
DRAFT - Edit Me

SUN

User's Guide

11 December 1981

Editor: 'V.I. Nowicki

Contributions by: J. C. Mogul and V.R. Pratt

Copyright © 1981 Stanford University

TABLE Or-CONTENTS

Table of Contents
1. Introduction

1.1. Intended Audience
l.2. Related Documentation

2. Software Development on Unix

2.1. Organization of SUN directories
2.2. Unix Commands Relevant to 68000 Software

2.2.1. Compiling with CC68
2.2.2. The 68000 Assembler
2.2.3. The 68000 Linker
2.2.4. Producing Loadable Files

2.3. Header Files in lusrlsun/inc1ude
2.4. Libraries

2.4.1. The C Library
2.4.2. The PUP and Leaf Libraries
2.4.3. The SUNOS Library

. 2.5. The 68000 C and Pascal Calling Sequence
2.6. The "S-Record" Down-Line Load File Fonnat

3. Using the SUN Processor

3.1. Introduction to the SUN ROM Monitor
3.1.1. What is the monitor?
3.1.2. Absolute Rules

. 3.2. Getting Started
3.2.1. Initializing the Workstation
3.2.2. Some Sample Programs
3.2.3. A Simple Example

3.3. The ROM Monitor Commands
3.4. Loading Programs

3.4.1. Down-line Loading
3.4.2. Nct-Ioading

3.5. Memory Mapping
3.6. Traps
3.7. Tracing programs

3.7.1. Breakpoint traps
3.7.2. Trace traps

3.8. Emulator Traps
3.8.1. Infonnation EMTs
3.8.2.110 EMTs
3.8.3. Memory lvfanagement EMTs

4. The SUN Graphics System

4.1. Graphics on the SUN workstation
4.2. Detailed Operation of the Graphics Board

11 DECEMBER 1981

I

1,

2
2

3

3
5
5
7
S
9
9

11
11
12
13
13
14
15

15
16
16
17
17
18
18
19
21
21
22
23
2S
26
26
27
27
28
28
28

31

31
32

n

5. The Motorola 68000 Design Module

5.1. Preparation of Programs
5.2. Compilation
5.3. Down-line Loading
5.4. Running
5.5. Debugging Aids

5.5.1. Display
5.5.2. Setting
5.5.3. Breakpoints
5.5.4, Tracing
5.5.5. Trace Display
5.5.6. Symbols
5.5.7. Numeric conversions

5.6. Symbol Tables
5.7. Disassembly
5.8. P2/tA
5.9. Memory Layout

6. An Insider's Guide to SUNet

6.1. Remote Terminal Programs
6.2. File Transfer Programs
6.3. Walk Net (Tape transfer)

7. SUNOS • A Small Operating System

7.1. Process-oriented Services
7.1.1. External Processes
7.L2. Internal Processes
7.1.3. Patient services
7.1.4. Physician services

7.2. Stream-oriented Services
7.3. Performance Services
7.4. Perfonnance Characteristics of Present 68000 Implementation
7.5. Calloe - A CPU Allocator for the Motorola 68000

7.5.1. Overview
7.5.2. Machine Dependencies in Calloe
7.5.3. Calloe Duties
7.5.4. Canoe Nonduties
7.5.5. Requests to Sleep
7.5.6. Cleaning Up
7.5.7. The Canoe Process Model
7.5.8. Control State Trarisitions
7.5.9. Calloc Services

7.6. The Edit-String Protocol
7.6.1. The Edit-String Data Structure
7.6.2. Reference
7.6.3. Locating Block Headers
7.6.4. Asynchronous Access

11 DECEMBER 1981

SUN USERS' GUIDE

37

37
37
37
38
39
39
39
40
40
41
42
42
42
43
43
44

45

4S
47
47

49

51
51
52
52
S3
53
SS
S6
57

·57
59
S9
60
61
62
62
64
64-
6S
6S
66
66
67

TABtE OF CONTENTS III

Index 69

11 DECEMIlER 1981

IV SUN USERS' GUIDE

11 DECEMBER 1981

LIST OF FIGURES

List of Figu res
Figure I-I: Major SUN Workstation Components
Figure 2-1: Developing Software with Unix
Figure 3~ 1: Layout of the SUN Processor Board
Figure 3-2: Memory Mapping on the SUN Processor
~'igure 4-1: The SUN Graphics Board
Figure 4-2: The SUN Graphics Screen
Figure 4-3: "RasterOp" Concept
Figure 4-4: Graphics Board Address Decoding
Figure 6-1: Topology ofSUNet

11 DECEMBER 1981

v

1
6

15
23
31
32
33
34
46,

INTRODUCfION 1

1. Introduction·
SUN is the Stanford University Network. This is an on-going effort of several groups within Stanford

University to provide a local co~puter network for Stanford University [21. based on inexpensive but high

performance workstations [3]. The network currently connects several time-sharing systems [7} in the

Computer Science and Electrical Engineering Departments. with plans to extend the network to the rest of

the campus [16]. The processor architecture in the workstation is the Motorola MC68000. ,The workstation

uses the Intcl Multibus1• which is proposed IEEE standard 796, so many other common peripheral interfaces

are comcrcially available. "\Vorkstation" is used instead of "personal computer" or "terminal" to emphasize

the flexibility of the design.

Multibus

,
68000 Graphics Ethernet

Processor System Interface

Keyboard Display Ethernet

Figure I-I: Major SUN Workstation Components

There are currently several operating systems being developed for the SUN workstation. Perseus [111 is a"

distributed operating system based on messages and links [4] that has been evolving for several years.. It is

written in Pascal* [8], a version of Pascal for systems programming. In the mean time. there are several

attempts to bring up Unix in various stages. Vaughan Pratt has written his own stream-based operating

system (see Chapter 7). Another operating system is being developed to be used. in a multi-processor

configuration.

IMullibus is a trademark of Intel Corporation

11 DECEMRER 1981

2 SUN USERS' GUIDE

1.1. Intended Audience

This manual is intended for people who want to write programs for the SUN workstation. Eventually this

should be called the "Hacker's Manual," with a separate manual sparing casual users of the unnecessary

implementation details. The emphasis is on getting consistent up-to-date information, rather than a pretty

mcmual. Suggestions. additions, editors, and proofreaders arc welcome. Many of the tools described here are

preliminary or interim in nature. Since everything changes so fast, you can incrementally generate any of the

chapters of this manual.

The source for this document is stored ,in [Sh as ta] Ius r I s un I doc. Each chapter exists as a press file,

which can be printed with the c z command.
ed lusr/sun/doc
cz (chapter).press

There is a make file in that directory, so a command of the form
cd lusrlsun/doc
make (chapter).press

• C2 (chapter>. press

will make a given chapter into a press file, which is then be printed on the Dover printer. The cz program

automatically inserts the figures in their proper places. To get the entire manual, simply use the commands:
cd lusrlsun/doc
cz manual.press

1.2. Related Documentation

1. The architecture of the MC68000 procesor and a description of the processor chip can be found in
Motorola'S User's ~1anuaI [13]. There are several books describing the 68000 architecture [91 [10].
Most vendor-supplied hardware is described in separate manuals or data sheets.

2. The hardware manual [11, currently ,somewhere on Sail, describes the processor, ethemet, and
graphics boards designed at Stanford. Someday we should convert this into Scribe and merge it
into this manual.

3. The Documentation for Unix2 can be found in the standard Unix [is} and Berkeley manuals.
Most of this is stored on the large Unix systems, and available through the man and ap ropos
commands. Some specific MC68000 Unix commands are described in the next Chapter.

4. The Perseus documentation, under [I FS]<Perseus>. Pcrsells is a distributcd operating system,
currently under development. There are probably a dozen CS246b projects that are related, the
documentation of which is scattered throught the world.

2Unix is a trademark of Bclllaboratories

11 DECEMBER 1981

JVl'(YV/\l<,C lJl:VELOPMENT ON UNIX 3

2. Software Development on Unix
Currently our development work is being done on a VAX3 computer nmning the Unix operating system.

With any luck, Unix may soon be nmning on the 68000 itself. '

2.1. Organization of SUN directories

Common SUN software is stored in subdirectories under one master directory. For example~ on the

Stanford VAxes Shasta and Diablo, this directory is Ius r I sun. The. following is a description of these

subdirectories, using the notation relative to Ius r I sun, or whatever it happens to be called on your system.

Every source file should contain a comment ncar the begining describing the author, date, and purpose of the

fue .

.Iadmin Administrative records, and a wishlist .

.tbin Binary files for Sunix commands. Complain to Vaughan about documenting Sunix •

. lbootfile Standard boot-format files. The production copies of stand-alone programs reside here.
This is the default directory for the SUN boot server. "Test" versions are put in the
subdirectory te s t, not in the main directory .

.Idm Fires to support the Motorola Design Module. Includes. d 1 fonnat files of some
programs that run on the design module. Read chapter 5 for more infonnation on the
support for the design module .

.Idm/lib Object library files specific to the design module .

.Idm/include Header files specific to the design module .

.Idoc cOverv~w documentation. The document you are reading now resides here. Some other
documentation exists in subdirectories of this .

.I doc/graphics Descrip tion of a Raster-op level graphics package .

.Ii nc1u de Header files, used by the #; nc 1 ude directive of the C preprocessor. See section 2.3 for
more information .

. !lib Object libraries. These are searched by the -1 option of ee6S. Some of these are
described near the end of this chapter .

.Iman68 Master copies of manual pages describing Unix commands. See next section for details on
these commands.

3VAX is a trademark of Digital Equipment Corporation

11 DECEMBER 1981

4 SUN USERS' GUIDE

.Imonitor • d 1 files for making monitor proms. Sources arc hidden under .Isrc/monitor .

.Isrc Some sun-related sources, subdivided into the following subdirectories. These should
correspond to the debugged, "production" versions of programs. Each subdirectory
should have a makef i 1 e describing how to compile sources in it; the result of the
makefi 1 e should be the bootfllcs in .Ibootfile or .Ibin .

.Isrc/cmd Commands that run on Vax and Sun. Further divided into subdirectories for some of the
important tools like the compiler, loader, etc .

.Isrc/diag Sun hardware diagnostics. These consist of a memory test, an ethernet interface test, and a
graphics board test.

.Isrc/games Source for some games. Most of these run on a "dumb" terminal, instead of using the
graphics board. .

.Isrc/graphicsGraphics demostration programs. and a Raster-op package .

.Isrc/-libc Sun libc.a sources. Further subdivided into the following subdirectories .

. .Isrc/libc/crtC run-time support. This is the routine which sets up the stack and calls the rna in function
of a program .

.Isrc/libc/cmt Emulator traps into the PROM monitor .

.lsrc/libc/gen General functions. This includes string manipulation, string conversion. etc .

.Isrc/libc/stdio Standard 10 functions. Currently this all goes through the terminal line .

.lsrcllibc/sunstuffSUNProcessor specific part of the library, Isn't all this stuff? Please complain to vaughan
about this .

.Isrc/libc/testFloating point tests. Has anybody ever used this?

.Isrc/libc/unixstdio _

.Isrc/monitor

.Isrc/mut

.Isrc/tty

.Iunix68

Some Unix stdio stuff~ never used for anything.

PROM Monitor Sources. Conlplain to Jeff that the up to date versions are kept in his
private directory instcad ofthc proper place.

Multi-uscr Pup Telnet This is the program that runs on "Ether Tips", and in a tnulti
window terminal program located in .Isrc/tty.

Multi-window terminal program .

Nu tcrminal Unix from MIT - Optional. \Vc should put the LucasFilms Unix there
someday, if we ever get it.

11 DECEMBER 1981

SOFTWARE DEVELOPMENT ON UNIX 5

2.2. Unix Commands Relevant to 68000 Software

The following Unix commands are used for MC68000 software development. All of them are documented

in chapter 1 of the Unix manual. This listing may be obtained using the Unix comlnand apropos 68w

as68(1) - Assembler
cc68(1) - General C command
ccom68(l) - Portable C compiler
ddt68(1) - A symbolic debugger and disassembler
dlx(l} - Down line load protocol handler
d168(1) - Download file generator
Id68(1) - Linking loader,
lorder68(1) - Object library utility
nm68(1) ~ Print name list of object files
068(1) - optimizer for assembly language
pc68(1) - Pascal* compiler (similar to cc68)
pr68(1) - print extended statistics on .b file
rev68(1) - reverse byte order .b and .68 (b.out) files
rl68(1) - print relocation commands in a .b file
size68(1) - prints sizes of segments in a .b file

2.2.1 . Compiling with Ce68

These commands are meant to mirror the standard Unix comlnands without the "68" suffix. For example.

the normal C command is ee, and the coresponding MC68000 command is ee68. This is the command most

users will be concerned with. Its function is to take the files named as arguments and do whatever needs to be

done to make them into a runable program. For ce68 to work properlYJ you should follow some simple

naming conventions. File names should consist of a short module name. followed by a suffix consisting of a

dot and one or two letters. The suffixes arc listed below:

• c

.p

• h

. s

• b

(none)

C language source programs. These are typed in and edited by the user with any editor .

Pascat*. (or regular Pascal) source files. See the Pascal* reference lnanual [8} for a
description of the language.

Header files, usually consisting of declarations and macro definitions which are accessed by
the #; n c 1 u d e directive. Some useful header files are described in section 2.3.

Assembly language files. produced by the compiler or w,rittcn by hand. Compiler produced
. s files are usually not seen by the user, except for detailed optimization or debugging.
These used to be called. a68 files, but ee68 used. s, which unfortunately conflicts with
all other assembler files, such as VAX assembler files.

Binary files, the output of the assembler .

1l1e default output of the linker is the file name b.out Usually an explicit output file will be
specified with the -0 option, the name of the program without any suffix. If the file is

11 DECEMBER 1981

6

. r

. dl

SUN USERS' GUIDE

generated on a machine with non-standard byte order such as a VAX, the . r fcnnat should
be the final result.

Byte reversed files produced by rev68, ready to be loaded over ethernet In actual
practice, the . r suffix tends to not actually appear. .

Motorola down-line load format (called "S-records"). Used to load over slow serial lines .

The three most often used options of cc68 are -0 <name), which means the the output will be named

<name), -c which specifies a separately compiled module, and -0 which causes the oplimizer to be invoked.

cc68 -c file.c

Figure 2-1: Developing Software with Unix

Terminal
1---.....

loading

)I dIe me.d/

Network
loading
)n file

The make program simpifics the construction of programs using several modules [6]. Just create a file

caned makef i 1 e (or Makef i 1 e) under the directory with your programs to ,be compiled. The makefile

consists of dependencies and commands. dependencies consist of a list of files to be made, followed by a

colon, fol1owed by a list of files upon which the others depend. Commands begin with a tab and end with a

blank linc. Thus, for example,

11 DECEMIlER 1981

SOFTWARE DEVELOPMENT ON UNIX

ethertip: enet.b tip.b
cc6S -r -0 ethertip ~net.b tip.b

tip.b: tip.e
cc6S -0 -c tip.c

enet.b: enet.h enet.c
cc6S -0 -c enet.c

7

is a makcfile for a program called ethe r t ; p that consists of two modules, tip and enet. The first command

line links the two modules together. The tip. b file depends on the corresponding source tip. C, and will

be compiled with the optimizer because of the -0. The enet. b module is compiled fr01n the corresponding

. c file, but also includes a header (. h) file.

~fter creating the makefIle, you can edit any or all of your sources, and just say ma keto remake the

-program. The make program reads the make file, and infers the necessary commands from the write dates of

the files. Continuing the above example, if we were to edit the enet. h file and perfonn a make command,

the enet . b module would be recompiled and the program relinked with the following conlmands:
ce68 -0 -c enet.c
cc68 ~r -0 tip enet.b tip.b

2.2.2. The 68000 Assembler

The 68000 assembler (as6a) takes file. sand producesfile. b, a non·text fIle containing an 8·word header

and segments for text, da~ symbols, data relocation commands, and tcxt relocation commands. The header

contains two words of magic numbers, the sizes of the text, initialized data. uninitializcd data, symbol, and

relocation· command seg~e~:s~~and the entry point (the start address of the top level routine). lbc listing

might by slightly helpful iridebugging; the values it gives for symbols however are incomplete. Uninitjalize~

. _·data symbols have no values in the listing, while all other values are relative to the start address, dctennined at

toad time.

Assembler options:

~d(digit>

-e

-9

-L name

-1

Used for debugging the assembler only. The digit gives some indication of the level of
debug printout.

Only put external symbols into the output binary flle.

Treat any undefincd symbols as globals. They must be eventually resolved by the loader.

Put the listing file into the file name. The ce68 command normally puts the listing in a
file with a name of the form name. 1 s. .

Produce a listing in filename. 1 is t, or other file if - L is given.

11 DECEMBER 1981

8

-0 nfJllM!

-p

-s

SUN USERS' GUIDE

Put the output in the file name instead of filename. b.

Print the listing on standard output.

Put the symbol table in the file 1; st. out. The loader's symbol table is probably more·
useful, since it is made after relocalion.

2.2.3. The 68000 Linker

TIle 68000 linker (1 d68) produces a file called b. out, in a similar fonnat toflle. b. The primary tasks of

the linker are to develop a symbol table for an of its inputs, and execute the relocation commands to produce

absolutecode. The output contains the same eight*word header as in file . b, text, data, and the symbol table.

toader options:

-0 dsr

-d ~

- lllame

-M

-0 filtr

-r

-s

-T addr

-u sym

-vversion

-x

Set the size of the data segment to dsz. It is padded with zeros if too short.

Force the common segment to be defined (overrides second part of - r)

Make ept the entry point of the program. Otherwise the first address of the code segment
is used.

Search the library file named Ius r I sun 11; bll i bname. a. A library file is searched
only as its name is encountered on the command line, so the order may be unportant. Note
there is no space between the - 1 and the name.

Create a file listing the symbols and their values in sym. 0 U t.

Outputisnamed file instead of b . 0 U t.

Preserve relocation bits so that the output file can be used for input to 1 d68 in a later run.
Also prevents final symbol definitions for common symbols, and supresses "undefined
symbol" diagnostics~

Strip the output file of all symbol table and relocation bits.

Start the code segment at addr.

Add synz to the symbol table. This is used when loading enitrely .from a library, since you
need at least one symbol reference to extract a "root" module.

Specifics the version of the 68000 environment to asslime. Currently the only available
options arc -vrn for the Design Module, and the default for the SUN.

Discard locals starting with L (weaker than -x). rnlis option is used by cc68 to discard
internally-generated symbols.

11 DECEMBER 1981

SOFfWARE DEVELOPMENT ON UNIX 9

-x Discard all local symbols from the output file.

2.2.4. Producing Loadable Files

The binary produced by the linker is converted into a file suitable for down-tine loading by most PROM

monitors with the d 168 program. The only d 168 option is - T 51 which specifies sl as the starting address

The input file must be the first argument; options other than -Tare ignored in silence. Symbol tables are

preserved. See section 5.3 or 3.3 for information on actually loading the design module or SUN processor.

The rev68 program takes linked b. out files and does some final byte~reversing if the target machine has a

different byte order than the current machine.

2~3~ Header Files in /usrlsun/include

Several useful header files are located in the / us r / sun / inc 1 u de directory. This directory is searched

automatically by the C preprocessor when you use #; n c 1 u d e directives.

amd9513.h

b.out.h

buserr.h

chaI"S.h

framebuf.h

graphics.h

graphmacs.h

lisp.h

m68000.h

m6821.h

m6840.h

Definitions for the AMD9513 timer chip. Jeff and several others have their own private
versions of this file. Please complain to them about i~ and the relationship with timer. h.

Defines the fonnat of a b • au t binary file. Note that although you use the same header
file, the bytes are reversed between the 68000 and the VAX, SO you must run re·v68 to
convert between the two.

A structuredetlnition matching the information pushed on the stack of the 68000 on a bus
error, and the "function codes" as described in the MC68000 User's Manual [13J.

Defines some mnemonics for control characters.

Definitions for the SUN Multibus frame buffer. See Chapter 4 for more infonnation.

Definitions for a "Raster·Op" graphics package which is frame·buffer independent. See
Chapter 4. and the separate manual on this for more information.

Some graphics macros for the SUN frame buffer. Most people will probably want to use
the graphics package instead.

A simple Lisp system defined in macros that map into C. Complain to Vaughan about this.

MC68000 mnemonic definitions for registers, and some Macros for pcrfOlming special
instructions like setting the interrupt level from C.

Motorola 6821 Peripheral Interface Accessory. This is a fancy name for the parallel I/O
ports on the Design Module.

Motorola 6840 Timer. This is the timer on the Design Module. It is so complicated

11 DECEMBER 1981

10

m6850.h

m68cnet.h

map.h

nec7201.h

necuart.h

noprotecth

pcmap.h

reentrant.h

s2651.h

statreg.h

stdio.h

sunemth

sunmmap.h

sys.h

timcr.h

vectors.h

SUN USERS' GUIDE

nobody here has ever figured out how to use it.

Motorola 6850 Asynchronous Communication Interface Accessory. This is the device that
connects your tcnninal to the Design 11odute, and the Design Module to a computer.
Ahnost everybody else cans it a UART.

Definitions for the SUN Multibus Ethernet interface.

Vaughan's version of the definitions for the memory map on the 68000 proce~sor board.
Please complain to him about the duplication with pcmap. hand noprotect. h.

Definitions for the NEC 7201 double UART. This is what connects your telminal on the
SUN board, analgous to the Motorola 6850<

More stuff for the NEC 7201 UART, like the addresses and some utility macros. It is so
complicated it takes two files!

Yet another memory nlap file. This one defines the protection codes~ Complain to
Vaughan about the strange name.

Jeffs version of the memory map definitions. Please complain to him about the duplication
between this and map. hand noprotect. h.

Dc fi nes- a macro for interrupt handlers. Please complain to Vaughan about the strange
name.

Definitions for the Signetics 2651UART. This is the chip used on our octal UART boards.

Defines some symbols for the 68000 status register.

Some undocumented definitions for some kind of Unix~like standard 1/0. Complain to
Vaughan to document it.

-Defines the emt codes supported by the SUN Prom monitor.

Some macros for manipulating the old wire·wrap version of the memory map. Complain to
leffto get rid of this.

Some macros to do storage allocation of fixed size objects. Complain to Vaughan about
the strange name.

Some more definitions for the SUN processor board timer. See also amd9513.h.

Some symbols defined for the MC68000 interrupt and exception vectors.

11 DECEMB£R 1981

SOrlWA RE DEVELOPMENT ON UNIX 11

2.4. Li b ra ries

Some 68000 libraries are stored in the directory Ius r / sun I 1 i b in the fonn of archives compiled and

assembled as.b files. The standard ar program, as described in the Unix manual, is used to manipulate these

archive files. The ee68 command normally searches the library /usrlsun/l ib/l ibe.a automatically,

Some of these functions arc similar to the standard C library, but others are still under development. The

sources should all be under Ius r I sunl s reI 1 ; b or lu s r / s u n/s rc/l ; bc.

2.4.1. The C Library

In the interests of greater portability of low-level code between the design module and the SUN processor"

some board iridependent lID functions have been written and installed in 1; be. a. Any references to

putchar. printf. and getehar, for example. will invoke functions to perfoml the 1/0 on the

"console" termInal. Similarly getenv will behave rather like its Unix counterpart, with getenv("TERM"}

returning ,I sun" , etc.

There is also a set of lower-level functions in the standard C library. The device types are dcteffilined at

link time, by supplying the appropriate set of routines, either as parameters to ee 68 (for example, -vm). All

uart functions begin with 'line' and have the line number as their first argument By convention, line number

o is the local tenninal or keyboard, and line number 1 is conneeted to a remote host. This trades off size of

the library for size of the calling code and a little speed.

char lineget(une) .
Get a character from line line, assuming the receiver is ready.

1 tneput (line, drr) .
Put character chr on line line, assuming the transitter is ready.

int linereadytx(line)
True if the :transmitter is ready on line line to accept another character to be transmitted.

in t 1 ; n ere a dy r x (line)
True if the receiver is rcady on line line.

lineserviee(procO>
Set the givcn procedure pointer to be the interrupt service routine for both lines. proc
should be declared with the reentrant() macro, described in section 2.3.

1 i nearmrx(line)
Enable receiver interrupts on the given line. The interrupt service routine should already
be set up.

1 ined;sarmrx(line)

11 DECEMTlER 1981

12 SUN USERS' GUIDE

Disarm receiver interrupt on the given line.

1; nearmtx (line)
Ann transmitter interrupt for line line.

1 i ned; s arm t x (line)
disann transmitter interrupt for line line.

lineresettxint(line)
Reset a transmitter interrupt, when there arc no more characters to print.

1; nereset (line)
Reset line. Default to interrupts disanned.

It is the responsibility of the individual libraries to deal with the problem of independently setting and

clearing control bits for ann and disann. The user need not keep track of the bits explicitly.

The meaning of 1 ; n ere ady = :::: 0 is that the line is busy for whatever reason, whether no carrier, no

DTR, no crs, or reception/transmission proceeding. It is assunled that an operations will be with 8 data bits,

2 stop bitst and n()_parity bit ..

No provision is -made for detecting UART errors. I~ may be reasonable to attclnpt low-level error

correction/detection in lineget and possibly lineput; however this should not be considered a substitute for

higher level error correction/detection (checksums 00 dowoloading~ perhaps use of Dial net).

2.4.2. The PUP and Leaf Libraries

The PUP [5] library is stored in /usr/sun/1 i b/l i bpup. a. Since these routines arc all described in

section 9 of the Unix manuat (available online with the rna n 9 command}t they are not described in detail

here. ce68 will search this library ifit is given the -1 pup option.

The -11 eaf option on a ee68 will search the leaflibrary, stored in lusr/sun/1 i b/l ib 1 eaf . a. Leaf

is a remote file access protocol, based on the Sequin reliable packet stream protocol. There arc Leaf servers

nmning on most large timesharing machines. Documentation of the 1ibrary is in

/usr/1ocal/doc/leaf/LeafUser.press@Shasta.

11 DECEMBER 1981

SOFTWARE DEVELOPMENT ON UNIX 13

2.4.3. The SUNOS Library

The SUNOS library is stored in /u s r / sun / 1 i bl 1 ; bsun 0 s . a, and can be searched with the -1 s u nos

option of cc68. The SUNOS library is discussed in chapter 7.

2e5. The 68000 C and Pascal Calling Sequence

The stack grows downward, towards smaller addresses. Two address registers are used to access the stack,

a6 (the frame pointer) and a7 (the stack pointer). The stack pointer is the standard one for the 68000~ in that

BSR (Branch to SubRoutine), JSR (Jump to SubRoutine), and PEA (Push Effective Address) all use- it. Note

that exceptions do not default to it. but rather to the System Stack Pointer, a register not accessible in user

state.

The code produced by the C and Pascal compilers result in a6 serving as a pointer to a linked list of stack

frames. A stack frame is a region of the stack associated with the calling or activation of a function. Stack

frames are stored contignously on the stack. Stack frames have five components; from low addresses (top of

stack) to high they are:

1. Locals. These may be of any size, and will occur in the reverse of their declaration order (or,
perhaps more mnemonically, in their declaration order going away from the Frame Center). They
will be contiguous to within the word alignment restriction, i.e. non-chars will be aligned at even
addresses. If the first local is char its address is the same as though it were a short (a quirk of the
compiler). The compiler also allows one additional byte beyond the last local.

2. Registers. This region contains some subset of the registers d2-d7 and a2-a5 saved 011 entry~ The
registers saved are _those actually used. The convention is made that C subroutines always
preserve th~sc registers, as wen as a6 and a7, but change dO,dl,aO and a1 unpredictably. The
optimization is such that this convention holds down to the statement level (or even lower!).
Alignment is on multiples of 4. Because of the additional byte allowed by the compiler for locals,
that byte and up to 3 more (the worst case being when the locals actually declared end on a
multiple of 4) are all. unused.

3. Frame Center. _ This contains a 4-byte pointer to the Frame Center of the next stack frame down
the stack (Le. at a higher address).

4. Return Address. This contains the caller's 4-byte return address.

5. Arguments. The arguments passed by the caller are implicitly cast as ints before being pushed on
the stack. Hence they are stored in consecutive 4-bytes regardless of their actual size. They are
stored in calling order, with the first argument closest to the Frame Center. It follows that the
order in which they are pushed is the reverse of the order they are written.

11 DECEMBER 1981

14 SUN USERS' GUIDE

2.6. The "S .. Record" Down-Line Load File Format

A • dl file consists of a series of records each having seven components:

1. TIle letter S.

2. A types a digit in the range 0 to 9.

3. A two digit (one byte) count, giving the number of bytes in the record.

4. An address. either 16*bit (two hex digits) or 24-bit (three hex digits).

5. n-Jor n-4 bytes of data, depending on the address type, where Il is the count given in 3.

6. Anne-byte checksum. 'The checksum test is that the sum of the bytes in items 3 through 6 must
be congruent to 255 mod 256, i.e. ~ust have OxFF in the least significant byte.

7. 1he end of the line*

The types are as follows;

~ ~
~O . Header
1 Data
2 Data
8 Trailer
9 Trailer

Features
Ignored by MAcsbug. and no longer generated
Two-byte address. bytes in hex (not used)
·Three-byte address, bytes in hex
Three-byte address, bytes in hex
Two-byte address, bytes in hex (not used)

If a header is given it goes at the start. A trailer must appear, and goes at the end. 111e rest of the file
. . --

consists of data records. The header is currently ignored. Each data record is loaded into memory starting

with the~ address speciJied··in in the record. provided it passes the checksum test The trailer. serves two

functions: to terminate reading. and to load PC with the trailer's address, giving a mechanism for defining the

entry point of a program.

11 DECEMBER 1981

USING THE SUN PROCESSOR 15

3e-Using the SUN Processor
TIle SUN processor is a powerful single board computer containing a Motorola MC68000 CPU~ memory

with management and parity, and some 110 devices. The board plan is illustrated in figure 3-1.

32 K bytes EPROM

I I Dual Uart I [16-bit Input Port]
68000 Processor I Timer] I Memory Cont rol]

8MHz

Memory 256K bytes

Clocks, logic, etc.
Management dynamic RAM

with Byte parity

IEEE 796-Bus Interface .I

Figure 3·1: Layout of the SUN Processor Board

3.1" Introduction to the SUN ROM Monitor

Most use of the SUN processor involves interacting, at least initially, with the ROM-resident monitor. The

following sections discusses the purpose of the monitor, and how to use it. Note: the discussion below

assumes (occasionally) the use of the PC-board version of the Sun Processor~ which has a two-level memory

map. Users of the Version~ 1 and 2 wire-wrap boards can probably deduce the points of difference; however.

neither of these boards will be supported in the future.

Although the primary function of the ROM monitor is to provide a simple console for the workstation~

there are a few features which affect the user programs that nm under it. For simple programs, especially

those using standard 110 routines, the characteristics of the monitor should not be important. However, if a

program makes direct ,:!se of interrupts or I/O devices, a few critical details are relevant.

11 DECEMBER 1981

16 SUN USERS' GUIDE

3.1.1. What is the monitor?

It is useful at this point to give a brief description of the operation of the monitor (SunMan). mostly to

provide a context for understanding the few rules imposed upon user programs.

The monitor has four major functions: initialization on processor reset, memory refresh. providing

Emulator Trap service (see section 3.8), and "intelligent console" facilities. Although the lastmay be the most

visible, the first two are the most important; the processor would be essentially unusable without them.

\Vhen the processor is reset (either when the "Reset" switch is hit. or when the power first comes on),

SunMan gains control. It initializes the on-board I/O devices (timers and UARTS), sizes memory" sets up the

Segment Table and Page Table. "initializes the parity state of the on-board RA1vI, creates the RAM refresh

routine, and initializes the interrupt and exception vectors, After this, control is transferred to a module that

manages the "console" functions.

M~mory refresh is done by the processor because it actually does not cost anything in tenns of

performance. and because it greatly simplifies the hardware design. The memory is refreshed by simply

reading 128 consecutive words every 2 milliseconds (some memory chips may need slightly different refresh

rates). This is done by executing a routine consisting mostly of NOPs. This routine is stored in RAM, and so

a malfunctioning program may damage it and thus cause havoc (since the contents of memory will be lost),

The console functions are implemented with fairly straightforward routines that communicate with the user

via the two on-board UARTS. If a Frame Buffer is avaiJable, the monitor will use it for output instead of the

console UART (command are still entered via a keyboard connected to the UART.)

In versions of SunMon that support ethernet bootstrapping, the console also uses the

Multibus Ethernet interface. In any case, all I/O is done using 4'busy-waits", and the code runs at the highest

interrupt priority. Therefore. if a user program is interrupted with the "Break" key on the console terminal or

with some other exception, the monitor will run correctly unless its global data area has been damaged. Also~

if the user program is then continued, it should be unaffected by the internlptioll save for the possible loss of

some 1/0.

3.1.2. Absolute Rules

From the preceeding section, it should be fairly obvious that one major rule is necessary to prevent a

monitor crash: do not trash the refresh routine or monitor globals. In general, the first two pages of memory

arc reserved for the monitor and should never be written by user programs; however, user code may want to

change exception vectors occasionally. It is legal to change any exception vector, except the "Level 7

11 DECEM BER 1981

USING THE SUN PROCESSOR 17

Autovcctor", at Ox7C (used for refresh timing), and ally "User Interrupt Vector", bctwecn OxlOOand Ox3FF~

inclusive. The refresh routine and monitor globals live in the region reserved for "User Interrupt Vectors",

because the Sun processor board does not support their use.

Certain other exception vectors (for example, the vector for a Breakpoint trap) arc used by the Illonitof.

However, it may be possible to alter these without dire results. Any program altering the refresh routine and

interrupt vector must take responsibility for doing proper memory refresh.

One other rule is important: user programs should not modify the Context Register directly, but should use

the facilities described in section 3.8.

3.2. Getting Started

3.2.1 .. Initializing the Workstation

The first step in using the SUN processor is making sure it is turned on. There is probably a switch labeled

"ON" and "OW'. It will work better if the power switch is in the "ON" position. (Version 2 processors have

a "poweru light on their control panels.) A terminal should be connected to the communications cable

extending from the processor. If you have a serial line to a host computer available. it should- also be

connected to the communications cable. Finally. if an ethernet interface is present, it should be connected to

an ethemet transceiver cable.

lbere is one switch, labeled "Reset" (it may actually be a power on/off switch.) Pressing and releasing the

Reset switch should be done after initial power-up of the machine, and whenever you want to really reset

everything. After a few seconds. the monitor should identify itself on the consote tenninal, with a olcssage

looking like
Sun Network Monitor. Version 0.9 - Ox20000 bytes of memory

The word "Network" may be omitted; certain commands pertaining to the ethernet only work with network

monitors. If this message does not appear. and the "halt" light is not lit, check the terminal'S status and

connection. If the halt light is lit, and if repeated use of the Reset switch has no effcct~ your hardware may be

broken. The Reset operation wilt probably destroy the contents of memory.

Pressing and releasing the "Break~' key on the console terminal switch causes a trap (also known as an

"Abort") to the monitor so that debugging commands may be given. You may continue an aborted progranl;

see the C command, described in section 3.3.

11 DECEMBER 1981

18 SUN USERS' GUIDE

3.2.2. Some Sample Programs

The fonowing are some useful programs available in the default bootflle directory. Most of their sources

are in appropriate subdirectories of lusrlsun. They all can be loaded and started with the n name

command of the monitor. (Note: the locations of source files here arc all wrong!)

cy14

edp

kal

memtest

monhelp

rect

sunbfd

suntty

tip

tty

A short program that displays four circles that move diagonally on the screen. A good
example of simple animation. Runs only with a frame buffer, of course.

A simple ethernet diagnostic program. Source is in lusrlsun/diag/edp. You might
have to load the . d 1 version, especially if your cthernet interface is not working.

A kalidescope program. originally written in DCPL for the Alto, and transcribed into
C. Really impressive graphics demo for the frame buffer. Source is in lusrlsun/demo.
Also see; ka 1, an interactive version.

A memory diagnostic, sources in lusrlsun/diag/memtest. When your workstation
has nothing better to do, it could nm this to help check for faulty memory.

As described below, this is a file which prints out a quick summary of the available monitor
commands. Note: various versions o/mo n he 1 p exist, corresponding to lhe varioliS versions
of the monitor. On version 0.7 and later monitors, mo n h e 1 p 2 is the program to ron. Please
bug leffto clean this up!

Another graphics demo for the frame buffer, The sources are located in /usrlsun/demo.
This just does some "randomu raster-ops in rectangles on the screen. frect is an
impressively fast version of recto

A program which lists the "standard" bootfilcs available via the cthemet bootloader.

A program which simulates a multi-window terminal on the frame buffer, with a separate
PUP telnct connection in each window. The source to this and the tty program is in
lusrlsun/tty.

A multi-user PUP tclnet program. If you have any octal UART boards in your machine
they may each have a PUP tclnet connection, as well as the primary tenninal.

Another version of the multi-window terminal program. This one uses the selia! line
instead of the-cthcrnet interface, so you talk directly to one host.

?2.3. A Simple Example

We will now step through how to write, compilc, load, and nm a simple program. First. we use OUf favorit

editor to cnter the fol1owing program into thc file Imnt/smi th/tes t. c:

11 DECEMBER 1981

USING THE SUN PROCESSOR

maine)
{

}

/*
* A simple tst program for the SUN workstation
*/

printf("Hello world!\n» };

We now compile the program with the following command:
ceSS -r -0 test test.e

We then go to our workstaion and type the command to load and nm:
>n Imnt/smith/test
Hello world f
>

3.3. The ROM Monitor Commands

The command fonnat understood by the monitor is quite simple. It is:
<verb><space}·[<argument}(return>]

19

The <verb> part is always one alphabetic character; case does not matter. (space>* means that any number of

spaces is skipped here. <argument> is normally a hexadecimal number or a single letter; again, case docs not

matter. As indicated by [j, the argument portion may be optional. When typing c~mmands. <backspace> and

<delete> (also called <rnbout» erase one character, control-U erases the entire line.

The commands are:

An

B

C addr

D n

E addr

"Open" A-register n (0 < n < 6). See the discussion below of "open·'.

Set a breakpoint. You will be prompted with the old breakpoint address; give the new
. address at which you want a breakpoint trap instnlction inserted.

Continue a program. The address addr, if given, is the address at which execution will
begin.

"Open" D-register n (0 < n < 1).

"Open" the word at memory address addr, odd addresses are rounded down.

F Bootfile name Load, but do not start, a file via the Ethernet. The program can be started with the G
command. Normally, the current PC is set to the entry point of the loaded program. Of
course~ this command is only available on network monitors.

G addr

H

Start the program by executing a subroutine caIl to the address addr if given, or else to the
current PC.

a minimal amount of help will be given; just a short list of commands. On network

11 DECEMBER 1981

20

I mode

K

SUN USERS' GUIDE

monitors, this actually involves boot-loading a help program via the ethernct If the
ethernct interface is not working, no help is avai1able.

set UART operation mode: 'A' means your tenninal talks to the monitor, °B' lTIeanS your
host computer talks to the monitor (not very llseful if directly invoked), and 'T' means that
you talk to the computer ("Transparent" mode) until you hit the transparent mode escape
character (initially set to control/shift/six or control/up-arrow) followed by a ·'e". ·S'
toggles the use of the Frame Buffer as the console output device: i.e., it selects it if it is not
being used, and selects console UART otherwise. The'S' option has no effect if tllere is no
Frame Buffer present

"Soft Reset": resets the monitor stack and the default escape character. Useful after
exceptions or other anomalous situations.. This may confuse the monitor if a breakpoint
trap is set

L Host-command This sends flost-command to the host computer, does an inlplicit I Bt and sends a \ to the
computer to indicate that it is ready to be downloaded. The Host~commalld is nonnally
d 1 x f i 1 e . d 1, which will put the terminal back into normal mode when the file is
downloaded.

M m On the SUN-l processor, "open" Map register m. On the SUN-2 processor) "open"
Segment Map register m.

N Bootfile-name Load and start a file via the Ethernet. Bootflle-name is the path name of the file to be
bootstrapped. It should be in . r format, produced with the -r option of ce6S Of the
rev68 program. This command is only available on network monitors.

o addr

p p

R

S S-record

X char

~'Opens" the byte location specified. The byte vs. word distinction is a problem on the
J\.1ultibus. since the convention on byte ordering within ~ords is different for Multibus
addreSses.

On the SUN-2 processor, "open" Page Map register p. On the SUN·l processor) this is
used to set the PID (Process Identification) register to p.

"Opens" the miscellaneous registers (in order) 55 (Supervisor Stack Pointer), US (User
Stack Pointer). SR (Status Register). and PC (Program counter). 5S may not be altered.

This causes the monitor to accept the S-record. Normally done by the host computer in L
mode, this responds with a two-digit record count and one of L for length errOf, K for
checksum error, or Y for success.

set the transparent mode escape character to char. Because of the way that the parser treats
spaces, the escape character cannot be set to be a space.

"Opening" a memory word, map register, or processor register means that the address or register name is

displayed along with it current contents. You may then type a new hexadecimai value, or simply <return>

to go on the next address or register. Typing Q will get you back to command level. For registers, "next"

11 DECEMBER 1981

USING TIlE SUN PROCESSOR 21

means within the sequence 00-D7, AO-A6, SS, US, SR, PC. For example, the following commands set

location 1234 to 5678, and register Dl to OFOO. 'The user types the underlined parts, with a return a the end of

each command.

>!...llli
001234: 23CF? 5678
001236: OOOO? g
>sL
DO: 00000001?
01: 00000231? Of 00
02: 012034051 g
>

3.4. Loading Programs

One of the primary uses of the monitor is to load programs into the processor's memory. Progralns~ can

either be loaded via a serial line connect~d to a host comput.er, refered to as "down-line loading". or via the

ethernet, refered to as "net-loading". In usual terminology, "down-line loadingH often refers to any method

loading one computer from another, but it is useful to make the distinction here. Net-loading is usually nluch

faster, but both modes have their advantages and disadvantages.

3.4.1. Down-line Loading

Down-tine-loading involves transferring a program file over a serial line. The file must be converted into a

format known as "S-records""bcfore transmission, either using the d168 command or the -d flag of ce6S.

Files in this fonnat usually have a . d 1 extension.

Suppose the file we want to load is called test. dl 0 Assuming that you have used "transparent" mode U?
log into the host-computer and have set your working directory properly. you should then "escape" from

transparent mode. Then, issue the command
L dlx test.dl

This will transmit the command d 1 x t est. d 1 to the host, and then cause the monitor to accept future

commands from the host If all goes well, you should see a string of periods on your tenninal, and then a

monitor prompt when the load is done. You may then start your program with the G command; normally.

the current PC is set by the pownloader to be the entry point of the program.

If thc new monitor prompt comes immediately, this means that the d 1 x program detected an error, and

your program could not be loaded (probably because it could not be rcad). If the periods stop coming (one

should print every few seconds), this means that the loader has hung. You should hit Reset or the "Break"

key, change to transparent mode, and type control-€ (or your nonnal intemlpt character) to abort the dlx

command. You may also have to issue the Unix reset command to put your terminal line back into a

normal mode.

11 DECEMBER 1981

22 SUN USERS' GUIDE

Attempting to dowo·line load a file not in S·rccord format will probably cause strange behaviour. although

the d 1 x program attempts t~ detect this error. A Iso, you may omit the . d 1 extension in most cases, i.e~t
l dlx test

should be equivalent to
l dlx test.dl

unless both te st. dl and tes tare S-record files.

3.4.2 .. Net-loading

If you have a network monitor, and ~ri cthernet interface, you may load programs over the ethernet

. Program files to be loaded in this way should be in "reversed b . out fonnat"; this means that a file produced

by the loader should be converted using the rev68 command, or the ~ r flag of ce68 should be used in

compilation. Files in this format often have a . r extension, but sometimes they have either a • Boo t .

extension, or no extension at all.

Suppose you want to load the file Imnt/person Itest. r. You should give the command
F Imnt/person/test.r

You should almost immediately get a new monitor prompt. You may then start your program with the G

command; normally, the current PC is set by the net·loader to be the entry point of the program.

A.lternatively, you may give the "load-and·go" command
N Imnt/person/tesi.r

which will load the file and immediately start it

- -.'.: -.- -

If the net-loader fails to load the file. it will print a period and try again. up to a reasonable limit If it gives

up, it will print Timeout and return to the monitor. Even if a file is not successfully loaded, it is quite

probable that the memory has bee~ altered.

If you get an exception when net-loading a file, it Inay be because there is a hardware problem, but it is

more likely to be because you loaded something not in reversed b.out format. Of course, if the exception

occurs with the load .. and·go (N) command, it may have been caused by your program.

The network bootstrap server nmning under Unix interprets filenames not beginning with • r as relative to

lusrlsun/bootfile. Thus,
N memtest

will load the file lusrlsun/bootfile/memtest. In fact, the H (help) command in the network monitor

is equivalent to doing an N monhe 1 p.

Normally, bootload requests are broadcast to all servers on the net. However, you can specify the name of

11 DECEMBER 1981

USING THE SUN PROCESSOR 23

the host you want to boot the file from by precceding the filename with the hostname and a colon. For

example,
N shasta:memtest

will get the program "memtcst" from the PUP host named "shastaH
•

Note that it is not possible to load more than one file at a time with the net-loader. If you want to load

more than one file (presumably into different areas of memory), you must usc the down-line loader.

3.5. Memory Mapping

The SUN processor is provided with a map so that you can map pages of 2K bytes anywhere in your

address spac~. The structure of the virtual address is given in figure 3-2. SunMon, during initialization~ sets

up the Segment Table and Page Table in a Hstandard" way which makes all memory and 1/0 devices

available to user programs. User programs may change these maps (although page 0 and whatever pages

likely to contain the top of the Supervisor stack should not be remapped. or memory refresh may fail). - .

However, for simple programs the initial mapping may be best left alone.

Context Segment Map

(4) 1024· 16

'" Page Map

68000 1024 • 16

(3) Reserved
~

(4) (2) (6)

(6) I R~.rved l
Protection (2) (2) (12)

(4) I ~dre •• l
Space

Page Control
(11)

Protection Page Control Address Space

• execute c accessed - onboard

c read c modified - offboard

• write -110

• user -Invalid

Figure 3-2: Memory Mapping on the SUN Processor

physic al

s add~s ,
(23 bit s)

Each actually existing page of on-board RAM is initially mapped so that its physical and virtual addresses

11 DECEMBER 1981

24 SUN USERS' GUIDE

are identical. This means that each segment. starting at segment 0, is fully mapped (up to the limit of

available memory). Segments are only initialized for context O. Segment protection is set so that both

Supervisor and User modes have Reads Write, and Execute access to every segment.

Two other physical address spaces arc mapped into the memory address space. The first 64K bytes of

MultiBus 1/0 space is mapped at the top of the virtual address space, and extends for 32 pages (64K bytes).

Thus addresses from IFOOOO to IFFFFF get mapped to the Multibus I/O space. The Ethernet interface and

most commercially available Multibus I/O devices use this space.

The rest of the high megabyte of mappable address space is mapped as MultiBus memory. Address from

100000 to lEFFFF are mapped to I\1ultibus memory space addresses 0 to OEFFFF, respectively. This is

where the frame buffer resides.

The physical address space (the 24 bit addresses used in the internal bus) is divided into eight parts, as

described. below.

O· IFFFFF Mapped address space, as described above. There is usually 128K to 256K bytes of on
board RAM. with a limit of S12K. This space can also be mapped into the Multibus 1/0 or
Multibus Memory space.

200000 - 3FFFFF On board PROMO. Sec the discussion below on "boot state".

400000 - 5FFFFF On board PROM!.

600000 -7FFFFF The on-board 'double UART. Channel A data register is at 600000, command register at
60000~ ChaIlI!e~ B data is at 600004, and B command is at 600006.

800000 • 9FFFFF On board Timer chip. 800000 is the Data register, 800002 is the Command register.

AOOOOO· BFFFFF Page map in -SUN-2, PID register in SUN-I.

COOOOO· DFFFFF Segment map in SUN-2, page map in SUN-I.

EOOOOO - FFFFFF Context register in SUN-2.

In "boot state", the state of the system after reset, read and execute accesses to any location Oxxxxx in

mapped addresss space are redirected to come from the corresponding location 2xxxxx (in the PROMO

address space), but write accesses to the mapped address space go to on board RAM. Also, all interrupts

(including normally t'non-maskable" ones) are inhibited. In this way it is possible to initialize RAlvf just after

reset. Boot state is exited on the SUN·l processor by writing to OxEOOOOO, and by writing to the PROwIO

address space on the SUN-2 processor.

11 DECEMnER 1981

USING THE SUN PROCESSOR 25

When the monitor is initialized, it sets the Supervisor Stack Pointer to OxIDaO, and the User Stack Pointer

to the top of available memory. User 'programs may change these registers. providing that they do not cause

the supervisor stack to overflow into unmapped address space.

More exact detail on the memory mapping, as well as constant definitions useful for C programs. may be

found in Ius r I su nl inc 1 u del sunmmap. h. (Note: sunmmap. h currently describes only Version I

processors.)

3.6. Traps

. The monitor initializes the trap vectors so that it gets control of any exception or interrupt. Some» such as

the memory refresh timer interrupt, are handled internally. Others have special meanings (for example, the

"trap #1" operation is treated as a breakpoint trap). For exceptions or interrupts not internally handled, the

monitor will print a message such as Ex ce p t ion: Tr and then return to command level.

The messages printed use a two·letter code; here is a list of these codes and their meanings.

II Illegal Instruction: an illegal instruction code was executed

ZD Zero Divide: division by zero

Ch Check: a CHK instruction faulted

TV TRAPV: a TRAP V (trap on overflow) was taken

Pr .·Privilege violation: attempt made to execute privileged instruction while in user state

UO Unimplemented 0: an opcode 1010 was executed (emulator trap)

Ul Unimplemented 1: an opcode 1111 was executed (emulator trap)

Un Unassigned: trap was made to unassigned vector.

Ll t L2s L3, L4, L5 t l6
Internlpt Autovector: an Autovectored interrupt was taken at one oflevcls 1 through 6.

Tr Trap: a trap instruction was executed.

Several exceptions arc handled specially by the monitor. A breakpoint trap (instnlction "trap # r') causes

the message
Break. at pc

to appear. A trace trap evokes the message

11 DECEMBER 1981

26

Trace trap at pc

to appear. Usc of the "Break" key causes
Abort at pc

SUN USERS' GUIDE

to appear. In each case, the pc shown is that of the next instruction to be executed. For further information

on the usc of these three traps, see section 3.7.

A Bus Error trap (usually caused by attempting to access non-existant memory or devices) gives the

message
Bus Error: addre~s' access-address at pc

Similarly. an Addr~s Error trap (usually caused by attempting to access a word with an odd address) causes

the monitor to print' ..
Address Error: address access-address at pc

In either case, the' access-address .~o useful in helping to determine the cause of the trap. It is possible to

continue from these traps, altho~l~h the apparent effect of the faulting instruction is not always defined.

"User Interrupt Vectors~', locations OxlOO through Ox3FF. are not available for use as such on the SUN

board due to the hardware design. For this reason, this area of memory is used by the ROM monitor for

storing globals and the RAM refresh routine.

3.7. Tracing programs

The monitor provides several facilities for tracing program execution. TIley are quite primitive~ however.
. ---

and basicalty_ require you to und~~tand your program at the machine code level. However~ if you have a

symbol table listing of your program (created using nm6S), you will be able to at least know where each

routine starts.

3.7.1" Breakpoint traps

The use of a Breakpoint trap (BPT) allows to run' a program and regain control when execution reaches a

certain location. The monitor currently can only maintain one breakpoint trap at a time. A breakpoint trap is

set using the B command; after giving this command, you will be given the address of the previous 8PT and

prompted for a new address.- For example.
Break 0010001

means that a BPT is already set at location 1000. At this point, you could type a 0 to clear the BPT, a return to

leave things as they are, or a new address at which to set a trap (the old trap will be cleared).

If you had gained control of your program before setting the trap by using the "Break" key, you might

want to continue it using the C command. Otherwise, you will probabJy want to start the program using the G

11 DECEM BER 1981

USING THE SUN PROCESSOR 27

command. Execution will then proceed until the trap is reached, at which point you will gel a message such as
Break at 001000

At this point, you may examine the location at which you set the BPT and you will find that it contains the

original instruction. You may clear the BPT or set a new one at this point. Ify6u do not~ you may continue

using the C command, which will execute the "broken" instruction, then reset the BPl' and continue. If you

give an address to the C command, the breakpoint trap will not be reset. unless for some rcason you take a

Trace trap.

If you load a new program while a BPI' is set. the monitor will normally be able to detcct this. On the other

hand, if you give the K command ("Soft Reset") while a BPT is set. and then set a new one, wierd things will

happen if the first trap is taken. leffshouldfix this!

3.7.2. Tra.ce traps

. The support for Trace traps (single~stepping a user program) is even nlore minhnal than the support for

Breakpoint traps. To set a trace trap, you should use the R command, proceed to the Status RegIster (SR), and

alter it so as to inclusive-OR it with Ox8000. Similarly, the trace trap can be cleared by ANDing the value of

SR with Ox7FFF.

Once the trace bit is set in the SR, you should then give the C command to continue the program (the G

command cannot be used in this way); to start a program with the trace bit set, give the corrunalld C starling

address. Subsequent steps may be made by using the C command without an argument.

For complex reasons, it is not possible to single-step after a Breakpoint trap is taken, unless you first clear

the BPT. Once you have stepped one instnlction, you may then reset the BPT. Jeff may fix this sooner or

. later.

3.8. Emulator Traps

The ROM monitor is able to provide several services to user programs via "Emulator Traps" (ElvITs). An

EMT is a convenient way of entering the monitor which does not depend directly on the absolute addresses

used. Instead of executing a j b s r instruction, a program wishing to use the emulator first pushes a "trap type

code" on the stack, and then executes a trap #15. instruction. In most other respects the operation is

identical to a function call.

The services provided by the EMT facility fall into three categories: infonnation. 110, and memory

management. Some of these, such as the memory-management operations, arc rcstricted to supcrvisor 1l10dc ..

The following section gives the C-Ianguage calling sequences and descriptions for the EMTs; assembly-

11 DECEMDER 1981

28 - SUN USERS' GUIDE

language definitions are available in the file Ius r I sun/ ine'J u de / s unemt. h.

In general, if one of these functions encounters an error condition, it will return the value -1. In particular,

attempting to execute a trap reserved to supervisor mode while operating in user mode will result in an error

return.

3.8.1. Information EMTs

int emt+- ticks()
Returns the number of milliseconds since the monitor was last booted. This is incremented
whenever memory is refreshed, at least every 4 milliseconds. The accuracy is sufficient for
time-of-day uses, if the crystal on the processor card is working right.

int emt+- getmemsize()
Returns the size of the on-board RAM in bytes.

int ~mt~ versio~()
Returns thettversion" of the ROM monitor; the most significant byte is the major version
number, the next byte is the minor version number. For example, OxOl05 corresponds to
version 1.5-.

3.8.2. I/O EMTs

emt ... putchar(c)
char C;

--
Prints the specified character on the Console. If c is a linefeed or a carriage retum~ then il
is followed by a carriage return or a linefeed, respectively. The I/O is done using busy ..
wait!ng.

char emt~ getchar

setecho(flag)
int flag;

Returns the next character typed on the Console keyboard. NonnaIlYt the character is also
echoed on the Console. The I/O is done using busy-waiting.

Controls whether characters input from the Console by emt~ getchar () are echoed or
not; they are echoed if and only if flag is tnle.

3.8.3. Memory Management EMTs

These EMTs are provided for use by the kernel of an operating system, and are restricted to supervisor

mode only. They are necessary because it is not possible to access the segment registers for one context while

running in another context. Since there may be no properly initialized seglnents in a given context, it is not

11 DECEMBER 1981

USING TIlE SUN PROCESSOR 29

possible for the kernel to simply switch contexts before changing the segment map; this operation must be

done by code running entirely in ROM and processor registers. The memory management EMTs provide this

service. Notc that it is essential that the context register not be changed except via the EMT described below.

short emt~ getsegmap(cxt,segno)
int ext;
int segoo;

Returns the contents of segment map entry number s e 9 n 0 in context nUlnber ex t.

emt~ setsegmap(cxt,segno,entry)
int cxt;
int segoo;
short entry;

Sets segment map entry number s ego 0 in context number cx t to en try.

int emt~ geteontext()
Returns the current value of the context register.

emt~ setcontext(ext)
int ext;

Sets the context register to ex t.

Here is an example of the use of the emt ticks global to derive an accurate timer~ counting seconds.

(Warning: a previous version of this example contained a program logic error that rendered it inaccurate!)

maine)
{

}

long NextTick;
long ThisTick;
long seconds = 0;

1* value of RefrCnt at next second *1
1* temporary; used to avoid a race *1

ThisTick = emtlicks{); 1* initialize loop invariant *1

for (;:) {
printf("Time is %d\n".seconds++);
NextTick = ThisTick + 1000: 1* predict next second *1
while (ThisTick < NextTick) 1* busy-wait *1

ThisTick = emt_ticks();
}

11 DECEMBER 1981

30 SUN USERS' GUIDE

11 DECEMBER 1981

THE SUN GRAPHICS SYSTEM 31

4. The SUN Graphics System
The SUN graphics system is a high-resolution bit<mapped frame buffer on one Nlultibus board. The

general organization of the graphics board is illustrated in Figure 4-1. There is only a small amount of

hardware assistance~to perform the simple high bandwidth operations (caned "RasterOps"). lllis results in a

simple. yet flexible graphics devi.ce, with high enough pcrfOlmance for sophisticated user interfaces.

• Bit-Manipulation

'" X/V Addressing Hardware

Itt Graphical Object Cache

'" Next Address Generation

* Graphical Object Selection Software

* Function Selection

Host
'"

RasterOP
'"

Frame
r r

Processor Hardware Buffer

RasterOP unit performs read-modify-write cycle

Destination in frame buffer

... Video ,.
Monitor

Source operands can come from frame buffer or host computer

Figure 4-1: The SUN Graphics Board

4.1. Graphics on the SUN workstation

As shown in Figure 4-2. the nominal viewable area of the screen is 1024 pixels high and 800 pixels wide ill

"portrait" mode (similar to the Alto display). Other configurations (like the Xerox Large Fonnat Display) are

also possible with appropriate changes to PROMs on the graphics board. The Large Format Display is 808

pixels high and 1024 pixels wide. This display is compatible with the display used in the Xerox "Star" 8000

and "Dolphin" 1100 workstations. The points are addressed by X and Y (column and row), starting with (0,0)

in the upper left comer of the screen. From one to sixteen consecutive pixels may be read from or written to

the frame buffer in one memory cycle (one microsecond).

Figure 4-3 illustrates the concept of "RasterOp", as developed by Newman and Sproull [14]. A RastcrOp

11 DECEMBER 1981

00

Y

Size:

Visible:

Invisible:

Updates:

"Portrait" Mode

x 7990

1024 • 1024 pixels

800 * 1024 pixels

224 * 1024 pixels
16 pixels/cycle

102

y

o ,807

1 2 3, 0 3

SUN USERS' GUIDE

"Landscape" Mode

q,9

Size:

Visible:

Invisible:
Updates.:

x

1023,1023

1024 .. 1024 pixels

1024 * 808 pixels

1024 * 216 pixels
16 pixels/cycle

Figure 4-2: The S UN Graphics Screen

sets a destination rectangle on the screen to a bit-by-bit boolean function of three variables: its original

contents (DST). a source rectangle (SRC), and a repeating bit pattern (PAT). The SUN graphics system

allows all 256 possible Raster-op functions, although only a few are used in practice.

For example, to clear the entire screen. the constant function 0 is applied to the viewable rectangle. To

flash a certain window, the function NOT Cst is pcrfonned on that window. To write a character. the Src

function is used, while NOT Src writes the character inverted (black on white). Dst OR Src overwrites

(paints) the character. and Src OR Pat writes the character with a background pattern. 1bere should be a

stanc1ard graphics package to provide access at the RasterOp level.

4.2. Detailed Operation of the Graphics Board

The graphics board decodes 20 bits on the Multibus memory address lines, in the fields shown in Figure 4-

4. By encoding these operation bits in the address, repetitive operations like generalized rasterOps can be

done very quickly. There is a patent pending on this design.

Up to eight graphics boards may share a sing1e Multibus backplane, with the high 3 bits selecting the

board. Each board occupies 128K bytes of Multibus memory space.

11 DECEMBER 1981

TIlE SUN GRAPllICS SYSTEM

HRasterOP It Model (Newman & Sproull):

OST +- f (OST, SRC, PAT)

Destination

... '" * ...
* * '" * ... ,. '"
'" >It. .. ,.

Source

RasterOP * ,.,
'" * <

Ost ..

Ost ..

Ost ..

Ost ..

Ost ..

Constant

Src

'" '" '" '" * *' ... * '"

Ost OR Src AND Pat

Ost AND NOT Src

Dst XOR Src

Figure 4-3: "RasterOp" Concept

Pattern

********* "'******** ********* * •• **.*** ********* ********* :UUUU

33

Some mnemonic definitions for the frame buffer can be found in the frame b u f . h header file (see section

2.3 for nlore in fonnati on). All the symbols begin with the letters GX. To perfonn an operation on the

graphics board. you must combine the bits together, cast the result to a short*, and refcrence tl1C pointer.

There are also a few combined symbols that can appear in C assignment conexts. Sec the end of this section

for some examples. .

The GXupdate bit (bit 16) is on if the frame buffer is to bc rTIodified. Usually severa) operations arc

perfomed with this bit off, to set up the control registers and one of the coordinates. Then this bit is set to

actually perform the desired modification of the frame buffer.

Bits 14 and 15 select the operation. If they are set to G X non e then the data on the data bus is not used

(although an X or Y address may be 10aded in this cycle). Jfthey are set to GXothers then one ofthc four

control registers will be written with the data. If they are set to GXpa t, the pattern register (sometimes caned

the "mask") will be loaded from the data bus. If they are set to GXsource, the data bus is loaded into the

"source" register. This is the nonnal case for copy operations.

When GXothers is specified, the control register number is given in bits 1 and 2. GXfunct; on loads the

function register from the low-order eight bits of the data bus. The function register can be thought of as a bit

11 DECEMBER 1981

34

lOl07

SUN USERS' GUIDE

10

Frame Buffer Address
or register number

2-1

l O· Function

1· Width

O· No Operation

1 • Load Control Reglste.rs

2 • Load Pattern Register

3· Load Source Register

Figure 4·4: Graphics Board Address Decoding

2· Control

3 - Interrupt
clear

vector, indexed by 200st+21Src+22pat. For example, GXinvert=Ox55 inverts the destination.

GXcopy =OxCC copies the source to the desitination, and GXcl ear =0 clears the destination.

GX \II; d this the register that detennines the width of the RastcrOps. It is loaded from the low order 4 bits

of the data bus, with 0 meaning 16. so its valid range is from 1 through 16. Ifit is Jess than 16, the high·order

bits of the data in the source and pattern registers will be significant on RasterOps.' GX co nOt r 0 1 loads the

interrupt level (low order 3 bits). intcrnlpt enable. (bit 3. symbol GXintEnable). and video enable (bit 7,

symbol GX vi deoEnab 1 e) bits from the data bus. Accessing the last control register, GX in tel ear, must be

done once after every video rcf{esh interrupt to clear it9 when it is enabled.

l11ere are four pairs of ten-bit address registers (sometimes called "cursorstt), selected by bits 12 and 13. Bit

11 selects either X or Y of the pair, and bits 1 through 10 of the address are loaded into the selected address

register. Note that every read or write reference to the graphics board has to load one of these address

registers, while it might or might not (depending on the GXupdate and operation code bits) modify the

frame butTer.

The low order bit (bit 0) of the address must always be zero. This design was meant to be used efficiently

with auto-incrementing addressing modes. For example, the following function displays an 8 by 8 "cursor" at

the given position: 0

11 DECEMBER 1981

THE SUN GRAPHICS SYSTEM

DisplayCursor(x. y)
short x. y; 1* screen coordinates of upper left corner */

{

}

static short cursor[] = { Ox9200,

register short

Ox5400. 1* left justified bit array */
Ox3800.
OxFEOO.
Ox3800,
Ox5400,
Ox9200.
OxOOOO};

·cursorPointer cursor;
*xPointer (short *}(GXUnitOBase
*yPointer = {short *)(GXUnitOBase

GXselectX).
GXupdate
GXselectY):

register short junk;

GXwidth
GXfunction

:: 8;
GXinvert;

xPointer += x;
yPointer += y;

·xPointer = junk.

·yPointer++
·yPointer++
·yPointer++
·yPointer++
*yPointer++
*yPointer++
·yPointer++
·yPointer++

*cursor++;
*cursor++;
*cursor++;
·cursor++;
·cursor++:
*cursor++;
*cursor++;
*cursor++;

I GXsource

I· something to mova */

/* Each of these is one */
/* 68000 instruction .,

] 1 DECEMBER 1981

3S

36 SUN USERS' GUIDE

11 DECEMBER 1981

TIlE MOTOROLA 68000 DESIGN MODULE 37

5. The Motorola 68000 Design Module
The J\.1C68000 Design Module is a board with an MC68000 processor, memory~ and some minimal I/O

devices. for designing and evaluating the MC68000 processor. It was deisgned for the EXoRciser development

system, but we usc it with a serial connection to a VAX and a standard terminal.

Before actmilly using the 68000 design module, read the Design Module User's Guide [12], a black booklet

by Motorola that describes MACSbug. the monitor that resides in PROM on the design nlodule, and the I/O

devices available.

5e 1 ~ Preparation_of Programs

Write the program as an ordinary C program, called <name>. c. Do not rely on <s td i o. h> - it does not

apply to the Design Module. [Vaughan has rigged up some of the C library for the design module, and it

should be referred to here.)

Section 2.3 describes -some header files that can be included in C programs, and section 2.4 describes S01lle

libraries available. As described in section 2.2.1. you probably want the -vm option on the cc68 command

line.

5.2. Compilation

To compile a single program which can be loaded into the 68000 design module (the Motorola-supplied

board), use the command
-cc6S -vm -d---4(rrame). dl <name>. (;

Error messages will be printed on your termina1. Errors may arise at any of several stages: preprocessing.

compilation, assembly,an~loading. To understand these stages see section 2.2.1; for the moment assunle that

you have got your program to compile successfully all the VAX. You now want to down-line load and lest

your program, which you will find in your working directory as <name>. d 1.

5.3. Down-line Loading

Downloading is the process of getting your program into the 68000 from the VAX or wherever you keep

your program. While it is necessary to compile on the VAX, the result of compilation can be put on any

computer. Get your 68000 to the point where you can talk through it (in transparent or P2 mode) to the .
computer where your file is. Type fA to return to MAcsbug (the 68000 board monitor). Note that this sends

tAt X to the host; before downloading you will need to compensate somehow for this. A carriage return will

suffice on most systems. To send a return to the host without reentering transparent 1110dc, type

•

11 DECEMBER 1981

38 SUN USERS' GUIDE

(asterisk return) to MAcsbug. This will send the return. In general typing
-text

win send the text to the host; you will not see the reply if any. See section 5.8 for more infonnation.

The downloading command is RE (for REad). This command waits for the host to start typing out your

file: when this happens it reads it into memory, then at the end halts and types •. Normally REad checksums

each line of input; each failing line generates an error report on your terminal.

RE may take any of the following arguments:

= text As it takes a certain dexterity to persuade the host to delay typeout until you do the
'tA *<return>RE there is an option to send a line of text to the host as part of your giving
the REad command. Thus if you say to Unix

x

RE =dl1 foo.dl

then the file foo. d 1 will be loaded into the 68000. The dl1 program simply pads each
line with a few nulls to allow loading at 9600 Baud. __

This option displays the data being read. It peffi1its you to watch the file being loaded so
that you can see what progress is being made. For example if the host dies (so becoming a
heavenly host) you will have no indication of this without the X option. A disadvantage of
the X option is that any checksum error report will disappear off the screen within 24 lines
of typeou~ so that you must watch the whole loading process if you want to be sure of
catching checksum errors.

-c _ Thi£.option ignores checksums. Useful only on rare occasions.

--

With aU options, your command would look something like
--

RE -CX=dll foo.dl

5.4. Running

To run the program type
G-I000

to ~fAcsbug. If the program terminates normally it will type an asterisk, the MAcsbug prompt, to indicate that

it has returned to MACSbug.

If G is given without an argument, execution starts with the virtual PC (contents of location 400, see

below). This pennits an interrupted program to be restarted from where it was intcmlpted.

11 DECEMBER 1981

THE MOTOROLA 68000 DESIGN MODULE 39

5.5. Debugging Aids

MAcsbug offers debugging facilities that are moderately well documented in the design module manual.

Here are the highlights.

5.5.1. Display

You may display the contents of any register merely by typing its name. Names are PC SR SS US DO

01 ••. 07 AO A 1 ... A 7. You may see all D registers by typing D, and similarly for A.

To Display Memory, type:
DM <address>

(in hex, all values are in hex). The 16 bytes starting with that location are typed out. To see more than 16,

supply the number as a second argument Thus OM 1200 100 will fill most of your screen with bytes 1200

to 12FF.

. The memory values you display are real, but the register values are virtual. The register values are those

that held when your program was last interrupted; they are kept in memory locations 400 to 44B inclusive, in

the order PC SR D A US (where A7 is taken to be SS, the system stack pointer, rather than US, presumably

since it happens to be dumped while in system mode).

5.5.2. Setting

To set register R to value V, type R V, as in 03 247. These settings wilt take effect on the processor

proper as soon as you type G. To set all of the D registers, say D: and MACSbug will show you each in turn;
I

for each you should either type return if you want it unchanged, or a value, return, if you wan to change it to
that value.

To Set Memory, say
SM <address> <va1ue> <value>

The values will be stored starting in that address, immediately. Values may be from 1 to 8 hex digits. Each

value is stored in the next few bytes, as few as possible consistent with the number of digits (no zero

suppression). Thus
SM 4000 12 34567
OM 4000
004000 12 03 45 67 ...
SM 4000 00004321 6547
DM 4000
004000 00 00 43 21 65 47

11 DECEMBER 1981

40

5.5.3. Breakpoints

To set a breakpoint use the command
8R <address>

SUN USERS' GUIDE

Your program will stop when it reaches that address, This is implemented by placing a 434F (TRAP 15)

instruction at that address. not at the BReak command but at the G command. The instruction is removed

after it has had its effect; it will be restored again at the next G. Note that CALL, described bclow~ docs not

install the breakpoints. The effect is that you cannot see a breakpoint merely by Jooking at memory; to tell

what breakpoints are set type BR without an argument.

To clear a breakpoint, type:
8R -<address>

To clear all breakpoints type
8R CLEAR

To see what breakpoints are set type
~8R

If you should reset the computer while your program is running, an the breakpoints will stay put since

MAcsbug wilt have forgotten where it put them. When a TRAP 15 is encountered for which MAcsbug has no

record, it types ERROR and halts your program. You will have to fix it yourself, either with SM or RE.

You may delay a breakpoint so that it takes effect only on the nth time it is encountered by saying
BR <address>: n

On the 11th encounter it breaks. When the program is restarted 11 is forgotten about. i.e. n reverts to 1. the

default. To restore ngive the command again.

To set a temporary breakpoint, one that clears itself when encountered. give the command
G TIll (address)

The address gives the stop (unless some other breakpoint or the end of the program is encountered first). The

start is the virtual PC.

5.5.4. Tracing

To single step through a program, say TR. The program will begin execution from virtual PC. and halt

after one instruction, typing out the trace infonnation (see below) followed by

When the prompt is ~ ... it means that you can type carriage return as a synonym for TR, so that you can

conveniently trace a series of step. If you type MAcsbug commands at any point, the prompt reverts to *.

TR n will trace n steps. printing trace information on each step. To trace 11 steps without any printout at

11 DECEMBER 1981

'niE MOTOROLA 68000 DESIGN MODULE 41

all. do TO C L (see below).

5.5.5. Trace Display

Whenever MAcsbug internlpts your program by reaching a breakpoint or after one instruction in the case

of tracing. or when you type TO. it types out selected infonnation. The default is that it types out the contents

of all the registers. You may modify this default as follows. Each TO command is sticky, i.e. its effect is felt

till you give another TO command.

TO CL Displays nothing. Cannot be combined as in TD CL PC

TO ALL Restores the default.

TO DO Displays PC (similarly TO PC, TO SR, 00< but not TO D or TO A)

TO 00.0 Do not display DO (similarly TO PC. 0, TO SR. 0, •.•)

TO 00.1 Display least significant byte of PC

TO 00.2 Display lower word of DO

TO 00.3 Display lower three bytes of DO (only effective after TO el)

The short fonns are helpful in two ways~ they give a less cluttered display, and they permit tracing to

happen faster. TO Cl permits multistep tracing (as in TR n) to proceed independently oftlle terminal speed,

though not at full machine speed unfortunately. To see the final register values when the tracing stops do TO

ALL then TO.

You may also turn words of memory into pseudoregisters which can then be displayed along with the rc-.al

registers. To define S<!y the2~byte word at address 4564 as pseudoregister MS, say
W5.2 4564

You may now refcr to M5 in the TO command, as in TD M5, or TO M5. 1, or TD M5. 0, each of which

displays the appropriate amount of this 2-byte register. Pseudo registers may not be larger than 4 bytes.

A pseudorcgister may be relative to an address register. thus:
W3.4 4(A6)

The location is 4 past what A6 points to. A6 is the stack-frame base register for C programs, and 4(A6) is

where the return address lives. so that you can monitor the calling address while tracing, as a supplement to

the PC. Similarly the arguments are (in order) 8(A6), C(A6), lO(A6), "', while the locals are (in order) -6(A6),

~A(A6), -E(A6), ... provided they arc all integers (4 bytes); compensate accordingly if not. Function

arguments are always converted to the C type in t. If the routine uses register variables, subtract 4 for each

11 DECEMnER 1981

42

register variable in computing these offsets.

5.5.6" Symbols
To assign the symbolic name Faa to a value, say

SY fOO <va lue>

To see the value of Faa say
SY FOO

To see all symbols, say
Sy

SUN USERS' GUIDE

. See section for a discussion of the symbol'table produced by the compilation/loading process. This table may

be operated on with the above symbol manipulating commands. But Macsyma it is not

5.5.7. Nume ric conversions

The CV (ConVert) command will display both hex and decimal values of its argument. Preceding the
~"

argument with & or nothing denotes decimal, with $ hex. The printout observes these. two conventions.

Thus:
CV 45
$20 = &45

You may evaluate a sum ortwo numbers by using, as infix plus, as in
CV 45.3
$30 = &48

This does not work for differences or for three elements at once (do it in stages).

5.6. S·ymbol Tab-tes

Symbols are generated and loaded automatically along with the program. They reside in the region from

6BA to FFF. To print out the symbol table type SY (see the section earlier on dealing with symbols from

MAcsbug). Loading a new program destroys the old symbols (that's the best we can do with MAcsbug, sorry).

Sometime an option will be installed permitting you to produce . d 1 files without symbols, to prevent this

problem.

Resetting MAcsbug also appears to make the symbol table go away. This is much tess destructive than

reading in another symbol table however. All that needs to be done to restore the invisible symbol table is to

set the word at 576 (remember this as 24 squared, even though 576 is really hex) to the first empty word of the

table, which can be found by printing out the table itself. The starting address of the table will be found in

576 (and in 572) since this is the pointer to the first free table entry; when MAcsbug thinks the table is empty

this pointer coincides with that pointing to the beginning of the table (572, or really 570. these arc 32 bit

pointers but it is convenient to work with them as 16-bit ones).

11 DECEMUER 1981

THE MOTOROLA 68000 DESIGN MODULE 43

The format of each entry in the table is an 8-byte name followed by a 4-byte value. 'The name is left

justified, padded with blanks, starts with an upper-case letter or period, and may only contain letters t digits.

period, and the "$" symbol (at least if you want to be able to refer to them when talking to MACSbug).

Knowing this it is generally not too difficult to spot the end of the table by relying on the Ascii part of the DM

printout.

You should set 576 to the exact first free entry if you expect to be adding symbols manually. as in SY FOa

33. Otherwise you can err on the low side by up to 11 bytes when in doubt or haste.

-S.7 ~ Disassembly

The OM command is not much use in following code in memory. To make it easier there is a disassembly

program, d a sm. d 1 on Ius r I sun. which when loaded will run in the 6000-7000 region of nlemory.

Provided your programs do not reach into that region you can leave the disassembler there pcnnanently.

To inspect locations starting from n, enter n into DO and type G 6000. You can now single-step through

the code by typing any character but Q. Each step will display the next instruction and the address it is at.

The program will return to MACSbug either on encountering an illegal instruction or on your typing Q (for

Quit ~ it must be capitalized, but that's how you have to talk to MAcSbug).

Dasm understands symbols if present in the symbol table. When loaded it brings its own symbols with it,

. so you have to load the program to be debugged after you've loaded Dasm. (This will be fixed soon. tHaI ..

EdD

5.8. P2/tA
P2 mode on the 68000 is a software and hardware combination that splices out the 68000 from the ternlinal

host path it normally intercepts. This is accomplished when you type P2 to MACSbug by setting the RTS bit

of ACIAI high. Random logic attached to this bit then routes input to one serial conn('-ctor of the board

directly to the output of the other serial connector. Tenninal-host traffic then proceeds at a rate dependent

only on the host and the tennina1. MAcsbug monitors the tcnninal to host traffic (it is physically possible to

read the traffic in either direction) and exits from P2 mode when 't A is seen. This assumes that the speed of

ACIAI is set to agree with that of the traffic. which it need not be. The tA is the default escape; to set some

other escape, say 'tV, type
P2 tV

Since the tA is seen by the host and MAcsbug simultaneously, there is no way in this arrangement to prevent

sending the escape to the host, so likc any wise jailbird you should plan your escape carcfulty. MACSbug adds

11 DECEMBER 1981

44 SUN USERS' GUIDE

insult to injury however by transmitting tX to the host after seeing the tAo Unlike the 'tA, the tX is not a

default but is in Prom, so learn to live with it.

If you nm your terminal at 9600 baud and the host at 1200 baud, a sensible arrangement for peopl~ at

home. you will hit the obvious snag when you use P2. As should be clear from the above discussion, while

you must change your terminal's speed, you need not change ACIA l's speed.

A more ubrutc force" way of getting out of transparent mode is to press the reset buuon on the design

module (the black one). This will clobber the registers and reset MAcsbug. however. Pressing the red abort

button does not leave P2 mode, but makes MAcsbug forget that P2 mode is on, leaving MAcsbug in a

confused state. -

5.9. Mem~ry Layout

M~!l10ry in the Motorola Design Module is laid out as follows:

0-3FF Interrupt vectors

400-6B9 MACSbug variables

6BA-FFF MACSbug symbol table

IOOO-7COO User space

7 EO 0-7 EFF User stack (more may be taken if necessary, clearly)

--

7FOO-7FFF System stack (the system/user distinction is vague on this board)

11 DECEMBER 1981

AN INSIDER'S GUIDE TO SUN!!1 45

6. An Insider's GU,ide to SUNet
This chapter describes the current state of network communication around here. Ethernet is used to

connect computers within the same building, with repeaters and gateways being used to temporarily extend

the Ethernet between buildings. Arpanet connects several machines. and some arc connected to Telenet,

Tymnet. and other ad-hoc networks. Eventually we hope to provide other communications media for the

intermediate distance needs, like 10 Mb standard Ethernet, Fiber-optics, point to point serial links. packet

radio, or a broad-band cable. TV compatible system. The rough topology of the network is illustrated in

Figure 6-1. For more information see the references [7] and [16].

This information is really q~ite volatile, so it is imperative that this chapter be kept up to date. Each

description below consists of the computer you want to come from, followed by a colon, and the command
I

that invokes the given program. A short description includes the hosts you can go to with that progranl.

6.1. Remote Ter~inal Programs

YAY: telnet host
Pup user telnet [5] to any Pup host with a telnet server running. Currently this means
Shasta, Diablo, Helens, Lassen, DSN, and Sail. When the gateway is working you can get
to Sumex and "Tiny," the 2020 at the Medical Center. Documentation is obtained with the
man tel net command. Tel net has transcript and shell escape options. Type code 036
followed by c to get out (usually control-t or control-shift-N). Pup telnet has gateway
capabilities to the Arpanet. If the host name you give is not in the PUP network dircctorYt
or there is no PUP route known to it, it will connect to the telnet gateway at Sail and try lhe
Arpanet

Sail: r chat Pup usertetne~ as above. Control-meta-q to get out. Currently it simulates a very sitnplc
. terminal, so you can °t even do things like backspace.

Alto: te 1 net host
Pup user telnct also, based on the chat program. Simulates a simple screen tenninal~ on
which "i almost works. Also available as a boot file.

Alto: ta 1 k host The ta 1 k program gives you multiple windows (stacked vertically), and you can nm
emacs or vi in them. so it is currently the default for Unix telnet servers. You can create a
window of 521ines. and then specify te rm b i gta 1 k to Unix to get a big screen.

Alto: dmchat host
Another terminal program using Pup telnet protocol. based on the Chat program. This one
gives you one big "datamedia" window, which works well with Sail. If you arc using
dmchat. tell Unix you are a dm2599. You must have the fixed width font snai 110. a1
on your disk for this to work (or an entry on your user. em).

Sail: d; a 1 d i ab 10

11 DECEMBER 1981

46

Terman 1---__

CERAS
~----------------------~

(LOTS)

2 2060

1080

2060
.-__ Vax

MJH

(CSD)

13 Alto

Tip

4 Dolphin

......... _ 2SUN

Durand

(ISL)

2 Vax

Jordan
Vax

(Psych.)

(Proposed Gateway)

Gsa
2060

o Repeater

~Gateway

Via Crespi

SUN USERS' GUIDE

AEL 23033

2060

Alto

CIT
ERL

Vax
Tip (CSL)

Alto
SUN

Pine

Hall
CIS Alto

Tip

Campus Drive

Dolph-ln
Stanford Ethernet 1066

Proposed Extensions SUMEX 2020

Alto

Figure 6-1: Topology ofSUNet

Simple 1200 baud serial line to Diablo. Loses characters routinely. Use only when all else
fails (which is all too often these days), Get out with control-meta-q.

VAX: sa 11 / score
sail nms on Diablo, score runs on Shasta. 1200 baud serial link. Use te 1 net sa i 1 or
tel net score instead.

Score: tel net shasta
This currently goes through Sail's telnet gateway. Typing this command will be guaranteed
to get you there in the best possible way (directly over the ethernet in the future). There is
also a possibility of using the 1200 ba~ld serial link. This and the score program are
mutually exclusive. Loads down score badly. Exit with control t c.

11 DECEMBER 1981

.
~ ..

AN INSIDER'S GUIDE TO SUNET 41

6.2. File Transfer Programs

VAX: ftp host Pup user ftp. Talks to any Pup server FTP, currently this means Shasta, Diablo, Helens.
Lassen, DSN, Sumex, Tiny, and any alto running ftp. Documented with man ftp.

Sail: r pupftp Pup user ftp. Same as above. Experimental. Preferred way of getting files f}-om VAXcn to
the outside world. Use type X for 32 bit binary files. Documentation in
pupftp.tvr[up,doc].

Alto: ftp host Another Pup user ftp, as abuve. Prefered way of getting files to Altos.

Alto: eftp Simple transfer of files from Sail. Self-explanatory. Now mostly outdated by fip. It. is still
used for sendind files to the Dover, but that should be done invisibly to the user.

Sail: r eftp Old, slow, but reliable way to get binary files between sail and ethernet hosts. Say i for
mode, using 1 for left hand bits.

VAX: eftp e[xr] host filename
Obsolete way of getting binary files to/from sail. De sure to do a man eftp command~ since
there are many obscure options. \Ve ususally use e and oftcn s for binary files and ct for
text files. For text files the command vtos x (for VAx-to-Sail) abbreviates oftp
reqtlv sail x, while stay (forSail-to~VAx)abbreviateseftp xeqtlv sail x.

Sail: ftp Arpanet-host
Arpanet ftp. Remember to use ascii mode or right curly braces (as well as other randonl
characters) will disappear .

. Score: ftp host Prefered way of shipping files around the Arpanet.

6:3. Walk Net (Tape transfer)

vAx:ansi [load] [init vol] [write fires]
Reads ANSI standard labeled tapes. Works with VMS, RSX, RT~ll, tape 10 (with
/ Format: An s;), and vax tap tapes. Text files only. Documented with rna n an s i

Score: vaxtap Writes and reads ANSI standard labeled tapes for VMS systems, also works with the ansi
program on Unix. Unfortunately it does not handle wildcards. so you need .MIC files for
large traI)sfers.

Score: tape; a \Vrites and reads ANSI standard labeled tapes for CIT, a1so is supposed to write DEC
compatible labeled tapcs. You can exchange tapes with the an s i program with the
Iformat: ans; option. You must run the tape 1 abel program on a new tape to write a
label.

Score: <su-net>taput
A really kludgy way of getting binary tapes to VAxcn. Use ftp to sail and pupftp instead.

] 1 DECEMBER 1981

48 SUN USERS' GUIDE

11 DECEMBER 1981

SUNOS - A SMALL OPERATING SYSTEM 49

7. SUNOS - A Small Operating System
SUNOS is a compact operating system for the Sun workstation. It manages asynchronous proccsses~ the

memory map, and interprocess communication.

Process Services

spawn(function, argcount, argl, arg2, ...)
spawn new process, with stream args

wait(p)
wait till P holds (non-busy waiting)

terminate()
tenninate this process

Stream Services

char • getc(r) char *r
get char from stream r

getcto(r, v) char *r,v
get from stream r into char v

putc(c, w) char c,*w
put char c on stream w

int emptyc(r) char *r
predicate: stream r is currently -empty

char ·cstream()
create a char stream and return its writer

Corresponding stream services exist for other types of streams, namely short, integer, and reference, for

which the respective abbreviations s, ;, and r are used in place of c(character}.

Storage Services

char * create(n)
create reference to start of new n-byte buffer

char * dupref(p) char *p
duplicate reference p

dispose(p) char *p
dispose of reference p

The put and get primitives use ordinary char * (reference) variables. Thus. to pennit two processes talk to

11 DECEMnER 1981

~o SUN USERS' GUIDE

each other, usc cs tream twice to produce two references, one pointing into each of two new streams, and

then apply dupref to each reference to produce two more references for reading from those streams.

Processes may pass references around freely, provided they observe the discipline of using d u pre f (p) to

make duplicate copics of references and dispose(p) to dispose of those duplicates. A reference may be

used either for reading or writing so long as it is consistently used for that. Only one reference to a given

stream may be used for writing, but any number of independent references may be used for reading,

pennitting independent processes to read the same stream each at its own speed.

A file using SUNOS should # inc 1 u de" sun i 0 • h ff and should contain a sunosO function, which should

be confined to spawning an initial set of processes and creating and passing streams to them. The spawned

functions arc animated (brought to life) after sunos() exits. There should be no rna in () function in the file,

this being provided by the library. If the user does provide a rna in () it will be substituted for the library

suppl~ied main, in which case to ensure an orderly startup of sunos it should be modelled on the library

version, for which the source is in Ius r Is u n I sun 0 sIs uno S • c.

The library supplied rna; n () initializes the stream and process managers and the interrupt handlerst then

calls +-strtcal to start up calloe, and finally exits to canoe by executing a sleep. +-strtcal in tum

initializes calloe and calls the user-supplied sunosO to create the initial processes, which come to life after

rna in () goes to sleep.

The char streams stdin and stdout are predefined and available to user programs. They are initially

connected to the terminal 110 of the Design Module. They may be set to other streams as desired; their old

values should be saved somewhere if it is desired to continue to communicate with the terminal. The

functions putchar and getchar are defined in terms ofputc, getc, stdin, and stdout, as usual.

An example SUNOS program may be found in lusrlsun/sunos/example.c. This example implements a

quiznmster and a quizkid who fire streams of questions and answers at each other.

The cdm command will produce the corresponding .dl file, which includes the code from pman.c. stnn.c,

and calloe.c. This file may be loaded and started in the normal way, namely via G MAINE. During the

settling in period, the SUNOS symbols will be loaded along with the user symbols to help the user distinguish

his bugs from SUNOS's. but eventually they will be omitted in the interests of avoiding cluttering up the

user's table.

SUNOS is designed to perform best under heavy load. The total overhead to send and receive one da~um

11 nECEM BER 1981

SUNOS - A SMALL OPERATING SYSlli\f 51

on a heavily used stream, averaging in the overhead of context switching and buffer switching, and assuming

usc of register variables and the readcharto (as opposed to readchar) primitive. is roughly 20 microseconds on

an 8 MHz 68000.

The present versions of strm.c and calloc.c are dose to final. However the present version of pman.c is too

trivial to be really robust; the calloc.c facilities, as described in section 7.5, support much more robust process

managers.

Sunos implements processes (virtual concurrency), stream-based interprocess communication. and storage

management for the Motorola 68000 computer. Although the design was done specifically for the 68000 to

avoid all coin promises that portability considerations might have entai1ed, the semantics of the resulting

product turned out to depend only on a few architectural features common to many C0111putecs. namely the

existence of program counter, stack pointer, and status register, and the use of interrupts to schedule

"extemar' processes . .
This overview considers Sunos from a perspective midway between that of a user and an implementor.

(Implementors sometimes have difficulty presenting a pure user's view too soon after completing the

implementation.)

Sunos provides the following services.

7.1. Process-oriented Services

Processes provide virtual concurrency. A process may be defined to be a stack (including its cunenl

contents) together with the current state of the processor.

Processes fall into two categories. internal and external) distinguished by how they are scheduled by Cal1oc~

the Cpu ALLOCator.

7.1.1.ExternaIProcesses

External processes arc scheduled by interrupts and are not even known about by Calloc. They run in

system state, preempting the CPU when their interrupt occurs. Each external process is responsible for

restoring the CPU to its original state on exit. External processes communicate with internal processes via

shared memory. The stream services are available to them, but they may also use more block-oriented fonns

of communication.

11 DECEMBER 1981

52 SUN uSERS' GUIDE

7.1.2. Internal Processes

Internal processes share the processor under the control of Canoc, a round-robin preemptive scheduler.

An internal process may voluntarily surrender the Cpu at any time; otherwise at the expiration of its time

quantum the Cpu will be preempted.

Internal processes have two components, whimsically caned the patient and the physician. The patient is

the normal part of the process while the physician acts as exception handler. The physician permits diagnosis

and debugging of erring processes, and is also responsible for preemption. pcnnitting individual

implementations of both blocking and nonblocking mutual exclusion methods that the process may need to

survive with Calloc's asychronous preemptive sc~eduling. (This does not needed for Sunos's stream facilities.

which incorporate their own nonblocking mutual exclusion.)

7.1.3. Patient services
.

spawn(p ,n,sl, ...• sll)
spawn process p with n streams sl, ... ,sn

wait(p)
wait until p holds (non-busy waiting)

terminate()
tenninate this process

error(e)
commit error e

Medium-level atomicity is also provided for. The patient may at its option run atomically for a limited

time. In this state preemptive scheduling by Calloc, though not by interrupt driven processes. is inhibited.

The patient entcrs atomic -state by signalling its physician. typically by setting a global valiable called Lock.

and leaves atomic state by another signal to the physician. typically by clearing Lock.

(Medium-)evel atomicity provides an attractive alternative to locking resourccs in use by a preempted

process. Such resource locking is both expensive and a source of deadlocks. At the moment of preemption it

may often be cheaper to finish the critical section than to incur the costs of blocking a process sharing the

resource presently accessed by the precmpted process. Highcr levels of atomicity may be provided in the

usual way, with the usual deadlock problems, using medium level atomi~ity to implement synchronization

primitives, for which low-level atomic instructions such as test-and-set may not always be powerful enough.)

11 DECEMJlER 1981

SUNOS - A SMALL OPERATING SYSTEM 53

7.1.4. Physician services

The physician services include all patient services except error(e), together with:

status()
supply physician with patient's PC,sp,sr,error code.

sstatusO
set patient's PC,sp,sr (rest is directly accessible)

runO
run patient nonnally

singlestep()
run patient for one step

breakpoint(a)
set breakpoint at instruction address a

The status and sstatus services are needed in case the physician~ has no other way to access the patienfs

program counter, stack pointer, status register, and error code (rcason for invoking the physician). The rest of

the patient state is accessible

Physicians are expected to be implemented with system-supplied routines as a rule, and are not themselves

candidates for diagnosis and debugging; this is a strict two-level approach rather than a hierarchical onc ..

The physician inherits all the capabilities (read-write-execute access rights) of its patient, together with
!

write capability for the patient's state (cpu registers and stack) and read capability for aU code for which the

patient has execute capability. The breakpoint service provides an additional capability for code.

7.2. Stream-oriented Services

Streams provide a form of communication between processes in which one process nlay write a sequence of

data into the stream and any number of processes may read that sequence frOln the stream asychronously.

lbe data types supported by Sunos are characters (one byte), shorts (two bytes), integers (four bytes), and

references (four bytes, garbage collected). Streams arc type-homogeneous: only one or the four possible

types of data may appear in a stream.

Streams are accessed by stream references, which are values of type either char*, short*, or int* in the C

sense. Sunos provides the equivalent of *s+ + = d for storing a datum d into a stream referenced by s, and

*s+ + for fetching a datum from a stream referenced by s. (It is not possible however to use*s+ + = d and

*s+ + directly due to discontinuities in the internal representation of streams and the need to garbage collect

11 DECEMBER 1981

54 SUN USERS' GUIDE

streams.}

Stream references have many of the attributes of ordinary pointers. They may be assigned to variables,

passed as arguments to functions. and returned from functions. In passing them around however they may

not be duplicated implicitly, but must be copied explicitly with the Sunos function dupref(s). Thus if the

assignment s2 = sl is pcrfonned and then both sl and s2 are subsequently used as references to the same

stream. the assignment must be rewritten as 52 = dupre~sl). Pointer arithmetic is not pennitted, nor may

pointers be compared with each other since distinct pointers may point to the same place in a stream.

Streams are defined entirely independently of Calloc. They do not take advantage of the atomicity catered

for by Calloe but rely on nonblocking methods for accomplishing mutual exclusion at all potential interaction

sites. This permits streams to be used- in common by both internal and external processes, reducing the

variety of communication primitives required in the system. It is possible to perform all interprocess

communication via streams. It is intended that even transactions that might ordinarily be handled for the sake

of efficiency by block moves be handled by streams for the sake of unifonnity of communication. The

efficiency question is intended to be ignored by the user and taken care of at the implementation level (see

section D below).

Stream services fall into two categories. transactional or data·oriented~ and existential or identity-oriented.

In the following, T denotes the type of the stream, and may be any of c, s, i, or p, each abbreviating one of

the four types.

putTed,s)

Transactional Services

put datum d in stream s. Stream version of *s+ + = d; getT(s)
get datum from stream s. Stream version of *s + + emptyT(s)
return 1 if stream s is empty, else 0

Existential Services

makestreamTO create a stream, rerum a reference to its start dupref(r)
make a copy of reference r (a typeless operation) dispose(r)
dispose of reference r (a typc1ess operation)

Semantically dupref acts as an identity operation, apparently merely returning its argument. Behind the

scenes a reference count is incremented. When dispose is called a referenc~ count is decremented. Reference

counts pennit garbage collection of storage associated with streams, pennitting the user to ignore the details of

storage management for streams.

11 DECEMBER 1981

SUNOS - A SMALL OPERATING SYSTEM 55

7.3. Performance Services

Pcrfonnance services are services that are semantically redundant~ i.e. arc already supplied by other

services. but that offer alternative tradeoffs in time and space. The advantage of having performance services

is finer programmer control of program pcrfonnance. Their disadvantage is that program structure may be

obscured by the clutter of performance details interwoven with those aspects of the program that contribute to

its semantic correctness.

The perfonnance services are as follows:

block() temporarily suspend execution of this process

s 1 e e p () destructive block: dO~d7.aO-a6 not preserved on return

put T to (d t s) same as p-u t T (d, s) ifevaluation of d has no side effects

getTto (v t s) equivalent to v = getT (s)

bloc k 0 is semantically equivalent to the empty statement. Its effect is to temporarily surrender the

processor to another process. Eventually the scheduler will return the processor unhanned to the blocked

process. b i ock () is used by wait(p), which is 'implemented as {wh i 1 e (I p) b 1 ock():}.

s 1 e e p () is a variant of bloc k () which does not preserve registers dO·d7 or aO-a6. On the Motorola

68000 sleep () is implemented as a system call, trap #Z~ while block is itnp1emented as push-sleep-pop,

namely
mov ern 1 #I f f-F:E .sp@
trap #2
moveml H/7FFF.sp@+~

The two rno vern 1 ts together require 290 68000 cycles. or 36 microseconds on an 8 MHz 68000. Thus context·

switching efficiency may be improved substantially by use of sleep () together with alternative ways to

preserve needed registers such as saving them most of theln on entry to a body of code that executes

sleep () repeatedly. Formany applications however the load-buffering capability of Sunos should make

context-switching costs negligible under heavy load. Hence sleep () should be reserved for situations

involving sh0l1 back-and-forth exchanges between processes: block () will be adequate for morc heavily

stream-oriented tasks.

putTm(d, s) is a variant of putT (d, s) which is expanded in-line instead of as a subroutine call. Since d

is referred to more than once in the expansion, evaluation of d should not have side effects. For example

putcm(getc(s),t) will not be equivalent to pu tc (cit s) because ge tc (s) has the side effect of assigning to s.

11 DECEMBER 1981

S6 SUN USERS' GUIDE

7.4. Performance Characteristics of Present 68000 Implementation

The perfoITnance figures of greatest interest are:

• Cost of nonpreemptive (process-initiated) blocking

• Cost of preemptive scheduler-initiated blocking

• Cost of preemptive interrupt-initiated blocking

• Cost ora stream-mediated transaction (combined put and get)

• Frequency of each of the above.

Nonpreemptive blocking using block () requires 34 instructions or about 100 microseconds if we assume

2 microseconds per instruction. The non-register-saving s 1 e e p () instnlction avoids the two moveml's that

alone account for 36 microseconds; thus sleep () costs approximately 60 Dlicroscconds.

~

Frequency -of nonpreemptive blocking is intended to decrease as system load increascst at least for tasks

. that lend themselves to batching. The use of streams in interprocess cOlnmunication will often ensure the

automatic batching of tasks; a process will continue to process data coming from a stream for as long as data is

available, blocking only when the stream becomes empty.

Preemptive blocking is perfonned by requesting the physician to "retire" this process. Nonnally this costs

40 instructions more than blocking, i.e. 74 instructions or about 180 microseconds. If the proc("-ss was running

atomically then the overhead is . increased to that required to single step the process through the atomic

section, approximately--4{) instructions Ot 80 microseconds per step.

Frequency of preemptive blocking is intended to be very low in comparison to the overhead of preemptive

blocking. This motivates the choice of a 10 millisecond quantum for Calloc. making the 180 microseconds

required for preemptive blocking negligible. Whether the additional overhead of leaving an atomic section

increases this substantially on the average depends on the probability of being in an atomic section at the tinlC

of preemption. ln general ~is can be assumed to be less than 0.1, and atomic sections can be assumed to be

less than 10 instnlctions long. Then the expected overhead attributable to atomicity at preemption is at most

0.1 *10*0.5*40 = 20 instructions or 40 microseconds (the 0.5 assumes unifonn distribution of where in the

atomic section preemption was requested).

Interrupt-mediated preemption is extremely cheap: essentially the cost of the exception. The external

process saves only those registers it needs immediately, which is the same protocol observed in the C caning

sequence for ordinary subroutine calls, whence should not be counted as an additional overhead.

11 DECEM BER 1981

SUNOS - A SMALL OPERA TI NG SYSTEM 57

The cost of reading and writing data in a stream decomposes into typical and boundary (buffer·

discontinuity) costs. We first give the costs if the efficiency oriented operations arc used, assuming the stream
. .

pointers and data arc held in registers. The typical cost of writing a datum is 4 instructions, while the

boundary cost is 90 instructions. The typical cost of reading a datum is 2 instructions while the boundary cost

is estimated at 40 instnlctions though has not been checked. \Vith buffers holding say 240 data~ the average

cost of a write-and-read transaction is then 4 + 2 + (90+ 40)/240, or approximately 6.5 instructions.

Measurements suggest that the cost of a transaction along with a minimal amount o~ computation on the data

being transacted (adding up a stream of chars) requires about 20 microseconds on an 8 Mhz 68000, which is in

line with the analytic prediction if we allow 7 microseconds for the associated computation.

7.5" CaJloc .. A CPU Allocator for the Motorola 68000

7.5 .. 1. Overview

Calloe, for Cpu ALLOCator, is concerned with allocation of the CPU to "internal" processcs~ defined as

processes running in user state at interrupt level O. In standard operating system terminology this would be

called a scheduler. Calloc and its senior sibling process, Manoe the Afap ALLOCalory run in sy~tem state at

interrupt level O. The only other processes are the inteffilpt driven processes or IDP's which run in system

state at positive intemIpt levels, preempting the cpu according to their level. An IDP is visible only to those

processes with which it shares memory, which normally will be one or more internal processes on the distal

end of a stream shared with the IDP. Calloc is entirely unaware of the existence of IDP's.

I

Calloe has a minimal set of duties which require little code to implement and can be easily perfonned. As

such Calloe should be of interest to operating systems theorists as a tractably small object of study, and to

operating systems implementors as a small, easily implemented, efficient, and effective component of an

operating system.

Calloc is dedicated to maximal autonomy of internal processes. The objective is to minimize duties

performed in system state, thus minimizing the chances of global system failure due to errors committed ill

(vulnerable) system state. The autonomy is supported in two ways, one negative and one positive. On the

negative side Canoc forgoes the luxury of access to any space but its own. thereby reducing the vulnerability

of the system to system·state errors. ~1ore positively, Calloc offers enough services to permit competent user

state processes to assume duties normally assigned to system state processes.

The inaccessibility of memory to Canoc turns out to present no serious obstacles to the imp1ementation of

Canoe. As it happens none of the services provided by Canoe require access to other spaces. A residual issue

11 DECEMBER 1981

sa SUN USERS' GUIDE

of accident-11 map access leading to accidentaJ memory access by CaIloe remains an unsolved problem that we

discuss in more detail below.

As a basis for providing servicest Canoe recognizes a partitioning of every internal process· into what we

shan term the physician-patient pair. . This recognition takes three forms: unlimited patience with "iH"

(exception-causing) patients: support for physicians, limited to the kind of support best offered by a process

running in system state such as Calloe; and a very contemporary intolerance for malpractice manifested as

immediate and unreported termination of an erring physician along with its patient.

This scheme should work well provided only the most trusted software is used for implementing the

physician half of each pair. The behavior of CaIloe towards physicians and patients is the only mechanism

depended on to encourage programmers to observe this discipline in writing process software. Without this

discipline debugging should prove most difficult; conversely t with it the ease and efficiency of debugging

should advance in step with advances in "medical technology.'f'
-_.

To appreciate this design decision better it helps to think of physician software as requiring a level of

dependability only a little -less than that of Calloe itself. The reason physicians are less critical is that the

penalty for physician failure, while seemingly very severe, is nevertheless less severe than the penalty for

Canoe failure. A failed physician only leads to the unreported loss of a process, whereas Calloe failure can

cause the unreported loss of the whole system. This also means that an inappropriate choice of physician win

inconvenience only the chooser and not processes running in other spaces.

There are of course alternative methods of debugging physicians that arc not supported explicitly by

CaIloe. just as there are methods for debugging Calloe itself. For the most part physicians themselves can be

debugged by running them as patients. When running as physicians, an alternative mode of debugging is to

put the physician in communication with another physician who can at least report the tennination of its

partner.

A different approach to the physician-patient relation is to m~ke it hierarchical, putting physician

debugging on the same le~cl as' patient debugging, The cost is added complexity in Canoe in coping with

such a hierarchy. Our preference here has been to sacrifice a certain amount of convenience in physician

debugging in favor of keeping Canoe simple.

11 DECEMBER 1981

SUNOS - A SMALL OPERATING SYSTEM 59

7.5.2. Machine Dependencies in Calloc

The initial Calloc design is tailored to the SUN-I, a Motorola-68000-based CPU board. The only features

of this board on which Canoc depends critically and which are not features of essentially every CPU board are
i

the 68000's trace facility, without which the duties of physicians would require substantially more assistance

from Canoe, compromising system robustness~ and the SUN-l's per-page protection capability. on which

Calloc depends to protect physicians from their patients and both from CaIloe, and to make physicians

invisible to their patients. To within these details, the principles of Calloc should be found to be broadly

applicable.

Ideally Calloc should be the junior sibling to MalIoes in that Calloc should have no say in how memory is

allocated to processes and should not be able to interfere with MalIoe's duties, in contrast to MaUoc's absolute

freedom .. Unforturnately the SUN~ 1 does not support this level of protection since map access and hence

unrestricted memory access is granted to all system state processes, not just to MalIoe as we would prefer.

Thus the promised protection of internal process memory from Canoc is only weakly achieved. by not having

any Calloc code that intentionally references the map. Accidental map references remain an unfortunate

possibility that we would hope future hardware would make it easier to avoid. The absence of iterative

constructs and address register arithmetic from the Calloe code should help to reduce the likelihood of such

unintentional map accesses. One consolation is that at least Canoe is no worse in this respect than any other

system-state schedulers.

7.5.3. Calloe Duties

Calloc attends to the .foUowin.g.

1. Requests for animation (bringing to life) of a given process, that is, giving it a share of the cpu.

2. Requests for sleep, t!ut is, temporary surrender of the cpu.

3. Requests for termination. that is, pennanent surrender of the cpu.

4. Equitable allocation of the processor; at unifonn intervals £!1e active process is put to steep and the
next in turn is awoken (round-robin scheduling).

5. Automatic saving and restoring of pc/spice, the process's program counter. Slack pointer, and
condition codes.

6. Error recovery. An erring process is pennitted to try to recover on its own. No limit is placed on
the number of errors made. Canoe depends critically on the physiCian-patient dichotomy to avoid
the major problem associated with this degree of latitude, namely vegetating~ the perpetual
survival of tenninally ill processes.

7. Requests by a physician to run or single step its patient. The physician is at liberty to set

11 DECEMBER 1981

60 SUN USERS' GUIDE

breakpoints in the patien~ which Calloe supports in a way that makes this invisible to the patient.

7.S.4c Calloc Nonduties

Many duties nonnally entrusted to system-state software are not attended to by Calloc, in the interests of

autonomy, flexibility, and efficiency. Such duties often include the following.

1. Saving and restoring the contents of the cpu other than pc/sp/cc. Canoe assumes that each
internal process will save and restore the contents of the cpu registers that it cares about.

2. Diagnosis. repa:r, or reporting of sick processes. The process must diagnose and report its own
problems, using its physician component, and heal or tenninate itself.

3. Allocation of memory. This is handled at two levels on the SUN-t as a consequence of details of
its memory structure. At the higher level, SUN-l memory is stnlctured into possibly overlapping
spaces of varying size.~. Accordingly there exists Canoe's aforementioned companion Malloc t

which like Canoc runs in system state at intcrnlpt level O. At a lower level is conventional
memory allocation within a space, which is handled by the user processes themselves.

4. Allocation of the processor to interrupt-driven processes (IDP's) (introduced at the start of the
overview section).

5. Creation and destnlction of processes. Calloc draws a Pinnochio·Iike distinction between creation
and animatjon, taking responsibility only for the latter. Process creation and destnlction are left to
user processes. The ~ quality of the created process is up to the author of the creating process; in
general the best effects should be obtained by creating processes with highly tnlsted physicians.
Process destruction entails primarily deallocation of resources, which though it may be handled by
any component of the process, is for greatest reliability left to specialist programs running in user
state.

6. Reading or writing of internal process memory. C.alloc does not reference internal-process
memory, making it independent of decisions about how system state processes access memory
nonnally accessed in user state. Although the SUN~ 1 makes system-state access to uscrcstate
memory as easy as access to system-state memory, "future boards may vary this. Calloc is hnmune
to such variations.

7. Capability management. No global system of capability management is envisaged for SUNOS.
The definition and use of capabilities is intended to be a matter of agreement between consenting
processes. The set of rights and duties of internal processes from Canoe's point of view provides
an example of this. This philosophy is part of the overall decentralization philosophy of SUN OS.

8. Interprocess communication. No global system of interprocess communication is envisaged for
SUNOS. Instead it is expected that a variety of interprocess communication protocols will be
used, one Of two of which may come to dominate on account of Qleir combination of general
applicability and high efficiency.

Calloe offers enough services to pcnnit quality care of the patient by its physician, including:

11 DECEMBER 1981

SUNOS - A SMALL OPERATING SYSTEM 61

• Full access by the physician to the state of the patient.

• Protection of the physician from the patienfs illness;

• Invisibility of the physician to the patient;

• A single step facility to help the physician diagnose and/or treat the patient

Control is passed from the patient ("nonnal't status) to the physician ("suspended" status) when an error

occurs.

Physician access to the patient is straightforward for all of the patient except its pc/spice, error state, and
--

space size. To obtain this information a system call to Calloe is provided which returns this information in

five CPU registers. This call also grants the physician read-write access to the patient's memory.

Protection of the physician from the patient is implemented by allocating a portion of the space to the

physician and denying write access to those pages while in normal status. A physician whose writable

memory fits in one page (2K bytes) will require Calloe to access only one map entry for eacll change OfSL:1tuS.

Physician invisibility is achieved by dcnyingtbc patient any read access to the space the physician writes in,

the motivation being for the patient not to see mysterious variations in memory. Seeing or even executing the

physician's code is permissible provided the code remains fixed. The physician should not use the patient's

stack in place of its own, except where it makes arrangements to completely erase all traces of its presence

before returning to nonnal-status.

7.5.5. Requests to Sleep

A process temporarily held up by lack of input or unavailability of some resource may temporarily

surrender the CPU to Canoe. It does not get it back until all other processes have had a turn. This is

5ynchronous sleep: as such it may not be necessary to save all the CPU registers.

Where the cpu changes hands frequently (say every 100 microseconds or less), the affected processes will

arrange to minimize context switching overhead, e.g. by replacing "while (!condition) {pushstatc; sleep;

popstate;}" with "if (!condition) {pushstate: do sleep while (!condition); popstate;}" and treating functions

containing "sleep" as though they declared all of d2-d7 and a2-a5 (a trivial mod to the compiler), saving any

given register across the largest block containing the sleep but not contai!1ing a reference to that register.

11 DECEMBER 1981

62 SUN USERS' GUIDE

7.5.6. Cleaning Up

The following approach is proposed for having physicians clean up. There are three granularities of storage

involved: space, stack, and frame. A space is defined by the 68000 board's SID (Space ID) register; spaces are

protected from each other except when they overlap as when sharing for interproccss communication and

related purposes. Stacks arc associated with processes; each process has two stacks, one for nonnal use and a

small one, normally inaccessible, for the physician. Frames arc as defined by the C68 compiler (see section

2.S).

Per space: all storage is reclaimed by Malloe when a space is abandoned (contains no further viable

processes).

Per stack: Each space may contain any number of processes; these are freed by the process's physician

when the process is tenninated for any reason, as are other patient resources known to the physician such as

stream pointers.

Per frame: No fixed scheme is prescribed here; rather each exception handler is expected to understand its

patient's conventi~ns concerning stack usc. A C68-dependent convention will be to use two sources of

information: the add·to·stack-pointer instnlction produced by the C68 compiler after each call, and the link

instruction at the entry to each function. Either of these uniquely determine the number of parameters, and

together they provide a consistency check on each other in the event a6 or the stack has been badly damaged

or a nonstandardcaIling sequence has been used without telling the exception handler ..

A significant advantage of this approach is that it does not commit itself unbendingly to a particular choice

ofcal1ing sequence. New calling sequence conventions may require rewriting of physicians, butdo riot affect

calloc itself.

7.5.7. The Calloc Process Model

Calloe has a conception of a process appropriate to Calloc's duties. Calloc divides its notion of the state of

the process into data state and control state components.

The data state components are:

• a value for the SID (Space ID) register, determining which region of the memory map the process
has access to;

• pc/spice values (program counter, stack pointer, condition code register) for each of the physician
and the patient;

11 DECEMIlER 1981

SUNOS - A S~fALL OPERATING SYSTEM 63

• the patient's error status.

The SID register value is determined by Malloc. who may also change it. Canoe uses it only to sct the SID

register for the current (nmning or retiring) process. The SID register maps a virtual address to a Inap

address, which further maps the result to a physical address.

The pc/sp/cc values are used to initialize the epu on exiting to the process. The patient error status is

reported to the physician on request, along with the patient pc/spIce values.

The control state components are:

• activity: one of running, retiring, or sleeping;

• status: normal or suspended.

• A running process is one in control of the CPU. A retiring process is one which is attempting to go to sleep.

A sleeping process is one that does not have control of the CPU. A running or retiring process is called

current; there is at most one current process at a time.

A normal process executes the patient when running. while a suspended process executes the physician.

When retiring, a process executes the physician whether normal or suspended.

The process state is represented in the present SUN implenlcntation with the following 32-byte struct in

the C programming language.

typedef struct Procdesc
{int *patpc;

int *patsp;
int *patsb;
int *phypc;
int *physp;
int sid;
char patce;
char phycc;
short paterr;
struct Procdesc *next;

} *procdesc;

1*
1*
1*
1*
1*
1*
1*
1*
1*
1*
1*

process descriptor *1
pat program counter *1
pat stack pointer *1
pat stack base *1
phy program counter *1
phy stack pointer *1
space id *1
pat condition code reg *1
phy ditto *1
patient error status *1
next process descriptor *1

The current process is identified with a variable Currcnt of type procdesc. To facilitate renloval of a .
terminated process the procdcsc variable Last identifies the process that was current prior to the present one

(with Last = Current if there is only onc process). Last contains no information not deducible less efficiently

from Current.

11 DECEMBER 1981

64 SUN USERS' GUIDE

7.5.8. Cont roJ State Transitions

The behavior ofCaltoc towards the current process can be represented as a finite state automaton, the states

being the control states of the process. This automaton has five inputs, namely error, tCffilinate, sleep, ru~

and timeout. An error input may be an error exception, a trace exception, or a request to be considered to be

in error. A tenninate input is a request to be terminated. 1\ sleep input is a request from the process to be put

to sleep. A run input is a request from the physician to transfer process ownership to the patient, either for

one step or indefinitcly. A timeout input is a signal from the timer that this process's time is up.

The fonowing state transition table covers the casc when exactly one input has arrived. As we care only

about the current process here t the initial states are normal running, suspended running, normal retirin& and

suspended retiring.

INPUT: error terminate sleep run timeout
STATE:
norm run. susp run terminated norm sleep susp run norm ret.
susp. run. terminated terminated susp sleep norm run susp ret.
norm ret. te rm i nated terminated norm sleep termi nated terminated
susp ret. terminated terminated susp sleep terminated terminated

It is possible for any combination of (i) error. (ii) one of tenninatet sleep, or run. and (iii) tinleout to occur

simultaneously. If error is presen~ then tenninate. sleep, and run requests are ignored. though the request is

stored as part· of the error state of the patient. Otherwise multiple inputs are processed as though they had

arrived sequentially in the order given in the table. Thus error and timeout together take a running patient

first to a running physician and then to a retiring physician. For the case of sleep with timeout. we add the

condition that timeout of a sleeping process has no effect. (Thus a returning patient that gets its sleep request

in just as the timeout arrives survives by the skin of its teeth.)

7.5.9. Calloc Se rvices

We now detail the services provided by CaIloe.

Animation

Sleep

Termination

The function an ima te (pa tpc, patsp, patsba, phyp c ,physp, sid) requests
Calloc to add to its list a process with the given pc/sp values for patient and physician and
sb for patient; a zero cc for each, a zero patient error stc'ltus, and a control state of sleeping
patient.

The function sleep () requests Calloc to put the requesting process to sleep. \Vhen the
process is reawoken later, its cpu registers dO-d7 and aO-a6 may have changcd~ but the
pclsplcc values will be preserved.

The function tcrminatc() requests Calloc to terminate the requesting process. Calloc docs
not consider the isslie of returning the stack and streams to free storage.

11 DECEMnER 1981

SUNOS - A SMALL OPERATING SYSTEM 65

Status

Run

Single Step

The physician may use the function statusO to extract from CalIoe t11C entire state of the
patient. This information is returned to the physician in registers d4 (pc), d5 (cc,crror
status, space size), d6 (sp), and d7 (sb). In addition the physician is granted read and write
access to the patient's space. This access is revoked on resumption of normal processing.
Use of statusO by the patient counts as an error

The physician may use the function run () to return the process from suspended to
normal status. Calloc restores only the patient's pc/spice; it is the physician's
responsibility to restore the other registers. Calloc also restores the access control to this
space in force at the time of animation of this process.

The physician may use the function sin 9 1 est e p () to achieve the same effect as runO
but in 68000 trace state. The ensuing trace exception is treated by Calloe as an error of
type trace and the process is then suspended again.

7.6. The Edit-String Protocol

Edit-strings are a particular representation of strings designed to support a variety of protocols for

operating on strings. The most general string editing operation, replacement, is supported, but certain

special*purpose kinds of operations such as stream·read-and-write have particularly efficient implementations

with edit-strings. All references to edit-strings are via ordinary pointers to individual data within a string.

7.6.1 . The Edit-St ring Data St ructu re

Storage is divide~ into buffers each of size a power of two, each aligned by its size. Each buffer contains a

header and a body. The header is structured into the following fields.

typedef struct Bufhead 1* Buffer head definition */
{struct Buffer *next; I· next buffer *1 .
struct Buffer *prev; 1* previous buffer, if any */
char size; 1* log base 2 of size of buffer *1
char type; 1* type of data in buffer *1
short 11im; 1* left end of data in buffer *1
short rlim; f* right end of data in buffer *1
short refco; 1* number of owners of this buffer *1

} *bufhead;

The exact start and end of data in the body are defined by both delimiters and the 11 im/rl;m pair. TIle

last delimiter before the start address marks the start boundary. while the first delimiter following the end

address marks the end boundary.

11 DECEMOER 1981

66 SUN USERS' GUIDE

7.6.2. Reference

All references to edit-strings are via pointers to data within the body of some buffer. This differs from

schemes where a reference is a more complex structure which may include a count of the remaining items in

the current buffer and the address of a function to call when the count vanishes.

Data are accessed via pointers in the usual way. In the case of accessing a stream the pointer will be

incremented after the access. This may take it out of the data. The test for this is pcrfonned when accessing

rather than when incrementing. The condition of being out of the data is recognized when the pointer points

to a delimiter and the end address given in the buffer header docs not lie beyond the pointer. \VhCll storing at

the end of an edit-string, as when writing a stream, the writer only need update rlim if it writes a delimiter.

7.6.3. Locating Block Headers

The question arises as to how to locate the start of the buffer given only a pointer into the buffer body. To

this end all buffers are taken to be of size a power of two t and are aligned on buffer boundaries, that is) they

start at an address which isa multiple of their length.

When the size of the buffer is known, the buffer header may be located by masking oul the low-order bits

of the pointer. In effect a pointer has two components, a pointer to the start of tl1e buffer and an offset from

that start. Unlike other ways of fanning two-element structures t this approach has the benefit that the

structure fonns an ordinary machine address that can be used as an indirect. reference and incremented in the

. usual ways.

When the size of the butTer is not known, it may be determined by trying all sizes in decreasing order and

for each, masking out the low-order bits of the pointer as in the case when the size is known. The largest siZe

yielding a header which (a) is within the storage region allocated to this scheme and (b) contains this size in its

size field, is the size o(the containing buffer. The correctness of this method depends on the observations that

(a) every address within a buffer yields the buffer header using SOME mask, and (b) every mask larger than

must yield some buffer header.

The-advantage of this approach is that processes that know the buffcr size in advance can run faster, while

processes that don't, such as postmortem diagnosers, can still find their way around given only pointers into

buffers.

11 DECEMBER 1981

SUNOS - A SMALL OPERATING SYSTEM 67

7.6.4. Asynchronous Access

The question now arises as to asynchronous reading and writing~ can a reader get a consistent picture of a

string while it is being written? In general a certain amount of explicit synchroniza.tion of independent

processes may be needed for some kinds of reading and writing. However for some of the cases we are

particularly concerned about. explicit synchronization can be avoided.

Consider the case of any number of readers reading in either direction in a stream being written only at ~e

ends (Le. no inserting other than at the ends. and no deleting). By symmetry it suffices to consider a reader

scanning forwards. A reader fetching a non-delimiter is assured that he is not at the end of the stream.

Fetching a delimiter is more problematical; the delimiter may have been genuine at the time of the felch, but

may be replaced by some other datum by the writer before the reader fetches the end address.

If the writer has not updated the end address then no serious problem arises; the reader merely has an out~

Qf-date picture. However suppose that between the reader's reading the delimiter and checking the end

address that the writer writes a non-delimiter and then the delimiter. The writer will then bring the end

address up to date and the reader will be fooled into believing that the delimiter it read is a datum.

There is an easy cure for this problem. The reader identifying a delimiter as a datum should always refctch

that datum and discard the old datum. The second fetch is guaranteed to be correct since all writing is

performed at the end. This method avoids the expense of explicit synchronization.

When the need does arise to synchronize explicitly, the question arises as to how to miniInize overhead.

System calls to raise interrupt priority or defeat the interrupt mechanisms are unduly expensive; it is

considerably cheaper to rely on shared semaphores when these can be sc~ tested. and reset with single

instructions.

11 DECEMBER 1981

68 SUN USERS' OUIDE

References

1. F. Baskett, and A. V. Bechtolscheim. The SUN Workstation: A Hardware Overview. Stanford University
Computer Science Department 1981.

2. F. Baskett, A. V. Bcchtolscheim, W. I. Nowicki, and 1. K. Seamons. The SUN Workstation: A Terminal
System for the Stanford University Network. Stanford University Computer Science Department 1980.

3. F. Baskett, J.H. Oark, J.L. Hennessy, S.S. Owicki, and R.K. Reid. Research in VLSI systems: Design and
architecture. Tech. Rept. 201, Computer Systems Laboratory, Stanford University, 1981.

4. F. Baskett, J.H. Howard, and J.T. Montague. Task communication in DEMOS. Proceedings of the Sixth
. Symposium on Operating Systems Principles, November, 1977, pp. 23-31. Published as SIGOPS Operating
Systems Review 11(5).

5. D. R. Boggs, 1. F. Schoch, E A. Taft, and R. M. Metcalfe. npup: An Internetwork Architecture.n IEEE
Transactions on Communications 28,4 (April 1980), 612-624.

6. S. I. Feldman. Make - A program for Maintaining Computer Programs. Part of the Unix Programmer's
guide». Volume 2. .

7. R. E. Gorin. Computer Networking at Stanford. Stanford University Computer Science Department
1980.

8. J.L. Hennessy.·Pascal*. Tech. Rept ,Computer Systems Laboratory, Stanford University, 1980.

9. G. Kane. 68000 Microprocessor Handbook. Osbourne/McGraw-Hill, 1981.

10. G. Kane, D. Hawkins. and L. Leventhal. 68000 Assembly Language Programming. Osbourne/McGraw
Hill. 1981.

11. K. A. Lantz. Perseus Rising. Stanford University Computer Systems Laboratory 1980.

12. AfC68000 Design Alodule Users Guide. 1979. MEX68KDM(D2).

13. A1C68000 /6-bit Aficroprocessor User's Manual. 1980. MC68000UM(AD2).

14. William M. Newman and Robert F. Sproull. Principles of Interactive Computer Graphics. McGraw·Hill.
1979.

15. D.M. Ritchie and K. Thompson. "The UNIX time-sharing system." Bell System Technical Journal 57, 6
(July 1978), 1931-1946.

16. \V. Yundt, Chairman. Report of the Study Grollp on Networking. Stanford University Center for
Information Technology January 1981. Perpared for the Task Force on the Future of Computing at Stanford

11 DECEMBER 1981

INDEX

Index
2651 10

6821 9
6840 9
6850 10

7201 10

9513 10

Abort 17.26
ACIA 10.43
Alto 4S
As68 7
Ascii 47
Assembler 7

B.out 5.9
Boot state 24
Break key 17
Breakpoint trap 19.25.26
Byte order 5.6,9,20

C 5,11,13
CUbrary 11
Caning Sequence 13
Calloe 57
-Cc68 5,37
Checksum 14
Compiling 5
Console 11. 28
Context Register 17.28
Control characters 9

Debugging 39
Design Module 8,9,10.37
Diablo 3
Directories 3
0168 9
Down 10a<1 file format 14
Down-line loading 9, 21, 37

Echoing 28
Edit-Streams 6S
Emulator Traps 16.27
Entry point 8
Ethernet 6,10.16,17.19.20
Example 18

File names 5
File transfer programs 47
Frame buffer 9.16.20.24
FfP 47

Getting started 17
Global symbols 1
Graphics 9, 31

11 DECEMBER 1981

	000
	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	ix

