. Conceptual Model

Draw is an "object” oriented graphics editor as opposed to a "bitmap"” oriented cditor. This means that
Draw allows you to freely manipulate the figures that you create after they have been placed on the screen at
the expense of being able to do finc frechand sketching and other functions such as seed filling.

The graphics model offcred by Draw is very close to that provided by the underlying Virtual Graphics
Terminal System (VGTS). All graphic objccts manipulated by Draw are variations on thrce general types:
splines, text, and groups.

Splines are b-splines of order 2, 3, or 5. Order 2 splines have straight edges and are thus referred to as
polygons. Order 3 splines us¢ quadratic intcrpolation, and are thus referred to as curves. Circles use order §
splincs which use quartic interpolation. Other shapes such as-ovals, rectangles, and arrowheads are special
cases of the more general order 2 and 3 splmcs Note that the term, spline, will be uscd to collectively denote
all of these objects.

Splines can cither be open or closed Open splines have two ends. Closed splines do not have any
endpoints. Any spline can havc a border drawn with onc of 15 pens or nibs. A closed spline may also be filled
with any of 27 patterns. All splincs must have cither a border, a fill pattern, or both. Fill pattcrns can cither
be opaque or transparent. Any parts of objccts lying behind an opaque object will not be visible. On the other
hand, if the object is transparent, then it will act as a screen where the objects underncath will show through
in the arcas wherce the upper object is not black.

Text objects allow you to place any type of written message on the page. Text can be in onc of various
fonts . It can also be cither left, center, or right justified.

Groups do not have any ;graphic shape of their own, but are usced to keep various objects together. Any
operation performed on a group is performed on all of its members. Groups can be nested; that is, one group
- may be a member of another group. This nested relationship is strictly hicrarchical. No recursive nesting is
allowed.

10.2. Screen Layout

When the program is first invoked, it will create two new windows on the screen. The large empty one is
the main drawing arca (known as “drawing arca” to the VG'I'S), and the smaller one is the commands window
(known as “Draw menu™ to the VGTS). 'T'he drawing arca is zoomable, and the grid spacing available at
normal magnification is the same as that used by the program when the right mousc button is pressed. Since
the program has no way of knowing what magnification you arc using, it aligns to the unzoomed grid values.
The VG'I'S will place grid points at a constant scparation, regardless of magnification. You may create
additional views, movce cxisting views, ctc., to your satisfaction, ‘'Ihe default drawing arca is in the proportion
of 8.5 by 11, and centered. A frame is put arund the actual size of a drawing page to provide some reference

UsingV 17 June 1986

10-2 draw: A Drawing Iditor

.

points if you zoom the view or change its centcring. The frame is normally not visible, as it lies entirely
outside the default view. It will not appear in any output. While this rectangle dcfines the absolute bounds of
the page, the default view defines the area which is "safe” to draw on since printers cannot, in general, print in
the extreme margins.

The menu window is shown in figure 10-1.

5=0]

= 9
0= (NI I
N -

A
/l{\
VAN

O=>0)
=

00| - - - O
o= _

D 'Done Undo " Abort

DDE] it Load Save " Print
(-]
'E:I:D@ ‘Debug Clear “ Quit

(sl | Fontt |
—E}@@ Helv:etica 12 B'éld

Font2 " Help

Figure 10-1: The Draw menu

The Menu window is divided into several sections. Near the top, there is a sct of squarc icons known as nouns.
These define the various primitive objccts which can be created with Draw. Along the Ieft hand sidc arce the
clongated verh icons. ‘These define the types of transformations which can be performed on alrcady cxisting
objects. Below the nouns arce the nib and pattern scctions, collectively known as the attribute section. These
can be used to modify the appcarance of all spline objects. Below these are various Draw comminds which
arc uscd to perform various functions. Below the commands is a rectangle which displays the currently
sclected font, 'This window displays the namec of the font in its own typeface and is also used to sct and
display text justification. "The Fontl and Font2 "commands” as wcll as the font rectangle also fall under the

17 Junc 1986 V-System 6.8 Reference Manual

Screen Layout 10-3

heading of "Attributes” as these arc used to set text attributes like the nib and pattern scctions are used to set
attributes of spline objects. At the very bottom of the menu is another rectangle where various Draw messages
and prompts are displayed.

The original window which you used to run the Draw program will serve as an arca where text will be i mput.
It is also used for printing uncexpected error messages such as memory full errors.

10.3. General style of interaction

Almost all Draw interaction (except for text and filcname input) is done with the mouse. To creatc an
object, click on one of the noun icons in the menu and then click one or more times in the drawing area to set
control points for that object. There are three types of objects: indefinite point objects, definite point objects,
and text objects. Indefinite point objects, such as curves and polygons will accept input for an arbitrary
number of points. To terminate one of these objects, click the Done command in the menu. Definite point
objects, such as circles, rectangles, and arrowheads require a fixed number of coatrol points. Each point
displays a prompt in thc message box which indicates what this point will be used for. For example, a circle
first asks for a center point, and then for a point along the edge. Text objects ask for a single control point to
position the text, and then prompt for the text string from the keyboard.

Draw maintains a current object. This object is indicated by framing it with a rectangle. A newly created
object becomes the current one. To change the current object, simply click on another one with any single
mousc button. Draw will find the object that is closcst to. the point that you click on and sclect that object. No
object need always be current. To un-sclect all objects, click in a blank scction of the drawing arca window.
More than one object may be selected at a time by using the ToggleSelect or Range commands. This. is
provided primarily in order o create groups.

To manipulate an object, first select it, thus making it the current object, and then click on one of the verb
or attribute icons. Depending on the operation involved, Draw will request zcro or more data points required
to perform the given operation. These will be prompted for in the message rectangle. At any time, you can
halt an opcration with the "Abort’ command. If morc than one object is sclected, then the verb applics to all of
the sclected objects,

10.4. Control Points and Sticky Points

When you create a spline object (remember., this also includes polygons), you will be asked to specify its
Control Points. ‘These points are the places which you wish the curve to pass near. "T'he more control points
you put in one place, the ncarer the curve will come to that place. Also, placing multiple control points at a
single point will make the curve much sharper at that point. Except for the end points of open curves, and
multiple control points, the curve will not, in gencral, pass through any of the control points,

Sticky points (similar to Knots) arc points which actually lic on the curve. They arc calculated by the
program to help you with the alignment of objects. There will be the same number of control points and
sticky points on curves. Polygons arc a special case, in that since the control points of a polygon actually lic on
it, the program considers them to be sticky points too. 'This means that the sticky points on polygons lic at the
corners and in the middle of cach edge. Circles also have a sticky point at their center, Sticky points for text
objects arc on the left, right, and center of the bascline (the line which most Ietters lic on top of, but which
letters such as small 'p’ descend below.) as well as the line just above the text. Groups don't have sticky points
tor themscelves but include any sticky points of objects within the group. ‘This, in cssence, means, that when
looking for sticky points, all objects arc considered regardless of whether or not they arc part of a group, no
matter how deeply the groups are nested.

Using V 17 June 1986

10-4 draw: A Drawing Editor

10.5. Mouse Buttons

When the mouse is clicked inside the menu. it is unimportant which buttons you usc. (The dcbug command
is a hack and is the only exception.) ‘Within a popup menu (a list of choice which ‘pops up’ after you do
something), you can abort by either clicking outside the menu or by pressing all threc mouse buttons down
and rcleasing them. In general, you don’t have to relcase (or press) the buttons all at once, but the mouse
position is based upon where the cursor is when you release the last button.

Clicking the mouse inside the drawing area can cause one of sevcral different commands (and mouse
locations) to be used by the program. The use of mouse buttons within the drawmg area is as follows:
Buttons Effect

- - Specifies a data point right where you are pointing.
- X - Requests the program to find a sticky point.
- =X Requests the program to use the nearest grid point.
X X - The 'Again' command. (see below)
X - X The 'ToggleSelect' command. (see groups below)
- X X Equivalent to the 'Undo’' command.
XXX Equivalent to the 'Abort' command.

Sticky -points were explained above. When you rcquest that the program select a sticky point, it will choose
the ncarest such point which is within a given radius (about 1 inch).

Grid points are spaced every 16 pixels (at normal magniﬁcation). If you wish to see these grid points, use
the Toggle Grid command within the VGTS. For printed output, pixcls are assumed to be distributed at 72 -
per inch.

The Again command allows the previous dpcration to be repeated. It is equivalent to issuing the Done
command (if necessary) and then clicking in the icon for the previous operation. The mouse position where
you issue the Again command is ignored as long as it is anywhere within the drawing arca

The easiest way to make fine adjustments to the position of an object is to first click on the Move verb icon,
and then click on a source and destination data point. If you arc not satisficd with the move, click Again and
repeat the operation without having to go all the way over to the menu. This command is also quite uscful
when drawing a scrics of objects of similar type. You can specify that you wish to draw a closed curve, place
the control points for the curve, and then confirm with Again. The program will complcte the curve you have
outlined, and wait for you to specify another closed curve, just as if you had confirmed with Done, and then
sclected Closed Curve again.

The Abort command is used to cancel the current operation without creating or manipulating any objects.
‘Abort will never throw you completely out of Draw. Use Quit for that. Some commands, such as Raise and
Lower, are exccuted immediately and thus cannot be aborted. Use Undo to back out of these.

The Undo and ToggleSelect functions are described more fully in the sections on Undo and Groups below.

10.6. Verbs

"T'here are cleven verbs in Draw. They arc indicated by the sct of clongated icons along the left-hand side of
the menu. Each is uscful for manipulating onc or more objects. All verbs require that an objcct be sclected
before they are executed. Here they are described as they appear from top to bottom.

Move This verb will permit you to specify a pair of points which define a displacement vector.
This vector tells the program how far and in which dircction to move the object. By using
this command, you can move cxisting object about on the screen,

Copy This verb is similar to Move, cxcept that it leaves behind an image of the object.
Frase This command allows you to delete (crase) the sclected object. This requires no extra data

17 June 1986 V-System 6.0 Reference Manual

Verbs

Alter

Rotate

Scale

Stretch

Group

Raise

Lower

Opaque

10.7. Nouns

10-5

points. If you make a mistake, you can always issuc the Undo command.

This verb is useful for changing the characteristics of an existing object. It will permit you
to move the control points on splines, change aspects of text objects, etc. (Not yet
implemented)

This verb will permit you to specify a fixed point about which the rotatwn is to take place,
and two points which will define the angle of rotation.

Text is rotated about its positioning point. Only the position of the text is changed; the
orientation of individual letters is always horizontal from left to right.

This verb will permit you to specify a fixed point for the scaling, and two points which
define the scaling factor. This command is uscful for expanding and contracting objects. X
and Y dimensions are scaled equally.

Scaling text will not change its size or font. It will change the location of the string based
upon its positioning point.

This verb is similar to the Scale command except that X and Y scaling is independent.
Thus an objcct may be made taller or shorter but not wider and vice versa.

This verb binds a collection of objects into a group. If a single group is sclected, it will
un-bind that group back into a collection, Collections arc created with the ToggleSclect
mouse scquence to allow more than one object to be sclected at one time. This, in a sense,
creates a temporary group. The Group verb makes this permancnt, or makes a permanent
group temporary.,

This verb will place the sclected object on top of all of the other objects. Note that you can
still point to objects you can't sce; the program will find sticky points on complctcly
obscurcd objects with no difficulty.

This verb will place the sclected object behind all of the other objects. ‘This is useful when
you usc opaquec ink to fill somcthing, and it winds up obscuring an objcct you want to sce.

This verb will toggle between opaque and transparent filled objects. Opaque objects
completcly obscurc anything they overlap. 'T'ransparent objects act like a screen in that they
allow what is under them to show through white arcas.

There arc cighteen icons in the noun section. These are indicated by square icons ncar the top of the menu.
Polygons and Curves

Arrowhcads

Circles

Using V

There are threce polygon icons and three curve icons. The threc icons in cach class
correspond to open-unfilled, closed-unfilled, and closed-filled respectively. (It does not
make scnse to have an open filled shape.) To create one of these typcs of objects, first select
the icon, and then click on as many control points as desired, and then click on the Done
command. You can also abort the object by clicking the Abort command cither from the
menu, or by the (all three buttons down) mouse scquence. Closed unfilicd polygons look
just likc open polygons except that no line is drawn from the last point back to the first,
Closcd curves are continuous and need not cross any control points, Open curves, however
will begin and end at the first and last control point.

There are four types of arrowhcads: wide-open, wide-closed, narrow-open, and narrow-
closed. -All are cntered in the same way. First the tip of the arrowhcad is requested, and
then its root. Arrowhcads are scparate objects from the main stem of the arrow and are
gencrally placed afier the stems have been drawn.,

Circles come in two types - filled and unfilled. The two required data points are the center

17 June 1986

10-6 draw: A Drawing Editor

point and any point along the edge. Circles are the only shapes drawn as order 5 b-splines.
Ovals and curves usc order 3 b-splines.

Ovals Ovals also come in filled and unfilled varieties. The data points are two opposite corners of
the inscribing rectangle. The shape of an oval is exactly the same shape as would be
produced by creating a curve, spccifying the four corners of the inscribing rectangle as
control points.

rectangles These work cxactly like ovals but with (Amazingly) straight edges!

Text Creating a text object will first prompt for a single control point. This will specify the left,
center, og right side of the text at the baseline. (the bottom linc which most characters
touch. Letters such as p’s and q’s descend below the baseline.) Draw will then prompt for
the text itself to be entered from the keyboard.

PressEdit symbol (= =<K)
This is a special text object which is used to match a Draw illustration with a Scribe
gencrated document when printing to a Press printer. (see the section below on including
Draw-generated illustrations in documents.)

10.8. Attributes

Both text and spline objccts have certain attributes. Text objects have font and justifications attributes.
Spline objects have filling and border attributes. No attribute currently applics to both of these types nor to
groups. Applying an attribute to a group, however, applics it to all of i;s members.

Various functions in Draw can be used to change these attributes. These same functions sct the default
attributes for newly created objects. To change the attribute of an existing object, sclect it, and then click in
one of the attribute functions in the menu. To sct attributas for a new object, first un-sclect any selected object
by clicking in white space in the drawing arca, sct the desired attributes, and create the object. Attributes can
also be changed while an object is being created. The attributes that arc indicated when the object is
completed are the ones that stick.

The following attributcs arc available)

' Fonts Fonts are changed dsing the Fontl and Font2 commands. Even though these are
technically "commands” in that they appcar in the commands scction, they actually work
more like attributes and are thus described here.,

Both bring up a pop-up menu with a list of available fonts. Fontl provides some fairly
standard fonts while Font2 provides some more exotic ones. Once a font is sclected, it is
loaded from disk if necessary, and then its name is displayed in the font rectangle in the
menu in its own typeface. (Non- Ascii fonts such as ‘I'emplatc64 may look weird.)

Text Justification There arc three different ways of positioning text: you can specify (with a data point
cntered via the mousce) cither the left-hand corner, the center, or the right-hand corner of
the bascline of the text. This provides for Ieft, center, or right justification. Note that the
bascline is the bottom line that MOST letters just touch, Small letters with descenders may
actually go below the bascline. ‘The current justification is indicated by the position of the
name of the current font in the font rectangle. You will notice six small tick marks just
inside the font rectangle which divide it into three parts. Clicking in cither the left, center,
or right arca will sct the respective justification and move the font name accordingly. Note
that the obscrved action if there is a text object sclected in the drawing arca is not
intuitively obvious. Sclecting left justification will cause an object to be shifted right if it
was not alrcady left justificd. This is because the object’s control point is kept stationary.
(Think about it.) If you are still confused about where text should appear, try positioning a
few strings, using the cxact positioning (leftmost) mouse button.

17 June 1986 V-System 6.0 Reference Manual

Altributes 16-7

Nib Nibs select the "brush” that the borders. of non-text objects arc drawn with. There are 15
different types of nibs arranged in a four-by-four squarc of four shapes (square, circle,
dash, and bar) by four sizes. The sixtcenth nib, corresponding to the smallest square is
replaced by the letter "N" meaning (N)o border. The square shapes provide sharp corners
while the circular shapes provide rounded corners. The largest of these also make nice dots
if a polygon or curve is created with just one point. The dashes and bars create interesting
calligraphic cffects, cspecially for curves. The no border feature only applics to filled
objects. Draw prevents you from accidentally making an object invisible by deleting both
l(S boder and its fill pattern.

Fill Pattern Next to the nibs are a set of 27 fill patterns arranged in a 4 x 7 rectangle. The 28th, at the
top-left corner is marked with a letter "N" which stands for (N)o fill pattern. This is
different to the one just to its right which looks blank. This is actually a white pattern
which can be used to erase parts of objects that the white object overlaps.

By default, all fill patterns are transparent. White areas of transparent objects allow objects
below them to show through. This feature can be used to create intercsting effects such as
Venn diagrams. A fill pattern may be made opaque by clicking on the opaque verb which
toggles the opacity of an object. This mcans that any objects underneath it do not show
through. The white pattern when transparent is equivalent to no fill pattern at all,

-10.9. Commands

Below the nib and pattern attribute section and above the font rectangle is the command section -of the
Draw menu.

Done This command is used to terminate a curve or polygon which can have an arbitrary number
of points. You will notice that the command is outlined in heavy black lines when it is
appropriate. At other times, this command is equivalent to the Abort command.

Undo This allows you to back-out of the previous opcration. There are two levels of Undo in
Draw. If you arc in the middlc of an operation that requircs multiple mousc clicks, then
Undo will back out of the last mousc-click. Pressing Undo several times will cause more of
the command to be undone until you back out completely from the command. ‘There is
also a global Undo which works by taking a snapshot of the currently visible objects on the
screen just before cach command is exceuted. ‘T'en of these snapshots are saved. Undo will
bring back the previous snapshot. ‘The last ten operations can be backed out of in this way.
Pressing Undo 10 times is cffectively a redo because you return to the top of the circular
Undo stack. This is handy in casc that you pressed Undo too many times. Note that ALL
opcrations can be undone - even Clear! Undo can also be exccuted by pressing the center
and right mousc buttons simultancously. -

Abort This command is uscd to back out of an opcration which requires several mouse clicks
completely. The state of Draw will be Ieft as if the operation had never been started. Abort
can aiso be exccuted by pressing all three mousc buttons simultancously.,

Load This command is used to load files from disk. Anything loaded from disk is actually
appended onto what may already be on the screen. ‘T'o load only what is in the file, use the
Clear command first. Draw understands how to read scveral different file formats: its own
V Draw files, Alto Draw files, Alto/V SIL files, and journal files. Obviously, V Draw filcs
arc the preferred format as they describe all of the information that V Draw is capable of
cditing. Alto Draw and SIL file support is provided so that users who previously uscd one
of these two drawing cditors can port their files over. Unfortunately, the translation is not
perfect. For example, Alto Draw dashed lines and the "Arrows” font arc not supported.
Journal files are discussed below in the section about journalling.

Save Although Draw can read files in the various formats discussed above, it will only write its

Using V 17 June 1986

10-8

Print

Range

Clear

Font! and Font2

Help

(Debug)

17 June 1986

draw: A Drawing Editor

own V Draw files. Journal files arc created by a completcly different mechanism as
discussed in "Jounalling” below.

Draw supports two different types of printers: Press and Postscript .

Press printers arc somewhat old, but rather fast workhorses which can print a page every
sccond, The Press document format does not allow the full gencrality available in Draw. In
particular, filled spline objects arc not supported and hence patterns, opaque, and even
raise and lower operations do not affect the final output to Press printers. All of the fonts
available in Draw, however, arc printable on Press printers. There are three Press printers

‘at Stanford: Dover (Margaret Jacks Hall second floor), Rover (Margaret Jacks Hall fourth

floor), and Plover (Durand building basement). The current page can be output to any of
these printers dircctly from the Draw menu. '

Postscript printers are more modern, but somewhat slower printers. A typical example is
the Apple LascrWritcr. Postscript printers are capable of displaying any graphic objects
created with Draw. Only the printer’s intcrnal fonts are available, though. This includes
the Helvctica and Times fonts. Also the Ascii font is mapped onto the Courier font, and the
Greek typeface becomes Symbol. These translations are not perfect but they do work most
of the time. Postscript printers tend to be owned by specific groups and are not generally
publicly available. For this rcason, Draw checks to sce which printers arc available to the
local UNIX V scrver and only displays those printers (if any).

The Print mcnu, besides letting you send files directly to various printers, also allows you
to save print files to disk for later printing or for inclusion inside other text documents.
This latter opcration is described in a scction below.

This command allows the selection of many objects simultaneously. The program will
prompt for two control points which form opposite corners of a rectangle. It will then scan
the entire list of objects and issuc the ToggleSclect command on any which intersect the
given rectangle. Any unsclected objects will be selected. Any previously selected objects
will be unsclected. To select all objects within a given rectangle, first click in a blank area to
unsclect cverything, and then use the Range command to sclect the desired items. This
command bchaves exactly like issuing a ToggleSelect on the given items individually.

This provides a method of complctely wiping Draw’s “"slate™ and starting from a fresh
page. Because this operation is dangerous, Draw requires that you click on the command
TWICE hefore it is actually executed. Even then, however, it can still be backed out of
using the Undo command.

This is the best way to get out of the Draw program. Like the Clear command, above, it
must be clicked on twice to actually be exccuted. For some strangely bizarre rcason, Quit
cannot be undonc! The Undo button goes away, but so does everything clse, for that
matter,

These two commands bring up menus which provide a selection of fonts. Fontl provides
some morc common fonts while Font2 provides more cxotic ones. Sclecting one of these
will make it the current (ont. If a text object is alrcady selected, it will change to the newly
sclected font. Otherwise, any newly created objects will usc this font.

This command will provide a bricf description of any other operation you like. To get help
on a specific operation, just sclect that operation after you sclect help. “T'o get help with the
mousc buttons, push any onc button in the drawing arca. 'T'o exit help, sclect Help again.

This command is hidden. Tt can only be invoked by pressing all three mouse buttons in the
message rectangle. This brings up a menu which provides several internal Draw dcbugging
features which arc generally not of interest to the user, Onc function, "Keep journal,” is
documented below in the scction on journalling. For the curious, you might also try the
monkey which generates (pscudo) random cvents as if a monkey were at the keyboard and

V-System 6.0 Reference Manual

Commands 10-9

mouse. (Don’t worry. It’s safe and protected from issuing dangcrous commands like Save
and Print!)

10.10. groups

Groups provide access to the structurcd graphics capabilitics of the VGTS. A group is a collection of
objects. Groups may contain other groups, but a lower level group, may not call a higher level group which
called it. Whenever possible, Draw tries to maintain a gingle copy of a group. cven if it is called from many
places. The only thing that diffcrentiates two copies of a group when they are drawn on the screen is their
absolute position. A group is created out of already cxisting objects at the top level. To create a group, use the
ToggleSelect command (push the Icft and right mouse buttons simultaneously) or the Range command (from
thc commands section of the menu) to sclect more than one object. Any un-selected object becomes selected,
and likewise, any sclected object becomes unsclected regardicss of the number of objects alrcady sclected.
Use ToggleSelect to affect individual objects and Range to change the selection status of a number of objects
within a given rectangle. A sct of sclected objects work very much like a temporary group. Any modifications,
such as rotation, scaling, or attribute changes, will be applied to all sclected objects as if they were one object.
Sclecting any other object, or sclecting nothing (clicking in whitc space) using the normal sclection process
undocs this "temporary group” but not any modifications that were made. To make a sct of sclected objects
into a pecrmanent group, use the group verb. This makes a set of sclected objects into a group, and vice versa,
In this way, groups can be created and destroyed. Groups are highlighted with a heavy rectangle around all of
the members. Once a group is created, any operations performed on the group are performed on all of its
members. Clicking on any of its members sclects the entire group, but clicking in white space that happens to
lic inside the group rectangle docs not. No opceration may be performed on a member of a group without
cither dismantling the group or affecting all other members. ‘

Groups are implemnted internally in a very cfficicnt manner. For example, multiple copies of a group (or
any object for that matter) arc only pointers to a single part. Only when one of the copies is modified is a true
copy madec. This is all automatic, however, and the user nced not worry about this,

Use of groups may also speed up sclection as a group who's bounding box does not contain the given
sclection point is skipped and all objects within that group are ignored.

10.11. Inserting Draw pictures in text documents

Draw has the capability of creating a file suitable for sending to a Press or Postscript printer, or for inclusion
inside a Scribc document. ‘The method for doing this is slightly different for Press than for Postscript.

10.11.1. Press

- To insert a picture in a Scribe document, first place a PressEdit symbol (a text item showing “<==<<{") in
the bottom center of your picturc. Note that this symbol is alrcady provided as one of the available pre-made
objects in the Draw menu. This actually has some special significance to Draw as it will not allow you to
change the font or the justification of this object. It will also be automatically skipped when creating Postscript
output.

Choosc the "Press file” option from the Print menu. You will be prompted for a file name. Because of the
limitations of the Dover, filled splines and polygons cannot be printed. ‘These objects will appear unfilled and
a warning message will be displayed on the terminal. Some objects are also just too complicated for the Dover
to print. In this case, cither garbage output will be produced, or the *“press file too complicated™ message will
be printed on the header page with no other output. .

Once the Press filc has been created, you can now cdit your Scribe file to automatically cmbed the picture
in your document. inscrt the line

@1ibraryfile(picture)

Using V 17 June 1986

10-10 draw: A Drawing Editor

ncar the beginning of your scribe input (.mss) file, and lines like the ones shown below at the point where
you want the picture to appear.

...1ike that shown,in figure @ref(press-example).

@Begin (Figure)

@PressPicture(file="example.press"”, height="3.4inches")
@Caption (An example figure)

@tag (press-example)

@End (Figure)

This will produce output like that shown in figure 10-2,

MVS

EtherNet

Sun

TOPS20 —__1

Figure 10-2: An cxamplc figure

10.11.2. Postscript

Postscript filc inclusion is quite a bit different from Press printing. For starters, the PressEdit symbol is not
uscd. Instcad, Draw automatically figures out the extremes of the drawing and centers the picture accordingly.
There are two menu items in the Print . menu which generate Postscript files. The “(print later)” option create)
a file which is cxactly like the one sent directly to the printers. The "(scribe)” version is suitable for inclusion
in Scribe gencrated documents.

Scribe rcquires a special variation on the normal Postscript device driver file in order to correctly print
documents with Draw illustrations. ‘This file, "vposts.dev™ must be cither in your local directory or in the
Scribe database directory. 'This file differs from the normal Postscript driver in that it contains special header
information which defincs macros used by Draw pictures. T'o uscd this driver, place the line

@device(Vpostscript)

at the beginning of your scribe input (.mss) file, and lines like the ones shown below at the point where you
want the picture to appear. '

17 Junc 1986 V-System 6.0 Reference Manual

Inserting Draw picturcs in text documents . 10-11

...11ke that shown in figure @ref(postscript-example).

@Begin (Figure) -
@Picture(Postscript="example.psf”, size=3.41inches)
@Caption (An example figure)

@tag (postscript-example)

@End (Figure)

This will producc output like that shown in figure 10-2.

10.11.3. Both

Often you will want to have a Scribe document which is printable on both types of printers. You would like
to be able to have Draw generated illustrations in both Press and Postscript format, and have the Scribe file
choose the correct illustration by just changing the @Device command. To do this, add the @LibraryFile
command at the top of your document as you would for a Press file, and add the following lincs at the
position where you want the illustration to appear.

@Begin (Figure)
@Case(GenericDevice,
PRESS "@PressPicture(File=axample.press, height=3.4inches)",
Postscript "@Picture(Postscript=example.psf, size=3.41inches)")
@Caption (An example figure)
@tag (example-figure)
@End (Figure)

10.12. Journalling

Whenever Draw starts up, it creates a file cdlled "Draw.journal” in the local directory. In this file, Draw will
keep a record of all user input cvents. If the program should crash in any way, the journal file will be left so
that the entirc Draw scssion can be re-constructed. Under normal circumstances, this file will be automatically
deleted when you quit Draw using the Quit command. You can explicitly ask that the journal file be kept
around by choosing the "keep journal file” from the Dcbug menu which is found by pressing all three mouse
buttons in the mcssage arca.

Should you cver find yoursclf in the V debugger because Draw bombed, the best thing to do is to type
"Quit,g" . This will causc Draw to clcan up its windows and to ensure that the journal filc is closed.

A journal file can be played back by first renaming it so that it docs not get clobbered the next time that
Draw runs and then using the Load command to read it in like any other file. You will then sce your entire
previous Draw scssion performed very quickly before your cyes.

Note that journat files arc extremely context sensitive. They depend on everything being exa}:tly as it was
when the journal was recorded. For example, if during the session, you loaded a regular file, cdited it and
saved it, the journal will probably fail because the file being loaded will be the new copy and not the old one.

Using V 17 June 1986

11-1

—_11 —
hack: Exploring The Dungeons of Doom

11.1. Command format

To start up a game of hack, use the command
hack -u playername -role -n -D -d directory

All arguments are optional, and most are normally omitted. You can use the -u flag to specify your name on
the command line. If this flag is not given, hack will use your V login name, or if you are not logged in, it will
ask your name after starting. If your name is suffixed by a hyphen and a single letter, the letter specifies your
character type. For example -u fred-t specifics that Fred wants to play as a Tourist. You can also select a
character without changing your name by giving the character type as a flag, e.g., =t to play as a Tourist. The
=n flag suppresscs printing of the latest “hack news”. (Usually there is no news anyway.) The -D flag lets
you play in “wizard modc”. It is (almost) impossible to die in this mode, and you get a free wand of wishing
with 20 charges, but your score is not counted. This mode is mostly good for dcbugging the game. The -d
flag specifics the directory hack is to use for storing temporary files, the score record, etc. If this ﬂag is
omitted, the dcfault directory [sys Jrun/hack is used. .

To see the current scores without playmg, use the command
hack -s -roles playernames -d directory

The -8 flag is required. It may be followed by one or more role ﬂags or onc or more player namcs to see
scores for only thosc players or roles. [f no player or role names are given, hack prints only your own scores.
The -d flag is optional and functions as described above,

11.2. Description

Hack is a display orientcd game inspired by the popular Dungecons and Dragons fantasy game. Both
display and command structurc rescmble rogue, but hack has many morc types of monsters, magic items, and
so forth.

To get started you really only necd to know two commands. The command ? will give you a list of the
available commands and the command / will identify the things you sce on the screen.

~ To win the game (as opposed to merely playing to beat other people high scores) you must locate_the
Amulet of Yendor which is somewhere below the 20th level of the dungeon and get it out. This is casier to do
in hack than in rogue.

When the game cnds, cither by your dcath, when you quit, or if you escape from the caves. hack will give
you (a fragment of) the list of top scorers. ‘The scoring is bascd on many aspects of your behavior, but a rough
cstimate is obtaincd by taking the amount of gold you've found in the cave plus four times your (real)
expericnce. Precious stoncs may be worth a lot of gold when brought to the cxit. There is a 10% penalty for
getting yoursclf killed.

The administration of the game is kept in the directory specificd with the =d option, or, if no such option is
given, a default directory specificd at compile time. (Currently [sys]run/hack.) This same dircctory
contains several auxiliary files such as lockfiles and the list of top scorers, and a subdircctory save where
games arc saved.

Using V 12 March 1986

11-2 hack: Exploring The Dungeons of Doom

11.3. Options

You may sct options using the HACKOPTS environment variable, or the 0 command within the game,
The flag or command is followed by a comma-separated list of options. Available options are echo, terschelp,
name, oneline, and passgo. A description of these is available through the ? command. All boolean options
default to being false. To sct a boolcan option truc, specify it in the option list. To set your character’s name,
usc the construct name=your name. For example, to sct terschelp, passgo, and your name to Yen Goi, the
option string would be tersehelp,passgo,name=Yen Goi. You cannot change your name once you
start playing.

11.4. Authors

Jay Fenlason (plus Kenny Woodland, Mike Thome and Jon Payne) wrote the original hack, very much like
rogue (but full of bugs). Andries Brouwer continuously deformed their sources into the current version—in
fact an entircly differcnt game, Ported to the V-System, and additional hacking done, by Tim Mann. The
V-System version is based on Andries Brouwer’s version 1.0.3.

11.5. Files

Filcs other than the hack program itsclf arc kept in the administration dircctory mentioned above,
data Data filc for the / command.

help, hh Data files for the ? help command, respectively the long and terse forms.
news Hack news, printed whenever a game is started.

rumors Fortune cookic database.

record The list of top scorers.

save A subdircctory containing the saved games.

bones_dd Dcscriptions‘of the ghost and belongings of a deceased adventurer.
11.6. Bugs

Probably infinite. You can mail complaints to games@Pescadero, but we suggest volunteering to fix it
yourself if you want it fixed.

This game is a huge time sink.

12 March 1986 V-System 6.0 Reference Manual

12:1

— 12—
siledit: A Simple lllustrator

The s11ed1t program can be used to edit simple illustrations. It is uses a compatible file format with the
Alto SIL program, although some obscure fcatures such as macros are not implemented. The main limitation
of this format is that only horizontal and vertical lines arc supported, with a limited range of fonts. On the
other hand, it is simpler and faster than draw, and illustrations produced by s11ed1t can be easily inserted
into other documents or printed out. A remotc version of this program will run under UNIX, although users
will probably prefer the V-System version of the program if permitted by workstation memory limitations.

12.1. Basic Operation

The s11ed1t program is invoked with one argument:
siledit filename.s11

It first attempts to open the file name given as an argument. If no such file cxists, the program continues and
allows one to be created. An SGVT is created, and the cursor should change to the “View™ prompt indicating
the creation of a default view. The default view will be slightly larger than the illustration, or a whole page if
the iltustration is cmpty. Press and hold any button an an outlinc the size of the default view will appear and
track the cursor. Position the upper left corner of the desired default view with the cursor, and lift the button
up when the view is in the right place. Next the $41ed 1t program prints out the text fonts that will be used,
and trics to load the appropriate fonts into the VGTS. Then the cxisting illustration is displayed, and the
following prompt appears:

Use mouse buttons: Mark, Select, Menu

Thus two mousc buttons arc used for the basic commands, with other commands available through
combinations of buttons or from the popup menu.

The Mark, indicated by an “X™ shaped cross. is used as onc cnd of lincs and the position of added text.
Once objects arc added to the illustration, they can be modificd by first sclecting them and then performing
onc of the modification commands. Sclected objects will appear higlighted in some way, although the cxact
form of the highlight is dependent on the VG'I'S implementation. In the SUN implementation, objects are
normally black on while, with sclected lines appearing as haif-tone gray and sclected text appcearing within a
gray box.

12.2. Commands

‘The commands available on the mouse arc as follows:

Left Button Moves the mark to the point of the click. ‘The *X"™ shaped cross movces to the new location.
The mark is normally moved before drawing lines or placing text.

Middle Button Sclects the single object at or ncar the click. Any other objects previously selected are no
longer sclected. The program will ccho the kind of object selected, or issuc a diagnostic if
no objects arc found.

Left+Middle Button
Draws a linc from the mark to the point of the click. The line is cither horizontal or
vertical, depending on which difference in position is larger. ‘This is a faster way of
drawing lincs than using thc menu. The current line width is used for the line. The mark

Using V 1 May 1986

122

siledit: A Simple Dlustrator

is moved to the point of the click, to facilitate drawing a series of connccted line segments.

Middle+ Right Button

Right Button

Adds the object near the click to the selection. This is in contrast to the Middle Button,
which causcs exactly one object to be sclected. Use this command to select several objects.

Command mcnu, as described below.

More advanced commands are available on the menu as follows:

Quit
Line Width

Delete
Unselect
Draw Line

Add Text
Modify Text
Write
Stretch Linc

Move
Copy

Box

Sclect Arca

Dcbug

Exits without saving the illustration. Usually you want to do the Write command first, so if
there have been changes since the last Write command, confirmation is requested first.

Pops up another menu of default line widths. Sclect the desired hew width from 1 to 8 units.
Clicking outside the menu results in no change to the width.

The selected objects are deleted. Currently there is no Undclete, so be careful!
Another click is requested, and the object near that click will no longer be selected.

Another click is requested, and a horizontal or vertical line is drawn between the mark and the
position of the click.

A line of text is requested, and the text is added at the position of the mark in the current font.
Sclects another menu for modifying text. _
Writes the illustration back to the file given on the command line.

Position the cursor near one end of the selected line, and hold down a button. The end of the '
line will move following the cursor until the button is relcascd. (Available only in the native
V-System version.)

Position the cursor anywherc in any view of the illustrétioﬁ and press any button. The sclected
objects will follow the cursor until the button is releascd. (Available only in the native V-
System version.)

Position the cursor anywhere in any view of the illustration and press any button. A copy of the
sclected objects will follow the cursor until the button is released. (Avallablc only in the native
V-System version).

Move the cursor to onc corner of the box, and press any button. While holding down the
button, position the oppositc corner of the box. The box will be drawn in the current line
width. The box can be aborted by pressing all three buttons at the same time. (Available only
in the native V-System version.)

Move the cursor to one comcr of the arca, and press any button. While holding down the
button, posmon the opposite corner of the arca. All objccts within the arca will be sclected.
(Availablc only in the native V-System version.)

Enables scveral debugging print statcments, for maintenance use only. (Available only in UNIX
version.)

The following commands arc used to modify text:

Edit Text

Default Font

Change Font

1 May 1986

First sclect some text, then issuc this command. The text is stuffed into the VGTS line
buffer, and cdited by the user.

Displays a menu of fonts to be chosen to become the new default font. Text added with the
Add Text command will usc the new default font.

Changes the font of the sclected text. Displays a menu of fonts to be chosen as the new font
for the sclected text,

V-System 6.0 Reference Manval

Commands - . 12-3

12.3. Selecting Alternate Fonts

Only two text font/size combinations are available, but with all of the regular, bold and italic faces. Default
fonts are Helvetica7 and HelveticalO, with Helvetica7B, the bold face, Helvetica7l the italic face, etc. A third
font, Templatc64, is used to draw circles and diagonal lines. A one-page chart of the Templatc64 character set
is probably required to use any of these shapes.

Other fonts can replace the two Helvetica fonts by creating a file with the name filename.fonts. This file
should contain the names of the fonts to be used, one per line. Comments in this file arc indicated by a #
character at the start of a line. The default fonts are acceptable for illustrations to be included in papers, but
for slides larger fonts like 12 and 18 point should be used. Thus, for example, the font file:

font file for slides

Helvetical2
Helveticail8

could be used when making slides. Thc command:
nmé8 -d -g /usr/sun/1ib/1ibsfonts.a

can be used to detcrmine what fonts are available. This command lists the defined global symbols in the font
library.

12.4. Generating Printed Copy

The s1lpress program is used to produce the printed illustrations from SIL format. Currently this
command only runs under UNIX. Altcrnate fonts can be sclected as in the siledit program. The
command line:

si1press filename.sil - v

will convert the named illustration into a Prcss format file and print it on the Dover. Most of the options
available to the CZ program arc availablc in $11press. Usc the man cz command for more dctails. In
particular, the -p f1ile.press option can be used to specify the name of a press file and inhibit printing.
This is uscful if the illustration is to be merged into a document produced with the Scribe or 'l‘EX document
compilers.

When using Scribe, include the command
@1ibraryfile(picture)
ncar the beginning of your manuscript file. Then, for cach illustration include the following commands:
@Begin(Figure)
@PressPicture(Height = "6.25 Inches", File = "filename.press”)

@Caption(A caption for this illustration)
@End(Figure)

Where the height is an cstimate of the vertical size of the picture. Then place the character sequence <= =<
with s11ed1it necar the bottom center of the illustration, and run s11press to create the Press file. The CZ
program of UNix will insert the figures automatically. It usually several iterations to get the positioning and
size right, but it is much faster than using a scissors and paste.

! siladit filename.sil

! silpress -p filename.press filename.sil

! ¢z paper.press

[Inserting filename.press on page 1]

Using V 1 May 1986

131

| — 13—
timeipc: AV Performance MeasurementTool

The timeipc program performs timing tests of the V interprocess communication primitives (Send,
Receive[WithSegment], Reply[WithSegment], MoveTo and MoveFrom).

To run the program, simply cnter the command timeipc. For some tests, timeipc invokes a second
program named timeipcserver to serve as a target for IPC messages; timeipcserver necd never be invoked
dircctly by users.

13.1. Types of Tests

Timeipc allows you to conduct a number of fests. A test consists of a number of trials. A trial consists of a
number of message transactions. .

Each test measurcs onc of the following types of message transaction:

Send-Receive-Reply ' without scgments

Send-Receive-ReplyWithSegment with short segments
Send-ReceiveWithSegment-Reply with short scgments
Send-Receive-MoveTo-Reply with long scgments
Send-Receive-MoveFrom-Reply with long scgments

Short scgments arc up to MAX_APPENDED_SEGMENT bytcs long (1024 in the current version of the
kerncl). Long scgments are longer than MAX_APPENDED_SEGMENT bytes.

For cach trial, the Sender process exccutes the following code:

msgCounter = msgsPerTrial;
«record start time> ...
do

msg->timingCode = typeOfTest;
Send(msg, receiverPid):
if(msg->timingCode != OK) <abort trial>

while(msgCounter--);
«<record stop time>

The Recciver process exccutes different code depending on the type of message transaction being tested.
For Send-Receive-Reply tests, the Receiver exccutes:

msgCounter = msgsPerTrial;
do

senderPid = Recsive(msg):

if(msg->timingCode != typeOfTest) <abort trial>
msg->timingCode = OK;

Reply(msg, senderPid);

while(msgCounter--);

Using V 1 May 1986

132 i timeipc: A V Performance Measurement Tool

.

For Send-Receive-ReplyWithSegment tests, the Recciver executes:.

msgCounter = msgsPerTrial;
do .
{.
senderPid = Receive(msg);
if(msg->timingCode = typeOfTest) <abort trial>
msg->timingCode = OK;

ReplywithSegment(msg, senderPid, localSegPtr., msg-»segPtr, msg->segSize);

/* NOTE: lost reply segments are not detected! */

while(msgCounter--);

For Send-ReceiveWithSegment-Rep1y tcsts, the Receiver executes:

msgCounter = msgsPerTrial;
do

{

senderPid = ReceiveWithSegment(msg, localSegPtr, &localSegSize);

if(msg->timingCode 1= typeOfTest ||

msg->segSize l= localSegSize) <abort trial>
msg->timingCode = OK;
Reply(msg, senderPid);

while(msgCounter--):

For Send-Receive-MoveTo-Raply tests, the Receiver executes:

msgCounter = msgsPerTrial;
do
{

senderPid = Receive(msg):;
if(msg->timingCode I|= typeOfTest) <abort trial>
MoveTo(senderPid, msg->segPtr, localSegPtr, msg->segSize):
msg->timingCode = 0K;
Reply(msg, senderPid):

while(msgCounter--);

For Send-Receive-MoveFrom-Rep 1y tcst, the Receiver exccutes:

msgCounter = msgsPerTrial;
do
(.
senderPid = Receive(msg):
if(msg->timingCode != typeOfTest) <abort trial>

MoveFrom(senderPid, localSegPtr, msg->segPtr, msg=>segSize);

msg->timingCode = OK;
Reply(msg, senderPid):

while(msgCounter--):

1 May 1986

V-System 6.0 Reference Manual

Types of Tests . : 133

13.2. Process Configurations
Each type of test can be performed in any of the following three process configurations:
(1) IPC between two processes on the same team. '
timeipc team

====>Root-~-~---
| (4) | ====z> jndicates Sending of test messages
~-=--=-> indicates Sending of control messages
v (n) indicates process priority
Sender=====a3Rgceiver

(1) (0/1/2)

(2) IPC between two processes on different teams on the same host.

timeipc team : timeipcserver team
~===>R00t-======---emmeeceroccenncnn e
| (4) : |
I : |
| : v
senderIIIIIIIII-I.lIIIII]IIII.IIIIIIIIII)RQCQ’iver
(1) . (0/1/72)

(3) IPC between two processes on diffcrent teams on different hosts.

timeipc team : . timeipcserver team
~===3R00t--=--=rcccac= fudadeddedebde S ttdnddedddd
| (4) o |
I 5 I
| : v
SenderssssssssasssssszsnasssszszsssnsncadRacoiver
(1) : (0/1/2)
- Looper : ‘Looper
(254). : (254)

Both timeipc and timeipcserver cxccute at REAL_TIMEIL team priority, giving their processes precedence
over all other processes except the Kernel Process (or other tcams exccuting at REAI_TIMEL). For tests
within a single host, the Sender and Recciver consume all processor cycles outside of the kernel, for the
duration of a trial, For tests between hosts. cach testing tcam runs an additional Fooper process which loops
forever, consuming and mcasuring all cycles not used by the Sender or Recciver, "Thus, during a trial, the
testing workstation(s) will appear o freeze -- the cursor will not track mouse movement and keyboard input
will be quecucd in the kerncl. 1t is also possible that concurrently-running, time-dependent applications may
suffer (¢.g. TCP conncctions via the internct server may time out during a trial).

Using V 1 May 1986

134 A timeipc: A V Performance Measurement Tool

13.3. Input to timeipc

Before each test, you must answer a series of prompts to specify the type of test and the process
configuration for the test. For each prompt, you may enter a null reply to request the default value spemﬁed
in brackets, or enter +2 to terminate the program. ¢¢ is ignored during prompting. B

receiver host name, 'local', 'sameteam’', or 'quit'? [sameteam] '
Reply with the name of a workstation on which to cxecute the Receiver team, or enter onc of the three
keywords. (The Sender team always executes on the workstation where the timeipc program was exccuted.)‘
Yocal requests that the test be performed between two teams on the local workstation. sameteam requests
that only onc team be used.- quit terminatcs the timeipc program. Any of the kcywords may be abbreviated
to a single letter. . :

receiver at h1ghor. same, or lower priority than sender? [lower]

This prompt occurs if the test is to be performed within a single host. Reply higher or h to run the Recetv)c;.;
at process priority 0, same or s for priority 1, or Tower or 1 for priority 2. : R

segment size in bytes, K bytes, or M bytes? [o]

Specify the size of segment to be moved in the test message transaction. Don’t leave any space between the'
number and the optional K or M suffix. A sizc of zero rcqucsts a snmple Send-Receive- Rep!y test.

read or write? [read] 'j{:

This prompt occurs if a non-zero scgment size was requested. read or r requests a
Send-Receive-ReplyWithSegment tcst (if segment size <= MAX_APPENDED_SEGMENT) or a
Send-Receive-MoveTo-Reply test (if scgment size > MAX_APPENDED_SEGMENT). write or w
requests a Send-ReceiveWithSegment-Reply test (if scgment size {=
MAX_APPENDED_SEGMENT) or a Send-Receive-MoveFrom-Reply test (if scgment size-):
MAX_APPENDED_SEGMENT). .

number of messages per trial? [10000] - i

Enter the number of times the message transaction is to be repeated within a single trial. Note that
MoveTo/MoveF rom opcrations arc nof counted as scparate transactions. :

number of trials? [10]
Enter the number of trials to be performed. Enter zero to start the promptmg all ovcr again.

1 May 1986 V-System 6.0 Reference Manual

Input to timeipe 13-5

13.4. Output from timeipc

The results of the tests are written to stdout. All prompts and error messages arc wnttcn to stderr.
Here is an example of test output?

Send-Receive-MoveTo-Reply test with 4096 byte segments
between sender host ‘nanaimo’ and receiver host ‘lubbock’
600 messages per trial, 5 trials Wed Nov 6 16:50:15 1986

sender receiver sender receiver
trial elapsed elapsed overhead overhead 1idie CPU d{dle CPU seg rate
number seconds usec/msg usec/msg - usec/msg usec/msg usec/msg bits/sec

1 13.030 26060 8] 16022 14869 1257408
2 13.320 26640 b 5 15618 152563 1230030
3 13.490 26980 6 5 16889 16764 1214529
4 14.800 29600 6 6 18387 182656 1107027
8 13.020 26040 5 [149256 14686 1258372
avg. 13.5632 27064] 16968 16763 1213473

Not all columns are printed for all tests, and the "avg.” row is only printed when there is more than one trial
per test. The meanings of the various statistics are described here:

elapsed seconds

is the total clapscd time taken for the specified number of message transactions. It is determined by calling
the kernel’s GetT1ime function before and after the sequence of messages, and thus is only as accurate as
GetTime. Although it is printed to three decimal places, the current version of the kernel only keeps time to
hundredths of a second, so the low-order digit should always be zero.

elapsed usec/msg
is the clapsed seconds divided by the number of message transactions, printed in microseconds.

sender overhead usec/msg
receiver overhead usec/msg

arc the number of microscconds of "overhead” instructions expended for cach message transaction, in the
Sender process and the Receiver process. They are computed by calling GetTime before and after 50,000
itcrations of the transaction loop with the [PC primitives removed, and dividing by 50,000. ‘These overhead
valucs should be subtracted from the eTapsed usec/msg to obtain the bare message transaction time.

sender 1dle CPU usec/msg
receiver idle CPU usec/msg

arc only printed for tests between two hosts, and indicate for cach host how many microseconds of the
elapsed usec/msg arc spent waiting for the other host or the network. They are measured by having a
lower priority process on cach machine that loops continuously, incrementing a counter, At the start of a trial,
the counter is sct to zcro. At the end of a trial, the counter value is saved. Then, the looper is allowed to run
alone for 1 sccond to determine how many times per second it can increment the counter. ‘That rate is divided
into the saved count to arrive at the printed value.

seg rate bits/sec

is only printed for tests with a non-zcro segment'size. It is the number of bits of scgment data moved during
the trial divided by the clapsed time of the trial.

Using V 1 May 1986

13-6 ‘ timeipc: A V Performance Measurcment Tool

13.5. Warnings and Precautions

¢ Despite having exclusive access to process-level cycles on the testing workstation(s), the progam can
yield different results for repetitions of the same test due to varying kernel overhead and network load.
For this reason, a test should consist of more than one trial, in order to observe the variance in the
results. A number of steps can be taken to minimize these perturbations, depending on your need for
accuracy:

o Run the test at a time of low network load, even if you are only testing within one workstation -
the kernel expends cycles receiving and handling arriving network packets. The mon program is
very helpful for discovering the current network load (but not while a test is runningt).

Alternatively, isolate your workstation(s) from the network during the tests. For tests within one
workstation, you can unplug the transcciver cable after you have started up the timeipc program.
For tests between two workstations, you can connect them both to a DELNI which can be isolated
from the nctwork at the flick of a switch. (This is also a polite thing to do to avoid loading the
network with your test messages.) Note that you will not be able to redirect your test output to a
file if you have disconnected from the network.

o Don’t touch your keyboard or your mouse while a test is running — they cause interrupts that the
kernel must handle.

o Kill off‘ any extraneous process that are running on your workstation(s), such as mon, telnet,
internetserver, etc. I haven't ﬁgured out why their presence effects the results of the tests, but it
does.

o Be sure that you are logged-in in order to prevent others from remotely executing programs on
your workstation(s).

o Make sure no other REAL_TIME] teams are running on your workstation(s), such as other
instanccs of timeipc or timeipcserver.

o It is possible to run timeipc on top of a bare kernel, i.e. without any other teams present. Only
tests within a single tcam can be performed because the services of the team server are not
available to sct up a scparate recciver tcam. An cxample boot command to load timeipc onto a
Sun2 workstation with 3Com Ethernet interface is:

b V /usr/V/bin/timeipc.m88k Vkernel/sun2+ec

When running in this mode, answers to prompts must be entered using LINEFEED rather than
RETURN. You may safcly ignore warnings about inability to sct the tcam priority.,

(Currently, a simple Send-Receive-Reply transaction on a Sun2 workstation is 6 -
microscconds faster when performed on top of a bare kernel, compared to running on top of a
freshly-booted standard first tcam and VG'I'S. Surprisingly, using the STS instcad of the VGTS
makes the simple message exchange slower by 2 microscconds.)

e 3¢ aware that your workstation will appear to frecze up during a trial. You may cnter +¢ to abort the
test and return to the first prompt, but the interrupt will not take cffect until the end of the current trial.
If you don’t know how long a particular trial will take, try it first with a small number of mcssages.
However, test results for trials running less than a sccond or two should not be considered accurate,

e For Send-Receive-ReplyWithSegment tcsts, lost reply scgments arc not detected. Be wary of
inter-host results from such a test.

e For Send-ReceiveWithSegment-Reply tests, a trial will be aborted if the recciver docs not
reccive the sent secgment. “This occurs if the receiver is not ready when the scgment arrives, for cxample
if the receiver is running at lower priority than a sender on the same host.

o Watch out for VGTS page mode - you may think you arc waiting for a trial to finish when in fact the
program is blocked trying to write to your virtual terminal.

1 May 1986 V-System 6.0 Relerence Manual

Warnings and Precaotions 13-7

.

o Be aware that inter-host tests consume considerable Fthernet bandwidth (up to 3 megabits/second or
morc) and you arc in danger of becoming unpopular with other uscrs of the network.

e Timeipc does not currently measure the performance of Forward or any group IPC operations.

Using V t May 1986

141

— 14 —
ved: A Text Editor

Ved is the V system text editor. Its basic keyboard commands are a subset of Emacs. However, the mouse
adds a whole new style of interaction with the editor. The multiple window capability of the VGTS is put to
good use, as well.

Ved manages onc or more editing windows. Each window is thought of as a vicwport onto a bufffer of text, a
continuously accurate display of some portion of that text. A change to the buffer is followed immcdiately by
a corresponding change to the display. In cach buffer there is a cursor, which is guarantced always to be in
the portion of the text displayed. Each buffer normally has a filename associated with it, the file from which
it was read or the file to which it was most recently written.

14.1. Starting up

Ved is invoked as follows:
ved {~number} {filename}

If a file name is given, Ved begins by reading in the file. 1t then requests an AVT, its first editing window.
This is indicated by the mouse pointer, which changes to the word “Pad”. Move the mouse to the desired
upper lcft corner of the AVT and click any button. The AVT will appear, and in it the first scrcenful of text
will be displayed. The AVT in which ved was invoked is rescrved for displaying crror messages and typing
special text. such as filecnames or scarch strings, which is not to be inscrted into any buffer. Typing into this
window while not specifically being prompted there for text will buffer those characters until input is
requested. This is not, in gencral, the desired result. In normal usc it is convenicnt to shrink this window
down to a fcw lines at the bottom. '

The number of lincs in the AVT created for displaying a file can be specificd with the ~number option. The
default size is 28 lincs.

At the top of the cditing window, there is a banner, When the banner is inverted (darkened), then this
window is sclected for input cither by the mouse or the keyboard. ‘The banner specifics the ved window
number which is used by the window selection command (described in scction 14.13) and the Vgt number
(sce section 2.4.2). The rightmost arca is reserved for the file name associated with this window, [f the file
name has an asterisk (*) prefix, then ved thinks that this buffer has been modificed since the last write or save
of the specificd file.

As an addcd feature, there is a inverted line of text at the bottom of every ved window. This is the fixed
menu arca of the window. 1t can be used to enter some frequently used commands using the mousc instead
of the keyboard (a full description of the fixed menu is in section 14.14.2).

14.2. Some Notational Conventions

In the subsequent command descriptions the following notational conventions will be used:

e tk denotes hitting the CrRri. key simultancously with the & key.

o Esc-k denotes hitting the 155C key followed by hitting the & key.

o tk-jdenotes hitting the CIRI. key together with the & key, followed by hitting the j key.

e Somc keyboards have function keys that gencrate sequences beginning with Esc-[, Where these are
supported by ved, they will be denoted by Ansi-&, meaning the scquence Esc-[-k.

Using V 1 May 1986

14-2

ved: A Text Editor

In general, there are (roughly) the following categories of key commands:

o Regular kcy strokes: e.g. k.

¢ "Control” characters: c.g. t.

o "Escape” characters: ¢.g. Esc-k.

o "Control-x" characters: ¢.g. tx-k.

¢ "Control-x control” characters: e.g. tx-tk.

14.3. Special Commands

g

x-1Z, 1C

11
tu

Get out of special states. Whether you have just typed Escape or X and didn’t want to, or
are busy typing a search string, or whatever, tg will get you back to the normal state.

Quit the editor. If there are any modificd buffers, you will be asked if you want to save
them. If any .CKP filcs (files with .CKP suffixes are checkpoint files) have been created
during this ved session, they will automatically be deleted. Here and in similar cascs, if you
are warned and then decide you don’t want to do the command at all, type tg to escape
back to normal cditing. Typing anything other than an n or y will causc the question to be
asked again.

{CTRL - L) Redraw the display.

Prefix argument. Typing a number after this causes the number to be used as an input
argument to the subscquent editing command. The prefix argument is only used by some
commands. The others simply ignore it. tu is very similar (in intention at lcast) to the tu
repcat factor in Emacs. ‘

14.4. Cursor Motion

+f, Ansi-c, right arrow

_ tb, Ansi-d, lcft arrow

Esc-f
Esc-b

Move forward (right) onc character.

Movce backward (lcft) one character.
Move forward to the end ofa word.
Move backward to the beginning of a word.

tp, Ansi-a, up arrow

Move up one line. A half page is scrolled if the cursor would go off the AVT.

tn, Ansi-b, down arrow

ta
te

Move down one line. A half page is scrolled if the cursor would go off the AVT.,
Move to the beginning of the line.
Movec to the end of the line,

Esc-comma, Ansi-h

Esc-period
Esc<
Esc>
Esc-g

1 May 1986

Move to top, lcft-hand corner of the vicwport.
Move to bottom, right-hand corner of the vicwport.
Move to the beginning of the bufter.

Move to the end of the buffer.

Go to linc. Prompts for a linc number, and moves the cursor to the head of that line in the
file. The first linc is numbered 1. [f the number is too large, it will go to the end of text
and notify you of the true line number there.

V-System 6.0 Reference Manual

Cursor Motion 14-3

14.5. Paging and Scrolling

tv Page down 1 page.
Esc-v Page up 1 page.
Esc-down-arrow, Esc-Ansi-b
Page down 1/2 page.
Esc-up-arrow, Esc-Ansi-a
Page up 1/2 page. _
1z Scroll one¢ line up. Le. move the viewport up one line relative to the text.
Esc-z Scroll one line down. l.e. move the viewport down one line relative to the test.
Esc-! Scroll current line to the top of the viewport.

14.6. Special Characters

Typing any printing character, or TAB, inserts the character typed. Ved also supports an "auto-lincfeed”
mode. When auto-linefecd is cnabled, typing in characters which would cxtend beyond the viewport's
right-hand cdge causcs a linefeed character to be inscrted before the last word on the current line. The effect
is to split the current linc into two lines, with the last word of the old linc becoming the first word of the new
line. This mode can be toggled on or off:

-1 Toggle auto-lincfeed option.
Various spccial characters arc handled as follows:
Return Insert'a Linefeed, not a CR character — gets the desired effect.
Lincfeed Insert a newline (Lincfeed) and then indent the new line to the indentation of the previous

line, using tabs where possible. If the previous line is cmpty, it will look up until it finds a
noncmpty linc and use that as the standard of indentation.

10 Insert a Lincfeed, leaving the cursor before it

1q Quotc the following character. Allows you to insert non-printing characters (such as the
uscful 1, formfced, which forces a page break on most printers) into the text.

LA Quote the following character and inscrt it with the high bit sct. tq and 1\ arc the only
exceptions to-the tg command: they will quote a following 1g, but that simply mcans the
inscrtion of a character, which can casily be deléted.

14.7. The Kill Buffer

Ved provides a special buffer, called the kill buffer, that is used to temporarily store text for various
operations, Various cditing commands specify this buffer as the source or destination of text they manipulate.
The buffer should be thought of as a "clipboard” that is used for "cutting and pasting” opcrations on text.

14.8. Basic Editing Commands

+d Delcte forward from the cursor — the character under the cursor.
del, backspace, th Delete backward from the cursor.

Fsc-d Declete word forward.

Esc-h - Delete word backward.

Using V 1 May 1986

14-4 _ ved: A Text Fditor

tk As in Emacs. Delcte the contents of one (logical) line, or the carriage return on an empty
line. into the killbuffer. A scquence of tk commands uninterrupted by any other command
causes the whole section thus deleted to go into the killbuffer. tk after any other command
restarts the killbuffer from scratch.

1y Yank —insert contents of the killbuffer at the cursor. The killbuffer is unchanged. The
z::xzomnds up at the beginning of the insertion, and the Mark (sec below) ends up at the

Esc-y Yank, but without disturbing the Mark. The cursor ends up at the end of the insertion.

1"t Transpose the two characters before the cursor. '

Esc-u Make the word the cursor is in, or just after, all capital letters.

Esc-1 Make the word the cursor is in, or just after, all lower case.

Esc-c Capitalize the word the cursor is in, or just after.

Esc-tab Add indentation to this line equal to the indentation of the previous line. Intended use: if

you type Return and wish you had typed Lincfeed, this will make up the difference.
Esc-blank, Esc-right-arrow, Esc-Ansi-¢
Indent the current line four spaces.

Esc-backspace, Esc-th, Esc-lcft-arrow, Esc-Ansi-d ‘
Decrease the indentation of the current line four spaces.

14.9. Mark and Region

Ved maintains an invisible point in the buffer called Mark. Until otherwisc sct, it is at the beginning. Itcan
be sct by *xtm or Control-@ (Control-spaccbar is thc same as Control-@ on some kcyboards). “Region”
refers to all the text between Mark and the cursor. The following commands use these concepts:

1x-tm, 1@ Sct the Mark at the current cursor position.

X-tx Exchange Mark and cursor (changing the display if nccessary to keep the cursor on the
screen).

tw, tx-1k Kiil region. Region vanishes and becomes the killbuffer—so this command can be undone
with ty.

tx-1T Write region. Prompts for a file name, and writes the region into that file. The buffer is
unchanged. ' v

Esc-i Indent region. Indents all lincs in the region by the number of spaces specificd by the

prefix argument. If no prefix argument was specified, then all lines arc indented one space.

14.10. C-Specific Editing Commands

The commands described in this section are specific to the cditing of C programs.

Esc-{ Generate two new lines, the first containing a { indented two spaces from the previous
o, . . . ') p . p
cursor position, the sccond containing the cursor an additional two spaces indented.

Esc-} Gencrate two new lines, the first containing a } indented two spaces less than the previous
cursor position, the second containing the cursor indented an additional two spaces Icss.

1 May 1986 V-System 6.0 Reference Manual

C-Specific Editing Commands _ . 145

14.11. Searching and Replacing

1S Scarch for string. Prompts for a string, and finds the first instance of that string after the
cursor. Prints “Not found™ if there is no such instance. If you type Return without typing
any scarch string, the previous scarch string is used. Here and clsewhere, a newline can be
inserted into the scarch string using the Lincfeed key. It is echoed as an inverse-vidco
backslash. Non-printing characters can be searched for, and arc echocd as like “tA”, If
the scarch succeeds, the string found is sclected, and scveral special commands (described
in The Right Hand and the Left, below) are available. In particular, typing s will repeat the

search.

1 Reverse search. Just like ts but scarches backward.

Esc-s Repeat search. Forward search for the string most recently uscd in a ts or tr command.
Works regardless of whether there is currently a sclection or not.

Esc-r Repeat scarch backward. Like Esc-s but searches backward.

Esc-q Query Replace. Prompts for a search string, then a replacement string. Then scarches till

it finds the scarch string, and selects that text. Type y (yes) to replace, n (no) to leave it
alonc and go on. Other options arc described below. These special commands are
available whenever there is a sclection, so Query Replace is easily re-enterable.

x-t Tag scarch. Ifa tags file is present in the current working directory, then thls command
can be used with it to ﬁnd keywords in various files.

14.12. File Access

Ved supports various options with respect to file writing operations and checkpointing operations. Files can
be backed up and they can be written out using a "verify" option that ensures that what was written out is
actually what is in a buffer. These options can be toggled on or off, as described below. Files can also be
automatically checkpointed ¢very n cditing actions. Spccification of the checkpoint frcqucncy is done in the

.Ved_pro initialization filc. (Sce sccuon 14.16.)

When ved's backup option is on, it prcscrvcs the previous version of a file by renaming it to its former name
followed by “.BAK". Thus myfile.c bccomes myfile.c.BAK . Similarly, if thc checkpointing option is on, filcs
arc periodically written out to a file whose name consists of the actual filename followed by ".CKP”. Thus
myfile.c becomes miyfile.c.CKP . The verify option reads files back in after writing them and compares them
against the buffer contents. ‘This feature represents an end-to-end check that was implemented at a time when
the V-system’s file writing opcrations were not completcly reliable.

Upon normal cxit from ved (by cither typing tx-tz, or tx-d to the last window) the .CKP files that were
created during the current ved session will be automatically deleted. If ved exits abnormally, these files will
contain a copy of your filcs that are correct as of the last time checkpointing was performed.

Ved filcnames can be up to 256 characters long, but filenames of this length arc not in general
recommended.

Xty Visit a file, whose name will be requested. 'The new file replaces the current ong, so if the
current buffer is modificd you will be asked before proceeding.

1x1s . Write the buffer back to the file from which it was read.

TXtW Write the buffer to a filc whose name will be requested.

5’I'hmc unfamiliar with tags should rcad the unix manual entry for ctags. This command creates a file which specifics the location of
cvery C-program function and type definition in a specificd set of source files. 1t provides a means of locating such definitions without
having to perform a string scarch on all source files cach time,

Using V 1 May 1986

14-6 ved: A Text Editor

txti Insert file at the cursor. You will be asked for the file name. Cursor and Mark are sct just
asin ty above. . _
Esc-tm Write all modified buffers to the files from which they were rcad. Esc-Return has the same
o effect. .
Esc-~ Forget that the buffer has been modified. This will cause the file not to be written out on
A exit or when a command is given to write out all modified buffers.
x-b Toggle the .BAK safety feature. Creation of .BAK filcs makes file writing take about 4

times as long as it otherwise would, so if you rcally want that spcedup, this will turn off the
making of .BAK files. Typing tx-b again will turn it back on.

7X-v Toggle the verificd write option.

+x-C Change current context (working directory). The Ved control window always displays the
absolute name of the currcnt context in its banner, while file windows display the absolute
path name of the file being cdited.

14.13. Windows and Buffers

Ved is normally started with one editing window, but it can support several. Each editing window is
associated with a separate cditing buffer, which includes the text, cursor position, sclection if any, associated
filcname, and whether this buffer has been modificd. Multiple windows on the same buffer are not
supported. Since the correspondence is one to one, hereafter we refer to “window'™ meaning “window and its
associated buffer”. At any time one window is sclected for cditing, and has its banner inverted (darkened).
Window selection can be changed by clicking a mouse button in an unsclected window, or by tx-digit.
Windows arc numbered, starting at 1, in the order of their creation.

The search and rcplacement strings and the killbuffer are universal across windows. Thus it is possible to
kill some text in onc window and yank it into another. It is likewisc possible to scarch for a string in one
window, then sclect another window and repeat-scarch on the same string.

The window from which ved was invoked is special. It cannot reccive input cxcept during certain
- commands, at which time it is sclected automatically. It is never receptive to mouse input.

x-g Get file. Prompts for a filc name, and rcads it into a new window. 1f no file name is given,
crcates an empty window. Here and in all other cases, when a window is to be created the
mouse cursor will change to “IPad™ and let you indicate where the window is to go. If you
abort thc AV’ creation by pressing all three buttons, the command is aborted.

x-G Get file and specify window.size. In addition to prompting for a filc name, you also get
prompted for the number of lincs the window should have.

x-d Declete the current window. Will wamn you if it is modificd. The next lower numbcred
window becomes sclected. [f the last window is deleted, ved quits, because it cannot live
without a sclected window., -

tX-y Yank to window. 'The killbuffer is copied into a new window.
1x-a Pull Apart. Kills the Region in the current window and transfers it to a new window.
+X-m Mecrge windows. Asks the user to indicate a sccondary window, and transfers its contents

into the current window at the cursor position. The sccondary window is then deleted.
The sccondary window is indicated by clicking the mouse in it

tx-1- tx-9 Sclect the corresponding window.

tX-0 Order buffers. Redisplays all the buffers, starting with the highest numbered one. This
leaves the buffers "stacked” on top of cach other on the screen. ‘This is uselful if buffers
have been positioned in a "stair-case™ order, starting at the lower Icft and moving to the

1 May 1986 V-System 6.0 Reference Manual

Windows and Buffers 147

.

upper right, so that the stacked configuration Icaves the file name banner of each buffer
displayed.

14.14. The Mouse

The mousc offers an altcrnative way of doing several common editing functions, such as placing the cursor
and dcleting or moving text. The mouse has two functions: fixed menu selection and editing,.

14.14.1. Editing With the Mouse -

Left button Click and release it at any character in the text: scts the cursor at that character. Click it at
one character, move the mousc to another point in the window, and release: sclects the
text betwcen the point of clicking and the point of release. While you arc moving the
mouse with the left button held down, the region which would be sclected if vou rcleased it
at this moment is displayed in inverse videco. When you release, your sclection is defined
and remains displayed in inverse vidco. Carriage returns are invisible, so the sclection of a
carriage rcturn is shown by black space from the end of the text on that line to the cnd of
the window. Note that a sclection and a normal cursor are mutually exclusive. The
importance of this will become apparent below. If you have a sclection and click the left
button, with or without moving, the former sclection is deselected and a new cursor
position or sclection is chosen. Caution: The difference between the cursor and a sclection
which is only one character long is that the cursor flashes, while the sclection remains
inverted.

Middlc button =~ When you have a sclection, clicking the middlc button deletes it into the killbuffer. If you
have no selection, nothing happens. The position of the mouse is irrelevant.

Right button Brings back the contents of the killbuffer and makes it selected. If there is nothing in the
killbufTer, nothing happens. If there was a selection already, its contents arc swapped with
the contents of the killbuffer, If there was no selection, the contents of the killbuffer
replace the cursor.

14.14.2. Fixed Menu

The fixed menu that appears at the bottom of every ved window provides the user with mousc oriented file
perusal capabilitics. Clicking the middle or right mousc buttons in the fixed menu arca will exccute the
command that is ncarcst the mousc cursor. All the commands in the menu could be cntered from the
keyboard, therefore they are not described here. Refer to the scctions on scarching, scrolling, and regions for
descriptions.

In the fixed menu area, the scmantics of the cach of the buttons differ. The middle button (in general)
means forward whereas the right button means backward. For instance, clicking the middlc button at the
Full-Page command will causc the window to be scrolled forward one full page and the right button will cause
a reverse scroll. ‘The commands Hall-Page, Scroll-Line, and Search behave in this same manner. The Tag
command has exactly the same semantics for both buttons. Mark/Poist is the only “different™ command; in
it, the middle button causcs a jump o the Mark and the right button scts the mark at the point. Note that the
Ieft button has no cffect on any menu selection, to maintain continuity during dynamic sclection. 'T'he Scarch
and Tag commands will cither use the sclected string as the pattern or prompt the user for onc in the case of
no sclection.

Using V 1 May 1986

14-8 _ . ved: A Text Editor

14.15. The Right Hand and the Left

When there is a selection, the cursor is not in a single spot, so it would not make much sense to insert
characters at the cursor. So various printing characters are used as special selection-mode commands. The
most basic of these commands are all assigned to left-hand keys. Thus one possible mode of opcration is for
the user to have his right hand on the mousc, sclecting things, and his left hand at the usual place on the
keyboard, giving commands which are not available on the mouse buttons. Others of these commands are
designed for use with the scarch and replacement facility.

Non-printing characters other than thosc described below deselect, then perform their usual function as if
the cursor had been at the beginning of the sclection.

space bar Deselect. The cursor lands at the beginning of the selection. All printing characters not
mentioned here also have this effect, but the space bar is recqmmended.

tab Deselect, but the cursor lands following the end of the sclection.

d Dclete. Exactly identical to the middle mouse button.
Exchange. Exactly identical to the right mouse button.

c Copy in place. A copy of the current selection is inserted right after it, and becomes the
new selection.

g Grab. The current selection is copied into the killbuffer without deleting it.

s Search for the next instance of the selected string. This becomes the search string, as used
in futurc Repeat Search or search-and-replace commands.

r Reverse version of's.

1 (CTRL - L) Redisplay, with the selection near the top of the screen. Good for long
selections which run off the bottom of the screen,

y Yes replace. Replace the selection with the stored replacement string.

n No don’t replace. Scarch for the next instance of the stored search string.

backspace Undo replacement. Scarch backward for the first instance of the replacement string and

' replace it with the scarch string. The resulting string is sclected.
Y Yes replace but don’t move on. The sclection is replaced and the result remains sclected.
u Undo in place. The current sclection (which hopefully is the replacement string) is

replaced with the scarch string.

S Scarch for next instance of the replacement string,

R Reverse version of S.

q Start query replace. Takes the current selection as the scarch string, and’ prompts for a
replacement string. Replaces the current sclection, and goes on to the next instance of it,
just as “y" would do.

Q Sct replacement string. “I'he current sclection is copicd into the replacement string. This
makes it possiblic to alter a Query Replace in mid-flight.

t Tag scarch. Treats the sclection as a tag and scarches for its location using the tags file of

the current working directory.

1 May 1986 V-System 6.0 Reference Manual

The Right Hand and the Left 149

14.16. Ved Initialization

Various ved features can be initialized to prespecified values using the .Ved_pro file, which should reside
in the user’s home directory. (The existence of this file is optional.) These include:

o Redefinition of key bindings.
o Spccification of toggle scttings for various options.
o Specification of the checkpointing frequency.

14.16.1. Key Bindings

Ved uscs a key tableto determine what function should be invoked when a particular key or key sequence
(such as tx-t¢) is typed. The default settings in this key table have been described. The user can change the
key table settings by specifying new bindings in the initialization file. The syntax to use for specifying new
key bindings is demonstrated below in the list of default bindings shown. Thus, for cxample, one could set a
new kcy binding that defined the tx-tm key sequence to denote WriteModifiedFiles instead of the Esc-tm
key sequence, by placing the following line in one’s . Ved_pro file:

+x-tm WriteModifiedFiles

The default key bindings are the following:

\\r InsertReturn

\\n NewlineAndIndent

\\t InsertTab . .
Esc-\\t IndentlLikePreviousLine
tu ProvidePrefixArgument

tx-tZ ExitEditor

+¢c ExitEditor

+f ForwardCharacter
Ansi-c ForwardCharacter
rarrow ForwardCharacter
+b BackwardCharacter
Ansi-d BackwardCharacter
larrow BackwardCharacter

+a BeginningOfLine
t+e EndOfLine

+n NextLine

Ansi-b NextLine
darrow NextLine

+p PreviousLine
Ansi-a PreviousLine
uarrow PreviousLine

7z Scrol10nelineUp

pfl Scrol10neLinelUp
smi-pf1l Scrol10nelineUp
Esc-z Scroll0neLineDown -
pf2 ScroliOnelLineDown
smi-pf2 Scrol10nelineDown
Esc-f ForwardwWord

Esc-b BackwardWord

Esc-u CaseWordUpper
Esc-1 CaseWordLower
Esc-c CaseWordCapitalize

UsingV 1 May 1986

14-10

tv NextPage

Esc-v PreviousPage
Esc-darrow NextHalfPage
Esc-Ansi-b NextHalfPagé
Esc-pf1 NextHalfPage
Esc-smi-pf1 NextHalfPage
Esc-uarrow PraviousHalfPage
Esc-Ansi-a PreviousHalfPage
Esc-pf2 PreviousHalfPage
Esc-smi-pf2 PreviousHalfPage

+1 RedrawDisplay

Esc-, BeginningOfWindow
Ansi-h BeginningOfWindow
Esc-. EndOfWindow

Esc-! LineToTopOfWindow
Esc-< BeginningOfFile
Esc-> EndOfFile

Esc-g GotoRequestedLine

*x-t RequestTagSearch

*+s RequestStringSearch

Esc-s RepeatStringSearch

pf3 RepeatStringSearch

smi-pf3 RepeatStringSearch

*r RequestReverseStringSearch
Esc-r RepeatReverseStringSearch
pf4 RepeatReverseStringSearch
smi-pf4 RepeatReverseStringSearch
Esc-q QueryReplace

+h DeletePreviousCharacter
del DeletePreviousCharacter
*d DeleteNextCharacter
Esc-d DeleteNextWord

Esc-h DeletePreviousWord

tt TransposeCharacters

to NewlineAndBackup

tk Ki11ToEndOfL1ine

ty YankKilliBufferAfterCursor
Esc-y YankKil1BufferBeforeCursor
tx-tv VisitFile

tx-ts SaveCurrentBuffer

tx-tw WriteNamedFile

Esc-tm WriteModifiedFiles

Esc-} MarkUnmodified

*x-b ToggleBackup

tx-v ToggleVerifyWrite
*x-1 ToggleAutoLineFeed
t+x-c ChangeContext
tx-t1 InsertFile

1 May 1986

ved: A Text Editor

V-System 6.0 Reference Manunl

Ved Iitialization . . 1411

Esc-{ OpenBracel

Esc-} CloseBracel

Esc- IndentFour
Esc-rarrow IndentFour
Esc-Ansi-¢ IndentFour
Esc-th OutdentFour
Esc-Tarrow OutdentFour
Esc-Ansi-d OutdentFour

+ SetMark

tx-tm SetMark

saet-up SetMark

+x-*x ExchangeDotAndMark
Esc-i IndentRegion
tx-1r WriteRegion

+x-1k DeleteToKillBuffer
tw DeleteToKillBuffer
tx-qg VisitFileNewBuffer
+x-G VisitFileNewBuffer
tx-d DeleteWindow

t+x-y YankToNewWindow
+x-a RegionToNewWindow
+x-m MergeWindows

+x-1 GoToBuffer

tx-2 GoToBuffer

tx-3 GoToBuffer

tx-4 GoToBuffer

tx-5 GoToBuffer

tx-6 GoToBuffer

tx-7 GoToBuffer

tx-3 GoToBuffer

+x~-9 GoToBuffer

tx-0 OrderBuffers

Scveral cditor functions exist that are not bound to any kcy by the default definitions, These are the
following:

OrderBufferBackwards :
Order the buffers in the opposite order of that used by OrderBuffers. Depending on
whether a user prefers to stack their windows from lower Ieft to upper right, or from lower
right to upper Icft, one or the other of these ordering functions should be used.

- OpenBrace C-program cditing command. Generates threc new lines, with the first and third line
containing matching { and } braces indented two spaces from the original cursor position.
‘The middle line is blank and indented four spacces from the original cursor position.

CloscBrace C-program cditing command. 'The same as CloseBracel, except that the second, blank line
is not gencrated. ‘The cursor is left alter the } character,

BackwardHackingTabs
Samc as DeletcPreviousCharacter except that tabs arc cxpanded first if they arc
cncountercd, Thus, this command will convert a tab into 7 spaces instcad of dclcting the
cquivalent of 8 spaces worth of white space.

Using V 1 May 1986

14-12 ved: A Text Editor

14.16.2. Specifying Options and Checkpoint Intervals

Various options and the checkpointing frequency (in number of editing actions) can be specified in the
initialization file. These include:

(checkpoint number)
(defaultrows number)
(autolinefead on/off)
(backup on/off)
(verifywrite on/off)

The checkpoint specification expects an integer number between 1 and 232.1. To turn off checkpointing
specify some large number. The default is 500, which corresponds roughly to ‘typing 10 lines of text. The
defaultrows specification sets the default AVT size. The other specifications expect cither an on or an of f,
indicating that the option should either be turned on or turned off.

The case of the keywords used is unimportant—everything gets converted to lower case before parsing
anyway. However, the parser is unforgiving of extraneous blanks in the specification. No blanks arc allowed
between the parenthescs and the keywords, (I know, this is easy to fix. It just hasn’t been done yet.)

14.17. Crash Recovery

In an idcal world, this program would ncver crash. But in fact it sometimes does—but it is so designed that
it has to crash in two stages to losc your text. Normally a crash only breaks the first stage, in which casc you
will generally drop into the debugger. At this point, the dcbugger command Suicide, g will destroy the
process that got the cxception. This will usually activate ved's crash recovery facility, signalled by the
message: '

Editor crash! Shall I try to save this buffer?

If you have any changes, and you value them, and the crash did not come during a save, it is probably a good
idea to answer “y", A .BAK file will be made if the backup option has not been turned off, so the danger of
total loss is small. If this succeeds you will be asked

Try to continue?

If you answer “y”, the inner cditor will be recreated with the buffers just as they were. For some display-
related crrors, a tl. at this point will sct cverything right. Howcver, you arc on shaky ground, and the best
thing to do first is save any modificd bu(fers in other windows.

Remember that if the checkpointing feature was on when ved crashed, that there may be good copics of
your files checkpointed in your directory. Take a look at them before you panic, you may end up only losing
a few lines of text.

Ved tries to detect the cases in which it runs out of memory. In some activitics, such as reading in a file, it
will simply refuse. In others, such as a kill or an inscrtion, you will get the message ’
Out of memory! Please do one of the following:
Pick a window to delete
¢ - continue (after you free something)
q - save and quit
+C - quit without saving

Ved cannot proceed without more memory, and cannot cxit gracefully from this activity, so you have to help
it out. 'To pick a window, sclect it with one mouse click and signal it with a sccond click. It will be saved if
modificd, then deleted to reclaim its storage. If you have anything clsc going on on your Sun, you can dclcte
a vicw or terminatc a program or dclete an exec to free some storage. After doing so, type ¢ to continue. If
this won't work. type q to try to save cverything and quit gracefully. It will save the current buffer last, trying
to avoid the dangers of saving a half-modificd text. tc is a last resort, a quick and dirty quit.

1 May 1986 V-System 6.0 Reference Manual

Crash Recovery A . 14-13

14.18. Some Hints on Usage

If you get into a weird state, try 1, it often restores sanity. If that fails, a save may work anyway—it uses
only the textual data structurcs, and it is the display structures that usually foul up.

Esc followed by a number key invokes one of the debugging routines. Avoid them, especially number 9,
which is suicide. . '

Using V 1 May 1986

151

—_15—
xlisp: An Experimental Object Oriented Language

This chapter is adapted from the document XLISP: An Experimental Object Oriented Language, Version
1.4, January 1, 1985, by, David Bctz, 114 Davenport Ave., Manchester, NH 03103,

15.1. Introductloh

XLISP is an experimental programming language combining some of the features of LISP with an object
oricnted cxtension capability. It was implemented to allow experimentation with object oriented
programming on small computers. There are currently implementations running on the PDP-11 under UNIX
V7, on the VAX-11 under VAX/VMS and Berkcley VAX/UNIX, and on the 8088/8086 under CP/M-86 or
MS-DOS. A version is currently being developed for the 68000 under CP/M-68K and for the Apple
Macintosh. It is completely written in the programming language 'C’ and is casily extended with user written
built-in functions and classes. It is available in source form free of charge to non-commercial usecrs.
Prospective commercial users should contact the author for permission to usc XLISP.

Many traditionat LISP functions arc built into XLISP. In addition, XL.ISP defines the objects ‘Object’ and
'Class’ as primitives. 'Objcct’ is the only class that has no superclass and hence is the root of the class
heirarchy tree. 'Class’ is the class of which all classcs are instances (it is the only object that is an instance of
itself). - :

This document is intendcd to be a t;rief description of XLISP. [t assumes some knowiedge of LISP and
some undcrstanding of the concepts of object oricnted programming.

Version 1.2 of XLISP differs from version 1.1 in scveral ways. [t supports many more Lisp functions, Also,
many version 1.1 functions have been renamed and/or changed slightly to follow traditional Lisp usage. One
of the most frequently reported problems in version 1.1 resulted from many functions being named after their
cquivilent functions in the C language. This turned out to be confusing for pcople who werc trying to learn
XLISP using waditional 1.ISP texts as references. Version 1.2 renames these functions to be compatible with
more traditional dialects of LISP, Version 1.3 introduces many new LISP functions and moves closer to the
goal of being compatible with the Common Lisp standard. Version 1.4 introduccs user crror handling and
breakpoint support as well as more Common Lisp compatible functions.

A rccommended text for learning LISP programming is the book "LISP" by Winston and Horn and
published by Addison Wesley. The first cdition of this book is bascd on Macl.isp and the sccond cdition is
based on Common Lisp. Future versions of X1.ISP will continue to migrate towards compatibility with
Common Lisp.

15.2. A Note From the Author

If you have any problems with XLISP, feel free to contact me for help or advice. Pleasc remember that
since X1.ISP is available in sourcc form in a high level language. many users have been making versions
available on a varicty of machines. If you call to report a problem with a specific version, | may not be able to
help you if that version runs on a machine to which I don’t have access. Plcase have the version number of
the version that you are running readily accessible before calling me,

If you find a bug in XLISP, first try to fix the bug yoursclf using the source code provided. If you are
successful in fixing the bug, send the bug report along with the fix to me. If you don't have access to a C

Using V 30 April 1986

152 - xlisp: Aa Experimental Object Oriented Language

compiler or arc unable to fix a bug, please send the bug report to me and I'll try to fix it.

Any suggestions for improvements will be welcomed. Feel free to extend the language in whatever way
suits your necds. However, PLEASE DO NOT RELEASE ENHANCED VERSIONS WITHOUT
CHECKING WITH ME FIRST!! I would like to be the clearing house for new featurcs added to XLISP. If
you want to add featurcs for your own personal use, go ahcad. But, if you want to distributc your enhanced
version, contact me first. Plcase remember that the goal of XLISP is to provide a language to lcarn and
experiment with LISP and object oriented programming on small computers.

15.3. XLISP Command Loop

When XLISP is started, it first tries to load "init.Isp” from the default directory. It then loads any files
named as parameters on the command line (after appcndmg "Isp” to their names). It then issues the
following prompt: 4

> Lo

This indicates that XLISP is waiting for an cxpression to be typed. When an incomplete expressnon has
been typed (one where the left and right parcns don’t match) XLISP changes its prompt to: P

n>
where n is an integer indicating how many lcvels of left parens remain unclosed.

When a complete cxpression has been cntered, XLISP attempts to cvalﬁate that expression. If the
expression cvaluates successfully, XLISP prints the result of the evaluation and then returns to the initial -
prompt waiting for another expression to be typed. :

Input can be aborted at any time by typmg the CONTROL-G kcy (it may be nccessary to follow
CONTROL-G by RETURN).

15.4. Break Command Loop

When XLISP encounters an crror while cvaluating an cxpression, it attecmpts to handle the crror in the
following way:

If the symbol "*brecakenable* is truc, the message corresponding to the error is printed. If the error is
corrcctable, the correction message is printed. If the symbol *tracenable® is truc, a trace back is printed.
The number of cntrics printed depends on the value of the symbol *tracclimit®. [f this symbol is sct to
somcthing other than a number, the entire trace back stack is printed. XL.ISP then enters a read/cval/print
loop to allow the user to examine the state of the interpreter in the context of the error. ‘This loop differs from
the normal top-leval read/cval/print loop in that if the user types the symbol ‘continuc” XLISP will continue
from a correctable error. If the user types the symbol "quit’ XLISP will abort the break loop and return to the
top level or the next lower numbered break loop. When in a break loop, XLISP prefixes the break level to the
normal prompt.

If the symbol ™breakenable* is nil, XLISP looks for a surrounding errsct function, If onc is found, XI.ISP
cxamines the valuc of the print flag. If this (lag is true, the error message is printed. In any case, XLISP
causcs the errset function call to return nil.

If there is no surrounding crrsct function, X1LISP prints the error message and returns to the top level.

15.5. Data Types ‘

There are several different data types available to XLISP programmers.
e lists

30 April 1986 V-System 6.0 Reference Manual

Data Types 15-3

e symbols

o strings

e integers

e objects

o filc pointers

o subrs/fsubrs (built-in functions)

Another data type is the strcam. A stream is a list node whose car points to the head of a list of integers and
whose cdr points to the last list node of the list. An empty strcam is a list node whose car and cdr are nil.
Each of the integers in the list represents a character in the strcam. When a character is read from a stream,
the first integer from the head of the list is removed and rcturned. When a character is written to a stream,
the integer representing the character code of the character is appended to the end of the list. When a
function indicates that it takes an input source as a parameter, this parameter can either be an input file
pointer or a stream. Similarly, when a function indicates that it takes an output sink as a parameter, this
parameter can either be an output file pointer or a stream,

15.6. The Evaluator

The process of evaluation in XLISP:
o Integers, strings, objects, file pointers, and subrs evaluate to themselves
e Symbols evaluate to the value associated with their current binding

o Lists are cvaluated by evaluating the first clement of the list

o If it evaluates to a subr, the remaining list elements are evaluated and the subr is called with these
‘evaluated exprcssions as arguments.

o If it evaluates to an fsubr, the fsubr is called using the remaining list clements as arguments (they
arc cvaluated by the subr itself if necessary) ‘

o IF it cvaluates to a list and the car of the list is 'lambda’, the remaining list clements arc evaluated
and the resulting expressions arc bound to the formal arguments of the lambda cxpression. ['he
body of the function is exccuted within this new binding environment.

o If it evaluates to a list and the car of the list is "'macro’, the remaining list clements are bound to the
formal arguments of the macro cxpression. ‘The body of the function is exccuted within this new
binding environment. The result of this ¢valuation is considered the macro expansion. This result
is then evaluated in place of the original expression.

o If it cvaluates to an object, the sccond list clement is cvaluated and usced as a message sclector.
‘The message formed by combining the sclector with the values of the remaining list clements is
scnt to the object.

15.7. Lexical Conventions -

The following conventions arc followed when entering XLISP programs:
Comments in X1.ISP codc begin with a semi-colon character and continue to the end of the line.

Symbol names in XLISP can consist of any sequence of non-blank printable characters except the
following:

() L] . " :

Using V 30 April 1986

154 ' xlisp: An Experimental Object Oriented Language

Upper and lower case characters are distinct. The symbols 'CAR’ and ‘car’ are not the same. The names of .
all built-in functions arc in lower case. The names of all built-in objccts are lower case with an initial capltal
Symbol names must not begin with a digit.

Integer literals consist of a sequence of digits optionally beginning with a’+’ or - The range of values an
integer can represcnt is limited by the size of a C "int’ on the machine that XLISP is running on.

Literal strings are sequences of characters surrounded by double quotes. Within quoted strings the "\
character is used to allow non-printable characters to be included. The codes recognized are:

\\ means the character '\’

\n means newline

\t . means tab

\r means return

\e means cscape

\nnn means the character whose octal code is nnn
XLISP defines several useful read macros:

expr> = = (quote <expr>)

#{expr> = = (function <expr>)

Cexpr> = = (backquote <cxpr>)

Lexpr> = = (comma <{expr>)

,@<expr> = = (comma-at {expr>)

15.8. Objects
Definitions:

sclector a symbol uscd to select an appropriate method

message a sclector and a list of actual arguments

mcthod the code that implements a message

. Since XLISP was created to provide a simple basis for experimenting with object oricnted programming,
onc of the primitive data types included was ‘object’. In XLISP, an objcct consists of a data structure
containing a pointer to the object’s class as well as a list containing the valucs of the object’s instance variables.

Officially, there is no way to sce inside an object (look at the values of its instance variables). ‘The only way
to communicate with an object is by sending it a message. When the XLISP evaluator cvaluates a list the
value of whose first clement is an object, it interprets the value of the sccond clement of the list (which must -
be a symbot) as the message sclector. The evaluator determines the class of the receiving object and attempts
to find a method corrcsponding to the message selector in the sct of messages defined for that class. [f the
message is not found in the object’s class and the class has a super-class, the scarch continues by looking at the
messages defined for the super-class., This process continues from onc supcr-class to the next until a method
for the message is found. 1f no method is found, an error occurs.

When a method is found. the cvaluator binds the recciving object to the symbol “self, binds the class in
which the mcthod was found to the symbol ‘msgelass’, and cvaluates the method using the remaining
clements of the original list as arguments to the method. "These arguments are always evaluated prior to being
bound to their corresponding formal arguments. The result of evaluating the method becomes the result of
the cxpression.

Classes:

30 April 1986 V-System 6.0 Reference Manual

Objects

Object THE TOP OF THE CLASS HEIRARCHY

Messagesa

show SHOW AN OBJECT'S INSTANCE VARIABLES
returns the object

class RETURN THE CLASS OF AN OBJECT
returns the class of the object

isnew THE DEFAULT OBJECT INITIALIZATION ROUTINE
returns the object .

sendsuper <sel> [<args>...] SEND SUPERCLASS A MESSAGE
<sel> the message selector
<args> " the message arguments
returns the result of sending the message

Class THE CLASS OF ALL OBJECT CLASSES (including itself)

155

Messages:
new CREATE A NEW INSTANCE OF A CLASS
returns the new class object
isnew [<scl1s>] INITIALIZE A NEW CLASS
<scls>’ the superclass
returns the new class object
answer <msg> <fargs> <code> ADD A MESSAGE TO A CLASS
<msg> the message symbol
<fargs> the formal argument list
this 1ist is of the form:
(<farg>...
[&optional <oarg>...]
[&rest <rarg>]
[&aux <aux>...])
whare
<farg> a formal argument
<oarg> an optional argument
. (default is nil)
<rarg> bound to the rest of the
arguments
<aux> a auxiliary variable
(set to nil)
<code> a 1ist of executable expressions
returns the object
ivars <vars> DEFINE THE LIST OF INSTANCE VARIABLES
<vars>» -the 1ist of instance variable symbols
returns the object
cvars <vars> DEFINE THE LIST OF CLASS VARIABLES
<vars> the 1ist of class variable symbols
returns the object

When a new instance of a class is created by sending the message 'new’ to an existing class, the message

Using V 30 April 1986

156 xlisp: An Experimental Object Oriented Language

‘isnew’ followed by whatcver parameters were passed to the 'new’ message is sent to the newly created object.

When a new class is created by sending the 'new’ message to the object "Class’, an optional paramcter may
be specified indicating the superclass of the new class. If this parameter is omitted, the new class will be a
subclass of 'Object’. A class inherits all instance variables, class variables, and methods from its super-class.

15.9. Symbols

self the current object (within a message context)
msgclass the class in which the current method was found
oblist the object list

keylist the keyword list

standard-input the standard input file
standard-output the standard output file
breakcnable flag controlling entering the break loop on errors

traccnable flag controlling trace back printout on crrors and breaks
tracclimit maximum number of levels of trace back information printed on errors and breaks
evalhook uscr substitute for the evaluator function

applyhook (not yet implemented)
unbound indicator for unbound symbols

15.10. Evaluation Functions

(eval <expr>) EVALUATE AN XLISP EXPRESSION
<expr> the expression to be evaluated
returns the result of evaluating the expression

(apply <fun> <args>) APPLY A FUNCTION TO A LIST OF ARGUMENTS

<fun> the function to apply (or function symbol)
<args> the argument 1list
- returns the result of applying the function

to the argument 1ist

(funcall <fun> <arg>...) CALL A FUNCTION WITH ARGUMENTS

<fun> the function to call (or function symbol)
<arg> arguments to pass to the function
returns the result of calling the function

with the arguments

(quote <expr>) RETURN AN EXPRESSION UNEVALUATED
<expr> the expression to be quoted (quoted)
returns‘ <expr> unevaluated

30 April 1986 V-System 6.0 Reference Manual

Evaluation Functions ' 157

(function <expr>) QUOTE A FUNCTION (THIS IS THE SAME AS QUOTE)
<expry the function to be quoted (quoted)
returns <expr> unevaluated

(backquote <expr>) FILL IN A TEMPLATE
<expr» the template :
returns a copy of the template with comma and comma-at
expressions expanded (see the Common Lisp
reference manual)

15.11. Symbol Functions
(set <sym»> <expr>) SET THE VALUE OF A SYMBOL

<sym> the symbol being set
<exprs» the new value
returns the new value

(setq [<sym> <expr>]...) SET THE VALUE OF A SYMBOL

<sym> the symbol being set (quoted)
<exprs> the new value
returns the new value

(setf [<place> <expr>]...) SET THE VALUE OF A FIELD

<place> specifies the field to set (quoted):
' <sym> ' the value of a symbol
(car <expr>) the car of a 1ist node
(cdr <expr>) the cdr of a list node

(get <sym> <prop>) the value of a property
(symbol-value <sym>) the value of a symbol
(symbol-plist <sym>) the property list
of a symbol
<value> the new value
returns the new value

(defun <sym> <fargs> <expr>...) DEFINE A FUNCTION

Using V 30 April 1986

158

xlisp: An Experimental Object Oriented Language

(defmacro <sym> <fargs> <expr>...). DEFINE A MACRO

<sym> symbol being defined (quoted)
<fargs> 1ist of formal arguments (quoted)
" this 1ist is of the form: AR
(<farg>... :
[&optional <oarg>...]
[&rest <rarg>]
[&aux <aux>...])
where
<farg> is a formal argument
<oarg> 1s an optional argument (default nil)
<rarg> bound to the rest of the arguments
<aux> is an auxiliary variable (set to nil)

<expr> expressions constituting the body of the
function (quoted) e
returns the function symbol

(gensym [<tag>]) GENERATE A SYMBOL
<tag> string or number
returns the new symbol

(intern <pname>) MAKE AN INTERNED SYMBOL
<pname> the symbol's print name string
returns the new symbol

(make-symbol <pname>) MAKE AN UNINTERNED SYMBOL
<pname> the symbol1's print name string
returns the new symbol

(symbol-name <sym>) GET THE PRINT NAME OF A SYMBOL
<sym> the symbol
returns the symbol's print name

(symbol-value <sym») GET THE VALUE OF A SYMBOL
<sym> the symbol .
returns the symbol's value

(symbol-plist <sym»>) GET THE PROPERTY LIST OF A SYMBOL
<sym> the symbol
returns the symbol's property list

15.12. Property List Functions

30 April 1986

(get <sym> <prop>) GET THE VALUE OF A PROPERTY

<sym> the symbol
<prop> the property symbol
returns the property value or nil

V-System 6.0 Reference Manual

Property List Functions ‘ . 15-9

(remprop <prop> <sym>) REMOVE A PROPERTY

<sym> the symbol
<prop> the property symbol
returns nil ’

15.13. List Fuhctions

(car <expr>) RETURN THE CAR OF A LIST NODE
<expr> the 1ist node
returns the car of the 1ist node

(cdr <expr>) RETURN THE CDR OF A LIST NODE
<@xpr> - the 1ist node
returns the cdr of the 1ist node

(caar <expr>) == (car (car <expr>))
(cadr <expr>) == (car (cdr <expr>))
(cdar <expr>) == (cdr (car <expr>))
(cddr <expr>) == (cdr (cdr <expr>))

(cons <expri> <expr2>) CONSTRUCT A NEW LIST NODE

<expri> the car of the new 1ist node
<expra> the cdr of the new list node
returns the new 1ist node

(1ist <expr>...) CREATE A LIST OF VALUES
<expr> expressions to be combined into a 1ist
returns the new 1ist

(append <expr>...) APPEND LISTS
<expr» 1ists whose elements are to be appended
returns the new 1list

(reverse «expr>) REVERSE A LIST
<gxpr> the 1ist to reverse
returns a new list in the reverse order

(last <1ist>) RETURN THE LAST LIST NODE OF A LIST
<list> the list
returns the last 1ist node in the 1ist

Using V 30 April 1986

15-10

30 April 1986

xlisp: An Experimental Object Oriented Language

(member <expr> <1ist> [<key> <test>]) FIND AN EXPRESSION

IN A LIST
<expr> the expression to find
<list> the 1ist to search
<key> the keyword :test or :test-not
<test> the test function (defaults to eql)
returns the remainder of the 1ist starting

with the expression

(assoc <expr> <alist> [<key> <test>]) FIND AN EXPRESSION

. IN AN A-LIST
<expr> the expression to find
<alist> the association 11ist
<koy> the keyword :test or :test-not
<test> the test function (defaults to eql)
returns the alist entry or nil

(remove <expr> <1ist> [<key> <test>]) REMOVE AN EXPRESSION

FROM A LIST
<expr> the expression to delete
<list> the 1ist
<kay> the keyword :test or :test-not
<test> the test function (defaults to eql)
returns the 1ist with the matching expressions deleted

(1ength <expr>) FIND THE LENGTH OF A LIST
<expr> the 1ist
returns the length of the list

(nth <n> <1ist>) RETURN THE NTH ELEMENT OF A LIST

<n> the number of the element to return (zero origin)
<list> the 1ist
returns the nth element

or nil if the 1ist isn't that Tong

(nthedr <n> <11ist>) RETURN THE NTH CDR OF A LIST

<n> the number of the element to return (zero origin)
<1ist> the list
returns the nth cdr

or pil if the 1ist isn't that long

(mapc <fcn> <11stl>,..<1istn>) APPLY FUNCTION
TO SUCCESSIVE CARS

<fcn> the function or function name
<listl..n> a 1ist for each argument of the function
returns the first 1ist of arguments

V-Systens 6.0 Reference Manual

List Functions 1511

(mapcar <fcn> <list1l>...<listn») APPLY FUNCTION
TO SUCCESSIVE CARS

<fcn> the function or function name
<listl..n> a 1ist for each argument of the function
returns the 1ist of values returned

by each function invocation

(map1 <fecn> <1istl>...<1istn>) APPLY FUNCTION TO SUCCESSIVE CDRS

<fen> the function or function name
<listi..n> a 1list for each argument of the function
returns the first 1ist of arguments

(maplist <fcn> <1istil>...<1istn>) APPLY FUNCTION
TO SUCCESSIVE CDRS

<fcn> the function or function name
<1istl..n> a list for each argument of the function
returns the 1ist of values returned

by each function invocation

(subst <to> <from> <expr> [<key> <test>]) SUBSTITUTE EXPRESSIONS

<to> the new expression

<from> the old expression

<8xpr> the expression in which to do the substitutions
<key> the keyword :test or :test-not

<test> the test function (defaults to eql)

returns the expression with substitutions

(sublis <alist> <expr> [<key> <test>]) SUBSTITUTE
USING AN A-LIST

<alist> “the association 1ist

<expr> the expression in which to substitute
<key> the keyword :test or :test-not

<test> the test function (defaults to eql)

returns - the expression with substitutions

15.14. Destructive List Functions)
(rplaca <1ist> <expr>) REPLACE THE CAR OF A LIST NODE

<list> the 1ist node
<expr> the new value for the car of the 1ist node
returns the 1ist nods after updating the car

(rplacd <1ist> <expr>) REPLACE THE COR OF A LIST NODE

<list> the 1ist node
<expr> the new value for the cdr of the 1ist node
.returns the 1ist node after updating the cdr

{(nconc <list>...) DESTRUCTIVELY CONCATENATE LISTS
<list> 1ists to concatenate
returns the result of concatenating the 1ists

Using V 30 April 1986

1512 xlisp: An Experimental Object Oricnted Language

(delete <expr> <list> [<key> <test>]) DELETE AN EXPRESSION

FROM A LIST

<expr> the expression to delete

<list> the 1ist

<key> the keyword :test or :test-not

<test> the test function (defaults to eql)

returns the 1ist with the matching expressions deleted

15.15. Predicate Functions :

(atom <expr>) IS THIS AN ATOM? :

<@xpr> the expression to check

returns t if the value is an atom, nil otherwise
(symbolp <expr>) IS THIS A SYMBOL?

<expr> the expression to check

returns t if the expression is a symbol, nil otherwise
(numberp <expr>) IS THIS A NUMBER?

<expr> the expression to check

returns t if the expression is a symbol, nil otherwise
(null <expr>) IS THIS. AN EMPTY LIST?

<expr> the 1ist to check _

returns t if the 1ist 1is empty, nil otherwise
(not <expr>) IS THIS FALSE?

<expr> the expression to check

return t if the expression is nil, nil otherwise
(1istp <expr>) IS THIS A LIST?

<axpr> the expression to check

returns t if the value is a 1ist node or nil,

nil otherwise

(consp <expr>) IS THIS A NON-EMPTY LIST?
<expr> the expression to check
returns t if the value is a 1ist node, nil otherwise

(boundp <sym>) IS THIS A BOUND SYMBOL?
<sym> the symbol .
returns t if a value is bound to the symbol,
nil otherwise

(minuspA<expr>) IS THIS NUMBER NEGATIVE?
<@xpr> the number to test
returns t if the number is negative, nil otherwise

30 Aprit 1986 V-System 6.0 Reference Manual

Predicate Functions . 1513

(zerop <expr>) IS THIS NUMBER ZERO?
<expr> the number to test
returns t if the number is zero, nil otherwise

(plusp <expr>) IS THIS NUMBER POSITIVE?
-<axpr> the number to test _
raturns t if the number is positive, nil otherwise

(evenp <expr>) IS THIS NUMBER EVEN?
<expr> the number to test
returns t if the number is even, nil otherwise

(oddp <expr>) IS THIS NUMBER 0ODD?
<expr> the number to test
returns t if the number is odd, nil otherwise

(eq <expri> <expr2>) ARE THE EXPRESSIONS IDENTICAL?

<expri> the first expression
<axpr2> the second expression

returns t if they are equal, nil otherwise

(eql <expri> <expr2>) ARE THE EXPRESSIONS IDENTICAL?
(WORKS WITH NUMBERS AND STRINGS)

<expri> the first expression
<expr2> the second expression
returns t if they are equal, nil otherwise

(equal <expri> <expr2>) ARE THE EXPRESSIONS EQUAL?

<expri> the first expression
<expra> the second expression
returns t if they are equal, nil otherwise

15.16. Control Functions
(cond <pair>...) EVALUATE CONDITIONALLY

<pair> pair consisting of:

(<pred> <expr>...)

where
<pred> is a predicate expression
<expr> evaluated if the predicate
is not nil
raeturns the value of the first expression whose predicate
is not nil

Using V 30 April 1986

1514

xlisp: An Experimental Object Oriented Language

(and <expr>...) THE LOGICAL AND OF A LIST OF EXPRESSIONS
<expr>... the expressions to be ANDed
returns nil if any expression evaluates to nil,
otherwise the value of the last expression
(evaluation of expressions stops after the first
expression that evaluates to nil) :

(or <expr>...) THE LOGICAL OR OF A LIST OF EXPRESSIONS
<8xXpr>... the expressions to be ORed
returns nil if all expressions evaluate to nil,
else the value of the first non-nil expression
(evaluation of expressions stops after the first
expression that does not evaluate to nil)

(if <texpr> <expril> [<expr2>]) EXECUTE EXPRESSIONS CONDITIONALLY

<texpr> the test expression
<gxpri> the expression to be evaluated
if texpr is non-nil
<expr2> the expression to be evaluated if texpr is nil
returns the value of the selected expression

(1et (<binding>...) <expr>...) BIND SYMBOLS AND
. EVALUATE EXPRESSIONS

(1et* (<binding>...) <expr>...) LET WITH -SEQUENTIAL BINDING
<binding> the variable bindings each of which is either:
1) a symbol (which is initialized to nil)
2) a list whose car is a symbol and whose cadr
is an initialization expression
<expr>... the expressions to be evaluated
returns the value of the last expression

(catch <sym> [<expr>]...) EVALUATE EXPRESSIONS AND CATCH THROWS

<sym> the catch tag
<expr>... expressions to evaluate
returns the value of the last expression or

the throw expression

(throw <sym> [<expr>]) THROW TO ‘A CATCH

<sym> the catch tag
<expr> the value for the catch to return (default nil)
returns never returns

15.17. Looping Functions

30 April 1986

V-System 6.0 Reference Manual

Looping Functions 1515

(do ([<binding>]...) (<texpr> [<rexpr>]...) [<expr>]...)
(do* ([<binding>]...) (<texpr> [<rexpr>]...) [<expr>]...)
<binding> the variable bindings each of which is either:
* 1) a symbol (which is initialized to nil)
2) a list of the form: (<sym> <init> [<step>])
where:
<sym> 1is the symbol to bind
<init> ts the initial value of the symbol
<step> is a step expression
<texpr> the termination test expression
<rexpr>... result expressions (the default is nil)
<expr>... the body of the loop (treated 1ike a prog)
returns the vailue of the last result expression

(dolist (<sym> <expr> [<rexpr>]) [<expr>]...) LOOP THRU A LIST

<sym> the symbol to bind to each l1ist element
<expr> the 1ist expression
<rexpr> the result expression (the default is nil)

<8xXpr>... the body of the loop (treated 1ike a prog)

(dotimes (<sym> <expr> [<rexpr>]) [<expr>]...) LOOP FROM ZERO

TO N-1 .
<sym> the symbol to bind to each value from 0 to n-1
<expr> the number of times to loop
<rexpr> the result expression (the default is nil)

<expr>... the body of the loop (treated like a prog)

15.18. The Program Feature

(prog (<binding>...) [<expr>]...) THE PROGRAM FEATURE
(prog* (<binding>...) [<expr>]...) PROG WITH SEQUENTIAL BINDING
<binding> the variable bindings each of which is either:
1) a symbol (which is initialized to nil)
2) a list whose car is a symbol and whose cadr
is an initialization expression
<axpr> expressions to evaluate or tags (symbols)
returns nil or the argument passed to the return function

(go <sym>) GO TO A TAG WITHIN A PROG CONSTRUCT
<sym> the tag (quoted)
returns never returns

(return [<expr>]) CAUSE A PROG CONSTRUCT TO RETURN A VALUE
<expr> the value (defaults to nil)
returns never returns

Using ¥V 30 April 1986

1516) xlisp: An Experimental Object Oriented Language

(progl <expri> [<expr>]...) EXECUTE EXPRESSIONS SEQUENTIALLY

<expris the first expression to evaluate
<expr>... the remaining expressions to evaluate
returns the value of the Tirst expression

(prog2 <expri> <expr2> [<expr>]...) . EXECUTE EXPRESSIONS

. SEQUENTIALLY
<expri> the first expression to evaluate
<expr2> the second expression to evaluate
<expr>,.. the remaining expressions to evaluate
returns the value of the second expression

(progn [<expr>]...) EXECUTE EXPRESSIONS SEQUENTIALLY
<QXpr>... the expressions to evaluate
returns the value of the last expression (or nil)

15.19. Debugging and Error Handling
(error <emsg> [<arg>]) SIGNAL A NON-CORRECTABLE ERROR

<emsg> the error message string
<arg> the argument expression
(printed after the message)

returns never returns

(cerror <cmsg> <emsg> [<arg>]) SIGNAL A CORRECTABLE ERROR

<cmsg> the continue message string
<emsg> the error message string
<arg>» the argument expression
(printed after the message)
returns nil when continued from the break loop

(break [<bmsg> [<arg>]]) ENTER A BREAK LOOP

<bmsg> the break message string
. (defaults to "**BREAK**")
<arg> the argument expression
(printed after the message)
returns nil when continued from the break loop

{errset <expr> [<pflag>]) TRAP ERRORS

<expr> the expression to execute
<pflag> flag to control printing of the error message
returns the value of the last expression consed with nil

or nil on error

(baktrace [<n>]) PRINT N LEVELS OF TRACE BACK INFORMATION
<n> - the number of levels (defaults to all levels)
returns nil

30 April 1986 V-System 6.0 Reference Manual

Debugging and Error Ilandling 1517

(evalhook <expr> <ehook> <ahook>) EVALUATE AN EXPRESSION

WITH HOOKS
<expr> the expression to evaluate
<ehook> the value for *evalhook®
<ahook> the value for *appliyhook®
returns the result of evaluating the expression
15.20. Arithmetic Functions
(+ <expr>...) ADD A LIST OF NUMBERS
<exXpr>... the numbers
returns the result of the addition

Using V

(- <expr>...) SUBTRACT A LIST OF NUMBERS
OR NEGATE A SINGLE NUMBER
<expr>... ' the numbers
returns the result of the subtraction

(* <expr>...) MULTIPLY A LIST OF NUMBERS
<@xpr>... the numbers
returns the result of the multiplication

(/ <expr>...) DIVIDE A LIST OF NUMBERS
<expr»... the numbers .
returns the result of the division

(1+ <expr>) ADD ONE TO A NUMBER
<expr> the number
returns the number plus one

(1- <expr>) SUBTRACT ONE FROM A NUMBER
<expr> the number
returns the number minus one

(rem <expr>...) REMAINDER OF A LIST OF NUMBERS
<expr>... the numbers
returns the result of the remainder operation

(min <expr>...) THE SMALLEST OF A LIST OF NUMBERS
<OXpr>. .. the expressions to be checked
returns the smallest number in the 1list

(max <expr>...) THE LARGEST OF A LIST OF NUMBERS
<BXpP>. .. the expressions to be checked
returns ~the largest number in the Tist

(abs <expr>) THE ABSOLUTE VALUE OF A NUMBER
<expr> the number .
returns the absolute value of the number

30 April 1986

1518 xlisp: An Experimental Object Oriented Language

15.21. Bitwise Logical Functions

(bit-and <expr>...) THE BITWISE AND OF A LIST OF NUMBERS
<8xpr> the numbers
returns the result of the and operation

(bit-ior <expr...) THE BITWISE INCLUSIVE OR OF A LIST OF NUMBERS
<expr> the numbers
returns the result of the inclusive or operation

(bit-xor <expr...) THE BITWISE EXCLUSIVE OR OF A LIST OF NUMBERS
<expr> the numbers
returns the result of the exclusive or operation

(bit-not <expr>) THE BITWISE NOT OF A NUMBER
<expr> the number
returns the bitwise inversion of number

15.22. Relational Functions

The relational functions can be used to compare integers or strings. The functions =" and /=" can also be -
used to comparc other types. The result of these comparisons is computed the same way as for 'eq’.

(< <e1> <e2>) TEST FOR LESS THAN

<el> the left operand of the comparison
<e2> the right operand of the comparison
returns the result of comparing <el> with <e2»

(<= <e1> <e2>) TEST FOR LESS THAN OR EQUAL TO

<el> the- left operand of the comparison
<e2> the right operand of the comparison

returns the result of comparing <el> with <e2>

(= <el> <e2>) TEST FOR EQUAL TO

<el> the l1eft operand of the.comparison
<e2> the right operand of the comparison
returns the result of comparing <el> with <e2>

(/= <e1> <e2>) TEST FOR NOT EQUAL TO

<el> the left operand of the comparison
<82>» the right operand of the comparison
returns the result of comparing <el> with <e2>

(>= <el> <e2>) TEST FOR GREATER THAN OR EQUAL TO

<el> the left operand of the comparison
<e2» the right operand of the comparison
returns the result of comparing <el> with <e2>

30 April 1986 V-System 6.0 Reference Manual

Relational Functions ' . 1519

(> <e1> <e2>) TEST FOR GREATER THAN

<el> the left operand of the comparison
<82> the right operand of the comparison
returns the result of comparing <el> with <e2»

15.23. String Functions

(strcat <expr>...) CONCATENATE STRINGS
<expr>... the strings to concatenate
returns the result of concatenating the strings

(strlen <expr>) COMPUTE THE LENGTH OF A STRING
<axpr> - the string
returns the length of the string

(substr <expr> <sexpr> [<lexpr>]) EXTRACT A SUBSTRING

<@xpr> the string

<sexpr> the starting position

<lexpr> the length (default is rest of string)
returns substring starting at <sexpr> for <lexpr>

(ascii <expr>) NUMERIC VALUE OF CHARACTER
<exXpr> the string
returns the ascii code of thq first character

(chr <expr>) CHARACTER EQUIVALENT OF ASCII VALUE
<expr> the numeric expression
returns a one charactaer string
whose first character is <expr>

(atoi <expr>) CONVERT AN ASCII STRING TO AN INTEGER
<axpr> the string
returns the integer value of the string expression

(itoa <expr>) CONVERT AN INTEGER TO AN ASCII STRING
<@xpr> the integer
returns the string representation of the integer value

15.24. Input/Output Functions
(read [<source> [<eof>]]) READ AN XLISP EXPRESSION

<source> the input source (default is standard input)
<eof> the value to return on end of file (default nil)
returns the expression read

Using V 30 April 1986

1520

30 April 1986

xlisp: An Experimental Object Oriented Language

(print <expr> [<sink>]) PRINT A LIST OF VALUES ON A NEW LINE

<expr> the expressions to be printed
<sink> the output sink (default is standard output)
returns nil

(prinl <expr> [<sink>]) PRINT A LIST OF VALUES

<expr> the expressions to be printed
<sink> the output sink (default is standard output)

returns nil

(princ <expr> [<sink>]) PRINT A LIST OF VALUES WITHOUT QUOTING

<expr> the expressions to be printed
<sink> the output sink (default is standard output)
returns nil

(terpri [<sink>]) TERMINATE THE CURRENT PRINT LINE
<sink> the output sink (default is standard output)
returns nil

(flatsize <expr>) LENGTH OF PRINTED REPRESENTATION USING PRIN1
<axpr> the expression
returns the Tength

(flatc <expr>) LENGTH OF PRINTED REPRESENTATION USING PRINC
<expr> the expression
returns the length

(explode <expr>) CHARACTERS IN PRINTED REPRESENTATION
USING PRIN1
<expr> the expression
returns the 1ist of characters

(explodec <expr>) CHARACTERS IN PRINTED REPRESENTATION
USING PRINC
<expr> the expression
returns the list of characters

(maknam <1ist>) BUILD AN UNINTERNED SYMBOL FROM
A LIST OF CHARACTERS :
<list> 1ist of characters in symbol name
returns the symbol

(implode <1ist>) BUILD AN INTERNED SYMBOL FROM
A LIST OF CHARACTERS
<list> 1ist of characters in symbol name
returns the symbol

V-System 6.0 Reference Manual

Input/Output Functions 1521

15.25. File {/0 Functions

(openi <fname>) OPEN AN INPUT FILE
<fname> ° the file nams string
returns a file pointer

(openo <fname>) OPEN AN QUTPUT FILE
<fname> the file name string
returns a file pointar

(close <fp>) CLOSE A FILE
<fp> the file pointer
returns nil .

(read-char [<source>]) READ A CHARACTER FROM A FILE OR STREAM
<source> the input source (default is standard input)
returns the character (integer)

(peek-char [<flag> [<source>]]) PEEK AT THE NEXT CHARACTER

<flag>. flag for skipping white space (default is nil)
<source> the input source (default is standard input) .
returns the character (integer)

(write-char <ch> [<sink>]) WRITE A CHARACTER TO A FILE OR STREAM

<ch> the character to put (integer)
<sink> the output sink (default is standard output)
returns the character (integer)

(readline [<source>]) READ A LINE FROM A FILE OR STREAM
<source> the input source (default is standard input)
returns the input string

15.26. System Functions .
(1oad <fname> [<vflag> [<pflag>]]) LOAD AN XLISP SOURCE FILE

<fname> the filename string (".1sp" 1s appended)
<vflag> the verbose flag (default is t)

<pflag> the print flag (default is nil)

returns the filename

(gc) FORCE GARBAGE COLLECTION
returns nil

(expand <num>) EXPAND MEMORY BY ADDING SEGMENTS
<num> the number of segments to add
returns the number of segments added

UsingV 30 April 1986

15-22 .) xlisp: An Experimental Object Oriented Language

(alloc <num>) CHANGE NUMBER OF NODES TO ALLOCATE IN EACH SEGMENT
<num> the number of nodes to allocate
returns the old number of nodes to allocate

(mem) SHOW MEMORY ALLOCATION STATISTICS
returns nil

(type <expr>) RETURNS THE TYPE OF THE EXPRESSION
<expr> the expression to return the type of
returns nil if the value is nil, else one of the symbols:

SYM for symbols
0BJ- for objects
LIST for 1ist nodes
SUBR - for subroutine nodes
with evaluated arguments
FSUBR for subroutine nodes with
unevaluated arguments
STR for string nodes
INT for integer nodes
FPTR for file pointer nodes

(exit) EXIT XLISP
returns never returns

30 April 1986 V-System 6.0 Reference Manual

|

16-1

16—
Standalone Commands

This chapter discusses standalone programs, i.e., programs that do not run under the V kernel, that are
useful with the V-System., -

16.1. Vload

Vload is the V-System bootstrap loader. The Vload program loads the V kernel and initial team into
memory and starts up the kernel.

There are several versions of Vload Currently, all versions use the V 170 protocol and V IKC protocol to
load programs over the Ethernet® On the Sun-1, the Sun 3 Mbit Ethernet board and Excclan 10 Mbit
Ethernet boards are supported as boot devices. On Sun-2s, the 3Com 10 Mbit Ethernet board and the built-in
Ethernet interface of the Sun-2/50 arc supported. The standard Sun-3 cpu card (not the 3/50) and
MicroVaxen with DEUNAs are also supported.

Vload determines the filcs to load and other actions to take at run time, dcpending on what was typed on
the command linc and what information is stored in the configuration databasc for the workstation being
booted (see section 19). For cach of its paramecters, Vload gives first priority to command-linc information, if
any, second priority to the defaults for this workstation recorded in -the configuration database, if any, and
third priority to a dcfault valuc determined at compile time. .

Team and kerncl filcnames are interpreted in the V-System “[sys]boot™ context, unless they begin with a
squarc bracket. In the latter case, the name inside brackets is taken as a machine name. If“# ™ is given as the
kernel file name, no kernel is loaded. Instcad, the file specificd as first team is loaded into the kernel’s
memory arca and cxecuted as a standalone program.

Besides file names, two other parameters arc also understood: “world” and “options.” The world may be
cither V (production) or xV (cxperimental). The oaly option currently recognized is 'b', which causcs a break
to the PROM monitor before the kernel is started.

The following sections describe the defaults and special characteristics of the four versions of Vload in use
at this writing.

16.1.1. 3 MbitEthernet "

This version of Vload is intended for booting Cadlinc, SMI Sun-1, and other Sun-1 workstation
configurations with 3 Mbit Sun Fthernet boards. ‘These workstations ordinarily use a version of the Stanford
PROM monitor that incorporates PUP bootstrap code. The first step in booting these workstations is to load
Vivad using the bootstrap PROMS. ‘This can be donc by typing a keyboard command (b £ilename for SMI
workstations, n 11 ename for others), or automatically on powcrup or resct (sce below).

For these workstations, the kernel resides from 0x1000 to 0x20000, and tecams are loaded at 0x20000

The compiled-in default valucs for Vload's parameters in this version arc as follows:, !
world v '

6In the future, there will be a version of Viead that can boot a fileserver machine dircctly from its local disk.

Using V 16 June 1986

162 Standalone Commands

team tcaml-vgts
kernel Vkernel/sunl+en
options null

The only command line information visible to Vload is the name it was invoked under. Therefore, Vload is
installed under several different names, and its action depends on its name. The names and actions are listed
below.

\' When called under this name, Vload will load the team ream/-vgts and the default kernel
for this workstation, using the default options. The team and kerncl arc loaded froma V -
storage server (production versnons) rather than an xV storage scrver (expenmental
versions), that is, the world parameter is set to V

VA4 The team is teaml-sts, and the world is V.

xV The team is team/-vgts, and the world is xV.

xVV The team is teaml-sts, and the world is xV.

Vload The user is prompted for team, kernel, and options. The default value is used for any ficld
where the user enters a blank line, The world is V.

xVload - Same as Vload, except that the world is set to xV.

null If the name is hull, Vload assumes it was autobooted. Default values are used for all
parameters. .

others If a copy of Vload is installed under any other name, it will usc its name as the team name

to be loaded, sct the options to null, and usc defaults for the kernel and world.

No special sctup is required to get an SMI Sun-1 processor to autoboot—it will do so automatically 30
seconds after powerup or a k2 command. The PUP boot PROM requests boot file number 1 by number,
which causcs a file called 1.Boot to be loaded from the first responding PUP EFTP server. We have arranged
for this filc to be a copy of Vload, so the boot action is as described under the nul/l name above.

A non-SMI processor can be made to autoboot by installing the proper jumpers in its configuration register.
(Sce the Sun User’s Guide for a full description of the configuration register.) Bits 7-4 of the configuration
register arc an index into a table of bootfile names stored in the PROM. An in-place jumper or closed DIP
switch corresponds to a 0 bit; no jumper oran open switch corresponds to a 1. These bits should be set to the
number corresponding Lo the name “Vioad.” The “W T command typed to the PROM monitor causcs it to
list the bootfilc names and corresponding numbers that it knows about. Vload is usually number §,
corresponding to jumpers on bits S and 7. Vload's action will be as described under the aull name above.

16.1.2. Excelan Ethernet Coan,

This version of Vieoad is intended for booting Cadline, SMI Sun-1, and other Sun-1 workstation
configurations with Excclan 10 Mbit Lithernct boards. Ordinarily, this version of Viead is used only with
workstations using a special version of the PROM monitor that incorporates THTP bootstrap code. 'The first
step in booting these workstations is to load Viead using the bootstrap PROMs. Fhis can be done by typing a
keyboard command, not described here.

The compiled-in default values for Vioad's paramecters in this version are as follows:
world A

tcam tcaml-.vgts
kernel Vkernel/sunl +ex , L '
options null

The only command line information visible to Vload is the name it was invoked under. Thercfore, Vioad is

16 June 1986 V-System 6.0 Reference Manual

Vioad | : 16:3

installed under scveral different names, and its action depends on its name. The names and actions are listed
below,

xInV When called under this name, Vload will load the team team!-vgts and the default kernel
for this workstation, using the default options. The team and kernel are loaded from a V
storage scrver (production versions) rather than an xV storage scrver (experimental
versions), that is, the world parameter is set to V.

xlnVV The tcam is teaml-sts, and the world is V.

xlnxV The team is teaml-vgts, and the world is xV.

xInxVV The team is teaml-sts, and the world is xV.

xInVioad The user is prompted for team, kernel, and oplions.' The default value is used for any field
where the user enters a blank line. The world is V.

xlnxVload Same as Vload, except that-the world is set to xV.

others If a copy of Vload is installed under any other name, it will use its name as the team name

to be loaded, set the options to null, and use defaults for the kernel and world.

There is currently no way to autoboot a workstation with TFTP boot PROMs. This limitation may be
removed in the future,

16.1.3. 3Com Ethernet

This version of Vload is intended for booting Sun-1.5s and Sun-2s with 3Com 10 Mbit Ethemnet boards.
These workstations boot using cither a local disk or tape, or the SMI network disk protocol. The network disk
protocol does not allow specifying a file name, so the V-System ND boot server rcads the boot file name from
the workstation’s configuration file; ordinarily, Vload will be specified. Once loaded, Vioad can rcad the
entire command line typed by the user.

The compiled-in default values for Vload’s parameters in this version are as follows:
world v

team teaml-vgts
kernel Vkernel/sun2+ec
options null

Zcro or more arguments may be passcd on the command line to Vioad. If the first argument to Vload is
one of the special values described below, it is stripped off and the special action listed is taken. After this
check, the first three remaining arguments arc respectively used to override the defaults for tcam name, kernel
name, and options. Valucs sct by thesc arguments have priority over valucs that may have been sct by the
first argument.

\' Scts the world to ¥, and the tcam to feam/-vgts. (This tcam name will be overridden by
the next argument if present.)

Vv The team is sct to team/!-sts, and the world is V.

xV The team is sct to team!-vgts, and the world is xV.

xVV The tcam is sct to feam/-sts, and the world is xV.

null If no arguments are present, the default values are used for all paramcters.

vmunix The SMI boot PROMs have this name hardwnrcd in for autobootmg. so it is trcated the

samc as a null first argument,

others If the first argument is not one of these values, the default world is used, and the arguments
present specify tcam name, kernel name, and options, as described above,

Using V 16 June 1986

164 ' Standalone Commands

For example, the command
b V teaml-vgts [pescadero]/user/fred/mykernel.r

will load the installed version of teaml-vgts as the first team, and a special version of the kernel from
Pescadero.

If the workstation being booted has a disk or some other device that the PROM prefers over the Ethernet for
booting, specify the boot device ec() immediately following the b in the boot command, and preceding the
first argument. (Some older PROM revisions rcquire nd() in place of ec().

16.1.4.Sun-2/50 Ethernet

The Sun-2/50 version of Vload is identical to the 3Com version described above, except that the default
kernel is Vkernel/sun50. The boot device name is 10().

16.1.5. Sun-3 Ethernet

The Sun-3 version of Vload is also similar to the 3Com version. The default kernel is Vkernel/sun3 +ie, and
the boot device is 1@ (). Currently a Sun prom monitor bug requires one to power cycle Sun-3 workstations
when rebooting. Our Sun salcsman has told us that new proms may be available.

16.1.6. MicroVaxen

There are three switches on the back of the MicroVax CPU. One is obviously the console baud rate selector.
The other two have scmi-random icons and affect booting. :

The flat switch, whose symbol is a triangle inscribed in a circle controls the halt button and auto-reboot.
With the switch at the dot-in-circle position the halt button on the face of the CPU halts the machine and
forces it into the monitor, leaving you with a >>> prompt. Remember to press it once more to take the
machine out of the halt state. When in the other, circle-out-of-dot position, the halt button is disabled and any
action which would causc a halt (such as a kernel halt instruction or a power failure) will cause a reset and
auto-boot attempt.

The circular knob has three positions. The downward pointing arrow is the normal position. The outline of
a face causcs the proms to prompt for language and keyboard type. The T-in-circle is a test position.

The commands for booting a MicroVax are:
b Boot according to the config file specifications.
b/1 Boot into the V world,
b/2 Boot into the xV world.
b/3 Boot into V, but prompt for the kernel and first tcam,
b/4 Boot into xV, but prompt for the kernel and first team.
If the disk drives arc cnabled then b xqa0 forces the bootstrap to load over the network.,

16.2. Netwatch

netwatch is a standalone tool for cxamining packets as they arc spewn accross the ethernet. It has
knowlcdge of many different protocol formats, including V, 1P, XNS, Chaos, and PUP. It mamtams packet
buffers seperate from thosce of the cthernct hardware for maintaining packet traces.

We have found this to be the most powerful tool we have for debugging all nature of network protocol and
distributed program communication bugs. This includes typical V distributed applications as well as protocol
implementations (such as 1P/ TCP) on other hosts on our nctworks. ‘There's nothing like silencing a roomfuil

16 June 1986 V-System 6.0 Reference Manual

Netwatch 165

of random conjecture with a packet trace printout. The utility of looking at what’s actually on the wire cannot
be overemphasized.

16.2.1. Booting

netwatch runs standalonc, so it must be booted fresh on a bare machine. A typical boot command to fire
up the 3com version on a Sun-2 is:

b V netwatch-ec2 #

The sharp sign tells netwatch to load the first argument at the kernel start address and not to load a first team.
Sec 16.1 for the details on booting other hardware configurations. Other versions of Vload supported are:
netwatch-en (Sun-1/3Mb), netwatch-ec (Sun-1/3Com), netwatch-ec2 (Sun-2/3Com),
netwatch-50 (Sun-2/50), and netwatch-1e3 (Sun-3/75).

16.2.2. Operation

The standard train of events is to set up the packet filters, then commence rccording packets until a certain
cvent has occured. When recording, packets which pass through the filter are stored in a 127 buffer fifo
queuc. Afler recording the qucue can be cxamined and/or written to a file. Onc may authenticate the
netwatch process, which runs initially as UNKNOWN, If your storage server allows the unknown user to
write to /tmp this may not be needed.

16.2.3. Commands
The.commands available at the top levcl are:

h Modify host address filter (sce 16.2.4.1).

r Receive packets into buffer (flushes current buffer).
t Same as r, but prints packets as they arc received (may drop packets).
b Display buffer contents.

s Samc as b, but allows skipping of initial packets.

w Write current buffer to a file.

1 Login (authcnticatc).

¢ Change dcfault dircctory for file writing,

! Print an cxclmation mark when a packet is received.
m Always display the annoying option menu.

q Quit.)

?

Print a list of commands along with the current flag status

16.2.4. Filtering by Packet Type

netwatch understands several protocols, and can filter out packets based on the type ficld in the packet
header. 'T'he packet typcs understood currently are: V, ARP & RARP, Chaos (Symbolics), 1P, PUP and XNS.

16.2.4.1. 10meg Address Filter

The ten megabit packet filter is composed of two lists, the primary and sccondary host lists. A packet is
passcd through the filter if its source and destination addresses can be found, one in cach list. ‘Ten megabit
host addresses are specificd using the last four hex digits of the cthernet address. At startup, the primary list is

Using V 16 June 1986

16-6 Standalone Commands

empty and the sccondary list is full (contains all addresscs) with multicast turned off. Note: At the time of this
relcasc the nctwatch driver for the Intel 85286 chip (Sun-2/50 and Sun-3) randomizes the first short of the
destination address, so filtering on muticast packets doesn’t work on those versions. In basic operation, one
fills the sccondary list with all addresscs, and enters the addresses of “interesting™ hosts into the primary list.
Another typical usc, when trying to dcbug communications between two hosts, is to have the two hosts in the
primary list and all but on¢ host (usually the the fileserver) in the secondary list.

16.2.4.2. 3meg Address Filter

The 3 meagabit host address filter maintains one list of hosts, and filters in one of two modes. In the first -
mode, AND mode, both the source and destination addresses must be in the list. In the sccond mode, OR
modec, only of the source or destination must be present. Hosts addresses are entered in octal form. The entire
eight bit address is used.

16.3. Postmortem

The Postmortem diagnostic tool is no longer supported. Much of its functionality has been put into the
kernel funtions A1iens () and Processes(). On Suns these functions can be called manually from the
monitor using the g <addr> command. The address of the function can be gleaned from the kernel’s
symbol table with cither debug -0 2000 <kernel1> or nm68. These funcuons are not normally compiled
into the MicroVax kernel.

16.4. Diskdiag

The diskdiag program is a diagnostic program that allows one to manually access specific sectors on the
disk. 1tis uscful for verifying the correct interaction between the disk controiler and disk drives, as well as for
initializing a ncw disk. Diskdiag is configured to run on a system with a Xylogics 450 or Intcrphasc 2181 disk
controller and Fujitsu M2351 and M2284 disk drives.

To run diskdiag, typc the command
b ec() diskdiag #’

for SMI1 workstations, or
n diskdiag

for Cadlinc workstations. There arc commands availablc to format(f), read(r). seek(s), and
write(w). The uscris prompted, as necessary, for more information on cach of these commands.

In addition, it is possiblc to Tabe1(1) the first scctor of a drive with the configuration parameters nceded
by the disk driver in the kernel. Exccuting the format command automatically labels the disk after the format -
is compicte. The verify(v) command rcads the label off of disk and prints it on the console. -

The partition(p) command prompts the user for the start block and length of cach partition on the
disk and creates a disk partition table. Existence of a disk partition table is optional as it is not necded by any
system soltware. ‘The examine(x) command allows one to examine the contents of the disk partition table,

Reinitializing the diskdiag program is accomplished using the again(a) command.

Onc should be aware of the fact that diskdiag’s block size is the actual disk scctor size, which may be
different than the block size used by fscheck and the storage server.

7Somc SMI workstations with older PROM revisions require that nd() be used in place of oc().

16 June 1986 V-System 6.0 Reference Manual

- Part ll:
V Programming

171

—_17 —
Program Environment Overview

This chapter describes the cxecution environment provided for C programs written to run in the V-System.
The program environment is designed to minimize the difficulty of porting C programs (and C programmers)
from other C program environments, such as that provided by UNIX, and to provide access to the distributed
programming facilitics provided by the V-System.

The program environment consists of three major components:
o The basc C language implemented by the compiler.
o Routines that are part of the C program library in most C implementations.
e Functions that access V facilitics,

The basic C language is not described here. The reader is referred to The C Programming Language by
B. W. Kernighan and D. M. Ritchie, Prentice-Hall 1978 for a tutorial on the language and standard C library
routines.

Standard C library routincs are only described here to the degree they differ in the V program environment
from other implementations, particularly the UNIX C library. The reader is referred to the above-cited book
or The Unix Programmer’s Manual for details on these standard functions.

The V-specific functions are described in detail in the following chapters.

While C as a programming language docs not define 1/0 facilities, memory management, ctc., an ill-
defined de facto standard has arisen from the extensive use of C with the UNIX operating system. There has
been a strong attempt to provide a supersct of this cnvironment for the V-System. Attempts to port C
programs have resulted in a slightly more portable program cnvironment than originally used with UNIX. The
functions included in the V program cnvironment for C, excluding V and workstation-specific routines,
constitute our proposal for a “*standard portable C program cnvironment”.

‘The differences between the V C program environment and the UNIX C program cnvironment fall into four
major catcgorics

o Functions that are UNIX system calls which may be provided as V library routines, d.g., stime().

e Functions that arc slightly changed in their implementation, but provide (cssentially) the same
functionality, ¢.g., malloc(). ‘

o Functions that arc workstation-specific, because they arc not necessary in standard UNIX on, say, a Vax.
For cxample, the long division routincs arc in this category.

o Functions that are particular to the V-Systemn, like Create() and Ready().

17.1. Groups of Functions

The description of functions is structured by subdividing them according to functional groups as follows.

cxec Functions rclated to the V exccutive. '

ficlds Functions that enable an AVT to be used as a menu, similar to a data entry tcrminal.
io Input/output rclated routines.

locking Routines providing locking for processes in a single team.

V Programming 17 June 1986

172

Program Environment Overview

math Numeric and mathematical functions.

mem Mcmory management and allocation routincs.

naming Name management functions.

process Process service functions and V kernel traps.

program Program exccution functions.

user interface User interface routines

others Miscellancous other functions, such as string manipulation and time services.
Subscquent chapters discuss cach group of functions in greater detail. :

17.2. Header Files

The following header files define manifest constants, type definitions and structs used as part of the V C
program cnvironment. They are included as usual by a “ # includc <hcadername>” directive in C programs.

Vauthenticate.h
Vdircctory.h
Venviron.h
Vethernet.h

Vexec.h
Vexceptions.h
Vfonth
Vgroupids.h
Vgtp.h

Vgts.h

Vikc.h
Vinfo.h
Vinfobuild.h
Vinfoparsc.h
Vio.h

Vioprotocol.h
Vmachine.h
Vmigrate.h
Vmouse.h

Vnaming.h
Vnceth

Message formats and dcfinitions for the authentication server.
Defincs standard context directory entry formats and mcssage types.
Standard hecader file for V kernel types and request/reply codes.

Ethernct-specific header information. This is very low-level information; most users will -
want to use the Internet scrver instead.

Definitions for communication with the excc server.
Exception types and exception request format.
Standard intcrnal bitmap and font format.

V well-known or static group identifiers.

Virtual graphics terminal protocol definitions and message formats. Must be kncwn by the
VGTS and stub routincs that talk to it, but is not nceded by ordinary VG'I'S applications.

Virtual graphics terminal scrver interface. This should be included in any programs that
do graphics,

Manifcsts and constants rclating to the V Interkernel Protocol.
Definitions and structs for InfoBase access. .

Structs for building InfoBase.

Definitions and structs for InfoBase scanncr/parsers.

[7/0 Protocol header file. Types and mode constants for file manipulation functions
described in chapter of this manual,

170 Protocol message formats.
Machine-specific definitions,

- Migration-spccific definitions.

Mouse device-specific header information. Most programs will use the VGTS to handle
graphics input. :

V-System naming manifcsts, types, and structures.
Network server definitions. This is included in any programs that use the network.

V-System 6.0 Reference Manual

Ilcader Files 17-3

Vpipe.h Definitions and structurcs for V pipes.
Vprocess.h Proccssor state structure and other process-specific header information.
Vquerykernclh QueryKerncl operation manifests and types.

Vserial.h Manifests for the serial lines.

Vsession.h Manifcsts and message structs for the V/UNIX server.

Vspinlock.h Definitions for spin locks, a chcap mechanism for locking within a team.

Vstorage.h Definitions and message formats for the V storage server.

Vteams.h Team header file. Structures used to communicate with the tcam server and to pass

information to tcams when they are created.
Vtermagent.h Information shared by terminal agents and their clients.
Vtime.h Structures uscd in time services, primarily for getting time from a scssion scrver.

V Programming 17 June 1986

18-1

— 18 —
Program Construction and Execution

A V-System C program is constructed and executed similar to a C program on UNIX. Only the diffcrences
are discussed here.

18.1. Writing the C Program

An application program on the V-System starts to execute as a single process on a new tcam. By default, the
process is allocated an initial stack area of about 4000 bytes, just above its uninitialized data scgment. If this is
not large cnough (or is larger than necessary), the declaration

int RootStackSize = newsize;
can be used to set the initial stack size to newsize bytes.

Note that large dynamically allocated arcas of memory should be allocated using malloc(), calloc(),
or a similar memory allocator, and not be allocated on the process stack.

Warning: There is no run-time checking for overflowing the process stack allocation. The program behavior from stack
overflow can be sufficiently bizarre as to cause good programmers to seck refuge in monasterics. I the stack overflow
caused the process in question o get an exception, the standard cxception handling routine will usually detect the overflow
and print a message. [lowever, not all stack overflows causc an exception in the process that generated them, and somctimes
the stack is back in bounds by the time the cxception occurs.

The file Venviron.h is a header file defining the types and constants that arisc as part of the intcrface to
the kernel. Itis included by the line

#include <Venviron.h>

Programs that usc t.hc V input/output library usuatly nced the file Vio. h, which corresponds to thc UNIX
header file std1o.h. Other V header files, listed in the previous chapter, arc includced similarly.

18.2. Compiling and Linking

When an application program is compiled and linked, references to kernel operations and other standard
routines must be resolved by scarching the library file 11bV. a. Its entry point must be the _start routine
found in the library, and it must be relocated correctly for the target machine it is to run on. These defaults
arc automatically sclected with the -vV option of the ¢c68 or cevax command. The compile command:

cc68 -vV programfile.c -o outputfile.m68k
or for the Vax,
ccvax -vV programfile.c -o outputfile.vax

produccs an cxccutable file for running with the kernel. The program environment provided by the 11bV. a
library is described in the remaining chapters of this part of the manual,

8ln fact, a V program may include stdto.h in placc of V10. h, since there is a V version 6f stdio.h that simply includes Vio. h.

V Prograsuning ' 17 June 1986

18-2 Program Construction and Execution

18.3. Program Execution

There are three models for executing V C programs, namely:
1. running them in “bare kernel mode™, that is, dircctly on top of the kernel

2. running them from an executive
3. running them as a subprogram of another program

18.3.1. Bare Kernel Mode

When a program runs in bare kernel mode, none of the standard scrvers are available, unless the program
includes one or more of them itself (as described in Chapter 31). A program written to run in bare kernel
mode begins execution at a procedure called main(). No arguments may be passed to the program.

A program to be exccuted in bare kernel mode is loaded by a special loader program called V1oad. For
cxample, on an SMI workstation:

b Vioad

typed to the PROM monitor causes it to load and exccute the loader, which immecdiately prompts for the name
of the filc containing the program. The use of this loader is described more fully in Chapter 16.

18.3.2. Execution With the Executive

Use of the V executive is described in Chapter 3. Basically, one types the name of the file containing the
program to thec command interpreter followed by zero or more command arguments. The program is then
loadcd and executed. '

When the V exccutive is uscd, program cxccution again begins at a procedure called main(). This time,
however, a count of the number of arguments to the program and an array of pointers to the program string
arguments, as given on the command line, arc passed to the procedure. Morcover, the program is passed
standard input, output, and error files, and a varicty of other information through the TeamRoot message
(described below in Section 18.4).

The following cxample shows how a program can rcad its command line arguments. The variable arge
contains the number of arguments including the command name. The arguments arc kept in argv[0]
through argv[argc-1]: thc command name is argv[0], argv[1] is thc first argument,
argv[argc-1] is the last argument, and argv[arge] is NULL. This matches the Unix convention.

main(argc, argv)
int argc;
char *argv(]:
/* Echo arguments */ .

int 1
for(1 = 0; 1 < arge; ++1)

printf("%s ", argv[i]):
putchar("\n");

18.3.3. Subprograms

A program may run another program as a subprogram by invoking the same library functions ecmploycd by
the exccutive. ‘These functions arc described in Chapter 28.

V-System 6.0 Reference Manual

Program Exccution k 18-3

18.4. Program Initialization
Along with its compiler-generated code and data scgments, a newly created program requires some

additional run-time data about its environment before it can start execution. This data includes:

e File instances for standard input, output, and crror output, and associated flags.

o Command-line arguments (argv and argc).

o Initial values of environment variables.

o Initial contents of the name cache.

o Initial naming context (working directory).

A program'’s crcator passcs this information to the new program in the team root message used to start its
exccution, extended by a team environment block of machine-independent format placed. in the new team
space by the creator. This information is subscquently unpacked by an initialization routine (described
below) automatically linked in with the new team.

The format of the tcam root message and team environment block are given below, using a C-like notation
with the following extensions:

o The notation char $[] (an array of characters of unspecified size) means a null-terminated string.
e The keyword repeat means that the following bracketed structure may be repeated zero or more
times. 4)
o The notation align n means to insert null bytes to align the next ficld to an address evenly divisible
by n.
and the following common dcfinitions:

typedef Bit32 unsigned long; /™ uns1gnéd'32-b1t quantity */
typedef Bit16 unsigned short; /* unsigned 16-bit quantity */

18.4.1. The Team Root Message

The tecam root message is sent to the new program just prior to its beginning exccution (details below). It is
formatted as follows:

typedef struct

{
#ifdef LITTLE_ENDIAN
SystemCode replycode;
Bit18 rootflags; /* Flags; see below */
Instanceld stdinfile; /* Standard I/0 instance ids */
Instanceld stdoutfile;
Instanceld stderrfile;

Bit16 reservedi;
#else LITTLE_ENDIAN
Bit18 rootflags:

SystemCode replycode;

Instanceld stdoutfile;

Instanceld stdinfile;

Bit16 reservedi;

Instanceld stderrfile;

#endif LITTLE_ENDIAN

Processid stdinserver; /* Standard 1/0 servers */

Processld stdoutserver;

Processld stderrserver;

Bit32 reserved2; /* Reserved for expansion of
* Instanceld to 32 bits */

TeamEnvironmentBlock *teb: ’

RootMessage;

Y Programming 17 June 1986

18-4 Program Construction aml Execution

/* Root flags - bit assignments */

#define RELEASE_INPUT 0x0010 /* Release stdin on close */
#define RELEASE_OUTPUT 0x0020 /* Release stdout on close */
#define RELEASE_ERR 0x0040 /* Release stderr on close */
#define STDOUT_APPEND 0x0001 /* Open stdout for append */
#define STDERR_APPEND 0x0080 /* Open stderr for append */

18.4.2. The Team Environment Bilock

The tcam environment block is formatted as follows:
typedef struct) ’

{ .
align 4;
Bit32 blocksize; /* Total size of block in bytes */
Bit32 arge; /* Number of arguments */
repeat

char arg{];

args;

atign 4;
Bit32 envc: /* Number of environment variables */
repeat

¢ char name[];
char value[]:

env;

align 4;
Bit32 cachec; /* Number of cache entries */
repeat

{
align 4;
ContextPair from;
ContextPair to:
Bit16 flags; : i
char name[]:
char truename(]:

}

cache;

align 4; .

ContextPair ctx; /* Initial naming context: identtfier */
char ctxname[]: /* Initial naming context: absolute name ¢/
align 4; .

TeamEnvironmentBlock;

Note that the tcam cnvironment block, despite containing variable-length ficlds, can be unambiguously
parsed left-to-right.

"The following library routing is available for creating team environment blocks:

SystemCode SetUpEnvironment(pid, args, env, cache, wherse)
Processld pid; .
char *args[];
EnvironmentVariable *env;
NameCache *cache;
char *where;

Constructs a tcam cavironment block for the specificd tcam, using the given argument vector, environment

V-System 6.0 Reference Manual

.

Program Initialization . . 185

variable chain, and name cache, and the caller’s current working context. The tcam environment block is
deposited in the new team space at address "where” (rounded up as necessary for alignment),

18.4.3. The Per-Process Area

In addition to sharing the tcam environment variables (extracted from the team root mcessage and tecam
cnvironment block), cach process on a tcam has a region of tcam memory rescrved for its own use, called its
stack space. A portion of the stack space, called the per-process area, is used to store a few process-global
variables. (On the Sun and VaxStation, a process’s stack grows downward from the highest address in its stack
space, and the per-process arca begins at its lowest address.) A tecam-global variable called PerProcess
points to the per-process area. It is reset by the kernel to point to the correct area on every process switch.

The standard per-process arca is described by the PerProcessArea structure in the header file Vio. h.
It contains the following values: '

stdio An array of three File pointers describing the process’s standard input, output, and error
files. <Vio.h> defines the macros stdin, stdout. and stderr to be PerProcess->
stdio[0], PerProcess->stdio[1], and PerProcess->stdio[2] respectively.
Note that only pointers, not the File structurcs themselves, are kept in the per-process
areas.

ctx A ContextPair structure giving the context identifier of the process’s current naming
context (working dircctory).

stackSize The size of the process’s stack space, in bytes.

ctxname A character string giving the absolute namc of the process’s current naming context. These
strings are ailocated on the heap (i.c, by malloc()) and are frced by the
ChangeDirectory() library routine. :

env A pointer to the list head for this process’s environment variable list.
namecache A pointer to the list head for this process’s name cache.

A newly crecated process on the same tcam as its parent (if created with the standard Create() library
routine) inhcrits a copy of its parent’s per-process arca, with the exception of the stackS1{ze ficld, which is
specificd as a parameter to Create(), and thec ctxname pointer, which is modified to point to a fresh copy
of the string to avoid the nced for reference counting such strings. Thus, cach child process inherits its
crcator's standard 170, current naming context, name cache, and cnvironment variables.

18.4.4. Initialization Procedure

A new program is created in the awaiting reply state, waiting for a (reply) message from its creator. In
cffect, the kernel simulates a Send from the initial process of the program to its creator, in response to which
the creator must Rep 1y before the program can begin excecution. Prior to replying, the creator has access to
the new tcam’s entire address space and uscs CopyTo() to deposit the tcam cnvironment block of the new
program.

Note: ‘The creator is responsible for passing the 16- and 32-bit ficlds in the tcam environment block in the correct byle order
for the new team’s host machine. ‘This is in accord with the general convention that senders of messages use their native
byte order, with receivers being responsible for byle-swapping il necessary. In this casc, the new team is logically the sender
“in its initial transaction.
Finally, the creator invokes Rep1y() to sct the new program running; the reply message constitutes the tcam
root message. (Sce Chapter 27 for details of the interprocess communication primitives used.)

Mcanwhile, the new program is blocked in the middle of its initialization code. This code is structured as a
small asscmbly-language routine containing the tcam’s initial centry point (_start), plus a machine-
indcpendent routine TeamRoot(), called from _start. _start initializcs the stack, reccives the tcam
root message, zcros the initial data scgment (bss) and then calls TeamRoot() to do the rest of the

V Programming 17 Junc 1986

18-6 ' Program Construction and Exccution

initialization. TeamRoot () “unpacks” the team root message and tcam cnvironment block, placing picces of
data in global variablcs or on the stack or heap as required by the host machine and programming language.
The team cnvironment block is discarded after having been unpacked; gencrally, the memory it occupied is
reused as stack space. When TeamRoot () returns, _start calls main(), the main function of the C
program being cxccuted. Finally, if main() ever returns, _start calls ex{t() with the value returned by
main(). '

V-System 6.0 Reference Manual

19-1

— 19 _
The V-System Configuration Database

The V-System maintains a conﬁgura;ion database, containing information about each workstation. The
information is organized as sets of keyword/valuc pairs, onc sct per workstation.

19.1. Querying the Database

There is onc standard library function provided for extracting information from the configuration database:

SystemCode QueryWorkstationConfig(keyword, value, maxlength)
char *keyword, *value;
int maxlength;

Given a character string representing the keyword, this routine returns the corresponding value as another
character string. The variable keyword points to the keyword, value points to the place to put the value,
and max1ength is the size of the buffer, which should include space for a terminating null byte. The routine
returns a system error code if there is no configuration information recorded for the querying workstation
(NOT_FOUND), there is some configuration information, but no valuc corresponding to the given keyword
(BAD_ARGS), or the buffer was too short to hold the value (BAD_BUFFER), clse returning OK. In the
buffer-too-short case, it will rcturn as much as there is room for. In unusual situations, other crror codes may
be generated; these can be treated as failures or considered equivalent to NOT_FOUND.

19.2. Currently Defined Keywords

The following keywords arc in usc at this writing. A list of keyword namcs and their mcanings is presently
kept in the same directory as the config files themselves, in a file called “keywords.”

name The name of this workstation. Should match the name used in local [P namc tables for this
workstation's IP address. There is no default.

alt-cther-addr Alternate cthernet addresses for this workstation, one per line. These are addresses the
workstation may use, other than the onc the config file is named for. 10 Mbit addrcsscs
should be given in hexadecimal, in the form xxxx.yyyy.zzzz. 3 Mbit addresses may be
given in octal. The default is null. This keyword must be present for usc by the Vax Unix
ND scrver for workstations that boot using the NI protocol under a different Ethernet
address than the onc the config file is named for. This is truc of SMI Sun-2's with PROM
revision N or later and JCom Fthernet interfaces.

bootfile Filc to bc loaded by ndserver or mvaxbootserver. Defaults to compiled-in
/ust/V/boot/Vioadl0.d or /usr/V/boot/Vicad.vax respectively. The former is
appropriate for a Sun-2 or Sun-1.5 with 3Com Ethernct interface. Should be an absolute
pathname,

ip-address The workstation’s Internet Protocol address, given in the conventional [a.b.c.d] notation,
where a. b, ¢, and d are decimal integers. On the 3 Mbit Ethernet, the default value of d is
the 8-bit Ethernct host address, while default values of a, b, and ¢ arc determined by the
Interncet server. For the 10 Mbit Ethernet, this keyword should always be present.

V Programming 29 May 1986

19-2 The V-System Configuration Database

ip-gatcways Name of a filc containing a list of Intcrnet gatcways to be used by this workstation. The
file name is given relative to the standard [sys] context. If this keyword is omitted, the
Internct server will not forward datagrams through any gateways, i.e., only local traffic will
be supported. :

boot Controls whether the boot server (ndserver for Sun Network Disk protocol,
mvaxbootserver for MicroVAXes with DEC MOP protocol) will respond to boot requests
from this workstation. The server will refuse to respond only if there is no config file
(although mvaxbootscrver has a “-n” flag to override this) or if the config file contains
“boot:no”. This field has no effect on Sun-3 RARP/TFTP booting.

ndboot A synonym for “boot”, used only by the ndserver. This is an historical relic and should
vanish in the future. Any existing config files which use “ndboot™ should be edited to use
“boot”. : .

kernel Filenarhc of the program to be loaded as the kernel, for use by Vioad. The name is given

relative to the standard [sys]boot context. If this keyword is omitted, Vload uses a
compiled-in default. ‘

team Filename of the first team, as above. If it is omitted, Vload uses a compiled-in default,
currently teaml-vgts.

world Either V or xV. Uscd by Vload. [f omitted, Vload uscs a compiled-in default, currently V.

boot-options Boot options for usc by Vicad. Currently the only option is b, mcaning “break before

starting kernel.” The default is a null string,.

startup-script Filcname of the startup script. Currently used only by tcaml-server, for workstations that
autoboot as servers. No default. In the future, the definition of this keyword will be
changed to allow the startup script to be placed directly in the config file, and all (or most)
versions of the first tcam will use it. This feature is not in V6.0.

terminal-type Type of tcrminal uscd as a console. Used by the STS. The default is to assume the
Stanford PROM terminal emulator for Cadlincs, or somcthing ANSI-compatible (like the
SMI PROM terminal emulator) otherwise. The only other recognized valuce for this option

is “*h19”, ‘
location Optional location field.
comment Usced to put acomment in the file, such as a description of the workstation.

19.3. Implementation

Ordinarily, programs should not be aware of the implementation of the configuration databasc; this
implementation may change in the future. The QueryWorkstationConfig() function should be the only
interface used. Since there is no standard library function provided to modify the configuration database,
however, system maintainers need to be aware of its implementation. The current implementation allows the
configuration database to be modificd with an ordinary text editor, and the changes installed with the same
tools that are used for installing new binary program images on storage scrvers.

The V configuration databasc is currently implemented as a sct of configuration files, onc for cach
workstation, Each configuration file must be present on every publically-available V storage scrver.

The name of cach workstation's configuration file is derived from its hardwarc Ethernet address (a

9Pub|ically-availablc storage scrvers are defined as those that respond to GetPid(STORAGE_SERVER, ANY_PID) requests from
nonlocal clients.

V-System 6.0 Reference Manual

Implementation ‘ 19-3

convenient unique identificr).% The files are kept in a subcontext named “config”, under the server’s [sys]
context. For a workstation with Ethernct address 0260.8¢01.9954 (a typical 3Com-assigned address), the
configuration file could then be read by a workstation as a file named “[sysjconfig/C.02608c019954”; this is in
fact how QueryWorkstationConfig() is implemented.

A configuration file is an ASCII text file, consisting of a set of kcyword/value pairs, arranged in no
particular order. Each keyword appears at the beginning of a new line, and is scparated from its
corresponding value by a colon (). A line beginning with a colon serves as a continuation of the value on
the previous line, This format has been designed to be casy to read and casy to parse. (Note that spaces both
before and after the colon may be considered significant by programs, so take care when creating or cditing
config files.) .

At Stanford, the master copies of configuration files are kept in the dircctory /xV/config on Pescadero, and
only those copics should be edited. The command “build install” (run as user ds) is used to install changes.

19.4. Usage

In gencral, we have implemented programs that use this service in such a way that if a configuration file or
specific keyword/value pair is missing, some reasonable default is used where this is possible. Also, where it
is casy to rcliably determine something by cxamining the hardware present, it is best to do that instead of
putting the information in the configuration file. Following these principles means that fewer updates to the
configuration files arc nceded to keep workstations minning correctly when something changes.

In some cascs, the value of a keyword may be thc name of a file, perhaps because it is more convenient for
the clicnt to read the information from a file, or because the information associated with the keyword is quite
bulky. In the present implementation, such files are kept in the “[syskonfig” directory along with the
configuration files themsclves. Files whose names begin with *S.” are startup command scripts for
workstations that boot automatically. Files whose names begin with “G.” arc gateway information filcs used
by the internet server.

loCurrcmly. on Sun-2 workstations with 3Com Ithernet interfaces, the address assigned to the thernet board is used, not the address
assigned 1o the processor.

V Progranuning 29 May 1986

20-1

— 20 —
Control of Executives

Instances of the V exccutive, or command interpreter, are normally created and controlled dircctly by the
user intcracting with the sysicm. However, this control is also available to programs through the following
functions:

R N

int CreateExec(execserver, inserver, infile, outserver, outfile,

errserver, errfile, cp1d. ccid, flags, execpid,
error)

ProcessId execserver;

ProcessId inserver, outserver, errserver;

Instanceld infile, outfile, errfile;

Processld cpid;

ContextId ccid;

short flags;

ProcessId ®*execpid;

SystemCode *error;

Create an instance of the exccutive with the specified standard input, standard output, standard crror output,
and context. Each of the three standard i/0 files is specificd by two parameters, the scrver pid and the
instance identifier within that server. This mcans that all thesc instances must be opened before Create
Exaec is called. Context is specificd by two parameters, a scrver pid and a context identifier relative to the
given pid. The GetContextId function will map a context name into such a pair. Execserver is the pid
of the cxcc server to which the request is being made. ‘The Flags parameter detcrmines which if any of the
standard i/0 instances are to be owned by the newly crcated cxccutive; it may be any combination of
RELEASE_INPUT, RELEASE_OQUTPUT, and RELEASE_ERR. If for cxample RELEASI_INPUT is
specificd, ihe exccutive will own its standard input instance and will release it on termination,

CreateExec rcturns an cxce identificr, a small intcger which will be used to refer to this exccutive in other
exccutive control requests. In the location pointed to by execpid it returns the process id of the new
exccutive. In the location pointed to by crror it returns a system crror code; if this code is not OK, the exec
identificr and execpid arc meaningless.

WARNING: a server process cannot call CreateExec with a filc instance pointing to that scrver itsclf, or
the server and the exeeserver will become deadlocked waiting for cach other. A server that needs to do thls
should create a subprocess to call CreateExec., '

SystemCode DeleteExec(execserver, execid)
Processld execserver;
‘int execid;

Delete the exccutive specificd by exec1d, along with the program running under it if any. It nced not have
been created by this process: there is no concept of ownership of execs. Note that this is not the only way
cxccutives vanish; they also terminate on end of file on the standard input. DeleteExec will rcturn
NOT_FFOUND if execid is invalid.

Y Programming 12 March 1986

202 ' Control of Executives

SystemCode QueryExec(execserver, execid)
Processld execserver;
int execid;

Inquire about the state of the specified exec. If successful, it returns a code of OK, and the following
information: in execpm the process id of the cxec; in program, the process id of the program running
under it, if any; in status, the status of the excc. Status can be one of

EXEC_FREE Exec is waiting for a command.

EXEC_LOADING
exec is in the process of loading a program.

EXEC_RUNNING
A program is running under this cxec. In this case and this case only, program returns
relevant information.

EXEC_HOLD Excc has been crcated but not yet started. Hopefully this state should never be observed,
as it is taken carc of within CreateExec.

SystemCode Kil1Program(execserver, execid)
Processid execserver;
int execid;

Kill the program, if any, running under the specified cxec. Returns OK is suécessful, NOT_FOUND if
exccid was invalid, NONEXISTENT_PROCESS if there was no program running under that exec.

SystemCode CheckExecs(execserver)
ProcessId execserver;

Causcs the exccserver to do a cheek on alt executives. Any of them whose standard input server or standard
output server (but nof standard crror server) has dicd is destroyed during the check. This should be called
after an action that might have destroyed an i/o server which was providing standard i/0 for one or more
© executives.

V-System 6.0 Reference Manual

211

—_21 —
Fields: Using an AVT as a Menu

These routines allow you to set up a table of fields in an AVT. They can be selected with the mouse, so that
you can have a menu. The advantages over the standard pop-up menu are that you can have more choices,
you can display more information with cach choice, and the menu is always there.

With cach ficld, you can associate a value, which can be displayed and edited.

The menu is an array of F1e1ds. These are defined in <f1e1ds.h>. Each Fiel d consists of:
typedef struct

{
short row; /* field’s row numberin AVT */
short col; /* leftmost character of ficld */
short width; /* width of field */

long *value;
int (*proc)(): ‘
char *format; /* format in which to display *value */
} Field;
row and co indicate where in the AVT the ficld begins. (row=1 and col=1 is the top left corner of the
AVT)) width is the length of the ficld in characters. Only one-line ficlds are supported. proc is not used
by the package itself. The intended usage is:
field = GetField(...):
if (field) (*field->proc))(field->value);
or perhaps:
if (field) (*field->proc))(field);

format is discusscd below.

21.1. Formats

format is a format like thosc uscd by printf and scanf. Together with the value, it determinges the
string to be displayed in the ficld. This string must be a lcast width characters long. It is a zero-terminated C
(asciz) string. Formats arc of the form: ‘

prefix [conversion] suffix

Here prefix and suffix is constant text which is displayed. 1fa %'is to be displayed. it must be written as %%.
The following utility routine will do a string copy analogous to stracpy, cxcept that %s arc automatically
copicd: '

char ® StrToFormat(f, s, n))
char *f; /* dcstination string buffer where "%'s arc to be doubled */
char %s; /* sourcestring */
int n; /* count - buffersize */

The optional conversion describes how value is to be displayed/read. Its form is:

K[~ J(0)ficldwidthj] . precisionjfAe

Here the % indicates the beginning of the conversion specification. The conversion type letter ¢ marks the end

V PProgramming 1 May 1986

212 ' Ficlds: Using an AVT as a Menu

of the conversion specification. The format is exactly as used by printf, except that there may be a data
length specification X, If value isa short * ratherthana int *, A must be given as h. If the valueisa
double * ratherthanafloat *, A mustbe 1, or the conversion type letter ¢ must be capitalized.

When fields are displayed, sprintf is used to do the conversion. The length specification A is only used
to dercference value (cxcept for ficlds where the conversion type letter is s); it is stripped from the format
before being passcd tosprintf.

On input to fields, only the length specification A and the type code ¢ are passed to sscanf. lf the type
codc is @ or g, it is changed to f. A type code of S (or 1s) means that the whole mput line (including spaces)
should be accepted.

21.2. The Field Table as a Menu: Selecting an Action

Field * GetField(menu, menuLength, buttons, avt)

Field *menu;

int menulength;

short buttons;

File ®*avt; /* output AVT %/
If button 1= 0, it is assumed that the mousc is down on proccdure entry. GetField returns whcn the
button state changes; if it changes to non-zero, GetField fails by returning zcro. If button == 0,
GetFie1d will first wait for an event. (It will fail unless it is a mousc button being pressed down.)

As long as the user kceps the mousc button down, display the sclected field (if any) in inverse video. When
the user releascs the button, return the last sclected Fie1d, or if none, return 0.

The menu is terminated by the first negative row ficld, or when the mohuLength count is exhausted.
21.3. Displaying Fields

PutField(buffer, field)
char *buffer; /* dcstination string buffer */
Field *field; /* sourcc format and value */

More or less like sprintf(buffer, field->format, *field->value).

DisplayFields(menu, menuLength, avt)
Field *menu;
int menulLength; /* see GetField function */
File *avt; /* output AVT where f1elds are to be written */

Display in the avt all the string ficlds, at the positions given by the row and co1 components.

The width components arc ignored. This allows convenicnt display of material which the user cannot
sclect ("write-protected” ficlds) cither by using ficlds with width <= 0 or by having a string longer than
thc width.

21.4. User Input to Fields

EditField(field, stuff, out, 1n)

V-System 6.0 Reference Manual

User Input to Fields ' 21-3

Field *field;: /* ficld whose *value is to be edited ¢/
int stuff; /* 0:old text should be cleared: 1: stuff into cditor */
File *out, *in; /* inputand outputsidcsof AVT touse */

Move the cursor to the conversion part of the f1e1d. If stuff is 0, ‘the old value is cleared from the screen;
if it is 1, the old value is placed in the line editing buffer. Enter line-cdit mode, and wait for the user to type
in a line. If the user types +G, abort, redisplay old value and rcturn -1. Else parse the line using
field->format. If this succeeds, update *fie1d->value, returning 1, else 0. In any case, redisplay
things correctly.

Ed1tStdF1d(fie1d)
Equivalent to Ed1tFie1d(f1e1d, 1, stdout, stdin)

ReadStdF1d(field)
Equivalent to Ed1tField(field, 0, stdout, stdin)

21.5. An Example

/* This is a program which adds up integers, optionally scaled */
#include «stdio.h>

#include <fields.h»

double Scale = 1.0, Total = 0.0;

int Value = 0;

Quit() { ... cleanup action§ cees oxit(=1);}
NewvValue(f)
Field *f;

it (ReadStdF1d(f) == 1)
Total += Value * Scale;

}
Fields Menu(] =
/* VAL (defined in fields.h) coerces pointers and values to (int *) ¢/

{1, 41, 10, VAL &Scale, EditStdF1d, "Scale: %G
{1. 1, 18, VAL 8&Vvalue, Newvalus, "New value: %- 8d”}.

{2. 1, 0, VAL &Total, 0, *Total: %G. "},
{6, 1, 8,0, Quit, "==Quit-="},
LASTFIELD /' doefined in fields.h */
}:
main()
{ Field *field;
while (1)

putc(°'L' & 31, stdout): /* write FormFeed to clear screen */
DisplayFields(Menu, 999, stdout);

field = GetField(Menu, 999, 0, stdout);

if (tield) (*(field->proc)) (field):

}

Since the screen is updated every time here, we do not have to worry about garbage being Ieft behind when
the ficld becomes shorter. However, onc of two fixes shown above can be used when this is not desired: In
the Value ficld, we make sure the ficld doesn’t become shorter, by lefl justification if nceded. This loscs if we
want to output punctuation after the valug, as in the Total ficld. In this case, we can make surc that we
output cnough trailing spaces to crasc the garbage.

Y Programming 1 May 1986

214 Ficlds: Using an AVT as a Menu

21.6. Limitations

No facilities yet for arrays.

V-System 6.0 Reference Manual

21

— 9292
Input and Output

The input and output routines can be divided into three categories:

1. Basic 170 routines like getchar() that are supported but differ in their implementation from the
standard Unix versions.

2. 170 support routines like printf () that are identical with the standard Unix version.

3. V-specific 170 routines like Read() and Write() that are used in several cases.to implement the
standard C routines in the V mcssage-based world. 4

22.1. Standard C1/0 Routines
The following standard C 170 routines are available:

clearerr() closaedir() . fclose() feof()
ferror() fflush() fgetc() fgets()
fopen() fprintf() fputc() . fputs()
fread() freopen() fscanf() fseeak()
ftell() fwrite() getc() - getchar()
gets() getw()) mktemp () opendir()
printf() putc() putchar() puts()
putw() readdir() rewind() rewinddir()
scanf() sprintf() seekdir() setbuf()
sscanf() telldir() ungetc()

However, fopen() rcturns a pointer value of type *File, where File is dcfined in <Vio.h> and is a totally
different record structure from that used by, for instance, the Unix standard 1/0. Also, setbuf () is a no-op
under V. .

22.2.V1/0 Conventions
Program input and output are provided on files, which may include disk filcs, pipes, mail-boxcs, tcrmihals.
program memory, printers, and other devices.

To operate on a file, it is first “opened™ using Open() if the file is specificd by a pathname, otherwise by
OpanF1le() if the filc is specificd by a server and instance identificr. 'The mode is one of the following:

IFREAD No write operations aie allowed. File remains unchanged.

FCREATE Any data previously associated with the described file is to be ignored and a new file is to
be created. Both rcad and write operations may be allowed, depending on the file type
described below.

FAPPEND Data previously associated with the described file is to remain unchanged. Write
opcrations arc required only to append data to the existing data. :

FMODIFY Existing data is to be modificd and possibly appended to. Both read and write operations
arc allowed.

V Programming 12 March 1986

22-2 Input and Qutput

Both open functions return a pointer to an open file descriptor that is used to spccify the file for subsequent
opcrations. Close() removes access to the file. Seek() provides random access to the byte positions in the
file. Note: the value returned from a byte position that has not been written is not defined.

Each program is exccuted with standard input, output and error output files, referred to as st.d'ln
stdout, and stderr respectively.

The file type indicates the opcrations that may be performed on the open file as well as the semantics of
these operations. The file typc is specified as some combination of the following attributes.

READABLE The file can be read.
WRITEABLE The file can be written. .

APPEND_ONLY _
Only bytes after the last byte of the data previously associated with the file can be written.

STREAM All reading or writing is strictly sequential. No seeking is allowed. A filc instance without
the STREAM attribute must store its associated data for non-sequential access.

FIXED_LENGTH
The file instance is fixed in length. Othcrwise the file instance grows to accominodate the
data written, or the length of the file instance is not known as in the case of terminal input.

VARIABLE_BLOCK
Blocks shorter than the full block size may be returned in response to read operations other
than due to cnd-of-file or other cxception conditions. For example, input frames from a .
communication line may differ in length under normal conditions.

With a file instance that is VARIABLE_BLOCK, WRITEABLE, and not STREAM,
blocks that arc written with less than a full block sne number of bytes return exactly the
amount written when read subscquently.

MULTI_BLOCK Read and write operations arc allowed that specify a number of bytes larger than the block
size.

INTERACTIVb The open file is a text-oricnted strcam. It also has the connotation of supplying
intcractively (human) generated input.

Not all of the possible combinations of attributcs yicld a uscful file type.

Files may also be uscd in a block-oricnted mode by specifying FBLLOCK_MODE as part of the mode when
opcning the file. No bytc-oricnted opcrations arc allowed on a file opened in biock mode.

See chapter 33 for more details on the secmantics of the various possible file types and modes.

22.3.V 1/0 Routines

22.3.1. Opening Files

File *Open(pathname, mode, error)
char *pathname; unsigned short mode; SystemCode *error;

Open the filc specified by pathname wnth the specified modc and rcturn a file pointer for use with
subscquent file operations.

mode must be onc of FREAD, FCREATE, FAPPEND, or FMODIFY, with FBIL.LOCK_MODE if block
mode is requirced. 1f Open() fails to open the file, it returns NULL and the location pointed to by error
contains a standard system reply code indicating the rcason. 1f an error occurs and error is NULL, Open()
calls abort().

V-System 6.0 Reference Manual

V 1/0 Routines A : 23

File *OpenDuplex(file, mode, error)
File *file; unsigned short mode; SystemCode *error;

Open the “other side” of a duplex file, such as a network connection or terminal. Mode and error are as in
Open(). :

File *OpenFile(server, instanceidentifier, mode, error)
ProcessId server; Instanceld instanceidentifier;
unsigned short mode; SystemCode *error;

Open the filc instance specified by the server and instanceidentifier arguments and return a file
pointer to be used with subsequent file operations.

mode must be one of FREAD, FCREATE, FAPPEND, or FMODIFY, with FBLOCK_MODE if block
mode is required. If the instance is to be released when Close() is called on this file pointer,
FRELEASE_ON_CLOSE must also be specified as part of the mode. If OpenF11e() fails to open the file,
it returns NULL and the location pointed to by error contains a standard system reply codce indicating the
reason. If an error occurs and error is NULL, OpenFile() calls abort().

File *_Open(req, mods, server, error)
CreatelnstanceRequest ®*req; unsigned short mode;
Processld server; SystemCode *error;

Open a file by scnding the specified 170 protocol request message req to the server specified by server and
return a file pointer to be used with subscquent file operations. This function is only used when additional
server-dependent information must be passed in the request message, or the file is to be opencd on a server
that cannot be specified by a character string pathname as in Open().

The request req may be cither a CreatelnstanceRequest or a QuerylnstanccRequest. mode must be one of
FREAD, FCREATE, FAPPEND, or FMODIFY, with FBL.LOCK_MODE if block modc is required. If
_Open() fails to open the file, it returns NULL and the location pointed to by error contains a standard
system reply code indicating the reason. 1fan crror occurs and error is NULL, _Open() calls abort().

ProcessId CreateInstance(pathname, mode, req)
char *pathname; unsigned short mode; CreateInstanceRequest *req;

Open the file specificd by pathname in the given mode using the specified CreatelnstanceRequest, but do
not sct up a File structure for it. A CreatclnstanccReply is returned at the location pointed to by req. The
function returns the process id of the first process that replicd. If the create instance request was sent to a
group, additional replics can be obtained using GetReply().

SystemCode CreateDuplexInstance(server, id, mode, req)
ProcessId server; Instanceld id; unsigned short mode;
CreateDuplexInstanceRequest req;

Opecn the "other side” of the file specificd by the server and 1d. but do not sct up a File structure for it. A
CreatcDuplexInstanceReply is returned at the location pointed to by req. Rcturn a standard system reply
code.

22.3.2. Closing Files -

Close(file)

V Programming 12 March 1986

2:4 ‘ Input and Output

File *file;

Remove access to the specified file, and free the storage allocated for the File structure and associated buffers.
If the file is WRITEABLE and not in FBLOCK_MODE, the output buffer is flushed.

SpecialClose(f1le, releasemode)
File *file; wunsigned releasemode;

Close the specified file, as in Close(). If SpecialClose() releases the file instance associated with the
specified File structure, the relcase mode will be set to reTeasemode. Close() sets the release mode to
zero. See chapter 33 for a cxplanation of relcase modes.

ReleaseInstance(fileserver, fileid, releasemode)
Processld fileserver; Instanceld fileid; unsigned releasemode;

Close the file instance specificd by f11eserver and f11e1d, using the specified release mode. This
function is used only when there is no File structure for the given file.

22.3.3. Byte Mode Operations

The purposc of the byte-mode /0 library is to maintain an abstract view of a file instance as an array of
bytes with a known (but cxtensible) length, and-the ability to read, write, and (in the casc of non-STREAMS)
seck, at the byte level. A layer of buffering is imposed between the client and server maintaining the actual
file instance, to reduce the amount of actual rcading and writing done. The actual file instance is guarantced
to be identical with the local view when the file is first opened, and after a Flush, barring 170 errors. (Note
that Close calls Flush before relcasing the instance.) At most one block of the local view of the file instance
may differ from the actual instance.

The 170 library can be used on any file type, though somewhat confusing results may be obtained with
VARIABLE-BLOCK, non-STREAM filcs, particularly if onc attempts to Seek in other than ABS —BLOCK
mode.

The standard Unix functions mentioned above may be used on files opened in byte mode (i.c., not opened
in FBLLOCK_MODE). Scveral other functions are also available on such files, as described below.

int Seek(f1le, offset, origin)
File *file; int offset, origin;

Sct the current byte position of the specificd open file to that specified by of fset and or1gin and return
TRUE (nonzero) if successful.

Iforigin is ABS_BI.LK or ABS_BY'T'E, the bytc position is sct to the of fset-th block or byte in the file
starting from 0. If or1gin is REI_BYI'E, offset spccifics a signed offsct relative to the current byte
position, I origin is FILE_END, offset is the signed byte offsct from the end of file.

The end of file position is onc beyond the last byte written. ‘The valuc of bytes in the filc previous to the
end of file that have not been explicitly written is undefined.

Seek () may not be used on files opened in block mode. SeekBlock() should be used on such files.
Seek () is identical to fseek().

unsigned BytePosition(file)
File *file;

Return the current byte position in the specified file. The value returned is correct only if the current byte

V-System 6.0 Reference Manual

V 170 Routines ' : 225

position is less than MAX_UNSIGNED. This function is identical to fte11().

Flush(file)
File *file;

Flush any buffered data associated with the file, providing it is WRITEABLE. Flushing a file causes local
buffercd changes to the file data to be communicated to the real file. If the file is in block mode or not
WRITEABLE, no action is performed. This function is identical to ££Tush().

Resynch(f1ile)
File *file;

Identical to ClearEof ().

SystemCode Eof(file)

File *file;
Any of the byte mode read or writc operations may return EOF (Exception On File) as a special value
indicating an inability to read or write further in the file. Eof() returns a standard systcm reply code
indicating the nature of the exception. This may be a truc end-of-file, i.c., the current byte position exceeds
the last byte position of the file, or some type of error. ‘ :

ClearEof(file)
File *file;

Clear the local record of the last exception on the given file, and resynchronize the local view of the associated
file instance with that of the scrver, including the size of the file and (for STREAMSs) the next block to read.
This function only clears the local record of the exception; it does not affect the circumstances that caused the
exception to occur. Sce Eof ().

If the file is not of type STREAM, the contents of the local buffer are discarded even if the buffer was
modificd and not yet rewritten. If the file is of type STREAM, and the current file position violates the
stream condition (always rcad nextblock or writc 1astblock+ 1), reposition. The contents of the local
buffer arc discarded only if repositioning is necessary.

int BufferEmpty(file)
File *f1le; -

Test whether or not a file's local buffer is empty. If this function returns TRUE (nonzcro), the next gete()
will causc an actual rcad. If it returns FALSE (zcro), the next getc () will return immediatcly with a byte
from the bufTer.

22.3.4. Block Mode Operations

The following functions are most uscful on files opened in block mode. Unlcess otherwise noted, they may
also be used on files opened in byte mode.

unsigned Read(file, buffer, bytes)
File *file; char *buffer; unsignaed bytes;

Read the specified number of bytes from the file starting at the beginning of the current block location of the

V Progranmiing 12 March 1986

22-6 Input and Output

»

filc and store contiguously into the byte array starting at buf fer, returning the actual number of bytes read.

The number of bytes rcturned may be less than the number requested if (1) the file has the type attribute
VARIABLE_BLOCK and a short block was being read, (2) end of file was encountered while reading, (3) an
crror occurred while reading (in this case 0 bytes are returncd), or (4) more than one block was requested and
cither the file does not have the type attributc MULTI_BLOCK, or the server could not rcturn as many
blocks as were requested. If the read request cannot be satisficd, the reason is indicated by the standard reply
codc returncd by FileException(). If the end of file is encountered while rcading, a partial block is
returned with the reply code END_OF_FILE. Read() is intended for use on files opened in block mode
only. Note: Read(') does nos increment the current block number stored in the File structure for the given -
file.

unsigned Write(file, buffer, bytes)
File *file; char *buffer; unsigned bytos°

Write the specified number of contiguous bytes from the buffer to the file starting at the beginning of the
current block location of the file, and return the actual number of bytes written.

The number of bytes to be written must be less than or equal to the block size (as rcturned by
BlockS1ze()) unless the file has the type attribute MULTI_BLOCK. If the number of bytcs written is less
than the number of bytes requested, the recason is indicated by the standard reply code returned by
FileException().

Write() should be used only on files opencd in block mode. Note: Write () does nor increment the -
current block number stored in the File structure for the given file.

unsigned BlksInFile(file)
File *file;

Return the number of blocks in the specified file. If the number of blocks is unknown, MAXUNSIGNED is
rcturned,

unsigned BlockPosition(file)
File *file;

Return the current block position in the specificd file.

SeekBlock(file, offset, origin)
File *file; 1int offset; 1nt origin;

Sct the current block position of the specificd open file to that specificd bjr originand offset. The new
block position is the block offset from the specified block origin. origin is onc of FILE_BEGINNING,
FILE_END or FILE_CURRENT_POS.

unsigned BlockSize(file)
File *file;

Return the block size in bytes of the specified file.

unsigned FileException(file)
File *file;

V-System 6.0 Reference Manual

V /0 Routines A . 2247

Return the standard reply code indicating the last exception incurred on the specified file. This is used
primarily on files opened in FBLOCK_MODE. Eof () is uscd on bytc-oriented files.

22.3.5. Server-Specific Operations
This section describes routines in the 170 library which are specific to particular servers.

SystemCode CreatePipsInstance(readOwner, writeOwner, buffers, reply)
ProcessId readOwner, writeOwner; 1int buffers;
CreatelInstanceReply *reply;

Interact with the pipe server to create a pipe, with the specificd owners for the reading and writing cnds of the
pipe, and the specified number of buffers. buffers should be between 2 and 10 inclusive. The reply to the
create instance request is returned at the location pointed to by rep1y; it contains the file instance id of the
writcable crd of the pipe. The id of the rcadable end is equal to this value plus 1. OpenF11e() may be used
to sct up File structures for cither or both ends of the pipe. CreatePipelInstance() returns a standard
system reply code, which will be OK if the operation was successful.

File *OpanTcp(localPort, foreignPort, foreignHost, active,
- precedence, security, error)
unsigned short localPort, foreignPort; unsigned long foreignHost;
int active, precedence, security; SystemCode *error;

Interact with the Internet scrver to create a TCP network instance, and rcturn a pointer to a File structure
opened in hyte mode that can be uscd to send data on the corresponding TCP conncction.

To obtain a second File structure that can be uscd to read from the connection, usc the call

f2 = OpenFile(FileServer(fl), Fileld(f1l) + 1,
FREAD + FRELEASE_ON_CLOSE, &error)

where 1 is the value rcturned by OpenTcp(). Note that it is nccessary to release both the readable and
writcable instances to causc the connection to be deallocated. Rclcasing the writcable instance closes the
caller's end of the connection. Data can still be read from the rcadable instance until it is rcleased, or the
other cnd closcs (resulting in an ENID_OF_FILE indication).

The parameters localPort, foreignPort, and foreignHost spccify the sockets on which the TCP
conncction is to be opened. active specifies whether the connccuon should be active (i.c., send a
conncction “syn™ packet), or passive (i.e., listen for an incoming ‘“‘syn” packct). precedence and
security spccify the precedence and security values to be used for the connection. Specifying zcro for

these parameters will causc appropriate default values to be used.

If the open is unsuccessful, OpenTep() rcturns NULL, and a standard system reply code indicating the
reason for faiture is returned in the location pointed to by error; clsc OK is returned in this location.

File *OpenIp(protocol, error)
char protocol; SystemCode *error;

Interact with the Internct server to create an IP network instance, and return a pointer to a File structure
opened in block mode that can be used to writc IP packets to the network.

To obtain a sccond File structure that can be used to rcad IP packets, use the call

£2 = OpenFile(FileServer(f1), Fileld(f1) + 1,
FREAD + FBLOCK_MODE + FRELEASE_ON_CLOSE, &error)

where f1 is the value returned by OpenIp(). Note that it is nccessary to relcasc both the readable and

Y Mrogramming 12 March 1986

28 ‘ Input and Output

writcablc instances cven if only one of them is used.

The protoco?l specifies which value of the protocol field in the IP packet headers is of interest. The
rcadable instance will only return packets with the requested protocol value, and the client program should
only write packets with the spccified protocol ficld to the writeable instance, though this is not currently
checked by the server. If protocol is zero, it specifies “promiscuous™ mode, in which all IP packets are
returncd which are not of protocol types that have been requested by another client, and packets of any
protocol type may be written.

If the open is unsuccessful, OpenIp() returns NULL, and a standard system reply code indicating the
rcason for failure is returned in the location pointed to by error; else OK is returned in this location.

22.3.6. Miscellaneous 1/0 Functions

Instanceld Fileld(f1ile)
File *file;

Return the file instance identifier associated with the open file. This was cither gencrated as part of Open()
or specificd as an argument to the OpenF 11e () opceration that opencd the file.

ProcessId FileServer(file)
File *file;

Return the file server identificr associated with the open file. This was cither gencrated as part of Open() or
specificd as an argument to the OpenF 11e() opcration that opencd the file.

unsigned FileType(file)
File *file;

Return the file type, which indicates the opcrauons that may be performed on the open file as well as the
. semantics of these operations.

unsigned Interactive(file)
File *file;

Return TRUE (nonzero) if the file has the type attribute INTERACTIVE, clse FALSE (zcro).

File *OpenStr(str, size, error) .
unsigned char *str; unsigned size; SystemCode *error;

Make the specified string look like a file. The file is FIXED_LENG'TH, with onc block of sizc s1ze, and the
end of file sct to the end of this block. str must point to an arca at lcast $1ze bytes in length. A file opened
by OpenStr() is identificd as such by its file scrver (as returncd by FileServer()) being cqual to 0.

SystemCode RemoveFile(pathname)
char *pathname;

Remove (delete) the file specificd by pathnama.

int unlink(pathname)

V-System 6.0 Reference Manual

V I/0 Routines 229

char *pathname;

Remove (delete) the file specificd by pathname, Rctums 0 on success, -1 on failure. This interface is
proyided for UNIX compatibility.

SystemCode SetBreakProcess(file, breakprocess)
File *file; Processld breakprocess;

Sets the break process associated with the specified file (which must be INTERACTIVE) to breakprocess.
If a break occurs on the file after a break process has been set, the IO_BREAK reply will be returned to any
outstanding rcad requests, and the specified break process will be destroyed,

SystemCode SetInstanceOwner(fileserver, fileid, owner)
Processld filesorver, owner; Instanceld fileid:;

Set the owner of the specified file instance to be owner.

PrintFile(name, T11¢)
char *name; File *file:;

Print the value of cach ficld in the given File structure on the standard output, identifying the file by the
name name. Uscful in debugging scrvers and 170 routines. .

22.4. Portable binary integer 1/0

The following routincs can be used to write and read integers to a file in a standard binary representation.
This rcpresentation stores integers in 1, 2, 3, or 4 bytes, signed or unsigned. The integers are written as binary
numbers, 8 bits to a byte, in big-cndian order. For the signed routines, twos-complement is used. (This
convention is followed by a number of systems, including files rcad and written by TeX and METAFONT)

The subroutines are declarcd as follows, for N = 1, 2, 3, and 4:

PutSignedN(i, T)
long 1; File *f;

PutUnsignedN(1, f)
long 1; File *f;

long GetSignedN(f)
File *f;

Tong GetUnsignedN(f)
File *r;

V Programming 12 March 1986

231

— 923 —
Intra-Team Locking

The V kerncl provides message-passing as a means of synchronizing processes, and mutual exclusion may be
enforced by the usc of a server process that executes the critical section for clients. Such an arrangement is
not always suitable, however: for processes communicating via a shared data structure the overhead of a
mcessage cxchange may exceed by an order of magnitude the cost of performing the critical section.

The V library includes support for cheap mutual exclusion among processes in a single tcam. Spin locks
ensure mutual exclusion in the presence of contention, but in its absence they introduce very little overhead.
Spin locks also maintain a count indicating the level of contention so that the programmer can continu¢ to
assess their suitability after they are in use.

Spin locks are essentially binary semaphorcs without queucing: when a process fails in an attempt to
acquire a lock, it simply dclays (instcad of busy-waiting) before trying again ("spinning” the lock).

Advantages: In the absence of contention, spin locks arc fast. The optimized macro forms require only
from onec to six machine instructions cach the procedurc forms add only the cost of a single-argument
procedure call.

Disadvantages: A process that fails in an attcmpt to acquire a lock dclays one tick before trying again; the
locking overhead in the presence of contention is thercfore higher than it would be for a message exchange
with a server process. Also, spin locks are not fair: the order in which processes acquire the lock is not
determinca by the order in which they begin their attempts.

Spin locks arc best suited for cases in which contention is expected to occur only rarcly. The repeated
attempts at the lock render them less suitable when the lock is held for long periods of time (scveral clicks),
and the delay period (onc click) may be too long for some applications with rcal-time constraints.

Each spin lock maintains a contention count, incremented cach time that a process is forced to delay in an
attempt to acquire the lock. The counter is incremented without mutual exclusion; its value is therefore not
guarantced precise, but should still provide a rough indication of the level of contention.,

The following subroutines arc provided in the library, with nceded definitions in Vspinlock.h.

AcquireSpinLock(lock)
SpinLockType *lock;

Wait until the named lock is acquired before returning. The delay on failure is one click. -

ReleaseSpinLock(lock)
SpinLockType *lock;

Release the named lock.

Additionally, the macro SpinLockCount(lock) provides access to the contention count; it is of type
short integer and may be assigned to as well as read.-

Locks must be initialized to cither SpinLockLoclked or Sp1nLockUnlockod which also sct the
contention count to zero.

More efficient macro forms of the locking operations are provided for the common cascs of the lock being a

V Programming 12 March 1986

232 ' Intra-Team Locking

global variable or an argument to the procedure invoking the opceration. The costs of these forms of the
opcrations are in the range of one to six machinc instructions. The compiler and lint, however, cannot
properly check theses forms, which may result in either spurious error messages or failure to detect real errors.

AcquireGlobalSpinLock(1ockName)
SpinLockType lockName;

Equivalent to AcquireSpinLock(&lockName), where 1ockName is the name of a global (extcrn)
variable. (This will also work if the global variable TockName is a struct and the lock is its first component.)

ReleaseGlobalSpinLock(lockName)
SpinLockType lockName;

Equivalent to ReleaseSpinLock(&1ockName), where TockName is the name of a global (cxtern)
variable. '

AcquireArgumentSpinLock()

Equivalent to AcquireSpinLock(p), where p is the first argument of the containing procedure. (This will
also work if the lock is the first component in a struct *p.)

ReleaseArgumentSpinLock()
Equivalent to ReleaseSpinLock(p), where p is the first argument of the containing procedure.

V-System 6.0 Reference Manual

41

— 24 —
Memory Management

Blocks within a managed pool of memory can be dynamically allocated and freed within the address space
of a team using the functions described below. These routines provide essentially the same functionality as
the standard C library. The memory allocation routines arc provided on a per-tcam basis.

Note that there is one pool of free storage for all processes in the tecam: when using the standard library
versions, programmers must be carcful to synchronize the processes allocating and frecing this storage. A set
of memory management routines with internal locking for mutual exclusion is also available (sce
lockedmalloc, below). These routincs run more slowly than the standard versions.

char *malloc(size)
unsigned size;

Returns a pointer to a memory block that is $1ze bytes long. NULL is rcturned if there is not enough
memory available.

free(ptr)
char *ptr;

The memory pointed to is returned to the free storage pool. ptr must point to a block allocated by onc of the
routincs listed here.

char *realloc(ptr, size)
char *ptr; unsigned size;

Changcs the size of the block pointed to by ptr to be s1ze bytes. Returns a possibly moved pointer.

char *calloc(elements, size)
unsigned elements, size;

Equivalent tomalloc(elements®*size), cxcept the arca is cicarcd to zero. Provided for allocating arrays.

cfree(ptr, elements, size)
char *ptr; unsigned.elements, size;

Frees storage allocated by calloc (). Actually, this function is identical to free(ptr), which may be used
instcad. elements and siie arc ignored.

unsigned Copy(destination, source, count)
char *destipation, ®*source; unsigned count;

A fast block transfer function. ‘T'ransfers count bytes from source to destination. Rcturns count.
Restriction: the source and destination blocks must not overlap.,

V Programming 12 March 1986

U2 4 . Memory Management

unsigned blt(destination, source, count)
char *destination, *source; unsigned count;

Identical to Copy().

char *Zero(ptr, n)
char *ptr; unsigned n;

Zero memory. Writes n bytes of zeros starting at ptr, and returns ptr.

clear(ptr, n)
char *ptr; unsigned n;

Clear memory. Writes n bytes of zeros starting at ptr.

swab(pfrom, pto, n)
char *pfrom, ®*pto; unsigned n;

Swap the bytes in n 16-bit words starting at the location pfrom into a block starting at the location pto.

The following functions are of intcrest only to those managing memory (using the kernel primitives) in
addition to that provided by the above routines. The current implementation of malloc() prevents these
routines from adding space below the current top of the pool.

GiveToMalloc(start,length)
char *start; 1int length;

Add the Tength bytes of memory at start to the pool used by the allocators described above, returning the
number of bytes actually installed after alignment and crror-checking is done.

char ¢ GetMoreMallocSpace(min,actual)
int min, *actual;

Malloc() calls this function to acquirc morc space for its pool; a default version is supplied, which is
replaced if the programmer supplics a routine of this name, - GetMoreMallocSpace() should rcturn a
pointer to at Icast min bytes of space and sct *actual to the number of bytcs made available; NULL may be
returned if no more space is to be added to the pool.

In the default version, free memory is determined and extended based on the memory map and memory
usage of the team (using the V kernel operations GetTeamS1ze () and SetTeamSize()).

24.1. Use in multi-process teams

The standard library versions of the allocation and dcallocation routines do not enforce exclusion among
processes within a tcam; so disastrous things may happen if two or more processcs access them
simultancously. A multi-process tcam may use the routines safcly by cnforcing its own cxclusion (e.g., by
having all allocation/dcallocation occur in a single process), or by explicitly linking in a provided version of
these routines that docs provide locking. ‘The routines affected are malloc, reallog, free, calloce, cfree, and
Givc'ToMalloc. (Note, however, that calls to these routines may be hidden in other standard library routines
as well) ‘The locking version may be accessed using the compiler flag -=11ockedmalloc; to include it use,
for cxampie:

cc68 -V -r otherflugs yourfile.o -1lockedmalloc other libraries

V-System 6.0 Reference Manual

Use in multi-process teams ‘ 243

This provides full exclusion for all of the routines mentioned, but at a exccution-time penalty of up to about
25%.

V Programming 17 Junc 1986

251

— 25 —
Naming

The naming scction of the library includes a number of functions that provide a convenient interface to
V- System naming protocol messages, plus other naming-related services. Sec chapter 34 for an cxplanation of
the naming protocol.

25.1. Current Context

Each process has a current context in which objcct names that do not begin with the root escape character
(') are interpreted, similar to the current working directory of UNIX and other systems. The following
functions arc provided to query or reset the current context.

SystemCode ChangeDirectory(name)
char *name;

Change the current context (working dircctory) for the calling process to be the context specified by nalhe.
and return a standard system reply code indicating OK if successful, clsc the reason for failure. name is
interpreted in the (previous) current context.

int chdir(name)
char *name;

This function is identical to ChangeD‘lrector,y() cxcept that it returns O to indicate success or -1 to
indicate failure. (This interface is provided for UNIX compatibility.)

char *getwd(pathname)
char pathname[];

Copics the absolute name of the current context (working dircctory) into the given character array and returns
its address. (This interfacc is provided for UNIX compatibility.)

25.2. Descriptor Manipulatidn

V-System servers generally maintain a descriptor for cach of the objects they implement, Each descriptor
contains a gype ficld, the associated object's name (relative o a particular context), and additional type
dependent information such as size, timestamp, owner, ctc. The standard header file <Vdircctory.h> defines
the descriptor types currently known to the system.

Onc can read (and in some cascs modify) the descriptors of all objects defined in a given naming context by
opening the associated context directory as a file. A context dircctory appears as a file of descriptors. A
context dircctory can be opened using the standard system Open() routine with the additional bit
FDIRECTORY specificd as a part of the requested file mode. Context directorics arce ordinarily opened in
IFBLLOCK mode and read using the standard Read() routine.

Onec caveat is necessary here: an attempt to open a multi-manager context dircctory in this way will

V Programming 12 March 1986

252 : . . Naming

currently fail with the error code MORE_REPLLIES, since such context dircctorics are modelled as multiple
files, onc per manager. Sce scction 34 for a description of the protocol used to reliably open all partitions of a
multi-manager context, or the 11std1r program for a sample implementation.

One can also read or modify an individual object descriptor using the following functions:

SystemCode NReadDescriptor(name, desc)
char *name;
ArbitraryDescriptor *desc;

Read an object’s descriptor, specifying the objcct by name.

SystemCode ReadDescriptor(serverpid, instanceid, desc)
ProcessId serverpid;
Instanceld instanceid;
ArbitraryDescriptor *desc;

Read the descriptor of the object from which the specif"néd instance was created.

SystemCode NWriteDescriptor(name, desc)i'
char ®*name; ‘
ArbitraryDescriptor *desc;

Writc an object’s descriptor, specifying the object by name.

SystemCode wr1teDescr1ptor(serverp1d instanceid, desc)
ProcessId serverpid;
Instanceld instanceid;
ArbitraryDescriptor *desc;

Write the descriptor of the object from which the specified instance was created.

-y

25.3. Local Names or Aliases

SystemCode DefineLocalName(localname, truename)
char *localname, *truename;

Definces a local alias “[Tocalname]” for “truename”, which must be the name of a context.. If truename
does not begin with a square bracket, it is first mapped in the current context to get an absolute name before
the alias is defined. The alias is local to the team defining it, and is inherited by teams it creates.

SystemCode UndefineLocalName(name)
char *name;

Undcfincs a local alias.

RSN

char *ResolvelLocalName(name) ‘ G
char *name;

Returns the stored absolute name for the given local alias. ‘The returned string should not be modified, and

V-System 6.0 Reference Manual

Local Names or Aliases 253
will be freed if the name is later redefined, so beware.

ClearLocalNames()

Undefincs all local aliases for this tcam. It may be useful to call PrimeCache() after calling this routine, to
reinsert definitions for the system standard aliascs,

SystemCode DefineTempArea()

If the local name [tmp] is not already defincd, this function sclects an appropriate place to store temporary
files and dcfines [tmp] to point to it. The function returns OK if successful, clse a standard system code
describing the problem.

25.4. Naming Protocol Routines

ProcessId NameSend(req)
NameRequest *req;

Sends off the given request message, with the destination determined by the name given in the message. The
given name must be a null-terminated string; NameSend() ncither examines nor sets reg->namelength.
Like Send(), NameSend() rcturns the pid of thc replicr, and modifies its argument to hold the reply
message. GetRep1y() can be used if additional replies are anticipated.

SystemCode GetAbsoluteName(namebuf, namelength, context)
char namebuf[]:;
unsigned namelength;
ContextPair ®*context;

Accepts a null-tcrminated name in namcebuf, possibly a relative name or local alias, and modifics it to return
the absolute name. The size of namcbuf is passed in as namelength. If the name specified an cxisting context,
its context identifier is returned, as with GetContextld(), otherwise context->pid is sct to 0. The given name
need not correspond to any existing object, as long as it is unambiguous what server would implement such an
object if it did cxist, and what its absolute name would be.

SystemCode GetFileName(namebuf, namelength, serverpid, instanceid)
char namebuf[];
unsigned namelength;
ProcessId serverpid;
Instanceld instanceid;

Returns the absolute name for the specified file instance in namebuf. ‘The maximum name length is passed
in namelength. GetContextName() rcturns OK if the mapping was successful, or a standard system
crror codc if a failure occurred.

SystemCode GetContextld(name, context)
char *name;
ContextPair *context;

Interprets the given name in the current context, and returns a corresponding <process-id, context-id> pair,
suitable for caching. The function returns OK if successful, or a standard system crror code if an crror is

V Programming 12 March 1986

254 Naming

detected, such as the given name specifying an object that is not a context. .

Callers should recognize that the ContextPair may become invalid at any time, usually due to the server that
issued it crashing and restarting with a different pid.

SystemCode GetContextName(namebuf, namelength, context)
char namebuf(];
unsigned namelength;
ContextPair context;

The inverse of GetContextId() Retums the absolute name for the given context in namebuf. The
maximum name length is passcd in namelength. GetContextName() returns OK if the mapping was
successful, or a standard system error code if a failure occurred.

int IgnoreRetry(req, pid, segbuf, segsize, serverpid)
register MsgStruct *req;
ProcessId pid, serverpid;
register char *segbuf;
register unsigned *segsize;

This routine is intended for use only by servers that implement the naming protocol, not for clients that use it.
It determines whether the caller is one of the servers that should ignore the given request req (probably a
CREATE_INSTANCE_RETRY), returning 1 (true) if so, 0 if not. It assumes there is a 0-tcrminated list of
pids beginning at req->segPtr in the client’s address spacc, and returns truc if the given serverpid is on
the list. Ifan appcndcd scgment was received, segbuf and *segs1ze should indicate its location and size.
This routine may read in more of the scgment: if so, it alters thc segsize paramcter to reflect what it read.
The routine assumes segbuf points to an arca of at lcast MAX_APPENDED_SEGMENT bytes.

25.5. Direct Name Cache Manipulation

The following routincs arc uscd intcrnally by NameSend() and the local alias mampulatlon functions.
They are not ordinarily called directly in user programs.

NameCacheEntry *NameCacheAdd(prefix, length, from, to, truename, flags)
char *prefix, *truename; .
ContextPair from, to;
unsigned short length, flags; -

Adds a new entry to the name prefix cache and return a pointer to the new cache record. The cache record
format is defined in the standard hcader file <Vnamecachc.h>. [f a cache cntry alrcady cxists for the given
prefix, it is deleted. Rcturns NULL if no memory is available to allocate a cache record. -

The prefix argument gives the name prefix to be added, and Tength is its length (not counting the
terminating null byte, if any), ‘The prefix is interpreted relative to the from context and must name the to
context,

The £1ags may be any combination of the following bits:
¢ DONT_FLUSH .
The cache entry will never be flushed, even if the specified context-pair becomes invalid.
o ALIAS

The cache entry specifics a local alias. In this casc, pref ix is the alias, whilc truename is the absolute
name to which the alias maps.

V-System 6.0 Reference Manuai

Direct Name Cache Manipulation _ : 258

¢ LOGICAL_PID
The process-id portion of the specified to context is a logical pid. NameSend() will perform a
‘GetP1id() with scopc ANY_PID each time it attempts to use this cache entry. NOTE: This feature is
provided for backward compatibility with servers that implement the naming protocol of V version 5.1 and
earlier. It will be removed in a future V release,

NameCacheEntry *NameCacheLookup(name, context)
char *name;
ContextPair context;

Checks whether any prefix of the given name matches a cache entry. A pointer to the cache record containing
the longest matching prefix is returned. If there is no match, NULL is returned. A prefix match is defined as
all the characters in the prefix matching the corresponding characters in the given name, plus the given name
containing a delimiter immediately following the match.

SystemCode NameCacheDelete(cacheEntry)
MameCacheEntry *cacheEntry;

Delctes the specified name cache entry. NOT_FOUND is returned if cacheEntry does not point to a
record currently contained in the cache; otherwise OK is returned.

PrimeCache()

Adds a standard sct of well-known context names and aliases to the name cache. Normally called only once
by the'first team, but also useful after a call to C1earLocalNames().

25.6. Environment Va riable$

The V-System implements character-string cnvironment variables, much like those in UNIX. In V, a
process may sct variables in its own environment as well as rcading environment variables inherited from its
creator.

By default, environment variables arc global to a tcam. The root process of a tcam begins with an
cnvironment variable list inherited from its creator (through its tcam environment block). A newly created
process initially shares the environment variable list of its crcator. A proccss may scparate its environment
variablc list from that of its parent by allocating a new list head of type (EnvironmentVariable *), setting
PerProcess->eny to its address, and assigning it a value— typically cither NULL, indicating an cmpty list, or
the result of copyenv(o1d11st) (sce below). '

char *getenv(var)
char *var;

Returns the valuc of the given cnvironment variable, or NULL if it is undcfined. The returned string should
not be moditicd.

setenv(var, valus)
char ®*var, *value;

Scts the given cnvironment variable to the given value, or if valuc is NULL., scts the variable to be undefined.

Y Programming 12 March 1986

25-6 Naming

EnvironmentVariable *copyenv(oldlist)
EnvironmentVariable *oldl1ist;

Makes a fresh copy of the environment variable chain beginning with 01d11st, and returns a pointer to the
first entry. Useful if a process wants to separate its environment from its parent’s. The 01d11st argument
should be the valuc (not the address) of the parent’s environment list head.

clearenv()
Removes the definitions of all environment variables.

V-System 6.0 Reference Manual

— 26 —
Numeric and Mathematical Functions

26.1. Numeric Functions

Most of the functions in the numeric section of the library are not called dircctly in user programs; they are
accessed by the C compiler as needed. The following functions are useful in uscr programs:

unsigned abs(value)
int value

Integer absolute value.

int rand()

Random number generator. Generates pscudo-random numbers in the range from 0 to 2311, This is a very
poor generator, identical to the one provided in Berkeley Unix 4.1.

srand(seeod)
unsigned seed;

Resced the rand() random number gencrator,

26.2, Mathematical Functions

The math-related functions in the V library arc listed below. They are similar to the “section 3M” functions
of the Unix library. Scec the Unix manual for documentation,

sin() cos() . tan() asin()
acos() atan() atan2() - sinh()
cosh() tanh() 30() j1()
jn() ¥yo() y1() - yn()
hypot() cabs() gamma() fabs()
foot() ceil() exp() Tog()
Tog10() pow() sqrt()

V Programmming 12 March 1986

271

—27 —
Processes and Interprocess Communication

The V kernel supports processes as abstractions, with operations for process management and interprocess
communication. Scveral processes may sharc an address space on one host. Processes sharing an address
space arc collectively referred to as a team.

The V kernel also supports the concept: of a process group. Any process may crcate a new group and
processes may join or leave a group. Most functions that operate on a process also operate on a process group.
This is achieved by specifying a group identificr in place of the process identificr. Thus. for example, to
destroy all the processes in the group specified by groupid, the function DestroyProcess(groupid)
can be invoked. (A single process can be vicwed as a special process group: a group with just onc member,
with the process identifier serving as the group identifier.)

Similarly, messages may be sent to a group of processcs, simply by addressing them to a group identifier.
Typical usages of group communication are notification (e.g. to notify other processes of some cvent) and
query {¢.8. L0 locate a specific scrver). With local arca networks providing broadcast and multicast facilitics in
hardware, group communication can be significantly more efficient than using repeated one-to-one
communication.

The process and intcrprocess communication-refated functions in the V C library provide services and/or
intcrfaces between processes and the V kernel. 'They have no direct analog in the standard Unix C library.
These functions provide a convenient interface to kernel-provided services. Some of the functions cxecute
kernel trap instructions, while others send messages to the kerncl-server inside the kernel.

A kernel operation cxecutes as a single indivisible function call as far as the C programmer is concerned.
Each kernel operation takes zero or more arguments and returns a single value.

In the descriptions below, the active process or invoking process always refers to the process that exccuted
the kernel operation.

Some opcerations such as SctFeamPriority and SctTime arc intended to be used only by “opcrating system™
or management processes and should not be used by application programs.

This chapter is divided into four scctions: 1) process-related kernel operations, 2) other process-related
functions, 3) process group related kernel functions and 4) interprocess communication-related functions.

27.1. Process-Related Kernel Operations

SystemCode ClearModifedPages(pid)
ProcessId pid;

Clcars the dirty bits for all pages in the address space in which the process specified by p1d resides.

Processld CreateProcess(priority, initiaipc, initialsp).
short priority; char *initialpc, *initialsp;

Create a new process with the specified priority, initial program counter and imitial stack pointer and return its
unique process identifier.

V Programming 12 March 1986

272 Processes and Interprocess Communication

The priority must be between 0 and 255 inclusive, with 0 the highest priority. (Sec the discussion on
prioritics with the description of QueryProcessPriority().) initialpc is the address of the first
instruction of the process to be exccuted outside of the kernel. Generally, initialsp specifies the
initialization of the stack and general registers and is processor-specific. In the case of the Motorola 68000,
initialsp is a simple long word value that is assigned to the user stack pointer.

The process is crcated awaiting reply from the invoking process and in the same team space. The segment
access is set up to provide read and write access to the entire tcam space of the newly created process. The
creator must reply to the newly created process before it can exccute. [f there are no resources to create the
process or the priority is illegal, a pid of 0 is returned,

Usually programmers will'prefer the Create () call described later in this chapter.

ProcessId CreateTeam(priority, initialpc, initialsp, lhost)
short priority; char *initialpc, *initialsp; Processld lhost

Creatc a new tcam with initial or root process having the specified priority, initial program counter, and initial
stack pointer. Thost specifics which (existing) logical host the new team should be placed into. A value of 0
specifics the logical host of the invoker.

CreateTeam() is similar to CreateProcess() cxcept the new process is created on a ncw tcam. The
new team initially has a null team space. It is intended that the creator of the tcam will initialize the team
address space and root process statc using SetTeamS1ze(). MoveTo(), and WriteProcessState().
priority must be a valuc between 0 and 255.

CreatcTeam returns 0 if there arc no resources to create the tcam or the root process, or the priority is

illcgal.

Warning: CreateTeam() will be restricted to the first tcam in the near future.

Processld Creator(pid)
Processld pid;

Return the process id of the process that créated pid. If pid is zcro, return the creator of the invoking
process. If p1d does not exist or is the root process of the initial tcam, return 0.

SystemCode DestroyProcess(pid)
ProcessId pid;

Destroy the specificd process and all processcs that it created. When a process is destroyed, it stops exccuting,
its pid becomes invalid, and all processes blocked on it become unblocked (cventually).
“DestroyProcess() may also be uscd to destroy a process group by specifying a group identifier with
pid. DestroyProcess() rcturns OK if pid if successful, clse a reply code indicating the rcason for
failurc. DestroyProcess(0) is suicidc. If pid spccifics a process group, then all processes in that group
(and their descendants) are destroyed. :

Usually programmers will prefer the Des troy() call described later in this chapter.

ProcessId GetObjectOwner(obJectPid)
ProcessId objectPid; :

Return the process-id of the owner of the specxfcd object. Currently the only type of object supported is a

nProcm blocked on a nonexistent processes are detected and unblocked by the clock interrupt routine checking periodically.

V-System 6.0 Reference Manual

Process-Related Kernel Operations 27-3
tecam. Thus ob jectP1d must spccify a process on the tcam whose owner is desired.

ProcessId GetPid(logicalid, scope)
int logicalid, scope;

Return the pid of the process registered using SetP1d() with the specified Togicalid and scope, or 0 if
not set.

The scope is one of:
LOCAL_PID Return a locally registered process only.

ANY_PID Return a local or remote process.

If Togicalid is ACTIVE_PROCESS, the pid of the invoking process is returned. If the scope is any, the
kernel first looks for a locally registered process; if one is not found, the kernel broadcasts a request for a
process identificr registered as this logical id to other workstations running the V kernel on the network. In
this way, a kernel can discover the process identificrs of the standard server processes from other kernels, or at
least from the kernel that is running the server process of interest.

Note: GetP1d() and SetP1d arc being phascd out. New programs should use the group communication
facility instecad. The REMOTE_PID scope available in previous relcascs is no longer supported.

ProcessId GetTeamRoot(pid)
ProcessId pid;

Return the process identifier of the root process of the team containing p1d, or zero if p1d is not a valid
process identificr. A p1d of zero specifies the invoking process.

char *GetTeamSize(pid)
Processld pid;

Return the first unused location in the tecam space associated with pid, assct by SetTeamSize (). Ifpidis
zero, the size of the invoking process's team is returned. If pid docs not exist, 0 is returned.

QueryKernel(pid, groupSelect, reply)
ProcessId pid; 1int groupSelect; Message reply;

Query the kernel on the host where process pid is resident. A pid of zero specifics the invoking process’s
kernel. -

The groupSelect ficld specifics what information is to be returned in the rep 1y message. The available
group sclection codes are MACHINE_CONFIG, to return information about the processor configuration,
PERIPHERAI_CONFIG, to return a list of peripherals available on the machine, KERNEL._CONFIG, to
return the kernel’s configuration parameters, MEMORY_STATS, to return memory usage statistics, and
KERNEL_STATS, to return other kernel statistics. ‘These codes, and the corresponding structures that may
be returned, arc defined in the standard header file {<Vquerykerncl.hd,

SystemCode QueryProcessorUsage(pid, usage, tusage)
ProcessId pid; unsigned *usage, *tusage;

Return the time allocated so far by the processor to process pid in ®*usage and rcturn total for the entire
tcam in *tusage if tusage is non-zcro. Time is returned in "clicks”. If pid is zcro, the time for the
invoking process is returned. If pid is equal to the logical host name (ILHN) shifted left by 16 bits, the time

V Programming 12 March 1986

27-4 _ Processes and Interprocess Communication

allocated to the idlc process is returned.
The function itsclf returns a replycode indicating success or otherwise.

unsigned short QueryProcessPriority(pid)
Processld pid; .

Returns the composite priority of the process with pid. A pid of zero specifies the invoking process. If pid
does not exist, 0 is returned.

The 16 bit composite priority ficld of a process effectively consists of two concatenated 8 bit ficlds. The
higher-order ficld contains the tcam priority: the lower-order ficld the process priority within the tcam.
These are initialiced when the processes are created (sce CreateProcess() and CreateTeam()) and
may be manipulatcd with SetProcessPriority() and SetTeamPriority(). The rcady process with
the lowest number in its composite priority ficld runs.

ProcessId QueryProcessState(pid, pb)
Processld pid: ProcessBlock *pb;

Copy the state of the process into the structure pointed to by pb. The various ficlds in the structure are
defined in <Vprocess.h>. Their meanings should be sclf-explanatory.

The message buffer is only available if pid is the invoking process or is awaiting reply from the invoking
process. If not, the appropriate ficlds in the structure are zeroed.

If pid is zero, the process state of the invoking process is returned. If p1d docs not exist, 0 is rcturned;
otherwise, pid is returned.

ProcessId ReadProcessState(pid, state)
ProcessIld pid; Processor_state *state;

Copy the machinc-specific processor state into the structure pointed to by state. The information returncd
is a subsct of that returncd by QueryProcessState().

If pid is zcro, the processor statc of the invoking process is returned. If pid docs not exist, 0 is returned;
othcrwise, pid is returned.

SystemCode ReturnModifiedPages(pid; buffer, bufferlen)
Processld pid; unsigned buffer[268]; unsigned *bufferlen

Clears the madified bit of cach page table entry for the-tcam specified by pid. Returns the starting address of
cach page of memory in the tcam whose modificd bit was on before being cleared. ‘The size of the buffer may
not be sufficicnt to contain the starting address of all dirty pages in the tcam’s address space, although it
should be suflicient for most. "The operation does not clear the modificd bit of any page whosc starting
address it cannot place in the invoker's bulfer. ‘Thus, the invoker nced simply reinvoke
ReturnModifiedPages to continuc with the the operation if the return code indicates that more dirty
pages might be outstanding. This is indicated with a return code of RETRY instcad of OK. The last valid
page address returned is delimited by a NULL. word in the case where the buffer is not completely filled. -
bufferlen rcturns the number of modificd page addresses returned in buf fer.

int SameTeam(pidl, pid2)
ProcessId pidl, pid2;

Return truc (nonzero) if the processes specificd both cxist and arc on the same tcam; otherwise return false.

V-System 6.0 Reference Manual

Process-Related Kernel Opemiions . 275
If either pid is zero, the invoking process is assumed.

SetObjectOwner(objectPid, newOwner)
ProcessId objectPid, newOwner;

Sct the kernel-maintained owner of the object specified by objectPid Currently the only typc of object
supported is a tcam, Thus objectPid must be the pid of a process on a particular team. Ownership of a
team implics that unrestricted access to the tecam’s address space using MoveTo and MoveF rom operations
without having a process in the tcam first send a message to the owner.

SetPid(logicalid, pid, scope)

int logicalid, scope; Processld pid;
Associate p1d with the specificd logical id within the specificd scope. Subscquent calls to GetP1d() with
this Togical1id and scope rcturn this pid. This provides an efficient, low-level naming service.

The scope is one of:
LOCAL_PID Register the process locally.

ANY_PID Register the process globally.

The local scope is intended for servers serving only the local workstation. The any scope permits both local
and rcmote access.

Notc: GetP1d() and SetP1d arc being phased out. New programs should use the group communication
facility instead. The REMOTE_PID scope available in previous rcleases is no longer supported.

SystemCode SetProcessPriority(pid, priority, decay)
ProcessId pid; wunsigned short priority, unsigned decay:;

Sct the priority of process pid to priority. If pid is zero the priority of the invoking process is set to
priority. priority may bec any integer between 0 and 255. (Scc QueryProcessPriority() fora
discussion of process prioritics.) If decay is nonzero, the priority is incremented cvery decay “clicks” until
it rcaches 255.

SystemCode SetTeamPriority(pid, priority)
Processld pid; unsigned short priority;

Sct the tcam priority of the tcam associated with pid to priority. If pid is zero the priority of the
invoking process's tcam is sct to priority. priority must bc an integer between 0 and 255. (Sce
QueryProcessPriority() for a discussion of tcam prioritics.) Teams with prior 1ty 254 or 255 do not
run.

SetTeamPriority() changes the absolute scheduling priority of cach process on the tecam by modifying
the tcam priority ficld of the composite priority for cach process. ‘This operation is intended for
implementing macro-level scheduling and is restricted in use to the first tcam. Other tcams should use
ChangeTeamPriority() to rcquest special scheduling service.

char *SetTeamSize(pid, addr)
Processld pid; char *addr;

Sets the first unused address for the tecam containing pid to addr. The new tcam size may be cither greater
or smalter than the previous size. ‘T'he new team size is returned; this will normally be cqual to addr. Ifthere

V Programming 12 March 1986

27-6 Processes amd Interprocess Communication

was not cnough memory available to grant the request, the return value will be less than adde; if addr was
below the starting address for tcam spaces on the host machine, the team space will be set to null and its
starting address will be returned. Thus SetTeamSize(p1id, 0) is a machine-indcpendent way of sctting a
team space to null.

A pid of 0 spccifics the invoking process. Only the creator of the tcam or members of the tcam may change
the team size and (consequently) the specificd process must be local.

int ValidPid(pid)
ProcessId pid; .

Return true (nonzero) if p1d is a valid process or group identificr; otherwise return false.

ProcessId WriteProcessState(pid, state)
Processld pid;: Processor_state *state;

Copy the specified process state record into the kernel state of the process specified by p1d and return p1d.

The spccificd process must be the invoking process, or awaiting reply from the invoking process.
WriteProcessState() returns 0 if the process docs not cxist, is not awaiting reply or there is a problem
with the statc record. The kernel checks that the new state cannot compromise the integrity or sccurity of the
kernel.

A pid of 0 specifics the invoking process. A process that writes its own processor state affects only the
machinc-independent per-process arca information kept as part of the state record (see section 18.4.3).

27.2. Logical Host-Related Functions

Processld CreateHost(priority, initialpc, initialsp)
short priority; char *initialpc, *initialsp; ProcessId Thost;

Crcate a new tcam in a separate logical host with initial or root process having the specified priority, initial
program counter, and initial stack pointer. This routinc is the same as CreateTeam cxcept that a new logical
host is created for the new tcam.

SystamCode DestroyHost(pid)
ProcessId pid;

Destroy the logical host in which the process specified by pid resides. . When a process that is frozen is -
destroyed, any quecuc local 1PC operations on it will be re-cxecuted rather than returned with a failure status
code. Also, queucd reply messages will be forwarded rather than simply destroyed.

SystemCode ExtractHost(pid, optype, buffer, length)
Processld pid; int optype; char *buffer; unsigned *length;

Extract the kernel descriptor information for the logical host in which the process p4d resides and place it in
the buffer pointed to by buffer. Tength specifics the size of buffer provided on invocation and returns the
size of the descriptor information rcturncd. ‘This operation can only be invoked on local logical hosts.
optype is cither the manifest constant QUERYHOSTCASE or EXTRACTHOSTCASE (specifed in
Vmigrate.h). ‘The former indicates that only summary information should be returned on the number of
processes, teams and memory used by the logical host. ‘The is returned in a HostResourcesRec structure,
as defined in Vmigrate. h. ‘I'he latter optype indicates that the full kernel descriptor information for the

V-System 6.0 Reference Manual

Logical Host-Related Functions . 27-1

logical host should be returned. The full descriptor information returned is not intended to be interpreted
outside the kernel and should only be used by the TransferHost operation to be reinstalled into another
machine’s kernel.

SystemCode FreezeHost(pid)
Processid pid;

Freeze the logical host in which p1d resides so that its address spaces and the kernel state associated with its
teams and processes arc not modificd. This will cause all kernel operations on the logical host to be deferred
and the priority of the tcams in the logical host to be set to non-runnable,

SystemCode TransferHost(pid, buffer, length)
Procassld pid; char *buffer; unsigned length

Takes the kernel descriptor information generated by ExtractHost and installs it into an cxisting logical
host that must have an cquivalent number of tcams already in it. Furthcrmore, the tcams must have only a
root process in them. The existing logical host is renamed by this operation to be the logical host specificd in
the descriptor information, as are all the tcams in it. The result is a logical host that is cquivalent to the onc
described in the descriptor information and the effective delction of the "blank” logical host that was used as
an installation base. The owner of the "new” logical host is the invoker of the operation.

SystemCode UnfreezeHost(pid)
Processld pid;

Unfrecze the logical host in which pid resides. All deferred kernel server and IPC operations are exccuted
and the priority of the tcams in the logical host are set to their previous runnable values.

27.3. Other Process-Related Functions

ProcessId Create(priority, function, stacksize)
short priority; char *function; unsigned stacksize

Crcate a ncw process exccuting the specified function with the specified priority and stack size. The new
process is blocked, waiting for a reply from the creator. The function Ready () should be used to start the
process running. ‘The new process is on the same tcam as its creator, and inherits the creator's standard input,
output, and crror files, and the creator’s current context (current working directory).

Create rcturns the pid of the new process, or zero if a process could not be created. This function is
usually preferable to calling the kernel operation CreateProcess() dircctly.)

ProcessId Ready(pid, nargs, al, ..., an)
ProcessId pid; unsigned nargs; Unspec al, ..., an;

Sct up the stack of the specified process and reply to it, thus placing it on the rcady qucue. The values a1,
++., 8N appcar as arguments to the root function of the new process, whilc nargs is the number of
arguments passed. Zero is returncd if there is a problem, else p4d is returned.

Destroy(pid)
ProcessId pid;

V Programming 12 March 1986

278 - Processes and Interprocess Communication

Destroy the specified process. If the dcsu'oycd process was on the same tcam as the mvokir{g process, the
mcmory allocated to its stack by Create() is freed. W.ummg Do not invoke Destroy() on a process that
was not crcated by Create(); use DestroyProcess() in that case.

Suicide()

Destroy the invoking process and free its stack. Suicide() is identical to Destroy(0), and the same
warning applics.

exit(status)
int status;

Terminate the cxecution of the team (i.e., program), after closing all open filcs. The status is sent to the
creator of the tcam requesting termination. Thus, using the V exccutive, control is returncd to the command
interpreter. In bare kernel mode, control is returned to the PROM monitor.

abort()

Abort cxccution of the tcam by causing an exception in the calling process. This routine can also be called
with paramcters. If it is, the standard exccption handler will interpret the first paramcter as a pointer to a
printf-stylc format string. The other paramcters will be interpreted as valucs to be printed using that
string. In an effort to keep the standard exception handler simple and robust, the number of %8’s in the
format string must not cxceed 8, nor may any of the strings (cither the format string or strings to be printed)
exceed 128 characters in length.

The format specifier %2 is included in addition to the usual spcciﬁcrs. .zz will interpret its argument as a
SystemCode, and print the result of running ErrorString with that code as its parameter.

ChangeTeamPriority(pid, priority)
. ProcesslId pid; short priority;

Sct the priority of the team in which process p1d resides to priority. Ifpid is 0 then the invoking process
is implicd. priority must be onc of the manifest constants: REAL="TIMEI through REAI.=TIME4 (of
which REAL ="TIMEI is the most privileged priority), FOREGROUND, BACKGROUND, GUEST, and
STOP—-TEAM=PRIORITY. ‘The first tcam runs at priority REAL—"TIME3, locally invoked forcground
programs run at FOREGROUND), locally invoked concurrent (&) programs run at BACKGROUND, and
remotely invoked programs run at GUEST priority. STOP—-TEAM = PRIORITY makes the processes ofa
team nonrunnable. FOREGROUND, BACKGROUND, and GUEST programs arc time-sliced in a round-
robin scheme, with lower pnonty tcams only getting the time slice if no higher priority tcams exist.
Management of tcam prioritics is done by the tcam scrver, which uscs the privilcged SetTeamPriority
kernel operation to actually change tcam prioritics.

27.4. Process Group Operations

Groupld CreateGroup(initial_member, type)
ProcessId initial_member; unsigned type;

Crcatc a new group of the specificd type (UNRESTRICTED_GROUP_BITIILOCAI._GROUP_BIT) and
make initial_member the lirst member. ‘The invoking process is made the first member of the process
group if initial_member is 0. If the UNRESTRICTED_GROUP_BI'T is sct in type, then any process
may join the group, otherwisc only processes of the same user may join. Onc can specify that only processes

V-System 6.0 Reference Manual

Process Group Operations 279

on the same host as ini1t{al_member may join the group with the LOCAL_GROUP_BIT bit in type,
thus allowing certain optimizations. 1nitial_member may also spccify a process group, in which case
every member of init1al_member becomces a member of the newly created group.

Returns the group id of the newly created group if successful, 0 otherwise,

SystemCode JoinGroup(groupId, pid)
GroupId groupId; Processld pid;

Add the process or process group specified by pid to the process group groupId. Group groupid must
cxist. Well known groups are defined in the include file <Vgroupids.h>. If pid is 0, the invoking process is
added to the group. If pid specifies a process group, every process of that group joins the group specified by
group id. Returns OK if successful, elsc a reply code indicating the reason for failure.

SystemCode LeaveGroup(groupld, pid)
Groupld groupId; Processld pid;

p1d lcaves the process group with group id groupid. If pid is 0, the invoking process leaves the group.
Again, p1d may cither specify a process or a process group.

SystemCode QueryGroup(groupld, pid)
GroupId groupld; Processld pid;

Query the kernel to sce if p1d (the invoking process if p1d is 0) would be allowed to join the group with the
specified groupId. Returns OK if so, othcrwisc NO_PERMISSION if not allowed, DUPLICATE_NAME
if already in, and NOT_FOUND if group does not exist (not at least one member located).

27.5. Interprocess Communication

int AwaitingReply(frompid, awaitingpid)
ProcessId frompid, waitingpid;

Return truc (nonzero) if await 1ngpid is awaiting reply from fromp 4d; otherwisc return lalse,

SystemCode ForceException(pid)
ProcessId pid;

- Causes process pid to send an exccption mcessage to the exception scrver. The cxception type is
FORCEEXCEPTION,

-

SystemCode ForceSend(msg, fromPid. toPid)
Message msg; Processld fromPid, toPid;

Force process fromP1d to scnd msg to process toP1d. ForceSendcannot be reinvoked on a process until
the first invocation is tcrminated by replying to the process. le. therc can only be at most a single
ForceSend in cffect for any given process.

ProcessId Forward(msg, frompid, topid)
Message msg; Processld frompid, topid;

V Programming 12 Murch 1986

27-10 A Processes and Interprocess Communication

Forward the message pointed to by msg to the process spccxﬁcd by top1d as though it had been sent by the
process frompid.

The process specified by fromp1d must be awaiting reply from the invoking process. The cffect of this
operation is the same as if fromp1d had sent directly to top1d, except that the invoking proccss is noted as
the forwarder of the mcessage. Note that Forward() does not block.

Forward(). rcturns fopid if it was successful, 0 if unsuccessful. If topid is invalid, frompid is
unblocked with an indication that its Send() failed. (Namecly, the Send() returns zero, and the replycode
ficld of the reply message is set to BAD_FORWARD.)

ProcessId Forwarder(pid)
Processld pid;

Return the process id that forwarded the last message received from p1d, provxdmg p1d is still awaiting rcply
from the invoking process. If thc message was not forwarded, pid is returned. If p1d docs not exist or is not
awaiting reply from the invoking process, 0 is returned. If the last message received was sent to a process
group, Forwarder () returns the group identifier the message was sent to.

ProcessId GetReply(msg, timeout)
Message msg;: 1int timeout;

Returns the next reply message from a group Send() in msg and rcturns the process identifier of the
replying process. If no messages are available within the timecout period, GetRep1y() rcturns 0. A typical
message transaction thus consists of a Send() (which rcturns the first reply) followed by any number of
GetReply(). However, all replies for a message transaction are discarded when the process sends again,
initiating a ncw mcssage transaction. (Notc: Many library routines, such as printf () arc implemented with
message passing primitives, thus ending the last message transaction when they are called.) The timcout is
given in clicks.

SystemCode MoveFrom(srcpid, dest, src, count)
ProcessId srcpid; char *dest, *src; unsigned count;

Copy count bytes from the memory scgment starting at src in the tcam space of srepid to the scgment
starting at dest in the invoking process's space, and return the standard system reply code OK.

Unless the invoker is the owner of the tecam in which srcpid resides. the srepid process must be
awaiting reply from the invoking process and must have provided read access to the segment of memory in its
spacc using the message format conventions described for Send(). MoveFrom() returns a standard system
reply code indicating the reason for failure if any of these conditions are violated.

SystemCode MoveTo(destpid, dest, src, count)
ProcessId destpid; char *dest, *src; unsigned count;

Copy count bytes from the scgment starting at sr¢ in the invoking process’s team space to the scgment
starting at dest in the tcam spacc of thc des tp 1d process, and return the standard system reply code OK.

Unless the invoker is the owner of the tcam in which srcpid resides, the destpid process must be
awaiting rcply from the invoking process and must have provided write access to the scgment of memory in
its space using the message format conventions described under Send(). MoveTo() rcturns a standard
system reply code indicating the reason for failure if any of these conditions arc violated.

ProcessId Receive(msg)

V-System 6.0 Reference Manual

' Interprocess Communication 2711

Message msg;

Suspend the invoking process until a message is available from a sending process, returning the pid of this
process, and placing the message in the array pointed to by msg. To determing if the message was sent to a
process group seec Forwarder().

ProcessId ReceiveWithSegment(msg, segbuf, segsize)
Message msg; char *segbuf; unsigned *segsize;

Suspend the invoking process until a message is available from a sending process, returning the pid of this
process, and placing the message in the array pointed to by msg and at most the first *segs1ze bytes of the
segment included with the message in the buffer starting at segbuf. The actual number of bytes in the
portion of the scgment received is returned in *segsize. (Note: This may be zero cven if a segment is
specified in the message.) Additional parts of the segment specified in the message may be transferred with
MoveFrom().

ProcessId ReceiveSpecific(msg, pid)
~ Message msg; Processld pid;

Suspend the invoking process until a message is available from the process pid or from a process in the
process group specified by pid, rcturmng the pid of this process, and placing the message in the array
pointed to by msg. .

If p1d is not a valid process or group identifier, ReceiveSpecific() returns 0.

ProcessId Reply(msg, pid)
Message msg; Processld pid;

Send the specificd reply message to the process specified by pid and return pid.

The specificd process must be awaiting reply from the invoking process. Zcro is returned if the process
does not cxist or is not awaiting rcply. Note: Messages that have been received but not replicd to consume
kerncl resources until the recciver exits. "Therefore, cach process should invoke Rep 1y () on cvery message it
reccives, If no reply is required, then Rep 1y () should be invoked with a message whose replycode is set to
DISCARI_REPLY. Such a reply message is not delivered to the sender, but relcases kernel resources and
allows the sender to (eventually) unblock (with a KERNEL_TIMEOUT crror reply code if no replics were
received at all).

ReplyWithSegment(msg, pid, src, dest, bytes)
Message msg; Processld pid; char *src, *dest; unsigned bytes;

Send the specified reply message and scgment to the process specificd by p4d and return pid.

The specificd process must be awaiting reply from the invoking process. Zcro is returned if the process
does not coxist or is not awaiting reply. ‘The scgment size is currently limited to 1024 bytes. A
ReplyWithSegment() with a nonzero segment sizc may only be uscd to reply to an idempotent request
(sce Send()).

Processld Send(msg, pid) -
Message msg; Processld pid;

If pid specifics a single process group, send the message inmsg to thc specificd process, blocking the invoking
proccess until the message is both received and replied to. ‘The array specificd by msg is assumed to be 8 long
words. 'T'he reply message overwrites the original message in the array.

V Programming 12 March 1986

712 Processes and Interprocess Communication

If Send() completes successfully, it returns the pid of the process that replied to the message. The pid
returncd will differ from that specified in the call if the message is forwarded by the recciver to another
process that in trn replics to it. If the send fails (for instance, because the intended receiver does not exist),
Send() rcturns the pid of the process the message was last forwarded to (the pid it was sent to, if it was never
forwarded). The kernel indicates the rcason for the failure by overwriting the first 16 bits of the message with
a standard system reply code. (This places it in the replycode ficld for reply messages that follow the standard
system format.)

If p4d is a process group identifier, the message is sent to all processes in the group on a best effort basis and
Send() blocks until a first process replics. The first reply message overwrites the original message. Further -
replics of the current message transaction may be received with GetReply(). Send initiates a new message
transaction, effectively flushing all messages of the last transaction.

All messages must follow the kernel message format conventions as follows. The first 16 bits of the message
are considered to be a request code or reply code. Some of high-order 8 bits within request and reply codes
are assigned spccial meanings, and currently-unused bits within this subficld are reserved for futurc use. The
bit names given below are defined in the standard header file {Venviron.h,

REPLY_BIT is reset if a request message is being sent; set if a reply message.

SYSTEM_CODE is set if the request code or reply code is considercd a standard system code. Applications
. can usc special request codes and reply codes internal to their programs but use standard
oncs for interfacing to other programs and the system.

Several other bits are interpreted with the following special meanings if the message is a request.

READ_BIT is sct if read access is provided to a memory segment. If this bit is sct, the kernel interprets
. the last 2 words of the message as specifying a pointer to the start of the scgment and the
sizc in bytes of the segment, respectively. The kernel then makes the scgment available to
the recciving process using MoveTo and MoveFrom. -

WRITE_BIT is sct if write access is provided to a memory segment. The segment is specified as
' described above. Both read and write access can be provided by sctting both bits 4 and 5.

DATAGRAM_SEND_BIT

Experimentally, the V kernel currently supports the concept of real-time communication.
In this mode, messages arc communicated to a single process or a group of processes on a
best cffort basis. A process will only receive the message if it is reccive-blocked waiting for
it. The send operation doces not block. 'Thus, one cannot reply to a rcal-time send. ‘This type
of communication is intended for situations, where, for example, a process continuously, in
regular intervals, scnds update information to a group. ‘This mode of communication is
specificd by setting the DATAGRAM_SEND_BIT of the requestcode of the message.

It is intended and assumed that most requcsts can be assigned a request code that is stored in the first 16 bits
of the request message, so that the bits are sct correctly for the request by the value of the request code.

The following bits have special meaning in reply codes:

ANONYMOUS_REPLY_BIT
Reply as the forwarder of the message. ‘This feature allows processes to join groups and
reply to messages anonymously.

REPLY_SEGMENT_BIT
Reply segment has been specified. If this bit is sct in a call to ReplyWithSeg(), the
kernel interprets the last 2 words of the mcssage as specifying a pointer to the start of the
reply scgment and the size in bytes of the segment, respectively.

IMMEDIATE_REPLY_BIT
Don't delay this reply, cven if it is to a group send. lf this bit is not sct, replies to group
sends arc delayced slightly within the replying kernel to avoid swamping the sending kernel
with back-to-back packets.

V-System 6.0 Reference Manual

— 28 —
Program Execution Functions

This chapter describes a number of routines related to program execution. Included arc routines for
program loading and, cxecution, selecting hosts for remotc cxccution of programs, exccution of Unix
commands remotely on a Unix V server (sce section 43), routines that provide compatibility with various
Unix program exccution routincs, and other routines.

28.1. Prog}am Execution

ProcessId LoadProgram(argv, hostSpec, rtMsg, path, concurrent, error)
char *argv(]; /* Program arguments (including name). */
SelectionRec *hostSpec;

/* Specifies the host to execute on.
(NULL => default, i.e. local host) ¢/
RootMessage *rtMsg;
/* Root message to use. NULL => default settings */
chqr”frath: /* Search path to use for finding the program
oo et file. NULL indicates that the default should
be used. */
int concurrent; /* Specifies whether the program should be
o owned by the system (concurrent = 1) or
by the user (concurrent = 0), */
SystemCode ®*error; /* Return code. */

LoadProgram() intcracts with the team scrver on the specified host, to create a new tcam and load a
program image into the new tcam space. The prograim is placed in a scparate tcam and is sct ready to run,

The array argv contains pointers to the character string arguments to be passed to the new tcam, By
convention, argv[0] should point to the name of the program. The last clement of the array must be a null
pointer. _

The hostSpec argument is used to sclect a host to execute the new program. 1fhostSpec is NULL, the
program is run locally. Alternatively, hostSpec can be a pointer to a selection record, as defined by the
SelectionRec structurc in Vteams . h. In this case, if the TEAMSERVERPID ficld of the sclection record is
non-zcro, then this value is assumed to be a pid of a tcam server on the desired host. If, however, the
teamServerPid ficld is zcro, then an ‘arbitrary’ remote host is sclected, according to the constraints
specificd in the other ficlds of the record. NOTE: This method of host selection is likcly to change in future
releases of the system,

The rtMsg argument holds the root message to be passed to the new tecam. This message specifics file
instances 0 be used for standard input. output, and crror, the team enviromment block, and some other
information. ‘The ficlds in the message arc described in detail in scction 18.4.1. 1f rtMsg is given as NULL,
then a *default’ root message is used (sce the description of the DefaultRootMessage() routine, below).

The concurrent argument specifics whether the tcam is to be “owned™ by the process cxccuting the
LoadPragram() call (if concurrent is zero) or by the tcam server itself (if it is nonzero). The tcam server
destroys any team whose owner cecascs to exist: thus, programs to be run “in the background™ should be
flagged as concurrent,)

12 March 1986

28-2 Program Execution Functions

.

path specifics the search path that is used to locate the code file for the program that is to be exccuted. A
scarch path is a character string consisting of a scquence of name prefixes scparated by spaces. If path is
NULL, then the value of the “PATH” environment variable is used instead, or, if the “*PATH" environment
variablc is not sct, the ‘default’ search path. This default search path is "./ [bin]", which indicates that
the program code file is scarched for first in the invoker's current context, and then in the [bin] context.
(Note that the scarch path mechanism also involves checking for machinc-specific program name suffixes, as
described in section 3.7.)

If the named program is not found, then the fexecute program is invoked instead, to attempt to execute
the program remotely on the server that is providing the invoker’s current context. See scction 3.4 for further -
details. ' '

"Note: If ar gv[0] is an absolute name (that is, beginning with *['), then a search path is not used, nor is
the fexecute program used in the case of a failed match.

LocadProgram() rcturns the pid of the new team’s root process, or 0 to indicate an crror. A standard
system code is return in the location pointed to by error. The new tcam can be started running by replying
to the pid returned, using the same root message as was passcd to LoadProg.

ProcessId ExecProgram(argv, hostSpec, rtMsg, path, status, error)
char *argv[]; /* Program arguments (including name). */
SelectionRec *hostSpec; ‘
/* Specifies the host to execute on.
(NULL => default, i.e. local host) ¢/
RootMessage *rtMsg: /* Root message to use. NULL => default settings */

char *path; /* Search path to use for finding the program
file. */ .
int *status; /* Return code from program executed or NULL

if the program is to be run concurrently. */
SystemCode ®*error; /* Return code. */

ExecProgram() is likc LoadProgram(), cxcept that it also starts the new team running (by replying to
it). ‘The arguments argv, hostSpec, rtMsg, path, and error arc the same as for LoadProgram().

Ifthe status parameter is NULL then the program is run concurrently, otherwise the function waits until
the program has terminated and returns its cxit status in status.

Wait(pid, status)
ProcessId pid;
int *status; :

Wait for the tcam whosc root pid is specificd by pid to expirc, and then return its cxit status codc in the
location pointed to by status.

DefaultRootMessage(rtMsg)
register RootMessage *rtMsg;

“This routinc scts up the structure pointed to by rtMsg to be the *default’ RootMessage for any program
that the invoker should load. In particular, the stdin, stdout and std1in scrvers and instance ids are sct to
be those of the invoker, :

12 March 1986 Y-System 6.0 Reference Manual

Program Exccution ‘ . 28-3
28.2. Host Selection

int QueryHosts(spec, descArray, numHosts, error)
SelectionRec *spec; /* Host selection spec. */
SelectionRec *descArray;
/* Array for returning descriptors of selected

hosts. */

int numHosts; /* Maximum number of selections to return.
Also the size of pidArray. */

SystemCode *error; /* Status code. */

Select a set of hosts for remote execution of programs. Nothing is actually executed -- this routine merely.
returns candidate hosts for remote execution. QueryHosts() returns descriptor records for hosts selected
in descArray which mect the selection criteria specified by spec. At most numHosts sclections are
returncd. The number of hosts actually sclccted is returned as the function value, error returns a system
status code for the operation.

If spec is NULL then the default specification is used (see the description of
DefaultSelectionRec(), below).

The format of a sclection record is specificd in Vteams .h. The pid ficld of a SeTectionRec specifies
the tcam server of a candidate host. It is this process-id that should be used with any subscquent calls to
ExecProgram() or LoadProgram().

QueryHosts() finds candidate hosts by sending a message to the process group containing all team
servers in the system (the VIEAM_SERVER_GROUP). Only those hosts which satisfy the rcquirements
specified in spec will reply to this message.

DefaultSelectionRec(hostSpec)
SelectionRec *hostSpec; /* assumed to be non-NULL. */

Sets up the SelectionRec structure pointed to by hostSpec, so that it can be used (as an argument to
QueryHosts(). ExecProgram() or LoadProgram()) to sclect an ‘arbitrary’ rcmote host. This
currently specifics the following minimum resource requircments:

o | frec tcam descriptor.

o 10 free process descriptors.

e 200 Kbytces of frec memory.

o 1.¢ss tham 50% processor utilization;
e No onc logged into the host.

28.3. Remote Execution of Unix Commands

SystemCode RemoteExecute(processFile, programname, argv, mode)
File *processFile[2]; char *programname;
char *argv[]; unsigned short mode;

Causc the specificd program to be exccuted on the server that provides the invoking process's current context,
by opening a file in FEXECUTE mode. Of course, this server must be a Unix V server (sce section 43). This
function is uscd by the fexacute program,

The argv parameter is an array of null-terminated strings which are to passed as arguments to the program.
T'he array itsclf is terminated by a null pointer. mode should be FREAD or FCREATE. A [ile structure
describing a stream from which the program’s standard output can be read is returned in processFile[0].

12 March 1986

28-4 ' Program Execution Functions

If the mode is FCREATE, a File structurc describing a writcable stream that is fed into the program’s
standard input is returned in processFile[1]. RemoteExecute() returns OK if successful, else a
standard system code describing the error condition.,

Closing the writeable file passes an end-of-file indication on to the remote program. Closing the readable
file terminates the program,

28.4. Other Program Execution Routines

ProcessId Execl(input, output, errput, status, error, arg0)
char *arg0;

File *input, ®*output, *errput;

SystemCode *error;

int *status:

Exec1() calls ExecProgram() (and thus waits for thc program created to finish executing, if status is
non-NULL). It returns the program exit status in status and a system status code error (which indicates
the nature of any crrors cncountered in Exec itsclf). 1nput, output, and errput arc used to specify the
standard 170 of the program to be loaded and run. The remaining ficids of the root message passed to
ExecProgram() are derived from the invoker's root message. arg0 actually represcnts the first of a
variable number of parameters that rcpresent the arguments to be passed to the new program. It is the first
element of the argv array passed to ExecProgram().

int system(cmd)
char *cmd;

Invokes an
exec -¢

on the cmd string. The program’s cxit status is returned.

12 March 1986 V-System 6.0 Reference Manual

291

— 29 —
User Interface Functions

This chapter outlines the facilitics available to programs for interacting with the user — via the workstation
agents. The manner in which this interaction is manifested to the user was discussed in Chapter 2.
Implcmentation details of the various workstation agents may be found in Chapters 44, 46, and 45.

The discussion here is broken down into two basic components: terminal cmulation and graphics. The
tcrminal emulation facilities support ANSI virtual terminals and are common to all configurations of the
V-System — that is, to both the STS and the VGTS. Indeed, virtually all applications use these facilitics, in
licu of or in addition to any graphics facilities thcy employ. That is, each exccutive is associated with a
scparate AVT and any application created by that cxecutive inherits access to the same AVT.

The graphics facilities are provided only by the VGTS. Attempts to use them in conjunction with the STS
will fail.

Warning: Take special note of the “warning” in the Preface!

29.1. Virtual Terminal and View Management

Several routines for applications’ manipulation of virtual terminals and views follow. All of these routines
may be used with respect to any type of virtual terminal, aithough some are more uscful for onc type of
virtual terminal than for other types. The virtual terminal identificr, vt, used in all routincs is cqual to the
value rcturnced by CreateVGT() or to the f1le1d ficld of the file descriptor returned by OpenPad() or
OpenAndPositionPad(). 'These type-dcpendent routines, and others, are prescnted in subsequent
sections.

int’ DeleteVGT(vt)
short vt;

Decstroy the virtual terminal identificd by vt. All the views associated with the virtual terminal will also be
destroyed.) .

Note: Badly named, since it may be used with AVT’s as well as SGVT's (a.k.a. VGT's).

int DefaultView(vt, width, height, wXmin, wYmin,
.zoom, showGrid, pWidth, pHeight)
short vt, width, height, wXmin, wYmin, zoom, showGrid;
short *pWidth, *pHeight; ‘

Create a view of the virtual terminal identified by vt, with the user determining the position on the screen
with the graphical input device (mouse). The width and height paramcters give the initial size of the
viewport if they arc positive: non-positive valucs indicate that the user should determing the size with the
mouse at run-time.” Notc that these are physical device coordinates, not normalized device coordinatcs.
wXmin and w¥Ymin arc the world coordinates to map to the lelt and bottom cdges of the viewport. [f the
pwidth and pHeight pointers are non-NULL, then the shorts that they point to reccive the sclected width
and height. Returns negative on error. Sce Chapter 2 for more information about how this call is manifested
to the user. '

V Programming 1 May 1986

29-2 ‘ . User Interface Functions

zoom and showGr1id are rclevant only to SGVT's. zoom is the power of two to multiply world
coordinatces to get screen coordinates; it may.be negative, to denote that a view is zoomed out. If showGrid
is non-zero a grid of points every 16 pixels is displayed in the window.

Note: In gencral, this routine is not particularly well-suited to creating views of AVTs, as explained in the following section.

int CreateView(vt, sxmin, symin, sxmax, symax,
xmin, wymin, zoom, showGrid)
short vt;
short sxmin, symin, sxmax, symax, wxmin, wymin, zoom;
BOOLEAN showGrid; ‘

Create a view of the virtual terminal identified by vt — without interacting with the user. The initial position
and size are determined by the sxmin, symin, sxmax and symax paramcters. wxmin and wymin are the
world coordinates to map to the left and bottom edges of the viewport. Returns negative on error.

The zoom factor is the power of two to multiply world coordinates to get screen coordinates. The zoom
factor may be negative, to denote that a view is zoomed out. If showGr 1d is non-zero a grid of points every
16 pixels is displayed in thc window. Again, thesc paramcters are relcvant only for SGVT's,

Note: In gencral, this routine is not particularly well-suited to creating views of AVT’s, as explained in the following section.

We now proceed with the description of the terminal emulation and graphics facilities. In the process the
differences between the two underlying typcs of virtual terminals should become clear.

29.2. ANSI Terminal Emulation

ANSI terminal emulation is provided by what we call ANST virtual terminals (AVT). An AVT emulates a
(almost complete) subsct of ANSI standard X.64 — often equated with the DEC VT-100; the precisc subset is
given in Chapter 46. An application may use the ANSI terminal protocol to communicate with the
workstation agent, including cscape sequences for cursor control. Additional V-specific support is provided
for graphics input and linc-cditing, but applications may ignore these features as they wish,

The “storc” of an AVT is rcferred to as a pad. Conceptually, a pad may be of infinite size, allowing an
application to store arbitrary amounts of data and allowing a uscr to scroll back and forth through this data.
In current practice, a pad provides only cnough storage for one "page” of data — onc virtual screen- or
vicwport-full. Conscquently, it is not particularly uscful to create multiple views of a pad.

Note: Unfortunately, the term "pad” has becn adopted to mean both pad and AVT, [lence, most routines specific to AVT
cmploy Pad in their names rather than AVT. Conscqucently, in the lollowing discussion the terms are uscd interchangeably.

29.2.1. Cooking Your AVT's

The following mode bits arc maintained for cach AVT to indicatc the degree of “cooking” to be applied to
17Q:

CR_Input Change the CR (return) character to 11° (UNIX newline) on input. This is for the bencfit of
UNIX programs which expect *\n’ as a linc tcrminator.

DiscardQutput When sct, this bit causes all output to an AVT to be ignored. It is automatically set when
the user types ‘g’ to an AV'T that is blocked at the end of a page in PageOutput mode. It
is automatically clcarcd whenever the workstation agent sends input to a program that is
reading from the AVT. The bit may also be clearcd “manually™ via ModifyPad(). In
particular, application programs should call ModifyPad() to clcar this bit before sending
a prompt to an AV, to insurc that the prompt is not discarded along with any previous
output that was discarded at the user’s rcquest.

V-Systens 6.0 Reference Manual

ANSI Terminal Emulation ' , 29-3

Echo Echo input characters.
LF_Output Change LF to CR-LF on output. That is, every line-feed operation is preceded by a return.

LineBuffer Wait for a line of input before returning. In addition, the line will be line-edited as
described in section 2.5.

NoCursor Do not display a cursor in the indicated AVT,

PageQutput Block the writer each time the AVT fills up with output, and wait for the user to issue a
command which unblocks the AVT. The user interface to the this feature is described in
section 2.6. This bit is ‘on’ by defauit.

PageOutputEnable
Associated with each AVT is an internal flag, which, when ‘off, disables turning on the
PageQutput bit as described above. This internal flag is normally sticky, but can be
changed by setting the PageOutputEnable bit in a ModifyPad() rcquest. In this
case, the PageOutput bit is also used to set the new value of the internal flag. The
PageOutputEnable bit should only be used by certain “privileged™ programs, as a
means of allowing the uscr to “permanently” disable paged output mode.

ReportClick Report “clicks” of the graphical input device — a press of at least one button, followed the
relcase of all buttons — in response to requests for graphical events.

ReportEscSeq Enable thc “Emacs hack™ described in Scction 2.7. The encodings of the associated escape
sequences are presented in the next subsection. :

ReportTransition _
Report “transitions’ of the graphical input device — pressing or rclcasing any combination
of buttons — in response to requests, for graphical ¢vents.

By default, keyboard input is line-buffered and echoed by the workstation agent, with linc-editing. More
specifically, the following mode bits are set:
CR_Input
Echo
LF_Output
LineBuffer

29.2,2. Encoding Graphical Input Events

As noted, ReportEscSeq indicatcs that the application is capable of interpreting the associated cscape
sequences. This allows many uscful programs that deal with conventional terminals to be extended to take
advantage of the graphical input capability — without major redesign. For example, an EMACS library can
be loaded to bind these character strings to commands that position the cursor, sct the EMACS mark, delete
and insert text. In fact, these scquences were added precisely to support EMACS — which, unfortunately,
affected their design somewhat.

The exact encoding of the cscape sequences is given in Table 26-1, where <Tine> and <column) arc the
position within the AV'T where the mouse button(s) were pressed — encoded as bytes.

Note: 'These are cscape scquenécs that the workstation agent gencrates and the application must interpret. The standard
ANSI protocol contains escape sequences that the application gencrates and the workstation agent must interpret.

29.2.3. Functions

Terminal emulation is implemented in terms of the standard V-System 170 protocol as defined in Chapters
22 and 33. For example, applications may rcad from and writc to AVTSs using the standard Read() and
Write() primitives. Conscquently, the application interface to an AV'T is through a V-System file access
descriptor (of type F11e). 'The following "AV'I-specific” routines arc also provided:

V Programming ’ 1 May 1986

29-4 ' User Interface Functions

Buttons Escape Scquence

x . .\ ESCM dlineXcolumn>

x x . ESCM <ineXcolumns null

x . x ESCM <lineXcolumn> CTRL-w
x x ESCM <lineXcolumn) CTRL-y

Table 29-1: Encodings for graphical escape sequences.

File *OpenPad(name, l1ines, columns, error).

char ®name;

short 1ines, columns;

SystemCode *error;
Create a new AVT and interact with the user to create a view of the AVT. name is a text name for the AVT.
14ines and columns specify the size of the pad. Returns a pointer to a file access descriptor for the pad;
NULL on an ¢rror. @rroe is a pointer to the reply code.

Note: The file descriptor returned is open for writing. If you want to read from it, you must usc OpenF1le() to create
another file descriptor with the same f41eserveri(= workstation agent) and f11e1d (= virtual tcrminal / AVT id).

File *OpenAndPositionPad(name, x. y, Tines, columns, error)
char *name;
short X, ¥y, 1ines, columns:
SystemCode ‘error;

Create a new AVT of size 11nes and columns, and place the view of this AVT at x, y. name is a text name
for thc AVT. Recturns a pointer to a filc access descriptor for the AVT; NULL on an crror. error is a pointer
to the reply code.

Note: The notc for OpenPad() also applics to OpenAndPositionPad().

ModifyPad(avt, mode)
File *avt;
int mode;

Sct the cooking mode of avt. mode is some combination of the bits described in the previous subscction.

int QueryPad(avt)
File *avt;

Return the cooking mode of avt, some combination of the bits described in the previous subscction,
Note: Rarcly used, since its function is subsumed by QueryPadS1ize().

int QueryPadSize(ivt. plines, pcols)
File *avt;
short *plines, *pcols;

Get the sizec and mode of avt. The number of lincs and columns are store in the shorts pointed to by
plines and pcols, respectively. The cooking mode is returncd as the value of the function.

V-System 6.0 Reference Manual

ANSI Terminal Emulation A . 29-5

PadFindPoint(avt, nlines, x, y, pline, pcol)
short avt, nlines, x, y;
short *pline, *pcol;

Convert the world coordinates (x,y) into a a line and column position within avt, stored in the shorts pointed
to by p1ine and pcol, respectively.

Note: The avt parameter is currently unused, and the number of lines in the AVT must be specified in n11nes.

RedrawPad(avt)
File *avt;

Redraw the indicated avt.
Note: The same functionality should be available for SGVT’s, but isn’t.

SystemCode EditLine(avt, string, count)
- File *avt;
char *string;
int count;

Enter line-editing mode in avt, as defined in Scction 2.5. The linc-edit buffer is pre-loaded with the first
count characters of string. On return, string will contain the linc-edited input. Function returns one
of the standard systcm reply codes.

29.3. Graphical Output

The central graphical concept of the VGTS is that application programs should only have to deal with
creating and maintaining abstract graphical objects. The details of viewing these objects are taken care of by
the VGTS. This is in contrast to traditional graphics systems in which users perform the operations directly
on the screen, or on an arca of the screen referred to as a viewport or window. Thus the VGTS dcals with
declarative information rather than procedural; you describe what the objects arc rather than how to draw
them.

The abstract graphical objects created and manipulated by a program are stored in a structured display file
(SDF). An SDI- is a name space in which graphical itemns and symbols arc defined: it may be thought of as the
"storc” of a virtual terminal. ‘I'he SDF is structured as a hicrarchy, a dircected acyclic graph of symbols calling
other symbols. A symbol is an interior node of the graph, a logical grouping of graphical information. The
leaves of the graph consist of graphical primitives such as rectangles, lincs, or picces of text. An item may be
cither one of these primitives or a call to another symbol — the "call statement” itsclf, not the symbol
- definition. Rcgardicss, every item is contained in some symbol.)

Note that a symbol call is like a procedure call, not like a macro. Changing the symbol definition changcs
all instances. "

Lach symbol is defined within its own 2-dimensional integer world coordinate space — although the
dimensions of that coordinate space ire the same across all symbols, namely, -32768 to 32767. ‘Translation is
the only modeling transformation permitted on “called™ symbols. All other transformations, such as rotation
or projection from higher dimensions, must be handled by the application.

As discussed in the previous scction, defining symbols and filling them with items docs not make anything
appear on the screen. In order for a symbol to appear, it must be displayed on a structured graphics virtual
terminal (SGVT). An SGV'T may be thought of as a large, two-dimensional, imaginary display surface upon
which graphical objects may be.displayed. As for symbols, its coordinate space is from -32768 to 32767 in x
and y, vastly larger than the actual screen. On this display space. onc symbol in the SDF is displayed as the
top-level symbol. Evcry item that is in that symbol, or in any symbol called by that symbol, ctc., will be

V Programming] 1 May 1986

29-6 ' User Interface Functions

displayed on the SGVT. An item in a symbol that is called several times, will be displayed scveral times.
Thus for example, in our SGVT we might display a bicycle as the top-level symbol. The bicycle symbol
contains a call to the frame symbol, and two calls, with different coordinates, to the wheel symbol. The wheel
symbol contains scveral items: a circle for the rim and lines for the spokes. Each of these items will be
displayed twice, once for cach whecl, though they were defined only once.

29.3.1. SDF Manipulation

29.3.1.1. Item Attributes
Each item has the following attributes, as used in many of the procedures discussed below:

item A 16 bit unique (within the SDF) identifier for this object, or zero. This identifier is
assigned by the program, guidelines for which are given in Section 29.3.1.4.

type One of the predefined primitive types described below. Currently cight bits are allocated
for this.

typeData Eight bits of typc-dependent information, as described in the next section.,

xmin, xmax, ymin, ymax
Typically used to define the bounding box (or exteni) of the item, in world coordinates.
Also may be used for additional purposes, as discussed in the next section. Stored as 16-bit
signed integers.

Note: These names are misicading, since the VGTS actually sorts the endpoints and calculates the
bounding box correctly.

string A "string’s” worth of type-dependent information, as described in the next section.

29.3.1.2. Primitive Item Types

Some of the meanings of the ficlds above depend on the type of the item. The following are the types of
primitive itcms that occur in a structured display file, with their type-dependent uscs of the various attributes:

. SDF_CIRCLE Acircle, centered at (xmin.ymin) with a radius given by the typeData ficld.
Note: This item type is currently supported only for the Sun model 100 framebufTer.

SDF_FILLED_RECTANGLE

A filled rectangle. typeData determines the pattern. There are two possible scts of
patterns, cach influcnced by the application for which they were developed. The first sct .
was defined for a VLSI layout cditor and is not likcly to be of gencral usc; they are defined
in <Vgts.h>. The sccond set was defined for a document illustrator and arc likely to be
of greater interest; they arc defined in <sp1ines.h>. To usc one of them for a filled
rectangle, add its index (as defined in <sp11ines.h>) to thc constant STIPPLEQFFSET
(defined in <Vgts . h>, and usc the resulting valuc as typeData.

SDF_GENERAL_LINE
A generalized line, from (xmdn,ym1n) to (xmax.ymax).

SDF_HORIZONTAL_LINE
Horizontal line from (xm1n,ym1in) to (xmax.ym1in). ymax is ignored.

SDF_HORIZONTAL_REF
A horizontal reference linc at (ymin + ymax / 2). Reference lines consist of a thick line
with two tick marks at the ends, and some associated text. ‘They are intended for use in
computer aided design applications like the dale layout cditor.

SDF_OUTLINE Outlinc for a sclected symbol. xmin, xmax, ymin and ymax give the box for the outline.
typeData spccifics flag bits to sclect cach of the cdges: LeftEdge, RightEdge,

V-System 6.0 Reference Manual

Graphical Output 297

TopEdge or BottomEdge.
SDF_POINT A point, which usually appears as a 2-by-2 pixel square at (xm1n,ym1n).

SDF_POLYLINE A poly-line, cénsisting of a connected set of line segments.. s{ring points to an array of
points, as in:

typedef struct
{
short x:
shor y;
} SdfPoint;

Note: This item type is ourrently supported only for the Sun model 100 framebufTfer.

SDF_RASTER A general raster bitmap with a lower left corner at (xm1 n,ym1n) and upper right corner at
(xmax.ymax). typeData dctermines if the raster is written with ones as black or white.
string points to the actual bitmap, in 16 bit-wide swaths.

Note: On the Sun model 100 framebuffer, a raster can be displayed at zoom factors 0. 1, 2, 3, and 4
(only): on the model 120 framcbufTer, only zoom factor 0 (no magnification) is currently supported.
In all cascs, the YGTS only supports the “display” of bitmaps, not any opcrations on them. An
application-lcvel libary containing “RasterOp" routincs is, however, availablc (see Scction 29.8).

SDF_SEL_HORIZ_REF
A thick (sclected) horizontal refercnce line at (ymin + ymax / 2).

SDF_SEL_VERT_REF
A thick (selected) vertical refercnce line at (xmin + xmax / 2).

SDF_SIMPLE_TEXT
. A simple text string employmg a fixed-width font (typically 8 pixels wide by 16 pixels
high). The lower left corner of the string will be placed at (xmin.ymin). The values of
xmax and ymax neced not surround the text, but they arc uscd as aids for redrawing, so
should correspond roughly to the real bounding box.

SDF_SPLINE A spline object, of which a special casc is a polygon. Splincs may be filled with any of a
number of different patterns or drawn with any of a number of different “nibs™, as defined
in <splines.h>. string points to a SPLINE structurc as dcfincd in the

<{splines.hd:
typedef struct
{
short x, y;
} POINT;
typedef struct .
{ .
unsigned short order; /* Order of the spline ./
unsigned short numvert;/* Number of vertices present. */
enum Nib nib; /* Nib to be used for drawing. */
unsigned short border; /* Is the border visible? */
unsigned short closed; /* Is this object closed or open?*/
unsigned short filled; /* Is this object filled? ./
unsigned short opaque; /* Is the filling opaque (solid)?*/
enum Pattern pat; /* Fi11 (stipplie) pattern. ./
POINT . head: /* Head of the 1ist of vertices */
} SPLINE;

Note: The patterns used for splines are a subsct of those used for filled rectangles. (Sec the
discussion of SOF_FILLED_RECTANGLE above.)

SDF_TEXT A string of general text, with the Ieft end at xmin and the bascline at ymin. typeData
determines the font number. (To get the actual bounding box (calculated from
information in the font file), usc InquireItem() aftcr the AddItem(), as defined in

V Programming 1 May 1986

29-8 ! User Interface Functions

the following section.) See scction 29.3.3 for an cxample.

SDF_VERTICAL_LINE
Vertical line from (xm1in,ym1n) to (xm1in,ymax). xmax is ignored.

SDF_VERTICAL_REF
A vertical rcference line at (xmin + xmax / 2).

29.3.1.3. Functions

The following are the currently defined functions used to manipulate an SDF and, hence, generate -
graphical output. All return valucs except the actual function value arc passed via pointer paramcters. If any
pointer is NULL, no value is returncd for that paramcter. For performance reasons, many of these calls are
batched (several calls in one request) and/or pipclined (no rcturn values). In cither case there are no
meaningful rcturn values and any crror conditions simply cause the VGTS to drop the call on the floor. The
description for cach routine indicatcs whether this is the case,

short CreateSDF()

Create a structurcd display file, returning its id. Returns -1 if the VGTS runs out of resources. Must be called
before any symbols are defined. Forces all pending calls to be exccuted.

int DeleteSDF(sdf)
short sdf;

Return all the items defined in the given sdf to free storage. This includes all data structures associated with
items in the SDF. Returns sdf or -1 on error. Forces all pending calls to be exccuted.

DefineSymbol(sdf, symbol, textName)
short sdf, symbol;
char *textName;

Enter symbo1 into the sdf and open it for cditing. Only onc symbol may be open in any given SDF at a

time. textName is an optional descriptive name for the symbol, used in the hit sclection routines for
disambiguating sclections. Buffered call, but always rcturns symbo1 for backward compatibility.

short EndSymbol1(sdf, symbol, sgvt)

short sdf, item; -

short sgvt;
Closc symbo1 in sdf so no more inscrtions can be donc and cause all views of sgvt displaying the symbol
to be redrawn. The VGTS cnsurcs that, if only additions have been made since the last EndSymbo1, only
those additions are drawn. Called at the end of a list of AddItem() and AddCal11() calls dcfining a
symbol, started with DefineSymbo1() or Ed1tSymbo1(). Iorces all pending calls to be exccuted.
Always rcturns symbo1 for backward compatibility. ,

Note: symbo1 is actually redundant, since only one symbol can be "open” in any SDF at a time, but it must be provided.

EditSymbo1(sdf, symbol)
short sdf, symbol;

Open (alrcady cxisting) symbo1 in sdf for modification. This has the cffect of calling Def 1neSymbo1()
and inserting all the already existing cntrics. ‘T'he cditing process is ended in the same way as the initial

V-System 6.0 Reference Manual

Graphical Output » . 299

definition process — a call to EndSymbo1(). Buffered call, but always rcturns symbo1 for backward
compatibility.

short DeleteSymbo1(sdf, symbol)
short sdf,.symbol;

Dclete symbo1 from sdf. More correctly, render the symbol definition "empty” to prevent problems with
dangling references (calls) to the definition. The dangling references will be interpreted but will have no
cffect, since the symbol will no longer contain any items. Returns symbo1 if successful, else 0. Forces all
pending calls to be executed.

AddItem(sdf, item, xmin, xmax, ymin, ymax,
typeData, type, string) -
short sdf, item, xmin, xmax, ymin, ymax;
unsigned char type, typeData; char *string;

Add 1tem to the currently open symbol in $df. Rcemaining parameters as defined above (Sections 29.3.1.1
and 29.3.1.2). Buffered call, but always returns 1tem for backward compatibility.

AddCall(sdf, item, xoffset, yoffset, calledSymbol)
short sdf, item, xoffset, yoffset, calledSymbol;

Add an instance of the calledSymbo1 to the currently open symbol in sdf. The "call statement” itself is
given the name 1tem. The origin of the calicd symbol instance is placed at (xoffset.yoffset) in the
coordinate space of the calling symbol. May be called before the called symbol is defined, in which casc a
dummy cntry for the symbol is inserted in the SDF; any future attempts to define the symbol will use the
dummy entry. Buffered call, but always returns 1tem for backward compatibility.

Deleteltem(sdf, 1tem)
short sdf, item;

Delete 1tem from the currently open symbol in sdf. Symbol calls can be delcted just like any other item,
but symbol definitions are deleted by the DeleteSymbo1 () function. Buffered call, but always rcturns
1tem for backward compatibility.

int InquireItem(sdf, item, xmin, xmax,
ymin, ymax, typeData, type, string)
short sdf, item; short *xmin, *xmax, *ymin, *ymax:
unsigned char *type, *typeData; char *string;

Read the attributes of 1tem in sdf. Paramcter secmantics are defined above (Scctions 29.3.1.1 and 29.3.1.2).
ANl parameters exeept sdf and 1tem are pointers. For cach non-null pointer, the vatue of the ficld for that
item is returned. Zcro is returned if the item could not be found; otherwise, non-zcro. Forces all pending
calls to be exccuted.

short InquireCall(sdf, item)
short sdf, item;

Return the name of the symbol called by 1tem in sdf. Returns zcro if the item is not a call, or could not be
found. Forces all pending calls to be exccuted.

V Prograniming 1 May 1986

29-10 User Interface Functions

ChangeItem(sdf, item, xmin, xmax,
ymin, ymax, typeData, type, string)
short sdf, item, xmin, xmax, ymin, ymax;
unsigned char type, typeData; char *string:;

Change the parameters of (alrcady cxisting) 1tem in sdf. Remaining parameters as defined above (Sections
29.3.1.1 and 29.3.1.2). This is cquivalent to dcleting an item and then reinscrting it, so the item must be part
of the open symbol. Buffercd call, but always rcturns 4tem for backward compatibility.

29.3.1.4. Naming Items and Symbols

Items and symbols are both identified by 16-bit identifiers, most commonly thought of as unsigned integers.
The identifiers are specified by the application. It is assumed that the application will maintain some
higher-level data structures, along with the appropriate mapping to these internal item names. [tems that will
never be referenced can be given item number zero. The item names are global to each SDF, so the
programmer should be careful not to assign the same item number within the same SDF twice. However,
applications may use muitiplc SDFs for multiple name spac:es.12

For example, a picture of a bicycle might dcfine a symbol for a wheel, This definition of the wheel symbol
is given itcm number 4. There may then be two instances of item number 4, that are given item numbers §
and 6. The individual spokes of the wheel are components of symbol number 4, but arc all given item
number 0, since we will never want to refer to any of them. If it is desired to delete or move any individual
spoke, then the items may be given numbers.

29.3.1.5. Output Modes

By appropriatc use of the various functions, programs may achieve the cffect of dcferral modes for
graphical output. First, thcy may construct graphical objects in their cntirety and then display them, by
exccuting a Def ineSymbo1() or Ed1tSymbo1(), followed by many AddItem() or AddCa11() calls,
followed by an EndSymbo1 (). This corresponds to creating an “invisible scgment” and then displaying it in
traditional graphics systems.

Alternatively, an application many construct and display an object “on the fly™, that is, display cach item as
it is added to thc object. This is donc, for cxample, by rcpeatedly cxccuting an Edi1tSymbol() -
AddItem() - EndSymbo1() scquence, such that cach EndSymbo1() causcs the symbol to be redrawn.
‘This corresponds to crcating a “visiblc scgment™ in traditional graphics systems. (Note the optimization
discussed in the description for EndSymbo1 (), which reduccs redraw time.)

The first style of output yiclds higher throughput, whereas the second yiclds faster response.

29.3.1.6. An Example
To create the bicycle figure of the previous section, we would use code like the following:

e intended use of multiple SDI's is that an application would have both "private” and "shared” graphical data, such that the
shared data was stored in an SDIF used by multiple (cooperating) applications.

V-System 6.0 Reference Manual

Graphical Output 29-11

short sdf;

sdf = CreateSOF();
DefineSymbol(sdf, 4, "Wheel");

AddItem(sdf, 0, xmin, xmax, ymin, ymax, 0, SOF_GENERAL_LINE, NULL);
(add the components of the wheel symbol)
EndSymbol(sdf, 4, 0);

DefineSymbo1(sdf, 3, "Bicycle");
AddCalli(sdf, 5, x1, ymin, 4);
AddCall(sdf, 6, x2, ymin, 4);
EndSymbo1(sdf, 3, 0);

(whoops ... forgot the frame)
EditSymbol(sdf, 4)
(add frame)

EndSymbol(sdf, 4, 0)

29.3.2. SGVT Management

int CreateVGT(sdf, type, topSymbol, string)
short sdf; 1nt type; short topSymbol; char *string;

Create an SGVT of the indicated type. Put the indicated symbol — topSymbo1 in sdf — as the top-level
symbol in the SGVT, topSymbo1 can be zcro to indicate a blank SGVT. type can be some combination of
TTY,. GRAPHICS. and ZOOMABLE, but programmers arc advised to use the terminal emulation functions
described above for TTY’s. 1f the ZOOMABLE bit is sct, the view zooming factor can be changed by the user.
Returns the virtual terminal id or negative on errors.

DisplayItem(sdf, topSymbol, sgvt)
short sdf, topSymbol; int sgvt;

Change the top-level symbol for sgvt to topSymbo1 in sdf. The new symbol is displayed in cvery view of
the SGVT. :

29.3.3. Defining and Using Fonts

short DefineFont(name'. fileName)
char *name, *f1ileName;

Defines a font to be used in subscquent SDF TEXT items. The name is a pointer to a string giving the name
of the font, for example, “HelveticalOB”. The font is rcad by the VGI'S from the file with the pathname
given as the second argument. ‘The £11eName argument can be null to indicatc a rcad from the standard
place. The font-id returned by this call is used as the typeData ficld for SDFTEXT items. A ncgative
return value indicates an error. For cxample,

short roman = Definefont("TimesRoman12", NULL):
Addltem(sdf, 0, x, x, y, y, roman, SDF_TEXT, "Hello")

will display the string “Hello” in the ‘Times Roman font at 12 point sizc, at the position (x,y) on the screen.

V P’rogramming 1 May 1986

29-12 _ . User Intecface Functions

29.4. Graphical Input

The VGTS maintains an cvent queue for each virtual terminal — whcthcr AVT or SGVT — on which both
graphical (mousc) and keyboard events-are queued.

29.4.1. Common Functions

The following functions are (more or less) independent of the type of virtual terminal. To maintain
compatibility with the AVT-spcecific routines and the V 1/0 protocol, the desired virtual terminal must be
bound to a V file access descriptor before calling these functions. Specifically, in the descriptions below,
vt->f{leserver mustcontain the process id of the workstation agent and vt->f11e1d must contain the
id of the virtual terminal. The file descriptor returnced from OpenPad() is sct up preciscly in this fashion,
but if CreateVGT() is uscd, the application must explicitly construct an appropriate file descriptor, storing
the result of CreateVGT () in vt->fileid. The file pointer stdin may be used to receive input from the
virtual terminal (usually an AVT) associated with the application’s “standard input”.

GetEvent(vt, px, py, pbuttons, cbuf)
File *vt;
short *px, *py, ®pbuttons;
char *cbuf;

Wait for any input event in the indicated virtual terminal. This currently means mouse clicks, mouse
transitions, or keyboard input — nof mouse movements, [f the virtual terminal is an AVT, then the type of
graphical cvent reported depends on the cooking mode of the AVT. Returns the world X and Y coordinates
of the mousc in the shorts pointed to by px and Py. and the buttons in the short pointed to by pbuttons if
the cvent is graphical or clse returns the characters in the buffer pointed to by cbuf. The function value is
negative on crror (in which casc, vt->1astexception contains the error code), 0 on mouse event, or the
number of characters returned on a keyboard event.

Note: At must IO MSG_BUFFTR (dcfined in <Vioprotocol.h> - currently 20) characters will be returned in cbuf.
The corresponding actual parameter should be (at least) this size,

int GetGraphicsEvent(vt, px, py, pbuttons)
File *vt;
short *px, *py., *pbuttons;

Wait for a graphical cvent in the virtual terminal associated with the file descriptor vt. Currently, gnphxcal
events consist of transitions and clicks of the mousc buttons — not movements. If the virtual terminal is an
AV, then the type of graphical cvent reported depends on the cooking mode of the AVT — which must be
sct appropriatcly via ModifyPad(). Rcturns the world X and Y coordinates in the shorts pointed to- by px
and py: the statc of the buttons is returned both in the short pointed to by pbuttons and as the valuc of the
function. The function valuc is negative on crror, in which cast vt->1astexception contains the crror
code.

int GetGraphicsStatus(vt, px, py, pbuttons)
File *vt;
short *px, *py, *pbuttons;

Sample the graphical input device relative to the virtual terminal associated with the file descriptor vt.
Currently, this means returning the current location and button status of the mouse, whether or not the mouse
currently resides in a view of the virtual terminal and without waiting for the mousc to move. All events
qucucd for the virtual terminal arc flushed prior to sampling. Returns the world X and Y coordinates in the
shorts pointed to by px and py; the statc of the buttons is rcturncd both in the short pointed to by

V-System 6.0 Reference Manual

Graphical Input ' 29-13

pbuttons and as the value of the function. The function returns negative on crror, in which case
vt->lastexception contains the error code — typically EOF to indicate that thc mouse cursor was not in
a view of the virtual terminal. '

29.4.1.1. Antiquated Routines

The following routines pre-date those listed above. The only rcason for their continued existence is that
they currently are the only graphical input routines that may be employed by applications running on non-V
hosts (see Section 29.7.2). However, their days arc numbered.

short GetMouseClick(x, y, buttons)
short *x, *y, *buttons;

Wait for a mouse click in the virtual terminal corresponding to stdin. The world X and Y coordinates are
returned in the shorts pointed to by x and y, and the statc of the buttons is rcturnced in the short pointed to by
buttons. If a key is pressed, a message is printed stating that a mouse click is expected, and the key is
ignored. Forces all pending calls to be executed and blocks until a mouse click does come in.

Note: This function is semantically equivalent to both GetGraphicsEvent() and GetMouseOrKeyboard() (where
any character returned is dropped on the floor).)

short GetMouseOrKeyboard(c, x, y, buttons)

short *x, *y, *buttons;

char *¢;
Wait for a mouse click or keyboard press in the virtual terminal corresponding to stdin. If the mouse is
clicked, the world X and Y coordinates are returncd in the shorts pointed to by x and y, the state of the
buttons is returncd in the short pointed to by buttons, and the function returns the identificr of the virtual
terminal in which the click occurred. If a key was pressed, the character is returned in the location pointed to
by c, and the function returns 0.

Note: This function is scmantically equivalent to GetEvent().

29.4.2. SGVT-only Functions

Mouse cvents often signify an attempt on the part of the user to “sclect” some graphical object. When such
an cvent is reported to the application, it should respond by calling the following function to determine
which, if any, graphical object was so sclected.

LISTTYPE FindSelectedObject(sdf, x, y, sgvt, searchType)
short sdf, x, y, sgvt;
char searchType;

Return a list of items that arc at or near (x.y) in sgvt. Along with cach item is a sct of edges, to indicate that
the hit was ncar onc or more cdges of the object. ‘The searchType sclects onc of scveral modes of hit
dctection:

Al Anything will do.
Al11Lines Any lincs,
JustHor1z Just horizontal lines.
JustRasters

Just rasters,
JustRects Just rectangles.
JustSplines

V Programniing t May 1986

29-14 User Interface Functions

Just splines.
JustText Just text strings.
JustVerts Just vertical lings.

Usually the constant value A11 will be used. The return value is defined as follows:
typedeaf struct MinElement

{
short item;
short edgeset;
struct MinElement *next;

} MINREC, *MINPTR;
typedef struct ListInfo

MINPTR Header:
short NumOfElements;
} LISTTYPE;

29.5. Miscellaneous Functions

The following functions arc (more or less) independent of the type of virtual terminal — despite the
occurrence of Pad, or Vgt in their names. As in Section 29.4.1, to maintain compatibility with the AVT-
specific routines and the V 170 protocol, the desired virtual terminal must be bound to a V file access
descriptor before calling these functions. Specifically, in the descriptions below, vt->fileserver must
contain the process id of the workstation agent and vt=>111e1d must contain the id of the virtual terminal.
The file descriptor returncd from OpenPad() is sct up precisely in this fashion, but if CreateVGT() is
uscd. the application must cxplicitly construct an appropriate file descriptor, storing the result of
CreateVGT() in vt->fileid. The file pointcr stdin may be used to receive input from the virtual
terminal (usually an AVT) associated with the application’s “standard input”.

GetTTY()

Put the terminal in raw mode. The (remote) UNIX version of this routine does the appropriate UNIX operation
if standard input is a tty device, otherwise it sends the proper codc for the remote exccution facility.

short popup(menu)
PopUpEntry menu[];

Display a “pop-up™ menu and wait for the uscr to sclect an option. The menu argument points to an array of
PopUpEntry structurcs: -

typedef struct

{
char *string; /* String to display. */
unsigned char menuNumber; /* Number returned if entry selected. */
} PopUpEntry;

The array is terminated by a NULL string. The code of the menu item sclected by the user is returned. If the
uscr clicks outside the menu, a negative valuc is returned.,

ResetTTY()
Restore the mode before the last Get TTY (). Runs under UNIX as well, checking standard input properly.

V-System 6.0 Reference Manual

Miscellaneous Functions . . 29-15

SelectPad(vt)
File *vt;

Cause the virtual terminal associated with vt to be selected for input. The (principal) view of the virtual
terminal is brought to the top of the stack of views. Only works if the calling program also “owns” the virtual
terminal currently selected for input.

SystemCode SetVgtBanner(vt, name)
File *vt;
char *name;

Sct name to be the banner at the top of cach view of the virtual terminal corresponding to vt.

29.6. Example Program

The following program can be compiled to run cither remotely under Unix or under the V system. The
#ifdef VAX dircctives allow the programmer to conditionally compile code for one environment or the
other. It first creates an SDF and SGVT, then displays 100 random objects of various kinds.

Ad .

* test.c -~ a test of the remote VGTS implementation
* Bill Nowicki September 1982

./

#include <Vgts.h>
#include <Vio.h>

#define Objects 100 /* number of objects %/
short sdf, sgvt;
Quit()

{

DelateVGT(sgvt,1):
DeleteSOF(sdf);
ResetTTY();
exit():

}

main()

1ni i;
short item;
long start, end:

#ifdef VAX
printf("Remote VGTS test program\n");
#else VAX
printf("VGTS test program\n");
#endif VAX
fflush(stdout);
GetTTY():
sdf = CreateSDF();
DefineSymbol(sdf, 1, "test");
AddItem(sdf, 2, 4, 40, 4, 60, NM, SOF_FILLED_RECTANGLE, NULL);
EndSymbol(sdf, 1, 0): .
sgvt = CreateVGT(sdf, GRAPHICS+ZOOMABLE, 1, "random objects”);
Defaultview(sgvt, 600, 320, 0, 0, 0, O, O, 9);

V Programming : 1 May 1986

29-16

User Interface Functions

time(A&start);
for (i=12; i<Objects; i++)
{

short x = Random{ -2, 16§):

short y = Random(-10, 169);

short top = y + Random(6, 100);
short right = x + Random(4, 120);
short layer = Random(NM, NG);

EditSymbol(sdf, 1);
DeleteItem(sdf, 1-10);
switch (Random(1, 6))

case 1:
AddItem(sdf, i, x, right, y, top, layer,
SDF_FILLED_RECTANGLE, NULL);
break;

case 2:
AddItem(sdf, 1, x, x+1000, y, y+18, 0, SDF_SIMPLE_TEXT,
"Here is some simple text”):
break:;

case 3:
AddItem(sdf, i, x, right, y, y+1, 0,
SOF_HORIZONTAL_LINE, NULL);
break;

case 4: .

AddItem(sdf, 1, x, x+1, y, top, O,
SDF_VERTICAL_LINE, NULL);

break;

case §:
AddItem(sdf, 1, x, right, y, top, O,
SOF_GENERAL_LINE, NULL);
break;

case 6:
AddItem(sdf, i, x, right, top, y, O,
SOF_GENERAL_LINE, NULL):
break:;

}
EndSymbol(sdf, 1, sgvt):

time(&end);
if (end==start) end = start+l;
printf("%d objects in %d seconds, or %d objects/second\r\n",
Objects, end-start, Objects/(end-start));
printf("Donel\r\n");
Quit(); -
}

Random(first, last)
{
/.
* generates a random number
* between "first” and "last” inclusive.
*/
int value = rand()/2;
value %= (last - first + 1);
value += first;
return(value);

V-System 6.0 Reference Manual

Example Program ’ 29-17

29.7. Some Logistics

The constants for mouse scarch types, virtual terminal usage types, etc. are found in the include files
Vgts.hand Vtermagent.h. *

29.7.1. Applications Running Under V

The stub routines are available in the default V library, so just including the option -V on your ¢c68
command linc for linking should work. Do not include the =1VGTS option on your command line,

29.7.2. Applications Running Under Other Operating Systems *

To transparently run programs on a UNIX system, use -1VGTS on your c¢c command line. Use
=I/usr/sun/include to get the file Vgts. h.

This package employs escape scquences that can be used through PUP Telnet, [P Telnet, or with the remote
command exccution facility of the executive. The details of this protocol are explained in Chapter 46.

Note: The following functions are sof currently available to applications in this class:
EditLine()
GetEvent()
GetGraphicsEvent()
GetGraphicsStatus()
ModifyPad()
OpenPad()
QueryPad() .
QueryPadSize()
RedrawPad()
SelectPad()
SetVgtBanner()

29.8. Rolling Your Own

The primitives discussed here have proven suitable to a wide range of applications. Naturally, a foew users
have found them unsuitable, especially for applications that manipulate large bitmaps. such as image
processing applications. Although a raster item type is supported, raster opcrations arc not. Hence,
applications must perform the operations themsclves and then pass the new bitmaps to the VGTS.
Subsequent versions of the VG'I'S will address these and similar problems.

In thc mecantime, despcerate pfogrammcxs may. in fact, manipulate the frame buffer directly by using the
low-levcl device-dependent graphics librarics employed by both the VGT'S and the STS. 'T'here is a scparate
library for cach real device. The librarics and their documentation may be found in the 11bc/graphics
dircctory. '

Note: As noted above, these librarics also contain a varicty of device-independent routines, including some gencral-purpose
“RasterOp” routines, that may be of usc to some applications.

Warning: Dircctly manipulation of the graphics hardware may be very hazirdous to your health, On worksiations with the
Sun model 100 frame bufTer, for cxample, your manipulation of the [rame buiTer may conflict with that of the workstation
agenl, leading to mather odd screen images. ‘That is, both your application and the workstation agent are manipulating the
frame buffer registers. Fortunately, in this case, you should be able to avoid most problems by rendering all virtual
terminals that are gencrating output and all AVTs that have been sclected for input invisible — by burying them under
inactive virtual tcrminals, for example. ‘The latter step is needed in order (o disabie the blinking cursor.

Finally, if you still arc nol dissuaded, consider that access to the frame buffer will be prevented in future versions of the
system, hopefully coincident with the addition of suitable raster support to the VGTS.

V Programming 1 May 1986

31

— 30 —
Miscellaneous Functions

30.1. Time Manipulation Functions

The time-rclated functions in the V C library arc described below. A few of them are not present in the
Unix C library.

unsigned GetTime(clicksptr)

return the current time in seconds as maintained by the local kernel. The current time is represented as
seconds since January 1, 1970 GMT. If clicksptr is not NULL, the number of clicks since the last sccond is
stored in location pointed to by clicksptr. The standard manifest CLICKS_PER_SEC indicates the number
of clicks per second for the host.

TR

| SystemCode SetTime(seconds, clicks)

sets the local kernel time to the specified seconds and ¢1icks. The time maintained by the kerncl is
normally sct on system boot and nced not be changed subsequcntly

The standard time rcprescnwuon uscd is the number of seconds since January 1, 1970 GMT, plus the
number of clock interrupts since the last sccond.

unsigned Delay(seconds, clicks)

suspend the cxecution of the invoking process for the specificd number of scconds and clicks. (where a click
is a machinc-spccific unit, usually one clock interrupt). Delay rcturns the number of clicks rcmaining in the
delay period. ‘Thus, it normally returns 0. However, if the delaying process is awakened using Wakeup, it
may return a non-zcro value.

SystemCode Wakeup(pid) |

unblock the process specificd by p1d, returning OK, assuming the process is currently delaying using DeTay
and the invoker is the same uscr as the specified process, or is a privileged user. Otherwise, the return value is
a standard system codc indicating the crror.

stime(), time(), ftime()

These are Unix system calls and are implemented here with simple library functions which cmulate the Unix
functions by performing the appropriate V kernel operations SetTime() and GetTime(). 'They have the
samc interface and functionality as in Unix; however, ftime () has the timezone hardwired as Pacific Time,
since the V-System provides no time zone information.

ctime(), localtime(), gmtime(), asctime(), t*lmelzone()
These arc identical to the Unix library functions. '

V Progranuning 12 March 1986

30-2 Miscellaneous Functions

sleap(seconds)
unsigned seconds;

The invoking process is suspended from exccution for the specified number of seconds. The actual time may
be considcrably longer than that specificd if the process is not the highest priority ready process when its slcep
time cxpircs. sleep() is not sensitive to Wakeup()’s. Use the V system call Delay() for a
Wakeup ()-able suspension.

unsigned GetRemoteTime()

Returns the time according to the TIME SERVER in seconds since January 1, 1970, GMT. Returns zero if it
fails, e.g., no time server responded.

IR
!
R

30.2. Strings o .
))
The string-related functions in the V-System C library are described below.

30.2.1. Unix String Functions

The fol]owmg functions are identical to the funcnons of the same name prowded by Unix. See the Unix
Programmer’s Manual for documentation.

atof() atoi() atol() crypt()
ecvt() gevt() index() rindex()
strcat() strncat() strcmp() stracmp()
strcpy() strocpy() strlen())

30.2.2. Verex String Functions

There is also another sct of string manipulation functions which were ported from Verex. These include the
following:

int Any(c, string)
char ¢; char *string:;

Determine whether there is any occurrence of the byte ¢ in the string string, and rcturn truc (nonzcro) if
50, ¢lse false (zcro).

char *Concat(dest, si1, s2, s3)
char *dest, *sl, *s2, *s3;

Concatenate the strings s1, $2, and s3, storc the result in dest, and return dest. dest must have cnough
room to store the resulting string. 1F any of’ s1,. 82, $3 arc null pointers, the remaining arguments are
ignored.

int Convert_num(string, delim, base)
char *string; char **delim; unsigned base;

Parse the given string to cxtract a number of basc base and rcturn its valuc. If base is zcro, the initial
character of the string determincs the base, as follows

DBasc2

V-System 6.0 Reference Manual

Strings ‘ . 30-3

0 (zero) Base$8
$ Basel6
otherwise DBase 10

Upon return, *de 11m is modified to contain a pointer to the delimiter that terminated the number.

.

char *Copy_str(string)
char *string;

Copy the given string into a newly allocated region of memory and return a pointer to the copy. The new'
region is allocated using malloc¢() and may thus be freed using free() when the copy is no longer needed.
The function strsave() is identical to Copy_str().

int Equal(s1, s2)
char *sl1, *s2;

Compare the strings $1 and $2. Recturn true (nonzero) if the strings are cqual, else false (zcro). Strings are:
considered to be cqual if and only if they arc of equal length (up to the terminating null byte) and each
corresponding byte is the same,

int Hex_value(c)
char ¢;

Return the value of ¢, interpreted as a hex digit. Return -1 if ¢ is not a hex digit.

char *Lower(string)
char *string;

Convert all alphabetic characters in string to lower casc and return string.

unsigned Null_str(string)'”
char *string;

Return truc (nonzero) if string is a null string (i.c., of length zero), clse return false (zcro).

char *Shift_left(string, chars)
char *string; unsigned chars;

Delete the leftmost chars characters of string by shifting the remaining characters to the left, and rcturn
string. string must be at lcast chars characters long, but this condition is not checked.,

unsigned Size(string)
char *string;

Return the number of characters in the given string, i.c., the index of the null byte that terminates the string.

char *Upper(string)
char *string;

Convert all alphabetic characters in string to upper case and return string.

Y Programming 12 March 1986

30-4 Miscellaneous Functions
30.3. Exception Handling Functions

short *StandardExceptionHandler(req, pid, fout)
register ExceptionRequest *req;
/* Exception message. */
Processld pid; /* Process incurring exception. */
File *fout; /* Print out messages on this file */

Standard exception handling print routine. Prints out some information about the process incurring the
exception and returns the pc at which the exception occurred. req points to the exception request message,
p1id is the process id of the process that incurred the exception, and fout is the file on which the message is
to be printed.

PrintStackDump(fout, pid)
File *fout; Processld pid;

Prints out the stack of the process specificd by p1d. The process must be in the same address space as the
invoker.

30.4. Other Functions

qsort(base, nel, width, compare)
char *base; 1int nel, width; 1int (*compare)(); -

Implements the quicksort algorithm. base is a pointer to the base of the data; nel is the number of
elements; width is the width of an clement in bytcs; and compare is a function to compare two elcments,
The function compare must return an integer less than, equal to, or greater than zero, if the first argument is
less than, equal to, or greater than the sccond, respectively.

setjmp(env)
Jmp_buf env;

Tongjmp(env, value)
Jmp_buf env; 1nt value;

set jmp () saves the stack environment in env, so that a later call to Yongjmp () will act like a rcturn was
madc from the function which containcd the call to set jmp (), with rcturn value value.

char *ErrorString(error)
SystemCode error;

Returns a pointer to a string describing the system request or reply code error, in human rcadable terms.
Usc this in crror messages instead of printing the numeric value of the code.

PrintError(error, msg) :
SystemCode error; char *msg;

Prints the string ms g and an explanation of the SystemCode error on the standard crror file,

V-System 6.0 Reference Manual

Part lli:
V Servers

311

— 31 —
Servers Overview

All system services other than those implemented by the kernel are provided by sending a message to one of
the system scrver processes. This part of the manual describes the various protocols for requesting these
services, including the format of request and reply messages, the possible values for the message fields, and
the server process that handles the request. A sccondary role of this part of the manual is to act as an
implementation guide to the various servers; at some future time, these implementation details will be
removed to a scparate manual.

The information contained in this part of the manual is generally not required by application programmers
because most protocols arc implemented in the standard C program library described in Part 1 of the manual.
However, more sophisticated use of the system may require the more detailed information in this part of the
manual.

This chapter gives an overview of the interactions among the different scrvers and the kernel. The next
three chapters present the standard message formats and codes, and thc details of two standard protocols, the
V-System 1/O Protocol and V-System Naming Protocol. The remaining chapters give the details of the
individual servers, describing which of the standard protocols they implement, additional server-specific
protocols they provide, and, in many cases, how they arc implemented.

31.1. The Basic Servers - In Isolation

Figurc 31-1 shows the configuration of scrvers on a typical workstation. The various intcractions indicated
are discusscd in the following section, Here we discuss the basic functions and structure of cach server more
or less in isolation from the others.

31.1.1. General Considerations

There arc two basic dimensions by which scrvers may be classified: whether they arc implemented as
pscudo-processes within the kernel or outside the kernel, and whether an instance of the server exists on cach
workstation or not. Scveral servers arc implemented internal to the kernel primarily for performance reasons.
Naturally, these servers must cxist on cvery workstation, As discussed below, there are scveral additional
servers, including thosc that manage teams and cxceptions, instances of which must also cxist on cvery
workstation. Other scrvers exist, however, that nced not be resident on every workstauon. the most common
cxamnple being a storage server.

Regardless of how (or where) servers are implemented, they are always accessible via the usual 1PC facilities
and standard protocols. ‘The “main™ server process typically consists of an infinite loop that receives a request
for scrvice, processes it, receives the next request, and so on.

Because all message-passing is synchronous, the main process typically cannot employ the Send()
primitive, lest it block indcfinitely. For this reason and others, servers implemented outside the kernel often
employ additional processes, for example, to send messages for them, to service multiple input strcams in a
responsive fashion, or to manage multiple open “instances™ (of objects) without complex multiplexing. These
auxiliary processes arc gencrally called helpers.

V Servers ’ 17 June 1986

-2 Servers Overview

One Application

Debugger
main process
j |
Team Server
SR
One Exec
First Team |
Input Helper Exec Server
Processes j
”" "
Device Server K_ernel
. Hardware
T Creates R Causes Creation Of

Figure 31-1: The V-System: A singlc workstation view.

V-System 6.0) Reference Manual

The Basic Servers - In Isolation 313

31.1.2. Machine-relative Servers

Machine-relative scrvers are servers, instances of which exist on every workstation running V.

31.1.2.1. Kernel Server

The kernel server is a pscudo-process cibedded in the kernel that handlcs all requests to mahage processes,
as well as the requests to create and terminate teams.

31.1.2.2. Device Server

All hardwarc [/0 devices attached to the workstation arc serviced by the device server, which is a pscudo-
process embedded in the kerncl. The device server supports the standard 170 and naming protocols
discussed in Chapters 33 and 34, respectively. Conscquently, it behaves like any other 1/0 server as far as
applications are concerned.

31.1.2.3. Team Server

The team server is the manager of thc physical host?? It loads, executes, and monitors all tcams other than
the first. (Recall that a tcam usually corresponds to a program, although some programs consist of more than
onc tcam.) Requests to the tcam scrver ask it to load and start a tcam, to terminatc one, or to print the
directory of currently exccuting teams,

The team server also provides the bulk of the remote cxecution and migration facilities. [t implements the .
policics that detcrmine whether to accept other workstations™ programs for cxecution to begin with and
whether to preempt them later on. It also implements the facilitics needed to migrate programs between
workstations.

31.1.2.4. Exception Server

The cxception server is notified whenever a process incurs an exception. If another process has registered
itsclf as the exception handler for the process that incurred the exception, the exccption server simply
forwards the cxception to the registered handler. Otherwisc, it prints a message on the screen (using the
console device). ‘The latter case does not arise very often in practice, however, because the tcam server
registers itself as the cxception handler of last resort for almost all processes.

31.1.2.5. Workstation Agents

Workstation agents were discussed at length in Chapter 2. Here, we mercly present the basic
implementation of the VG'T'S as a canonical examplc of server structure. '

The VGTS is structured as one server process with three helper processes (see Figure 31-2). There is one
helper process to receive input from the mouse (through the device server), one to rcad from the keyboard,
and a timer proccess to invoke periodic functions like redrawing the screen. The keyboard and mouse helper
send requests to the device server, and block until input arrives. When they receive a reply, they then send
the input to the main server process, and request more input from the device server. This is a typical usc of
helper processes for processing multiple input strcams, simultancously and in a responsive manner.,

Note: Although grouped with all the other machinc-relative scrvers, workstation agents are distinguished by the fact that
they need not exist at all. That is, if the workstation docs not support any uscr 170 devices there is no necd for it to support
a workstation agent.

l:’ln some documents it is also referred to as the program manager.

Y Scrvers 17 June 1986

314 Servers Overview

Application

/' Exec Server

View

vaTs |
. Manager

Keyboard
Helper

D)

Kernel

Figure 31-2: VGTS process structure.

31.1.2.6. Executives and the Exec Server

While the workstation agent provides the low-lcvel 170 interface for the user. the exccutive provides the
command processing interface. 1t corresponds to the Unix shell or the Tops-20 xec, in that it is a uscr-level
process providing command parsing and convenient iccess Lo system services. ‘The basic operation of the
cxccutive is documented fully in Chapter 3,

All instances of the exccutive on a workstation arc managed by the exec server. Its purposc is to allow
sharing of codc and data (such as aliascs) among all cxccutives.

31.1.3. Global Servers

A global scrver is distinguished by the fact that it is designed to scrvice requests from any workstation, not
just from processcs running on the workstation on which it happens to be running.

V-System 6.0 Reference Manual

The Basic Servers -« In Isolation . 315

31.1.3.1. Authentication Server

The authentication server provides the basic mechanisms by which users log in to the V-System and by
which security is maintained.

31.1.3.2. Storage Server

Storage. servers géncrally provide for long-term information storage. They typically run on workstations
will large disks attached, or on VAX/UNIX systems. Each host may support at most onc storage server. A
“RAM disk™ facility is also provided, in the form of the memory server.

31.1.3.3. Internet Servers

Intcrnet servers provide for network communications using standard (inter)net protocols, as compared to
the inter-kernel protocol implemented by the V kernel. They are cssentially protocol converters that allow
applications that communicate by means of the V [70 protocol to communicate with hosts that can only (or
prefer to) be reached by a protocol other than the inter-kernel protocol.

31.2. The System in Operation

Having summarized the functions of cach of the major scrvers in isolation, we now describe some of the
ways in which these scrvers interact. The intent is not only to help the reader understand the basic structure
of the system, but also to understand some basic techniques for multi-process structuring.

31.2.1. System Initialization

‘When a workstation is booted, its PROM loads a program that loads the V kernel and the first team. After the
kernel has completed its internal initialization, it creates an initial tcam space and an initial bootstrap process
on this tcam, and assigns the processor to this process. The bootstrap process starts all the scrvers necessary to
run the system on the workslation: the exception server, the tcam scrver, the excc scrver, and some version of
a workstation agent. All but the last arc always loaded together on the first team, and thus sharc a single
address spacc; the workstation agent may or may not be loaded on the first tcam, at the discretion of the uscr.
The advantage of placing it on its own tcam is that then it may be replaced dynamically using the newterm
command.

31.2.2. Loading a Team

Tcams other than the first can be loaded from object code files using routines in the V C program library.
These routines package an appropriate request to the tcam server and take care of matters such as initializing
the tcam'’s data spacc as discussed in Scction 18.4. ‘The detailed message traffic involved is illustrated in
" Figure 31-3: In its request to the tcam server (edge 1), a client includes an open file descriptor specifying the
file to be loaded. This descriptor references the storage server that manages the file (edge 2) and from which
the file will be loaded. After receiving the request, the tecam server requests the kernel server to create a new
tcam with initial process (cdges 3 and 4). Like all processes, it is created in the awaiting reply state — waiting
for a reply from its creator. In effect, the kernel simulates a Send() from the process to the tcam scrver
(cdge §). 'The team server forwards this message, and its associated privileges (including access to the cntire
address space of the new tcam), to the client that originally asked for the tcam to be loaded (edge 6). At this
point, the client (or the library routine it called) can initialize the tcam's environment variables and the like,
and then Reply() (cdge 7). thus allowing the new tcam to begin cxccution — all as discussed in Scction

Y Scrvers 17 Junc 1986

31-6 Servers Overview

Application 5.
4.
Teamroot .
Message \ geam
1. erver
7.
6. CreateTeam
3.
One Exec
" 11)
2 Kernel
Kernel ' Server
Storage
Server

Figure 31-3: Loading a tcam,

31.2.3. Team Termination and Exit Stétus

Barring catastrophic failurcs, the _start routinc loaded with every tcam will ensurce that the tcam’s owner
is always notificd of the termination of the tcam — by sending it an appropriatc message. If the team
terminated graccfully — by calling ex1t() or rcturning from main() with a valid cxit status — the owner
will be able to ascertain the tcam’s exit status.

V-System 6.0 Refercnce Manual

The System in Operation . a7

31.2.4. Command Processing

Prior to running an application, the exccutive must determine what program is to be run! It does so by
parsing the command linc returned in response to its request for line-edited input from the workstation agent.
The exccutive then opens the file that contains the program (edge 2 in Figure 31-3), and any other files as
necessary to handle redirected 170, Finally, it invokes the procedure discussed in Section 31.2.2 above.

Unless the program is bcin§ run in the background, the cxecutive waits for it to complete execution by
waiting for a message from it.”* If the team terminates by calling exit() or returning from main(), the
executive will indeed reccive a message from it containing the tcam’s exit status. Otherwise, the tecam will
have died abnormally, in which case the executive will awakened by the kerncl and informed of that fact. At
this point, it is ready to ask for the next command line.

31.2.5. Exception Handling

As described above, the team server uses orily the services of the kernel and a storage server. However, the
team scrver is also the principal client of the exception scrver. Figurc 31-4 illustrates the message flow
involved: The team server creates the tcam to begin with (cdges 1 and 2) as described above. It then registers
itself as the exception handler for the team (cdge 3). 1fa process on the tecam incurs an exception, the kernel
simulates the cffect of the offending process sending an cxception message to the exception scrver (edge 4),
which forwards the message to the team scrver (edge 5). The tecam server then uses its own facilities to load
the V debugger (cdge 6), and forwards the exception message to it (edge 7).

Application
Debugger

Exception
Server

Figure 31-4: Handling an cxception.

Upon receipt of the message, the debugger prints the exception data on the screen and registers itsclf as the

14Progmm< running in the background have the team server as their owner. Then, if the cxccutive that staried them is deleted by the
user, which usually results in the destruction of any program it owns, the background program will continue exccution.

V Servers 17 June 1986

31-8 » Scrvers Overview

(new) cxception handler for the offending team. It then handles user commands, onc of which may cause the
tcam to be “resumed”, in which casc the dcbugger simply replies to the original exception message, frecing
the tcam to continue exccution until it either gets another exception or terminates normally. The next
exception,.if any, will of course be handled by the debugger.

Note: If a process other than the team scrver had registered interest in the offending process before it incurred an exception,
the exceplion message would have been forwarded dircctly to the registered exception handler. The handler can then take
any action it decms appropriate, including loading the debugger as discussed above.

31.3. Summary

One of the principles guiding the V-System design has been to place as many the usual operating system
functions outside the kcrnel as efficiency permits. Morcover, functions have becen partitioned as far as
practical into separate servers. Consequently, the kernel and each server have been kept reasonably small and
independent of cach other, which has in wrn simplified debugging, maintenance, and experimentation with
NCW SCIVCTS.

V-System 6.0 Reference Manual

321

— 32 —
Message Codes and Format Conventions

This chapter describes the standard message fog‘mats and codes used throughout the V-System.

32.1. Message Format Conventions

System server protocols obey several system-wide conventions. Every request message contains a 16-bit
request code indicating the service requested. Similarly, every reply message contains a 16-bit code indicating
the successful completion of the request’s exccution or the rcason that the request was not exccuted normally.
A requesting process can assume that the request has been completely executed when the reply message is
received with a successful reply code (although in cases such as disk write-behind this may not be strictly
true).

32.2. Byte-Ordering Considerations

V may run on a mixturc of Suns and VaxStations. The former contain Motorola 680x0 processors which
usc the first (lowest-addressed) byte of a 16-bit or 32-bit quantity to store the most significant byte of the
quantity ("big-endian"), while the latter use VAX-architecture processors which store the Icast significant byte
first ("little-endian™). When processes running on the two architcctures exchange messages, some conversion
must be done (if messages included floating-point or other highly architecture-specific data, considerably
more conversion would be necessary; to date, however, only 16-bit and 32-bit integers have been required).

The kernel, servers, include-files and library routincs have been altered to perform the appropriate
conversion (byte-swapping) for all code in the V-System distribution. However, anyone who implements a
server or who uses message-passing that docs not fit the client-server model should be aware of how byte-
swapping is done.

The kerne! always sends inter-kernel packets in its own byte order. A kernel which receives an IKC packet
must determine the byte order of the packet and, if necessary, byte-swap the packet, including the message
contained therein (secc IKC_LITTLE_ENDIAN, DifferentIKCByteOrder and SwapIKPacket in
Vike. h). Currcntly, the kerncl swaps the message as though every message were cight longwords, and treats
any segment as a streasn of bytes (hence does nothing to the scgment).

Any further swapping of the message must be donc by a process. We have adopted the policy that a client
scnds messages and gets replics without regard to byte order, 1t is then the responsibility of the server to
perform any nccessary swapping of requests and replics. The server can always determine the byte order of
the message’s sender becausc it is encoded in the sender’s logical host id (sece LITTLE_ENDIAN_HOST and
DifferentByteOrder in Venviron.h). The server must, of course, take account of swapping
performed by the kernel.

In many cascs it is not actually nceessary for the process to byte-swap messages at runtime; rather, the struct
definition for the message can be #ifdefed for big- and little-cndian architectures so that 8- and 16-bit ficlds
automatically cnd up in the right place. The MicroVAX C compiler #dcfines LITTLE_ENDIAN for this
purpose; the 680x0 C compiler docs not. The dcfinition of a Kernelrequest in Venviron.h
demonstrates the usc of LITTLE_ENDIAN.

V Servers 17 June 1986

322 . ‘ Message Codes and Format Conventions

32.3. Standard System Request Codes

Each system request is allocated a unique request code to be placed in the first word of the request message
when requesting that service. The request codes obey the message format conventions imposed by the kernel,
as described for Send() in Chapter 27. The manifest constant definitions for these request codes are dc:ﬂned
in the standard C include file Venviron. h.

32.4. Standard System Reply Codes

The reply code returned.in a message from a server is normally one of the following standard system
replics:

OK Operation successful.

ABORTED An operation was aborted. For example, a network connection that has been aborted
returns this code.

AWOKEN Returned by the kernel scrver when a Delay request was terminated by a Wakeup. (It is

not rcturned by the Delay library routine, however.)
BAD_ADDRESS Request contains an invalid memory address.
BAD_ARGS Request contains field(s) with illegal or inconsistent values.

BAD_BLOCK_NO
The block number spcmﬁcd in an I/0 request docs not specify an cxisting block. If the file
instance has attributc STREAM, the block number docs not specify the block which is
sequentially next in reading or writing.

BAD_BUFFER A buffer specificd in the request lies (perhaps partially) outside the client’s address space.

BAD_BYTE_COUNT
The byte count is larger (or smaller) than that supported by the server. On a file instance
without the MULTI_BLOCK attributc, this is returned if thc number of bytes requested to
read or write is greater than the block size.

" BAD_FORWARD
BAD_FORWARD is returned by the kernel when a Send is unblocked duc to the recciver
issuing an invalid Forward kernel operation.

- BAD_PROCESS_PRIORITY
The request specified an illcgal value for a process priority.

BAD_REPLY_SEGMENT
If a process invokes ReplyWithSegment() with a scgment to which it docs not have
write access, the kernel sets the reply code of the message rcturned to the sender to
BAD_REPLY_SEGMENT.

BAD_STATE Rcquest invalid at this time.

BUSY ‘The server cannot satisfy the request at this time, probably because a single-uscr resource is
alrcady allocated to another clicnt,

DEVICE_ERROR
File or device-dependent error has occurred,

DUPLICATE_NAME
The rcquest attempted to assign the same name to two different objects.

DISCARD_REPLY
This reply code is used with the Reply() primitive when the process recciving a message
docs not wish to reply. Reply messages containing this reply code are never delivered,

V-System 6.0 Reference Manual

Standard System Reply Codes 323

END_OF_FILE Attempt to read beyond filc boundaries.-

HAS_SUBSTRUCTURE '
Returned by the storage server when a client attempts to remove a file that has a son in the
dircctory tree, The attempt fails,

ILLEGAL_NAME
Returncd by a server that dcems a name to be illegal — for example, the name might be too
long.

ILLEGAL_REQUEST .
Invalid request code. The réquest was probably sent fo the wrong type of scrver, one
which could not perform that function.

INTERNAL_ERROR
The server detected an inconsistency-in its own state. This error codc may indicate a bug in
the server.

INVALID_CONTEXT_ID
The request contained a context identifier (see chapter 34) that was invalid.

INVALID_FILE_ID
The request contained an invalid file instancc identifier.

INVALID_MODE
The mode specified as part of a CREATE_ lNSTANCE request is not valid.

10_BREAK Returned from interactive files when the user hits the BREAK (Ctrl-C) key. It currcnt!y
isn’t. .

KERNEL_TIMEOUT
A timecout occurred in the kernel when trymg to scnd to a rcmote process. This error
differs from NONEXISTENT_PROCESS in that the sending kernel did not receive a
negative acknowledgement from the remote kernel, but for most purposcs it can be
handled in the same way. This crror code is only gencrated by the kernel, but may be
passcd on by other servers.

MODE_NOT_SUPPORTED
The mode specified as part of a CREATE_INSTANCE rcqucst is not supported by this
scrver.

MORE_REPLIESAn opcration request scnt to a group was successful, and the. client should use
GetReply() to check for additional replics from other group members.

MULTI_MANAGER
The requested opcratlon is not supported on multi- managcr objects.

NO_GROUP_DESC
Returned when the kernel runs out of group descriptors.

NO_MEMORY ‘The server was not able to obtain cnough memory to satisfy the request,
NO_PDS The server was not able to create a process needed to satisfy the request.

NO_ PFRMISS[ON
Some kind of restricted opcrat:on was attempted.

NO_SERVER_RESOURCES
The server has (tcmporanly) inadequate resources to satisfy the request.

NO_TDS The server was not able to create a team needed to satisfy the request.
NOT_A_CONTEXT '

V Servers 17 June 1986

324 Message Codes and Format Conventions

The request asked the server to perform an opcrauon that is only defined on contexts, but
the specificd object was not a context.

NOT_HERE The character-string name specified in the request does not specify an object implementing
by the receiving server, but may be defincd by some other scrver. This reply code is never
returned to a message scnt to a process group unless the replier knows that no member of
the group implcments the name,

NONEXISTENT_PROCESS
The rcquest was sent or forwarded to a nonexistent process, Or a noncxistent process was
specified in the request. This error code is only generated by the kernel, but may be passed
on by other servers.

NONEXISTENT_SESSION
The request referred to a scssion (see chapter 43) which does not exist, or to an object
which is not a session. Obsolete.,

NOT_AWAITINGREPLY
The process specified in a request was not awaiting reply from the client.

NOT_FOUND The object named in the request was not found.

NOT_READABLE
Specificd file instance docs not have the attribute READABLE which is required for the
requested operation.

NOT_WRITEABLE
Spccificd file instance docs not have the attribute WRITEABLE which is rcquired for the
requested opcration.,

POWER_FAILURE
Operation was unsuccessful duc to a power failure.

REQUEST_NOT_SUPPORTED
The server recognizes the request, but docs not support it.

RETRY Clicnt should repeat request.

RETRY_UNICAST
The request was sent to a group, but the responding server refuses to perform it in parallel
with other members of the group. The client should. retry the request, this time as as a
onc-to-onc Send(), not a multicast. :

SERVER_NOT_RESPONDING
The scrver failed to receive a response from another server specified in the request.

TIMEOUT An attempt to satisfy the request failed because of a timecout. Usually apphcd to nctwork
conncctions.

The ErrorString() function will return a character string version of many of the system reply and
request codes. 'The string form is much morce informative than printing the codes in numeric form.

V-System 6.0 Reference Manual

— 33—
The V-System 1/0 Protocol

A standard input/output protocol is defined in V to provide transfer of data between processes in a uniform
fashion. Using this protocol, a client process views and accesses data managed by a server process as a file. A
file is a “view” of the data associated with an object or activity managed by a server. An object viewed as a
file is a sequence of variable-size records or blocks.

To operate on an object viewing it as a file, it is necessary to create an instance of that file. The protocol is
object-based in the sense that it is defined in terms cf operations on a object, the file instance. File instance
operations include: creating a filc instance, querying a file instance, setting the file instancc owner, reading,
writing, and releasing file instances. Thcere are also opcrations for setting a prompt string and break process
associated with a file instance which are restricted to interactive file instances. A server that supports this
protocol is called an 170 scrver or file instance server. (The term “file server™ might be more appropriate if it
did not have a different cstablished meaning in the rescarch litcrature on distributed systems).

A file instance is created by a scrver in response to a client request, which specifics the file, i.e. the object or
data and the particular view and usage required. Conceptually, a file instance is an object which is created at
the time of the client’s CREATE_INSTANCE request, and (possibly) initialized to contain the same data as
an existing, permanent file. When the instance is released by the client, the data contained in the instance is
atomically written back to the corresponding permanent file. For some scrvers (for example, the internctwork
server), howcever, there is no permanent file corresponding to an instance, while for others (for example, the
device server), there is cffectively no distinction between the instance and the permanent file—changes in the
instance arc immediately reflected in the underlying file or 170 device. The current implementation of some
storage servers (e.g., the V Unix server) also causcs changes in an instance to be immediately reflected in the
underlying file. '

A file instance is uniquely identificd by the server process identificr and the instance identifier returned by
the CREATE_INSTANCE request. ‘The creating process is made the owner of the file instance. "The lifetime
of the file instance and the validity of the instance identificr docs not exceed that of the owner of the file
instance, The owner of a file instance can be changed by the SET_INSTANCE_OWNER request,

The reply mcssagé to a CREATE_INSTANCE or QUERY_INSTANCE request specifics the server, file
instance identificr, block length in bytes, file type, last block (written) in the file instance, number of bytes in
the last block, and the next block to read.

The file type indicates the operations that may be performed on the file instance as well as the semantics of
these operations. These types are defined in the include file <Vio.h); file types arc specificd as some
combination of the following attributes.

READABLE READ_INSTANCE opcrations are allowed on the file instance,
WRITEABLE WRITE_INSTANCE opcrations arc allowed on the filc instance.

APPEND_ONLY WRITE_INSTANCE opcrations arc only cffective to bytes in the file instance beyond the
last byte associated with the instance at the time it was created.

STREAM All reading and writing is strictly sequential. The first READ_INSTANCE opcration must
specify the block number returned as nextblock in the reply to the CREATE_INSTANCE
request. ‘This next block number to rcad is incremented after cach READ_INSTANCE
operation, lts current valuc is returned by a QUERY_INSTANCE. A scrver that uscs the
ReplyWithSegment() kecrnel opcration to rcturn the data requested in a
READ_INSTANCE must store the last block read and allow it to be read again, to provide

V Servers ' 12 March 1986

332 The V-System /0 Protocol

.

duplicatc suppression on requests.

WRITE_INSTANCE operations on STREAMs always write to lastblock+1, where
lastblock is a valuer returned by CREATE_INSTANCE or QUERY_INSTANCE. This
block number is incremented after every write operation. The block number specified in
the request message is ignored.

A file instance without the STREAM attribute stores its associated data for non-scquential
(“random”) access. That is, on a non-strcam file, for any n, block n may be read or written
at any time, and reading block n will return the same data as was last written to block n.

Since cach file models a single sequence of data blocks, objects which provide bidirectional
communication, such as serial lines or nctwork conncctions, are most appropriately
modeled as a pair of file instances, one a READABLE STREAM, the other a
WRITEABLE STREAM. Some servers may allow both instances to be created by a single
CREATE_INSTANCE request.?

FIXED_LENGTH
The filc instance is fixed in length. The length is specificd by the last block and last byte
returncd from a create or query instance request. Otherwise the file instance grows to
accommodate the data written or clsc the length of the file instance is not known (as in the
case of tcrminal input).

VARIABLE_BLOCK ' :

Blocks shorter than the full block size may be returned in response to read operations other
than duc to cnd-of-file or other exception conditions. For example, input frames from a
communication line may differ in length under normal conditions,

With a file instance that is VARIABLE_BLOCK, WRITEABLE, and not STREAM,
blocks that arc written with less than a full block size number of bytes return cexactly the
amount written when read subsequently.

MULTI_BLOCK Read and write operations arc allowed that specify a number of bytes larger than the block
size.

INTERACTIVE The filc instancc is a text line-oriented input strcam on which a prompt can be sct using the
" SET_PROMPT rcquest and a break process can be defined using the
SET_BREAK_PROCESS request. It also has the connotation of supplying interactively

(human) gencrated input.

Not all of the possiblc combinations of attributcs yicld a uscful file typc ‘The filc instance typcs supported
by cach server are documented with cach scrver.

A client must specify a mode of usage for the file instance when creating it. The mode is onc of FREAD,
FCREATE, FMODIFY and FAPPEND. The modcs of usage have the following semantics.

FREAD No writc opcrations arc to be performed, only reads.

FCREATE Any data previously associated with the described file is to be ignored and a new file
instance is to be created. Write operations arc permitted; read operations arce also
permitled if the file instance has type attribute READABLE,

FAPPEND Data previously associated with the described file remain unchanged. Write opcrations are

15A few cxisting servers bend this rule by assigning the same instance id to the input and output streams, even though block number #
of the input stream is unrelated to block number 7 of the output stream. Strictly speaking, this behavior is in violation of the protocol,
and we plan to change these scrvers eventually. A single STREAM that is both READABLLE and WRITEABLE would have (o return
the data writlen to block n if block 7 is fater read back. This type of file might be uscd to model a Unix-like pipe, but in fact, the
V-System pipe server (see chapter 41) takes a different approach, creating a scparate instance for cach cnd of the pipe, with the
conncction between them invisible o the protocol,

V-System 6.0 Reference Manual

333

permittcd only to append data to the cxisting data. |

FMODIFY Existing data is to be modified and possibly appended to. Both read and writc opcrations
are required. This is only supported on file instances that are not STREAM.

A scrver creates a file instance of a suitable type for the specified usage mode if it can. For example, the
storage server provides file instances with' type attributes READABLE, FIXED_LENGTH and
MULTI_BLOCK in response to a CREATE_INSTANCE rcquest specifying FREAD usage mode.

One of three modificrs may be used on the mode field of a CREATE_INSTANCE request.
FDIRECTORY Indicates that the given name specifies a context directory. Sce section 34.10,

FEXECUTE Specifies that the given file is to be exccuted as a program on the storage server machine,
The mode must be FREAD or FCREATE. Respectively, onc or two file instances are
returned, which allow reading from the program’s standard output, and optionally (in
FCREATE mode) writing into its standard input. When two instances are created, the
fileid of the second (rcadable) file instance is obtained by adding 1 to thc filcid of the
writeable instance (which is returned in the reply message). This mode modificr need not
be supported by all storage scrvers.

The following subsections give the format of the request message and the format of the reply, plus a
description of the secmantics for each operation in the protocol. These message formats are defined in the C
include file <Vioprotocol.h>.

33.1. CREATE INSTANCE

requestcode CREATE_INSTANCE
filenameindex The index of the first byte in the filename to usc in the name mapping.

type Type of file to create an instance of, for servers that do not support character-string

naming. This is uscd, for cxample, to specify the protocol to the internet server.
- filemode Desired usage mode indicating FREAD, FCREATE, FAPPEND or FMODIFY, plus

optionally FDIRECIORY or FEXECUTE.

unspccificd Scrver-dependent information specifying the file to be created, for servers that do not
support character-string naming,

contextid . Specifics the context within the server in which the filename is to be interpreted. (Sce
section 34.3.)

filcname Pointer to a byte array containing the symbolic name of the scrver or file.

filenamelen Number of bytes in filename, not including the terminating null byte. -

replycode Standard system reply. If the reply code is not OK, the file instance was not created and
the remainder of the reply is not defined.

fileid File instancc identifier. This is the number used in subsequent operations on the file.

fileserver Process identifier of the server managing this file. This is not necessarily the same as the id

to which the request was sent.

16All newly written servers that provide the CREATE_INSTANCT: operation should support character string naming and should not
use the #ype or unspecificd ficlds of the CreatelnstanceRequest.

V Servers 12 March 1986

334

The V-System 1/O Protocol

blocksize Maximum size in bytes of a block.

filetype Type attributes of the file instance as described at the beginning of this section.

filelastblock Index of the last block in the file or of the last block written to the file mstance ifitisa
STREAM file. Indcxmg is 0-origin.

filelastbytcs Number of bytes in the last block. For file instances which are not WRITEABLE and not
FIXED_LENGTH, this ficld and the filelastblock ficld should rcturn the maximum
unsigned integer.

filencxtblock

Number of the next block that can be read if this file is a READABLE STREAM.

The filename ficld of a CREATE_INSTANCE request specifies the type and properties of the instance to
be created, perhaps by naming some existing permanent object. The request is issued either directly to the
server or sent to a group including the server, as described in section 34.

The fileid and fileserver uniqucly identify the file instance created. The file instance exists until released or
until the requesting process ceases to exist.

33.2. QUERY INSTANCE

requestcode ~ QUERY_INSTANCE -1~

fileid File instance identifier.

replycode A standard system reply.. If the reply code is not OK,'thc file instance was not qucried and
the remainder of the reply is not defined.

fileid File instance identifier, same as the rcquest for compatibility with the reply to the
CREATE_INSTANCE request.

. fileserver Scrver process identifier. - "

blocksize The maximum sizc in bytes of a block.

filetype Type attributes of the filc instance as described at the beginning of the section,

filclastblock Index of the last block in the filc or the last block written to the file instance if it is a

: STREAM file. Indexing is O-origin.

filelastbytes The number of bytes in the last block.

filencxtblock Number 6(‘ the next block that can be read if the file is a READABLE STREAM.

In response to a QUERY_INSTANCE rcducst message, the server querics the file instance specificd by

fileid for the parameters supplicd in the reply message. ‘I'he reply message has the same format and scmantics
as the reply to a CREATE_INSTANCI: request except for the reply code. For example, a reply code of
NOT_FOUND to a CREATE_INSTANCE request indicates that the file specified does not cxist, whilc a
reply code of lNVALlD HLE IDta QULRY INSTANCE request indicates the file instance does not
exist.

33.3. CREATE DUPLEX INSTANCE

requestcode CREATE_DUPLEX_INSTANCE

V-System 6.0 Reference Manual

CREATE DUPLEX INSTANCE 335

fileid File instance identificr.

mode Desired usage mode.

replycode A standard system reply. If the reply code is not OK, the file instance was not created and
the remaindcr of the reply is not defined.

fileid File instance identificr, same as the request for compatibility with the reply to the
CREATE_INSTANCE request.

fileserver Server process identifier;

blocksize The maximum size in bytes of a block.

filetype Type attributes of the file instance as described at the beginning of the section.

filelastblock Index of the last block in the file <z;r the last block written to the file instance if it is a

STREAM file. Indcxing is 0-origin.
filelastbytes The number of bytes in the last block.
filenextblock Number of the next block that can be rcad if the file is a READABLE STREAM,

In response to a CREATE_DUPLEX_INSTANCE request message, the server creates (or causcs to be
created) the "other side” of a duplex file (such as a bi-dircctional network conncction, or a terminal). The
reply message has the same format and semantics as the reply to a CREATE_INSTANCE request except for
the reply code. For example, a reply code of NOT_FOUND to a CREATE_INSTANCE rcquest indicates
that the file specified does not cxist, while a reply code of INVALID_FILE_ID to a
CREATE_DUPLEX_INSTANCE request indicatcs the file instance docs not exist.

33.4. RELEASE INSTANCE

requestcode RELEASE_INSTANCE

fileid File instance identifier

relecascmode Server-dependent action to perform when releasing the instance. This ficld is set to zcro
on a normal close.

replycode A standard system reply code.

In response to a RELEASE_INSTANCE request, the scrver invalidates the instance identificr, reclaims
server resources dedicated to the instance and possibly performs some server-dependent function with the file
instance data. A releasemode of 0 indicates normal completion of the use of the file instance. For example, in
the case of the printer server, the file instance data is printed. In the case of the storage server, the data
atomically replaces the previous version of the stored file dita. A non-zcro relcase mode causes the data to be
discarded. - : o

A server may releasc a file instance with a non-zero release mode if it detects that the process that created
the instance no longer exists. A server should maximize the time before reusing a file instance identifier.

Y Servers 12 March 1986

336 _ . The V-System 170 Protocol

33.5. READ INSTANCE

requestcode READ_INSTANCE
fileid File instance identifier
blocknumber - Index of the block in the file from which the read is to begin.

bufferptr Address of the data buffer in which the data is to be moved if more than
IO_MSG_BUFFER bytes are read. That is, IO_MSG_BUFFER is the maximum number
of data bytes that fit in the message.

bytecount Number of bytes to be read.
replycode Standard system reply code.
fileid Same as in request.

shortbuffer IO_MSG_BUFFER bytes containing the data bytes read if less than or equal to
I0_MSG_BUFFER bytes.

bytecount Number of bytes read.

In responsc to a READ_INSTANCE request, the scrver transfers up to bytecount bytes from the file
instancc starting at the block numbered blocknumber. If the number of bytes read is less than the number
requested, the reply code indicates the reason. If the file instance has the type atribute VARIABLE_BLOCK
and the block being read was not the full block size specified for the file instance, this case is not an error, and
the reply may be OK, or END_OF_FILE if the last block was read. Scrvers should set the byte count to zero
on crror conditions.

If the number of bytes read is less than or equal to IO_MSG_BUFFER, the data read is contained in the
reply message starting at shortbuffer. If it is greater than 10_MSG_BUFFER, the data rcad is transferred into
the space of the requesting process starting at the address bufferptr.

If the file instance has the type attributc STREAM, the block number specificd must be the next block to
rcad for this instance, which is incremented after the read. Rcads always start at the beginning of the
specificd block. ‘The valucs of bytes read that were not explicitly written are undefined. ‘I'he number of bytes
requested must be less than or equal to the block size unless the file instance has the type attribute
MULTI_BLOCK.

33.6. WRITE INSTANCE

. requestcode WRITE_INSTANCE, or WRITESHORT_INSTANCE if byrecount is lcss than or cqual to
10_MSG_BUFFER.

fileid Filc instance identificr.
blocknumber Indcex of the block in the file instance at which the write is to begin.
shortbuffer Data bytcs to be written if less than or equal to [IO_MSG_BUFFER.

bufferptr Address of the data buffer if no more than IO_MSG_BUFFER -bytcs arc being written,
Otherwisce, this ficld may be overwritten by the data bytes.
bytecount Number of bytes to be written.,

V-System 6.0 Reference Manual

WRITE INSTANCE ’ 137

replycode Standard system reply code.
bytecount Number of bytes written.

In responsc to a WRITE_INSTANCE or WRITESHORT_INSTANCE rcquest, the scrver transfers up to
bytecount bytes to the filc instance starting at the block numbered blocknumber. If the number of bytes
written is less than the number requested, the reply code indicates the reason. As with READ_INSTANCE,
servers should set the byte count to zero on error conditions.

If the number of bytes to write is less than or equal to IO_MSG_BUFFER, the data is assumed to be
contained in the request message starting at shortbuffer. If it is greater than I0_MSG_BUFFER, the data is
transferred from the space of the requesting process starting at the address bufferptr. Writes always start at the
beginning of the specificd block. Note that the separate request code WRITESHORT_INSTANCE is used
when the data is contained in the message only to be consistent with the kernel message format conventions,
There is no READSHORT_INSTANCE needed because the data is passed back in the reply. That is,
WRITE_INSTANCE spccifics that segment access is being passed while WRITESHORT_INSTANCE
specifics no segment access.

If the file instance has type attribute STREAM, the block number written is one greater than the last block
in this file instance, regardless of the block number specificd. The number of bytes to write must be less than
or equal to the block size unless the file instance has the type attribute MULTI_BLOCK.

33.7. SET INSTANCE OWNER -

requestcode "SET_INSTANCE_OWNER
fileid File instance identifier
instanceowner Process identifier of new file instance owner.

replycode Standard system reply code.

In response to a SET_INSTANCE_OWNER request, the server sets the file instance owner process to that
specified by instanceowner. "The requesting process must be the current owner of the file instance. The initial
owner of a file instance is the process that created the instance.

33.8. SET BREAK PROCESS

requestcode SET_BREAK_PROCESS
fileid File instance identificr
breakprocess Proccss to be “broken™ when next break generated on this file instance.

replycode Standard system reply code.

In responsc to a SET_BREAK_PROCESS request. the server scts the break process associated with the file
instance to the process specified by breakprocess. When a break is gencrated on this file (the I0O_BREAK
reply returned to any outstanding read operations), the server issucs a DestroyProcess kernel operation on the
specified process. :

Y Servers 12 March 1986

338 The V-System I/0 Protocol

This réquest is only supported on filc instances with type attribute INTERACTIVE.

33.9. SET PROMPT

requestcode SET_PROMPT
fileid File instance identifier
promptstring Prompt string, which must be less than IO_MSG_BUFFER bytes long.

replycode Standard system reply code.

In response to a SET_PROMPT request, the server sets the prompt string output previous to every read
operation to that specified. This request is only supported on file instances with type attribute
INTERACTIVE.

33.10. QUERY FILE and NQUERY FILE

requestcode QUERY_FILE
fileid File instance identifier
unspecified Server-specific.

requestcode NQUERY_FILE

namecindcx The index of the first byte in the file name to use in the name mapping.
unspecified Server-specific.

namccontextid Context in which the name is to be interpreted.

nameptr Pointer to a memory scgment containing the file name.

namclength Length of the scgment in bytes.

replycode Standard system reply code. -
unspccificd Scrver dependent information.

In response to a QUERY_FILE or NQUERY_FILE rcquest, the scrver returns server specific information
about the file or file instance. For example, the VG'I'S returns the “cooking™ bits, and the internct server
returns connection information. A QUERY_FILE request specifics the file using an instance identificr, while
a NQUERY_FILE request uscs a character-string name. Both types of request return the same information,

33.11. MODIFY FILE and NMODIFY FILE

requestcode MODIFY_FILE
fileid Filc instance identifier

V-System 6.0 Reference Manual

MODIFY FILE and NMODIFY FILE 339

unspecified Server-dependent information.

requestcode NMODIFY_FILE

nameindex The index of the first byte in the file name to use in the name mapping.
unspecificd Server-dependent information.

namccontextid Context in which the name is to be interpreted.

nameptr Pointer to a memory segment containing the file name.

namelength Length of thc scgment in bytes.

replycode Standard system reply code.

The MODIFY_FILE and NMODIFY_FILE rcquests are supported by some scrvers to modify some
attributes of the file or file instance. For example, the device server uses MODIFY_FILE to change the data
rate on RS-232 serial interfaces.

A MODIFY_FILE request specifics which file is to be modified by passing an instance identifier, while an
NMODIFY_FILE rcquest passes a character string name.

V Servers 12 March 1986

— 34 —
The V-System Naming Protocol

A number of V-System services use character string names to specify thc objects to be operated on, and
many standard message types include space for such a name, Examplcs include the CREATE_INSTANCE
request and scveral other requests described above as part of the 170 Protocol.

Name mapping in the V-System is deccntralized, being performed by a collection of cooperating server
processes rather than a single, monolithic “name server.” The V-System Naming Protocol consists of a
uniform format for request messages that contain high-level names, a method for locating the server that
implements any given named object, and a small set of request types that must be handled specially by any
server that implements the protocol.

In this chapter, we describe the naming protocol in detail and give implementation hints for servers that use
it. Refer to Chapter 25 for a description of the naming library routines available to client programs.

34.1. Overview

-Conceptually, the V-System naming facility is a system-widc global dircctory providing reference by high-
level (character-string) name to objects implemented by multiple object managers_(scrvers). The global
directory contains a (name, object)-tuple for cach binding of global name to objct:t.l7 Each client may also
have its own dircctory of bindings from local names (or aliases) to global names. ‘The naming facility provides
operations for

o Binding namcs to objccts

® Removing name bindings .

o Name mapping: finding objects bound to a given name

e Inverse name mapping: finding the name bound to a given object

In the decentralized V naming facility, the global directory is distributed across the object managers such
that cach object manager stores and maintains that portion of the dircctory corresponding to the objects it
implements. Each client program maintains a cache of bindings from name to objcct manager, as illustrated
in Figure 34-1. When a clicnt invokes an operation using a high-level object name, the client checks its cache
for an entry that maps the name to an object manager. If a cache entry for the name is found (as is the case
with name? in Figurc 34-1), the opcration and name are then sent to the object manager indicated by the
cache cntry. Othcrwisc, a query is multicast to the object managers to determine the correct object manager
for the named object (as is the case for namel in Figure 34-1). If an objcct manager responds, a cache entry is
created and the processing of the request proceeds as before, with the operation being sent o the responding
object manager, Otherwise, the specificd object name is assuined o be invalid and an crror indication is
returncd to the client.

Inverse name mapping is simply a lookup in the global directory using an object's low-level identifier (for
example, its instance identificr) in place of its high-level name. We assume that the low-level identifier
provides cnough information to determine which manager implements the object in question, and hence
which manager storcs the portion of the global dircctory containing its name. ‘The same (absolute) global

l7No!<: that high-level names are bound dircctly to objects, not to low-tevel names (such as globaily unique numeric identifiers). Our
design vicws high-level names as the only permanent, globally unique identificrs for objects.

V Servers 4 12 March 1986

M2 ' . The V-System Naming Protocol

Global
directory
Clients D Servers

Cache ?
] E—
name1? ‘ | J Mae
Cache ?
> object2

= objectt

name2?
U

Figure 34-1: 'Decentralized Global Directory

aE [
~ l

name is rcturned for a given object even if the clicnt originally accessed the object using a local name, alias,
ctc. Low level identificrs arc not standardized across all objcct types, so the inverse name mapping operators
provided are type-specific.

34.2. Character String Names

Syntactically, a character string name (CSname) is a sequence of zero or more bytes, of a specificd length or
clsc terminated by a null byte. Operationally, a character string name is a bytc string as abovc that is used to
specify an object relative to a server that can interpret the name. There is no universal limit on the length of
character string names. T'wo CSnames arc cqual if and only if they are byte-wise identical and cqual in length
(where a null in the name takes precedence over the length specification).

Although CSnames may contain arbitrary bytes, they arc generally specified or chosen by the clicnt (as
- oppused to the server) and are usually human-readable ASCII strings.

The term character string name handling server (CSNH server) refers to any server that performs character
string name mapping, regardicss of what clse it does. ‘The term CSuame request describes any request
containing a character string name that must be mapped in order to perform the requested operation.

34.3. Contexts and Context Ids

The V-System name space is hicrarchically structured, and we refer to cach internal node of the naming
hicrarchy as a context Namcs arc parknames in that they describe a path through the hicrarchy, beginning at
(i.c., relative to0) some specific context. Absolute namcs arc those that begin at the root context.

The global dircctory is divided among object managers using a technique we call vertical partitioning. Each

¥-System 6.0 Reference Manual

Contexts and Context Ids 43

[y

object manager implements a tree of contexts starting at the root of the completc name hicrarchy, thus storing
the absolute names of the objects it implements. Some contexts (the root in particular) are implemented by
multiple object managers. Such multi-manager contexts arc partitioned across the managers that participate
in their implementation. Each participating manager stores only that subset of the context needed to name
objects it manages.

A context can be referenced by its absolute name, or by its context identifier. a compact low-level identifier
that is effectively a pointer into the name space, providing direct, efficient access to the object manager(s)
implementing the context. Rcfercncing an objecct using a context identificr plus relative name allows the
name lookup to start at the identificd context rather than from the global root, thereby reducing the need for
multicast and reducing the length of the name that must be looked up by thg object managers.

In V, a context identifier is structured as a (manager-id, specific-context-id) pair, where thc manager-id is a
process identificr or process group identifier specifying the object manager(s) that implement the context, and
the specific-context-id is mapped by the identificd manager(s) to one of the contexts thcy implement. The
standard system header file <Venviron.h> dcfines the types Processld, ContextId (ccrresponding to
specific-context-id), and ContextPair, for these identifiers.

When a context is renamed, its old context identificr becomes invalid and another is assigned. Thus, in
effect, a context identificr is bound to a context name, not to the context object itself.

Context identifiers are considercd hints. That is, a context identificr is allowed to become invalid even if
the corresponding character-string name is still bound to the same context. For example, if a V object
manager crashes and is restarted under a different process identificr, all its old context identificrs become
invalid (since they contain the manager’s process identifier as a subficld), even if all the objects it manages are
recovered.

34.4. Prefix Caching

The client naming library maintains a prefix cache mapping from name prefixes to context identifiers,
Before sending off any CSname request, the NameSend() library routine finds the longest name prefix that
can be matched in the cache. (If the matched prefix maps to a multi-manager context, NameSend() issucs a
QUERY_NAME request (see below) to obtain a longer prefix.) The matched prefix is then stripped off, and
the resulting relative name is sent off together with the context identifier to which the prefix mapped. If the
request fails because the stored context identifier was invalid, NameSend() removes the offending cache
entry and retrics the request, continuing until the request succeeds or the name is known to be invalid,

‘The naming library also caches the context identificr of cach client process’s current context (“working
directory™). ‘The context's absolute name is also stored, allowing NameSend() to rccover if its context
identificr becomes invalid.

34.5. Static Context Identifiers

Static context identifiers are defined for a few of the most commonly used multi-manager contexts. For
cach identifier, the specific-context-id portion is defined in <Vnaming.h> and the manager-id portion is
defined in <Vgroupids.h>. Static specific context ids are small non-negative integers, less than the manifest
constant MAX_WELL_KNOWN_CONTEX'TS.

In principle these identifiers nced only be known to servers. To improve performance, however, scveral of
the identificrs and corresponding name prcﬂxcs arc preloadéd into client caches by the PrimeCache()
library routine.

The following static (or well-known) context identificrs are defined at this writing,

(VCSNH_SIERVER_GROUP, GI.OBAL_ROOT_CONTEXT)
Corresponds to the CShame “[”.

V Servers 12 March 1986

344 _ . The V-System Naming Protocol

(VTEAM_SERVER_GROUP, TEAM_SERVER_CONTEXT)
Corresponds to the CSname “[team]”.

(VSTORAGE_SERVER_GROUP, STORAGE_SERVER_CONTEXT)
Corresponds to the CSname “[storage]”.

(VTIMER_SERVER_GROUP, TIME_SERVER_CONTEXT)
Currently not used for naming.

(VAUTH_SERVER_GROUP, AUTH_SERVER_CONTEXT)
Currently not used for naming.

(VEXCEPTION_SERVER_GROUP, EXCEPTION_SERVER_CONTEXT)

Currently unused.

(VDEVICE_SERVER_GROUP, DEVICE SERVER_CONTEXT)
Currently unused.

(VINTERNET_SERVER_GROUP, INTERNET_SERVER_CON’I'EX'I‘)
Currently unused.

(VPRINT_SERVER_GROUP, PRINT_SERVER_CONTEXT)
Currently unused.

(VVGT_SERVER_GROUP, VGT_SERVER_CONTEXT)
Currently unused.

(VPIPE_SERVER_GROUP, PIPE_SERVER_CONTEXT)
Currently unused. °

(VEXEC_SERVER_GROUP, EXEC_SERVER_CONTEXT)
Currcntly unused.

(VTEST SERVER_GROUP, TEST_SER VER_CONTEXT)
Reserved.

DEFAULT CONTEXT
Conventionally uscd for the Iocal root context by many scrvers that implement a single tree
of singlc-manager contexts. The name is an anachronism, Icft over from a previous version
of the naming protocol.

(VSTORAGE_SERVER_GROUP, PUBLIC_CONTEXT)
Holds publically-available V programs on storage scrvers. Corresponds to the CSname

[sys].

34.6. Generic Names and Group Names

A group name is a name that refers to a group (i.c., sct) of objects, which nced not all be implemented by the
same server. A generic name refers to one member selected from such a group according to a rule associated
with the name. "The simplest (and most commonly used) rule is to select one member arbitrarily,

The naming protocol supports generic and group naming by permitting more than onc server to respond to
a CSname request. In general, the client issuing the name request determines whether the CSname is to be
interpreted as a group name or generic name by receiving and processing all the responses (group name), or
only the first (gencric name with arbitrary sclection). Sclecting the first responsc has the pleasant side ¢ffect
of favoring the most lightly-loaded server. :

Scrvers can also definc generic or group names for contexts. In this case the servers determine whether the
name can be used as a group name, or only as a generic name. Issuing a GetContextId rcquest on a group

V-System 6.0 Reference Manual

Generic Names and Group Names . -5

name for a set of contexts must return a ContextPaie that refers to all the contexts.'s Subsequent name
lookups that find the given prefix in the cache and substitute the rcturned context identifier will then
correctly refer to all members of the set. In contrast, cach response to a GetContextId on a generic name
for the same set of contexts may rcturn an identifier for just onc server’s member(s) of the sct. Subscquent
namc lookups that find this prefix in the cache will then map it to the identifier that was returned in the first
response. .

34.7. Name Request Format

All V-System request messages that contain CSnames are built on a common skeleton, defined as the
NameRequest structure in the standard header file {Vnaming.h>.

requestcode Any valid request code that grants read access to a scgment.

namcindex The byte offset of thc name, within the segment specificd by the last two long words of the
message.
unspccified Request-specific information,

namecontextid A 32-bit identificr for the context in which this name is to be intcrpreted.
nameptr Pointer to the scgment containing the symbolic name.
namelength Length of the segment containing the name.

The reply is not specified by this protocol because it is generally dependent on the operation requested.

The name nced not be first in the scgment but is considered to start at the byte offset specificd by
nameindex. 1f the name is not last in the segment, it must be terminated by a null.

The CSname rcquest format includes only the specific-context-id ficld of the ContextPatr for the
context in which the name is to be interpreted. The manager-id portion is implicitly specificd by sending the
request to the appropriatc manager or group.

34.8. Name Lookup Algorithm

A server receiving a NameRequest performs the following algorithm to look up the name.

1. Sct CurrentNode to thc context specificd by the namecontextid. If the context identificr is not
recognized, fail with status INVALID_CONTEX'T_ID. Go to step 4.

2. While the name still has unmappcd components, do
e Attempt to map the next component of the name, relative to CurrentNode.

o If the name component is not defined locally, but CurrentNode is a multi-manager
context, fail with status NO'T_IHERE. Go to step 4.

o If the name component is not dcfined, and CurrentNode is not a multi-manager context,
fail with status NOT_FOUND. (We know the name cannot be defined by any other server.)
Go to step 4.

o If the name component is an upward refcrence (..”), and the context € to which it refersis a
multi-manager context implemented by a different (larger) ‘group than CurrentNode,

18Mulli-rnan::gc:r contexts follow this rule, with the context name viewed as a group name for the st of partitions held by the
participating servers.

V Servers 12 March 1986

346 ‘ The V-System Naming Protocol

advance nameindex to the next componcnt following the upward reference, set
namecontextidto-C.c1d, and Forward the rcquest to C. pid. Done.

o Otherwise, the name component is defined. Set CurrentNode to the object it maps to and
repeat.

3. The entire name has been mapped, and CurrentNode is the named object. Done.
4, Fail,

o If the failure status was NOT_FOUND, and the request is of a type that permits automatic
creation of an object in this case (for example, CREATE_INSTANCE in FCREATE mode on a
file storage server), the object may be created at this point. Its name will be the remaining
unmapped portion of the given name, defincd relative to the context CurrentNode.

o If the request was multicast and the failure status was other than NOT_FOUND, do not reply
(that is, invoke Reply() with replycode DISCARD_REPLY), since another scrver in the
multicast group may have succeeded in processing it.

o Othcrwise, the request was unicast. Reply with the failure status.

34.9. Standard CSNH Server Requests
There are scveral standard CSNH requests that must be implemented by all CSNH servers, plus a few

optional ones. All of the request and reply formats described below are subsets of the ContextRequest
structure defined in the standard system header file {Vnaming.h>.

34.9.1. QUERY NAME

requestcode QUERY_NAME

namcindex The byte offsct of the name rclative to nameptr.
. namccontextid Context in which to interprct the given name.
nameptr Pointer to the scgment containing the symbolic name.
namclength Length of the scgment containing the name,
replycode Standard system reply code. .
namcindex Advancced to indicate the context prefix recognized by the responding server.
context A ContextPadr for the recognized context prefix.

Query a name to get information that can be cached, typically to avoid multicast when mapping the name in
the future. Implementation required of all CSNH servers.

The query returns the shortest prefix of the given name that specifies a single-manager context, together
with a context identifier for that context. If no prefix of the name specifies a valid single-manager context,
but the cntirc name specifics a valid multi-manager context, the cntirc name is returned together with a
context identificr for that context. Otherwise, the query fails. A failing query returns KERNEL_TIMEOUT
if multicast, or a more specific crror code if unicast. (Multicast is the normal case.)

A server recciving this request performs a variant of the general name-mapping algorithm, as follows,

1. Sct CurrentNode to the context specified by the namccontextid. If the context identifier is not
recognized, fail with status INVALID_CONTEXT_ID. Go to step 4.

V-System 6.0 Reference Manual

Standard CSNI Server Requests ‘ 347

2. While CurrentNode is a multi-manager context participated in by this server, do
e Attempt to map the next component of the name, relative to CurrentNode.
o If the name has ho more components, go to step 3.
o If the name component is not defined locally, fail with status NOT_HERE. Go to step 4.
o If the name component is defined, sct CurrentNode to the object it maps to and rcpc:at.19

3. Succced. In the reply, sct nameindex to point to to the first component of the name that was not
mapped, or if the cntire name was mapped, to just beyond the last character of the name (i.c., to the
terminating null byte if therc is one). Set context to the context identifier of CurrentNode. Done.

4. Fail. If the request was multicast, do not reply (that is, invoke Reply() with replycode
DISCARD_REPLY), since another server in the multicast group may have succceded in processing it.
If the request was unicast, reply with the failure status.

34.9.2. GET ABSOLUTE NAME

requestcode GET_ABSOLUTE_NAME

nameindex The byte offsct of the name relative to nameptr.

namecontextid Context in which to intcrpret the given name.

nameptr Pointer to a buffer containing a symbolic name, and in which the absolutec name is to be
returned.

nameclength . Size of the buffer.

replycode Standard system reply code.

context If the given name specified an cxisting context, a ContextPair identifying it is returned
in this field. '

nameptr The valuc provided is returncd unchanged.

namclcength L.ength of the returncd name.

Returns an”absolute CSname for the object whose (relative) CSname is given. The returncd name
overwrites the given name. [f the name was not bound to a context, context.pid is set to 0 in the reply.
Implementation required of all CSNH scrvers.

A server receiving this request performs a slight variant of the general name-lookup algorithm. The named
" object need not cxist, as long as it is clcar what its absolute name would be if it were created., If the lookup
fails with status NOT_FOUND, but it would be possible to create an object with the given name, the server
constructs an absolutc name by appending the undefined name suffix to the absolute name for the last -
CurrentNode rcached. .

34.9.3. GET CONTEXT ID

requestcode GET_CONTEXT_ID®
namcindex The byte offsct of the name, within the scgment specificd by the last two long words of the

19F.xocplion: upward references arce handlied as described in section 34.8

V Servers 12 March 1986

348 . The V-System Naming Protocol

message.
namecontextid Context in which to interpret the given name.

nameptr Pointer to the scgment containing the symbolic name.
namelength Length of the segment containing the name.
replycode Standard system reply code.

context A ContextPair identifying the named context.

Given a CSname that names a context, this request returns a (serverpid, contcxud) pair that identifies the
same context. Implementation required of all CSNH servers.

34.9.4. GET CONTEXT NAME

requestcode GET_CONTEXT_NAME

context The ContextPair for which a name is to be found.
nameptr Pointer to a buffer in which the name is to be returned..
namclength Size of the buffer.

replycode Standard systcm reply code.

nameptr The value provided is returncd unchanged.

namclength Length of the returned name.

L-lnvcrsc namc-mapping for context identifiers. Provides a subsct of the functionality of
GET_ABSOLUTE_NAME. Implementation recommended for all CSNH servers.

Returns an absolute CSname for the context corresponding to the specified context identifier, if the context
identificr is valid and known to the server receiving the request. ‘This request should be sent to the process or
group identified by the pid component of the ContextPair.

34.9.5. GET FILE NAME

requestcode GET_FILE_NAME

 instanceid A file instancc id for the filc whose name is desired.
nameptr ~ Pointer to a buffer in which the name is to be returned.
namclength Sizc of the buffer.
replycode Standard system reply code.
nameptr The value provided is returncd unchanged.
namclength I.ength of the returncd name,

Inverse name-mapping for instance identifiers. Returns an absolutc CSname for the file associated with the

V:System 6.0 Reference Manual

Slanddrd CSNI Server chu&ts 49

specified file instance. Implementation recommended for all CSNH servers.

34.9.6. RENAMEOBJECT

requestcode RENAME_OBIJECT
nameindex The byte offsct of the old name rclative to nameptr.
namecontextid Context in which to interpret the old name.

nameptr Pointer to the segment containing the old and new names.
namelength Length of the segment containing the names.

replycode Standard system reply code.

context A ContextPair identifying the named context.

Given a CSname for an cxisting object, this request binds a new name to the object and removes the
binding of the existing name. Implementation is optional.

The¢ new name must be absolute. (The initial “{” character is omitted.) It follows the old name in the
scgment, scparated by a single null byte. The request fails, returning ILLEGAL_NAME, if the new name is
in a portion of the name space not implecmented by the object’s current manager, and that manager is unable
or unwilling to expand its name space as required.

34.10. Context Directories and Object Desc riptors

An important aspect of system operation is supporting query operations about objects or sets of objects. A
simple example is that of listing the names of all objects in a givcn context. In general, onc may wish to list a
varicty of information about objects m a context, perhaps ignoring some of the objects based on their
propertics.

Each CSNH scrver implements a context directory for cach context that it manages. A context dircctory
appears as a file of records, with cach record describing an object in the associated context. A dircectory file is
accessed using the 170 protocol with the CREATE_INS TANCE request specifying the name of the context to
be used. ‘The FDIRECTORY bit is sct in the mode ficld of such a request. A clicat can then use the standard
170 routincs to read the contents of the directory and derive the information required. The sclection of the
information required is done by the client, not the server. The client may also be able to modify some or all
of the ficlds of a dircctory record by writing it, using the standard 170 protocol. A server is not obliged to
make all ficlds presented in a directory modifiable. If a client attempts to change a non-modifiable field, that
ficld is left unaltered, but any other changes indicated in the request are carricd out.

The FDIRECTORY bit is primarily for the benefit of Verex-like file systems, which permit each node in
the naming hicrarchy to be (in UNIX terms) both a file and a directory. It discriminates between access to the
data content of such a node, and the context dircctory associated with it.

Each record in a directory starts with a descriptor-1ype ficld that specifics the format of the record describing
the object. For space cconomy, this ficld is an identifier that specifics a description of the record format
stored clsewhere in a system databasc of such formats. (T'he standard formats and descriptor type identifiers
arc defined in the header file <Vdirectory.h>.) Applications can read a dircctory and extract the required
information by rcferring to the descriptor-type ficld and these format descriptions, cven when a directory
contains heterogencous records.

A similar query activity involves accessing the descriptor of a slnglc object. For,cfficicncy and consistency,

V Servers 12 March 1986

3410 The V-System Naming Protocol

this is supported by a scparatc NREAD_DESCRIPTOR function on the object (as opposed to being
subsumed by the context directory facility), which returns the same record as found in the context directory.
A corresponding NWRITE_DESCRIPTOR operation is available for modifying an object's descriptor.

A server need not store information about objects as it is presented in a context directory. For instance, the
UNIX filc system stores the names of files scparate from their descriptors with the association provided by
so-called “i-nodc numbers.” A context dircctory entry in this casc is fabricated dynamically by replacing the
i-node number in each record by its descriptor.

The standard descriptor reading and writing opcrations arc described below. The message formats used are
described by the DescriptorRequest and DescriptorReply structures defined in <Vdirectory.h>.

34.10.1. READ DESCRIPTOR and NREAD DESCRIPTOR

requestcode NREAD_DESCRIPTOR

nameindex The byte offset of the name relative to segmentptr.

dataindex The byte offsct from the start of the specificd scgment where the returned descriptor is to
be placed. :

nameconiextid The context id of the context in which the given name is to be interpreted.

segmentptr Pointcrd.to a buffer that contains the object name and in which the descriptor is to be
returne

segmentlen Length of the buffer.

requestcode READ_DESCRIPTOR

fileid File instance id of the object whose descriptor is to be read.

dataindex The byte offsct from the start of the specificd segment where the returned descriptor is to
be placed. :

segmentptr Pointer to a buffer in which the descriptor is to be returned.

scgmenticn Length of the buffer.

replycode - Standard system réply code.

These request types provide a way of reading the descriptor (context directory entry) of a single object.
READ_DESCRIPTOR specifics the object by file instance id, while NREAD_DESCRIPTOR spccifies it by
CSnamc. Implementation of both is recommended for all CSNH servers,

34.10.2. WRITE DESCRIPTOR and NWRITE DESCRIPTOR

requcstcode NWRITE_DESCRIPTOR

nameindex The byte offsct of the name relative to segmentptr.
dataindex The byte offsct from the start of the specificd segment where the new descriptor value
begins.

namccontextid ~ The context id of the context in which the given name is to be interpreted.

V-System 6.0 Reference Manual

Context Dircctories and Object Descriptors - 3411

scgmentptr Pointer to a buffer that contains the object name and the new descriptor value.
segmentlen Length of the bufTer.

requestcode WRITE_DESCRIPTOR
fileid File instance id of the file whose descriptor is to be modified.

dataindex The byte offsct from the start of the specificd scgment where the new descriptor value
begins. :

segmentptr Pointer to a buffer that contains the new descriptor value.

scgmentlen Length of the buffer.

replycode Standard system reply code.

These request types provide a way of modifying the descriptor (context directory entry) of a singlc object.
WRITE_DESCRIPTOR specifics the object by file instance id, while NWRITE_DESCRIPTOR specifies it
by CSname. The scrver will modify each ficld in the object’s descriptor for which the value written differs
from the cxisting value, if the field is client-modifiable and the new value is legal. A client normally uses one
of these opcrations by first reading the descriptor, then modifying the ficld(s) of intercst, and finally writing it
back. :

34.10.3. Multi-ManagerContext Directories

A multi-manager context dircctory is implemented as multiple. context directory files, one per manager
participating in the context. To list a multi-manager context directory. the client opens the context directory
for cach object manager in the context and then merges the object entrics into a single list. Merging the lists
entails climinating duplicates, since some objects in the context may themselves be multi-manager contexts,
and will thus appear in several managers® directory files. All the context dircctorics for a context arc opened
in parallel, using a multicast CREATE_INSTANCE request. "To compensate for the inherently unreliable
delivery of multicast messages and responses, a followup message containing the list of managers from which
replics were reccived can be multicast to the object managers. Only omitted object managers respond to the
followup message. For full reliability, additional followup messages can be transmitted until no more replics
are received.

The format of a followup message is as follows. The message structurc CreateInstanceRequest, as
defined in <Vioprotocol.h), is used. '

requestcode CREATE_INSTANCE_RETRY
filcnameindex The bytc offsct of the start of the actual CSname, relative to filename. ’

type
unspccified
filcmode
contextid
Identical to the corresponding ficlds of the original CREATE_INSTANCE request
(chapter 33).

filcname Address of a data scgment beginning with an array of process ids specifying the managers
that should not reply to the request, terminated by a process id of 0. ‘The CSnamc appears
later in the segment, as specified by filenameindex.

filcnamelen L.ength of the scgment.

Y Servers . 12 March 1986

3412 ‘ The V-System Naming Protocol

The reply format is identical to that for CREATE_INSTANCE.

V-System 6.0 Reference Manual

351

—_—35 —
Authentication and the Authentication Server

Since processes are the active entities in V, the kernel associates each V process with a particular user or
account on whosc behalf it is acting. Each authorized uscr within a V domain is assigned a unique user
number, and cach V process bears exactly one -user number.™ A process runs with the privileges associated
with its uscr, and that user is considered responsible for its actions. An authentication server maintains a
database of information about cach user, including login name, personal name, encrypted password, user
number, and preferred home dircctory. The authentication server supports simple querics on this database,
which is keyed by user number and by login name. The authentication server will also set the user number of
a requesting process if the correct password for that user number is prescented in the request.

The V authentication service does not provide a very high level of security. Its main purposc is to provide a
scnse of uscr identity to programs that neced to exhibit user-specific behavior, and to protect against
inadvertent mistakes. Its design is grounded on the belief that the benefits of increased security in a research
system like V are very quickly outweighcd by its cost in reduced performance and incrcased complexity.

35.1. Authserver

The authentication server itsclf is available as a program called authserver. Starting the server with the
-d flag turns on dcbug output. 'The =F flag, followed by a filename, specifies a non-standard authentication
database file. '

The V exccutive automatically starts up an authentication scrver if nonc is running when a uscr attcmpts to
log in.

35.2. User Numbers

In general, a process running with user number u has control over other processes running as user , and
over server-maintained objects owned by user #. Certain special user numbers are exceptions to this rule,
however. ‘

A process running with the predefined user number SUPER_USER has total privilege to do anything that
the kernel and servers implement. The authentication server runs as super-user.

Somewhat more restricted privileges arc associated with the user number SYSTEM_USER. Sci‘ver
processes that need special permissions to enable them to act on behalf of other processes, but do not need the
full SUPER_USER privilege level, run as SYSTEM_USER.

User processes running on a workstation in the “not logged in™ statc have user number
UNKNOWN_USER. ‘The UNKNOWN_USER is somewhat more restricted than normal uscrs, since not all
processes running as UNKNOWN_USER really belong to the same person. An unknown uscr on one
machine is not allowed to manipulate processes belonging to unknown users on other machinces,

When a process is created, it initially has the user number of its parent. The root process of cach
workstation’s initial tcam is created with user number SYSTEM_USER, allowing scrver processes on the first
tcam to run as SYSTEM_USER if desired. Uscr numbers can be quericd with the User () kernel primitive

2‘)Procmms on the same tcam need not all run under the same user number.

V Servers 11 .Junc 1986

352 , Authentication and the Authentication Server

or changed with the SetUsarNumber () kernel pﬁmiﬁve.

35.3. Authentication Library Functions
The following authentication functions are available in the standard V library.

SystemCode AddUser(name, passwd, fullname, home)
char *name, *passwd, *fullname, *home;

Add a ncw user with the given login name, password, full name, and home directory. Rcturns OK if
successful, clse a standard system code indicating the rcason for failure. The requcsting process must be
authenticated as SUPER_USER. Requlrcs that an authentication server be running somewhere on the local
network.

SystemCode Authenticate(name, passwd)
char *name, *passwd;

~ Authenticate the calling process as the given user, specificd by login name. Returns OK if successful, else a
standard system code indicating the reason for failure. Rcquires that an authentication server be running
somewhere on the local network.

SystemCode DeIateUsbr(name)
char *name;

Delete the user with the given login name from the authentication databasc. Returns OK if successful, clse a
standard system code indicating the rcason for failure. The requesting process must be authenticated as
SUPER_USER.. Requires that an authentication server be running somewherc on the local network.

DestroyAuthRec(ar)
AuthRec ar;

Frec cach string in the given AuthRec.

char *FullUserName(pid)
Processld pid;

Return the full name of the user associated with the given process as a dynamically allocated string. The
string should be freed by the caller when no longer needed, using free. Rcequires that an-authentication
server be running somewhere on the local network.

SystemCode MapUID(uid, ar)
UID uid; AuthRec *ar;

Obtain an AuthRec containing the given uscr's authentication databasc entry. The uscr is specified by user
number. Returns OK if successful, clse a standard system code indicating the reason for failure. Requires
that an authentication scrver be running somewherc on the local network. Note: this function dynamically
allocates several strings to construct the AuthRec. The caller should mvokc DestroyAuthRec(ar) when
the AuthRec is no longer needed.

V-System 6.0 Reference Manual

Authentication Library Functions : 353

SystemCode MapUserName(name, ar)
char *"name; AuthRec *ar:

Obtain an AuthRec containing the given user’s authentication database entry. The user is specified by login
name. Returns OK if successful, elsc a standard system code indicating the rcason for failure. Requires that
an authcntication server be running somewhere on the local network. Note: this function dynamically
allocates several strings to construct the AuthRec. The caller should invokc DestroyAuthRec(ar) when
the AuthRcc is no longer necded.

SystemCode ModifyUser(ar)

AuthRec *ar;)
Modify the given user’s authentication databasc entry to be as specified by the given AuthRec. The user is
specified by the uid (uscr number) ficld of the AuthRec; a user with the given number must cxist. Returns
OK if successful, else a standard system code indicating the reason for failure. The calling process must be
authenticated as the given user or as superuser. Requires that an authentication server be running somewhere
on the local nctwork.

SystemCode Password(name, passwd)
char *name, *passwd;

Check whether the given password is correct for the given user name, Returns OK if so, clse a standard .
system codc indicating the reason for failure. Requires that an authentication server be running somewhere
on the local network. :

SystemCode SetUserNumber(pid, uid)
Processld pid; UID uid;

Set the given process’s user number to the given value. Returns OK if successful, clse a standard system code
indicating the reason for failurc. The kerncel places the following restrictions on setting user numbers:

1. Any proccss can sct its own user nunber to be UNKNOWN_USER.

2. Normal user processes are allowed to sct the user numbers of descendents to match their own, (This
privilege is uscful if a parcnt process must change its uscr number after having created other processcs.)

3. A process running as SYSTEM_USER can sct its own user number, or that of any descendent, to match
the user number of any process that is awaiting reply from it. (This privilege allows scrvers to create
processcs that act on behalf of clients.)

4. The SUPER _USER can sct any process's user number to any value.

UID User(pid)
ProcessId pid;

Return the user numbcer of the uscr associated with the given process.

char *UserName(pid)
ProcessId pid;

Return the login name of the user associated with the given process as a dynamically altocated string. The
string can be freed by the caller—using free() —when no longer needed. Requires that an authentication
scrver be running somewhere on the local network.

V Scrvers 11 June 1986

354 Authentication and the Authentication Server

35.4. Adding a New User

The following is the recommended procedure for adding a new V user. Sce section 35.5 if you are installing
V for the first time and necd to add many uscrs in one session.

1. If you are using a UNIX host for file service, createc a UNIX account for the new uscr.
2. Under V, usc the su superuser command to begin running as the V super-user.
3. Runthe V password program.
a. Click on the user name field, edit it to contain the user’s desired login name, and hit return.
b. Modify the full name ficld to contain the user’s personal name, in the same way.
¢. Modify the home field to contain the V absolutc pathname of the user’s home directory.
d. Click on add, and enter the uscr’s desired initial password.
e. Click on exit, or repeat to add more users.

4. Run addcorr and answer the prompts. When it requests a password, type the user's UNIX
password.

35.5. Authentication Database

There is one Vpassword file per network scgment. For each user it contains a uscrname, uscrnumber, |
password (using the samc format as Unix), full name, and home dircctory. Each machine providing V
filescrvice needs a user correspondence file, which lives in /etc/V. It maps between V user numbers and the
local Unix account name of the corrcsponding user.

The authentication server keeps its database in the filc [sys]misc/Vpassword. This file should be
made writcablc only by the V super-uscr. The file format is similar, but not identical, to the UNIX password
file. You can convert your UNIX password file to a V password filc using thc awk program provided in
/etc/V/Vpassword. awk. '

‘The authentication server supports a simple form of password file replication. The first few lincs of cach
file copy should list the absolutc namcs of the master and all slave copics of the password file, as follows:
master:[storage/pescadaro/usr/V/misc/Vpassword
slave:[storage/gregorio/usr/V/misc/Vpassword
slave:[storage/navajo/usr/V/misc/Vpassword

‘Whenever a new authentication server starts up, it reads [sys]misc/Vpassword, which may come from any
public Vserver. When modifications arc made, it attempts to first modify the master file. If this file is
inaccessible, no password files arc updatcd and the authserver returns the standard reply code
POWER —FAILER. If the master file is correctly updated then as many slave sites as possible are also -
updated.

Changes made when the master site is unavailable arc kept in the authserver's in-meinory databasc, so
futurc updates may cause changes made when the master file server is up at a later date. In gencral, uscrs
should refrain from changing the authentication database when the master password file is inaccessible. The
design goal is to have a close-to-current password file available if the master site is down when the authscrver
needs to be restarted. Redundant distribution of the master password file should be carried out to slave sites
using rdist or similar tools on a regular basis. We do it cvery night.

Each UNIX system that makes its filcs accessible from V maintains a correspondence table mapping from V
user numbers to UNIX login names. Sce section 43.1.1 for more information about correspondence tables.
Another awk script, /etc/V/Vusarcorr, awk, is provided to create this table,

Ay, uscr can run addcoer himsell' if you do not know his UNIX password,

V-System 6.0 Reference Manual

— 36 —
Device Server

The device server provides access to the raw kernel-supported devices via the 170 protocol. It is
implemented directly by the kerncl as a pscudo-process as opposed to being a normal process like other
system scrvers. Consequently, it is always configured when the V kernel is used. However, the device server
behaves like any other 170 server process as far as applications are concerned.

The device server appears as a single process that supports different types of devices using the same 70
protocol. Access to a device is established by sending a creatc instance request to the pid rcturned by
GetPid(DEVICE_SERVER, LOCAL_PID), or, if using the standard name cache, by prefixing the device
name with the context name “{device]” in a create instance request or Open() call. Using the standard
information rcturned by the create instance request, the device can then be accessed using 1/0 protocol
messages, either dircctly or by means of the standard [/0 library routines described in chapter 22. There are
also some device-specific operations defined for some devices. The currently supported devices are described
belo‘V. . s . s T oy

36.1. Ethernet

The Ethernet interface is accessed by specifying a device name of the form enetrs, where ¢ is replaced by
the Ethernet type, cither 3 for 3 Mbit cxperimental Ethernet, or /0 for standard Ethernet, and s is a suffix,
which is null for the first Ethernct interface, a for the sccond, b for the third, and so forth. Currcntly only one
Ethernet instance may cxist at a time and only onc Ethernet interface is supported, and the name ethernet is
defined as an alias for cither enet3 or enet/0, whichever is present.

The standard header file <Vctherneth> defines Ethernet-specific information, including the Ethernct
packet format and various constants such as ENEI_MAX_DATA, thc maximum sizc of the data portion of
an Ethernet packet.

In a create instance request, the filemode must be FCREATE. The type of an Ethernet instance is always a
readable, writcable, variable block stream.

Rcad and write instance requests are standard except for the Ethernet block format, The Fthernct is only
scnsibly accessed as a block (or packet) device, as opposed to a byte strcam. ‘T'he Ethernet block format is
exactly that expected by the interface, namely, on the 3 Mbit Ethernet, onc byte for destination, one byte for
source, two bytes for Ethernet packet type, followed by some number of data bytes, and on the 10 Mbit
Ethernet, six bytes for destination, six bytes for source, two bytes for packet type, followed by data bytes. The
number of bytes specificd in a write and rcturncd by a rcad includes the destination, source and type bytes as
well as the data bytes.

An Ethernet-specific QUERY_FILE request is supported that returns the host number, the number of
collisions, receiver overflows, CRC crrors, receiver synchronization crrors, transmission timcouts detected,
and the number of valid packets received. The host number should be used as the source address for every
packet transmitted. ‘The format for the request and reply messages is given by the QueryEnctRequest struct
defined in <Vethernet.hd,

Y Servers : 13 June 1986

362 Device Server

36.2. Disk

The disk interface is accessed by specifying the device name disk0 or diskl. These names correspond to the
first and second drives attached to thé interface, respectively. Currently, only the Xylogics disk interface is
supported.

In a create instance request, the filemode must be FCREATE. The type of the disk instance is always
rcadable, writeable, multi-block.

Upon "opening” a disk device, the disk driver reads the label off of the first sector to obtain disk-specific
information (such as the number of cylinders, number of heads, etc.). The disk label must have previously
been written to the disk using the diskdiag program. ..The format of a disk label is defined in
"/V/kernel/m68k/disklabel.h”.

Read and write instance requests are standard and allow a maximum of DISK_MAX_BYTES (as defined in -
*/V/kernel/m68k/xyl.h”, usually 64 kbytes) bytes to be acéessed. The disk driver translates from a (block,
byte count) pair to a (cylinder, head, sector, sector count) tuple,

A disk-specific QUERY_FILE request is supported that returns device access statistics (e.g., the average
seek distance per 17/0). A MODIFY_FILE request allows thesc statistics to be modified (e.g., resct to zero).
The format for the QUERY_FILE reply message is given by the QueryStorageReply struct defined in
<Vstorage.h>.

36.3. Mouse: The Graphics Pointing Device

The mouse is a graphlcs pointing device. It provides a means of indicating a coordinate position plus
signalling differcnt states via its three buttons. The device server provndcs access to the mousc through the
1/0 protocol, thus viewing it as a file.

The mousce filc appears as a 10-bytc file divided into 3 major ficlds. The first two bytes specify the mouse
button positions, the three buttons being the low-order three bits of the sccond byte. A bit with value 0
indicates the button is up, otherwise down. The next 4 bytes specify its current X coordinate. The last 4 bytes
specify its current Y coordinate. ‘The kernel updates this file according to the input from the device. These
ficlds arc specified in <Vmousc.h> as buttons, xcoordinate and ycoordinate with MBUTTON1, MBUTTON2
and MBUTTONS3 spccifying the button bit ficld assignments in the buttons ficld.

A create instance request for a mouse specifics the name mouse in the filename ficld. Only onc mouse and
onc instance of that mouse arc currently supported. "I'he filemaode ficld of the create instance request must be
FCREATE. 'The mouse file instance created is initialized to have X and Y coordinates of 0. It has type
attributes READABLE, WRITEABLE, and FIXED_LENGTH.

Read and write requests must specify block 0 and a byte count of 10 bytes. A read instance request returns
10 bytes specifying the current state of the mouse “file.” A read instance request is qucucd until a change to .
the mouse file occurs, providing no change has occurred since the last read request. Thus, for instance, a
mouse rcader process that repecatedly reads from the mouse and updates a cursor is suspended when the
mouse is not being moved and no button positions are changing. Converscly, the read returns cvery time a
change docs occur,

A writc instance opcration changes the kernel-maintained record of the mouse button positions and the X
and Y coordinates to that specified by the 10 bytes in the buffer, Sctting the mouse buttons in the kernel has
no significant cffect because this record is updated to-agree with the actual button positions on the next input
(or “squcak™) received from the mouse.

There is no nced to provide a query function that simply returns the current mouse position because that
should always be stored outside the kernel, ‘That is, the application decides where the mousc is; the kernel
simply updates the position rclative to the absolute position specified.

The kernet docs not provide any scaling of mousc movements. ‘That is Icft to the application.

V-System 6.0 Reference Maaual

Mouse: The Graphics Pointing Device ' . 36-3

36.4. Serial Line

The kernel device server provides access to raw serial lines through the serial device. Two serial lines are
supported, but only one instance for cach may exist at a time.

In a create instance request, the name serial0 or seriall spccifies a serial line. The filemode must be
FCREATE. The instance id returned is used for output; the instance id + 1 is used for input. Parameters for
the input instance can be obtained using QueryInstance. '

Each serial line is a pair of strcams, one readable and one writeable. Characters read from each serial line
are buffercd in the kernel until a process reads from the device, but the buffer is rather small, so a user who is
interested in input from a serial line should keep a process “listening™ to it at all times. The scrial line device
does not provide any echoing of input characters, nor does it convert input editing or conversion of newline
characters to a carriage return/line feed sequence on output.

The serial device drivers support QueryFile and ModifyFile operations to allow changing such parameters
as the data rate, bits per character, and the state of the modem control outputs DTR and RTS. The necessary
message structures and constants for these operations are defined in the standard header file <Vserial.h>. (At
this writing, the Query and Modify operations are not implemented in the Sun-1 serial device driver.)

36.5. Console

The kernel console device is intended to provide a measure of hardware independence to programs doing
interactive character stream input and output. The console device provides access to the console keyboard
and display of the workstation the kernel is running on, indepcndent of the type of workstation. On
workstations whosc keyboards are connected to scrial line 0, reading from the console device rcads from serial
line 0; on others, it rcads from the port to which the keyboard is connected. Likewise, on workstations with
frame buffers, writing to the console device draws characters on the frame buffer; for those without, writing to
the consolc scnds output to serial linc 0. In cases where the consolc uses serial line 0, instances for serial line 0
and the console may not both exist at the same time.

A crcate instance request must specify filemode FCREATE, and name console. The console device is a pair
of strcams, onc rcadable and onc writcable. As with the scrial line device, the instance id rcturned by a
Creatclnstance is writcable, and that instance id + 1 is rcadable. *The parameters of the sccond instance can
be obtained using Querylnstance. Both instances are marked INTERACTIVE, but SET_PROMPT and
SET_BREAK_PROCI:SS arc not support-d. :

Console device input is buffered in the same way as serial fine input (sec above). The console device does
not provide any cchoing or output conversion, but it does make an cffort to sound the workstation's becper
when an ASCIH BEL character is output,

The console device is automatically opencd by the kernel upon creation of the first team, and is ordinarily
~ never closed.

36.6. Framebuffer

There arc device drivers available for

36.6.1. Sun framebuffers

The current Sun (and Cadlinc) drivers allow one to cnable and disable video output through modify file
requests. The device may-be opened and modificd, or may be modified dircctly with a NMODIFY_FILE
request. The following routine turns the framebuffer off:

V Scrvers 13 June 1986

364 ' Device Server

#include <Vframebuffer.h$
FbOff()

ModifyFramebufferMsg *req;

req.sysCode = NMODIFY«FILE;

req.request = FB__OFF;

req.nameindex = 0;

req.nameptr = "[device]framebuffer"”;
reqg.namelength = sizeof("[device]framebuffer”);
NameSend(&req);

}

36.6.2. MicroVax QVSS Framebuffer

Caution is advised when using this device driver. Opening the device maps the QVSS frame buffer memory
into onc's address space. Onc cannot directly access the framcbuffer until the device has been opened. To find
where the framcbuffer has been mapped, perform a QUERY_INSTANCE on the file and look at the field
uipeehtied s driver allows direct user access to QVSS device registers. The device is
madc up of six sixtcen bit (short) blocks referencing the first six device registers. More information can be
found in the top secret DEC Engincering spcecification VCB01-KP. /V/kerne1/vax/qvss. h dcfines all of
the useful control bits.

The registers available are:

0 Control Status

1 Cursor X position (not used by the V- System)

2 Mouse Position (x is 1ow byte, y is high byte)
3 Spare

4 CRT controller address pointer

5 CRT data

- 36.7. Null Devices
Two null devices arc available, and arc normally configured into all versions of the V kernel. The nullin

device is a readable, 0-fength file; it thus returns an end-of-file indication on cvery rcad attempt. The nullout
device is an endless sink for output.

Y-System 6.0 Reference Manual

371

—37 —
Exception Server

When a process incurs an exception, it causes a trap which is ficlded by the kernel. The kernel effectively
causcs the process to send a message to the exception server with the contents of the message describing the
exception incurred. If there is no exception server, the kernel prints an error message and disables the
faulting proccss by causing it to send to itself, which permanently blocks the process.

The exception server checks to-sce if another exception handler has registered for this process or an
ancestor. [f so, it forwards the message to the handlcr. For ordinary programs, arrangements arc made for
such messages to be passed on to the V debugger. The format of the exception request and registration
messages are defined in <Vexceptions.h>. The only request types supported are EXCEPTION_REQUEST
and REGISTER _HANDILER. EXCEPTION_REQUEST mcssages should only be gencrated by the kernel.
The REGISTER _HANDLER request code is used both for registering and dercgistering handlers.

If no process was registered, the exception server prints a message on the screen indicating the type of
exception, the pid of the faulting process, and the instruction, program counter and status register at the time
the cxception occurred. The exception server then destroys the faulting process, thus preventing it from
doing further harm. Note: the program counter may have been incremented beyond the actual instruction
incurring the exception so it should not be considered cxact, although the error message routine attempts to
find the correct PC by scarching for the opcode of the instruction that was reported in the cxception message.

The crror printing routine used by the exception server is available to other cxception handlers as the
library routine StandardExceptionHandler.

V Scrvers 12 March 1986

381

— 38—
Exec Se rver

The exec server is the central control facility for all instances of the V system executive on a workstation. Its
purposc is to allow sharing of code and data (such as aliascs) among all executives. The intention is that while
each exccutive is a separatc command strcam, all exccutives on the same workstation should present the same
command interface to the user. That includes customized aspects of that command interface, such as aliases.
Since the exec server is part of the basic environment of the V system, such customizations do not vanish even
if the terminal agent (i.e., the VGTS or ST'S) is replaced; they remain as long as the user is logged in.

The exec server allows programs to have instances of the exccutive (usually referred to simply as “execs™)
created and destroyed. An cxec is known to the server by its exec id; exec ids are small intcgers starting at 0.
There is currently no concept of ownership of execs; any program can destroy any excc regardless of whether
it created it or not.

The exec server is located by
GetPid(EXEC_SERVER, LOCAL_PID)

It is present in all the standard configurations of the Vsystem.
The following requests are supported.

CREATE_EXEC Creates an exccutive, with standard i/o and context specified in the request mcssage and
returns the excc id.

START_EXEC Under some circumstances an exec is not started by thc CREATE_EXEC rcqucst, because
the requestor nceds to do some SetlnstanceOwner operations first. START_EXEC then
allows the excc to start running. Normally all this is transparent and is handled in the
CreateExec library routine.

DELETE_EXEC Declete an cxccutive. If there is a program running undecr it, it is abruptly stopped duc to
the death of its parcnt process.

KILL_PROGRAM
Kill the program running under an exccutive, If there was no program running under t.hat
exccutive, nothing happens.

QUERY_EXEC Rcturns information on an exccutive: its status (free, loading a program, or running a
program), its process id, and the process id of the program running under it, if any.

CHECK_EXEC Makes a check of all executives. If thic standard input server or standard output server of
an cxcc has dicd, the cxec is destroyed. ‘This is uscd mainly when changing terminal
agents.

The message structure for the requests, the request valucs and the logical identification of the excc server
can be found in the header file Vexec.h.

V Servers 12 March 1986

391

—_—39 —
Internet Server

The internet server is an 1/0 server that provides network communications using any of several protocols.
It is essentially a protocol converter which allows applications which communicate by means of the V 170
protocol to communicate with hosts which can only (or prefer to) be rcached by some other protocol. As
such, the server has been structurcd in a manner which allows casy addition and decletion of protocols. The
server consists of a general framework which is independent of the particular protocols being supported, and
one or more protocol-specific modules. Each module implements a particular protocol and must interface
that protocol to the requircments and facilities provided by the server's general framework. Currently the
DARPA Internet protocols IP and TCP are supported.

39.1. Running the Internet Server

The internet server can be compiled as an independent V program, or linked into another program. As an
independent V program, it is often loaded automatically some other V program (c.g., by telnet), so that uscrs
usually don't nced to invoke it separatcly.

The standard V command “internetscrver” may be run in the background to provide a local intcrnct server
on any workstation. The internet server program by default will only register the server for the logical id
INTERNET_SERVER on a local basis. Therc arc two optional switches that may be used when starting an
internetserver. 'The -g option causcs the internct server to register itself globally so that it can create
conncctions for hosts anywhere in the V-System. T'his facility allows local hosts to avoid spending some 100K
of memory for this server. The -d # option causcs the internct scrver to enable debug messages up to a
severity of “#” (an integer in the range [0..9]; 0 is the default).

To include the internet server in another V program, have it create a process which exccutes the function

InitInternetServer(localFlag, debugFlag)
int localFlag; /* True if internetserver should be local. */
int debugFlag; /* True if debug output should be printed. */

and causc the linker to scarch the V internct library when loading the program (i.c., add -1Vinternct on the
C compilation command linc). It is generally preferable to run the internet server on its own tcam by
invoking the internet server program described above, rather than linking it into another program.

39.2. Accessing the Internef Server

Once the internct server has been started it can be accessed using the V /0 protocol plus the protocol-
specific requests and parameters specificd in <Vnet.hd. :

A CREATE_INSTANCE request to the internet server must specify the mode FCREATE. 1t results in the

22'I'hc Xerox PUP protocol is no longer supported (starting with V-System version 5.2). We continuc to show the PUP protocol in
some of the examples of this scction for illustrative purposes only.

23Using a global internct server can degrade performance if many conncclions are being supported simultancously. For bursty

applications such as telnct connections, however, any performance degradation from using a global internet server is typically small
cnough (o go unnoticed. :

V Servers 12 March 1986

39-2 . . Internet Server

crcation of two instances, onc of type READABLE, VARIABLE_BLLOCK, and STREAM, thc other of type
WRITEABLE, VARIABLE_BLOCK, and STREAM. The parameters of the writcable instance are returned
in the CreatcInstanccReply. ‘The rcadable instance has an instance id equal to the id of the writeable instance
plus 1; its parameters can be obtained using QUERY_INSTANCE. Although the internet server does not
implcment the full naming protocol (see Section 34), it does implement context directories. Thus, commands
suchas 1istdir -1 [internet/local] rcturn uscful information.

An internet server connection is owned by the process which requested its creation. Ownership of a
conncction can be passed on to another process by means of the SET_INSTANCE_OWNER request. If the
owner precess should die then the connection is aborted.

39.3. DARPA Internet Protocol (IP)

Posscssion of an IP network instance provides a process access to the network for sending and recciving IP
packets of a specific IP protocol type. Differing IP instances are delincated by the protocol ficld in the IP
packets. Any protocol id value may be specificd when creating the instance except for those values already
taken. For example, the value for TCP, is already taken by the TCP implementation inside the intcrnet server
itsclf. Creating an instance with protocol 0 yiclds a “promiscuous” instance that receives all protocol types
which have not been specified by any other active IP instances.

IP nctwork instances cxpect WRITE_INSTANCE to supply completely packaged IP packets.
READ_INSTANCE similarly will return complete 1P packets. This approach allows IP instances to remain
conncctionless in concept and thus avoids the overhead of cstablishing a network conncction instance for cach
different set of IP packet parameters. (Remember that READ and WRITE under the 170 protocol don't
allow for specification of parameters.)

To open an IP nctwork instance, usc CREATE_INSTANCE and specify the protocol by overlaying the
[pParms structurc definition in Vneth onto the unspecified ficld of the CreatelnstanccRequest structure.
QUERY_FILE will return the value of the protocol ficld for an IP instance. MODIFY_FILE has no meaning
for thesc instances. A standard library routinc “Openlp” is provided to allow creating an IP instance and
allocating a File structure for it, for use with other 170 library routincs.

39.4. DARPA Transmission Control Protocol (TCP)

T'CP file instances crcated by the internet scrver implement IDARPA TCP byte stream conncctions. There
arc three minor differences from the specification in the DARPA Internet Handbook. First, the “push flag”
is always sct -- data written is transmittcd over the network as soon as possible. (Buffering of data is
performed by the 170 library routines and would thus be redundant.) Second, the urgent data flag is not sct as
part of a writc operation. Instcad, a MODIFY_FIIL.E request is used to sct the urgent data flag immediately
before a write operation containing urgent data. ‘The urgent data flag is reset immediately after the write
operation and thus must be sct using a MODIFY_FILE request before cach urgent data write operation,
Third, there is no concept of connection timecout provided. Connections are aborted if their owner process
gocs away.

Two variants of CREATE_INSTANCE are permitted on instances of type '1'CP, corresponding to the
Active and Passive opens of the Internct Handbook. Note that the foreign host must be specified completely
when issuing a CREATE_INSTANCE rcquest with the active bit sct. A standard library routine, Open'l'cp, is
provided to allow creating a 'I'CP instance and allocating a File structure for it, for use with other 1/0 library
routines.

Two types of release mode arc supported for RELEASE_INSTANCE requests corresponding to the Close
and Abort primitives of the DARPA specification, respectively REI_STANDARID (cqual to 0, the normal
rclease mode defined by the V 170 protocol) and REL_ABOR'T, Releasing the writcable instance closcs the
client’s end of the connection. Data can still be read from the readable instance until the other end closes. [t
is nccessary to release both the readable and writcable instances to deallocate a connection.

V-System 6.0 Reference Manual

DARPA Transmission Control Protocol (TCP) 393

Since TCP supports the concept of a byte stream, the READ_INSTANCE and WRITE_INSTANCE
opcerations do not scgment the data flow in any way. (There is onc exception: when a packet is received with
the urgent flag sct, the next READ_INSTANCE reccives a BEGIN_URGENT_DATA reply code with zero
bytes of data. A similar zero-length reply of END_URGENT_DATA is returncd when the point in the data
strcam indicated by the urgent pointer is reached.) Any READ_INSTANCE requests outstanding when a
TCP connection closcs for whatever rcason arc replicd to with a replycode indicating the reason. An attempt
to rcad from a closed conncction is signaled by an END_OF_FILE reply code.

The QUERY_FILE operation may be used on TCP instances to find out the statc of the TCP connection.
MODIFY_FILE may be uscd to change various parameters of the connection. The structure TcpParmsl in
Vneth defines the parameters which can be set both at CREATE_INSTANCE time and by mcans of a
MODIFY_FILE request. The meaning of the ficlds are defined in the Internct Handbook. TcpParms2
defines both paramcters which may be set and state variables which may not be sct but whose values are
returned if QUERY_FILE is exccuted with TepParms2 specified. The parameter in TcpParms2 which may
be sct is sndUrgFlag. This parameter is used to signal urgent data. The rcvUrgFlag ficld returns whether or
not urgent data has been sent from the remote host and not yet reccived. The bytesAvail field indicates how
many bytes of data are waiting to be reccived by the user. The state field indicates what state the connection
is in with respect to being open, listening, established, closed-waiting-for-remote-close, ctc. (sce the Internet
handbook). :

39.5. Adding New Protocols

This section should be of intercst only to persons who wish to add an additional protocol to (or remove one
from) the intcrnet server. It describes the specifications governing the interactions between particular
communications protocols and the general framework of the internet server.

There are two interfaces that a protocol must deal with: the external interface to clients of the internet
server, and the internal interface to the general communications facilitics provided by the server’s framework.
‘The external interface consists of the operations, message formats, ctc. that the protocol must understand in
order to interface with a client’s V 170 connection. ‘The internal interface consists of the routincs, message
buffer conventions, ctc. that the protocol implementation must respectively usc or provide in order to send
packets to the network and receive packets from the network.

39.5.1. External Client Interface

The external interface to a protocol is dictated for the most part by the V I/0 protocol specification.
Intcraction between a client and the interncet server is by means of a V 170 connection and the only variations
that can be cffected are by mcans of the QueryFile and ModifyFile operations. Thus clicnts open a
conncction by mceans of the Createlastance operation, they read and write data by means of the ReadInstance
and WritcInstance operations, thcy determine the gencral statc of a conncction by means of the
Querylnstance operation, and they close a connection with the Releaselnstance operation.

A conncction is "owned" by the clicnt process which sent its CreateInstance request, but can be transferred
by mcans of a SctinstanceOwner request. The semantics of ownership are that a connection must be aborted
if its owner process dics, Onc of the general facilities provided by the internct server is monitoring of the
existence of connections’ owners. However, the protocol implementation module is responsible for providing
an abortion routine.

Protocol-specific interactions are handled by means of the QueryFile and ModifyFile operations. Protocol-
specific instantiation parameters can also be specificd as part of the CreatelInstance operation. The QueryFile
operation is used by the client to determine the state of protocol-specific connection variables; the ModifyFile
operation is used to modify these variables. ‘Thus the manner in which things such as the "Urgent Data
Notification” facility in TCP must be implemented is the following:

1."The client’s ReadInstance operation returns an cxception code indicating Jthat somcthing out of the
ordinary has happened.

Y Servers 12 March 1986

30-4 Internet Server

.

2. The clicnt does a QueryFilc operation to determine the protocol-specific state of the connection and
obtains the "Urgent Data Notification” on return.

Similarly, a clicnt wishing to signal “*Urgent Data” on a TCP connection must do so with a ModifyFile
operation.

39.5.2. Internal Protocol Interface

Protocol implementations must interface both to the external internct server client and also to the intcrnal
environment of the server itsclf. This internal interface consists of the following components:

1. A network packet buffer module which all protocols must use. This module provides a pool of packet
buffers which have a standardized header format so that various gencral facilities can manipulate them,

2. A process structure specification for the protocol. All protocol implementations must define certain
processes and be aware of the existence of certain other processes. Part of this specification is a
specification of the message interactions betwceen these processes,

3. A sct of protocol-independent routines supplied by the server which all protocol implementations must
use for such things as writing packcts out to the network, obtaining and returning packet buffers, etc.

4. A sct of protocol-specific routines supplicd by the protocol implementation which are used by the
general server facilitics to return mcommg network packets to a conncction, signal timcout conditions,
etc.

These components will be described in more detail in the following subscctions.

39.5.2.1. A Brief Overview Of The Internet Server’s Structure

The internet server consists of the following processes:

1. A conncction-cstablishment process. ‘This process registers ltsclf as the internet server logical id and
waits for connection creation requests from new clients, For cach new connection creation request it
invokes a creation routine for the protocol specified in the request. This routine is responsible for
sctting up a conncction and its associated data structures and handling process(es).

2. Connection handling processes. Each protocol conncection is handled by onc or morc separate
processes. It is up to the protocol implementation to decide how to structure the conncction handling
processes for a connection. However, one of these must be designated the “"primary” conncection
process. This process will be responsible for handling all communications with the rest of the internct
server.

3. A nctwork reader process. The V kernel allows only onc network device instance to exist at any time.
‘The network reader process reads packets from the network device and calls a protocol-specific routine
for cach protocol being supported. The protocol-specific routines invoked are responsible for
dctermining which conncction of their protocol type a packet should be givcn to. The nctwork reader
process runs at the highest priority allowed so that it can read and multiplex i mcommg network packets
before they arc overwritten by subscquent packets in the kernel device.

4.’I'wo timer processes. “The first timer is a timeout timer which wakes up periodically and invokes a
timeout checking routine for cach connection. I the timecout check for a connection returns a time
which is lcss than the current time then a message is sent (o that conncction'’s primary connection
handling process. The timer determines how long to sleep before waking up again by keeping track of
the minimum timeout time beyond the current time. The second timer checks whether any conncection
owners have died. - A message is sent to the primary conncction handling process of cach connection

24l‘nc reason why the V 170 protocol specification has ’t.)ccn structurcd in this manner is for rcasons of cfficiency. The vast majority of
data rcad and write opcrations done on a conncction arc done with "normal” scttings for the conncction paramcters. By removing
parameter spccification from the rcad and write operations these operations can be executed more quickly.

V-System 6.0 Reference Manual

Adding New Protocols 395

whose owner has dicd signalling that the connection should be aborted. This second timer wakes up
once cvery S seconds. :

39.5.2.2. The Packet Buffer Module

The packet buffer module provides a set of routines which manage a pool of packet buffers which arc used
as the medium of data transmission inside the internct server. Thesc packet buffers are handed between
various parts of the internct server by means of pointers (to avoid copy operations) and their header format
must be understood by all parts of the internet server.

The header format for packet buffers is the following:
typedef struct pbuf

{
.struct pbuf *next; /* General purpose link field.*/
int length; /* Length of the data in the buffer. */
char *dataptr; /* Location of the start of the
data. */
unsigned unspecified[2]; /* Scratchpad fields. */
char data[MAXPBUFSIZE]; /* The actual packet buffer. */
} *PktBuf;

‘The next ficld allows packet buffers to be placed in various queuing data structures. The dataptr ficld points
to the start of the data in the data array. Packets are typically constructed starting from the back of the data
array, with various hcaders progressively added on to the front. The unspecified ficlds are intended for -
storing various packet-specific items of information. They are used as scratchpad working areas.
MAXPBUFSIZE must be large cnough to accommodate all packets encountered by the internct scrver. It is
set to the maximum allowed packet size of the physical network.

The routines provided by packet buffer module are the folloWing:’ .
PktBuf AllocBuf();

DeallocBuf(pkt);
PktBuf pkt;

Buffers are handed out onc at a time by means of calls to AllocBuf(). Buffers arc returned to the free pool by
calling DeallocBuf(). These routines manipulate the buffer pool in an atomic manner; so that thcy can be
uscd from multiple processes without conflict.

39.5.2.3. Process Interactions

The implementation of a protocol connection must decal with the nctwork reader and the two timer
processes in a prescribed manner. In order for these processes to know whom to send messages to cach
conncction must have a "primary” process associated with it. The process ids of these primary processes are
stored in a global data structure maintained by the internet server which contains onc entry per connection.
The details of this data structure will be described in a later subsection.

Network Reader Interactions

The network reader process must run at high priority and cannot afford to do much processing because it
must always be rcad; to accept incoming network packets before they are overwritten in the kernel device by
subscquent packets. 6 Ihis has led to an interface format between the network reader and the various
conncction handling processes where communication is by means of atomically updated queucs of packet

25chc that there is only one packet buffer size for the cntirc internct scrver. A singlc buffer size was choscn primarily for rcasons of
simplicity. lixtending the packet buffer modulc to handie multiple bulfer sizes would not be difficult.

26'I‘hal is, it must be able to keep up with the (possibly many) hosts that are sending it packets.

V Servers 12 March 1986

39-6 Internet Server

~

buffers. The network reader process enqueucs packets for a conncction by calling the EnQucucSafc() routine,
which places a packet in a specificd connection queuc. This routine is non-blocking (i.c. no message traffic
involved) so that the rcader process can immediately continue on to process any additional packets that may
have arrived from the network. The connection handling processes then remove packet buffers from their
qucucs by calling the DeQueueSaf«() routine. The definitions for these two routines arc as follows:
EnQueueSafe(pkt, q)
PktBuf pkt;
RingQueue *q;

DeQueueSafe(q) - .
RingQueue *q; .

RingQueues are atomically updated qucues which are defined in the general internct server module. They
must be initialized with calls to the InitSafeQueue() routine:

InitSafeQueue(q, ringBufs)
RingQueue *q; /* Queue header., */
RingBufRec ringBufs[]; /* An array of MAX_RING_BUFS queus
records. */

RingQucues consist of the following two data types:
typedef struct

RingBuf head;
RingBuf tail;
} RingQueue;

typédef struct RingBufType

PktBuf pkt;
struct RingBufType *next;
} RingBufRec, *RingBuf;

The RingQueue structure defines a header record for the queuc. ngBuchcs are the actual qucuc clements,
and arce placed in a circular list by the InitSafeQueuc() routine. & The pkt ficid of a RingBufRec is uscd to
point to the packet buffer which is cnqucucd by it.

Note that at most MAX_RING_BUFS packet buffers can be enquecued in a RingQucue. EnQucueSafe()
returns 0 if it can’t cnqucue a packet buffer.

There is one caveat to the above description of how the nctwork reader interacts with individual
connections. The primary connection handling process for a connection may he blocked waiting on client
rcqucsts28 so that the packet buffer queue cannot be processed until a request message is received. To take
carc of this case cach primary conncction process must also sct a variable indicating whether it is blocking -
awaiting client requests or not. ‘The nctwork rcader checks this variable when enquecuing a packet for a
connection and sends the connection a "wakcup” message if it is blocked. 'T'he process receiving the message
must reply immediately to this message in order to minimize the time that the network reader is blocked.

Another point o be made here is that the actions for the network reader described above (i.e. invocation of
FnQucueSafe() and checking to scc if 4 "wakcup” message must be sent) are actually part of the protocol-
specific "network rcader” routine that each protocol must supply as part of its implementation. ‘This will be
described in more detail later.

27'lhc reason why a circular queue of this form is nceded stems from the problem of maintaining these queucs in an atomic manner,

2&I‘hc protocol implementations to datc have consisted of a single process per conncction which alterately waits on client requests
and processes its packet buffer queue.

V-System 6.0 Reference Manual

Adding New Protocols . 397

Timer Interactions

The two timer processes communicate with conncections by means of "timeout” messages. Whenever a
timeout condition is detected by a timer process it sends a message to the relevant connection process
indicating that a timcout condition has occurred. The message format ecmployed is the following:

struct timeoutMsg
{ ‘ .
" SystemCode requestcode; /* Standard message request code
field. */
short unused;
unsigned timeoutCondition; /* Which timeout has occurred. */
unsigned unusedi[6];
}: .
The requestcode ficld is the same as that used for all other message requests. However, instcad of a
"standard” V 170 protocol request code an internet server-specific request code signalling timeout is used.
The timeoutCondition field specifies which timeout condition has occurred.

39.5.2.4. Protocol-Independent Interface Routines and Data Structures
Global Data Structures

There is onc global data structure that must be maintaincd by all active connections in the internct server.
This is thc NetInstTable, which contains an entry for each connection specifying various V 170 protocol-
specific parameter values, the process id of the primary conncction handling process, and a pointer to a
control block associated with that connection. The V 170 protocol parameter jnformation is uscd by the
Querylnstance() routine for answering Query [nstance requests about connections.”” The process id is used by
the nctwork rcader and timer processes to find the primary process for a given connection. ‘The control block
pointer is used to access connection-specific information. It is intended for use by the protocol-specific
nctwork rcader and timcout checking routines.

The primary manner in which connecctions manipulate the NetinstTable is through the following two
routines:
int AllocNetInst(prot, ownerPid, pid, rblocksize, wblocksize, tcbld)

int prot; /* Instance protocol type
(TCP, PUP, ICMP, etc.) */
ProcessId ownerPid; /* Process id of owner of the
connection. */
ProcessId pid; /* Process id of primary connection

i , handling process. */
int rblocksize, wblocksize; /* Block sizes for resp. read and write
V I/0 connection instances. */
unsigned tcbld; /* Pointer to the control block for
‘ this connection. */

DeallocNetInst(index)
int index; /* Index of NetInstTable entry to
deallocate. */

AllocNetlInst() rcturns an index into the table where the ncwly allocated cntry has been placed. Individual
ficlds can then be set by indexing through this value into the table. (E.g. SctinstanccOwner requests would be
dcalt with in this manner.)

Each protocol implementation is expected to employ these routines to manage the NetlnstTable in a correct

29'lhcsc requests arc actually directed at the connection handling processes themsclves, implying that each connection could cmploy
its own Queryinstance routine. However no benefit would be gained by such duplication.

V Servers 12 March 1986

398 ' Internet Server

manner, Le. allocation and dcallocation of NetInstTable entrics is no¢ done automatically by the scrver’s
general facilitics.

Uscful But Not Essential Routincs

The internct server provides scveral generally uscful but not cssential routines which may be employed by
protocol implementations if they so chose. These include the following:

SystemCode QueryInstance(rgMsg)
QueryInstanceRequest *rqMsg;

Boolean InvalidFileid(rgMsg)
IoRequest *rqMsg:

ReplyToRead(replycode, pid, packet, bufferPtr, length)

SystemCode replycode; " /* Reply code to send to a reader. */
ProcessId pid; /* Process id of the reader. */
PktBuf packet; /* Packet buffer containing data to

return to the reader. NULL if
there is no data to return. */

char *bufferPtr; /* Address of reader's buffer. */
int length; /* Length of data to return. */
QueryProcess()

QueryInstance() returns the state of a specified network connection. It is V 170 protocol-specific and hence
indcpendent of the particular network protocol being supported by the other end of the conncction. It
obtains its information from thce NetlnstTable entry for the connection. Connections are specificd in the
request message in the same manner as with alt other V 170 connections, namely by a fileid.

 InvalidFileid() checks whether the fileid ficld in a client’s request message is reasonable; i.e. whether it maps
to an existing conncction cntry in NetlnstTable which is in usc. All incoming clicnt requests should be
checked with this routine to avoid corruption of other connections’ control blocks.

ReplyToRead() is a generic routine for replying to a client’s rcad request. It performs the MoveTo
opcration nceded to move data from a packet buffer to the client’s rcad buffer and packages an appropriate
rcply message.

QueryProcess() is a routine which runs in its own process and is used for debugging. It provides a means
for cxamining and changing the state of the internet server while it is in operation.

39.5.2.5. Protocol-Specific Interface Routines and Data Structures

There are two types of protocol-specific routines that a protocol implementation must provide: nctwork-
level routines and conncection-level routines. Network-level routines are used by the network reader process
to multiplex incoming nectwork packets to the correct connection, Conncection-level routines arc used to
initializc a protocol, create a new connection and interface with the conncection timecout checking process.

Protocol implementations arc usually done for protocol fumilies rather than individual protocols. For
example, the current internet server implements both the 1P and the 'T'CP Internct protocols. However, rather
than implementing these two protocols as separate modules, they are implemented together, so that the 'TCP
module can make usc of facilitics alrcady defined by the 1P module. ‘This results in a situation where only the
1P module interfaces with the network layer and the TCP module interfaces internally to the 1P module. Thus
the IP/TCP protocol family implementation has three interfaces to the rest of the internet server rather than
four: it has a single nctwork-level interface and a connection-level interface for both IP and TCP respectively.

Protocol-specific interface routines are accessed by the general server facilitics through function tables
indexed by protocol type. “There are two such function tables, onc for the network-level routines and onc for
the connection-level routines. ‘The format of these tables is described below.

V-System 6.0 Reference Manual

Adding New Protocols ' 399

Network-level

The network-level function table is called PnetTable and is defined as follows:
struct PnetBlock °

{ ~ : :
unsigned prot; /* Network protocol type. */
Boolean active; /* True if a network connection is
active for this protocol. */
int (*initNetProt) (): /* Initialization routine for this
. protocol, */ .
int (*rcv) (): ‘ " /* Receiving routine for this

protocol, */°
} PnetTable[NumPnetProtocols];

The first two fields are actually not functions. The prot ficld is uscd to store the nctwork protocol type id so
that the network reader process can figure out which table entry to use for a given network packet.

The active field is used to allow the nctwork reader process to "short circuit” discarding of broadcast and
invalid packets for inactive protocols. Without this ficld the rcader process would have to call the rev()
routine for these packets since it can't tell itsclf whether they should be dlscardcd The active ficld is
managed through the following two routines:

ActivateNetProtocol(prot)
int prot;

DeactiveateNetProtocol(prot)
int prot;

brot specifies which table entry to access. '
Associated with the active ficld is another table, called NetLevell’rotocol, which is used to map from
conncction protocols to the network-level protocols which support them. For example, the IP/TCP protocol

implementation described previously would designate both 1P's and TCP's network-level protocol as being
IP. ‘The definition of the table data structure, along with an cxample initialization is as follows:

int NetLevelProtocol[NumProtocols] =

{
0, /* 1P %/
0, /* TCP */
1, /* PUP */
0 /* ICMP */
i ‘

The index of cach entry corresponds to the index of the corresponding protocol cntry in the Func'Table
table. ‘The contents of cach centry is the index of the corresponding network-level protocol in the PnetTable
table. Thus, in the example shown, the Func'Table defines the IP protocol at index 0, the TCP protocol at
index 1, the PUP protocol at index 2, and the ICMP protocol at index 3. The PnetTable defines the IP
network-level protocol at index 0 and the PUP nctwork-level protocol at index 1. “The initNetProt ficld
specifics an initialization routine for the protocol which is called at server boot time.

‘I'he rev ficld specifics a routine which is called whenever a network packet arrives which has a protocol type
cqual to that specified in the prot ficld of the entry (and the active {icld is truc). This routine is responsible
for figuring which connection of its protocol. if any, should reccive the packet. If a connection is found then
the routine is responsible for enqueuing the packet in that connection’s RingQueuc (using the KnQueueSafe()
routine) and for checking to make surc that the connection’s process(cs) will actually be able to process the
enqucucd packet buffer (i.c., if the connection’s process(es) are receive-blocked awaiting client requests then

m’l‘he actual internet server code uses manifest constants instead of integers to fill these ficlds - making things much more readable.
lowever, to illustrate the principle, no manifests were ecmployed.

V Servers 12 March 1986

39-10 ‘ . Internet Server

the routinc must send a message to "wake” them up). Packets for which no conncction is found must be
returncd to the free buffer pool with a call to DeallocBuf).

The interface definition for the initNetProt() and rev() routines is as follows:

InitNetProtocol()
ReceiveProtocolPkts(packet)
PktBuf packet; /* Ptr to the incoming network
packet. */

where InitNetProtocol() and RecciveProtocolPkts() are example names,
Connection-level

The connection-level function table is called FuncTable and is defined as follows:
struct FuncBlock

int (*InitProtocol) ():
SystemCode (*CreateConnection) ():
int (*NextTimeout) ():

} FuncTable[NumProtocols];

The InitProtocol ficld specifics an initialization routine for the protocol which is called at server boot time.

The CreateConnection ficld specifics a routine which is called by the conncction-cstablishiment process
when a client requests the creation of a new connection instance. The routine must create the data and
process structurcs for a new connection and then handle the Createlnstance request from the client. U This is
usually also the place where a call to the ActivateNetProtocok) routine is made to signal that the protocol is
active, .

The NextTimeout ficld specifics a routine which is called by the timeout checking timer process. This
routinc returns the time of the next timecout for its connection. If that time is alrcady past then the timer
process will send a timcout message to the connection's primary process. The connection’s data structures are
accessed through the tebld ficld of the connection’s NetInstTable cntry.

"The interface definition for the InitProtocol(), CreatcConnection(), and NextTimeout() routincs is as
follows:

InitProt()

CreateProtConnection(reqMsg, clientPid)
CreatelnstanceRequest regMsg;
' ' /* Createlnstance request message sent
by a the client. */
ProcessId clientPid; /* Process 1d of the client. */

NextProtTimeout(tcbId)
unsigned tcbId; /* Ptr to the control block for the
connection. */

where InitProt(), CreateProtConncection(), and NextProt'l'imeout() arc cxample names.

‘“Thc method recommended for doing Lhis is to have the routine create the connection handling process(cs) and then forward the
Creatclnstance request to the connection’s primary process. ‘This allows the conncction handling process(es) to manipulate their own
data structures (which are typically kept on the process(es)’ stack(s)).

V-System 6.0 Reference Manual

Adding New Protocols ' 3911

39.6. Monitoringand Debug Facilities

Nommally the internet server runs in the background and is accessed using the standard mcchanisms
discussed in the previous scctions. In situations where poor network or protocol behavior is suspected, it is
often useful to inspect the internal state of the internet server and to observe the behavior of particular
conncctions,

A simple approach to debugging or monitoring involves starting an internet server in dcbug mode (e.g.,
internetserver -d 5, where the debug level “5™ is uscful for debugging or monitoring a wide range of
potential problems). Much of the debug information provided details the operation of TCP/IP conncctions,
though some information about the V 1/0 protocol and other protocols is also reported.

Upon startup, the internct server reads the conﬂguratmn database for the work%tatlon on which it is running
and prints out information about how it will routc to various internet addresscs. 2 This information typxcally
takes the form shown below (for a workstation with internet address 36.8.x.y):

IP Gateway Table:
36.8 -> local

36 -> 36.8.0.4
default -> 36.8.0.1

The host at 36.8.0.4 is a gatcway that can route to subncts within net 36 (Stanford), whilc the host at
36.8.0.1 is a gatcway that can route to all non-Stanford hosts. This routing information is often uscful in
dectermining whether the configuration database for the workstation is sct up properly. Sce Scction 19 fora
description of the V-System configuration database.

Morc flexible debugging is possible using a separatc V program that is provided spcciﬁcally for this
purpose. There are many advantages to this approach: an internct server that is alrcady running can be
cxamined, and non-local internet servers can be inspected to name two. Typing

inquery

to a V exccutive will start a program that can be used for more advanced inspection (and modification) of
the internal statc of the internet server. Inquery will attempt to find an intcrnet server on the local machine,
If none can be found, or if a different internct server is of intercst, the user must type additional commands as
described below.

Once the inquery program has started, it will prompt for single letter commands. Most commands are
intended for low-level debugging by program maintainers and arc not described in detail. The commands
that may be uscful for user-level monitoring are described below in approximate order of uscfulness:

? list availablc commands (including bricf description).

A attach to the debug 170 strcam of the internct server., The default is for debug 170 to go to
stdout (as defined at the time the internetscrver program was invoked). You must always
usc this option when inspecting non-local internet scrvers,

u unattach from the debug 170 strcam of the internctserver (returning it to stdout), One
typically uscs *d 0" to turn of debug output before unattaching (since sending output to
stdout is not always what is wanted).

d change the verbosity of the debug information that is printed. The uscr is prompted for a
digit in the range [0..9], where 0 (the default) indicates silence and 9 indicates full verbosity.
A value of § is appropriate for most uscr-level debugging, as this will cause only the most

32‘!’h|s is a temporary mcchamsm until more complete qnndards for internct routing in local network environments can be defined
and implcmented.

V Servers 12 March 1986

3912

Internet Server

.

“interesting” cvents (e.g., rctransmission of packets, bad packets, unusual events) to be
reported. The cffect of this command is identical to the =d # command line switch that
can be given to the internct server at startup.

reattach to (or rclocate) an internet server. User is prompted for the process id of the
internet server of intcrest (or 0 to mean the local internet server). The inquery program
can only communicate with one internet server at a time.

print version informatin about the internet server currently being inspected (workstation
name, compilation date and time).

lists free resources (e.g., buffers and network instances).
list some basic information about active network instances.

show detailed information about a particular network instance. Only implemented for
TCP instances. Primarily uscful to maintainers — sce the DARPA Internet Handbook for
clues to the mcaning of this information. Fields of possible intcrest at the user-level
include counts of retransmissions, out-of-order packets and packet delays (10ms units).

immediately exit the internet server — abort any existing connections. The inquery
program continucs to run — usec R to reattach to an internct server.

quit out of the inquery program (leavmg the internet scrver runmng) ThcUandd O
commands arc often used before using Q.

For typical user-level monitoring of a local intcrnet server, the “A” command followed by the “d 6" .
command arc the only commands that should nceded. They allow a user to observe the frcquency of
retransmissions, reccipt of bad packets, and other unusual cvents. This may be helpful in identifying the
source of poor performance — flakey networks or gateways, incorrect or mcfﬁcxcnt TCP/IP implemcentations,
or just long nctwork delays.

V-Systent 6.0 Reference Manual

40-1

— 40 —
Memory Server

The memory server (or memserver) simulates a V storage server, storing files in main memory that is
otherwise unuscd. It has no concept of file protection. It otherwise supports the standard V [/0 and naming
protocols. A file “foo” managed by the mem server can be accessed by referring to [storage/locallfoo or
[storage/wsname]foo, where wsname is the name of the workstation where the memserver is running.

A memory server is not part of the standard first team, but one can be started by using thc memserver
command (you will usually want to run this tcommand in the background). On startup, the memory server
checks that no other memory server or storage server is running on the workstation, to avoid name conflicts.

By dcfault, the memory server will allocate as much main memory as it needs to store the files that it
manages. It could thus use up all remaining main memory, if it so desired. The -m and -k flags can be used
to placc an upper bound on how much main memory the server can use for file storage. memserver -m
100K, for instance, limits the amount of storage space to 100K bytcs. memserver -k 100K, on the other
hand, sets the storage space limit to 100K bytcs /ess than the total free memory that is currently available.
(‘M can be scd in place of 'K’ to indicate ‘mega’ bytes.)

V Servers 12 March 1986

411

—4 —
Pipe Server

The pipe server is an 170 server that implements a synchronized stream file called a pipe. A pipe is a
unidircctional flow-cantrolled communication channel between two processes using the standard 170
protocol. V pipes are similar to Unix pipes.

A pipe file instance is type STREAM, VARIABLE _BLOCK, and READABLE (for the read end) or
WRITEABLE (for the write end).

In response to a CREATE_INSTANCE request, the pipe server crecates an instance of a pipe, which is
actually two file instanccs representing the read and write ends of the pipe. The file id returned in the reply to
the CREATE_INSTANCE request is the file id of the write end. The file id of the file instance for the read
end is onc greater than the file id for the write end. The filc instances arc owned initially by the processes
specified in the readowner and writeowner ficlds of the CreatcPipcRequest. When a pipe is created, it is
allocated a fixed number of buffers between 2 and 10 as specificd by the buffers ficld of the
CreatcPipcRequest. Include <Vpipe.h> in a program to definc CreatcPipcRequest.

Pipe synchronization provides that a request to rcad a block that has not yct been written is queued until
that block is written. Also. a request tg write a block when the current buffer limit for the pipe is exceeded is
queucd until buffer spacc is available.” A request to rcad from an empty pipe whose write file instance has
been released is replicd to with an END_OF_FILE reply code. When the read end file instance is rcleased,
unrcad data is discarded and the data of subscquent writes to the write instance arc discarded with the write
returning successfully. A pipe no longer exists when both the read and write instances are released. The pipe
server periodically checks that the owners of both file instances of the pipe cxist. When the server determines
that the owner of an instance no longer cxists, it effec uvcly rclcases that instance.

The pipe server is located by
server_pid = GetP‘Id(PIPE SERVER, ANY _PID)

where the pipe scrver may be local to the workstation or located on a server node.

"The pipe server can be compiled as an independent V program or included in another program. To include
the pipe server dircctly in a V program, call the function InitPipeServer() at the start of the program
and cause the linker to scarch the pipe scrver library when loading the program (i.e., add -tVpipe on the C
compilation command linc). The standard V command pipeserver may be run in the background to provide a
local pipe scrver on any workstation. The V exccutive automatically starts up a local pipe server if there is not
one available when a pipe is needed.

33/\ctually only one reader and onc writer are qucucd: the rest are replied to witha RETRY reply code.

V Servers 12 March 1986

42-1

—42 —
Team Server

42.1. Overview

The tecam server manages the teams of a host. (Teams usually correspond to programs—although a
program may consist of more than onc tcam.) Specifically, it performs the following functions:

o Accepts requests to load teams. Requcsts can originate both locally and remotely, with the team server
deciding whether or not remote execution requests will be accepted.

® Accepts requests to terminate teams.

e Implcments a dircctory of all currently runnihg teams. This directory can be read using the staqdaf'a
dircctory listing protocol.

o Implcments round-robin scheduling for teams. Teams can be run in foreground, background, or guest
mode. Typically, locally invoked programs are run either in forcground or background mode.
Remotely exccuted programs are only allowed to run in guest mode, which is lower in privilege than
either foreground or background mode. ‘The team server also provides 4 real-time priority classes that
run ahead of the three round-robin classes, and a "stopped” priority that ensures that no process on a
stopped team will run.

e Registers itself as the cxception handler “of last resort.” . The exception scrver forwards process
exception messages to the tecam server if no onc clse has registered themsclves for them. The team
server invokes a postmortem debugger on the tcam of the process that incurs an exception. .

e Responds to host state information requests. This is the mechanism upon which host sclection for
remote exccution of programs is bascd. '

o Acts as an agent for migration of logical hosts (i.c. remotely cxecuted guest programs).

The team server resides on the “first tcam™ of a host, i.c., it is considered to be a system server that is always
present on a host and is toaded automatically when a host is booted. Various operations that the tcam server
performs, such as tcam crecation and tcam cxccution priority sctting, arc privileged operations that only
processes on the first tcam may perform.

42.2. Team Loading

The tcam scrver is the only process that may crcate and load new teams. ‘The library routincs
LoadProgram and ExecProgram providc the uscr interface to this function. 'These package up an
appropriate request to the tcam server and take care of matters such as sctting up the tcam cnvironment
block. ‘The team server only creates a new tcam and loads down its object code from a designated open file
instance, Setting up parameters and sctting initial exccution priority and stack size is left to the tcam load
requestor in order to allow control over the order of events, This is necessary for programs such as debuggers
which wish to allow users to sct breakpoints and examine the code before a tcam actually starts to run,

Load requests to the tcam scrver also specify who the “owner” of a tcam is. Tcams are destroyed if their
Owner process goes away (same scmantics as for processes created by other processes). ‘I'cams can optionally
be specificd to be owned by themscelves, thus permitting them to outlive their load requestors,

‘Teams owned by the themsclves are run in background mode, all others arc run in forcground modec,

Y Servers 12 March 1986

422 ' Team Server

42.3. Team Termination and Exit Status Values

A teams can be terminated by having its root process destroyed using the DestroyProcess kernel
operation, or it can exit voluntarily by calling the exit () library routine or returning from main().

Calling ex1t () or returning from main() allows an exit status to be associatcd with the terminating team.
Note: By convention, teams that arc destroyed without having called ex1t() or returncd from main() are
considered to have exit status -1.

The team server also terminates any teams whose owners have died. It uses a timer process to periodically
query the state of all teams which the server thinks are still running and their owners.

42.4. Host Status

The standard context directory listing protocol (see section 34.10) can be used to obtain information on all
teams that are currently running. The command

1istdir [team/local]

lists teams running on the local host, while the command
1istdir [team/hostname]

lists teams running on the named host.

To obtain information on a specific team only, an NREAD_DESCRIPTOR request can be made. The
command

T1istdesc [team/local][bin]telnet

prints information about a program running locally that was invoked under thec name [bin]Jtelnet. The
team of interest can also specified by sctting the request message’s contextid field to the team’s root process id;
in this casc the CSnamec (character string naine) in thc message should be null.

The team server also keeps track of host resource information such as the number of teams running,
processor utilization, memory resources available, ctc. It returns this information to requests it receives for
host status information. ‘These request messages arc uscd primarily to implement host sclection for remote
. exccution of programs. Recquest messages can specify reseurce requirements and the team server will only
reply if its resource state information conforms to the specified requirements. Request messages are typically
sent to the well-known process group of all tcam servers (sce include file Vgroupids . h), although they can
be sent directly to a particular tcam server. (Sce the library routine QueryHos ts for more details on remote
host sclection.) The command

1istdir [team/hostname]
lists all tcam scrvers (and hence all hosts) on the network.

42.5. Remote Execution

The implementation of the team server and tcam-loading library routines is such that load requests can be
made to both local and remote team servers, thus allowing for transparent remote execution of V programs,
In order to assurc the priority of local requests the tcam scrver keeps track of the state of the local host and
uscs this information to determine whether or not a remote load request will be accepted.

Currently the system's host sclection facilities will not sclect hosts on which a user has logged in. [However,
remotce exccution requests may still be sent to the tcam servers of such hosts and they will be accepted. This
policy allows dcbugging programs to be exccuted on a host cven when it has “hung” with a uscr logged in.
The policy depends on the goodwill of users to not circumvent the standard host sclection facilitics. The -x
option of the Tog1n command can be used to disallow all remote exccution requests,

V-System 6.0 Reference Manual

Remote Exccution 42:3

42.6. Round-Robin Scheduling

The team server implements a round-robin scheduling schenre for all teams except the first team and the
workstation agent team (typically either the VGTS or the 5TS). These are typically run at real-time priority
levels 3 and 4 respectively. As mentioned, teams can be run either in forcground, background, or guest mode.
Forcground tcams have priority over background tcams, which have priority over gucst teams.

Scheduling actually employs an additional team priority value for its implementation: a higher (i.c. more
privileged) running priority. The running priority is used to implement the concept of a “time-slice” so that
one tecam can’t block out all other tcams of the same priority. .

Team priorities are user-settable with the ChangeTeamPr {or 1ty operation, which allows users to request
that the priority class of a team be changed, subject to authorization privileges. Users may change the priority
of any tcam on a workstation they arc logged in to, even if the ChangeTeamPrior 1ty request is sent from a
remote location. Guest users of a machine cannot change their priority to anything other than guest or
Stopped.

42.7. Exception Handling

The tcam server is the exception handler of “last resort.” It invokes the standard dcbugger in “postmortcm
modc” on the tcam of a process that has incurred an cxception.

The debugger is invoked with the =d flag, so if the VGTS is in use, the debugger will pop up a new window
for its command interaction. If the VGTS is not running on the workstation, however, the debugger will use
the same standard 170 as the root process of the tcam that has incurred the exception, and may thus come up
in a state where it is competing with an input reader process in the tecam incurring the cxception. This can
prevent input from reaching the debugger, in which case the debugger will not be of much use.

42.8. Migration

The team server’s dutics also include acting as an agent for migration. If a logical host is to be migrated
from another machine then the team server must first accept the request and then act as a local agent for its
implementation. Implementation includes sctting up initial descriptor information in the local kernel and
tcam scrver, and then participating in the transfer operation of the actual descriptor information.,

The team server also implements usage policics with respect to migrating guest logical hosts (i.c. remotely
invoked gucst programs) away from the local machine. ‘The current usage policy is to migrate guest programs
whenever a user logs into the machine, .

V Servers 12 March 1986

43-1

— 43 —
Unix Server

The V Unix server is a Unix program (and not a V program or command) designed to simulate a V
kernel/storage server on a YAX Unix system (currently only Berkeley Unix 4.2 or 4.3). It provides access to
some of the Unix system scrvices via the V kernel interprocess communication primitives. To workstations
running the V kernel, the Unix server appcars as a standard V server, primarily providing Unix file access
using the standard V'1/0 protocol. Note: Unix servers are also frequently referred to as ¥ servers. (Someday
we may even implement such a server for an operating system other than Unix.)

Unix servers, like truc V storage servers, implement the V-System naming protocol. The Unix system’s
complete dircctory tree is rooted at a node called [storaga/hosmameli where hostname is the name
returned by the Unix gethostname() routine (converted to lower casc).” A Unix server may be cither
public (if it is started with the -p option), or non-public. A public Unix scrver implements the generic name
[storage/any, and therefore such a host must maintain the up-to-date versions of all the standard V-
System files and commands. On the other hand, hosts that run non-public Unix servers are not required to be
kept up-to-date.

43.1. Sessions

If a V server is running on a Unix system, then remote access to the resources of this system is provided by
session processes. Scssions are ‘forked’ copies of the main V server, cach dedicated to a particular V user
number, Like the main V server, each scssion appears externally as a regular V process. On cach Unix host,
the main V scrver, plus all of its sessions, belong to a local V process group. The ‘group id’ of this process
group is usually usced to communicate with the Unix server.>As mentioned above, cach scssion is dedicated to
a particular V uscer number. Any message that is sent to the common group id will be handled by the
particular scssion that is responsible for that message’s user number. (If no such scssion exists, then the main
scrver will create one automatically.) The distribution of incoming packets to the individual scssions is
handlcd by the packet filtering code in the Unix kernel (sec the “installation notes™ for further details),

Warning: As an optimization, the packet filters for cach msion currently assume that the high-order 16 bils of cach user
number arc zcro. ‘Thus, one should beware of using user numbers higher than 6553S. ‘This restriction is likely to be
climinatcd in future relcases of the system.

43.1.1. User Correspondences

The main V server always runs as ‘root’. The Unix uid of a session, however, is determined by a V-to-Unix
user correspondence table, which is a mapping .from V uscr numbers to Unix user namces. The user
correspondence table is maintained as a file on cach Unix host. "The name of this file is given by the macro
USER_CORRESPONDENCI_FILE, defined in the header file config.h (in the Unix scrver source
directory). (At Stanford, this filc is named /etc/V/Vusercorrespondence.) For sccurity, the user
correspondence file should be writcable only by “root”. 'T'he file should contain uscr correspondences for at
least the following V uscr numbers:

0 (SUPER_USER), and 1 (SYSTEM_USER)

3"Imsmamc can also be sot by starting the server (Vserver) with the =n option,

35lna'iw‘dual pids arc used for file instance 170, however.

V Scrvers 7 June 1986

432 ' Unix Server

These should cdrrcspond to whatever Unix account is used to manage V-System files on
Unix (although preferably not “root”).

2 (UNKNOWN_USER)
: This should correspond to a Unix user with very few privileges.

43.1.1.1. Adding and Deleting User Correspondences

[f a user correspondence for a particular V user number is not present in the user correspondence file, then
the user correspondence for the V UNKNOWN_USER is used instead. That is, a scssion for a V user who
does not have a user correspondence will run with the same permissions as a non-logged in user. In addition,
such uscrs arc not permitted to execute programs remotely on the Unix host (sce section 43.3).

A V user can use the (V) addcorr program to create (or modify) a user correspondence on any Unix host
(provided that it is running a V server, of course). addcorr repcatedly prompts for a host name, then a
(Unix) user name and password on this host. It then attempts to create a new user correspondence. (If this is
successful, then any existing correspondence for the V user will be removed.)

The delcorr program can be used to delete an cxisting user correspondence. delcorr repecatedly
prompts for a host name, and attempts to delcte an existing user correspondence for the V user on this host.

The V SUPER_USER can usc addcorr and de1corr to modify user correspondences for any V user (not
just for SUPER_USER). (In this case these programs will also prompt for a V uscr name.)

The following additional points should be noted:

o When a user correspondence for a V user on a particular host is added/modificd (using addcore) or
deleted (using delcorr), then any existing session for the V user on this host will be destroyed.
(Subsequently, a ncw session will still be created automaticatly, if nceded.)

o The V UNKNOWN_USER is not permitted to modify his own uscr éorrcspondenccs.

o For sccurity, the Unix servers do not allow uscr correspondences to be made to “root”, nor to Unix
accounts with a null password.

o If your current context is a Unix V session, then the (Unix) whoam1 program can be exccuted remotely,
in order to show the Unix uid of this scssion. (Recall that the (V) name program can be used to show
your excc’s V user number.)

43.1.2. Lifetime of Sessions

A scssion will dic automatically if it has been inactive for a certain period of time (defined by
MAX_SESSION_INACTIVITY in config.h—15 minutcs at Stanford), and if it is not maintaining any
instances with valid owncer pids.

43.2. File Access

When a session receives a CREATE_INSTANCE request, it attempts to open the named file. I the session
has the correct permissions, then an instince is created, with the fype licld set according to the request mode,
Files opened in FREAD mode are of type READABLE, FIXED_LENG'T'H, and MULTI_BLLOCK. 'The
modes FCREATE and FMODIFY create instances of typc READABLE, WRITEABLE, and
MULTI_BLOCK. FAPPEND modc adds the further constraint of APPENID_ONLY. All instances are
random access, but operations must start on a block boundary. The block size of these instanccs is equal to
the maximum appended scgment size for V kernel messages.

If the mode is FCREA'TE, or it is FMODIFY and the file docs not exist, then a new file is created along
with the associated instance. Iiles are created with Unix file protection bits (*maode bits™) sct to allow reading
and writing by the owner, and rcading by group and others. "This protection mode is given by the macro

V-System 6.0 Reference Manual

File Access ‘ 433

.

DEFAULT_CREAT_MODE, dcfined in config.h. -A client may change the mode bits using a
WRITE_DESCRIPTOR or NWRITE_DESCRIPTOR request.

*

43.3. Program Execution

A clicnt can execute Unix programs through a V session by sending a CREATE_INSTANCE request with
the FEXECUTE flag set in the mode field. The name and arguments of the program to be exccuted are sent
in the scgment with the NULL character being a ficld scparator. The last argument nced not be null
terminated. The context in which the program is to be exccuted is also specificd in the request.

Given a request, the session has a built-in scarch path that it uses to determine which Unix program to
execute, This scarch path is given by the macro PROGRAM_SEARCH_PATH, defined in config.h.
session trics to find the first file in a directory along the scarch path that matches the given name. If the name
contains a '/, then the search path mechanism is not uscd and only the context specified in the request is
scarched. If the program is a shell script, the Bourne shell is invoked explicitly, and it determines which shell
should exccute the script based on the normal Berkeley Unix conventions. As a side-effect, the shell expands
any wild-card characters (such as *** and '?7") found in the arguments. This expansion docs not occur if the
Unix program is not a shell script.

After all of the preliminary checking is done, the session forks and its child attempts to run the program.
The parent process replies to the requestor with an OK status. Howcver, there is no guarantee that the
execution will be successful. A failurc can occur after the OK reply has been rcturned, since the program is
not loaded until the child has been forked off and the reply is sent asynchronously. If a failure of this.nature
occurs, then an crror message should appear in the program’s output.

In the reply message, the scssion includes an instance id for the running program. If the file mode in the
CREATE_INSTANCE request was FREAID, then the instance id specifics an instance of typc READABLE,
VARIABLE_BLOCK, and STREAM. The clicnt can read the program’s standard output using this instance.

If the mode was FCREATE, FMODIFY, or FAPPEND, then the instance returned in the reply message is
of type WRITEABLE, VARIABLE_BI.OCK, APPEND_ONLY, and STREAM. Data written into this
instance is piped into the program’s standard input, An instance with id 1 greater than the one returned in the
reply is also created, of type READABLE, VARIABLE_BI.OCK, and SIREAM. Rcading from this instance
provides access to the program'’s standard output.

When the program terminates (cither normally or abnormally), the session returns an ENID_OF_FILE
reply to any write requests. Read requests will continue o be accepted as long as data is left in the pipe.
Write requests will block if the pipe is full and the Unix program is not rcading from it. (Unix pipcs can
buffer up to 4096 bytes of data.)” .

A clicnt may terminate the program by relcasing all instances associated with it. If only onc of the instances
is closed, the program will not terminate immediatcly. "This allows a client to closc the program’s input and
have it clean up before cxiting. Onc should be carcful not to release the readable instance before program
termination, because Unix sends a signal to any program that writes to a pipe with only one cnd. The signal
will kill the Unix process, if the process is not catching or ignoring it.’

43.4. File Descriptors

The server supports V context directorics and descriptor requests. One can open a Unix directory with the
FDIRECTORY flag sct in the mode ficld and the scrver will automatically translate standard Unix dircctory
centries to V Unix file descriptors. Dircctorics are not writcable directly, but descriptors can be modified using
a WRITE_DESCRIPTOR or NWRITE_DESCRIPTOR request. ‘The UnixlFileDescriptor type is defined in

%Altcrnalivcly‘ the scarch path can be found by exccuting the Unix command printenv. This will display the environment
variables that are passed on o programs exccuted via the scssion,

Y Scrvers 7 June 1986

434 . . Unix Scrver

the system include file <Vdirectory.hd.

43.5. Debugging Sessions

It is possible to turn on dcbugging output from a session (or thc main server), by ‘killing’ it with the
SIGTSTP signal. Dcbugging output is redirected to the file /tmp/VserverDebugn, where 2 is the (Unix)
pid of the server or session. To turn off debugging output, Kill the process with the SIGTSTP signal once
again. Warning: Debugging should be turned off as soon as possible, because this file quickly gets to be very
big. Note that debugging output is likely to be of use only to wizards.

If your current context is a Unix V session, then the (V) instances program can be used to find out the
status of whatever file instances this session is maintaining at the time.

V-System 6.0 Reference Manual

441

— 44—
Workstation Agents

Workstation agents are a generic class of server used in the V-System. A workstation agent has the duty of
mediating between the,workstation hardware, the user, and the other programs in the system. It is responsible
for linc cditing functions,c.g. the fact that the back space key does not add a backspace character to the input
stream but delctes a character from the input stream. [t translates the newline character "\n’ into a carriage
return/linefeed sequence on workstations that require it. It is also responsible for interacting with the excc
server to crcate at Icast onc executive, or providing means for the user to do so. It may, but nced not, support
multiple i/o streams. Workstation agents may differ for two reasons: because they arc designed to offer
different scrvices to the uscr, or because they are designed to run on different types of workstations.

The V system currently contains two different workstation agents, the Simple Terminal Server (STS) and
the Virtual Graphics ‘I'erminal Server (VGTS). The Simple Terminal Scrver is a minimal workstation agent.
It provides a single i/o stream, using the terminal facilitics provided by the kernel console device, and creates
onc exccutive using that i/o strcam. The standard V linc cditing interface is provided, but no mouse or
graphics facilities are available. The Virtual Graphics Terminal Server, in contrast, provides a very large sct of
facilitics: multiple i/0 streams in multiplec windows, -graphics, and mouse-controlled menus. But it supports
the samc linc editing facilitics. A large class of programs should be able to run undcr either of these
workstation agents, or any other workstation agent, without any knowledge of which workstation agent is
present.

The newterm command allows the user to replace the workstation agent on his workstation without
rebooting the workstation.

44.1. Implementation of Workstation Agents

These are the requests that should be supported by a workstation agent, at the minimum:

o It should support the V 170 protocol for INTERACTIVE_STREAM filcs. In simple cascs, it may give
polite replies to CREATE_INSTANCE and RELEASE_INSTANCE without rcally doing anythmg, as
the STS does.

e It should support thc QueryPadRequest and ModifyPadRequest messages in the fashlon
cxpected by QueryPad() and Mod1fyPad(). In particular,ModityPad(f11e, 0) should turn off
all “cooking”, giving the client access to the raw, unadorned terminal.

In addition, the following convcntlons should be obscrved, in order to allow the newterm command to
work:

o Upon starting up, the workstation agent should join the local workstation agent group.

o [t should support thc Die request message, which is a politc way of asking the workstation agent to
expire.

V Scrvers 1 May 1986

451

— 45 —
Simple Terminal Server

The Simple Terminal Scrver (STS) is a minimal terminal agent. It does not use graphics, and it takes up less
memory than the VGTS. Only one [/0 stream is supported. A program that wants to do graphics dircctly on
the SUN hardware, not mediated by the VG'T'S, should be run under the STS.

The STS creates one exccutive. If this executive is ever destroyed, by encountering end of file or by other
means, it will be replaced within a second or so. Such a replacement can be forced by the sequence control-t
x. A program running under the executive can be killed by control-t k. The normal tZ and +C commands
also work, but they can be disabled by ModifyPad() rcquests, while the control-t sequences cannot be
disabled.

45.1. STS Line Editing Facilities

The STS provides a superset of the line cditing facilities that are provided by the VGTS. All
ModifyPad() bits that are not rclated to the mouse work as thcy do under the VGTS: CR_Input,
LF_Output, Echo, Lincbuffer, PageOutput, PageOutputEnable, and DiscardQutput.

As well as the line cditing commands described in section 2.5, the STS also supports the following
commands: . .

CTRL- Re-display the input buffer.

CTRL-n Move cursor down one screen line,

CTRL-p Move cursor up one screen line.,

CIRL-q Quote next character. -Control characters arc displayed as ‘¢C'.

CTRL-y Mo_vg the contents of killbuffer into the input buffer, inscrting at the current cursor
position, _

CTRL-\ Insert next character with the cighth bit sct. Character is displayed as "\nnn', where nnn is
the octal representation of the character code. .

ESC-, Move cursor to the beginning of the input buffer.

ESC-. Move cursor to the end of the input buffer.

ESC-BACKSPACE Same as ESC-b.)

ESCd Kill from the cursor to the end of the current word.

ESC-DEL Samc as 1ISC-h and CI'RL-w.

ESC-t Transpose the two words preceding the cursor.,

45.2. HardwareEnvironment

_The STS communicates with the user via the kernel console device. If the workstation has a framebuffer,
characters are sent to the terminal cmulator built into the workstation's PROM monitor; otherwise, characters
arc sent through scrial line 0 to a character terminal,

V Secrvers 1 May 1986

452 Simple Terminal Server

'The attached terminal or terminal emulator must understand the escape sequences sent to it by the STS for
cursor positioning. The STS currently works properly with the following terminal emulators and terminals:

¢ Any PROM monitor terminal cmulator that supports ANSI standard escape sequences, €.g., the SMI
PROM monitor.

o Cadlinc PROM monitor terminal emulator.

e Any character terminal that supports ANSI standard escape sequences, e.g., VI'100 or Heath-19 in
ANSI mode.

45.3. Remote Terminal Server .

The Remote Terminal Scrver (RTS) supports the same interface as the STS, but encapsulated in the ARPA
TELNET Protocol; its standard input and output are normatly a TCP connection opened by the telnct server
(p. 4.1). Like the ST, the RTS uses exccs created by the local exec server; this may lead to difficultics if there
is another telnet or local user on the same host, as the excc server assumes it serves only onc uscr at a time.

The RTS violates the standard protocol on two points: it insists on echoing input (under the control of
client programs) even if the ECHO option is not successfully negotiated, and it docs not send go-ahcads as
may be required by some hosts to support half-duplex terminals, These violations are typically not a problem
in paractice, as most user Tclnet implementations support these options. All other options are properly
refused. ‘ .

The RTS works with the Heath-19 terminal (in ANSI mode), the VAT provided by the VGTS, the SMI
PROM monitor, and possibly others.

V-System 6.0 Reference Manual

46-1

—46 —
Virtual Graphics Terminal Server

The Virtual Graphics Terminal Service (VGTS) allows the display of structured graphical objccts on
workstations (with appropriate displays) that run the V system. This chapter describes how the standard
library routines interface to the VGTS, as well as describing some of the VGTS's internal structure.
Applications programmers usually nced not concern themsclves with the details of this section; instead they
should consult the “Graphics Functions” scction of the manual (section 29).

46.1. Current VGTS Versions

There arc currently two working versions of the VGTS. sun100vgts is used on workstations with SMI
modecl 100 framebuffers, whilc sun120vgts is used with the SMI model 120 framcbuffer. (Sun model S0
workstations also usc the model 120 framcbuffer.) Users usually will not have to concern themselves with this
distinction, sincc teaml-vgts (the default first tcam) automatically loads the correct version of the VGTS
shortly after it begins running. Furthermore, the program vgts is a ‘bootstrap’ program which loads the
correct version of the VGTS (in a new tcam), and then dies. Thus, “vgts” can be given as an argumcnt to
newterm (sce Section 4), regardlcss of the workstation’s framcbuffer type.

The difference in VGTS versions is important, however, when loading special first tecams that have a VGTS
alrcady linked in. team1l+sun100vgts will run only with a SMI modcl 100 framebuffer, and
teami+sun120vgts only with a model 120 framcbuffer,

46.2. AVT Escape Sequences

Unless otherwise noted, all escape sequences can come with or without the optional Ieft bracket between
the cscape and the escape command character. Arguments to the escape command are decimal character
strings scparated by a semicolon. ‘The following subsct of the ANSI standard escape sequences is decoded by
the SUN VGI'S terminal emulator:

BELL Causcs some form of audio feedback (buzzer, bell, ctc.) if possible, and flashes all the
: views of the AVT.
TAB Positions the cursor at next multiple of cight (plus onc) columns, crasing characters

between the current cursor position and the new position, WARNING: this behavior is not
VT100 compatible and is subject to change. .

FF Clears the AVT.

CR Returns the cursor to the first column of the current line.

LF NewLine -- Moves the cursor down one line. If it is at the last linc of the scrolling region,
all lincs in the region move up (scroll). '

BS Cursor moves backwards onc space,

SO Shift Out -- Select the G1 character sct. Currently ignored. -

S Shift Oht -- Sclect the GO character sct. Currently ignored.

NUL Null -~ ignored; may be used for padding.

V Scrvers 1 May 1986

46-2

DEL
ESCA
ESC[iA
ESCB
ESC[iB
ESCC

ESC[iC
ESCD

ESC[iD
ESCE

ESC{licf
ESCH
ESC{l.cH
ESCJ
ESC(nJ

ESCK
ESCL

- ESC[aL
ESCM
ESC[iM
ESCP

ESC[iP
ESC@

ESCli@
ESC[im

ESClubr

ESC<

Virtual Graphics Terminal Server

Delete -- ignored; may be uscd for padding.
CursorUp -- move the cursor up one line.
CursorUp -- movc the cursor up i lines.
NewLine -- move the cursor down, as with LF.
NewLine -- move the cursor down the ilines.

CursorForward -- move the cursor forward, but do not overwrite the character at the
current position.

CursorForward -- move the cursor forward i'character positions.

Index -- scroll the, current scroll region up one line. WARNING: this behavior is not
VT100 compatiblc and is subject to change.

CursorBackward -- move the cursor backwards i character positions.

Next Line -- move the cursor down one line, but if it is at the cnd of the region, scroll the
region up (Index).

CursorPosition -- Move the cursor to linc /, column ¢. The lines and columns start from the
upper left, which is (1,1). Specifying zero or leaving an argument blank is equivalent to a
valuc of 1. Thus ESCJf alone will "home" the cursor to the upper left.

Ignored. Used by some terminals to sct tab stops.

CursorPosition -- same as ESC f. .

ClearToEOS -- clear from the current cursor position to the end of the AVT.

Clear -- if the argument is 2, clear the cntire AVT. Otherwise, clcar to cnd of AVT.
ClearToEOL -- clecar from the cursor to the end of the current line.

InscrtLine -- inscrt a line at the cursor position. All the lines below and including the
current onc arc moved down. ‘The bottom line goes away.

Inscrtl.ine - insert » lines at the cursor position.

Reverselndex -- move the scroll region down one linc. The top line in the scroll region
becomes blank. WARNING: this hehavior is not V1100 compatible and is subject to
change.

DeleteLine -- delete i lines starting from the linc that the cursor is on, and movc all lines -
below them up.

DeletcChar -~ dclete the character at the cursor position, moving all the rest of the
characters in the line to the Icft onc column,

DeleteChar -- delete / characters, starting from the onc under the cursor.

InsertChar -- move all the characters to the right of the cursor to the right one column. A
spacc appears at the cursor position.

InsertChar -- Insert i characters at the cursor position.

- If the value of the argument is non-zcro, standout mode is turned on, which will mecan

characters appcar in reverse vidco. A zero argument resets to normal video.

Specifics the top and bottom lincs of a scroll region. This is uscd in the Index and
Reverselndex commands.

Enter ANSI mode. Currently it is ignored, since AVTSs are always in ANSI mode.

V-System 6.0 Reference Manual

AVT Escape Sequences 46-3

.

ESC)e¢ Select GO character sct. Currcntly it is ignored.
ESC(c¢ Select G1 character sct, Currently it is ignored.

The default size of an AVT is 28 lines by 80 columns. This terminal type is just a 28 line VT-100, with a few
additional cscape sequences as described above. On (Stanford) Unix 4.2 systems, this corresponds to the
terminal typc vgts (or vgts28). (Other common AV'T sizcs are also supported in the Unix termcap file,
namely vgts24, vgts48 and vgts64.) For TOPS-20, the command term VT100 will work. On the
SU-AI WAITS system, the . tty sun 28 80 command can be uscd for display service.

46.3. VGTS Messag:elnterfa'ce ' .

This scction describes the internal message interface to the VGTS.

46.3.1. 1/0 protocol requests

The following requests of the I70 protocol (sce section 33) are supported:

CREATE_INSTANCE

Causes a new AVT to be created. The view manager will let the user decide where to put
the upper left corner of the AVT by changing the cursor and blocking the process until the
user clicks the mouse. The file instances crcated arc READABLE, WRITEABLE,
VARIABLE_BLOCK STREAMSs. ‘The first two unspccificd ficlds of the message (if non-
zero) are the number of lines and columns in the new AVT. ‘The filcname ficld of the
message is used as the name of the virtual terminal. Usually this is invoked only by the
OpenPad() routine described in scction 29.

QUERY_INSTANCE :
Returns the standard values, the same as a Create Instance reply.

WRITE_INSTANCE
Write the bytes to the AVT corresponding to the file instance. Output conversions are
performed if the appropriatc *Cooking™ modes are sct.

WRITESHORT_INSTANCE
Samc as WRITE_INSTANCE.

READ_INSTANCE
Blocks until some characters are entered into the AV'T. If there arc any characters alrcady
in the event qucue for this AV, they are returncd immediately. Note that since the
instance is VARIABLE_BI.OCK, un unknown number of characters can be returned, up
to the blocksize.

- RELEASE_INSTANCE :
The AVT is deleted, along with any views of the AVT, and storage is reclaimed.

SET_BREAK_PROCESS
The break process for cach instance is the process which will be killed if the view manager
*Kill Program™ command is invoked within the AVT,

SET_INSTANCE_OWNER
Changes the (proccss) owner of the AVT.

46.3.2. Workstation A.gent RequeSts

The following request codes (and associated message structures) arc defined in {Vtermagent.h>:
QueryPadRequest Returns the cooking modc bits for the AV, as well as the AV'T™s width and height.

V Servers 1 May 1986

464 _ Virtual Graphics Terminal Server

ModifyPadRequest
The AVT’s cooking mode bits and/or size are modified. The structure ModifyMsg
describes the format of this message.

SwitchInput The specified AVT is selected for input. This is used in the Se1ectPad() routine.

EventRequest The first item from the event queue is returncd to the requester. If the event qucue is
. cmpty, the requester is blocked until an cvent comcs in for the given virtual terminal.

SetBannerRequestThe specified virtual terminal’s banner string is changed. This request code is used by the
SetVgtBanner routine.

RedrawRcquest The specified AVT is redrawn.

LincEditRequest The data in the mcssage are treated as line editing commands, rather than simply being
output to the AVT. Note, however, that the line editor treats most characters as sclf-

inserting (see scction 2.5).

GetRawlO The server and instance ids of the VGTS’s own stdio are returned to the requester. The
newterm command uses this code in order to determine what stdio to give the new
workstation agent.

Die This code requests the VGT'S (or other workstation agent) to commit suicide. This is used

by thc newterm command, as a remporary kludge only (to circumvent current problems
with the system’s user number and permission checking policy).

46.3.3. Other requests

SET_DEBUG_MODE
Scts (or clears) dcbugging ﬂags wnthm the VGTS. This code is uscd by the debugvgts
command.

46.4. Internal Organization

The current VGT'S implementation consists (logically) of the following modules (‘modules’ in this
description do not necessarily correspond to procedure names or source files):

e Master Multiplexor. This is the only module which is opcrating system dependent. Upon initialization,
the appropriate process structurc is sct up. "I'he main loop consists of waiting for a message, dispatching
to the appropriate routine in the other modulces, and returning a reply. Synchronization problems are
avoided by having the data structurcs accessed only in one process.

e Terminal cmulator. This module interprets a byte strcam as if it were an ANSI standard terminal.
Printable characters are added to text objects, and control and cscape codcs arc mappcd into the proper
SDF manipulations.

o [nput handler. There are various device-dependent input handlers. For example, a single process rcads
the keyboard and sends typed characters to the multiplexor. Another reads the mouse and tracks the
cursor,

o SDF manipulator. This module handles requests of applications to create, destroy, and modify
graphical objects in structurcd display files. These routines maintain bounding boxes for symbols, and
call the appropriate redrawing routines when necessary. There is a hash table to locate items given their
clicnt namcs.

o SDF interpreter. These-are the highest level redrawing operations. The structured display files are
visited recussively, with appropriate clipping for bounding boxes totally outside the arca being redrawn,

o Display operations. These arc the graphical operations called by the SDF interpreter. They are
gencrally device independent.

V-System 6.0 Reference Manual

Internal Organization ' 46-5

e Drawing primitives. There is one module which implements device dependent graphics primitives. It is
conditionally compiled for different graphics devices,

o Hit detection. The structured display file is visited, but instead of actually drawing the primitives, the
positions are checked to match the cursor’s position. A list of possibly selected objects (under other
optional constraints) is returned to the application.

e View manager. This module allows the user to create, destroy, and modify the screen layout, using the
mouse.

e Viewport primitives. These arc the routines which perform the view-changing operations, invoked by
either an applicatjon program or the user through the view manager.

46.4.1. Executive Interface

The V-System is intended to be modular, so VGTS could conceivably be used with an executive other than
the standard one. The VGTS module execs.c handles the Excc Control part of the view manager
command, It starts up new exccutives as ncw processcs on the same team, using the CreateExec() library
routine. The Executive «calls the functions SetVgtBanner(file, banner) and
SetBreakProcess(file, pid) ascommands arc cxccuted.

46.4.2. Frame Buffer Interface

The device-dependent parts of the VGTS currently reside in the files drawl.c and draw2.c. The
g1__...() macros form the intcrface to the underlying graphics device. These macros are defined in the
includc files g1__sun100.h and g1__sun120.h. (Which include filc is used depends upon which version
of the VGTS is being compiled.)

46.5. Debugging the VGTS

The debugvgts command allows the user to obtain a trace of ccrtain events within the VGTS. The
command syntax is

debugvgts <debug code> CVGT #>
or
debugvgts trace <VGT #).

In the first form, the debug code (interpreted as a hexadecimal number) is a disjunction of bit flags taken
from thosc defined in the system header file <Vgtp.h>. <VGT #) is thc number of a text VGT to which
debugging output is to be redirected. If this number is not that of a valid text VG, then debugging output is
dirccted to the VG'I'S's stdout (the console) instcad. Once VG'I'S debugging has been turned on, it can be
turned off again using a dcbug code of 0. A debug codc of 0 is also uscful for redirecting trace output as
explained below.

In the sccond form of the debugvgts command, the top-level symbol associated with <VGT #) is
dumped in a symbolic textual torm to the current output (as declared in the first form.) This is uscful for
debugging programs that use the graphics capabilitics of the VG'TS as well as debugging the internals, if
<SVGT #2 s positive, then interactive mode is used, and the trace routine pauses after cach item listed. If it is
negative, then the top level symbol of the VG specified by the absolute value of <VGT #) is dumped
without pausing.

V Servers 1 May 1986

Part IV:
Appendices

[

(21

B3]

[4]

51

[6]

gl

(8]

19

Al

— Appendix A —
A V-System Bibliography

E.J. Berglund and D.R. Cheriton.

Amazc: A distributed multi-player game program using the distributed V kernel.

In Proc. 4th International Conference on Distributed Computing Systems, pages 248-253. 1EEE, May,
1984, .

E.J. Berglund and D.R. Cheriton,
Amaze: A multiplayer computer game.
IEEE Software 2(3):30-39, May, 1985.

D.R. Cheriton.
An experiment using registers for fast message-based interprocess communication,
Operating Sysiems Review 18(4):12-20, October, 1984,

D.R. Cheriton.)

Local networking and internetworking in the V-System.

In Proc. 8th Data Communications Symposium, pages 9-16. ACM/IEEE, October, 1983.
Proceedings published as Computer Communication Review 13(4).

D.R. Cheriton.
The V Kernel: A software basc for dlstnbutcd systems.
IEEE Software 1(2):19-42, April, 1984,

D. R. Cheriton and T. P, Mann.,

A Decentralized Naming Facility.

Technical Report, Computer Science Department, Stanford Umvcrs:ty. Fcbruary, 1986.
Submitted to ACM Transactions on Computer Systems.

D.R. Cheriton and T.P. Mann.

Uniform access to distributed name interpretation in the V-System.

In Proc. 4th International Conference on Distributed Computing Systems, pages 290-297. 1EEE, May,
1984.

ND.R. Cheriton and W. Zwacncepoel.

Distributed process groups in the V kerncl,

ACM Transactions on Computer Systems 3(2):77-107, May, 1985,

Presented at the SIGCOMM "84 Symposium on Communications Architectures and Protocols, ACM,
Junc 1984,

D.R. Cheriton and W. Zwacnepocel.

The distributed V kernel and its performance for diskless workstations.

In Proc. 9th Symposium on Operating Systems Principles, pages 129-140. 'ACM, October, 1983.
Proceedings published as Operating Systens Review 17(5).

Appendices 30 April 1986

A2 A V-System Bibliography

[10] J.L. Edighoffcr and K.A. Lantz.
Talicsin: A distributed bulletin board system, .
Presented at the 2nd International Conference on Computer Message Systems, IFIP, September 1985.
Proccedings to be published by North-Holland.

[11] K.A. Lantz.
An architecture for configurable user interfaces.
Presented at the Working Conference on the Future of Command Languages: Foundations for
Human-Computer Interaction, IFIP Workmg Group 2.7, September 1985. Proccedings to be
published by North-Holland.

[12] K.A.Lantz, D.R. Cheriton, and W.I. Nowicki.
Third generation graphics for distributed systems.
Technical Report STAN-CS-82-958, Dcpartment of Computer Science, Stanford University,
February, 1983,

[13] K.A.Lantz and W.I. Nowicki.
Structured graphics for distributed systems.
ACM Transactions on Graphics 3(1):23-51, January, 1984.

[14] K.A.Lantz and W.I. Nowicki.
Virtual terminal scrvices in workstation-bascd distributed systems.
In Proc. 17th Hawaii International Conference on System Sciences, pages 196-205. ACM/IEEE,
January, 1984.

[15] K.A.Lantz, W.I. Nowicki, and M.M. Theimer.
An cmpirical study of distributed application performance.
IELE Transactions on Soflware Engineering SE-11(10):1162-1174, October, 1985.

[16] K.A.lantz, W.I. Nowicki, and M.M. Thecimer.
Factors affecting the performance of distributed applications.
In Proc. SIGCOMM ‘84 Symposium on Communications Architectures and Protocols, pages 116-123,
ACM, Junc, 1984,

[177 W.L Nowicki.
Partitioning of IFunction in a Distributed Graphics System.
PhD thesis, Stanford University, 1985.

[18] M.M. Thecimer, K.A. Lantz, and D.R. Cheriton.
Prcemptable remote exccution facilitics for the V-System.
In Proc. 10th Symposium on Operating Systems Principles, pages 2- 12 ACM, l)cccmbcr 1985.
Procecdings published as Operating Systems Review 19(5).

[19] W.Zwacncpocl.
Message Passing on a Local Network.
Phl) thesis, Stanford University, 1985.

3 April 1985 V-System 6.0 Reference Manual

B-1

— Appendix B —
C Programming Style

There has been an effort to use a consistent style in V for writing C programs. The style and the uniformity
it encourages are motivated by the desire for readability and maintainability of software. Although style is to
a large extent a matter of individual taste, the following describes some general practices with which most of
us agree.

B.1. General Format

Recognizing that softwarc is written to be rcad by other programmers and only incidentally by compilers,
the gencral format follows principles established in formatting general English documents. Take a few more
seconds to make things more readable; it is time well spent.

First, software is written to be printed on standard size (8 by 11) paper. This means avoiding lines longer
than about 80 columns. In genceral, there is one statement or declaration per line.

As with other documents, judicious usc of white spacc with short lines and blank lines is encouraged. In
particular, :

L. At least 2 blank lincs between individual procedures.
2. Blank lines surround “large” comments.

3. Blank lincs around any group of statements.

4, Blank lincs around cascs of a switch statement,

B.2. Names

Names arc chosen when possible to indicate their secmantics and to read well in use, for cxample:
if (GetDevice(EtherInstance) == NULL) return NOT_FOUNOD:

Words should be spelled out, not shortened. A good test is to read your code aloud. You should be able to
communicate it over a telephone casily, without resorting to spelling out abbreviations.

In addition, character case conventions arc used to improve readability and suggest the scope and type of
the name. Global variables, procedures, structs. unions, typedefs, and macros all begin with a capital letter,
and arc logically capitalized thereafter (c.g. MainHashTable). A global variable is onc defined outside a
procedure, cven though it may not be exported from the file, or an external variable, The motivation for
treating macros in this way is that they may then be changed to procedure calls without renaming,

Manifest constants cither follow the above convention (since they arc cssentially macros with no
parameters) or clse arc fully capitalized with use of the underscore to separate componcents of the name. E.g.
WRITE_INSTANCE.

Local variables begin with a lower-case Ietter, but arc cither logically capitalized thercafter (c.g. b1tWidth,

power, maxSumOfSquares) or clse totally lower case. Ficlds within structurds or unions arc treated in this
manncr also.

L.ocal variables of limited scope are often declared as register, if they are used very often inside inner loops.
It is not only more efficicnt, but usually more readable, to put a pointer to an array of complicated structures

Appendices 7 Junc 1986

B2 ‘ C Programming Style

(a common occurrence in object-oriented programming) into a register variable with a short name. For
example,

register struct Descriptor *p = DescriptorTable+objectIndex;
p->count = 0;

Initialize(p->start);

p->usage = p->default:

p->length = p-»end - p->start;

instead of the incfficient and cluttered:

DescriptorTable[objectIndex].count = 0;
Initialize(DescriptorTable[objectIndex].start):
DescriptorTablelobjectIndex].usage = DescriptorTable[objectIndex].default;
DescriptorTable[objectIndex].length = DescriptorTable[objectIndex].end

- DescriptorTable[objectIndex].start;

B.3. Comments

There are generally two types of comments: block-style comments, and on-the-line comments or remarks.
Multi-line. block-stylc comments have the /*.and */ appearing on lines by themsclves, and the body of the
comment starting with a properly aligned *. The comment should usually be surrounded by blank lines as
well. Thus it is casy to add/delcte first and last lines, and it is casier to detect the common error of omitting
the */ and thus including all codc up to and including the next */ in a comment.

,.
* this is the first 1ine of a multi-line comment,
¢ this is another line

* the last line of text
./ .

On-linc comments or remarks are uscd to detail declarations, to explain single lines of code, and for brief
(i.e. onc linc) block-style descriptive comments.

Procedures are preceded by block-style comments, cxplaining their (abstract) function in tcrms of their
parameters, results, and side cffects. Note that the parameter declarations are indented, not flushed left,

SystemCode EnetCheckReguest(req)
register IoRequest ®req:
{
’* ,
* Check that the read or write request has a legitimate buffer, etc.
./
register unsigned count;
register SystemCode r:

/* Check length */
count = req->bytecount: ' i
if (count <= IO_MSG_BUFFER) return 0K; - ‘

req->bytecount = 0; /*-To be left zero if a check fails ¢/
if (count > ENET_MAX_PACKET)

r = BAD_BYTE_COUNT;
}
else

{
/.
¢ Make sure data pointer i3 valid.
¢ Check that on a word boundary and not in the kernel area.
., . T

7 June 1986 V-System 6.0 Reference Manual

B-3

.

if ((!CheckUserPointer(req-sbufferPointer)) ||
(Active->team->teamSpace.size < (req->bufferPointer + count)) ||
- ((int) req->bufferPointer) & 1)

r = BAD_BUFFER;
}

alse

req->bytecount = count;
r = 0K;
}
) B
return r;

}

B.4. Indenting

The above example shows many of the indenting rules. Braces (“{” and “}”) appear alon¢ on a line, and
are indented two spaces from the statement they arc to contain. The body is indented two more spaces from
the braces (for a total of four spaces). e1se'sand e1s8 1f’s line up with their dominating 1f statement (to
avoid marching off to the right, and to reflect the semantics of the statement).

7 ((x = y) == 0)

flag = 1;
printf(" the value was zero ");

}
else if (y == 1)
switch (today)

case Thursday:
flag = 2;
ThursdayAction():
break;

case Friday:
flag = 3;
FridayAction():
break;

default: .
OtherDayAction():

}
else
printf(" y had the wrong value *); -

B.5. File Contents

File contents arc arranged as follows,

1. Initial descriptive comment (see example below), containing a brief descriptive abstract of the contents.
Some programmers also add a list of all defined procedures in their defined order, or alphabetically.

2. Included files (avoid the use of absolute path namecs)
3. External definitions (imports and cxports)

4. External and forward (unction declarations

5. Constant declarations

6. Macro definitions

Appendices 7 Junc 1986

B4

7. Type dcfinitions

C Programming Style

- 8. global variable declarations (usc static declarations whenever possible, and group variables with the
functions that use them)

9. procedure and function definitions

Here is the bgginning of a filc as an cxample.

VA

* Distributed V Kernel - Copyright (c) 1982 by David Cheriton, Willy Zwaenepoe)

¢ Kern
¢/

#includ
#includ
#includ
#includ
#includ

extern
extern
axtern

extern
extern
extern
extern
extern
extern
extern

unsigne
Instanc
int
short
int

int

int

int

int

int

int
char

kPacket

CallHan

@1 Ethernet driver

e "../../1ib¢/1include/Vethernet.h"
e "interrupt.h”

8 "ethernet.h"

e "{kc.h"

e "../mi/dm.h" -

/* Imports */

physical ethernet address */
Instance id for Ethernet */
addresses to listen for */
Current status settings */

FIFO was emptied by last read */
Number of collision errors ¢/
Queue overflow errors */

Packets with bad CRC's */
Receiver out of sync */
Transmitter timeouts */

kPacketArea[WORDS_PER_PACKET*BYTES_PER_WORD+20];

Save area for kernel packets */
kPacketArea;
Pointer to kernel packet area */

/* Macro expansion to interrupt-invoked C call to Ethernetinterrupt */

Process *Map_pid();

SystemCode NotSupported():

DeviceInstance *GetDevice():

/* Exports */

SystemCode EnetCreate():

SystemCode EnetRead():

SystemCode EnetWrite():

SystemCode EnetQuery():

SystemCode EnetCheckRequest():

SystemCode EnetReadPacket();

SystemCode EnetPowerup():

d char EnetHostNumber; A

eld EthernetInstance; /*
EnetReceiveMask; /*
EnetStatus; /*
EnetFIFQempty; . /*
EnetCollisions = 0; /*
EnetOverflows = 0; /*
EnetCRCerrors = 0; /*
EnetSyncErrors = 0; A
EnetTimeouts = 0; /*
EnetValidPackets = 0;

/‘
*kPacketSave = (kPacket *)
/ID
dler(Enetinterrupt)

B.6. Parentheses

For function calls, the parcnthescs “belong to™ the call, so there is no space between function name and
open parentheses. (There may be some inside the parentheses to make the argument list look nice.) When
parcntheses enclose the cexpression for a statement (1f, for, ctc.). the parentheses may be trcated as
belonging to the expression, so there is a space between the keyword and the parenthesized expression. ‘This
also clearly distinguishcs the statcment from a function call.

7 June 1986

V-System 6.0 Reference Manual

B-5

it (FuncA())

FuncB((a = b) == 0);
return Nil;

}

else

FuncC(a, b, ¢);
raturn ToSender;

}

Alternatively, parentheses may be treated as belonging to the statement (since they are syntactically required
by the statement) so there is no space between the keyword and the expression.
if((bytes = req->bytecount) <= IO_MSG_BUFFER)
buffer = (char *) req->shortbuffer;

else
return req->bufferPointer;

Note that parentheses are not syntactically required around the expression of a return statement.
Neverthcless, such parentheses may still be included, if so desired.

Note that spaces are uscd to scparate operators from operands for clarity and may be sclectively omitted to
suggest precedence in evaluation.

B.7. Messages

Although V is a message-based system, most services are available by calling standard routines, so
programming at the “mcssage level” is rarely necessary or desirable. However, the programming of new
servers and the non-standard use of services or the use of messages within a program require message-level
programming. The following conventions have been followed in V. '

Space to send or reccive a message is declared of type Message (an array) or MsgStruct (a structure with
appropriate ficlds), as defined in {Venviron.h>. Standard message formats. as defined in the V hcader files,
declare cach message format to be a new data type. Each mcessage format contains enough padding to fill it
out to the fixed message size used by the kernel. Where the same space is used for messages of multiple
formats (for example, both request and reply messages), access to the space for the message can be made by
casting a poiater to the space to be of the type of the message format requires. ‘The following illustrates this
style.

Read(fad, buffer, bytes)
File *fad:
char *buffer;
int bytes;
/* i
* Read the specified number of bytes into the buffer from the
* file instance specified by fad. The number of bytes read is
* returned. '
./
{
Message msg: '
register IoRequast *request = (IoRequest *) msg;
register IoReply *reply = (IoReply *) msg;
register unsigned r, count;
register char *huf;

for(::)
{

request->requestcode = READ_INSTANCE;
request->fileid = fad->fileid;
request->bufferPointer = buffer;
request->bytecount = bytes;
request->blocknumber = fad->block;

Appendices 7 June 1986

B6 ' . C Programming Style

if (Send(request, fad->fileserver) == ()

fad->lastexception = NONEXISTENT_PROCESS:
return 0;

}
it ((r = reply->replycode) != RETRY) break;

fadr>Tastexc;pt1on = p;
count = reply->bytecount;

if (count <= I0Q_MSG_BUFFER)
buf = (char *) request->shortbuffer;

for (r = 0; r < count; ++r) *buffer++ = *huf++;

}

return count;

7 Junc 1986 V-System 6.0 Reference Manual

C1

— Appendix C —_
Installation Notes

This document describes the installation and maintenance of the V-System software. The reader should be
familiar with the V-System as documented in the V-System manuals, and with the Unix system uscd for
development.

C.1.V-System Distribution Tapes

The software is distributed on a 1600 bpi Unix tar format tape. Licensing information and tapes can be
obtained from: .

Office of Technology Licensing
" Suite 250

350 Cambridge Ave.

Palo Alto, CA 94306

(415) 723-0651

All the software is under copyright protection, so you must get a license from Stanford to have this software.
New versions of the software may be released from time to time. Send comments on the software and
documcntation to the Arpanet address vbugs@pescadero.stanford.edu. Plcasc report any bugs you
find, or improvements you make.

The full V distribution consists of two tapes, the binary distribution (or binary tape), and the source
distribution (or source tapc) which has the sources to the V system itsclf. V8.0 combincs both of these on a
singlc tape, with the “logical binary tapc™ first. The combincd space requirement for V6.0 is approximately 67
megabytes. :

Note: This V distribution runs on Cadlinc and SUN MicroSystems workstations with 68000s (SUN-Is),
SMI workstations with 68010s and 63020s (models 2/{50,100,120,170} & 3/{75.160}), and ni:C MicroVAX-11
workstations with and without framcbuffers. Ethernet drivers are provided for the 3coM and Excclan 10meg
boards, the Intcl 82586 L.AN chip (found in SMI1 2/50 and 3/75 modcls), the SMI 3 meg board, and the
DEQNA. There is presently no driver for the SMI Multibus 10 Mbit Ethernet interface or for the AMD 7990
chip found in the Sun-3/50. The VAX scrver host side must be running 4.2 or 4.3 BSD.

C.2. Binary Distribution Tape

The binary tape contains 3 tar (Unix tapc-archive format) files:

cnet: The files required to install our cthernet packet filter code in a Vax/Unix 4.2 kernel. 'The
installation.doc and enct.doc files that arc part of this tape file describe how to install the driver and
how it works, respectively. ‘This code should be included in the official 4.3BSD relcasc.

unix: The binaries and some sources for Unix support programs and scrvers used with V.
usr.V: Files uscd by workstations running the V-system.

o V binary imagces for kernel, servers and programs.

e V librarics for C programs in Unix tar format.

Appendices 17 June 1986

C2 - Installation Notes

o V header files for C programs, dcfining standard manifest constants and structures.
e Miscellancous configuration and documentation files.

The binary tape is structured to be loaded into a single subtree of a Unix file system. Makc a subdircctory
on a partition with at least 65 megabytes free. We suggest calling it V6.0. Change to the V6.0 dircctory, make
another subdircctory called enet and change to it. Extract the packet filter from the tape. Change to V6.0 and
run tar x repcatedly to extract the remaining files from the tape. (Due to extra end-of-files, you may get a
“0 blocks recad” message between files.)

Scveral programs expect to find files in certain directories. Run the Viink shell script to link the -
distribution into the file structure.

Add the termcap.vgts entrics to /etc/termcap.

C.2.1.V Subdirectories
There are several subdirectories of interest under the “V” subdirectory in the installation directory:

bin Binaries of the V-system commands and servers. These arc the programs that run under V
on the workstations.
boot . This directory contains standalone programs (programs that do not run undcr the V kernel)

such as Vload (the V-System bootstrap), and the netwatch family of network
monitoring programs, plus initial teams to run under the V kemel. The subdircctory
“Vkernel” contains various V kerncl configurations. -

config Workstation configuration files. One config file exists per workstation. These files arc used
by thc ndserver to dcterminc which version of V1oad to download, by Vload to
determine which kernel image to load, and by the internctserver to- detcrmine the
workstation’s [P address.

fonts Type fonts uscd by the VGTS and other V-System programs.
include The include (. h) files. Most V-System include files start with an upper case “V™.
lib The V-System librarics. The main run-time library is libV.a Other major librarics are

libsun100Vgts.a for thec SUN-1 frame buffer and libsunl20Vgts.a for the SUN-2
framebuffer, raw character 1/0 for various hardware configurations, and lowlevel V ikc
librarics for standalonc programs. ‘I'here is also a library for cach of the different servers,
c.g. libVinternet.a contains the Internet server, providing pnmanly IP/TCP service.

misc Other random files,
run Various filcs that are used by programs for runtime support.

C.2.2. Network File Service and Bootldadlng

The next step is to provide network file service and bootloading scrvice.

1. Provide access to the Fthernet on your VAX/UNIX system (the only configuration fully supported by
the distribution tape).

2. Modify the configuration files, under V/config to indicatc the desired configuration and nectwork
addresscs of your workstations.

3. Install and initiate the exccution of the Vserver and ndserver on the Vax,

17 June 1986 V-System 6.0 Reference Manual

Binary Distribution Tape _ . C3

C.2.2.1. Ethernet Filter Code

This code must be added to the Unix kernel, if not alrcady present. It allows a user program to open the
Ethernet directly for reading and writing as a special device file. The user program can then specify by a
“filter” which packets it wants to receive. Sece enct/Installation.doc for installation information and
enct/enct.doc for a brief description of the code. Note that 4.2 BSD does not currently provide this
functionality. However, a group at Stanford has convinced the weenies at Berkeley to include this driver as a
standard part of Berkeley Unix, starting with the 4.3 rclease. Make sure the maximum packet size (MTU) is
large enough to fit all the data bytes in a kernel packet plus the header, currently about 1200 bytes. The V6.0
relcase packet filter is incompatible with previous packet filter releases.

In addition, the network driver files in_proto.c and ip_input.c should be replaced in /usr/src/sys/netinet.
This adds the IPPROTO_ND protocol family (used by SMI boot proms) to the kernel.

C.2.2.2. Ethernet multicast reception

Important: Make sure that your Unix ethernet driver is set up to reccive all multicast packets. By default
most drivers do not listen to these packets. Multicast is now a fundamental part of the V interkernel protocol.

C.2.2.3. DEC Deuna

Change the initialization linc in /usr/src/sys/vaxif/1ifde. ¢ to include the multicast enable bit:

#ifdef STANFORD
/* receive all multicast packets to keep V people happy */
ds->ds~pcbb.pcbb2 = MOD«TPAD |MOD+HDX | MOD+ENAL ;
#else :
ds->dsepcbb.pcbb2 = MOD«TPAD|MOD«HDX;
#endif - STANFORD -

C.2.2.4. Interian 1010a

Before sctting the Interlan board online send an additional command to enable rcception of all multicast
packets (in Jusr/src/sys/vaxit/ifil.c).
#ifdef STANFORD '

/ .
* For V people: receive all multicast packets
./

addr->ilecsr = ILC~ALLMC;:

while ((addr->ilecsr & IL+CDONE) == 0)

#endif STANFORD

/.

* Set board online.

* Hang receive buffer and start any pending

* writes by faking a transmit complete.

* Receive bcr is not a muliple of 4 so buffer
* chaining can't happen.

./

C.2.2.5. Contiguration Files

‘The “config” files provide information about individual nctwork nodes or workstations. If a node has
Ethernet address AAAAAAAAAAAA (in hex) then its configuration file should be
config/C.AAAAAAAAAAAA. In gencral, C.* files describe a network node, G.* files describe routing to be
uscd by a gateway and S.* files are scripts for servers to cxecute on initialization. Config files contain

Appemdices 17 June 1986

C4 ' Installation Notes

information ficlds of the form *“name:valuc™. Several exapmies are included in V/config. Sce chapter 19
for a full description of the keywords and their appropriate values.

The ficlds necded for booting are:

name Name to be used as a uscr-specified designation of network node. _

bootfile Which version of V1oad to download. Sun-2/50s must have this ficld set to Vload50.d. It
defaults to Vload10.d for Suns and Vload.vax for microVaxen.

alt-ether-addr Sun-2 workstations that have 3cOM ethernet interfaces use the SMI address

(0800.2001.xxxx) for booting and the 3cOM address (0260.8c00.xxxx) when running the
V-System. To configurc such a workstation, name the config file after its 3cOM address
and put the SMI address in the alt-cther-addr ficld. SMI workstations generally print their
SMI-assigned cthernct address on the screen during powerup. You can determine your
workstation’s 3COM address by running the following program under SMI Unix:

#include <sys/file.h>
main()

int fd, 1;
unsigned char addr[6];

fd = open("/dev/mbmem"”, O~RDONLY, 0);
1seek(fd, O0xEQ400, 0);
for (i=0; 1<6; i++) _
read(fd, &addr[i], 1);
printf("%02x%02x.%02x%02x.%02x%02x\n",
addr[0], addr[1], addr[2],
addr[3], addr[4], addr[6]):
}

C.2.2.6. Initiation of V Servers on Unix

The directory unix/ctc contains the Unix server programs nceded to boot diskless workstations and serve
remote sessions. This directory is symbolically linked to /etc/V.

The Vserver uses the file V/run/Vhosttab to map from hostnames to V logical host ids. Since this file is
installation dependent you'll have to gencrate it by cditing the SERVERHOSIS variable in (source)
V/scrvers/unix/buildfile, run buildmake, then make install.

The line “sh /ctc/V/rc” should be added to 7etc/re. 1ocal to firc up these server programs whenever
the system is booted. (The “rc” file also provides a reasonable description of how to hand start these servers.)
Note: the Vserver expects to be run as root, so that it can fork “scessions™ that sctuid to the appropriate user.

There must be at Icast one public Vserver running in any given local network. A Vserver is made public by
starting it with the =p flag. Scec the Unix Server scction of the manual for further information.

C.2.3. V Authentication Files

V6. 0 requircs two files for authentication: the Vpassword file, which is used by the Vauthentication server
to authenticate (log in) users, and the Vusercorrespondence file, which maps V user numbers to Unix user
namcs. For a complete description sce chapter 35, Authentication and the Authentication Server. The scction
35.5 explains the usc and needs of the files involved in V authentication.

Two awk scripts arc provided to gencrate the Vusercorrespondence and Vpassword files from the Unix
/ete/passwd file. "These scripts make cach V user's V password the same as their password under Unix, and
makes their V home direcotry on the correct Unix host. ‘These scripts arce aimed at sites which have only one

17 June 1986 V-System 6.0 Reference Manual

Binary Distribution Tape CSs

Unix host providing V file scrvice. Section C.2.3.4 cxplains what to do if you have more than one such Unix
host.

C.2.3.1. Creating the Vpassword File

Follow the directions in /etc/V/Vpassword. awk, then create a rough password file by exccuting
awk -f /etc/V/Vpassword.awk < /etc/passwd > /tmp/rough

Edit /tmp/rough to remove password entries for such Unix uscrs as root, uucp, etc. Copy /tmp/rough to
/ust/V/misc/Vpassword. .

C.2.3.2. Creating the Vusercorrespondence File .

Follow the directions in /etc/V/Vusercorr. awk, then create a rough correspondence file by exccuting
awk -f /etc/V/Vusercorr.awk < /etc/passwd > /tmp/rough

Edit /tmp/rough to remove the same cxtraneous entries deleted from the password file. Copy /tmp/rough to
/etc/V/Vusercorrespondence,

C.2.3.3. The Unknown User and the V administrator

A workstation which has nobody logged in is authenticated to a special unknown user. We assume that you
may want pcople to be able to run V programs (such as telnet and netwatch) without logging in. To do so,
crcate an account called “Vunknown™ on your unix system, make its home /tmp and give it minimal
privileges. In addition you should create ,"Vadmin™ an account for the administration of V system files and
chown /ust/V/misc/Vpassword to that user.

C.2.3.4. V Authentication and Multiple Vservers

If you have more than onc machine serving V, you must create a single password file that contains entries
for the users from all of the machines. To do this first create a Vpassword file on cach offsctting the V user
numbers so that there is no overlap between machines. Then form a rough master password file by merging
all of them together on the master password site. Massage the rough master by cditing out duplicate cntrics,
keeping the entrics that correspond to cach users “home™ machine. Sorting the rough password file before
duplicate dcletion makes this chore much casier.

[t is a bit more difficult to automatically gencrate individual correspondence files when building a merged
Vpassword file. 'This is because there may be little relation between a given user’s Vo user number and the
user's Unix uids on multiple Unix hosts. We suggest starting with a minimal correspondence tuble on cach
machinc and having users run addcorr the first time they log in to the V-System. A minimal file sufficicnt
to boot and test the system is as follows:

0 Vadmin .
1 Vadmin
2 Vunknown

C.2.4. The Boot Sequence

This scction explains what happens during the bootstrap process. Sce chapter 16 for a detailed description
of workstation boot commands. ‘The boot process consists of three steps: loading V1oad, the V-system
bootstrap, loading the kernel and first team, and initializing the system (which may include downloading
more programs such as the vgts).

~ Vload is downloaded over the network using the diskless booting protocol contained in the workstation’s
proms. There arc many brands of workstations, and cven more boot protocols. Once running, V1oad locates
and connccts to a "public™ Vserver to load the appropriate kernel and first tcam. After V1oad has been
loaded, all subscquent network file 170 is performed through a V server using V interkernel protocols,

Appendices 17 Junc 1986

C6) . Installation Notes

C.2.4.1. SUN-1

Owners of Sun-1s are pretty much on their own. At Stanford we usc our own proms which boot using PUP
EFTP. You may have another protocol, or none at all. We suggest upgrading to a Sun-2.

C.2.4.2. SUN-2

Booting SUN-2 workstations with thc ND protocol requires a running ndserver. The actual boot
sequence is as follows. When an SMI workstation boots, if it contains no disk interface, it attempts to boot
over the Ethernct. This is done using the “ND™ boot protocol which asks for the first 18 512-byte blocks of a
virtual disk. (Several of these blocks are thrown away. The boot program must be less than 0x1EQ0Q bytes of
text and initialized data), The ND server “intercepts™ these requests and replies with Vioad.

In general, the ndserver is a modest “hack™ to allow one to run V on SMI SUN workstations without
modifying the PROM monitor as it comes from the manufacturer. If a Sun is to run SMI Unix the field
“boot:no” should be placed in the workstation’s .config file to prevent the ndserver from downloading
Vload. .

C.2.4.3. SUN-3

Sun-3 workstations rcquire running rarpd and tftpd scrvers. A Sun-3 boots using TP RARP (reverse
address resolution protocol) to determinge its IP address, then uses TF1P (trivial file transfer protocol) to
download a bootstrap program,

The rarpd uscs a simple database file, rarpdb.<pscudo-netd, to map physical ethernct addresses to IP
addresscs. Edit the example file to include the Sun-3s that will be running V6.0. Make surc that the <pseudo-
net> extension matches the enet device corresponding to the 10 meg interface that the workstations are on.
Typically this is “‘cnet” or “cneta”.

Once the Sun-3 knows its 1P addrcess it uses TFTP to download a file named by its hexadecimal IP address.
For instance, if the rarpd responds with *36.8.1.3", the workstation will attempt to load a file named
“24080103", This file should be linked to V1oad3+1e.d, the Sun-3 version of V1oad. These filcs (including
a copy of Vioad3+1ie.d) should be placed in your tftp dacmon’s home dircctory. The tftpd distributed in
4.2BSD) was buggy. We've included a patched version with V6.0, along with a rarp dacmon. Remember to
start the rarp and tftp dacmons from /ctc/rc.local.

Note: The Sun-3 boot process docsn'’t involve a workstation’s configuration filc until after V1oad is
running, so neither the “bootlile’ nor the "boot’ config file ficlds affects booting. To run Sun Unix prevent the
tftpd from downloading V1oad by removing the file linked to Vioad3+1e.d.

C.2.4.4. MicroVAX

Booting MicroVAX workstations rcquires thc mvaxbootserver to be running on a Unix host. The
mvaxbootserver scrvices MicroVAX nctwork boot requests just as the ndserver responds to SMI ND
requests. A “boot:no” cntry in the workstation’s config file will prevent the mvaxbootserver from
responding to boot requests.

C.2.5. Debugging Suggestions

If the system fails to boot after following the above scquence, it is suggested that you try booting a
“standalonc™ program likc netwatch to check the initial portion of boot scquence and also (assuming you
have multiple workstations), monitor the nctwork activity when you try a full system boot. Sce the
“Standalone™ chapter of the reference manual (chapter 16) for details on how to load and usc standalone
programs. Scction 16.2 gives an overview of how to usc the netwatch family of programs. In gencral, the
netwatch family of programs arc very uscful for dcbugging nctwork problems. They keep a record of
network packets which can be written to a log file. Pleasc include such alog filc in bug reports that relate to
the network.

17 June 1986 V-System 6.0 Reference Manual

Binary Distribution Tape : C7

If the workstation fails to load a standalonc program, check that your cthernct connection is working
corrcctly. This is casiest if you have other means of monitoring Ethernet activity. You should also check that
the ndserver or mvaxbootserver is properly instructed to respond to requests from the workstation’s
host address by having thc correct config files present. The ndserver or mvaxbootserver can be
exccuted with the “d” flag to put it into debugging mode. This should give a clear indication as to whether or
not it is recciving the workstation boot request packets and what it is doing in response to the packets it
receives.

Assuming you can load standalone programs, you should be able to load Vioad. The crror codes
generated by Vload (e.g. “COl7”) can be decoded by looking the the header file
V/include/mi/Venviron.h. Besides using netwatch to monitor network activity, onc can run the
Vserver in dcbug mode. Option “A” gives a verbose account of the Vservers's activities. Sce chapter 43 for
the details of other debugging options.

C.3. Source Distribution Tape

The source distribution tape contains the V-System sources. Unless one is modifying the standard software
or recompiling for some reason, there should be no reason to keep these sources on-line.

The procedure for extracting the files of the source tape is identical to that used with the binary distribution
tape. Warning: Do not cxtract the source tapc into the same directory as the binary tape. Some
subdirectorics have identical names. At Stanford, we keep V sources under /V.

C.3.1. Structure of the Y Sources

The V source directories are structured by funcnon and by machine dcpendency. For convenience each
division is in a scparate tar file. The major functional divisions are:-

cmds Standard command programs. A subdirectory for each command program (with some
exceptions that we plan to climinate).

kernel ~ 'V Kernel sources. The machine-independent source is under mi, 680X0 source under
mé68k, Microvax source under vax, and configuration-specific files under the other
subdircctorics. For example, sun2+¢c configures the kernel for the SUN-2 with a 3coMm
Ethernet interface.

libc Standard C run-time library for V. Subdircctories for diffcrent functional parts of the
library. Machine-specific dircctorics occur at various levels if there are machine- specuﬁc
files.

servers Scrver programs. A subdircctory for cach scparate server. The two Unix scrver programs
ndserver and Vserver arc here, though they don’t run under V.

standalone Standalonc programs. A subdircctory for cach scparate program.

fonts: Sources for some of the fonts used in the V-System.

doc: "The V6.0 manual in Scribe format.

C.3.2. Recompiling V Sources

Many of the V-System makefiles invoke ¢c68 to compile and link. Be surc you have the latest version
(included on the tape) of cc88, with the =V option.

Edit the shell script under V/netinstall to perform the appropriate installation procedure for your
system, Some possibilitics arc for it to copy the binarics to other V hosts on your network (thus automating
the installation and causing changes to take network-wide cffect immediately), copy binarics to hosts in the
local V-domain only, or copy to the local host only (a good choice il you have only ‘one host running a Vserver

Appendices 17 June 1986

Cc8 Installation: Notes

or update local hosts with regular rdists). [t's important to keep all of the V binary dircctorics synchronized
within a domain since binarics arc often scrved by the first Vgerver to answer a request. This and a few
other shell scripts arc assumed to be in the scarch path by the V-System makefiles. These sources are in
V/too1s and should have becn installed into some directory in the scarch path by V11nk before making the
rest of the system. Each dircctory contains a file called bui1dfile which is processed by the build
program, an cnhanced version of make. The sources to bu11d are included.

The following describes the steps (and order) to complctely remake the V-System binarics (and libraries).

Change dircctory to V/11ibc and do a build 1nstall-includes. This should copy the V-Systcm
specific include files into /usr/V/1nclude. Then do a build and then build install under this
directory. This should resultiin T4bV, a being copied into /usr/V/11b. .

Next, change to the V/standalone dircctory. This dircctory is for bootstrapping and loading utilitics.

Next, change to /V/kernel. Therc is a subdirectory corresponding to cach of the hardware combinations
currently supported by the V-System. cd to the directory corresponding to your hardwarc configuration, then
do a build followed by a build 1install to compile the kernel and put the binary into
V/boot/Vkernel. For instance, V/kernel/sun2+ec and V/kernel/suni+en correspond to the
configurations “sun2 cpu with 3COM cthernct™ and “sunl (old sun, cadlinc etc.) with sun 3meg cthernet”.
You may have to create a ncw subdirectory and cdit the buildfile to configure the kerncl for your 170 devices.

Next change directory to /V/servers, and doabuild followed by abuild install.

Next, change directory to /V/cmds and agmn do a build followed by a build installto compile all
the commands. This takes a while, and uses the include files, libraries, and servers.

Do the same for /V/config (after makmg some config files for your workstations) and
/V/standalone.

C.3.3. Source Distribution Summary

The source tape provides all the files required to regencrate the binary distribution tape files (we believe).
Any omissions werc unintentional or forced upon us by lawyers.

17 June 1986 V-System 6.0 Reference Manual

D1

— Appendix D —_
Llst of Library Functions defined in libc

ASSERT mem/mi/malloc.c
AcquireSpinLock locking/mi/spinlock.c
AddUser auth/mi/adduser.c
AllocFont graphics/mi/allocraster.c
AllocRaster graphics/mi/allocraster.c
ArbLoadProgram excc/mi/arbloadprog.c
Attention drivers/mé68k/cnetS0.c
Authenticate auth/mi/authenticate.c
AwaitKernelPacket drivers/mé68k/cnet3.c
AwaitingReply ipc/mi/awaitingrepl.c
BlksInFile io/mi/blksinfile.c
BlockPosition io/mi/blkposition.c
BlockSize io/mi/blocksize.c -
BoundingBox : graphics/mi/rasterbbox.c
BufferEmpty io/mi/bufferempty.c
BufferModified io/mi/scck.c
BufferValid io/mi/fillbuffer.c
BytcPosition io/mi/byteposition.c
BytcSwapLongCopy - mem/mi/swablongl.c
ByteSwaplLonginPlace mem/mi/swablong2.c
ByteSwapShortCopy mem/mi/swabshort.c
BytcSwapShortinPlace mem/mi/swabshort.c
ChangeDircctory io/mi/chdir.c
ChangcTeamPriority - exce/mi/changetcampr.c
CheckExees exccserver/mi/checkexecs.c
ClcarEof io/mi/clcarcof.c

Close io/mi/close.c
ColToRowRaster graphics/m68k/columnorder.c
CompB graphics/vax/rastcrop.c
ComplmmedB graphics/vax/rastcrop.c
ComplimmedL graphics/vax/rastcrop.c
ComplmmedW graphics/vax/rastcrop.c
ComplmmedX " graphics/vax/rastcrop.c
Complncr : graphics/vax/rasterop.c
Compl. graphics/vax/rastcrop.c
Compl it ' graphics/vax/rasterop.c
ComplL.itLL graphics/vax/rasterop.c
Compl.oad graphics/vax/rastcrop.c
CompOp graphics/vax/rasterop.c
CompReg graphics/vax/rastcrop.c
CompW graphics/vax/rastcrop.c
CopyDownwards mem/mi/beopy.c
CopyFicld auth/mi/atoar.c
CopyMsg drivers/m68k/encticom.c
CrcatcDuplexInstance w/mi/crtdupinstc

Appendices 17 June 1986

D2

17 June 1986

CreateExcc
CreateGroup
Createlnstance
CreatePipelnstance
Decbug_BDL
Dcbug_Degna
DefaultRootMecssage
DefaultSelectionRec
DelcteExec
DeleteUser . .
DestroyAuthRec
DiscardDataPacket
EnetFlushReceiver
Enetinterrupt
EnetPowerup
EnetReset

Eof

EqString
ErrorString
ExecProgram
Execl

Execv
FileException
Fileld

FileServer
FileType
FillBuffer
FindMatch
FindMatchingProgs
Flush
FlushBuffer
ForceException
ForceSend
Forwarder
FrcezcHost . .
FultUserName
GetFakePid
GetFont .
GetFontEntry
GetFormatString .
GetKernelPid
GetMorcMallocSpace
GetNumberOfParams
GetNumberolParams
GetParams . . .
GetProcessor Type
GetSignedl
GetSigned2
GetSigned3
GetSigned4 .
GetStringParams
Get'l'camPriority
GetUnsignedl
GetUnsigned2

List of Library Functions defined in libe

exccserver/mi/createexce.c .
ipc/mi/creategroup.c

io/mi/createinst.c

io/mi/creatcpipe.c

. drivers/vax/deqna.c

drivers/vax/deqna.c
excc/mi/cxecprogram.c
excc/mi/defaultsclrec.c
exccserver/mi/deleteexec.c

. auth/mi/dcleteuser.c

auth/mi/destroyar.c .
drivers/mé68k/cnet3.c
drivers/mé68k/enet3.c
drivers/mé68k/enet50.c

. drivers/m68k/enetd.c

drivers/vax/degna.c
io/mi/eof.c
graphics/mi/getfont.c
exceptions/mi/error.c

. excc/mi/execprogram.c

excc/mi/system.c .
excc/mi/system.c -
io/mi/filcexcept.c
io/mi/filcid.c

. io/mi/filcserverc -

io/mi/filctype.c

io/mi/fillbuffer.c
excc/mi/lookup.c
excc/mi/lookup.c

. io/mi/flush.c

io/mi/flushbuffer.c
exceptions/mi/forecexcept.c
exceptions/mi/forcesend.c
ipc/mi/forwarder.c

. exceptions/mi/freczchost.c

auth/mi/fulluscrname.c
drivers/m68k/cenctd.c
graphics/mi/getfont.c
graphics/mi/getfont.c

. exceptions/m68k/stdexcept.c

cxcc/mi/kernclpid.c
mem/mi/mallocaux.c .
cxceptions/mo68k/printstack.c
exceptions/mogk/stdexcept.c

. exceptions/mo8k/stdexcept.c

exceptions/vax/stdexcept.c
io/mi/getbigendian.c
io/mi/getbigendian.c
io/mi/getbigendian.c

. io/mi/getbigendian.c

cxceptions/m68k/stdexcept.c
cxec/mi/gettcampr.c
io/mi/getbigendian.c
io/mi/getbigendian.c

V-System 6.0 Reference Manual

Appendices

GetUnsignedd .
GetUnsigned4
GivcToMalloc
INCR
InstructionFetch
[nteractive
InterruptBoard
JoinGroup
KillProgram
LeaveGroup
List128

Listl6

List2

List256

List32

List4

List64

List8
LoadFileRegion
LoadGenericFont
LoadProgram . . .
LoadTcamFromFile
LoadXmitDescriptor
LogOutExecs
LookupFont
MASKOP
MapTecamName
MapUID
MapUserName
ModifyUser
MovcFrom .
MoveTo
NecwRaster
Offset

Open
OpcenDuplex
OpenFile
Openlp
OpenProgFile
OpenStr
OpenTep
ParscLine
Password
atternOp
Printlirror
PrintFile
PrintStackDump
PutSignedl
PutSigned2.
PutSigned3
PutSigned4 .
PutUnsignedl
PutUnsigned2
PutUnsigned)

. io/mi/getbigendian.c

io/mi/gctbigendian.c
mem/mi/malloc.c
graphics/vax/rasterop.c
exceptions/m68k/stdexcept.c

. io/mi/intcractive.c

drivers/mé68k/enetxIn.c
ipc/mi/joingroup.c
exccserver/mi/killprogram.c
ipc/mi/lcavegroup.c

. graphics/mi/bitreverse.c

graphics/mi/bitreverse.c
graphics/mi/bitreverse.c
graphics/mi/bitreverse.c
graphics/mi/bitreverse.c

. graphics/mi/bitreverse.c

graphics/mi/bitreverse.c
graphics/mi/bitreverse.c
graphics/mi/loadfile.c

graphics/mi/loadgfont.c

. excc/mi/exceprogram.c

excc/mi/loadteamfile.c
drivers/vax/deqnac
excc/mi/logoutexecs.c
graphics/mi/lookupfont.c

. graphics/mi/rasterclear.c

excc/mi/maptecamname.c
auth/mi/mapuid.c
auth/mi/mapusername.c
auth/mi/modifyuser.c

. ipc/mi/movefrom.c

ipc/mi/moveto.c
graphics/mi/newraster.c
drivers/mé68k/cnct50.c
io/mi/open.c

. io/mi/openduplex.c

io/mi/openfile.c
io/mi/openip.c
excc/mi/lookup.c
io/mi/openstr.c

. io/mi/opentep.c

excc/mi/parscline.c
auth/mi/password.c
graphics/vax/rastcrop.c
exceptions/mi/printerror.c

. io/mi/printfile.c

exceptions/m68k/printstack.c
io/mi/putbigendian.c
io/mi/putbigendian.c
io/mi/putbigendian.c

. io/mi/putbigendian.c

io/ini/putbigendian.c
io/mi/putbigendian.c
io/mi/putbigendian.c

D3

17 June 1986

D4

17 June 1986

PutUnsigned4
QueryExec
QueryGroup
QueryHosts
QueryHostsViaCS
QueryHostsViaMulticast
QvssDisable
QvssEnable

Qvsslnit
QvssRectangle

REG .
RasterClear
RasterCompileDummyL
RasterCompile DummyW
Rasterinvert
RasterOp

RasterOpS
RasterPrint
RasterSet

Read

ReadAccess
ReadDataPacket
ReadGenericCharacter
ReadGencricFont
Reccive
ReceiveSpecific
ReceiveWithScgment
ReleascFilcRegion
RelcascInstance
RelcascSpinLock
RemoteExccute
RemoveFile .

Reply
ReplyWithScgment
ResctReceive
RestrictRaster
Resynch
RowToColRaster
ScarchBit
ScarchPathMatch
Seck

SeckBlock

SetBitPtr
SctBreakProcess
SctinstanccOwner
SctMode
SetUpEnvironment
ShortString
SimpleText
SkipToBoc
SpecLoadProgram -
SpccialClose

StandardExceptionHandler

TeamOwner

List of Library Functions dcfined in libc

io/mi/putbigendian.c

. exccserver/mi/queryexec.c

ipc/mi/querygroup.c
exec/mi/queryhosts.c
excc/mi/queryhostscs.c
exec/mi/queryhostsm.c
graphics/vax/uscqvss.c
graphics/vax/uscqvss.c
graphics/vax/qvssinit.c
graphics/vax/qvssrectangle.c
graphics/vax/rasterop.c

. graphics/mi/rasterclear.c

graphics/m68k/rastcrcompile.c
graphics/m68k/rastcrcompile.c
graphics/mi/rasterinvert.c
graphics/vax/rasterop.c

. graphics/vax/rasterop.c

graphics/mi/rasterprint.c
graphics/mi/rasterset.c
io/mi/read.c
exceptions/m68k/stdexcept.c

. drivers/m68k/enct3.c

graphics/mi/readgfont.c .
graphics/mi/readgfont.c
ipc/mi/kerncllib.c
ipc/mi/kernellib.c

. ipc/mi/kernellib.c

graphics/mi/loadfile.c
io/mi/relcaseinst.c

locking/mi/spinlock.c
excc/mi/remoteexec.c

. io/mi/removefile.c

ipc/mi/kernellib.c
ipc/mi/kerncllib.c
drivers/mé68k/cncet75.c
graphics/mi/restrictrast.c

. to/mi/resynch.c

graphics/m68k/columnorder.c
graphics/mi/rastcrbbox.c
excc/mi/lookup.c
jo/mi/scek.c

. fo/mi/scekblock.c

graphics/mi/sctbitptr.c
io/mi/sctbreak.c
io/mi/sctowner.c
drivers/mé68k/cnctxinge

. excc/mi/sctupeny.c

cxceptions/mi/crror.c
graphics/vax/drawtext.c

_graphics/mi/rcadgfont.c

excc/mi/specloadprog.c

. io/mi/close.c

cxceptions/m68k/stdexcept.c
cxcc/mi/tcamowner.c

V-System 6.0 Reference Manual

Appendices

TextBBox
TryEnetTransmit
UnaryOp .
UnaryOp$S
UnfreezeHost
UscQvss
UserName
ValidMagicNum
WORDOP
Wait

Write
WriteGfFont
WriteKernelPacket
WriteText
Zero

_Open

abort

acos ‘..

align .
allock ..

artoa

asin

asympt

atan

atan2

atoar

beopy

botch .

cabs

calloc

ceil

cfree

chdir

clear

clearerr
coffec_break
compilcW
cosh

dcbug
enctaddress
cnopen

cxp

fabs

floor

free
get_Ap_Fp
gf_new_row . . .
gf_paint
hvTest

D5

graphics/mi/textbbox.c
drivers/m68k/encticom.c

. graphics/vax/rasterop.c

graphics/vax/rasterop.c
exceptions/mi/freczchost.c
graphics/vax/uscqvss.c
auth/mi/username.c

. exec/mi/validmagicnum.c

graphics/mi/rasterclear.c
exec/mi/waitc
io/mi/writec .
graphics/mi/writcgfont.c

. drivers/m68k/enet3.c

graphics/vax/gentext.c
mem/mi/zero.c
io/mi/_openc. . ..
exceptions/mé68k/abort.c

. math/mi/asin.c

exec/mi/loadteamfile.c
mem/mi/malloc.c
auth/mi/artoac ' :
math/mi/asin.c

. math/mi/j0.c

math/mi/atan.c
math/mi/atan.c
auth/mi/atoar.c
mem/mi/becopy.c
mem/mi/malloc.c
math/mi/hypot.c
mem/mi/calloc.c
math/mi/floor.c
mem/mi/calloc.c

. io/mi/chdir.c

drivers/m68k/enctxin.c
io/mi/clrerr.c
drivers/vax/degna.c
graphics/m68k/rastcrcompile.c

. math/mi/sin.c

math/mi/sinh.c
drivers/m68k/enet3.c
drivers/m68k/cnetxin.c
drivers/m68k/enctxin.c

. math/mi/exp.c

math/mi/fabs.c
math/mi/floor.c
mcm/mi/malloc.c
cxceptions/vax/printstack.c

. graphics/mi/writcgfont.c

graphics/mi/writcgfont.c
graphics/mi/textbbox.c
math/mi/hypot.c
graphics/vax/gentext.c

. math/mi/j0.c

math/mi/jle

17 Junc 1986

17 Junc 1986

jn

log

logl0

malloc . .
mc68kenread
mc68kenwrite

. mktemp-

one_sip

pack2 .

pack4
packpair
packstr

pow

print_pc .
realloc .-
returns .
s_getc

satan

sin .

sinh

sinus

sizeof

sqrt

swab

swapl

switch

system

tan

tanh .
u_getc

ungetc

unlink
unlockAndGctSpace
unlockedFree
unlockedGive'T'oMalloc
unlockcdMalloc
unlockedRealloe
xatan

yo
yl

yn

AddClList
AddDList
AddQucue
AddSList

Any
AwaitSendReply
BackSpace
BufferValid .
CIRL
ClearLocalNames
ClearModificdPages
Concat
Convert_num

>

List of Library Functions defined in libc

math/mi/jn.c
math/mi/log.c
math/mi/log.c

. mem/mi/malloc.c

drivers/m68k/enetxin.c
drivers/m68k/enctxin.c
io/mi/mktemp.c .: .
drivers/vax/deqna.c
excc/mi/setupenve -
excc/mi/setupenv.e - :
exec/mi/setupenv.c.
exec/mi/setupenv.c -
Jnath/mi/pow.c

. 'sxcepﬁons/vax/pﬁpistack.c

mem/mi/maltloc.c
giaphics/vax/gentext.c -
io/mi/getbigendian.c
math/mi/atan.c

. math/mi/sinc

math/mi/sinh.c
math/mi/sin.c :
drivers/m68k/cnet3.c
math/mi/sqrt.c

. mem/mi/swabshort.c

drivers/m68k/cnet50.c
graphics/vax/gentext.c
excc/mi/system.c
math/mi/tan.c

. math/mi/tanh.c

io/mi/getbigendian.c
io/mi/ungetc.c
io/mi/unlink.c
mem/mi/malloc.c

. mem/mi/malloc.c

mem/mi/malloc.c

~mem/mi/malloc.c

mcem/mi/malloc.c
math/mi/atan.c

. math/mi/j0.c
" math/mi/jl.c

math/mi/jn.c
packages/mi/clist.c
packages/mi/dlist.c

. packages/mi/qucuce

packages/mi/slist.c
strings/mi/any.c
sa/mi/ike.c
sa/mi/flushfill.c

. sa/mi/flushfill.c

termlib/mi/tgoto.c
naming/mi/clecarlocalc
process/mi/clearpagesec
strings/mi/concat.c

. strings/mi/convertnumg

V-System 6.0 Reference Manual

Appendices

Cooked
CopyMsg
Copy_str -
Create
CreateHost ..
CreateProcess
CreateSclectionInstance
CreateTeam
Creator
DefineLocalName
DefineTempArca
Delay

Destroy .
DestroyHost
DestroyProcess
DisplayFields
Echo

EditField .
EditLine
EditStdFid
EmptyCList
EmptyDList
EmptyQueue
EmptySList
EmptyStack
Equal

‘ExtractHost

FillBuffer .
FirstCList
FirstDList
FirstSList
FlushBuffer
FormatFormat
Forward
FreczcHost . . .
GetAbsolutcName
GetBufferedline
GetContextld
GetContextName
GetEvent
GetField
GetFilcName
GetGraphicsEvent
GelGraphicsStatus
GetllostPid
GetMoreMallocSpace
GetMouscEvent
GetMouscStatus

-+ GetObjectOwner

GetPid . . .
GetRemoteTime
GetReply
Getl'lY
Getl'camRoot

. D7

sa/mi/flushfill.c
sa/mi/ikc.c .
strings/mi/copystr.c
process/mi/create.c

. process/mi/creatchost.c

process/mi/createproc.c
service/mi/sclect.c
process/mi/createteam.c
proccss/mi/creator.c

. naming/mi/dcflocal.c

naming/mi/decftemparca.c
time/mi/delay.c
process/mi/destroy.c
process/mi/destroyhost.c

. process/mi/destroyproc.c

vgts/mi/fields.c ..

_sa/mi/flushfill.c

vgts/mi/fields.c
vgts/mi/cditline.c

. vgts/mi/fields.c

packages/mi/clist.c: -
packages/mi/dlist.c
packages/mi/queue.c
packages/mi/slist.c

. packages/mi/stack.c

strings/mi/cqual.c
process/mi/extracthost.c
sa/mi/ flushfill.c
packages/mi/clist.c

. packages/mi/dlist.c

packages/mi/slist.c
sa/mi/flushfill.c
vgts/mi/ficidsc
saconsole/mi/dummyike.c

. process/mi/freczehost.c

naming/mi/gctabsname.c
sa/mi/flushfill.c
naming/mi/namesend.c
naming/mi/getctxname.c

. vgts/mi/uscmouse.c
- vgts/mi/ficlds.c

naming/mi/getfilename.c
vgts/mi/uscmousc.c
vgts/mi/uscmousc.c

. naming/mi/gethostpid.c

sa/m68k/getmorematloc.c
vgts/mi/uscmouse.c
vgts/mi/uscmouse.c
process/mi/objectowner.c

. naming/mi/getpid.c

time/mi/remotctime.c
saconsole/mi/dummyikc.c
vgts/mi/vtty.c
process/ni/gettcamroot.c

17 June 1986

D38

17 June 1986

GetTeamSize

GetTime

GotAnlnt

Hex_value .
IgnoreRetry

InitCList .

InitDList

InitQueue

InitSList- : .
InitStack -
IsCooked -

IsEcho - -

IterCList <.
IterDList .. .
IterSList i
Keall
K_getchar :
K_getconfig.: . <
K_gctcontext
K_getmemsize
K_getsegmap
K_mayget . .
K_proctype:.
K_putchar .

K puts
K_setcontext ~ Lir; . .
K_setsegmap : v ru
K_ticks
K_version

LastCList

LastDList

LastSList
Lower o
MakcHcexDigit
Mcditate

ModifyPad
NReadDescriptor
NWritelescriptor
NamcCachcAdd .
NameCacheDelete
Name¢CacheLookup . .
NameSend

NoFcho

Nuli_str - . . .
OpenAndPositionPad
OpcenConfigFile: ..
OpenPad !
ParscFormat

PopStack .
PrimeCache
PushStack -+
PutField :
PutUntilConversion
QueryKernet

List of Library Functions defined in libe

. process/mi/gettcamsize.c

time/mi/gettimec.
sa/vax/initints.c
strings/mi/hexvalue.c
naming/mi/ignoreretry.c

. packages/mi/clistc -

packages/mi/dlistc - .
packages/mi/queue.c
packages/mi/slistc.. - .i..
packages/mi/stack.c

. sa/mi/flushfille wouve.

sa/mi/flushfille ‘ov
packages/mi/clist.c -«
packages/mi/dlist.c
packages/mi/slist.c

. rawio/m68k/sunlrawioc

rawio/mé68k/sunlrawio.c
rawio/mé68k/sunlrawio.c

rawio/m68k/sunlrawio.c. .

rawio/m68k/sunlrawio.c

. rawio/m68k/sunlrawioc’ -

rawio/mé68k/sunlrawio.c

rawio/mé68k/sunlrawio.c -
rawio/m68k/sunlrawio.c.

rawio/m68k/sunlrawio.c: .
. rawio/m68k/sunlrawio.c

rawio/mé68k/sunlrawio.c
rawio/m68k/sunlrawioc
rawio/m68k/sunlrawio.c
packages/mi/clist.c

. packages/mi/dlist.c

packages/mi/slist.c
strings/mi/lower.c

sa/mi/makchexdigite i -

unix-compat/mi/signal.c

. vgts/mi/openpad.c- -

naming/mi/nrcaddesc.c.
naming/mi/nwritcdesc.c:
naming/mi/namecache.c
naming/mi/namecache.c

. naming/mi/namccache.c
naming/mi/namescnd.c

sa/mi/flushfill.c
strings/mi/nullstr.c
vgts/mi/openpad.c

. query/mi/qwconfig.c

vgts/mi/opcnpad.c .-
vgts/mi/ficlds.c

packages/mi/stack.c * :

naming/mi/primecache.c

. packages/mi/stacke i -

vgts/mi/ficlds.c
vgts/mi/ficlds.c .
process/mi/querykern.c

V-System 6.0 Reference Manual

(AN

R

“

Appendices

QueryPad
QueryPadSize
QueryProcessPriority
QueryProcessState
QueryProcessorUsage .
QueryWorkstationConfig
Raw
RawGetchar
ReadDescriptor
ReadProcessState
ReadStdFld

Ready
RealFillBufter
RealFlushBuffer -
RedrawPad
RegisterObject
RegisterServer .
RemoveCList
RemoveDList
RemoveQueue .
RemoveSList
Rename
ReplyWithSeg
ReportNamingStats
ResetTTY)
ResolveLocalName
ReturnHostStatus . . .
ReturnModificdPages
SameTeam ‘
SelectPad

Send

SctObjectOwner
SetPid
SectProcessPriority
SctTcamPriority
Setl'camSize

Sctlime
SctUscrNumber
SctVgtBanner
Shift_left

Size

SpecialSprintf .
StrToFormat

Suicide

‘I'camRoot
TransferHost
Undcfincl.ocalName
UnfreczcHost
UnregisterObject
UnregisterServer
UpdatcHostStatus
Upper
User

ValidPid

vgts/mi/openpad.c

. vgts/mi/openpad.c

process/mi/priority.c
process/mi/queryprocess.c
process/mi/queryusage.c
query/mi/qwconfig.c

. sa/mi/flushfill.c 2

sa/mi/flushfill.c
naming/mi/readdesc.c -
process/mi/readprocess.c.
vgts/mi/fields.c

. process/m68k/ready.c

sa/mi/flushfill.c. ..
sa/mi/flushfillc . ..
vgts/mi/usemouse.c..
service/mi/register.c

. service/mi/register.c

packages/mi/clist.c
packages/mi/dlist.c
packages/mi/queue.c
packages/mi/slist.c.

. Daming/mi/rcname.c

saconsole/mi/dummyikc.c
process/mi/exit.c. ..:.:
vgts/mi/vtty.c ©
naming/mi/resolvelocal.c

. service/mi/hoststatus.c

process/mi/returnpages.c
process/mi/sametcam.c
vgts/mi/openpad.c
sa/mi/ikc.c

. process/mi/objectowner.c

naming/mi/sctpid.c
proccss/mi/priority.c
process/mi/scttcamprio.c
process/mi/sctteamsize.c

., time/mi/scttime.c

uscr/mi/sctuscrnumber.c
vgts/mi/sctbanner.c
strings/mi/shifticft.c
strings/mi/size.c

. vgts/mi/ficlds.c

vgts/mi/ficlds.c
process/mi/destroy.c
process/mi/teamroot.c
process/mi/transferhost.c

. naming/mi/undcflocal.c

process/mi/unfreczchost.c
scrvice/mi/register.c
scrvice/mi/register.c
service/mi/hoststatus.c

. strings/mi/upper.c

uscr/mi/user.c
process/mi/validpid.c

D-9

17 Junc 1986

D10

17 June 1986

Vsasu
Wakeup
WatchForBreak
WriteDescriptor
WritcProcessState
_Reccive
_doprt
_doscan . .
_getccl
_innum
_instr

_start
_strout . . .
abort

abs

align
asctime
atof

atoi

atol

chmod
clearenv
close . .
closedir
control
copyenv
creat

crypt .
ct_numb
ctime

cvt

debug
decprint .
dysize

cevt
encrypt

exit

fbmode . . .
fclose

fevt

feof

ferror

fflush .
fgete

fgets

fopen
fprintf
fpute . .
fputs

fread
frcopen
frexp

fscanf .
fscek

List of Library Functions defincd in libe

sa/vax/Vsasu.c
time/mi/wakeup.c

. unix-compat/mi/signal.c

naming/mi/writedesc.c
process/mi/writeprocess.c
saconsole/mi/dummyikc.c
stdio/mi/doprntc

. stdio/mi/doscan.c

stdio/mi/doscan.c
stdio/mi/doscan.c
stdio/mi/doscan.c
sa/mé68k/_start.c

. stdio/mi/strout.c

sa/mi/abort.c
numeric/mi/abs.c
process/mi/teamroot.c
time/mi/ctime.c

. strings/mi/atof.c

strings/mi/atoi.c
strings/mi/atol.c
unix-compat/mi/unix-io.c
naming/mi/clcarenv.c

. unix-compat/mi/unix-io.c

naming/mi/closedir.c
sa/mi/flushfill.c
naming/mi/copyenv.c
unix-compat/mi/unix-io.c

. strings/mi/crypt.c

time/mi/ctime.c
time/mi/ctime.c
strings/mi/ccvt.c
sa/mi/ikc.c

. saconsolc/mi/printf.c

time/mi/ctime.c
strings/mi/ccvt.c
strings/mi/crypt.c
proccess/mi/exit.c

. rawio/mé68k/sunlrawio.c

stdio/mi/fclose.c
strings/mi/ccvt.c
stdio/mi/ferror.c
stdio/mi/ferror.c

. stdio/mi/fflush.c

stdio/mni/fgetc.c
stdio/mi/fgets.c
stdio/mi/fopen.c
stdio/mi/fprintf.c

. stdio/mi/fputc.c

stdio/mi/fputs.c
stdio/mi/rdwr.c
stdio/mi/frcopen.c
numeric/vax/frexp.c

. stdio/mi/scanfc

stdio/mi/fscek.c

V-System 6.0 Reference Manual

Appendices

fstat
ftell
ftime
fwrite .
gevt
getenv
gets
getw
getwd .
gmtime
hexprint
index
initints
initstate

linecontrol

linedata
lineget

linereadyrx

link

localtime

Iseek

nevercalled

octprint
open .
opendir

pBreathOfLife
pRemoteForward
pRemotcFoward
pRemotcMoveFromReq
pRemoteMoveToReq
pRemotcRecciveSpecific
pRemotcReply
pRemotcSend

printf .
puts
putw
gsl
gsexc
gsort .
gstexc
rand
random
rcad
readdir
rename

return_K_ticks

rewind
rindex
sbrk .
scanf
scckdir
sctbuf
sctecho
scteny .

.

unix-compat/mi/unix-io.c
stdio/mi/ftell.c
time/mi/ctime.c

. stdio/mi/rdwr.c

strings/mi/gevt.c
naming/mi/getenv.c
saconsole/mi/gets.c
stdio/mi/getw.c

. naming/mi/getwd.c

time/mi/ctime.c
saconsole/mi/printf.c
strings/mi/index.c
sa/vax/initints.c

. numeric/mi/random.c

rawio/mé68k/sunlrawio.c
rawio/m68k/sunlrawio.c
rawio/m68k/sunlrawio.c
rawio/m68k/sunlrawio.c

. unix-compat/mi/unix-io.c

time/mi/ctime.c
unix-compat/mi/unix-io.c
sa/m68k/_start.c
saconsole/mi/printf.c

. unix-compat/mi/unix-io.c

naming/mi/opendir.c
sa/mi/ikc.c
sa/mi/ikc.c
sa/mi/ikc.c

. sa/mi/ikc.c

sa/mi/ikc.c
sa/mi/ikc.c
sa/mi/ikc.c
sa/mi/ikc.c

. saconsole/mi/printf.c

saconsole/mi/puts.c
stdio/mi/putw.c

numeric/mi/qsort.c
numeric/mi/qsort.c

. numeric/mi/qsort.c

numeric/mi/qsort.c
numcric/mi/rand.c
numcric/mi/random.c
unix-compat/mi/unix-io.c

. naming/mi/rcaddir.c

naming/mi/rename.c
sa/vax/initints.c
stdio/mi/rewind.c
strings/mi/rindex.c

. unix-compat/mi/sbrk.c

stdio/mi/scanf.c
naming/mi/scckdir.c
stdio/mi/sctbuf.c
rawio/m68k/sun lrawio.c

. haming/mi/sctenv.c

b-11

17 June 1986

D-12

setkey

sctstate

signal

sleep

sprintf
srand

srandom

sscanf

stat

stdinit
stime *

strcat

strcatn

stremp

stempn
strepy

strepyn

strlen

strncat

strncmp

strncpy

strsave

sunday
tdecode
telldir
tgetent

tgetflag
tgethum
tgetstr

tgoto
time

timczone
tnamatch
tnchkic

tputs

tskip

umask

unix_crrno
vdir_to_stat
wordchar
write

17 Junc 1986

List of Library Functions defined in libe

strings/mi/crypt.c
numeric/mi/random.c
unix-compat/mi/signal.c
time/mi/sleep.c
stdio/mi/sprintf.c
numeric/mi/rand.c
numeric/mi/random.c
stdio/mi/scanf.c
unix-compat/mi/unix-io.c

. unix-compat/mi/unix-io.c

time/mi/ctime.c
strings/mi/strcat.c
strings/mi/strcatn.c
strings/mi/strcmp.c

. strings/mi/strcmpn.c

strings/mi/strcpy.c
strings/mi/strcpyn.c
strings/mi/strlen.c
strings/mi/strncat.c

. strings/mi/strncmp.c

strings/mi/strncpy.c
strings/mi/strsave.c
time/mi/ctime.c
termlib/mi/termcap.c

. naming/mi/tclldir.c

termlib/mi/termecap.c
termlib/mi/termcap.c
termlib/mi/termceap.c
termlib/mi/termcap.c

. termlib/mi/tgoto.c

time/mi/ctime.c
time/mi/timczone.c
termlib/mi/termcap.c
termlib/mi/termcap.c

. termlib/mi/tputs.c

termlib/mi/termcap.c

unix-compat/mi/unix-io.c
unix-compat/mi/unix-io.c
unix-compat/mi/unix-io.c

. sa/mi/flushfill.c
- unix-compat/mi/unix-io.c

V-System 6.0 Reference Manual

(==« 10-6,10-9

CTRL-a 2-10
CTRL-b 2-10
CTRL-d 2-10
CTRL-e¢ 2-10
CTRL-f 2-10
CTRL-g 2-10
Cmi-h 2-10
CTRL-i 2-10
CTRL-k 2-10
CTRL-t 2-10
CTRL-u 2-10
CTRL-wW 2-10
CTRL-z 2-11
BC-b 2-11

Bscd 2-11

esc-f 2-11

Bsc-h 2-11

_Open 22-3

[bin] 3-1

Abort 2-6,27-8

Abort Command 2-10
Aborted 32-2

Abs 26-1
AcquircArgumentSpinLock 23-2
AcquircGlobalSpinLock 23-2
AcquireSpinl.ock 23-1
AddCall 29-9

Addcorr 43-2

Addlitem 29-9

AddUser 35-2

All 29-14

Alto 10-1

Amaze 4-1

ANSI 46-2

ANSI terminal 2-3

ANSI virtual terminal 2-3, 2-6
Any 30-2

Append Only 22-2, 33-1

Ar 4-1

Arrowhcads 10-1

Asctime 30-1

Atof 30-2

Atoi 30-2

Atol 30-2

Attributes 10-2

Authenticate 35-2
Authentication 35-1,C-4
Authentication server 31-5, 35-1

V-System 6.0 Reference Manuat

Index

Authserver 35-1
Autobooting 16-2

AVT 23,26

AVT Escape Sequences 46-1
Awaiting reply 31-§
AwaitingReply 27-9
Awoken 32-2

Background 42-1
Background Processes 31-7
Backspace 46-1

Bad Address 32-2
Bad Args 322

Bad Block No 32-2
Bad Buffer 32-2

Bad Byte Count 32-2
Bad Forward 32-2
Bad Process Priority 32-2
Bad State 32-2

Bare kernel mode 27-8
Beginning of Buffer 45-1
Beginning of Line 2-10
Bell 46-1

Big-endian 32-1
Biopsy 4-1
Bitcompile 4-1

Bits 7-1

Blank lines B-1
BiksInlFile 22-6
BlockPosition 22-6
Blocks 13-1

BlockSize 22-6

Bit 24-2

Boise 4-2

Booting 2-4
Break-Process 2-10
BufferEmpty 22-§
Build 81

Busy 32-2

Byte order 32-1
Byte-swapping 32-1

C 42

Cadlinc 2-§

Calloc 24-1

Cat 4-2

Cct8 4-2

Cd 3-2,42

Center Window 2-7

Cfree 24-1

Change Context 3-2

Change Current Context 25-1

Index-1

17 June 1986

Index-2

Change Directory 3-2,4-2
ChangeDircctory 25-1
Changeltem 29-10
Character Set 46-3
Character strings 30-2
Chdir 25-1

Checkers 4-2 .

Checkexecs 4-2 -

Ci 43

Circles 10-1

Clear 4-3,24-2, 462
Clear AVT 46-1
Clcar To EOL 46-2
Clear To EOS 46-2
Clcareny 25-6

ClearFof 22-§
ClearlocalNames 25-3
ClearModificdPages 27-1
Click 2-6

Clock 4-3

Close 22-4

Co 43

Command Arguments 3-6
Command processing 31-7
Commands 10-2, 10-7
Compilc command 18-1
Compiling 18-1

Concat 30-2

Conlfig Files 19-1
Configuration 19-1
Console 36-3

Conlext 4-3, 4-2
Context Directories 34-9
Context Request 34-6
Contexts 3-1

Control 2-10
Convert_num 30-2
Cooking 29-2, 46-3
Copy 24-1

Copy files 4-3

Copy_str 30-3

Copyenv 25-6

Cp 43

Cpdir 4-3

CR Input 29-2

Create 27-7

Create Duplex Instance 33-4
Create Iixccutive 2-7
Creale Instance 33-3, 46-3
Create Instance Retry 34-11
Create View 2-7
CrcatcDuplexinstance 22-3
CreateFxec 46-5
CreateGroup 27-8
Creatcllost 27-6
Creatcinstance 22-3
CreatcPipeinstance 22-7
CreateProcess 27-1
CreateSDI* 29-8
CreatcTeam 27-2

V-System 6.0 Refercnce Manual

CreateVGT 29-11
CreateView 29-2

Creator 27-2

Crypt 30-2

CSname 34-2

CSNH server 34-2

Ctime 30-1

CTRL-\ 45-1

CTRL-l 45-1

CTRL-n 45-1

CTRL-p 451

CTRL-q 451

CTRL-y 45-1

Current object 10-3
Cursor Backward 2-10, 46-2
Cursor Down 45-1

Cursor Forward 2-10, 46-2
Cursor Position 46-2
Cursor Up 45-1, 462
Cursor Word Backward 2-11
Cursor Word Forward 2-11
Cx 43

Dale 4-3,4-9,29-6

Date 4-3

Debug 4-3

Debugger 9-1,37-1
Dcbugvgts 4-3, 46-4, 46-5
Defauit Context 34-4
DefaultRootMessage 28-2
DcfaultSclectionRee 28-3
DefaultView 29-1

Define 4-3

Define Font 29-11
Definel.ocalName 25-2
DefineSymbol 29-8
DefinclTempArca 25-3
DEL 46-2

Delay 30-1

Delcorr 43-2

Ielete Char 46-2

Delete Character 2-10
Delcte Character Backward 2-10
Delete Character Forward 2-10
Delete Executive 2-7
Dcicte Last Character 2-10
Delete Line 2-10, 46-2
Delete to Beginning of Line 2-10
Delete to End of Line 2-10
Delete to Start of Line 2-10
Delete View 2-7

Ielcte Word Backward 2-10
Delcte Word [Forward 2-11
Dcleteltem 29-9
DelcteSDF 29-8
DelcteSymbol 29-9
DeleteUser 35-2
DeleteVGT 29-1

Delexee 4-3

Destroy 4-3, 27-7

17 Junc 1986

DestroyAuthRee 35-2
Destroylost 27-6
DestroyProcess 27-2
Device Error 32-2

Device server 31-3, 36-1
Device type 36-1

Diff 4-3
DifferentBytcOrder 32-1
DifferentlKCByteOrder 32-1
Discard Reply 32-2
DiscardOutput 29-2

Disk 36-2 .
Displayltem 29-11

Do 44

Domake 44

Dopar 4-4

Doseq 4-4

Draw 4-4,4-9

Duplicate Name 32-2

Echo 44,293
Ecvt 30-2
EditLine 29-§
Editor 4-9, 14-1
FditSymbol 29-8
Emacs 49

- End of Buffer 45-1

End of File 2-10, 32-3
End of Line 2-10
EndSymbol 29-8
Environment Variables 3-6
Eof 22-5

Equal 30-3
FrrorString 27-8, 30-4
ESC-, 45-1

[SC-. 45-1
ESC-BACKSPACE 45-1
FSC-npeL 45-1

ISC-d 45-1

ESC-t 45-1

Escape 2-10

Escape Scquences 46-1
Ethernet 36-1

Event Request 46-4

_ Lxample 29-15
Exccption handler 31-7
Exception handling 31-7
Exception Request 37-1
Iixception scrver 31-3
Iixec 3-1,46-5

Excc Control 2-8, 3-1
Fxec server 314

Execl 28-4
ExccProgram 28-2, 42-1
Ixccserver 3-1
Exccution 18-2
Fxccutive 3-1,27-8
Ixcoutives 314

Exit 27-8, 31-6
Ixpansion Depth 2-8

V-System 6.0 Reference Manual

Index-3

ExtractHost 27-6

FAppend 22-1,33-2
FCreate 22-1,33-2
I'Directory 33-3
Fexccute 4-4,33-3
Ficlds 21-1

File Modes 22-1,33-2
File Types 22-2,33-1
FileException 22-6
Fileld 22-8
FileServer 22-8
FileType 22-8

Filled Rectangle 29-6
FindSelectcdObject 29-13
First Team 31-5
Fixed Length 22-2, 33-2
Flush 22-§

FModify 22-1, 33-3
Followup message 34-11
Foat 29-11

Fonts 10-1, 10-2, 12-3
ForceSend 27-9
Foreground 42-1
Forward 27-9
Forwarder 27-10
Framcbuffer 36-3
FRead 22-1,33-2
Free 24-1 .
Freemem 4-4
Freezetlost 27-7
Ftime 30-1
FullUserName 35-2

Gevt 30-2

Genceral Line 29-6
General Text 29-7

Get Absolute Name 34-7
Get Context 1d 4-7
Get Context Name 34-8
Get File Name 34-8
GetAbsoluteName 25-3
GetContextid 25-3
GetContextName 25-4
Getenv 25-5

GetEvent 29-12
GetliileName 25-3
GetGraphicsEvent 29-12
GietGraphicsStatus 29-12
GetMorcMallocSpace 24-2
GetMouscClick 29-13
GetMouscOrKeyboard 29-13
GetObjectOwner 27-2
GetPid 27-3
GetRemoteTime 30-2
GetReply 27-10
GetSigned 22-9
GetleamRoot 27-3
GotTeamSize 27-3
GetTime 30-1

17 Junc 1986

Index-4

GetITY 29-14
GetUnsigned 22-9
Getwd 25-1

Ghltodvi 44

Gltype 44
GiveToMalloc 24-2
Global scrvers 31-4
Gmtime 30-1

Graphics Commands 2-8
Grep 44

Groups 10-1, 10-3, 10-5, 10-9
Guest 42-1

Has Substructure 32-3
Helper process 31-1
Helper Processes 31-3
Heterogencity 3-7
Hex_value 30-3
History 3-§

Hit Detection 29-13
Ilomc dircctory 4-6
Horizontal Line 29-6
Host sclection 28-3,42-1
Host status 42-1

/0 22-1

170 Protocol 33-1

Ident 44

Ignored 46-2
IKC_LITTLE_ENDIAN 32-1
Illegal Name 32-3

Illegal Request 32-3
Index 30-2, 46-2

Initial process 18-1

Initial stack 18-1
Initialization 18-3, 31-5
Inquery program 39-11
InquircCall 29-9
Inquircltem 29-9

Inscrt Char 46-2

Insert Line 46-2

Inscrt With Lighth Bit Set 45-1
Instaliation C-1

Instances 44

Interactive 22-2, 22-8, 33-2
Internal Brror 32-3
Internet Server 4-4, 39-1

InterProcess Communication 13-1, 27-1, 27-9

Intcrrupt Program 2-8
lnvalid Context 32-3
Invalid Iile Id 32-3
Invalid Mode 32-3
Inverse Video 46-2
10 Break 32-3

10 Protocol 17-2
IP/TCP 4-8, 39-1
Iphost 4-4

Iptelnet 4-8

Item 29-§, 29-6
Item lype 29-6

V-System 6.0 Reference Manual

JoinGroup 27-9

Kemel mode 18-2
Kernel server 31-3
Kernet Timeout 32-3
Kill Break 2-10

Kill Program 2-8, 46-3
Kill Word Forward 45-1
Killprog 44

LeaveGroup 27-9
Left Button 2-12, 29-4
Left Mouse Button 14-7
Left + Middle Buttons 2-12, 29-4
Left+Right Buttons 2-12, 294

LF Output 29-3

Libv.a 18-1

Line 29-6, 29-8

Line Editing 2-10, 29-3, 29-5, 45-1, 464
LineBuffer 29-3

Linking 18-1

Listdesc 44

Listdir 44

Litte-endian 32-1
LITTLE_ENDIAN 32-1
LITTLE_ENDIAN_HOST 32-1
Loader 18-2

Loading 31-5

LoadProgram 28-1,42-1

Localtime 30-1°

Locking 23-1

Login 3-2,44

Logout 3-3

Longjmp 30-4

Lower 30-3

MacDraw 10-1
Machine-relative scrvers 31-3
Mail 4-5

Make 8-1

Make Bottom 2-8

Make Top 2-8°

Malloc 18-1, 24-1

MapUID 35-2
MapUserName 35-3

Math 26-1

Mcem server 4-5, 40-1
Memory server 31-§

Mcnu 21-1, 29-14

Mecnu, View Manager 2-7
Message Format Conventions 32-1
Melafont 4-5

Mf 4-§ '

Middlc Mousc Button 14-7
Middlc + Right Buttons 2-12, 29-4
Migrateprog 4-§

Migration 3-2, 3-3,4-5
Mode 33-3

" Modc Not Supported 32-3

Modes 22-1, 33-2

17 June 1986

Modify File 33-8
ModifyPad 29-4
ModifyUser 35-3

Mon 4-§

Monasterics 18-1

" More Replies 32-3
Mouse 2-6,14-7,36-2 .
Mouse emulation 2-12
Move Edges 2-8

Move Edges + Object 2-8
Move Viewport 2-8
MoveFrom 27-10
MoveTo 27-10

Multi Block 22-2, 33-2
Multi-manager 32-3
Multi-manager context directory 34-11

Name 4-§

Name Request 34-5
NameCachcAdd 25-4
NamcCacheDelete 25-5
NameCachcLookup 25-§
Names B-1

NameSend 25-3
Naming Protocot 34-1
Netwatch 164

New Line 46-1, 46-2
Newterm 4-5, 46-1, 46-4
Next Line 46-2

Nibs 10-1, 10-2
NModify File 33-8

No Group Desc 32-3
No Mcmory 32-3
NoPDs 32-3

No Permission 32-3

No Process Descriptors 32-3
No Server Resources 32-3
NoTDs 32-3

No Tcam Descriptors 32-3
NoCursor 29-3
Noncxistent Process 32-4
Nonexistent Session 32-4
Not a Context 32-4

Not Awaiting Reply 324
Not lFound 32-4

Not llcre 32-4

Not Readable 32-4

Not Writcable 32-4
Nouns 10-2

NQuery File 33-8
NRead Descriptor 34-10
NRecadDescriptor 25-2
NUL 46-1

Null devices 364
Null_str 30-3

Numeric 26-1

NWrite Deseriptor 34-10
NWritclescriptor 25-2

Object Descriptors 34-9

V-System 6.0 Reference Manual

Index-§

OK 322

Open 22-2
OpenAndPositionPad 29-4
OpenDuplex 22-3
OpenFile 22-3
Openlp 227
OpenPad 29-4, 46-3
OpenStr 22-8
OpenTep 22-7
Outline 29-6
Ovals 10-1

Pad 2-3

PadFindPoint 29-5
Paged output mode 2-11
Pagemode 4-6
PageOutput 29-3
PageOutputEnable 29-3
Pascal 4-6

Password 4-6, 35-3
Patterns 10-1, 10-2
Pc68 4-6
Per-process area 18-5
Performance Measurement 13-1
Personal name 4-6
Photo 4-9

Point 29-7

Polyline 29-7

Popup 29-14

Postscript 10-8

Power Failure 32-4
Press 10-8, 10-9
PressEdit symbol 10-6, 10-9
Previous Word 2-11
PrimcCache 25-5

Print 10-8, 10-10
PrintCrror 30-4

Printf 22-1

PrintFile 229

Process 27-1

Process Group Operations 27-8
PROM monitor 27-8
Protocol 31-1

Protocol conversion 39-1
Pscudo-processes 31-1
Public 43-1

Public Context 34-4
PutSigned 229
PutUnsigned 22-9

Pwd 3-2,4-6

Pwx 4-6

Q 46

Qsort 30-4

Query 4-6

Quecry File 33-8

Qucry Instance 33-4, 46-3
Query Name 34-6
Querycxee 4-6
QueryGroup 27-9

17 Junc 1986

Index-6

Qucryllosts 28-3
QueryKernel 27-3
QueryPad 29-4
QueryPadSize 29-4
QueryProcessorUsage 27-3
QueryProcessPriority 27-4
QueryProcessState 27-4
QueryWorkstationConfig 19-1
Quotc Character 45-1
Quoting Arguments 3-6
QVSS 364

RAM disk 31-§
Rand 26-1

Ranlib 4-6

Ranlib68 4-6

Raster 29-7

Raw 29-2

Rcs 4-6

Resdiff 4-6
Resmerge 4-6
Re-Display Input 45-1
Read 22-§

Read Descriptor 34-10
Read Instance 33-6, 46-3
Readable 22-2,33-1
ReadDescriptor 25-2
RecadProcessState 27-4
Ready 27-7

Realloc 24-1
ReceiveSpecific 27-11
RecciveWithSegment 27-11
Rectangle 29-6
Rectangles 10-1
Redraw 2-8

- RedrawPad 29-§

Reference Line 29-6

Register ilandler 37-1

Release Instance 33-5, 46-3
ReleascArgumentSpinLock 23-2
RelcascGlobalSpinlock 23-2
Rcleascinstance 22-4
ReleaseSpinLock 23-1

Remote exccution 42-1 -
Remote program exccution 3-3, 34, 3-6
Remotelixecute 28-3
Removelile 22-8

Rename 4-6

Renane lile 34-9

Rename Object 34-9

Reply 27-11

Reply cdde 32-1
ReplyWithSegment 27-11
Report Click 29-3

Report Transition 29-3
Request code 32-1

Request Message Formats 33-3
Request Not Supported 32-4
Reset State 2-8

ResctTTY 29-14

V-System 6.0 Reference Manual

ResolvcLocalName 25-2
Pesynch 22-5

Retry 324

Retry Unicast 32-4
Return 46-1
ReturnModifiedPages 27-4
Reverse Index 46-2

Right Mouse Button 14-7
Rindex 30-2

Rlog 4-6

Rm 46

Root process 18-1
Round-robin scheduling 42-1

SameTeam 27-4

Screen saver 2-7

Scribe 10-1, 10-6, 10-9
Scroll Region 46-2

SDF 29-5

Seek 22-4

ScekBlock 22-6

Segment 27-12

Sclccted Horizontal Reference Line 29-7
Sclected Vertical Reference Line 29-7
SelectionRec 28-3
SclectPad 2915, 46-4

Send 27-11 .

Serial 4-7

Serial line 363 .

Server Not Responding 32-4
Services 31-1

Sessions 43-1

Set Altcrnate Ixec Size 2-8
Sct Break Process 33-7, 46-3
Sct Instance Owner 33-7, 46-3
Set Prompt 33-8
SciBreakProcess 22-9, 46-5
Sctenv 25-5
SctinstanccOwner 22-9
Scijmp 30-4
SctObjectOwner 27-5
SctPid 27-5
SctProcessiriority 27-5
SctTeamPriority 27-5
SctTeamSize 27-5

SctTime 30-1
SctUplinvironment 18-4
SctUscrNumber 35-3
SctVetBanner 29-15, 46-4, 46-5
SGVT 2-3,29-§

Shell 3-1

Shift In 46-1

Shift Qut 46-1

Shift_teft 30-3

Show 4-7

. SIL 10-1

Siledit 4-9, 12-1
Silpress 49, 1243
Simple Text 29-7
Size 30-3

17 June 1986

Index-7

Sleep 4-7, 30-2 Terminal agent 2-1, 3-1
SMI 24 Terminal emulation 29-1
Sort 47 ' Terminal Emulator 46-1
Special Ved commands 14-2 y Termination 31-6
SpecialClose 22-4 Testexcept 4-8
Spin locks 23-1 Text 10-1
Spline 29-7 Time 17-3,30-1
Splines 10-1 . Timeipe 13-1
Srand 26-1 Timeipcserver 13-1
Stack overflow 18-1 Timekernel 4-9
Stack size 18-1 : . . Timeout 32-4
StandardExceptionHandler 30-4 i Timezone 30-1
Start of Line 2-10 ‘ Toggle Grid 2-9
Startexce 4-7 Toggle Paged Qutput Mode 2-9
Starting up Ved 14-1 . Tops-20 31
Stime 30-1 . TransferHost 27-7
Storage server 31-§ Transition 2-7
St-ragestats 47 Transpose 2-10
Otreat 30-2 Transpose Words 45-1
Stremp 30-2 e Tsort 4-9
Strepy 30-2 Type 4-9,22-2
Stream 2-2, 33-1 Types 331
Strings 30-2
Strlen 30-2 ‘ Un-Kill 45-1
Strncat 30-2 Undefine 4-9
Stmemp 30-2 UndefincLocalName 25-2
Strnepy 30-2 Unfreezetiost 27-7
Strsave 30-3 . Unix 3-1, 3-3,4-9,17-1
Structured display file 29-5 Unix server. 43-1
Structured Graphics 10-9 Unlink 22-9
Structurcd graphics virtual terminal 2-3, 29-5 Upper 30-3
STS 3-1 User 35-3
STS hardware environment 45-1 UserCorrespondences 43-1
STS linc cdiling 45-1 UscrName 35-3
Stuffboot 4-7 .
Style B-1 Vserver 3-3,43-1
Su 33 ValidPid 27-6
Subprograms 18-2 Variable Block 22-2, 33-2
Suicide 27-8 Vax 49
Suni0Ovgts 46-1 Ved 449, 14-1
Suni20vgts 46-1 . Ved bullers 14-6
Swab 24-2 Ved crash recovery 14-12
SwapiKPacket 32-1 Ved cursor motion 14-2
Switch Input 464 Ved cditing commands 14-3
Symbol 29-§ Ved file access 14-5
System 284 Ved kill buffer 14-3
SystemCode 27-8 Ved mark 14-4

Ved mouse 14-7
Tab 2-10, 46-1 Ved paging 14-3
Tail 47 ' Ved region 144
Talk 4-7 . Ved replacing 14-5
TCP/IP 39-1 ' Ved scrolling 14-3
Tcam cnvironment block 18-3, 13-4 ’ Ved scarching 14-§
Tcam Loading 31-5, 42-1 ' Ved special characters 14-3
Team ownership 42-1 . Ved windows 14-6
Team root message 18-3 Vemacs 4-9
Team scrver 31-3, 421 ‘ Venvironh 18-1, 32-2
TcamRoot 18-2, 18-3 Verbs 10-2, 10-4
Teinct 4-8, 45-2 : Vertical Line 29-8
Telnet server 4-8 Vertical Reference Line 29-8

V-System 6.0 Reference Manual 17 June 1986

Index-8

Votherneth 36-1
Vexceptionsh 37-1
VGT 23 .

VGTS 3-1,9-1,46-1
Vgts.h 29-17

View 2-2

View Manager 3-1,46-3
View Manager Menu 27
Vio.h 33-1
Vioprotocoth 33-3

Virtual graphics terminal 2-3

Virtual terminal 2-1, 2-3
Vioad 16-1,18-2
Vmouse.h 36-2
Vpassword 35-4, C-5
Vspinlockh 23-1
Vicamsh 28-3
Viermagenth 29-17
Vuscreorrespndence C-5

W 49

Wait 28-2

Wakeup 30-1

We 4-9

Wh 49

Whi 49
Who is logged in 4-3, 4-9
Workstation agent 31-3
Write 22-6

Write Descriptor 34-10
Writc Instance 33-6, 46-3
Writcable 22-2, 33-1
WritcDescriptor 25-2
WritcProcessState 27-6
Writcshort Instance 46-3

Xerox 10-1
Yale 4-3

Zero 24-2,29-6
Zoom 2-9

V-System 6.0 Reference Manual

17 June 1986

Copyright © Leland Stanford Junior University

This work was supported by the Defense Advanced Research Projects Agency under contracts MDA903-80-
C-0102 and N00039-83-K-0431, by Digital Equipment Corporation, by the Nadonal Science Foundation
under grant DCR 83-52048, by the Natonal Aeronautics and Space Administration under contract
NAGW-419, by Bell-Northern Research, ATT Information Systems, Philips Research and NCR, and by
Graduate Fellowships from IBM, the National Science Foundation, Shell, and TRW.

20 June 1986

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	06-01
	06-02
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	11-01
	11-02
	12-01
	12-02
	12-03
	12-04
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	17-00
	17-01
	17-02
	17-03
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	19-01
	19-02
	19-03
	20-01
	20-02
	21-01
	21-02
	21-03
	21-04
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	23-01
	23-02
	24-01
	24-02
	24-03
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	26-01
	27-01
	27-02
	27-03
	27-04
	27-05
	27-06
	27-07
	27-08
	27-09
	27-10
	27-11
	27-12
	28-01
	28-02
	28-03
	28-04
	29-01
	29-02
	29-03
	29-04
	29-05
	29-06
	29-07
	29-08
	29-09
	29-10
	29-11
	29-12
	29-13
	29-14
	29-15
	29-16
	29-17
	30-01
	30-02
	30-03
	30-04
	31-00
	31-01
	31-02
	31-03
	31-04
	31-05
	31-06
	31-07
	31-08
	32-01
	32-02
	32-03
	32-04
	33-01
	33-02
	33-03
	33-04
	33-05
	33-06
	33-07
	33-08
	33-09
	34-01
	34-02
	34-03
	34-04
	34-05
	34-06
	34-07
	34-08
	34-09
	34-10
	34-11
	34-12
	35-01
	35-02
	35-03
	35-04
	36-01
	36-02
	36-03
	36-04
	37-01
	38-01
	39-01
	39-02
	39-03
	39-04
	39-05
	39-06
	39-07
	39-08
	39-09
	39-10
	39-11
	39-12
	40-01
	41-01
	42-01
	42-02
	42-03
	43-01
	43-02
	43-03
	43-04
	44-01
	45-01
	45-02
	46-01
	46-02
	46-03
	46-04
	46-05
	A-00
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	xBack

