
UNIX PROGRAMMER'S MANUAL

4.2 Berkeley Software Distribution, Volume 2c
Virtual VAX -11 Version

August, 1983

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California
Berkeley, California 94720

Copyright 1979, 1980 Regents of the University of California.
Permission to copy these documents or any portion thereof as
necessary for licensed use of the software is granted to licensees
of this software, provided this copyright notice and statement of
permission are included.

The document "Writing Tools - The STYLE and DICTION
Programs" is copyri",hted 1979 by Bell Telephone Laboratories.
Holders of a UNIX M/32V software license are permitted to
copy this document, or any portion of it, as necessary for
licensed use of the software, provided this copyright notice and
statement of permission are included.

The document "The Programming Language EFL" is
copyrighted 1979 by Bell Telephone Laboratories. EFL has been
approved for general release, so that one may copy it subject
only to the restriction of giving proper acknowledgement to Bell
Telephone·Laboratories.

The documents "A Portable Fortran 77 Compiler" and "Fsck
- The UNIX File System Check Program" are modifications of
earlier documents which are copyri!thted 1979 by Bell Telephone
Laboratories. Holders of a UNIX M/32V software license are
permitted to copy these documents, or any portion of them, as
necessary for licensed use of the software, provided this
copyright notice and statement of permission are included.

This manual reflects system enhancements made at Berkeley and
sponsored in part by NSF Grants MCS-7807291, MCS-800S144"
and MCS-74-07644-A04; DOE Contract DE-AT03-76SFOOO34
and Project Agreement DE-AS03-79ERI03S8; and by Defense'
Advanced Research Projects Agency (DoD) ARP A Order No.
4031, Monitored by Naval Electronics Systems Command under
Contract No. N00039-80-K-0649.

UNIX Programmer's Manual

Volume 2c - Supplementary Documents

4.2 Berkeley Software Distribution, Virtual v AX -11 Version

August, 1983

This volume contains documents which supplement the information in Volume I of The
UNIXt Programmer's Manual, for the Virtual vAx-II version of the system as distributed by
V.C. Berkeley. This volume is a logical extension of Volumes 2a and 2b as provided by Bell
Laboratories.

General Works
39. Bug Fixes and changes in 4.2B5D.

A brief discussion of the major user-visible changes made to the system since the
last release.

Getting Started
40. An introduction to the C shell

41.

42.

43.

44.

45.

..; 46.

Introducing a popular command interpreter and many of the commonly used com­
mands, assuming little prior knowledge of UNIX.

An Introduction to Display Editing with Vi
The document to read to learn to use the vi screen editor.

Edit: A tutorial (Revised)
For those who prefer line oriented editing, an introduction assuming no previous
knowledge of UNIX or of text editing.

Ex Reference Manual (Version 3.1 - Oct. 1980)
The final reference for the ex editor, which underlies both edit and vi.

Ex Changes - Version 3.1 to 3.5
A quick guide to what is new in version 3.5 of ex and vi, for those who have used
version 3.1.

Mail Reference Manual (Revised)
Complete details on the mail processing program .

A Guide to the Dungeons of Doom (Revised)
An introduction to the popular game of rogue.

Languages

47. The FRANZ LISP Manual
A dialect of LISP, largely compatible with MACLISP.

t UNIX is a trademark of Bell Laboratories.

- 2 ..

48. Berkeley Pascal User's Manual
An interpretive implementation of the reference language.

49. The Programming Language EFL
An introduction to a powerful FORTRAN preprocessor providing access to a
language with structures much like C.

SO. Berkeley FP User's Manual
A description of the Berkeley implementation of Backus t Functional Programmi ng
Language, FP.

51. A Portable Fortran 77 Compiler
A revised version of the document which originally appeared in Volume 2b; this
version reflects the ongoing work at Berkeley.

52. Introduction to the n7 110 Library
A description of the revised input/output library for Fortran 77. This document,
which originally appeared in Volume 2b, reflects the work carried out at Berkeley.

Document preparation

53. Writing Papers with nroffusing -me
A popular macro package for nroff.

54. - me Reference Manual
The final word on - me.

55. The Berkeley Font Catalog
Samples of fonts currently available for the raster plotters.

56. Writing tools - the Style and Diction Programs
Description of programs which help you understand and improve your writing style.

57. Refer - A Bibliography System
An introduction to the tools used to maintain bibliographic databases. The major
program, refer, is used to automatically retrieve and format references based on
document citations.

58. A Revised Version of -ms
A quick description of the revisions made to the -ms formatting macros for nroff
and troff.

Programming

59. Assembler Reference Manual
For compiler writers.

60. Screen Updating and Cursor Movement Optimization
An aide for writing screen-oriented, terminal independant programs.

61. An Introduction to the Source Code Control System
A useful introductory article for those users who are licensed for SCCS .

. System Installation and Administration

62. Installing and Operating 4.2BSD on the V AX .
The definitive reference document for those occasions when you find you need to
start over again.

63. Building 4.28SD UNIX Systems with Config
An in-depth discussion of the use and operation of the cottfig program. This docu­
ment discusses how to configure and build binary images of UNIX for your site.

64. Disc Quotas in a UNIX Environment
A light introduction to the care and feeding of the facilities which can be used in
limiting disc resources.

- J -

65. 4.285D Line Printer Spooler Manual
This document describes the structure and installation procedure for the line printer
spooling system.

66. Fsck - The UNIX File System Check Program
A reference document for use with the /sck program during times of file system dis­
tress.

67. Sendmail Installation and Operation Guide
The last word in installing and operating the sendmail program.

Supporting Documentation

JiI. 4.2BSO System Manual
V A concise, though terse, description of the system call interface provided in 4.2B50.

This will never be a best seller.

69. A Fast File System for UNIX
A description of the new file system organization design and implementation.

70. 4.2BSO Networking Implementation Notes
A concise description of the system interfaces used within the networking subsys­
tem.

71. Sendmail - An Internetwork Mail Router
An overview document on the design and implementation of sendmail.

Bug fixes and changes in 4.2BSD

July 28, 1983

Samuel J. Le.f/ler

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

ABSTRACT

This document describes briefly the changes in the Berkeley system for
the V AX between the 4.1 BSD distribution of April 1981 and this, its revision
of July 1983. It attempts to summarize, without going into great detail, the
changes which have been made.

Notable improvements

• The file system organization has been redesigned to provide at least an order of magnitude
improvement in disk bandwidth.

• The system now provides full support for the DOD Standard TCP/IP network communi­
cation protocols. This support has been integrated into the system in a manner which
allows the development and concurrent use of other communication protocols. Hardware
support and routing have been isolated from the protocols to allow sharing between vary­
ing network architectures. Software support is provided for 10 different hardware devices
including 3 different 10 Mb/s Ethernet modules.

• A new set of interprocess communication facilities has replaced the old multiplexed file
mechanism. These new facilities allow unrelated processes to exchange messages in either
a connection-oriented or connection-less manner. The interprocess communication facili­
ties have been integrated with the networking facilities (described above) to provide a sin­
gle user interface which may be used in constructing applications which operate on one or
more machines.

• A new signal package which closely models the hardware interrupt facilities found on the
VAX replaces the old signals and jobs library of 4.1BSD. The new signal package pro­
vides for automatic masking of signals, sophisticated signal stack management, and reli­
able protection of critical regions .

., File names are now almost arbitrary length (up to 255 characters) and a new file type,
symbolic link, has been added. Symbolic links provide a "symbolic referencing" mechan­
ism similar to that found in Multics. They are interpolated during pathname expansion
and allow users to create links to files and directories which span file systems.

• The system supports advisory locking on files. Files can have "shared" or "exclusive"
locks applied by processes. Multiple processes may apply shared locks, but only one pro­
cess at any time may have an exclusive lock on a file. Further, when an exclusive lock is
present on a file, shared locks are disallowed. Locking requests normally block a process

- 2 -

until they can be completed, or they may be indicated as "non-blocking" in which case an
error is returned if the lock can not be immediately obtained.

• The group identifier notion has been extended to a "group set" .. When users log in to
the system they are placed in all their groups. Access control is now done based on the
group set rather than just a single group id. This has obviated the need for the newgrp
command.

• Per-user, per-filesystem disk quotas are now part of the system. Soft and hard limits may
be specified on a per user and per filesystem basis to control the number of files and
amount of disk space allocated to a user. Users who exceed a soft limit are warned and if,
after three login sessions, their disk usage has not dropped below the soft limit, their soft
limit is treated as a hard limit. Utilities exist for the creation, maintenance, and reporting
of disk quotas.

• System time is now available in microsecond precision and millisecond accuracy. Users
are provided with 3 high-resolution timers which may be set up to automatically reload on
expiration. The timers operate in real time, user time, and process virtual time (for
profiling). All statistics and times returned to users are now given in a standard format
with seconds and microseconds separated. This eliminates program dependence on the
line clock frequency.

• A new system call to rename files in the same file system has been added. This call elim­
inates many of the anomalies which could occur in older versions of the system due to
lack of atomicity in removing and renaming files.

• A new system call to truncate files to a specific length has been added. This call improves
the performance of the Fortran 110 library.

• Swap space configuration has been improved by allowing multiple swap partition of vary­
ing sizes to be interleaved. These partitions are sized at boot time minimize configuration
dependencies.

• The Fortran 77 compiler and associated 110 library have undergone extensive changes to
improve reliability and performance. Compilation may, optionally, include optimization
phases to improve code density and decrease execution time.

• A new symbolic debugger, dbx, replaces the old symbolic debugger sdb. Dbx works on
both C and Fortran 77 programs and allows users to set break points and trace execution
by source code line numbers, references to memory locations, procedure entry, etc. Dbx
allows users to reference structured and local variables using the program's programming
language syntax.

• The delivermail program has been replaced by sendmail. Sendmail provides full internet­
work routing, domain style naming as defined in the DARPA Request For Comments
document #833, and eliminates the compiled in configuration database previously used by
delivermail. Further, sendmail uses the DARPA standard Simple Mail Transfer Protocol
(SMTP) for mail delivery.

• The system contains a new line printer system. Multiple line printers and spooling queues
are supported through a printer database file. Printers on serial lines, raster printing dev­
ices, and laser printers are supported through a series of filter programs which interface to
the standard line printer "core programs". A line printer control program, lpc, allows
printers and printer queues to be manipulated. Spooling to remote printers is supported
in a transparent fashion.

• Cu has been replaced by a new program tip. Tip supports a number of auto-call units and
allows destination sites to be specified by name rather than phone number. Tip also sup­
ports file transfer to non-UNIX machines and can be used with sites which require half­
duplex and lor odd-even parity.

• Uucp now supports many auto-call units other than the ON 11. Spooling has been reor­
ganized into multiple directories to cut down on system overhead. Several new utilities

adb

- 3 -

and shell scripts exist for use in adminstrating uucp traffic. Operation has been greatly
improved by numerous bug fixes.

Bug fixes and changes

Section 1

Support has been added for interpreting kernel data structures on a running system
and in post mortem crash dumps created by savecore. A - k option causes adb to
map addresses according to the system and current process page tables. A new
command, $p, can be used to switch between process contexts. Many scripts are
available for symbolically displaying kernel data structures, searching for a process'
context by process ID, etc. A new document, "Using ADB to Debug the UNIX
Kernel", supplies hints in the use of adb with system crash dumps .

addbib . Is a new utility for creating and extending bibliographic data bases for use with
refer.

apply

ar

cc

chfn

chgrp

cp

csb

dags

cu
dbx

delivermail

df

du

dump

Is a new program which may be used to apply a command to a set of arguments.

Has a new key, '0', for prese.rving a file's modification time when it is extracted
from an archive.

Supports the additional symbol information used by dbx. The old symbol informa­
tion, used by the defunct sdb debugger, is available by specifying the -go flag. A
new flag, -pg, creates executable programs which collect profiling information to
be interpreted by the new gprof program. A bug in the C preprocessor, which
caused line numbers to be incorrect for macros with formal parameters with
embedded newlines has been fixed. The C preprocessor now properly handles hex­
adecimal constants in "#if' constructs and checks for missing "#endif' state­
ments.

Now works interactively in changing a user's information field in the password file.

Is now in section 1 and may be executed by anyone. Users other than the super­
user may change group ownership of a file they own to any group in their group
access list.

Now has a -r flag to copy recursively down a file system tree.

A bug which caused back quoted commands to wedge the terminal when interrupted
has been fixed. Job identifiers are now globbed. A bug which caused the "wait"
command to uninteruptible in certain cases has been fixed. History may now be
saved and restored across terminal sessions with the savehist variable. The newgrp
command has been deleted due to the new group facilities.

Now handles C typedefs.

Exists only in the form of a "compatible front-end" to the new tip program.

Is a new symbolic debugger replacing sdb. Dbx handles C and Fortran programs.

Has been replaced by the new sendmail program.

Understands the new file system organization and reports all disk space totals in
kilobytes.

Now reports disk usage in kilobytes and uses the new field in the inode structure
which contains the actual number of blocks allocated to a file to increase accuracy
of calculations.

Has been moved to section 8.

- 4 -

error Has been taught about the error message formats of trofI.

eyacc A bug which caused the generated parser to not recognize valid null statements has
been fixed.

177 Has undergone major changes.

fed

file

find

fp

fpr

fsplit

ftp
gcore
Iprof

groups

hostid

hostname

indent

Install

lostat

The i/o library has been extensively tested and debugged. Sequential files are now
opened at the BEGINNING by default; previously they were opened at the end.

Compilation of data statements has been substantially sped up. Significant new
optimization is optionally available (this is still a bit buggy and should be used with
caution). Even without optimization, however, single precision computations exe­
cute much faster.

The new debugger, dbx, has replaced sdb for debugging Fortran programs; sdb is
no longer supported.

Files with ".F" suffixes are preprocessed by the C preprocessor. This allows C-style
" #include" and "#define" constructs to be used. The compiler has been modified
to print error messages with sensible line numbers. Make also understands the
".F" suffix. Note that when using the C preprocessor, the 72 column convention
is not followed.

The -I option for specifying short integers has been changed to -I. The -I
option is now used to specify directory search paths for "#include" statements. A
-PI option for creating executable images which collect profiling information for
gprof has been added.

Is a font editor of dubious value.

Now understands symbolic links.

Has a new -type value, 'I', for finding symbolic links.

Isa new compiler/interpreter for the Functional Programming language. A sup­
porting document is present in Volume 2C of the UNIX Programmer's Manual.

Is a new program for printing Fortran files with embedded Fortran carriage con­
trols.

Is a new program for splitting a multi-function Fortran file into individual files.

Is a new program which supports the ARPA standard File Transfer Protocol.

Is a new program which creates a core dump of a running process.

Is a new profiling tool which displays execution time for the dynamic call graph of a
program. Gprof works on C, Fortran, and Pascal programs compiled with the -PI
option. Gprof may also be used in creating a call graph profile for the operating
system. A supporting document, "gprof: A Call Graph Execution Profiler" is
included in Volume 2C of the UNIX Programmer's Manual.

Is a new program which displays a user's group access list.

Is a new program which displays the system's unique identifier as returned by the
new gethostid system call. The super-user uses this program to set the host
identifier at boot time.

Is a new program which displays the system's name as returned by the new gethost­
name system call. The super-user uses this program to set the host name at boot
time.

Is a new program for formatting C program source.

Is a shell script used in installing software.

Now reports kilobytes per second transferred for each disk. This is useful as the
unit of information transferred is no longer a constant one kilobytes.

last

lastcomm

learn

lint

lisp

In
login

Ipq

Ipr

Iprm

Is

m4

Mail

make

mkdir

mt

mv

net

netstat

oldcsh

od
pagesize

- 5 -

Now displays the remote host from which a user logged in (when accessing a
machine across a network). The pseudo user "ftp" may be specified to find out
information about FI'P file transfer sessions.

Now displays fiags for each command indicating if the program dumped core, used
PDP-II mode, executed with a set-user-ID, or was created as the result of a fork
(with no following exec).

Now has lessons for vi (this is user contributed software which is not part of the
standard system).

Has a new -C fiag for creating lint libraries from C source code. Has improved
type checking on static variables.

Has been ported to several 68000 UNIX systems, the relevant code is included in
the distribution. A new vector data type and a form of "closure" have been added.

Has a new fiag, -5, for creating symbolic links.

Has been extensively modified for use with the rlogind and telnetd network
servers.

Is totally new, see Ipr.

And its related programs are totally new. The line printer system supports multiple
printers of many different characteristics. A master data base, /etc/printcap,
describes both local printers and printers accessable across a network. A document
describing the line printer system is now part of Volume 2C of the UNIX
Programmer's Manual.

Is totally new, see Ipr.

Has been rewritten for the new directory format. It understands symbolic links and
uses the new inode field which contains the actual number of blocks allocated to a
file when the -s fiag is supplied. Many rarely used options have been deleted.

A bug which caused m4 to dump core when keywords were undefined then
redefined has been fixed.

Now supports mail folders in the style of the Rand MH system. Has been
reworked to cooperate with sendmail in understanding the new mail address for­
mats. Allows users to defined message header fields which are not be displayed
when a messages is viewed. Many other changes are described in a revised version
of the user manual.

...... ,

Understands not to unlink directories when interrupted. Understands the new
".F" suffix for Fortran source files which are 'to be run through the C preprocessor.
Has a new predefined macro MFLAGS which contains the fiags supplied to make
on the command line (useful in creating hierarchies of makefiles).

Now uses the mkdir system call to run faster.

Has a new command, status, which shows the current state of a tape drive.

Has been rewritten to use the new rename system call. As a result, multiple direc­
tories may now be moved in a single command, the restrictions on having " .. " in a
pathname are no longer present, and everything runs faster.

And all related Berknet programs are no longer part of the standard distribution.
These programs live on in /usr/src/old for those who can not do without them.

Is a new program which displays network statistics and active connections.

No longer exists.

Has gobs of new formats options.

Is a new program which prints the system page size for use in constructing portable
shell scripts.

passwd

pc/pi

- 6 -

Now reliably interlocks with chsh, chfn, and vipw, in guarding against concurrent
updates to the password file.

For loops are now done according to the standard. Files may now be dynamically
allocated and disposed. Records and variant records are now aligned to correspond
to C structures and ·unions (this was falsely claimed before). Several obscure bugs
involving formal routines have been fixed. Three new library routines support ran­
dom access file i/o, see lusr/include/pascal for details.

For loop variables and with pointers are now allocated to registers. Separate com­
pilation type checking can now be done without reference to the source file; this
permits movement (including distribution) of .0 files and creation of libraries.
Display entries are saved only when needed (a speed optimization).

pdx Is a new debugger for use with pi. Pdx is invoked automatically by the interpreter
if a run-time error is encountered. Future work is planned to extend the new dbx
debugger to understand code generated by the Pascal compiler pc.

ps Has been changed to work with the new kernel and is no longer dependent on sys­
tem page size. All process segment sizes are now shown in kilobytes. Understands
that the old "using new signal facilities" bit in the process structure now means
"using old 4.lBSD signal facilities".

pwd Now simply calls the getwd(3) routine.

rcp Is a new program for copying files across a network. The complete syntax of cp is
supported, including recursive directory copying.

refer Has had many bugs fixed in it and the associated - ms macro package support
made to work.

reset Now resets all the special characters to the system defaults specified in the include
file <sys/ttychars.h>.

riogin Is a new program for logging in to a machine across a network. Rlogin uses the
files letc/hosts.equiv and .rhosts in the users login directory to allow logins to be
performed without a password. Rlogin supports proper handling of "srQ and
Dusing of output when an interrupt is typed at the terminal. Its ,-, escape
sequences are reminiscent of the old cu program (as it is based on the same source
code).

rmdir Now uses the rmdir system call to run more efficiently and not require root
privileges. Unfortunately, this means arguments which end in one or more "I"
characters are no longer legal.

roflbib Is a new program for running off bibiliographic databases.

rsb Is a new program which supports remote command execution across a network.

ruptime Is a new program which displays system status information for clusters of machines
attached to a local area network.

rwho Is a new program. which. displays users logged in on clusters of machines attached to
a local area network.

script Has been rewritten to use pseudo-terminals. This allows the C shell job control
facilities (among other things) to be used while scripting. A side effect of this
change is that scripts now contain everything typed a terminal.

sdb Has been replaced by dbx; it still lives on in lusrlsrc/old for those With a personal
attachment.

sendbug Is a new command for submitting bug reports on 4.2BSD in a standard format suit­
able for automatic filing by the bugfiler program.

sh No longer has a newgrp command due to the new groups facilities.

- 7 -

sort bib Is a new command for sorting bibliographic databases.

strip Has been made blindingly fast by using the new truncate system call (thereby elim­
inating the old method of copying the file).

stty The default system erase, kill, and interrupt characters have been made the DEC
standard values of DEL ('''1'), '''U', and '''C'. This is not expected to gain much
popularity, but was done in the interest of compatibility with many other standard
operating systems.

su Has been changed to do a "full login" when starting up the subshell. A new flag,
-f, does a "fast" su for when a system is heavily loaded. Extra arguments sup­
plied to su are now treated as a command line and executed directly instead of
creating an interactive shell.

sysline Is a new program for maintaining system status information on terminals which
support a "status line"; a poor man's alternative to a window manager (or emacs).

tail Has a larger buffer so that "tail -r" and similar show more.

talk Is a new program which provides a screen-oriented write facility. Users may be
"talked to "across a network, though satellite response times have indicated over­
seas conversations are still best done by phone. Can be very obnoxious when
engaged in important work.

tar Now allocates its internal buffers dynamically so that the block size can be specified
to be very large for streaming tape drives. Also, now avoids many core-core copy
operations. Has a new -C option for forcing chdir operations in the middle of
operation (thereby allowing multiple disjoint subtrees to be easily placed in a single
file, each with short relative pathnames). Has a new flag, 'B', for forcing 20 block
records to be read and written; useful in joining two tar commands with a remote
shell to transfer large amounts of data across a network.

telnet Is a new program which supports the ARP A standard Telnet protocol.

tip Replaces cu as the standard mechanism for connecting to machines across a phone
line or through a hardwired connection. Tip uses a database of system descriptions,
supports many different auto-call units, and understands many nuances required to
talk to non-UNIX systems. Files may be transferred to and from non-UNIX sys­
tems in a simple fashion.

ul A bug which sometimes caused an extra blank line to be printed after reaching end
of file has been fixed.

uucp And related programs have been extensively enhanced to support many different
auto-call units and multiple spooling directories (among other things). A large
number of bugs and performance enhancements have been made.

uusnap Is a new program which gives a snap-shot of the uucp spooling area.

vfontinfo Is a program used to inspect and print information about fonts .

. vgrind Now uses a regular expression language to describe formatting. A -f flag forces
vgrind to act as a filter, generating output suitable for inclusion in troff andlor nroff
documents. Language descriptions exist for C, Pascal, Model, C shell, Bourne
shell, Ratfor, and Icon programs.

vi A bug which caused the "B command to place the cursor on the wrong line has
been fixed. . A bug which caused vi to believe a file had been modified when an if 0

error occurred has been fixed. A bug which allowed "hardtabs" to be set to 0
causing a divide by zero fault has been fixed.

vIp Is a new program for pretty printing Lisp programs.

vmstat Has had one new piece of information added to -s summary, the number of fast
page reclaims performed. The fields related to paging activity are now all given in
kilobytes.

vpr

vwidth

wc

whereis

which

who

- 8 -

And associated programs for spooling and printing files on Varian and Versatec
printers are now shell scripts which use the new line printer support.

Is a new program for making troff width tables for a font.

Is once again identical to the version 7 program. That is, the -v, -t, -b, -5,

and - u flags have been deleted.

Understands the new directory organization for the source code.

Now understands how to handle aliases.

Now displays the remote machine from which a user is logged in.

Section 2.

The most important change in section 2 is that the documentation has been significantly
improved. Manual page entries now indicate the possible error codes which may be returned
and how to interpret them. The introduction to section 2 now includes a glossary of terms used
throughout the section. The terminology and formatting have been made consistent. Many
manual pages now have "NOTES" or "CAVEATS" providing useful information heretofore
left out for the sake of brevity. As always the manual pages are stilI for the programmer; they
are terse and extremely concise. The "4.2BSD System Manual" is likewise concise, but a bit
more verbose in providing an overall picture of the system facilities.

With regard to changes in the facilities, these fall into three major categories: interprocess
communication, signals, and file system related calls. The interprocess communication facilities
center around the socket mechanism described in the "A 4.2BSD Interprocess Communication
Primer". The new signals do not have an accompanying document, so the manual pages
should be studied carefully. The new file system calls pretty much stand on their own, with a
late section of the document "A Fast File System for UNIX" supplying a quick overview of the
most important new file system facilities. Finally, it should be noted that the job control facili­
ties introduced in 4.1BSD have been adopted as a standard part of 4.2BSO. No special distinc­
tion is given to these calls (in 4.1BSO they were earmarked "2J").

Many of the new system calls have both a "set" and a "get" form. Only the "get"
forms are indicated below. Consult the manual for details on the "set" form.

intro Has been updated to reflect the new list of possible error codes. Now includes a
glossary of terminology used in section 2.

access Now has symbolic definitions for the mode parameter defined in < sys/file.h>.
bind

connect

creat

fchmod

fchown

fcntl

flock

fstat

Is a new interprocess communication system call for binding names to sockets.

Is a new interprocess communication system call for establishing a connection
between two sockets.

Has been obsoleted by the new open interface.

Is a new system call which does a chmod operation given a file descriptor; useful in
conjunction with the new advisory locking facilities.

Is a new system call which does a chown operation given a file descriptor; useful in
conjunction with the new advisory locking facilities.
Is a new system call which is useful in controlling how i/o is performed on a file
descriptor (non-blocking i/o, signal drive i/o). This interface is compatible with
the System III fcntl interface.

Is a new system call for manipulating advisory locks on files. Locks may be shared
or exclusive and locking operations may be indicated as being non-blocking, in
which case a process is not blocked if the requested lock is currently in use.

Now returns a larger stat buffer; see below under stat.

- 9 -

fsync Is a new system call for synchronizing a file's in-core state with that on disk. Its
intended use is in building transaction oriented facilities.

ftruncate Is a new system call which does a truncate operation given a file descriptor~ useful
in conjunction with the new advisory locking facilities.

getdtabJesizeIs a new system· call which returns the size of the descriptor table.

getgroups Is a new system call which returns the group access list for the caller.

gethostid Is a new system call which returns the unique (hopefully) identifier for the current
host.

gethostnameIs a new system call which returns the name of the current host.

getitimer Is a new system call which gets the current value for an interval timer.

getpagesize Is a new system call which returns the system page size.

get priority Is a new system call which returns the current scheduling priority for a specific pro­
cess, a group of processes, or all processes owned by a user. In the latter two
cases, the priority returned is the highest (lowest numerical value) enjoyed by any
of the specified processes.

getrlimit Is a new system call which returns information about a resource limit. The
getrlimit and setrlimit calls replace the old vlimit call from 4.1BSD.

getrusage Is a new system call which returns information about resource utilitization of a
child process or the caller. This call replaces the vtimes call of 4.1BSD.

getsockopt Is a new interprocess communication system call which returns the current options
present on a socket.

gettimeofdayIs a new system call which returns the current Greenwich date and time, and the
current timezone in which the machine is operating. Time is returned in seconds
and microseconds since January 1, 1970.

ioctJ

killpg

listen

lseek

mkdir

mpx

open

proftl

quota

read

Has been changed to encode the size of parameters and whether they are to be
copied in, out, or in and out of the user address space in the request. The symbolic
names for the various ioctl requests remain the same, only the numeric values
have changed. A number of new ioctls exist for use with sockets and the network
facilities. The old LINTRUP request has been replaced by a call to fcntl and the
SIGIO signal.

Has now been made a system call; in 4.lBSD it was a library routine.

Is a new interprocess communication system call used to indicate a socket will be
used to listen for incoming connection requests.

Now has symbolic definitions for its whence parameter defined in < sys/fiie.h>.
Is a new system call which creates a directory.

The multiplexed file facilities are no longer part of the system. They have been
replaced by the socket, and related, system calls.

Is different, now taking an optional third parameter and supporting file creation,
automatic truncation, automatic append on write, and "exclusive" opens. The
open interface has been made compatible with System III with the exception that
non-blocking opens on terminal lines requiring carrier are not supported.

Now returns statistical information based on a 100 hz clock rate.

Is a new system call which is part of the disk quota facilities. Quota is used to
manipulate disk quotas for a specific user, as well as perform certain random chores
such as syncing quotas to disk.

Now automatically restarts when a read on a terminal is interrupted by a signal
before any data is read.

ready

readUnk

recv

recvfrom

recvmsg

rename

rmdir

select

send

sendto

sendmsg

setquota

setregid

setreuid

- 10 -

Is a new system call which supports scattering of read data into (possibly) disjoint
areas of memory.

Is a new system call for reading the value of a symbolic link.

Is a new interprocess communication system call used to receive a message on a
connected socket.

Is a new interprocess communication system call used to receive a message on a
(possibly) unconnected socket.

Is a new interprocess communication system call used to receive a message on a
(possibly) unconnected socket which may have access rights included. When using
on-machine communication, recvmsg and sendmsg may be used to pass file
descriptors between processes.

Is a new system call which changes the name of an entry in the file system (plain
file, directory, character special file, etc.). Rename has an important property in
that it guarantees the target will always exist, even if the system crashes in the mid­
dle of the operation. Rename only works with source and destination in the same
file system.

Is a new system call for removing a directory.

Is a new system call (mainly for interprocess communication) which provides facil­
ity for synchronous ilo multiplexing. Sets of file descriptors may be queried for
readability, writability, and if any exceptional conditions are present (such as out of
band data on a socket). An optional timeout may also be supplied in which case
the select operation will return after a specified period of time should no descriptor
satisfy the requests.

Is a new interprocess communication system call for sending a message on a con-
nected socket.

Is a. new interprocess communication system call for sending a message on a (possi­
bly) unconnected socket.

Is a new interprocess communication system call for sending a message on a (possi­
bly) unconnected socket which may included access rights.

Is a new system call for enabling or disabling disk quotas on a file system.

Is a new system call which replaces the 4.1 BSD setgid system call. Setregid allows
the real and effective groupID's of a process to be set separately.

Is a new system call which replaces the 4.1BSD setuid system call. Setreuid allows
the real and effective user ID's of a process to be set separately.

shutdown Is a new interprocess communication system call for shutting down part or all of
full-duplex connection.

sigblock Is a new system call for blocking signals during a critical section of code.

sigpause Is a new system call for blocking a set of signals and then pausing indefinitely for a
signal to arrive.

sigsetmask Is a new system call for setting the set of signals which are currently blocked from
delivery to a process.

sigstack Is a new system call for defining an alternate stack on which signals are to be pro­
cessed.

sigsys Is no longer supported. . The new signal facilities are a superset of those which sig­
sys provided.

sigvec Is the new system call interface for defining signal actions. For each signal (except
SIGSTOP and SIGKILL), sigvec allows a "signal vector" to be defined. The signal
vector is comprised of a handler, a mask of signals to be blocked while the handler
executes, and an indication of whether or not the handler should execute on a

socket

- 11 -

signal stack defined by a sigstack call. The old signal interface is provided as a
library routine with several important caveats. First, signal actions are no longer
reset to their default value after a signal is delivered to a process. Second, while a
signal handler is executing the signal which is being processed is blocked until the
handler returns. To simulate the old signal interface, the user must explicitly reset
the signal action to be the default value and unblock the signal being processed.

Four new signals have been added for the interprocess communication and interval
timer facilities. SIGIO is delivered to a process when an fcntl call enables signal
driven i/o and input is present on a terminal (and a signal handler is defined).
SIGURG is delivered when an urgent condition arises on a socket (and a handler is
defined). SIGPROF and SIGVT ALRM are associated with the ITIMER PROF and
ITIMER_ VIRTUAL interval timers, and delivered to a process when such a timer
expires (the SIGALRM signal is used for the ITIMER_REAL interval timer). The
old SIGTINT signal is replaced by SIGIO.

Is a new interprocess communication system call for creating a socket.

socketpair Is a new interprocess communication system call for creating a pair of connected
and unnamed sockets.

stat

swapon

symlink

truncate

unlink

utime

utimes

vfork

vlimit

vread

vswapon

vtimes

vwrlte

wait

wait3

Now returns a larger structure. New fields are present indicating the optimal block­
ing factor in which i/o should be performed (for disk files the block size of the
underlying file system) and the actual number of disk blocks .allocated to the file.
Inode numbers are now 32-bit quantities. Several spare fields have been allocated
for future expansion. These include space for 64-bit file sizes and 64-bit time
stamps. Two new file types may be returned, S_IFLNK for symbolic links, and
S_IFSOCK for sockets residing in the file system.

Has been renamed from the vswapon call of 4.1BSD.

Is a new system call for creating a symbolic link.

Is a new system call for truncating a file to a specific size.

Should no longer be used for removing directories. Directories should only be
created with mkdir and removed with rmdir. Creating hard links to directories can
cause disastrous results.

Is defunct, replaced by utimes.

Is a new system call which uses the new time format in setting the accessed and
updated times on a file.

Is still present, but definitely on its way out. Future plans include implementing
fork with a scheme in which pages are initially shared read-only. On the first
attempt by a process to write on a page the parent and child would receive separate
writable copies of the page.

Is no longer supported. Vlimit is replaced by the getrlimit and setrlimit calls.

Is no longer supported in the system.

Has been renamed swapon.

Is no longer supported. Vtimes is replaced by the getrusage call.

Is no longer supported in the system.

Now is automatically restarted when interrupted by a signal before status could be
returned.

Returns resource usage in a different format than that which was returned in
4.1BSD. This structure is compatible with the new getrusage system call. Wait3 is
now automatically restarted when interrupted by a signal before status could be
returned.

write

writev

- 12 -

Now is automatically restarted when writing on a terminal and interrupted by a sig­
nal before any i/o was completed.

Is a new version of the write system call which supports gathering of data in (possi­
bly) discontiguous areas of memory

Section 3

The section 3 documentation has been reorganized to group manual entries by library.
Introductory sections for each logical and physical library contain lists of the entry points in the
library.

A number of routines which had been system calls under 4.1 BSD are now user-level
library routines in 4.2BSD. These routines have been grouped under section "3C" headings,
HC" for compatibility. Further, certain routines present in the standard C run-time library
which do not easily categorize as part of one of the standard libraries, have been group under
"3X" headings.

curses A number of bug fixes have been incorporated, and the documentation has been
revised.

stdio The standard i/o library has been modified to block i/o operations to disk files
according to the block size of the underlying file system. This is accomplished
using the new sCblksize value returned by /stat. The resultant performance
improvement is significant as the old 1 kilobyte buffer size often resulted in 7
memory-to-memory copy operations by the system on 8 kilobyte block file systems.

bstring

dime

isprint

directory

getpass

getwd

malloc

perror

End-of-file marks now "stick". That is, all input requests on a stdio channel after
encountering end-of-file will return end-of-file until a ciearerr call is made. This
has implications for programs which use stdio to read from a terminal and do not
process end-of-file as a terminating keystroke.

Two new functions may be used to control i/o buffering. The setlinebufroutine is
used to change stdout or stderr from block buffered to unbuffered to line buffered.
The setbuffer routine is an alternate form of setbufwhich can be used after a stream
has been opened, but before it is read or written.

Three new routines, bcmp, bcopy, and bzero have been added to the library. These
routines use the V AX string instructions to manipulate binary byte strings of a
knowT' si~e.

1':0\1· u~es the gettimeofday system call and supports time conversion in six different
time zones. Daylight savings calculations are also performed in each time zone
when appropriate.

Now considers space a printing character; as the manual page has always indicated.

Is a new directory interface package which provides a portable interface to reading
directories. A version of this library which operates under 4.1 BSD is also available.

NO\.\ properly handles being unable to open /dev/tty.

Has been moved from the old jobs library to ihe standard C run-time library. It
now returns an error string rather than printing on the standard error when unable
to decipher the current working directory.

The standard library malloc has NOT changed from 4.1BSD, because a new version
which passed all our validation tests arrived too late. The newer malloc which
resolves the problems the current malloc has with large virtual environment is
located in /usr/src/locallmalloc.c.

Now uses the writev system call to pass all its arguments to the system in a single
system call. This has profound effects on programs which transmit error messages
across a network.

psignal

qsort

random

setJmp

net

- 13 -

And sys_siglist are routines for printing signal names in an equivalent manner to
perror.
Has been greatly sped up by choosing a random element with which to apply its
divide and conquer algorithm.

Is a successor to rand which generates much better random numbers. The old rand
routine is still available and most programs have not been switched over to random
as doing so would make certain facilities such encrypted mail unable to operate on
existing data files.

And longjmp now save and restore the signal mask so that non-local exit from a
signal handler is transparent. The old semantics are available with _setjmp and
Jongjmp.
Is a new set of routines for accessing database files for the DARPA Internet. Four
databases exist: one for host names, one for network names, one for protocol
numbers, and one for network services. The latter returns an Internet port and
protocol to be used in accessing a given network service.

An additional collection of routines, all prefaced with "inet_" may be used to
manipulate Internet addresses, and interpret and convert between Internet
addresses and ASCII representations in the Internet standard "dot" notation.

Finally, routines are available for converting 16 and 32 bit quantities between host
and network order (on high-ender machines these routines are defined to be
noops).

fstab The routines for manipulating /etc/fstab have been rewritten to return arbitrary
length null-terminated strings.

Section 4

The system now supports the 11/730, the new 64Kbit RAM memory controllers for the
11/750 and 11/780, and the second UNIBUS adapter for the 11/750. Several new character
and/or block device drivers have been added, as well as support for many hardware devices
which are accessible only through the network facilities. Each new piece of hardware supported
is listed below.

New manual entries in section 4 have been created to describe communications protocols,
and network architectures supported. At present the only network architecture fully supported
is the DARPA Internet with the TCP, IP, UDP, and ICMP protocols.

ace A network driver for the ACC LH/DH IMP interface.

ad A driver for the Data Translation A/D converter.

arp The Address Resolution Protocol for dynamically mapping betwee 32-bit DARPA
Internet addresses and 48-bit Xerox 10Mb/s Ethernet addresses.

ess A network driver for the DEC IMP-11A LH/DH IMP interface.

dme A network interface driver for the DEC DMC-11/DMR-ll point-to-point com-
munications device.

ec A network interface driver for the 3Com 10Mb/s Ethernet controller.

en A network interface driver for the Xerox 3Mb/s experimental Ethernet controller.

by A network interface driver for the Network Systems Hyperchannel Adapter.

ik A driver for an Ikonas frame buffer graphics device interface.

il A network interface driver for the Interlan 10Mb/s Ethernet interface.

imp A network interface driver for the standard 1822 interface to an IMP; used in con­
junction with either acc or css hardware.

- 14 -

kg A driver for a KL-11 /D L-11 W used as an alternate real time clock source for gath­
ering kernel statistics and profiling information.

10 A software loopback network interface for protocol testing and performance
ana:ysis.

pel A network interface driver for the DEC peL-lIB communications controller.

ps A driver for an Evans and Sutherland Picture System 2 graphics device connected
with a DMA interface.

pty Now includes a simple packet protocol to support flow controlled operation with
mechanisms for flushing data to be read and/or written.

rx A driver for the DEC dual RX02 floppy disk unit.

ts Now supports TU80 tape drives.

tu The VAX-ll/750 console cassette interface has been made somewhat usable when
operating in single-user mode. The device driver employs assembly language
pseudo-dma code for the reception of incoming packets from the cassette.

uda Now supports RA81, RA80, and RA60 disk drives.

un A network interface driver for an Ungermann-Bass network interface unit con­
nected to the host via a DR-11W.

up Now supports ECC correction and bad sector handling. Also has improved logic
for recognizing many different kinds of disk drives automatically at boot time.

uu A driver for DEC dual TU58 tape cartridges connected via a DL-llW interface.

va The Varian driver has been rewritten so that it may coexist on the same UNIBUS
with devices which require exclusive use of the bus; i.e. RK07's.

vv A network interface driver for the Proteon proNET 10Mb/s ring network con­
troller.

dir

disktab

dump

fs
gettytab

hosts

mtab

networks

phones

printeap

protocols

remote

Section S

Reflects the new directory format.

Is a new file for maintaining disk geometry information. This is a temporary
scheme until the information stored in this file for each disk is recorded on the disk
pack itself.

Is a superset of that used in 4.1BSD.

Reflects the new file system organization.

Is a new file which idescribes terminal characteristics. Each entry in the file
describes one of the possible arguments to the getty program.

Is a database for mapping between host names and DARPA Internet host
addresses.
Has been modified to include a "type" field indicating whether the file system is
mounted read-only, read-write, or read-write with disk quotas enabled.

Is a database for mapping between network names and DARPA standard network
numbers.

Is a phone number data base for tip.

Is a termcap clone for configuring printers.
Is a database for mapping between protocol names and DARPA Internetwork stan­
dard protocol numbers.

Is a database of remote hosts for use with tip.

- 15 -

tar Is a new entry describing the format of a tar tape.

utmp Has been augmented to include a remote host from which a login session ori­
ginates. The wtmp file is also used to record FTP sessions.

vgrindefs Is a file describing how to vgrind programs written in many languages.

Section 6

aardvark Does not work because it requires the "Dungeon Definition Language" processor
which is a binary image requiring 4.lBSD compatibility mode; the DDL source is
still present.

aliens The aliens have returned home, the game is no longer included in the distribWipn.

backgammon

canfield

ching

chase

factor

fortune

hangman

mille

primes

rogue

sail

trek

hier

mailaddr

ms

Is now screen oriented. A new program, teach gammon , instructs the new back­
gammon player. The old version is now called btlgammon.

Is a new game which plays a brand of the popular game of solitaire. Betting is
included, the program cfscores may be used to find out your current debt.

Now pipes its output through more. Thus the hacker placates the seekers.

No longer exists because the binary does not work under 4.2BSD.

Is a rewrite in C of the old version 7 assembly language program which finds the
prime factors of a number.

Has yet more adages.

Is now screen oriented.

Now plays more intelligently.

Is a rewrite in C of the old version 7 assembly language program which finds prime
numbers within a specified range.

Has been made more of a scoundrel. The supplementary document "A Guide to
the Dungeons of Doom", has been updated as well, and is now part of Volume 2C
of the programmer's manual.

Is a new game which simulates sea battles of yore. The manual page is large
enough to be a separate document and so has been left in its source directory.

The original trek has returned; trekies rejoice.

Section 7

Has been updated to reflect the reorganization to the user and system source.

Is a new entry describing mail addressing syntax under sendmail (possibly too
Berkeley specific).

The - ms macros have been extended to allow automatic creation of a table of con­
tents. Support for the refer preprocessor is improved. Several bugs related to
multi-column output and floating keeps have been fixed. Extensions to the accent
mark string set are available by including the .AM macro. Footnotes can now be
automatically numbered (in superscript) by -ms and referenced in the text with a
** string register. The manual page includes a summary of important number and
string registers. A new document "Changes to -ms" is included in Volume 2C of
the programmer's manual.

- 16 -

Section 8
Major changes affecting system operations include:

• The system now supports disk quotas. These allow system administrators to control users'
disk space and file allocation on a per-file system basis. Utilities in this section exist for
fixing, summarizing, and editing disk quota summary files.

• File systems are now made with a new program, newfs, which acts as front end to the old
mkfs program. There no longer is a need to remember disk partition sizes, as newfs gets
this information automatically from the letc/disktab file. In addition, newfs attempts to lay
out file systems according to the characteristics of the underlying disk drive (taking into
account disk geometry information).

• DEC standard bad block forwarding is now supported on the RP06 and second vendor
UNIBUS storage module disks. The bad 144 program can now be used to mark sectors bad
on many disks, though inclusion in the bad sector table is still somewhat risky due to
requirements in the ordering of entries in the table.

• A new program, format, should be used to initialize all non-DEC storage modules before
creating file systems. Format formats the sector headers and creates a bad sector table
which is used in normal system operation. Format runs in a standalone mode.

• Getty has been rewritten to use a description file, letc/gettytab. This allows sites to tailor
terminal operation and configuration without making modifications to getty.

• The line printer system is totally new. A program to administer the operation of printers,
lpc, is supplied, and printer accounting has been consolidated into a single program, pac.

• The program used to restore files from dump tapes is now called restore. This was done to
reinforce the fact that it is completely rewritten and operates in a very different way than the
old restor program. Restore operates on mounted· file systems and uses only normal file sys­
tem operations to restore files. Versions of both dump and restore which operate across a
network are included as rdump and rrestore. Dump and restore (and their network oriented
counterparts) now perform so efficiently (mostly because of the new file system), that disk
to disk backups should no longer be an attractive alternative.

artf

bad144

badsect

bugfller

chgrp

comsat

conflg

No longer asks if you want to clobber the floppy when manipulating archives which
are not on the floppy.

Has been modified to use the letc/disktab file. Can be used to create bad sector
tables for the DEC RP06 and several new Winchester disk drives. Consult the
source code for details and use with extreme care.

Has been modified to work with the new file system and now must interact with
fsck to perform its duties. Consult the manual page for more information.

Is a new program for automatic filing and acknowledgement of bug reports submit­
ted by the sendbug program. Intended to operate with the Rand MH software
which is part of the user contributed software. Used at Berkeley to process bug
reports on 4.2BSD.

Has been moved to section 1.
Has been changed to filter the noise lines in message headers when displaying
incoming mail. No longer uses a second process watchdog as it uses the more reli­
able socket facilities instead of the old mpx facilities.

Has been extensively modified to handle the new root and swap device specification
syntax. A new document, "Configuring 4.2BSD UNIX Systems with Contig",
describes its use, as well as other important information needed in configuring sys­
tem images; this is part of Volume 2C of the programmer's manual.

- 17 -

disk part Is a new program which may be used to generate disk partition tables according to
the rules used at Berkeley. Can automatically -generate entries required for device
drivers and for the letc/diskpart file. (Does not handle the new DEC DSA style
drives properly because it tries to reserve space for the bad sector table.)

drtest Is a new standalone program which is useful in testing standalone disk device
drivers and for pinpointing bad sectors on a disk.

dump Has been modified for the new file system organization. Mainly due to the new file
system, it runs virtually at tape speed. Properly handles locking on the dumpdates
file when multiple dumps are performed concurrently on the same machine.

dumpfs Is a new program for dumping out information about a file system such as the
block size and disk layout information.

edquota Is a new program for editing user quotas. Operates by invoking your favorite editor
on an ASCII representation of the information stored in the binary quota files.
Edquota also has a "replication" mode whereby a quota template may be used to
create quotas for a group of users.

fastboot Is a new shell script which reboots the system without checking the file systems~
should be used with extreme care.

fasthalt Is a new script which is similar to fastboot.

format Is a new standalone program for formatting non-DEC storage modules and creating
the appropriate bad sector table on the disk.

fsck Has been changed for the new file system. Fsck is more paranoid then ever in
checking the disks, and has been sped up significantly. The accompanying Volume
2C document has been updated to reflect the new file system organization.

ftpd Is the DARPA File Transfer Protocol server program. It supports C shell style
globbing of arguments and a large set of the commands in the specification (except
the ABORT command!).

gettable Is a new program which can be used in aquiring up to date DARPA Internet host
database files.

getty Has been rewritten to use a terminal description database, letc/gettytab. Consult
the manual entries for getty (8) and getty tab (5) for more information.

lcheck Has been modified for the new file system.
In it Has been significantly modified to use the new signal facilities. In doing so, several

race conditions related to signal delivery have been fixed.

kgmon Is a new program for controlling running systems which have been created with
kernel profiling. Using kgmon, profiling can be turned on or off and internal
profiling buffers can dumped into a gmon.out file suiitable for interpretation by
gprof.

Ipc Is a new program controlling line printers and their associated spooling queues.
Lpc can be used to enable and disable printers and/or their spooling queues. Lpc
can also be used to rearrange existing jobs in a queue. ~'

Ipd Has been rewritten and now runs as a "server", using the inter~~ communica­
tion facilities to service print requests. A supplementary document describing the
line printer system is now part of Volume 2C of the programmer's manual.

MAKEDEV
Is a new shell script which resides in Idev and is used to create special files there.
MAKEDEV keeps commands for creating and manipulating local devices in a
separate file MAKEDEV.local.

mkfs Has been virtually rewritten for the new file system. The arguments supplied are
very different. For the most part, users now use the newfs program when creating

mount

newts

pac

quot

quotacbeck

- 18 -

file systems. Mkfs now automatically creates the lost + found directory.

Now indicates file systems which are mounted read-only or have disk quotas
enabled.

Is a new front-end to the mkfs program. Newfs figures out the appropriate parame­
ters to supply to mkfs, invokes it, and then, if necessary, installs the boot blocks
necessary to bootstrap UNIX on 11/750's.
Is a new program which can be used to do printer accounting on any printer. It
subsumes the vpac program.

Now uses the information in the inode of each file to find out how many blocks are
allocated to it.

Is a new program which performs consistency checks on disk quota files. Quota­
check is normally run from the letc/rc.local file after a system is rebooted, though
it can also be run on mounted on file systems which are not in use.

quotaon Is a new program which enables disk quotas on file systems. A link to quotaon,
named quotaoft", is used to disable disk quotas on file systems.

pstat

rc
rdump

renice

repquota

restor
restore

rexecd

rlogind

rmt

route

routed

rrestore

rsbd

rwhod

rxformat

savecore

Has been modified to understand new kemeldata structures.

Has had system dependent startup commands moved to letc/rc.1ocal.
Is a new program to dump file systems across a network.
Has been rewritten to use the new setpriority system call. As a result, you can now
renice users and process groups.

Is a new program which summarizes disk quotas on one or more file systems.

No longer exists. A new program, restore, is its successor.

Replaces restor. Restore operates on mounted file systems; it contains an interac­
tive mode and can be used to restore files by name. Restore has become almost as
flexible to use as tar in retrieving files from tape.

Is a network server for the rexec (3X) library routine. Supports remote command
execution where authentication is performed using user accounts and passwords.
Is a network server for the rlogin (1 C) command. Supports remote login sessions
where authentication is performed using privileged port numbers and two files,
letc/hosts.equiv and .rhosts (in each users home directory).

Is a program used by rrestore and rdump for doing remote tape operations.

Is a program for manually manipulating network routing tables.

Is a routing daemon which uses a variant of the Xerox Routing Information Proto­
col to automatically maintain up to date routing tables.

Is a version of restore which works across a network.
Is a server for the rsh (IC) command. It supports remote command execution
using privileged port numbers and the letc/hosts.equiv and .rhosts files in users'
home directories. .

Is a server which generates and listens for host status information on local net­
works. The information stored by rwhod is used by the rwho(IC) andruptime(1C)
programs.
Is a program for formatting floppy disks (this uses the rx device driver, not the
console floppy interface).
Has been modified to get many pieces of information from the running system and
crash dump to avoid compiled in constants.

sendmail

setifaddr

syslol

telnetd
tftpd
trpt

tunefs
vipw

- 19 -

Is a new program replacing delivermai1; it provides fully internetwork mail forward­
ing capabilities. Sendmail uses the DARPA standard SMTP protocol to send and
receive mail. Sendmail uses a configuration file to control its operation, eliminating
the compiled in description used in delivermail.

Is a new program used to set a network interface's address. Calls to this program
are normally placed in the letc/rc.1ocal file to configure the network hardware
present on a machine.

Is a server which receives system logging messages. Currently, only the sendmail
program uses this server.

Is a server for the DARPA standard TELNET protocol.

Is a server for the DARPA Trivial File Transfer Protocol.

Is a program used in debugging TCP. Trpt transliterates protocol trace information
recorded by TCP in a circular buffer in kernel memory.

Is a program for modifying certain parameters in the super block of file systems.

Is no longer a shell script and properly interacts with passwd, chsh, and chfn in
locking the password file.

An introduction to the C shell

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California .. Berkeley
Berkeley. California 94720

ABSTRACT

Csh is a new command language interpreter for UNlxt systems. It incor­
porates good features of other shells and a history mechanism similar to the redo
of INTERLISP. While incorporating many features of other shells which make
writing shell programs (shell scripts) easier. most of the features unique to csl7
are designed more for the interactive UNIX user.

UNIX use~ who have read a general introduction to the system will find a
valuable basic explanation of the shell here. Simple terminal interaction with
csh is possible after reading just the first section of this document. The second
section describes the shells capabilities which you can explore after you have
begun to become acquainted with the shell. Later sections introduce features
which are useful .. but not necessary for aJJ users of the shell ..

Back matter includes an appendix listing special characters of the shell and
a glossary of terms and commands introduced in this manual.

November 8. 1980

. tUNIX is a Trademark of Bell Laboralories.

Introduction

An introduction to the C shell

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California. Berkeley
Berkeley, California 94720

A shell is a command language interpreter. Csh is the name of one particular command
interpreter on UNIX. The primary purpose of csh is to translate command lines typed at a termi­
nal into system actions. such as invocation of other programs. Csh is a user program just like
any you might write. Hopefully .. csh will be a very useful program for you in interacting with
the UNIX system.

In addition to this document. you will want to refer to a copy of the UNIX programmer's
manual. The csh documentation in the manual provides a full description of all features of the
shell and is a final reference for questions about the shell.

Many words in this document are shown in italics. These are important words; names of
commands. and words which have special meaning in discussing the shell and U~IX. Many of
the words are defined in a glossary at the end of this document. If you don't know what is
meant by a word, you should look for it in the glossary.

Acknowledgements

Numerous people have provided good input about previous versions of csh and aided in
its debugging and in the debugging of its documentation. I would especially like to thank
Michael Ubell who made the crucial observation that history commands could be done well
over the word structure of input text. and implemented a prototype history mechanism in an
older version of the shell. Eric Allman has also provided a large number of useful comments
on the shell. helping to unify those concepts which are present and to identify and eliminate
useless and marginally useful features. Mike O'Brien suggested the pathname hashing mechan­
ism which speeds command execution. Jim Kulp added the job control and directory stack
primitives and added their documentation to this introduction.

- 2 -

1. Terminal usage of the shell

1.1. The basic notion of commands
A shell in UNIX acts mostly as a medium through which other programs are invoked.

While it has a set of builtin functions which it performs directly. most commands cause execu­
tion of programs that are .. in fact. external to the shell. The shell is thus distinguished from the
command interpreters of other systems both by the fact that it is just a user program. and by
the fact that it is used almost exclusively as a mechanism for invoking other programs.

Commands in the UNIX system consist of a list of strings or words interpreted as a c.·om­
mand name followed by argumems. Thus the command

mail bill

consists of two words. The first word mail names the command to be executed. in this case the
mail program which sends messages to other users. The shell uses the name of the command
in attempting to execute it for you. It will look in a number of dirtctories for a file with the
name mail which is expected to contain the mail program.

The rest of the words of the command are given as argumetlls to the command itself when
it is executed. In this case we specified also the argument bill which is interpreted by the mail
program to be the name of a user to whom mail is to be sent. In normal terminal usage we
might use the mail command as follows.

% mail bill
I have a question about the csh documentation.
My document seems to be missing page S.
Does a page five exist?

EOT
%

Bill

Here we typed a message to send to bill and ended this message with a TD which sent an
end-of-file to the mail program. (Here and throughout this document .. the notation ··t x" is to
be read Ucontrol-x" and represents the striking of the x key while the control key is held
down.) The mail program then echoed the characters 'EOT" and transmitted our message. The
characters .% ' were printed before and after the mail command by the shell to indicate that
input was needed.

After typing the .% ' prompt the shell was reading command input from our terminal.
We typed a complete command ·mail bill'. The shell then executed the mail program with
argument bill and went dormant waiting for it to complete. The mail program then read input
from our terminal until we signalled an end-of-file via typing a to after which the shell noticed
that mail had completed and signaled us that it was ready to read from the terminal again by
printing another .% ' prompt.

This is the essential pattern of all interaction with UNIX through the shell. A complete
command is typed at the terminal, the shell executes the command and when this execution
completes .. it prompts for a new command. If you run the editor for an hour. the shell will
patiently wait for you to finish editing and obediently prompt you again whenever you finish
editing.

An example of a useful command you can execute now is the (set command~ which sets
the default erase and kill characters on your terminal - the erase character erases the last char­
acter you typed and the kill characte,r erases the entire line you have entered so far. By default.
the erase character is .#' and the kill character is .@'. Most people who use CRT displays
prefer to use the backspace (t H) character as their erase character since it is then easier to see
what you have typed so far. You can make this be true by typing

• J •

tset -e

which tells the program tset to set the erase character. and its default setting for this character is
a backspace.

1.2. Flal arguments
A useful notion in UNIX is that of a flag argument. While many arguments to commands

specify file names or user names some arguments rather specify an optional capability of the
command which you wish to invoke. By convention .. such arguments begin with the character
'-' (hyphen). Thus the command

Is

will produce a list of the files in the current M'orking dir«tory. The option -sis the size option.
and

Is -s

causes Is to also give .. for each file the size of the file in blocks of 512 characters. The manual
section for each command in the UNIX reference manual gives the available options for each
command. The Is command has a large number of useful and interesting options. Most other
commands have either no options or only one or two options. It is hard to remember options
of commands which are not used very frequently. so most UNIX utilities perform only one or
two functions rather than having a large number of hard to remember options.

1.3. Output to files
Commands that normally read input or write output on the terminal can also be executed

with this input and/or output done to a file. .

Thus suppose we wish to save the current date in a file called 'now'. The command

date

wiJI print the current date on our terminal. This is because our terminal is the default standard
output for the date command and the date command prints the date on its standard output. The
shell lets us redirect the standard output of a command through a notation using the metacharat:­
fer • >' and the name of the file where output is to be placed. Thus the command

date> now

runs the date command such that its standard output is the file 'now' rather than the terminal.
Thus this command places the current date and time into the file 'now'. It is important to

know that the dale command was unaware that its output was going to a file rather than to the
terminal. The shell performed this redir«tio/' before the command began executing.

One other thing to note here is that the file 'now' need not have existed before the dale
command was executed; the shell would have created the file if it did not exist. And if the file
did exist? If it had existed previously these previous contents would have been discarded! A
shell option noclobber exists to prevent this from happening accidentaJly; it is discussed in sec-
tion 2.2. \ .

The system normally keeps files which you create with '>' and aU other files. Thus the
default is ror files to be permanent. If you wish to create a file which will be removed automat­
ically. you can begin its name with a '#' character. this 'scratch' character denotes the fact that
the file will be a scratch file.- The system will remove such files after a couple of days, or

-Note thai if your erase character is a '#', you wilt have to precede the '#' with a "'. The fact thai the '#'
character is the old (pre<JtT) standard erase character means thal it seldom appears in a file name. and aJ/ows
this convention to be used for scratch files. Ir you are usinl a CRT. your erase character should be a r H, as
we demonstrated in section 1.1 how this could be set up.

- 4 -

sooner if file space becomes very tight. Thus. in running the date command above. we don °t

really want to save the output forever. so we would more likely do

date> #now

1.4. Metacharacters in the shell
The shell has a large number of special characters Oike '>~) which indicate special func­

tions. We say that these notations have syntactic and senralllic meaning to the shell. In general.
most characters which are neither letters nor digits have special meaning to the shell. We shall
shortly learn a means of quotatioll which allows us to use metacharacters without the shell treal­
ing them in any special way.

Metacharacters normally have effect only when the shell is reading our input. We need
not worry about placing shell metacharacters in a letter we are sending via mail. or when we are
typing in text or data to some other program. Note that the shell is only reading input when it
has prompted with 'Ofn ~.

1.S. Input froDI files; pipelines

We learned above how to redirect the stalldard output of a command to a file. It is also
possible to redirect the slal7dard input of a command from a file. This is not often necessary
since most commands will read from a file whose name is given as an argument. We can give
the command

sort < data

to run the sort command with standard input. where the command normally reads its input.
from the file ·data~. We would more likely say

sort data

letting the sortcommand open the file 'data' for input itself since this is less to type.

We should note that if we just typed

sort

then the sort program would sort lines from its standard input. Since we did not redirecf the
standard input.. it would sort lines as we typed them on the terminal until we typed a T D to
indicate an end-of-file.

A most useful capability is the ability to combine the standard output of one command
with the standard input of another. i.e. to run the commands in a sequence known as a pipelille.
For instance the command

Is -s

normally produces a list of the files in our directory with th'e size of each in blocks of S 12 char­
acters. If we are interested in learning which ·of our files is largest we may wish to have this
sorted by size rather than by name .. which is the default way in which Is sorts. We could look at
the many options of Is to see if there was an oplion to do this but would eventually discover
that there is not. Instead we can use a couple of simple options of the sorfcommand~ combin­
ing it wi th Is to get what we want.

The -n option of sort specifies a numeric sort rather than an alphabetic sort. Thus

Is -s I sort -n

specifies that the output of the Is command run with the option -s is to be piped to the com­
mand Sorl run with the numeric sort option. This would give us a sorted list of our files by
size~ but with the smallest first. We could then use the -:-r reverse sort option and the head
command in combination with the .previous command doing

·5·

Is -s I sort -n -r I head -5

Here we have taken a list of our files sorted alphabetically, each with the size in blocks, "W' e
have run this to the standard input of the sorl command asking it to sort numerically in reverse
order (largest first). This output has then been run into the command head which gives us the
first few lines. In this case we have asked head for the first 5 lines. Thus this com'mand gives
us the names and sizes of our 5 largest files.

The notation introduced above is called the pipe mechanism. Commands separated by .!.
characters are connected together by the shell and the standard output of each is run into the
standard input of the next. The leftmost command in a pipeline will normally take its standard
input from the terminal and the rightmost will place its standard output on the terminal. Other
examples of pipelines will be given later when we discuss the history mechanism; one important
use of pipes which is illustrated there is in the routing of information to the line printer.

1.6. Filenames
Many commands to be executed will need the names of files as arguments. UNIX palh­

names consist of a number of components separated by .1'. Each component except the last
names a directory in which the next component resides, in effect specifying the path of direc­
tories to follow to reach the file. Thus the path name

letclmotd

specifies a file in the directory ·etc' which is a subdirectory of the rOol directory • r. Within this
directory the file named is ·motd' which stands for 4message of the day', A pal17llame that
begins with a slash is said to be an absolute pathname since it is specified from the absolute top
of the entire directory hierarchy of the system <the rool). Palhnames which do not begin with
.1' are interpreted as starting in the current working director.l', which is. by default. your home
directory and can be changed dynamically by the cd change directory command. Such path­
names are said to be relative to the working directory since they are found by starting in the
working directory and descending to lower levels of directories for each campanelli of the" path­
name. If the pathname contains no slashes at all then the file is contained in the working direc­
tory itself and the pathname is merely the name of the file in this directory, Absolute path­
names have no relation to the working directory,

Most filenames consist of a number of alphanumeric characters and ., 's (periods). In fact.
all printing characters except ~ I' (slash) may appear in filenames. It is inconvenient to have
most non-alphabetic characters in filenames because many of these have special meaning to the
shell. The character •. ' (period) is not a shell-metacharacter and is often used to separate the
extension of a file name from the base of the name. Thus

prog.c prog.o prog.errs prog.output

are four related files. They share a base portion of a name (a base portion being that part of the
name that is left when a trailing • .' and following characters which are not .,' are stripped off>.
The file ·prog.c' might be the source for a C program. the file ·prog.o' the corresponding object
tile. the file ·prog. errs , the errors resulting from a compilation of the program and the file
'prog.output' the output of a run of the program.

If we wished to refer to all four of these files in a command. we could use the notation

prog.-

This word is expanded by the shell. before the command to which it is an argument is exe­
cuted. into a list of names which begin with 'prog.', The character •• ' here matches any
sequence (including the empty sequence) of characters in a file name. The names which match
are alphabetically sorted and placed in the argunJelll list of the command. Thus the command

echo prog.­

will echo the names

·6·

prog.c prog.errs prog.o prog.output

Note that the names are in sorted order here~ and a different order than we listed them above.
The echo command receives four words as arguments~ even though we only typed one word as
as argument directly. The four words were generated by filename expallsioll of tbe one input
word.

Other notations for filenameexpansloll are also available. The character ~?' matches any
single character in a filename. Thus

echo? ?? ???

will echo a line of filenames; first those with one character names~ then those with two charac­
ter names.. and finally those with three character names. The names of each length will be
independently sorted.

Another mechanism consists of a sequence of characters between ~ [" and ')'. This
metasequence matches any single character from the enclosed set. Thus

prog.[co]

will match

prog.c prog.o

in the example above. We can also place two characters around a '-' in this notation to denote
a range. Thus

chap. [1 -5]

might match files

chap.l chap.2 chap.3 chap.4 chap.S

if they existed. This is shorthand for

chap. U 2345]

and otherwise equivalent.

An important point to note is that if a list of argument words to a command (an ar~lIment
list) contains filename expansion syntax .. and if this filename expansion syntax fails to match
any existing file names, then the shell considers this to be an error and prints a diagnostic

No match.

and does not execute the command.

Another very important point is that files with the character \' at the beginning are
treated specially. Neither ~., or '?' or the ~(' ']' mechanism will match it. This prevents
accidental matching of the filenames '.' and ' .. ' in the working directory which have special
meaning to the system~ as well as other files such as .cshrc which are not normally visible. We
will discuss the special role of the file .cshrc later.

Another filename expansion mechanism gives access to the pathname of the home direc­
tory of other users. This notation consists of the character ~-, (tilde) followed by another users'
login name. For instance the word '"1)ilI' would map to the pathname '/usr/bill' if the home
directory for ~bill' was '/usr/bill', Since~ on large systems, users may have login directories
scattered over many different disk volumes with different prefix directory names .. this notation
provides a reliable way of accessing the files of other users.

A special case of this notation consists of a .-. alone~ e.g. ~-/m box'. This notation is
expanded by the shell into the file 'mbox' in your home directory, i.e. into ~/usr/bill/mbox' for
me on Ernie Co-vax, the UCB Computer Science Department V AX machine. where this docu­
ment was prepared. This can be very useful if you have used cd to change to another directory
and have found a file you wish to copy using cpo If I give the command

cp thatfile -

the shell will expand this command to

cp thatfile lusr/bill

since my home directory is lust Ibill.

- 7 .

There also exists a mechanism using the characters ~I' and ~}' for abbreviating a set of
words which have common parts but cannot be abbreviated by the above mechanisms because
they are not files. are the names of files which do not yet exist. are not thus conveniently
described. This mechanism will be described much later. in section 4.2 .. as it is used less fre­
quently.

1.7. Quotation
We have already seen a number of metacharacters used by the shell. These metacharac­

ters pose a problem in that we cannot use them directly as parts of words. Thus the command

echo •

will not echo the character •• '. It will either echo an sorted list of filenames in the current
working directory, or print the message ~No match' if there are no files in the working directory.

The recommended mechanism for placing characters which are neither numbers. digits.
· r. '.' or ~ -' in an argument word to a command is to enclose it with single quotation charac­
ters ~". i.e.

echo ,.,

There is one special character .!' which is used by the history mechanism of the shell and which
cannot be escaped by placing it within .', characters. It and the character ." itself can be pre­
ceded by a single ~" to prevent their special meaning. Thus

echo ,'\!
prints

'!

These two mechanisms suffice to place any printing character into a word which is an argument
to a shell command. They can be combined .. as in

echo , ... '

which prints

'.
since the first .,' escaped the first ." and the •• ' was enclosed between ." characters.

1.8. Terminating commands

When you are executing a command and the shell is waiting for it to complete there are
several ways to force it to stop. For instance if you type the command

cat letc/passwd

the system will print a copy of a list of all users of the system on your terminal. This is likely
to continue for several minutes unless you stop it. You can send an INTERRUPT sigllal to the cat
command by typing the DEL or RUBOUT key on your terminal.· Since cal does not take any pre­
cautions to avoid or otherwise handle this signal the INTERRUPT will cause it to terminate. The
shell notices that cat has terminated and prompts you again with .% '. If you hit INTERRUPT

-Many users use SII:dl) to change the interrupt character to TC.

- 8 •

again. the shell will just repeat its prompt since it handles INTERRUPT signals and chooses to
continue to execute commands rather than terminating like cat did. which would have the effect
or logging you out.

Another way in which many programs terminate is when they get an end-or-file from their
standard input. Thus the mail program in the first example above was terminated when we
typed a TO which generates an end-or-file from the standard input. The shell also terminates
when it gets an end-of-file printing ~logout'; UNIX then logs you off the system. Since this
means that typing too many lD's can accidentally log us off. the shell has a mechanism for
preventing this. This ignoreeo! option will be discussed in section 2.2~

If a command has its standard input redirected from a file. then it will normally terminate
when it reaches the end of this file. Thus jf we execute

mail bill < prepared. text

the mail command will terminate without our typing a TO. This is because it read to the end­
of-file of our file ~prepared.text' in which we placed a message for ·biW with an editor program.
We could also have done '

cat prepared.text I mail bill

since the cal command would then have written the text through the pipe to the standard input
of the mail command. When the cat command completed it would have terminated. closing
down the pipeline and the IIlail command would have received an end-or-file from it and tet­
minated. Using a pipe here is more complicated than redirecting input so we would more likely
use the first form. These commands could also have been stopped by sending an It\TERRL'PT.

Another possibility for stopping a command is to suspend its execution temporarily. with
'the possibility of continuing execution later. This is done by sending a STOP signal via typing a
TZ. This signal causes all commands running on the terminal (usually one but more if a pipe­
line is executing) to become suspended. The shell notices that the command(s) have been
suspended. types ·Stopped' and then prompts·for a new command. The previously executing
command has been suspended .. but otherwise unaffected by the STOP signal. Any other com·
mands can be executed while the original command remains suspended. The suspended com­
mand can be continued using the }; command with no arguments. The shell will then retype
the command to remind you which command is being continued.. and cause the command to
resume execution. Unless any input files in use by the suspended command have been
changed in the meantime. the suspension has no eifect whatsoever on' the execution of the
command. This feature can be very useful during editing. when you need to look at another
file before continuing. An example of command suspension follows.

% mail harold
Someone just copied a big file into my directory and its name is
TZ
Stopped
% Is
funnyfile
prog.c
prog.o
% jobs
[I] + Stopped mail harold
% fg
mail harold
funny file. Do you know who did it?
EOT
%

In this example someone was sending a message to Harold and forgot the name of the file he
wanted to mention. The mail command was suspended by typing TZ. When the shell noticed

·9·

that the mail program was suspended~ it typed 'Stopped' and prompted for a new command.
Then the Is command was typed to find out the name of the file. The jobs command was run to
find out which command was suspended. At this time the fg command was typed to continue
execution of the mail program. Input to the mail program was then continued and. ended with
a TD which indicated the end of the message at which time the mail program typed EOT. The
jobs command will show which commands are suspended. The T Z should only be typed at the
beginning of a line since everything typed on the current line is discarded when a signal is sent
from the keyboard. This also happens on INTERRUPT, and QUIT signals. More information on
suspending jobs and controlling them is given in section 2.6.

If you write or run programs which are not fully debugged then it may be necessary to
stop them somewhat ungracefully. This can be done by sending them a QUIT signal. sent by
typing a T\. This will usually provoke the shell to produce a message like:

Quit (Core dumped)

indicating that a file 'core' has been created containing information about the program ~a.out·s
state when it terminated due to the QUIT signal. You can examine this file yourself, or forward
information to the maintainer of the program telling him/her where the core file is.

If you run background commands (as explained in section 2.6) then these commands will
ignore INTERRUPT and QUIT signals at the terminal. To stop them you must use the kill com-
mand. See section 2.6 for an example. I

If you want to examine the output of a command without having it move off the screen as
the output of the

cat letc/passwd

command will~ you can use the command

more I etc/passwd

The more program pauses after each complete screenful and types "- - More- -' at which
point you can hit a space to get another screenful. a return to' get another line~ or a ~q' to end
the more program. You can also use more as a filter .. Le.

cat letc/passwd I more

works just like the more simple more command above.

For stopping output of commands not involving more you can use the TS key to stop 'the
typeout. The typeout will resume when you hit TQ or any other key, but TQ is normally used
because it only restarts the output and does not become input to the program which is running.
This works well on low-speed terminals~ but at 9600 baud" it is hard to type TS and TQ fast
enough to paginate the output nicely, and a program like more is usually used.

An additional possibility is to use the TO flush output character; when this character is
typed. all output from the current command is thrown away (quickly) until the next input read
occurs or until the next shell prompt. This can be used to allow a command to complete
without having to suffer through the output on a slow terminal; TO is a toggle~ so flushing can
be turned oft" by typing TO again while output is being flushed.

1.9. What now?

We have so far seen a number of mechanisms of the shell and learned a lot about the way
in which it operates. The remaining sections will go yet further into the internals of the shell.
but you will surely want to try using the shell before you go any further. To try it you can log
in to UNIX and type the following command to the system:

chsh myname Ibinl csh

Here 'myname' should be replaced by the name you typed to the system prompt of "login:' to
get onto the system. Thus I would use ~chsh bill Ibin/csh'. You only have to do this once: it

• 10 •

takes effect at next login. You are now ready to try using csh.
Before you do the ·chsh' command .. the shell you are using when you log into the system

is • /bin/sh'. In fact. much of the above discussion is applicable to • /bin/sh'. The next section
will introduce many features particular to csh so you should change your shell to cs"_ before you
begin reading it.

• 11 •

2. Details on the shell for terminal users

2.1. Shell startup and termination
When you login. the shell is started by the system in your home directory and begins by

reading commands from a file .cshrc in this directory. All shells which you may start during
your terminal session will read from this file. We will later see what kinds of commands are
usefully placed there. For now we need not have this file and the shell does not complain
about its absence.

A login shell. executed after you login to the system. will. after it reads commands from
.cshrc. read commands from a file .Iog;" also in your home directory. This file contains com­
mands which you wish to do each time you login to the UNIX system. My .Iogi" file looks
something like:

set ignoreeof
set mail- (/usrlspool/mail/biIl)
echo "$ (prompt) users" ~ users
alias ts \ -

"set noglob : eval "tset -s -m dialup:cl00rv4pna -m plugboard:?hp2621nl III":
ts: stty intr TC kill TU crt
set time -15 history -I 0
msgs-f
if (-e Smail) then

endif

echo "S(prompt}maiI"
mail

This file contains several commands to be executed by UNIX each time I login. The first is
a se, command which is interpreted directly by the shell. It sets the shell variable ignoreeof
which causes the shell to not log me off if I hit TO. Rather. I use the logout command to log
off of the system. By- setting the mail variable. I ask the shell to watch for incoming mail to
me. Every 5 minutes the shell looks for this file and tells me if more mail has arrived there.
An alternative to this is to put the command

biff y

in place of this set: this will cause me to be notified immediately when mail arrives. and to be
shown the first few lines of the new message.

Next I set the shell variable 'time' to '15' causing the shell to automatically print out
statistics lines for commands which execute for at least 15 seconds of CPU time. The variable
\history' is set to 10 indicating that I want the shell to remember the last 10 commands I type
in its history list. (described later).

I create an alias Uts" which executes a lser(l) command setting up the modes of the ter­
minal. The parameters to tse, indicate the kinds of terminal which I usually use when not on a
hardwired port. I then execute Uts'" and also use the stty command to change the interrupt
character to T C and the line kill character to T U.

I then run the ~msgs' program. which provides me with any system messages which I
have nol seen before; the' -r option here prevents it from telling me anything if there are no
new messages. Finally. if my mailbox file exists. then I run the ~mair program to process my
mail.

When the ~mail' and ~msgs' programs finish. the shell will finish processing my ./ogi17 file
and begin reading commands from the terminal. prompting for each with ~% '. When I log off
(by giving the logout command) the shell will print ~Iogout' and execute commands from the
file \ .logout' if it exists in my home directory. After that the shell will terminate and UNIX will
log me off the system. If the system is nol going down. I will receive a new login message. In

• 12 •

any case. after the 'logout' message the shell is committed to terminating and will take no
further input from my terminal.

2.2. Shell variables
The shell maintains a set of variables. We saw above the variables history and lim~ which

had values '10' and 'IS". In fact .. each shell variable has as value an array of zero or more
strings. Shell variables may be assigned values by.the set command. It has several forms .. the
most useful of which was given above and is .

set name-value

Shell variables may be used to store values which are to be used in commands later
through a substitution mechanism. The shell variables most commonly referenced are. how­
ever .. those which the shell itself refers to. By changing the values of these variables one can
directly affect the behavior of the shell.

One of the most important variables is the variable path. This variable contains a
sequence of directory names where the shell searches for commands. The set command with
no arguments shows the value of all variables currently defined (we usually say set) in the shell.
The default value for path will be shown by set to be

% set
argv
cwd
home
path
prompt
shell
status
term
user
%

o
lusr/bill
lusr/bill
(. lusr/ucb Ibin lusr/bin>
%
Ibin/csh
o
cl00rv4pna
bill

This output indicates that the variable path points to the current directory '. ' and then
"/usr/ucb'., '/bin' and '/usr/bin'. Commands which you may write might be in ',' (usually one
of your directories>. Commands developed at Berkeley .. live in '/usr/ucb' while commands
developed at Bell Laboratories live in '/bin' and '/usr/bin'.

A number of locally developed programs on the system live in the directory '/usr/local'.
If we wish that all shells which we invoke to have access to these new programs we can place
the command

set path - (. lusr/ucb Ibin lusr/bin lusr/local)

in our file .cshrc in our home directory. Try doing this and then logging out and back in and do

set

again to see that the value assigned to path has changed.

One thing you should be aware of is that the shell examines each directory which you
insert into your path and determines which commands are contained there. Except for the
current directory ',', which the shell treats specially. this means that if commands are added to
a directory in your search path after you have started the shell.. they will not necessarily be
found by the shell. If you wish to use a command which has been added in this way.. you
should give the command

rehash

to the shell .. which will cause it to recompute its internal table of command locations .. so that it
will find the newly added command. Since the shell has to look in the current directory '.' on

- 13 -

each command. placing it at the end of the path specification usually works equivalently and
reduces overhead.

Other useful built in variables are the variable home which shows your home directory.
cwd which contains your current working directory. the variable ignoreeqfwhich can be set in
your .Iogin file to tell the shell not to exit when it receives an end-of-file from a terminal (as
described above). The variable 'ignoreeor is one of several variables which the shell does not
care about the value of. only whether they are set or ullser. Thus to set this variable you simply
do

set ignoreeof

and to unset it do

unset ignoreeof

These give the variable 'ignoreeor no value. but none is desired or required.

Finally. some other built-in shell variables of use are the variables noclobber and mail.
The metasyntax

> filename

which redirects the standard output of a command will overwrite and destroy the previous con­
tents of the named file. In this way you may accidentally overwrite a file which is valuable. If
you would prefer that the shell not overwrite files in this way you can

set noclobber

in your .Iogin file. Then trying to do

date> now

would cause a diagnostic if 'now' existed already. You could type

date >! now

if you really wanted to overwrite the contents of 'now'. The '>!' is a special metasyntax indi­
eating that clobbering the file is ok. t

%.3. The shell's history list
The shell can maintain a history list into which it places the words of previous commands.

It is possible to use a notation to reuse commands or words from commands in forming new
commands. This mechanism can be used to repeat previous commands or to correct minor typ­
ing mistakes in commands.

The following figure gives a sample session involving typical usage of the history mechan­
ism of the shell. In this example we have a very simple C program which has a bug (or two) in
it in the file 'bug.c'. which we 'cat' out on our terminal. We then try to run the C compiler on
it" referring to the file again as '!S·. meaning the last argument to the previous command. Here
the '!' is the history mechanism invocation metacharacter. and the '$' stands for the last argu~
ment. by analogy to'S· in the editor which stands for the end of the line. The shell echoed the
command. as it would have been typed without use of the history mechanism. and then exe­
cuted it. The compilation yielded error diagnostics so we now run the editor on the file we
were trying to compile. fix the bug. and run the C compiler again. this time referring to this
command simply as '!e', which repeats the last command which started with the letter ~c·. If
there were other commands starting with 'c' done recently we could have said '!cc' or even
'!cc:p' which would have printed the last command starting with 'cc' without executing it.

1'The space between the '!' and the word 'now' is critical here. as '!now' would be an invocation of the hislO~'
mechanism. and have a totally different effect.

% cat bug.c
main 0

printf("helIo) ~
J
% cc!S
cc bug.c

• 14 •

"bug.c". line 4: newline in string or char constant
"bug.c". line 5: syntax error
% ed!S
ed bug.c
29
4s/);/" &/p

printf("hello");
w
30
q
% !c
cc bug.c
% a.out
hello% !e
ed bug.c
30
4s/10/10\ \n/p

printf("hello\n");
w
32
q
% !c -0 bug
cc bug.c -0 bug
% size a.out bug
a.out: 2784+364+1028 - 4176b - Ox10S0b
bug: 2784+364+1028 - 4176b - OxlOSOb
% Is -I !-
Is -1 a.out bug
-rwxr-xr-x 1 bill
-rwxr-xr-x 1 bill
% bug
hello
% num bug.c I spp

3932 Dec 19 09:41 a.out
3932 Dec 19 09:42 bug

spp: Command not found.
% lspptssp
num bug.c I ssp

1 mainO
3 (
4
5)

% !! Ilpr

printf("hello\n");

nurn bug.c I ssp Ilpr
%

• 15 •

After this recompilation, we ran the resulting ~a.out' file, and then noting that there still
was a bug, ran the editor again. After fixing the program we ran the C compiler again. but
tacked onto the command an extra ~ -0 bug' telling the compiler to place the resultant binary
in the file 'bug' rather than 'a.out'. In general, the history mechanisms may be used anywhere
in the formation of new commands and other characters may be placed before and after the
substituted commands.

We then ran the 'size' command to see how large the binary program images we have
created were, and then an 'Is -I' command with the same argument list, denoting the argu­
ment list '.'. Finally we ran the program ~bug' to see that its output is indeed correct.

To make a numbered listing of the program we ran the 'num' command on the file
'bug.c'. In order to compress out blank lines in the output of 'num' we ran the output through
the filter 'ssp" but misspelled it as spp. To correct this we used a shell substitute, placing the
old text and new text between 't" characters. This is similar to the substitute command in the
editor. Finally, we repeated the same command with '!!\ but sent its output to the line printer.

There are other mechanisms available for repeating commands. The history command
prints out a number of previous commands with numbers by which they can be referenced.
There is a way to refer to a previous command by searching for a string which appeared in it.
and there are other. less useful .. ways to select arguments to include in a new command. A
complete description of all these mechanisms is given in the C shell manual pages in the UNIX
Programmers Manual.

2.4. Aliases
The shell has an alias mechanism which can be used to make transformations on input

commands. This mechanism can be used to simplify the commands you type. to supply default
arguments to commands. or to perform transformations on commands and their arguments.
The alias facility is similar to a macro facility. Some of the features obtained by aliasing can be
obtained also using shell command files, but these take place in another instance of the shell
and cannot directly affect the current shells environment or involve commands such as cd
which must be done in the current shell.

As· an example. suppose that there is a new version of the mail program on the system
called 'newmair you wish to use, rather than the standard mail program which is called • maW.
If you place the shell command

alias mail newmail

in your .cshrc file, the shell will transform an input line of the form

mail bill

into a call on 'newmair. More generally. suppose we wish the command "Is' to always show
sizes of files. that is to always do '-s'. We can do

alias Is Is - s

or even

alias dir Is -s

creating a new command syntax 'dir' which does an 'Is -s'. If we say

dir Dill

then the shell will translate this to

Is -s Imnt/bill

Thus the alias mechanism can be used to provide short names for commands. to provide
default arguments. and to define new short commands in terms of other commands. It is also
possible to define aliases which contain multiple commands or pipelines. showing where the

- 16 -

arguments to the original command are to be substituted using the facilities of the hislOr}
mechanism. Thus the definition

alias cd • cd \!. ; Is •
would do an Is command after each change directory cd command. We enclosed the' entire alias
definition in ." characters to prevent most substitutions from occurring and the character ":'
from being recognized as a metacharacter. The '!' here is escaped with a '" to prevent it from
being interpreted when the alias command is typed in. The '\!., here substitutes the entire
argument list to the pre-aliasing cd command~ without giving an error if there were no argu­
ments. The'~' separating commands is used here to indicate that one command is to be done
and then the next. Similarly the definition

alias whois 'grep \!T letc/passwd'

defines a command which looks up its first .argument in the password file.

Warning: The shell currently reads the .cshr(file each time it starts up. If you place a
large number of commands there. shells will tend to start slowly. A mechanism for saving the
shell environment after reading the .cshrc file and quickly restoring it is under development .. but
for now you should try to limit the number of aliases you have to a reasonable number ... 10 or
15 is reasonable .. 50 or 60 will cause a noticeable delay in starting up shells. and make the sys­
tem seem sluggish when you execute commands from within the editor and other programs.

2.S. More redirection; > > and >&
There are a few more notations useful to the terminal user which have not been intro­

duced yet.

In addition to the standard output .. commands also h'ave a diagnostic output which is nor­
mally directed to the terminal even when the standard output is redirected to a· file or a pipe. It
is occasionally desfrable to direct the diagnostic output along with the standard output. For
instance if you want to redirect the output of a long running command into a file and wish to
have a record of any error diagnostic it produces you can do

command > & file

The '> &. here tells the shell to route both the diagnostic output and the standard output into
'file • . Similarly you can give the command

command 1& Ipr

to route both standard and diagnostic output through the pipe to the line printer daemon Ipr.#

Finally. it is possible to use the form

command > > file

to place output at the end of an existing file. t

#A command form

command > &.! file

exists. and is used when Iloc/oblwr is set and fi/~ already exists.
tlf Iloc/oblx>r is set. then an error will result if ·fi/~ does not exist. otherwise the shell will create ,piC' if it
doesn't exist. A form

command > >! file

makes it not be an error for file to not exist when ,,«Iobber is set.

- 17 -

%.6. Jobs; Background. Forearound. or Suspended
When one or more commands are typed together as a pipeline or as a sequence of com­

mands separated by semicolons. a single job is created by the shell consisting of these com­
mands together as a unit. Single commands without pipes or semicolons create the simplest
jobs. Usually. every line typed to the shell creates a job. Some lines that create jobs (one per
line) are

sort < data
Is -s I sort -n I head -5
mail harold

If the metacharacter .,,' is typed at the end of the commands. then the job is started as a
background job. This means that the shell does not wait for it to complete but immediately
prompts and is ready for another command. The job runs ill '"e backllroulld at the same time
that normal jobs. called foreground jobs. continue to be read and executed by the shell one at a
time. Thus

du > usage"

would run the du program. which reports on the disk usage of your working directory (as well
as any directories below it), put the output into the file ·usage· and return immediately with a
prompt for the next command without out waiting for du to finish. The du program would con­
tinue executing in the background until it finished. even though you can type and execute more
commands in the mean time. When a background job terminates. a message is typed by the
shell just before the next prompt telling you that the job has completed. In the following
example the du job finishes sometime during the execution of the mail command and its com­
pletion is reported just before the prompt after the mail job is finished.

% du > usage"
[1] 503
% mail bill
How do you know when a background job is finished?
EOT
[1] - Done du > usage
%

If the job did not terminate normally the ·Done' message might say something else like
·Killed'. If you want the terminations of background jobs to be reported at the time they occur
(possibly interrupting the output of other foreground jobs). you can set the 110tt/)· variable. In
the previous example this would mean that the lDone' message might have come right in the
middle of the message to Bill. Background jobs are unaffected by any signals from the key­
board like the STOP. INTERRUPT, or QUIT signals mentioned earlier.

Jobs are recorded in a table inside the shell until they terminate. In this table. the shell
remembers the command names .. arguments and the process numbers of all commands in the job
as well as the workin"g directory where the job was started. Each job in the table is either run­
ning ill the foreground with the shell waiting for it to terminate" running ill the bock~ro'lI1d.or
suspended. Only one job can be running in the foreground at one time. but several jobs can be
suspended or running in the background at once. As each job is started .. it is assigned a small
identifying number called the job number which can be used later to refer to the job in the com­
mands described below. Job numbers remain the same until the job terminates and then are
re-used.

When a job is started in the backgound using l&', its number, as well as the process
numbers of all its (top level) commands" is typed by the shell before prompting you for another
command. For example,

% Is -s I sort -n > usage &
[2] 2034 2035
%

- 18 -

runs the ·Is' program with the '-s' options .. pipes this output into the "sort' program with the
"-n' option which puts its output into the file 'usage'. Since the .&' was at the end of the line.
these two programs were started together as a background job. After starting the job. the shell
prints the job number in brackets (2 in this case) followed by the process number of each pro­
gram started in the job. Then the shell immediates prompts for a new command .. leaving the
job running simultaneously.

As mentioned in section 1.8 .. foreground jobs become suspended by typing TZ which sends
a STOP signal to the currently running foreground job. A background job can become
suspended by using the stop command described below. When jobs are suspended they merely
stop any further progress until started again .. either in the foreground or the backgound. The
shell notices when a job becomes stopped and reports this fact .. much like it reports the termi­
nation of background jobs. For foreground jobs this looks like

% du > usage
TZ
Stopped
0/0

'Slopped' message is typed by the shell when it notices that the du program stopped. For back­
ground jobs .. using the stop command .. it is

0/0 sort usage &
[11 2345
% stop %1
[11 + Stopped (signal)
%

sort usage

Suspending foreground jobs can be very useful when you need to temporarily change what you
are doing (execute other commands) and then return to the suspended job. Also, foreground
jobs can be suspended arid then continued as background jobs using the bg command. allowing
you to continue other work and stop waiting for the foreground job to finish. Thus

% du > usage
TZ
Slopped
% bg
Uldu > usage &
%

starts ·du' in the foreground, stops it before it finishes. then continues it in the background
allowing more foreground commands to be executed. This is especially helpful when a fore­
ground job ends up taking longer than you expected and you wish you had started it in the
backgound in the beginning.

All job control commands can take an argument that identifies a particular job. All job
name arguments begin with the character '%', since some of the job control commands also
accept process numbers (printed by the ps command.) The default job (when no argument is
given) is called the current job and is identified by a • +' in the output of the jobs command.
which shows you which jobs you have. When only one job is stopped or running in the back­
ground (the usual case) it is always the current job thus no argument is needed. If a job is
stopped while running in the foreground it becomes the· currellt job and the existing current job
becomes the previous job - identified by a '-' in the output of jobs. When the current job ter­
minates.. the previous job becomes the current job. Wben given. the argument is either "% - '
(indicating the previous job)~ "%#' ~ where # is the job number~ "%prer where pref is some

• 19 •

unique prefix of the command name and arguments of one of the jobs~ or ~%?' followed b~'
some string found in only one of the jobs.

The jobs command types the table of jobs. giving the job number. commands and status
('Stopped' or ~Running') of each backgound or suspended job. With the .-1' option the pro­
cess num bers are also typed.

% du > usage &.
[1] 3398
% Is -5 I sort -n > myfile &.
[2] 3405
% mail bill
TZ
Stopped
% jobs
[1] - Running
[2] Running
[3] + Stopped
% fg %15
15 -s I sort -n > myfile
% more myfile

du > usage
Is -5 I sort -n > myfile
mail bill

The fi command runs a suspended or background job in the foreground. It is used to res­
tart a previously suspended job or change a background job to run in the foreground (allowing
signals or input from the terminal). In the above example we used Ig to change the ·Is· job
from the background to the foreground since we wanted to wait for it to finish before looking at
its output file. The bg command runs a suspended job in the background.· It is usually used

. after stopping the currently running foreground job with the STOP signal. The combination of
the STOP signal and the bg command changes a foreground job into a background job. The stop
command suspends a background job.

The kill command terminates a background or suspended job immediately. In addition to
jobs. it may be given process numbers as arguments. as printed by ps. Thus. in the example
above. the running du command could have been terminated by the command

% kill %1
[11 Terminated
%

du > usage

The notify command (not the variable mentioned earlier) indicates that the termination of
a specific job should be reported at the time it finishes instead of waiting for the next prompt.

If a job running in the background tries to read input from the terminal it is automatically
stopped. When such a job is then run in the foreground. input can be given to the job. If
desired .. the job can be run in the background again until it requests input again. This is illus­
trated in the following sequence where the ·s' command in the text editor might take a long
time.

% ed bigfile
120000
1,Ss/thisword/thatwordl
TZ
Stopped
% bg
[1] ed bigfile &.
%
. .. some foreground commands

[11 Stopped (tty input) ed bigfile
% fg

ed bigfile
w
120000
q
%

- 20-

So after the ~s~ command was issued~ the 'ed" job was stopped with T Z and then put in the
background using bg. Some time later when the ~s ~ command was finished~ ed tried to read
another command and was stopped because jobs in the backgound cannot read from the termi­
nal. The.fx command returned the ~ed' job to the foreground where it could once again accept
commands from the terminal.

The command

stty tostop

causes all background jobs run on your terminal to stop when they are about to write output to
the terminal. This prevents messages from background jobs from interrupting foreground job
output and allows you to run a job in the background without losing terminal output. It also
can be used for interactive programs that sometimes have long periods without interaction.
Thus each time it outputs a prompt for more input it will stop before the prompt. It can then
be run in the foreground using fRo more input can be given and~ if necessary stopped and
returned to the background. This st(V command might be a good thing to put in your .loRm file
if you do not like output from background jobs interrupting your work. It also can reduce the
need 'for redirecting the output of background jobs if the output is not very big:

% stty tostop
% wc hugefile &
[11 10387
% ed text
. . . some time later
q
[1] Stopped (tty output) wc hugefile
% fg wc
wc hugefile

13371 30123 302577
0/0 stty - tostop

Thus after some time the ~wc~ command~ which counts the 1ines~ words and characters in a file.
had one line of output. When it tried to write this to the terminal it stopped. By restarting it in
the foreground we allowed it to write on the terminal exactly when we were ready to look at its
output. Programs which attempt to change the mode of the terminal will also block~ whether or
not IOSIOP is set~ when they are not in the foreground. as it would be very unpleasant to have a
background job change the state of the termina1.

Since the jobs command only prints jobs started in the currently executing shen~ it knows
nothing about background jobs started in other login sessions or within shell files. The ps can
be used in this case to find out about background jobs not started in the current shell.

2.7. W orki 01 Directories
As mentioned in section 1.6~ the shell is always in a particular K'orking directory. The

·change directory~ command chdir (its short form cd may also be used) changes the working
directory of the shell~ that is~ changes the directory you are located in.

It is useful to make a directory for each project you wish to work on and to place all files
related to that project in that directory. The 'make directory~ command~ mkdir. creates a new
directory. The pwd ('print working directory') command reports the absolute pathname of the
working directory of the shel1~ that is~ the directory you are located in. Thus in the example
below:

%pwd
lusr/bill
% mkdir new paper
% chdir newpaper
%pwd
lusr Ibill/newpaper
%

• 21 •

the user has created and moved to the directory new paper. where. for example. he might place
a group of related tiles ..

No matter where you have moved to in a directory hierarchy. you can return to your
·home' login directory by doing just

cd

with no arguments. The name .. : always means the directory above the current one in the
hierarchy, thus

cd .•

changes the shell's working directory to the one directly above the current one. The name '.:
can be used in any path name. thus,

cd . .Iprograms

means change to the directory ·programs' contained in the directory above the current one. If
you have several directories for different projects under. say. your home directory. this short­
hand notation permits you to switch easily between them.

The shell always remembers the pathname of its current working directory in the variable
cwd. The shell can also be requested to remember the previous directory when you change to a
new working directory. If the ·push directory' command pus/7d is used in place of the cd com­
mand .. the shell saves the name of the current working directory on a directory stack before
changing to the new one. You can see this list at any time by typing the ·directories' command
dirs.

% pushd newpaper/references
-/newpaper/references -
% pushd lusr/lib/tmac
lusr/lib/tmac -/newpaper/references -
% dirs
lusr/lib/tmac -/newpaper/references -
% popd
-/newpaper/references -
%.popd

%

The list is printed in a horizontal line .. reading left to right. with a tilde (-) as shorthand for
your home directory-in this case ·/usr/bill'. The directory stack is printed whenever there is
more than one entry on it and it changes. It is also printed by a dirs command. Dirs is usually
faster and more informative than pwd since it shows the current working directory as well as
any other directories remembered in the stack.

The pushd command with no argument alternates the current directory with the first direc­
tory in the list. The ·pop directory' popd command without an argument returns you to the
directory you were in prior to the current one .. discarding the previous current directory from
the stack (forgetting it). Typing popd several times in a series takes you backward through the
directories you had been in (changed to) by pushd command. There are other options to pushd
and popd to manipulate the contents of the directory stack and to change to directories not at
the top of the stack; see the csh manual page for details.

- 22 -

Since the shell remembers the working directory in which each job was started. it warns
you when you might be confused by restarting a job in the foreground which has a different
working directory than the current working directory of the shell. Thus if you start a back­
ground job. then change the sheWs working directory and then cause the background job to run
in the foreground. the shell warns you that the working directory of the currently running fore­
ground job is different from that of the shell.

% dirs -I
/mnt/bill
% cd myproject
% dirs
-/myproject
% ed prog.c
1143
TZ
Stopped
0/0 cd ..
%Is
myproject
textfile
0/0 fg
ed prog.c (wd: -/myproject)

This way the shell warns you when there is an implied change of working directory. even
though no cd command was issued. In the above example the 'ed' job was still in
·/mnt/bill/project' even though the shell had changed to ·'mnt/bitr. A similar warning is

. given when such a foreground job terminates or is suspended (using the STOP signal) since the
return to the shell again implies a change of working directory.

0/0 fg
ed prog.c (wd: -/myproject)
... after some editing

q
(wd now: -)
%

These messages are sometimes confusing if you use programs that change their own working
directories. since the shell only remembers which directory a job is started in. and assumes it
stays there. The· - r option of jobs will type the working directory of suspended or background
jobs when it is different from the current working directory of the shell.

2.8. Useful built-in commands

We now give a few of the useful built-in commands of the shell describing how they are
used.

The alias command described above is used to assign new aliases and to show the existing
aliases. With no arguments it prints the current aliases. It may also be given only one argu­
ment such as

alias Is

to show the current alias for. e.g .• ·Is'.

The echo command prints its arguments. It is often used in shell scripts or as an interac­
tive command to see what filename expansions will produce.

The history command will show the contents of the history list. The numbers given with
the history events can be used to reference previous events which are difficult to reference
using the contextual mechanisms introduced above. There is also a shell variable called prompl.

• 23 •

By placing a "!' character in its value the shell will there substitute the number of the· current
command in the history list. You can \lse this number to refer to this command in a history
substitution. Thus you could

set prompt-\! % •

Note that the .!' character had to be escaped here even within •. , characters.
The limit command is used to restrict use of resources. With no arguments it prints the

current limitations:

c:putime
filesize
datasize
stacksize
coredumpsize

unlimited
unlimited
5616 kbytes
512 kbytes
unlimited'

Limits can be set, e.g.:

limit c:oredumpsize 128k

Most reasonable units abbreviations will work; see the ~sh manual page for more details.
The logout command can be used to terminate a login shell which has iglloreeo.lsel.

The rehash command causes the shell to recompute a table of where commands are
located. This is necessary if you add a command to a directory in the current shell's search
path and wish the shell to find it, since otherwise the hashing algorithm may tell the shell that
the command wasn't in that directory when the hash table was computed.

The repeat command can be used to repeat a command several times. Thus to make 5
. copies of the file one ill the file five you could do

repeat 5 cat one > > five

The setenv command can be used to set variables in the environment. Thus

setenv TERM adm3a

will set the value of the environment variable TERM to "adm3a'. A user program prllliem' exists
which will print out the environment. It might then show:

Thus

% printenv
HOME -/usr/bilI
SHELL -/bin/c:sh
PATH - :/usr/ucb:/bin:/usr/bin:/usr/local
TERM-adm3a
USER-bill
%

The source command can be used to force the current shell to read commands from a file.

source .cshrc

can be used after editing in a change to the .cshrc file which you wish to take effect before the
next time you login.

The time command can be used to cause a command to be timed no matter how much
CPU time it takes. Thus

- 24 -

% time cp letc/rc lusr/bill/rc
O.Ou 0.15 0:01 8% 2+ lk 3+2io Ipf+Ow
% time wc I etc/rc lusr Ibill/rc

52 178 1347 lelc/rc
52 178 1347 lusr/bill/rc

104 356 2694 total
O.1u 0.15 0:00 13% 3+3k 5+3io 7pf+Ow
%

indicates that the cp command used a negligible amount of user time (u) and about 1/10th of a
system time (s); the elapsed time was 1 second (0:01>. there was an average memory usage of
2k bytes of program space and Ik bytes of data space over the cpu time involved (2+1k): the
program did three disk reads and two disk writes (3 + 2io). and took one page fault and was nOl

swapped (tpf+Ow). The word count command wc on the other hand used 0.1 seconds of user
time and 0.1 seconds of system time in less than a second of elapsed time. The percen tage
"13%' indicates that over the period when it was active the command 'wc' used an average of
13 percent of the available CPU cycles of the machine.

The una/ias and unset commands can be used to remove aliases and variable definitions
from the shell .. and unsetenv removes variables from the environment.

2.9. What else?

This concludes the basic discussion of the shell for terminal users. There are more
features of the shell to be discussed here. and aU features of the shell are discussed in its
manual pages. One useful feature which is discussed later is the foreach built-in command
which can be used to run the same command sequence with a number of different arguments.

If you intend to use UNIX a lot you you should look through the rest of this document and
the shell manual pages to become familiar with the other facilities which are available to you.

• 2S -

3. Shell control structures and command scripts

3.1. Introduction
It is possible to place commands in files and to cause shells to be invoked to rea.d and exe·

cute commands from these files. which are called shell scripts. We here detail those features of
the shell useful to the writers of such scripts.

3.2. Make
It is important to first note what shell scripts are IIot useful for. There is a program called

make which is very useful for maintaining a group of related files or performing sets of opera­
tions on related files. For instance a large program consisting of one or more files can have its
dependencies described in a nrakefile which contains definitions of the commands used to create
these different files when changes occur. Definitions of the means for printing listings. cleaning
up the directory in which the files reside .. and installing the resultant programs are easily. and
most appropriately placed in this nlakefile. This format is superior and preferable to maintain·
ing a group of shell procedures to maintain these files.

Similarly when working on a document a nlakejile may be created which defines how
different versions of the document are to be created and which options of "roff or trojr are
appropriate.

3.3. Invocation and the argv variable

A csh command script may be interpreted by saying

% csh script ...

where script is the name of the file containing a group of csh commands and • ... ' is replaced by a
Sequence of arguments. The shell places these arguments in the variable QrR" and then begins
to read commands from the script. These parameters are then available through the same
mechanisms which are used to reference any other shell variables.

If you make the file 'script' executable by doing

chmod TSS script

and place a shell comment, at the beginning of the shell script (i.e. begin the file with a '#'
character) then a '/bin/csh' will automatically be invoked to execute 'scripf when you type

script

If the file does not begin with a '#' then the standard shell '/bin/sh' will be used to execute it.
This allows you to convert your older shell scripts to use csh at your convenience.

3.4. Variable substitution
After each input line is broken into words and history substitutions are done on it. the

input line is parsed into distinct commands. Before each command is executed a mechanism
know as variQble substitution is done on these words. Keyed by the character'S· this substitu­
tion replaces the names of variables by their values. Thus

echo Sargv

when placed in a command script would cause the current value of the variable QTg" to be
echoed to the output of the shell script. It is an error for argv to be unset at this point.

A number of notations are provided for accessing components and attributes of variables.
The notation

S?name

expands to ·1' if name is set or to '0' if name is not set. It is the fundamental mechanism used

• 26 •

for checking whether particular variables have been assigned values. All other forms of refer­
ence to undefined variables cause errors.

The notation

S#name

expands to the number of elements in the variable nome. Thus

Ofn set argv- (a b c)
% echo S?argv
1
% echo S#argv
3
% unset argv
% echo S?argv
o
% echo Sargv
Undefined variable: argv.
%

It is also possible to access the components of a variable which has several values. Thus

Sargv[l]

gives the first component of Of'g'" or in the example above 'a'. Similarly

Sargv [S#argv]

wouldgive'c'. and

Sargv[I-2]

would give 'a b'. Other notations useful in shell scripts are

SI1

where /7' is an integer as a shorthand for

Sargv[l7)

the 11th parameter and

S·

which is a shorthand for

Sargv

The form

S5
expands to the process number of the current shell. Since this process number is unique in the
system it can be used in generation of unique temporary file names. The form

S<
is quite special and is replaced by the next line of input read from the shell's standard input
(not the script it is reading). This is useful for writing shell scripts that are interactive~ reading
commands from the terminal~ or even writing a shell script that acts as a filter~ reading lines
from its input file. Thus the sequence

echo 'yes or no?\c'
set a- ($<)

would write out the prompt ·yes or no?~ without a newline and then read the answer into the

• 27 •

variable "a'. In this case "S#a' would be "0' if either a blank line or end-of-file (f D) was typed.

One minor difference between loS,,' and 'Sargv[Il]' should be noted here. The form
'Sargv[Il]' will yield an error if n is not in the range 'l-S#argv' while 'Sn' will never yield an
out of range subscript error. This is for compatibility with the way older shells handled parame­
ters.

Another important point is that it is never an error to give a subrange of the form Ion -':
if there are less than n components of the given variable then no words are substituted. A
range of the form 'm-n' likewise returns an empty vector without giving an error when m
exceeds the number of elements of the given variable .. provided the subscript II is in range.

3.S. Expressions

In order for interesting shell scripts to be constructed it must be possible to evaluate
expressions in the shell based on the values of variables. In fact, all the arithmetic operations
of the language C are available in the shell with the same precedence that they have in C. In
particular .. the operations '- _ .. and '!-' compare strings and the operators '&.&.. and i r imple­
ment the boolean andlor operations. The special operators' _e. and '!-' are similar to • =- =-'
and '! -' except that the string on the right side can have pattern matching characters (like •. ?
or []) and the test is whether the string on the left matches the pattern on the right.

The shell also allows file enquiries of the form

-? filename

where '?' is replace by a number of single characters. For instance the expression primitive

-e filename

" tell whether the file 'filename' exists. Other primitives test for read. write and execute access
to the file .. whether it is a directory. or has non-zero length.

It is possible to test whether a command terminates normally, by a primitive of the form
'I command }' which returns true, Le. '1' if the command succeeds exiting normally with exit
status O. or '0' if the command terminates abnormally or with exit status non-zero. If more
detailed information" about the execution status of a command is required. it can be executed
and the variable 'Sstatus' examined in the next command. Since '$status' is set by every com­
mand, it is very transient. It can be saved if it is inconvenient to use it only in the single
immediately following command.

For a full list of expression components available see the manual section for the shell.

3.6. Sample shell script
A sample shell script which makes use of the expression mechanism of the shell and

some of its control structure follows:

% cat copyc

• 28 •

Copyc copies those C programs in the specified list
to the directory -/backup if they differ from the files
already in -/backup

set noglob
foreac:h i (Sargv)

end

if (Si r • .c) continue # not a .c file so do nothing

if (! -r -/backup/Si:t) then

endif

echo 5i:t not in backup ... not cp\'ed
continue

cmp -s 5i -/backup/Si:t # to set Sstatus

if ($status ! - 0) then
echo new backup of Si
cp Si -/bac:kup/Si:t

endif

This script makes use of the joreach command. which causes the shell to execute the com­
mands between the joreach and the matching end for each of the values given between ~ (. and
~)' with the named variable, in this case .j' set to successive values in the list. Within this loop
we may use the command break to stop executing the loop and cOl7linue to prematurely ter­
minate one iteration and begin the next. After the loreach loop the iteration variable (i in this
case) has the value at the last iteration.

We set the variable nog/ob here to prevent filename expansion of the members of arg\·.
This is a good idea, in general. if the arguments to a shell script are filenames which have
already been expanded or if the arguments may contain filename expansion metacharacters. It
is also possible to quote each use of a ·S· variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form

if (expression) then
command

endlf

The placement of the keywords here is not flexible due to the current implementation of the
sheU.t

tThe following two rormals are not curren. I)' acceptable to the shell:

and

if (expression)
tben

command

endif

Won', work!

if (expression) tben command endi' # Won't work

- 29 -

The shell does have another form of the if statement of the form

If (expression) command

which can be written

If (expression) \
command

Here we have escaped the newline for the sake of appearance. The command must not involve
'I'. 'at' or ';' and must not be another control command. The second form requires the final
'\' to immediately precede the end-or· line.

The more general ifstatements above also admit a sequence or (I/s(I-tfpairs followed by a
single (lIse and an endif, e.g.:

if (expression) then
commands

else If (expression) then
commands

else
commands

endif

Another important mechanism used in shell scripts is the ':' modifier. We can use the
modifier ':r' here to extract a root of a filename or ':e' to extract the exttllsioll. Thus if the

. variable i has the value '/mnt/foo.bar' then

% echo Si Si:r Si:e
/mnt/foo.bar /mnt/foo bar
%

shows how the ':r' modifier strips off the trailing '~bar' and the the ':e' modifier leaves only the
'bar'. Other modifiers will take off the last component of a palhname leaving the head ':h' or
all but the last component of a pathname leaving the tail ':1'. These modifiers are fully
described in the csh manual pages in the programmers manual. It is also possible to use the
command substitution mechanism described in the next major section to perform modifications
on strings to then reenter the shells environment. Since each usage of this mechanism invol yes
the creation of a new process, it is much more expensive to use than the ':' modification
mechanism.# Finally, we note that the character '#' Jexically introduces a shell comment in
shell scripts (but not from the terminal). All subsequent characters on the input line after a
'#' are discarded by the shell. This character can be quoted using ,~, or '\' to place it in an
argument word.

#It is also important to note that the current implementation of the shell limits the number of ':' modifiers
on a 'S' substitution to 1. Thus

% echo Si Si:h:t
lalblc Ialb:t
%

does nOl do what one would expect.

· 30·

3.7. Other control structures

The shell also has control structures Kohile and s ... ·itch similar to those of C. These take the
forms

and

while (expression)
commands

end

switch (word)

case str1:
commands
breaksw

case stm:
commands
breaksw

default:

endsw

commands
breaksw

For details see themanuaJ section for csh. C programmers should note that we use breakslt" to
exit from a switch while break exits a ",-hile or !oreach loop. A common mistake to make in csh
scripts is to use break rather than breaks"- in switches_

Finally. csl7 allows a goto statement. with labels looking like they do in C. Le.:

loop:
commands
loto loop

3.8. Supplying input to commands

Commands run from shell scripts receive by default the standard input of the shell which
is running the script. This is different from previous. shells running under UNIX. It allows shell
scripts to fully participate in pipelines .. but mandates extra notation for commands which are to
take inline data.

Thus we need a metanotation for supplying intine data to commands in shell scripts. As
an example. consider this script which runs the editor to delete leading blanks from the lines in
each argument file

• 31 •

% cat deblank
deblank - - remove leading blanks
foreach i (Sargv)
ed - Si < < 'EOF'
I,Ss/y[].//
w
q
'EOF'
end
%

The notation' < < 'EOF" means that the standard input for the (ld command is to come from
the text in the shell script file up to the next line consisting of exactly "EOF". The fact that
the 'EOF' is enclosed in ,'" characters .. i.e. quoted, causes the shell to not perform variable sub­
stitution on the intervening lines. In general, if any part of the word following the -< <' which
the shell uses to terminate the text to be given to the command is quoted then these substitu­
tions will not be performed. In this case since we used the form 'I,S' in our editor script we
needed to insure that this 'S' was not variable SUbstituted. We could also have insured this by
preceding the 'S' here with a '\' .. Le.:

1.\Ss/U].//

but quoting the 'EOF" terminator is a more reliable way of achieving the same thing.

3.9. Catching interrupts

If our shell script creates temporary files. we may wish to catch interf\.Jptions of the shell
. script so that we can clean up these files. We can then do

onintr label

where lab(ll is a label in our program. If an interrupt is received the shell will do a "goto label'
and we can remove the temporary files and then do an (lxil command (which is built in to the
shell) to exit from the shell script. If we wish to exit with a non-zero status we can do

exit(I)

e.g. to exit with status 'I'.

3.10. What else?

There are other features of the shell useful to writers of shell procedures. The ,'('rbose
and echo options and the related - l' and - x command line options can be used to help trace
the actions of the shell, The -n option causes the shell only to read commands and not to
execute them and may sometimes be of use.

One other thing to note is that csh will not execute shell scripts which do not begin with
the character • #'.. that is shell scripts that do not begin with a comment. Similarly. the
'/bin/sh' on your system may well defer to 'csh' to interpret shell scripts which begin with '#'.
This allows shell scripts for both shells to live in harmony.

There is also another quotation mechanism using un which allows only some of the
expansion mechanisms we have so far discussed to occur on the quoted string and serves to
make this string into a single word as ," does.

• 32 •

4. Other. less commonly used. shell features

4.1. Loops at the terminal; variables as vectors
It is occasionally useful to use the /oreach control structure at the terminal to .aid in per­

forming a number of similar commands. For instance" there were at one point three shells in
use on the Cory UNIX system at Cory Hall .. ~/bin/sh'. ~/bin/nsh\ and '/bin/csh·. To count the
number of persons using each shell one could have issued the commands

% grep -c cshS letc/passwd
27
% grep -c nshS letc/passwd
128
% grep -c -v shS letc/passwd
430
%

Since these commands are very similar we can use /oreach to do this more easily.

% foreach i ("shS"·cshS· • -v shS")
? grep -c Si letc/passwd
? end
27
128
430
%

Note here that the shell prompts for input with ~? • when reading the body of the loop.

Very useful with loops are variables which contain lists of filenames or other words. You
can .. for example .. do

% set a- CIs')
% echo Sa
esh.n csh.rrn
% Is
esh.n
csh.rrn
% echo $#a
2
%

The set command here gave the variable a a·list of all the filenames in the current directory as
value. We can then iterate over these names to perform any chosen function.

The output of a command within characters is converted by the shell to a list of words.
You can also place the quoted string 'within ,., characters to take each (non-empty) line as a
component of the variable; preventing the lines from being split into words at blanks and tabs.
A modifier ':x' exists which can be used later to expand each component of the variable into
another variable splitting it into separate words at embedded blanks and tabs.

4.2. Braces (.••) in argument expansion

Another form of filename expansion .. alluded ·to before involves the characters '(' and 'I'.
These characters specify that the contained strings. separated by '.' are to be consecutively sub­
stituted into the containing characters and the results expanded left to right. Thus

A {str 1 .. str2 stm} B

expands to

- 33 -

AstrlB Astr2B ... AstmB

This expansion occurs before the other filename expansions. and may be applied recursively
(Le. nested). The results of each expanded string are sorted separately. left to right order being
preserved. The resulting filenames are not required to exist if no other expansion mechanisms
are used. This means that this mechanism can be used to generate arguments wbich are not
filenames. but which have common parts.

A typical use of this would be

mkdir -I (hdrs.retrofit.csh)

to make subdirectories 'hdrs'. 'retrofit' and ·csh' in your home directory. This mechanism is
most useful when the common prefix is longer than in this example. i.e.

chown root lusr/lucbl lex.edit}.libl lex ??* .how _ex}}

4.3. Command substitution
A command enclosed in ,'I, characters is replaced. just before filenames are expanded .. by

the output from that command. Thus it is possible to do

set pwd - 'pwd"

to save the current directory in the variable p..-d or to do

ex 'grep -I TRACE -.c·

to run the editor ex supplying as arguments those files whose names end in ·.c' which have the
string 'TRACE' in them.-

4.4. Other details not covered here
In particular circumstances it may be necessary to know the exact nature and order of

different substitutions performed by the shell. The exact meaning of certain combinations of
quotations is also occasionally important. These are detailed fully in its manual section.

The shell has a number of c9mmand line option flags mostly of use in writing UNIX pro­
grams. and debugging shell scripts. See the shells manual section for a list of these options.

·Command expansion also occurs in inpul redirected with • < <' and wilhin ••• quolalions. Refer to lhe shell
manual section for full details.

- 34-

Appendix - Special characters

The following table lists the special characters of csh and the UNIX system. giving for each the
section(s) in which it is discussed. A number of these characters ,also have special meaning in
expressions. See the csh manual section for a complete list.

Syntactic metacharacters

i
2.4 separates commands to be executed sequentially
1.S separates commands in a pipeline

() 2.2 .. 3.6 brackets expressions and variable values
& 2.S follows commands to be executed without waiting for completion

Filename metacharacters

/
?
•
[]

()

1.6
1.6
1.6
1.6
1.6
4.2

separates components of a file's pathname
expansion character matching any single character
expansion character matching any sequence of characters
expansion sequence matching any single character from a set
used at the beginning of a filename to indicate home directories
used to specify groups of arguments with common parts

Quotation metacharacters

\

"

1.7
1.7
4.3

prevents meta-meaning of following single character
prevents meta-meaning of a group or characters
like '. but allows variable and command expansion

Input/output metacharacters

<
>

I.S
1.3

indicates redirected input
indicates redirected output

Expansion/substitution metacharacters

s

T .

3.4
2.3
3.6
2.3
4.3

Other metacharacters

indicates variable substitution
indicates history substitution
precedes substitution modifiers
used in special forms of history substitution
indicates command substitution

1.3.3.6 begins scratch file names; indicates shell comments
1.2 prefixes option (flag) arguments to commands

% 2.6 prefixes job name specifications

• 35 •

Glossary
This glossary lists the most important terms introduced in the introduction to the shell

and gives references to sections of the shell document for further information about them.
References of the form 'pr (1)' indicate that the command pr is in the UNIX programmer's
manual in section 1. You can get an online copy of its manual page by doing .

man 1 pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this
manual.

. a.out

Your current directory has the name ',' as well as the name printed by the
command pM'd: see also dirs. The current directory ",' is usually the first ,"om­
po"en, of the search path contained in the variable poth. thus commands which
are in '.' are found first (2.2). The character'.' is also used in separating COIII­

ponents of filenames 0.6). The character ... at the beginning of a campOllelll of
a ptlthllame is treated specially and not matched by the filel1ame expallsiol1 meta­
characters '?'. '.'. and '(' ')' pairs (1.6>-
Each directory has a file '.: in it which is a reference to its parent directory.
After changing into the directory with chdir. i.e.

chdir paper

you can retum to the parent directory by doing

chdir ..

The current directory ,is printed by p,,'d (2.7).
Compilers which create executable images create them. by default. in the file
a.oul. for historical reasons (2.3>.

absolute pathname

alias

argument

argv

background

base

A ptlthname which begins with a'/' is absolute since it specifies the path of
directories from the beginning of the entire directory system - called the rool
directory, Palhllames which are not absolule are called relall\'e (see definition of
relative pothname) (1.6L
An alias specifies a shorter or different name for a UNIX command. or a
transformation on a command to be performed in the shell. The shell has a
command alias which establishes aliases and can print their current values.
The command ullalias is used to remove aliases (2.4).

Commands in UNIX receive a list of arKUmem words. Thus the command

echo abc

consists of the commalld /lame "echo' and three argumem words "a'. "b' and ·c·.
The set of arguments after the command Ilame is said to be the ar~umel11 /iSI of
the command (1.1).

The list of arguments to a command written in the shell language (a shell
script or shell procedure) is stored in a variable called ar~\' within the shell.
This name is taken from the conventional name in the C programming
language (3.4).

Commands started without waiting for them to complete are called background
commands (2.6).
A filename is sometimes thought of as consisting of a base part. before any'.'
character. and an extensioll - the part after the ".'. See filename and extenslOIP
0.6)

bg

bin

break

breaksw

builtin

case

cat

cd

chdir

chsh

crop

command

command name

- 36 -

The bg command causes a suspended job to continue execution in the ba"k­
ground (2.6).

A directory containing binaries of programs and shell scripts to be executed is
typically called a bin directory. The standard system bill directories are "/bi n .
containing the most heavily used commands and '/usr/bin' which contains
most other user programs. Programs developed at UC Berkeley live in
'/usr/ucb', while locally written programs live in '/usrllocar. Games are kept
in the directory '/usr/games·. You can place binaries in any directory. If you
wish to execute them often. the name of the directories should be a componelll
of the variable path.

Break is a builtin command used to exit from loops within the control struc­
ture of the shell (3.7).

The breaksw builtin command is used to exit from a switch control structure.
like a break exits from loops (3.7).

A command executed directly by the shell is called a bUiltin command. Most
commands in UNIX are not built into the shell. but rather exist as files in bm
directories. These commands are accessible because the directories in which
they reside are named in the path variable.

A case command is used as a label in a switch statement in the shelrs control
structure. similar to that of the language C. Details are given in the shell
documentation 'cshOr (3.7).

The CQt program catenates a list of specified files on the stol1dord output. It is
usually used to look at the contents of a single file on the terminal. to "cat a
file' 0.8. 2.3).

The cd command is used to change the working directory. With no arguments.
cd changes your working directory to be your home directory (2.4. 2.7).

The chdir command is a synonym for cd. Cd is usually used because it is easier
to type.

The chsh command is used to change the shell which you use on UNIX. By
default. you use an different version of the shell which resides in "/bin/sh·.
You can change your shell to '/bin/csh' by doing

chsh your-togin-name Ibin/csh

Thus I would do

chsh bill/bin/csh

It is only necessary to do this once. The next time you log in to UNIX after
doing this command. you will be using csh rather than the shell in "/bin/sh'
(1.9) .

emp is a program which compares files. It is usually used on binary files. or to
see if two files are identical (3.6). For comparing text files the program diff~
described in 'diff 0)' is used.

A function performed by the system. either by the shell (a builtin command)
or by a program residing in a file in a directory within the UNIX system. is
called a command OJ).

When a command is issued. it consists of a command name. which is the first
word of the command. followed by arguments. The convention on UNIX is
that the first word of a command names the function to be performed (1.1).

• 37 •

command substitution

component

continue

control-

core dump

cp

c:sh

.c:shrc

cwd

date

debugging

default:

DELETE

detached

diagnostic

The replacement of a command enclosed in ," characters by the text output by
that command is called command substitution (4.3).

A part of a pathname between • r characters is called a conrpo"elll of that pOlh­
name. A variable which has multiple strings as value is said to have several
componentS; each string is a component of the variable.

A builtin command which causes execution of the enclosing loreach or "'hile
loop to cycle prematurely. Similar to the continue command in the program­
ming language C (3.6).

Certain special characters .. called control characters .. are produced by holding
down the CONTROL key on your terminal and simultaneously pressing another
character. much like the SHIFT key is used to produce upper case characters.
Thus contro/-c is produced by holding down the CONTROL key while pressing
the 'c' key. Usually UNIX prints an up-arrow (T) followed by the corresponding
letter when you type a cOl7lrol character (e.g. 'TC' for contro/-c (1.8).
When a program terminates abnormally, the system places an image of its
current stale in a file named 'core'. This core dump can be examined with the
system debugger 'adbO)' or 'sdbOr in order to determine what went wrong
with the program (1.8). If the shell produces a message of the form

Illegal instruction (core dumped)

(where 'Illegal instruction' is only one of several possible messages). you
should report this to the author of the program or a system administrator. sav­
ing the 'core' file.

The cp (copy) program is used to copy the contents of one file into another
file. It is one of the most commonly used UNIX commands (1.6>-
The name of the shell program that this document describes.

The file .cshrc in your home directory is read by each shell as it begins execu­
tion. It is usually used to change the setting of the variable path and to set
alias parameters which are to take effect globally (2.1).

The CM:d variable in the shell holds the absolute pathllame of the current ... ork­
ing diteCtory. It is changed by the shell whenever your current .,.:orking directory
changes and should not be changed otherwise (2.2).

The date command prints the current date and time (1.3).

Debugging is the process of correcting mistakes in programs and shell scri pts.
The shell has several options and variables which may be used to aid in shell
debugging (4.4).

The label default: is used within shell switch statements .. as it is in the C
language to label the code to be executed if none of the case labels matches
the value switched on (3.7).

The DELETE or RUBOUT key on the terminal normally causes an interrupt to be
sent to the current job. Many users change the interrupt character to be T C.

A command that continues running in the background after you logout is said
to be detached.
An error message produced by a program is often referred to as a diagnostic.
Most error messages are not written to the standard output. since that is often
directed away from the terminal (1.3, 1.5). Error messsages are instead writ­
ten to the diagnostic output which may be directed away from the terminat but
usually is not. Thus diagnostics will usually appear on the terminal (2.5).

- 38 -

directory A structure which contains files. At any time you are in one particular dll'eclm:r
whose names can be printed by the command pwd. The chd" command will
change you to another directory. and make the files in that direclory visible, The
directory in which you are when you first login is your home directory (1.1.
2.7).

directory stack The shell saves the rtames of previous worki"g directories in the directory slad.;
when you change your current working directory via the pushd command. The
directory stack can be printed by using the dirs command. which includes your
current working directory as the first directory name on the left (2.7).

dirs The dirs command prints the sheWs directory stack (2.7),

du The du command is a program (described in ~du(1)') which prints the number
of disk blocks is all directories below and including your current orkmg dire,',
lOry (2.6).

echo The echo command prints its arguments (1.6. 3.6L

else The else command is part of the ~if-then-else-endir control command con­
struct (3.6).

endif If an ifstatement is ended with the word thell. all lines following the ((up to a
line starting with the word endifor else are executed if the condition between
parentheses after the ifis true (3.6).

EOF An end-a.f. file is generated by the terminal by a control-d. and whenever a
command reads to the end of a file which it has been given as input. Com­
mands receiving input from a pipe receive an elld-o.f-fife when the command
sending them input completes. Most commands terminate when they receive
an end-of-file. The shell has an option to ignore elld-a.f.file from a terminal
input which may help you keep from logging out accidentally by typing loo
many control-d's (1.1. 1.8. 3.8),

escape A character ~" used to prevent the special meaning of a melacharacter is said
to escape the character from its special meaning. Thus

/etc/passwd

exit

exit status

echo ,-

will echo the character •• ' while just

echo -

will echo the names of the file in the current directory, In this example. \
escapes ~.' (I. 7). There is also a non-printing character called escape. usually
labelled ESC or ALTMODE on terminal keyboards. Some older UNIX systems use
this character to indicate that output is to be suspended. Most systems use
control-s to stop the output and control-q to start it.

This file contains information about the accounts currently on the system. It
consists of a line for each account with fields separated by ~:' characters (l.8)'
You can look at this file by say~ng

cat /etc/passwd

The commands finger and grep""are often used to search for information in this
file. See ~finger(l}', ~passwd(S),. and ·grep(l)' for more details.

The exit command is used to force termination of a shell script. and is built
into the shell (3.9>-

A command which discovers a problem may reflect this back to the command
(such as a shell) which invoked (executed) it. It does this by returning a
non-zero number as its exit status. a status of zero being considered "normal
termination'. The exit command can be used to force a shell command script

expansion

expressions

extension

fg

filename

• 39 •

to give a non-zero exit status (3.6).

The replacement of strings in the shell input which contain metacharacters by
other strings is referred to as the process of expallsioll. Thus the replacement
of the word '.' by a sorted list of files in the current directory is a 'filename
expansion'. Similarly the replacement of the characters '!!' by the· text of the
last command is a 'history expansion'. Expallsiolls are also referred to as substi­
tutions (1.6, 3.4. 4.2),
Expressions are used in the shell to control the conditional structures used in
the writing of shell scripts and in calculating values for these scripts. The
operators available in shell expressions are those of the language C (3.5).
Filenames often consist of a base name and an extension separated by the char­
acter '. '. By convention. groups of related files often share the same rool
name. Thus if 'prog.c' were a C program, then the object file for this program
would be stored in 'prog.o'. Similarly a paper written with the '-me' nroff
macro package might be stored in 'paper.me' while a formatted version of this
paper might be kept in ·paper.out' and a list of spelling errors in 'paper.errs·
(1.6).

The job control command fg is used to run a background or suspended job in the
foreground (1.8, 2.6).
Each file in UNIX ~as a name consisting of up to 14 characters and not includ­
ing the character '/' which is used in palhname building. Most filenames do not
begin with the character'.', and contain only letters and digits with perhaps a
'.' separating the base portion of the filename from an extension (1.6).

filename expansion
. Filename expallsion uses the metacharacters '.', '1' and ~[' and ~]' to provide a

convenient mechanism for naming files. Using filename expansion it is easy to
name all the files in the current directory. or all files which have a common
root name. Other filename expansion mechanisms use the metacharacter ,-. and
allow files in other users' directories to be named easily (1.6, 4.2>.

flag

foreach

foreground

go to

grep

Many UNIX commands accept arguments which are not the names of files or
other users but are used to modify the action of the commands. These are
referred to as fiag options. and by convention consist of one or more letters
preceded by the character' -' (1.2). Thus the Is Oist files) command has an
option' -s' to list the sizes of files. This is specified

Is -s

The foreach command is used in shell scripts and at the terminal to specify
repetition of a sequence of commands while the value of a certain shell vari­
able ranges tbrough a specified list (3.6,4.1).

When commands are executing in the normal way such that the shell is waiting
for them to finish before prompting for another command they are said to be
foreground jobs or running in the foreground. This is as opposed to background.
Foreground jobs can be stopped by signals from the terminal caused by typing
different control characters at the keyboard (1.8. 2.6).

The shell has a command goto used in shell scripts to transfer control to a
given label (3.7).

The grep command searches through a list of argument files for a specified
string. Thus

grep bill /etc/passwd

will print each line in the file letdpasswd which contains the string 'bill'.

head

history

home directory

if

ignoreeof

input

interrupt

job

·40·

Actually. grep scans for regular expressiolls in the sense of the editors 'ed(1,.
and ·ex(1)'. Grep stands for ·globally find regular expressioll and print' (2.4>-

The head command prints the first few lines of one or more files. If you have
a bunch of files containing text which you are wondering about it is sometimes
useful to run head with these files as arguments. This will usually show
enough of what is in these files to let you decide which you are interested in
(1.5).
Head is also used to describe the part of a patl7llame before and including the
last·1' character. The tail of a patJ1Ilanre is the part after the last "t'. The ':h'
and ·:t' modifiers allow the head or tail of a pat/maine stored in a shell variable
to be used (3.6),
The history mechanism of the shell allows previous commands to be repeated.
possibly after modification to correct typing mistakes or to change the meaning
of the command. The shell has a history list where these commands are kept,
and a history variable which controls how large this list is (2.3>'

Each user has a home directory. which is given in your entry in the password
file. letclpassM·d. This is the directory which you are placed in when you first
login. The cd or chdir command with no arguments takes you back to this
directory. whose name is recorded in the shell variable hOllle. You can also
access the home directories of other users in forming filenames using a .filename
expansioll notation and the character .-, (1.6).

A conditional command within the shell. the if command is used in shell com­
mand scripts to make decisions about what course of action to take next (3.6>-
Normally. your shell will exit, printing "logout' if you type a control-d at a
prompt of "% '. This is the way you usually log off the system. You can set
the igno·ree~fvariable if you wish in your .Iogin file and then use the command
logout to logout. This is useful if you sometimes accidentally type too many
control-d characters. logging yourself off (2.2).
Many commands on UNIX take information from the terminal or from tiles
which they then act on. This information is called input. Commands normally
read for input from their standard input which is. by default. the terminal. This
stal1dard input can be redirected from a file using a shell metanotation with the
character ~<'. Many commands will also read from a file specified as argu­
ment. Commands placed in pipelines will read from the output of the previous
command in the pipeline. The leftmost command in a pipeline reads from the
terminal if you neither redirect its input nor give it a filename to use as stan­
dard input. Special mechanisms exist for supplying input to commands in shell
scripts O.S .. 3.8).

An interrupt is a signal to a program that is generated by hitting the RUBOUT or
DELETE key (although users can and often do change the interrupt character.
usually to TC), It causes most programs to stop execution. Certain programs.
such as the shell and the editors. handle an interrupt in special ways. usually by
stopping what they are doing and prompting for another command. While the
shell is executing another command' and waiting for it to finish. the shell does
not listen to interrupts. The shell often wakes up when you hit interrupt
because many commands die when they receive an interrupt 0.8. 3.9).

One or more commands typed on the same input line separated by ~I' or ~~'
characters are run together and are called a job. Simple commands run by
themselves without any ·r or ";' characters are the simplest jobs. Jobs are
classified as foreground., background, or suspended (2.6).

job control

job number

jobs

kill
.login

10lin shell

1010ut

.logout

Ipr

Is

mail

make

makefile

manual

. metacharacter

• 41 •

The builtin functions that control the execution of jobs are called job COlllro/
commands. These are bg,lg, stop, kill (2.6)'

When each job is started it is assigned a small number called a job mmrber
which is printed next to the job in the output of the jobs command. This
number. preceded by a .%' character. can be used as an argument to job col1tro/
commands to indicate a specific job (2.6),

The jobs command prints a table showing jobs that are either running in the
btlckground or are suspended (2.6).

A command which sends a signal to a job causing it to terminate (2.6).

The tile .Iogin in your home directory is read by the shell each time you login to
UNIX and the commands there are executed. There are a number of com·
mands which are usefully placed here. especially set commands to the shell
itself (2.1).

The shell that is started on your terminal when you login is called your 10gll1
shell. It is different from other shells which you may run (e.g. on shell scripts)
in that it reads the .Iogin file before reading commands from the terminal and it
reads the .Iogout file after you logout (2.1).

The logout command causes a login shell to exit. Normally. a login shell will
exit when you hit control·d generating an e"d-o.f.file. but if you have set
ignoreeol in you ./ogill file then this will not work and you must use logout to
101 off the UNIX system (2.S)'

When you log off of UNIX the shell will execute commands from the file .Io~ollf
in your home directory after it prints ·Iogout'.

The command Ipr is the line printer daemon. The standard input of Ipr spooled
and printed on the UNIX line printer. You can also give Ipr a list of filenames
as arguments to be printed. It is most common to use Ipr as the last com­
ponent of a pipeline (2.3).
The Is (Ust files) command is one of the most commonly used UNIX com­
mands. With no argument filenames it prints the names of the files in the
current directory. It has a number of useful flag arguments. and can also be
given the names of directories as arguments. in which case it lists the names of
the files in these directories (1.2).

The mail program is used to send and receive messages from other UNIX users
(1.1. 2.0.
The make command is used to maintain one or more related files and to organ·
ize functions to be performed on these files. In many ways make is easier to
use. and more helpful than shell command scripts (3.2).

The file containing commands for make is called makefile (3.2).

The manual often referred to is the ~UNIX programmer's manual'. It contains a
number of sections and a description of each UNIX program. An online version
of the manual is accessible through the man command. Its documentation can
be obtained online via

man man

Many characters which are neither letters nor digits have special meaning
either to the shell or to UNIX. These characters are called metacharacters. If it
is necessary to place these characters in arguments to commands without them
having their special meaning then they must be quoted. An example of a meta·
character is the character • >' which is used to indicate placement of output

mkdir

modifier.

more

noclobber

noglob

notify

onintr

output

pushd

path

• 42 •

into a file. For the purposes of the history mechanism, most unquoted meTa­
characters form separate words (1.4). The appendix to this user's manual lists
the metacharacters in groups by their function.

The mkdir command is used to create a new directory.

Substitutions with the history mechanism. keyed by the character '!. or of vari­
ables using the metacharacter ~S'. are often subjected to modifications. indi­
cated by placing the character ~:' after the substitution and following this with
the modifier itself. The commalld substitution mechanism can also be used to
perform modification in a similar way, but this notation is less clear (3.6L

The program more writes a file on your terminal allowing you to control how
much text is displayed at a time. iWore can move through the file screenful by
screenful, line by line, search forward for a string. or start again at the begin­
ning of the file. It is generally the easiest way of viewing a file (1.8).

The shell has a variable nac/obber which may be set in the file ./ogil1 to prevent
accidental destruction of files by the ~>' output redirection metasyntax of the
shell (2.2, 2.5).

The shell variable noglob is set to suppress the filename expansion of arguments
containing the metacharacters ~"'. ~." '?'. '[' and ']' (3.6),

The notify command tells the shell to report on the termination of a specific
background job at the exact time it occurs as opposed to waiting until just
before the next prompt to report the termination. The Ilot~fy variable. if sel.
causes the shell to always report the termination of background jobs exactly
when they occur (2.6).

The onintr command is built into the shell and is used to control the action of
a shell command script when an imerrupt signal is received (3.9),

Many commands in UNIX result in some lines of text which are called their OLlI­

put. This output is usually placed on what is known as the standard ompUl
which is normally connected to the user's terminal. The shell has a syntax
using the metacharacter • >' for redirecting the standard output of a command
to a file (1.3). Using the pipe mechanism and the metacharacter 'r it is also
possible for the standard output of one command to become the standard il1PUT
of another command (1.5). Certain commands such as the line printer dae­
mon p do not place their results on the standard output but rather in more use­
ful places such as on the line printer (2.3). Similarly the write command places
its output on another user's terminal rather than its stal1dard output (2.3>'
Commands also have a diagnostic output where they write their error messages,
Normally these go to the terminal even if the standard output has been sent LO

a file or another command. but it is possible to direct error diagnostics along
with standard output using a special metanotation (2.5).

The pushd command. which means 'push directory'. changes the shell's K'ork­
ing directory and also remembers the current Hlorkillg directory before the change
is made. allowing you to return to the same directory via the popd command
later without retyping its name (2.7).

The shell has a variable path which gives the names of the directories in which
it searches for the commands which it is given. It always checks first to see if
the command it is given is built into the shell. If it is~ then it need not search
for the command as it can do it internally. If the command is not builtin. then
the shell searches for a file with the name given in each of the directories in
the path variable~ left to right. Since the normal definition of the path variable
is

pathname

pipeline

popd

port

pr

printenv

process

program

- 43 •

path (. /usr/ucb Ibin lUST/bin)

the shell normally looks in the current directory. and then in the standard sys­
tem directories '/usr/ucb\ '/bin' and '/usr/bin' for the named command
(2.2). If the command cannot be found the shell will print an error diagnostic,
Scripts of shell commands will be executed using another shell 'to interpret
them if they have 'execute' permission set. This is normally true because a
command of the form

chmod 755 script

was executed to tum this execute permission on (3.3). If you add new com­
mands to a directory in the path, you should issue the command rehash (2.2>.

A list of names. separated by 'r characters, forms a pat/moille. Each c.'om­
,oneill. between successive 'r characters, names a directory in which the nexl
component file resides. Palhnames which begin with the character' rare inler­
preted relative to the rOOI directory in the filesystem. Other patlmames are
interpreted relative to the current directory as reported by pM:d. The last com­
ponent of a palhllame may name a directory, but usually names a file.
A group of commands which are connected together, the stalldard output of
each connected to the slandard input of the next, is called a pipelille. The pipe
mechanism used to connect these commands is indicated by the shell meta­
character l' (1.5, 2.3).
The popd command changes the sheWs working directory to the directory you
most recently left using the pushd command. It returns to the directory
without having to type its name, forgetting the name of the current orkll1g
directory before doing so (2.7).

The part of a computer system to which each terminal is connected is called a
port. Usually the system has a fixed number of ports. some of which are con­
nected to telephone lines for dial-up access, and some of which are per­
manently wired directly to specific terminals.
The pr command is used to prepare listings of the contents of files with
headers giving the name of the file and the dale and time at which the file was
last modified (2.3).

The printe"" command is used to print the current setting of variables in the
environment (2.8).
An instance of a running program is called a process (2.6). UNIX assigns each
process a unique number when it is started - called the process number; Pro-
cess numbers can be used to stop individual processes using the kjllor stop com­
mands when the processes are part of a detached background job.
Usually synonymous with command:, a binary file or shell command scripl
which performs a useful function is often called a program.

programmer's manual

prompt
Also referred to as the manual. See the glossary entry for ·manual·.
Many programs will print a prompt on the terminal when they expect input.
Thus the editor 'ex(1)' will print a .:' when it expects input. The shell prompts
for input with .% ' and occasionally with .? ' when reading commands from
the terminal (1.1). The shell has a variable prompt which may be set to a
different value to change the sheWs main prompt. This is mostly used when
debugging the shell (2.8).

ps

pwd

quit

quotation

redirection

rehash

- 44-

The ps command is used to show the processes you are currently running.
Each process is shown with its unique process number. an indication of the
terminal name it is attached to. an indication of the state of the process
(whether it is running. stopped .. awaiting some event (sleeping). and whether
it is swapped out). and the amount of CPU time it has used so far. The com­
mand is identified by printing some of the words used when it was invoked
(2.6). Shells. such as the csh you use to run the ps command. are not nor­
mally shown in the output.
The pwd command prints the full pathnanle of the current .,.'orking directory.
The dirs builtin command is usually a better and faster choice.
The quit signal. generated by a control-\. is used to terminate programs which
are behaving unreasonably. It normally produces a core image file (1.8).

The process by which metacharacters are prevented their special meaning. usu­
ally by using the character ,,, in pairs., or by using the character ~\ '. is referred
to as quotation 0.7).
The routing of input or output from or to a file is known as redirectioll of input
or output 0.3).
The rehash command tells the shell to rebuild its internal table of which com­
mands are found in which directories in· your path. This is necessary when a
new program is installed in one of these directories (2.8),

relative path name

repeat
root

RUBOL'T

scratch file

script

set

A patJmanlti' which does not begin with a ~I' is called a relath'e pathllame since it
is interpreted relalive to the current working directory. The. first compollem of
such a pathname refers to some file or directory in the ""orkillg directory. and
subsequent componems between \1' characters refer to directories below the
working directory. PatJlIlames that are not relative are caHed absolute patl1llames
0.6),
The repeat command iterates another command a specified number of times.
The directory that is at the top of the entire directory structure is called the
root directory since it is the ~root' of the entire tree structure of directories.
The name used in pathnanres to indicate the rOol is ~ /'. Pathllanres starting wi th
'/' are said to be absolute since they start at the root directory. Root is also
used as the part of a pathnanle that is left after removing the extension. See
filename for a further explanation 0.6),
The RUBOt..'T or DELETE key sends an interrupt to the current job. :Vlost
interactive commands return to their command . level upon receipt of an inter­
rupt., while non-interactive commands usually terminate~ returning control to
the shell. Users often change interrupt to be generated by r C rather than
DELETE by using the Slty command.
Files whose names begin with a ~#' are referred to as scratch files.. since they
are automatically removed by the system after a couple of days of non-use. or
more frequently if disk space becomes tight (1.3).

Sequences of shell commands placed in a file are called shell command scrrprs.
It is often possible to perform simple tasks using these scripts without writing a
program in a language such as C. by using the shell to selectively run other
programs (3.3 ~ 3.1 0),

The builtin set command is used to assign new values to shell variables and to
show the values of the current variables. Many shell variables have special
meaning to the shell itself. Thus by using the set command the behavior of
the shell can be air ected (2.1).

setenv

shell

shell script
signal

sort

source

• 4S -

Variables in the environment 'environCS)' can be changed by using the sere,,\,
builtin command C2.8). The printenv command can be used to print the value
of the variables in the environment.
A shell is a command language interpreter. It is possible to write and run your
own shell. as shells are no different than any other programs as far as the sys­
tem isconcemed. This manual deals with the details of one particular sl1el/.
called csh.
See script (3.3, 3.10),

A signal in UNIX is • short message thal is sent to a running program which
. causes something to happen to that process. Signals are sent either by typing
special control characters on the keyboard or by using the kill or slap commands
U.8. 2.6).
The sort program sorts a sequence of lines in ways that can be controlled by
argument flags 0.5).
The source command causes the shell to read commands from a specified file.
It is most useful for reading files such as .cshrc after changing them (2.8).

special character

standard

status

stop
string

stty

substitution

suspended

switch

termination

then

See metacharacters and the appendix to this manual.
We refer often to the standard input and standard output of commands. See
input and output (I.3, 3.8).
A command normally returns a status when it finishes. By convention a slatus
of zero indicates that the command succeeded. Commands may return non­
zero SIatus to indicate that some abnormal event has occurred. The shell vari­
able status is set to the status returned by the last command. It is most useful
in shell commmand scripts C3.6}.
The SlOp command causes a background job to become suspended (2.6).
A sequential group of characters taken together is caned a string. S"II1[(S can
contain any printable characters (2.l).
The 51t)' program changes certain parameters inside UNIX which determine how
your terminal is handled. See ·stty(l)' for a complete description {2.6>'
The shell implements a number of substitUliolls where sequences indicated by
metacharacters are replaced by other sequences. Notable examples of this are
history substitution keyed by the metacharacter .!" and variable substitution indi·
cated by ·S'. We also refer to substitutiolls as expansions (3.4).

A job becomes suspended after a STOP signal is sent to it. either by typing a
control-z at the terminal (for foreground jobs) or by using the stop command
(for background jobs). When suspended, a job temporarily stops running until il
is restarted by either the fg or bg command (2.6).
The 5\4'itch command of the shell allows the shell to select one of a number of
sequences of commands based on an argument string. It is similar to the
switch statement in the language C (3.7).

When a command which is being executed finishes we say it undergoes ref/m­
nation or terminates. Commands normally terminate when they read an end­
of file from their standard input. It is also possible to terminate commands by
sending them an interrupt or quit signal (I .8). The kill program terminates
specified jobs (2.6).
The then command is part of the shell"s ·if-then-else-endir control construct
used in command scripts (3.6)'

time

tset

tty

unalias

UNIX

unset

- 46 •

The timfl command can be used to measure the amount of CPt' and real lime
consumed by a specified command as well as the amount of disk i/o. memory
utilized.. and number of page faults and swaps taken by the command (2.1.
2.8).

The tSflt program is used to set standard erase and kill characters and to tell the
system what kind of terminal you are using. It is often invoked in a ./og1l1 file
(2.1).

The word tty is a historical abbreviation for ~teletype· which is frequently used
in UNIX to indicate the port to which a given terminal is connected. The r~r
command will print the name of the tty or porI to which your terminal is
presently connected.
The unalias command removes aliases (2.8).

UNIX is an operating system on which csh runs. UNIX provides facilities which
allow csh to invoke other programs such as editors and text formatters which
you may wish to use.
The UIlSflt command removes the definitions of shell variables (2.2 .. 2.8>'

variable expansion

variables

verbose

wc

while
word

See variables and expal1sion (2.2. 3.4).
Variables in csh hold one or more strings as value. The most common use of
variables is in controlling the behavior of the shell. See path. /loclobber. and
iglloreeo.f for examples. Variables such as argl' are also used in writing shell
programs (shell command scripts) (2.2).
The verbosfl shell variable can be set to cause commands to be echoed after
they are history expanded. This is often useful in debugging shell scripts. The
vflrbose variable is set by the shell's -v command line option (3.10).

The M·C program calculates the number of characters. words. and lines in the
files whose names are given as arguments (2.6).

The while builtin control construct is used in shell command scripts (3.7).

A sequence of characters which forms an argument to a command is called a
word. Many characters which are neither letters .. digits. ~ -' .. ~ .. nor • r form
M·ords all by themselves even if they are not surrounded by blanks. Any
sequence of characters may be made into a word by surrounding it with
characters except for the characters ,,,. and 'r which require special treatment
0.1). This process of placing special characters in words without their special
meaning is called quotillg. .

. working directory

write

At any given time you are in one particular directory. called your M·orkill~ direc­
tory. This directory's name is printed by the pwd command and the files listed
by Is are the ones in this directory. You can change ,,"orkilll(direclorifls using
chdir.

The write command is used to communicate with other users who are logged in
to UNIX.

A Guide to the Dungeons of Doom

Michael C. Toy
Kenneth C. R. C. Arnold

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California
Berkeley, California 94720

ABSTRACT

Rogue is a visual CRT based fantasy game which runs under the UNIXt timesharing
system. This paper describes how to play rogue, and gives a few hints for those who
might otherwise get lost in the Dungeons of Doom.

tUNIX is a trademark of Bell Laboratories

A Guide to the Dungeons of Doom

1. Introduction
You have just finished your years as a student at the local fighter's guild. After much

practice and sweat you have finally completed your training and are ready to embark upon a
perilous adventure. As a test of your skills, the local guildmasters have sent you into the
Dungeons of Doom. Your task is to return with the Amulet of Yendor. Your reward for the
completion of this task will be a full membership in the local guild. In addition, you are
allowed to keep all the loot you bring back from the dungeons.

In preparation for your journey, you are given an enchanted mace, a bow, and a quiver of
arrows taken from a dragon's hoard in the far oft" Dark Mountains. You are also outfitted with
elf-crafted armor and given enough food to reach the dungeons. You say goodbye to family
and friends for what may be the last time and head up the road.

You set out on your way to the dungeons and after several days of uneventful travel, you
see the ancient ruins that mark the entrance to the Dungeons of Doom. It is late at night, so
you make camp at the entrance and spend the night sleeping under the open skies. In the
morning you gather your weapons; put on your armor, eat what is almost your last food, and
enter the dungeons.

2. What is going on here?

You have just begun a game of rogue. Your goal is to grab as much treasure as you can,
find the Amulet of Yendor, and get out of the Dungeons of Doom alive. On the screen, a map
of where you have been and what you have seen on the current dungeon level is kept. As you
explore more of the level, it appears on the screen in front of you.

Rogue dift"ers from most computer fantasy games in that it is screen oriented. Commands
are all one or two keystrokes I and the results of your commands are displayed graphically on
the screen rather than being explain~d in words. 2

Another major dift"erence between rogue and other computer fantasy games is that once
you have solved all the puzzles in a standard fantasy game, it has lost most of its excitement
and it ceases to be fun. Rogue, on the other hand, generates a new dungeon every time you
play it and even the author finds it an entertaining and exciting game.

3. What do all those things on the screen mean?

In order to understand what is going on in rogue you have to first get some grasp of what
rogue is doing with the screen. The rogue screen is intended to replace the "You can see ... "
descriptions of standard fantasy games. Figure 1 is a sample of what a rogue screen might look
like.

3.1. The bottom line

At the bottom line of the screen are a few pieces of cryptic information describing your
current status. Here is an explanation of what these things mean:
Level This number indicates how deep you have gone in the dungeon. It starts at one and

goes up as you go deeper into the dungeon.

Gold The number of gold pieces you have managed to find and keep with you so far.

Hp Your current and maximum hit points. Hit points indicate how much damage you can
take before you die. The more you get hit in a fight, the lower they get. You can regain
hit points by resting. The number in parentheses is the maximum number your hit
points can reach.

I As opposed to pseudo English sentences.

2 A minimum screen size of 24 lines by 80 columns is required. If the screen is larger. only the 24x80 section
will be used for the map. .

- 1 •

A Guide to the Dungeons of Doom

.... .. +
• . @ ..••]

.8 ..

- - + -

Level: 1 Gold: 0 Hp: 12(12) Str: 16(16) Ac: 6 Exp: 1/0

Figure 1

Str Your current strength and maximum ever strength. This can be any integer less than or
equal to 31, or greater than or equal to three. The higher the number, the stronger you
are. The number in the parentheses is the maximum strength you have attained so far
this game.

Ac Your current armor class. This number indicates how effective your armor is in stop­
ping blows from unfriendly creatures. The lower this number is, the more effective the
armor.

Exp These two numbers give your current experience level and experience points. As you
do things, you gain experience points. At certain experience point totals, you gain an
experience level. The more experienced you are, the better you are able to fight and to
withstand magical attacks.

3.2. The top line
The top line of the screen is reserved for printing messages that describe things that are

impossible to represent visually. If you see a "--More--" on the top line, this means that rogue
wants to print another message on the screen, but it wants to make certain that you have read
the one that is there first. To read the next message, just type a space.

3.3. The rest of the screen
The rest of the screen is the map of the level as you have explored it so far. Each symbol

on the- screen represents something. Here is a list of what the various symbols mean:

@ This symbol represents you, the adventurer.

-I
+

•
)

]

These symbols represent the walls of rooms.

A door tolfrom a room.

The floor of a room.

The floor of a passage between rooms.

A pile or pot of gold .

A weapon of some sort.

A piece of armor.

A flask containing a magic potion.
? A piece of paper, usually a magic scroll.

- 2-

- .A ring with magic properties

I A magical staff or wand

A trap, watch out for these.

% A staircase to other levels

A piece of food.

A Guide to the Dungeons of Doom

A-Z The uppercase letters represent the various inhabitants of the Dungeons of Doom. Watch
out, they can be nasty and vicious.

4. Commands

Commands are given to rogue by typing one or two characters. Most commands can be
preceded by a count to repeat them (e.g. typing "lOs" will do ten searches). Commands for
which counts make no sense have the count ignored. To cancel a count or a prefix, type
< ESCAPE> . The list of commands is rather long, but it can be read at any time duri~g the
game with the "?" command. Here it is for reference, with a short explanation of each com­
mand.

? The help command. Asks for a character to give help on. If you type a "*", it will list all
the commands, otherwise it will explain what the character you typed does.

I This is the "What is that on the screen?" command. A" I" followed by any character
that you see on the level, will tell you what that character is. For instance, typing "/@"
will tell you that the "@" symbol represents you, the player.

h, H, "H
Move left. You move one space to the left. If you use upper case "h", you will continue
to move left until you run into something. This works for all movement commands (e.g.
"L" means run in direction "l~') If you use the "control" "h", you will continue moving
in the specified direction until you pass something interesting or run into a wall. You
should experiment with this, since it is a very useful command, but very difficult to
describe. This also works for all movement commands.

j Move down.

k Move up.

I Move right.

y Move diagonally up and left.

u Move diagonally up and right.

b Move diagonally down and left.

n Move diagonally down and right.

t Throw an object. This is a prefix command. When followed with a direction it throws an
object in the specified direction. (e.g. type "th" to throw something to the left.)

f Fight until someone dies. When followed with a direction this will force you to fight the
creature in that direction until either you or it bites the big one.

m Move onto something without picking it up. This will move you one space in the direc­
tion you specify and, if there is an object there you can pick up, it won't do it.

z Zap prefix. Point a staff or wand in a given direction and fire it. Even non-directional
staves must be pointed in some direction to be used.

Identify trap command. If a trap is on your map and you can't remember what type it is,
you can get rogue to remind you by getting next to it and typing "A" followed by the
direction that would move you on top of it.

s Search for traps and secret doors. Examine each space immediately adjacent to you for
the existence of a trap or secret door. There is a large chance that even if there is some­
thing there, you won't find it, so you might have to search a while before you find

- 3-

>

<

•
I
q

r

e
w

W

T
P

R

d

c

D

o

"R

"P

A Guide to the Dungeons of Doom

something.

Climb down a staircase to the next level. Not surprisingly, this can only be done if you
are standing on staircase.

Climb up a staircase to the level above. This can't be done without the Amulet of Yen­
dor in your possession.

Rest. This is the "do nothing" command. This is good for waiting and healing.

Inventory. List what you are carrying in your pack .

Selective inventory. Tells you what a single item in your pack is.

Quaff one of the potions you are carrying.

Read one of the scrolls in your pack.

Eat food from your pack.

Wield a weapon. Take a weapon out of your pack and carry it for use in combat, replac­
ing the one you are currently using (if any) .

Wear armor. You can only wear one suit of armor at a time. This takes extra time.

Take armor off. You can't remove armor that is cursed. This takes extra time.

Put on a ring. You can wear only two rings at a time (one on each hand). If you aren't
wearing any rings, this command will ask you which hand you want to wear it on, other-
wise, it will place it on the unused hand. The program assumes that you wield your sword
in your right hand.

Remove a ring. If you are only wearing one ring, this command takes it off. If you are
wearing two, it will ask you which one you wish to remove,

Drop an object. Take something out of your pack and leave it lying on the floor. Only
one object can occupy each space. You cannot drop a cursed object at all if you are wield-
ing or wearing it. .

Call an object something. If you have a type of object in yC'ur pack which you wish to
remember something about, you can use the call command to give a name to that type of
object. This is usually used when you figure out what a potion, scroll, ring, or staff is
after you pick it up, or when you want to remember which of those swords in your pack
you were wielding.

Print out which things you've discovered something about. This command will ask you
what type of thing you are interested in. If you type the character for a given type of
object (e.g. "!" for potion) it will tell you which kinds of that type of object you've
discovered (i.e., figured out what they are). This command works for potions, scrolls,
rings, and staves and wands.

Examine and set options. This command is further explained in the section on options.

Redraws the screen. Useful if spurious messages or transmission errors have messed up
the display.

Print last message. Useful when a message disappears before you can read it. This only
repeats the last message that was not a mistyped command so that you don't loose any-
thing by accidentally typing the wrong character instead of "P.

<ESCAPE>
Cancel a command, prefix, or count.

Escape to a shell for some commands.

Q Quit. Leave the game.

S Save the current game in a file. It will ask you whether you wish to use the default save
file. Caveat. Rogue won't let you start up a copy of a saved game, and it removes the
save file as soon as you start up a restored game. This is to prevent people from saving a

- 4-

A Guide to the Dungeons of Doom

game just before a dangerous position and then restarting it if they die. To restore a
saved game, give the file name as an argument to rogue. As in

% rogue save.Jile

To restart from the default save file (see below), run
% rogue -r

v Prints the program version number.

) Print the weapon you are currently wielding

] Print the armor you are currently wearing

.. Print the rings you are currently wearing

@ Reprint the status line on the message line

5. Rooms
Rooms in the dungeons are either lit or dark. If you walk into a lit room, the entire 'room

will be drawn on the screen as soon as you enter. If you walk into a dark room, it will only be
displayed as you explore it. Upon leaving a room, all monsters inside the room are erased from
the screen. In the darkness you can only see one space in all directions around you. A corridor
is always dark.

6. Fighting
If you see a monster and you wish to fight it, just attempt to run into it. Many times a

monster you find will mind its own business unless you attack it. It is often the case that dis­
cretion is the better part of valor.

7. Objects you can find
When you find something in the dungeon, it is common to want to pick the object up.

This is accomplished in rogue by walking over the object (unless you use the "m" prefix, see
above). If you are carrying too many things, the program will tell you and it won't pick up the
object, otherwise it will add it to your pack and tell you what you just picked up.

Many of the commands that operate on objects must prompt you to find out which object
you want to use. If you change your mind and don't want to do that command after all, just
type an <ESCAPE> and the command will be aborted.

Some objects, like armor and weapons, are easily differentiated. Others, like scrolls and
potions, are given labels which vary according to type. During a game, any two of the same
kind of object with the same label are the same type. However, the labels will vary from game
to game.

When you use one of these labeled objects, if its effect is obvious, rogue will remember
what it is for you. If it's effect isn't extremely obvious you will be asked what you want to
scribble on it so you will recognize it later, or you can use the "call" command (see above).

7.1. Weapons

Some weapons, like arrows, come in bunches, but most come one at a time. In order to
use a weapon, you must wield it. To fire an arrow out of a bow, you must first wield the bow,
then throw the arrow. You can only wield one weapon at a time, but you can't change weapons
if the one you are currently wielding is cursed. The commands to use weapons are "w"
(wield) and "t" (throw). .

7.2. Armor
There are various sorts of armor lying around in the dungeon. Some of it is enchanted,

some is cursed, and some is just normal. Different armor types have different armor classes.
The lower the armor class, the more protection the armor affords against the blows of

- 5 -

A Guide to the Dungeons of Doom

monsters. Here is a list of the various armor types and their normal armor class:

Type Class
None 10
Leather armor 8
Studded leather / Ring mail 7
Scale mail 6
Chain mail 5
Banded mail / Splint mail 4
Plate mail 3

If a piece of armor is enchanted, its armor class will be lower than normal. If a suit of armor is
cursed, its armor class will be higher, and you will not be able to remove it. However, not all
armor with a class that is higher than normal is cursed.

The commands to use weapons are "W" (wear) and "T" (take off).

7.3. Scrolls

Scrolls come with titles in an unknown tongue3. After you read a scroll, it disappears
from your pack. The command to use a scroll is "r" (read).

7.4. Potions
Potions are labeled by the color of the liquid inside the flask. They disappear after being

quaffed. The command to use a scroll is "q" (quaff).

7.5. Staves and Wands
Staves and wands do the same kinds of things. Staves are identified by a type of wood;

wands by a type of metal or bone. They are generally things you want to do to something over
a long distance, so you must point them at what you wish to affect to use them. Some staves
are not affected by the direction they are pointed, though. Staves come with multiple magic
charges, the number being random, and when they are used up, the staff is just a piece of wood
or metal.

The command to use a wand or staff is "z" (zap)

7.6. Rings
Rings are very useful items, since they are relatively permanent magic, unlike the usually

fleeting effects of potions, scrolls, and staves. Of course, the bad rings are also more powerful.
Most rings also cause you to use up food more rapidly, the rate varying with the type of ring.
Rings are differentiated by their stone settings. The commands to use rings are "P" (put on)
and "R" (remove).

7.7. Food
Food is necessary to keep you going. If you go too long without eating you will faint, and

eventually die of starvation. The command to use food is "e" (eat).

8. Options
Due to variations in personal tastes and conceptions of the way rogue should do things,

there are a set of options you can set that cause rogue to behave in various different ways.

3 Actually, it's a dialect spoken only by the twenty-seven members of a tribe in Outer Mongolia, but you're not
supposed to know that.

-6 -

A Guide to the Dungeons of Doom

8.1. Setting the options

There are two ways to set the options. The first is with the "0" command of rogue; the
second is with the "ROGUEOPTS" environment variable4•

8.1.1. Using the '0' command

When you type "0" in rogue, it clears the screen and displays the current settings for all
the options. It then places the cursor by the value of the first option and waits for you to type.
You can type a < RETURN> which means to go to the next option, a "-" which means to go to
the previous option, an <ESCAPE> which n1eans to return to the game, or you can give the
option a value. For boolean options this merely involves typing "t" for true or "r' for false.
For string options, type the new value followed by a <RETURN>.

8.1.2. Using the ROGUEOPTS variable

The ROGUEOPTS variable is· a string containing a comma separated list of initial values
for the various options. Boolean variables can be turned on by listing their name or turned off
by putting a "no" in front of the name. Thus to set up an environment variable so that jump
is on, terse is off, and the name is set to "Blue Meanie", use the command

% setenv ROGUEOPTS "jump,noterse,name=-Blue Meanie"s

8.2. Option list

Here is a list of the options and an explanation of what each one is for. The default value
for each is enclosed in square brackets. For character string options, input over fifty characters
will be ignored.

terse [noterse]
Useful for those who are tired of the sometimes lengthy messages of rogue. This is a
useful option for playing on slow terminals, so this option defC\ults to terse if you are on a
slow (1200 baud or under) terminal.

jump [nojump]
If this option is set, running moves will not be displayed until you reach the end of the
move. This saves considerable cpu and display time. This option defaults to jump if you
are using a slow terminal.

flush [nojiush]
All typeahead is thrown away after each round of battle. This is useful for those who type
far ahead and then watch in dismay as a Bat kills them.

seefloor [seejioor]
Display the floor around you on the screen as you move through dark rooms. Due to the
amount of characters generated, this option defaults to noseejioor if you are using a slow
terminal.

passgo [nopassgo]
Follow turnings in passageways. If you run in a passage and you run into stone or a wall,
rogue will see if it can tum to the right or left. If it can only turn one way, it will turn
that way. If it can turn either or neither, it will stop. This is followed strictly, which can
sometimes lead to slightly confusing occurrences (which is why it defaults to nopassgo).

tombstone [tombstone]
Print out the tombstone at the end if you get killed. This is nice but slow, so you can
tum it off if you like.

4 On Version 6 systems, there is no equivalent of the ROGUEOPTS feature.

S For those of you who use the bourne shell, the commands would be
S ROGUEOPTS-"jump,noterse,name-Blue Meanie"
S export ROGUEOPTS

- 7 -

A Guide to the Dungeons of Doom

Inven [overwrite]
Inventory type. This can have one of three values: overwrite, slow, or clear. With
overwrite the top lines of the map are overwritten with the list when inventory is requested
or when "Which item do you wish to •.. ? " questions are answered with a "*". How­
ever, if the list is longer than a screenful, the screen is cleared. With slow, lists are
displayed one item at a time on the top of the screen, and with clear, the screen is
cleared, the list is displayed, and then the dungeon level is re-displayed. Due to speed
considerations, clear is the default for terminals without clear-to-end-of-line capabilities.

name [account name]
This is the name of your character. It is used if you get on the top ten scorer's list.

fruit [slime-mold]
This should hold the name of a fruit that you enjoy eating. It is basically a whimsey that
rogue uses in a couple of places.

file [-/rogue. save]
The default file name for saving the game. If your phone is hung up by accident, rogue
will automatically save the game in this file. The file name may start with the special
character "-,, which expands to be your home directory.

9. Scoring

Rogue usually maintains a list of the top scoring people or scores on your machine.
Depending on how it is set up, it can post either the top scores or the top players. In the latter
case, each account on the machine can post only one non-winning score on this list. If you
score higher than someone else on this list, or better your previous score on the list, you will
be inserted in the proper place under your current name. How many scores are kept can also
be set up by whoever installs it on your machine.

If you quit the game, you get out with all of your gold intact. If, however, you get killed
in the Dungeons of Doom, your body is forwarded to your next-of-kin, along with 90% of your
gold; ten percent of your gold is kept by the Dungeons' wizard as a fee6• This should make
you consider whether you want to take one last hit at that monster and possibly live, or quit
and thus stop with whatever you have. If you quit, you do get all your gold, but if you swing
and live, you might find more.

If you just want to see what the current top players/games list is, you can type
% rogue -s

10.
Acknowledgements

Rogue was originally conceived of by Glenn Wichman and Michael Toy. Ken Arnold and
Michael Toy then smoothed out the user interface, and 'added jillions of new features. We
would like to thank Bob Arnold, Michelle Busch, Andy Hatcher, Kipp Hickman, Mark Horton,
Daniel Jensen, Bill Joy, Joe Kalash, Steve Maurer, Marty McNary, Jan Miller, and Scott Nel­
son for their ideas and assistance; and also the teeming multitudes who graciously ignored
work, school, and social life to play rogue and sertdus bugs, complaints, suggestions, and just
plain flames. And also Mom.

6 The Dungeon's wizard is named Wally the Wonder Badger. Invocations should be accompanied by a sizable
donative.

.. 8 -

Screen Updating and Cursor Movement Optimization:
A Library Package

Kenneth C. R. C. Arnold

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

This document describes a package of C library functions which allow the user to:

• update a screen with reasonable optimization,
• get input from the terminal in a screen-oriented fashion, and
• independent from the above, move the cursor optimally from one point to another.

These routines all use the letc/termcap database to describe the capabilities of the
terminal.

Acknowledgements

This package would not exist without the work of Bill Joy, who, in writing his editor,
created the capability to generally describe terminals, wrote the routines which read this data­
base, and, most importantly, those which implement optimal cursor movement, which routines
I have simply lifted nearly intact. Doug Merritt and Kurt Shoens also were extremely impor­
tant, as were both willing to waste time listening to me rant and rave. The help and/or support
of Ken Abrams, Alan Char, Mark Horton, and Joe Kalash, was, and is, also greatly appreciated.

Sereen Paek_le

Contents

1 Overview .. 1
1.1 Terminology (or, Words You Can Say to Sound Brilliant) 1
1.2 Compiling Things ... 1
1.3 Screen Updating .. 1
1.4 Naming Conventions .. 2

2 Variables 2
3 Usage .. 3

3.1 Starting up ... 3
3.2 The Nitty-Gritty .. ;... 3

3.2.1 Output ... 3
3.2.2 Input .. :......... 4
3.2.3 Miscellaneous .. 4

3.3 Finishing up ... 4
4 Cursor Motion Optimization: Standing Alone .. 4

4.1 Terminal Information ... ~......... 4
4.2 Movement Optimizations, or, Getting Over Yonder 5

5 the Functions .. 6
5.1 Output Functions 6
5.2 Input Functions .. 9
5.3 Miscellaneous Functions ... 10
5.4 Details .. 13

Appendixes

Appendix A 14
1 Capabilities from termcap .. ;... 14

1.1 Disclaimer 14
1.2 Overview ... 14
1.3 Variables Set By setterm() .. 14
1.4 Variables Set By gettmodeO ... 15

Appendix B 16
1 The WINDOW structure 16
Appendix C 17
1 Examples 17
2 Screen Updating ... 17

2.1 Twinkle 17
2.2 Life ... 19

3 Motion optimization 22
3.1 Twinkle ... 22

-1-

Screen Package

1. Ove"iew
In making available the generalized terminal descriptions in /etc/termcap, much informa­

tion was made available to the programmer, but little work was taken out of one's hands. The
purpose of this package is to allow the C programmer to do the most common type of terminal
dependent functions, those of movement optimization and optimal screen updating, without do­
ing any of the dirty work, and (hopefully) with nearly as much ease as is necessary to simply
print or read things.

The package is split into three parts: (1) Screen updating; (2) Screen updating with user
input; and (3) Cursor motion optimization.

It is possible to use the motion optimization without using either of the other two, and
screen updating and input can be done without any programmer knowledge of the motion op­
timization, or indeed the database itself.

1.1. Terminology (or, Words You Can Say to Sound Brilliant>
In this document, the following terminology is kept to with reasonable consistency:

window: An internal representation containing an image of what a section of the terminal screen
may look like at some point in time. This subsection can either encompass the entire ter­
minal screen, or any smaller portion' down to a single character within that screen.

tenllillllt Sometimes called termilltll ~". The package's idea of what the terminal's screen
currently looks like, i.e., what the user sees now. This is a special screen:

~,,: This is a subset of windows which are as large as the terminal screen, i.e., they start at
the upper left hand corner and encompass the lower right hand comer .. One of these,
stdscr, is automatically provided for the programmer.

1.1. Compiling Things
In order to use the library, it is necessary to have certain types and variables defined.

Therefore, the programmer must have a line:

#include < curses.h >
at the top of the program source. The header file < curses.h > needs to include < sgtty.h > ,
so the one should not do so oneselfl. Also, compilations should have the following form:

cc [flags] file ... -lcurses -ltermlib

1.3. Screen Updating

In order to update the screen optimally, it is necessary for the routines to know what the
screen currently looks like and what the programmer wants it to look like next. For this pur­
pose, a data type (structure) named WINDOW is defined which describes a window image to
the routines, including its starting position on the screen (the (y, x) co-ordinates of the upper
left hand corner) and its size. One of these (called curser for current screen) is a screen image
of what the terminal currently looks like. Another screen (called stdscr, for standard screen) is
provided by default to make changes on.

A window is a purely internal representation. It is used to build and store a potential im­
age of a portion of the terminal. It doesn't bear any necessary relation to what is really on the
terminal screen. It is more like an array of characters on which to make changes.

When one has a window which describes what some part the terminal should look like,
the routine rejresh() (or wrejresh() if the window is not stdscr) is called. rejresh() makes the ter-

I The screen package also uses the Standard I/O library, so <curses.h> includes <stdlo.h>. It is redundant
(but harmless) for the programmer to do it, too.

-1-

Screen Package

minai, in the area covered by the window, look like that window. Note, therefore, that chang­
ing something on a window does not change the terminal. Actual updates to the terminal screen
are made only by calling re/reshO or wre/reshO. This allows the programmer to maintain
several different ideas of what a portion of the terminal screen should look like. Also, changes
can be made to windows in any order, without regard to motion efficiency. Then, at will, the
programmer can effectively say "make it look like this," and let the package worry about the
best way to do this.

1.4. Naming Conventions
As hinted above, the routines can use several windows, but two are automatically given:

curscr, which knows what the terminal looks like, and stdscr, which is what the programmer
wants the terminal to look like next. The user should never really access curscr directly.
Changes should be made to the appropriate screen, and then the routine re/reshO (or
wre/resh 0) should be called.

Many functions are set up to deal with stdscr as a default screen. For example, to add a
character to stdscr, one calls addchO with the desired character. If a different window is to be
used, the routine waddchO (for window-specific addchO) is provided2• This convention of
prepending function names with a "w" when they are to be applied to specific windows is con­
sistent. The only routines which do not do this are those to which a window must always be
specified.

In order to move the current (y, x) co-ordinates from one point to another, the routines
moveO and wmoveO are provided. However, it is often desirable to first move and then per­
form some 110 operation. In order to avoid clumsyness, most 110 routines can be preceded by
the prefix "mv" and the desired (y, x) co-ordinates then can be added to the arguments to the
function. For example, the calls

move(y, x);
addch(ch);

can be replaced by
mvaddch (y, x, ch);

and
wmove (win, y, x);
waddch (win, ch);

can be replaced by
mvwaddch (win, y, x, ch);

Note that the window description pointer (win) comes before the added (y, x) co-ordinates. If
such pointers are need, they are always the first parameters passed.

2. Vadables
Many variables which are used to describe the terminal environment are available to the

programmer. They are:
type name
WINDOW • curser
WINDOW • stdscr
char • Def_ term

description
current version of the screen (terminal screen).
standard screen. Most updates are usually done here.
default terminal type if type cannot be determined

2 Actually. addchO is really a "#define" macro with arguments. as are most of the "functions" which deal with
sldscr as a default.

-2-

bool

char •
int
int
int
int

My_term

ttytype
LINES
COLS
ERR
OK

Screen Package

use the terminal specification in Del_term as terminal,
irrelevant of real terminal type
full name of the current terminal.
number of lines on the terminal
number of columns on the terminal
error flag returned by routines on a fail.
error flag returned by routines when things go right.

There are also several "#define" constants and types which are of general usefulness:

reg
bool
TRUE
FALSE

storage class "register" (e.g., reg int i;)
boolean type, actually a "char" (e.g., boo/ doneit;)
boolean "true" flag (1).
boolean "false" flag (0).

3. Usage
This is a description of how to actually use the screen package. In it, we assume all up­

dating, reading, etc. is applied to stdser. All instructions will work on any window, with chang­
ing the function name and parameters as mentioned above.

3.1. Starting up
In order to use the screen package, the routines must know about terminal characteristics,

and the space for curser and stdser must be allocated. These functions are performed by in­
itserO. Since it must allocate space for the windows, it can overflow core when attempting to do
so. On this rather rare occasion, initserO returns ERR. initserO must alwtzys be called before
any of the routines which affect windows are used. If it is not, the program will core dump as
soon as either curser or stdser are referenced. However, it is usually best to wait to call it until
after you are sure you will need it, like after checking for startup errors. Terminal status
changing routines like n/O and ermodeO should be called after initscrO.

Now that the screen windows have been allocated, you can set them up for the run. If
you want to, say, allow the window to scroll, use scrollokO. If you want the cursor to be left
after the last change, use /eaveokO. If this isn't done, re/reshO will move the cursor to 'the
window's current (y, x) co-ordinates after updating it. New windows of your own can be creat­
ed, too, by using the functions newwinO and subwinO. de/winO will allow you to get rid of old
windows. If you wish to change the official size of the terminal by hand, just set the variables
LINES and COLS to be what you want, and then call initserO. This is best done before, but can
be done either before or after, the first call to initscrO, as it will always delete any existing stdser
and/or curser before creating new ones.
3.2. The Nitty-Gritty

3.2.1. Output
Now that we have set things up, we will want to actually update the terminal. The basic

functions used to change what will go on a window are addchO and moveO. addchO adds a
character at the current (y, x) co-ordinates, returning ERR if it would cause the window to ille­
gally scroll, i.e., printing a character in the lower right-hand comer of a terminal which au­
tomatically scrolls if scrolling is not allowed. moveO changes the current (y, x) co-ordinates to
whatever you want them to be. It returns ERR if you try to move off the window when scrol­
ling is not allowed. As mentioned above, you can combine the two into mvaddeh 0 to do both
things in one fell swoop.

The other output functions, such as addstrO and printwO, all call addehO to add characters
to the window.

After you have put on the window what you want there, when you want the portion of
the terminal covered by the window to be made to look like it, you must call re/reshO. In order

-3-

Screen Package

to optimize finding changes, re!resh() assumes that any part of the window not changed since
the last re!resh() of that window has not been changed on the terminal, i.e., that you have not
refreshed a portion of the terminal with an overlapping window. If this is not the case, the rou­
tine touchwin() is provided to make it look like the entire window has been changed, thus mak­
ing re!resh() check the whole subsection of the terminal for changes.

If you call wre!resh() with curser, it will make the screen look like curser thinks it looks
like. This is useful for implementing a command which would redraw the screen in case it get
messed up. .

3.2.2. Input
Input is essentially a mirror image of output. The complementary function to addch() is

getch() which, if echo is set, will call addch() to echo the character. Since the screen package
needs to know what is on the terminal at all times, if characters are to be echoed, the tty must
be in raw or cbreak mode. If it is not, getch() sets it to be cbreak, and then reads in the charac­
ter.

3.2.3. Miscellaneous
All sorts of fun functions exists for maintaining and changing information about the win­

dows. For the most part, the descriptions·in section 5.4. should suffice.

3.3. Finishing up
In order to do certain optimizations, and, on some terminals, to work at all, some things

must be done before the screen routines start up. These functions are performed in getttmode()
and setterm(), which are called by initscr(). In order to clean up after the routines, the routine
endwin() is provided. It restores tty modes to what they were when initscr() was first called.
Thus, anytime after the call to initscr, endwin() should be called before exiting.

4. Cursor Motion Optimization: Standing Alone
It is possible to use the cursor optimization functions of this screen package without the

overhead and additional size of the screen updating functions. The screen updating functions
are designed for uses where parts of the screen are changed, but the overall image remains the
same. This includes such programs as eye and vi3• Certain other programs will find it difficult
to use these functions in this manner without considerable unnecessary program overhead. For
such applications, such as some "crt hacks,,4 and optimizing cat(1)-type programs, all that is
needed is the motion optimizations. This, therefore, is a description of what some of what goes
on at the lower levels of this screen package. The descriptions assume a certain amount of
familiarity with programming problems and some finer points of C. None of it is terribly
difficult, but you should be forewarned.

4.1. Terminal Information
In order to use a terminal's features to the best of a program's abilities, it must first know

what they ares. The fetc/telmcap database describes these, but a certain amount of decoding is
necessary, and there are, of course, both efficient and inefficient ways of reading them in. The
algorithm that the uses is taken from vi and is hideously efficient. It reads them in a tight loop
into a set of variables whose names are two uppercase letters with some mnemonic value. For

3 Eye actually uses these functions, vi does not.

4 Graphics programs designed to run on character-oriented terminals. I could name many, but they come and
go, so the list would be quickly out of date. Recently, there have been programs such as rocket and IUD.

S If this comes as any surprise to you, there's this tower in Paris they're thinking of junking that I can let you
have for a song.

-4-

Screen Package

example, HO is a string which moves the cursor to the "home" position6• As there are two
types of variables involving ttys, there are two routines. The first, gettmodeO, sets some vari­
ables based upon the tty modes accessed by gtty(2) and stty(2) The second, settermO, a larger
task by reading in the descriptions from the /etc/termcap database. This is the way these rou­
tines are used by initscrO:

if (isatty(O» (
gettmodeO;

}
else

if (sp-getenv("TERM"»
setterm (sp) ;

setterm (Def _ term);
_puts(TI);
_puts(VS);

isattyO checks to see if file descriptor 0 is a terminal7• If it is, gettmodeO sets the terminal
description modes from a gtty(2) getenvO is then called to get the name of the terminal, and
that value (if there is one) is passed to settermO, which reads in the variables from
letc/termcap associated with that terminal. (getenvO returns a pointer to a string containing
the name of the terminal, which we save in the character pointer sp.) If isattyO returns false,
the default terminal De/_term is used. The TI and VS sequences initialize the terminal (JutsO
is a macro which uses tputsO (see termcap(3» to put out a string). It is these things which
endwin 0 undoes.

4.2. Movement Optimizations, or, Getting Over Yonder

Now that we have all this useful information, it would be nice to do something with its.
The most difficult thing to do properly is motion optimization. When you consider how many
different features various terminals have (tabs, backtabs, non-destructive space, home se­
quences, absolute tabs,) you can see that deciding how to get from here to there can be a
decidedly non-trivial task. The editor vi uses many of these features, and the routines it uses
to do this take up many pages of code. Fortunately, I was able to liberate them with' the
author's permission, and use them here.

After using gettmodeO and settermO to get the terminal descriptions, the function mvcurO
deals with this task. It usage is simple: you simply tell it where you are now and where you
want to go. For example

mvcur(O, 0, LINES/2, COLS/2)

would move the cursor from the home position (0, 0) to the middle of the screen. If you wish
to force absolute addressing, you can use the function tgotoO from the termlib(7) routines, or
you can tell mvcurO that you are impossibly far away, like Cleveland. For example, to abso­
lutely address the lower left hand corner of the screen from anywhere just claim that you are in
the upper right hand corner:

mvcur(O, COLS-I, LINES-I, 0)

6 These names are identical to those variables used in the /etc/termcap database to describe each capability. See
Appendix A for a complete list of those read, and termcap(S) for a full description.

7 isaltyO is defined in the default C library function routines. It does a Itty(2) on the descriptor and checks the
return value.

S Actually, it can be emotionally fulfilling just to get the information. This is usually only true, however, if you
have the social life of a kumquat.

-5-

Screen Package

5. The Functions
In the following definitions, "t" means that the "function" is really a "#define" macro

with arguments. This means that it will not show up in stack traces in the debugger, or, in the
case of such functions as addchO, it will show up as it's "w" counterpart. The arguments are
given to show the order and type of each. Their names are not mandatory, just suggestive.

5.1. Output Functions

addch(ch) t
char ch;

waddch(win, ch)
WINDOW ·win,·
char ch,'

Add the character ch on the window at the current (y, x) co-ordinates. If the character is
a newline ('\n') the line will be cleared to the end, and the current (y, x) co-ordinates will
be changed to the beginning off the next line if newline mapping is on, or to the next line
at the same x co-ordinate if it is off. A return ('\r') will move to the beginning of the
line on the window. Tabs ('\1') will be expanded into spaces in the normal tabstop posi­
tions of every eight characters. This returns ERR if it would cause the screen to scroll
illegally.

addstr(str) t
char ·str;

waddstr(win, str)
WINDOW ·win;
char ·str,·

Add the string pointed to by str on the window at the current (y, x) co-ordinates. This re­
turns ERR if it would cause the screen to scroll illegally. In this case, it will put on as
much as it can.

box(win, vert, hor)
WINDOW -Win;
char vert, hor,'

Draws a box around the window using vert as the character for drawing the vertical sides,
and hor for drawing the horizontal lines. If scrolling is not allowed, and the window en­
compasses the lower right-hand comer of the terminal, the comers are left blank to avoid
a scroll.

clearO t

wclear(win)
WINDOW ·win,·

Resets the entire window to blanks. If win is a screen, this sets the clear flag, which will
cause a clear-screen sequence to be sent on the next re/reshO call. This also moves the
current (y, x) co-ordinates to (0, 0).

-6-

clearok(scr, boolf) t
WINDOW ·ser,·
bool boolf;

Screen Package

Sets the clear flag for the screen sere If boolfis TRUE, this will force a clear-screen to be
printed on the next re/resh(), or stop it from doing so if boolfis FALSE. This only works
on screens, and, unlike e!ear(), does not alter the contents of the screen. If ser is curser,
the next re/resh() call will cause a clear-screen, even if the window passed to re!resh() is
not a screen.

clrtobot 0 t

wclrtobot (win)
WINDOW '*win;

Wipes the window clear from the current (y, x) co-ordinates to the bottom. This does
not force a clear-screen sequence on the next refresh under any circumstances. This has
no associated "mv" command.

clrtoeol () t

wclrtoeol (win)
WINDOW ·win,·

Wipes the window clear from the current (y, x) co-ordinates to the end of the line. This
has no associated "mv" command.

delchO

wdelch (win)
WINDOW ·win;

Delete the character at the current (y, x) co-ordinates. Each character after it on the line
shifts to the left, and the last character becomes blank.

deletelnO

wdeleteln (win)
WINDOW ·win,·

Delete the current line. Every line below the current one will move up, and the bottom
line will become blank. The current (y, x) co-ordinates will remain unchanged.

eraseO t

werase(win)
WINDOW '*win,'

-7-

Screen Package

Erases the window to blanks without setting the clear flag. This is analagous to clear 0,
except that it never causes a clear-screen sequence to be generated on a refi'eshO. This
has no associated "mv" command.

Insch(c)
char c:

winsch (win, c)
WINDOW ·win;
char c;

Insert c at the current (y, x) co-ordinates Each character after it shifts to the right; and
the last character disappears. This returns ERR if it would cause the screen to scroll ille­
gally.

InsertlnO

winsertln (win)
WINDOW ·win,·

Insert a line above the current one. Every line below the current line will be shifted
down, and the bottom line will disappear. The current line will become blank, and the
current (y, x) co-ordinates will remain unchanged. This returns ERR if it would cause
the screen to scroll illegally.

move(y, x) t
int y, x;

wmove(wln, y, x)
WINDOW ·win;
int y, X,'

Change the current (y, x) co-ordinates of the window to (y, x). This returns ERR if it
would cause the screen to scroll illegally.

overlay(winl, win2)
WINDOW ·winl, ·win2:

Overlay winl on win2. The contents of winl, insofar as they fit, are placed on win2 at
their starting (y, x) co-ordinates. This is done non-destructively, i.e., blanks on winl
leave the contents of the space on win2 untouched.

overwrlte(wlnl, wln2)
WINDOW ·winl, ·win2:

Overwrite winl on win2. The contents of winl, insofar as they fit, are placed on win2 at
their starting (y, x) co-ordinates. This is done destructively, i.e., blanks on winl become
blank on win2.

-8-

printw(fmt, aql, aq2, •••)
char ,.mt;

wprintw(win, fmt, aql, 81'12, •••)
WINDOW ·win;
char *lmt,'

Screen Package

Performs a printf() on the window starting at the current (y, x) co-ordinates. It uses
addstr() to add the string on the window. It is often advisable to use the field width op­
tions of printf() to avoid leaving things on the window from earlier calls~ This returns
ERR if it would cause the screen to scroll illegally.

refresh() t

wrefresh (win)
WINDOW ·win,·

Synchronize the terminal screen with the desired window. If the window is not a screen,
only that part covered by it is updated. This returns ERR if it would cause the screen to
scroll illegally. In this case, it will update whatever it can without causing the scroll.

standout () t

wstandout (win)
WINDOW ·win;

standend () t

wstandend (win)
WINDOW ·win;

Start and stop putting characters onto win in standout mode. standout() causes any charac­
ters added to the window to be put in standout mode on the terminal (if it has that capa­
bility). standend() stops this. The sequences SO and SE (or US and UE if they are not
defined) are used (see Appendix A).

5.2. Input Functions

crmode{) t

nocrmodeO t

Set or unset the terminal to/from cbreak mode.

eehoO t

noeeho() t

-9-

Screen Package

Sets the terminal to echo or not echo characters.

letchO t

wRetch (win)
WINDOW .·win,·

Gets a character from the terminal and (if necessary) echos it on the window. This re­
turns ERR if it would cause the screen to scroll illegally. Otherwise, the character gotten .
is returned. If noecho has been set, then the window is left unaltered. In order to retain
control of the terminal, it is necessary to have one of noecho, cbreak, or rawmode set. If
you do not set one, whatever routine you call to read characters will set cbreak for you,
and then reset to the original mode when finished.

letstr (str) t
char ·str;

wletstr (win, str)
WINDOW ·win,·
char ·str,·

Get a string through the window and put it in the location pointed to by str, which is as­
sumed to be large enough to handle it. It sets tty modes if necessary, and then calls
getchO (or wgetch(win) to get the characters needed to fill in the string until a newline or
EOF is encountered. The newline stripped off the string. This returns ERR if it would
cause the screen to scroll illegally.

nw() t

noraw() t

Set or unset the terminal to/from raw mode. On version 7 UNIX' this also turns of new­
line mapping (see nIO).

scanw(fmt, aral, aral, •••)
char '*/mt,'

wscanw(win, fmt, aral, aral, •••)
WINDOW -Win;
char Ymt;

Perform a scof(fO through the window using Imt. It does this using consecutive getchO's
(or wgetch(winJ's). This returns ERR if it would cause the screen to scroll illegally.

5.3. Miscellaneous Functions

9 tJNIX is a trademark of Bell Laboratories.

-10 -

Screen Package

delwin (win)
WINDOW ·win,·

Deletes the window from existence. All resources are freed for future use by calloe(3).
If a window has a subwinO allocated window inside of it, deleting the outer window the
subwindow is not affected, even though this does invalidate it. Therefore, subwindows
should be deleted before their outer windows are.

endwinO
Finish up window routines before exit. This restores the terminal to the state it was be­
fore initscrO (or gettmodeO and setterm() was called. It should always be called before
exiting. It does not exit. This is especially useful for resetting tty stats when trapping ru­
bouts via signal (2) .

get),x(win,)" x} t
WINDOW '*win,·
int y, X,·

Puts the current (y, x) co-ordinates of win in the variables y and x. Since it is a macro,
not a function, you do not pass the address of y and x.

inchO t

winch (win) t
WINDOW ·win,·

Returns the character at the current (y, x) co-ordinates on the given window. This does
not make any changes to the window. This has no associated "mv" command.

initscrO
Initialize the screen routines. This must be called before any of the screen routines are
used. It initializes the terminal-type data and such, and without it, none of the routines
can operate. If standard input is not a tty, it sets the specifications to the terminal whose
name is pointed to by Del_term (initialy "dumb"). If the boolean My_term is true,
Del_ term is always used.

leaveok (win, boolf) t
WINDOW ·win,·
boo I boolf;

Sets the boolean flag for leaving the cursor after the last change. If boolfis TRUE, the
cursor will be left after the last update on the terminal, and the current (y, x) co-ordinates
for win will be changed accordingly. If it is FALSE, it will be moved to the current (y, x)
co-ordinates. This flag (initialy FALSE) retains its value until changed by the user.

longname<termbuf, name)
char ·termbtif, ·name,·

-11-

Screen Package

Fills in name with the long (full) name of the terminal described by the termcap entry in
termbu/. It is generally of little use, but is nice for telling the user in a readable format
what terminal we think he has. This is available in the global variable tty type. Termbuf is
usually set via the termlib routine tgetent().

mvwin (win, y, x)
WINDOW ·win;
int y, X,'

Move the home position of the window win from its current starting coordinates to (y, x).
If that would put part or all of the window off the edge of the terminal screen, mvwin() re­
turns ERR and does not change anything.

WINDOW·
newwin (lines, cols, belin_y, begin_x)
int lines, cols, begin'y, begin_x,'

Create a new window with lines lines and cols columns starting at position
(begin.Y, begin_x). If either lines or cols is 0 (zero), that dimension will be set to (LINES
- begin.Y) or (COLS - begin_x) respectively. Thus, to get a new window of dimen­
sions LINES x COLS, use newwin(O, 0, 0, 0).

nlO t

nonlO t

Set or unset the terminal to/from nl mode, i.e., start/stop the system from mapping
<RETURN> to <LINE-FEED>. If the mapping is not done, re/resh() can do more
optimization, so it is recommended, but not required, to tum it off.

scrollok (win, boolf) t
WINDOW '*win,'
bool boolf';

Set the scroll flag for the given window. If boolfis FALSE, scrolling is not allowed. This
is its default setting.

touchwin (win)
WINDOW ·win;

Make it appear that the every location on the window has been changed. This is usually
only needed for refreshes with overlapping windows.

WINDOW·
subwin(win, lines, cois, begin_y, begin_x)
WINDO W '*win,·
int lines, cols, begin.Y, begin_x,·

Create a new window with lines lines and cols columns starting at position
(begin.Y, begin_x) in the middle of the window win. This means that any change made to
either window in the area covered by the subwindow will be made on both windows.
beginJ, begin_x are specified relative to the overall screen, not the relative (0, 0) of win.
If either lines or cols is 0 (zero), that dimension will be set to (LINES - begin.Y) or

-12 -

Screen Package

(COLS - begin_x) respectively.

unctrl (ch) t
char ch;

This is actually a debug function for the library, but it is of general usefulness. It returns
a string which is a representation of ch. Control characters become their upper-case
equivalents preceded by a n"". Other letters stay just as they are. To use unctrlO, you
must have #include < unctrl.h > in your file.

5.4. Details

lettmodeO
Get the tty stats. This is normally called by initscrO.

mvcur(Iasty, last x, newy, newx)
int lasty, lastx, newy, new x;

Moves the terminal's cursor from (tasty, lastx) to (ne~, newx) in an approximation of op­
timal fashion. This routine uses the functions borrowed from ex version 2.6. It is possi­
ble to use this optimization without the benefit of the screen routines. With the screen
routines, this should not be called by the user. moveO and refresh 0 should be used to
move the cursor position, so that the routines know what's going on.

scroll (win)
WINDO W ·win;

Scroll the window upward one line. This is normally not used by the user.

savettyO t

resettyO t
savettyO saves the current tty characteristic flags. resettyO restores them to what savettyO
stored. These functions are performed automatically by initscrO and endwinO.

setterm (name)
char ·name;

Set the terminal characteristics to be those of the terminal named name. This is normally
called by initscrO.

tstpO
If the new tty(4) driver is in use, this function will save the current tty state and then put
the process to sleep. When the process gets restarted, it restores the tty state and then
calls wrefresh(curscr) to redraw the screen. initscrO sets the signal SIGTSTP to trap to this
routine.

-13 -

Appendix A

1. Capabilities from termcap

1.1. Disclaimer
The description of terminals is a difficult business, and we only attempt to summarize the

capabilities here: for a full description see the paper describing termcap.

1.2. Overview
Capabilities from termcap are of three kinds: string valued options, numeric valued op­

tions, and boolean options. The string valued options are the most complicated, since they may
include padding information, which we describe now.

Intelligent terminals often require padding on intelligent operations at high (and some­
times even low) speed. This is specified by a number before the string in the capability, and
has meaning for the capabilities which have a P at the front of their comment. This normally is
a number of milliseconds to pad the operation. In the current system which has no true pro­
grammable delays, we do this by sending a sequence of pad characters (normally nulls, but can
be changed (specified by PC». In some cases, the pad is better computed as some number of
milliseconds times the number of affected lines (to the bottom of the screen usually, except
when terminals have insert modes which will shift several lines,) This is specified as, e.g., 12*.
before the capability, to say 12 milliseconds per affected whatever (currently always line).
Capabilities where this makes sense say P*.

1.3. Variables Set By setterm ()

Type
char •
bool
char •
bool
char •
bool
char •
char •
char •
char •
char •
char •
char •
char •
char •
bool
char •
char •
bool
char •
bool
char •
char •
char •
char •
bool
bool

Name
AL
AM
BC
BS
BT
CA
CD
CE
CL
CM
DC
DL
OM
DO
ED
EO
EI
HO
HZ­
IC
IN
1M
IP
LL
MA
MI
NC

variables set by settermO

Pad
p.

P

p.
P
p.
p
p.
p.

P

p.

Description
Add new blank Line
Automatic Margins
Back Cursor movement
BackSpace works
Back Tab
Cursor Addressable
Clear to end of Display
Clear to End of line
CLear screen
Cursor Motion
Delete Character
Delete Line sequence
Delete Mode (enter)
DOwn line sequence
End Delete mode
can Erase Overstrikes with' ,
End Insert mode
HOme cursor
HaZeltine - braindamage
Insert Character
Insert-Null blessing
enter Insert Mode (IC usually set, too)
Pad after char Inserted using 1M + IE
quick to Last Line, column 0
ctrl character MAp for cmd mode
can Move in Insert mode
No Cr: \r sends \r\n then eats \n

-14 -

Type
char •
bool
char
char •
char •
char •
char •
char •
char •
char •
char •
char •
bool
char •
char •
char •
char •
char •
bool

Name
ND
OS
PC
SE
SF
SO
SR
TA
TE
TI
UC
UE
UL
UP
US
VB
VE
VS
XN

Appendix A

variables set by setterm 0

Pad Description
Non-Destructive space
OverStrike works
Pad Character
Standout End (may leave space)

P Scroll Forwards
Stand Out begin (may leave space)

P Scroll in Reverse
P TAb (not "lor with padding)

Terminal address enable Ending sequence
Terminal address enable Initialization
Underline a single Character
Underline Ending sequence
UnderLining works even though lOS
UPline
Underline Starting sequencelO

Visible Bell
Visual End sequence
Visual Start sequence
a Newline gets eaten after wrap

Names starting with X are reserved for severely nauseous glitches

1.4. Variables Set By gettmodeO

type
bool
bool
bool

variables set by gettmodeO

name
NONL
GT
UPPERCASE

description
Term can't hack linefeeds doing a CR
Gtty indicates Tabs
Terminal generates only uppercase letters

10 US and UE, if they do not exist in the termcap entry, are copied from SO and SE in settermO

-15 -

Appendix B

1.
o The WINDOW structul'e

The WINDOW structure is defined as follows:

define WINDOW struct _win_st

struct _ win_st {

};

define
define
define
define
define

o short
short
short
short
bool
bool
bool
char
short
short

_cury, _curx;
_maxy, _maxx;
_ begy, _ begx;
_flags;
_clear;
_leave;
_scroll;
**-y;
* _firstch;
* _lastch;

_SUBWIN
_ENDLINE
_FULLWIN
_SCROLLWIN
_STANDOUT

01
02
04
010
0200

_cury and _curx are the current (y, x) co-ordinates for the window. New characters ad­
ded to the screen are added at this point. _maxy and _maxx are the maximum values allowed
for (_cury, _curx). _begy and _begx are the starting (y, x) co-ordinates on the terminal for the
window, i.e., the window's home. _cury, _curx, _maxy, and _maxx are measured relative to
(_begy, _begx), not the terminal's home.

_clear tells if a clear-screen sequence is to be generated on the next rejreshO call. This is
only meaningful for screens. The initial clear-screen for the first rejreshO call is generated by
initially setting clear to be TRUE for curscr, which always generates a clear-screen if set, ir­
relevant of the dimensions of the window involved. _leave is TRUE if the current (y, x) co­
ordinates and the cursor are to be left after the last character changed on the terminal, or not
moved if there is no change. _scroll is TRUE if scrolling is allowed .

.J' is a pointer to an array of lines which describe the terminal. Thus:
_y[i]

is a pointer to the Ith line, and

_y(i] OJ

is the fth character on the Ith line.

Jags can have one or more values or'd into it. _SUBWIN means that the window is a
subwindow, which indicates to delwinO that the space for the lines is not to be freed. _END­
LINE says that the end of the line for this window is also the end of a screen. _FULL WIN
says that this window is a screen. SCROLLWIN indicates that the last character of this
screen is at the lower right-hand corner of the terminal; i.e., if a character was put there, the
terminal would scroll. _ST ANDOUT says that all characters added to the screen are in stan­
dout mode.

11 All variables not normally accessed directly by the user are named with an initial .. _" to avoid conflicts with
the user's variables.

-16 -

Appendix C

1. Examples
Here we present a few examples of how to use the package. They attempt to be represen­

tative, though not comprehensive.

1. Screen Updating
The following examples are intended to demonstrate the basic structure of a program us­

ing the screen updating sections of the package. Several of the programs require calculational
sections which are irrelevant of to the example, and are therefore usually not included. It is
hoped that the data structure definitions give enough of an idea to allow understanding of what
the relevant portions do. The rest is left as an exercise to the reader, and will not be on the fi­
nal.

1.1. Twinkle
This is a moderately simple program which prints pretty patterns on the screen that might

even hold your interest for 30 seconds or more. It switches between patterns of asterisks, put­
ting them on one by one in random order, and then taking them off in the same fashion. It is
more efficient to write this using only the motion optimization, as is demonstrated below.

include < curses.h >
include < signal.h >

'* • the idea for this program was a product of the imagination of
• Kurt Schoens. Not responsible for minds lost or stolen . . /
define
define
define

NCOLS 80
NLINES 24
MAXPA TTERNS

stnet locs {
char y, x;

};

typedef stnet locs LOCS;

LOCS

int

mainO {

Layout (NCOLS • NLINES);

Pattern,
Numstars;

char
int

srand (getpid 0);

initscrO;
signaHSIGINT, die);
noechoO;
nonlO;

*getenvO;
dieO;

leaveok(stdscr, TRUE);
scrollok (stdscr , FALSE);

4

'* current board layout • /

'* current pattern number • / '* number .of stars in pattern • /

'* initialize random sequence. /

-17 -

for (;;) (

}

'*

makeboard 0;
puton (' -');
puton(' ');

Appendix C

'* make the board setup * / '* put on '-' s-/
'* cover up with' , s-/

- On program exit, move the cursor to the lower left corner by
- direct addressing, since current location is not guaranteed.
- We lie and say we used to be at the upper right corner to guarantee
- absolute addressing.
-/

dieO (

'*

signaHSIGINT, SIG_ION);
mvcur(O, COLS-I, LINES-I, 0);
endwinO;
exit(O);

- Make the current board setup. It picks a random pattern and
- calls isonO to determine if the character is on that pattern
- or not.
-/

make board 0 . (

'*

reg Int
reg LOCS

y, x;
-lp;

Pattern == randO % MAXPATTERNS;
Ip == Layout;
for (y == 0; y < NLINES; y+ +)

for (x =- 0; x < NCOLS; x++)
If (ison(y, x» (

Ip->y == y;
Ip+ +->x == x;

}
Numstars == Ip - Layout;

- Return TR UE if (y, x) is on the current pattern.
-/

ison(y, x)
reg Int y, x; (

switch (Pattern) (
ease 0: '* alternating lines -/

retum !(y & 00;

-18 -

put on (ch)
reg ehar

1.1. Life

Appendb: C

ease 1: '* box */
if (x > == LINES && y > == NCOLS)

return FALSE;
If (y < 3 1 y > == NLINES - 3)

return TRUE;
return (x < 31 x > == NCOLS - 3);

ease 2: '* holy pattern! */
return «x + y) & 01);

ease 3: '* bar across center • /
retUrD (y > = 9 && y < .. 15);

}
'* NOTREACHED */

reg LOCS
reg Int
reg LOCS
LOCS

ch; {

*lp;
r;
.end;
temp;

end == &Layout[Numstars];
for (Ip .. Layout; lp < end; lp+ +) {

r == rand 0 % Numstars;
temp =- *lp;
.lp = Layout[r];
LayoudrJ == temp;

for (Ip =- Layout; lp < end; Ip + +) {
mvaddch(Ip->y, lp->x, ch);
refreshO;

This program plays the famous computer pattern game of life (Scientific American., May,
1974). The calculational routines create a linked list of structures defining where each piece is.
Nothing here claims to be optimal, merely demonstrative. This program, however, is a very
good place to use the screen updating routines, as it allows them· to worry about what the last
position looked like, so you don't have to. It also demonstrates some of the input routines.

Include < curses.h >
Include < signal.h >

'* * Run a life game. This is a demonstration program jor
* the Screen Updating section of the -lcurses cursor package.
*/

stract 1st _st { '* linked list element * /

-19 -

lnt
struct Ist_st

};

typedef stract Ist_st

Appendls C

y, x;
.next, .Iast;

LIST;

I- (y, x) position of piece ./
I- doubly linked ./

LIST .Head; '* head of linked list·/

main(ac, av)
lnt ac;
char .av[]; {

}

lnt dieO;

evalargs (ac, av);

initscrO;
signal(SIGINT, die);
crmodeO;
noechoO;
nonlO;

getstartO;
for (;;) {

prboardO;
updateO;

l-
• This is the routine which is called when rubout is hit.
• It resets the tty stats to their original values. This
• is the normal way of leaving the program . . /

dieO {

}

l-

signal (SIGINT, SIG _IGN);
mvcur(O, COLS-I, LINES-I, 0);
endwinO;
exit(O);

I- evaluate arguments ./

I- initialize screen package ./
I- set to restore tty stats ./
I- set for char-by-char */
l-
I- for optimization ./

I- get starting position ./

I- print out current board ./
I- update board position ./

I- ignore rubouts ./
I- go to bottom of screen ./
I- set terminal to initial state ./

• Get the starting position from the user. They keys u, i, 0, j, I,
• m, " and. are used for moving their relative directions from the
• k key.' Thus, u move diagonally up to the left, , moves directly down,
• etc. x places a piece at the current position, " " takes it away.
• The input can also be /rom a file. The list is built after the
• board setup is ready . . /

getstartO {

reg char
reg lnt

c;
x, y;

-10 -

'*

Appendix C

box (stdscr, 'r, ' _');
move (1 , 0;

'* box in the screen */ '* move to upper left corner */

do (
refreshO; '* print current position */
If «c-getchO) .. -= 'q')

break;
swlteb (c) (

ease 'u':
ease'i':
ease '0':

ease T:
ease T:
ease'm':
ease ';:
ease '::

ease 'f:

ease 'x':

, ,
ease

}

adjustyx(c);
break;

mvaddstr(O, 0, "File name: ");
getstr(buf) ;
readfile (buf) ;
break;

addch ('X');
break;

addch(' ');
break;

If (Head ! -= NULL)
dellist (Head) ;

Head == malloc(slzeof (LIST»;

'* * loop through the screen looking for' x s, and add a list
* element for each one
*/

for (y == 1; y < LINES - 1; y + +)
for (x == 1; x < COLS - 1; x++) (

move(y, x);
If (inchO =- == 'x')

addlist (y, x);

'* start new list */

* Print out the current board position /rom the linked list
*/

prboardO {

reg LIST

- 21 ~

}

erase 0;
box (stdscr, r, ' _');

'*

AppeDdis C

'* clear out last position -/ '* box in the screen -/

- go through the list adding each piece to the newly
- blank board
-/

for (hp - Head; hp; hp = hp- > next)
mvaddch(hp->y, hp->x, 'X');

refreshO;

3. MotioD optimization
The following example shows how motion optimization is written on its own. Programs

which flit from one place to another without regard for what is already there usually do not
need the overhead of both space and time associated with screen updating. They should instead
use motion optimization.

3.1. Twinkle
The twinkle program is a good candidate for simple motion optimization. Here is how it

could be written (only the routines that have been changed are shown):

mainO {

reg char
char
int

srand (getpid 0);

if (isatty(O» (
gettmodeO;

-sp;
-getenvO;
_putcharO, dieO;

if (sp=getenv("TERM"»
setterm (sp) ;

signal(SIGINT, die);
}
else {

'* initialize random sequence -/

printf("Need a terminal on %d\n", _tty_ch);
exit(1);

}
_puts(TI);
_puts(VS);

noechoO;
nonlO;
tputs(CL, NLINES, _putchar);
for (;;) {

makeboard 0;
puton (' -');
puton(' ');

-22 -

'* make the board setup -/ '* put on '.' s-/ '* cover up with ' , s -/

Appendls C

'* • Jutchar defined/or tputsO (and JutsOJ
./

_putchar(c)
reg ehar c; (

putchar(c) ;

puton(ch)
ehar ch; {

}

statle Int
reg LOCS
reg Int
reg LOCS
LOCS

lasty, lastx;
.lp;
r;
.end;
temp;

end == &Layout[Numstars];
for (Ip = Layout; Ip < end; lp + +) {

r == randO % Numstars;
temp lID .lp;
.lp == Layout[r];
Layout[r] == temp;

for (Ip = Layout; lp < end; lp+ +) '* prevent scrolling */
If (!AM I (Ip->y < NLINES - 111p->x < NCOLS - 1) (

mvcur(Iasty, lastx, Ip->y, Ip->x);
putchar(ch);
lasty == lp- > y;
If «(Iastx = Ip->x + 1) > =- NCOLS)

If (AM) {

}
else

- 23-

lastx =- 0;
lasty+ +;

lastx- NCOLS - 1;

4.2BSD System Manual

Revised July, 1983

William Joy, Eric Cooper, Robert Fabry,
Samuel Leffler, Kirk McKusick and David Mosher

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

(415) 642-7780

ABSTRACT

This document summarizes the facilities provided by the 4.2BSD version
of the UNIX operating system. It does not attempt to act as a tutorial for use
of the system nor does it attempt to explain or justify the design of the system
facilities. It gives neither motivation nor implementation details, in favor of
brevity.

The first section describes the basic kernel functions provided to a UNIX
process: process naming and protection, memory management, software inter­
rupts, object references (descriptors), time and statistics functions, and
resource controls. These facilities, as well as facilities for bootstrap, shutdown
and process accounting, are provided solely by the kernel.

The second section describes the standard system abstractions for files and
file systems, communication, terminal handling, and process control and debug­
ging. These facilities are implemented by the operating system or by network
server processes.

• UNIX is a trademark of Bell Laboratories.

4.2BSD System Manual .. i -

TABLE OF CONTENTS

Introduction.

o. Notation and types

1. Kernel primitives

1.1. Pr&:esses and protection
.1. Host and process identifiers
.2. Process creation and termination
.3. User and group ids
.4. Process groups

1.2. Memory management
.1. Text, data and stack
.2. Mapping pages
.3. Page protection control
.4. Giving and getting advice

1.3. Signals
.1. Overview
.2. Signal types
.3. Signal handlers
.4. Sending signals
.5. Protecting critical sections
.6. Signal stacks

1.4. Timing and statistics
.1. Real time
.2. Interval time

1.5. Descriptors
.1. The reference table
.2. Descriptor properties
.3. Managing descriptor references
.4. Multiplexing requests
.5. Descriptor wrapping

1.6. Resource controls
.1. Process priorities
.2. Resource utilization
.3. Resource limits

1.7. System operation support
.1. Bootstrap operations
.2. Shutdown operations
.3. Accounting

CSRG TRIS -- September 1, 1982 --

Contents

Joy, et. a1.

4.2BSD System Manual

2. System facilities

2.1. Generic operations
.1. Read and write
.2. Input/output control

- ii -

.3. Non-blocking and asynchronous operations

2.2. File system
.1 Overview
.2. Naming
.3. Creation and removal
.3.1. Directory creation and removal
.3.2. File creation
.3.3. Creating references to devices
.3.4. Portal creation
.3.6. File, device, and portal removal
.4. Reading and modifying file attributes
.5. Links and renaming
.6. Extension and truncation
.7. Checking accessibility
.8. Locking
.9. Disc Quotas

2.3. Inteprocess communication
.1. Interprocess communication primitives
.1.1. Communication domains
.1.2. Socket types and protocols
.1.3. Socket creation, naming and service establishment
.1.4. Accepting connections
.1.5. Making connections
.1.6. Sending and receiving data
.1. 7 . Scatter/gather and exchanging access rights
.1.8. Using read and write with sockets
.1.9. Shutting down halves of full-duplex connections
.1.10. Socket and protocol options
.2. UNIX domain
.2.1. Types of sockets
.2.2. Naming
.2.3. Access rights transmission
.3. INTERNET domain
.3.1. Socket types and protocols
.3.2. Socket naming
.3.3. Access rights transmission
.3.4. Raw access

2.4. Terminals and devices
.1. Terminals
.1.1. Terminal input
.1.1.1 Input modes
.1.1.2 Interrupt characters
.1.1.3 Line editing
.1.2. Terminal output
.1.3. Terminal control operations
.1.4. Terminal hardware support
.2. Structured devices

CSRG TR/5 -- September 1, 1982 --

Contents

Joy, et. al.

4.28SD System Manual

.3. Unstructured devices

2.5. Process control and debugging

I. Summary of facilities

CSRG TR/5

- iii - Contents

-- September 1, 1982 -- JOY,et. aI.

4.2BSD System Manual - 1 - Contents

o. Notation and types

The notation used to describe system calls is a variant of a C language call, consisting of a
prototype call followed by declaration of parameters and results. An additional keyword result,
not part of the normal C language, is used to indicate which of the declared entities receive
results. As an example, consider the read call, as described in section 2.1:

cc - read(fd, buf, nbytes);
result int cc; int fd; result char -buf; int nbytes;

The first line shows how the read routine is called, with three parameters. As shown on the
second line cc is an integer and read also returns information in the parameter but

Description of all error conditions arising from each system call is not provided here; they
appear in the programmer's manual. In particular, when accessed from the C language, many
calls return a characteristic -1 value when an error occurs, returning the error code in the glo­
bal variable errno. Other languages may present errors in different ways.

A number of system standard types are defined in the include file <sys/types.h> and
used in the specifications here and in many C programs. These include caddr_t giving a
memory address (typically as a character pointer), off_t giving a file offset (typically as a long
integer), and a set of unsigned types u_cbar, u_short, u_int and u_long, shorthand names for
unsigned char, unsigned short, etc.

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual - 2 - Kernel primi ti ves

1. Kernel primitives

The facilities available to a UNIX user process are logically divided into two parts: kernel
facilities directly implemented by UNIX code running in the operating system, and system facil­
ities implemented either by the system, or in cooperation with a server process. These kernel
facilities are described in this section 1.

The facilities implemented in the kernel are those which define the UNIX virtual machine
which each process runs in. Like many real machines, this virtual machine has memory
management hardware, an interrupt facility, timers and counters. The UNIX virtual machine
also allows access to files and other objects through a set of descriptors. Each descriptor resem­
bles a device controller, and supports a set of operations. Like devices on real machines, some
of which are internal to the machine and some of which are external, parts of the descriptor
machinery are built-in to the operating system, while other parts are often implemented in
server processes on other machines. The facilities provided through the descriptor machinery
are described in section 2.

CSRG TRIS -- September 1, 1982 -- Joy, et. al.

4.2BSO System Manual - 3 - Processes and protection

1.1. Processes and protection

1.1.1. Host and process identifiers

Each UNIX host has associated with it a 32-bit host id, and a host name of up to 255
characters. These are set (by a privileged user) and returned by the calls:

sethostid (hostid)
long hostid~

hostid .. gethostid 0 ~
result long hostid~

sethostname (name, len)
char ·name~ int len~

len .. gethostname (buf, buflen)
result int len~ result char ·buf~ int buflen~

On each host runs a set of processes. Each process is largely independent of other processes,
having its own protection domain, address space, timers, and an independent set of references
to system or user implemented objects.

Each process in a host is named by an integer called the process id. This number is in the
range 1-30000 and is returned by the getpid routine:

pid .. getpid 0 ~
result int pid;

On each UNIX host this identifier is guaranteed to be unique; in a multi-host environment, the
(hostid, process id) pairs are guaranteed unique.

1.1.2. Process creation and termination

A new process is created by making a logical duplicate of an existing process:

pid -= forkO;
result int pid;

The fork call returns twice, once in the parent process, where pid is the process identifier of the
child, and once in the child process where pid is O. The parent-child relationship induces a
hierarchical structure on the set of processes in the system.

A process may terminate by executing an exit call:

exit (status)
int status;

returning 8 bits of exit status to its parent.

When a child process exits or terminates abnormally, the parent process receives informa­
tion about any event which caused termination of the child process. A second call provides a
non-blocking interface and may also be used to retrieve information about resources consumed
by the process during its lifetime.

CSRG TR/5 -- September 1, 1982 -- Joy, et. a1.

4.2BSO System Manual - 4-

#include < sys/wait.h >

pid .. wait (astatus);
result int pid~ result union wait ·astatus~

pid - wait3 (astatus, options, arusage);
result int pid~ result union waitstatus ·astatus;
int options~ result struct rusage ·arusage;

Processes and protection

A process can overlay itself with the memory image of another process, passing the newly
created process a set of parameters, using the call:

execve(name, argv, envp)
char ·name, ··argv, ··envp;

The specified name must be a file which is in a format recognized by the system, either a binary
executable file or a file which causes the execution of a specified interpreter program to process
its contents.

1.1.3. User and group ids
Each process in the system has associated with it two user-id's: a real user id and a effective

user id, both non-negative 16 bit integers. Each process has an real accounting group id and an
effective accounting group id and a set of access group id's. The group id's are non-negative 16 bit
integers. Each process may be in several different access groups, with the maximum concurrent
number of access groups a system compilation parameter, the constant NGROUPS in the file
<sys/param.h>, guaranteed to be at least 8.

The real and effective user ids associated with a process are returned by:

ruid .. getuid 0;
result int ruid;

euid =- geteuid 0;
result int euid;

the real and effective accounting group ids by:

rgid .. getgid 0 ;
result int rgid;

egid - getegid 0;
result int egid;

and the access group id set is returned by a getgroups call:

ngroups - getgroups(gidsetsize, gidset);
result int ngroups; int gidsetsize; result int gidset[gidsetsize);

The user and group id's are assigned at login time using the setreuid, setregid, and setgroups
calls:

CSRG TRIS -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual

setreuid (ruid, euid);
int ruid, euid;

setregid (rgid, egid);
int rgid, egid;

setgroups (gidsetsize, gidset)
int gidsetsize; int gidset [gidsetsize];

- 5 - Processes and protection

The setreuid call sets both the real and effective user-id's, while the setregid call sets both the
real and effective accounting group id's. Unless the caller is the super-user, ruid must be equal
to either the current real or effective user-id, and rgid equal to either the current real or
effective accounting group id. The setgroups call is restricted to the super-user.

1.1.4. Process groups
Each process in the system is also normally associated with a process group. The group of

processes in a process group is sometimes referred to as a job and manipulated by high-level
system software (such as the shell). The current process group of a process is returned by the
getpgrp call:

pgrp - getpgrp(pid)~
result int pgrp~ int pid~

When a process is in a specific process group it may receive software interrupts affecting the
group, causing the group to suspend or resume execution or to be interrupted or terminated.
In particular, a system terminal has a process group and only processes which are in the process
group of the terminal may read from the terminal, allowing arbitration of terminals among
several different jobs.

The process group associated with a process may be changed by the setpgrp call:

setpgrp(pid, pgrp)~
int pid, pgrp~

Newly created processes are assigned process id's distinct from all processes and process groups,
and the same process group as their parent. A normal (unprivileged) process may set its pro­
cess group equal to its process id. A privileged process may set the process group of any pro­
cess to any value.

CSRG TRIS -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual - 6 - Memory managementt

1.2. Memory managementt

1.2.1. Text, data and stack

Each process begins execution with three logical areas of memory called text, data and
stack. The text area is read-only and shared, while the data and stack areas are private to the
process. Both the data and stack areas may be extended and contracted on program request.
The call

addr - sbrk (jncr) ;
result caddr _ t addr; int incr;

changes the size of the data area by incr bytes and returns the new end of the data area, while

addr - sstk(jncr);
result caddr_t addr; int incr;

changes the size of the stack area. The stack area is also automatically extended as needed. On
the V AX the text and data areas are adjacent in the PO region, while the stack section is in the
PI region, and grows downward.

1.2.2. Mapping pages
The system supports sharing of data between processes by allowing pages to be mapped

into memory. These mapped pages may be shared with other processes or private to the pro­
cess. Protection and sharing options are defined in < mman.h > as:

'* protections are chosen from these bits, or-ed together *'
#define PROT_READ
#define PROT_WRITE
#define PROT_EXEC

Ox4
Ox2
Ox}

'* pages can be read *' '* pages can be written *'
1* pages can be executed *'

'* sharing types; choose either SHARED or PRIVATE *'
#define MAP_SHARED 1 1* share changes *'
#define MAP _PRIV ATE 2 '* changes are private *'

The cpu-dependent size of a page is returned by the getpagesize system call:

pagesize - get page size 0 ;
result int pagesize;

The call:

mmap(addr, len, prot, share, fd, pos);
caddr_t addr; int len, prot, share, fd; off_t pos;

causes the pages starting at addr and continuing for len bytes to be mapped from the object
represented by descriptor fd, at absolute position pos. The parameter share specifies whether
modifications made to this mapped copy of the page, are to be kept private, or are to be shared
with other references. The parameter prot specifies the accessibility of the mapped pages. The
addr, len, and pos parameters must all be multiples of the pagesize.

A process can move pages within its own memory by using the mremap call:

mremap(addr, len, prot, share, fromaddr);
caddr_t addr; int len, prot, share; caddr_t fromaddr;

This call maps the pages starting at /romaddr to the address specified by addr.

t This section represents the interface planned for later releases of the system. Of the calls described in this
section. only sbrk and g~IPQg~siz~ are included in 4.2BSO.

CSRG TRIS -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual - 7 - Memory managementt

A mapping can be removed by the call

munmap(addr, len}~
caddr_t addr~ int len~

This causes further references to these pages to refer to private pages initialized to zero.

1.2.3. Page protection control
A process can control the protection of pages using the call

mprotect (addr, len, prot) ~
caddr _ t addr~ int len, prot~

This call changes the specified pages to have protection prot.

1.2.4. Giving and getting advice
A process that has knowledge of its memory behavior may use the madvise call:

madvise(addr, len, behav} ~
caddr_t addr~ int len, behav~

Behav describes expected behavior, as given in <mman.h>:

#define MADV _NORMAL 0 r no further special treatment ·1
#define MADV _RANDOM 1 r expect random page references ·1
#define MADV _SEQUENTIAL 2 r expect sequential references ·1
#define MADV _ WILLNEED 3 r will need these pages ·1
#define MADV _DONTNEED 4 r don't need these pages ·1

Finally, a process may obtain information about whether pages are core resident by using the
call

mincore(addr, len, vec)
caddr_t addr~ int len~ result char ·vec~

Here the current core residency of the pages is returned in the character array vee, with a value
of 1 meaning that the page is in-core.

CSRG TRIS -- September 1, 1982 _. Joy, et. al.

4.2BSO System Manual - 8 - Signals

1.3. Signals

1.3.1. Ove"iew
The system defines a set of signals that may be delivered to a process. Signal delivery

resembles the occurrence of a hardware interrupt: the signal is blocked from further
occurrence, the current process context is saved, and a new one is built. A process may specify
the handler to which a signal is delivered, or specify that the signal is to be blocked or ignored.
A process may also specify that a de/ault action is to be taken when signals occur.

Some signals will cause a process to exit when they are not caught. This may be accom­
panied by creation of a core image file, containing the current memory image of the process for
use in post-mortem debugging. A process may choose to have signals delivered on a special
stack, so that sophisticated software stack manipulations are possible.

All signals have the same priority. If multiple signals are pending simultaneously, the
order in which they are delivered to a process is implementation specific. Signal routines exe­
cute with the signal that caused their invocation blocked, but other signals may yet occur.
Mechanisms are provided whereby critical sections of code may protect themselves against the
occurrence of specified signals.

1.3.2. Signal types
The signals defined by the system fall into one of five classes: hardware conditions,

software conditions, input/output notification, process control, or resource control. The set of
signals is defined in the file < signal.h >.

Hardware signals are derived from exceptional conditions which may occur during execu­
tion. Such signals include SIGFPE representing floating point and other arithmetic exceptions,
SIGILL for illegal instruction execution, SIGSEGV for addresses outside the currently assigned
area of memory, and SIGBUS for accesses that violate memory protection constraints. Other,
more cpu-specific hardware signals exist, such as those for the various customer-reserved
instructions on the V AX (SIGIOT, SIGEMT, and SIGTRAP).

Software signals reflect interrupts generated by user request: SIGINT for the normal inter­
rupt signal~ SIGQUIT for the more powerful quit signal, that normally causes a core image to be
generated~ SIGH UP and SIGTERM that cause graceful process termination, either because a
user has "hung up", or by user or program request; and SIGKILL, a more powerful termina­
tion signal which a process cannot catch or ignore. Other software signals (SIGALRM,
SIGVTALRM, SIGPROF) indicate the expiration of interval timers.

A process can request notification via a SIGIO signal when input or output is possible on a
descriptor, or when a non-blocking operation completes. A process may request to receive a
SIGURG signal when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process group. The
SIGSTOP signal is a powerful stop signal, because it cannot be caught. Other stop signals
SIGTSTP, SIGTTIN, and SIGTTOU are used when a user request, input request, or output
request respectively is the reason the process is being stopped. A SIGCONT signal is sent to a
process when it is continued from a stopped state. Processes may receive notification with a
SIGCHLO signal when a child process changes state, either by stopping or by terminating.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs when a
process nears its CPU time limit and SIGXFSZ warns that the limit on file size creation has
been reached.

1.3.3. Signal handlers
A process has a handler associated with each signal that controls the way the signal is

delivered. The call

CSRG TR/S -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual

#include <signai.h>

struct sigvec {
int
int
int

};

(·sv _handler) 0;
sv_mask;
sv _ onstack;

sigvec(signo, sv, osv)

- 9 -

int signo; struct sigvec ·sv; result struct sigvec ·osv;

Signals

assigns interrupt handler address sv_handler to signal signo. Each handler address specifies
either an interrupt routine for the signal, that the signal is to be ignored, or that a default action
(usually process termination) is to occur if the signal occurs. The constants SIG_IGN and
SIG_DEF used as values for sv_handler cause ignoring or defaulting of a condition. The
sv_mask and sv_onstack values specify the signal mask to be used when the handler is invoked
and whether the handler should operate on the normal run-time stack or a special signal stack
(see below). If osv is non-zero, the previous signal vector is returned.

When a signal condition arises for a process, the signal is added to a set of signals pending
for the process. If the signal is not currently blocked by the process then it will be delivered.
The process of signal delivery adds the signal to be delivered and those signals specified in the
associated signal handler's sv_mask to a set of those masked for the process, saves the current
process context, and places the process in the context of the signal handling routine. The call is
arranged so that if the signal handling routine exits normally the signal mask will be restored
and the process will resume execution in the original context. If the process wishes to resume
in a different context, then it must arrange to restore the signal mask itself.

The mask of blocked signals is independent of handlers for signals. It prevents signals
from being delivered much as a raised hardware interrupt priority level prevents hardware inter­
rupts. Preventing an interrupt from occurring by changing the handler is analogous to disabling
a device from further interrupts.

The signal handling routine sv_hand/er is called by a C call of the form

(·sv_handler)(signo, code, scp);
int signo; long code; struct sigcontext ·scp;

The signo gives the number of the signal that occurred, and the code, a word of information
supplied by the hardware. The scp parameter is a pointer to a machine-dependent structure
containing the information for restoring the context before the signal.

1.3.4. Sending signals

A process can send a signal to another process or group of processes with the calls:

kill(pid, signo)
int pid, signo;

killpgrp(pgrp, signo)
int pgrp, signo;

Unless the process sending the signal is privileged, it and the process receiving the signal must
have the same effective user id.

Signals are also sent implicitly from a terminal device to the process group associated with
the terminal when certain input characters are typed.

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual - 10 - Signals

1.3.5. Protecting critical sections
To block a section of code against one or more signals, a sigblock call may be used to add

a set of signals to the existing mask, returning the old mask:

oldmask - sigblock (mask) ~
result long oldmask; long mask;

The old mask can then be restored later with sigsetmask,

oldmask - sigsetmask (mask) ;
result long oldmask; long mask~

The Sigblock call can be used to read the current mask by specifying an empty mask.

It is possible to check conditions with some signals blocked, and then to pause waiting for
a signal and restoring the mask, by using:

sigpause (mask) ~
long mask;

1.3.6. Signal stacks
Applications that maintain complex or fixed size stacks can use the call

struct sigstack {
caddr_t
int

sigstack (ss, oss)

ss_sp;
ss _ onstack;

struct sigstack ·ss; result struct sigstack ·oss;

to provide the system with a stack based at ss_sp for delivery of signals. The value ss_onstack
indicates whether the process is currently on the signal stack, a notion maintained in software
by the system.

When a signal is to be delivered, the system checks whether the process is on a signal
stack. If not, then the process is switched to the signal stack for delivery, with the return from
the signal arranged to restore the previous stack.

If the process wishes to take a non-local exit from the signal routine, or run code from
the signal stack that uses a different stack, a sigstack call should be used to reset the signal
stack.

CSRG TRIS -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual - 11 - Timers

1.4. Timers

1.4.1. Real time
The system's notion of the current Greenwich time and the current time zone is set and

returned by the call by the calls:

#inc1ude < sys/time.h >

settimeofday(tvp, tzp);
struct timeval -tp;
struct timezone -tzp;

gettimeofday(tp, tzp);
result struct time val -tp;
result struct timezone -tzp;

where the structures are defined in <sys/time.h> as:

struct timeval {
long
long

};

struct timezone {
int
int

} ;

tv_sec;
tv_usec~

tz_minuteswest;
tz_dsttime;

1* seconds since Jan 1, 1970 - /
r and microseconds * /

1* of Greenwich * /
1* type of dst correction to apply * /

Earlier versions of UNIX contained only a I-second resolution version of this call, which
remains as a library routine:

time (tvsec)
result long *tvsec;

returning only the tv_sec field from the gettimeojday call.

1.4.2. Interval time
The system provides each process with three interval timers, defined in <sys/time.h>:

#define ITIMER_REAL 0 1* real time intervals * /
#define ITIMER_ VIRTUAL 1 1* virtual time intervals * /
#define ITIMER_PROF 2 r user and system virtual time • /

The ITIMER_REAL timer decrements in real time. It could be used by a library routine to
maintain a wakeup service Queue. A SIGALRM signal is delivered when this timer expires.

The ITIMER_ VIRTUAL timer decrements in process virtual time. It runs only when the
process is executing. A SIGVT ALRM signal is delivered when it expires.

The ITIMER PROF timer decrements both in process virtual time and when the system
is running on behalf of the process. It is designed to be used by processes to statistically profile
their execution. A SIGPROF signal is delivered when it expires.

A timer value is defined by the itimerval structure:

struct itimerval {
struct
struct

};

CSRG TR/5

timeval itJnterval; 1* timer interval * /
timeval it_value; /* current value * /

-- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual

and a timer is set or read by the call:

getitimer(which, value);

• 12 -

int which~ result struct itimerval ·value~

setitimer<which, value, ovalue)~
int which~ struct itimerval ·value; result struct itimerval ·ovalue~

Timers

The third argument to setitimer specifies an optional· structure to receive the previous contents
of the interval timer. A timer can be disabled by specifying a timer value of O.

The system rounds argument timer intervals to be not less than the resolution of its clock.
This clock resolution can be determined by loading a very small value into a timer and reading
the timer back to see what value resulted.

The alarm system call of earlier versions of UNIX is provided as a library routine using
the ITIMER_REAL timer. The process profiling facilities of earlier versions of UNIX remain
because it is not always possible to guarantee the automatic restart of system calls after receipt
of a signal.

profil (buf, bufsize, offset, scale) ~
result char ·buf~ int bufsize, offset, scale;

CSRG TRIS -- September 1, 1982 _. Joy, et. a1.

4.2BSD System Manual - 13 - Descriptors

1.5. Descriptors

1.5.1. The reference table
Each process has access to resources through descriptors. Each descriptor is a handle

allowing the process to reference objects such as files, devices and communications links.

Rather than allowing processes direct access to descriptors, the system introduces a level
of indirection, so that descriptors may be shared between processes. Each process has a descrip­
tor reference table, containing pointers to the actual descriptors. The descriptors themselves
thus have multiple references, and are reference counted by the system.

Each process has a fixed size descriptor reference table, where the size is returned by the
getdtablesize call:

nds =- getdtablesize 0;
result int nds;

and guaranteed to be at least 20. The entries in the descriptor reference table are referred to by
small integers; for example if there are 20 slots they are numbered 0 to 19.

1.5.2. Descriptor properties
Each descriptor has a logical set of properties maintained by the system and defined by its

type. Each type supports a set of operations; some operations, such as reading and writing, are
common to several abstractions, while others are unique. The generic operations applying to
many of these types are described in section 2.1. Naming contexts, files and directories are
described in section 2.2. Section 2.3 describes communications domains and sockets. Termi­
nals and (structured and unstructured) devices are described in section 2.4.

1.5.3. Managing descriptor references
A duplicate of a descriptor reference may be made by doing

new == dup(old)~
result int new; int old~

returning a copy of descriptor reference old indistinguishable from the original. The new chosen
by the system will be the smallest unused descriptor reference slot. A copy of a descriptor
reference may be made in a specific slot by doing

dup2(0Id, new);
int old, new;

The dup2 call causes the system to deallocate the descriptor reference current occupying slot
new, if any, replacing it with a reference to the same descriptor as old. This deallocation is also
performed by:

c1ose(old);
int old;

1.5.4. Multiplexing requests
The system provides a standard way to do synchronous and asynchronous multiplexing of

operations.

Synchronous multiplexing is performed by using the select call:

nds - select(nd, in, out, except, tvp)~
result int nds; int nd; result *in, *out, ·except;
struct time val *tvp;

The select call examines the descriptors specified by the sets in, out and except, replacing the

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual - 14 - Descriptors

specified bit masks by the subsets that select for input, output, and exceptional conditions
respectively (nd indicates the size, in bytes, of the bit masks;).. If any descriptors meet the fol­
lowing criteria, then the number of such descriptors is returned in n.ds and the bit masks are
updated.

• A descriptor selects for input if an input oriented operation such as read or 'receive is pos­
sible, or if a connection request may be accepted (see section 2.3.1.4).

• A descriptor selects for output if an output oriented operation such as write or send is pos­
sible, or if an operation that was "in progress'\ such as connection establishment, has
completed (see section 2.1.3).

• A descriptor selects for an exceptional condition if a condition that would cause a
SIGURG signal to be generated exists (see section 1.3.2).

if none of the specified conditions is true, the operation blocks for at most the amount of time
specified by tvp, or waits for one of the conditions to arise if tvp is given as O.

Options affecting ilo on a descriptor may be read and set by the call:

dopt - fcntl (d, cmd, arg)
result int dopt; int d, cmd, arg;

I- interesting values for cmd -I
#define F _SETFL
#define F _ G ETFL

I- set descriptor options -I
I- get descriptor options -I

#define F _SETOWN
#define F _ GETOWN

3
4
5
6

/*: set descriptor owner (pidl pgrp) -I
/* get descriptor owner (pid/pgrp) -I

The F _SETFL cmd may be used to set a descriptor in non-blocking i/o mode andlor enable sig­
nalling when ilo is possible. F _SETOWN may be used to specify a process or process group to
be signalled when using the latter mode of operation.

Operations on non-blocking descriptors will either complete immediately, note an error
EWOULDBLOCK, partially complete an input or output operation returning a partial count, or
return an error EINPROGRESS noting that the requested operation is in progress. A descriptor
which has signalling enabled will cause the specified process andlor process group be signaled,
with a SIGIO for input, output, or in-progress operation complete, or a SIGURG for excep­
tional conditions.

For example, when writing to a terminal using non-bloc.king. output, the system will accept
only as much data as there is buffer space for and return~ when making a connection on a
socket, the operation may return indicating that the connection establishment is "in progress".
The select facility can be used to determine when further output is p.ossible on the terminal, or
when the connection establishment attempt is complete.

I.S.S. Descriptor wrappiDI.t

A user process may build descriptors of a specified type by wrapping a communications
channel with a system supplied protocol translator:

new - wrap(old, proto)
result int new; int old; struct dprop -proto;

Operations on the descriptor old are then translated by the system provided protocol translator
into requests on. the underyling object old in a way defined by the protocol. The protocols sup­
ported by the kernel may vary from system to system and are· described in the programmers
manual.

t The facilities described in. this section are not included in 4.2BS,0.

CSRG TRIS _. September 1, 1982 .- Joy, et. al.

4.2BSD System Manual - 15 - Descriptors

Protocols may be based on communications multiplexing or a rights-passing style of han­
dling multiple requests made on the same object. For instance, a protocol for implementing a
file abstraction mayor may not include locally generated "read-ahead" requests. A protocol
that provides for read-ahead may provide higher performance but have a more difficult imple­
mentation.

Another example is the terminal driving facilities. Normally a terminal is associated with
a communications line and the terminal type and standard terminal access protocol is wrapped
around a synchronous communications ·line and given to the user. If a virtual terminal is
required, the terminal driver can be wrapped around a communications link, the other end of
which is held by a virtual terminal protocol interpreter.

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

4.2BSO System Manual - 16 - Resource controls

1.6. Resource controls

1.6.1. Process priorities
The system gives CPU scheduling priority to processes that have not used CPU time

recently. This tends to favor interactive processes and processes that execute only for short
periods. It is possible to determine the priority currently assigned to a process, process group,
or the processes of a specified user, or to alter this priority using the calls:

#define PRIO_PROCESS 0 /* process */
#define PRIO_PGRP 1 /* process group·/
#define PRIO_USER 2 /* user id */

prio - getpriority(which, who) ~
result int prio; int which, who;

setpriority(which, who, prio);
int which, who, prio;

The value prio is in the range - 20 to 20. The default priority is 0; lower priorities cause more
favorable execution. The get priority call returns the highest priority (lowest numerical value)
enjoyed by any of the specified processes. The setpriority call sets the priorities of all of the
specified processes to the specified value. Only the super-user may lower priorities.

1.6.2. Resource utilization
The resources used by a process are returned by a getrusage call, returning information in

a structure defined in < sys/resource.h > :

#define RUSAGE_SELF 0
#define RUSAGE_CHILOREN-l

getrusage(who, rusage)
int who; result struct rusage ·rusage;

struct rusage (
struct
struct
int
int
int
int
int
int
int
int
int
int
int
int
int
int

);

time val ru_utime;
timeval ru_stime;
ru_maxrss;
ruJxrss;
ruJdrss;
ru isrss;
ru -minOt;
ru - majOt;
ru_nswap;
ruJnblock;
ru_oublock;
ru_msgsnd;
ru_msgrcv;
ru _ nsignals;
ru_nvcsw;
ru_nivcsw;

/. usage by this process ./
/. usage by all children ./

r user time used ./
r system time used ./
r maximum core resident set size: kbytes *'
r integral shared memory size (kbytes·sec) ./
r un shared data " ./
r unshared stack " */
r page-reclaims */
r page faults */
r swaps·/
r block input operations ./
/. block output " */ '* messages sent *' r messages received */
r signals received *' '* voluntary context switches */
r involuntary" *'

The who parameter specifies whose resource usage is to be returned. The resources used by the
current process, or by all the terminated children of the current process may be requested.

CSRG TR/S -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual - 17 - Resource controls

1.6.3. Resource limits
The resources of a process for which limits are controlled by the kernel are defined in

<sys/resource.h> , and controlled by the getrlimit and setrlimit calls:

#define RLIMIT_CPU
#define RLIMIT _FSIZE
#define RLIMIT_DATA
#define RLIMIT _STACK
#define RLIMIT_CORE
#define RLIMIT_RSS

#define RLIM_NLIMITS

#define RLIM_INFINITY

struct rlimit {
int
int

rlim_cur;
rlim_max;

} ;

getrlimit (resource, rIp)

o r cpu time in milliseconds -/
1 /* maximum file size -/
2 /* maximum data segment size * /
3 /* maximum stack segment size -/
4 /* maximum core file size -/
5 r maximum resident set size -/

6

Ox7fffffff

r current (soft) limit * /
r hard limit - /

int resource; result struct rlimit -rip;

setrlimit (resource, rip)
int resource; struct rlimit -rIp;

Only the super-user can raise the maximum limits. Other users may only alter rlim_cur
within the range from 0 to rlim_max or (irreversibly) lower rlim_max.

CSRG TR/S -- September 1, 1982 -- Joy, et. al.

4.2BSO System Manual - 18 - System operation support

1.7. System operation support

Unless noted otherwise, the calls in this section are permitted only to a privileged user.

1.7.1. Bootstrap operations
The call

mount (blkdev, dir, ronly) ~
char ·blkdev, *dir~ int ronly~

extends the UNIX name space. The mount call specifies a block device blkdev containing a
UNIX file system to be made available starting at dir. If ronly is set then the file system is
read-only~ writes to the file system will not be permitted and access times will not be updated
when files are referenced. Dir is normally a name in the root directory.

The call

swapon(blkdev, size)~
char *blkdev; int size~

specifies a device to be made available for paging and swapping.

1. 7 .2. Shutdown operations
The call

un moun t (dir) ~
char ·dir~

unmounts the file system mounted on dir. This call will succeed only if the file system is not
currently being used.

The call

syncO~

schedules input/output to clean all system buffer caches. (This call does not require priveleged
status'>

The call

reboot (how)
int how~

causes a machine halt or reboot. The call may request a reboot by specifying how as
RB_AUTOBOOT, or that the machine be halted with RB_HALT. These constants are defined
in <sys/reboot.h>.

1.7.3. Accounting
The system optionally keeps an accounting record in a file for each process that exits on

the system. The format of this record is beyond the scope of this document. The accounting
may be enabled to a file name by doing

acct(path);
char ·path;

If path is null, then accounting is disabled. Otherwise, the named file becomes the accounting
file.

CSRG TR/S -- September 1, 1982 •• Joy, et. al.

4.2BSD System Manual - 19 - System facilities

2. System facilities

This section discusses the system facilities that are not considered part of the kernel.

The system abstractions described are:

Directory contexts

Files

A directory context is a position in the UNIX file system name space. Operations on files
and other named objects in a file system are always specified relative to such a context.

Files are used to store un interpreted sequence of bytes on which random access reads and
writes may occur. Pages from files may also be mapped into process address space. A
directory may be read as a filet.

Communications domains
A communications domain represents an interprocess communications environment, such
as the communications facilities of the UNIX system, communications in the INTERNET,
or the resource sharing protocols and access rights of a resource sharing system on a local
network.

Sockets
A socket is an endpoint of communication and the focal point for IPC in a communica­
tions domain. Sockets may be created in pairs, or given names and used to rendezvous
with other sockets in a communications domain, accepting connections from these sockets
or exchanging messages with them. These operations model a labeled or unlabeled com­
munications graph, and can be used in a wide variety of communications domains. Sock­
ets can have different types to provide different semantics of communication, increasing
the flexibility of the model.

Terminals and other devices
Devices include terminals, providing input editing and interrupt generation and output
flow control and editing, magnetic tapes, disks and other peripherals. They often support
the generic read and write operations as well as a number of iocr/so

Processes
Process descriptors provide facilities for control and debugging of other processes.

t Support for mapping files is not included in the 4.2 release.

CSRG TRIS -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual - 20- Generic operations

201. Generic operations

Many system abstractions support the operations read, write and ioetl. We describe the
basics of these common primitives here. Similarly, the mechanisms whereby normally synchro­
nous operations may occur in a non-blocking or asynchronous fashion are common to all
system-defined abstractions and are described here.

2.1.1. Read and write
The read and write system calls can be applied to communications channels, files, termi­

nals and devices. They have the form:

cc - read(fd, buf, nbytes)~
result int cc; int fd; result caddr_t buf; int nbytes;

cc - write(fd, buf, nbytes);
result int cc; int fd; caddr_t buf; int nbytes;

The read call transfers as much data as possible from the object defined by Id to the buffer at
address bulof size nbytes. The number of bytes transferred is returned in ee, which is -1 if a
return occurred before any data was transferred because of an error or use of non-blocking
operations.

The write call transfers data from the buffer to the object defined by Id. Depending on the
type of Id, it is possible that the write call will accept some portion of the provided bytes; the
user should resubmit the other bytes in a later request in this case. Error returns because of
interrupted or otherwise incomplete operations are possible.

Scattering of data on input or gathering of data for output is also possible using an array
of input/output vector descriptors. The type for the descriptors is defined in <sys/uio.h> as:

struct iovec (
caddr_t
int

);

iov_msg;
iovJen;

The calls using an array of descriptors are:

cc - readv(fd, iov, iovlen)~

r base of a component * /
/* length of a component * /

result int cc; int fd; struct iovec *iov~ int iovlen;

cc - writev(fd, iov, iovlen)~
result int cc; int fd; struct iovec *iov; int iovlen;

Here iovlen is the count of elements in the iov array.

2.1.2. Input/output control
Control operations on an object are performed by the ioetloperation:

ioctI(fd, request, buffer)~
int fd, request; caddr_t buffer;

This operation causes the specified request to be performed on the object Id The request param­
eter specifies whether the argument buffer is to be read, written, read and written, or is not
needed, and also the size of the buffer, as well as the request. Different descriptor types and
subtypes within descriptor types may use distinct ioetl requests. For example, operations on ter­
minals control flushing of input and output queues and setting of terminal parameters; opera­
tions on disks cause formatting operations to occur; operations on tapes control tape position­
ing.

CSRG TR/S -- September 1, 1982 -- Joy, et. al.

4.2BSO System Manual - 21 - Generic operations

The names for basic control operations are defined in <sys/ioctl.h>.

2.1.3. Non-blocking and asynchronous operations
A process that wishes to do non-blocking operations on one of its descriptors sets the

descriptor in non-blocking mode as described in section 1.5.4. Thereafter the read call will
return a specific EWOULOBLOCK error indication if there is no data to be read. The process
may dselect the associated descriptor to determine when a read is possible.

Output attempted when a descriptor can accept less than is requested will either accept
some of the provided data, returning a shorter than normal length, or return an error indicating
that the operation would block. More output can be performed as soon as a select call indicates
the object is writeable.

Operations other than data input or output may be performed on a descriptor in a non­
blocking fashion. These operations will return with a characteristic error indicating that they
are in progress if they cannot return immediately. The descriptor may then be selected for write
to find out when the operation can be retried. When select indicates the descriptor is writeable,
a respecification of the original operation will return the result of the operation.

CSRG TRIS -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual - 22 - File system

2.2. File system

2.2.1. Overview
The file system abstraction provides access to a hierarchical file system structure. The file

system contains directories (each of which may contain other sub-directories) as well as files
and references to other objects such as devices and inter-process communications sockets.

Each file is organized as a linear array of bytes. No record boundaries or system related
information is present in a file. Files may be read and written in a random-access fashion. The
user may read the data in a directory as though it were an ordinary file to determine the names
of the contained files, but only the system may write into the directories. The file system stores
only a small amount of ownership, protection and usage information with a file.

2.2.2. Naming

The file system calls take path name arguments. These consist of a zero or more com­
ponent file names separated by HI" characters, where each file name is up to 255 ASCII charac­
ters excluding null and HI".

Each process always has two naming contexts: one for the root directory of the file system
and one for the current working directory. These are used by the system in the filename trans­
lation process. If a path name begins with a HI", it is called a full path name and interpreted
relative to the root directory context. If the path name does not begin with a HI" it is called a
relative path name and interpreted relative to the current directory context.

The system limits the total length of a path name to 1 024 characters.

The file name u .. '" in each directory refers to the parent directory of that directory. The
parent directory of a file system is always the systems root directory.

The calls

chdir(path)~
char ·path~

chroot(path)
char ·path~

change the current working directory and root directory context of a process. Only the super­
user can change the root directory context of a process.

2.2.3. Creation and removal
The file system allows directories, files, special devices, and Uportals" to be created and

removed from the file system.

2.2.3.1. Directory creation and removal
A directory is created with the mkdir system call:

mkdir(path, mode);
char ·path; int mode;

and removed with the rmdir system call:

rmdir(path);
char ·path;

A directory must be empty if it is to be deleted.

CSRG TRIS -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual - 23 - File system

2.2.3.2. File creation
Files are created with the open system call,

fd - open (path, onag, mode) ~
result int fd; char -path~ int onag, mode;

The path parameter specifies the name of the file to be created. The oflag parameter must
include O_CREAT from below to cause the file to be created. The protection for the new file is
specified in mode. Bits for oftag are defined in < sys'file.h >:

#define O_RDONLY 000 1* open for reading -,
#define 0_ WRONL Y 001 1* open for writing -,
#define O_RDWR 002 1* open for read & write -,
#define O_NDELAY 004 1* non-blocking open -,
#define O_APPEND 010 1* append on each write -,
#define 0_ CREA T 01000 1* open with file create -,
#define O_TRUNC 02000 1* open with truncation -,
#define 0 _EXCL 04000 1* error on create if file exists -,

One of O_RDONLY, 0_ WRONLY and O_RDWR should be specified, indicating what
types of operations are desired to be performed on the open file. The operations will be
checked against the user's access rights to the file before allowing the open to succeed. Specify­
ing 0 _APPEND causes writes to automatically append to the file. The flag 0_ CREA T causes
the file to be created if it does not exist, with the specified mode, owned by the current user and
the group of the containing directory.

If the open specifies to create the file with 0 _EXCL and the file already exists, then the
open will fail without affecting the file in any way. This provides a simple exclusive access facil-
ity. .

2.2.3.3. Creating references to devices
The file system allows entries which reference peripheral devices. Peripherals are dis­

tinguished as block or character devices according by their ability to support block-oriented
operations. Devices 'are identified by their Hmajor" and Hminor" device numbers. The major
device number determines the kind of peripheral it is, while the minor device number indicates
one of possibly many peripherals of that kind. Structured devices have all operations per­
formed internally in Hblock" quantities while unstructured devices often have a number of spe­
cial ioctloperations, and may have input and output performed in large units. The mknod call
creates special entries:

mknod (path, mode, dev);
char -path~ int mode, dev~

where mode is formed from the object type and access permissions. The parameter dev is a
configuration dependent parameter used to identify specific character or block i' 0 devices.

2.2.3.4. Portal creationt
The call

fd - porta)(name, server, param, dtype, protocol, domain, socktype)
result int fd; char -name, -server, -param~ int dtype, protocol;
int domain, socktype;

places a name in the file system name space that causes connection to a server process when the
name is used. The portal call returns an active portal in fd as though an access had occurred to

t The porlal call is not implemented in 4.2BSD.

CSRG TR'S -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual - 24 - File system

activate an inactive portal, as now described.

When an inactive portal is accesseed, the system sets up a socket of the specified socktype
in the specified communications domain (see section 2.3), and creates the server process, giving
it the specified param as argument to help it identify the portal, and also giving it the newly
created socket as descriptor number O. The accessor of the portal will create a socket in the
same domain and connect to the server. The user will then wrap the socket in the specified pro­
tocol to create an object of the required descriptor type dtype and proceed with the operation
which was in progress before the portal was encountered.

While the server process holds the socket (which it received as fd from the portal call on
descriptor 0 at activation) further references will result in connections being made to the same
socket.

2.2.3.5. File, device, and portal removal

A reference to a file, special device or portal may be removed with the unlink call,

unlink (path) ~
char ·path~

The caller must have write access to the directory in which the file is located for this call to be
successful.

2.2.4. Reading and modifying file attributes

Detailed information about the attributes of a file may be obtained with the calls:

#include <sys/stat.h>

stat (path, stb) ~
char ·path~ result struct stat ·stb~

fstat(fd, stb)~
int fd~ result struct stat ·stb~

The stat structure includes the file type, protection, ownership, access times, size, and a count
of hard links. If the file is a symbolic link, then the status of the link itself (rather than the file
the link references) may be found using the Istat call:

lstat(path, stb)~
char ·path~ result struct stat ·stb~

Newly created files are assigned the user id of the process that created it and the group id
of the directory in which it was created. The ownership of a file may be changed by either of
the calls

chown(path, owner, group)~
char ·path~ int owner, group~

fchown(fd, owner, group);
int fd, owner, group;

In addition to ownership, each file has three levels of access protection associated with it.
These levels are owner relative, group relative, and global (all users and groups). Each level of
access has separate indicators for read permission, write permission, and execute permission.
The protection bits associated with a file may be set by either of the calls:

CSRG TR/5 -- September 1, 1982 -- Joy, et. a1.

4.28S0 System Manual

chmod (path, mode) ~
char ·path~ int mode~

fchmod(fd, mode)~
int fd, mode;

- 25 - File system

where mode is a value indicating the new protection of the file. The file mode is a three digit
octal number. Each digit encodes read access as 4, write access as 2 and execute access as l,
or'ed together. The 0700 bits describe owner access, the 070 bits describe the access rights for
processes in the same group as the file, and the 07 bits describe the access rights for other
processes.

Finally, the access and modify times on a file may be set by the call:

utimes(path, tvp)
char ·path; struct timeval ·tvp[2]~

This is particularly useful when moving files between media, to preserve relationships between
the times the file was modified.

2.2.5. Links and renaming
Links allow multiple names for a file to exist. Links exist independently of the file linked

to.

Two types of links exist, hard links and symbolic links. A hard link is a reference counting
mechanism that allows a file to have multiple names within the same file system. Symbolic
links cause string substitution during the path name interpretation process.

Hard links and symbolic links have different properties. A hard link insures the target file
will always be accessible, even after its original directory entry is removed~ no such guarantee
exists for a symbolic link. Symbolic links can span file systems boundaries.

The following calls create a new link, named path2, to path1:

link (path l, path2) ~ ,
char ·path l, ·path2;

symlink (path l, path2);
char ·pathl, ·path2;

The unlink primitive may be used to remove either type of link.

If a file is a symbolic link, the "value" of the link may be read with the readlink call,

len - readlink (path, buf, bufsize);
result int len~ result char ·path, ·buf~ int bufsize~

This call returns, in buj, the null-terminated string substituted into pathnames passing through
path.

Atomic renaming of file system resident objects is possible with the rename call:

rename (oldname, newname) ~
char ·oldname, ·newname;

where both oldname and newname must be in the same file system. If newname exists and is a
directory, then it must be empty.

2.2.6. Extension and truncation
Files are created with zero length and may be extended simply by writing or appending to

them. While a file is open the system maintains a pointer into the file indicating the current
location in the file associated with the descriptor. This pointer may be moved about in the file

CSRG TR/5 -- September 1, 1982-- Joy, et. al.

4.2BSD System Manual - 26 - File system

in a random access fashion. To set the current offset into a file, the Iseek call may be used,

oldoffset .. Iseek (fd, offset, type) ~
result off_t o)doffset~ int fd; off_t offset; int type;

where type is given in <sys/file.h> as one of,

#define L_SET 0 /* set absolute file offset */
#define L_INCR 1 /* set file offset relative to current position ./
#define L_XTND 2 /* set offset relative to end-of-file ./

The call "Iseek(fd, 0, L_INCR)" returns the current offset into the file.

Files may have "holes" in them. Holes are void areas in the linear extent of the file
where data has never been written. These may be created by seeking to a location in a file past
the current end-of-file and writing. Holes are treated by the system as zero valued bytes.

A file may be truncated with either of the calls:

truncate (path, length) ~
char ·path; int length~

ftruncate (fd, length) ~
int fd, length;

reducing the size of the specified file to length bytes.

2.2.7. Checking accessibility
A process running with different real and effective user ids may interrogate the accessibil­

ity of a file to the real user by using the access call:

accessible" access(path, how);
result int accessible; char ·path; int how;

Here how is constructed by or'ing the following bits, defined in <sys/file.h>:

#define F _ OK 0 1* file exists */
#define X_OK 1 1* file is executable */
#define W _ OK 2 /* file is writable */
#define R_ OK 4 1* file is readable */

The presence or absence of advisory locks does not affect the result of access.

2.2.8. Locking
The file system provides basic facilities that allow cooperating processes to synchronize

their access to shared files. A process may place an advisory read or write lock on a file, so that
other cooperating processes may avoid interfering with the process' access. This simple
mechanism provides locking with file granularity. More granular locking can be built using the
IPC facilities to provide a lock manager. The system does not force processes to obey the
locks; they are of an advisory nature only.

Locking is performed after an open call by applying the flock primitive,

fiock(fd, how);
int fd, how;

where the how parameter is formed from bits defined in < sys/file.h > :

#define LOCK_SH 1 /* shared lock */
#define LOCK_EX 2 /. exclusive lock */
#define LOCK_NB 4 /* don't block when locking */
#define LOCK_UN 8 /* unlock */

CSRG TR/S -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual - 27 - File system

Successive lock calls may be used to increase or decrease the level of locking. If an object is
currently locked by another process when a flock call is made, the caller will be blocked until
the current lock owner releases the lock; this may be avoided by including LOCK_NB in the
how parameter. Specifying LOCK_UN removes all locks associated with the descriptor.
Advisory locks held by a process are automatically deleted when the process terminates.

2.2.9. Disk quotas

As an optional facility, each file system may be requested to impose limits on a user's disk
usage. Two quantities are limited: the total amount of disk space which a user may allocate in a
file system and the total number of files a user may create in a file system. Quotas are
expressed as hard limits and soft limits. A hard limit is always imposed; if a user would exceed
a hard limit, the operation which caused the resource request will fail. A soft limit results in
the user receiving a warning message, but with allocation succeeding. Facilities are provided to
turn soft limits into hard limits if a user has exceeded a soft limit for an unreasonable period of
time.

To enable disk quotas on a file system the setquota call is used:

setquota (special, file)
char *special, *file;

where special refers to a structured device file where a mounted file system exists, and file refers
to a disk quota file (residing on the file system associated with special) from which user quotas
should be obtained. The format of the disk quota file is implementation dependent.

To manipulate disk quotas the quota call is provided:

#include <sys/quota.h>

quota (cmd, uid, arg, addr) \
int cmd, uid, arg; caddr_t addr;

The indicated cmd is applied to the user ID uid. The parameters arg and addr are command
specific. The file <sys/quota.h> contains definitions pertinent to the use of this call.

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

4.2BSO System Manual - 28 - Interprocess communications

2.3. Interprocess communications

2.3.1. Interprocess communication primitives

2.3.1.1. Communication domains
The system provides access to an extensible set of communication domains. A communi­

cation domain is identified by a manifest constant defined in the file <sys/socket.h>. Impor­
tant standard domains supported by the system are the "unix" domain, AF UNIX, for com­
munication within the system, and the Hinternet" domain for communication in the DARPA
internet, AF _INET. Other domains can be added to the system.

2.3.1.2. Socket types and protocols
Within a domain, communication takes place between communication endpoints known as

sockets. Each socket has the potential to exchange information with other sockets within the
domain.

Each socket has an associated abstract type, which describes the semantics of communica­
tion using that socket. Properties such as reliability, ordering, and prevention of duplication of
messages are determined by the type. The basic set of socket types is defined in
<sys/socket.h>:

r Standard socket types ./
#define SOCK_DGRAM 1 r datagram ./
#define SOCK_STREAM 2 r virtual circuit ./
#define SOCK_RA W 3 r raw socket ./
#define SOCK_RDM 4 r reliably-delivered message ./
#define SOCK_SEQPACKET 5 r sequenced packets ./
~

The SOCK2DGRAM type models the semantics of datagrams in network communication: mes-
sages may be l0i;t or duplicated and may arrive out-of-order. The SOCK_RDM type models the
semantics of re' able datagrams: messages arrive unduplicated and in-order, the sender is
notified if me ages are lost. The send and receive operations (described below) generate
reliable/unreliable datagrams. The SOCK_STREAM type models connection-based virtual.cir­
cuits: two-way byte streams with no record boundaries. The SOCK_SEQP ACKET type models
a connection-based, full-duplex, reliable, sequenced packet exchange; the sender is notified if
messages are lost, and messages are never duplicated or presented out-of-order. Users of the
last two abstractions may use the facilities for out-of-band transmission to send out-of-band
data.

SOCK_RA W is used for unprocessed access to internal network layers and interfaces~ it
has no specific semantics.

Other socket types can be defined. t
Each socket may have a concrete protocol associated with it. This protocol is used within

the domain to provide the semantics required by the socket type. For example, within the
"internet" domain, the SOCK DGRAM type may be implemented by the UOP user datagram
protocol, and the SOCK STREAM type may be implemented by the TCP transmission control
protocol, while no standard protocols to provide SOCK_RDM or SOCK_SEQPACKET sockets
exist.

t 4.2BSO does not support the SOCK_ROM and SOCK_SEQPACKET types.

CSRG TR/S -- September 1, 1982 -- Joy, et. a1.

4.2BSD System Manual • 29 • Interprocess communications

2.3.1.3. Socket creation, naming and service establishment
Sockets may be connected or unconnected An unconnected socket descriptor is obtained

by the socket call:

s - socket (domain, type, protocol);
result int s; int domain, type, protocol;

An unconnected socket descriptor may yield a connected socket descriptor in one of two
ways: either by actively connecting to another socket, or by becoming associated with a name in
the communications domain and accepting a connection from another socket.

To accept connections, a socket must first have a binding to a name within the communi­
cations domain. Such a binding is established by a bind call:

bind (s, name, namelen);
int s; char *name; int namelen;

A socket's bound name may be retrieved with a getsockname call:

getsockname (s, name, namelen);
int s; result caddr_t name; result int *namelen;

while the peer's name can be retrieved with getpeername:

getpeername (s, name, namelen);
int s; result caddr_t name; result int *namelen;

Domains may support sockets with several names.

2.3.1.4. Accepting connections
Once a binding is made, it is possible to listen for connections:

listen (s, backlog);
int s, backlog;

The backlog specifies the maximum count of connections that can be simultaneously queued
awaiting acceptance.

An accept call:

t - accept(s, name, anamelen);
result int t; int s; result caddr_t name; result int *anamelen;

returns a descriptor for a new, connected, socket from the queue of pending connections on s.

2.3.1.5. Making connections
An active connection to a named socket is made by the connect call:

connect(s, name, namelen);
int s; caddr_t name; int namelen;

It is also possible to create connected pairs of sockets without using the domain's name
space to rendezvous; this is done with the socketpair caut:

socketpair(d, type, protocol, sv);
int d, type, protocol; result int sv [2];

Here the returned sv descriptors correspond to those obtained with accept and connect.

t 4.2850 supports socket pair creation only in the "unix" communication domain.

CSRG TRIS •• September 1, 1982 •• Joy, et. al.

4.2BSD System Manual - 30- Interprocess communications

The call

pipe (pv)
result int pv [2];

creates a pair of SOCK_STREAM sockets in the UNIX domain .. with pv[O] only writeable and
pv [l] only readable.

2.3.1.6. Sending and receiving data
Messages may be sent from a socket by:

cc - sendto(s .. buf, len, flags, to, tolen);
result int cc~ int s; caddr_t buf; int len, flags; caddr_t to; int tolen;

if the socket is not connected or:

cc - send(s, buf .. len, flags)~
result int cc; int s; caddr_t buf; int len, flags;

if the socket is connected. The corresponding receive primitives are:

msglen - recvfrom (s, buf, len, flags, from, fromlenaddr);
result int msglen~ int s; result caddr_t buf; int len, flags;
result caddr_t from; result int *fromlenaddr;

and

msglen - recv(s, buf, len, flags);
result int msglen; int s; result caddr_t buf; int len .. flags;

In the unconnected case, the parameters to and tolen specify the destination or source of
the message, while the /rom parameter stores the source of the message, and *!romlenaddr ini­
tially gives the size of the from buffer and is updated to reflect the true length of the from
address.

All calls cause the message to be received in or sent from the message buffer of length len
bytes. starting at address buj. The flags specify peeking at a message without reading it or send­
ing or receiving high-priority out-of-band messages, as follows:

#define MSG PEEK Ox 1 /* peek at incoming message • /
#define MSG = OOB Ox2 /* process out-of-band data • /

2.3.1.7. Scatter/gather and exchanging access rights
It is possible scatter and gather data and to exchange access rights with messages. When

either of these operations is involved, the number of parameters to the call becomes large.
Thus the system deftnesa message header structure, in <sys/socket.h>, which can be used to
conveniently contain the parameters to the calls:

struct msghdr {
caddr_t
int
struct
int
caddr_t
int

msg_name;
msg_namelen;
iov *msgJov;
msgJovlen;
msg_ accrights;
msg_accrightslen;

/* optional address * /
/* size of address * /
/* scatter/gather array * /
/* # elements in msgJov * /
/* access rights sent/received * /
/* size of msg_accrights * /

Here msg_name and msg_namelen specify the source or destination address if the socket is
unconnected; msg_name may be given as a null pointer if no names are desired or required.
The msg_iovand msg_iov/en describe the scatter/gather locations, as described in section 2.1.3.

CSRG TR/S -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual - 31 - Interprocess communications

Access rights to be sent along with the message are specified in msg_accrights, which has length
msg_accrightslen. In the "unix" domain these are an array of integer descriptors, taken from
the sending process and duplicated in the receiver.

This structure is used in the operations sendmsg and recvmsg:

sendmsg (s, msg, flags);
int s; struct msghdr *msg; int flags;

msglen .. recvmsg (s, msg, flags);
result int msglen; int s; result struct msghdr *msg; int flags;

2.3.1.8. Using read and write with sockets
The normal UNIX read and write calls may be applied to connected sockets and translated

into send and receive calls from or to a single area of memory and discarding any rights received.
A process may operate on a virtual circuit socket, a terminal or a file with blocking or non­
blocking input/output operations without distinguishing the descriptor type.

2.3.1.9. Shutting down halves of full-duplex connections
A process that has a full-duplex socket such as a virtual circuit and no longer wishes to

read from or write to this socket can give the call:

shutdown (s, direction);
int s, direction;

where direction is 0 to not read further, 1 to not write further, or 2 to completely shut the con­
nection down.

2.3.1.10. Socket and protocol options
Sockets, and their underlying communication protocols, may support options. These

options may be used to manipulate implementation specific or non-standard facilities. The get­
sockopt and setsockopt calls are used to control options:

getsockopt (s, level, optname, optval, optlen)
int s, level, optname; result caddr_t optval; result int *optlen;

setsockopt (s, level, optname, optval, optlen)
int s, level, optname; caddr_t optval; int optlen;

The option optname is interpreted at the indicated protocol level for socket s. If a value is
specified with optval and optlen, it is interpreted by the software operating at the specified level.
The level SOL_SOCKET is reserved to indicate options maintained by the socket facilities.
Other level values indicate a particular protocol which is to act on the option request; these
values are normally interpreted as a "protocol number".

2.3.2. UNIX domain
This section describes briefly the properties of the UNIX communications domain.

2.3.2.1. Types of sockets
In the UNIX domain, the SOCK_STREAM abstraction provides pipe-like facilities, while

SOCK_DGRAM provides (usually) reliable message-style communications.

2.3.2.2. Naming
Socket names are strings and may appear in the UNIX file system name space through

portalst.

t The 4.2BSO implementation of the UNIX domain embeds bound sockets in the UNIX file system name
space; this is a side effect of the implementation.

CSRG TR/S -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual - 32 - Interprocess communications

2.3.2.3. Access rights transmission
The ability to pass UNIX descriptors with messages in this domain allows migration of

service within the system and allows user processes to be used in building system facilities.

2.3.3. INTERNET domain
This section describes briefly how. the INTERNET domain is mapped to the model

described in this section. More information will be found in the document describing the net­
work implementation in 4.2BSD.

2.3.3.1. Socket types and protocols
SOCK_STREAM is supported by the INTERNET TCP protocol; SOCK_DGRAM by the

UDP protocol. The SOCK_SEQP ACKET has no direct INTERNET family analogue; a protocol
based on one from the XEROX NS family and layered on top of IP could be implemented to
fill this gap.

2.3.3.2. Socket naming
Sockets in the INTERNET domain have names composed of the 32 bit internet address,

and a 16 bit port number. Options may be used to provide source routing for the address,
security options, or additional address for subnets of INTERNET for which the basic 32 bit
addresses are insufficient.

2.3.3.3. Access rights transmission
No access rights transmission facilities are provided in the INTERNET domain.

2.3.3.4. Raw access
The INTERNET domain allows the super-user access to the raw facilities of the various

network interfaces and the various internal layers of the protocol implementation. This allows
administrative and debugging functions to occur. These interfaces are modeled as SOCK_RAW
sockets.

CSRG TRIS -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual - 33 - Terminals and Devices

2.4. Terminals and Devices

2.4.1. Terminals
Terminals support read and write i/o operations, as well as a collection of terminal specific

ioctloperations, to control input character editing, and output delays.

2.4.1.1. Terminal input
Terminals are handled according to the underlying communication characteristics such as

baud rate and required delays, and a set of software parameters.

2.4.1.1.1. Input modes
A terminal is in one of three possible modes: raw, cbreak, or cooked. In raw mode all

input is passed through to the reading process immediately and without interpretation. In
cbreak mode, the handler interprets input only by looking for characters that cause interrupts or
output flow control; all other characters are made available as in raw mode. In cooked mode,
input is processed to provide standard line-oriented local editing functions, and input is
presented on a line-by-line basis.

2.4.1.1.2. Interrupt characters
Interrupt characters are interpreted by the terminal handler only in cbreak and cooked

modes, and cause a software interrupt to be sent to all processes in the process group associated
with the terminal. Interrupt characters exist to send SIGINT and SIGQUIT signals, and to stop
a process group with the SIGTSTP signal either immediately, or when all input up to the stop
character has been read.

2.4.1.1.3. Line editing
When the terminal is in cooked mode, editing of an input line is performed. Editing facil­

ities allow deletion of the previous character or word, or deletion of the current input line. In
addition, a special character may be used to reprint the current input line after some number of
editing operations have been applied.

Certain other characters are interpreted specially when a process is in cooked mode. The
end of line character determines the end of an input record. The end of file character simulates
an end of file occurrence on terminal input. Flow control is provided by stop output and start
output control characters. Output may be flushed with the flush output character; and a literal
character may be used to force literal input of the immediately following character in the input
line.

2.4.1.2. Terminal output
On output, the terminal handler provides some simple formatting services. These include

converting the carriage return character to the two character return-linefeed sequence, display­
ing non-graphic ASCII characters as H"character", inserting delays after certain standard control
characters, expanding tabs, and providing translations for upper-case only terminals.

2.4.1.3. Terminal control operations
When a terminal is first opened it is initialized to a standard state and configured with a

set of standard control, editing, and interrupt characters. A process may alter this configuration
with certain control operations, specifying parameters in a standard structure:

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual - 34 - Terminals and Devices

struct ttymode {
short
int
short
int

ttjspeed;
ttjflags;
tt_ospeed;
tt_oflags;

'* input speed *' '* input flags *' '* output speed *' '* output flags *'
and "special characters" are specified with the ttychars structure,

struct ttychars {
char
char
char
char
char
char
char
char
char
char
char
char
char
char

} ;

tc_erasec;
tc_killc;
tcjntrc;
tc_quitc;
tc_startc;
tc_stopc;
tc_eofc;
tc_brkc;
tc_suspc;
tc_dsuspc;
tc_rprntc;
tc_flushc;
tc_werasc;
tcJnextc;

2.4.1.4. Terminal hardware support

'* erase char *' '* erase line *' '* interrupt *' '* quit *' r- start output *' '* stop output *' '* end-of-file *' '* input delimiter (like nJ) *' '* stop process signal *' '* delayed stop process signal *' '* reprint line *' '* flush output (toggles) *' '* word erase *' '* literal next character *'

The terminal handler allows a user to access basic hardware related functions; e.g. line
speed, modem control, parity, and stop bits. A special signal, SIGHUP, is automatically sent to
processes in a terminal's process group when a carrier transition is detected. This is normally
associated with a user hanging up on a modem controlled terminal line.

2.4.2. Structured devices

Structures devices are typified by disks and magnetic tapes, but may represent any
random-access device. The system performs read-modify-write type buffering actions on block
devices to allow them to be read and written in a totally random access fashion like ordinary
files. File systems are normally created in block devices.

2.4.3. Unstructured devices

Unstructured devices are those devices which do not support block structure. Familiar
unstructured ·devices are raw communications lines (with no terminal handler), raster plotters,
magnetic tape and disks unfettered by buffering and permitting large blockinput'output and
positioning and formatting commands.

CSRG TR'S -- September 1, 1982 -- Joy, et. a1.

4.2BSD System Manual - 35 - Process and kernel descriptors

1.S. Process and kernel descriptors

The status of the facilities in this section is still under discussion. The ptrace facility of
4.18SD is provided in 4.28SD. Planned enhancements would allow a descriptor based process
control facility.

CSRG TR/5 -- September 1, 1982 -- Joy, et. al.

4.2BSD System Manual

I. Summary of facilities

1. Kernel primitives

1.1. Process naming and protection

sethostid
gethostid
sethostname
gethostname
getpid
fork
exit
execve
getuid
geteuid
setreuid
getgid
getegid
getgroups
setregid
setgroups
getpgrp
setpgrp

1.2 Memory management

<mman.h>
sbrk
sstkt
getpagesize
mmapt
mremapt
munmapt
mprotectt
madviset
mincoret

1.3 Signals

<signal.h>
sigvec
kill
killpgrp
sigblock
sigsetmask
sigpause
sigstack

1.4 Timing and statistics

< sys/time.h >
gettimeofday
settimeofday
getitimer
setitimer

t Not supported in 4.28SD.

CSRG TR/S

- 36 - Summary of facilities

set UNIX host id
get UNIX host id
set UNIX host name
get UNIX host name
get process id
create new process
terminate a process
execute a different process
get user id
get effective user id
set real and effective user id's
get accounting group id
get effective accounting group id
get access group set
set real and effective group id's
set access group set
get process group
set process group

memory management definitions
change data section size
change stack section size
get memory page size
map pages of memory
remap pages in memory
un map memory
change protection of pages
give memory management advice
determine core residency of pages

signal definitions
set handler for signal
send signal to process
send signal to process group
block set of signals
restore set of blocked signals
wai t for signals
set software stack for signals

time-related definitions
get current time and time zone
set current time and timezone
read an interval timer
get and set an interval timer

-- September 1, 1982 -- Joy, et. a1.

4.2BSD System Manual

profil

1.5 I>escriptors

getdtablesize
dup
dup2
close
select
fcntl
wrapt

1.6 Resource controls

< sys/resource.h >
getpriority
setpriority
getrusage
getrlimit
setrlimit

1.7 System operation support

mount
swap on
umount
sync
reboot
acct

2. System facilities

2.1 Generic operations

read
write
<sys/uio.h>
readv
writev
<sys/ioctl.h>
ioctl

2.2 File system

- 37 -

profile process

descriptor reference table size
duplicate descriptor
duplicate to specified index
close descriptor
multiplex input/output
control descriptor options
wrap descriptor with protocol

resource-related definitions
get process priority
set process priority
get resource usage
get resource limitations
set resource limitations

mount a device file system
add a swap device
umount a file system
flush system caches
reboot a machine
specify accounting file

read data
write data
scatter-gather related definitions
scattered data input
gathered data output
standard control operations
device control operation

Summary of facilities

Operations marked with a * exist in two forms: as shown, operating on a file name, and
operating on a file descriptor, when the name is preceded with a "r'.

< sys/file.h > file system definitions
chdir change directory
chroot change root directory
mkdir make a directory
rmdir remove a directory
open open a new or existing file
mknod make a special file
portalt make a portal entry
unlink remove a link
stat* return status for a file

t Not supported in 4.28S0.

CSRG TR/5 -. September 1, 1982 -- Joy, et. a1.

4.2BSD System Manual - 38 - Summary of facilities

Istat
chown·
chmod·
utimes
link
symlink
readlink
rename
Iseek
truncate·
access
flock

2.3 Communications

returned status of link
change owner
change mode
change access/modify times
make a hard link
make a symbolic link
read contents of symbolic link
change name of file
reposition within file
truncate file
determine accessibility
lock a file

< sys/ socket.h > standard definitions
socket create socket
bind bind socket to name
getsockname get socket name
listen allow queueing of connections
accept accept a connection
connect connect to peer socket
socket pair create pair of connected sockets
sendto send data to named socket
send send data to connected socket
recvfrom receive data on unconnected socket
recv receive data on connected socket
sendmsg send gathered data and/or rights
recvmsg receive scattered data and/or rights
shutdown partially close full-duplex connection
getsockopt get socket option
setsockopt set socket option

2.S Terminals, block and character devices

2.4 Processes and ke~el hooks

CSRG TR/S -- September 1, 1982 -- Joy, et. al.

