
Unix ProgralIllIler's Manual

Stanford University System Administrator's Version

This manual consists of selections from the Unix Programmer's Manual that are likely

to be ot use to system administrators at Stanford. As a guide to its organization, the

organization of the complete manual is outlined below. The table of contents of each

volume or section is included in full, so that the reader can determine what additional

material is available; portions actually included in this version are checked (except in

Volume 1).

The Unix Programmer's Manual provided by Berkeley has been augmented to contain

documentation of additional software used at Stanford. The complete manual consists of

two volumes. Volume 1 contains brief "manual pages" describiIig the commands and

features provided by the system. There are nine sections:

1. Commands 6. Games
2. System calls 7. Miscellaneous
3. Subroutines 8. Maintenance comma.nds and procedures
4. Special files g. PUP library routines
5. File formats and conventions

This system administrator's manual contains all of Volume 1.

Volume 2 contains documents that supplement the manual pages in Volume 1. These

are mostly articles, tutorials or manuals on specific programs, commands or systems.

There are five sections:

2a and 2b

2c

Provided by Bell Laboratories.

Provided by Berkeley~

User Contributed Software Provided by users whose software IS distributed
together with Unix.

Additional -Material Not part of the Berkeley manual.

This system administrator's manual contains a variety of articles, including complete

Emacs and MH manuals, and all articles pertaining to system internals, configuration,

installation and maintenance.

2

Getting Started

The following material in this manual is particularly useful for obtaining an overview

of 4.2 Unix and for finding one's way around the manual:

• For users unfamiliar with Unix, the introduction to Volume 1.

• For users familiar with 4.1 BSD Unix, the documents "Changes from 4.1 BSD
to 4.2 BSD Vax Unix at Stanford University", at the start of Additional
Material, and "Bug fixes and changes in 4.2 BSD", at the start of Volume 2c.

• The tables of contents at the start of Volumes 1, 2, 2c, User Contributed
Software and Additional Material. -

• The permuted index at the start of Volume 1.

Since changes are made to the system periodically, the most reliable way to locate up-to­

date documentation based on keyword is to use the command apropos(l) online.

Installing and Operating 4.2BSD on the V AX
July 21, 1983

Samuel J. LeJlfer

William N. Joy

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

ABSTRACT

This document contains instructions for the installation and operation of
the 4.2BSD release of the VAX· UNIX·· system, as distributed by U. C.
Berkeley.

It discusses procedures for installing UNIX on a new VAX, and for
upgrading an existing VAX UNIX system to the new release. An explanation
of how to how to layout file systems on available disks, how to set up terminal

. lines and user accounts, and how to perform system-specific tailoring is pro­
vided. A description of how to install and configure the networking facilities
included with 4.2BSD is included. Finally, the document details system opera­
tion procedures- shutdown and startup, hardware error reporting and diag­
nosis, file system backup procedures, resource control, performance monitor­
ing, and procedures for recompiling and reinstalling system software.

• DEC, V AX, IDC, UNIBUS and MASSBUS are trademarks of Digital Equipment Corporation .
•• UNIX is a Trademark of Bell Laboratories.

September 22, 1983

Installing/Operating 4.2BSD - 2 - Introduction

1. INTRODUCTION

This document explains how to install the 4.2BSD release of the Berkeley version of
UNIX for the V AX on your system. Due to the new file system organization used in 4.2BSD,
no matter what version of UNIX you may currently be running you will have to perform a full
bootstrap from the distribution tape; the techniques for converting "old" systems are discussed
in a chapter 3 of this document.

1.1. Hardware supported

This distribution can be booted on a VAX 11/780, VAX 11/750, or VAX 11/730 cpu
with any of the following disks:

DEC MASSBUS:
EMULEX MASSBUS:
DEC UNIBUS:
EMULEX SC-2IV UNIBUS·:
DEC IDC:

RM03, RM05, RM80, RP06, RP07
AMPEX 300M, 330M, CDC 300M, FUJITSU 404M
RK07, RA80, RA81, RA60
AMPEX 300M, 330M, CDC 300M, FUJITSU 160M, 404M
R80, RL02

The tape drives supported by this distribution are:

DEC MASSBUS:
DEC UNIBUS:
EMULEX TC-l1 UNIBUS:
TU45 UNIBUS·:

TE16, TU45, TU77, TU78
TS11, TU80
KENNEDY 9300, CIPHER
SI9700

The tapes and disks may be on any available UNIBUS or MASSBUS adapter at any slot
with the proviso that the tape device must be slave number 0 on the formatter if it is a
MASSBUS tape drive.-

1.2. Distribution format

The basic distribution contains the following items:

(2) 1600bpi 2400' magnetic tapes,
(1) TU58 console cassette, and
(1) RXOI console floppy disk.

Installation on any machine requires a tape unit. Since certain standard VAX packages do not
include a tape drive, this means one must either borrow one from another VAX system or one
must be purchased separately. The console media distributed with the system are not suitable
for use as the standard console media; their intended use is only for installation.

The distribution does not fit on several standard V AX configurations which contain
only small disks. If your hardware configuration does not provide at least 75 Megabytes of disk
space you can still install the distribution, but you will probably have to operate without source
for the user level commands and, possibly, the source for the operating system. The previous
RK07-only distribution format provided by our group is no longer available. Further, no
attempt has ever been made to install the system on the standard V AX-ll/730 hardware
configuration from DEC which contains only dual RL02 disk drives (though the distribution
tape may be bootstrapped on an RLII controller and the system provides support for RL02 disk

• Other UNIBUS controllers and drives may be easily usable with the system, but will likely require minor
modifications to the system to allow bootstrapping. The EMULEX disk and SI tape controllers, and the
drives shown here are known to work as bootstrap devices.

September 22, 1983

Installing/Operating 4.2BSD - 3 - Introduction

drives either on an IDC or an RLIl). The labels on the two distribution tapes indicate the
amount of disk space each tape file occupies, these should be used in selecting file system lay­
outs on systems with little disk space.

If you have the facilities, it is a good idea immediately to copy the magnetic tapes in the
distribution kit to guard against disaster. The tapes are 9-track 1600 BPI and contain some
S12-byte records followed by many 10240-byte records. There are interspersed tape marks;
end-of-tape is signaled by a double end-of-file.

The basic bootstrap material is present in three short files at the beginning of the
bootstrap tape. The first file on the tape contains preliminary bootstrapping programs. This is
followed by a binary image of a 400 kilobyte "mini root" file system. Following the mini root
file is a full dump of the root file system (see dump (8)**). Additional files on the first and
second tapes contain tape archive images (see tar (1»: the fourth file on the first tape contains
source for the system (/sys); the fifth file on the first tape contains most of the files in the file
system /usr, except the source (/usr/src) which is in the first file on the second tape. The
second file on the second tape contains software contributed by the user community, refer to
the accompanying documentation for a description of its contents and an explanation of how it
should be installed.

1.3. VAX hardware terminology
This section gives a short discussion of VAX hardware terminology to help you get your

bearings.
If you have MASSBUS disks and tapes it is necessary to know the MASSBUS they are

attached to, at least for the purposes of bootstrapping and system description. The
MASSBUSes can have up to 8 devices attached to them. A disk counts as a device. A tape /or­
matter counts as a device, and several tape drives may be attached to a formatter. If you have a
separate MASSBUS adapter for a disk and one for a tape then it is conventional to put the disk
as unit 0 on the MASSBUS with the lowest "TR" number, and the tape formatter as unit 0 on
the next MASSBUS. On a 11/780 this would correspond to having the disk on "mbaO" at
"tr8" and the tape on "mba1" at "tr9". Here the MASSBUS' adapter with the lowest TR
number has been called "mbaO" and the one with the next lowest number is called "mba!".

To find out the MASSBUS your tape and disk are on you can examine the cabling and the
unit numbers or your site maintenance guide. Do not be fooled into thinking that the number
on the front of the tape drive is a device number; it is a slave number, one of several possible
tapes on the single tape formatter. For bootstrapping the slave number must be O. The for­
matter unit number may be anything distinct from the other numbers on the same MASSBUS,
but you must know what it is.

The MASSBUS devices are known by several different names by DEC software and by
UNIX. At various times it is necessary to know both names. There is, of course, the name of .
the device like "RM03" or "RM80"; these are easy to remember because they are printed on
the front of the device. DEC also gives devices names by the names of the driver in the sys­
tem using a naming convention that reflects the interconnect topology of the machine. The
first letter of such a name is a "0" for a disk, the second letter depends on the type of the
drive, "DR" for RM03, RMOS, and RM80's, "DB" for RP06's. The next letter is related to
the interconnect; DEC calls the first MASSBUS adapter "A", the second "B", etc. Thus
"ORA" is a RM drive on the first MASSBUS adapter. Finally,the name ends in a digit
corresponding to the unit number for the device on the MASSBUS, i.e. "DRAO" is a disk at
the first device slot on the first MASS BUS adapter and is a RM disk .

•• References of the form X(Y) mean the subsection named X in section Y of the UNIX programmer's
manual.

September 22, 1983

Installing/Operating 4.2BSD - 4- Introduction

1.4. UNIX device naming
UNIX has a set of names for devices, which are different from the DEC names for the

devices, viz.:

RM/RP disks hp
TE/TU tapes ht
TU78 tape mt

The normal standalone system, used to bootstrap the full UNIX system, uses device
names:

xx (y,z)

where xx is either hp, ht, or mt. The value y specifies the MASS BUS to use and also the dev­
ice. It is computed as

8 • mba + device

Thus mbaO device 0 would have a y value of 0 while mbal device 0 would have a y value of 8.
The z value is interpreted differently for tapes and disks: for disks it is a disk partition (in the
range 0-7), and for tapes it is a file number on the tape.

Each UNIX physical disk is divided into 8 logical disk partitions, each of which may
occupy any consecutive cylinder range on the physical device. The cylinders occupied by the 8
partitions for each drive type are specified in section 4 of the programmers manual and in the
disk description file /etc/disktab (c.f. disktab(S».* Each partition may be used for either a raw
data area such as a paging area or to store a UNIX file system. It is conventional for the first
partition on a disk to be used to store a root file system, from which UNIX may be
bootstrapped. The second partition is traditionally used as a paging area, and the rest of the
disk is divided into spaces for additional "mounted file systems" by use of one or more addi­
tional partitions.

The third logical partition of each physical disk also has a 'conventional usage: it allows
access to the entire physical device, including the bad sector forwarding information recorded at
the end of the disk (one track plus 126 sectors). It is occasionally used to store a single large
file system or to access the entire pack when making a copy of it on another. Care must be
taken when using this partition to not overwrite the last few tracks and thereby clobber the bad
sector information. -

The disk partitions have names in the standalone system of the form "hp(x,y)" with
varying y as described above. Thus partition 1 of a· RMOS on mbaO at drive 0 would be
"hp(O,l)". When not running standalone, this partition would normally be available as
"/dev/hpOb". Here the prefix "/dev" is the name of the directory where all "special files"
normally live, the "hp" serves an obvious purpose, the "0" identifies this as a partition of hp
drive number "0" and the "b" identifies this as the first partition (where we number from 0,
the O'th partition being "hpOa".)

In all simple cases, a drive with unit number 0 (in its unit plug on the front of the drive)
will be called unit 0 in its UNIX file name. This is not, however, strictly necessary, since the
system has a level of indirection in this naming. This can be taken advantage of to make the
system less dependent on the interconnect topology, and to make reconfiguration after
hardware failure extremely easy. We will not discuss that now.

Returning to the discussion of the standalone system, we recall that tapes also took two
integer parameters. In the normal case where the tape formatter is unit 0 on the second mba

• It is possible to change the partitions by changing the code for the table in the disk driver; since it is often
desirable to do this it is clear that these tables should be read off each pack; they may be in a future version
of the system.

September 22, 1983

Installing/Operating 4.2BSD - 5 - Introduction

(mbal), the files on the tape have names "ht(8,0)", "ht(8,l)", etc. Here "file" means a tape
file containing a single data stream. The distribution tapes have data structures in the tape files
and though the tapes contain only 6 tape files, they contain several thousand UNIX files.

For the UNIBUS, there are also conventional names. The important DEC names to know
are DM?? for RK07 drives and DU?? for drives on a UDASO. For example, RK07 drive ° on
a controller on the first UNIBUS on the machine is "DMAO". UNIX calls such a device a
"hk" and the standalone name for the first partition of such a device is "hk(O,O)". If the con­
troller were on the second UNIBUS its name would be "hk(8,0)". If we wished to access the
first partition of a RK07 drive 1 on ubaO we would use "hk(1,O)".

The UNIBUS disk and tape names used by UNIX are:

RK disks hk
TS tapes ts
UDA disks ra
IDC disks rb
SMD disks up
TM tapes tm
TV tapes ut

. Here SMD disks are disks on an RM emulating controller on the UNIBUS, and TM tapes
are tapes on a controller that emulates the DEC TM-ll. TU tapes are tapes on a controller that
emulates the DEC TU4S. IDC disks are disks on an 11/730 Integral Disk Controller. TS tapes
are tapes on a controller that emulates the DEC TS-l1 (e.g. a TU80). The naming conven­
tions for partitions in UNIBUS disks and files in UNIBUS tapes are the same as those for
MASSBUS disks and tapes.

1.5. UNIX devices: block and raw
UNIX makes a distinction between "block" and "raw" (character) devices. Each disk

has a block device interface where the system makes the device byte addressable and you can
write a single byte in the middle of the disk. The system will read out the data from the disk
sector, insert the byte you gave it and put the modified data back. The disks with the names
"/dev/xxOa", etc are block devices. There are also raw devices available. These have names
like "/dev/rxxOa", the "r" here standing for "raw". In the bootstrap procedures we will often
suggest using the raw devices, because these tend to work faster in some cases. In general,
however, the block devices are used. They are where file systems are "mounted".

You should be aware that it is sometimes important to use the character device (for
efficiency) or not (because it wouldn't work, e.g. to write a single byte in the middle of a sec­
tor). Don't change the instructions by using the wrong type of device indiscriminately.

September 22, 1983

Installing/Operating 4.2BSD - 6- Bootstrapping

2. BOOTSTRAP PROCEDURE

This section explains the bootstrap procedure that can be used to get the kernel supplied
with this tape running on your machine. Even if you are currently running UNIX you will have
to do a full bootstrap.

If you are already running UNIX you should first save your existing files on magnetic
tape. 4.2BSD uses a totally different file system organization than previous versions of the sys­
tem; it is thus necessary to rebuild the file system format before restoring the data. The easiest
way to save the current· files on tape is by doing a full dump and then restoring under the new
system. Refer to chapter 3 in understanding how to upgrade an existing 4BSD system.

Booting from tape
The tape bootstrap procedure used to create a working system involves the following

major steps:
1) format a disk pack with the format program.

2) Copy a "mini root" file system from the tape onto the swap area of the disk.

3) Boot the UNIX system on the "mini root".

4) Restore the full root file system using restore (8).

5) Build a console floppy or cassette for bootstrapping.

6) Reboot the completed root file system.

7) Build and restore the /usr file system from tape with tar (1).

Certain of these steps are dependent on your hardware configuration. Formatting the disk
pack used for the root file system may require using the DEC standard formatting programs.
Also, if you are bootstrapping the system on an 11/750, no console cassette is created.

The following sections describe the above steps in detail. In these sections references to
disk drives are of the form xx(n,m) and references to files on tape drives are of the form
yy (n, m) where xx and yY are one of the names described in section 1.4 and n and m are the
unit and offset numbers described in section 1.4. Commands you are expected to type are
shown in roman, while that information printed by the system is shown emboldened.
Throughout the installation steps the reboot switch on an 11/780 or 11/730 should be set-to
off; on an 11/750 set the power-on action to halt. (In normal operation an 11/780 or 11/730
will have the reboot switch on and an 11/750 will have the power-on action set to
reboot/restart.)

If you encounter problems in following the instructions in this part of the document, refer
to Appendix C for help in troubleshooting.

2.1. Step 1: formatting the disk
All disks used with 4.2BSD should be formatted to insure the proper handling of physi­

cally corrupted disk sectors. If you have DEC disk drives, you should use the standard DEC
formatter to format your disks. If not, the format program included in the distribution, or a
vendor supplied formatting program, may be used to format disks. The format program is capa­
ble of formatting any of the following supported distribution devices:

EMULEX MASSBUS:
EMULEX SC-21V UNIBUS:

AMPEX 300M, 330M, CDC 300M, FUJITSU 404M
AMPEX 300M, 330M, CDC 300M, FUJITSU 160M, 404M

If you have run a pre-4.1BSD version of UNIX on the packs you are planning to use for
bootstrapping it is likely that the bad sector information on the packs has been destroyed, since
it was accessible as normal data in the last several tracks of the disk. You should therefore run

September 22, 1983

Installing/Operating 4.2BSD - 7 - Bootstrapping

the formatter again to make sure the information is valid.
On an 11/750, to use a disk pack as a bootstrap device, sectors 0 through 15, the disk sec­

tors in the files "/vmunix" (the system image) and "/boot" (the program that loads the sys­
tem image), and the file system indices that lead to these two files must not have any errors.
On an 11/780 or 11/730, the "boot" program is loaded from the console medium and includes
device drivers for the "hp" and "up" disks which perform ECC correction and bad sector for­
warding; consequently, on these machines the system may be bootstrapped on these disks even
if the disk is not error free in critical locations. In general, if the first 15884 sectors of your disk
are clean you are safe; if not you can take your chances.

To load the format program, insert the distribution TUSS cassette or RXOI floppy disk in
the appropriate console device (on the 11/730 use cassette 0) and perform the following steps.

If you have an 11/780 give the commands:

»>HALT
»>UNJAM
> > > LOAD FORMAT
»>START 2

If you have an 11/750 give the commands:

»>1
»>B DDAO
- format

If you have an 11/730 give the commands:

»>H
»>1
> > > L DDO:FORMAT
»>S2

The format program should now be running and awaiting your input:

Disk format/check utility

Enable debugging (t-bse, 2-ecc, 3-bse+ecc)?

If you made a mistake loading the program off the TU58 cassette the "-" prompt should
reappear and you can retype the program name. If something else happened, you may have a
bad distribution cassette or floppy, or your hardware may be broken; refer to Appendix C for
help in troubleshooting. If you are unable to load programs off the distributed medium, consult
Appendix B for an alternate (more painful) approach.

Format will create sector headers and verify the integrity of each sector formatted by
using the disk controller's "write check" command. Remember format runs only on the up
and hp drives. indicated above. Format will prompt for the information required as shown
below. If you make a mistake in answering questions, "#" erases the last character typed, and
"@" erases the current input line.

September 22, 1983

Installing/Operating 4.2BSD - 8 -

Enable debugging (O-none, l=bse, 2-ecc, 3=bse+ecc)?
Device to format? xx(O,O)
... (the old bad sector table is read; ignore any errors that occur here) ...

Formatting drive xxO on adaptor 0: verify (yes/no)? yes
Device data: #cylinders-842, #tracks=20, #sectors=48
Available test patterns are:

1 - (fOOf) RH750 worst case
2 - (ec6d) media worst case
3 - (a5a5) alternating I's and O's
4 - (fill') Severe bum In <takes several hours)

Pattern (one of the above, other to restart)? 2
Start formattlng •.• make sure the drive Is online
... (soft ecc's and other errors are reported as they occur} ...
... (if 4 write check errors were found, the program terminates like this} ...

Errors:
Write check: 4
Bad sector: 0
ECC: 0
Skip sector: 0
Total of 4 hard errors found.
Writing bad sector table at block 524256
(524256 is the block # of the first block in the bad sector table)
Done

Bootstrapping

Once the root device has been formatted, format will prompt for another disk to format. Halt
the machine by typing "control-P" and "H" (the "H" is necessary only on an 11/780, but
does not hurt on the other machines).

Enable debugging (t-bse, 2-ecc, 3-bse+ecc) ?"P
»>H

It may be necessary to format other drives before constructing file systems on them; this
can be done at a later time with the steps just performed. Format can also be used in an
extended test mode (pattern 4) that uses numerous test patterns in 46 passes to detect as many
disk surface errors as possible; this test runs for many hours, depending on the CPU and con-
troller. On an 11/780, this can be speeded up significantly by setting the clock fast. --

2.2. Step 2: copying the mini-root file system

The second step is to run a simple program, copy, which copies a very small root file sys­
tem into the second partition of the disk. This file system will serve as the base for creating the
actual root file system to be restored. The version of the operating system maintained on the
"mini-root" file system understands not to swap on top of itself, thereby allowing double use
of the disk partition. Copy is loaded just as the format program was loaded; for example, on an
11/780:

(copy mini root file system)
> > > LOAD COPY
»>START 2
From: yy(y,l)
To: xx(x,l}
Copy completed: 205 records copied
From:

while for an 11/750:

(unit y, second tape file)
(mini root is on drive oX; second partition)

September 22, 1983

Installing/Operating 4.2BSD

(copy mini root file system)
»>B DDAO
-copy
From: yy(y,l)

- 9 - Bootstrapping

(unit y, second tape file)
To: xx(x,1) (mini root is on drive X; second partition)
Copy completed: 20S records copied
From:

and for an 11/730:

(copy mini root file system)
> > > L DDO:COPY
»>S2
From: yy(y,l)
To: ,xx(x, 1)

(unit y, second tape file)
(mini root is on drive X; second partition)

Copy completed: 20S records copied
From:

(As above, '#' erases characters and '@' erases lines.)

2.3. Step 3: booting from the mini-root file system

You now have the minima! set of tools necessary to create a root file system and restore
the file system contents from tape. To access this file system load the bootstrap program and
boot the version of unix which has been placed in the "mini-root":

(load bootstrap program)
> > > LOAD BOOT
»>START 2
Boot
: .xx(x, 1) vmunix

or, on an 11/750:

(load bootstrap program)
»>B DDAO
-boot
Boot
: .xx(x,l)vmunix

or, on an 11/730:

(load bootstrap program)
> > > L DDO:BOOT
»>S 2
Boot
: .xx(x, t)vmunix

(bring in vmunix off mini root)

(bring in vmunix off mini root)

(bring in vmunix off mini root)

(As above, '#' erases characters and '@' erases lines.)

The standalone boot program should then read the system from the mini root file system you
just created, and the system should boot:

September 22, 1983

Installing/Operating 4.2BSD - 10 -

215564 +64088 +69764 start Oxf98
4.2 BSD UNIX #1: Sun Feb 6 15:02:15 PST 1983
real mem -.ox
avail mem - m
... itiformation about available devices ...
root device 1

Bootstrapping

The first three numbers are printed out by the bootstrap programs and are the sizes of
different parts of the system (text, initialized and uninitialized data). The system also allocates
several system data structures after it starts running. The sizes of these structures are based on
the amount of available memory and the maximum count of active users expected, as declared
in a system configuration description. This will be discussed later.

UNIX itself then runs for the first time and begins by printing out a banner identifying
the release and version of the system that is in use and the date it was compiled.

Next the mem messages give the amount of real (physical) memory and the memory
available to user programs in bytes. For example, if your machine has only 512K bytes of
memory, then xxx will be 523264, 1024 bytes less than 512K. The system reserves the last
1024 bytes of memory for use in error logging and doesn't count it as part of real memory.

The messages that came out next show what devices were found on the current processor.
These messages are described in autocotif(4). The distributed system may not have found all
the communications devices you have (db's and dz's), or all the mass storage peripherals you
have if you have more than two' of anything. This will be corrected soon, when you create a
description of your machine to configure UNIX from. The messages printed at boot here con­
tain much of the information that will be used in creating the configuration. In a correctly
configured system most of the information present in the configuration description is printed
out at boot time as the system verifies that each device is present.

The "root device?" prompt was printed by the system and is now asking you for the
name of the root file system to use. This happens because the distribution system is a generic
system. It can be bootstrapped on any VAX cpu and with its root device and paging area on
any available disk drive. You should respond to the root device question with xxO·. This
response supplies two pieces of information: first, xxO indicates the disk it is running on is drive
o of type xx, secondly the "." indicates the system is running "atop" the paging area. The
latter is most important, otherwise the system will attempt to page on top of itself and chaos
will ensue. You will later build a system tailored to your configuration that will not ask this
question when it is bootstrapped.

root device 1 xxO·
WARNING: preposterous time in file system -- CHECK AND RESET THE DATE!
erase "1, kill "U, intr .. c

The "erase ... " message is part of /.profile that was executed by the root shell when it
started. This message is present to remind you that the line character erase, line erase, and
interrupt characters are set to be what is standard on DEC systems; this insures things are con­
sistent with the DEC console interface characters.

2.4. Step 4: restoring the root file system

UNIX is now running, and the 'UNIX Programmer's manual' applies. The' #' is the
prompt from the shell, and lets you know that you are the super-user, whose login name is
"root". To' complete installation of the bootstrap system two steps remain. First, the root file
system must be created, and second a boot floppy or cassette must be constructed.

To create the root file system the shell script "xtr" should be run as follows:

September 22, 1983

Installing/Operating 4.2BSD - 11 - Bootstrapping

disk - xxO type - tt tape - yy xtr

where xxO is the name of the disk on which the root file system is to be restored (unit 0), tt is
the type of drive on which the root file system is to be restored (see the table below), and yy is
the name of the tape drive on which the distribution tape is mounted.

If the root file system is to reside on a disk other than unit 0 (as shown in the information
printed out during autoconfiguration), you will have to create the necessary special files in / dev
and \1se the appropriate value. For example, if the root should be placed on hp 1, you must
create /dev/rhpla and /dev/hpla using mknod(8).

Drive Type Drive Type
DEC RM03 type-rm03 DEC RM05 type-rm05
DEC RM80 type-rm80 DEC RP06 type-rp06
DEC RP07 type-rp07 DEC RK07 type-rk07
DEC RA80 type-ra80 DEC RA60 type-ra60
DEC RA81 type-ra81 DEC R80 type-rb80
CDC 9766 type-9766 CDC 9775 type-9775
AMPEX 300M type-9300 AMPEX 330M type - capricorn
FUJITSU 160M type-fujil60 FUJITSU 404M type-eagle

This will generate many messages regarding the construction of the file system and the restora­
tion of the tape contents, but should eventually terminate with the messages:

Root fllesystem extracted

If this is a 780, update floppy
If this is a 730, update the cassette

2.5. Step 5: creating a boot floppy or cassette
If the machine is an 11/780 or 11/730, a boot floppy or cassette should be constructed

according to the instructions in chapter 4. For 11/750's, bootstrapping is performed by using a
boot prom and special code located in sectors 0-15 of the root file system. The newfs pro-gram
automatically installs the needed code, so you may continue on to the next step. On an 11/780
with interleaved memory, or other configurations that require alteration of the standard boot
files, this step may be left for later.

2.6. Step 6: rebooting the completed root file system
With the above work completed, all that is left is to reboot:

September 22, 1983

Installing/Operating 4.2BSD

sync
#Ap
»>HALT
»>UNJAM
»>1
»>BnS
... (boot program is eventually loaded) ...
Boot
: xx(x,O)vmunix
215564+64088+69764 start Oxf98

• 12 •

4.2 BSn UNIX #1: Sun Feb 6 15 :02:15 PST 1983
real mem - xxx
avail mem - yyy
... iriformation about available devices ...
root on xxO

Bootstrapping

(synchronize file system state)
(halt machine)
(for 11/780's only)
(for 11/780's only)
(initialize processor state)
(on an 11/750, use B/2)

(vmunix brought in off root)

WARNING: preposterous time in file system -- CHECK AND RESET THE DATE!
erase 60 1, kill AU, Intr AC

(see section 6.1 if the system does not reboot properly)

The system is now running single user on the installed root file system. The next section
tells how to complete the· installation of distributed software on the lusr file system.

2.7. Step 7: setting up the lusr file system
First set a shell variable to the name of your disk, so the commands we give will work

regardless of the disk you have; do one of

disk-hp
disk-hk
disk-ra
disk-up
disk-rb

(if you have an RP06, RM03, RM05, RM80, or other MASSBUS drive)
(if you have RK07s)
(if you have UD A50 storage module drives)
(if you have UNIBUS storage module drives)
(if you have IDC storage module drives)

. -
The next thing to do is to extract the rest of the data from the tape. You might wish to

review the disk configuration information in section 4.4 before continuing; the partitions used
below are those most appropriate in size. Find the disk you have in the following table and
execute the commands in the right hand portion of the table:

September 22, 1983

Installing/Operating 4.2BSD

DEC RM03
DEC RMOS
DEC RM80
DEC RP06
DEC RP07
DEC RK07
DEC RA80
DEC RA60
DEC RA81
DEC R80
UNIBUS CDC 9766
UNIBUS AMPEX 300M
UNIBUS AMPEX 330M
UNIBUS FUJITSU 160M
UNIBUS FUJITSU 404M
MASSBUS CDC 9766
MASS BUS AMPEX 300M
MASSBUS AMPEX 330M
MASSBUS FUJITSU 404M

- 13 -

name-hpOg; type-rm03
name - hpOg; type - rmOS
name - hpOg; type -rm80
name-hpOg; type-rp06
name-hpOh; type-rp07
name - hkOg; type -rk07
name -raOh; type - ra80
name -raOh; type - ra60
name -raOh; type - ra81
name-rbOh; type-rb80
name-upOg; type-9766
name-upOg; type-9300
name-upOg; type-capricorn
name - upOg; type -fuji160
name-upOh; type-eagle
name - hpOg; type - 9766
name-hpOg; type-9300
name - hpOg; type -capricorn
name - hpOh; type -eagle

Bootstrapping

Find the tape you have in the following table and execute the commands in the right hand por­
tion of the table:

DEC TE16/TU4S/TU77
DEC TU78
DEC TS11
EMULEX TC11
SI9700

cd /dev; MAKEDEV htO; sync
cd /dev; MAKEDEV mtO; sync
cd /dev; MAKEDEV tsO; sync
cd /dev; MAKEDEV tmO; sync
cd /dev; MAKEDEV utO; sync

Then execute the following commands

September 22, 1983

Installing/Operating 4.2BSD

date yymmddhhmm

passwd root
New password:
Retype new password:
newfs ${name} S{type)
(this takes a few minutes)
mount /dev/S{name) /usr
cd /usr
mkdir sys
cd sys
mt fsf
tar xpbf 20 /dev/rmt12
(this takes about 5-10 minutes)
#cd ..
mt fsf
tar xpbf 20 /dev/rmt12
(this takes about 15-20 minutes)
#cd /
chmod 755 I /usr lusr/sys
rm -fsys

- 14-

(set date, see date (1)

(set password for super-user)
(password will not echo)

(create empty user file system)

(mount the usr file system)
(make /usr the current directory)
(make directory for system source)
(make /usrlsys the current directory)

(extract the system source)

(back to lusr)

(extract all of usr except usrlsrc)

(back to root)

Bootstrapping

In -s lusrlsys sys
umount /dev/S{name)

(make a symbolic link to the system source)
(unmount /usr)

The data on the fourth and fifth tape files has now been extracted and the first reel of the distri­
bution is no longer needed. The remainder of the installation procedure uses the second reel of
tape which should be mounted in place of the first.

You can check the consistency of the lusr file system by doing

fsck /dev/rS{name)

The output froin fsck should look something like:

··/dev/rxxOh
•• Last Mountecl on lusr
•• Phase 1 • Check Blocks and Sizes
•• Phase 2 • Check Pathnames
•• Phase 3 • Check Connectivity
•• Phase 4 • Check Reference Counts
•• Phase 5 • Check Cylgroups
671 Bles, 3497 used, 137067 free (75 frags, 34248 blocks)

If there are inconsistencies in the file system, you may be prompted to apply corrective
action; see the document describing /sck for information.

To use the /usr file system, you should now remount it by saying

letc/mount /dev/S{name) lusr

You can now extract the first file on the second tape (the source for the commands). If you
have RK07's you must first put a formatted pack in drive 1 and set up a UNIX file system on it
by doing:

September 22, 1983

Installing/Operating 4.2BSD

newfs hklg rk07
(this takes a few minutes)
mount /dev/hklg /usr/src
cd /usr/src

- 15 - Bootstrapping

In any case you can then extract the source code for the commands (except on RK07's this will
fit in the /usr file system):

mkdir /usr/src
chmod 755 /usr/src
cd /usr/src
tar xpb 20

If you get an error at this point, you can reposition the tape with the following command and
try the above commands again.

mt rew

2.8. Additional software
There are three extra tape files on the distribution tapes which have not been installed to

this point. They are a font library for use with Varian and Versatec printers, the Ingres data­
base system, and user contributed software. All three tapes files are in tarO) format and can
be installed by positioning the tape and reading in the files as was done for /usr/src above. As
distributed, the fonts should be placed in a directory /usr/lib/vfont, the Ingres system should
be placed in /usr/ingres, and the user contributed software should be placed in /usr/src/new.
The exact contents of the user contributed software is given in a separate document.

September 22, 1983

Installing/Operating 4.2BSO - 16 - Upgrading a 4BSO system

3. UPGRADING A 4BSD SYSTEM

Begin by reading the other parts of this document to see what has changed since the last
time you bootstrapped the system. Also read the "Changes in 4.2BSO" document, and look at
the new manual sections provided to you. If you have local system modifications to the kernel
to install, look .at the document "Kernel changes in 4.2BSO" to get an idea of how the system
change~ will affect your local mods.

If you are running a version of the system distributed prior to 4.0BSO, you are pretty
much on your own. Sites running 3BSO or 32/V may be able to modify the restor program to
understand the old 512 byte block file system, but this has never been tried. This section
assumes you are running 4.1BSO.

3.1. Step 1: what to save
No matter what version of the system you may be running, you will have to rebuild your

root and usr file systems. The easist way to do this is to save the important files on your exist­
ing system, perform a bootstrap as if you were installing 4.2BSO on a brand new machine, then
merge the saved files into the n~w system. The following list enumerates the standard set of
files you will want to save and indicates directories in which site specific files should be present.
This list will likely be augmented with non-standard files you have added to your system; be
sure to do a tar of the directories letc, llib, and lusr/lib to guard against your missing some­
thing the first time around.

I. profile
l.login
I.cshrc
Idev/MAKE
letc/fstab
letc/group
letc/passwd
letc/rc
letc/ttys
letc/ttytype
letc/termcap
llib
lusr/dict/*
lusr linclude/*
lusr/lib/aliases
lusr/lib/crontab
lusr/lib/fontl*
lusr llib/lint/*
lusr llib/tabsetl*
lusr llib/term/*
lusr/lib/tmac/*
lusr llib/uucp/*
lusr Iman/man!
lusr/msgs
lusr I spool/*
lusr I src/local

root sh startup script
root csh startup script
root csh startup script
for the LOCAL case for making devices
disk configuration data
group data base
user data base
for any local additions
terminal line configuration data
terminal line to terminal type mapping data
for any local entries which may have been added
for any locally developed language processors
for local additions to words and papers
for local additions
mail forwarding data base
cron daemon data base
for locally developed font libraries
for locally developed lint libraries
for locally developed tab setting files
for locally developed nroft' drive tables
for locally developed troif/nroft' macros
for local uucp configuration files
for manual pages for locally developed programs
for current msgs
for current mail, news, uucp files, etc.
for source .for locally developed programs

As 4.1BSO binary images will run unchanged under 4.2BSO you should be certain to save any
programs such as compilers which you will need in bootstrapping to 4.2BSO.*

• 4.2BSO can support a "4.lBSD compatibility mode" of system operation whereby system calls from 4.lBSO

September 22, 1983

Installing/Operating 4.2BSO - 17 - Upgrading a 4BSO system

Once you have saved the appropriate files in a convenient format, the next step is to
dump your file systems with dump (8). For the utmost of safety this should be done to
magtape. However, if you enjoy gambling with your life (or you have a VERY friendly user
community) and you have sufficient disk space, you can try converting your file systems in­
place by using a disk partition. If you select the latter tact, a version of the 4.1 BSO dump pro­
gram which runs under 4.2 is provided in /etc/dump.4.1; be sure to read through this entire
document before beginning the conversion. Beware that file systems created under 4.2BSO will
use about 5-10% more disk space for file system related information than under 4.1BSO. Thus,
before dumping each file system it is a good idea to remove any files which may be easily
regenerated. Since most all programs will likely be recompiled under the new system your best
bet is to remove any object files. File systems with at least 10% free space on them should
restore into an equivalently sized 4.2BSO file system without problem.

Once you have dumped the file systems you wish to convert to 4.2BSO, install the system
from the bootstrap tape as described in chapter 2, then proceed to the next section.

3.2. Step 2: merging

When your system is booting reliably and you have the 4.2BSO root and /usr file systems
fully installed you will be ready to proceed to the next step in the conversion process: merging
your old files into the new system.

Using the tar tape, or tapes, you created in step 1 extract the appropriate files into a
scratch directory, say /usr/convert:

mkdir /usr/convert
cd /usr/convert
#tarx

Certain data files, such as those from the /etc directory, may simply be copied into place.

cp passwd group fstab ttys ttytype / etc
cp crontab lusr/lib

Other files, however, must be merged into the distributed versions by hand. In particular, be
careful with I etc/termcap.

The commands kept under the LOCAL entry in Idev IMAKE should be placed in the new
shell script Idev/MAKEOEV.local so that saying "MAKEOEV LOCAL" will create the
appropriate local devices and device names. If you have any homegrown device drivers which
use major device numbers reserved by the system you will have to modify the commands used
to create the devices or alter t~e system device configuration tables in Isys/vax/conf.c.

The spooling directories saved on tape may be restored in their eventual resting places
without too much concern. Be sure to use the 'p' option to tar so that files are recreated with
the same file modes:

cd lusr
tar xp msgs spool/mail spool/uucp spool/uucppublic spool/news

Whatever else is left is likely to be site specific or require careful scrutiny before placing
in its eventual resting place. Refer to the documentation and source code before arbitrarily
overwriting a file.

are either emulated or safely ignored. There are only two exceptions; programs which read directories or use
the old jobs library will not operate properly. However, while 4.1BSO binaries will execute under 4.2BSO it
is STRONGLY RECOMMENDED that the programs be recompiled under the new system. Refer to the
document "Changes in 4.2BSO" for elaboration on this point.

September 22, 1983

InstallinglOperating 4.2BSD - 18 - Upgrading a 4BSD system

3.3. Step 3: converting file systems
The dump format used in 4.0 and 4.1BSD is upward compatible with that used in 4.2BSD.

That is, the 4.2BSD restore program understands how to read old dump tapes, although 4.2BSD
dump tapes may not be properly restored under 4.0BSD or 4.1BSD. To convert a file system
dumped to magtape, simply create the appropriate file system and restore the data. Note that
the 4.2BSD restore program does its work on a mounted file system using normal system opera­
tions (unlike the older restor which accessed the raw file system device and deposited inodes in
the appropriate locations on disk). This means that file system dumps may be restored even if
the characteristics of the file system changed. To restore a dump tape for, say, the la file sys­
tem something like the following would be used:

mkdir la
newfs hplg eagle
mount Idev/hplg la
#cd la
restore r

If tar images were written instead of doing a dump, you should be sure to use the 'p' option
when reading the files back. No matter how you restore a file system, be sure and check its
integrity with fsck when the job is complete.

3.4. Bootstrapping language processors
To convert a compiler from 4.1BSD to 4.2BSD you should simply have to recompile and

relink the various parts. If the processor is written in itself, for instance a PASCAL compiler
written in PASCAL, the important step in converting is to save a working copy of the 4.1BSD
binary before converting to 4.2BSD. Then, once the system has been changed over, the
4.1BSD binary should be used in the rebuilding process. In order to do this, you should enable
the 4.1 compatibility option when you configure the kernel (below).

If no working 4.1BSD binary exists, or the language processor uses some nonstandard sys­
tem call, you will likely have to compile the language processor into an intermediate form, such
as assembly language, on a 4.1BSD system, then bring the intermediate form to 4.2BSD for
assembly and loading.

September 22, 1983

Installing/Operating 4.2BSD - 19 - System setup

4. SYSTEM SETUP

This section describes procedures used to setup a V AX UNIX system. Procedures
described here are used when a system is first installed or when the system configuration
changes. Procedures for normal system operation are described in the next section.

4.1. Making a UNIX boot ftoppy

If you have an 11/780 you will want to create a UNIX boot floppy by adding some files to
a copy of your current DEC console floppy, using jlcopy (S) and ar,ff(S). This floppy will make
standalone system operations such as bootstrapping much easier.

First change into the directory where the console floppy information is stored:

cd Isys/floppy

then set up the default boot device. If you have an RK07 as your primary root do:

cp defboo.hk defboo.cmd

If you have a drive on a UDASO (e.g. an RA81) as your primary root do:

cp defboo.ra defboo.cmd

If you have a second vendor UNIBUS storage module as your primary root do:

cp defboo.up defboo.cmd

Otherwise:

cp defboo.hp defboo.cmd

If the local configuration requires any changes in restar.cmd or defboo.cmd (e.g., for inter­
leaved memory controllers), these should be made now. The following command will then
copy your DEC local console floppy, updating the copy appropriately.

make update
Change Floppy t Hit return when done.
(waits for you to put clean floppy in console)
Are you sure you want to clobber the ftoppy? yes

More copies of this floppy can be made using jlcopy (8).

4.2. Making a UNIX boot cassette

If you have an 11/730 you will want to create a UNIX boot cassette by adding some files
to a copy of your current DEC console cassette, using jlcopy (8) and arff(8). This cassette will
make standalone system operations such as bootstrapping much easier.

First change into the directory where the console cassette information is stored:

cd Isys/ cassette

then set up the default boot device. If you have an IDC storage module as your primary root
do:

cp defboo.rb defboo.cmd

If you have an RK07 as your prim~ root do:

cp defboo.hk defboo.cmd

If you have a drive on a UDASO as your primary root do:

cp defboo.ra defboo.cmd

September 22, 1983

Installing/Operating 4.2BSD - 20- System setup

Otherwise:

cp defboo.up defboo.cmd

To complete the procedure place your DEC local console cassette in drive 0 (the drive at front
of the CPU); the following command will then copy it, updating the copy appropriately.

make update
Change Floppy, Hit return when done.
(waits for you to put clean cassette in console drive 0)
Are you sure you want to clobber the ftoppy? yes

More copies of this cassette can best be made using dd (1).

4.3. Kernel configuration

This section briefly describes the layout of the kernel code and how files for devices are
made. For a full discussion of configuring and building system images, consult the document
"Building 4.2BSD UNIX Systems with Config".

4.3.1. Kernel organization

As distributed, the kernel source is in a separate tar image. The source may be physically
located anywhere within any file system so long as a symbolic link to the location is created for
the file /sys (many files in /usr/include are normally symbolic links relative to /sys). In further
discussions of the system source all path names will be given relative to /sys.

The directory /sys/sys contains the mainline machine independent operating system code.
Files within this directory are conventionally named with the following prefixes.

init_
kern_
quota_
sys_
tty_
ufs_
uipc_
vm_

system initialization
kernel (authentication, process management, etc.)
disk quotas
system calls and similar
terminal handling
file system
interprocess communication
virtual memory

The remaining directories are organized as follows.

/sys/h
/sys/conf
/sys/net
/sys/netinet
/sys/netimp
/sys/netpup
/sys/vax --
/sys/vaxif
/sys/vaxmba
/sys/vaxuba

machine independent include files
site configuration files and basic templates
network independent, but network related code
DARP A Internet code
IMP support code
PUP-l support code
VAX specific mainline code
VAX network interface code
VAX MASSBUS device drivers and related code
VAX UNIBUS device drivers and related code

Many of these directories are referenced through /usr/include with symbolic links. For
example, /usr/include/sys is a symbolic link to /sys/h. The system code, as distributed, is
totally independent of the include files in /usr/include. This allows the system to be recom­
piled from scratch without the /usr file system mounted.

September 22, 1983

Installing/Operating 4.2BSD - 21 - System setup

4.3.2. Devices and device drivers

Devices supported by UNIX are implemented in the kernel by drivers whose source is
kept in /sys/vax, /sys/vaxuba, or /sys/vaxmba. These drivers are loaded into the system when
included in a cpu specific configuration file kept in the conf directory. Devices are accessed
through special files in the file system, made by the mknod(8) program and normally kept in
the /dev directory. For all the devices supported by the distribution system, the files in /dev
are created by the / dev /MAKEDEV shell script.

Determine the set of devices that you have and create a new /dev directory by running
the MAKEDEV script. First create a new directory /newdev, copy MAKEDEV into it, edit the
file MAKEDEV.1ocal to provide an entry for local needs, and run it to generate a /newdev
directory. For instance, if your machine has a single dz-ll, a single db-II, a single dmf-32, an
rm03 disk, an EMULEX controller, an AMPEX-9300 disk, and a te16 tape drive you would do:

#cd/
mkdir newdev
cp dev/MAKEDEV newdev/MAKEDEV
cd newdev
MAKEDEV dzO dbO dmfO hpO upO htO std LOCAL

Note the "std" argument causes standard devices such as /dev/console, the machine console,
/dev/floppy, the console floppy disk interface for the 11/780, and /dev/tuO and /dev/tul, the
console cassette interfaces for the 11/750 and 11/730, to be created.

You can then do

#cd/
mv dey olddev ; mv newdev dey
sync

to install the new device directory.

4.3.3. Building new system images

The kernel configuration of each UNIX system is described by a single configuration file,
stored in the /sys/conf directory. To learn about the format of this file and the procedure used
to build system images, start by reading "Building 4.2BSD UNIX Systems with Config", look at
the manual pages in section 4 of the UNIX manual for the devices you have, and look at the
configuration files in the /sys/conf directory. -

The configured system image "vmunix" should be copied to the root, and then booted to
try it out. It is best to name it /newvmunix so as not to destroy the working system until
you're sure it does work:

cp vmunix /newvmunix
sync

It is also a good idea to keep the old system around under some other name. In particular, we
recommend that you save the generic distribution version of the system permanently as
/genvmunix for use in emergencies.

To boot the new version of the system you should follow the bootstrap procedures out­
lined in section 6.1. A systematic scheme for numbering and saving old versions of the system
is best.

4.4. Disk configuration
This section describes how to layout file systems to make use of the available space and to

balance disk load for better system performance.

September 22, 1983

Installing/Operating 4.2BSD - 22-

4.4.1. Initializing /etc/fstab
Change into the directory / etc and copy the appropriate file from:

fstab.rm03
fstab.rm05
fstab.rm80
fstab.ra60
fstab.ra80
fstab.ra81
fstab.rb80
fstab.rp06
fstab.rp07
fstab.rk07
fstab.upl60m (160Mb up drives)
fstab.up300m (300Mb up drives)
fstab.hp400m (400Mb hp drives)
fstab.up (other up drives)
fstab.hp (other hp drives)

to the file /etc/fstab, Le.:

cd /etc
cp /Stab.xxx fstab

System setup

This will set up the initial information about the usage of disk partitions, which we see
how to update more below.

4.4.2. Disk naming and divisions
Each physical disk drive can be divided into up to 8 partitions; UNIX typically uses only 3

or 4 partitions. For instance, on an RM03 or RP06, the first partition, hpOa, is used for a root
file system, a backup thereof, or a small file system like, /tmp; the second partition, hpOb, is
used for paging and swapping; and the third partition hpOg holds a user file system. On an
RM05, the first three partitions are used as for the RM03, and the fourth partition, hpOh, is
used to hold the /usr file system, including source code.

The disk partition sizes for a drive are based on a set of four default partition tables; c.J.
diskpart (8). The particular table used is dependent on the size of the drive. The "a" partition
is the same size across all drives, 15884 sectors. The "b" partition, used for paging and swap­
ping, is sized according to the total space on the disk. For drives less than about 400 megabytes
the partition is 33440 sectors, while for larger drives the partition size is doubled to 66880 sec­
tors. The "c" partition is always used to access the entire physical disk, including the space at
the back of the disk reserved for the bad sector forwarding table. If the disk is larger than
about 250 megabytes, an "h" partition is created with size 291346 sectors, and no matter
whether the "h" partition is created or not, the remainder of the drive is allocated to the "g"
partition. Sites which want to split up the "g" partition into a number of smaller file systems
may use the "d", "e", and "r' partitions which overlap the "g" partition. The default sizes
for these partitions are 15884, 55936, and the remainder of the disk, respectively·.

4.4.3. Space available
The space available on a disk varies per device. The amount of space available on the

common disk partitions is listed in the following table. Not shown in the table are the parti­
tions of each drive devoted to the root file system and the paging area.

• These rules are, unfortunately not evenly applied to all disks. Drives on DEC UDASO and IDC controllers
do not completely follow these rules; in particular, the swap partition on an RA81 is only 33440 sectors, and
no "d'\ "e", or "r' partitions are available on an RA60 or RA80. Consult -uda(4) for more information.

September 22, 1983

Installing/Operating 4.2BSD - 23 - System setup

Type Name Size Name Size
rk07 hk?g 13 Mb
rm03 hp?g 41 Mb
rp06 hp?g 145 Mb
rm05 hp?g 80Mb hp?h 145 Mb
rm80 hp?g 96Mb
ra60 ra?g 41 Mb ra?h 139 Mb
ra80 ra?g 41 Mb ra?h 56Mb
ra81 ra?g 41 Mb ra?h 380Mb
rb80 rb?g 41 Mb rb?h 56Mb
rp07 hp?g 315 Mb hp?h 145 Mb
up300 up?g 80Mb up?h 145 Mb
hp400 hp?g 216 Mb hp?h 145 Mb
up160 up?g 106 Mb

Here up300 refers to either an AMPEX or CDC 300 Megabyte disk on a UNIBUS disk con­
troller, up160 refers to a FUJITSU 160 Megabyte disk on the UNIBUS, and hp400 refers to a
FUJITSU Eagle 400 Megabyte disk on a MAS BUS disk controller. Consult the manual pages
for the specific controllers for other supported disks or other partitions.

Each disk also has a paging area, typically of 16 Megabytes, and a root file sytem of 8
Megabytes. The distributed system binaries occupy about 22 Megabytes while the major
sources occupy another 25 Megabytes. This overflows dual RK07 and dual RL02 systems, but
fits easily on most other hardware config~rations.

Be aware that the disks have their sizes measured in disk sectors (512 bytes), while the
UNIX file system blocks are variable sized. All user programs report disk space in kilobytes
and, where needed, disk sizes are always specified in terms of sectors. The / etc/ disktab file
used in making file systems specifies disk partition sizes in sectors; the default sector size of
512 bytes may be overridden with the "se" attribute.

4.4.4. Layout considerations

There are several considerations in deciding how to adjust the arrangement of things on
your disks: the most important is making sure there is adequate space for what is requir_ed;
secondarily, ,throughput should be maximized. Paging space is an important parameter. The
system, as distributed, sizes the configured paging areas each time the system is booted.
Further, multiple paging areas of different size may be interleaved. Drives smaller than 400
megabytes have swap partitions of 16 megabytes while drives larger than 400 megabytes have
32 megabytes. These values may be changed to get more paging space by changing the
appropriate partition table in the disk driver.

Many common system programs (C, the editor, the assembler etc.) create intermediate
files in the /tmp directory, so the file system where this is stored also should be made large
enough to accommodate most high-water marks; if you have several disks, it makes sense to
mount this in a "root" (i.e. first partition) file system on another disk. All the programs that
create files in /tmp take care to delete them, but are not immune to rare events and can leave
dregs. The directory should be examined every so often and the old· files deleted.

The efficiency with which UNIX is able to use the CPU is often strongly affected by the
configuration of disk controllers. For general time-sharing applications, the best strategy is to
try to split the root file system (I), system binaries (lusr), the temporary files (ltmp), and the
user files among several disk arms, and to interleave the paging activity among a several arms.

It is critical for good performance to balance disk load. There are at least five components
of the disk load that you can divide between the available disks:

September 22, 1983

Installing/Operating 4.2BSO ·24· System setup

1. The root file system.
2. The /tmp file system.
3. The /usr file system.
4. The user files.
5. The paging activity.

The following possibilities are ones we have used at times when we had 2, 3 and 4 disks:

disks
what 2 3 4
/ 1 2 2
tmp 1 3 4
usr 1 1 1
paging 1+2 1+3 1+3+4
users 2 2+3 2+3
archive x x 4

The most important things to consider are to even out the disk load as much as possible,
and to do this by decoupling file systems (on separate arms) between which heavy copying
occurs. Note that a long term average balanced load is not important. .. it is much more impor­
tant to have instantaneously balanced load when the system is busy.

Intelligent experimentation with a few file system arrangements can payoff in much
improved performance. It is particularly easy to move the root, the /tmp file system and the
paging areas. Place the user files and the /usr directory as space needs dictate and experiment
with the other, more easily moved file systems.

4.4.5. File system parameters
Each file system is parameterized according to its block size, fragment size, and the disk

geometry characteristics of the medium on which it resides. Inaccurate specification of the disk
characteristics or haphazard choice of the file system parameters can result in substantial
throughput degradation or significant waste of disk space. As distributed, file systems are
configured according to the following table.

File system
/
usr
users

Block size
8 Kbytes
4 Kbytes
4 Kbytes

Fragment size
1 Kbytes
512 bytes
1 Kbytes

The root file system block size is made large to optimize bandwidth to the associated disk;
this is particularly important since the /tmp directory is normally part of the root file. The large
block size is also important as many of the most heavily used programs are demand paged out
of the /bin directory. The fragment size of 1 Kbytes is a "nominal" value to use with a file
system. With a1 Kbyte fragment size disk space utilization is approximately the same as with
the earlier versions of the file system.

The usr file system uses a 4 Kbyte block size with 512 byte fragment size in an effort to
get high performance while conserving the amount of space wasted by a large fragment size.
Space compaction has been deemed important here because the source code for the system is
normally placed on this file system.

The file systems for users have a 4 Kbyte block size with 1 Kbyte fragment size. These
parameters have been selected based on observations of the performance of our user file sys­
tems. The 4 Kbyte block size provides adequate bandwidth while the 1 Kbyte fragment size
provides acceptable space compaction and disk fragmentation.

September 22, 1983

Installing/Operating 4.2BSD - 25 - System setup

Other parameters may be chosen in constructing file systems, but the factors involved in
choosing a block size and fragment size are many and interact in complex ways. Larger block
sizes result in better throughput to large files in the file system as larger i/o requests will then
be performed by the system. However, consideration must be given to the average file sizes
found in the file system and the performance of the internal system buffer cache. The system
currently provides space in the inode for 12 direct block pointers, 1 single indirect block
pointer, and 1 double indirect block pointer.· If a file uses only direct blocks, access time to it
will be optimized by maximizing the block size. If a file spills over into an indirect block,
increasing the block size of the file system may decrease the amount of space used by eliminat­
ing the need to allocate an indirect block. However, if the block size is increased and an
indirect block is still required, then more disk space will be used by the file because indirect
blocks are allocated according to the block size of the file system.

In selecting a fragment size for a file system, at least two considerations should be given.
The major performance tradeoffs observed are between an 8 Kbyte block file system and a 4
Kbyte block file system. Due to implementation constraints, the block size / fragment size
ratio can not be greater than 8. This means that an 8 Kbyte file system will always have a frag­
ment size of at least 1 Kbytes. If a file system is created with a 4 Kbyte block size and a 1
Kbyte fragment size, then upgraded to an 8 Kbyte block size and 1 Kbyte fragment size, identi­
cal space compaction will be observed. However, if a file system has a 4 Kbyte block size and
512 byte fragment size, converting it to an 8K/IK file system will result in significantly more
space being used. This implies that 4 Kbyte block file systems which might be upgraded to 8
Kbyte blocks for higher performance should use fragment sizes of at least 1 Kbytes to minimize
the amount of work required in conversion.

A second, more important, consideration when selecting the fragment size for a file sys­
tem is the level of fragmentation on the disk. With a 512 byte fragment size, storage fragmen­
tation occurs much sooner, particularly with a busy file system running near full capacity. By
comparison, the level of fragmentation in a 1 Kbyte fragment file system is an order of magni­
tude less severe. This means that on file systems where many files are created and deleted the
512 byte fragment size is more likely to result in apparent space exhaustion due to fragmenta­
tion. That is, when the file system is nearly full, file expansion which requires locating a con­
tiguous area of disk space is more likely to fail on a 512 byte file system than on a 1 Kbyte file
system. To minimize fragmentation problems of this sort, a parameter in the super block
specifies a minimum acceptable free space threshhold. When normal users (i.e. anyone but the
super-user) attempt to allocate disk space and the free space threshold is exceeded, the user--is
returned an error as if the file system were actually full. This parameter is nominally set to
10%; it may be changed by supplying a parameter to newjs, or by patching the super block of an
existing file system.

In general, unless a file system is to be used for a special purpose application (for exam­
ple, storing image processing data) , we recommend using the default values supplied.
Remember that the current implementation limits the block size to at most 8 Kbytes and the
ratio of block size / fragment size must be in the range 1-8.

The disk geometry information used by the file system affects the block layout policies
employed. The file /etc/disktab, as supplied, contains the data for most all drives supported by
the system. When constructing a file system you should use the newjs (8) program and specify
the type of disk on which the file system resides. This file also contains the default file system
partition sizes, and default block and fragment sizes. To override any of the default values you
can modify the file or use one of the options to newjs.

• A triple indirect block pointer is also reserved, but not currently supported.

September 22, 1983

Installing/Operating 4.2BSD - 26- System setup

4.4.6. Implementing a layout
To put a chosen disk layout into effect, you should use the newfs (8) command to create

each new file system. Each file system must also be added to the file / etc/fstab so that it will
be checked and mounted when the system is bootstrapped.

As an example, consider a system with rm03's. On the first rm03, hpO, we will put the
root file system in hpOa, and the /usr file system in hpOg, which has enough space to hold it
and then some. The /tmp directory will be part of the root file system, as no file system will be
mounted on /tmp. If we had only one rm03, we would put user files in the hpOg partition with
the system source and binaries.

If we had a second rm03, we would create a file system in hplg and put user files there,
calling the file system /mnt. We would also interleave the paging between the 2 rm03's. To do
this we would build a system configuration that specified:

contig vmunix root on hpO swap on hpO and hp 1

to get the swap interleaved, and add the lines

/dev/hplb::sw::
/ dev /hp 1 g:/mnt:rw: 1 :2

to the /etc/fstab file. We would keep a backup copy of the root file system in the hpla disk
partition.

To make the /mnt file system we would do:

cd /dev
MAKEDEV hpl
newfs hplg rm03
(information about file system prints out)
mkdir /mnt
mount /dev/hplg /mnt

4.5. Configuring terminals
If UNIX is to support simultaneous access from more than just the console terminal, the

file /etc/ttys (ttys (5» has to be edited.

Terminals connected via dz interfaces are conventionally named ttyDD where DO IS a
decimal number, the "minor device" number. The lines on dzO are named /dev/ttyOO,
/dev/ttyOl, ... /dev/tty07. Lines on db or dmf interfaces are conventionally named ttyhX,
where X is a hexadecimat digit. If more than one db or dmf interface is present in a
configuration, successive terminals would be named ttyiX, ttyJX, etc.

To add a new terminal, be sure the device is configured into the system and that the spe­
cial file for the device has been made by /dev/MAKEDEV. Then, set the first character of the
appropriate line of /etc/ttys to 1 (or add a new line).

The second character of each line in the /etc/ttys file lists the speed and initial parameter
settings for the terminal. The commonly used choices are:

o 300-1200-150-110
2 9600
3 1200-300
5 300-1200

Here the first speed is the speed a terminal starts at, and "break" switches speeds. Thus a
newly added terminal/dev/ttyOO could be added as

12ttyOO

if it was wired to run at 9600 baud. The definition of each "terminal type" is located in the file

September 22, 1983

Installing/Operating 4.2BSO - 27 - System setup

/etc/gettytab and read by the getty program. To make custom terminal types, consult get­
tytab (5) before modifying this file.

Dialup terminals should be wired so that carrier is asserted only when the phone line is
dialed up. For non-dialup terminals from which modem control is not available, you must
either wire back the signals so that the carrier appears to always be present, or show in the sys­
tem configuration that carrier is to be assumed to be present. See dh(4), dz(4), and dnif(4) for
details. ,

You should also edit the file / etc/ttytype placing the type of each new terminal there (see
tty type (5)) .

When the system is running multi-user, all terminals that are listed in /etc/ttys having a 1
as the first character of their line are enabled. If, during normal operations, it is desired to dis­
able a terminal line, you can edit the file /etc/ttys and change the first character of the
corresponding line to be a 0 and then send a hangup signal to the init process, by doing

#kill-ll

Terminals can similarly be enabled by changing the first character of a line from a 0 to a 1 and
sending a hangup signal to init.

Note that several programs, /usr/src/etc/init.c and /usr/src/etc/comsat.c in particular, will
have to be recompiled if there are to be more than 100 terminals. Also note that if a special
file is inaccessible when init tries to create a process for it, init will print a message on the con­
sole and try to reopen the terminal every minute, reprinting the warning message every 10
minutes.

Finally note that you should change the names of any dialup terminals to ttyd? where?
is in [0-9a-f], as some programs use this property of the names to determine if a terminal is a
dialup. Shell commands to do this should be put in the /dev/MAKEDEV.local script.

While it is possible to use truly arbitrary strings for terminal names, the accounting and
noticeably the ps (1) command make good use of the convention that tty names (by default,
and also after dialups are named as suggested above) are distinct in the last 2 characters.
Change this and you may be sorry later, as the heuristic ps (1) uses based on these conventions
will then break down and ps will run MUCH slower.

4.6. Adding users
New users can be added to the system by adding a line to the password file /etc/passwd.

The procedure for adding a new user is described in adduser(8).

You should add accounts for the initial user community, giving each a directory and a
password, and putting users who will wish to share software in the same groups.

A number of guest accounts have been provided on the distribution system; these
accounts are for people at Berkeley, DEC and at Bell Laboratories who have done major work
on UNIX in the past. You can delete these accounts, or leave them on the system if you
expect that these people would have occasion to login as guests on your system.

-
4.7. Site tailoring

All programs which require the site's name, or some similar characteristic, obtain the
information through system calls or from files located in /etc. Aside from parts of the system
related to the network, to tailor the system to your site you must simply select a site name,
then edit the file

/ etcl rc.local

The first line in /etc/rc.1ocal,

. /bin/hostname mysitename

defines the value returned by the gethostname (2) system call. Programs such as getty (8),

September 22, 1983

Installing/Operating 4.2BSD - 28 - System setup

mail (l) , wallO), uucp(1), and who (1) use this system call so that the binary images are site
independent.

4.8. Setting up the line printer system
The line printer system consists of at least the following files and commands:

lusr/ucb/lpq
lusr lucb/lprm
°/usr/ucb/lpr
letc/printcap
lusr/lib/lpd
letc/lpc

spooling queue examination program
program to delete jobs from a queue
program to enter a job in a printer queue
printer configuration and capability data base
line printer daemon, scans spooling queues
line printer control program

The file letc/printcap is a master data base describing line printers directly attached to a
machine and, also, printers accessible across a network. The manual page printcap (5) describes
the format of this data base and also indicates the default values for such things as the directory
in which spooling is performed. The line printer system handles multiple printers, multiple
spooling queues, local and remote printers, and also printers attached via serial lines which
require line initialization such as the baud rate. Raster output devices such as a Varian or Ver­
satec, and laser printers such as an Imagen, are also supported by the line printer system.

Remote spooling via the network is handled with two spooling queues, one on the local
machine and one on the remote machine. When a remote printer job is initiated with /pr, the
job is queued locally and a daemon process created to oversee the transfer of the job to the
remote machine. If the destination machine is unreachable, the job will remain queued until it
is possible to transfer the files to the spooling queue on the remote machine. The /pq program
shows the contents of spool queues on both the local and remote machines.

To configure your line printers, consult the printcap manual page and the accompanying
document, "4.2BSD Line Printer Spooler Manual". A call to the /pd program should be
present in letc/rc.

4.9. Setting up the mall system
The mail system consists of the following commands:

Ibin/mail
lusr/ucb/mail
lusr llib/sendmail
lusrlspool/mail
lusr Ispool/secretmail
lusr/bin/xsend
lusr Ibin/xget
lusr/lib/aliases
lusr/ucb/newaliases
lusr lucb/bitr
I etcl comsat
I etcl syslog

old standard mail program (from 32/V)
UeB mail program, described in mail(l)
mail routing program
mail spooling directory
secure mail directory
secure mail sender
secure mail receiver
mail forwarding information
command to rebuild binary forwarding database
mail notification enabler
mail notification daemon
error message logger, used by sendmail

Mail is normally sent and received using the mailO) command, which provides a front-end to
edit the messages sent and received, and passes the messages to sendmail (8) for routing. The
routing algorithm uses knowledge of the network name syntax, aliasing and forwarding infor­
mation, and network topology, as defined in the configuration file lusr/lib/sendmail.cf, to pro­
cess each piece of mail. Local mail is delivered by giving it to the program lusr/bin/mail which
adds it to the mailboxes in the directory lusrlspool/maillusername, using a locking protocol to
avoid problems with simultaneous updates. After the mail is delivered, the local mail delivery

September 22, 1983

Installing/Operating 4.2BSD - 29 - System setup

daemon /etc/comsat is notified, which in turn notifies users who have issued a "biff y" com­
mand that mail has arrived.

Mail queued in the directory /usr/spool/mail is normally readable only by the recipient.
To send mail which is. secure against any possible perusal (except by a code-breaker) you
should use the secret mail facility, which encrypts the mail so that no one can read it.

To setup the mail facility you should read the instructions in the file READ_ME in the
directory /usr/src/usr.lib/sendmail and then adjust the necessary configuration files. You
should also set up the file /usr/lib/aliases for your installation, creating mail groups as appropri­
ate. Documents describing sendmail's operation and installation are also included in the distri­
bution.

4.9.1. Setting up a uuep connection

The version of uucp included in 4.2BSD is an enhanced version of that originally distri­
buted with 32/V·. The enhancements include:

• support for many auto call units other than the DEC DNll,
• breakup of the spooling area into multiple subdirectories,
• addition of an L.cmds file to control the set of commands which may be executed by a

remote site,

• enhanced "expect-send" sequence capabilities when logging in to a remote site,
• new commands to be used in polling sites and obtaining snap shots of uucp activity.
This section gives a brief overview of uucp and points out the most important steps in its instal­
lation.

To connect two UNIX machines with a uucp network link using moderns, one site must
have an automatic call unit and the other must have a dialup port. It is better if both sites have
both.

You should first read the paper in volume 2B of the Unix programmers Manual: "Uucp
Implementation Description". It describes in detail the file formats and conventions, and will
give you a little context. In addition, the document setup. tblrns, located in the directory
/usr/src/usr.bin/uucp/UUAIDS, may be of use in tailoring the software to your needs.

The uucp support is located in three major directories: /usr/bin, /usr/lib/uucp, and
/usr/spool/uucp. User commands are kept in /usr/bin, operational commands - in
/usr/lib/uucp, and /usr/spool/uucp is used as a spooling area. The commands in /usr/bin are:

/usr /bin/uucp
/usr/bin/uux
/usr/bin/uusend
/usr /bin/uuencode
/usr /bin/uudecode
/usr/bin/uulog
/usr /bin/uusnap
/usr/bin/uupoll

file-copy command
remote execution command
binary file transfer using mail
binary file encoder (for uusendJ
binary file decoder (for uusendJ
scans session log files
gives a snap-shot of uucp activity
polls remote system until an answer is received

The important files and commands in /usr /lib/uucp are:

• The uucp included in this distribution is the result of work by many people; we gratefully acknowledge their
contributions, but refrain from mentioning names in the interest of keeping this document current.

September 22, 1983

Installing/Operating 4.2BSD - 30 -

list of dialers and hardwired lines
dialcode abbreviations
commands remote sites may execute

System setup

lusr Ilib/uucp/L-devices
lusr Ilib/uucp/L-dialcodes
lusr Ilib/uucp/L.cmds
lusr Ilib/uucp/L.sys
lusr Ilib/uucp/SEQF

systems to communicate with, how to connect, and when
sequence numbering control file

lusr Ilib/uucp/USERFILE
lusr llib/uucp/uuclean
lusr/lib/uucp/uucico

remote site pathname access specifications
cleans up garbage files in spool area
uucp protocol daemon

lusr llib/uucp/uuxqt uucp remote execution server

while the spooling area contains the following important files and directories:

lusr I spoolluucp/C.
lusrlspoolluucp/D.
lusr Ispoolluucp/X.
lusr I spoolluucp/D. machine
lusr Ispoolluucp/D.machineX

- lusrlspoolluucp/TM.
lusr Ispoolluucp/LOGFILE
lusr Ispoolluucp/SYSLOG

directory for command, "C." files
directory for data, "D.", files
directory for command execution, "X.", files
directory for local "D." files
directory for local "X." files
directory for temporary, "TM.", files
log file of uucp activity
log file of uucp file transfers

To install uucp on your system, start by selecting a site name (less than 8 characters). A
uucp account must be created 'in the password file and a password set up. Then, create the
appropriate spooling directories with mode 755 and owned by user uucp, group daemon.

If you have an auto-call unit, the L.sys, L-dialcodes, and L-devices files should be created.
The L.sys file should contain the phone numbers and login sequences required to establish a
connection with a uucp daemon on another machine. For example, our L.sys file looks some­
thing like:

adiron Any ACU 1200 out0123456789- ogin-EOT-ogin uucp
cbosg Never Slave 300
cbosgd Never Slave 300
chico Never Slave 1200 out2010123456

The first field is the name of a site, the second indicates when the machine may be called, the
third field specifies how the host is connected (through an ACU, a hardwired line, etc.), then
comes the phone number to use in connecting through an auto-call unit, and finally a login
sequence. The phone number may contain common abbreviations which are defined in the L­
dialcodes file. The device specification should refer to devices specified in the L-devices file.
Indicating only ACU causes the uucp daemon, uucico, to search for any available auto-call unit
in L-devices. Our L-dialcodes file is of the form:

ucb 2
out 9%

while our L-devices file is:

ACU culO unused 1200 ventel

Refer to the README file in the uucp source directory for more information about installation.
As uucp operates it creates (and removes) many small files in the directories underneath

lusrlspoolluucp. Sometimes files are left undeleted; these are most easily purged with the
uuclean program. The log files can grow without bound unless trimmed back; uulog is used to
maintain these files. Many useful aids in maintaining your uucp installation are included in a
subdirectory UUAIDS beneath lusrlsrc/usr.bin/uucp. Peruse this directory and read the
"setup" instructions also located there.

September 22, 1983

Installing/Operating 4.2BSD - 31 - Network setup

s. NETWORK SETUP

4.2BSD provides support for the DARPA standard Internet protocols IP, ICMP, TCP, and
UDP. These protocols may be used on top of a variety of hardware devices ranging from the
IMP's used in the ARPANET to local area network controllers for the Ethernet. Network ser­
vices are split between the kernel (communication protocols) and user programs (user services
such as TELNET and FrP). This section describes how to configure your system to use the
networking support.

S.I. System configuration

To configure the kernel to include the Internet communication protocols, define the INET
option and include the pseudo-devices "inet", "pty", and "loop" in your machine's
configuration file. The "pty" pseudo-device forces the pseudo terminal device driver to be
configured into the system, see pty(4), while the "loop" pseudo-device forces inclusion of the
software loopback interface driver. The loop driver is used in network testing and also by the
mail system.

If you are planning to use the network facilities on a 10Mb/s Ethernet, the pseudo-device
"ether" should also be included in the configuration; this forces inclusion of the Address Reso­
lution Protocol module used in mapping between 48-bit Ethernet and 32-bit Internet addresses.
Also, if you have an imp, you will need to include the pseudo-device "imp."

Before configuring the appropriate networking hardware, you should consult the manual
pages in section 4 of the programmer's manual. The following table lists the devices for which
software support exists.

Device name Manufacturer and product
acc ACC LH/DH interface to IMP
css DEC IMP-11A interface to IMP
dmc DEC DMC-11 (also works with DMR-11)-
ec 3Com 1 OMb/ s Ethernet
en Xerox 3Mb/s prototype Ethernet (not a product)
hy NSC Hyperchannel, w/ DR-lIB and PI-13 interfaces
il Interlan 1 OMbl s Ethernet
pcl DEC PCL-11
un Ungermann-Bass network w/ DR-I1W interface
vv Proteon ring network (V2LNI)

All network interface drivers require some or all of their host address be defined at boot .
time. This is accomplished with jfcollfig(8C) commands included in the letc/rc.local file.
Interfaces which are able to dynamically deduce the host part of an address, but not the net­
work number, take the network number from the address specified with i/collfig. Hosts which
use a more complex address mapping scheme, such as the Address Resolution Protocol,
arp(4), require' the full address. The manual page for each network interface describes the
method used to establish a host's address. lfcollfig (8) can also be used to set options for the
interface at boot time. These options include disabling the use of the Address Resolution Pro­
tocol and/or the use of trailer encapsulation; this is useful if a network is shared with hosts run­
ning software which is unable to perform these functions. Options are set independently for
each interface, and apply to all packets sent using that interface. An alternative approach to
ARP is to divide the address range, using ARP only for those addresses below the cutoff and
using another mapping above this constant address; see the source (/sys/netinet/if_ether.c) for
more information.

In order to use the pseudo terminals just configured, device entries must be created in the
/dev directory. To create 16 pseudo terminals (plenty, unless you have a heavy network load)

September 22, 1983

Installing/Operating 4.2BSD

perform the following commands.

cd Idev
MAKEDEV ptyO

- 32 - Network setup

More pseudo terminals may be made by specifying pty], pty2, etc. The kernel normally
includes support for 32 pseudo terminals unless the configuration file specifies a different
number. Each pseudo terminal actually consists of two files in Idev: a master and a slave. The
master pseudo terminal file is named Idev/pty?, while the slave side is Idev/ttyp? Pseudo ter­
minals are also used by the script (0 program. In addition to creating the pseudo terminals, be
sure to install them in the letclttys file (with a '0' in the first column so no getty is started), and
in the letclttytype file (with type "network").

When configuring multiple networks some thought must be given to the ordering of the
devices in the configuration file. The first network interface configured in the system is used as
the default network when the system is forced to assign a local address to a socket. This means
that your most widely known network should always be placed first in the configuration file.
For example, hosts attached to both the ARPANET and our local area network have devices
configured in the order show below.

device accO at uba? csr 0167600 vector accrint accxint
device enO at uba? csr 0161000 vector enxint enrint encollide

5.2. Network data bases
A number of data files are used by the network library routines and server programs.

Most of these files are host independe~t and updated only rarely.

File
letc/hosts
I etc/networks
I etcl services
I etc/protocols
letc/hosts.equiv
I etcl rc.local
letc/ftpusers

Manual reference
hosts(S)
networks(S)
services (S)
protocols (S)
rshd(8C)
rc(8)
ftpd(8C)

Use
host names
network names
list of known services
protocol names
list of "trusted" hosts
command script for starting servers
list of "unwelcome" ftp users

The files distributed are set up for ARPANET or other Internet hosts. Local networks and
hosts should be added to describe the local configuration; the Berkeley entries may serve as
examples (see also the next section). Network numbers will have to be chosen for each ether­
net. For sites not connected to the Internet, these can be chosen more or less arbitrarily, oth­
erwise the normal channels should be used for allocation of network numbers.

5.2.1. Regenerating letc/hosts and letc/networks
The host and network name data bases are normally derived from a file retrieved from the

Internet Network Information Center at SRI. To do this you should use the program
letc/gettable to retrieve the NIC host data base, and the program letc/htable to convert it to
the format used by the libraries.

September 22, 1983

Installing/Operating 4.2BSD

cd /usr/src/ucb/netser/htable
/etc/gettable sri-nic
Connection to sri-nie opened.
Host table received.
Connection to sri-nle closed.
/etc/htable hosts.txt
Warning, no localgateways file.

- 33 - Network setup

The htable program generates two files of interest in the local directory: hosts and networks. If a
file "localhosts" is present in the working directory its contents are first copied to the output
file. Similarly, a "localnetworks" file may be prepended to the output created by htable. It is
usually wise to run diff{I) on the new host and network data bases before installing them in
/etc.

5.2.2. lete/hosts.equlv
The remote login and shell servers use an authentication scheme based on trusted hosts.

The hosts.equiv file contains a list of hosts which are considered trusted and/or, under a single
administrative control. When a user contacts a remote login or shell server requesting service,
the client process passes the user's name and the official name of the host on which the client
is located. In the simple case, if the hosts's name is located in hosts.equiv and the user has an
account on the server's machine, then service is rendered (i.e. the user is allowed to log in, or
the command is executed). Users may constrain this "equivalence" of machines by installing a
.rhosts file in their login directory. The root login is handled specially, bypassing the
hosts.equiv file, and using only the /.rhosts file.

Thus, to create a class of equivalent machines, the hosts.equiv file should contain the
official names for those machines. For example, most machines on our major local network are
considered trusted, so the hosts.equiv file is of the form:

ucbarpa
ucbcalder
ucbdali
ucbemie
ucbkim
ucbmatisse
ucbmonet
ucbvax
ucbmiro
ucbdegas

5.2.3. lete/re.local
Most network servers are automatically started up at boot time by the command file

/etc/rc (if they are installed in their presumed locations). These include the following:

/etc/rshd
/ etc/ rexecd
/etc/rlogind
/etc/rwhod

shell server
exec server
login server
system status daemon

To have other network servers started up as well, commands of the following sort should be
placed in the site dependent file /etc/rc.local.

September 22, 1983

Installing/Operating 4.2BSD - 34 -

if [-f letc/telnetd]; then
letc/telnetd & echo -n ' telnetd'

fi

Network setup

> I dev I console

The following servers are included with the system and should be installed in letc/rc.1ocal as
the need arises.

letc/telnetd
letc/ftpd
letc/tftpd
letc/syslog
I etcl sendmail
I etcl courierd
letc/routed

TELNET server
FrP server
TFTP server
error logging server
SMTP server
Courier remote procedure call server
routing table management daemon

Consult the manual pages and accompanying documentation (particularly for sendmaiI) for
details about their operation.

5.2.4. letc/ftpusers
The FrP server included in the system provides support for an anonymous FrP account.

Due to the inherent security problems with such a facility you should read this section carefully
if you consider providing such a service.

An anonymous account is enabled by creating a user ftp. When a client uses the
anonymous account a chroot (2) system call is performed by the server to restrict the client
from moving outside that part of the file system where the user ftp home directory is located.
Because a chroot call is used, certain programs and files must be supplied the server process for
it to execute properly. Further, one must be sure that all directories and executable images are
unwritable. The following directory setup is recommended.

cd -ftp
chmod 555 .; chown ftp .; chgrp ftp .
mkdir bin etc pub
chown root bin etc
chmod 555 bin etc
chown ftp pub
chmod 777 pub
cd bin
cp Ibinl sh Ibin/ls .
chmod 111 sh Is
cd . .Ietc
cp letc/passwd letc/group .
chmod 444 passwd group

When local users wish to place files in the anonymous area, they must be placed in a subdirec­
tory. In the setup here, the directory -ftp/pub is used.

Aside from the problems of directory modes and such, the ftp server may provide a loo­
phole for interlopers if certain user accounts are allowed. The file letc/ftpusers is checked on
each connection. If the requested user name is located in the file, the request for service is
denied. This file normally has the following names on our systems.

uucp
root·

September 22, 1983

Installing/Operating 4.28S0 - 35 - Network setup

5.3. Routing and gatewayslbrfdges

If your environment allows access to networks not directly attached to your host you will
need to set up routing information to allow packets to be properly routed. Two schemes are
supported by the system. The first scheme employs the routing table management daemon
/etc/routed to maintain the system routing tables. The routing daemon uses a variant of the
Xerox Routing Information Protocol to maintain up to date routing tables in a cluster of local
area networks. By using the /etc/gateways file created by /etc/htable, the routing daemon can
also be used to initialize static routes to distant networks. When the routing daemon is started
up (usually from /etc/rc.local) it reads /etc/gateways and installs those routes defined there,
then broadcasts on each local network to which the host is attached to find other instances of
the routing daemon. If any responses are received, the routing daemons cooperate in maintain­
ing a globally consistent view of routing in the local environment. This view can be extended
to include remote sites also running the routing daemon by setting up suitable entries in
/etc/gateways; consult routed(8C) for a more thorough discussion.

The second approach is to define a wildcard route to a smart gateway and depend on the
gateway to provide ICMP routing redirect information to dynamically create a routing data base.
This is done by adding an entry of the form

/etc/route add 0 smart-gateway 1

to /etc/rc.local; see route (8C) for more information. The wildcard route, indicated by a 0
valued destination, will be used by the system as a "last resort" in routing packets to their des­
tination. Assuming the gateway to which packets are directed is able to generate the proper
routing redirect messages, the system will then add routing table entries based on the informa­
tion supplied. This approach has certain advantages over the routing daemon, but is unsuitable
in an environment where their are only bridges (i.e. pseudo gateways which, for instance, do
not generate routing redirect messages). Further, if the smart gateway goes down there is no
alternative, save manual alteration of the routing table entry, to maintaining service.

The system always listens, and processes, routing table redirect information, so it is possi­
ble to combine both the above facilities. For example, the routing table management process
might be used to maintain up to date information about routes to geographically local networks,
while employing the wildcard routing techniques for "distant" networks. The netstat(1) pro­
gram may be used to display routing table contents as well as various routing oriented statistics.
For example,

#netstat -r

will display the contents of the routing tables, while

#netstat -r -s

will show the number of routing table entries dynamically created as a result of routing redirect .
messages, etc.

September 22, 1983

Installing/Operating 4.2BSD - 36 - System Operation

6. SYSTEM OPERATION

This section describes procedures used to operate a V AX UNIX system. Procedures
described here are used periodically, to reboot the system, analyze error messages from devices,
do disk backups, monitor system performance, recompile system software and control local
changes.

6.1. Bootstrap and shutdown procedures

In a normal reboot, the system checks the disks and comes up multi-user without inter­
vention at the console. Such a reboot can be stopped (after it prints the date) with a AC (inter­
rupt). This will leave the system in single-user mode, with only the console terminal active.

If booting from the console command level is needed, then the command

»>B
will boot from the default device. On an 11/780 (11/730) the default device is determined by a
"DEPOSIT" command stored on the floppy (cassette) in the file "DEFBOO.CMD"; on an
11/750 the default device is determined by the setting of a switch on the front panel.

You can boot a system up single user on a 780 or 730 by doing

»> BXXS

where XX is one of HP, HK., UP, RA, or RB for a 730. The corresponding command on an
11/750 is

»> B/l

For second vendor storage modules on the UNIBUS or MASSBUS of an 11/750 you will
need to have a boot prom. Most vendors will sell you such proms for their controllers; contact
your vendor if you don't have one.

Other possibilities are:

»> BANY

or, on a 750

»> B/3
These commands boot and ask for the name of the system to be booted. They can be used
after building a new test system to give the boot program the name of the test version of the
system.

To bring the system up to a multi-user configuration from the single-user status after,
e.g., a "B HPS" on an 11/780, "B RBS" on a 730, or a "B/l" on an 11/750 all you have to do
is hit AD on the console. The system will then execute /etc/rc, a multi-user restart script (and
/etc/rc.locaI), and come up on the terminals listed as active in the file /etc/ttys. See init(8)
and ttys(5). Note, however, that this does not cause a file system check to be performed.
Unless the system was taken down cleanly, you should run "fsck _p" or force a reboot with
reboot (8) to have the disks checked.

To take the system down to a single user state you can use

kill 1

or use the shutdown (8) command (which is much more polite, if there are other users logged
in.) when you are up multi-user. Either command will kill all processes and give you a shell on
the console, as if you had just booted. File systems remain mounted after the system is taken
single-user. If you wish to come up multi-user again, you should do this by:

September 22, 1983

Installing/Operating 4.2BSD

cd /
/etc/umount-a
#"D

- 37 - System Operation

Each system shutdown, crash, processor halt and reboot is recorded in the file
/usr/adm/shutdownlog with the cause.

6.2. Device errors and diagnostics
When errors occur on peripherals or in the system, the system prints a warning diagnostic

on the console. These messages are collected regularly and written into a system error log file
/usr/adm/messages.

Error messages printed by the devices in the system are described with the drivers for the
devices in section 4 of the programmer's manual. If errors occur indicating hardware problems,
you should contact your hardware support group or field service. It is a good idea to examine
the error log file regularly (e.g. with "tail -r lusr/adm/messages").

6.3. FlIe system checks, backups and disaster recovery
Periodically (say every week or so in the absence of any problems) and always (usually

automatically) after a crash, all the file systems should be checked for consistency by jSck(1).
The procedures of reboot (8) should be used to get the system to a state where a file system
check can be performed manually or automatically.

Dumping of the file systems should be done regularly, since once the system is going it is
easy to become complacent. Complete and incremental dumps are easily done with dump (8).
You should arrange to do a towers-of-hanoi dump sequence; we tune ours so that almost all
files are dumped on two tapes and kept for at least a week in most every case. We take full
dumps every month (and keep these indefinitely). Operators can execute "dump w" at login
that will tell them what needs to be dumped (based on the letc/fstab information). Be sure to
create a group operator in the file letc/group so that dump can notify logged-in operators when
it needs help. ~

More precisely, we have three sets of dump tapes: 10 daily tapes, 5 weekly sets of 2 tapes,
and fresh sets of three tapes monthly. We do daily dumps circularly on the daily tapes with
sequence '3 2 5 4 7 6 9 8 9 9 9 ... '. Each weekly is a levelland the daily dump sequence level
restarts after each weekly dump. Full dumps are level 0 and the daily sequence restarts after
each full dump also.

Thus a typical dump sequence would be:

tape name level number date opr size
FULL 0 Nov 24, 1979 jkf 137K

Dl 3 Nov 28, 1979 jkf 29K
D2 2 Nov 29, 1979 rrh 34K
D3 5 Nov 30, 1979 rrh 19K
D4 4 Dec 1, 1979 rrh 22K
WI 1 Dec 2, 1979 etc 40K
D5 3 Dec 4, 1979 rrh 15K
D6 2 Dec 5, 1979 jkf 25K
D7 5 Dec 6, 1979 jkf 15K
D8 4 Dec 7, 1979 rrh 19K
W2 1 Dec 9, 1979 etc 118K
D9 3 Dec 11, 1979 rrh 15K

DI0 2 Dec 12, 1979 rrh 26K
Dl 5 Dec 15, 1979 rrh 14K
W3 1 Dec 17, 1979 etc 71K
D2 3 Dec 18, 1919 etc 13K

September 22, 1983

Installing/Operating 4.2BSD - 38 - System Operation

FULL o Dec 22, 1979 etc 13sK

We do weekly's often enough that daily's always fit on one tape and never get to the sequence
of 9's in the daily level numbers.

Dumping of files by name is best done by tar (1) but the amount of data that can be
moved in this way is limited to a single tape. Finally if there are enough drives entire disks can
be copied with dd (1) using the raw special files and an appropriate blocking factor; the number
of sectors per track is usually a good value to use, consult /etc/disktab.

It is desirable that full dumps of the root file system be made regularly. This is especially
true when only one disk is available. Then, if the root file system is damaged by a hardware or
software failure, you can rebuild a workable disk doing a restore in the same way that the initial
root file system was created.

Exhaustion of user-file space is certain to occur now and then; disk quotas may be
imposed, or if you prefer a less facist approach, try using the programs du(1), tlf(1), quot(8),
combined with threatening messages of the day, and personal letters.

6.4. Moving ftlesystem data

If you have the equipment, the best way to move a file system is to dump it to magtape
using dump (8), use newjs(8) to create the new file system, and restore the tape, using
restore (8). If for some reason you don't want to use magtape, dump accepts an argument tel­
ling where to put the dump; you might use another disk. The restore program uses an "in­
place" algorithm which allows file system dumps to be restored without concern for the original
size of the file system. Further, portions of a file system may be selectively restored in a
manner similar to the tape archive program.

If you have to merge a file system into another, existing one, the best bet is to use tar (1).
If you must shrink a file system, the best bet is to dump the original and restore it onto the
new file system. If you are playing with the root file system and only have one drive, the pro­
cedure is more complicated. What you do is the following:

1. GET A SECOND PACK!!!!

2. Dump the root file system to tape using dump(8).

3. Bring the system down and mount the new pack.

4. Load the distribution tape and install the new root file system as you did when first instal­
ling the system.

5. Boot normally using the newly created disk file system.

Note that if you change the disk partition tables or add new disk drivers they should also
be added to the standalone system in /sys/stand and the default disk partition tables in
/ etc/ disktab should be modified.

6.5. Monitoring System Performance

The vmstat program provided with the system is designed to be an aid to monitoring sys­
temwide activity. Together with the ps (1) command (as in "ps av"), it can be used to investi­
gate systemwide virtual memory activity. By running vmstat when the system is active you can
judge the system activity in several dimensions: job distribution, virtual memory load, paging
and swapping activity, disk and cpu utilization. Ideally, there should be few blocked (b) jobs,
there should be little paging or swapping activity, there should be available bandwidth on the
disk devices (most single arms peak out at 30-35 tps in practice), and the user cpu utilization
(us) should be high (above 60%).

If the system is busy, then the count of active jobs may be large, and several of these jobs
may often be blocked (b). If the virtual memory is active, then the paging demon will be run­
ning (sr will be non-zero). It is healthy for the paging d~mon to free pages when the virtual
memory gets active; it is triggered by the amount of free memory dropping below a threshold

September 22, 1983

Installing/Operating 4.2BSD - 39 - System Operation

and increases its pace as free memory goes to zero.
If you run vmstat when the system is busy (a "vmstat 1" gives all the numbers computed

by the system), you can find imbalances by noting abnormal job distributions. If many
processes are blocked (b), then the disk subsystem is overloaded or imbalanced. If you have a
several non-dma devices or open teletype lines that are "ringing", or user programs that are
doing high-speed non-buffered input/output, then the system time may go high (60-70% or
higher). It is often possible to pin down the cause of high system time by looking to see if
there is excessive context switching (cs) , interrupt activity (in) or system call activity (sy).
Cumulatively on one of our large machines we average about 60 context switches and interrupts
per second and about 90 system calls per second.

If the system is heavily loaded, or if you have little memory for your load (1M is little in
most any case), then the system may be forced to swap. This is likely to be accompanied by a
noticeable reduction in system performance and pregnant pauses when interactive jobs such as
editors swap out. If you expect to be in a memory-poor environment for an extended period
you might consider administratively limiting system load ..

6.6. Recompiling and reinstalling system software
It is easy to regenerate the system, and it is a good idea to try rebuilding pieces of the sys­

tem to build confidence in the procedures. The system consists of two major parts: the kernel
itself (/sys) and the user programs (/usr/src and subdirectories). The major part of this is
/usr/src.

The three major libraries are the C library in /usr/src/lib/libc and the FORTRAN libraries
/usr/src/usr.lib/libI77 and /usr/src/usr.1ib/libF77. In each case the library is remade by chang­
ing into the corresponding directory and doing

make

and then installed by

make install

Similar to the system,

make clean

cleans up.
The source for all other libraries is kept in subdirectories of /usr/src/usr.1ib; each has a

makefile and can be recompiled by the above recipe.
If you look at /usr/src/Makefile, you will see that you can recompile the entire system

source with one command. To recompile a specific program, find out where the source resides
with the whereis (1) command, then change to that directory and remake it with the make file
present in the directory. For instance, to recompile "date", all one has to do is

whereis date
date: lusrlsrclbln/date.c Ibin/date /usr/man/manl/date.l
cd /usr/src/bin
make date

this will create an unstripped version of the binary of "date" in the current directory. To
install the binary image, use the install command as in .

install - s date /bin/ date

The -s option will insure the installed version of date has its symbol table stripped. The install
command should be used instead of mv or cp as it understands how to install programs even
when the program is currently in use.

September 22, 1983

Installing/Operating 4.2BSD - 40- System Operation

If you wish to recompile and install all programs in a particular target area you can over­
ride the default target by doing:

make
make DESTDIR - pathname install

To regenerate all the system source you can do

cd /usr/src
. # make

If you modify the C library, say to change a system call, and want to rebuild and install
everything from scratch you have to be a little careful. You must insure the libraries are
installed before the remainder of the source, otherwise the loaded images will not contain the
new routine from the library. The following steps are recommended.

cd /usr/src
cd lib; make install
#cd ..
make usr.lib
cd usr.lib; make install
#cd ..
make bin etc usr. bin ucb games local
for i in bin etc usr.bin ucb games local; do (cd $i; make install); done

This will take about 12 hours on a reasonably configured 11/750.

6.7. Making local modifications
To keep track of changes to system source we migrate changed versions of commands in

/usr/src/bin, /usr/src/usr.bin, and /usr/src/ucb in through the directory /usr/src/new and out
of the original directory into /usr/src/old for a time before removing them. Locally written
commands that aren't distributed are kept in /usr/src/local and their binaries are kept in
/usr/local. This allows /usr/bin, /usr/ucb, and /bin to correspond to the distribution tape (and
to the manuals that people can buy). People wishing to use /usr /local commands are made
aware that they aren't in the base manual. As manual updates incorporate these commands
they are moved to /usr/ucb.

A directory /usr/junk to throw garbage into, as well as binary directories /usr/old-and
/usr/new are useful. The man command supports manual directories such as /usr/man/manj
for junk and /usr/man/man! for local to make this or something similar practical.

6.8. Accounting

UNIX optionally records two kinds of accounting information: connect time accounting
and process resource accounting. The connect time accounting information is stored in the file
/usr/adm/wtmp, which is summarized by the program ac(S). The process time accounting
information is.stored in the file /usr/adm/acct, and analyzed and summarized by the program
sa (S).

If you need to implement recharge for computing time, you can implement procedures
based on the information provided by these commands. A convenient way to do this is to give
commands to the clock daemon /etc/cron to be executed every day at a specified time. This is
done by adding lines to lusr/adm/crontab; see cron (S) for details.

6.9. Resource control
Resource control in the current version of UNIX is fairly elaborate compared to most

UNIX· systems. The disc quota facilities developed at the University of Melbourne have been
incorporated in the system and allow control over the number of files and amount of disc space

September 22, 19S3

Installing/Operating 4.2BSD - 41 - System Operation

each user may use on each file system. In addition, the resources consumed by any single pro­
cess can be limited by the mechanisms of setrlimit (2). As distributed, the latter mechanism is
voluntary, though sites may choose to modify the login mechanism to impose limits not
covered with disc quotas.

To utilize the disc quota facilities, the system must be configured with "options
QUOTA" . File systems may then be placed under the quota mechanism by creating a null file
quotas at the root of the file system, running quotacheck (8), and modifying /etc/fstab to indi­
cate the file system is read-write with disc quotas (a "rq" type field). The quotaon (8) program
may then be run to enable quotas.

Individual quotas are applied by using the quota editor edquota (8). Users may view their
quotas (but not those of other users) with the quota (1) program. The repquota (8) program
may be used to summarize the quotas and current space usage on a particular file system or file
systems.

Quotas are enforced with soft and hard limits. When a user first reaches a soft limit on a
resource, a message is generated. on his/her terminal. If the user fails .to lower the resource
usage below the soft limit the next time they log in to the system the login program will gen­
erate a warning about excessive usage. Should three login sessions go by with the soft limit
breached the system then treats the soft limit as a hard limit and disallows any allocations until
enough space is reclaimed to bring the user back below the soft limit. Hard limits are enforced
strictly resulting in errors when a user tries to create or write a file. Each time a hard limit is
exceeded the system will generate a message on the user's terminal.

Consult the auxiliary document, "Disc Quotas in a UNIX Environment" and the
appropriate manual entries for more information.

6.10. Network troubleshooting
If you have anything more than a trivial network configuration, from time to time you are

bound to run into problems. Before blaming the software, first check your network connec­
tions. On networks such as the Ethernet a loose cable tap or misplaced power cable can result
in severely deteriorated service. The netstat (1) program may -be of aid in tracking down
hardware malfunctions. In particular, look at the -i and -s options in the manual page.

Should you believe a communication protocol problem exists, consult the protocol
specifications and attempt to isolate the problem in a packet trace. The SO_DEBUG option
may be supplied before establishing a connection on a socket, in which case the system -will
trace all traffic and internal actions (such as timers expiring) in a circular trace buffer. This
buffer may then be printed out with the trpt (8C) program. Most all the servers distributed with
the system accept a -d option forcing all sockets to be created with debugging turned on.
Consult the appropriate manual pages for more information.

6.11. Files which need periodic attention
We conclude the discussion of system operations by listing the files that require periodic

attention or are system specific

/etc/fstab
/ etc/ disktab
/etc/printcap
/ etc/gettytab
/etc/remote
/etc/group
/etc/motd
/etc/passwd
/ etc/ rc.local
/etc/hosts
/ etc/networks

how disk partitions are used
disk partition sizes
printer data base
terminal type definitions
names and phone numbers of remote machines for tip(1)
group memberships
message of the day
password file; each account has a line
local system restart script; runs reboot; starts daemons
host name data base
network name data base

September 22, 198'3

Installing/Operating 4.2BSD

I etc/ se"ices
I etc/hosts.equlv
I etc/ securetty
letc/ttys
letc/ttytype
lusr/lib/crontab
lusr llibl aliases
lusr/adm/acct
lusr/adm/messages
lusrl adm/shutdownlog
lusr/adm/wtmp

- 42 -

network services data base
hosts under same administrative contro!
restricted list of ttys where root can log in
enables/disables ports
terminal types connected to ports
commands that are run periodically
mail forwarding and distribution groups
raw process account data
system error log
log of system reboots
login session accounting

September 22, 1983

System Operation

Installing/Operating 4.2BSD - 43 - Appendix A - bootstrap details

APPENDIX A - BOOTSTRAP DETAILS

This appendix contains pertinent files and numbers regarding the bootstrapping procedure
for 4.2BSD. You should never have to look at this appendix. However, if there are problems
in installing the distribution on your machine, the material contained here may prove useful.

Contents of the distribution tapes
The distribution normally consists of two 1600bpi 2400' magnetic tapes. The first tape

contains the following files on it. All tape files are blocked in 10 kilobytes records, except for
the first file on the first tape which has 512 byte records.

Tape file Records· Contents
one

two
three
four
five
six

194

205
380
440
2111
576

8 bootstrap monitor programs and a
tp (1) file containing boot, format, and copy
"mini root" file system
dump (8) of distribution root file system
tar (1) image of /sys, including GENERIC system
tarO) image of binaries and libraries in /usr
tar (1) image of /usr/lib/vfont

The second tape contains the following files.

Tape file # Records Contents
one
two
three

2100
973
420

tar (1) image of lusrlsrc
tar (1) image of user contributed software
tar (1) image of lusr/ingres

The distribution tape is made with the shell scripts located in the directory Isys/dist. To
construct a distribution tape one must first build a mini root file system with the buildmini shell
script.

#! Ibin/sh
@ (#)buildmini 4.4 7/9/83

miniroot - hpOg
minitype -rm80

date
umount Idev/${miniroot}
newfs -s 4096 ${miniroot} S{minitype}
fsck Idev/rS{miniroot}
mount Idev/${miniroot} Imnt
cd Imnt; sh Isys/dist/get
cd Isys/dist; sync
umount Idev/${miniroot}
fsck Idev/S{miniroot}
date

The buildmini script uses the get script to construct the actual file system.

• The number of records in each tape file may not be precisely that shown in this table; these values reflect
the contents of the distribution tape at the time this document was written.

September 22, 1983

Installing/Operating 4.2BSD - 44 -

#! /bin/sh
@(#)get 4.13 7/19/83

Shell script to build a mini-root file system
in preparation for building a distribution tape.
The file system created here is image copied onto
tape, then image copied onto disk as the "first"
step in a cold boot of 4.2 systems.

0#
DISTROOT-/nbsd

if ['pwd' - 'I']
then

fi

echo You just '(almost)' destroyed the root
exit

cp $DISTROOT/a/sys/GENERIC/vmunix .
rm -rf bin; mkdir bin
rm -rf etc; mkdir etc
rm -rf a; mkdir a
rm -rf tmp; mkdir tmp
rm -rf usr; mkdir usr usr/mdec
rm -rf sys; inkdir sys sys/floppy sys/cassette
cp $DISTROOT/etc/disktab etc
cp $DISTROOT /etc/newfs etc; strip etc/newfs
cp $DISTROOT/etc/mkfs etc; strip etc/mkfs
cp $DISTROOT/etc/restore etc; strip etc/restore
cp $DISTROOT/etc/init etc; strip etc/init
cp $DISTROOT/etc/mount etc; strip etc/mount
cp $DISTROOT /etc/mknod etc; strip etc/mknod
cp $DISTROOT /etc/fsck etc; strip etc/fsck
tp $DISTROOT/etc/umount etc; strip etc/umount
cp $DISTROOT/etc/arif etc; strip etc/arif
cp $DISTROOT/etc/flcopy etc; strip etc/flcopy
cp $DISTROOT /bin/mt bin; strip bin/mt
cp $DISTROOT /bin/ls bin; strip bin/Is
cp $DISTROOT/bin/sh bin; strip bin/sh
cp $DISTROOT /bin/mv bin; strip bin/my
cp $DISTROOT /bin/sync bin; strip bin/sync
cp $DISTROOT /bin/cat bin; strip bin/cat
cp $DISTROOT /bin/mkdir bin; strip bin/mkdir

Appendix A - bootstrap details

cp $DISTROOT/bin/stty bin; strip bin/stty; In bin/stty bin/STIY
cp $DISTROOT/bin/echo bin; strip bin/echo
cp $DISTROOT /bin/rm bin; strip bin/rm
cp $DISTROOT/bin/cp bin; strip bin/cp
cp $DISTROOT/bin/expr bin; strip bin/expr
cp $DISTROOT/bin/awk bin; strip bin/awk
cp $DISTROOT /bin/make bin; strip bin/make
cp $DISTROOT/usr/mdec/* usr/mdec
cp $DISTROOT/a/sys/floppy/[Ma-zO-9]* sys/floppy
cp $DISTROOT/a/sys/cassette/[Ma-zO-9]* sys/cassette
cp $DISTROOT /a/sys/stand/boot boot
cp $DISTROOT /.profile .profile
cat >etc/passwd < <EOF

September 22, 1983

Installing/Operating 4.2BSD

root::0:10::/:/bin/sh
EOP
cat >etc/group < <EOF
wheel:*:O:
stafi':*:10:
EOP
cat > etc/fstab < < EOP
/ dev /hpOa:/ a:xx: 1: 1
/dev/upOa:/a:xx:1:1
/ dev /hkOa:/ a:xx: 1: 1
/dev/raOa:/a:xx:1:1
/dev/rbOa:/a:xx:l:1
EOP
cat > xtr < < 'EOP'

- 45 -

: S{disk?'Usage: disk-xxO type-tt tape-yy xtr'}
: S{type?'Usage: disk-xxO type-tt tape-yy xtr'}
: S{tape?'Usage: disk-xxO type-tt tape-yy xtr'}
echo 'Build root file system'
newfs S{disk}a S{type}
sync
echo 'Check the file system'
fsck /dev/rS{disk}a
mount /dev/S{disk}a /a
cd /a
echo 'Rewind tape'
mt -t /dev/S{tape}O rew
echo 'Restore the dump image of the root'
restore rsf 3 / dev /S {tape}O
cd /
sync
umount /dev/S{disk}a
sync
fsck /dev/rS{disk}a
echo 'Root filesystem extracted'
echo
echo 'If this is a 780, update floppy'
echo 'If this is a 730, update the cassette'
EOP
chmod +x xtr
rm -rf dev; mkdir dev
cp SDISTROOT/sys/dist/MAKEDEV dev
chmod +x dev/MAKEDEV
cp /dev/null dev/MAKEDEV.local
cd dev ...
cd ..
sync

Appendix A - bootstrap details

The mini root file system must have enough space to hold the files found on a floppy or
cassette.

Once a mini root file system is constructed, the maketape script is used to make a distribu­
tion tape.

September 22, 1983

Installing/Operating 4.2BSD

#! Ibin/sh
@(#)maketape 4.12 8/4/83

miniroot - hpOg

- 46 -

trap "rm -f Itmp/tape.SS; exit" 0 1 2 3 13 15
mt rew
date
umount Idev/hp2g Idev/hp2h
umount/dev/hp2a
mount -r Idev/hp2a Inbsd
mount -r Idev/hp2g Inbsd/usr
mount -r Idev/hp2h Inbsd/a
cd Inbsd/tp
tp cmf Itmp/tape.SS boot copy format
cd Inbsd/sys/mdec
echo "Build 1st level boot block file"

Appendix A - bootstrap details

cat tsboot htboot tmboot mtboot utboot noboot noboot Itmp/tape.SSI'
dd of-/dev/rmtl2 bs-Sl2 cony-sync

cd Inbsd
sync
echo" Add dump of mini-root file system"
dd if-/dev/rS{miniroot) of-/dev/rmtl2 bs-20b count-20S conY-sync
echo "Add full dump of real file system"
letc/dump Ouf Idev/rmtl2 Inbsd
echo "Add tar image of system sources"
cd Inbsd/a/sys; tar cf Idev/rmtl2 .
echo "Add tar image of lusr"
cd Inbsd/usr; tar cf Idev/rmt12 adm bin dict doc games "

guest hosts include lib local man mdec msgs new'
old preserve pub spool tmp ucb

echo" Add varian fonts"
cd lusr/lib/vfont; tar cf Idev/rmt12 .
echo "Done, rewinding first tape"
mtrew
echo "Mount second tape and hit return when ready"; read x
echo "Add user source code"
cd Inbsd/usrlsrc; tar cf Idev/rmt12 .
echo" Add user contributed software"
cd lusrlsrc/new; tar cf Idev/rmt12 .
echo "Add ingres source"
cd Inbsd/usr/ingres; tar cf Idev/rmt12 .
echo "Done, rewinding second tape"
mtrew

Summarizing then, to construct a distribution tape you can use the above scripts and the
following commands.

September 22, 1983

Installing/Operating 4.2BSD

buildmini
make tape

Done, rewinding first tape

- 47 - Appendix A - bootstrap details

Mount second tape and hit return when ready
(remove the first tape and place a fresh one on the drive)

Done, rewinding second tape

Control status register addresses

The distribution uses many standalone device drivers which presume the location of a
UNIBUS device's control status register (CSR). The following table summarizes these values.

Device name Controller CSR address (octal)
ra DEC UDA50 0172150
rb DEC 730 IDC 0175606
rk DEC RK11 0177440
rl DEC RL11 0174400
tm EMULEX TC-11 0172520
ts DEC TS11 0172520
up EMULEX SC-21V 0176700
ut S19700 0172440

All MASS BUS controllers are located at standard offsets from the base address of the
MASS BUS adapter register bank.

Generic system control status register addresses

The generic version of the operating system supplied with the distribution contains the
UNIBUS devices indicated below. These devices will be recogniZed if the appropriate control
status registers respond at any of the indicated UNIBUS addresses.

Device name Controller CSR addresses (octal)
hk DEC RK11 0177440
tm EMULEX TC-11 0172520
ut SI9700 0172440
up EMULEX SC-21V 0176700, 0174400, 0176300
ra DEC UDA-50 0172150, 0172550, 0177550
rb DEC 730 IDC 0175606
rl DEC RL11 0174400
dn DEC DN11 0160020
dm DM11 equivalent 0170500
db DH11 equivalent 0160040
dz DEC DZ11 0160100, 0160110, ... 0160170
ts DEC TS11 0172520
dmf DEC DMF32 0160340
lp DEC LPll 0177514

If devices other than the above are located at any of the addresses indicated, the system may
not bootstrap properly. .

September 22, 1983

Installing/Operating 4.2BSD - 48 - Appendix B - loading the tape monitor

APPENDIX B - LOADING THE TAPE MONITOR

This section indicates how the bootstrap monitor located on the first tape of the distribu­
tion tape set may be loaded. This should not be necessary, but has been included as a fallback
measure in case it is not possible to read the distributed console medium. WARNING: the
bootstraps supplied below may not work, in certain instances on an 11/730 because they use a
buffered data path for transferring data from tape to memory; consult our group if you are
unable" to load the monitor on an 11/730.

To load the tape bootstrap monitor, first mount the magnetic tape on drive 0 at load
point, making sure that the write ring is not inserted. Temporarily set the reboot switch on an
11/780 or 11/730 to off; on an 11/750 set the power-on action to halt. (In normal operation an
11/780 or 11/730 will have the reboot switch on, and an 11/750 will have the power-on action
set to boot/restart.)

If you have an 11/780 give the commands:

»>HALT
»>UNJAM

Then, on any machine, give the init command:

»>1

and then key in at location 200 and execute either the TS, HT, TM, or MT bootstrap that fol­
lows, as appropriate. The machine's printouts are shown in boldface, explanatory comments
are within (). (You can use 'delete' to delete a character and 'control U' to kill the whole
line.)

TS bootstrap

> > > D/P 200 3AEFDO
> > > D + D05AOOOO
»>D + 3BEF
> > > D + 80OCAOO
»> D + 32EFCI
»>D + CAOI0000
> > > D + EFCI0804
»>D + 24
»> D + 15508F
> > > D + ABB45BOO
»> D + 2AB9502
»>D + 8FBOFB18
> > > D + 956B024C
> > > D + FB1802AB
»>D + 25C8FBO
»>D + 6B

(The next two deposits set up the addresses of the UNIBUS)
(adapter and its memory; the 20006000 here is the address of)
(the 11/780 ubaO and the 2013EOOO the address of the 11/780 umemO)

> > > D + 20006000 (780 ubaO)
(780 ubal: 20008000, 750 uba: F30000, 730 uba: F26000)

> > > D + 2013EOOO (780 umemO)
(780 umeml: 2017EOOO, 750 umem: FFEOOO, 730 umem: FFEOOO)

> > > D + 80000000
> > > 0 + 254C004

September 22, 1983

Installing/Operating 4.2BSD

»>D + 80000
»>D + 264
»>D + E
»>D + COOl
»> D + 2000000
»>S 200

HT bootstrap

> > > D/P 200 3EEFDO
»>D + C55AOOOO
»>D + 3BEF
»>D + 808FOO
»>D + C15BOOOO
> > > D + C05B5A5B
»>D + 4008F
»>D + D05BOO
»>D + 9D004AA
> > > D + C08F326B
> > > D + D424AB14
> > > D + 8FDOOCAA
> > > D + 80000000
> > > D + 320800CA
> > > D + AAFE008F
> > > D + 6B39D010
»>D + 0

- 49- Appendix B - loading the tape monitor

(The next two deposits set up the addresses of the MASS BUS)
(adapter and the drive number for the tape formatter)
(the 20012000 here is the address of the 11/780 mba1 and the 0)
(reflects that the formatter is drive 0 on mbal)

> > > D + 20012000 (780 mbal) (780 mbaO: 20010000, 750 mbaO: F28000)
> > > D + 0 (Formatter unit number in range 0-7)
»>S 200
»>S200

TM bootstrap

> > > D/P 200 2AEFDO
»>D + D0510000
> > > D + 2000008F
»>D + 800C180
»>D + 804C1D4
»>D + 1AEFDO
> > > D + C8520000
»>D + F5508F
»>D + 8FAE5200
»>D + 4A20200
> > > D + B006A2B4
»>D + 2A203

(The following two numbers are ubaO and umemO; see TS above)
(for some hints on other values if your TM isn't on UBAO on a 780)

> > > D + 20006000 (780 ubaO)
> > > D + 2013EOOO (780 umemO)
»>S 200

September 22, 1983

InstallinglOperating 4.2BSD

»>S 200
»>S 200

MT bootstrap

> > > DIP 200 46EFDO
> > > D + CS5AOOOO
»>D + 43EF
»>D + 808FOO
> > > D + C15BOOOO
> > > D + COSBSASB
»>D + 4008F
»>D + 19A5BOO
»>D + 49A04AA
> > > 0 + AAD408AB
»>0 + 8FDOOC
> > > D + CA800000
> > > 0 + 8F320800
> > > D + 10AAFEOO
»>0 + 2008F3C
> > > 0 + ABD014AB
»>0 + FE15044
> > > 0 + 399AF8S0
»>D + 6B

- 50- Appendix B - loading the tape monitor

(The next two deposits set up the addresses of the MASSBUS)
(adapter and the drive number for the tape formatter)
(the 20012000 here is the address of the 11/780 mbal and the O)
(reflects that the formatter is drive 0 on mbal)

> > > D + 20012000
»>D + 0
»> S 200
»>S 200
»>S 200
»>S 200

(no toggle-in code exists for the UT device)

If the tape doesn't move the first time you start the bootstrap program with "s 200" you
probably have entered the program incorrectly. (but also check that the tape is online). Start
over and check your typing. For the HT, MT, and TM bootstraps you will not be able to see
the tape motion as you advance through the first few blocks as the tape motion is all within the
vacuum columns.

Next, deposit in RA the address of the tape MBA/UBA and in RB the address of the dev­
ice registers or unit number from one of:

> > > DIG A 20006000
> > > DIG A 20008000
> > > DIG A 20012000
> > > DIG A 20010000
> > > DIG A F30000
> > > DIG A F2AOOO
> > > DIG A F28000
> > > DIG A F26000

(for tapes on 780 ubaO)
(for tapes on 780 ubal)
(for tapes on 780 mbal)
(for tapes on 780 mbaO)
(for tapes on 750 ubaO)
(for tapes on 750 mbal)
(for tapes on 750 mbaO)
(for tapes on 730 ubaO) .

September 22, 1983

Installing/Operating 4.2BSO

and for register B:

»>O/G BO
»> DIG B 1
> > > DIG B 2013F550
> > > DIG B FFF550

- 51 - Appendix B - loading the tape monitor

(for tm03/tm78 formatters at mba? drive 0)
(for tm03/tm78 formatters at mba? drive 1)
(for tml1/tsll/tu80 tapes on 780 ubaO)
(for tmll/tsll/tu80 tapes on 750 or 730 ubaO)

Then start the bootstrap program with

»>SO

The console should type

-
You are now talking to the tape bootstrap monitor. At any point in the following procedure
you can return to this section, reload the tape bootstrap, and restart the procedure. The con­
sole monitor is identical to that loaded from a TU58 console cassette, follow the instructions in
section 2 as they apply to this device. The only exception is that when using programs loaded
from the tape bootstrap monitor, programs will always return to the monitor (the "-"
prompt). This saves your having to type in the above toggle-in code for each program to be
loaded.

September 22, 1983

Installing/Operating 4.2BSD - 52 - Appendix C - installation troubleshooting

APPENDIX C - INSTALLATION TROUBLESHOOTING

This appendix lists and explains certain problems which might be encountered while try­
ing to install the 4.2BSD distribution. The information provided here is limited to the early
steps in the installation process; i.e. up to the point where the root file system is installed. If
you have a problem installing the release consult this section for an indication of the problem
before contacting our group.

Using the distribution console medium.

This section describes problems which may occur when using the programs provided on the dis­
tributed console medium: TU58 cassette or RXOI floppy disk.

program can not be loaded.

Check to make sure the correct floppy or cassette is being used. If using a floppy, be sure it is
not in upside down. If using a cassette on an 11/730, be certain drive 0 is being used. If a
hard i/o error occurred while reading a floppy, try reseting the console LSI-II by powering it on
and off. If you can not boot the cassette's bootstrap monitor, verify the standard DEC console
cassette can be read; if it can not, your cassette is broken - not uncommon.

program halts without warning.

Check to make sure you have specified the correct disk to format; consult sections 1.3 and 1.4
for a discussion of the VAX and UNIX device naming conventions. On 11/750's, specifying a
non-existent MASSBUS device will cause the program to halt as it receives an interrupt (stan­
dalone programs operate by polling devices).

If using a floppy, try reading the floppy under your current system. If this works, copy the
floppy to a new one and begin again. If using a cassette on an 11/730, do likewise.

format prints ''Known devices are ... ':
You have requested format to work on a device for which it has no driver, or which does not
exist; only the indicated devices are supported.

format, boot, or copy prints "unknown drive type".

A MASSBUS disk was specified, but the associated MASSBUS drive type register indicates a
drive of unknown type. This probably means you typed something wrong or your hardware is .
incorrectly configured. -

format, boot, or copy prints "unknown device".

The device specified is probably not one of those supported by the distribution; consult section
1.1. If the device is listed in section 1.1, the drive may be dual-ported, or for some other rea­
son the driver was unable to decipher its characteristics. If this is a MASS BUS drive, try
powering the MASSBUS adapter and/or controller on and off to clear the drive type register.

copy does not copy 205 records

If a tape read error occurred, clean your tape drive heads. If a disk write error occurred, the
disk formatting may have failed. If the disk pack is removable, try another one. If you are
currently running UNIX, you can reboot your old system and use dd to copy the mini-root file
system into a disk partition (assuming the destination is not in use by the running system).

boot prints "not a directory"

The boot program was unable to find the requested program because it encountered something
other than a directory while searching the file system. This usually indicates no file system is
present on the disk partition supplied, or the file system has been corrupted. First check to
make sure you typed the correct line to boot. If this is the case and you are booting off the
mini-root file system, the mini-root was probably not copied correctly off the tape (perhaps it
was not placed in the correct disk partition). Try reinstalling the mini-root file system or, if try­
ing to boot the true root file system, try booting off the mini-root file system and run /sck on

September 22, 1983

Installing/Operating 4.2BSD - 53 - Appendix C - installation troubleshooting

the restored root file system to insure its integrity. Finally, as a last resort, copy the boot pro­
gram from the mini-root file system to the newly installed root file system.
boot prints "bad format"

The program you requested boot to load did not have a 407, 410, or 413 magic number in its
header. This should never happen on a distribution system. If you were trying to boot off the
root file system, reboot the system on the mini-root file system and look at the program on the
root file system. Try copying the copy of vmunix on the mini-root to the root file system also.

boot prints "read short"

The file header for the program indicated a size larger than the actual size of the file located on
disk. This is probably the result of file system corruption (or a disk il 0 error). Try booting
again or creating a new copy of the program to be loaded (see above).

Booting the generic system

This section contains common problems encountered when booting the generic version of the
system.

system panics with "panic: iinit"

This occured because the system was unable to locate the program letc/init. The root file sys­
tem supplied at the "root device?" prompt was probably incorrect. Remember that when run­
ning on the mini-root file system, this question must be answered with something of the form
"hpO·". If the answer had been "hpO", the system would have used the "a" partition on unit
o of the "hp" drive, where presumably no file system exists.

Alternatively, the file system on which you were trying to run is corrupted, or simply missing
letc/init. Try reinstalling the appropriate file system or installing a version of init.

system selects incorrect root device
That is, you try to boot the system single user with "B/2" or "B xxS" but do not get the root
file system in the expected location. This is most likely caused by your having many disks
available more suited to be a root file system than the one you wanted. For example, if you
have a "up" disk and an "hk" disk and install the system on the "hk", then try and boot the
system to single-user mode, the heuristic used by the generic system to select the root file sys­
tem will choose the "up" disk. The following list gives, in descending order, those disks
thought most suitable to be a root file system: "hp", "up", "ra", "rb", "ri", "hk" (the posi­
tion of "rI" is subject to argument). To get the root device you want you must boot using
"B/3" or "B ANY", then supply the root device at the prompt.

system crashes duri~g autoconfiguration

This is almost always caused by an unsupported UNIBUS device being present at a location
where a supported device was expected. You must disable the device in some way, either by
pulling it off the bus, or by moving the location of the console status register (consult Appen­
dix A for a complete list of UNIBUS csr's used in the generic system).
system does not find device(s)

The UNIBUS device is not at a standard location. Consult the list of control status register
addresses in Appendix A, or wait to configure a system to your hardware.
Alternatively, certain devices are difficult to locate during autoconfiguration. A classic example
is the TS 11 tape drive which does not autoconfigure properly if it is rewinding when the system
is rebooted. Tape drives should configure properly if they are off-line, or are not performing a
tape movement. Disks which are dual-ported should autoconfigure properly if the drive is not
being simultaneously accessed through the alternate port.

September 22, 1983

Installing/Operating 4.2BSD • 54· Appendix C - installation troubleshooting

Building console cassettes

This sections describes common problems encountered while constructing a console bootstrap
cassette.

system crashes
You are trying to build a cassette for an 11/750. On an 11/750 the system is booted by using a
bootstrap prom and sector 0 of the root file system. Refer to section 2.1.5 or tu (4) for the
appropriate reprimand.

system hangs
You are using an MRSP prom on an 11/750 and think you can ignore the instructions in this
document. The problem here is that the generic system only supports the MRSP prom on an
11/730. Using it on an 11/750 requires a special system configuration; consult tu (4) for more
information.

September 22, 1983

Building 4.2BSD UNIXt Systems with Config
June, 1983

Samuel J. LejJfer

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

ABSTRACT

This document describes the use of config (8) to configure and create
bootable 4.2BSD system images. It discusses the structure of system
configuration files and how to configure systems with non-standard hardware
configurations. Sections describing the preferred way to add new code to the
system and how the system's auto configuration process 'operates are included.
An appendix contains a summary of the rules used by the system in calculating
the size of system data structures, and also indicates some of the standard sys­
tem size limitations (and how to change them).

tUNIX is a Trademark of Bell Laboratories.

July 27, 1983

Building Systems With Config Introduction

1. INTRODUCTION

Corifig is a tool used in building 4.2BSD system images. It takes a file describing a
system's tunable parameters and hardware support, and generates a collection of files which are
then used to build a copy of UNIX appropriate to that configuration. Corifig simplifies system
maintenance by isolating system dependencies in a single, easy to understand, file.

This document describes the content and format of system configuration files and the
rules ·which must be followed when creating these files. Example configuration files are con­
structed and discussed.

Later sections suggest guidelines to be used in modifying system source and explain some
of the inner workings of the autoconfiguration process. Appendix D summarizes the rules used
in calculating the most important system data structures and indicates some inherent system
data structure size limitations (and how to go about modifying them).

July 27, 1983

Building Systems With Config Configuration File Contents

2. CONFIGURATION FILE CONTENTS

A system configuration must include at least the following pieces of information:

• machine type

• cpu type
• system identification

• timezone
• maximum number of users

• location of the root file system

• available hardware
Config allows multiple system images to be generated from a single configuration descrip­

tion. Each system image is configured for identical hard~are, but may have different locations
for the root file system and, possibly, other system devices.

2.1. Machine type
The machine type indicates if the system is going to operate on a DEC VAX-II computer,

or some other machine on which 4.2BSD operates. The machine type is used to locate certain
data files which are machine specific and, also, to select rules used in constructing the resultant
configuration files.

2.2. Cpu type
The cpu type indicates which, of possibly many, cpu's the system is to operate on. For

example, if the system is being configured for a VAX-ll, it could be running on a VAX-
11/780, VAX-11/750, or VAX-11/730. Specifying more than one cpu type implies the system
should be configured to run on all the cpu's specified. For some types of machines this is not
possible and config will print a diagnostic indicating such. ~

2.3. System identification
The system identification is a moniker attached to the system, and often the machine on

which the system is to run. For example, at Berkeley we have machines named Ernie- (Co­
VAX), Kim (No-VAX), and so on. The system identifier selected is used to create a global C
"#define" which may be used to isolate system dependent pieces of code in the kernel. For
example, Ernie's Varian driver used to be special cased because its interrupt vectors were wired
together. The code in the driver which understood how to handle this non-standard hardware
configuration was conditionally compiled in only if the system was for Ernie.

The system identifier "GENERIC" is given to a system which will run on any cpu of a
particular machine type; it should not otherwise be used for a system identifier.

2.4. Time~one
The timezone in which the system is to run is used to define the information returned by

the gettimeojday (2) system call. This value is specified as the number of hours east or west of
GMT. Negative numbers indicate a value east of GMT. The timezone specification may also
indicate the type of daylight savings time rules to be applied.

2.S. Maximum number of users
The system allocates many system data structures at boot time based on the maximum

number of users the system will support. This number is normally between 8 and 40, depend­
ing on the hardware and expected job mix. The rules used to calculate system data structures
are discussed in Appendix D. '

July 27, 1983

Building Systems With Config - 3 - Configuration File Contents

2.6. Root file system location

When the system boots it must know the location of the root of the file system tree. This
location and the part(s) of the disk(s) to be used for paging and swapping must be specified in
order to create a complete configuration description. Cof(/ig uses many rules to calculate default
locations for these items; these are described in Appendix B.

When a generic system is configured, the root file system is left undefined until the sys­
tem is booted. In this case, the root file system need not be specified, only that the system is a
generic system.

2.7. Hardw*,re devices

When the system boots it goes through an autocof(/iguration phase. During this period,
the system searches for all those hardware devices which the system builder has indicated might
be present. This probing sequence requires certain pieces of information such as register
addresses, bus interconnects, etc. A system's hardware may be configured in a very flexible
manner or be specified without any flexibility whatsoever. Most people do not configure
hardware devices into the system unless they are currently present on the machine, expect
them to be present in the near future, or are simply guarding against a hardware failure some­
where else at the site (it is often wise to configure in extra disks in case an emergency requires
moving one off a machine which has hardware problems).

The specification of hardware devices usually occupies the majority of the configuration
file. As such, a large portion of this document will be spent understanding it. Section 6.3 con­
tains a description of the autoconfiguration process, as it applies to those planning to write, or
modify existing, device drivers.

2.8. Optional items

Other than the mandatory pieces of information described above, it is also possible to
include various optional system facilities. For example, 4.2BSO can be configured to support
binary compatibility for programs built under 4.lBSO. Also, optional support is provided for
disk quotas and tracing the performance of the virtual memory -subsystem. Any optional facili­
ties to be configured into the system are specified in the configuration file. The resultant files
generated by config will automatically include the necessary pieces of the system.

July 27, 1983

Building Systems With Config System Building Process

3. SYSTEM BUILDING PROCESS

In this section we consider the steps necessary to build a bootable system image. We
assume the system source is located in the "/sys" directory and that, initially, the system is
being configured from source code.

Under normal circumstances there are S steps in building a system.

1) Create a configuration file for the system.

2) Make a directory for the system to be constructed in.

3) Run corifig on the configuration file to generate the files required to compile and load the
system image.

4) Construct the source code interdependency rules for the configured system.

S) Compile and load the system with make (1).

Steps 1 and 2 are usually done only once. When a system configuration changes it usually
suffices to just run conjig on the modified configuration file, rebuild the source code dependen­
cies, and remake the system. Sometimes, however, configuration dependencies may not be
noticed in which case it is necessary t~ clean out the relocatable object files saved in the
system's directory; this will be discussed later.

3.1. Creating a configuration file
Configuration files normally reside in the directory "/sys/conf', . A configuration file is

most easily constructed by copying an existing configuration file and modifying it. The 4.28SD
distribution contains a number of configuration files for machines at Berkeley, one may be suit­
able or, in worst case, you may take the generic configuration file and edit that.

The configuration file must have the same name as the directory in which the configured
system is to be built. Further, corifig assumes this directory is located in the parent directory of
the directory in which it is run. For example, the generic system has a configuration file
"/sys/conf/GENERIC" and an accompanying directory named "/sys/GENERIC". In general
it is unwise to move your configuration directories out of "/sys" as most of the system code
and the files created by corifig use pathnames of the form " . .1". If you are running out of
space on the file system where the configuration directories are located there is a mechanism
for sharing relocatable object files between systems; this is described later.

When building your configuration file, be sure to include the items described in section 2.
In particular, the machine type, cpu type, timezone, system identifier, maximum users, and
root device must be specified. The specification of the hardware present may take a bit of
work; particularly if your hardware is configured at non-standard places (e.g. device registers
located at funny places or devices not supported by the system). Section 4 of this document
gives a detailed description of the configuration file syntax, section S explains some sample
configuration files, and section 6 discusses how to add new devices to the system. If the dev­
ices to be configured are not already described in one of the existing configuration files you
should check the manual pages in section 4 of the UNIX Programmers Manual. For each sup­
ported device, the manual page synopsis entry gives a sample configuration line.

Once the configuration file is complete, run it through corifig and look for any errors.
Never try and use a system which conjig has complained about; the results are unpredictable.
For the most part, config's error diagnostics are self explanatory. It may be the case that the
line numbers given with the error messages are off by one.

A successful run of corifig on your configuration file will generate a number of files in the
configuration directory. These files are:

• A file to be used by make (1) in compiling and loading the system.

July 27, 1983

Building Systems With Config - 5 - System Building Process

• One file for each possible system image for your machine which describes where swapping,
the root file system, and other miscellaneous system devices are located.

• A collection of header files, one per possible device the system supports, which define the
hardware configured.

• A file containing the i/o configuration tables used by the system during its autoconfiguration
phase.

• An assembly language file' of interrupt vectors which connect interrupts from your
machine's external buses to the main system path for handling interrupts.

Unless you have reason to doubt config, or are curious how the system's autoconfiguration
scheme works, you should never have to look at any of these files.

3.2. Constructing source code dependencies
When config is done generating the files needed to compile and link your system it will

terminate with a message of the form "Don't forget to run make depend". This is a reminder
that you should change over to the configuration directory for the system just configured and
type "make depend" to build the rules used by make to recognize interdependencies in the
system source code. This will insure that any changes to a piece of the system source code will
result in the proper modules being recompiled the next time make is run.

This step is particularly important if your site makes changes to the system include files.
The rules generated specify which source code files are dependent on which include files.
Without these rules, make will not recognize when it must rebuild modules due to a system
header file being modified. Note that dependency rules created by this step only reflect directly
included files. That is, if file "a" includes another file "b", which includes yet another, say
"c", and then "c" is modified, make will not recognize that "a" should be recompiled. It is
best to keep include file dependencies only one level deep.

3.3. Building the system
The makefile constructed by config should allow a new system to be rebuilt by simply typ­

ing "make image-name". For example, if you have named your bootable system image
"vmunix", then "make vmunix" will generate a bootable image named "vmunix". Alternate
system image names are used when the root file system location and/or swapping configuration
is done in more than one way. The makefile which config creates has entry points for each sys­
tem image defined in the configuration file. Thus, if you have configured "vmunix" to- be a
system with the root file system on an "hp" device and "hkvmunix" to be a system with the
root file system on an "hk" device, then "make vmunix hkvmunix" will generate binary
images for each.

Note that the name of a bootable image is different from the system identifier. All boot­
able images are configured for the same system; only the information about the root file system
and paging devices differ. (This is described in more detail in section 4.)

The last step in the system building process is to rearrange certain commonly used sym­
bols in the symbol table of the system image; the makefile generated by config does this
automatically for you. This is advantageous for programs such as ps (1) and vmstat (1), which
run much faster when the symbols they need are located at the front of the symbol table.
Remember also that many programs expect the currently executing system to be named
"/vmunix". If you install a new system and name it something other than "/vmunix", many
programs are likely to give strange results.

3.4. Sharing object modules
If you have many systems which are all built on a single machine there are at least two

approaches to saving time in building system images. The best way is to have a single system
image which is run on all machines. This is attractive since it minimizes disk space used and
time required to rebuild systems after making changes. However, it is often the case that one

July 27, 1983

Building Systems With Config - 6 - System Building Process

or more systems will require a separately configured system image. This may be due to limited
memory (building a system with many unused device drivers can be expensive), or to
configuration requirements (one machine may be a development machine where disk quotas are
not needed, while another is a production machine where they are), etc. In these cases it is
possible for common systems to share relocatable object modules which are not configuration
dependent; most of the module in the directory "/sys/sys" are of this sort.

To share object modules, a generic system should be built. Then, for each system
configure the system as before, but before recompiling and linking the system, type "make
links". This will cause the system to be searched for source modules which are safe to share
between systems and generate symbolic links in the current directory to the appropriate object
modules in the directory " . .IGENERIC". A shell script, "makelinks" is generated with this
request and may be checked for correctness. The file "/sys/conf/defines" contains a list of
symbols which we believe are safe to ignore when checking the source code for modules which
may be shared. Note that this list includes the definitions used to conditionally compile in the
virtual memory tracing facilities, and the trace point support used only rarely (even at Berke­
ley). It may be necessary to modify this file to reflect local needs. Note further, that as
described previously, interdependencies which are not directly visible in the source code are not
caught. This means that if you place per-system dependencies in an include file, they will not
be recognized and the shared code may be selected in an unexpected fashion.

3.5. Building profiled systems

It is simple to configure a system which will automatically collect profiling information as
it operates. The profiling data may be collected with kgmon (8) and processed with gpro!(1) to
obtain information regarding the system's operation. Profiled systems maintain histograms of
the program counter as well as the number of invocations of each routine. The gpro!(1) com­
mand will also generate a dynamic call graph of the executing system and propagate time spent
in each routine along the arcs of the call graph (consult the gprof documentation for elabora­
tion). The program counter sampling can be driven by the system clock, or if you have an
alternate real time clock this can be used. The latter is highly recommended as use of the sys­
tem clock will result in statistical anomalies and time spent in the clock routine will not be
accurately accounted for.

To configure a profiled system, the -p option should be supplied to conjig. A profiled
system is about 5-10% larger in its text space due to the calls to count the subroutine invoca­
tions. When the system executes, the profiling data is stored in a buffer which is 1.2 times the
size of the text space. The overhead for running a profiled system varies; under normal load
we see anywhere from 5-25% of the system time spent in the profiling code.

Note that systems configured for profiling should not be shared as described above unless
all the other shared systems are also to be profiled.

July 27, 1983

Building Systems With Config Configuration File Syntax

4. CONFIGURATION FILE SYNTAX

In this section we consider the specific rules used in writing a configuration file. A com­
plete grammar for the input language can be found in Appendix A and may be of use if you
should have problems with syntax errors.

A configuration file is broken up into three logical pieces:
• configuration parameters global to all system images specified in the configuration file,
• parameters specific to each system image to be generated, and
• device specifications.

4.1. Global configuration parameteD
The global configuration parameters are the type of machine, cpu types, options,

timezone, system identifier, and maximum users. Each is specified with a separate line in the
configuration file.
machine type

The system is to run on the machine type specified. No more than one machine type can
appear in the configuration file. Legal values are vax and SUD.

cpu "type"
This system is to run on the cpu type specified. More than one cpu type specification can
appear in a configuration file. Legal types for a vax machine are VAX780,VAX750, and
VAX730.

options optionlist
Compile the listed optional code into the system. Options in this list are separated by
commas. Possible options are listed at the top of the generic makefile. A line of the form
"options FUNNY,HAHA" generates global "#define"s -DFUNNY -DHAHA in the
resultant makefile. An option may be given a value by following its name with "-",
then the value enclosed in (double) quotes. None of the standard options use such a
value. The following options are currently in use: COMPAT (include code for compati­
blity with 4.1BSD binaries), INET (Internet communication protocols), PUP (support for
a PUP raw interface), and QUOTA (enable disk quotas). There are additional options
which are associated with certain peripheral devices; those are listed in the Synopsis -sec­
tion of the manual page for the device.

timezone number [dst [number]]
Specifies the timezone you are in. This is measured in the number of hours your
timezone is west of GMT. EST is 5 hours west of GMT, PST is 8. Negative numbers
indicate hours east of GMT. If you specify dst, the system will operate under daylight sav­
ings time. An optional integer or floating point number may be included to specify a par­
ticular daylight saving time correction algorithm; the default value is 1, indicating the
United States. Other values are: 2 (Australian style), 3 (Western European), 4 (Middle
European), and 5 (Eastern European). See gettimeofday(2) and ctime(3) for more infor­
mation.

Ident name
This system is to be known as name. This is usually a cute name like ERNIE (short for
Ernie Co-Vax) or V AXWELL (for Vaxwell Smart).

mansers number
The maximum expected number of simultaneously active user on this system is number.
This number is used to size several system data structures.

July 27, 1983

Building Systems With Config - 8 - Configuration File Syntax

4.2. System image parameters
Multiple bootable images may be specified in a single configuration file. The systems will

have the same global configuration parameters and devices, but the location of the root file sys­
tem and other system specific devices may be different. A system image is specified with a
"config" line:

conil sysname corifig-clauses

The sysname field is the name given to the loaded system image; almost everyone names their
standald system image "vmunix". The configuration clauses are one or more specifications
indicating where the root file system is located, how many paging devices there are and where
they go. The device used by the system to process argument lists during execve(2) calls may
also be specified, though in practice this is almost always selected by corifig using one of its
rules for selecting default locations for system devices.

A configuration clause is one of the following
root [on] root-device
swap [on] swap-device [and swap-device]
dumps [on] dump-device
8I'Is [on] arg-device

(the "on" is optional.) Multiple configuration clauses are separated by white space; corifig
allows specifications to be continued across multiple lines by beginning the continuation line
with a tab character. The "root" clause specifies where the root file system is located, the
"swap" clause indicates swapping and paging area(s), the "dumps" clause can be used to force
system dumps to be taken on a particular device, and the "args" clause can be used to specify
that argument list processing for execve" should be done on a particular disk.

The device names supplied in the clauses may be fully specified as a device, unit, and file
system partition; or underspecified in which case corifig will use builtin rules to select default
unit numbers and file system partitions. The defaulting rules are a bit complicated as they are
dependent on the overall system configuration. For example,~ the swap area need not be
specified at all if the root device is specified; in this case the swap area is placed in the "b" par­
tition of the same disk where the root file system is located. Appendix B contains a complete
list of the defaulting rules used in selecting system configuration devices.

The device names are translated to the appropriate major and minor device numbers on a
per-machine basis. A file, "/sys/conf/devices.machine" (where "machine" is the machine
type specified in the configuration file), is used to map a device name to its major block device
number. The minor device number is calculated using the standard disk partitioning rules: on
unit O,partition "a" is minor device 0, partition "b" is minor device 1, and so on; for units
other than 0, add 8 times the unit number to get the minor device.

If the default mapping of device name to major/minor device number is incorrect for your
configuration, it can be replaced by an explicit specification of the major/minor device. This is
done by substituting

major x minor y

where the device name would normally be found. For example,

confil vmunix root on major 99 minor 1
Normally, the areas configured for swap space are sized by the system at boot time. If a

non-standard partition size is to be used for one or more swap areas, this can also be specified.
To do this, the device name specified for a swap area should have a "size" specification
appended. For example,

confil vmunix root on hpO swap on hpOb size 1200
would force swapping to be done in partition "b" of "hpO" and the swap partition size would
be set to 1200 sectors. A swap area sized larger than the associated disk partition is trimmed to
the partition size.

July 27, 1983

Building Systems With Config - 9 - Configuration File Syntax

To create a generic configuration, only the clause "swap generic" should be specified; any
extra clauses will cause an error.

4.3. Device specifications

Each device attached to a machine must be specified to corifig so that the system gen­
erated will know to probe for it during the autoconfiguration process carried out at boot time.
Hardware specified in the configuration need not actually be present on the machine where the
generated system is to be run. Only the hardware actually found at boot time will be used by
the system.

The specification of hardware devices in the configuration file parallels the interconnection
hierarchy of the machine to be configured. On the V AX, this means a configuration file must
indicate what MASSBUS and UNIBUS adapters are present, and to which nexi they might be
connected·. Similarly, devices and controllers must be indicated as possibly being connected to
one or more adapters. A device description may provide a complete definition of the possible
configuration parameters or it may leave certain parameters undefined and make the system
probe for all the possible values. The latter allows a single device configuration list to match
many possible physical configurations. For example, a disk may be indicated as present at
UNIBUS adapter 0, or at any UNIBUS adapter which the system locates at boot time. The
latter scheme, termed wildcarding, allows more flexibility in the physical configuration of a sys­
tem; if a disk must be moved around for some reason, the system will still locate it at the alter­
nate location.

A device specification takes one of the following forms:

master device-name device-irifo
controller device-name device-irifo [interrupt-spec]
device device-name device-irifo interrupt-spec
disk device-name device-irifo
tape device-name device-irifo

A "master" is a MASS BUS tape controller; a "controller" is a disk controller, a UNIBUS tape
controller, a MASS BUS adapter, or a UNIBUS adapter. A "device" is an autonomous device
which connects directly to a UNIBUS adapter (as opposed to something like a disk which con­
nects through a disk controller). "Disk" and "tape" identify disk drives and tape drives con­
nected to a "controller" or "master".

The device-name is one of the standard device names, as indicated in section 4 of-the
UNIX Programmers Manual, concatenated with the logical unit number to be assigned the dev­
ice (the logical unit number may be different than the physical unit number indicated on the
front of something like a disk; the logical unit number is used to refer to the UNIX device, not
the physical unit number). For example, "hpO" is logical unit 0 of a MASSBUS storage dev­
ice, even though it might be physical unit 3 on MASSBUS adapter 1.

The device-irifo clause specifies how the hardware is connected in the. interconnection
hierarchy. On the V AX, UNIBUS and MASSBUS adapters are connected to the internal system
bus through a nexus. Thus, one of the following specifications would be used:

controller mbaO at nexus x
controller ubaO at nexus x

To tie a controller to a specific nexus, "x" would be supplied as the number of that nexus; oth­
erwise "x" may be specified as "1", in which case the system will probe all nexi present look­
ing for the specified controller.

The remaining interconnections_on the VAX are:

• While VAX-11I7S0's and V AX-111730 do not actually have nexi, the system treats them as having simulat­
ed nexi to simplify device configuration.

July 27, 1983

Building Systems With Config - 10 - Configuration File Syntax

• a controller may be connected to another controller (e.g. a disk controller attached to a
UNIBUS adapter),

• a master is always attached to a controller (a MASSBUS adaptor),

• a tape is always attached to a master (for MASSBUS tape drives),

• a disk is always attached to a controller, and
• devices are always attached to controllers (e.g. UNIBUS controllers attached to UNIBUS

adapters).

The following lines give an example of each of these interconnections:
controller hkO at ubaO .. .
master htO at mbaO .. .
tape tuO at htO .. .
disk rkl at hkO .. .
device dzO at ubaO .. .

Any piece of hardware which may be connected to a specific controller may also be wildcarded
across multiple controllers.

The final piece of information needed by the system to configure devices is some indica­
tion of where or how a device will interrupt. For tapes and disks, simply specifying the slave or
drive number is sufficient to locate the control status register for the device. For controllers,
the control status register must be given explicitly, as well how many interrupt vectors are used
and the names of the routines to which they should be bound. Thus the example lines given
above might be completed as:

controller hkO
master htO
tape tuO
disk rkl
device dzO

at ubaO csr 0177440
at mbaO drive 0
at htO slave 0
at hkO drive 1
at ubaO csr 0160100

vector rkintr

vector dzrint dzxint
Certain device drivers require extra information passed to them at boot time to tailor their

operation to the actual hardware present. The line printer driver, for example, needs to know
how many columns are present on each non-standard line printer (i.e. a line printer with other
than 80 columns). The drivers for the terminal multiplexors need to know which lines are
attached to modem lines so that no one will be allowed to use them unless a connection is
present. For this reason, one last parameter may be specified to a deVice, a ./lags field. It has
the syntax

aags number
and is usually placed after the csr specification. The number is passed directly to the associated
driver. The manual pages in section 4 should be consulted to determine how each driver uses
this value (if at alI). Communications interface drivers commonly use the flags to indicate
whether modem control signals are in use.

The exact syntax for each specific device is given in the Synopsis section of its manual
page in section 4 of the manual.

4.4. Pseudo-devices

A number of drivers and software subsystems are treated like device drivers without any
associated hardware. To include any of these pieces, a "pseudo-device" specification must be
used. A specification for a pseudo device takes the form

pseudo-device device-name [howmany]
Examples of pseudo devices are bk, the Berknet line discipline, pty, the pseudo terminal

driver (where the optional howmany value indicates the number of pseudo terminals to
configure, 32 default), and Inet, the DARPA Internet protocols (one must also specify !NET in
the "options"). Other pseudo devices for the network include loop, the software loopback

July 27, 1983

Building Systems With Config - 11 - Configuration File Syntax

interface, imp (required when a CSS or ACC imp is configured), and ether (used by the
Address Resolution Protocol on 10 Mb/sec ethemets). More information on configuring each
of these can also be found in section 4 of the manual.

July 27, 1983

Building Systems With Config Sample Configuration Files

s. SAMPLE CONFIGURATION FILES

In this section we will consider how to configure a sample VAX-ll/780 system on which
the hardware can be reconfigured to guard against various hardware mishaps. We then study
the rules needed to configure a V AX-ll/7S0 to run in a networking environment.

5.1. V AX-ll/780 System
Our V AX-ll/780 is configured with hardware recommended in the document "Hints on

Configuring a V AX for 4.2BSD" (this is one of the high-end configurations). Table I lists the
pertinent hardware to be configured.

Item Vendor Connection Name Reference
cpu DEC VAX780
MASSBUS controller Emulex nexus ? mbaO hp(4)
disk Fujitsu mbaO hpO
disk Fujitsu mbaO hpl
MASSBUS controller Emulex nexus ? mbal
disk Fujitsu mbal hp2
disk Fujitsu mbal hp3
UNIBUS adapter DEC nexus ?
tape controller Emulex ubaO tmO tm(4)
tape drive Kennedy tmO teO
tape drive Kennedy tmO tel
terminal multiplexor Emulex ubaO dhO dh(4)
terminal multiplexor Emulex ubaO dhl
terminal multiplexor Emulex ubaO dh2

Table 1. V AX-11/780 Hardware support.
We will call this machine ANSEL and construct a configuration file one step at a time.

The first step is to fill in the global configuration parameters. The machine is a VAX, so
the machine type is "vax". We will assume this system will run only on this one processor, so
the cpu type is "V AX780". The options are empty since this is going to be a "vanilla" VAX.
The system identifier, as mentioned before, is "ANSEL" and the maximum number of users
we plan to support is about 40. Thus the beginning of the configuration file looks like this:

ANSEL V AX (a picture perfect machine)

machine
cpu
timezone
ident
maxusers

vax
VAX780
8 dst
ANSEL
40

To this we must then add the specifications· for three system images. The first will be our
standard system with the root on "hpO" and swapping on the same drive as the root. The
second will have the root file system in the same location, but swap space interleaved among
drives on each controller. Finally, the third will be a generic system, to allow us to boot off any
of the four disk drives.

July 27, 1983

Building Systems With Config

config
config
config

vmunix
hpvmunix
genvmunix

- 13 - Sample Configuration Files

root on hpO
root on hpO swap on hpO and hp2
swap generic

Finally, the hardware must be specified. Let us first just try transcribing the information
from Table 1.

controller
disk
disk
controller
disk
disk
controller
controller
tape
tape
device
device
device
device

mbaO
hpO
hp1
mba1
hp2
hp3
ubaO
tmO
teO
tel
dbO
dmO
dbl
db2

at nexus?
at mbaO disk 0
at mbaO disk 1
at nexus?
at mba1 disk 2
at mbal disk 3
at nexus?
at ubaO csr 0172520
at tmO drive 0
at tmO drive 1
at ubaO csr 0160020
at ubaO csr 0170500
at ubaO csr 0160040
at ubaO csr 0160060

vector tmintr

vector dhrint dhxint
vector dmintr
vector dhrint dhxint
vector dhrint dhxint

<Oh, I forgot to mention one panel of the terminal multiplexor has modem control, thus the
"dmO" device.)

This will suffice, but leaves us with little flexibility. Suppose our first disk controller were
to break. We would like to recable the drives normally on the second controller so that all our
disks could still be used without reconfiguring the system. To do this we wildcard the
MASSBUS adapter connections and also the slave numbers. Further, we wildcard the UNIBUS
adapter connections in case we decide some time in the future to purchase another adapter to
offioad the -single UNIBUS we currently have. The revised device specifications would then be:

controller mbaO at nexus?
disk hpO at mba? disk ?
disk hp1 at mba? disk ?
controller mba1 at nexus?
disk hp2 at mba? disk ?
disk hp3 at mba? disk ?
controller ubaO at nexus?
controller tmO at uba? csr 0172520 vector tmintr
tape teO at tmO drive· 0
tape tel at tmO drive 1
device dbO at uba? csr 0160020 vector dhrint dhxint
device dmO at uba? csr 0170500 vector dmintr
device - db1 at uba? csr 0160040 vector dhrint dhxint
device db2 at uba? csr 0160060 vector dhrint dhxint

The completed configuration file for ANSEL is shown in Appendix C.

5.2. V AX·11/7S0 with network support

Our V AX-11/750 system will be located on two 10Mb/s Ethernet local area networks and
also the DARPA Internet. The system will have a MASSBUS drive for the root file system and
two UNIBUS drives. Paging is interleaved among all three drives. We have sold our standard
DEC terminal multiplexors since this machine will be accessed solely through the network.
This machine is not intended to have a large user community, it does not have a great deal of
memory. First the global parame~ers:

July 27, 1983

Building Systems With Config

UCBV AX (Gateway to the world)

machine
cpu
cpu
ident
timezone
maxusers
options

vax
"VAX780"
"VAX7S0"
UCBVAX
8 dst
32
INET

- 14 - Sample Configuration Files

The multiple cpu types allow us to replace UCBV AX with a more powerful cpu without
reconfiguring the system. The value of 32 given for the maximum number of users is done to
force the system data structures to be over-allocated. That is desirable on this machine
because, while it is not expected to support many users, it is expected to perform a great deal
of work. Upping this value results in a larger disk buffer cache than would normally be allo­
cated if the true number of users were given. The "INET" indicates we plan to use the
DARP A standard Internet protocols on this machine.

The system images and disks are configured in next.

config vmunix root on hp swap on hp and rkO and rkl
config upvmunix root on up
config hkvmunix root on hk swap on rkO and rkl

controller mbaO at nexus ?
controller ubaO at nexus?
disk hpO at mba? drive 0
disk hpl at mba? drive 1
controller scO at uba? csr 0176700 vector upintr
disk upO at scO drive 0
disk up! at scO drive 1
controller hkO at uba? csr 0177440 vector rkintr
disk rkO at hkO drive 0
disk rk1 at hkO drive 1

UCBV AX requires heavy interleaving of its paging area to keep up with all the mail traffic
it handles. The limiting factor on this system's performance is usually the number of disk
arms, as opposed to memory or cpu cycles. The extra UNIBUS controller, "scO", is in case the
MASSBUS controller breaks and a spare controller must be installed (most of our old UNIBUS
controllers have been replaced with the newer MASSBUS controllers, so we have a number of
these around as spares).

Finally, we add in the network support. The Internet protocols require an "inet" pseudo­
device in addition to the global "INET" option specified above. Pseudo terminals are needed
to allow users to log in across the network (remember the only hardwired terminal is the con­
sole) . The connection to the Internet is through an IMP, this requires yet another pseudo­
device (in addition to the actual hardware device used by the IMP software). And, finally,
there are the two Ethernet devices. These use a special protocol, the Address Resolution Pro­
tocol (ARP), to map between Internet and Ethernet addresses. Thus, yet another pseudo-device
is needed. The additional device specifications are show below.

July 27, 1983

Building Systems With Config - 14 -

pseudo-device inet
pseudo-device pty
software loopback device for testing
pseudo-device loop
pseudo-device imp
device accO
pseudo-device ether
device ecO
device no

at uba? csr 0167600

at uba? csr 0164330
at uba? csr 0164000

Sample Configuration Files

vector accrint accxint

vector ecrint eccollide ecxint
vector ilrint ileint

The completed configuration file for UCBV AX is shown in Appendix C.

5.3. Miscellaneous comments

It should be noted in these examples that neither system was configured to use disk quo­
tas or the 4.1BSO compatibility mode. To use these optional facilities, and others, we would
probably clean out our current configuration, reconfigure the system, then recompile and relink
the system image (s). This could, of course, be avoided by figuring out which relocatable object
files are affected by the reconfiguration, then reconfiguring and recompiling only those files
affected by the configuration change. This technique should be used carefully.

July 27, 1983'

Building Systems With Config Adding New Devices

6. ADDING NEW SYSTEM SOFTWARE

This section is not for the novice, it describes some of the inner workings of the
configuration process as well as the pertinent parts of the system autoconfiguration process. It
is intended to give those people who intend to install new device drivers and/or other system
facilities sufficient information to do so in the manner which will allow others to easily share
the changes.

This section is broken into four parts:

• general guidelines to ·be followed in modifying system code,

• how to add a device driver to 4.2BSD,

• how UNIBUS device drivers are autoconfigured under 4.2BSD on the VAX, and

• how to add non-standard system facilities to 4.2BSD.

6.1. Modifying system code

If you wish to make site-specific modifications to the system it is best to bracket them
with

#ifdef SITENAME

#endif

to allow your source to be easily distributed to others, and also to simplify diff(1) listings. If
you choose not to use a source code control system (e.g. SCCS, RCS), and perhaps even if you
do, it is recommended that you save the old code with something of the form:

#ifndef SITENAME

#endif
-

We try to isolate our site-dependent code in individual files which may be configured with
pseudo-device specifications.

Indicate machine specific code with "#ifdef vax". 4.2BSD has undergone extensive work
to make it extremely portable to machines with similar architectures - you may someday find
yourself trying to use a single copy of the source code on multiple machines.

Use lint periodically if you make changes to the system. The 4.2BSD release has only one
line of lint in it. It is very simple to lint the kernel. Use the LINT configuration file, designed
to pull in as much of the kernel source code as possible, in the following manner.

S cd / sys/ conf
S mkdir . .fLINT
S config LINT
S cd . .fLINT
S make depend
S make assym.s
S make -k lint> linterrs 2>&1 &
(or for users of csh (1»
% make -k >& linterrs

This takes about 45 minutes on a lightly loaded VAX-ll/750, but is well worth it.

6.2. Adding device drivers to 4.2BSD

The i/o system and corifig have been designed to easily allow new device support to be
added. As described in "Installing and Operating 4.2BSD on the VAX", the system source
directories are organized as follows:

July 27, 1983

Building Systems With Config - 16 -

machine independent include files
machine independent system source files
site configuration files and basic templates
network independent, but network related code
DARP A Internet code
IMP support code
PUP-1 support code
V AX specific mainline code
V AX network interface code

Adding New Devices

/sys/h
/sys/sys
/sys/conf
/sys/net
/sys/netinet
/sys/netimp
/sys/netpup
/sys/vax
/sys/vaxif
/sys/vaxmba
/sys/vaxuba

VAX MASSBUS device drivers and related code
V AX UNIBUS device drivers and related code

Existing bJock and character device drivers for the VAX reside in "/sys/vax",
"/sys/vaxmba", and "Isys/vaxuba". Network interface drivers reside in "/sys/vaxif". Any
new device drivers should be placed in the appropriate source code directory and named so as
not to conflict with existing devices. Normally, definitions for things like device registers are
placed in a separate file in the same directory. For example, the "dh" device driver is named
"dh.c" and its associated include file is named "dhreg.h".

Once the source for the device driver has been placed in a directory, the file
"/sys/conf/files.machine", and possibly "/sys/conf/devices.machine" should be modified.
The files files in the conf directory contain a line for each source or binary-only file in the sys­
tem. Those files which are machine independent ar~ located in "/sys/conflfiles" while
machine specific files are in "/sys/c.onf/files.machine". The "devices.machine" file is used to
map device names to major block device numbers. If the device driver being added provides
support for a new disk you will want to modify this file (the format is obvious).

The format of the files file has grown somewhat complex over time. Entries are normally
of the form

vaxuba/foo. c optional f 00 device-driver

where the keyword optional indicates that to compile the "foo" driver into the system it must
be specified in the configuration file. If instead the driver is specified as standard, the file will
be loaded no matter what configuration is requested. This is not normally done with device
drivers. The fact that the file is specified as a device-driver results, on the V AX, in the compila­
tion including a -i option for the C optimizer. This is required when pointer references are
made to memory locations in the V AX i/o address space.

Aside from including the driver in the files file, it must also be added to the device
configuration tables. These are located in "/sys/vax/conf.c", or similar for machines other
than the VAX. If you don't understand what to add to this file, you should study an entry for
an existing driver. Remember that the position in the block device table specifies what the
major block device number is, this is needed in the "devices. machine " file if the device is a
disk.

With. the configuration information in place, your configuration file appropriately
modified, and a system reconfigured and rebooted you should incorporate the shell commands
needed to install the special files in the file system to the file "/dev/MAKEDEV" or
"/dev/MAKEDEV.local". This is discussed in the document "Installing and Operating 4.2BSD
on the V AX".

6.3. Autoconfiguratioo 00 the VAX

4.2BSD (and 4.1BSD) require all device drivers to conform to a set of rules which allow
the system to:

1) support multiple UNIBUS and MASSBUS adapters,

July 27, 1983

Building Systems With Config - 17 - Adding New Devices

2) support system configuration at boot time, and

3) manage resources so as not to crash when devices request resources which are unavail-
able.

In addition, devices such as the RK07 which require everyone else to get off the UNIBUS when
they are running need cooperation from other DMA devices if they are to work. Since it is
unlikely that you will be writing a device driver for a MASS BUS device, this section is devoted
exclusively to describing the i/o system and autoconfiguration process as it applies to UNIBUS
devices.

Each UNIBUS on a V AX has a set of resources:

• 496 map registers which are used to convert from the 18 bit UNIBUS addresses into the
much larger VAX address space.

• Some number of buffered data paths (3 on an 11/750, 15 on an 11/780, 0 on an 11/730)
which are used by high speed devices to transfer data using fewer bus cycles.

There is a structure of type struct uba_hd in the system per UNIBUS adapter used to manage
these resources. This structure also contains a linked list where devices waiting for resources to
complete DMA UNIBUS activity have requests waiting.

There are three central structures in the writing of drivers for UNIBUS controllers; dev­
ices which do not do DMA i/o can often use only two of these structures. The structures are
struct uba_ctlr, the UNIBUS controller structure, struct uba_device the UNIBUS device structure,
and struct uba_driver, the UNIBUS driver structure. The uba_ctlr and uba_device structures are
in one-to-one correspondence with the definitions of controllers and devices in the system
configuration. Each driver has a struct uba_driver structure specifying an internal interface to
the rest of the system.

Thus a specification

controller scO at ubaO csr 0176700 vector upintr

would cause a struct uba_ctlr to be declared and initialized in the file iocon/.c for the system
configured from this description. Similarly specifying

disk upO at scO drive 0

would declare a related uba_device in the same file. The up.c driver which implements this
driver specifies in its declarations:

int upprobe(), upslave(), upattach(), updgoO, upintrO;
struct uba ctlr ·upminfo[NSC);
struct uba=device ·updinfo[NUP);
u_short upstd[] == { 0776700, 0774400, 0776300, 0 };
struct uba driver scdriver ==

{ upprobe, upslave, upattach, updgo, upstd, "up", updinfo, "sc", upminfo };

initializing the uba_driver structure. The driver will support some number of controllers named
scO, scl, etc, and some number of drives named upO, upl, etc. where the drives may be on any
of the controllers (that is there is a single linear name space for devices, separate from the con­
trollers.)

We now explain the fields in the various structures. It may help to look at a copy of
vaxuba/ubareg.h, h/ubavar.h and drivers such as up.c and dz.c while reading the descriptions of
the various structure fields.

uba_driver structure
One of these structures exists per driver. It is initialized in the driver and contains func­

tions used by the configuration program and by the UNIBUS resource routines. The fields of
the structure are:

July 27, 1983

Building Systems With Config - 18 - Adding New Devices

udJ)robe
A routine which is given a eaddr_t address as argument and should cause an interrupt on
the device whose control-status register is at that address in virtual memory. It may be
the case that the device does not exist, so the probe routine should use delays (via the
DELA Y (n) macro which delays for n microseconds) rather than waiting for specific
events to occur. The routine must not declare its argument as a register parameter, but
must declare

register int br, cvec;

as local variables. At boot time the system takes special measures that these variables are
"value-result" parameters. The br is the IPL of the device when it interrupts, and the
evee is the interrupt vector address on the UNIBUS. These registers are actually filled in
in the interrupt handler when an interrupt occurs.

As an example, here is the up. e probe routine:

upprobe (reg)
caddr _ t reg;

register int br, cvec;

#ifdef lint
br == 0; cvec =- br; br =- cvec;

#endif
«struct updevice *)reg)->upcsl == UP _I$P _RDY;
DELAY(IO);
«struct updevice *)reg)->upcsl == 0;
return (size of (struct updevice»;

The definitions for lint serve to indicate to it that the br and evee variables are value-result.
The statements here interrupt enable the device and write the ready bit UP _RDY. The 10
microsecond delay insures that the interrupt enable will not be canceled before the inter­
rupt can be posted. The return of "sizeof (struct updevice)" here indicates that the
probe routine is satisfied that the device is present (the value returned is not currently
used, but future plans dictate you should return the amount of space in the device's regis­
ter bank). A probe routine may use the function "badaddr" to see if certain other
addresses are accessible on the UNIBUS (without generating a machine check), or look at
the contents of locations where certain registers should be. If the registers contents are
not acceptable or the addresses don't respond, the probe routine can return 0 and the dev­
ice will not be considered to be there.

One other thing to note is that the action of different V AXen when illegal addresses are
accessed on the UNIBUS may differ. Some of the machines may generate machine
checks and some may cause UNIBUS errors. Such considerations are handled by the
configu!,ation program and the driver writer need not be concerned with them.

It is also possible to write a very simple probe routine for a one-of-a-kind device if prob­
ing is difficult or impossible. Such a routine would include statements of the form:

br == Ox15;
cvec == 0200;

for instance, to declare that the device ran at UNIBUS br5 and interrupted through vector
0200 on the UNIBUS. The current UDA-50 driver does something similar to this because
the device is so difficult to force an interrupt on that it hardly seems worthwhile.

ud slave
- This routine is called with a uba_deviee structure (yet to be described) and the address of

July 27, 1983"

Building Systems With Config - 19 - Adding New Devices

the device controller. It should determine whether a particular slave device of a controller
is present, returning 1 if it is and 0 if it is not. As an example here is the slave routine
for up.c.

upslave(ui, reg)
struct uba_device *ui;
caddr _ t reg;

register struct updevice *upaddr == (struct updevice *)reg;

upaddr- > upcs 1 == 0; /* conservative * /
upaddr->upcs2 == ui->ui slave;
if (upaddr->upcs2&UPCS2 NED) {

upaddr->upcsl == UP_DCLR/UP _GO;
return (0);

}
return (1);

Here the code fetches the slave (disk unit) number from the uLs!ave field of the
uba device structure, and sees if the controller responds that that is a non-existent driver
(NED). If the drive a drive clear is issued to clean the state of the controller, and 0 is
returned indicating that the slave is not there. Otherwise a 1 is returned.

ud attach
- The attach routine is called after the autoconfigure code and the driver concur that a peri­

pheral exists attached to a controller. This is the routine where internal driver state about
the peripheral can be initialized. Here is the attach routine from the up.c driver:

upattach (un
register struct uba_device *ui;

register struct updevice *upaddr;

if (upwstart == == 0) {
timeout (upwatch, (caddr_t)O, hz);
upwstart + +;

}
if (ui->ui dk > == 0)

dk mspw[ui->ui dk] =- .0000020345;
upip[ui->ui ctlr][ui->~i slave] == ui;
up softc[ui->ui ctlr).sc iidrive+ +;
ui->ui_type == upmaptype(ui);

The attach routine here performs a number of functions. The first time any drive is
attacned to the controller it starts the timeout routine which watches the disk drives to
make sure that interrupts aren't lost. It also initializes, for devices which have been
assigned iostat numbers (when ui->ui_dk > == 0), the transfer rate of the device in the
array dk_mspw, the fraction of a second it takes to transfer 16 bit word. It then initializes
an inverting pointer in the array upip which will be used later to determine, for a particular
up controller and slave number, the corresponding uba_device. It increments the count of
the number of devices on this· controller, so that search commands can later be avoided if
the count is exactly 1. It then attempts to decipher the actual type of drive attached to
the controller in a controller-specific way. On the EMULEX SC-21 it may ask for the
number of tracks on the device and use this to decide what the drive type is. The drive
type is used to setup disk partition mapping tables and other device specific information.

July 27, 1983 .

Building Systems With Config - 20- Adding New Devices

ud_dgo
Is the routine which is called by the UNIBUS resource management routines when an
operation is ready to be started (because the required resources have been allocated). The
routine in up.c is:

updgo(um)
struct uba_ctlr *um;

register struct updevice *upaddr == (struct updevice *)um->um_addr;

upaddr->upba == um->um ubinfo;
upaddr->upcsl == um->um_cmdj«um->um_ubinfo> >8)&Ox300);

This routine uses the field um_ubin/o of the uba_ctlr structure which is where the UNIBUS
routines store the UNIBUS map allocation information. In particluar, the low 18 bits of
this word give the UNIBUS address assigned to the transfer. The assignment to upba in
the go routine places the low 16 bits of the UNIBUS address in the disk UNIBUS address
register. The next assignment places the disk operation command and the extended (high
2) address bits in the device control-status register, starting the if 0 . operation. The field
um_cmd was initialized with the command to be stuffed here in the driver code itself
before the call to the ubago routine which eventually resulted in the call to updgo.

ud_addr
Are the conventional addresses for the device control registers in UNIBUS space. This
information is used by the system to look for instances of the device supported by the
driver. When the system probes for the device it first checks for a control-status register
located at the address indicated in the configuration file (if supplied), then uses the list of
conventional addresses pointed to be ud_addr.

ud_dname
Is the name of a device supported by this controller; thus the disks on a SC-21 controller
are called upO, upJ, etc. That is because this field contains -up.

ud_dinfo
Is an array of back pointers to the uba_device structures for each device attached to the
controller. Each driver defines a set of controllers and a set of devices. The device
address space is always one-dimensional, so that the presence of extra controllers may be
masked away (e.g. by pattern matching) to take advantage of hardware redundancy. This
field is filled in by the configuration program, and used by the driver.

ud_mname
The name of a controller, e.g. sc for the up.c driver. The first SC-21 is called seO, etc.

ud_minfo
The backpointer array to the structures for the controllers.

ud_xclu
If non-zero specifies that the controller requires .exclusive use of the UNIBUS when it is
running. This is non-zero currently only for the RK611 controller for the RK07disks to
map around a hardware problem. It could also be used if 6250bpi tape drives are to be
used on the UNIBUS to insure that they get the bandwidth that they need (basically the
whole bUs).

uba_ctlr structure

One of these structures exists per-controller. The fields link the controller to its UNIBUS
adapter and contain the state information about the devices on the controller. The fields are:

urn driver
- A pointer to the struct uba_device for this driver, which has fields as defined above.

July 27, 1983

Building Systems With Config - 21 - Adding New ~evices

um_~tIr
The controller number for this controller, e.g. the 0 in seO.

urn_alive
Set to 1 if the controller is considered alive; currently, always set for any structure
encountered during normal operation. That is, the driver will have a handle on a uba ellr
structure only if the configuration routines set this field to a 1 and entered it into -the
driver tables.

um_intr
The interrupt vector routines for this device. These are generated by eorifig and this field
is initialized in the ioeonf.e file.

um_bd
A back-pointer to the UNIBUS adapter to which this controller is attached.

um_cmd
A place for the driver to store the command which is to be given to the device before cal­
ling the routine ubago with the devices uba_deviee structure. This information is then
retrieved when the device go routine is called and stuffed in the device control status
register to start the i/o operation.

um_ubinfo
Information about the UNIBUS resources allocated to the device. This is normally only
used in device driver go routine (as updgo above) and occasionally in exceptional condi­
tion handling such as ECC correction.

urn tab
- This buffer structure is a place where the driver hangs the device structures which are

ready to transfer. Each driver allocates a buf structure for each device (e.g. updlab in the
up.e driver) for this purpose. You can think of this structure as a device-control-block,
and the buf structures linked to it as the unit-control-blocks. The code for dealing with
this structure is stylized; see the rk.e or up.e driver for the details. If the ubago routine is
to be used, the structure attached to this bufstructure must be:

• A chain of bufstructures for each waiting device on this controller.

• On each waiting buf structure another buf structure which is the one containing the
parameters of the if 0 operation.

uba_device structure

One of these structures exist for each device attached to a UNIBUS controller. Devices
which are not attached to controllers or which perform no buffered data path DMA i/o may
have only a device structure. Thus dz and dh devices have only uba_deviee structures. The
fields are:

ui_driver
A pointer to the slruet uba_driver structure for this device type.

ui_unit
The unit number of this device, e.g. 0 in upO, or 1 in db!.

ui ctIr
- The number of the controller on which this device is attached, or -1 if this device is not

on a controller.

ui_ubanum
The number of the UNIBUS on which this device is attached.

ui_slave
The slave number of this device on the controller which it is attached to, or -1 if the
device is not a slave. Thus a disk which was unit 2 on a SC-21 would have uLslave 2; it
might or might not be up2, that depends on the syst~m configuration specification.

July 27, 1983·

Building Systems With Config - 22 - Adding New Devices

ui_intr
The interrupt vector entries for this device, copied into the UNIBUS interrupt vector at
boot time. The values of these fields are filled in by corifig to small code segments which
it generates in the file ubglue.s.

ui_addr
The control-status register address of this device.

ui_dk
The iostat number assigned to this device. Numbers are assigned to disks only, and are
small positive integers which index the various dk_ *' arrays in < sys/dk.h>.

ui_flags
The optional "flags xxX' parameter from the configuration specification was copied to this
field, to be interpreted by the driver. If ./lags was not specified, then this field will contain
a O.

ui_alive
The device is really there. Presently set to 1 when a device is determined to be alive, and
left 1.

ui_type
The device type, to be used by the driver internally.

ut.physaddr
The physical memory address of the device control-status register. This is used in the
device dump routines typically.

ui mi
- A struct uba_ctlr pointer to the controller (if any) on which this device resides.

ui_hd
A struct uba_hd pointer to the UNIBUS on which this device resides.

UNIBUS resource management routines

UNIBUS drivers are supported by a collection of utility ro.utines which manage UNIBUS
resources. If a driver attempts to bypass the UNIBUS routines, other drivers may not operate
properly. The major routines are: uballoc to allocate UNIBUS resources, ubarelse to release pre­
viously allocated resources, and ubago to initiate DMA. When allocating UNIBUS resources
you may request that you

NEEDBDP ~

if you need a buffered data path,

HAVEBDP ,
if you already have a buffered data path and just want new mapping registers (and access
to the UNIBUS), and

CANTWAIT
if you are calling (potentially) from interrupt level

If the presentation here does not answer all the questions you may have, consult the file
/ sys/vaxubil/uba.c

Autoconfiguration requirements

Basically all you have to do is write a udJrobe and a ud_attach routine for the controller.
It suffices to have a udJrobe routine which just initializes br and cvec, and a ud_attach routine
which does nothing. Making the device fully configurable requires, of course, more work, but
is worth it if you expect the device to be in common usage and want to share it with others.

If you managed to create all the needed hooks, then make sure you include the necessary
header files; the ones included by vaxubalct.c are nearly minimal. Order is important here,
don't be surprised at undefined structure complaints if you order the includes wrongly. Finally

July 27, 1983 .

Building Systems With Config - 23 - Adding New Devices

if you get the device configured in, you can try bootstrapping and see if configuration messages
print out about your device. It is a good idea to have some messages in the probe routine so
that you can see that you are getting called and what is going on. If you do not get called, then
you probably have the control-status register address wrong in your system configuration. The
autoconfigure code notices that the device doesn't exist in this case and you will never get
called.

Assuming that your probe routine works and you manage to generate an interrupt, then
you are basically back to where you would have been under older versions of UNIX. Just be
sure .to use the uLctlr field of the uba_device structures to address the device; compiling in
funny constants will make your driver only work on the CPU type you have (780, 750, or 730).

Other bad things that might happen while you are setting up the configuration stuff:

• You get "nexus zero vector" errors from the system. This will happen if you cause a dev­
ice to interrupt, but take away the interrupt enable so fast that the UNIBUS adapter cancels
the interrupt and confuses the processor. The best thing to do it to put a modest delay in
the probe code between the instructions which should cause and interrupt and the clearing
of the interrupt enable. (You should clear interrupt enable before you leave the probe rou­
tine so the device doesn't interrupt more and confuse the system while it is configuring
other devices.)

• The device refuses to interrupt or interrupts with a "zero vector". This typically indicates a
problem with the hardware or, for devices which emulate other devices, that the emulation
is incomplete. Devices may fail to present interrupt vectors because they have configuration
switches set wrong, or because they are being accessed in inappropriate ways. Incomplete
emulation can cause "maintenance mode" features to not work properly, and these features
are often needed to force device interrupts.

6.4. Adding non-standard system facilities

This section considers the work needed to augment config's data base files for non­
standard system facilities.

As far as corifig is concerned non-standard facilities may fall into two categories. Config
understands that certain files are used especially for kernel profiling. These files are indicated
in the files files with a profiling-routine keyword. For example, the current profiling subroutines
are sequestered off in a separate file with the following entry:

sys/subr _ mcount. c optional profiling-routine

The profiling-routine keyword forces corifig to not compile the source file with the -pg option.

The second keyword which can be of use is the config-dependent keyword. This causes
config to compile the indicated module with the global configuration parameters. This allows
certain modules, such as machdep.c to size system data structures based on the maximum
number of users configured for the system. .

July 27, 1983

Building Systems With Config Configuration File Grammar

APPENDIX A. CONFIGURATION FILE GRAMMAR

The following grammar is a compressed form of the actual yaee (1) grammar used by
eorifig to parse configuration files. Terminal symbols are shown all in upper case, literals are
emboldened; optional clauses are enclosed in brackets, "[" and "]"; zero or more instantia­
tions are denoted with "*".

Configuration ::== [Spec;]*

Spec ::== Config_spec
1 Device_spec
I trace
11* lambda * /

/* configuration specifications * /

Config_spec :: - machine ID
I cpu ID
I options Opt_list
1 ident ID
1 System_spec
1 time zone [-] NUMBER [dst [NUMBER]]
1 timezone [-] FPNUMBER [dst [NUMBER]]
1 maxusers NUMBER

/* system configuration specifications * /

System_spec ::== config ID SystemJ>arameter [Systemyarameter]*

Systemyarameter ::== swap_spec 1 root_spec 1 dump_spec I arg_spec

swap_spec ::== swap [on] swap_de v [and swap_dev]*

swap _ dev :: - dev _spec [size NUMBER]

root_spec ::== root [on] dev_spec

dump_spec ::== dumps [on] dev_spec

arg_spec :: == args [on] dev _spec

major_minor ::- major NUMBER minor NUMBER

dev_oame ::- ID [NUMBER [ID]]

1* option specifications • /

Opt_list :: == Option [t Option]*

Option ::== ID [= Opt_value]

July 27, 1983

Building Systems With Config - 25 -

Opt_value ::== ID I NUMBER

'* device specifications *'
Device spec :: == device Dev name Dev info Int spec

,master Dev_name De~jnfo - -
'disk Dev_name Devjnfo
'tape Dev_name Devjnfo
, controller Dev _name Dev jnfo [Int_spec]
, pseudo-device Dev [NUMBER]

Dev _name :: == Dev NUMBER

Dev::== uba I mba' ID

Devjnfo ::== ConJnfo [Info]*

Con info ::== at Dev NUMBER
-, at nexus NUMBER

Info :: == csr NUMBER
, drive NUMBER
I slave NUMBER
, flags NUMBER

Int spec ::== vector ID [ID]*
- ,priority NUMBER

Lexical Conventions

The terminal symbols are loosely defined as:

ID

Configuration File Grammar

One or more alphabetics, either upper or lower case, and underscore, "_".

NUMBER
Approximately the C language specification for an integer number. That is, a leading
"Ox" indicates a hexadecimal value, a leading "0" indicates an octal value, otherwise the
number is expected to be a decimal value. Hexadecimal numbers may use either upper or
lower case alphabetics.

FPNUMBER
A floating point number without exponent. That is a number of the form "nnn.ddd",
where the fractional component is optional.

In special instances a question mark, "?", can be substituted for a "NUMBER" token. This is
used to effe'ct wildcarding in device interconnection specifications.

Comments in configuration files are indicated by a "#" character at the beginning of the line;
the remainder of the line is discarded.

A specification is interpreted as a continuation of the previous line if the first character of the
line is tab.

July 27, 1983 .

Building Systems With Config Device Defaulting Rules

APPENDIX B. RULES FOR DEFAULTING SYSTEM DEVICES

When corifig processes a "config" rule which does not fully specify the location of the
root file system, paging area(s), device for system dumps, and device for argument list process­
ing it applies a set of rules to define those values left unspecified. The following list of rules
are used in defaulting system devices.

1) If a root device is not specified, the swap specification must indicate a "generic" system is
to be built.

2) If the root device does not specify a unit number, it defaults to unit O.

3) If the root device does not include a partition specification, it defaults to the "a" partition.

4) If no swap area is specified, it defaults to the "b" partition of the root device.

S) If no device is specified for processing argument lists, the first swap partition is selected.

6) If no device is chosen for system dumps, the first swap partition is selected (see below to
find out where dumps are placed within the partition).

The following table summarizes the default partitions selected when a device specification
is incomplete, e.g. "hpO".

Type Partition
root "a"
swap "b"
args "b"
dumps "b"

Multiple swap/paging areas

When multiple swap partitions are specified, the system treats the first specified as a "pri­
mary" swap area which is always used. The remaining partitions are then interleaved into the
paging system at the time a swapon(2) system call is made. This is normally done at boot time
with a call to swapon(8) from the letc/rc file.

System dumps

System dumps are automatically taken after a system crash, provided the device driver for
the "dumps" device supports this. The dump contains the contents of memory, but not the
swap areas. Normally the dump device is a disk in which case the information is copied to a
location near the back of the partition. The dump is placed in the back of the partition because
the primary swap and dump device are commonly the same device and this allows the system to
be rebooted without immediately overwriting the saved information. When a dump has
occurred, the system variable dumpsize is set to a non-zero value indicating the size (in bytes)
of the dump. The savecore (8) program then copies the information from the dump partition to
a file in a "crash" directory and also makes a copy of the system which was running at the time
of the crash (usually "/vmunix"). The offset to the system dump is defined in the system
variable dumplo (a sector offset from the front of the dump partition). The savecore program
operates by reading the contents of dumplo, dumpdev, and dumpmagic from Idev/kmem, then
comparing the value of dumpmagic read from Idev/kmem to that located in corresponding loca­
tion in the dump area of the dump partition. If a match is found, savecore assumes a crash
occurred and reads dumpsize from the dump area of the dump partition. This value is then used
in copying the system dump. Refer to savecore (8) for more information about its operation.

The value dumplo is calculated to be

dumpdev-size - DUMPDEV

July 27, 1983

Building Systems With Config - 27 - Device Defaulting Rules

where dumpdev-size is the size of the disk partition where system dumps are to be placed, and
DUMPDEV is 10 Megabytes. If the disk partition is not large enough to hold a 10 Megabyte
dump, dump/o is set to 0 (the front of the partition). For sites with more than 10 Megabytes of
memory the definition of DUMPDEV in /sys/vax/autoconf.c will have to be changed.

July 27, 1983

Building Systems With Config Sample Config Files

APPENDIX C. SAMPLE CONFIGURATION FILES

The following configuration files are developed in section 5; they are included here for
completeness.

ANSEL V AX (a picture perfect machine)
.
machine vax
cpu VAX780
timezone 8 dst
ident ANSEL
maxusers 40

con fig vmunix root on hpO
config hpvmunix root on hpO swap on hpO and hp2
config genvmunix swap generic

controller mbaO at nexus?
disk hpO at mba? disk ?
disk hp1 at mba? disk ?
controller mba1 at nexus?
disk hp2 at mba? disk ?
disk hp3 at mba? disk ?
controller ubaO at nexus?
controller tmO at uba? csr 0172520 vector tmintr
tape teO at tmO drive 0
tape tel at tmO drive 1 -
device dhO at uba? csr 0160020 vector dhrint dhxint
device dmO at uba? csr 0170500 vector dmintr
device dh1 at uba? csr 0160040 vector dhrint dhxint
device dh2 at uba? csr 0160060 vector dhrint dhxint

July 27, 1983

Building Systems With Config

UCBV AX - Gateway to the world

machine
cpu
cpu
ident
timezone
max users
options

con fig
config
config

controller
controller
disk
disk
controller
disk
disk
controller
disk
disk
pseudo-device
pseudo-device

vax
"VAX780"
"VAX7S0"
UCBVAX
8 dst
32
INET

vmunix
upvmunix
hkvmunix

mbaO
ubaO
hpO
hpl
scO
upO
upl
hkO
rkO
rkl
inet
pty

software loopback device for testing
pseudo-device loop
pseudo-device imp
device accO
pseudo-device ether
device ecO
device ilO

- 29 - Sample Config Files

root on hp swap on hp and rkO and rkl
root on up
root on hk swap on rkO and rkl

at nexus?
at nexus?
at mba? drive 0
at mba? drive 1
at uba? csr 0176700 vector upintr
at scO drive 0
at scO drive 1
at uba? csr 0177440 vector rkintr
at hkO drive 0
at hkO drive 1

at uba? csr 0167600 vector accrint accxint

at uba? csr 0164330 vector ecrint eccollide ecxint
at uba? csr 0164000 vector ilrint ileint

July 27, 1983 .

Building Systems With Config Data Structure Sizing Rules

APPENDIX D. VAX KERNEL DATA STRUCTURE SIZING RULES

Certain system data structures are sized at compile time according to the maximum
number of simultaneous users expected, while others are calculated at boot time based on the
physical resources present; e.g. memory. This appendix lists both sets of rules and also
includes some hints on changing built-in limitations on certain data structures.

Compile time rules
The file /sys/corif/param.c contains the definitions of almost all data structures sized at com­

pile time. This file is copied into the directory of each configured system to allow
configuration-dependent rules and values to be maintained. The rules implied by its contents
are summarized below (here MAXUSERS refers to the value defined in the configuration file in
the "maxusers" rule).

nproe

ntext

The maximum number of processes which may be running at any time. It is defined to
be 20 + 8 • MAXUSERS and referred to in other calculations as NPROC.

The maximum number of active shared text segments. Defined as 24 + MAXUSERS +
NETSLOP, where NETSLOP is 20 when the Internet protocols are configured in the sys­
tem and 0 otherwise. The added size for supporting the network is to take into account
the numerous server processes which are likely to exist. .

nlnode

nille

The maximum number of files in the file system which may be active at any time. This
includes files in use by users, as well as directory files being read or written by the system
and files associated with bound sockets in the UNIX ipc domain. This is defined as
(NPROC + 16 + MAXUSERS) + 32.

The number of "file table" structures. One file table structure is used for each open,
unshared, file descriptor. Multiple file descriptors may reference a single file table entry
when they are created through a dup call, or as the result of a fork. This is defined to be

16 • (NPROC + 16 + MAXUSERS) I 10 + 32 + 2 • NETSLOP

where NETSLOP is defined as for ntext.

neallout
The number of "callout" structures. One callout structure is used per internal system
event handled with a timeout. Timeouts are used for terminal delays, watchdog routines
in device drivers, protocol timeout processing, etc. This is defined as 16 + NPROC.

nellst
The number of "c-list" structures. C-list structures are used in terminal i/o. This is
defined as 100 + 16 • MAXUSERS.

nmbclusters
The maximum number of pages which may be allocated by the network. This is defined as
256 (a quarter megabyte of memory) in Isys/h/mbuf.h. In practice, the network rarely
uses this much memory. It starts off by allocating 64 kilobytes of memory, then request­
ing more as required. This value represents an upper bound.

nquota
The· number of "quota" structures allocated. Quota structures are present only when disc
quotas are configured in the system. One quota structure is kept per user. This is defined
to be (MAXUSERS· 9) /7 + 3.

July 27, 1983

Building Systems With Config - 32 - Data Structure Sizing Rules

ndquot
The number of "dquot" structures allocated. Dquot structures are present only when
disc quotas are configured in the system. One dquot structure is required per user, per
active file system quota. That is, when a user manipulates a file on a file system on which
quotas are enabled, the information regarding the user's quotas on that file system must
be in-core. This information is cached, so that not all information must be present in­
core all the time. This is defined as (MAXUSERS • NMOUNT) / 4 + NPROC, where
NMOUNT is the maximum number of mountable file systems.

In addition to the above values, the system page tables (used to map virtual memory in the
kernel's address space) are sized at compile time by the SYSPTSIZE definition in the file
/sys/vax/vmparam.h. This is defined to be 20 + MAXUSERS pages of page tables. Its
definition affects the size of many data structures allocated at boot time because it constrains
the amount of virtual memory which may be addressed by the running system. This is often
the limiting factor in the size of the buffer cache.

Run-time calculations
The most important data structures sized at run-time are those used in the buffer cache.

Allocation is done by swiping physical memory (and the associated virtual memory) immedi­
ately after the system has been started up; look in the file /sys/vax/machdep.c. The amount of
physical memory which may be allocated to the buffer cache is constrained by the size of the
system page tables, among other things. While the system may calculate a large amount of
memory to be allocated to the buffer cache, if the system page table is too small to map this
physical memory into the virtual address space of the system, only as much as can be mapped
will be used.

The buffer cache is comprised of a number of "buffer headers" and a pool of pages
attached to these headers. Buffer headers are divided into two categories: those used for swap­
ping and paging, and those used for normal file i/o. The system tries to allocate 10% of avail­
able physical memory for the buffer cache (where available does not count that space occupied
by the system's text and data segments). If this results in fewer than 16 pages of memory allo­
cated, then 16 pages are allocated. This value is kept in the initialized variable btifpages so that
it may be patched in the binary image (to allow tuning without recompiling the system). A
sufficient number of file i/o buffer headers are then allocated to allow each to hold 2 pages
each, and half as many swap i/o buffer headers are then allocated. The number of swap i/o
buffer headers is constrained to be no more than 256. --

System size llmltations
As distributed, the sum of the virtual sizes of the core-resident processes is limited to

64M bytes. The size of the text, and data segments of a single process are currently limited to
6M bytes each, and the stack segment size is limited to 512K bytes as a soft, user-changeable
limit, and may be increased to 6M with the setrlimit (2) system call. If these are insufficient,
they can be increased by changing the constants MAXTSIZ, MAXDSIZ and MAXSSIZ in the
file /sys/vax/vmparam.h. The size of the swap maps for these objects must also be increased;
for text, the parameters are NXDAD (/sys/h/text.h) and DMTEXT (/sys/vax/autoconfig.c).
The maps for data and swap are limited by NDMAP (/sys/h/dmap.h) and DMMAX
(/sys/vax/autoconfig.c). You must be careful in doing this that -you have adequate paging
space. As normally configured , the system has only 16M bytes per paging area. The best way
to get more space is to provide multiple, thereby interleaved, paging areas.

To increase the amount of resident virtual space possible, you can alter the constant
USRPTSIZE (in /sys/vax/vmparam.h). To allow 128 megabytes of resident virtual space one
would change the 8 to a 16.

Because the file system block numbers are stored in page table pg_blkno entries, the max­
imum size of a file system is limited to 2"19 1024 byte blocks. Thus no file system can be
larger than 512M bytes.

July 27, 1983

Building Systems With Contig - 33 - Data Structure Sizing Rules

The count of mountable file systems is limited to 15. This should be sufficient. If you
have many disks it makes sense to make some of them single file systems, and the paging areas
don't count in this total. To increase this it will be necessary to change the core-map
Isys/h/cmap.h since there is a 4 bit field used here. The size of the core-map will then expand
to 16 bytes per 1024 byte page. (Don't forget to change MSWAPX and NMOUNT in
Isys/h/param.h also.)

The maximum value NOFILE (open files per process limit) can be raised to is 30 because
of a bit field in the page table entry in Isys/machine/pte.h.

The amount of physical memory is currently limited to 8 Mb by the size of the index
fields in the core-map (lsys/h/cmap.h). This limit is also found in Isys/vax/locore.s.

July 27, 1983

Disc Quotas in a UNIX· Environment.

Robert EIz

Department of Computer Science
University of Melbourne,

Parkville,
Victoria,
Australia.

ABSTRACT

In most computing environments, disc space is not infinite. The disc
quota system provides a mechanism to control usage of disc space, .on an indi­
vidual basis.

Quotas may be set for each individual user, on any, or all filesystems.

The quota system will warn users when they exceed their allotted limit,
but allow some extra space for current work. Repeatedly remaining over quota
at logout, will cause a fatal over quota condition eventually.

The quota system is an optional part of VMUNIX that may be included
when the system is configured.

5th July, 1983

• UNIX is a trademark of Bel) Laboratories.

Disc Quotas in a UNIX· Environment.

1. Users' view of disc quotas

Robert Eiz

Department of Computer Science
University of Melbourne,

Parkville,
Victoria,
Australia.

To most users, disc quotas will either be of no concern, or a fact of life that cannot be
avoided. The quota (1) command will provide information on any disc quotas that may have
been imposed upon a user.

There are two individual possible quotas that may be imposed, usually if one is, both will
be. A limit can be set on the amount of space a user can occupy, and there may be a limit on
the number of files (inodes) he can own.

Quota provides information on the quotas that have been set by the system administra­
tors, in each of these areas, and current usage.

There are four numbers for each limit, the current usage, soft limit (quota), hard limit,
and number of remaining login warnings. The soft limit is the number of 1 K blocks (or files)
that the user is expected to remain below. Each time the user's usage goes past this limit, he
will be warned. The hard limit cannot be exceeded. If a user's usage reaches this number,
further requests for space (or attempts to create a file) will fail with an EDQUOT error, and the
first time this occurs, a message will be written to the user's terminal. Only one message will
be output, until space occupied is reduced below the limit, and reaches it again, in order to
avoid continual noise from those programs that ignore write errors.

Whenever a user logs in with a usage greater than his soft limit, he will be warned, and
his login warning count decremented. When he logs in under quota, the counter is reset to its
maximum value (which is a system configuration parameter, that is typically 3). If the warning
count should ever reach zero (caused by three successive logins over quota), the particular limit
that has been exceeded will be treated as if the hard limit has been reached, and no more
resources will be allocated to the user. The only way to reset this condition is to reduce usage
below quota, then log in again.

1.1. Surviving when quota limit is reached
In most cases, the only way to recover from over quota conditions, is to abort whatever

activity was in progress on the filesystem that has reached its limit, remove sufficient files to
bring the limit-back below quota, and retry the failed program.

However, if you are in the editor and a write fails because of an over quota situation, that
is not a suitable course of action, as it is most likely that initially attempting to write the file will
have truncated its previous contents, so should the editor be aborted without correctly writing
the file not only will the recent changes be lost, but possibly much, or even all, of the data that
previously existed.

There are several possible safe 'exits for a user caught in this situation. He may use the
editor ! shell escape command to examine his file space, and remove surplus files.

• UNIX is a trademark of Bell Laboratories.

- 2 -

Alternatively, using csh, he may suspend the editor, remove some files, then resume it. A
third possibility, is to write the file to some other filesystem (perhaps to a file on Itmp) where
the user's quota has not been exceeded. Then after rectifying the quota situation, the file can
be moved back to the fiIesystem it belongs on.

2. Administering the quota system

To set up and establish the disc quota system, there are several steps necessary to be per­
formed by the system administrator.

First, the system must be configured to include the disc quota sub-system. This is done
by including the line:

options QUOTA

in the system configuration file, then running config (8) followed by a system configuration·.

Second, a decision as to what filesystems need to have quotas applied needs to be made.
Usually, only file systems that house users' home directories, or other user files, will need to be
subjected to the quota system, though it may also prove useful to also include lusr. If possible,
Itmp should usually be free of quotas.

Having decided on which filesystems quotas need to be set upon, the administrator should
then allocate the available space amongst the competing needs. How this should be done is
(way) beyond the scope of this document.

Then, the edquota (8) command can be used to actually set the limits desired upon each
user. Where a number of users are to be given the same Quotas (a common occurrence) the
-p switch to edquota will allow this to be easily accomplished.

Once the quotas are set, ready to operate, the system must be informed to enforce quotas
on the desired filesystems. This is accomplished with the quotaon (8) command. Quotaon will
either enable quotas for a particular filesystem, or with the -a switch, will enable quotas for
each file system indicated in letc/fstab as using Quotas. See /stab (5) for details. Most sites
using the quota system, will include the line

I etcl quotaon -a

in letc/rc.Iocal.

Should Quotas need to be disabled, the quotaojJ(8) command will do that, however,
should the filesystem be about to be dismounted, the umount (8) command will disable quotas
immediately before the filesystem is unmounted. This is actually an effect of the umount (2)
system call, and it guarantees that the Quota system will not be disabled if the umount would
fail because the filesystem is not idle.

Periodically (certainly after each reboot, and when Quotas are first enabled for a filesys­
tern), the records retained in the quota file should be checked for consistency with the actual
number of blocks and files allocated to the user. The quotachk(8) command can be used to
accomplish this. It is not necessary to dismount the filesystem, or disable the quota system to
run this command, though on active file systems inaccurate results may occur. This does no
real harm in most cases, another run of quotachk when the filesystem is idle will certainly
correct any inaccuracy.

The super-user may use the quota (1) command to examine the usage and quotas of any
user, and the repquota (8) command may be used to check the usages and limits for all users on
a filesystem.

• See also the document "Building 4.2BSO UNIX Systems with Config".

- 3 -

3. Some implementation detail.
Disc quota usage and information is stored in a file on the filesystem that the quotas are

to be applied to. Cop.ventionally, this file is quotas in the root of the filesystem. While this
name is not known to the system in any way, several of the user level utilities "know" it, and
choosing any other name would not be wise.

The data in the file comprises an array of structures, indexed by uid, one structure for
each user on the system (whether the user has a quota on this filesystem or not). If the uid
space is sparse, then the file may have holes in it, which would be lost by copying, so it is best
to avoid this.

The system is informed of the existence of the quota file by the setquota (2) system call.
It then reads the quota entries for each user currently active, then for any files open owned by
users who are not currently active. Each subsequent open of a file on the filesystem, will be
accompanied by a pairing with its quota information. In most cases this information will be
retained in core, either because the user who owns the file is running some process, because
otl1er files are open owned by the same user, or because some file (perhaps this one) was
recently accessed. In memory, the quota information is kept hashed by user-id and filesystem,
and retained in an LRU chain so recently released data" can be easily reclaimed. Information
about those users whose last process has recently terminated is also retained in this way.

Each time a block is accessed or released, and each time an inode is allocated or freed, the
quota system gets told about it, and in the case of allocations, gets the opportunity to object.

Measurements have shown that the quota code uses a very small percentage of the system
cpu time consumed in writing a new block to disc.

4. Acknowledgments
The current disc quota system is loosely based upon a very early scheme implemented at

the University of New South Wales, and Sydney University in the mid 70's. That system imple­
mented a single combined limit for both files and blocks on all filesystems.

A later system was implemented at the University of Melbourne by the author, but was
not kept highly accurately, eg: chown's (etc) did not affect quotas, nor did i/o to a file other
than one owned by the instigator.

The current system has been running (with only minor modifications) since January 82 at
Melbourne. It is actually just a small part of a much broader resource control scheme, which is
capable of controlling almost anything that is usually uncontrolled in unix. The rest of this is, as
yet, still in a state where it is far too subject to change to be considered for distribution.

For the 4.2BSD release, much work has been done to clean up and sanely incorporate the
quota code by Sam Leftler and Kirk McKusick at The University of California at Berkeley.

4.2BSD Line Printer Spooler Manual

Revised July 27, 1983

Ralph Campbell

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

(415) 642-7780

ABSTRACT

This document describes the structure and installation procedure for the
line printer spooling system developed for the 4.2B5D version of the UNIX·
operating system.

1. Overview
The line printer system supports:

• multiple printers,

• multiple spooling queues,

• both local and remote printers, and
• printers attached via serial lines which require line initialization such as the baud rate.

Raster output devices such as a Varian or Versatec, and laser printers such as an Imagen, are
also supported by the line printer system.

The line printer system consists mainly of the following files and commands:

I etc/printcap
lusr llib/lpd
lusr lucb/lpr
lusr lucb/lpq
lusr/ucb/lprm
letc/lpc
Idev/pri!1ter

printer configuration and capability data base
line printer daemon, does all the real work
program to enter a job in a printer queue
spooling queue examination program
program to delete jobs from a queue
program to administer printers and spooling queues
socket on which lpd listens

The file letc/printcap is a master data base describing line printers directly attached to a
machine and, also, printers accessible across a network. The manual page entry printcap(5) pro­
vides the ultimate definition of the format of this data base, as well as indicating default values
for important items such as the directory in which spooling is performed. This document
highlights the important information which may be placed printcap.

• UNIX is a trademark of Bell Laboratories.

- 2 -

2. Commands

2.1. Ipd - line printer dameon

The program /Pd(8), usually invoked at boot time from the /etc/rc file, acts as a master
server for coordinating and controlling the spooling queues configured in the printcap file.
When /pd is started it makes a single pass through the printcap database restarting any printers
which have jobs. In normal operation /pd listens for service requests on multiple sockets, one
in the UNIX domain (named "/dev/printer") for local requests, and one in the Internet
domain (under the "printer" service specification) for requests for printer access from off
machine; see socket (2) and services (5) for more information on sockets and service
specifications, respectively. Lpd spawns a copy of itself to process the request; the master dae­
mon continues to listen for new requests.

Clients communicate with /pd using a simple transaction oriented protocol. Authentica­
tion of remote clients is done based on the "privilege port" scheme employed by rshd(8C) and
rcmd(3X). The following table shows the requests understood by /pd. In each request the first
byte indicates the "meaning" of the request, followed by the name of the printer to which it
should be applied. Additional qualifiers may follow, depending on the request.

Request
.. '" Aprinter\n

"'Bprinter\n
"'Cprinter [users .. .] Gobs ...]\n
"'Dprinter [users ...] Gobs .. .1\n
"'Eprinter person [users .. .1 Gobs .. .]\n

Interpretation
check the queue for jobs and print any found
receive and queue a job from another machine
return short list of current queue state
return long list of current queue state
remove jobs from a queue

The Ipr (1) command is used by users to enter a print job in a local queue and to notify
the local /pd that there are new jobs in the spooling area. Lpd either schedules the job to be
printed locally, or in the case of remote printing, attempts to forward the job to the appropriate
machine. If the printer cannot be opened or the destination m~chine is unreachable, the job
will remain queued until it is possible to complete the work.

2.2. Ipq - show line printer queue
The /pq (1) program works recursively backwards displaying the queue of the machine

with the printer and then the queue(s) of the machine(s) that lead to it. Lpq has two forms of
output: in the default, short, format it gives a single line of output per queued job; in the long
format it shows the list of files, and their sizes, which comprise a job.

2.3. Iprm - remove jobs from a queue
The /prm (1) command deletes jobs from a spooling queue. If necessary, /prm will first kill

off a running daemon which is servicing the queue, restarting it after the required files are
removed. When removing jobs destined for a remote printer, /prm acts similarly to /pq except it
first checks locally for jobs to remove and then tries to remove files in queues off-machine.

2.4. Ipc - line printer control program
The /pc(8) program is used by the system administrator to control the operation of the

line printer system. For each line printer configured in /etc/printcap, fpc may be used to:

• disable or enable a printer,

• disable or enable a printer's spo~ling queue,
• rearrange the order of jobs in a spooling queue,
• find the status of printers, and their associated spooling queues and printer dameons.

- 3 -

3. Access control
The printer system maintains protected spooling areas so that users cannot circumvent

printer accounting or remove files other than their own. The strategy used to maintain pro­
tected spooling areas is as follows:

• The spooling area is writable only by a daemon user and spooling group.

• The Ipr program runs setuid root and setgid spooling. The root access is used to read any file
required, verifying accessibility with an access (2) call. The group ID is used in setting up
proper ownership of files in the spooling area for lprm.

• Control files in a spooling area are made with daemon ownership and group ownership spool­
ing. Their mode is 0660. This insures control files are no.t modified by a user and that no.
user can remove files except through /prm.

• The spoo.ling programs, /pd, /pq, and /prm run setuid root and setgid spooling to access spool
files and printers.

• The printer server, /pd, uses the same verification procedures as rshd(SC) in authenticating
remo.te clients. The ho.st on which a client resides must be present in the file
letc/hosts.equiv, used to create clusters of machines under a single administration.

In practice, none of Ipd, lpq, or /prm would have to run as user root if remote spooling
were not supported. In previous incarnations of the printer system /pd ran setuid daemon, set­
gid spooling, and /pq and /prm ran setgid spooling.

4. Setting up

The 4.2BSD release comes with the necessary programs installed and with the default line
printer queue created. If the system must be modified, the makefile in the directory
lusrlsrc/usr.lib/lpr should be used in recompiling and reinstalling the necessary programs.

The real work in setting up is to create the printcap file and any printer filters fer printers
not supported in the distribution system.

4.1. Creating a printcap file
The printcap database contains one or more entries per printer. A printer should have a

separate spooling directory; otherwise, jobs will be printed on different printers depending en
which printer daemon starts first. This section describes ho.w to create entries for printers
which do not conform to the default printer description (an LP-l1 style interface to a standard,
band printer).

4.1.1. Printers on serial lines

When a printer is connected via a serial communicatio.n line it must have the pro.per baud
rate and terminal mo.des set. The fell ~wing example is fer a DecWriter III printer co.nnected
locally via a 1200 baud serial line.

Ip/LA-1S0 DecWriter III:\
:lp== Idev/lp:br#1200:fs#06320:\
:ti=\f:of==/usr/lib/lpf:lf==/usr/adm/lpd-errs:

The Ip entry specifies the file name to. open for o.utput. In this case it co.uld be left o.ut since
"/dev/lp" is the default. The br entry sets the baud rate for the tty line and the fs entry sets
CRMOD, no parity, and XTABS (see tty (4». The tr entry indicates a fo.rm-feed should be
printed when the queue empties so. the paper can be torn off without turning the printer off-line
and pressing form feed. The of entry specifies the filter program lpi should be used for printing
the files; mo.re will be said abo.ut filters later. The last entry causes erro.rs to. be written to. the
file" lusr/adm/lpd-errs" instead of the conso.le.

- 4 -

4.1.2. Remote printers
Printers which reside on remote hosts should have an empty Ip entry. For example, the

following printcap entry would send output to the printer named "lp" on the machine
"ucbvax" .

l~efault line printer:\
:lp == :rm ==ucbvax:rp== lp:sd == lusrlspool/vaxlpd:

The rm entry is the name of the remote machine to connect to; this name must appear in the
letc/hosts database, see hosts (5). The rp capability indicates the name of the printer on the
remote machine is "lp"; in this case it could be left out since this is the default value. The sd
entry specifies "/usrlspool/vaxlpd" as the spooling directory instead of the default value of
" lusr I spool/I pd" .

4.2. Output filters
Filters are used to handle device dependencies and to perform accounting functions. The

output filter of is used to filter text data to the printer device when accounting is not used or
when all text data must be passed through a filter. It is not intended to perform accounting
since it is started only once, all text files are filtered through it, and no provision is made for
passing owners' login name, identifying the begining and ending of jobs, etc. The other filters
(if specified) are started for each file printed and perform accounting if there is an af entry. If
entries for both of and one of the other filters are specified, the output filter is used only to
print the banner page; it is then stopped to allow other filters access to the printer. An example
of a printer which requires output filters is the Benson-Varian.

valvarian/Benson-Varian:\
:lp==/dev/vaO:sd=-/usrlspool/vad:of==/usr/lib/vpf:\
:tf==/usr/Iib/rvcat:mx#2000:pl#58:tr==\f:

The tf entry specifies "/usr/lib/rvcat" as the filter to be used in printing troff(1) output. This
filter is needed to set the device into print mode for text, and plot mode for printing troff files
and raster images (see va (4V». Note that the page length is set to 58 lines by the pi entry for
8.5" by 11" fan-fold paper. To enable accounting, the varian entry would be augmented with an
af filter as shown below.

valvarian/Benson-Varian:\
:lp == I dey IvaO:sd == lusr Ispool/vad:of =- lusr llib/vpf:\
:if == lusr IIib/vpf:tf == lusr llib/rvcataf == lusr I adm/vaacct\
:mx#2000:pl#58:tr == \f:

s. Output filter specifications
The filters supplied with 4.2BSD handle printing and accounting for most common line

printers, the Benson-Varian, the wide (36") and narrow (11") Versatec printer/plotters. For
other devices or accounting methods, it may be necessary to create a new filter.

Filters are spawned by lpd with their standard input the data to be printed, and standard
output the printer. The standard error is attached to the If file for logging errors. A filter must
return a 0 exit code if there were no errors, 1 if the job should be reprinted, and 2 if the job
should be thrown away. When lprm sends a kill signal to the lpd process controlling printing, it
sends a SIGINT signal to all filters and descendents of filters. This signal can be trapped by
filters which nee.d to perform cleanup operations such as deleting temporary files.

Arguments passed to a filter depend on its type. The of filter is called with the following
arguments ..

o./iler -wwidth -llength

The width and length values come from the pw and pi entries in the printcap database. The if

- 5 -

filter is passed the following parameters.

filter [-c) -wwidth -llength -iindent -n login -h host accounting_file

The -c flag is optional, and only supplied when control characters are to be passed uninter­
preted to the printer (when the -I option of /pr is used to print the file). The -wand -I
parameters are the same as for the of filter. The. -n and -h parameters specify the login
name and host name of the job owner. The last argument is the name of the accounting file
from printcap. .

Afl other filters are called with the following arguments:

filter -xwidth -ylength -n login -h host accounting_file

The -x and -y options specify the horizontal and vertical page size in pixels (from the px and
py entries in the printcap file). The rest of the arguments are the same as for the if filter.

6. Line printer Administration

The Ipc program provides local control over line printer activity. The major commands
and their intended use will be described. The command format and remaining commands are
descri bed in /pc (8) .

abort and start
Abort terminates an active spooling daemon on the local host immediately and then dis­
ables printing (preventing new daemons from being started by Ipr). This is normally used
to forciblly restart a hung line printer daemon (Le., /pq reports that there is a daemon
present but nothing is happening). It does not remove any jobs from the queue (use the
/prm command instead). Start enables printing and requests Ipd to start printing jobs.

enable and disable
Enable and disable allow spooling in the local queue to be turned on/off. This will
allow/prevent Ipr from putting new jobs in the spool queue. It is frequently convenient to
tum spooling off while testing new line printer filters since the root user can still use Ipr
to put jobs in the queue but no one else can. The other main use is to prevent users
from putting jobs in the queue when the printer is expected to be unavailable for a long
time.

restart

stop

topq

Restart allows ordinary users to restart printer daemons when /pq reports that there is -no
daemon present.

Stop is used to halt a spooling daemon after the current job completes~ this also disables
printing. This is a clean way to shutdown a printer in order to perform maintenence, etc.
Note that users can still enter jobs in a spool queue while a printer is stopped

Topq places jobs at the top of a printer queue. This can be used to reorder high priority
jobs since Ipr only only provides first-come-first-serve ordering of jobs.

7. Troubleshooting

There are a number of messages which may be generated by the the line printer system.
This section categorizes the most common and explains the cause for their generation. Where
the message indicates a failure, directions are given to remedy the problem.

In the examples below, the name printer is the name of the printer. This would be one of
the names from the printcap database.

- 6 -

7.1. LPR

Ipr: printer: unknown printer

The printer was not found in the printcap database. Usually this is a typing mistake; how­
ever, it may indicate a missing or incorrect entry in the /etc/printcap file.

Ipr: printer: jobs queued, but cannot start daemon.

The connection to Ipd on the local machine failed. This usually means the printer server
started at boot time has died or is hung. Check the local socket /dev/printer to be sure it
still exists (if it does not exist, there is no /pd process running). Use

% ps ax I fgrep lpd

to get a list of process identifiers of running lpd's. The Ipd to kill is the one which is not
listed in any of the "lock" files (the lock file is contained in the spool directory of each
printer). Kill the master daemon using the following command.

% kill pid

Then remove /dev/printer and restart the daemon (and printer) with the following com­
mands.

% rm /dev/printer
% /usr/lib/lpd

Another possibility is that the Ipr program is not setuid root, setgid spooling. This can be
checked with

% Is -Ig /usr/ucb/lpr

Ipr: printer: printer queue is disabled
This means the queue was turned otT with

% Ipc disable printer

to prevent /pr from putting files in the queue. This is normally done by the system
manager when a printer is going to be down for a long time. The printer can be turned
back on by a super-user with /pc.

7.2. LPQ

waiting for printer to become ready (offline ?)

The printer device could not be opened by the daemon. This can happen for a number of
reasons, the most common being that the printer is turned otT-line. This message can also
be generated if the printer is out of paper, the paper is jammed, etc. The actual reason is
dependent on the meaning of error codes returned by system device driver. Not all
printers supply sufficient information to distinguish when a printer is otT-line or having
trouble (e.g. a printer connected through a serial line). Another possible cause of this
message is some other process, such as an output filter, has an exclusive open on the dev­
ice. Your only recourse here is to kill otT the otTending program (s) and restart the printer
with fpc.

printer is ready and printing
The /pq program checks to see if a daemon process exists for printer and prints the file
status. If the daemon is hung, a super user can use /pc to abort the current daemon and
start a new one.

- 7 -

waiting for host to come up
This indicates there is a daemon trying to connect to the remote machine named host in
order to send the files in the local queue. If the remote machine is up, /pd on the remote
machine is probably dead or hung and should be restarted as mentioned for /pr.

sending to host

The files should be in the process of being transferred to the remote host. If not, the local
daemon should be aborted and started with /pc.

Warning: printer is down
The printer has been marked as being unavailable with /pc.

Warning: no daemon present

The /pd process overseeing the spooling queue, as indicated in the "lock" file in that
directory, does not exist. This normally occurs only when the daemon has unexpectedly
died. The error log file for the printer should be checked for a diagnostic from the
deceased process. To restart an /pd, use

% lpc restart printer

7.3. LPRM

Iprm: printer: cannot restart printer daemon
This case is the same as when /pr prints that the daemon cannot be started.

7.4. LPD
The /pd program can write many different messages to the error log file (the file specified

in the If entry in printcap). Most of these messages are about files which can not be opened
and usually indicate the printcap file or the protection modes of the files are not correct. Files
may also be inaccessible if people manually manipulate the line printer system (i.e. they bypass
the /pr program).

In addition to messages generated by /pd, any of the filters that /pd spawns may also log
messages to this file.

7.5. LPC

could't start printer
This case- is the same as when /pr reports that the daemon cannot be started.

cannot examine spool directory

Error messages beginning with "cannot ... " are usually due to incorrect ownership and/or
protection· mode of the lock file, spooling directory or the /pc program.

Fsck - The UNIXt File System Check Program

Revised July 28, 1983

Marshall Kirk McKusick

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

T. J. Kowalski

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This document reflects the use of fsck with the 4.2BSD file system organi­
zation. This is a revision of the original paper written by T. J. Kowalski.

File System Check Program (fsck) is an interactive file system check and
repair program. Fsck uses the redundant structural information in the UNIX
file system to perform several consistency checks. If an inconsistency is
detected, it is reported to the operator, who may elect to fix or ignore each
inconsistency. These inconsistencies result from the permanent interruption of
the file system updates, which are performed every time a file is modified.
Unless there has been a hardware failure, fsck is able to repair corrupted file
systems using procedures based upon the order in which UNIX honors these
file system update requests.

The purpose of this document is to describe the normal updating of the
file system, to discuss the possible causes of file system corruption, and to
present the corrective actions implemented by fsck. Both the program and the
interaction between. the program and the operator are described.

tUNIX is a trademark of Bell Laboratories.
This work was done under grants from the National Science Foundation under grant MCSSO-05144, and the
Defense Advance Research Projects Agency (000) under Arpa Order No. 4031 monitored by Naval Elec­
tronic System Command under Contract No. NOOO39-S2-C-0235.

Fsck - i -

TABLE OF CONTENTS

1. Introduction

2. Overview of the file system
.1. Superblock
.2. Summary Information
.3. Cylinder groups
.4. Fragments
.5. Updates to the file system

3. Fixing corrupted file systems
.1. Detecting and correcting corruption
.2. Super block checking
.3. Free block checking
.4. Checking the inode state
.5. Inode links
.6. Inode data size
.7. Checking the data associated with an inode
.8. File system connectivity

Acknowledgements

References

4. Appendix A
.1. Conventions
.2. Initialization
.3. Phase 1 - Check Blocks and Sizes
.4. Phase 1b - Rescan for more Dups
.5. Phase 2 - Check Pathnames
.6. Phase 3 - Check Connectivity
.7. Phase 4 - Check Reference Counts
.8. Phase 5 - Check Cyl groups
.9. Phase 6 - Salvage Cylinder Groups
.10. Cleanup

CSRG.TR/9 July 28, 1983

Contents

. McKusick, et. al.

Fsck - 1 - Introduction

1. Introduction
This document reflects the use of fsck with the 4.2BSD file system organization. This is a

revision of the original paper written by T. J. Kowalski.

When a UNIX operating system is brought up, a consistency check of the file systems
should always be performed. This precautionary measure helps to insure a reliable environ­
ment for file storage on disk. If an inconsistency is discovered, corrective action must be taken.
Fsck runs in two modes. Normally it is run non-interactively by the system after a normal
boot. When running in this mode, it will only make changes to the file system that are known

. to always be correct. If an unexpected inconsistency is found fsck will exit with a non-zero exit
status, leaving the system running single-user. Typically the operator then runs fsck interac­
tively. When running in this mode, each problem is listed followed by a suggested corrective
action. The operator must decide whether or not the suggested correction should be made.

The purpose of this memo is to dispel the mystique surrounding file system inconsisten­
cies. It first describes the updating of the file system (the calm before the storm) and then
describes file system corruption (the storm). Finally, the set of deterministic corrective actions
used by fsck (the Coast Guard to the rescue) is presented.

CSRG TR/9 July 28, 1983 McKusick, et. al.

Fsck - 2 - Overview of the File System

2. Overview of the file system
The file system is discussed in detail in [Mckusick83]; this section gives a brief overview.

2.1. Superblock
A file system is described by its super-block. The super-block is built when the file system

is created (newfs (8» and never changes. The super-block contains the basic parameters of the
file system, such as the number of data blocks it contains and a count of the maximum number
of files. Because the super-block contains critical data, newfs replicates it to protect against
catastrophic loss. The default super block always resides at a fixed offset from the beginning of
the file system's disk partition. The redundant super blocks are not referenced unless a head
crash or other hard disk error causes the default super-block to be unusable. The redundant
blocks are sprinkled throughout the disk partition.

Within the file system are files. Certain files are distinguished as directories and contain
collections of pointers to files that may themselves be directories. Every file has a descriptor
associated with it called an inode. The inode contains information describing ownership of the
file, time stamps indicating modification and access times for the file, and an array of indices
pointing to the data blocks for the file. In this section, we assume that the first 12 blocks of the
file are directly referenced by values stored in the inode structure itselft. The inode structure
may also contain references to indirect blocks containing further data block indices. In a file
system with a 4096 byte block size, a singly indirect block contains 1024 further block
addresses, a doubly indirect block contains 1024 addresses of further single indirect blocks, and
a triply indirect block contains 1024 addresses of further doubly indirect blocks.

In order to create files with up to 2132 bytes, using only two levels of indirection, the
minimum' size of a file system block is 4096 bytes. The size of file system blocks can be any
power of two greater than or equal to 4096. The block size of the file system is maintained in
the super-block, so it is possible for file systems of different block sizes to be accessible simul­
taneously on the same system. The block size must be decided when newfs creates the file sys­
tem; the block size cannot be subsequently changed without rebuilding the file system.

2.2. Summary information
Associated with the super block is non replicated summary information. The summary

information changes as the file system is modified. The summary information contains the
number of blocks, fragments, inodes and directories in the file system.

2.3. Cylinder groups
The file system partitions the disk into one or· more areas called cylinder groups. A

cylinder group is comprised of one or more consecutive cylinders on a disk. Each cylinder
group includes inode slots for files, a block map describing available blocks in the cylinder
group, and summary information describing the usage of data blocks within the cylinder group.
A fixed number of inodes is allocated for each cylinder group when the file system is created.
The current policy is to allocate one inode for each 2048 bytes of disk space; this is expected to
be far more inodes than will ever be needed.

All the cylinder group bookkeeping information could be placed at the beginning of each
cylinder group. However if this approach were used, all the redundant information would be on
the top platter. A single hardware failure that destroyed the top platter could cause the loss of
all copies of the redundant super-blocks. Thus the cylinder group bookkeeping information
begins at a floating offset from the beginning of the cylinder group. The offset for the i+ 1 st
cylinder group is about one track further from the beginning of the cylinder group than it was
for the ith cylinder group. In this way, the redundant information spirals down into the pack;
any single track, cylinder, or platter can be lost without losing all copies of the super-blocks.

tThe actual number may vary from system to system, but is usually in the range 5-13.

CSRG TR/9 July 28, 1983 McKusick, et. al.

Fsck - 3 - Overview of the file system

Except for the first cylinder group, the space between the beginning of the cylinder group and
the beginning of the cylinder group information stores data.

2.4. Fragments

To avoid waste in storing small files, the file system space allocator divides a single file
system block into one or more fragments. The fragmentation of the file system is specified
when the file system is created; each file system block can be optionally broken into 2, 4, or 8
addressable fragments. The lower bound on the size of these fragments is constrained by the
disk sector size; typically 512 bytes is the lower bound on fragment size. The block map associ­
ated with each cylinder group records the space availability at the fragment level. Aligned frag­
ments are examined to determine block availability.

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is
represented by zero or more 4096 byte blocks of data, and possibly a single fragmented block.
If a file system block must be fragmented to obtain space for a small amount of data, the
remainder of the block is made available for allocation to other files. For example, consider an
11000 byte file stored on a 4096/1024 byte file system. This file uses two full size blocks and a
3072 byte fragment. If no fragments with at least 3072 bytes are available when the file is
created, a full size block is split yielding the necessary 3072 byte fragment and an unused 1024
byte fr.agment. This remaining fragment can be allocated to another file, as needed.

2.S. Updates to the file system

Every working day hundreds of files are created, modified, and removed. Every time a
file is modified, the operating system performs a series of file system updates. These updates,
when written on disk, yield a consistent file system. The file system stages all modifications of
critical information; modification can either be completed or cleanly backed out after a crash.
Knowing the information that is first written to the file system, deterministic procedures can be
developed to repair a corrupted file system. To· understand this process, the order that the
update requests were being honored must first be understood.

When a user program does an operation to change the file- system, such as a write, the
data to be written is copied into an internal in-core buffer in the kernel. Normally, the disk
update is handled asynchronously; the user process is allowed to proceed even though the data
has not yet been written to the disk. The data, along with the inode information reflecting the
change, is eventually written out to disk. The real disk write may not happen until long after
the write system call has returned. Thus at any given time, the file system, as it resides on the
disk, lags the state of the file system represented by the in-core information.

The disk information is updated to reflect the in-core information when the buffer is
required for another use, when a sync (2) is done (at 30 second intervals) by fetc/update (8), or
by manual operator intervention with the sync (8) command. If the system is halted without
writing out the in-core information, the file system on the disk will be in an inconsistent state.

If all updates are done asynchronously, several serious inconsistencies can arise. One
inconsistency is that a block may be claimed by two inodes. Such an inconsistency can occur
when the system is halted before the pointer to the block in the old inode has been cleared in
the copy of the old inode on the disk, and after the pointer to the block in the new inode has
been written out to the copy of the new inode on the disk. Here, there is no deterministic
method for deciding which inode should really claim the block. A similar problem can arise
with a multiply claimed inode.

The problem with asynchronous in ode updates can be avoided by doing all inode dealloca­
tions synchronously. Consequently, inodes and indirect blocks are written to the disk synchro­
nously (i.e. the process blocks until the information is really written to disk) when they are
being deallocated. Similarly inodes are kept consistent by synchronously deleting, adding, or
changing directory entries.

CSRG TR/9 July 28, 1983 McKusick, et.al.

Fsck - 4 - Fixing corrupted file systems

3. Fixing corrupted file systems

A file system can become corrupted in several ways. The most common of these ways are
improper shutdown procedures and hardware failures.

File systems may become corrupted during an unclean halt. This happens when proper
shutdown procedures are not observed, physically write-protecting a mounted file system, or a
mounted file system is taken off-line. The most common operator procedural failure is forget­
ting to sync the system before halting the cpu.

File systems may become further corrupted if proper startup procedures are not observed,
e.g., not checking a file system for inconsistencies, and not repairing inconsistencies. Allowing
a corrupted file system to be used (and, thus, to be modified further) can be disastrous.

Any piece of hardware can fail at any time. Failures can be as subtle as a bad block on a
disk pack, or as blatant as a non-functional disk-controller.

3.1. Detecting and correcting corruption

Normally fsck is run non-interactively. In this mode it will only fix corruptions that are
expected to occur from an unclean halt. These actions are a proper subset of the actions that
fsck will take when it is running interactively. Throughout this paper we assume that fsck is
being run interactively, and all possible errors can be encountered. When an inconsistency is
discovered in this mode, fsck reports the inconsistency for the operator to chose a corrective
action.

A quiescenti file system may be checked for structural integrity by performing consistency
checks on the redundant data intrinsic to a file system. The redundant data is either read from
the file system, or computed from other known values. The file system must be in a quiescent
state when fsck is run, since fsck is a multi-pass program.

In the following sections, we discuss methods to discover inconsistencies and possible
corrective actions for the cylinder group blocks, the inodes, the indirect blocks, and the data
blocks containing directory entries.

3.2. Super-block checking

The most commonly corrupted item in a file system is the summary information associ­
ated with the super-block. The summary information is prone to corruption because it is
modified with every change to the file system's blocks or inodes, and is usually corrupted after
an unclean halt.

The super-block is checked for inconsistencies involving file-system size, number of
inodes, free-block count, and the free-inode count. The file-system size must be larger than
the number of blocks used by the super-block and the number of blocks used by the list of
inodes. The file-system size and layout information are the most critical pieces of information
for fsck. While there is no way to actually check these sizes, since they are statically deter­
mined by newfs, fsck can check that these sizes are within reasonable bounds. All other file
system checks require that these sizes be correct. If fsck detects corruption in the static param­
eters of the default super-block, fsck requests the operator to specify the location of an alter­
nate super-block.

3.3. Free block checking

Fsck checks that all the blocks marked as free in the cylinder group block maps are not
claimed by any files. When all the blocks have been initially accounted for, fsck checks that the
number of free blocks plus the number of blocks claimed by the inodes equals the total number
of blocks in ·the file system.

* I.e., unmounted and not being written on.

CSRG TR/9 July 28, 1983 McKusick, et. al.

Fsck - 5 - Fixing corrupted file systems

If anything is wrong with the block allocation maps, fsck will rebuild them, based on the
list it has computed of allocated blocks.

The summary information associated with the super-block counts the total number of free
blocks within the file system. Fsck compares this count to the number of free blocks it found
within the file system. If the two counts do not agree, then fsck replaces the incorrect count in
the summary information by the actual free-block count.

The summary information counts the total number of free inodes within the file system.
Fsck compares this count to the number of free inodes it found within the file system. If the
two counts do not agree, then /sck replaces the incorrect count in the summary information by
the actual free-inode count.

3.4. Checking the inode state
An individual inode is not as likely to be corrupted as the allocation information. How­

ever, because of the great number of active inodes, a few of the inodes are usually corrupted.

The list of in odes in the file system is checked sequentially starting with inode 2 Gnode 0
marks unused inodes; inode 1 is saved for future generations) and progressing through the last
inode in the file system. The state of each inode is checked for inconsistencies involving for­
mat and type, link count, duplicate blocks, bad blocks, and inode size.

Each inode contains a mode word. This mode word describes the type and state of the
inode. Inodes must be one of six types: regular inode, directory inode, symbolic link inode,
special block inode, special character inode, or socket inode. Inodes may be found in one of
three allocation states: unallocated, allocated, and neither unallocated nor allocated. This last
state suggests an incorrectly formated inode. An inode can get in this state if bad data is writ­
ten into the inode list. The only possible corrective action is for fsck is to clear the inode.

3.S. Inode links
Each inode counts the total number of directory entries linked to the inode. Fsck verifies

the link count of each inode by starting at the root of the file system, and descending through
the directory structure. The actual link count for each inode is calculated during the descent.

If the stored link count is non-zero and the actual link count is zero, then no directory
entry appears for the inode. If this happens, fsck will place the disconnected file in the
lost+/ound directory. If the stored and actual link counts are non-zero and unequal, a directory
entry may have been added or removed without the in ode being updated. If this happens, fsck
replaces the incorrect stored link count by the actual link count.

Each inode contains a list, or pointers to lists (indirect blocks), of all the blocks claimed
by the inode. Since indirect blocks are owned by an inode, inconsistencies in indirect blocks
directly affect the inode that owns it.

Fsck compares each block number claimed by an inode against a list of already allocated
blocks. If another inode already claims a block number, then the block number is added to a
list of duplicate blocks. Otherwise, the list of allocated blocks is updated to include the block
number.

If there are any duplicate blocks, fsck will perform a partial second pass over the inode list
to find the inode of the duplicated block. The second pass is needed, since without examining
the files associated with these in odes for correct content, not enough information is available to
determine which inode is corrupted and should be cleared. If this condition does arise (only
hardware failure will cause it), then the inode with the earliest modify time is usually incorrect,
and should be cleared. If this happens, fsck prompts the operator to clear both in odes. The
operator must decide which one should be kept and which one should be cleared.

Fsck checks the range of each block number claimed by an inode. If the block number is
lower than the first data block in the file system, or greater than the last data block, then the
block number is a bad block number. Many bad blocks in an inode are usually caused by an

CSRG TR/9 July 28, 1983 McKusick, et. al.

Fsck - 6 - Fixing corrupted file systems

indirect block was not written to the file system, a condition which can only occur if there has
been a hardware failure. If an inode contains bad block numbers, jsck prompts the operator to
clear it.

3.6. Inode data size
Each inode contains a count of the number of data blocks that it contains. The number

of actual data blocks is the sum of the allocated data blocks and the indirect blocks. Fsck com­
putes the actual number of data blocks and compares that block count against the actual
number of blocks the inode claims. If an inode contains an incorrect count jsck prompts the
operator to fix it.

Each inode contains a thirty-two bit size field. The size is the number of data bytes in the
file associated with the inode. The consistency of the byte size field is roughly checked by com­
puting from the size field the maximum number of blocks that should be associated with the
inode, and comparing that expected block count against the actual number of blocks the inode
claims. .

3.7. Checking the data associated with an inode
An inode can directly or indirectly reference three kinds of data blocks. All referenced

blocks must be the same kind. The three types of data blocks are: plain data blocks, symbolic
link data blocks, and directory data blocks. Plain data blocks and symbolic link data blocks con­
tain the information stored in a file. Directory data blocks contain directory entries. Fsck can
only check the validity of directory data blocks.

Each directory data block is checked for several types of inconsistencies. These incon­
sistencies include directory inode numbers pointing to unallocated inodes, directory inode
numbers that are greater than the number of inodes in the file system, incorrect directory inode
numbers for" 0" and "00", and directories that are not attached to the file system. If the inode
number in a directory data block references an unallocated inode, then jsck will remove that
directory entry. Again, this condition can only arise when there ha.s been a hardware failure.

If a directory entry inode number references outside the inode list, then jsck will remove
that directory entry. This condition occurs if bad data is written into a directory data block.

The directory inode number entry for "." must be the first entry in the directory data
block. The inode number for "." must reference itself; e.g., it must equal the inode number
for the directory data block. The directory inode number entry for " •• " must be the second
entry in the directory data block. Its value must equal the inode number for the parent of the
directory entry (or the inode number of the directory data block if the directory is the root
directory). If the directory inode numbers are incorrect, jsck will replace them with the correct
values.

3.S. File system connectivity
Fsck checks the general connectivity of the file system. If directories are not linked into

the file system, then jsck links the directory back into the file system in the lost+Jound direc­
tory. This condition only occurs when there has been a hardware failure.

CSRG TR/9 July 28, 1983 McKusick, et. al.

Fsck - 7 - Fixing corrupted file systems

Acknowledgements
I thank Bill Joy, Sam Leffler, Robert Elz and Dennis Ritchie for their suggestions and

help in implementing the new file system. Thanks also to Robert Henry for his editorial input
to get this document together. Finally we thank our sponsors, the National Science Foundation
under grant MCS80-05144, and the Defense Advance Research Projects Agency (000) under
Arpa Order No. 4031 monitored by Naval Electronic System Command under Contract No.
N00039-82-C-0235. (Kirk McKusick, July 1983)

I would like to thank Larry A. Wehr for advice that lead to the first version of fsck and
Rick B. Brandt for adapting fsck to UNIX/TS. (T. Kowalski, July 1979)

References

[Dolotta78]

[Joy83]

[McKusick83]

[Ritchie78]

[Thompson78]

CSRG TR/9

Dolotta, T. A., and Olsson, S. B. eds., UNIX User's Manual, Edition 1.1
(January 1978).

Joy, W., Cooper, E., Fabry, R., Leffler, S., McKusick, M., and Mosher,
D. 4.2BSD System Manual, University of California at Berkeley, Com­
puter Systems Research Group Technical Report #4, 1982.

McKusick, M., Joy, W., Leffler, S., and Fabry, R. A Fast File System for
UNIX, University of California at Berkeley, Computer Systems Research
Group Technical Report #7, 1982.

Ritchie, D. M., and Thompson, K., The UNIX Time-Sharing System,
The Bell System Technical Journal 57, 6 (July-August 1978, Part 2), pp.
1905-29.

Thompson, K., UNIX Implementation, The Bell System Technical Journal
57, 6 (July-August 1978, Part 2), pp. 1931-46.

July 28, 1983 McKusick, et. al.

Fsck - 8 - Appendix A - Fsck Error Conditions

4. Appendix A - Fsck Error Conditions

4.1. Conventions

Fsck is a multi-pass file system check program. Each file system pass invokes a different
Phase of the /sck program. After the initial setup, /sck performs successive Phases over each
file system, checking blocks and sizes, path-names, connectivity, reference counts, and the map
of free blocks, (possibly rebuilding it), and performs some cleanup.

Normally /sck is run non-interactively to preen the file systems after an unclean halt. While
preen'ing a file system, it will only fix corruptions that are expected to occur from an unclean
halt. These actions are a proper subset of the actions that /sck will take when it is running
interactively. Throughout this appendix many errors have several options that the operator can
take. When an inconsistency is detected, /sck reports the error condition to the operator. If a
response is required, /sck prints a prompt message and waits for a response. When preen'ing
most errors are fatal. For those that are expected, the response taken is noted. This appendix
explains the meaning of each error condition, the possible responses, and the related error con­
ditions.

The error conditions are organized by the Phase of the /sck program in which they can occur.
The error conditions that may occur in more than one Phase will be discussed in initialization.

4.2. Initialization

Before a file system check can be performed, certain tables have to be set up and certain
files opened. This section concerns itself with the opening of files and the initialization of
tables. This section lists error conditions resulting from command line options, memory
requests, opening of files, status of files, file system size checks, and creation of the scratch file.
All of the initialization errors are fatal when the file system is being preen'ed.

Coptlon?
C is not a legal option to /sck; legal options are -b, -y, -n, and -po Fsck terminates on this
error condition. See the /sck (8) manual entry for further detail.

cannot alloc NNN bytes for blockmap
cannot alloc NNN bytes for freemap
cannot alloc NNN bytes for statemap
cannot alloc NNN bytes for lncntp
Fsck's request for memory for its virtual memory tables failed. This should never happen.
Fsck terminates on this error condition. See a guru.

Can't open checklist file: F
The file system checklist file F (usually letc/fstab) can not be opened for reading. Fsck ter­
minates on this error condition. Check access modes of F.

Can't stat root
Fsck's request for statistics about the root directory "I" failed. This should never happen.
Fsck terminates on this error condition. See a guru.

Can't stat F
Can't make sense out of name F
Fsck's request for statistics about the file system F failed. When running manually, it ignores
this file system and continues checking the next file system given. Check access modes of F.

Can't open F
Fsck's request attempt to open the file system Ffailed. When running manually, it ignores this

CSRGTR/9 July 28, 1983 McKusick, et. al.

Fsck - 9 - Appendix A - Fsck Error Conditions

file system and continues checking the next file system given. Check access modes of F.

F: (NO WRITE)
Either the -n flag was specified or /sck's attempt to open the file system F for writing failed.
When running manually, all the diagnostics are printed out, but no modifications are attempted
to fix them.

file is Dot a block or character device; OK
You have given /sck a regular file name by mistake. Check the type of the file specified.

Possible responses to the OK prompt are:

YES Ignore this error condition.

NO ignore this file system and continues checking the next file system given.

One of the following messages will appear:
MAGIC NUMBER WRONG
NCG OUT OF RANGE
CPG OUT OF RANGE
NCYL DOES NOT JIVE WITH NCG-CPG
SIZE PREPOSTEROUSLY LARGE
TRASHED VALUES IN SUPER BLOCK

and will be followed by the message:
F: BAD SUPER BLOCK: B
USE ·b OPTION TO FSCK TO SPECIFY LOCATION OF AN ALTERNATE
SUPER·BLOCK TO SUPPLY NEEDED INFORMATION; SEE fsck(S).
The super block has been corrupted. An alternative super block must be selected from among
those listed by newts (8) when the file system was created. For file systems with a blocksize
less than 32K, specifying -b 32 is a good first choice.

INTERNAL INCONSISTENCY: M
Fsck's has had an internal panic, whose message is specified as M. This should never happen.
See a guru.

CAN NOT SEEK: BLK B (CONTINUE)
Fsck's request for moving to a specified block number B in the file system failed. This should
never happen. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however the problem will persist.
This error condition will not allow a complete check of the file system. A second run of
/sck should be made to re-check this file system. If the block was part of the virtual
memory buffer cache, /sck will terminate with the message "Fatal 110 error".

NO terminate the program.

CAN NOT READ: BLK B (CONTINUE)
Fsck's request for reading a specified block number B in the file system failed. This should
never happen. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however, the problem will per­
sist. This error condition will not allow a complete check of the file system. A second
run of /sck should be made to re-check this file system. If the block was part of the

CSRGTRl9 July 28, 1983 McKusick, et. ale

Fsck - 10 - Appendix A - Fsck Error Conditions

virtual memory buffer cache, fsck will terminate with the message "Fatal 110 error".

NO terminate the program.

CAN NOT WRITE: BLK B (CONTINUE)
Fsck's request for writing a specified block number B in the file system failed. The disk is
write-protected. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however, the problem will per­
sist. This error condition will not allow a complete check of the file system. A second
run of fsck should be made to re-check this file system. If the block was part of the vir­
tual memory buffer cache, fsck will terminate with the message "Fatal 110 error".

NO terminate the program.

4.3. Phase 1 - Check Blocks and Sizes
This phase concerns itself with the inode list This section lists error conditions resulting

from checking inode types, setting up the zero-link-count table, examining inode block
numbers for bad or duplicate blocks, checking inode size, and checking inode format. All
errors in this phase except INCORRECT BLOCK COUNT are fatal if the file system is being
preen'ed,

CG C: BAD MAGIC NUMBER The magic number of cylinder group Cis wrong. This usually
indicates that the cylinder group maps have been destroyed. When running manually the
cylinder group is marked as needing to be reconstructed.

UNKNOWN FILE TYPE I-I (CLEAR) The mode word of the inode I indicates that the
inode is not a special block inode, special character inode, socket inode, regular inode, symbolic
link, or directory inode.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents. This will always invoke the UNALLOCATED
error condition in Phase 2 for each directory entry pointing to this inode.

NO ignore this error condition.

LINK COUNT TABLE OVERFLOW (CONTINUE)
An internal table for fsck containing allocated inodes with a link count of zero has no more
room. Recompile fsck with a larger value of MAXLNCNT.

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of the
file system. A second run of fsck should be made to re-check this file system. If another
allocated inode with a zero link count is found, this error condition is repeated.

NO terminate the program.

BBAD I-I
Inode I contains block number B with a number lower than the number of the first data block
in the file system or greater than the number of the last block in the file system. This error
condition may invoke the EXCESSIV~ BAD BLKS error condition in Phase 1 if inode I has
too many block numbers outside the file system range. This error condition will always invoke
the BAD/DUP error condition in Phase 2 and Phase 4.

CSRGTRl9 July 28, 1983 McKusick, et. al.

Fsck - 11 - Appendix A - Fsck Error Conditions

EXCESSIVE BAD BLKS I-I (CONTINUE)
There is more than a tolerable number (usually 10) of blocks with a number lower than the
number of the first data block in the file system or greater than the number of last block in the
file system associated with inode L
Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode in
the file system. This error condition will not allow a complete check of the file system. A
second run of fsck should be made to re-check this file system.

NO terminate the program.

BDUP I-I
Inode I contains block number B which is already claimed by another inode. This error condi­
tion may invoke the EXCESSIVE DUP BLKS error condition in Phase 1 if inode I has too
many block numbers claimed by other inodes. This error condition will always invoke Phase 1 b
and the BAD/DUP error condition in Phase 2 and Phase 4. .

EXCESSIVE DUP BLKS I-I (CONTINUE)
There is more than a tolerable number (usually 10) of blocks claimed by other inodes.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode in
the file system. This error condition will not allow a complete check of the file system. A
second run of fsck should be made to re-check this file system.

NO terminate the program.

DUP TABLE OVERFLOW (CONTINUE)
An internal table in fsck containing duplicate block numbers has no more room. Recompile
fsck with a larger value of DUPTBLSIZE.

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of the
file system. A second run of fsck should be made to re-check this file system. If another
duplicate block is found, this error condition will repeat.

NO terminate the program.

PARTIALLY ALLOCATED INODE I-I (CLEAR)
Inode I is neither allocated nor unallocated.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.

NO ignore this error condition.

INCORRECT BLOCK COUNT I-I {X should be 1? (CORRECT)
The block count for inode I is X blocks, but should be Y blocks. When preen'ing the count is
corrected.

Possible responses to the CORRECT prompt are:

YES replace the block count of inode I with Y.
NO ignore this error condition.

CSRG TR/9 July 28, 1983 McKusick, et. a1.

Fsck - 12 - Appendix A - Fsck Error Conditions

4.4. Phase IB: Rescan for More Dups

When a duplicate block is found in the file system, the file system is rescanned to find the
inode which previously claimed that block. This section lists the error condition when the
duplicate block is found.

BDUP I-I
Inode I contains block number B that is already claimed by another inode. This error condition
will always invoke the BAD/DUP error condition in Phase 2. You can determine which in odes
have overlapping blocks by examining this error condition and the DUP error condition in
Phase 1.

4.5. Phase 2 - Check Pathnames
This phase concerns itself with removing directory entries pointing to error conditioned

inodes from Phase 1 and Phase 1 b. This section lists error conditions resulting from root inode
mode and status, directory inode pointers in range, and directory entries pointing to bad inodes.
All errors in this phase are fatal if the file system is being preen' ed.

ROOT INODE UNALLOCATED. TERMINATING.
The root inode (usually inode number 2) has no allocate mode bits. This should never happen.
The program will terminate.

NAME TOO LONG F
An excessively long path name has been found. This is usually indicative of loops in the file
system name space. This can occur if the super user has made circular links to directories. The
offending links must be removed (by a guru).

ROOT INODE NOT DIRECTORY (FIX)
The root inode (usually inode number 2) is not directory inode type.

Possible responses to the FIX prompt are:

YES replace the root inode's type to be a directory. If the root inode's data blocks are not
directory blocks, a VERY large number of error conditions will be produced.

NO terminate the program.

DUPS/BAD IN ROOT IN ODE (CONTINUE)
Phase 1 or Phase 1 b have found duplicate blocks or bad blocks in the root inode (usually inode
number 2) for the file system.

Possible responses to the CONTINUE prompt are:

YES ignore the DUPS/BAD error condition in the root inode and attempt to continue to run
the file system check. If the root inode is not correct, then this may result in a large
number of other error conditions.

NO terminate the program.

lOUT OF RANGE I-INAME-F(REMOVE)
A directory entry F has an inode number I which is greater than the end of the inode list.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.

NO ignore this error condition.

CSRGTRl9 July 28, 1983 McKusick, et. ale

Fsck - 13 - Appendix A - Fsck Error Conditions

UNALLOCATED I -I OWNER- 0 MODE-M SIZE-S MTIME- TDIR-F (REMOVE)
A directory entry F has a directory inode I without allocate mode bits. The owner 0, mode M,
size S, modify time T, and directory name F are printed.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.

NO ignore this error condition.

UNALLOCATED I-I OWNER-O MODE-MSIZE-S MTlME- TFILE-F (REMOVE)
A directory entry F has an in ode I without allocate mode bits. The owner 0, mode M, size S,
modify time T, and file name F are printed.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.

NO ignore this error condition.

DUP /BAD I -I OWNER - 0 MODE -M SIZE -S MTlME- T DIR - F (REMOVE)
Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated with directory entry
F, directory inode 1 The owner 0, mode M, size S, modify time T, and directory name Fare
printed.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.

NO ignore this error condition.

DUP /BAD I-I OWNER - 0 MODE -M SIZE -S MTlME - TFILE-F (REMOVE)
Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with directory entry
F, inode I. The owner 0, mode M, size S, modify time T, and file name F are printed.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.

NO ignore this error condition.

ZERO LENGTH DIRECTORY I-I OWNER-O MODE-MSIZE-SMTIME-TDIR-F
(REMOVE)
A directory entry F has a size S that is zero. The owner 0, mode M, size S, modify time T,
and directory name F are printed.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed; this will always invoke the BAD/DUP error condition in
Phase 4.

NO ignore this error condition.

DIRECTORY TOO SHORT I-I OWNER-O MODE-M SIZE-S MTIME-T DIR=F
(FIX)

·A directory Fhas been found whose size S is less than the minimum size directory. The owner
0, mode M, size S, modify time T, and directory name F are printed.'

Possible responses to the FIX prompt are:

YES increase the size of the directory to the minimum directory size.

NO ignore this directory.

CSRG TR/9 July 28, 1983 McKusick, et. ale

Fsck - 14 - Appendix A - Fsck Error Conditions

DIRECTORY CORRUPTED I-I OWNER-O MODE-M SIZE-S MTIME-T DIR-F
(SALVAGE)
A directory with an inconsistent internal state has been found.
Possible responses to the FIX prompt are:

YES throwaway all entries up to the next 512-byte boundary. This rather drastic action can
throwaway up to 42 entries, and should be taken only after other recovery efforts have
failed.

NO Skip up to the next 512-byte boundary and resume reading, but do not modify the direc­
tory.

BAD INODE NUMBER FOR '.' I-I OWNER-O MODE-M SIZE-S MTIME-T
DIR-F(FIX)
A directory I has been found whose inode number for'.' does does not equal 1.
Possible responses to the FIX prompt are:

YES change the inode number for '.' to be equal to 1.
NO leave the inode number for '.' unchanged.

MISSING '.' I-IOWNER-OMODE-MSIZE-SMTIME-TDIR-F(FIX)
A directory I has been found whose first entry is unallocated.
Possible responses to the FIX prompt are:

YES make an entry for '.' with inode number equal to 1.
NO leave the directory unchanged.

MISSING '.' I-IOWNER-OMODE-MSIZE-SMTIME-TDIR-F
CANNOT FIX, FIRST ENTRY IN DIRECTORY CONTAINS F
A directory I has been found whose first entry is F. Fsck cannot resolve this problem. The file
system should be mounted and the offending entry F moved elsewhere. The file system should
then be unmounted and fsck should be run again.

MISSING '.' I-IOWNER-OMODE-MSIZE-SMTIME-TDIR-F
CANNOT FIX, INSUFFICIENT SPACE TO ADD '.'
A directory I has been found whose first entry is not '.'. Fsck cannot resolve this problemas it
should never happen. See a guru.

EXTRA '.' ENTRY I-IOWNER-OMODE-MSIZE-SMTIME-TDIR-F(FIX)
A directory I has been found that has more than one entry for ~.'.

Possible responses to the FIX prompt are:

YES remove the extra entry for '.'.

NO leave the directory unchanged.

BAD INODE NUMBER FOR ' •• ' I-I OWNER-O MODE-M SIZE-S MTIME-T
DIR-F(FIX)
A directory I has been found whose inode number for ' .. ' does does not equal the parent of I.
Possible responses to the FIX prompt are:

YES change the inode number for ' .. ' .to be equal to the parent of 1.
NO leave the inode number for ' .. ' unchanged.

CSRGTRl9 July 28, 1983 McKusick, et. ale

Fsck - 15 - Appendix A - Fsck Error Conditions

MISSING ' •• ' I -I OWNER - 0 MODE - M SIZE - S MTIME - T DIR - F (FIX)
A directory I has been found whose second entry is unallocated.

Possible responses to the FIX prompt are:

YES make an entry for' .. ' with inode number equal to the parent of I.
NO leave the directory unchanged.

MISSING ' •• ' I -I OWNER - 0 MODE - M SIZE - S MTIME - T DIR - F
CANNOT FIX, SECOND ENTRY IN DIRECTORY CONTAINS F
A directory I has been found whose second entry is F. Fsck cannot resolve this problem. The
file system should be mounted and the offending entry F moved elsewhere. The file system
should then be unmounted and /sck should be run again.

MISSING ' •• ' I-/OWNER-OMODE-MSIZE-SMTIME-TDIR-F
CANNOT FIX, INSUFFICIENT SPACE TO ADD ' •• '
A directory I has been found whose second entry is not ' .. '. Fsck cannot resolve this problem
as it should never happen. See a guru.

EXTRA ' •• ' ENTRY I-/OWNER-OMODE-MSIZE-SMTIME-TDIR-F(FIX)
A directory I has been found that has more than one entry for ' .. '.

Possible responses to the FIX prompt are:

YES remove the extra entry for ' .. '.

NO leave the directory unchanged.

4.6. Phase 3 - Check Connectivity
This phase concerns itself with the directory connectivity seen in Phase 2. This section

lists error conditions resulting from unreferenced directories, and missing or full lost+/ound
directories.

UNREF DIR I -I OWNER - 0 MODE - M SIZE -S MTIME - T (RECONNECT)
The directory inode I was not connected to a directory entry when the file system was traversed.
The owner 0, mode M, size S, and modify time T of directory inode I are printed. When
preen'ing, the directory is reconnected if its size is non-zero, otherwise it is cleared.

Possible responses to the RECONNECT prompt are:

YES reconnect directory inode I to the file system in the directory for lost files (usually
lost+/ound). This may invoke the lost+/ound error condition in Phase 3 if there are
problems connecting directory inode I to lost+/ound This may also invoke the CON­
NECTED error condition in Phase 3 if the link was successful.

NO ignore this error condition. This will always invoke the UNREF error condition in Phase
4.

SORRY. NO lost+found DIRECTORY
There is no lost + found directory in the root directory of the file system; /sck ignores the
request to link a directory in lost + /ound. This will always invoke the UNREF error condition
in Phase 4. Check access modes of lost+/ound. See /sck(8) manual entry for further detail.
This error is fatal if the file system is being preen'ed.

SORRY. NO SPACE IN lost+found DIRECTORY
There is no space to add another entry to the lost+/ound directory in the root directory of the
file system; /sck ignores the request to link a directory in lost+/ound. This will always invoke
the UNREF error condition in Phase 4. Clean out unnecessary entries in lost+/ound or make

CSRG TR/9 July 28, 1983 McKusick, et. ale

Fsck - 16 - Appendix A - Fsck Error Conditions

lost+found larger. See ftck(8) manual entry for further detai1. This error is fatal if the file sys­
tem is being preen' ed.

DIR 1-11 CONNECTED. PARENT WAS 1-12
This is an advisory message indicating a directory inode 11 was successfully connected to the
lost+found directory. The parent inode 12 of the directory inode 11 is replaced by the inode
number of the lost+found directory.

4.7. Phase 4 - Check Reference Counts
This phase concerns itself with the link count information seen in Phase 2 and Phase 3.

This section lists error conditions resulting from unreferenced files, missing or full lost+found
directory, incorrect link counts for files, directories, symbolic links, or special files, unrefer­
enced files, symbolic links, and directories, bad and duplicate blocks in files, symbolic links, and
directories, and incorrect total free-inode counts. All errors in this phase are correctable if the
file system is being preen'ed except running out of ~pace in the lost+found directory.

UNREF FILE I-IOWNER-OMODE-MSIZE-SMTIME-T(RECONNECT)
Inode I was not connected to a directory entry when the file system was traversed. The owner
0, mode M, size S, and modify time T of inode I are printed. When preen'ing the file is
cleared if either its size or its link count is zero, otherwise it is reconnected.
Possible responses to the RECONNECT prompt are:

YES reconnect inode I to the file system in the directory for lost files (usually lost+found).
This may invoke the lost + found error condition in Phase 4 if there are problems connect­
ing inode I to lost+found.

NO ignore this error condition. This will always invoke the CLEAR error condition in Phase
4.

(CLEAR)
The inode mentioned in the immediately previous error condition can not be reconnected. This
cannot occur if the file system is being preen'ed, since lack of space to reconnect files is a fatal
error.
Possible responses to the CLEAR prompt are:

YES de-allocate the inode mentioned in the immediately previous error condition by zeroing Its
contents.

NO ignore this error condition.

SORRY. NO lost+found DIRECTORY
There is no lost+found directory in the root directory of the file system; /sck ignores the
request to link a file in iost+found. This will always invoke the CLEAR error condition in
Phase 4. Check access modes of lost+found. This error is fatal if the file system is being
preen'ed.

SORRY. NO SPACE IN lost+found DIRECTORY
There is no space to add another entry to the lost+ found directory in the root directory of the
file system; ftck ignores the request' to link a file in lost+found. This will always invoke the
CLEAR error condition in Phase 4. Check size and contents of lost+ found. This error is fatal
if the file system is being preen' ed.

LINK COUNT FILE I-I OWNER-O MODE-M SIZE-S MTIME-T COUNT-X
SHOULD BE Y (ADJUST)
The link count for inode I which is a file, is X but should be . Y. The owner 0, mode M, size S,

CSRG TR/9 July 28, 1983 McKusick, et. al.

Fsck - 17 - Appendix A - Fsck Error Conditions

and modify time T are printed. When preen'ing the link count is adjusted.

Possible responses to the ADJUST prompt are:

YES replace the link count of file inode / with Y.
NO ignore this error condition.

LINK COUNT DIR I-I OWNER-O MODE-M SIZE-S MTIME-T COUNT-X
SHOULD BE Y (ADJUST)
The link count for inode I which is a directory, is X but should be y. The owner 0, mode M,
size S, and modify time T of directory inode I are printed. When preen'ing the link count is
adjusted.

Possible responses to the ADJUST prompt are:

YES replace the link count of directory inode I with Y.
NO ignore this error condition.

LINK COUNT FI-IOWNER-OMODE-MSIZE-SMTIME-TCOUNT-XSHOULD
BE Y (ADJUST)
The link count for F inode I is X but should be Y. The name F, owner 0, mode M, size S, and
modify time T are printed. When preen'ing the link count is adjusted.

Possible responses to the ADJUST prompt are:

YES replace the link count of iriode / with Y.
NO ignore this error condition.

UNREF FILE I-IOWNER-OMODE-MSIZE-SMTIME-T(CLEAR)
Inode I which is a file, was not connected to a directory entry when the file system was
traversed. The owner 0, mode M, size S, and modify time T of inode I are printed. When
preen'ing, this is a file that was not connected because its size or link count was zero, hence it
is cleared.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.

NO ignore this error condition.

UNREF DIR I-/OWNER-O MODE-MSIZE-SMTIME- T (CLEAR)
Inode / which is a directory, was' not connected to a directory entry when the file system was
traversed. The owner 0, mode M, size S, and modify time T of inode I are printed. When
preen'ing, this is a directory that was not connected because its size or link count was zero,
hence it is cleared.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.

NO ignore this error condition.

BAD/DUP FILE I-IOWNER-OMODE-MSIZE-SMTIME-T(CLEAR)
Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated with file inode I. The
owner 0, mode M, size S, and modify time T of inode I are printed. This error cannot arise
when the file system is being preen'ed; as it would have caused a fatal error earlier.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.

NO ignore this error condition.

CSRGTR/9 July 28, 1983 McKusick, et. al.

Fsck - 18 - Appendix A - Fsck Error Conditions

BAD/DUP DIR I-IOWNER-OMODE=MSIZE=SMTIME-T(CLEAR)
Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated with directory inode
1. The owner 0, mode M, size S, and modify time T of inode I are printed. This error cannot
arise when the file system is being preen' ed, as it would have caused a fatal error earlier.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.

NO ignore this error condition.

FREE INODE COUNT WRONG IN SUPERBLK (FIX)
The actual count of the free inodes does not match the count in the super-block of the file sys­
tem. When preen'ing, the count is fixed.

Possible responses to the FIX prompt are:

YES replace the count in the super-block by the actual count.

NO ignore this error condition.

4.8. Phase 5 - Check Cyl groups

This phase concerns itself with the free-block maps. This section lists error conditions
resulting from allocated blocks in the free-block maps, free blocks missing from free-block
maps, and the total free-block count incorrect.

CG C: BAD MAGIC NUMBER
The magic number of cylinder group C is wrong. This usually indicates that the cylinder group
maps have been destroyed. When running manually the cylinder group is marked as needing to
be reconstructed. This error is fatal if the file system is being preen' ed.

EXCESSIVE BAD BLKS IN BIT MAPS (CONTINUE)
An inode contains more than a tolerable number (usually 10) of blocks claimed by other inodes
or that are out of the legal range for the file system. This error is fatal if the file system is
being preen' ed.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the free-block maps and continue the execution of fsck.

NO terminate the program.

SUMMARY INFORMATION TBAD
where T is one or more of:
<INODE FREE)
(BLOCK OFFSETS)
(FRAG SUMMARIES)
(SUPER BLOCK SUMMARIES)

. -

The indicated summary information was found to be incorrect. This error condition will always
invoke the BAD CYLINDER GROUPS condition in Phase 6. When preen'ing, the summary
information is recomputed.

XBLK(S) MISSING
X blocks unused by the file system w~re not found in the free-block maps. This error condition
will always invoke the BAD CYLINDER GROUPS condition in Phase 6. When preen'ing, the
block maps are rebuilt.

BAD CYLINDER GROUPS (SALVAGE)
Phase 5 has found bad blocks in the free-block maps, duplicate blocks in the free-block maps,

CSRGTRl9 July 28, 1983 McKusick, et. al.

Fsck - 19 - Appendix A - Fsck Error Conditions

or blocks missing from the file system. When preen'ing, the cylinder groups are reconstructed.
Possible responses to the SAL V AGE prompt are:

YES replace the actual free-block maps with a new free-block maps.

NO ignore this error condition.

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX)
The actual count of free blocks does not match the count in the super-block of the file system.
When preen'ing, the counts are fixed.

Possible responses to the FIX prompt are:

YES replace the count in the super-block by the actual count.

NO ignore this error condition.

4.9. Phase 6 - Salvage Cylinder Groups
This phase concerns itself with the free-block maps reconstruction. No error messages are

produced.

4.10. Cleanup

Once a file system has been checked, a few cleanup functions are performed. This section
lists advisory messages about the file system and modify status of the file system.

V flies, W used, X free (Y frags, Z blocks)
This is an advisory message indicating that the file system checked contained V files using W
fragment sized blocks leaving X fragment sized blocks free in the file system. The numbers in
parenthesis breaks the free count down into Y free fragments and Z free full sized blocks .

••••• REBOOT UNIX •••••
This is an advisory message indicating that the root file system has been modified by /sck. If
UNIX is not rebooted immediately, the work done by /sck may be undone by the in-core copies
of tables UNIX keeps. When preen'ing, /sck will exit with a code of 4. The auto-reboot script
interprets an exit code of 4 by issuing a reboot system call.

••••• FILE SYSTEM WAS MODIFIED •••••
This is an advisory message indicating that the current file system was modified by /sck. If this

. file system is mounted or is the current root file system, /sck should be halted and UNIX
rebooted. If UNIX is not rebooted immediately, the work done by /sck may be undone by the
in-core copies of tables UNIX keeps.

CSRG TR/9 July 28, 1983 McKusick, et. al.

SENDMAIL
INSTALLATION AND OPERATION GUIDE

. Eric Allman
Britton-Lee, Inc.

Version 4.2

Sendmail Installation and Operation Guide

TABLE OF CONTENTS

1. BASIC INSTALLATION ... 1
1.1. Off-The-Shelf Configurations 2
1.2. Installation Using the Makefile .. 2
1.3. Installation by Hand 2

1.3.1. lib/libsys.a .. 2
1.3.2. /usr/lib/sendmail ... 3
1.3.3. /usr/lib/sendmail.cf ... 3
1.3.4. /usr/ucb/newaliases ... 3
1.3.5. /usr/lib/sendmail.cf ... 3
1.3.6. /usr/spool/mqueue .. 3
1.3.7. /usr/lib/aliases· ... ~...................... 3
1.3.8. /usr/lib/sendmail.fc ... 3
1.3.9. /etc/rc .. 4
1.3.10. /usr/lib/sendmail.hf ... 4
1.3.11. /usr/lib/sendmail.st ... 4
1.3.12. /etc/syslog ... 4
1.3.13. /usr/ucb/newaliases ... 4
1.3.14. /usr/ucb/mailq ... 4

2. NORMAL OPERATIONS ...•... 5
2.1. Quick Configuration Startup 5
2.2. The System Log ... 5

2.2.1. Format 5
2.2.2. Levels ;........................ .. 5

2.3. The Mail Queue ... 5
2.3.1. Printing the queue ... 5
2.3.2. Format of queue files .. 5
2.3.3. Forcing the queue .. 6

2.4. The Alias Database 7
2.4.1. Rebuilding the alias database '................. 7
2.4.2. Potential problems 8
2.4.3. List -owners 8

2.5. Per-User Forwarding (forward Files) .. 8
2.6. Special Header Lines .. 8

2.6.1. Return-Receipt-To: .. 9
2.6.2. Errors-To: .. 9
2.6.3. Apparently-To: ... 9

3. ARGUMENTS ... 9
3.1. Queue Interval ... 9
3.2. -Daemon Mode ... 9
3.3. Forcing the Queue ... 9
3.4. Debugging .. 9
3.5. Trying a Different Configuration File .. 10
3.6. Changing the Values of Options .. 10

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide ii

4. TUNING .. 10
4.1. Timeouts .. 10

4.1.1. Queue interval ... 10
4.1.2. Read timeouts 10
4.1.3. Message timeouts .. 11

4.2. Delivery Mode ... 11
4.~. Log Level ... 11
4.4. File Modes 11

4.4.1. To suid or not to suid? ... 11
4.4.2. Temporary file modes .. 12
4.4.3. Should my alias database be writable? .. 12

5. THE WHOLE SCOOP ON THE CONFIGURATION FILE .. 12
5.1. The Syntax ... 12

5.1.1. Rand S - rewriting rules ... 12
5.1.2. D - define macro ... 13
5.1.3. C and F - define classes ... 13
5.1.4. M - define mailer ... 13
5.1.5. H - define header ... 14
5.1.6. 0 - set option ... 14
5.1.7. T - define trusted users 14
5.1.8. P - precedence definitions ... 14

5.2. The Semantics .. 15
5.2.1. Special macros, conditionals .. 15
5.2.2. Special classes .. 17
5.2.3. The left hand side!.................................... 17
5.2.4. The right hand side .. 17
5.2.5. Semantics of rewriting rule sets ... 18
5.2.6. Mailer flags etc. .. 18
5.2.7. The "error" mailer .. 19

5.3. Building a Configuration File From Scratch ... 19
5.3.1. What you are trying to do .. 19
5.3.2. Philosophy ... :... 19

5.3.~.1. Large site, many hosts - minimum information 19
5.3.2.2. Small site - complete information ... 20
5.3.2.3. Single host ... ~............... 20

5.3.3. Relevant issues .. 20
5.3.4. How to proceed .. 21
5.3.5: Testing the rewriting rules - the -bt flag ... 21
5.3.6. Building mailer descriptions ... 22

Appendix A. COMMAND LINE FLAGS ... 24
Appendix B. CONFIGURATION OPTIONS ... 25
Appendix C. MAILER FLAGS ... 27
Appendix D. OTHER CONFIGURATION ... 29
Appendix E. SUMMARY OF SUPPORT FILES ... 33

Version 4.2 Last Mod 7/28/83

SENDMAIL

INSTALLATION AND OPERATION GUIDE

Eric Allman
Britton-Lee, Inc.

Version 4.2

Sendmail implements a general purpose internetwork mail routing facility under the
UNIX· operating system. It is not tied to anyone transport protocol - its function may be
likened to a crossbar switch, relaying messages from one domain into another. In the process,
it can do a limited amount of message header editing to put the message into a format that is
appropriate for the receiving domain. All of this is done under the control of a configuration
file.

Due to the requirements of flexibility for sendmail, the configuration file can seem some­
what unapproachable. However, there are only a few basic configurations for most sites, for
which standard configuration files have been supplied. Most other configurations can be built
by adjusting an existing configuration files incrementally.

Although sendmail is intended to run without the need for monitoring, it has a number of
features that may be used to monitor or adjust. the operation under unusual circumstances.
These features are described.

Section one describes how to do a basic sendmail installation. Section two explains the
day-to-day information you should know to maintain your mail system. If you have a relatively
normal site, these two sections should contain sufficient information for you to install sendmail
and keep it happy. Section three describes some parameters that may be safely tweaked. Sec­
tion four has information regarding the command line arguments. Section five contains the
nitty-gritty information about the configuration file. This section is for masochists and people
who must write their own configuration file. The appendixes give a brief but detailed explana­
tion of a number of features not described in the rest of the paper.

The references in this paper are actually found in the companion paper Sendmail - An
Internetwork Mail Router. This other paper should be read before this manual to gain a basic
understanding of how the pieces fit together.

1. BASIC INSTALLATION
There are two basic steps to installing sendmail. The hard part is to build the

configuration table. This is a file that sendmail reads when it starts up that describes the
mailers it knows about, how to parse addresses, how to rewrite the message header, and the
settings of various options. Although the configuration table is quite complex, a
configuration can usually be built by adjusting an existing off-the-shelf configuration. The
second part is actually doing the installation, i.e., creating the necessary files, etc.

The remainder of this section will describe the installation of sendmail assuming you
can use one of the existing configurations and that the standard installation parameters are
acceptable. All pathnames and examples are given from the root of the sendmail subtree.

·UNIX is a trademark of Bell Laboratories.

Sendmail Installation and Operation Guide 1

Sendmail Installation a"nd Operation Guide 2

1.1. Off-The-Shelf Configurations
The configuration files are all in the subdirectory cf of the sendmail directory. The

ones used at Berkeley are in m4 (1) format; files with names ending ".m4" are m4
include files, while files with names ending ".mc" are the master files. Files with names
ending ".cr' are the m4 processed versions of the corresponding ".mc" file.

Two off the shelf configuration files are supplied to handle the basic cases:
cparpaproto.cffor Arpanet (TCP) sites and cpuucpproto.cffor UUCP sites. These are not
in m4 format. The file you need should be copied to a file with the same name as your
system, e.g.,

cp uucpproto.cf ucsfcgl.cf

This file is now ready for installation as lusrlliblsendmail.ct

1.2. Installation Using the Makefile
A makefile exists in the root of the sendmail directory that will do all of these steps

for a 4.2BSD system. It may have to be slightly tailored for use on other systems.

Before using this makefile, you should already have created your configuration file
and left it in the file "cflsystem.cr' where system is the name of your system (Le., what
is returned by hostname (1». If you do not have hostname you can use the declaration
"HOST==system" on the make(l) command line. You should also examine the file
md!colffig. m4 and change the m4 macros there to reflect any libraries and compilation
flags you may need.

The basic installation procedure is to type:

make
make install

in the root directory of the sendmail distribution. This will make all binaries and install
them in the standard places. The second make command must be executed as the
superuser (root).

1.3. Installation by Hand
Along with building a configuration file, you will have to install the sendmail startup

into your UNIX system. If you are doing this installation in conjunction with a regular
Berkeley UNIX install, these steps will already be complete. Many of these steps will
have to be executed as the superuser (root).

1.3.1. lib/libsys.a
The library in lib/libsys.a contains some routines that should in some sense be

part of the system library. These are the system logging routines and the new direc­
tory access routines (if required). If you are not running the new 4.2BSD directory
code and do not have the compatibility routines installed in your system library, you
should execute the commands:

cd lib
make ndir

This will compile and install the 4.2 compatibility routines in the library. You should
then type:

cd lib # if required
make

This will recompile and fill the library.

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide 3

1.3.2. lusr/lib/sendmail
The binary for sendmail is located in lusr/lib. There is a version available in

the source directory that is probably inadequate for your system .. You should plan on
recompiling and installing the entire system:

cd src
rm -f *.0
make
cp sendmail lusr llib

1.3.3. lusr/lib/sendmail.cf
The configuration file that you created earlier should be installed in

lusr llibl sendmail.cf:

cp cfl system.cf lusr/lib/sendmail.cf

1.3.4. lusr lucb/newaliases
If you are running delivermail, it is critical that the newa/iases command be

replaced. This can just be a link to sendmail:
rm -f lusr/ucb/newaliases
In lusr/lib/sendmail/usr/ucb/newaliases

1.3.5. lusr/lib/sendmail.cf
The configuration file must be installed in lusr llib. This is described above.

1.3.6. lusrlspooIlmqueue
The directory lusr/spoollmqueue should be created to hold the mail queue. This

directory should be mode 777 unless sendmail is run setuid, when mqueue should be
owned by the sendmail" owner and mode 755. -

1.3.7. lusr/lib/aliases·
The system aliases are held in three files. The file "/usr/lib/aliases" is the

master copy. A sample is given in "lib/aliases" which includes some aliases which
must be defined:

cp lib/aliases lusr/lib/aliases

You should extend this file with any aliases that are apropos -to your system.

Normally sendmaillooks at a version of these files maintained by the dbm (3)
routines. These are stored in "/usr/lib/aliases.dir" and "/usr/lib/aliases.pag." These
can initially be created as empty files, but they will have to be initialized promptly.
These should be mode 666 if you are running a reasonably relaxed system:

cp Idev/null/usr/lib/aliases.dir
cp Idev/null/usr/lib/aliases.pag
chmod 666 lusr llibl aliases. •
newaliases

1.3!8. lusr/lib/sendmail.fc
If you intend to install the frozen version of the configuration file (for quick

startup) you should create the file lusr/lib/sendmail.fc and initialize it. This step may
be safely skipped.

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide

cp Idev/null lusr/lib/sendmail.fc
/usr/lib/sendmail - bz

1.3.9. /etc/rc

4

It will be necessary to start up the sendmail daemon when your system reboots.
This daemon performs two functions: it listens on the SMTP socket for connections
(to receive mail from a remote system) and it processes the queue periodically to
insure that mail gets delivered when hosts come up.

Add the following lines to "/etc/rc" (or "/etc/rc.local" as appropriate) in the
area where it is starting up the daemons:

if [-f /usr/lib/sendmail]; then

fi

(cd lusrlspool/mqueue; rm -f [Inx]f*)
/usr/lib/sendmail - bd -q30m &
echo -n ' sendmail' >/dev/console

The "cd" and "rm" commands insure that all lock files have been removed; extrane­
. ous lock files may be left around if the system goes down in the middle of processing

a message. The line that actually invokes sendmail has two flags: "-bd" causes it to
listen on the SMTP port, and "-q30m" causes it to run the queue every half hour.

If you are not running a version of UNIX that supports Berkeley TCP lIP, do
not include the -bd flag.

1.3.10. /usr/lib/sendmail.hf
This is the help file used by the SMTP HELP command. It should be copied

from "libl sendmail.hf":

cp lib/sendmail.hf lusr/lib

1.3.11. /usr/lib/sendmail.st
If you wish to collect statistics about your mail traffic, you should create the file

"/usr /lib/ sendmail.st":

cp Idev/null lusr/lib/sendmail.st
chmod 666 lusr/lib/sendmail.st

This file does not grow. It is printed with the program "aux/mailstats."

1.3.12. /etc/syslog
You may want to run the sysiog program (to collect log information about send­

mail). This program normally resides in letclsysiog, with support files letclsysiog.conj
and letclsysiog.pid. The program is located in the aux subdirectory of the sendmail dis­
tribution. The file letclsysiog.conjdescribes the file(s) that sendmail will log in. For a
complete description of syslog, see the manual page for sysiog (8) (located in
sendmailldoc on the distribution).

1.3.13. lusr/ucb/newaliases
If sendmaii is invoked as "newaliases," it will simulate the -bi flag (Le., will

rebuild the alias database; see below). This should be a link to lusr/lib/sendmail.

1.3.14. lusr/ucb/mailq
If sendmail is invoked as "mailq," it will simulate the -bp flag (Le., sendmail

will print the contents of the mail queue; see below). This should be a link to
lusr llibl sendmail.

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide 5

2. NORMAL OPERATIONS

2.1. Quick Configuration Startup
A fast version of the configuration file may be set up by using the - bz flag:

lusr/lib/sendmail -bz

This creates the file lusrlliblsendmail.ft ("frozen configuration"). This file is an image of
sendmaifs data space after reading in the configuration file. If this file exists, it is used
instead of lusrl/ib/sendmai/.c/ sendmail.ft must be rebuilt manually every time sendmail.c/
is changed.

The frozen configuration file will be ignored if a -C flag is specified or if sendmail
detects that it is out of date. However, the heuristics are not strong so this should not
be trusted.

2.2. The System Log
The system log is supported by the sys/og(8) program.

2.2.1. Format
Each line in the system log consists of a timestamp, the name of the machine

that generated it (for logging from several machines over the ethemet), the word
"sendmail:", and a message.

2.2.2. Levels
If you have sys/og (8) or an equivalent installed, you will be able to do logging.

There is a large amount of information that can be logged. The log is arranged as a
succession of levels. At the lowest level only extremely strange situations are logged.
At the highest level, even the most mundane and uninteresting events are recorded
for posterity. As a convention, log levels under ten are considered "useful;" log lev­
els above ten are usually for debugging purposes.

A complete description of the log levels is given in section 4.3.

2.3. TheMail Queue
The mail queue should be processed transparently. However, you may find .that

manual intervention is sometimes necessary. For example, if a major host is down for a
period of time the queue may become clogged. Although sendmail ought to recover
gracefully when the host comes up, you may find performance unacceptably had in the
meantime.

2.3.1. Printing the queue
The contents of the queue can be printed using the mailq command (or by

specifying the - bp flag to sendmaiI):

maiIq

This will produce a listing of the queue id's, the size of the message, the date the
message entered the queue, and the sender and recipients.

2.3.2. Format of queue files
All queue files have the form xfAA 99999 where AA 99999 is the id for this file

and the x is a type. The types are:

d The data file. The message body (excluding the header) is kept in this file.

Version 4.2

The lock file. If this file exists, the job is currently being processed, and a
queue run will not process the file. For that reason, an extraneous If file can

Last Mod 7/28/83

Sendmail Installation and Operation Guide 6

cause a job to apparently disappear (it will not even time out!).

n This file is created when an id is being created. It is a separate file to insure
that no mail can ever be destroyed due to a race condition. It should exist for
no more than a few milliseconds at any given time.

q The queue control file. This file contains the information necessary to process
the job.

t A temporary file. These are an image of the qf file when it is being rebuilt. It
should be renamed to a qf file very quickly.

x A transcript file, existing during the life of a session showing everything that
happens during that session.

The qf file is structured as a series of lines each beginning with a code letter.
The lines are as follows:

o The name of the data file. There may only be one of these lines.

H A header definition. There may be any number of these lines. The order is
important: they represent the order in the final message. These use the same
syntax as header definitions in the configuration file.

R A recipient address. This will normally be completely aliased, but is actually
realiased when the job is processed. There will be one line for each recipient.

S The sender address. There may only be one of these lines.

T The job creation time. This is used to compute when to time out the job.

P The current message priority. This is used to order the queue. Higher numbers
mean lower priorities. The priority increases as the message sits in the queue.
The initial priority depends on the message class and the size of the message.

M A message. This line is printed by the mailq command, and is generally used to
store status information. It can contain any text.

As an example, the following is a queue file sent to "mckusick@calder" and
"wnj":

DdfA13557
Seric
T404261372
P132
Rmckusick@calder
Rwnj
H?D?date: 23-0ct-82 15:49:32-PDT (Sat)
H?F?from: eric (Eric Allman)
H?x?full-name: Eric Allman
Hsubject: this is an example message
Hmessage-id: <8209232249.13557@UCBARPA.BERKELEY.ARPA>
Hreceived: by UCBARPA.BERKELEY.ARPA (3.227 [10/22/82])

id A13557; 23-0ct-82 15:49:32-PDT (Sat)
Hphone: (415) 548-3211
HTo: mckusick@calder, wnj

This shows the name of the data file, the person who sent the message, the submis­
sion time (in seconds since January 1, 1970), the message priority, the message class,

. the recipients, and the headers for the message.

2.3.3.. Forcing the queue

Sendmail should run the queue automatically at intervals. The algorithm is to
read and sort the queue, and then to attempt to process all jobs in. order. When it
attempts to run the job, sendmail first checks to. see if the job is locked. If so, it

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide 7

ignores the job.

There is no attempt to insure that only one queue processor exists at any time,
since there is no guarantee that a job cannot take forever to process. Due to the
locking algorithm, it is impossible for one job to freeze the queue. However, an
uncooperative recipient host or a program recipient that never returns can accumulate
many processes in your system. Unfortunately, there is no way to resolve this
without violating the protocQI.

In some cases, you may find that a major host going down for a couple of days
may create a prohibitively large queue. This will result in sendmail spending an inor­
dinate amount of time sorting the queue. This situation can be fixed by moving the
queue to a temporary place and creating a new queue. The old queue can be run
later when the offending host returns to service.

To do this, it is acceptable to move the entire queue directory:

cd /usr/spool
mv mqueue omqueue; mkdir mqueue; chmod 777 mqueue

You should then kill the existing daemon (since it will still be processing in the old
queue directory) and create a new daemon.

To run the old mail queue, run the following command:

/usr/lib/sendmail -oQ/usr/spool/omqueue -q

The -oQ flag specifies an alternate queue directory and the -q flag says to just run
every job in the queue. If you have a tendency toward voyeurism, you can use the
-v flag to watch what is going on .

. When the queue is finally emptied, you can remove the directory:

rmdir /usr/spool/omqueue

2.4. The Alias Database -
The alias database exists in two forms. One is a text form, maintained in the file

/usrllib/aliases. The aliases are of the form

name: namel, name2, ...

Only local names may be aliased; e.g.,

eric@mit-xx: eric@berkeley

will not have the desired effect. Aliases may be continued by starting any continuation
lines with a space or a tab. Blank lines and lines beginning with a sharp sign (" #") are
comments.

The second form is processed by the dbm (3) library. This form is in the files
/usrllib/aliases.dir and /usrllib/aliases.pag. This is the form that sendmail actually uses to
resolve aliases. This technique is used to improve performance.

2.4.1. Rebuilding the alias database

The DBM version of the database may be rebuilt explicitly by executing the
command

newaliases

. This is equivalent to giving sendmail the - bi flag:

/usr/lib/sendmail - bi

If the "D" option is specified in the configuration, sendmail will rebuild the alias
database automatically if possible when it is out of date. The conditions under which
it will do this are:

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide

(1) The DBM version of the database is mode 666. -or­

(2) Sendmail is running setuid to root.

8

Auto-rebuild can be dangerous on heavily loaded machines with large alias files; if it
might take more than five minutes to rebuild the database, there is a chance that
several processes will start the rebuild process simultaneously.

2.4.2. Potential problems

There are a number of problems that can occur with the alias database. They all
result from a sendmail process accessing the DBM version while it is only partially
built. This can happen under two circumstances: One process accesses the database
while another process is rebuilding it, or the process rebuilding the database dies (due
to being killed or a system crash) before completing the rebuild.

Sendmail has two techniques to try to relieve these problems. First, it ignores
interrupts while rebuilding the database; this avoids the problem of someone aborting
the process leaving a partially rebuilt database. Second, at the end of the rebuild it
adds an alias of the form

@:@

{which is not normally legan. Before sendmail will access the database, it checks to
insure that this entry exists l . It will wait up to five minutes for this entry to appear,
at which point it will force a rebuild itself2.

2.4.3. List owners

If an error occurs on sending to a certain address, say "x', sendmail will look
for an alias of the form "owner-x' to receive the errors. This is typically useful for a
mailing list where the submitter of the list has no control over the maintanence of
the list itself; in this case the list maintainer would be the owner of the list. For
example:

unix-wizards: eric@ucbarpa, wnj@monet, nosuchuser,
sam@matisse

owner-unix-wizards: eric@ucbafpa

would cause "eric@ucbarpa" to get the error that will occur when someone sends to
unix-wizards due to the inclusion of "nosuchuser" on the list.

2.5. Per-User Forwarding {.forward Files}

As an alternative to the alias database, any user may put a file with the name" .for­
ward" in his or her home directory. If this file exists, sendmail redirects mail for that
user to the list of addresses listed in the .forward file. For example, if the home direc­
tory for user "mckusick" has a .forward file with contents:

mckusick@ernie
kirk@calder

then any mail arriving for "mckusick" will be redirected to the specified accounts.

2.6. Special Header Lines

Several header lines have special interpretations defined by the configuration file.
Others have interpretations built into sendmail that cannot be changed without changing
the code. These builtins are described here.

lThe "a" option is required in the configuration for this action to occur. This should normally be specified un­
less you are running delivermail in parallel with sendmail.

lNote: the "D" option must be specified in the configuration file for this operation to occur.

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide 9

2.6.1. Return-Receipt-To:

If this header is sent, a message will be sent to any specified addresses when the
final delivery is complete. if the mailer has the I flag (local delivery) set in the mailer
descriptor.

2.6.2. Errors-To:

If errors occur anywhere during processing, this header will cause error mes­
sages to go to the listed addresses rather than to the sender. This is intended for
mailing lists.

2.6.3. Apparently-To:

If a message comes in with no recipients listed in the message (in a To:, Cc:, or
Bcc: line) then send mail will add an "Apparently-To:" header line for any recipients it
is aware of. This is not put in as a standard recipient line to warn any recipients that
the list is not complete.

At least one recipient line is required under RFC 822.

3. ARGUMENTS

The complete list of arguments to sendmail is described in detail in Appendix A. Some
important arguments are described here.

3.1. Queue Interval

The amount of time between forking a process to run through the queue is defined
by the -q flag. If you run in mode f or a this can be relatively large, since it will only
be relevant when a host that· was down comes back up. If you run in q mode it should
be relatively short, since it defines the maximum amount of time that a message may sit
in the queue.

3.2. Daemon Mode

If you allow incoming mail over an IPC connection, you should have a daemon
running. This should be set by your lete/re file using the - bd flag. The - bd flag and
the -q flag may be combined in one call:

/usr/lib/sendmail -bd -q30m

3.3. Forcing the Queue

In some cases you may find that the queue has gotten clogged for some reason.
You can force a queue run using the -q flag (with no value). It is entertaining to use
the -v flag (verbose) when this is done to watch what happens:

/usr/lib/sendniail -q -v

3.4. Debugging

There are a fairly large number of debug flags built into sendmail. Each debug flag
has a number and a level, where higher levels means to print out more information.
The convention is that levels greater than nine are "absurd," i.e., they print out so
much information that you wouldn't normally want to see them except for debugging
that particular piece of code. Debug flags are set using the -d option; the syntax is:

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide

debug-flag: -d debug-list
debug-list: debug-option [, debug-option]
debug-option: debug-range [. debug-level]
debug-range: integer I integer - integer
debug-level: integer

where spaces are for reading ease only. For example,

-d12 Set flag 12 to level 1
-d12.3 Set flag 12 to level 3
- d3-17 Set flags 3 through 17 to level 1
-d3-17.4 Set flags 3 through 17 to level 4

10

For a complete list of the available debug flags you will have to look at the code (they
are too dynamic to keep this documentation up to date).

3.S. Trying a Different Configuration File

An alternative configuration file can be specified using the -C flag; for example,

/usr/lib/sendmail -Ctest.cf

uses the configuration file test.c/instead of the default lusrlliblsendmail.cf. If the -C flag
has no value it defaults to sendmail.c/in the current directory.

3.6. Changing the Values of Options
Options can be overridden using the -0 flag. For example,

/usr/lib/sendmail -oT2m

sets the T (timeout) option to two minutes for this run only.

4. TUNING
There are a number of configuration parameters you may want to change, depending

on the requirements of your site. Most of these are set using an option in the configuration
file. For example, the line "OT3d" sets option "T" to the value "3d" (three days).

4.1. Timeouts
All time intervals are set using a scaled syntax. For example, "10m" represents

ten minutes, whereas "2h30m" represents two and a half hours. The full set of scales
is:

s seconds
m minutes
h hours
d days
w weeks

4.1.1. Queue interval

The argument to the -q flag specifies how often a subdaemon will run the
queue. This is typically set to between five minutes and one half hour.

4.1.2. Read timeouts

It is possible to time out when reading the standard input or when reading from
a remote SMTP server. Technically, this is not acceptable within the published proto­
cols. However, it might be appropriate to set it to something large in certain environ­
ments (such as an hour). This will reduce the chance of large numbers of idle dae­
mons piling up on your system. This timeout is set using the r option in the
configuration file.

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide 11

4.1.3. Message timeouts
After sitting in the queue for a few days, a message will time out. This is to

insure that at least the sender is aware of the inability to send a message. The
timeout is typically set to three days. This timeout is set using the T option in the
configuration file.

The time of submission is set ip the queue, rather than the amount of time left
until timeout. As a result, you can flush messages that have been hanging for a short
period by running the queue with a short message timeout. For example,

lusr/lib/sendmail -oTld -q

will run the queue and flush anything that is one day old.

4.2. Delivery Mode
There are a number of delivery modes that sendmail can operate in, set by the "d"

configuration option. These modes specify how quickly mail will be delivered. Legal
modes are:

i deliver interactively (synchronously)
b deliver in background (asynchronously)
q queue only (don't deliver)

There are tradeoffs. Mode "i" passes the maximum amount of information to the
sender, but is hardly ever necessary. Mode "q" puts the minimum load on your
machine, but means that delivery may be delayed for up to the queue interval. Mode
"b" is probably a good compromise. However, this mode can cause large numbers of
processes if you have a mailer that takes a long time to deliver a message.

4.3. Log Level
The level of logging can be set for sendmail. The default using a standard

configuration table is level 9. The levels are as follows:

o No logging.

1 Major problems only.

2 Message collections and failed deliveries.

3 Successful deliveries.

4 Messages being defered (due to a host being down, etc.).

5 Normal message queueups.

6 Unusual but benign incidents, e.g., trying to process a locked queue file.

9 Log internal queue id to external message id mappings. This can be useful for trac­
ing a message as it travels between several hosts.

12 Several messages that are basically only of interest when debugging.

16 Verbose information regarding the queue.

4.4. File Modes
There are a number of files that may have a number of modes. The modes depend

on what functionality you want and the level of security you require.

4.4.1. To suid or not to suid?
Sendmail can safely be made setuid to root. At the point where it is about to

exec (2) a mailer, it checks to see if the userid is zero; if so, it resets the userid and
groupid to a default (set by the u and g options). (This can be overridden by setting
the S flag to the mailer for mailers that are trusted and must be called as root.)

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide 12

However, this will cause mail processing to be accounted (using sa (8» to root rather
than to the user sending the mail.

4.4.2. Temporary file modes

The mode of all temporary files that sendmail creates is determined by the "F"
option. Reasonable values for this option are 0600 and 0644. If the more permissive
mode is selected, it will not be necessary to run sendmail as root at all (even when
running the queue).

4.4.3. Should my alias database be writable?
At Berkeley we have the alias database (lusr/lib/aliases·) mode 666. There are

some dangers inherent in this approach: any user can add him-/her-self to any list, or
can "steal" any other user's mail. However, we have found users to be basically
trustworthy, and the cost of having a read-only database greater than the expense of
finding and eradicating the rare nasty person.

The database that sendmail actually used is represented by the two files
aliases.dir and aliases.pag (both in /usr/lib). The mode on these files should match
the mode on /usr/lib/aliases. If aliases is writable and the DBM files (aliases.dir and
aliases.pag) are not, users will be unable to reflect their desired changes through to
the actual database. However, if aliases is read-only and the DBM files are writable, a
slightly sophisticated user can arrange to steal mail anyway.

If your DBM files are not writable by the world or you do not have auto-rebuild
enabled (with the "D" option), then you must be careful to reconstruct the alias
database each time you change the text version:

newaliases

If this step is ignored or forgotten any intended changes will also be ignored or for­
gotten.

5. THE WHOLE SCOOP ON THE CONFIGURATION FILE
This section describes the configuration file in detail, including hints on how to write

one of your own if you have to.

There is one point that should be made clear immediately: the syntax of the
configuration file is designed to be reasonably easy to parse, since this is done every time
sendmail starts up, rather than easy for a human to read or write. On the "future project"
list is a configuration-file compiler.

An overview of the configuration file is given first, followed by details of the seman-
tics.

5.1. The Syntax

The configuration file is organized as a series of lines, each of which begins with a
single character defining the semantics for the rest of the line. Lines beginning with a
space or a tab are continuation lines (although the semantics are not well defined in
many places). Blank lines and lines beginning with a sharp symbol (' #') are comments.

5.1.1. Rand S - rewriting rules
The core of address parsing are the rewriting rules. These are an ordered pro­

duction system. Sendmail scans through the set of rewriting rules looking for a match
on the left hand side (LHS) of the rule. When a rule matches, the address is
replaced by the right hand side (RHS) of the rule.

There are several sets of rewriting rules. Some of the rewriting sets are used
internally and must have specific semantics. Other rewriting sets do not have

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide 13

specifically assigned semantics, and may be referenced by the mailer definitions or by
other rewriting sets.

The syntax of these two commands are:

Sn

Sets the current ruleset being collected to n. If you begin a ruleset more than once it
deletes the old definition.

Rlhs rhs comments

The fields must be separated by at least one tab character; there may be embedded
spaces in the fields. The Ihs is a pattern that is applied to the input. If it matches,
the input is rewritten to the rhs. The ~omments are ignored.

5.1.2. D - define macro

Macros are named with a single character. These may be selected from the
entire ASCII set, but user-defined macros should be selected from the set of upper
case letters only. Lower case letters and special symbols are used internally.

The syntax for macro definitions is:

Dxval

where x is the name of the macro and val is the value it should have. Macros can be
interpolated in most places using the escape sequence $x.

5.1.3. C and F - define classes

Classes of words may be defined to match on the left hand side of rewriting
rules. For example a class of all local names for this site might be created so that
attempts to send to oneself can be eliminated. These can either be defined directly in
the configuration file or read in from another file. Classes may be given names from
the set of upper case letters. Lower case letters and special characters are reserved
for system use.

The syntax is:
Cc word1 word2 ...
F cfile [format]

The first form defines the class c to match any of the named words. It is permissible
to split them among multiple lines; for example, the two forms:

CHmonet ucbmonet

and

CHmonet
CHucbmonet

are equivalent. The second form reads the elements of the class c from the named
file; the format is a scanf(3) pattern that should produce a single string.

5.1.4. M - define mailer

Programs and interfaces to mailers are defined in this line. The format is:

Mname, {jield- value }*
where name is the name of the mailer (used internally only) and the "field=name"
pairs define attributes of the mailer. Fields are:

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide 14

Path The pathname of the mailer
Flags Special flags for this mailer
Sender A rewriting set for sender addresses
Recipient A rewriting set for recipient addresses
Argv An argument vector to pass to this mailer
Eol The end-of-line string for this mailer
Maxsize The maximum message length to this mailer

Only the first character of the field name is checked.

5.1.5. H - define header

The format of the header lines that sendmail inserts into the message are
defined by the H line. The syntax of this line is:

H[? ntfiags?] hname: htemplate

Continuation lines in this spec are reflected directly into the outgoing message. The
htemplate is macro expanded before insertion into the message. If the ntfiags (sur­
rounded by question marks) are specified, at least one of the specified flags must be
stated in the mailer definition for this header to be automatically output. If one of
these headers is in the input it is reflected to the output regardless of these flags.

Some headers have special semantics that will be described below.

5.1.6. 0 - set option

There are a number of "random" options that can be set from a configuration
file. Options are represented by single characters. The syntax of this line is:

00 value
This sets option 0 to be value. Depending on the option, value may be a string, an
integer, a boolean (with legal values "t", "T", "f', or "F"; the default is TRUE),
or a time interval.

5.1. 7. T - define trusted users

Trusted users are those users who are permitted to override the sender address
using the -f flag. These typically are "root," "uucp," and "network," but on some
users it may be convenient to extend this list to include other users, perhaps to ~~p­
port a separate UUCP login for each host. The syntax of this line is:

T user 1 user 2 ...
There may be more than one of these lines.

5.1.8. P - precedence definitions

Values for the "Precedence:" field may be defined using the P control line.
The syntax of this field is:

Pname==num

When the name is found in a "Precedence:" field, the message class is set to num.
Higher numbers mean higher precedence. Numbers less than zero have the special
property that error messages will not be returned. The default precedence is zero.
For example, our list of precedences is:

Version 4.2

Pfirst-class == 0
Pspecial-delivery== 100
Pjunk == - 100

Last Mod 7/28/83

Sendmail Installation and Operation Guide 15

5.2. The Semantics
This section describes the semantics of the configuration file.

5.2.1. Special macros, conditionals

Macros are interpolated using the construct $x, where x is the name of the
macro to be interpolated. In particular, lower case letters are reserved to have special
semantics, used to pass information in or out of sendmail, and some special charac­
ters are reserved to provide conditionals, etc.

The following macros must be defined to transmit information into sendmail:

e The SMTP entry message
j The "official" domain name for this site
I The format of the UNIX from line
n The name of the daemon (for error messages)
o The set of "operators" in addresses
q default format of sender address

The $e macro is printed out when SMTP starts up. The first word must be the $j
macro. The $j macro should be in RFC821 format. The $1 and $n macros can be
considered constants except under terribly unusual circumstances. The $0 macro con­
sists of a list of characters which will be considered tokens and which will separate
tokens when doing parsing. For example, if "r" were in the $0 macro, then the
input "address" would be scanned as three tokens: "add," "r," and "ess." Finally,
the $q macro specifies how an address should appear in a message when it is
defaulted. For example, on our system these definitions are:

De$j Sendmail $v ready at $b
DnMAILER-DAEMON
DIFrom $g $d
Do.:%@!"==/
Dqg?x ($x)$.
Dj$H.$D

An acceptable alternative for the $q macro is "$?x$x $. < $g >". These correspond
to the following two formats:

eric@ Berkeley (Eric Allman)
Eric Allman < eric@Berkeley>

Some macros are defined by sendmail for interpolation into argv's for mailers or
for other contexts. These macros are:

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide

a The origination date in Arpanet format
b The current date in Arpanet format
c The hop count
d The date in UNIX (ctime) format
f The sender (from) address
g The sender address relative to the recipient
h The recipient host

The queue id
p Sendmail's pid
r Protocol used
s Sender's host name
t A numeric representation of the current time
u The recipient user
v The version number of sendmail
w The hostname of this site
x The full name of the sender
y The id of the sender's tty
z The home directory of the recipient

16

There are three types of dates that can be used. The $a and Sb macros are in
Arpanet format; $a is the time as extracted from the "Date:" line of the message (if
there was one), and Sb is the current date and time (used for postmarks). If no
"Date:" line is found in the incoming message, $a is set to the current time also.
The $d macro is equivalent to the $a macro in UNIX (ctime) format.

The Sf macro is the id of the sender as originally determined; when mailing to a
specific host the 51 macro is set to the address of the sender relative to the recipient.
For example, if I send to "bollard@matisse" from the machine "ucbarpa" the Sf
macro will be "eric" and the 51 macro will be "eric@ucbarpa."

The Sx macro is set to the full name of the sender. This can be determined in
several ways. It can be passed as flag to sendmail. The second choice is the value of
the "Full-name:" line in the header if it exists, and the third choice is the comment
field of a "From:" line. If all of these fail, and if the message is being originated
locally, the full name is looked up in the letc/passwd file.

When sending, the $h, Su, and Sz macros get set to the host, user, and home
directory {if local} of the recipient. The first two are set from the S@ and S: part of
the rewriting rules, respectively.

The Sp and St macros are used to create unique strings (e.g., for the
"Message-Id:" field). The Si macro is set to the queue id on this host; if put into the
timestamp line it can be extremely useful for tracking messages. The Sy macro is set
to the id of the terminal of the sender (if known); some systems like to put this in
the Unix "From" line. The Sv macro is set to be the version number of sendmait,
this is normally put in timestamps and has been proven extremely useful for debug­
ging. The Sw macro is set to the name of this host if it can be determined. The $c
field is set to the "hop count," i.e., the number of times this message has been pro­
cessed. This can be determined by the - h flag on the command line or by counting
the timestamps in the message.

The Sr and Ss fields are set to the protocol used to communicate with sendmail
and the sending hostname; these are not supported in the current version.

Conditionals can be specified using the syntax:

$?x text 1 SI text2 $.

This interpolates text1 if the macro Sx is set, and text2 otherwise. The "else" (~
clause may be omitted.

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide 17

5.2.2. Special classes
The class $=w is set to be the set of all names this host is known by. This can

be used to delete local hostnames.

5.2.3. The left hand side
The left hand side of rewriting rules contains a pattern. Normal words are sim­

ply matched directly. Metasyntax is introduced using a dollar sign. The metasymbols
are:

$* Match zero or more tokens
$+ Match one or more tokens
$- Match exactly one token
$=x Match any token in class x
S-x Match any token not in class x

If any of these match, they are assigned to the symbol $n for replacement on the
right hand side, where n is the index in the LHS. . For example, if the LHS:

$-:$+

is applied to the input:

UCBARPA:eric

the rule will match, and the values passed to the RHS will be:

$1 UCBARPA
$2 eric

5.2.4. The right hand side
When the right hand side of a rewriting rule matches, the input is deleted and

replaced by the right hand side. Tokens are copied directly from the RHS unless they
are begin with a dollar sign. Metasymbols are:

$n Substitute indefinite token n from LHS
$> n "Call" ruleset n
$# mailer Resolve to mailer
$@ host Specify host
$: user Specify user

The $n syntax substitutes the corresponding value from a $+, $-, $*, $=, or
S- match on the LHS. It may be used anywhere.

The $> n syntax causes the remainder of the line to be substituted as usual and
then passed as the argument to ruleset n. The final value of ruleset n then becomes
the substitution for this rule.

The $# syntax should only be used in ruleset zero. It causes evaluation of the
ruleset to terminate immediately, and signals to sendmail that the address has com­
pletely resolved. The complete syntax is:

S# mailer$@ hostS: user
This specifies the {mailer, host, user} 3-tuple necessary to direct the mailer. If the
mailer is local the host part may be omitted. The mailer and host must be a single
word, but the user may be multi-part.

A RHS may also be preceeded by a $@ or a $: to control evaluation. A $@
prefix causes the ruleset to return with the remainder of the RHS as the value. A $:
prefix causes the rule to terminate immediately, but the ruleset to continue; this can
be used to avoid continued application of a rule. The prefix is stripped before con­
tinuing.

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide 18

The $@ and $: prefixes may preceed a $> spec; for example:

R$+ $:$>7$1

matches anything, passes that to ruleset seven, and continues; the $: is necessary to
avoid an infinite loop.

5.2.5. Semantics of rewriting rule sets
There are five rewriting sets that have specific semantics. These are related as

depicted by figure 2.

Ruleset three should turn the address into "canonical form." This form should
have the basic syntax:

local-part@host-domain-spec

If no "@" sign is specified, then the host-domain-spec may be appended from the
sender address (if the C flag is set in the mailer definition corresponding to the send­
ing mailer). Ruleset three is applied by sendmail before doing anything with any
address.

Ruleset zero is applied after ruleset three to addresses that are going to actually
specify recipients. It must resolve to a {mailer, host, user} triple. The mailer must be
defined in the mailer definitions from the configuration file. The host is defined into
the $h macro for use in the argv expansion of the specified mailer.

Rulesets one and two are applied to all sender and recipient addresses respec­
tively. They are applied before any specification in the mailer definition. They must
never resolve.

Ruleset four is applied to all addresses in the message. It is typically used to
translate internal to external form.

5.2.6. Mailer flags etc.
There are a number of flags that may be assocjated with each mailer, each

identified by a letter of" the alphabet. Many of them are assigned semantics internally.
These are detailed in Appendix C. Any other flags may be used freely to condition­
ally assign headers to messages destined for particular mailers.

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide 19

5.2.7. The "error" mailer
The mailer with the special name "error" can be used to generate a user error.

The (optional) host field is a numeric exit status to be returned, and the user field is
a message to be printed. For example, the entry:

$#error$:Host unknown in this domain

on the RHS of a rule will cause the specified error to be generated if the LHS
matches. This mailer is only functional in ruleset zero.

5.3. Building a Configuration File From Scratch
Building a configuration table from scratch is an extremely difficult job. For­

tunately, it is almost never necessary to do so; nearly every situation that may come up
may be resolved by changing an existing table. In any case, it is critical that you under­
stand what it is that you are trying to do and come up with a philosophy for the
configuration table. This section is intended to explain what the real purpose of a
configuration table is and to give you some ideas for what your philosophy might be.

5.3.1. What you are trying to do
The configuration table has three major purposes. The first and simplest is to

set up the environment for send mail. This involves setting the options, defining a few
critical macros, etc. Since these are described in other places, we will not go into
more detail here.

The second purpose is to rewrite addresses in the message. This should typi­
cally be done in two phases. The first phase maps addresses in any format into a
canonical form. This should be done in ruleset three. The second phase maps this
canonical form into the syntax appropriate for the receiving mailer. Sendmail does
this in three sUbphases. Rulesets one and two are applied to all sender and recipient
addresses respectively. After this, you may specify per-mailer rulesets for both
sender and recipient addresses; this allows mailer-specific customization. Finally,
ruleset four is applied to do any default conversion to eXJernal form.

The third purpose is to map addresses into the actual set of instructions neces­
sary to get the message delivered. Ruleset zero must resolve to the internal form,
which is in turn used as a pointer to a mailer descriptor. The mailer descriptor
describes the interface requirements of the mailer.

5.3.2. Philosophy
The particular philosophy you choose will depend heavily on the size and struc­

ture of your organization. I will present a few possible philosophies here.

One general point applies to all of these philosophies: it is almost always a mis­
take to try to do full name resolution. For example, if you are trying to get names of
the form "user@host" to the Arpanet, it does not pay to route them to
"xyzvax!decvax!ucbvax!c70:user@host" since you then depend on several links not
under your control. The best approach to this problem is to simply forward to
"xyzvax!user@host" and let xyzvax worry about it from there. In summary, just get
the message closer to the destination, rather than determining the full path.

5.3.2.1. Large site, many hosts - minimum information

Version 4.2

Berkeley is an example of a large site, i.e., more than two or three hosts.
We have decided that the only reasonable philosophy in our environment is to
designate one host as the guru for our site. It must be able to resolve any piece of

. mail it receives. The other sites should have the minimum amount of informa­
tion they can get away with. In addition, any information they do have should be
hints rather than solid information.

Last Mod 7/28/83

Sendmail Installation and Operation Guide 20

For example, a typical site on our local ether network is "monet." Monet
has a list of known ethernet hosts; if it receives mail for any of them, it can do
direct delivery. If it receives mail for any unknown host, it just passes it directly
to "ucbvax," our master host. Ucbvax may determine that the host name is ille­
gal and reject the message, or may be able to do delivery. However, it is impor­
tant to note that when a new ethernet host is added, the only host that must have
its tables updated is ucbvax; the others may be updated as convenient, but this is
not critical. .

This picture is slightly muddied due to network connections that are not
actually located on ucbvax. For example, our TCP connection is currently on
"ucbarpa." However, monet does not know about this; the information is hidden
totally between ucbvax and ucbarpa. Mail going from monet to a TCP host is
transfered via the ethernet from monet to ucbvax, then via the ethernet from
ucbvax to ucbarpa, and then is submitted to the Arpanet. Although this involves
some extra hops, we feel this is an acceptable tradeoff.

An interesting point is that it would be possible to update monet to send
TCP mail directly to ucbarpa if the load got too high; if monet failed to note a
host as a TCP host it would go via ucbvax as before, and if monet incorrectly sent
a message to ucbarpa it would still be sent by ucbarpa to ucbvax as before. The
only problem that can occur is loops, as if ucbarpa thought that ucbvax had the
TCP connection and vice versa. For this reason, updates should always happen to
the master host first.

This philosophy results as much from the need to have a single source for
the configuration files (typically built using m4 (1) or some similar tool) as any
logical need. Maintaining more than three separate tables by hand is essentially an
impossible job.

S.3.2.2. Small site - complete information

A small site (two or three hosts) may find it more reasonable to have com­
plete information at each host. This would require -that each host know exactly
where each network connection is, possibly including the names of each host on
that network. As long as the site remains small and the the configuration remains
relatively static, the update problem will probably not be too great.

S.3.2.3. Single host

This is in some sense the trivial case. The only major issue is trying to
insure that you don't have to know too much about your environment. For
example, if you have a UUCP connection you might find it useful to know about
the names of hosts connected directly to you, but this' is really not necessary since
this may be determined from the syntax. .

S.3.3. Relevant issues

The canonical form you use should almost certainly be as specified in the
Arpanet protocols RFC819 and RFC822. Copies of these RFC's are included on the
sendmail tape as doclrfc819./pr and doclrfc822./pr.

RFC822 describes the format of the mail message itself. Sendmail follows this
RFC closely, to the extent that many of the standards described in this document can
not be changed without changing the code. In particular, the following characters
have special interpretations:

<>()"\
Any attempt to use these characters for other than their RFC822 purpose in
addresses is probably doomed to disaster.

Version 4.2 Last Mod 7/28/83

SendmaH Installation and Operation Guide 21

RFC819 describes the specifics of the domain-based addressing. This is touched
on in RFC822 as well. Essentially each host is given a name which is a right-to-Ieft
dot qualified pseudo-path from a distinguished root. The elements of the path need
not be physical hosts; the domain is logical rather than physical. For example, at
Berkeley one legal host is "a.cc.berkeley.arpa"; reading from right to left, "arpa" is a
top level domain (related to, but not limited to, the physical Arpanet), "berkeley" is
both an Arpanet host and a logical domain which is actually interpreted by a host
called ucbvax (which is actually just the "major" host for this domain), "cc"
represents the Computer Center, (in this case a strictly logical entity), and "a" is a
host in the Computer Center; this particular host happens to be connected via berk­
net, but other hosts might be connected via one of two ethernets or some other net­
work.

Beware when reading RFC819 that there are a number of errors in it.

5.3.4. How to proceed
Once you have decided on a philosophy, it is worth examining the available

configuration tables to decide if any of them are close enough to steal major parts of.
Even under the worst of conditions, there is a fair amount of boiler plate that can be
collected safely.

The next step is to build ruleset three. This will be the hardest part of the job.
Beware of doing too much to the address in this ruleset, since anything you do will
reflect through to the message. In particular, stripping of local domains is best
deferred, since this can leave you with addresses with no domain spec at all. Since
sendmaillikes to append the sending domain to addresses with no domain, this can
change the semantics of addresses. Also try to avoid fully qualifying domains in this
ruleset. Although technically legal, this can lead to unpleasantly and unnecessarily
long addresses reflected into messages. The Berkeley configuration files define ruleset
nine to qualify domain names and strip local domains. This is called from ruleset
zero to get all addresses into a cleaner form.

Once you have tuleset three finished, the other -rulesets should be relatively
trivial. If you need hints, examine the supplied configuration tables.

5.3.5. Testing the rewriting rules - the -bt Bag
When you build a configuration table, you can do a certain amount of testing

using the "test mode" of sendmail. For example, you could invoke sendmail as:

sendmail - bt - Ctest.cf

which would read the configuration file "test.cr' and -enter test mode. In this mode,
you enter lines of the form:

rwset address

where rwset is the rewriting set you want to use and address is an address to apply the
set to. Test mode shows you the steps it takes as it proceeds, finally showing you the
address it ends up with. You may use a comma separated list of rwsets for sequential
application of rules to an input; ruleset three is always applied first. For example:

1,21,4 monet:bollard

first applies ruleset three to the input "monet:bollard." Ruleset one is then applied to
the output of ruleset three, followed similarly byrulesets twenty-one and four.

If you need more detail, you can also use the "-d21" flag to tum on more
debugging. For example, .

sendmail - bt -d21.99

turns on an incredible amount of information; a single word address is probably going

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide 22

to print out several pages worth of information.

5.3.6. Building mailer descriptions

To add an outgoing mailer to your mail system, you will have to define the
characteristics of the mailer.

Each mailer must have an internal name. This can be arbitrary, except that the
names "local" and "prog" must be defined.

The pathname of the mailer must be given in the P field. If this mailer should
be accessed via an IPC connection, use the string "[IPC]" instead.

The F field defines the mailer flags. You should specify an "f" or "r" flag to
pass the name of the sender as a -f or -r flag respectively. These flags are only
passed if they were passed to sendmail, so that mailers that give errors under some
circumstances can be placated. If the mailer is not picky you can just specify "-f
$g" in the argv template. If the mailer must be called as root the "S" flag should be
given; this will not reset the userid before calling the mailer3• If this mailer is local
(Le., will perform final delivery rather than another network hop) the "I" flag should
be given. Quote characters (backslashes and" marks) can be stripped from addresses
if the "s" flag is specified; if this is not given they are passed through. If the mailer
is capable of sending to more than one user on the same host in a single transaction
the "m" flag should be stated. If this flag is on, then the argv template containing $u
will be repeated for each unique user on a given host. The "e" flag will mark the
mailer as being "expensive," which will cause sendmail to defer connection until a
queue run4•

An unusual case is the "C" flag. This flag applies to the mailer that the mes­
sage is received from, rather than the mailer being sent to; if set, the domain spec of
the sender (i.e., the "@host.domain" part) is saved and is appended to any addresses
in the message that do not already contain a domain spec. For example, a message of
the form:

From: eric@ucbarpa
To: wnj@monet, mckusick

will be modified to:

From: eric@ucbarpa
To: wnj@monet, mckusick@ucbarpa . -

if and only if the "C" flag is defined in the mailer corresponding to "eric@ucbarpa."

Other flags are described in Appendix C.

The Sand R fields in the mailer description are per-mailer rewriting sets to be
applied to sender and recipient addresses respectively. These are applied after the
sending domain is appended and the general rewriting sets (numbers one and two)
are applied, but before the output rewrite (ruleset four) is applied. A typical use is to
append the current domain to addresses that do not already have a domain. For
example, a header of the form:

From: eric

might be changed to be:

From: eric@ucbarpa

or

3 Sendmail must be running setuid to root for this to work.

"The "c" configuration option must be given for this to be effective.

Version 4.2 Last Mod 7/28/83

Sendmail Installation and Operation Guide 23

From: ucbvax!eric
depending on the domain it is being shipped into. These sets can also be used to do
special purpose output rewriting in cooperation with ruleset four.

The E field defines the string to use as an end-of-line indication. A string con­
taining only newline is the default. The usual backslash escapes (\r, \n, \f, \b) may
be used.

Finally, an argv template is given as the E field. It may have embedded spaces.
If there is no argv with a $u macro in it, sendmail will speak SMTP to the mailer. If
the pathname for this mailer is "lIPC]," the argv should be

IPC $h [port]

where port is the optional port number to connect to.

For example, the specifications:

Mlocal, P==/bin/mail, F==rlsm S==10, R==20, A==mail -d $u
Mether,P- lIPC] , F==meC, S== 11, R==21, A==IPC $h, M== 100000

specifies a mailer to do local delivery and a mailer for ethernet delivery. The first is
called "local," is located in the file "/bin/mail," takes a picky -r flag, does local
delivery, quotes should be stripped from addresses, and multiple users can be
delivered at once; ruleset ten should be applied to sender addresses in the message
and ruleset twenty should be applied to recipient addresses; the argv to send to a
message will be the word "mail," the word" -d," and words containing the name of
the receiving user. If a -r flag is inserted it will be between the words "mail" and
"-d." The second mailer is called "ether," it should be connected to via an IPC
connection, it can handle multiple users at once, connections should be deferred, and
any domain from the sender address should be appended to any receiver name
without a domain; sender addresses should be processed by ruleset eleven and reci­
pient addresses by ruleset twenty-one. There is a 100,000 byte limit on messages
passed through this mailer.

Version 4.2 Last Mod 7/28/83

APPENDIX A

COMMAND LINE FLAGS

Arguments must be presented with flags before addresses. The flags are:

-f add, The sender's machine address is add,. This flag is ignored unless the real user
is listed as a "trusted user" or if addr contains an exclamation point (because
of certain restrictions in UUCP).

-r add, An obsolete form of -f.

-h ent

-Fname

-n
-t

-bx

-qtime

-C./ile

-dlevel

Sets the "hop count" to ent. This represents the number of times this message
has been processed by sendmail (to the extent that it is supported by the under­
lying networks). ent is incremented during processing, and if it reaches MAX­
HOP (currently 30) sendmail throws away the message with an error.

Sets the full name of this user to name.

Don't do aliasing or forwarding.
Read the header for "To:", "Ce:", and "Bec:" lines, and send to everyone
listed in those lists. The "Bcc:" line will be deleted before sending. Any
addresses in the argument vector will be deleted from the send list.

Set operation mode to x. Operation modes are:
m Deliver mail (default)
a Run in arpanet mode (see below)
s Speak SMTP on input side
d Run as a daemon
t Run in test mode
v Just verify addresses, don't collect or deliver
i Initialize the alias database
p Print the mail queue
z Freeze the configuration file

The special processing for the ARPANET includes reading the "From:" line
from the header to find the sender, printing ARPANET style messages (pre­
ceded by three digit reply codes for compatibility with the FTP protocol
[Neigus73, Postel74, Postel77]), and ending lines of error messages with
<CRLF> ..

Try to process the queued up mail. If the time is given, a sendmail will run
through the queue at the specified interval to deliver queued mail; otherwise, it
only runs once.

Use a different configuration file.
Set debugging level.

-ox value Set option x to the specified value. These options are described in Appendix B.

There are a number of options that may be specified as primitive flags (provided for com­
patibility with delivermai/). These are the e, i, m, and v options. Also, the f option may be
specified as the - s flag.

Sendmail Installation and Operation Guide 24

APPENDIX B

CONFIGURATION OPTIONS

The following options may be set using the -0 flag on the command line or the 0 line in
the configuration file:

A./ile Use the named file as the alias file. If no file is specified, use aliases in the
current directory.

a

c

dx

D

ex

Fn

f

gn

H./ile

Ln

Mxvalue
m
o

Qdir

rtime

If set, wait for an "@:@" entry to exist in the alias database before starting up.
If it does not appear in five minutes, rebuild the database.

If an outgoing mailer is marked as being expensive, don't connect immediately.
This requires that queueing be compiled in, since it will depend on a queue run
process to actually send the mail.

Deliver in mode x. Legal modes are:
i Deliver interactively (synchronously)
b Deliver in background (asynchronously)
q Just queue the message (deliver during queue run)

If set, rebuild the alias database if necessary and possible. If this option is not
set, sendmail will never rebuild the alias database unless explicitly requested
using -bi.

Dispose of errors using mode x. The values for x are:

p Print error messages (default)
q No messages, just give exit status
m Mail back errors
w Write back errors (mail if user not logged in)
eMail back errors and give zero exit stat always

The temporary file mode, in octal. 644 and 600 are good choices.

Save Unix-style "From" lines at the front of headers. Normally they are
assumed redundant and discarded.

Set the default group id for mailers to run in to n.
Specify the help file for SMTP.

Ignore dots in incoming messages.

Set the default log level to n.

Set the macro x to value. This is intended only for use from the command line.

Send to me too, even if I am in an alias expansion.
Assume that the headers may be in old format, i.e., spaces delimit names. This
actually turns on an adaptive algorithm: if any recipient address contains a
comma, parenthesis, or angle bracket, it will be assumed that commas already
exist. If this flag is not on, only commas delimit names. Headers are always
output with commas between the names.

Use the named dir as the queue directory.

Timeout reads after time interval.

Sendmail Installation and Operation Guide 2S

Sendmail Installation and Operation Guide 26

S./ile
s

Ttime

tS,D

un

v

Version 4.2

Log statistics in the named ./ile.
Be super-safe when running things~ i.e., always instantiate the Queue file, even
if you are going to attempt immediate delivery. Sendmail always instantiates the
Queue file before returning control the the client under any circumstances.

Set the Queue timeout to time. After this interval, messages that have not been
successfully sent will be returned to the sender.

Set the local timezone name to S for standard time and D for daylight time; this
is only used under version six.

Set the default userid for mailers to n. Mailers without the S flag in the mailer
definition will run as this user.

Run in verbose mode.

Last Mod 7/28/83

APPENDIXC

MAILER FLAGS

The following flags may be set in the mailer description.

f The mailer wants a -f from flag, but only if this is a network forward operation (i.e., the
mailer will give an error if the executing user does not have special permissions).

r Same as f, but sends a -r flag.

S Don't reset the userid before calling the mailer. This would be used in a secure environ­
ment where sendmail ran as root. This could be used to avoid forged addresses. This flag
is suppressed if given from an "unsafe" environment (e.g, a user's mail.cf file).

n Do not insert a UNIX-style "From" line on the front of the message.

This mailer is local (Le., final delivery will be performed).

s Strip quote characters off of the address before calling the mailer.

m This mailer can send to multiple users on the same host in one transaction. When a Su
macro occurs in the argv part of the mailer definition, that field will be repeated as neces­
sary for all qualifying users.

F This mailer wants a "From:" header line.

D This mailer wants a "Date:" header line.

M This mailer wants a "Message-Id:"header line.

x This mailer wants a "Full-Name:" header line.

P This mailer wants a "Return-Path:" line.

u Upper casx should be preserved in user names for this mailer.

h Upper case should be preserved in host names for this mailer.

A This is an Arpanet-compatible mailer, and all appropriate modes should be set.

U This mailer wants Unix-style "From" lines with the ugly UUCP-style "remote from
< host> " on the end.

e This mailer is expensive to connect to, so try to avoid connecting normally; any necessary
connection will occur during a queue run.

X This mailer want to use the hidden dot algorithm as specified in RFC821; basically, any
line beginning with a dot will have an extra dot prepended (to be stripped at the other
end). This insures that lines in the message containing a dot will not terminate the mes­
sage prematurely.

L Limit the line lengths as specified in RFC821.

P Use the return-path in the SMTP "MAIL FROM:" command rather than just the return
address; although this is required in RFC821, many hosts do not process return paths prop­
erly.

I This mailer will be speaking SMTP to another sendmail - as such it can use special proto­
col features. This option is not required (Le., if this option is omitted the transmission will
still operate successfully, although perhaps not as efficiently as possible).

C If mail is received from a mailer with this flag set, any addresses in the header that do not
have an at sign ("@") after being rewritten by ruleset three will have the "@domain"
clause from the sender tacked on. This allows mail with headers of the form:

Sendmail Installation and Operation Guide 27

Sendmail Installation and Operation Guide 28

From: usera@hosta
To: userb@hostb, userc

to be rewritten as:

From: usera@hosta
To: userb@hostb, userc@hosta

automatically.

Version 4.2 Last Mod 7/28/83

APPENDIX D

OTHER CONFIGURATION

There are some configuration changes that can be made by recompiling sendmail. These
are located in three places: .

md/config.m4 These contain operating-system dependent descriptions. They are interpolated
into the Makefiles in the src and aux directories. This includes information
about what version of UNIX you are running, what libraries you have to
include, etc.

src/conf.h Configuration parameters that may be tweaked by the installer are included in
conf.h.

src/conf.c Some special routines and a few variables may be defined in conf.c. For the
most part these are selected from the settings in conf.h.

Parameters in md/ config.m4
The following compilation flags may be defined in the m4CONFIG macro in mdlconjig.m4

to define the environment in which you are operating.

V6 If set, this will compile a version 6 system, with 8-bit user id's, single character
tty id's, etc.

VMUNIX If set, you will be assumed to have a Berkeley 4BSD or 4.1BSD, including the
vfork (2) system call, special types defined in <sys/types.h> (e.g, u_char), etc.

If none of these flags are set, a version 7 system is assumed.

You will also have to specify what libraries to link with sendmail in the m4LIBS macro.
Most notably, you will have to include if you are running a 4.1BSD system.

Parameters in src/conf.h
Parameters and compilation options are defined in conf.h. Most of these need not nor­

mally be tweaked; common parameters are all in sendmail.cf. However, the sizes of certain
primitive vectors, etc., are included in this file. The numbers following the parameters are their
default value.

MAXLINE [256] The maximum line length of any ·input line. If message lines exceed this
length they will still be processed correctly; however, header lines, .
configuration file lines, alias lines, etc., must fit within this limit.

MAXNAME [128] The maximum length of any name, such as a host or a user name.

MAXFIELD [2500]
The maximum total length of any header field, including continuation lines.

MAXPV [40] The maximum number of parameters to any mailer. This limits the number
of recipients that may be passed in one transaction.

MAXHOP [30] When a message has been processed more than this number of times, send­
mail rejects the message on the assumption that there has been an aliasing
loop. This can be. determined from the - h flag or by counting the number
of trace fields (i.e, "Received:" lines) in the message header.

MAXATOM [100] The maximum number of atoms (tokens) in a single address. For example,
the address "eric@Berkeley" is three atoms.

Sendmail Installation and Operation Guide 29

Sendmail Installation and Operation Guide 30

MAXMAILERS [25]
The maximum number of mailers that may be defined in the configuration
file.

MAXR WSETS [30]
The maximum number of rewriting sets that may be defined.

MAXPRIORITIES [25]
The maximum number of values for the "Precedence:" field that may be
defined (using the P line in sendmail.cf).

MAXTRUST [30] The maximum number of trusted users that may be defined (using the T
line in sendmail.cf).

A number of other compilation options exist. These specify whether or not specific code
should be compiled in.

DBM If set, the "DBM" package in UNIX is used (see DBM(3X) in [UNIX80]). If
not set, a much less efficient algorithm for processing aliases is used.

DEBUG If set, debugging information is compiled in. To actually get the debugging
output, the -d flag must be used.

LOG If set, the syslog routine in use at some sites is used. This makes an informa­
tional log record for each message processed, and makes a higher priority log
record for internal system errors.

QUEUE This flag should be set to compile in the queueing code. If this is not set,
mailers must accept the mail immediately or it will be returned to the sender.

SMTP If set, the code to handle user and server SMTP will be compiled in. This is
only necessary if your machine has some mailer that speaks SMTP.

DAEMON If set, code to run a daemon is compiled in. This code is for 4.2BSD if the
NVMUNIX flag is specified; otherwise, 4.1a BSD code is used. Beware how­
ever that there are bugs in the 4.1a code that make it impossible for sendmail
to work correctly under heavy load.

. -
UGL YUUCP If you have a UUCP host adjacent to you which is not running a reasonable

version of rmail, you will have to set this flag to include the "remote from
sysname" info on the from line. Otherwise, UUCP gets confused about where
the mail came from.

NOTUNIX If you are using a non-UNIX mail format, you can set this flag to tum offspe­
cial processing of UNIX-style "From " lines.

Configuration in src/ conf.c

Not all header semantics are defined in the configuration file. Header lines that should
only be included by certain mailers (as well as other more obscure semantics) must be specified
in the Hdr/njo table in con/.c. This table contains the header name (which should be in all
lower case) and a set of header control flags (described below), The flags are:

H_ACHECK Normally when the check is made to see if a header line is compatible with a
mailer, sendmail will not delete an existing line. If this flag is set, sendmail will
delete even existing header lines. That is, if this bit is set and the mailer does
not have flag bits set that intersect with the required mailer flags in the header
definition in sendmail.cf, the header line is always deleted.

H_EOH If this header field is set, treat it like a blank line, i.e., it will signal the end of
the header and the beginning of the message text.

Version 4.2

Add this header entry even if one existed in the message before. If a header
entry does not have this bit set, sendmail will not add another header line if a
header line of this name already existed. This would nor~ally be used to
stamp the message by everyone who handled it.

Last Mod 7/28/83

Send mail Installation and Operation Guide 31

H_TRACE If set, this is a timestamp (trace) field. If the number of trace fields in a mes­
sage exceeds a preset amount the message is returned on the assumption that it
has an aliasing loop. .

H_RCPT If set, this field contains recipient addresses. This is used by the -t flag to
determine who to send to when it is collecting recipients from the message.

H_FROM This flag indicates that this field specifies a sender. The order of these fields in
the HdrIn/o table specifies sendma;l's preference for which field to return error
messages to.

Let's look at a sample HdrIn/o specification:

struct hdrinfo HdrInfo[] =
{

I· originator fields, most to least significant ·1
"resent-sender" , H FROM,
"resent-from", H-FROM,
'"sender", H-FROM,
"from" H-FROM , -'
"full-name", H ACHECK,

I· destination fieldS ·1
"to", H RCPT,
"resent-to", H-RCPT,
"cc" H-RCPT , -'

I· message identification and control ·1
"message", H_EOH,
"text", H_EOH,

I· trace fields ·1
"received", H_TRACE/H_FORCE,

NULL, 0,
};

This structure indicates that the "To:" , "Resent-To:", and "ec:" fields all specify recipient
addresses. Any "Full-Name:" field will be deleted unless the required mailer flag {indicated in
the configuration file} is specified. The "Message:" and "Text:" fields will terminate the
header; these are specified in new protocols [NBS80] or used by random dissenters around the
network world. The "Received:" field will always be added, and can be used to trace mess,:ges.

There are a number of important points here. First, header fields are not added automati­
cally just because they are in the HdrIn/o structure; they must be specified in the configuration
file in order to be added to the message. Any header fields mentioned in the configuration file
but not mentioned in the HdrIn/o structure have default processing performed; that is, they are
added unless they were in the message already. Second, the HdrIn/o structure only specifies
cliched processing; certain headers are processed specially by ad hoc code regardless of the
status specified in HdrIn/o. For example, the "Sender:" and "From:" fields are always scanned
on ARPANET mail to determine the sender; this is used to perform the "return to sender"
function. The "From:" and "Full-Name:" fields are used to determine the full name of the
sender if possible; this is stored in the macro $x and used in a number of ways.

The file con/.c also contains the specification of ARPANET reply codes. There are four
classifications these fall into:

char Arpa Infon - "050"; '* arbitrary info *'
char Arpa-TSyserr[] = "455"; r some (transient) system error *'
char Arpa-PSyserr[] - "554"; r some (transient) system error *'
char Arpa=Usrerr[] = "554"; r some (fataI) user error *'

The class Arpa_Info is for any information that is not required by the protocol, such as forward­
ing information. Arpa_TSyserr and Arpa_PSyserr is printed by the syserr routine. TSyserr is

Version 4.2 Last Mod 7/28/83

Send mail Installation and Operation Guide 32

printed out for transient errors, whereas PSyserr is printed for permanent errors; the distinction
is made based on the value of errno. Finally, Arpa_ Usrerr is the result of a user error and is
generated by the usrerr routine; these are generated when the user has specified something
wrong, and hence the error is permanent, i.e., it will not work simply by resubmitting the
request.

If it is necessary to restrict mail through a relay, the checkcompat routine can be modified.
This routine is called for every recipient address. It can return TRUE to indicate that the
address is acceptable and mail processing will continue, or it can return FALSE to reject the
recipient. If it returns false, it is up to checkcompat to print an error message (using usrerr) say­
ing why the message is rejected. For example, checkcompat could read:

bool
checkcompat(to)

register ADDRESS *to;

if (MsgSize > 50000 && to-><Lmailer !== LocalMailer)
{

}

usrerr("Message too large for non-local delivery");
NoReturn - TRUE;
return (FALSE);

return (TRUE);

This would reject messages greater than 50000 bytes unless they were local. The NoReturn flag
can be sent to supress the return of the actual body of the message in the error return. The
actual use of this routine is highly dependent on the implementation, and use should be lim­
ited.

Version 4.2 Last Mod 7/28/83

APPENDIX E

SUMMARY OF SUPPORT FILES

This is a summary of the support files that sendmail creates or generates.

lusr llibl sendmail
The binary of send mail

lusr Ibin/newaliases
A link to lusr/lib/sendmail; causes the alias database to be rebuilt. Running
this program is completely equivalent to giving sendmail the - bi flag.

lusr/bin/mailq Prints a listing of the mail queue. This program is equivalent to using the - bp
flag to sendmail.

lusr/lib/sendmail.cf
The configuration file, in textual form.

lusr/lib/sendmail.fc
The configuration file represented as a memory image.

lusr llibl sendmail.hf
The SMTP help file.

lusr llibl sendmail.st
A statistics file; need not be present.

lusr/lib/aliases The textual version of the alias file.

lusr/lib/aliases. {pag,dir}
The alias file in dbm (3) format.

letc/syslog The program to do logging.

letc/syslog.confThe configuration file for syslog.

letc/syslog.pid Contains the process id of the currently running syslog.

lusrlspool/mqueue
The directory in which the mail queue and temporary files reside.

lusrlspoollmqueue/qf*
Control (queue) files for messages.

lusr Ispool/mqueuel df*
Data files.

lusr I spoollmqueue/lf*
Lock files

lusr I spoollmqueue/tf*
Temporary versions of the qf files, used during queue file rebuild.

lusrlspoollmqueue/nf*
A file used when creating a unique id.

lusrlspoollmqueue/xf*
A transcript of the current session.

Sendmail Installation and Operation Guide xxxiii

A Fast File System for UNIX·

Revised July 27, 1983

Marshall Kirk McKusick, William N. Joyt,
Samuel J. Leffler*, Robert S. Fabry

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

A reimplementation of the UNIX file system is described. The reimple­
mentation provides substantially higher throughput rates by using more flexible
allocation policies, that allow better locality of reference and that can be adapted
to a wide range of peripheral and processor characteristics. The new file system
clusters data that is sequentially accessed and provides two block sizes to allow
fast access for large files while not wasting large amounts of space for small
files. File access rates of up to ten times faster than the traditional UNIX file
system are experienced. Long needed enhancements to the user interface are
discussed. These include a mechanism to lock files, extensions of the name
space across file systems, the ability to use arbitrary length_ file names, and pro­
visions for efficient administrative control of resource usage.

• UNIX is a trademark of Bell Laboratories.
tWilliam N. Joy is currently employed by: Sun Microsystems, Inc, 2550 Garcia Avenue, Mountain View, CA
94043
*Samuel J. Leffler is currently employed by: Lucasfilm Ltd., PO Box 2009, San Rafael, CA 94912
This work was done under grants from the National Science Foundation under grant MCSSO-05144, and the
Defense Advance Research Projects Agency (000) under Arpa Order No. 4031 monitored by Naval Elec­
tronic System Command under Contract No. NOOO39-S2-C-0235.

File System - i -

TABLE OF CONTENTS

1. Introduction

2. Old file system

3. New file system organization
.1. Optimizing storage utilization
.2. . File system parameterization
.3. Layout policies

4. Performance

s. File system functional enhancements
.1. Long file names
.2. File locking
.3. Symbolic links
.4. Rename
.5. Quotas

6. Software engineering

References

CSRG TR/7 July 27, 1983

Contents

McKusick, et. al.

File System - 1 - Introduction

1. Introduction
This paper describes the changes from the original 512 byte UNIX file system to the new

one released with the 4.2 Berkeley Software Distribution. It presents the motivations for the
changes, the methods used to affect these changes, the rationale behind the design decisions,
and a description of the new implementation. This discussion is followed by a summary of the
results that have been obtained, directions for future work, and the additions and changes that
have been made to the user visible facilities. The paper concludes with a history of the
software engineering of the project.

The original UNIX system that runs on the PDP-II t has simple and elegant file system
facilities. File system input/output is buffered by the kernel; there are no alignment constraints
on data transfers and all operations are made to appear synchronous. All transfers to the disk
are in 512 byte blocks, which can be placed arbitrarily within the data area of the file system.
No constraints other than available disk space are placed on file growth [Ritchie74], [Thomp­
son79].

When used on the VAX-II together with other UNIX enhancements, the original 512
byte UNIX file system is incapable of providing the data throughput rates that many applica­
tions require. For example, applications that need to do a small amount of processing on a
large quantities of data such as VLSI design and image processing, need to have a high
throughput from the file system. High throughput rates are also needed by programs with large
address spaces that are constructed by mapping files from the file system into virtual memory.
Paging data in and out of the file system is likely to occur frequently. This requires a file sys­
tem providing higher bandwidth than the original 512 byte UNIX one which provides only
about two percent of the maximum disk bandwidth or about 20 kilobytes per second per arm
[White80], [Smith81b].

Modifications have been made to the UNIX file system to improve its performance. Since
the UNIX file system interface is well understood and not inherently slow, this development
retained the abstraction and simply changed the underlying implementation to increase its
throughput. Consequently users of the system have not been faced with massive software
conversion.

Problems with file system performance have been dealt with extensively in the literature~
see [Smith81a] for a survey. The UNIX operating system drew many of its ideas from Multics,
a large, high performance operating system [Feiertag71]. Other work includes Hydra
[Almes78], Spice [Thompson80], and a file system for a lisp environment [Symbolics81a]. "_

A major goal of this project has been to build a file system that is extensible into a
networked environment [Holler73]. Other work on network file systems describe centralized
file servers [Accetta80], distributed file servers [Dion80], [Luniewski77], [Porcar82], and proto­
cols to reduce the amount of information that must be transferred across a network
[Symbolics81b], [Sturgis80]. .

t DEC, PDP, VAX, MASSBUS, and UNIBUS are trademarks of Digital Equipment Corporation.

CSRG TR/7 July 27, 1983 McKusick, et. al.

File System - 2 - Old file system

2. Old File System
In the old file system developed at Bell Laboratories each disk drive contains one or more

file systems. t A file system is described by its super-block, which contains the basic parameters
of the file system. These include the number of data blocks in the file system, a count of the
maximum number of files, and a pointer to a list of free blocks. All the free blocks in the sys­
tem are chained together in a linked list. Within the file system are files. Certain files are dis­
tinguished as directories and contain pointers to files that may themselves be directories. Every
file has a descriptor associated with it called an inode. The inode contains information describ­
ing ownership of the file, time stamps marking last modification and access times for the file,
and an array of indices that point to the data blocks for the file. For the purposes of this sec­
tion, we assume that the first 8 blocks of the file are directly referenced by values stored in the
inode structure itself*. The inode structure may also contain references to indirect blocks con­
taining further data block indices. In a file system with a 512 byte block size, a singly indirect
block contains 128 further block addresses, a doubly indirect block contains 128 addresses of
further single indirect blocks, and a triply indirect block contains 128 addresses of further dou­
bly indirect blocks.

A traditional 150 megabyte UNIX file system consists of 4 megabytes of inodes followed
by 146 megabytes of data. This organization segregates the inode information from the data;
thus accessing a file normally incurs a long seek from its inode to its data. Files in a single
directory are not typically allocated slots in consecutive locations in the 4 megabytes of inodes,
causing many non-consecutive blocks to be accessed when executing operations on all the files
in a directory.

The allocation of data blocks to files is also suboptimum. The traditional file system never
transfers more than 512 bytes per disk transaction and often finds that the next sequential data
block is not on the same cylinder, forcing seeks between 512 byte transfers. The combination
of the small block size, limited read-ahead in the system, and many seeks severely limits file
system throughput.

The first work at Berkeley on the UNIX file system attempted to improve both reliability
and throughput. The reliability was improved by changing the file system so that all
modifications of critical information were staged so that they could either be completed or
repaired cleanly by a program after a crash [Kowalski78]. The file system performance was
improved by a factor of more than two by changing the basic block size from 512 to 1024 bytes.
The increase was because of two factors; each disk transfer accessed twice as much data, ~nd
most files could be described without need to access through any indirect blocks since the direct
blocks contained twice as much data. The file system with these changes will henceforth be
referred to as the old file system.

This performance improvement gave a strong indication that increasing the block size was
a good method for improving· throughput. Although the throughput had doubled, the old file
system was still using only about four percent of the disk bandwidth. The main problem was
that although the free list was initially ordered for optimal access, it quickly became scrambled
as files were created and removed. Eventually the free list became entirely random causing files
to have their blocks allocated randomly over the disk. This forced the disk to seek before every
block access. Although old file systems provided transfer rates of up to 175 kilobytes per
second when they were first created, this rate deteriorated to 30 kilobytes per second after a few
weeks of moderate use because of randomization of their free block list. There was no way of
restoring the performance an old file system except to dump, rebuild, and restore the file sys­
tem. Another possibility would be to have a process that periodically reorganized the data on
the disk to restore locality as suggested by [Maruyama76].

t A file system always resides on a single drive.
• The actual number may vary from system to system, but is usually in the range 5-13.

CSRG TR/7 July 27, 1983 McKusick, et. al.

File System - 3 - New file system

3. New file system organization
As in the old file system organization each disk drive contains one or more file systems.

A file system is described by its super-block, that is located at the beginning of its disk parti­
tion. Because the super-block contains critical data it is replicated to protect against catastrophic
loss. This is done at the time that the file system is created; since the super-block data does
not change, the copies need not be referenced unless a head crash or other hard disk error
causes the default super-block to be unusable.

To insure that it is possible to create files as large as 2132 bytes with only two levels of
indirection, the minimum size of a file system block is 4096 bytes. The size of file system
blocks can be any power of two greater than or equal to 4096. The block size of the file system
is maintained in the super-block so it is possible for file systems with different block sizes to be
accessible simultaneously on the same system. The block size must be decided at the time that
the file system is created; it cannot be subsequently changed without rebuilding the file system.

The new file system organization partitions the disk into one or more areas called cylinder
groups. A cylinder group is comprised of one or more consecutive cylinders on a disk. Associ­
ated with each cylinder group is some bookkeeping information that includes a redundant copy
of the super-block, space for inodes, a bit map describing available blocks in the cylinder group,
and summary information describing the usage of data blocks within the cylinder group. For
each cylinder group a static number of inodes is allocated at file system creation time. The
current policy is to allocate one inode for each 2048 bytes of disk space, expecting this to be far
more than will ever be needed.

All the cylinder group bookkeeping information could be placed at the beginning of each
cylinder group. However if this approach were used, all the redundant information would be on
the top platter. Thus a single hardware failure that destroyed the top platter could cause the
loss of all copies of the redundant super-blocks. Thus the cylinder group bookkeeping informa­
tion begins at a floating offset from the beginning of the cylinder group. The offset for each
successive cylinder group is calculated to be about one track further from the beginning of the
cylinder group. In this way the redundant information spirals down into the pack so that any
single track, cylinder, or platter can be lost without losing all copies of the super-blocks. Except
for the first cylinder group, the space between the beginning of the cylinder group and the
beginning of the cylinder group information is used for data blocks. t

3.1. Optimizing storage utilization
Data is laid out so that larger blocks can be transferred in a single disk transfer, greatly

increasing file system throughput. As an example, consider a file in the new file system com­
posed of 4096 byte data blocks. In the old file system this file would be composed of 1024 byte
blocks. By increasing the block size, disk accesses in the new file system may transfer up to
four times as much information per disk transaction. In large files, several 4096 byte blocks
may be allocated from the same cylinder so that even larger data transfers are possible before·
initiating a seek.

The main problem with bigger blocks is that most UNIX file systems are composed of
many small files. A uniformly large block size wastes space. Table 1 shows the effect of file
system block size on the amount of wasted space in the file system. The machine measured to
obtain these figures is one of our time sharing systems that has roughly 1.2 Gigabyte of on-line
storage. The measurements are based on the active user file systems containing about 920
megabytes of formated space. The space wasted is measured as the percentage of space on the
disk not containing user data. As the block size on the disk increases, the waste rises quickly,
to an intolerable 45.6% waste with 4096 byte file system blocks.

t While it appears that the first cylinder group could be laid out with its super-block at the "known" location,
this would not work for file systems with blocks sizes of 16K or greater, because of the requirement that the
cylinder group information must begin at a block boundary.

CSRG TR/7 July 27, 1983 McKusick, et. al.

File System - 4 - New file system

Space used % waste Organization
775.2 Mb 0.0 Data only, no separation between files
807.8 Mb 4.2 Data only, each file starts on 512 byte boundary
828.7 Mb 6.9 512 byte block UNIX file system
866.5 Mb 11.8 1024 byte block UNIX file system
948.5 Mb 22.4 2048 byte block UNIX file system
1128.3 Mb 45.6 4096 byte block UNIX file system

Table 1 - Amount of wasted space as a function of block size.

To be able to use large blocks without undue waste, small files must be stored in a more
efficient way. The new file system accomplishes this goal by allowing the division of a single
file system block into one or more fragments. The file system fragment size is specified at the
time that the file system is created; each file system block can be optionally broken into 2, 4, or
8 fragments, each of which is addressable. The lower bound on the size of these fragments is
constrained by the disk sector size, typically 512 bytes. The block map associated with each
cylinder group records the space availability at the fragment level; to determine block availabil­
ity, aligned fragments are examined. Figure 1 shows a piece of a map from a 4096/1024 file
system.

Bits in map
Fragment numbers
Block numbers

XXXX
0-3
o

XXOO
4-7
1

OOXX
8-11

2

0000
12-15

3

Figure 1 - Example layout of blocks and fragments in a 4096/1024 file system.

Each bit in the map records the status of a fragment; an "X" shows that the fragment is in use,
while a "0" shows that the fragment is available for allocation. In this example, fragments
0-5,10, and 11 are in use, while fragments 6-9, and 12-15 are free. Fragments of adjoining
blocks cannot be used as a block, even if they are large enough.- In this example, fragments
6-9 cannot be coalesced into a block; only fragments 12-15 are available for allocation as a
block.

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is
represented by zero or more 4096 byte blocks of data, and possibly a single fragmented block.
If a file system block must be fragmented to obtain space for a small amount of data, the
remainder of the block is made available for allocation to other files. As an example consider
an 11000 byte file stored on a 4096/1024 byte file system. This file would uses two full size
blocks and a 3072 byte fragment. If no 3072 byte fragments are available at the time the file is
created, a full size block is split yielding the necessary 3072 byte fragment and an unused 1024
byte fragment. This remaining fragment can be allocated to another file as needed.

The granularity of allocation is the write system call. Each time data is written to a file,
the system checks to see if the size of the file has increased·. If the file needs to hold the new
data, one of three conditions exists:
1) There is enough space left in an already allocated 'block to hold the new data. The new

data is written into the available space in the block.
2) Nothing has been allocated. If the new data contains more than 4096 bytes, a 4096 byte

block is allocated and the first 4096 bytes of new data is written there. This process is
repeated until less than 4096 bytes of new data remain. If the remaining new data to be
written will fit in three or fewer 1024 byte pieces, an unallocated fragment is located, oth­
erwise a 4096 byte block is located. The new data is written into the located piece.

• A program may be overwriting data in the middle of an existing file in which case space will already be allo­
cated.

CSRG TR/7 July 27, 1983 McKusick, et. a1.

File System - 5 - New file system

3) A fragment has been allocated. If the number of bytes in the new data plus the number
of bytes already in the fragment exceeds 4096 bytes, a 4096 byte block is allocated. The
contents of the fragment is copied to the beginning of the block and the remainder of the
block is filled with the new data. The process then continues as in (2) above. If the
number of bytes in the new data plus the number of bytes already in the fragment will fit
in three or fewer 1024 byte pieces, an unallocated fragment is located, otherwise a 4096
byte block is located. The contents of the previous fragment appended with the new data
is written into the allocated piece.

The problem with allowing only a single fragment on a 4096/1024 byte file system is that
data may be potentially copied up to three times as its requirements grow from a 1024 byte
fragment to a 2048 byte fragment, then a 3072 byte fragment, and finally a 4096 byte block.
The fragment reallocation can be avoided if the user program writes a full block at a time,
except for a partial block at the end of the file. Because file systems with different block sizes
may coexist on the same system, the file system interface been extended to provide the ability
to determine the optimal size for a read or write. For files the optimal size is the block size of
the file system on which the file is being accessed. For other objects, such as pipes and sockets,
the optimal size is the underlying buffer size. This feature is used by the Standard
Input/Output Library, a package used by most user programs. This feature is also used by cer­
tain system utilities such as archivers and loaders that do their own input and output manage­
ment and need the highest possible file system bandwidth.

The space overhead in the 4096/1024 byte new file system organization is empirically
observed to be about the same as in the 1024 byte old file system organization. A file system
with 4096 byte blocks and 512 byte fragments has about the same amount of space overhead as
the 512 byte block UNIX file system. The new file system is more space efficient than the 512
byte or 1024 byte file systems in that it uses the same amount of space for small files while
requiring less indexing information for large files. This savings is offset by the need to use
more space for keeping track of available free blocks. The net result is about the same disk
utilization when the new file systems fragment size equals the old file systems block size.

In order for the layout policies to be effective, the disk cannot be kept completely full.
Each file system maintains a parameter that gives the minimum acceptable percentage of file
system blocks that can be free.' If the" the number of free blocks drops below this level only the
system administrator can continue to allocate blocks. The value of this parameter can be
changed at any time, even when the file system is mounted and active. The transfer rates to be
given in section 4 were measured on file systems kept less than 90% full. If the reserve of fr-ee
blocks is set to zero, the file system throughput rate tends to be cut in half, because of the ina­
bility of the file system to localize the blocks in a file. If the performance is impaired because
of overfilling, it may be restored by removing enough files to obtain 10% free space. Access
speed for files created during periods of little free space can be restored by recreating them
once enough space is available. The amount of free space maintained must be added to the
percentage of waste when comparing the organizations given in Table 1. Thus, a site running
the old 1024 byte UNIX file system wastes 11.8% of the space and one could expect to fit the
same amount of data into a 4096/512 byte new file system with 5% free space, since a 512 byte
old file system wasted 6.9% of the space.

3.2. File system parameterization
Except for the initial creation of the free list, the old file system ignores the parameters of

the underlying hardware. It has no information about either the physical characteristics of the
mass storage device, or the hardware that interacts with it. A goal of the new file system is to
parameterize the processor capabilities and mass storage characteristics so that blocks can be
allocated in an optimum configuration dependent way. Parameters used include the speed of the
processor, the hardware support for mass storage transfers, and the characteristics of the mass
storage devices. Disk technology is constantly improving and a given installation can have
several different disk technologies running on a single processor. Each file system is

CSRG TR/7 July 27, 1983 McKusick, et. al.

File System - 6 - New file system

parameterized so that it can adapt to the characteristics of the disk on which it is placed.

For mass storage devices such as disks, the new file system tries to allocate new blocks on
the same cylinder as the previous block in the same file. Optimally, these new blocks will also
be well positioned rotationally. The distance between "rotationally optimal" blocks varies
greatly; it can be a consecutive block or a rotationally delayed block depending on system
characteristics. On a processor with a channel that does not require any processor intervention
between mass storage transfer requests, two consecutive disk blocks often can be accessed
without suffering lost time because of an intervening disk revolution. For processors without
such channels, the main processor must field an interrupt and prepare for a new disk transfer.
The expected time to service this interrupt and schedule a new disk transfer depends on the
speed of the main processor.

The physical characteristics of each disk include the number of blocks per track and the
rate at which the disk spins. The allocation policy routines use this information to calculate the
number of milliseconds required to skip over a block. The characteristics of the processor
include the expec.ted time to schedule an interrupt. Given the previous block allocated to a file,
the allocation routines calculate the number of blocks to skip over so that the next block in a
file will be coming into position under the disk head in the expected amount of time that it
takes to start a new disk transfer operation. For programs that sequentially access large
amounts of data, this strategy minimizes the amount of time spent waiting for the disk to posi­
tion itself.

To ease the calculation of finding rotationally optimal blocks, the cylinder group summary
information includes a count of the availability of blocks at different rotational positions. Eight
rotational positions are distinguished, so the resolution of the summary information is 2 mil­
liseconds for a typical 3600 revolution per minute drive.

The parameter that defines the minimum number of milliseconds between the completion
of a data transfer and the initiation of another data transfer on the same cylinder can be
changed at any time, even when the file system is mounted and active. If a file system is
parameterized to layout blocks with rotational separation of 2 milliseconds, and the disk pack is
then moved to a system that has a processor requiring 4 milliseconds to schedule a disk opera­
tion, the throughput will drop precipitously because of lost disk revolutions on nearly every
block. If the eventual target machine is known, the file system can be parameterized for it
even though it is initially created on a different processor. Even if the move is not known in
advance, the rotational layout delay can be reconfigured after the disk is moved so that all
further allocation is done based on the characteristics of the new host.

3.3. Layout policies

The file system policies are divided into two distinct parts. At the top level are global pol­
icies that use file system wide summary information to make decisions regarding the placement
of new inodes and data blocks. These routines are responsible for deciding the placement of
new directories and files. They also calculate rotationally optimal block layouts, and decide
when to force a long seek to a new cylinder group because there are insufficient blocks left in
the current cylinder group to do reasonable layouts. Below the global policy routines are the
local allocation routines that use a locally optimal scheme to layout data blocks.

Two methods for improving file system performance are to increase the locality of refer­
ence to minimize seek latency as described by [Trivedi80], and to improve the layout of data to
make larger transfers possible as described by [Nevalainen77]. The global layout policies try to
improve performance by clustering related information. They cannot attempt to localize all data
references, but must also try to spread unrelated data among different cylinder groups. If too
much localization is attempted, the local cylinder group may run out of space forcing the data
to be scattered to non-local cylinder groups. Taken to an extreme, total localization can result
in a single huge cluster of data resembling the old file system. The global policies try to bal­
ance the two conflicting goals of localizing data that is concurrently accessed while spreading out
unrelated data.

CSRG TR/7 July 27, 1983 McKusick, et. al.

File System - 7 - New file system

One allocatable resource is inodes. Inodes are used to describe both files and directories.
Files in a directory are frequently accessed together. For example the "list directory" com­
mand often accesses the inode for each file in a directory. The layout policy tries to place all
the files in a directory in the same cylinder group. To ensure that files are allocated throughout
the disk, a different policy is used for directory allocation. A new directory is placed in the
cylinder group that has a greater than average number of free inodes, and the fewest number of
directories in it already. The intent of this policy is to allow the file clustering policy to succeed
most of the time. The allocation of inodes within a cylinder group is done using a next free
strategy. Although this allocates the inodes randomly within a cylinder group, all the inodes for
each cylinder group can be read with 4 to 8 disk transfers. This puts a small and constant upper
bound on the number of disk transfers required to access all the inodes for all the files in a
directory as compared to the old file system where typically, one disk transfer is needed to get
the inode for each file in a directory.

The other major resource is the data blocks. Since data blocks for a file are typically
accessed together, the policy routines try to place all the data blocks for a file in the same
cylinder group, preferably rotationally optimally on the same cylinder. The problem with allo­
cating all the data blocks in the same cylinder group is that large files will quickly use up avail­
able space in the cylinder group, forcing a spill over to other areas. Using up all the space in a
cylinder group has the added drawback that future allocations for any file in the cylinder group
will also spill to other areas. Ideally none of the cylinder groups should ever become com­
pletely full. The solution devised is to redirect block allocation to a newly chosen cylinder
group when a file exceeds 32 kilobytes, and at every megabyte thereafter. The newly chosen
cylinder group is selected from those cylinder groups that have a greater than average number
of free blocks left. Although big files tend to be spread out over the disk, a megabyte of data is
typically accessible before a long seek must be performed, and the cost of one long seek per
megabyte is small.

The global policy routines call local allocation routines with requests for specific blocks.
The local allocation routines will always allocate the requested block if it is free. If the
requested block is not available, the allocator allocates a free block of the requested size that is
rotationally closest to the requested block. If the global layout policies had complete informa­
tion, they could always request unused blocks and the allocation routines would be reduced to
simple bookkeeping. However, maintaining complete information is costly; thus the implemen­
tation of the global layout policy uses heuristic guesses based on partial information.

If a requested block is not available the local allocator uses a four level allocation strate~y:
1) Use the available block rotationally closest to the requested block on the same cylinder.
2) If there are no blocks available on the same cylinder, use a block within the same cylinder

group.
3) If the cylinder group is entirely full, quadratically rehash among the cylinder groups look­

ing for a free block.
4) Finally if the re~ash fails, apply an exhaustive search.

The use of quadratic rehash is prompted by studies of symbol table strategies used in pro­
gramming languages. File systems that are parameterized to maintain at least 10% free space
almost never use this strategy; file systems that are run without maintaining any free space typi­
cally have so few free blocks that almost any allocation is random. Consequently the most
important characteristic of the strategy used when the file system is low on space is that it be
fast.

CSRG TR/7 July 27, 1983 McKusick, et. al.

File System - 8 - . Performance

4. Performance
Ultimately, the proof of the effectiveness of the algorithms described in the previous sec­

tion is the long term performance of the new file system.

Our empiric studies have shown that the inode layout policy has been effective. When
running the "list directory" command on a large directory that itself contains many directories,
the number of disk accesses for inodes is cut by a factor of two. The improvements are even
more dramatic for large directories containing only files, disk accesses for inodes being cut by a
factor of eight. This is most encouraging for programs such as spooling daemons that access
many small files, since these programs tend to flood the disk request queue on the old file sys­
tem.

Table 2 summarizes the measured throughput of the new file system. Several comments
need to be made about the conditions under which these tests were run. The test programs
measure the rate that user programs can transfer data to or from a file without performing any
processing on it. These programs must write enough data to insure that buffering in the operat­
ing system does not affect the results. They should also be run at least three times in succes­
sion; the first to get the system into a known state and the second two to insure that the experi­
ment has stabilized and is repeatable. The methodology and test results are discussed in detail
in [Kridle831t. The systems were running multi-user but were otherwise quiescent. There was
no contention for either the cpu or the disk arm. The only difference between the UNIBUS
and MASSBUS tests was the controller. All tests used an Ampex Capricorn 330 Megabyte
Winchester disk. As Table 2 shows, all file system test runs were on a VAX 11/750. All file
systems had been in production use for at least a month before being measured.

Type of Processor and Read
File System Bus Measured Speed Bandwidth % CPU

old 1024 750/UNIBUS 29 Kbytes/sec 29/11003% 11%
new 4096/1024 750/UNIBUS 221 Kbytes/sec 221/1100 20% 43%
new 8192/1024 750/UNIBUS 233 Kbytes/sec 233/1100 21% 29%
new 4096/1024 750/MASSBUS 466 Kbytes/sec 466/1200 39% 73%
new 8192/1024 750/MASSBUS 466 Kbytesl sec 46611200 39% 54%

Table 2a - Reading rates of the old and new UNIX file systems.

Type of Processor and Write
File System Bus Measured Speed Bandwidth % CPU

old 1024 750/UNIBUS 48 Kbytes/sec 48/11004% 29%
new 4096/1024 750/UNIBUS 142 Kbytes/sec 142/1100 13% 43%
new 8192/1024 750/UNIBUS 215 Kbytes/sec 215/1100 19% 46%
new 4096/1024 750/MASSBUS 323 Kbytes/sec 323/1200 27% 94%
new 819211024 750/MASSBUS 466 Kbytes/sec 466/1200 39% 95%

Table 2b - Writing rates of the old and new UNIX file systems.

Unlike the old file system, the transfer rates for the new file system do not appear to
change over time. The throughput rate is tied much more strongly to the amount of free space
that is maintained. The measurements in Table 2 were based on a file system run with 10%
free space. Synthetic work loads suggest the performance deteriorates to about half the
throughput rates given in Table 2 when no free space is maintained.

The percentage of bandwidth given in Table 2 is a measure of the effective utilization of
the disk by the file system. An upper bound on the transfer rate from the disk is measured by
doing 65536* byte reads from contigu.ous tracks on the disk. The bandwidth is calculated by

t A UNIX command that is similar to the reading test that we used is. "cp file /dev/null'" where "file" is
eight Megabytes long.
• This number, 65536. is the maximal liD size supported by the VAX hardware~ it is a remnant of the

CSRG TR/7 July 27, 1983 McKusick, et. al.

File System - 9 - Performance

comparing the data rates the file system is able to achieve as a percentage of this rate. Using
this metric, the old file system is only able to use about 3-4% of the disk bandwidth, while the
new file system uses up to 39% of the bandwidth.

In the new file system, the reading rate is always at least as fast as the writing rate. This
is to be expected since the kernel must do more work when allocating blocks than when simply
reading them. Note that the write rates are about the same as the read rates in the 8192 byte
block file system; the write rates are slower than the read rates in the 4096 byte block file sys­
tem. The slower write rates occur because the kernel has to do twice as many disk allocations
per second, and the processor is unable to keep up with the disk transfer rate.

In contrast the old file system is about 50% faster at writing files than reading them. This
is because the write system call is asynchronous and the kernel can generate disk transfer
requests much faster than they can be serviced, hence disk transfers build up in the disk buffer
cache. Because the disk buffer cache is sorted by minimum seek order, the average seek
between the scheduled disk writes is much less than they would be if the data blocks are writ­
ten out in the order in which they are generated. However when the file is read, the read sys­
tem call is processed synchronously so the disk blocks must be retrieved from the disk in the
order in which they are allocated. This forces the disk scheduler to do long seeks resulting in a
lower throughput rate.

The performance of the new file system is currently limited by a memory to memory copy
operation because it transfers data from the disk into buffers in the kernel address space and
then spends 40% of the processor cycles copying these buffers to user address space. If the
buffers in both address spaces are properly aligned, this transfer can be affected without copying
by using the VAX virtual memory management hardware. This is especially desirable when
large amounts of data are to be transferred. We did not implement this because it would
change the semantics of the file system in two major ways; user programs would be required to
allocate buffers on page boundaries, and data would disappear from buffers after being written.

Greater disk throughput could be achieved by rewriting the disk drivers to chain together
kernel buffers. This would allow files to be allocated to contiguous disk blocks that could be
read in a single disk transaction. Most disks contain either 32 or 48 512 byte sectors per track.
The inability to use contiguous disk blocks effectively limits the performance on these disks to
less than fifty percent of the available bandwidth. Since each track has a multiple of sixteen
sectors it holds exactly two or three 8192 byte file system blocks, or four or six 4096 byte file
system blocks. If the the next block for a file cannot be laid out contiguously, then the
minimum spacing to the next allocatable block on any platter is between a sixth and a half- a
revolution. The implication of this is that the best possible layout without contiguous blocks
uses only half of the bandwidth of any given track. If each track contains an odd number of
sectors, then it is possible to resolve the rotational delay to any number of sectors by finding a
block that begins at the desired rotational position on another track. The reason that block
chaining has not been implemented is because it would require rewriting all the disk drivers in
the system, and the current throughput rates are already limited by the speed of the available
processors.

Currently only one block is allocated to a file at a time. A technique used by the DEMOS
file system when it finds that a file is growing rapidly, is to preallocate several blocks at once,
releasing them when the file is closed if they remain unused. By batching up the allocation the
system can reduce the overhead of allocating at each write, and it can cut down on the number
of disk writes needed to keep the block pointers on the disk synchronized with the block alloca­
tion [Powe1l791.

system's PDp·II ancestry.

CSRG TR/7 July 27, 1983 McKusick, et. al.

File System - 10 - Functional enhancements

s. File system functional enhancements
The speed enhancements to the UNIX file system did not require any changes to the

semantics or data structures viewed by the users. However several changes have been generally
desired for some time but have not been introduced because they would require users to dump
and restore all their file systems. Since the new file system already requires that all existing file
systems be dumped and restored, these functional enhancements have been introduced at this
time.

5.1. Long file names
File names can now be of nearly arbitrary length. The only user programs affected by this

change are those that access directories. To maintain portability among UNIX systems that are
not running the new file system, a set of directory access routines have been introduced that
provide a uniform interface to directories on both old and new systems.

Directories are allocated in units of 512 bytes. This size is chosen so that each allocation
can be transferred to disk in a single atomic operation. Each allocation unit contains variable­
length directory entries. Each entry is wholly contained in a single allocation unit. The first
three fields of a directory entry are fixed and contain an inode number, the length of the entry,
and the length of the name contained in the entry. Following this fixed size information is the
null terminated name, padded to a 4 byte boundary. The maximum length of a name in a
directory is currently 255 characters.

Free space in a directory is held by entries that have a record length that exceeds the
space required by the directory entry itself. All the bytes in a directory unit are claimed by the
directory entries. This normally results in the last entry in a directory being large. When
entries are deleted from a directory, the space is returned to the previous entry in the same
directory unit by increasing its length. If the first entry of a directory unit is free, then its inode
number is set to zero to show that it is unallocated.

5.2. File locking
The old file system had no provision for locking files. Processes that needed to synchron­

ize the updates of a file had to create a separate "lock" file to synchronize their updates. A
process would try to create a "lock" file. If the creation succeeded, then it could proceed with
its update; if the creation failed, then it would wait, and try again. This mechanism had three
drawbacks. Processes consumed CPU time, by looping over attempts to create locks. Locks
were left lying around following system crashes and had to be cleaned up by hand. Finally,
processes running as system administrator are always permitted to create files, so they had-to
use a different mechanism. While it is possible to get around all these problems, the solutions
are not straight-forward, so a mechanism for locking files has been added.

The most general schemes allow processes to concurrently update a file. Several of these
techniques are discussed in [Peterson831. A simpler technique is to simply serialize access with
locks. To attain reasonable efficiency, certain applications require the ability to lock pieces of a
file. Locking down to the byte level has been implemented in the Onyx file system by
[Bass81]. However, for the applications that currently run on the system, a mechanism that
locks at the granularity of a file is sufficient.

Locking schemes fall into two classes, those using hard locks and those using advisory
locks. The primary difference between advisory locks and hard locks is the decision of when to
override them. A hard lock is always enforced whenever a program tries to access a file; an
advisory lock is only applied when it is requested. by a program. Thus advisory locks are only
effective when all programs accessing a file use the locking scheme. With hard locks there
must be some override policy implemented in the kernel, with advisory locks the policy is
implemented by the user programs. In the UNIX system, programs with system administrator
privilege can . override any protection scheme. Because many of the programs that need to use
locks run as system administrators, we chose to implement advisory locks rather than create a

CSRG TR/7 July 27, 1983 McKusick, et. al.

File System - 11 - Functional enhancements

protection scheme that was contrary to the UNIX philosophy or could not be used by system
administration programs.

The file locking facilities allow cooperating programs to apply advisory shared or exclusive
locks on files. Only one process has an exclusive lock on a file while multiple shared locks may
be present. Both shared and exclusive locks cannot be present on a file at the same time. If
any lock is requested when another process holds an exclusive lock, or an exclusive lock is
requested when another process holds any lock, the open will block until the lock can be
gained. Because shared and exclusive locks are advisory only, even if a process has obtained a
lock on a file, another process can override the lock by opening the same file without a lock.

Locks can be applied or removed on open files, so that locks can be manipulated without
needing to close and reopen the file. This is useful, for example, when a process wishes to
open a file with a shared lock to read some information, to determine whether an update is
required. It can then get an exclusive lock so that it can do a read, modify, and write to update
the file in a consistent manner.

A request for a lock will cause the process to block if the lock can not be immediately
obtained. In certain instances this is unsatisfactory. For example, a process that wants only to
check if a lock is present would require a separate mechanism to find out this information.
Consequently, a process may specify that its locking request should return with an error if a
lock can not be immediately obtained. Being able to poll for a lock is useful to "daemon"
processes that wish to service a spooling area. If the first instance of the daemon locks the
directory where spooling takes place, later daemon processes can easily check to see if an active
daemon exists. Since the lock is removed when the process exits or the system crashes, there
is no problem with unintentional locks files that must be cleared by hand.

Almost no deadlock detection is attempted. The only deadlock detection made by the sys­
tem is that the file descriptor to which a lock is applied does not currently have a lock of the
same type (i.e. the second of two successive calls to apply a lock of the same type will fail).
Thus a process can deadlock itself by requesting "locks on two separate file descriptors for the
same object.

5.3. Symbolic links
The 512 byte UNIX file system allows multiple directory entries in the same file system to

reference a single file. The link concept is fundamental; files do not live in directories, but
exist separately and are referenced by links. When all the links are removed, the file is deallo­
cated. This style of links does not allow references across physical file systems, nor does it sup­
port inter-machine linkage. To avoid these limitations symbolic links have been added similar to
the scheme used by Multics [Feiertag71].

A symbolic link is implemented as a file that contains a pathname. When the system
encounters a symbolic link while interpreting a component of a pathname, the contents of the
symbolic link is prepended to the rest of the pathname, and this name is interpreted to yield
the resulting pathname. If the symbolic link contains an absolute pathname, the absolute path­
name is used, otherwise the contents of the symbolic link is evaluated relative to the location of
the link in the file hierarchy.

Normally programs do not want to be aware that there is a symbolic link in a path name
that they are using. However certain system utilities must be able to detect and manipulate
symbolic links. Three new system calls provide the ability to detect, read, and write symbolic
links, and seven system utilities were modified to use these calls.

In future Berkeley software distributions it will be possible to mount file systems from
other machines within a local file system. When this occurs, it will be possible to create sym-
bolic links that span machines. "

CSRG TR/7 July 27, 1983 McKusick, et. a1.

File System - 12 - Functional enhancements

5.4. Rename
Programs that create new versions of data files typically create the new version as a tem­

porary file and then rename the temporary file with the original name of the data file. In the
old UNIX file systems the renaming required three calls to the system. If the program were
interrupted or the system crashed between these calls, the data file could be left with only its
temporary name. To eliminate this possibility a single system call has been added that performs
the rename in an .atomic fashion to guarantee the existence of the original name.

In addition, the rename facility allows directories to be moved around in the directory tree
hierarchy. The rename system call performs special validation checks to insure that the direc­
tory tree structure is not corrupted by the creation of loops or inaccessible directories. Such
corruption would occur if a parent directory were moved into one of its descendants. The vali­
dation check requires tracing the ancestry of the target directory to insure that it does not
include the directory being moved.

5.5. Quotas
The UNIX system has traditionally attempted to share all available resources to the

greatest extent possible. Thus any single user can allocate all the available space in the file sys­
tem. In certain environments this is unacceptable. Consequently, a quota mechanism has been
added for restricting the amount of file. system resources that a user can obtain. The quota
mechanism sets limits on both the number of files and the number of disk blocks that a user
may allocate. A separate quotii can be set for each user on each file system. Each resource is
given both a hard and a soft limit. When a program exceeds a soft limit, a warning is printed
on the users terminal~ the offending program is not terminated unless it exceeds its hard limit.
The idea is that users should stay below their soft limit between login sessions, but they may
use more space while they are actively working. To encourage this behavior, users are warned
when logging in if they are over any of their soft limits. If they fail to correct the problem for
too many login sessions, they are eventually reprimanded by having their soft limit enforced as
their hard limit.

CSRG TR/7 July 27, 1983 McKusick, et. al.

File System - 13 - Software engineering

6. Software engineering
The preliminary design was done by Bill Joy in late 1980; he presented the design at The

USENIX Conference held in San Francisco in January 1981. The implementation of his design
was done by Kirk McKusick in the summer of 1981. Most of the new system calls were imple­
mented by Sam Leffler. The code for enforcing quotas was implemented by Robert Elz at the
University of Melbourne.

To understand how the project was done it is necessary to understand the interfaces that
the UNIX system provides to the hardware mass storage systems. At the lowest level is a raw
disk. This interface provides access to the disk as a linear array of sectors. Normally this inter­
face is only used by programs that need to do disk to disk copies or that wish to dump file sys­
tems. However, user programs with proper access rights can also access this interface. A disk
is usually formated with a file system that is interpreted by the UNIX system to provide a direc­
tory hierarchy and files. The UNIX system interprets and multiplexes requests from user pro­
grams to create, read, write, and delete files by allocating and freeing inodes and data blocks.
The interpretation of the data on the disk could be done by the user programs themselves. The
reason that it is done by the UNIX system is to synchronize the user requests, so that two
processes do not attempt to allocate or modify the same resource simultaneously. It also allows
access to be restricted at the file level rather than at the disk level and allows the common file
system routines to be shared between processes.

The implementation of the new file system amounted to using a different scheme for for­
mating and interpreting the disk. Since the synchronization and disk access routines themselves
were not being changed, the changes to the file system could be developed by moving the file
system interpretation routines out of the kernel and into a user program. Thus, the first step
was to extract the file system code for the old file system from the UNIX kernel and change its
requests to the disk driver to accesses to a raw disk. This produced a library of routines that
mapped what would normally be system calls into read or write operations on the raw disk.
This library was then debugged by linking it into the system utilities that copy, remove,
archive, and restore files.

A new cross file system utility was written that copied files from the simulated file system
to the one implemented by the kernel. This was accomplished by calling the simulation library
to do a read, and then writing the resultant data by using the conventional write system call. A
similar utility copied data from the kernel to the simulated file system by doing a conventional
read system call and then writing the resultant data using the simulated file system library.

The second step was to rewrite the file system simulation library to interpret the new file
system. By linking the new simulation library into the cross file system copying utility, it was
possible to easily copy files from the old file system into the new one and from the new one to
the old one. Having the file system-interpretation implemented in user code had several major
benefits. These included being able to use the standard system tools such as the debuggers to
set breakpoints and single step through the code. When bugs were discovered, the offending
problem could be fixed and tested without the need to reboot the machine. There was never a
period where it was necessary to maintain two concurrent file systems in the kernel. Finally it
was not necessary to dedicate a machine entirely to file system development, except for a brief
period while the new file system was boot strapped.

The final step was to merge the new file system back into the UNIX kernel. This was
done in less than two weeks, since the only bugs remaining were those that involved interfacing
to the synchronization routines that could not be tested in the simulated system. Again the
simulation system proved useful since it enabled files to be easily copied between old and new
file systems regardless of which file system was running in the kernel. This greatly reduced the
number of times that the system had to be rebooted.

The total design and debug time took about one man year. Most of the work was done
on the file system utilities, and changing all the user programs to use the new facilities. The
code changes in the kernel were minor, involving the addition of only about 800 lines of code

CSRG TR/7 July 27, 1983 McKusick, et. al.

File System - 14 - Software engineering

(including comments).

CSRG TR/7 July 27, 1983 McKusick, et. aI.

• 13 •

4. Standalone support
This section describes changes made to the standalone i/o facilities and the new methods

used in system bootstrapping. ~ •
-..:,.... ...

4.1. Disk formatting
A new disk formatting program has been developed for use with non-DEC UNIBUS and

MASSBUS disk controllers. The format (8V) program has been tested mainly with disk drives
attached to Emulex MASS BUS and UNIBUS disk controllers, but should operate with any con­
troller which handles bad sector forwarding in an identical fashion to DEC RM03/RMOS or
RM80 (but not RP06) disk controllers. . The program runs standalone formatting disk headers
and creating a bad sector table in the DEC standard 144 format.

4.2. Standalone I/o library
Changes to support more complex standalone i/o applications as well as changes for the new file
system organization, have resulted in significant revisions to the standalone i/o library. Device
drivers now support a new entry point for ioetl requests and library routines now return error

.. codes a la the UNIX system calls. In addition, standalone i/o library routines now make many·
more internal consistency checks to verify data structures have not been corrupted by faulty

. device drivers and that i/o errors have not occurred when reading critical file system informa­
tion. In conjunction with the new disk formatter, the up and hp standalone drivers have been
rewritten to support ECe correction and. bad sector handling. These drivers are used in
bootstrapping from the console media on 11/780's and 11/730's thereby eliminating the
requirement for error free root partitions on disks attached to hp and up controllers. Many bugs
in the standalone tape drivers have been fixed.

4.3. System bootstrapping
On 11/780's and 11/730's, the console device is still used to load the "boot" program.

This in tum loads the system image from the root file system.

The method by which the system bootstraps on 11/7S0's is different in 4.2BSD. The sys­
tem is still bootstrapped from disk using a boot block in sector 0 of the root file system parti­
tion, but now this boot block simply reads in the next 7.5 kilobytes. The 7.S kilobyte program
is a version of the "/boot" program loaded only with the device driver required to read the
"/boot" program from the root file system. The "/boot" program then reads in the system
image, as done on 11/780's and 11/730's. .

The additional level of bootstrap code was done to simplify the sector 0 boot programs
and minimize the total amount of assembly language code which had to be maintained. It was
also expected that 7.S kilobytes would be sufficient to allow the new hp and up standalone
drivers which support ECe correction and bad sector handling to be used. Unfortunately, the·
standalone system has not yet been trimmed down to allow the second level boot programs,
loaded with the new drivers, to fit in the space provided. Sites which have Winchester disk
drives with bad sectors in the root file system partition and which require this support should be
able to trim the size of the second level boot program to make it fit.

File System - 15 - Software engineering

Acknow ledgements
We thank Robert Elz for his ongoing interest in the new file system, and for adding disk

quotas in a rational and efficient manner. We also acknowledge Dennis Ritchie for his sugges­
tions on the appropriate modifications to the user interface. We appreciate Michael Powell's
explanations on how the DEMOS file system worked~ many of his ideas were used in this
implementation. Special commendation goes to Peter Kessler and Robert Henry for acting like
real users during the early debugging stage when files were less stable than they should have
been. Finally we thank our sponsors, the National Science Foundation under grant MCS80-
05144, ·and the Defense Advance Research Projects Agency (DoD) under Arpa Order No. 4031
monitored by Naval Electronic System Command under Contract No. N00039-82-C-0235.

References

[Accetta80]

[Almes78]

[Bass81]

[Dion80]

[Eswaran 74]

[Holler73]

[Feiertag 71]

[Kridle83]

[Kowalski 7 8]

[Luniewski 77]

[Maruyama76]

[N evalainen 77]

[Peterson83]

[Powell79]

CSRG TR/7

Accetta, M., Robertson, G., Satyanarayanan, M., and Thompson, M.
"The Design of a Network-Based Central File System", Carnegie-Mellon
University, Dept of Computer Science Tech Report, #CMU-CS-80-134

Almes, G., and Robertson, G. "An Extensible File System for Hydra"
Proceedings of the Third International Conference on Software Engineer­
ing, IEEE, May 1978.
Bass, 1. "Implementation Description for File Locking", Onyx Systems
Inc, 73 E. Trimble Rd, San Jose, CA 95131 Jan 1981.
Dion, J. "The Cambridge File Server", Operating Systems Review, 14, 4.
Oct 1980. pp 26-35
Eswaran, K. "Placement of records in a file and file allocation in a com­
puter network", Proceedings lFIPS, 1974. pp 304-307

Holler, J. "Files in Computer Networks", First European Workshop on
Computer Networks, April 1973. pp 381-396

Feiertag, R. J. and Organick, E. I., "The Multics Input-Output System",
Proceedings of the Third Symposium on Operating Systems Principles,
ACM, Oct 1971. pp 35-41

Kridle, R., and McKusick, M., "Performance Effects of Disk Subsystem
Choices for VAX Systems Running 4.2BSD UNIX", Computer Systems
Research Group, Dept of EECS, Berkeley, CA 94720, Technical Report
#8.
Kowalski, T. "FSCK - The UNIX System Check Program", Bell Labora­
tory, Murray Hill, NJ 07974. March 1978
Luniewski, A. "File Allocation in a Distributed System", MIT Laboratory
for Computer Science, Dec 1977.
Maruyama, K., and Smith, S. "Optimal reorganization of Distributed
Space Disk Files", Communications of the ACM, 19, 11. Nov 1976. pp
634-642
Nevalainen, 0., Vesterinen, M. "Determining Blocking Factors for
Sequential Files by Heuristic Methods", The Computer Journal, 20, 3.
Aug 1977. pp 245-247

Peterson, G. "Concurrent Reading While Writing", ACM Transactions
on Programming Languages and Systems, ACM, 5, 1. Jan 1983. pp 46-55

Powell, M. "The DEMOS File System", Proceedings of the Sixth Sympo­
sium on Operating Systems Principles, ACM, Nov 1977. pp 33-42

July 27, 1983 McKusick, et. al.

File System

[Porcar821

[Ritchie74]

[Smith81a]

[Smith81b)

[Sturgis801

[Symbolics81 a]

[Symbolics81b]

[Thompson79]

[Thompson 80]

[Trivedi80]

[White 80]

CSRG TR/7

- 16 - References

Porcar, J. "File Migration in Distributed Computer Systems", Ph.D.
Thesis, Lawrence Berkeley Laboratory Tech Report #LBL-14763.
Ritchie, D. M. and Thompson, K., "The UNIX Time-Sharing System",
CACM 17, 7. July 1974. pp 365-375

Smith, A. "Input/Output Optimization and Disk Architectures: A Sur­
vey", Performance and Evaluation 1. Jan 1981. pp 104-117

Smith, A. "Bibliography on File and I/O System Optimization and
Related Topics", Operating Systems Review, 15, 4. Oct 1981. pp 39-54

Sturgis, H., Mitchell, J., and Israel, J. "Issues in the Design and Use of a
Distributed File System", Operating Systems Review, 14, 3. pp 55-79
"Symbolics File System", Symbolics Inc, 9600 DeSoto Ave, Chatsworth,
CA 91311 Aug 1981.
"Chaosnet FILE Protocol". Symbolics Inc, 9600 DeSoto A ve, Chats­
worth, CA 91311 Sept 1981.
Thompson, K. "UNIX Implementation", Section 31, Volume 2B, UNIX
Programmers Manual, Bell Laboratory, Murray Hill, NJ 07974. Jan 1979
Thompson, M. "Spice File System", Carnegie-Mellon University, Dept of
Computer Science Tech Report, #CMU-CS-80-???
Trivedi, K. "Optimal Selection of CPU Speed, Device Capabilities, and
File Assignments", Journal of the ACM, 27, 3. July 1980. pp 457-473
White, R. M. "Disk Storage Technology", Scientific American, 243 (2),
August 1980.

July 27, 1983 McKusick, et. al.

4.2BSD Networking Implementation Notes

Revised July, 1983

Samuel J. Leffler, William N. Joy, Robert S. Fabry

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

(415) 642-7780

ABSTRACT

This report describes the internal structure of the networking facilities
developed for the 4.2BSD version of the UNIX· operating system for the
V AXt. These facilities are based on several central abstractions which struc­
ture the external (user) view of network communication as well as the internal
(system) implementation.

The report documents the internal structure of the networking system.
The "4.2BSD System Manual" provides a description of the user interface to
the networking facilities.

• UNIX is a trademark of Bell Laboratories.
t DEC. V AX. DECnet. and UNIBUS are trademarks of Digital Equipment Corporation.

Networking Implementation - i -

TABLE OF CONTENTS

1 •. Introduction

2. Overview

3. Goals

4. Internal address representation

S. Memory management

6. Internal layering
.1. Socket layer
.1.1. Socket state
.1.2. Socket data queues
.1.3. Socket connection queueing
.2. Protocollayer(s)
.3. Network-interface layer
.3.1. UNIBUS interfaces

7. Socket/protocol interface

8. Protocol/protocol interface
.1. pr _output
.2. prJnput
.3. pr_ctlinput
.4. pr_ctloutput

9. Protocol/network-interface interface
.1. Packet transmission
.2. Packet reception

10. Gateways and routing issues
.1. Routing tables
.2. Routing table interface
.3. User level routing policies

11. Raw sockets
.1. Control blocks
.2. Input processing
.3. Output processing

12. Buffering and congestion control
.1. Memory management
.2. Protocol buffering policies
.3. Queue limiting
.4. Packet forwarding

13. Out of band data

14. Trailer protocols

Acknowledgements

References

CSRG TR/6

Contents

Leffler, et. al.

Networking Implementation - 1 - Introduction

1. Introduction
This report describes the internal structure of facilities added to the 4.2BSD version of the

UNIX operating system for the V AX. The system facilities provide a uniform user interface to
networking within UNIX. In addition, the implementation introduces a structure for network
communications which may be used by system implementors in adding new networking facili­
ties. The internal structure is not visible to the user, rather it is intended to aid implementors
of communication protocols and network services by providing a framework which promotes
code sharing and minimizes implementation effort.

The reader is expected to be familiar with the C programming language and system inter­
face, as described in the 4.2BSD System Manual [Joy82a). Basic understanding of network com­
munication concepts is assumed; where required any additional ideas are introduced.

The remainder of this document provides a description of the system internals, avoiding,
when possible, those portions which are utilized only by the interprocess communication facili­
ties.

CSRG TR/6 Leftler, et. aI.

Networking Implementation - 2 - Overview

2. Overview
If we consider the International Standards Organization's (ISO) Open System Interconnec­

tion (OSI) model of network communication [lS081] [Zimmermann80], the networking facili­
ties described here correspond to a portion of the session layer (layer 3) and all of the transport
and network layers (layers 2 and 1, respectively).

The network layer provides possibly imperfect data transport services with minimal
addressing structure. Addressing at this level is normally host to host, with implicit or explicit
routing optionally supported by the communicating agents.

At the transport layer the notions of reliable transfer, data sequencing, flow control, and
service addressing are normally included. Reliability is usually managed by explicit ack­
nowledgement of data delivered. Failure to acknowledge a transfer results in retransmission of
the data. Sequencing may be handled by tagging each message handed to the network layer by
a sequence number and maintaining state at the endpoints of communication to utilize received
sequence numbers in reordering data which arrives out of order.

The session layer facilities may provide forms of addressing which are mapped into for­
mats required by the transport layer, service authentication and client authentication, etc. Vari­
ous systems also provide services such as data encryption and address and protocol translation.

The following sections begin by describing some of the common data structures and utility
routines, then examine the internal layering. The contents of each layer and its interface are
considered. Certain of the interfaces are protocol implementation specific. For these cases
examples have been drawn from the Internet [CerfiSl protocol family. Later sections cover

. routing issues, the design of the raw socket interface and other miscellaneous topics.

CSRGTR/6 Leffler, et. al.

Networking Implementation - 3 - Goals

3. Goals
The networking system was designed with the goal of supporting multiple protocol families

and addressing styles. This required information to be "hidden" in common data structures
which could be manipulated by all the pieces of the system, but which required interpretation
only by the protocols which "controlled" it. The system described here attempts to minimize
the use of shared data structures to those kept by a suite of protocols (a protocol family), and
those used for rendezvous between "synchronous" and "asynchronous" portions of the system
(e.g. queues of data packets are filled at interrupt time and emptied based on user requests).

A major goal of the system was to provide a framework within which new protocols and
hardware could be easily be supported. To this end, a great deal of effort has been extended to
create utility routines which hide many of the more complex and! or hardware dependent chores
of networking. Later sections describe the utility routines and the underlying data structures
they manipulate.

CSRG TR!6 Leftler, et. al.

Networking Implementation - 4 - Address representation

4. Internal address representation
Common to all portions of the system are two data structures. These structures are used

to represent addresses and various data objects. Addresses, internally are described by the
sockaddr structure,

struct sockaddr (
short
char

);.

sa family;
sa=data[14];

1* data format identifier • /
1* address • /

All addresses belong to one or more address families which define their format and interpreta­
tion. The saJamily field indicates which address family the address belongs to, the sa_data field
contains the actual data value. The size of the data field, 14 bytes, was selected based on a
study of current address formats·.

• Later versions of the system support variable length addresses.

CSRG TR/6 Leffler, et. a1.

Networking Implementation - 5 - Memory management

s. Memory management
A single mechanism is used for data storage: memory buffers, or mbufs. An mbuf is a

structure of the form:

struct mbuf (

} ;

struct
uJong
short
short
u_char
struct

mbuf *m next;
m off' -- ,
mJen;
m_type;
m_datlMLEN);
mbuf *m_act;

1* next buffer in chain * /
1* offset of data * /
1* amount of data in this mbuf * /
1* mbuf type (accounting) * /
1* data storage * /
1* link in higher-level mbuf list * /

The m_next field is used to chain mbufs together on linked lists, while the m_act field allows
lists of mbufs to be accumulated. By convention, the mbufs common to a single object (for
example, a packet) are chained together with the m_next field, while groups of objects are
linked via the m_act field (possibly when in a queue).

Each mbuf has a small data area for storing information, m_dat. The m_len field indicates
the amount of data, while the m_ off field is an offset to the beginning of the data from the base
of the mbuf. Thus, for example, the macro mtod, which converts a pointer to an mbuf to a
pointer to the data stored in the mbuf, has the form

#define mtod(x,t) «t)«int)(x) + (x)->m_otr)

(note the t parameter, a C type cast, is used to cast the resultant pointer for proper assign­
ment).

In addition to storing data directly in the mbufs data area, data of page size may be also
be stored in a separate area of memory. The mbuf utility routines maintain a pool of pages for
this purpose and manipulate a private page map for such pages. The virtual addresses of these
data pages precede those of mbufs, so when pages of data are separated from an mbuf, the
mbuf data offset is a negative value. An array of reference counts on, pages is also maintained
so that copies of pages may be made without core to core copying (copies are created simply by
duplicating the relevant page table entries in the data page map and incrementing the associated
reference counts for the pages). Separate data pages are currently used only when copying data
from a user process into the kernel, and when bringing data in at the hardware level. Routines
which manipulate mbufs are not normally aware if data is stored directly in the mbuf data array,_
or if it is kept in separate pages.

The following utility routines are available for manipulating mbuf chains:
m =- m_copy(mO, off, len);

The m_copy routine create a copy of all, or part, of a list of the mbufs in mO. Len bytes of
data, starting offbytes from the front of the chain, are copied. Where possible, reference
counts on pages are used instead of core to core copies. The original mbuf chain must
have at least off + len bytes of data. If len is specified as M_ COPY ALL, all the data
present, offset as before, is copied.

m_cat(m, n);
The mbuf chain, n, is appended to the end of m. Where possible, compaction is per­
formed.

m _ adj (m, diff);
The mbuf chain, m is adjusted in size by diffbytes. If diffis non-negative, diffbytes are
shaved off the front of the mbuf chain. If diff is negative, the alteration is performed
from back .to front. No space is reclaimed in this operation, alterations are accomplished
by changing the m_len and m_offfields of mbufs.

m - myullup(mO, size);
After a successful call to myullup, the mbuf at the h~ad of the returned list, m, is

CSRG TR/6 Leftler, et. al.

Networking Implementation - 6 - Memory management

guaranteed to have at least size bytes of data in contiguous memory (allowing access via a
pointer, obtained using the mtod macro). If the original data was less than size bytes long,
len was greater than the size of an mbuf data area (112 bytes), or required resources were
unavailable, m is 0 and the original mbuf chain is deallocated.

This routine is particularly useful when verifying packet header lengths on reception. For
example, if a packet is received and only 8 of the necessary 16 bytes required for a valid
packet header are present at the head of the list of mbufs representing the packet, the
remaining 8 bytes may be "pulled up" with a single mJ]ul/up call. If the call fails the
invalid packet will have been discarded.

By insuring mbufs always reside on 128 byte boundaries it is possible to always locate the
mbuf associated with a data area by masking oft'the low bits of the virtual address. This allows
modules to store data structures in mbufs and pass them around without concern for locating
the original mbuf when it comes time to free the structure. The dtom macro is used to convert
a pointer into an mbufs data area to a pointer to the mbuf,

#define dtom(x) «struct mbuf *) «int)x & -(MSIZE-I))

Mbufs are used for dynamically allocated data structures such as sockets, as well as
memory allocated for packets. Statistics are maintained on mbuf usage and can be viewed by
users using the netstat(1) program.

CSRG TR/6 Leffler, et. al.

Networking Implementation - 7 - Internal layering

6. Internal layering
The internal structure of the network system is divided into three layers. These layers

correspond to the services provided by the socket abstraction, those provided by the communi­
cation protocols, and those provided by the hardware interfaces. The communication protocols
are normally layered into two or more individual cooperating layers, though they are collectively
viewed in the system as one layer providing services supportive of the appropriate socket
abstraction.

The following sections describe the properties of each layer in the system and the inter­
faces each must conform to.

6.1. Socket layer
The socket layer deals with the interprocess communications facilities provided by the sys­

tem. A socket is a bidirectional endpoint of communication which is "typed" by the semantics
of communication it supports. The system calls described in the 4.2BSD System Manual are
used to manipulate sockets.

A socket consists of the following data structure:

. struct socket {
short
short
short
short
caddr_t
struct
struct
struct
short
struct
short
short
struct
struct
short
u_short
short
short

};

so_type;
so_options;
soJinger;
so_state;
sOJlcb;
protosw *soJlroto;
socket *so_head;
socket *so qO;
so_qOIen; -
socket *so_q;
so_qlen;
so_qIimit;
sockbuf so_snd;
sockbuf so_rcv;
so_timeo;
so_error;
so_oobmark;
soygrp;

'* generic type *'
'* from socket call *'
'* time to linger while closing *'
'* internal state flags *'
'* protocol control block *'
'* protocol handle *'
'* back pointer to accept socket *'
1* queue of partial connections *'
1* partials on so _ qO *'
'* queue of incoming connections *'
'* number of connections on so q *'
'* max number queued connections *'
1* send queue *'
'* receive queue *1
1* connection timeout *'
'* error affecting connection *'
1* chars to oob mark *'
1* pgrp for signals *'

Each socket contains two data queues, so_rev and so_snd, and a pointer to routines which
provide supporting services. The type of the socket, so_type is defined at socket creation time
and used in selecting those services which are appropriate to support it. The supporting proto­
col is selected at socket creation time and recorded in the socket data structure for later use.
Protocols are defined by a table of procedures, the protosw structure, which will be described in
detail later. A pointer to a protocol specific data structure, the "protocol control block" is also
present in the socket structure. Protocols control this data structure and it normally includes a
back pointer to the parent socket structure(s) to allow easy lookup when returning information
to a user (for example, placing an error number in the so_error field). The other entries in the
socket structure are used in queueing connection requests, validating user requests, storing
socket characteristics (e.g. options supplied at the time a socket is created), and maintaining a
socket's state.

Processes "rendezvous at a socket" in many instances. For instance, when a process
wishes to extract data from a socket's receive queue and it is empty, or lacks sufficient data to
satisfy the request, the process blocks, supplying the address of the receive queue as an "wait
channel' to be used in notification. When data arrives for the process and is placed in the

CSRG TR'6 Leffler, et. a1.

Networking Implementation - 8 - Internal layering

socket's queue, the blocked process is identified by the fact it is waiting "on the queue".

6.1.1. Socket state
A socket's state is defined from the following:

#define SS_NOFDREF OxOOI
#define SS_ISCONNECTED Ox002

r no file table ref any more *'
r socket connected to a peer *'

#define SS_ISCONNECTING Ox004 /* in process of connecting to peer * /
r in process of disconnecting *' #define SS ISDISCONNECTING Ox008

#define SS=CANTSENDMORE OxOIO /* can't send more data to peer *'
#define SS _ CANTRCVMORE Ox020 r can't receive more data from peer *'

r connections awaiting acceptance *'
/* at mark on input *'

#define SS_CONNAWAITING Ox040
#define SS_RCVATMARK Ox080

#define SS _PRIV
#define SS_NBIO
#define SS_ASYNC

OxlOO
Ox200
Ox400

r privileged * /
r non-blocking ops *'
/* async i/o notify * /

The state of a socket is manipulated both by the protocols and the user (through system
calls). When a socket is created the state is defined based on the type of input'output the user
wishes to perform. "Non-blocking" 110 implies a process should never be blocked to await
resources. Instead, any call which would block returns prematurely with the error EWOULD­
BLOCK (the service request may be partially fulfilled, e.g. a request for more data than is
present).

If a process requested "asynchronous" notification of events related to the socket the
SIGIO signal is posted to the process. An event is a change in the socket's state, examples of
such occurances are: space becoming available in the send queue, new data available in the
receive queue, connection establishment or disestablishment, etc.

A socket may be marked "priviledged" if it was created by the super-user. Only
priviledged sockets may send broadcast packets, or bind addresses in' priviledged portions of an
address space.

6.1.2. Socket data queues
A socket's data queue contains a pointer to the data stored in the queue and other entries...

related to the management of the data. The following structure defines a data queue:

struct sockbuf {
short
short
short
short
short
short
struct
struct
short

};

sb_cc;
sb_hiwat;
sb_mbcnt;
sb_mbmax;
sbJowat;
sb timeo;
mbuf *sb mb;
proc *sb_sel;
sbJlags;

r actual chars in buffer *'
'* max actual char count *'
r chars of mbufs used *'
r max chars of mbufs to use *'
r low water mark *'
r timeout *'
r the mbuf chain * /
'* process selecting read/write *'
r flags, see below *'

Data is stored in a queue as a chain of mbufs. The actual count of characters as well as
high and low water marks are used by the protocols in controlling the flow of data. The socket
routines cooperate in implementing the flow control policy by blocking a process when it
requests to send data and the high water mark has been reached, or when it requests to receive
data and less than the low water mark is present (assuming non-blocking 110 has not been
specified) .

CSRG TR/6 LeIDer, et. al.

Networking Implementation - 9 - Internal layering

When a socket is created, the supporting protocol "reserves" space for the send and
receive queues of the socket. The actual storage associated with a socket queue may fluctuate
during a socket's lifetime, but is assumed this reservation will always allow a protocol to acquire
enough memory to satisfy the high water marks.

The timeout and select values are manipulated by the socket routines in implementing
various portions of the interprocess communications facilities and will not be described here.

A socket queue has a number of flags used in synchronizing access to the data and in
acquiring resources;

#define SB_LOCK OxOI 1* lock on data queue (so rcvonly) */
#define SB _ WANT Ox02 /* someone is waiting to iock * /
#define SB_ WAIT Ox04 /* someone is waiting for data/space */
#define SB_SEL Ox08 1* buffer is selected * /
#define SB_COLL OxlO /* collision selecting */

The last two flags are manipulated by the system in implementing the select mechanism.

6.1.3. Socket connection queueing
In dealing with connection oriented sockets (e.g. SOCK_STREAM) the two sides are con­

sidered distinct. One side is termed active, and generates connection requests. The other side
is called passive and accepts connection requests.

From the passive side, a socket is created with the option SO _ACCEPTCONN specified,
creating two queues of sockets: so_qO for connections in progress and so_q for connections
already made and awaiting user acceptance. As a protocol is preparing incoming connections, it
creates a socket structure queued on so_qO by calling the routine sonewconnO. When the con­
nection is established, the socket structure is then transfered to so_q, making it available for an
accept.

If an SO_ACCEPTCONN socket is closed with sockets on either so_qO or so_q, these
sockets are dropped.

6.2. Protocol layer(s)
Protocols are described by a set of entry points and certain socket visible characteristics,

some of which are used in deciding which socket type (s) they may support.

An entry in the "protocol switch" table exists for each protocol module configured into -
the system. It has the following form:

CSRG TR/6 Leffler, et. al.

Networking Implementation

struct protosw {
short pr _type;
short pr_family;
short prJ)rotocol;
short prJlags;

'* protocol-protocol hooks *'

- 10 -

1* socket type used for *'
1* protocol family *'
1* protocol number *'
1* socket visible attributes *'

Internal layering

int (*pr input) 0;
int (*pr=output) 0;
int (*pr ctlinput) 0;
int (*pr=ctloutput) 0;

1* input to protocol (from below) *'
1* output to protocol (from above) *'
1* control input (from below) *'
1* control output (from above) *'

'* user-protocol hook *'
int (*pr _ usrreq) 0 ; 1* user request *'

1* utility hooks *'
int (*pr init) 0; 1* initialization routine *'
int
int
int

(*pr - fasttimo) 0; 1* fast timeout (200ms) *'
(*pr -slowtimo) 0; 1* slow timeout (500ms) *'
(*pr - drain) 0; 1* flush any excess space possible *'

};

A protocol is called through the pr_init entry before any other. Thereafter it is called
every 200 milliseconds through the pr Jasttimo entry and every 500 milliseconds through the
pr_slowtimo for timer based actions. The system will call the pr_drain entry if it is low on space
and this should throw· away any non-critical data.

Protocols pass data between themselves as chains of mbufs using the pr_input and
pr_output routines. Pr_input passes data up (towards the user) and pr_output passes it down
(towards the network); control information passes up and down on pr_ctlinput and pr_ctloutput.
The protocol is responsible for the space occupied by any the arguments to these entries and
must dispose of it.

The pr_userreq routine interfaces protocols to the socket code and is described below.
The pr .flags field is constructed from the following values:

#define PR_ATOMIC OxOI '* exchange atomic messages only *'
#define PR_ADDR Ox02 1* addresses given with messages *'
#define PR_ CONNREQUIRED Ox04 '* connection required by protocol *'
#define PR_WANTRCVD Ox08 '* want PRU RCVD calls *'
#define PR_RIGHTS OxlO '* passes capa-bilities *'

Protocols which are connection-based specify the PR CONNREQUIRED flag so that the socket
routines will never attempt to send data before a -connection has been established. If the

. PR_ W ANTRCVD flag is set, the socket routines will notfiy the protocol when the user has
removed data from the socket's receive queue. This allows the protocol to implement ack­
nowledgement on user receipt, and also update windowing information based on the amount of
space available in the receive queue. The PR_ADDR field indicates any data placed in the
socket's receive queue will be preceded by the address of the sender. The PR_ATOMIC flag
specifies each user request to send data must be performed in a single protocol send request; it is
the protocol's responsibility to maintain record boundaries on data to be sent. The
PR_RIGHTS flag indicates the protocol supports the passing of capabilities; this is currently
used only the protocols in the UNIX protocol family.

When a socket is created, the socket routines scan the protocol table looking for an
appropriate protocol to support the type of socket being created. The pr_type field contains one
of the possible socket types (e.g. SOCK_STREAM), while the prJamily field indicates which
protocol family the protocol belongs to. The pr -protocol field contains the protocol number of
the protocol, normally a well known value.

CSRG TR'6 Leffler, et. al.

Networking Implementation - 11 - Internal layering

6.3. Network-interface layer

Each network-interface configured into a system defines a path through which packets
may be sent and received. Normally a hardware device is associated with this interface, though
there is no requirement for this (for example, all systems have a software "loopback" interface
used for debugging and performance analysis). In addition to manipulating the hardware dev­
ice, an interface module is responsible for encapsulation and deencapsulation of any low level
header information required to deliver a message to it's destination. The selection of which
interface to use in delivering packets is a routing decision carried out at a higher level than the
network-interface layer. Each interface normally identifies itself at boot time to the routing
module so that it may be selected for packet delivery.

An interface is defined by the following structure,

if name' - , / name, e.g. "en" or "10" * /
struct ifnet {

char
short
short
int
short

if_unit;
if_mtu;
if_net;
if_flags;

1* sub-unit for lower level driver * /
/* maximum transmission unit '" /
/* network number of interface "'/
/'" up/down, broadcast, etc. '" /

short
int
struct
union {

} ifJfu;
struct
int
int
int
int
int
int
int
int
int
int
struct

};

if timer;
if=host[2];
sockaddr if _ addr;

struct
struct

ifqueue if snd;
(*if init) ();
(*if= output) 0;
(*if ioctI) 0;
(*if-reset) 0;
(*if=watchdog) 0;
ifJpackets;
ifJerrors;
if _ opackets;
if _ oerrors;
if_collisions;
ifnet *if_next;

1* time 'til if_watchdog called'" /
1* local net host number'" /
/'" address of interface * /

sockaddr ifu _ broadaddr;
sockad~r ifu _ dstaddr;

/* output queue * /
/* init routine * /
1* output routine * /
/* ioctl routine '" /
1* bus reset routirie * /
/* timer routine • f
/* packets received on interface * /
/* input errors on interface • /
/* packets sent on interface * /
/* output errors on interface * /
f'" collisions on csma interfaces • /

Each interface has a send queue and routines used for initialization, if_in it, and output,
if.. output. If the interface resides on a system bus, the routine if..reset will be called after a bus
reset has been performed. An interface may also specify a timer routine, if.. watchdog, which
should be called every if..timer seconds (if non-zero).

The state of an interface and certain characteristics are stored in the ifJlags field. The fol-
lowing values are possible:

#define IFF_UP OxI 1* interface is up */
#define IFF_BROADCAST Ox2 1* broadcast address valid • /
#define IFF_DEBUG Ox4 1* turn on debugging * f
#define IFF_ROUTE . Ox8 1* routing entry installed */
#define IFF_POINTOPOINT OxIO f· interface is point-to-point link */
#define IFF _NOTRAILERS Ox20 1* avoid use of trailers'" f
#define IFF_RUNNING Ox40 /* resources allocated • /
#define IFF _NOARP Ox80 1* no address resolution protocol "'/

CSRG TR/6 Leffler, et. al.

Networking Implementation - 12 - Internal layering

If the interface is connected to a network which supports transmission of broadcast packets, the
IFF_BROADCAST flag will be set and the iLbroadaddr field will contain the address to be used
in sending or accepting a broadcast packet. If the interface is associated with a point to point
hardware link (for example, a DEC DMR-II), the IFF_POINTOPOINT flag will be set and
iLdstaddr will contain the address of the host on the other side of the connection. These
addresses and the local address of the interface, iLaddr, are used in filtering incoming packets.
The interface sets IFF_RUNNING after it has allocated system resources and posted an initial
read on the device it manages. This state bit is used to avoid multiple allocation requests when
an interface's address is changed. The IFF _NOTRAILERS flag indicates the interface should
refrain from using a trailer encapsulation on outgoing packets; trailer protocols are described in
section 14. The IFF _NOARP flag indicates the interface should not use an "address resolution
protocol" in mapping internetwork addresses to local network addresses;

The information stored in an i/net structure for point to point communication devices is
not currently used by the system internally. Rather, it is used by the user level routing process
in determining host network connections and in initially devising routes {refer to chapter 10 for
more information}.

Various statistics are also stored in the interface structure. These may be viewed by users
using the netstat(1} program.

The interface address and flags may be set with the SIOCSIFADDR and SIOCSIFFLAGS
ioctls. SIOCSIFADDR is used to initially define each interface's address; SIOGSIFFLAGS can
be used to mark an interface down and perform site-specific configuration.

6.3.1. UNIBUS interfaces

All hardware related interfaces currently reside on the UNIBUS. Consequently a common
set of utility routines for dealing with the UNIBUS has been developed. Each UNIBUS inter­
face utilizes a structure of the following form:

struct ifuba {

};

short ifu_uban; 1* uba number * /
short ifu_hlen;
struct uba_regs *ifu_uba;

1* local net header length * /
1* uba regs, in vm * /

struct ifrw {
caddr_t
int
int
int

ifrw _addr; 1* virt addr of header * /
ifrw _ bdp; 1* unibus bdp * /
ifrw jnfo; 1* value from ubaalloc * /
ifrw yroto; 1* map register prototype * /
pte *ifrw _mr;1* base of map registers * / struct

} ifu r, ifu w;
struct - pte ifu wmap[IF MAXNUBAMR];I* base pages for output */
short ifu xs;apd; - 1* mask of clusters swapped * /
short ifu -flags; 1* used during uballoc's */
struct mbuf *ifu_xtofree; 1* pages being dma'd out */

The iLuba structure describes UNIBUS resources held by an interface. IF _NUBAMR
map registers are held for datagram data, starting at ifr_mr. UNIBUS map register i/r_mr[-1]
maps the local network header ending on a page boundary. UNIBUS data paths are reserved
for read and for write, given by i/r_bdp. The prototype of the map registers for read and for
write is saved in ifrJroto.

When write transfers are not full pages on page boundaries the data is just copied into the
pages mapped on the UNIBUS and the transfer is started. If a write transfer is of a (1024 byte)
page size and on a page boundary, UNIBUS page table entries are swapped to reference the
pages, and then the initial pages are remapped from i/u_ wmap when the transfer completes.

CSRG TR/6 Leffler, eta al.

Networking Implementation - 13 - Internal layering

When read transfers give whole pages of data to be input, page frames are allocated from
a network page list and traded with the pages already containing the data, mapping the allocated
pages to replace the input pages for the next UNIBUS data input.

The following utility routines are available for use in writing network interface drivers, all
use the ifuba structure described above.

if_ubainitOfu, uban, hlen, nmr);
iLubainit allocates resources on UNIBUS adaptor uban and stores the resultant informa­
tion in the ifuba structure pointed to by ifu. It is called only at boot time or after a
UNIBUS reset. Two data paths (buffered or unbuffered, depending on the ifu-.f!ags field)
are allocated, one for reading and one for writing. The nmr parameter indicates the
number of UNIBUS mapping registers required to map a maximal sized packet onto the
UNIBUS, while hlen specifies the size of a local network header, if any, which should be
mapped separately from the data (see the description of trailer protocols in chapter 14).
Sufficient UNIBUS mapping registers and pages of memory are allocated to initialize the
input data path for an initial read. For the output data path, mapping registers and pages
of memory are also allocated and mapped onto the UNIBUS. The pages associated with
the output data path are held in reserve in the event a write requires copying non-page­
aligned data (see iLwubaput below). If iLubainit is called with resources already allocated,
they will be used instead of allocating new ones (this normally occurs after a UNIBUS
reset). A 1 is returned when allocation and initialization is successful, 0 otherwise.

m = if_rubagetOfu, totlen, offO);
iLrubaget pulls read data off an interface. totlen specifies the length of data to be
obtained, not counting the local network header. If ofjD is non-zero, it indicates a byte
offset to a trailing local network header which should be copied into a separate mbuf and
prepended to the front of the resultant mbuf chain. When page sized units of data are
present and are page-aligned, the previously mapped data pages are remapped into the
mbufs and swapped with fresh pages; thus avoiding any copying. A 0 return value indi­
cates a failure to allocate resources.

if_wubaput(ifu, m);
iL wubaput maps a chain of mbufs onto a network interface in preparation for output. The
chain includes any local network header, which is copied so that it resides in the mapped
and aligned 110 space. Any other mbufs which contained non page sized data portions are
also copied to the 110 space. Pages mapped from a previous output operation (no longer
needed) are unmapped and returned to the network page pool.

CSRG TR/6 Leffler, et. al.

Networking Implementation - 14 - Socket/protocol interface

7. Socket/protocol interface
The interface between the socket routines and the communication protocols is through

the pr_usrreq routine defined in the protocol switch table. The following requests to a protocol
module are possible:

#define PRU_ATTACH 0
#define PRU_DETACH 1
#define PRU_BIND 2
#define PRU_LISTEN 3
#define PRU_CONNECT 4
#define PRU_ACCEPT 5
#define PRU_DISCONNECT 6
#define PRU_SHUTDOWN 7
#define PRU_RCVD 8
#define PRU_SEND 9
#define PRU_ABORT 10
#define PRU_CONTROL 11
#define PR U _SENSE 12
#define PRU_RCVOOB 13
#define PRU_SENDOOB 14
#define PRU _SOCKADDR 15
#define PRU _PEERADDR 16
#define PRU_CONNECT2 17
1* begin for protocols internal use -/
#define PRU_FASTTIMO 18
#define PRU_SLOWTIMO 19
#define PRU_PROTORCV 20
#define PRU_PROTOSEND 21

A call on the user request routine is of the form,

1* attach protocol - /
1* detach protocol -/
1* bind socket to address -/
/- listen for connection -/
/- establish connection to peer -,
1* accept connection from peer -/
1* disconnect from peer -,
1* won't send any more data -,
1* have taken data; more room now -,
/- send this data - /
1* abort (fast DISCONNECT, DETATCH) -/
1* control operations on protocol -/
1* return status into m -,
1* retrieve out of band data -,
1* send out of band data - /
1* fetch socket's address -/
/- fetch peer's address - /
1* connect two sockets -,

1* 200ms timeout -/
1* SOOms timeout -,
1* receive from below -,
1* send to below - /

error == (-protosw[].pr_usrreq) (up, req, m, addr, rights);
int error; struct socket -up; int req; struct mbuf -m, *rights; caddr_t addr;

The mbuf chain, m, and the address are optional parameters. The rights parameter is an
optional pointer to an mbuf chain containing user specified capabilities (see the sendmsg and..
recvmsg system calls). The protocol is responsible for disposal of both mbuf chains. A non­
zero return value gives a UNIX error number which should be passed to higher level software.
The following paragraphs describe each of the requests possible.

PRU ATTACH
-When a protocol is bound to a socket (with the socreate system call) the protocol module
is called with this request. It is the responsibility of the protocol module to allocate any
resources necessary. The "attach" request will always precede any of the other requests,
and should not occur more than once.

PRU_DETACH
This is the antithesis of the attach request, and is used at the time a socket is deleted.
The protocol module may deallocate any resources assigned to the socket.

PRU BIND
-When a socket is initially created it has no address bound to it. This request indicates an
address should be bound to an existing socket. The protocol module must verify the
requested address is valid and available for use.

PRU _LISTEN .
The "listen" request indicates the user wishes to listen for incoming connection requests
on the associated socket. The protocol module should perform any state ch~nges needed
to carry out this request (if possible). A "listen" request always precedes a request to

CSRG TR/6 Leffler, et. al.

Networking Implementation - 15 - Socket/protocol interface

accept a connection.

PRU CONNECT
-The "connect" request indicates the user wants to a establish an association. The add,
parameter supplied describes the peer to be connected to. The effect of a connect request
may vary depending on the protocol. Virtual circuit protocols, such as TCP [PosteI80b],
use this request to initiate establishment of a TCP connection. Datagram protocols, such
as UDP [Postel79], simply record the peer's address in a private data structure and use it
to tag, all outgoing packets. There are no restrictions on how many times a connect
request may be used after an attach. If a protocol supports the notion of multi-casting, it is
possible to use multiple connects to establish a multi-cast group. Alternatively, an associ­
ation may be broken by a PRU_DISCONNECT request, and a new association created
with a subsequent connect request; all without destroying and creating a new socket.

PRU_ACCEPT
Following a successful PRU_LISTEN request and the arrival of one or more connections,
this request is made to indicate the user has accepted the first connection on the queue of
pending connections. The protocol module should fill in the supplied address buffer with
the address of the connected party.

PRU_DISCONNECT
Eliminate an association created with a PRU_CONNECT request.

PRU SHUTDOWN
This call is used to indicate no more data will be sent and/or received (the add, parameter
indicates the direction of the shutdown, as encoded in the soshutdown system call). The
protocol may, at its discretion, deallocate any data structures related to the shutdown.

PRU RCVD
-This request is made only if the protocol entry in the protocol switch table includes the
PR_ W ANTRCVD flag. When a user removes data from the receive queue this request
will be sent to the protocol module. It may be used to trigger acknowledgements, refresh
windowing information, initiate data transfer, etc.

PRU SEND
-Each user request to send data is translated into one or more PRU_SEND requests (a pro­
tocol may indicate a single user send request must be translated into a single PR U _SEND
request by specifying the PR_ATOMIC flag in its protocol description). The data to be
sent is presented to the protocol as a list of mbufs and an address is, optionally, supplied -
in the add, parameter. The protocol is responsible for preserving the data in the socket's
send queue if it is not able to send it immediately, or if it may need it at some later time
(e.g. for retransmission).

PRU_ABORT
This request indicates an abnormal termination of service. The protocol should delete any
existing association (s) .

PRU CONTROL
-The "control" request is generated when a user performs a UNIX ioctl system call on a
socket (and the ioctl is not intercepted by the socket routines). It allows protocol-specific
operations to be provided outside the scope of the common socket interface. The addr
parameter contains a pointer to a static kernel data area where relevant information may
be obtained or returned. The m parameter contains the actual ioctl request code (note the
non-standard calling convention).

PRU SENSE
-The "sense" request is generated when the user makes an /stat system call on a socket; it
requests status of the associated socket. There currently is no common format for the
status returned. Information which might be returned includes per-connection statistics,
protocol state, resources currently in use by the connection, the optimal transfer size for
the connection (based on windowing information and maximum packet size). The add,

CSRG TR/6 Leffler, et. al.

Networking Implementation . - 16 - Socket/protocol interface

parameter contains a pointer to a static kernel data area where the status buffer should be
placed.

PRU_RCVOOB
Any "out-of-band" data presently available is to be returned. An mbuf is passed in to
the protocol module and the protocol should either place data in the mbuf or attach new
mbufs to the one supplied if there is insufficient space in the single mbuf.

PRU_SENDOOB
Like.PRU_SEND, but for out-of-band data.

PRU_SOCKADDR
The local address of the socket is returned, if any is currently bound to the it. The
address format (protocol specific) is returned in the add, parameter.

PRU_PEERADDR
The address of the peer to which the socket is connected is returned. The socket must be
in a SS ISCONNECTED state for this request to be made to the protocol. The address
format (protocol specific) is returned in the add, parameter.

PRU_CONNECT2
The protocol module is supplied two sockets and requested to establish a connection
between the two without binding any addresses, if possible. This call is used in imple­
menting the system call.

The following requests are used internally by the protocol modules and are never gen­
erated by the socket routines. In certain instances, they are handed to the p,_usrreq routine
solely for convenience in tracing a protocol's operation (e.g. PRU_SLOWTIMO).

PRU_FASTTIMO
A "fast timeout" has occured. This request is made when a timeout occurs in the
protocol's p'Jastimo routine. The add, parameter indicates which timer expired.

PRU_SLOWTIMO
A "slow timeout" has occured. This request is made when a timeout occurs in the
protocol's p,_slowtimo routine. The add, parameter indicates which timer expired.

PRU_PROTORCV
This request is used in the protocol-protocol interface, not by the routines. It requests
reception of data destined for the protocol and not the user. No protocols currently use
this f acili ty .

PRU_PROTOSEND
This request allows a protocol to send data destined for another protocol module, not a
user. The details of how data is marked "addressed to protocol" instead of "addressed to
user" are left to the protocol modules. No protocols currently use this facility.

CSRG TR/6 Leffler, et. a1.

Networking Implementation - 17 - Protocol/protocol interface

8. Protocol/protocol interface
The interface between protocol modules is through the pr_usrreq, pr_input, pr_output,

p,_ctlinput, and pr_ctloutput routines. The calling conventions for all but the pr_usrreq routine
are expected to be specific to the protocol modules and are not guaranteed to be consistent
across protocol families. We will examine the conventions used for some of the Internet proto­
cols in this section as an example.

8.1. pr_output

The Internet protocol UDP uses the convention,

error =- udp_output{inp, m);
int error; struct inpcb *inp; struct mbuf *m;

where the inp, "internet jKotocol control block", passed between modules conveys per connec­
tion state information, and the mbuf chain contains the data to be sent. UDP performs con­
sistency checks, appends its header, calculates a checksum, etc. before passing the packet on to
the IP module:

error == ip output (m, opt, ro, allowbroadcast);
int error; struct mbuf *m, *opt; struct route *ro; int allowbroadcast;

The call to IP's output routine is more complicated than that for UDP, as befits the addi­
tional work the IP module must do. The m parameter is the data to be sent, and the opt param­
eter is an optional list of IP options which should be placed in the IP packet header. The ro
parameter is is used in making routing decisions (and passing them back to the caller). The
final parameter, a//owbroadcast is a flag indicating if the user is allowed to transmit a broadcast
packet. This may be inconsequential if the underlying hardware does not support the notion of
broadcasting.

All output routines return 0 on success and a UNIX error number if a failure occured
which could be immediately detected (no buffer space available, no rOl!te to destination, etc.).

8.2. pr_input

Both UDP and TCP use the following calling convention,

(void) (*protosw[].pr input) (m);
struct mbuf *m; -

Each mbuf list passed is a single packet to be processed by the protocol module.

The IP input routine is a V AX software interrupt level routine, and so is not called with
any parameters. It instead communicates with network interfaces through a queue, ipintrq,
which is identical in structure to the queues used by the network interfaces for storing packets
awaiting transmission.

8.3. pr_ctlinput

This routine is used to convey "control" information to a protocol module (i.e. informa­
tion which might be passed to the user, but is not data). This routine, and the pr_ctloutput rou­
tine, have not been extensively developed, and thus suffer from a "clumsiness" that can only
be improved as more demands are placed on it.

The common calling convention for this routine is,

(void) (*protosw[].pr ctlinput) (req, info);
int req; caddr_t info;

The req parameter is one of the following,

CSRG TR/6 Leffler, et. al.

Networking Implementation - 18 -

#define PRC_IFDOWN 0
#define PRC_ROUTEDEAD 1
#define PRC_QUENCH 4
#define PRC HOSTDEAD 6
#define PRC -HOSTUNREACH 7
#define PRC=UNREACH_NET 8
#define PRC UNREACH HOST 9
#define PRC-UNREACH-PROTOCOL 10
#define PRC-UNREACH-PORT 11
#define PRC-MSGSIZE - 12
#define PRC-REDIRECT NET 13
#define PRC-REDIRECT-HOST 14
#define PRC - TIMXCEED INTRANS 17
#define PRC - TIMXCEED - REASS 18
#define PRC=PARAMPROB . 19

Protocol/protocol interface

r interface transition * /
r select new route if possible * /
r some said to slow down * /
r normally from IMP * /
r ditto */
r no route to network * /
/* no route to host * /
r dst says bad protocol * /
r bad port # */
/* message size forced drop * /
r net routing redirect * /
/* host routing redirect * /
/* packet lifetime expired in transit * /
r lifetime expired on reass q * /
r header incorrect * /

while the info parameter is a "catchall" value which is request dependent. Many of the
requests have obviously been derived from ICMP (the Internet Control Message Protocol), and
from error messages defined in the 1822 host/IMP convention [BBN78]. Mapping tables exist
to convert control requests to UNIX error codes which are delivered to a user.

8.4. pr _ ctloutput

This routine is not currently used by any protocol modules.

CSRG TR/6 Leffler, et. al.

Networking Implementation - 19 - Protocol/network-interface

9. Protocol/network-interface interface
The lowest layer in the set of protocols which comprise a protocol family must interface

itself to one or more network interfaces in order to transmit and receive packets. It is assumed
that any routing decisions have been made before handing a packet to a network interface, in
fact this is absolutely necessary in order to locate any interface at all (unless, of course, one
uses a single "hardwired" interface). There are two cases to be concerned with, transmission
of a packet, and receipt of a packet; each will be considered separately.

9.1. Packet transmission
Assuming a protocol has a handle on an interface, ifp, a (struct ifnet "'), it transmits a

fully formatted packet with the following call,

error == ("'ifp->if_output) Ofp, m, dst)
int error; struct ifnet "'ifp; struct mbuf "'m; struct sockaddr "'dst;

The output routine for the network interface transmits the packet m to the dst address, or
returns an error indication (a UNIX error number). In reality transmission may not be
immediate, or successful; normally the output routine simply queues the packet on its send
queue and primes an interrupt driven routine to actually transmit the packet. For unreliable
mediums, .such as the Ethernet, "successful" transmission simply means the packet has been
placed on the cable without a collision. On the other hand, an 1822 interface guarantees proper
delivery or an error indication for each message transmitted. The model employed in the net­
working system attaches no promises of delivery to the packets handed to a network interface,
and thus corresponds more closely to the Ethernet. Errors returned by the output routine are
normally trivial in nature (no buffer space, address format not handled, etc.).

9.2. Packet reception
Each protocol family must have one or more Hlowest level" protocols. These protocols

deal with internetwork addressing and are responsible for the delivery of incoming packets to
the proper protocol processing modules. In the PUP model [Boggs78] these protocols are
termed Level 1 protocols, in the ISO model, network layer protocols. In our system each such
protocol module has an input packet queue assigned to it. Incoming packets received by a net­
work interface are queued up for the protocol module and a V AX software interrupt is posted
to initiate processing.

Three macros are available for queu.~ing and dequeueing packets,
IF _ENQUEUEOfq, m)

This places the. packet m at the tail of the queue ij'q. -

IF _DEQUEUEOfq, m)
This places a pointer to the packet at the head of queue ifq in m. A zero value will be
returned in m if the queue is empty.

IF_PREPEND(ifq, m)
This places the packet m at the head of the queue ij'q.

Each queue has a maximum length associated with it as a simple form of congestion con­
trol. The macro IF _QFULL(ifq) returns 1 if the queue is filled, in which case the macro
IF _DROP(ifq) should be used to bump a count of the number of packets dropped and the
offending packet dropped. For example, the following code fragment is commonly found in a
network interface's input routine,

if (IF _ QFULL (inq» {
IF _DROP(inq);
m_freem(m);

} else
IF_ENQUEUE(inq, m);

CSRG TR/6 Leffler, et. al.

Networking Implementation - 20 - Protocol! network -interface

10. Gateways and routing issues
The system has been designed with the expectation that it will be used in an internetwork

environment. The "canonical" environment was envisioned to be a collection of local area
networks connected at one or more points through hosts with multiple network interfaces (one
on each local area network), and possibly a connection to a long haul network (for example, the
ARP ANET). In such an environment, issues of gatewaying and packet routing become very'
important. Certain of these issues, such as congestion control, have been handled in a simplis­
tic manner .or specifically not addressed. Instead, where possible, the network system attempts
to provide simple mechanisms upon which more involved policies may be implemented. As
some of these problems become better understood, the solutions developed will be incorporated
into the system.

This section will describe the facilities provided for packet routing. The simplistic
mechanisms provided for congestion control are described in chapter 12.

10.1. Routing tables
The network system maintains a set of routing tables for selecting a network interface to

use in delivering a packet to its destination. These tables are of the form:

struct rtentry {
uJong
struct
struct
short
short
uJong
struct

};

rt_hash; 1* hash key for lookups * /
sockaddr rt dst; /* destination net or host • /
sockaddr rt=gateway;1* forwarding agent * /
rt flags; /* see below * /
rt-refcnt; /* no. of references to structure • /
reuse; 1* packets sent using route • /
ifnet *rtjfp; /* interface to give packet to * /

The routing information is organized in two separate tables, one for routes to a host and
one for routes to a network. The distinction between hosts and networks is necessary so that a
single mechanism may be used for both broadcast and multi-drop type networks, and also for
networks built from point-to-point links (e.g DECnet [DEC80n.

Each table is organized as a hashed set of linked lists. Two 32-bit hash values are calcu­
lated by routines defined for each address family; one based on the destination being a host,
and one assuming the target is the network portion of the address. Each hash value is used to -
locate a hash chain to search (by taking the value modulo the hash tJlble size) and the entire
32-bit value is then used as a key in scanning the list of routes. Lookups are applied first to the
routing table for hosts, then to the routing table for networks. If both lookups fail, a final
lookup is made for a "wildcard" route (by convention, network 0). By doing this, routes to a
specific host on a network may be present as well as routes to the network. This also allows a
"fall back" network route to be defined to an "smart" gateway which may then perform more
intelligent routing.

Each routing table entry contains a destination (who's at the other end of the route), a
gateway to send the packet to, and various flags which indicate the route's status and type (host
or network). A count of the number of packets sent using the route is kept for use in deciding
between multiple routes to the same destination (see beloW), and a count of "held references"
to the dynamically allocated structure is maintained to insure memory reclamation occurs only
when the route is not in use. Finally a pointer to the a network interface is kept; packets sent
using the route should be handed to this interface.

Routes are typed in two ways: either as host or network, and as "direct" or "indirect".
The host/network distinction determines how to compare the rcdst field during lookup. If the
route is to a network, only a packet's destination network is compared to the rcdst entry stored
in the table. If the route is to a host, the addresses must match bit for bit.

CSRG TR/6 Leffler, et. al.

Networking Implementation - 21 - Gateways and routing

The distinction between "direct" and "indirect" routes indicates whether the destination
is directly connected to the source. This is needed when performing local network encapsula­
tion. If a packet is destined for a peer at a host or network which is not directly connected to
the source, the internetwork packet header will indicate the address of the eventual destination,
while the local network header will indicate the address of the intervening gateway. Should the
destination be directly connected, these addresses are likely to be identical, or a mapping
between the two exists. The RTF_GATEWAY flag indicates the route is to an "indirect" gate­
way agent and the local network header should be filled in from the rCgateway field instead of
rcdst, or from the internetwork destination address.

It is assumed multiple routes to the same destination will not be present unless they are
deemed equal in cost (the current routing policy process never installs multiple routes to the
same destination). However, should multiple routes to the same destination exist, a request for
a route will return the "least used" route based on the total number of packets sent along this
route. This can result in a "ping-pong" effect (alternate packets taking alternate routes),
unless protocols "hold onto" routes until they no longer find them useful; either because the
destination has changed, or because the route is lossy.

Routing redirect control messages are used to dynamically modify existing routing table
entries as well as dynamically create new routing table entries. On hosts where exhaustive rout­
ing information is too expensive to maintain (e.g. work stations), the combination of wildcard
routing entries and routing redirect messages can be used to provide a simple routing manage­
ment scheme without the use of a higher level policy process. Statistics are kept by the routing
table routines on the use of routing redirect messages and their affect on the routing tables.
These statistics may be viewed using

Status information other than routing redirect control messages may be used in the
future, but at present they are ignored. Likewise, more intelligent "metrics" may be used to
describe routes in the future, possibly based on bandwidth and monetary costs.

10.2. Routing table interface
A protocol accesses the routing tables through three routines, one to allocate a route, one

to free a route, and one to process a routing redirect control message. The routine rtalloc per­
forms route allocation; it is called with a pointer to the following structure,

struct route {
struct
struct

};

rtentry *ro_rt;
sockaddr ro _ dst;

The route returned is assumed "held" by the caller until disposed of with an rtfree call. Proto­
cols which implement virtual circuits, such as TCP, hold onto routes for the duration of the
circuit's lifetime, while connection-less protocols, such as UDP, currently allocate and free
routes on each transmission.

The routine rtredirect is called to process a routing redirect control message. It is called
with a destination address and the new gateway to that destination. If a non-wildcard route
exists to the destination, the gateway entry in the route is modified to point at the new gateway
supplied. Otherwise', a new routing table entry is inserted reflecting the information supplied.
Routes to interfaces and routes to gateways which are not directly accesible from the host are
ignored.

10.3. User level routing policies
Routing policies implemented in user processes manipulate the kernel routing tables

through two iocil calls. The commands SIOCADDRT and SIOCDELRT add and delete routing
entries, respectively; the tables are read through the Idev/kmem device. The decision to place
policy. decisions in a user process implies routing table updates may lag a bit behind the
identification of new routes, or the failure of existing routes, ,but this period of instability is

CSRG TR/6 Leffler, et. al.

Networking Implementation - 22 - Gateways and routing

normally very small with proper implementation of the routing process. Advisory information,
such as ICMP error messages and IMP diagnostic messages, may be read from raw sockets
(described in the next section).

One routing policy process has already been implemented. The system standard "routing
daemon" uses a variant of the Xerox NS Routing Information Protocol [Xerox82] to maintain
up to date routing tables in our local environment. Interaction with other existing routing pro­
tocols, such as the Internet GGP (Gateway-Gateway Protocol), may be accomplished using a
similar process.

CSRG TR/6 Leffler, et. a1.

Networking Implementation - 23 - Raw sockets

11. Raw sockets
A raw socket is a mechanism which allows users direct access to a lower level protocol.

Raw sockets are intended for knowledgeable processes which wish to take advantage of some
protocol feature not directly accessible through the normal interface, or for the development of
new protocols built atop existing lower level protocols. For example, a new version of Tep
might be developed at the user level by utilizing a raw IP socket for delivery of packets. The
raw IP socket interface attempts to provide an identical interface to the one a protocol would
have if it were resident in the kernel.

The raw socket support is built around a generic raw socket interface, and (possibly) aug­
mented by protocol-specific processing routines. This section will describe the core of the raw
socket interface.

11.1. Control blocks
Every raw socket has a protocol control block of the following form,

struct raweb {
struet

};

struet
struct
struet
struet
eaddr_t
short

rawcb ·rcb_next;
rawcb ·rcb yrev;
socket ·rcb_socket;
sockaddr rcb _faddr;
sockaddr rcb _laddr;
rcbycb;
rcb_flags;

/* doubly linked list * /

1* back pointer to socket * /
/* destination address * /
/* socket's address * /
/* protocol specific stuff -/

All the control blocks are kept on a doubly linked list for performing lookups during packet
dispatch. Associations may be recorded in the control block and used by the output routine in
preparing packets for transmission. The addresses are also used to filter packets on input; this
will be described in more detail shortly. If any protocol specific information is required, it may
be attached to the control block using the reb yeb field.

A raw socket interface is datagram oriented. That is, each send or receive on the socket
requires a destination address. This address may be supplied by the user or stored in the con­
trol block and automatically installed in the outgoing packet by the output routine. Since it is
not possible to determine whether an address is present or not in the control block, two flags,
RA W LADDR and RAW FADDR, indicate if a local and foreign address are present. -
Another flag, RAW _DONTROUTE, indicates if routing should be performed on outgoing pack­
ets. If it is, a route is expected to be allocated for each "new" destination address. That is,
the first time a packet is transmitted a route is determined, and thereafter each time the desti­
nation address stored in reb_route differs from rebJaddr, or reb_route.ro_rt is zero, the old route
is discarded and a new one allocated.

11.2. Input processing
Input packets are "assigned" to raw sockets based on a simple pattern matching scheme.

Each network interface or protocol gives packets to the raw input routine with the call:

raw jnput (m, proto, src, dst)
struct mbuf *m; struct sockproto ·proto, struct sockaddr -src, -dst;

The data packet then has a generic header prepended to it of the form

struct raw_header {
struct sockproto raw"'proto;
struct sockaddr raw _ dst;

};
struct sockaddr raw _ src;

CSRG TR/6 Leffler, et. al.

Networking Implementation - 24 - Raw sockets

and it is placed in a packet queue for the "raw input protocol" module. Packets taken from
this queue are copied into any raw sockets that match the header according to the following
rules,
1) The protocol family of the socket and header agree.

2) If the protocol number in the socket is non-zero, then it agrees with that found in the
packet header.

3) If a local address is defined for the socket, the address format of the local address is the
same. as the destination address's and the two addresses agree bit for bit.

4) The rules of 3) are applied to the socket's foreign address and the packet's source address.

A basic assumption is that addresses present in the control block and packet header (as con­
structed by the network interface and any raw input protocol module) are in a canonical form
which may be "block compared".

11.3. Output processing
On output the raw pr_usrreq routine passes the packet and raw control block to the raw·

protocol output routine for any processing required before it is delivered to the appropriate net­
work interface. The output routine is normally the only code required to implement a raw
socket interface.

CSRG TR/6 Leffler, et. al.

Networking Implementation - 25 - Buffering and congestion control

12. Buffering and congestion control
One of the major factors in the performance of a protocol is the buffering policy used.

Lack of a proper buffering policy can force packets to be dropped, cause falsified windowing
information to be emitted by protocols, fragment host memory, degrade the overall host perfor­
mance, etc. Due to problems such as these, most systems allocate a fixed pool of memory to
the networking system and impose a policy optimized for "normal" network operation.

The networking system developed for UNIX is little different in this respect. At boot
time a fixed amount of memory is allocated by the networking system. At later times more
system memory may be requested as the need arises, but at no time is memory ever returned
to the system. It is possible to garbage collect memory from the network, but difficult. In
order to perform this garbage collection properly, some portion of the network will have to be
"turned off" as data structures are updated. The interval over which this occurs must kept
small compared to the average inter-packet arrival time, or too much traffic may be lost,
impacting other hosts on the network, as well as increasing load on the interconnecting medi­
ums. In our environment we have not experienced a need for such compaction, and thus have
left the problem unresolved.

The mbuf structure was introduced in chapter 5. In this section a brief description will be
given of the allocation mechanisms, and policies used by the protocols in performing connec­
tion level buffering.

12.1. Memory management
The basic memory allocation routines place no restrictions on the amount of space which

may be allocated. Any request made is filled until the system memory allocator starts refusing
to allocate additional memory. When the current quota of memory is insufficient to satisfy an
mbuf allocation request, the allocator requests enough new pages from the system to satisfy the
current request only. All memory owned by the network is described by a private page table
used in remapping pages to be logically contiguous as the need arises. In addition, an array of
reference counts parallels the page table and is used when multiple copies of a page are present.

Mbufs are 128 byte structures, 8 fitting in a lKbyte page of memory. When data is placed
in mbufs, if possible, it is copied or remapped into logically contiguous pages of memory from
the' network page pool. Data smaller than the size of a page is copied into one or more 112
byte mbuf data areas.

12.2. Protocol buffering policies
Protocols reserve fixed amounts of buffering for send and receive queues at socket crea­

tion time. These amounts define the high and low water marks used by the socket routines in
deciding when to block and unblock a process. The reservation of space does not currently
result in any action by the memory management routines, though it is clear if one imposed an
upper bound on the total amount of physical memory allocated to the network, reserving
memory would become important.

Protocols which provide connection level flow control do this based on the amount of
space in the associated socket queues. That is, send windows are calculated based on the
amount of free space in the socket's receive queue, while receive windows are adjusted based
on the amount of data awaiting transmission in the send queue. Care has been taken to avoid
the "silly window syndrome" described in [Clark82] at both the sending and receiving ends.

12.3. Queue limiting
Incoming packets from the network are always received unless memory allocation fails.

However, each Levell protocol input queue has an upper bound on the queue's length, and
any packets exceeding that bound are discarded. It is possible for a host to be overwhelmed by
excessive network traffic (for instance a host acting as a gateway from a high bandwidth net­
work to a low bandwidth network). As a "defensive" mechanism the queue limits may be

CSRG TR/6 Leftler, et. al.

Networking Implementation - 26 - Buffering and congestion control

adjusted to throttle network traffic load on a host. Consider a host willing to devote some per­
centage of its machine to handling network traffic. If the cost of handling an incoming packet
can be calculated so that an acceptable "packet handling rate" can be determined, then input
queue lengths may be dynamically adjusted based on a host's network load and the number of
packets awaiting processing. Obviously, discarding packets is not a satisfactory solution to a
problem such as this (simply dropping packets is likely to increase the load on a network); the
queue lengths were incorporated mainly as a safeguard mechanism.

12.4. Packet forwarding
When packets can not be forwarded because of memory limitations, the system generates

a "source quench" message. In addition, any other problems encountered during packet for­
warding are also reflected back to the sender in the form of ICMP packets. This helps hosts
avoid unneeded retransmissions.

Broadcast packets are never forwarded due to possible dire consequences. In an early
stage of network development, broadcast packets were forwarded and a "routing loop" resulted
in network saturation and every host on the network crashing.

CSRG TR/6 Leffler, et. a1.

Networking Implementation - 27 - Out of band data

13. Out of band data
Out of band data is a facility peculiar to the stream socket abstraction defined. Little

agreement appears to exist as to what its semantics should be. TCP defines the notion of
"urgent data" as in-line, while the NBS protocols [Burruss81] and numerous others provide a
fully independent logical transmission channel along which out of band data is to be sent. In
addition, the amount of the data which may be sent as an out of band message varies from pro­
tocol to protocol; everything from 1 bit to 16 bytes or more.

A stream socket's notion of out of band data has been defined as the lowest reasonable
common denominator (at least reasonable in our minds); clearly this is subject to debate. Out
of band data is expected to be transmitted out of the normal sequencing and flow control con­
straints of the data stream. A minimum of 1 byte of out of band data and one outstanding out
of band message are expected to be supported by the protocol supporting a stream socket. It is
a protocols perogative to support larger sized messages, or more than one outstanding out of
band message at a time.

Out of band data is maintained by the protocol and usually not stored in the socket's send
queue. The PRU_SENDOOB and PRU_RCVOOB requests to the p,_usrreq routine are used in
sending and receiving data.

CSRG TR/6 Leffler, et. al.

Networking Implementation - 28 - Trailer protocols

14. Trailer protocols
Core to core copies can be expensive. Consequently, a great deal of effort was spent in

minimizing such operations. The VAX architecture provides virtual memory hardware organ­
ized in page units. To cut down on copy operations, data is kept in page sized units on page­
aligned boundaries whenever possible. This allows data to be moved in memory simply by
remapping the page instead of copying. The mbuf and network interface routines perform page
table manipulations where needed, hiding the complexities of the VAX virtual memory
hardware from higher level code.

Data enters the system in two ways: from the user, or from the network (hardware inter­
face). When data is copied from the user's address space into the system it is deposited in
pages (if sufficient data is present to fill an entire page). This encourages the user to transmit
information in messages which are a multiple of the system page size.

Unfortunately, performing a similar operation when taking data from the network is very
difficult. Consider the format of an incoming packet. A packet usually contains a local network
header followed by one or more headers used by the high level protocols. Finally, the data, if
any, follows these headers. Since the header information may be variable length, DMA'ing the
eventual data for the user into a page aligned area of memory is impossible without a priori
knowledge of the format (e.g. supporting only a single protocol header format) .

. To allow variable length header information to be present and still ensure page alignment
of data,. a special local network encapsulation may be used. This encapsulation, termed a trailer
protocol, places the variable length header information after the data. A fixed size local network
header is then prepended to the resultant packet. The local network header contains the size of
the data portion, and a new trailer protocol header, inserted before the variable length informa­
tion, contains the size of the variable length header information. The following trailer protocol
header is used to store information regarding the variable length protocol header:

struct {
short
short

protocol;
length;

r original protocol no. ·1
1* length of trailer ·1

The processing of the trailer protocol is very simple. On output, the local network header
indicates a trailer encapsulation is being used. The protocol identifier also includes an indica­
tion of the number of data pages present (before the trailer protocol header). The trailer proto­
col header is initialized to contain the actual protocol and variable length header size, and
appended to the data along with the variable length header information.

On input, the interface routines identify the trailer encapsulation by the protocol type
stored in the local network header, then calculate the number of pages of data to find the
beginning of the trailer. The trailing information is copied into a separate mbuf and linked to
the front of the resultant packet.

Clearly, trailer protocols require cooperation between source and destination. In addition,
they are normally cost effective only when sizable packets are used. The current scheme works
because the local network encapsulation header is a fixed size, allowing DMA operations to be
performed at a known offset from the first data page being received. Should the local network
header be variable length this scheme fails.

Statistics collected indicate as much as 200Kb/s can be gained by using a trailer protocol
with lKbyte packets. The average size of the variable length header was 40 bytes (the size of a
minimal TCP lIP packet header). If hardware supports larger sized packets, even greater gains
may be realized.

CSRG TR/6 LeIDer, et. al.

Networking Implementation - 29 - Acknowledgements

Acknowledgements
The internal structure of the system is patterned after the Xerox PUP architecture

[Boggs79], while in certain places the Internet protocol family has had a great deal of influence
in the design. The use of software interrupts for process invocation is based on similar facilities
found in the VMS operating system. Many of the ideas related to protocol modularity, memory
management, and network interfaces are based on Rob Gurwitz's TCP/IP implementation for
the 4.lBSD version of UNIX on the VAX [Gurwitz81]. Greg Chesson explained his use of
trailer encapsulations in Datakit, instigating their use in our system.

References
[Boggs79]

[BBN78]

[Cerf78]

[Clark82]

[DEC80]

[Gurwitz81]

[IS081]

[Joy82a]

[PosteI79]

[Postel80a]

[PosteI80b]

[Xerox81]

[Zimmermann80]

CSRG TR/6

Boggs, D. R., J. F. Shoch, E. A. Taft, and R. M. Metcalfe; PUP: An
Internetwork Architecture. Report CSL-79-10. XEROX Palo Alto
Research Center, July 1979.
Bolt Beranek and Newman; Specification for the Interconnection of Host and
IMP. BBN Technical Report 1822. May 1978.
Cerf, V. G.; The Catenet Model for Internetworking. Internet Working
Group, lEN 48. July 1978.
Clark, D. D.; Window and Acknowledgement Strategy in TCP. Internet
Working Group, lEN Draft Clark-2. March 1982.
Digital Equipment Corporation; DECnet DIGITAL Network Architecture
- General Description. Order No. AA-K179A-TK. October 1980.
Gurwitz, R. F.; VAX-UNIX Networking Support Project - Implementa-
tion Description. Internetwork Working Group, lEN 168. January 1981.
International Organization for Standardization. ISO Open Systems Inter­
connection - Basic Reference Model. ISO/TC 97/SC 16 N 719. August
1981.
Joy, W.; Cooper, E.; Fabry, R.; Leftler, S.; and McKusick, M.; 4.2BSD
System Manual. Computer Systems Research Group, Technical Report 5.
University of California, Berkeley. Draft of September 1, 1982.
Postel, J., ed. DOD Standard User Datagram Protocol. Internet Working
Group, lEN 88. May 1979.
Postel, J., ed. DOD Standard Internet Protocol. Internet Working Group,
lEN 128. January 1980.
Postel, J., ed. DOD Standard Transmission Control Protocol. Internet
Working Group, lEN 129. January 1980.
Xerox Corporation. Internet Transport Protocols. Xerox System Integra­
tion Standard 028112. December 1981.
Zimmermann, H. OSI Reference Model - The ISO Model of Architec­
ture for Open Systems Interconnection. IEEE Transactions on Commun­
ications. Com-28(4); 425-432. April 1980.

Leftler, et. al.

SEND MAIL - An Internetwork Mail Router

Eric Allmant

Britton-Lee, Inc.
1919 Addison Street, Suite 105.

Berkeley, California 94704.

ABSTRACT

Routing mail through a heterogenous internet presents many new problems. Among
the worst of these is that of address mapping. Historically, this has been handled on
an ad hoc basis. However, this approach has become unmanageable as internets grow.

Sendmail acts a unified "post office" to which all mail can be submitted. Address in­
terpretation is controlled by a production system, which can parse both domain-based
addressing and old-style ad hoc addresses. The production system is powerful enough
to rewrite addresses in the message header to conform to the standards of a number of
common target networks, including old (NCP/RFC733) Arpanet, new (TCP/RFC822)
Arpanet, UUCP, and Phonenet. Sendmail also implements an SMTPserver, message
queueing, and aliasing.

Sendmail implements a general internetwork mail routing facility, featuring aliasing and
forwarding, automatic routing to network gateways, and flexible configuration.

In a simple network, each node has an address, and resources can be identified with a
host-resource pair; in particular, the mail system can refer to users using a host-username pair.
Host names and numbers have to be administered by a central authority, but usernames can be
assigned locally to each host.

In an internet, mUltiple networks with different characterstics and managements must
communicate. In particular, the syntax and semantics of resource identification change. Cer­
tain special cases can be handled trivially by ad hoc techniques, such as providing network
names that appear local to hosts on other networks, as with the Ethernet at Xerox P ARC.
However, the general case is extremely complex. For example, some networks require point­
to-point routing, which simplifies the database update problem since only adjacent hosts must
be entered into the system tables, while others use end-to-end addressing. Some networks use
a left-associative syntax and others use a right-associative syntax, causing ambiguity in mixed
addresses.

Internet standards seek to eliminate these problems. Initially, these proposed expanding
the address pairs to address triples, consisting of {network, host, resource} triples. Network
numbers must be universally agreed upon, and hosts can be assigned locally on each network.
The user-level presentation was quickly expanded to address domains, comprised of a local
resource identification and a hierarchical domain specification with a common static root. The
domain technique separates the issue of physical versus logical addressing. For example, an
address of the form "eric@a.cc.berkeley.arpa" describes only the logical organization of the
address space.

t A considerable part of this work was done while under the employ of the INGRES Project at the University of
California at Berkeley.

SENDMAIL 1

SENDMAIL 2

Sendmail is intended to help bridge the gap between the totally ad hoc world of networks
that know nothing of each other and the clean, tightly-coupled world of unique network
numbers. It can accept old arbitrary address syntaxes, resolving ambiguities using heuristics
specified by the system administrator, as well as domain-based addressing. It helps guide the
conversion of message formats between disparate networks. In short, sendmail is designed to
assist a graceful transition to consistent internetwork addressing schemes.

Section 1 discusses the design goals for sendmail. Section 2 gives an overview of the basic
functions of the system. In section 3, details of usage are discussed. Section 4 compares send­
mail to other internet mail routers, and an evaluation of sendmail is given in section 5, including
future plans.

1. DESIGN GOALS

Design goals for sendmail include:

(1) Compatibility with the existing mail programs, including Bell version 6 mail, Bell ver­
sion 7 mail [UNIX83], Berkeley Mail [Shoens79], BerkNet mail [Schmidt79], and
hopefully UUCP mail [Nowitz78a, Nowitz78b]. ARPANET mail [Crocker77a, Pos­
te177] was also required.

(2) Reliability, in the sense of guaranteeing that every message is correctly delivered or at
least brought to the attention of a human for correct disposal; no message should ever
be completely lost. This goal was considered essential because of the emphasis on
mail in our environment. It has turned out to be one of the hardest goals to satisfy,
especially in the face of the many anomalous message formats produced by various
ARP ANET sites. For example, certain sites generate improperly formated addresses,
occasionally causing error-message loops. Some hosts use blanks in names, causing
problems with UNIX mail programs that assume that an address is one word. The
semantics of some fields are interpreted slightly differently by different sites. In sum­
mary, the obscure features of the ARPANET mail protocol really are used and are
difficult to support, but must be supported. -

(3) Existing software to do actual delivery should .be used whenever .possible. This goal
derives as much from political and practical considerations as technical.

(4) Easy expansion to fairly complex environments, including multiple connections to a
single network type (such as with multiple UUCP or Ether nets [Metcalfe76]) ... This
goal requires consideration of the contents of an address as well as its syntax in order
to determine which gateway to use. For example, the ARPANET is bringing up the
TCP protocol to replace the old NCP protocol. No host at Berkeley runs both TCP
and NCP, so it is necessary to look at the ARPANET host name to determine whether
to route mail to an NCP gateway or a TCP gateway.

(5) Configuration should not be compiled into the code. A single compiled program
should be able to run as is at any site (barring such basic changes as the CPU type or
the operating system). We have found this seemingly unimportant goal to be critical
in real life. Besides the simple problems that occur when any program gets recompiled
in a different environment, many sites like to "fiddle" with anything that they will be
recompiling anyway.

(6) Sendmail must be able to let various groups maintain their own mailing lists, and let
individuals specify their own forwarding, without modifying the system alias file.

(7) Each user should be able to specify which mailer to execute to process mail being
delivered for him. This feature allows users who are using specialized mailers that use
a different format to build their environment without changing the system, and facili­
tates specialized functions (such as returning an "I am on vacation" message).

(8) Network traffic should be minimized by batching addresses to a single host where pos­
sible, without assistance from the user.

Version 4.1 DRAFT Last Mod 7/25183

SENDMAIL 3

These goals motivated the architecture illustrated in figure 1. The user interacts with a
mail generating and sending program. When the mail is created, the generator calls send­
mail, which routes the message to the correct mailer(s). Since some of the senders may be
network servers and some of the mailers may be network clients, sendmail may be used as
an internet mail gateway.

2. OVERVIEW

2.1. System Organization

Sendmail neither interfaces with the user nor does actual mail delivery. Rather, it
collects a message generated by a user interface program (VIP) such as Berkeley Mail,
MS [Crocker77b], or MH [Borden79], edits the message as required by the destination
network, and calls appropriate mailers to do mail delivery or queueing for network
transmission 1• This discipline allows the insertion of new mailers at minimum cost. In
this sense send mail resembles the Message Proces~ing Module (MPM) of [PosteI79b).

2.2. Interfaces to the Outside World

There are three ways sendmail can communicate with the outside world, both in
receiving and in sending mail. These are using the conventional UNIX argument
vector/return status, speaking SMTP over a pair of UNIX pipes, and speaking SMTP
over an interprocess(or) channel.

2.2.1. Argument vector/exit status

This technique is the standard UNIX method for communicating with the pro­
cess. A list of recipients is sent in the argument vector, and the message body is sent

S'e.v1 c/ e r J. 'Sevtde r-~ se.~Je..r-3

I J
j, -, !

se.ndMdtil

J ,if !
met i lerj. M.,.ile,..2., IY\~ i le.r:J

Figure 1 - Sendmail System Structure.

lexcept when mailing to a file, when sendmail does the delivery directly.

Ve.rsion 4.1 DRAFl' Last Mod 7/25/83

SENDMAIL 4

on the standard input. Anything that the mailer prints is simply collected and sent
back to the sender if there were any problems. The exit status from the mailer is col­
lected after the message is sent, and a diagnostic is'printed if appropriate.

2.2.2. SMTP over pipes

The SMTP protocol [PosteI82] can be used to run an interactive lock-step inter­
face with the mailer. A subprocess is still created, but no recipient addresses are
passed to the mailer via the argument list. Instead, they are passed one at a time in
commands sent to' the processes standard input. Anything appearing on the standard
output must be a reply code in a special format.

2.2.3. SMTP over an IPC connection

This technique is similar to the previous technique, except that it uses a 4.2BSD
IPC channel [UNIX83]. This method is exceptionally flexible in that the mailer need
not reside on the same machine. It is normally used to connect to a sendmail process
on another machine.

2.3. Operational Description

When a sender wants to send a message, it issues a request to sendmail using one
of the three methods described above. Sendmail operates in two distinct phases. In the
first phase, it collects and stores the message. In the second phase, message delivery
occurs. If there were errors during processing during the second phase, sendmail creates
and returns a new message describing the error and/or returns an status code telling
what went wrong.

2.3.1. Argument processing and address parsing

If sendmail is called using one of the two subprocess techniques, the arguments
are first scanned and option specifications are processed. Recipient addresses are then
collected, either from the command line or from the SMTP RCPT command, and a
list of recipients is created. Aliases are expanded at this step, including mailing lists.
As much validation as possible of the addresses is done at this step: syntax is
checked, and local addresses are verified, but detailed checking of host names and
addresses is deferred until delivery. Forwarding is also performed as the local
addresses are verified. -

Sendmail appends each address to the recipient list after parsing. When a name
is aliased or forwarded, the old name is retained in the list, and a flag is set that tells
the delivery phase to ignore this recipient. This list is kept free from duplicates,
preventing alias loops and duplicate messages deliverd to the same recipient, as might .
occur if a person is in two groups.

2.3.2. Message collection

Sendmail then collects the message. The message should have a header at the
beginning. No formatting requirements are imposed on the message except that they
must be lines of text (Le., binary data is not allowed). The header is parsed and
stored in memory, and the body of the message is saved in a temporary file.

To simplify the program interface, the message is collected even if no addresses
were valid. The message will be returned with an error.

2.3.3. Message delivery

For each unique mailer and host in the recipient list, sendmail calls the appropri­
ate mailer. Each mailer invocation sends to all users receiving the message on one
host. Mailers that only accept one recipient at a time are handled properly.

Version 4.1 DRAFT Last Mod 7/25/83

SENDMAIL 5

The message is sent to the mailer using one of the same three interfaces used to
submit a message to sendmail. Each copy of the message is prepended by a custom­
ized header. The mailer status code is caught and checked, and a suitable error mes­
sage given as appropriate. The exit code must conform to a system standard or a
generic message ("Service unavailable") is given.

2.3.4. Queueing for retransmission

If the mailer returned an status that indicated that it might be able to handle the
mail later, sendmail will queue the mail and try again later.

2.3.5. Return to sender

If errors occur during processing, sendmail returns the message to the sender for
retransmission. The letter can be mailed back or written in the file "dead.letter" in
the sender's home directory2.

2.4. Message Header Editing

Certain editing of the message header occurs automatically. Header lines can be
inserted under control of the configuration file. Some lines can be merged; for example,
a "From:" line and a "Full-name:" line can be merged under certain circumstances.

2.5. Configuration File .

Almost all configuration information is read at runtime from an ASCII file, encod­
ing macro definitions (defining the value of macros used internally), header declarations
(telling sendmail the format of header lines that it will process specially, i.e., lines that it
will add or reformat), mailer definitions (giving information such as the location and
characteristics of each mailer), and address rewriting rules (a limited production system
to rewrite addresses which is used to parse and rewrite the addresses).

To improve performance when reading the configuration file, a memory image can
be provided. This provides a "compiled" form of the configuration file.

3. USAGE AND IMPLEMENTATION

3.1. Arguments

Arguments may be flags and addresses. Flags set various processing options. Fol­
lowing flag arguments, address arguments may be given, unless we are running in SMTP
mode. Addresses follow the syntax in RFC822 [Crocker82] for ARPANET address for­
mats. In brief, the format is:
(1) Anything in parentheses is thrown away (as a comment).

(2) Anything in angle brackets (" < >") is preferred over anything else. This rule
implements the ARPANET standard that addresses of the form

user name < machine-address>
will send to the electronic "machine-address" rather than the human "user name."

(3) Double quotes (") quote phrases; backslashes quote characters. Backslashes are
more powerful in that they will cause otherwise equivalent phrases to compare
differently - for example, user and "useI' are equivalent, but \user is different from
either of them.

2Qbviously, if the site giving the error is not the originating site, the only reasonable option is to mail back to the
sender. Also, there are many more error disposition options, but they only effect the error message - the "return to
sender" function is always handled in one of these two ways.

Version 4.1 DRAFT Last Mod 7/25/83

SENDMAIL 6

Parentheses, angle brackets, and double quotes must be properly balanced and
nested. The rewriting rules control remaining parsing3•

3.2. Mail to Files and Programs

Files and programs are legitimate message recipients. Files provide archival storage
of messages, useful for project administration and history. Programs are useful as reci­
pients in a variety of situations, for example, to maintain a public repository of systems
messages (such as the Berkeley msgs program, or the MARS system [Sattley78]).

Any address passing through the initial parsing algorithm as a local address (i.e, not
appearing to be a valid address for another mailer) is scanned for two special cases. If
prefixed by a vertical bar ("I") the rest of the address is processed as a shell command.
If the user name begins with a slash mark ("I") the name is used as a file name, instead
of a login name.

Files that have setuid or setgid bits set but no execute bits set have those bits
honored if sendmail is running as root.

3.3. Aliasing, Forwarding, Inclusion

Sendmail reroutes mail three ways. Aliasing applies system wide. Forwarding
allows each user to reroute incoming mail destined for that account. Inclusion directs
sendmail to read a file for a list of addresses, and is normally used in conjunction with
aliasing.

3.3.1. Aliasing

Aliasing maps names to address lists using a system-wide file. This file is
indexed to speed access. Only names that parse as local are allowed as aliases; this
guarantees a unique key (since there are no nicknames for the local host).

3.3.2. Forwarding

After aliasing, recipients that are local and valid are checked for the existence of
a ".forward" file in their home directory. If it exists, the message is not sent to that
user, but rather to the list of users in that file. Often this list will contain only one
address, and the feature will be used for network mail forwarding.

Forwarding also permits a user to specify a private incoming mailer. For exam­
ple, forwarding to:

"1/usr/locallnewmail myname"

will use a different incoming mailer.

3.3.3. Inclusion
Inclusion is specified in RFC 733 [Crocker77a] syntax:

:Include: pathname

An address of this form reads the file specified by pathname and sends to all users
listed in that file.

The intent is not to support direct use of this feature, but rather to use this as a
subset of aliasing. For example, an alias of the form:

project: :incl ude :/usr 1 projectl userlist
is a method of letting a project maintain a mailing list without interaction with the
system administration, even if the alias file is protected.

JDisclaimer: Some special processing is done after rewriting local names; see below.

Version 4.1 DRAFT Last Mod 7/25/83

SENDMAIL 7

It is not necessary to rebuild the index on the alias database when a :include: list
is changed.

3.4. Message Collection

Once all recipient addresses are parsed and verified, the message is collected. The
message comes in two parts: a message header and a message body, separated by a blank
line.

The header is formatted as a series of lines of the form

field-name: field-value

Field-value can be split across lines by starting the following lines with a space or a tab.
Some header fields have special internal meaning, and have appropriate special process­
ing. Other headers are simply passed through. Some header fields may be added
automatically, such as time stamps.

The body is a series of text lines. It is completely uninterpreted and untouched,
except that lines beginning with a dot have the dot doubled when transmitted over an
SMTP channel. This extra dot is stripped by the receiver.

3.S. Message Delivery

The send queue is ordered by receiving host before transmission to implement
message batching. Each address is marked as it is sent so rescanning the list is safe. An
argument list is built as the scan proceeds. Mail to files is detected during the scan of
the send list. The interface to the mailer is performed using one of the techniques
described in section 2.2.

After a connection is established, sendmail makes the per-mailer changes to the
header and sends the result to the mailer. If any mail is rejected by the mailer, a flag is
set to invoke the return-to-sender function after all delivery completes.

3.6. Queued Messages

If the mailer returns a "temporary failure" exit status, the message is queued. A
control file is used to describe the recipients to be sent to and various other parameters.
This control file is formatted as a series of lines, each describing a sender, a recipient,
the time of submission, or some other salient parameter of the message. The header of
the message is stored in the control file, so that the associated data file in the queue is
just the temporary file that was originally collected.

3.7. Configuration

Configuration is controlled primarily by a configuration file read at startup. Send­
mail should not need to be recomplied except
(1) To change operating systems (V6, V7/32V, 4BSD).

(2) To remove or insert the DBM (UNIX database) library.

(3) To change ARPANET reply codes.

(4) To add headers fields requiring special processing.

Adding mailers or changing parsing (Le., rewriting) or routing information does not
require recompilation.

If the mail is being sent by a local user, and the file ".mailcr' exists in the sender's
home directory, that file is read as a configuration file after the system configuration file.
The primary use of this feature is to add header lines.

The configuration file encodes macro definitions, header definitions, mailer
definitions, rewriting rules, and options.

Version 4.1 DRAFT Last Mod 7/25/83

SENDMAIL 8

3.7.1. Macros
Macros can be used in three ways. Certain macros transmit unstructured tex­

tual information into the mail system, such as the name sendmail will use to identify
itself in error messages. Other macros transmit information from sendmail to the
configuration file for use in creating other fields (such as argument vectors to
mailers); e.g., the name of the sender, and the host and user of the recipient. Other
macros are unused internally, and can be used as shorthand in the configuration file.

3.7.2. Header declarations

Header declarations inform sendmail of the format of known header lines.
Knowledge of a few header lines is built into sendmail, such as the "From:" and
"Date:" lines.

Most configured headers will be automatically inserted in the outgoing message
if they don't exist in the incoming message. Certain headers are suppressed by some
mailers.

3.7.3. Mailer declarations

Mailer declarations tell send mail of the various mailers available to it. The
definition specifies the internal name of the mailer, the pathname of the program to
call, some flags associated with the mailer, and an argument vector to be used on the
call; this vector is macro-expanded before use.

3.7.4. Address rewriting rules

The heart of address parsing in sendmail is a set of rewriting rules. These are an
ordered list of pattern-replacement rules, (somewhat like a production system, except
that order is critical), which are applied to each address. The address is rewritten tex­
tually until it is either rewritten into a special canonical form (i.e., a (mailer, host,
user) 3-tuple, such as {arpanet, usc-isif, postel} representing the address
"postel@usc-isif'), or it falls off the end. When a pattern matches, the rule is reap­
plied until it fails.

The configuration file also supports the editing of addresses into different for­
mats. For example, an address of the form:

ucsfcgl !tef

might be mapped into:
tef@ucsfcgl.UUCP

to conform to the domain syntax. Translations can also be done in the other direc­
tion.

3.7.5. Option setting

There are several options that can be set from the configuration file. These
in~lude the pathnames of various support files, timeouts, default modes, etc.

4. COMPARISON WITH OTHER MAILERS

4.1. Delivermail

Sendmail is an outgrowth of delivermail. The primary differences are:

(1) Configuration information is not compiled in. This change simplifies many of the
problems of moving to other machines. It also allows easy debugging of new
mailers.

Version 4.1 DRAFT Last Mod 7/25/83

SENDMAIL 9

(2) Address parsing is more flexible. For example, delivermail only supported one gate­
way to any network, whereas sendmail can be sensitive to host names and reroute
to different gateways.

(3) Forwarding and :include: features eliminate the requirement that the system alias
file be writable by any user (or that an update program be written, or that the sys­
tem administration make all changes).

(4) Sendmail supports message batching across networks when a message is being sent
to multiple recipients.

(5) A mail queue is provided in sendmail. Mail that cannot be delivered immediately
but can potentially be delivered later is stored in this queue for a later retry. The
queue also provides a buffer against system crashes; after the message has been
collected it may be reliably redelivered even if the system crashes during the initial
delivery.

(6) Sendmail uses the networking support provided by 4.2BSD to provide a direct inter­
face networks such as the ARPANET andlor Ethernet using SMTP (the Simple
Mail Transfer Protocol) over a TCP lIP connection.

4.2. MMDF
MMDF [Crocker79] spans a wider problem set than sendmail. For example, the

domain of MMDF includes a "phone network" mailer, whereas sendmail calls on preex­
isting mailers in most cases.

MMDF and sendmail both support aliasing, customized mailers, message batching,
automatic forwarding to gateways, queueing, and retransmission. MMDF supports two­
stage timeout, which sendmail does not support.

The configuration for MMDF is compiled into the code4
•

Since MMDF does not consider backwards compatibility as a design goal, the
address parsing is simpler but much less flexible.

It is somewhat harder to integrate a new channelS into MMDF. In particular,
MMDF must know the location and format of host tables for all channels, and the chan­
nel must speak a special protocol. This allows MMDF to do additional verification (such
as verifying host names) at submission time.

MMDF strictly separates the submission and delivery phases. Although sendmail
has the concept of each of these stages, they are integrated into one program, whereas in
MMDF they are split into two programs.

4.3. Message Processing Module
The Message Processing Module (MPM) discussed by Postel [Postel79b] matches

sendmail closely in terms of its basic architecture. However, like MMDF, the MPM
includes the network interface software as part of its domain.

MPM also postulates a duplex channel to the receiver, as does MMDF, thus allow­
ing simpler handling of errors by the mailer than is possible in sendmail. When a mes­
sage queued by sendmail is sent, any errors must be returned to the sender by the mailer
itself. Both MPM and MMDF mailers can return an immediate error response, and a
single error processor can create an appropriate response.

MPM prefers passing the message as a structured object, with type-length-value

4Dynamic configuration tables are currently being considered for MMDF; allowing the installer to select either
compiled or dynamic tables.

snte MMDF equivalent of a sendmail"mailer."

Version 4.1 DRAFT Last Mod 7/25/83

SENDMAIL 10

tuples6• Such a convention requires a much higher degree of cooperation between
mailers than is required by sendmail. MPM also assumes a universally agreed upon inter­
net name space (with each address in the form of a net-host-user tuple), which sendmail
does not.

5. EVALUATIONS AND FUTURE PLANS

Sendmail is designed to work in a nonhomogeneous environment. Every attempt is
made to avoid imposing unnecessary constraints on the underlying mailers. This goal has
driven much of the design. One of the major problems has been the lack of a uniform
address space, as postulated in [Postel79a] and [Postel79b].

A nonuniform address space implies that a path will be specified in all addresses, either
explicitly (as part of the address) or implicitly (as with implied forwarding to gateways).
This restriction has the unpleasant effect of making replying to messages exceedingly
difficult, since there is no one "address" for any person, but only a way to get there from
wherever you are.

Interfacing to mail programs that were not initially intended to be applied in an inter­
net environment has been amazingly successful, and has reduced the job to a manageable
task.

Sendmail has knowledge of a few difficult environments built in. It generates
ARPANET FTP/SMTP compatible error messages (prepended with three-digit numbers
[Neigus73, Postel74, Postel82» as necessary, optionally generates UNIX-style "From" lines
on the front of messages for some mailers, and knows how to parse the same lines on input.
Also, error handling has an option customized for BerkNet.

The decision to avoid doing any type of delivery where possible (even, or perhaps
especially, local delivery) has turned out to be a good idea. Even with local delivery, there
are issues of the location of the mailbox, the format of the mailbox, the locking protocol
used, etc., that are best decided by other programs. One surprisingly major annoyance in
many internet mailers is that the location and format of local mail is built in. The feeling
seems to be that local mail is so common that it should be efficient. This feeling is not born
out by our experience; on the contrary, the location and format of mailboxes seems to vary
widely from system to system.

The ability to automatically generate a response to incoming mail (by forwarding mail
to a program) seems useful ("I am on vacation until late August ") but can create pr.ob­
lems such as forwarding loops (two people on vacation whose programs send notes back and
forth, for instance) if these programs are not well written. A program could be written to
do standard tasks correctly, but this would solve the general case.

It might be desirable to implement some form of load limiting. I am unaware of any
mail system that addresses this problem, nor am I aware of any reasonable solution at this
time.

The configuration file is currently practically inscrutable; considerable convenience
could be realized with a higher-level format.

It seems clear that common protocols will be changing soon to accommodate changing
requirements and environments. These changes will include modifications to the message
header (e.g., [NBS80» or to the body of the message itself (such as for multimedia mes­
sages [PosteI80». Experience indicates that these changes should be relatively trivial to
integrate into the existing system.

In tightly coupled environments, it would be nice to have a name server such as Grap­
vine [Birre1l82] integrated into the mail system. This would allow a site such as "Berkeley"
to appear as a single host, rather than as a collection of hosts, and would allow people to
move transparently among machines without having to change their addresses. Such a

6-Jbis is similar to the NBS standard.

Version 4.1 DRAFT Last Mod 7/25/83

SENDMAIL 11

facility would require an automatically updated database and some method of resolving
conflicts. Ideally this would be effective even without all hosts being under a single manage­
ment. However, it is not clear whether this feature should be integrated into the aliasing
facility or should be considered a "value added" feature outside sendmail itself.

As a more interesting case, the CSNET name server [Solomon81l provides an facility
that goes beyond a single tightly-coupled environment. Such a facility .would normally exist
outside of sendmail however.

ACKNOWLEDGEMENTS
Thanks are due to Kurt Shoens for his continual cheerful assistance and good advice, Bill

Joy for pointing me in the correct direction (over and over), and Mark Horton for more advice,
prodding, and many of the good ideas. Kurt and Eric Schmidt are to be credited for using
delivermail as a server for their programs (Mail and BerkNet respectively) before any sane per­
son should have, and making the necessary modifications promptly and happily. Eric gave me
considerable advice about the perils of network software which saved me an unknown amount
of work and grief. Mark did the original implementation of the DBM version of aliasing,
installed the VFORK code, wrote the current version of rmail, and was the person who really
convinced me to put the work into delivermail to turn it into sendmail. Kurt deserves accolades
for using sendmail when I was myself afraid to take the risk; how a person can continue to be so
enthusiastic in the face of so much bitter reality is beyond me.

Kurt, Mark, Kirk McKusick, Marvin Solomon, and many others have reviewed this paper,
giving considerable useful advice. .

Special thanks are reserved for Mike Stonebraker at Berkeley and Bob Epstein at Britton­
Lee, who both knowingly allowed me to put so much work into this project when there were so
many other things I really should have been working on.

Version 4.1 DRAFT Last Mod 7/25/83

[Birrell82]

[Borden79]

[Crocker77a]

[Crocker77b]

[Crocker79]

[Crocker82]

[Metcalfe76]

[Feinler78]

[NBS80]

[Neigus73]

[Nowitz78a]

[Nowitz78b]

[PosteI74]

[Postel77]

[Postel79a]

[Postel79bl

[Postel80]

SENDMAIL

REFERENCES

Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M. D.,
"Grapevine: An Exercise in Distributed Computing. " In Comm.
A. C.M. 25, 4, April 82.

Borden, S., Gaines, R. S., and Shapiro, N. Z., The MH Message Han­
dling System: Users'Manual. R-2367-PAF. Rand Corporation. October
1979.

Crocker, D. H., Vittal, J. J., Pogran, K. T., and Henderson, D. A. Jr.,
Standard for the Format of ARPA Network Text Messages. RFC 733,
NIC 41952. In [Feinler78]. November 1977.

Crocker, D. H., Framework and Functions of the MS Personal Message
System. R-2134-ARPA, Rand Corporation, Santa Monica, California.
1977.

Crocker, D. H., Szurkowski, E. S., and Farber, D. J., An Internetwork
Memo Distribution Facility - MMDF. 6th Data Communication Sympo­
sium, Asilomar. November 1979.

Crocker, D. H., Standard for the Format of Arpa Internet Text Messages.
RFC 822. Network Information Center, SRI International, Menlo
Park, California. August 1982.

Metcalfe, R., and Boggs, D., "Ethernet: Distributed Packet Switching
for Local Computer Networks", Communications of the ACM 19, 7.
July 1976.

Feinler, E., and Postel, J. (eds.), ARPANET Protocol Handbook. NIC
7104, Network Information Center, SRI International, Menlo Park,
California. 1978.

National Bureau of Standards, Specification of a Draft Message Format
Standard. Report No. ICST ICBOS 80-2. October 1980.

Neigus, N., File Transfer Protocolfor the ARPA Network. RFC 542, NIC
17759. In [Feinler78]. August, 1973. _

Nowitz, D. A., and Lesk, M. E., A Dial-Up Network of UNIX Systems.
Bell Laboratories. In UNIX Programmer's Manual, Seventh Edition,
Volume 2. August, 1978.'

Nowitz, D. A., Uucp Implementation Description. Bell Laboratories. In
UNIX Programmer's Manual, Seventh Edition, Volume 2. October,
1978.

Postel, J., and Neigus, N., Revised FrP Reply Codes. RFC 640, NIC
30843. In [Feinler78]. June, 1974.

Postel, J., Mail Protocol. NIC 29588. In [Feinler78]. November 1977.

Postel, J., Internet Message Protocol. RFC 753, lEN 85. Network Infor­
mation Center, SRI International, Menlo Park, California. March 1979.

Postel, J. B., An Internetwork Message Structure. In Proceedings of the
Sixth Data Communications Symposium, IEEE. New York. November
1979.

Postel, J. B., A Structured Format for Transmission of Multi-Media Docu­
ments. RFC 767. Network Information Center, SRI International,
Menlo Park, California. August 1980.

12

SENDMAIL

[Postel82]

[Schmidt79]

[Shoens79]

[Sluizer81]

[Solomon81]

[Su82]

[UNIX83]

Version 4.1

13

Postel, J. B., Simple Mail Transfer Protocol. RFC821 (obsoleting
RFC788). Network Information Center, SRI International, Menlo
Park, California. August 1982.

Schmidt, E., An Introduction to the Berkeley Network. University of Cal­
ifornia, Berkeley California. 1979.
Shoens, K., Mail Rejerence Manual. University of California, Berkeley.
In UNIX Programmer's Manual, Seventh Edition, Volume 2C.
December 1979.

Sluizer, S., and Postel, J. B., Mail Transfer Protocol. RFC 780. Net­
work Information Center, SRI International, Menlo Park, California.
May 1981.

Solomon, M., Landweber, L., and Neuhengen, D., "The Design of the
CSNET Name Server." CS-DN-2, University of Wisconsin, Madison.
November 1981.
Su, Zaw-Sing, and Postel, Jon, The Domain Naming Convention for Inter­
net User Applications. RFC819. Network Information Center, SRI
International, Menlo Park, California. August 1982.
The UNIX Programmer's Manual, Seventh Edition, Virtual VAX-II Ver­
sion, Volume 1. Bell Laboratories, modified by the University of Cali­
fornia, Berkeley, California. March, 1983.

DRAFT . Last Mod 7/25/83

\

!:.-

Changes to the Kernel in 4.2BSD

July 25, 1983

Samuel J. Leffler

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

This document summarizes the changes to the kernel between the September 1981
4.1BSD release and the July 1983 4.2BSD distribution. The information is presented in both
overall terms (e.g. organizational changes), and as specific comments about individual files. See
the source code itself for more details.

The system has undergone too many changes to detail everything. Instead the major
areas of change will pointed out, followed by a brief description of the contents of files present

- in the 4.1BSD release. Where important changes and/or bug fixes were applied they are
described. The networking support is not discussed in this document, refer to "4.2BSD Net­
working Implementation Notes" for a discussion of the iI.1ternal structure of the network facili­
ties.

Major changes include:, :.' -:

• organizational changes to isolate VAX -specific -portions -of the system -

• changes to support the new file system organization

• changes to support the new interprocess communication facilities

• changes for the new networking support; in particular, the DARPA standard Internet proto­
cols TCP, UDP, IP, and ICMP, and the network inter/ace drivers which provide hardware
support "'--

• changes for the new signal facilities

• changes for the new time and interval timer facilities-

• changes to eliminate references to global variables; in particular, the global variables
u.u_base, u.u_offset, u.u_segflg, and u.u_count have been almost completely replaced by uio
structures which are passed by reference; the u.u_error variable has not been completely
purged from low level portions of the system, but is in many places now returned as a func­
tion value; the uio changes were necessitated by the new scatter-gather i/o facilities

• changes for the new disk quota facilities
• changes for more flexible . configuration of the disk space used for paging and swapping

1. Carrying over local software
With the massive changes made to the system, both in organization and in content, it may

take some time to understand how to- carry over local software. The majority of this document
is devoted to describing the contents of each important source file in the system. If you have
local software other than device drivers to incorporate in the system you should first read this
document completely, then study the source code to more fully understand the changes as they
affect you.

- 2 -

Locally written device drivers will need to be converted to work in the new system. The'
changes required of device drivers are:

1) The calling convention for the driver ioet! routine has changed. Any data copied in or out
of the system is now done at the highest level inside ioet! () . The third parameter to the
driver ioet! routine is a data buffer passed by reference. Values to be returned by a driver
must be copied into the associated buffer from which the system then copies them into
the user address space.

2) The read, write, and ioet! entry points in device drivers must return 0 or an error code
from <errno.h>.

'-
3) The read and write entry points should no longer reference global variables out of the user

area.. A new uio parameter is passed to these routines which should, in turn, be passed to
the physio 0 routine if the driver supports raw i/o.

4) Disk drivers which are to support swapping/paging must have a new routine which returns
the size, in sectors, of a disk partition. This yalue is used in calculating the size of
swapping/paging areas at boot time.

5) Code which previously used the iomove, passe, or epass routines will have to be modified
to use the new uiomove, ureade, and uwritee routines. The new routines all use a uio struc­
ture to communicate the i/o base, offset, count, and segflag values previously passed glo­
bally in the user area.

6) Include files have been rearranged and new ones have been created. Common machine­
dependent files such as mtpr.h, pte.h~ reg.h, and psl.h are no longer in the "h" directory;

, see below under organizational changes. . .'., ., .

. . 7) , The handling of UNIBUS resets has' changed. The reset-routine should no longer deallo- .. ,
cate .UNIBUS resources allocated to pending i/o requests (this is done in the ubareset rou­
tine). For most drivers. this means the reset routine simply needs to invalidate any
ub_inJo values stored in local data structures to insure new UNIBUS resources will be allo­
cated the next time the: "device start" routine is entered.

2. Organizational changes

The directory organization and file names are very different from 4.lBSD. The new direc­
tory layout breaks machine-specific and network-specific portions of the system out into
separate directories. A new file, machine is a symbolic link to a directory for the _target
machine, e.g. vax. This allows a single set of sources to be shared between mUltiple machine
types (by including header files as " . .Imachine/file"). The directory naming conventions, as
they relate to the network support, are intended to" allow expansion in supporting multiple
"protocol families". The following directories co~prise the system sources for the VAX:

/sys/h
/sys/sys
/sys/conf
/sys/net
/ sys/ netinet
/sys/netimp
/sys/netpup
/sys/vax
/sys/vaxif
/sys/vaxmba
/sys/vaxuba

machine independent include files
machine independent system source files
site configuration files and basic templates
network independent, but network related code
DARPA Internet code
IMP support code
PUP-! support code
V AX specific mainline code
VAX network interface code
VAX MASSBUS device drivers and related code
V AX UNIBUS device drivers and related code

Files indicated as machine independent are shared among 4.2BSD systems running on the
VAX and Motorola 68010. Files indicated as machine dependent are located in directories indi­
cative of the machine on which they are used; the 4.2BSD release from Berkeley contains

- 3 -

support only for the VAX. Files marked network independent form the "core" of the network­
ing subsystem, and are shared among all network software; the 4.2BSD release from Berkeley
contains complete support only for the DARPA Internet protocols IP, TCP, UDP, and ICMP.

3. Bug fixes and changes

This section contains a brief description of each file which is not part of the network sub­
system, and also indicates important changes and bug fixes applied to the source code contained
in the file.

3.1. Isys/h

Files residing here are intended to be machine independent.-· Consequently, the header
files for device drivers which were present in this directory in 4.1BSD have been moved to
other directories; e.g. /sys/vaxuba. Many files which had been duplicated in lusr/include are
now present only in /sys/h. Further, the 4.1BSD lusr/include/sys directory is now normally a
symbolic link to this directory. By having only a single copy of these files the "multiple
update" problem no longer occurs. (It is still possible to have /usr/include/sys be a copy of
the /sys/h for sites where it is not feasible to allow the general user community access to the
system source code.) I, ;.: .. ,~J .. \i~:.,i,~'J,~,,;.!.;;.,~.

The following files are new to /sys/h in 4.2BSD:

domain.h . describes the internal structure of a cotpmunications domain; part of the new
ipcfacilities ',: '." ;i."·:,;'~,

errno.h had previously been only in lusr/include; the file /usr/include/errno.h is now
a symbolic link to this file

, fs.h : : .;) ,~. , .. ' .. replaces the old· filsys.h description of the file system organization
gprof.h ."

kernel.h

mbuf.h

mman.h

nami.h

protosw.h

quota.h

resource.h

socket.h

socketvar .h

ttychars.h

ttydev.h

: describes various data structures used in profiling the. kernel; see' gpro/O) for
details

. is an offshoot of systm.h and param.h; contains constants and definitions .
. . . . related, to the logical UNIX "kernel"

describes the memory managment support used mostly by the network; see
"4.2BSD Networking Implementation Notes" for more information

contains definitions for planned changes to the memory management facilities
(not implemented in 4.2BSD) .

. " defines various structures and manifest constants used in conjunctions with the
namei routine (part of this file reflects future plans for changes to namei rather
than current use)

contains a description of the protocol switch table and related manifest con­
stants and data structures use in communicating with routines located in the
table

contains definitions related to the new disk quota facilities

contains definitions used in the getrusage, getrlimit, and getpriority system calls
(among others)

contains user-visible definitions related to the new socket ipc facilities

contains implementation definitions for the socket ipc facilities

contains definitions related to tty character handling; in particular, manifest
constants for the system standard erase, kill, interrupt, quit, etc. characters are
stored here (all the appropriate user programs use these manifest definitions)

contains definitions related to hardware specific portions of tty handling (such
as baud rates); to be expanded in the future

uio.h

un.h

unpcb.b

wait.b

- 4 -

contains definitions for users wishing to use the new scatter-gather i/o facili­
ties; also contains the kernel uio structure used in implementing scatter-gather
i/o

contains user-visible definitions related to the "unix" ipc domain

contains the definition of the protocol control block used in the "unix" ipc
domain

contains definitions used in the wait and wait3 (2) system calls; previously in
lusr linclude/wait.h

The following files have undergone significant change:

buf.b . t. reflects· the changes. made to the buffer cache for the new file system organiza-

conf.b

dir.b

file.b

inode.b

ioctl.h

tion - buffers are variable sized with pages allocated to buffers on demand
from a pool of pages dedicated to the buffer cache; one new structure-member

; .:!;;. ~ has been added to eliminate overloading of a commonly unreferenced structure.
member; a new flag B_CALL, when set, causes the function b_iodone to be

-., . called when ilo completes on a buffer (this is used to wakeup the pageout dae-

, :.i

mon); macros have been added for manipulating the buffer queues, these
replace the previous subroutines used to insert and delete buffers from the

"~~~".
reflects changes made in the handling of swap space and changes made for the
new select (2) system call; the block device table has ~ :new member, dysize,
which returns the size of a disk partition, in sectors, given a major Iminor
value; the character device table has a new member, d_select, which is passed a
dev tvalue 'and an FREAD (FWRITE) flag and "returns 1 when data may be ."

""read .(written),- and 0 otherwise; theswdevt structure now includes the size, in
sectors, ofa swap partition.

is completely different since directory -- entries are" now variable length;
definitions for the user level interface routines described in directory (3) are
also present

has a very different file structure definition and definitions for the new open
and flock system calls; symbolic definitions for many constants commonly sup­
plied to access and Iseek, are also present

reflects the new hashed cacheing scheme as well additions made to the on-disk
and in-core inodes; on-disk inodes now contain a count of the actual number
of disk blocks allocated a file (used mostly by the disk quota facilities), larger
time stamps (for planned changes), more direct block pointers, and room for
future growth; in-core in odes have" new fields for the advisory locking facilities,

" a back pointer to the file system "super block information (to eliminate look­
ups), and a pointer to a structure used in implementing disk quotas.

has all request codes constructed from _10, _lOR, _lOW, and _IOWR macros
which encode whether the request requires data copied in, out, or in and out
of the kernel address space; the size of the data parameter (in bytes) is also
encoded in the request, allowing the ioct/O routine to perform all user-kernel
address space copies

mount.b

param.b"

the mount structure has a new member used in the disk quota facilities

has had numerous items deleted from it; in particular, many definitions logi­
cally part of the "'kernel" have been moved to kemel.h, and machine-

proc.h

dependent values and definitions are now found in param.h files located in
machine/param.h; contains a manifest constant, NGROUPS, which defines the
maximum size of the group access list

has changed extensively as a result of the new signals, the different resource
usage structure, the disk quotas, and the new timers; in addition, new

"J

signal.h

stat.h

systm.h

time.h

tty.h

- 5 -

members are present to simplify searching the process tree for siblings; the
SDLYU and SDETACH bits are gone, the former is replaced by a second
parameter to pagein, the latter is no longer needed due to changes in the han­
dling of open's on ldev/tty by processes which have had their controlling ter­
minal revoked with vhangup

reflects the new signal facilities; several new signals have been added: SIGIO
for signal driven i/o; SIGURG for notification when an urgent condition arises;
and SIGPROF and SIGVT ALRM for the new timer facilities; structures used
in the sigvec (2) and sigstack (2) system calls, as well as signal handler invoca­
tions are defined here

has been updated to reflect the changes to the inode structure; in addition a
new field sCblksize contains an "optimal blocking factor" for performing i/o
(for files this is the block size of the underlying file system)

has been trimmed back a bit as various items were moved to kernel.h
contains the definitions for the new time and interval timer facilities; time
zone definitions for the half dozen time zones understood by the system are
also included here ;. -

reflects changes made to the internal structure of the terminal handler; the
_ "local" structures have been merged into the standard flags and character

definitions though the user interface is virtually identical to that of 4.1BSD; the
TIYHOG valu~ has been changed from 256 to 255 to account for a counting
problem in the terminal handler on input buffer overflow

user.h has been extensively modified; members have been grouped and categorized to
reflect the ''.4.2BSD System Manual"- presentation; new members have been
added and existing members changed to reflect: the new groups facilities,

-changes to resource- accounting and limiting, new timer facilities,. and new sig­
nal facilities

vmmac.h _ - - has had many macro definitions changed to eliminate assumptions about the
hardware virtual memory support; in particular, the stack and user area page
table maps are no longer assumed to be adjacent or mapped by a single page
table base register

vmparam.h now includes machine-dependent definitions from a file machine/vmparam.h.
vmsystm.h has had several machine-dependent definitions moved to machine/vmparam:h

3.2. Isys/sys
This directory contains the "mainstream" kernel code. Files in this directory are

intended to be shared between 4.2BSD implementations on all machines. As there is little .
. correspondence between the current files in this directory and those which were present in
4.1BSD a general overview of each files's contents will be presented rather than a file-by-file
comparison; ..

Files in the sys directory are named with prefixes which indicate their placement in the
internal system layering. The following table summarizes these naming conventions.

" "'0
; ~ :

init_
kem_
quota_
sys_
tty_
ufs_
uipc_
vm_

·6·

, system initialization
kernel (authentication, process management, etc.)
disk quotas
system calls and similar '
terminal handling
file system
interprocess communication
virtual memory

3.2.1. Initialization code~" ->;!,,:;, >,/':

init_main.c contains system startup code '

init_sysent.c contains the definition of the sysent table - the table of system calls sup-
•)~~1' (" ., '" •• "ported by 4.2BSD .. ~.,:: ~. ~, .

.~ ,,~ , i..: ."'.,

3.2.2. Kernel-level support

kern_ac~t.c

kern_clock.c

... ~.. " 'f .~ .. \

, contains code used in per-process accounting

contains code for clock processing; work was done here to minimize time
spent in the hardclock routine; support for kernel profiling and statistics col-

, lection from an alternate clock source have been added; a bug which caused
the system to lose time has been fixed; the code which drained terminal
multiplexor silos has been made the default mode of operation and moved
to locore.s :,>'" ':';, .: ' ,

kern_descrip.c ., contains code for management of descriptors; descriptor related system calls
such as dup and close (the upper-most .levels) are present here

kern_exec.c

kero_exit.c

kern_fork.c

kero_mman.c

kero-proc.c

kero-prot.c

kero_resource.c

contains code for the exec system call
, contains code for the exit system call

contains code for the fork (and 'vfork) system call

contains code for memory management related calls; the contents of this file
is expected to change when the revamped memory management facilities are
added to the system '--contains code related' to process management; in particular, support routines

,for process groups
,',

contains code related to access control and protection~ the notions of user
, ID, group ID, and the group access list are implemented here

code related to resource accounting and limits; the getrusage and Uget" and
"set" resource limit system calls are found here
the signal facilities; in particular, kernel level routines for posting and pro­
cessing signals

support routines for manipulating the uio structure: uiomove, urea dc, and
uwritec

code related to process synchonization and scheduling: sleep and wakeup
among others

code related to processing time; the handling of interval timers and time of
day

miscellaneous system facilities and code for supporting 4.1BSD compatibility
mode (kernel level)

- 7 -

3.2.3. Disk quotas
quota_kem.e
quota_subr .e
quota_sys.e

quota_ufs.e

"kernel" of disk quota suppport
. ~ miscellaneous support routines for disk quotas

disk quota system call routines
:', portions of the disk quota facilities which interface to the file system rou­
'" tines

3.2.4. General subroutines
subr_mcount.e
subr-prf.e ":

subr_rmap.e

subr_xxx.e

code used when profiling the kernel

prinif and friends; also, code related to handling of the diagnostic message
buffer

: subroutines which manage resource maps
,; miscellaneous routines and code for routines implemented with special V AX
, instructions, e.g. bcopy , .,,'r:' ' J':" ~':;::~, '':,:'''

3.2.5. System level support

sys .Jenerle.e code for the upper-most levels of the "generic" system calls: read, write,
ioctl, and select, a "must read" file for the system guru trying to shake out
4.1BSO bad habits .:'()

sys_lnode.e code supporting the "generic" system calls of sys~eneric.c as they apply to
inodes; the guts of the byte stream file i/o interface

sys-process.e code related to process debugging: ptrace and its support routine procxmt, this.
file is expected to change as better process debugging facilities are developed

sys_socket.e· . code supporting the "generic" system calls of sys~eneric.c as they apply to
sockets

3.2.6. Terminal handling
tty.e

tty_bk.e

tty_eonf.e

tty-pty.e

tty_subr.e

tty_tb.e

the terminal handler proper; both 4.1BSD and version 7 terminal interfaces
have been merged into a single set of routines which are selected as line dis­
ciplines; a bug which caused new line delays past column 127 to be calcu­
lated incorrectly has been fixed; the high water marks for terminals running

-"in tandem mode at 19.2 or 38.4 kilobaud have been upped

the old Berknet line discipline (defunct)

initialized data structures related to terminal handling;

support for pseudo-terminals; actually two device drivers in one; additions
over 4.1BSO pseudo-terminals include a simple "packet protocol" used to
support flow-control and output flushing on interrupt, as well as a "tran­
sparent" mode used in programs such as emacs

c-list support routines
two line disciplines for supporting RS232 interfaces to Genisco and Hitachi
tablets
trivial support routines for "/dev/tty"

3.2.7. Flle system support

code which handles allocation and deallocation of file system related
resources: disk blocks, on-disk inodes, etc.

block i/o support; the buffer cache proper; see description of buf.h and "A
Fast File System for UNIX" for information

ufs_dsort.c

ufs_fio,.c

ufs_inode.c

ufs_mount.c

ufs_nami.c

ufs_tables.c

- 8 -

code which handles logical file system to logical disk block number mapping;
understands structure of indirect blocks and files with holes; handles
automatic extension of files on write ' '
sort routine implementing prioritized seek sort algorithm for disk i/o opera­
tions

code handling file system specific issues of access control and protection

inode management routines; in-core in odes are now hashed and cached;
inode synchronization has been revamped since 4.1BSD to eliminate race
conditions present in 4.1

code related to demountable file systems

: ,the namei routine (and related support routines) - the routine that maps
pathnames to inode numbers

miscellaneous subroutines: this code is shared with certain user programs
such as ftck(S); for a good time look at the bufttats routine in this file

file system related system .calls., everything from open to unlink, many new
system calls are found here: rename, mkdir, rmdir, truncate, etc.

static tables used in block and fragment accounting; this file is shared with
user programs such as ftck(S) "

miscellaneous' routines and 4.1 BSD compatibility code;: all of the code which
still understands the old in ode format is in here

3.2.8. Interprocess communication' ;, ,:, ;: ," .'.

uipc domain.c \ ~~, code implementing: the: "communication domain" 'concept; this file must be
- "., :, augmented to 'incorporate new domains ,.:.: : .: . '

uipcJipe.c

uipc Jroto.c

uipc_socket2.c

uipc_syscalls.c

, memory management' routines for the ipc and network facilities; refer to the
document "4.2BSD Networking' Implementation Notes" for a detailed
description of the routines in this file

leftover code for connecting two sockets into a pipe; actually a special case of
the code for the socketpair system call

UNIX ipc communication domain configuration definitions; contains UNIX
domain data structure initialization

top level socket support routines; these routines handle the interface to the
protocol request routines, move data between user address space and socket
data queues, understand the majority' of the logic in process synchronization
as it relates to the ipc facilities '''~.' ,., .

lower level socket support routines; provide nitty gritty bit twiddling of
socket data structures; manage placement of data on socket data queues

uset: interface code to ipc system calls: socket, bind, connect, accept, etc.; con­
cerned exclusively with system call argument passing and validation

UNIX ipc domain support; user request routine and supporting utility rou­
tines

3.2.9. Virtual memory support

The code in the virtual memory subsystem has changed very little from 4.lBSD; changes
made in these files were either to gain portability, handle the new swap space configuration
scheme, or fix bugs.

vm_drum.c code for the management of disk space used in paging and swapping

management of physical memory; the "core map" is implemented here as
well as the routines which lock down pages for physical i/o (the latter will

vm.J)age.c

vm.J)roc.c·

~ ,'I. ~~. ;L:
I .

vm.J)t.c

vm_sched.c

vm_swap.c
vm_swp.c

vm_text.c

•• ',,,, I

3.3. Isys/conf

- 9 -

have to change when the memory management facilities are modified to sup­
port sharing of pages); a sign extension bug on block numbers extracted
from the core map has been fixed (this caused the system to crash with cer­
tain disk partition layouts on RAS1 disks)
support for virtual memory monitoring; code in this file is included in the
system only if the PGINPROF and/or TRACE options are configured

_ the code which handles and processes page faults: pageitr, race conditions in
accessing pages in transit and requests to lock pages for raw i/o have been
fixed in this code; a major path through pagein whose sole purpose was to
implement the software simulated reference bit has been "parallel coded" in

.' assembly language (this appears to decrease system time by at least 5% when
~"': . a system is paging heavily); page in now has a second parameter indicating if

the page to be faulted in should be left locked (this eliminated the need for
the SDLYU flag in the proc structure)
mainly code to manage virtual memory allocation during process creation

. and destruction (the virtual memory equivalent of "passing the buck" is
done here) .. : . ",. i;"', ·"i·':I~·.::/·~;,: .. ', "(';") :.h
code for manipulating process page tables; knowledge of the user area is
found here as it relates to the user address space page tables ' .. '

, the code for process 0, the scheduler, lives here; other routines which moni­
tor and meter virtual memory activity (used in implementing high level
scheduling policies) also are present; this code has been better parameterized
to isolate machine-dependent heuristics used in the scheduling policies

. miscellaneous : routines: some for' manipulating: accessability. of virtual
,,:memory; .others for mapping ·virtual addresses to logical segments (text,

data, stack)' .,' . ,~\

indirect driver for interleaved, multi-controller,. paging area; modified to sup­
port interleaved partitions of different sizes --
code to handle process related issues of swapping
code to handle swap i/o

code to handle shared text segments - the "text" table

'--
This directory contains files used in configuring systems. The format of configuration files

has changed slightly; it is described completely in a new document "Building 4.2BSD UNIX
Systems with Config". Several new files exist for use by the cottfig(S) program, and several old
files have had their meaning changed slightly.
LINT a new configuration file for use in linting kernels

devices. vax maps block device names to major device numbers (on the V AX)

files now has only files containing machine-independent code

files.xxx (where xxx is a system name)' optional, xxx-specific files files

files. vax new file describing files which contain machine-dependent code

makefile. vax makefile template specific to the V AX
param.c updated calculations of ntext and ttfile to reflect network requirements; new

quantities added for disk quotas

- 10 -

3.3.1. Isys/vaxuba

This directory contains UNIBUS device drivers and their related include files. The latter
have moved from /sys/h in an effort to isolate machine-dependent portions of the system. The
following device drivers were not present in the 4.1BSD release.

ad.c a driver . .for the Data Translation A/D converter

ik.c . an Ikonas frame buffer graphics interphase; user access to the device is implemented
by mapping the device registers directly into the virtual address space of a user (the
routines to map memory are incluq.ed in uba.c only if an Ikonas is configured in the

" system) :,
kgc1ock.c a driver. for a DL11-W orKL11-W used as an' auxiliary real-time clock source for

kernel profilingand/ or statistics gathering; if this device is present, the system will
automatically collect its i/o statistics (and if profiling, pc samples) off the secondary
clock; very useful in kernel profiling as the second clock source eliminates most of
the statistical anomalies and shows the true time spent in the clock routine

ps.c :': driver for an Evans and Sutherland Picture System 2 , ...

rl.c driver for RLll controller with RL02 cartridge disks; does not support RLOI disks
, '., though it should only require additions to disk geometry and partition tables

rx.c driver for RX211 floppy disk controller; provides both block and character device
.. ,'. interfaces; ioell calls support floppy disk formatting and "deleted data mark" sensing

, . and writing; makes a great paging device
ut.c .. ," driver for tape controllers which emulate a TU45 on the UNIBUS; in particular, the

: System Industries Model 9700 triple density tape drive .\. ~' .. '
uu~c .: ",'. driver' for' dual' UNIBUS: TU58 cartridge '. tape cassettes accessed through a DL11

. serial line; ,uses assembly language code in locore.s which provides pseudo-DMA on

.' input (necessary to avoid data overruns); using this driver. while the system runs
.: multi-user: degrades· response severely (developed at Berkeley exclusively to produce

distribution TU58 cassettes) .
--

In addition to the above device drivers, many drivers present in 4.1BSD now sport
corresponding include files which contain device register definitions. For example, the DHll
driver is now broken into three files: dh.c, dhreg.h, and dmreg.h.

The following drivers have been significantly modified, or had bugs fixed in them, since
the 4.1BSD release: .

dh.c .. :' changes to reflect the revised tty data organization

dmf.c· a bug where device register accesses caused unwitting modification of certain status
. , bits has been fixed; modem control has· been fixed; a remnant of the DH11 include

file which caused incorrect definitions for even/odd parity has been fixed; changes to
reflect the revised tty data organization

dz.c now supports the DZ32; changes to reflect the revised tty data organization

Ip.c now takes °a non-zero flags value specified in the configuration file as the printer
width (default is 132 columns); thus, to configure an 80 column printer, include
"flags 80" in the device specification

rk.c a race condition has been fixed where a seek finishing on one drive appeared as an
i/o transfer completeing on another (this bug actually was present in all UNIBUS
disk drivers); changes for uio and swap space configuration

tm.c a typo which made the system crash with multiple slaves on a single controller has
been fixed; an incorrect priority level change in the watchdog timer routine which
caused the system to crash when a device operation timed out has been fixed~
changes for uio processing of raw i/o

- 11 -

ts.c changes for uio processing of raw i/o

uba.c a new support routine for allocating UNIBUS memory for memory-mapped devices
such as the 3eom Ethernet interface; the handling of UNIBUS resets has been
changed, all UNIBUS resources are now reclaimed in the ubareset routine prior to
calling individual device driver reset routines - this implies driver reset routines
should no longer free up allocated UNIBUS resources; new routines for mapping
UNIBUS memory into the virtual address space of a process have been added to
support the Ikonas device driver; changes to fix the race condition described above

:. in the RK07 device driver; processes awaiting UNIBUS map registers now sleep on a
different event than those waiting for buffered data paths

uda.c the problem with multiplexing buffered data paths on an 11/750 has been fixed; a
bug in the setup of the uldk field has been fixed; now properly defines the field
indicating the disk transfer rate; changes for uio processing and swap space
configuration

up.c now supports Eee correction and bad sector· forwarding; significant changes have
been made to make configuration of various disk drives simple (by probing the hold-

.'·'ing register and using the resultant value indicating the number of tracks on the
disk); the race condition described under rk.c has been fixed; references to UNIBUS
map registers are now done with longword instructions so the device driver does not
cause the system to crash when an Eee or bad sector error occurs on a disk attached
to a 730 UNIBUS; the upSDIST /upRDIST parameters which control the use of
search and seek operations on controllers with multiple drives have been made drive
dependent; a bug whereby the probe routine would belive certain non-existant drives
were present has been ·fixed; changes for uio processing and swap space configuration·.

va.c : has been rewritten . .to honor the software support for exclusive access to the
UNIBUS so that the· device may coexist· on the· same. UNIBUS with RK07 disk

. drives; the driver, now works with controllers which have a GO bit, , ..

3.3.2. Isys/vax

The following files are new in 4.2BSD:

crtO.ex·

frame.h

edit script for creating a profiled kernel

copied from /usr/include

in_cksum.c checksum routine for the DARPA Internet protocols

param.h machine-dependent portion of /sys/h/param.h

pup_cksum.c checksum routine for PUP-I protocols

rsp.h protocol definitions-for communicating with a TU58

sys_machdep.c machine-dependent portion of the "sys_*" files of Isys/sys
ufs_machdep.c machin.e-dependent portion of the "ufs_ *" files of Isys/sys
vm_machdep.c machine-dependent portion of the "vm_*" files of Isys/sys
vmparam.h inachine-dependent portion of /sys/h/vmparam.h

The following files have been modified for 4.2BSD:

includes new definitions for Hnting the network and ipc code

"'~

Locore.c

asm.sed now massages insque, remque, and various routines which do byte swapping
into assembly language -

autoconf.c handles MASSBUS drives which come on-line after the initial
autoconfiguration process; sizes and configures swap space at boot time in addi­
tion to calculating the swap area allocation parameters dmtext, dmmax, and
dmmin (which were manifest constants in 4.tBSD); calculates the disk partition
offset for system dumps at boot time to take into account· variable sized swap

conr.e
genassym.e

locore.s

,",r

• 12 -

areas; now uses the per-driver array of standard control status register
addresses when probing for devices on the UNIBUS; now allows MASS BUS
tapes and disks to be wildcarded across controllers

. 'uses many "local" spaces for new and uncommon device drivers

, generates several new definitions for use in locore.s

includes code to vector software interrupts to protocol processing modules;
. , ' assembly language assist routines for the console and UNIBUS TU58 cassette

drives; a new routine, Fastrec/aim is a fast coding of a major path through the
pagein routine; copyin and copyout now handle greater than 64Kbyte data
copies and,return EFAULT on failure; understands the new signal trampoline
code; now· contains code for draining terminal multiplexor silos at clock time; a
bug where a the translation buffer was sometimes being improperly flushed
during a resume operation has been fixed

maehdep.e a bug which caused memory errors to not be reported on 11/750's has been
,'" fixed; has new code for handling the new signals; recovers from translation

f;;t- ".~;,(,~,.", buffer parity fault machine checks apparently caused by substandard memory
.~ . .',~,., chips used in many 11/750's; includes optional code to pinpoint bad memory
,;-

chips on Trendata memory boards; the machine check routine now calls the
~ ;~ .. '·f ,;~;".;:~~.:,

memerr routine to print out the memory controller status registers in case the
, ~ " ;, ~ ~. ~~~ ~ ._~ JI.." .

" . fault occurred because of a memory error .
,.,

mem.e
.' ..

,now has correct definitions to enable correctable memory error reporting on
11/750's: DEC documentation incorrectly, specifies use of the ICRD bit

pcb.h ' .:;,,:. c , • ,. has changes' related to the new signal trampoline code," ::" ,

swapgenerle.e ' supports more devices which can' be ,used as a generic .root device; interacts
with the new swap configuration code to size the swap area properly when run­
ning a generic system; understands the special "swap on root" device syntax
used when installing the system -e_

trap.e can be compiled with a SYSCALLTRACE define to allow system calls to be
traced when the variable syscalltrace is non-zero;

tu.e includes (limited) support for the TU58 console cassette on the 11/750,
sufficient for use in single-user mode; supports the use of the MRSP ROM on
the 11/750. '

3.3.3. Isys/vaxmba
The following bug fixes and modifications have been applied to the MASSBUS device

drivers:

hp.e a large number of disk drives attached to second vendor disk controllers are now
automatically recognized at boot time by probing the holding register and using disk
geometry . information to decide what kind of drive is present; the
hpSDIST IhpRDIST parameters that control seek and search operations on controll­
ers with multiple drives have been made a per-drive parameter; a bug where the sec­
tor number reported on a hard error was off by one has been fixed; the error
recovery code now searches the bad sector table when a header CRC error occurs;
the error recovery code now handles bad sectors on tracks which also have skip sec-

mba.e

, tors; a bug in the handling of ECC errors has been fixed; many separate driver data
structures have been consolidated into the software carrier structure; the driver han­
dles the ML-11 solid-state disk

now autoconfigures MASS BUS tapes and disks which "come on-line" after the ini­
tial boot

Using ADB to Debug the UNIXt Kernel
Revised January, 1983

Samuel J. LejJier

William N. Joy

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

ABSTRACT

This document describes the use of extensions made to the 4.1 bsd release
of the V AX· UNIX debugger adb for the purpose of debugging the UNIX ker­
nel. It discusses the changes made to allow standard adb commands to func­
tion properly with the kernel and introduces the basics necessary for users to
write adb command scripts which may be used to augment the standard adb
command set. The examination techniques described here may be applied to
running systems, as well as the post-mortem dumps automatically created by
the savecore(8) program after a system crash. The reader is expected to have at
least a passing familiarity with the debugger command language.

tUNIX is a Trademark of Bell Laboratories.
*DEC and V AX are trademarks of Digital Equipment Corporation.

July 27, 1983

Using ADB on the UNIX Kernel Introduction

1. INTRODUCTION

Modifications have been made to the standard V AX UNIX debugger adb to simplify
examination of post-mortem dumps automatically generated following a system crash. These
changes may also be used when examining UNIX in its normal operation. This document
serves as an introduction to the use of these facilities, and should not be construed as a descrip­
tion of how to debug the kernel

1.1. Invocation
When examining the UNIX kernel a new option, - k, should be used, e.g.

adb -k Ivrnunix Idev/mem

This flag causes adb to partially simulate the VAX virtual memory hardware when accessing the
core file. In addition the internal state maintained by the debugger is initialized from data
structures maintained by the UNIX kernel explicitly for debuggingi. A post-mortem dump may
be examined in a similar fashion,

adb - k vmunix.? vmcore.?

where the appropriate version of the saved operating system image and core dump are supplied
in place of "?".

1.2. Establishing Context
During initialization adb attempts to establish the context of the "currently active pro­

cess" by examining the value of the kernel variable masterpaddr. This variable contains the vir­
tual address of the process context block of the last process which was set executing by the
Swtch routine. Masterpaddr normally provides sufficient information to locate the current stack
frame (via the stack pointers found in the context block). By locating the VAX process context
block for the process, adb may then perform virtual to physical address translation using that
process's in-core page tables.

When examining post-mortem dumps locating the most recent stack frame o(-1he
"currently active process" is nontrivial. This is due to the different ways in which the VAX
may save state after a nonrecoverable error. Crashes mayor may not be "clean" (i.e. the top
of the interrupt stack contains the process's kernel mode stack pointer and program counter);
an "unclean" crash will occur, for instance, if the interrupt stack overflows. Thus, one must
manually try one of two possible techniques to get a stack trace from a post-mortem dump. If­
the crash was clean the current stack pointer is present in the restart parameter block, at scb-4
(or rpb+ 1fc), and the command

*(scb-4)$c

will generate a stack trace all the way from the kernel to the top of the user process's stack (e.g.
to the main routine in the user process which was running). Otherwise, one must scan through
the interrupt stack looking for the stack frame. This is usually indicated by a zero longword
entry (the procedure call handler) followed by a longword entry with bit 29 set (indicating the
call frame was generated as a result of a "calls" instruction).

intstack/X

* If the - k flag is not used when invoking adb the user must explicitly calculate virtual addresses. With the
- k option adb interprets page tables to automatically perform virtual to physical address translation.

Using ADB on the UNIX Kernel - 2 - Introduction

Once the stack pointer has been located, the command

.Sc

will generate a stack trace. An alternate method may be used when a trace of a particular pro­
cess is required, see section 2.3.

'/

. :l .. '
~ , • 1

July 27, 1983

'.:.~ "

Using ADD on the UNIX Kernel - 3 - Command Scripts

2. ADB COMMAND SCRIPTS

2.1. Extending the Formatting Facilities
Once the process context has been established, the complete adb command set is avail­

able for interpreting data structures. In addition, a number of adb scripts have been created to
simplify the structured printing of commonly referenced kernel data structures. The scripts
normally reside in the directory lusr//ib/adb, and are invoked with the "$<" operator. (A later
table lists the "standard" scripts.)

As an example, consider the following listing which contains a dump of a faulty process's
state (our typing is shown emboldened).

% adb -k vrnunix.17 vmcore.17
sbr SOOld064 sIr d9c
pObr SOOefaOO pOlr 34 pI br 7fSefeOO pllr 1ffff2 "
*Ontstack -4)Sc

boot 0 from S0004025
- boot(0,4) from S0004025
J>anic(S00211S5) from S00057e2

soreeeive(S01747Sc,0) from S0007c90
-readO from S0009Sd7
=syscall 0 from SOOOb6e2
_Xsyseall (3, 7fffe834,25S) from SOOOOf64
10 from c1c
10 from 26a
1(0,7fffeflS,7fffeflc) from 1d3
10 from 2f
800021185/s
jcpreg + 99: receive
u$<u
_u:
_u: ksp usp

7fffffge 7fffe59c
rO r1 r2 r3
155cOO 800237d4 80041800
r4 r5 r6 r7

3

0 0 11090 80041S00
rS r9 rIO rl1
80021244 c 7fffe5b4 SOOOOOOO
ap fp pc psI
7fffffe8 7fffffa4 SOOOb784 d80004
pObr pOlr p1br pllr
800efaOO 4000034 7f8efeOO Iffff2
szpt emap2 sswap
2 94000307 0
sige 1 sigc2 sige3

, , 1af03fb fa007f02 40cbc6e
_u+7S: argO arg1 arg2

3' , 7fffe834 258
_u + 8e: segflg error uid gid ruid rgid procp

o 0 4 a 4 a 80041800

uap rv1 rv2 ubase

July 27, 1983

" ._-

Using ADB on the UNIX Kernel - 4-

7ffff078 0 1 7fffe834
count off cdir rdir
258 150 8003cfOO 0

_u+f4~ pathname
.netrc
dirp dino entry pdir
3 1395 .netrcO

7ffffllc: ofiles

7ffff180:

7ffff248:

7ffff258:

7ffff25e:

7ffff27e:

7ffff2a2:

80040818 80040818 80040818 800406bO
800406d4 800406ec 0 0
0-0 000 ;":_\;! 0
o 0 0 0
o 000

ofileflg
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0
sigs
0 360c 1 360c
0 0 0 aae
0 0 0 0
0 0 0 0
0 0 0 0
I 0 0 0
0 0 0 0
0 0 0 0

code arO prbase prsize
0 80000000 0 0

proff prscal eosyssep ttyp
0 0 0 0 800288b4

ttymin ttymaj
0 0
xmag xtsiz xdsiz xbsiz
3cOOOOOO 10000000 108cOOOO a680000

xssiz entloc relflg
0 0 6c720000
directory
ogin
start acflg fpflg cmsk tsiz dsiz
11688 0 12 0 160000

ssiz
80000

80041800$<proc
80041800: link rlink addr --

800237d4 0 800efdeO
8004180c: upri pri cpu stat time nice sIp cursig

073 073 045 03 023 024 0 0
80041814: sig sigaO sigal flag

July 27, 1983

Command Scripts

--, \.~:. -. 0,0
_0',.(0: I"; .. :,\'

r ~ i . , ~.~

60000

Using ADD on the UNIX Kernel - 5 -

o 80002 45 8001
80041824: uid pgrp pid ppid poip szpt tsize

4 bb bc bb 0 2 1 e
800418j4: dsize ssize rssize maxrss

16 6 14 3fffff
80041844: swrss swaddr wchan textp

o 0 0 80044eeO
80041854: clktim pObr xlink ticks

'. 0 800efaOO 80041720 22
80041864: %cpu ndx idhash pptr

+ 5.1369253545999527e-02 lc 8 80041720
80044eeO$<text
80044eeO: daddr

7e2 0 0 0
o 000
000 0

ptdaddr size caddr iptr
352 Ie 80041800 8003cfaO

rssizeswrss count ccount
la 0 02 02 042 0

flag slptim
o

poip

Command Scripts

The cause of the crash was a "panic" (see the stack trace) due to the 0 argument passed
the so receive routine. The majority of the dump was done to illustrate the use of two command
scripts used to format kernel data structures. The "u" script, invoked by the command
"uS < u", is a lengthy series of commands which pretty-prints the user vector. Likewise,
"proc" and "text" are scripts used to format the obvious data structures. Let's quickly exam­
ine the "text" script (the script has been broken into a number of lines for convenience here;
in actuality it is a single line of text) .

. l"daddr"nI2Xn\
"ptdaddr"16t"size" 16t"caddr" 16t"iptr"n4Xn\
"rssize" 8t"swrss" 8t" coun ttl 8t" ccount" 8t"flag" 8t"slptim" 8t"poip"n2x 4bx + + n

The first line produces the list of disk block addresses associated with a swapped out text seg­
ment. The "n" format forces a new-line character, with 12 hexadecimal integers printed
immediately after. Likewise, the remaining two lines of the command format the remainder of
the text structure. The expression "16t" causes adb to tab to the next column which is a mul­
tiple of 16. The last two plus operators are present to round "." to the end of the text struc-·
ture. This allows the user to reinvoke the format on consecutive text structures without having
to be concerned about proper alignment of ".".

The majority of the scripts provided are of this nature. When possible, the formatting
scripts print a data structure with a single format to allow subsequent reuse when interrogating
arrays of structures. That is, the previous script could have been written

.I" daddr"n 12Xn
+ I"ptdaddr" 16t"size" 16t"caddr" 16t"iptr"n4Xn
+ I"rssize"8t"swrss"8t"count"8t"ccount"~t"flag"8t"slptim"8t"poip"n2x4bx+ +n

but then reuse of the format would have invoked only the last line of the format.

July 27, 1983

Using ADB on the UNIX Kernel - 6 - Command Scripts

2.2. Traversing Data Structures

The adb command language can be used to traverse complex data structures. One such
data structure, a linked list, occurs quite often in the kernel. By using adb variables and the
normal expression operators it is a simple matter to construct a script which chains down the
list printing each element along the way.

For instance, the queue of processes awaiting timer events, the callout queue, is printed
with the following two scripts:

callout:

calltodol"time" 16t"arg" 16t"func"12 +
* + $ < callout.next

callout.next:

./Dpp
*+>1
,#<1$<
< 1$ < callout.next

The first line of the script callout starts the traversal at the global symbol callrodo and
prints a set of headings. It then skips the empty portion of the structure used as the head of
the queue. The second line then invokes the script callout. next moving "." to the top of the
queue (". +" performs the indirection through the link entry of the structure at the head of
the queue).

callout.next prints values for each column, then performs a conditional test on the link to
the next entry. This test is performed as follows,

* + > I Place the value of the "link" in the adb variable" <I" '. __
,#<1$< If the value stored in "<I" is non-zero, then the current input stream (Le. the script

callout. next) is terminated. Otherwise, the expression "#<1" will be zero, and the
"$ <" will be ignored. . That is, the combination of the logical negation operator
"#", adb variable "<I", and "$<" operator creates a statement of the form,

'-- ..
if (!link) exit;

The remaining line of callout. next simply reapplies the script on the next element in
the linked list.

A sample cal/out dump is shown below.

July 27, 1983

'OJ

('.

Using ADB on the UNIX Kernel

% adb -k Ivmunix Idev/mem
sbr 8001f864 sIr d9c

- 7 -

pObr 800efaOO pOlr 8e plbr 7f8efeOO pllr Iffff2
S<callout
_calltodo:
_calltodo: time
8004ecfc: 26
8004edOc: 8
8004edlc: 0
8004ed5c: 0
8004ed6c: 0
8004ecfc: 52
8004ed2c: 68
8004ed3c: 2920

arg
o
o
o
o
o
o
_Syssize+70
o

2.3. Supplying Parameters

'rune
_dzscan
_upwatch
jp_timeo
_tcp_timeo
_rkwatch
_dzscan

, _tmtimer
_memenable

Command Scripts

If one is clever, a command script may use the address and count portions of an adb com­
mand as parameters. An example of this is the setproc script used to switch to the context of a
process with a known process-id; -

'. ".,:".:'

Ot99$ < setproc

The body of setproc is

.>4
·nproc>1
·proc>f
$ < setproc.nxt

while setproc.nxt is

(*(<f+28»&Oxffff="pid "X
,#((* «f + 28)&Oxffff)-<4)$<setproc.done
<1-1>1
<f+70>f
,#<1$<
$ < setproc.nxt

The process-id, supplied as the parameter, is stored in the variable "<4", the number of
processes is placed in "< I", and the base of the array of process structures in "< f" .
setproc.nxt then performs a linear search through the array until it matches the process-id
requested, or until it runs out of process structures to check. The script setproc.done simply
establishes the context of the process, then exits.

2.4. Standard Scripts
The following table summarizes the command scripts currently available in the directory

lusrllibladb.

July 27, 1983

Using ADB on the UNIX Kernel - 8 - Command Scripts

Standard Command Scripts
Name Use Description
.uf addt$<buf format block I/O buffer
callout S<callout print timer queue
cllst addt$ < cllst format character I/O linked list
dino addt$<dino format directory inode
dir addt$<dir format directory entry
dirblk addt$ < dirblk scan directory entries
file addt$ < file format open file structure
fs addt$ < ftlsys format in-core super block structure
findproc pid$ < findproc find process by process id
hosts addt$ < hosts format IMP host table entries
hosttable addt$ < hosttable show all IMP host table entries
ifnet addt$ < ifnet format network interface structure
lfuba addt$ < ifuba format UNIBUS resource structure
in ode addt$ < inode format in-core inode structure
inpcb addt$ < inpcb format internet protocol control block
iovec addt$ < iovec format a list of iov structures
ipreass addt$ < ipreass format an ip reassembly queue
mact addt$ < mact show "active" list of mbufs
mbstat S<mbstat show mbuf statistics
mbuf addt$<mbuf show "next" list of mbufs
mbufs addt$ < mbufs show a number of mbufs
mount addt$ < mount format mount structure
pcb addt$ < pcb format process context block
proc addt$<proc format process table entry
rawcb addt$ < rawcb format a raw protocol control block
rtentry addt$ < rtentry format a routing table entry
setproc pid$ < setproc switch process context to pid
socket addt$ < socket format socket structure
tcpcb addt$<tcpcb format TCP control block
tcpip addt$<tcpip format a TCP/IP packet header
tcpreass addt$ < tcpreass show a TCP reassembly queue
text addt$<text format text structure
traceall S<traceall show stack trace for all processes
tty addt$<tty format tty structure
u addrS<u format user vector, including pcb
ubahd addrS < ubahd format a UNIBUS header structure

July 27, 1983

Using ADB on the UNIX Kernel - 9 - Summary

3. SUMMARY

The extensions made to adb provide basic support for debugging the UNIX kernel by
eliminating the need for a user to carry out virtual to physical address translation. A collection
of scripts have been written to nicely format the major kernel data structures and aid in switch­
ing between process contexts. This has been carried out with only minimal changes to the
debugger.

More work is needed to provide enough information for the debugger to automatically
establish context after a system crash. The system currently does not always save enough state
to allow the debugger to reliably locate the stack frame just prior to an exception.

More work is also required on the user interface to adb. It appears the inscrutable adb
command language has limited widespread use of much of the power of adb. One possibility is
to provide a more comprehensible "adb frontend", just as bc(1) is used to frontend dc(1).

Finally, adb could be significantly improved if it were knowledgeable about a program's
data structures. This would eliminate the use of numeric offsets into C structures.

July 27, 1983

... ~ ..

Performance Effects of Disk Subsystem Choices for VAXt
Systems Running 4.2BSD UNIX·

Revised July 27, 1983

Bob Kridle

mt Xinu
2405 Fourth Street

Berkeley, California 94710

Marshall Kirk McKusicld

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

Measurements were made of the UNIX file system throughput for various
110' operations using the most attractive currently available Winchester disks
and controllers attached to both the native busses (SBIICMI) and the UNIBUS
on both VAX 11/780s and VAX 11/750s. The tests were designed to highlight
the performance of single and dual drive subsystems operating in the 4.2BSD
fast file system environment. Many of the results of the tests were initially
counter-intuitive and revealed several important aspects of the V AX implemen­
tations which were surprising to us.

The hardware used included two Fujitsu 2351A "Eagle" disk drives on
each of two foreign-vendor disk controllers and two DEC RA-81 disk drives on
a DEC UDA-50 disk controller. The foreign-vendor controllers were Emulex
SC750, SC780 and Systems Industries 9900 native bus interfaced controllers.
The DEC UDA-50 controller is a UNIBUS interfaced, heavily buffered con­
troller which is the first implementation of a new DEC storage system architec­
ture, DSA.

One of the most important results of our testing was the correction of
several timing parameters in our device handler for devices with an
RH750/RH780 type interface and having high burst transfer rates. The correc­
tion of these parameters resulted in an increase in performance of over twenty
percent in some cases. In addition, one of the controller manufacturers altered
their bus arbitration scheme to produce another increase in throughput.

tv AX, UNIBUS, and MASSBUS are trademarks of Digital Equipment Corporation.
• UNIX is a trademark of Bell Laboratories.
*This work was supported under grants from the National Science Foundation under grant MCS80-05144,
and the Defense Advance Research Projects Agency (000) under Arpa Order No. 4031 monitored by Naval
Electronic·System Command under Contract No. N00039-82-C-0235.

--

Performance - i -

TABLE OF CONTENTS

1. Motivation

2. Equipment
2.1. DEC UDASO disk controller
2.2. Emulex SC7S0/SC780 disk controllers
2.3. Systems Industries 9900 disk controller
2.4. PEC RA81 disk drives
2.5. Fujitsu 23S1A disk drives

3. Methodology

4. Tests

s. Results

6. Conclusions

Acknowledgements

References

Appendix A
A.1. read_8192
A.2. write_ 4096
A.3. write_8192
A.4. rewrite_8192

CSRG TR/X July 27, 1983

Contents

Kridle, et. at.

..•

Performance - 1 - Motivation

1. Motivation
These benchmarks were performed for several reasons. Foremost was our desire to

obtain guideline to aid in choosing one the most expensive components of any V AX UNIX
configuration, the disk storage system. The range of choices in this area has increased dramati­
cally in the last year. DEC has become, with the introduction of the UDA50/RA81 system,
cost competitive in the area of disk storage for the first time. Emulex's entry into the VAX
11/780 SBI controller field, the SC780, represented a important choice for us to examine, given
our preyious success with their VAX 11/750 SC750 controller and their UNIBUS controllers.
The Fujitsu 23SIA Winchester disk drive represents the lowest cost-per-byte disk storage
known to us. In addition, Fujitsu's reputation for reliability was appealing. The many attractive
aspects of these components justified a more careful examination of their performance aspects
under UNIX.

In addition to the direct motivation of developing an effective choice of storage systems,
we hoped to gain more insight into VAX UNIX file system and 110 performance in general.
What generic characteristics of 110 subsystems are most important? How important is the loca­
tion of the controller on the SBIICMI versus the UNIBUS? Is extensive buffering in the con­
troller essential or even important? How much can be gained by putting more of the storage
system management and optimization function in the controller as DEC does with the UOASO?

We also wanted to resolve particular speculation about the value of storage system optimi­
zation by a controller in a UNIX environment. Is the access optimization as effective as that
already provided by the existing 4.2BSO UNIX device handlers for traditional disks? VMS disk
handlers do no seek optimization. This gives the UDASO controller an advantage over other
controllers under VMS which is not likely to be as important to UNIX. Are there penalties
associated with greater intelligence in the controller?

A third and last reason for evaluating this equipment is comparable to the proverbial
mountain climbers answer when asked why he climbs a particular mountain, "It was there." In
our case the equipment was there. We were lucky enough to assemble all the desired disks and
controllers and get them installed on a temporarily idle VAX 11/7.80. This got us started col­
lecting data. Although many of the tests were later rerun on a variety of other systems, this
initial test bed was essential for working out the testing bugs and getting our feet wet.

;

CSRG TR/X July 27, 1983 Kridle, et. al.

Performance - 2 - Equipment

2. Equipment

Various combinations of the three manufacturers disk controllers, and two pairs of Win­
chester disk drives were tested on both VAX 11/780 and VAX 11/750 CPUs. The Emulex and
Systems Industries disk controllers were interfaced to Fujitsu 2351A "Eagle" 404 Megabyte
disk drives. The DEC UDA50 disk controller was interfaced to two DEC RA81 456 Megabyte
Winchester disk drives. All three controllers were tested on the VAX 780 although only the
Emulex and DEC controllers were benchmarked on the VAX 11/750. Systems Industries
makes a VAX 11/750 eMI interface for their controller, but we did not have time to test this
device .. (n addition, not all the storage systems were tested for two drive throughput. Each of
the controllers and disk drives used in the benchmarks is described briefly below.

2.1. DEC UDA50 disk controller

This is a new controller design which is part of a larger, long range storage architecture
referred to as "DSA" or Digital Storage Archetecture. An important aspect of DSA is migrat­
ing a large part of the storage management previously handled in the operating system to the
storage system. Thus, the UDA50 is a much more intelligent controller than previous interfaces
like the RH750 or RH780. The UDA50 handles all error correction. It also deals with most of
the physical storage parameters. Typically, system software requests a logical block or sequence
of blocks. The physical locations of these blocks, their head, track, and cylinder indices, are
determined by the controller. The UDA50 also orders disk requests to maximize throughput
where possible, minimizing total seek and rotational delays. Where multiple drives are attached
to a single controller, the UDA50 can interleave simultaneous data transfers from multiple
drives.

The UDA50 is a UNIBUS implementation of a DSA controller. It contains 52 sectors of
internal buffering to minimize the effects of a slow UNIBUS such as the one on the VAX-
11/780. This buffering also minimizes the effects of contention with other UNIBUS peri­
pherals.

2.2. Emulex SC750/SC780 disk controllers

These two models of the same controller interface to the CMI bus 'of a VAX 11/750 and
the SBI bus of all/VAX 780, respectively. To the operating system, they emulate either an
RH750 or and RH780. The controllers install in the MASSBUS locations in the CPU cabinets
and operate from the VAX power suplies. They provide an "SMD" or Storage Module Drive
interface to the disk drives. Although a large number of disk drives use this interface, we
tested the controller exclusively connected to Fujitsu 2351A disks.

The controller ws first implemented for the VAX-11/750 as the SC750 model several
years ago. Although the SC780 was introduced more recently, both are stable products with no
bugs known to us.

2.3. System Industries 9900 disk controller

This controller is an evolution of the S.I. 9400 first introduced as a UNIBUS SMD inter­
face. The 9900 has been enhanced to include an interface to the V AX 11/780 native bus, the
SBI. It has also been upgraded to operate with higher data rate drives such as the Fujitsu
2351As we used in this test. The controller is contained in its own rack-mounted drawer with
an integral power supply. The interface to the SMD is a four module set which mounts in a
CPU cabinet slot normally occupied by an RH780. The SBI interface derives power from the
VAX CPU cabinet power supplies.

2.4. DEC RA81 disk drives

The RA81 is a rack-mountable 456 Megabyte (formatted) Winchester disk drive manufac­
tured by DEC. It includes a great deal of technology which is an integral part of the DEC DSA
scheme. The novel technology includes a serial packet based communications protocol with the

CSRG TR/X July 27, 1983 Kridle, et. a1.

Performance - 3 - Equipment

controller over a pair of mini-coaxial cables. The physical characteristics of the RA81 are
shown in the table below:

DEC RA81 Disk Drive Characteristics
Peak Transfer Rate 2.2 Mbytes/sec.
Rotational Speed 3,600 RPM
Data Sectors/Track 51

'. .: ~ .' . Logical Cylinders 1,248
Logical Data Heads 14
Data Capacity 456 Mbytes
Minimum Seek Time 6 milliseconds
A verage Seek Time 28 milliseconds
Maximum Seek Time 52 milliseconds

2.5. Fujitsu 23S1A disk drives

The Fujitsu 2351A disk drive is a Winchester disk drive with an SMD controller interface.
Fujitsu has developed a very good reputation for reliable storage products over the last several
years. The 2351A has the following physical characteristics: , .

. . 'r------------------,
Fujitsu 2351 A Disk Drive Characteristics

'.' Peak Transfer Rate 1.859 Mbytes/sec.
Rotational Speed 3,961 RPM
Data Sectors/Track 48
Cylinders 842
Data Heads 20
Data Capacity 404 Mbytes
Minimum Seek Time 5 milliseconds
Average Seek Time 18 milliseconds
Maximum Seek Time 35 milliseconds

CSRG TR/X July 27, 1983 Kridle, et. al.

Performance - 4 - Methodology

-
3. Methodology

Our goal was to evaluate the performance of the target peripherals in an environment as
much like our 4.2BSD UNIX systems as possible. There are two basic approaches to creating
this kind of test environment. These might be termed the indirect and the direct approach. The
approach used by DEC in producing most of the performance data on the UDA50/RA81 sys­
tem under VMS is what we term the indirect approach. We chose to use the direct approach.

The indirect approach used by DEC involves two steps. First, the environment in which
performance is to be' evaluated is parameterized. In this case, the disk I/O characteristics of
VMS were measured as to the distribution of various sizes of accesses and the proportion of
reads and writes. This parameterization of typical I/O activity was termed a "vax mix." The
second stage involves simulating this mixture of I/O activities with the devices to be tested and
noting the total volume of transactions processed per unit time by each system.

The problems encountered with this indirect approach often have to do with the com­
pleteness and correctness of the parameterization of the context environment. For example,
the "vax mix" model constructed for OECs tests uses a random distribution of seeks to the
blocks read or written. It is not likely that any real system produces a distribution of disk
transfer locations which'is truly random and does not exhibit strong locality characteristics .

. The methodology chosen by us is direct in the sense that it uses the standard structured
file system mechanism present in the 4.2BSO UNIX operating system to create the sequence of
locations and sizes of reads and writes to the benchmarked equipment. We simply create,
write, and read files as they would be by user's activities. The disk space allocation and disk
cacheing mechanism built into UNIX is used to produce the actual device reads and writes as
well as to determine their size and location on the disk. We measure and compare the rate at
which these user files can be written, rewritten, or read.

The advantage of this approach is the implicit accuracy in testing in the same environment
in which the peripheral will be used. Although this system does not account for the I/O pro­
duced by some paging and swapping, in our memory rich environment these activities account
for a relatively small portion of the total disk activity.

A more significant disadvantage to the direct approach is the occasional difficulty we have
in accounting for our measured results. The apparently straight-forward activity of reading or

. writing a logical file on disk can produce a complex mixture of disk traffic. File I/O is sup­
ported by a file management system that buffers disk traffic through an internal cache, which
allows writes to ba handled asynchronously. Reads must be done synchronously, however this
restriction is moderated by the use of read-ahead. Small changes in the performance of the
disk controller subsystem can result in large and unexpected changes in the file system perfor­
mance, as it may change the characteristics of the memory contention experienced by the pro­
cessor.

CSRG TR/X July 27, 1983 Kridle, et. al.

Performance - 5 - Tests

4. Tests

Our battery of tests consists of four programs, read_8192, write_8192, write_ 4096 and
rewrite_8192 originally written by [McKusick83] to evaluate the performance of the new file
system in 4.2BSD. These programs all follow the the same model and are typified by read_8192
shown here.

#define BUFSIZ 8192
main (argc, argv)

". char·· argv;
(

char buf[BUFSIZ];
int i, j;

j - open(argv[I], 0);
for (i - 0; i < 1024; i++)

readG, buf, BUFSIZ);

The remaining programs are included in appendix A.
These programs read, write with two different blocking factors, and rewrite logical files in

structured file system on the disk under test. The write programs create new files while the
rewrite program overwrites an existing file. Each of these programs represents an important
segment of the typical UNIX file system activity with the read program representing by far the
largest class and the rewrite the smallest.

A blocking factor of 8192 is used by all programs except write_ 4096. This is typical of
most 4.2BSD user programs since a standard set of 110 support routines is commonly used and
these routines buffer data in similar block sizes.

For each test run, a empty eight Kilobyte block file system was created in the target
storage system. Then each of the four tests was run and timed. Each test was run three times;
the first to clear out any useful data in the cache, and the second -two to insure that the experi­
ment had stablized and was repeatable. Each test operated on eight Megabytes of data to insure
that the cache did not overly influence the results. Another file system was then initialized
using a basic blocking factor of four Kilobytes and the same tests were run again and timed. A
command script for a run appears as follows:

#!/bin/csh
set time==2
echo "8K/IK file system"
newfs Idev/rhpOg eagle
mount Idev/hpOg ImntO
mkdir ImntO/foo
echo "write_8192 ImntO/foo/tst2"
rm -f ImntO/foo/tst2
write_8192 ImntO/foo/tst2
rm -f ImntO/foo/tst2
write_8192 ImntO/foo/tst2
rm -f ImntO/foo/tst2
write 8192 ImntO/foo/tst2
echo "read_ 8192 ImntO/foo/tst2"
read_8192/mntO/foo/tst2
read_8192/mntO/foo/tst2
read_8192 ImntO/foo/tst2
umount/dev/hpOg

CSRG TR/X July 27, 1983

.~ .. ---

Kridle, et. al.

Performance - 6 - Results

s. Results
The following tables indicate the results of our test runs. Note that each table contains

results for tests run on two varieties of 4.2BSD file systems. The first set of results is always
for a file system with a basic blocking factor of eight Kilobytes and a fragment size of 1 Kilo­
byte. The second sets of measurements are for file systems with a four Kilobyte block size and
a one Kilobyte fragment size. The values in parenthesis indicate the percentage of CPU time
used by the test program. In the case of the two disk arm tests, the value in parenthesis indi­
cates the sum of the percentage of the test programs that were run. Entries of "n. m." indicate
this value was not measured.

4.2BSD File Systems Tests - VAX 11/750
Logically Sequential Transfers

from an 8K/IK 4.2BSD File System (Kbytes/sec.)
Test Emulex SC750/Eagle UDA50/RA81

1 Drive 2 Drives 1 Drive 2 Drives
read_8192 490 (69%) 620 (96%) 310 (44%) 520 (65%)
write_4096 380 (99%) 370 (99%) 370 (97%) 360 (98%)
write_8192 470 (99%) 470 (99%) 320 (71%) 410 (83%)
rewrite 8192 650 (99%) 620 (99%) 310 (50%) 450 (70%)

\ :"

Logically Sequential Transfers
from 4K/IK 4.2BSD File System (Kbytes/sec.)

Test Emulex SC750/Eagle UDA50/RA81
, .

1 Drive 2 Drives 1 Drive 2 Drives
read_8192 300 (60%) 400 (84%) 210 (42%) 340 (77%)
write_4096 320 (98%) 320 (98%) 220 (67%) 290 (99%)
write_8192 ' 340 (98%) 340 (99%) 220 (65%) 310 (98%)
rewrite 8192 450 (99%) 450 (98%) 230 (47%) 340 (78%)

Note that the rate of write operations on the VAX 11/750 are ultimately CPU limited in
some cases. The write rates saturate the CPU at a lower bandwidth than the reads because they
must do disk allocation in addition to moving the data from the user program to the disk. ''Fhe
UDA50/RA81 saturates the CPU at a lower transfer rate for a given operation than the
SC750/Eagle because it causes more memory contention with the CPU. We do not know if
this contention is caused by the UNIBUS controller or the UDA50.

The following table reports the results of test runs on a VAX 11/780 with 4 Megabytes of
main memory.

CSRG TR/X July 27, 1983 Kridle, et. al.

Performance -7-' Results

4.2BSD File Systems Tests - VAX 11/780
Logically Sequential Transfers

from an 8K/IK 4.2BSD File System (Kbytes/sec.)
Test Emulex SC780/Eagle UDA50/RA81 Sys. Ind. 9900/Eagle

1 Drive 2 Drives 1 Drive 2 Drives 1 Drive 2 Drives
read __ 8192 560 (70%) 480 (58%) 360 (45%) 540 (72%) 340 (41%) 520 (66%)
write_ 4096 440 (98%) 440 (98%) 380 (99%) 480 (96%) 490 (96%) 440 (84%)
write_8192 490 (98%) 490 (98%) 220 (58%)· 480 (92%) 490 (80%) 430 (72%)
rewrite 8192 760 (100%) 560 (72%) 220 (50%)- 180 (52%)· 490 (60%) 520 (62%)

-Logically Sequential Transfers
from an 4K/IK 4.2BSD File System (Kbytes/sec.)

Test Emulex SC780/Eagle UDA50/RA81 Sys. Ind. 9900/Eagie

.......... .. -
1 Drive 2 Drives 1 Drive 2 Drives 1 Drive 2 Drives

read_8192 490 (77%) 370 (66%) n.m. n.m. 200 (31%) 370 (56%)
write_ 4096 380 (98%) 370 (98%) n.m. n.m. 200 (46%) 370 (88%)
write_8192 380 (99%) 370 (97%) n.m. n.m. 200 (45%) 320 (76%)
rewrite 8192 490 (87%) 350 (66%) n.m. n.m. 200 (31%) 300 (46%)

• the operation of the hardware was suspect during these tests.

The dropoff in reading and writing rates for the two drive SC780/Eagie tests are probably
due to the file system using insufficient rotational delay for these tests. We have not fully
investigated these times.

The following table compares data rates on VAX 11/750s directly with those of VAX
11/780s using the UDA50/RA81 storage system.

4.2BSD File Systems Tests - DEC UDA50 - 750 VS. 780
Logically Sequential Transfers

from an 8K/IK 4.2BSD File System (Kbytes/sec.)
Test VAX 11/750 UNIBUS VAX 11/780 UNIBUS ---
---- I Drive 2 Drives 1 Drive 2 Drives
read_8192 310 (44%) 520 (84%) 360 (45%) 540 (72%)
write_ 4096 370 (97%) 360 (100%) 380 (99%) 480 (96%)
write_8192 320 (71%) 410 (96%) 220 (58%)- 480 (92%)
rewrite 8192 310 (50%) 450 (80%) 220 (50%)· 180 (52%)·

Logically Sequential Transfers
from an 4K/IK 4.2BSD File System (Kbytes/sec.)

Test VAX 11/750 UNIBUS VAX 11/780 UNIBUS

1 Drive 2 Drives 1 Drive 2 Drives
read_8192 210 (42%) 342 (77%) n.m. n.m.
write_ 4096 215 (67%) 294 (99%) n.m. n.m.
write_8192 215 (65%) 305 (98%) n.m. n.m.
rewrite_8192 227 (~7%) 336 (78%) n.m. n.m.

• the operation of the hardware was suspect during these tests.

The higher throughput available on VAX 11/780s is due to a number of factors. The
larger main memory size allows a larger file system cache. The block allocation routines run

CSRG TR/X July 27, 1983 Kridle, et. al.

Performance - 8 - Results

faster, raising the upper limit on the data rates in writing new files.

The next table makes the same comparison using an Emulex controller on both systems.

4.2BSD File Systems Tests - Emulex - 750 vs. 780
Logically Sequential Transfers

from an 8K/IK 4.2BSD File System (Kbytes/sec.)
Test VAX 11/750 CMI Bus V AX 11/780 SBI Bus

1 Drive 2 Drives 1 Drive 2 Drives
read_8192 490 (69%) 620 (96%) 560 (70%) 480 (58%)
write_4096 380 (99%) 370 (99%) 440 (98%) 440 (98%)
write_8192 470 (99%) 470 (99%) 490 (98%) 490 (98%)
rewrite 8192 650 (99%) 620 (99%) 760 (100%) 560 (72%)

Logically Sequential Transfers
from an 4K/IK 4.2BSD File System (Kbytes/sec.)

. Test. V AX 11/750 CMI Bus VAX 11/780 SBI Bus . '.
~, . -

.. ::.

1 Drive 2 Drives 1 Drive 2 Drives
read_8192 300 (60%) 400 (84%) 490 (77%) 370 (66%)
write_ 4096 320 (98%) 320 (98%) 380 (98%) 370 (98%)
write_8192 340 (98%) 340 (99%) 380 (99%) 370 (97%)
rewrite 8192 450 (99%) 450 (98%) 490 (87%) 350 (66%)

The following table illustrates the evolution of our testing process as both hardware and
software problems effecting the performance of the Emulex SC780 were corrected. The
software change was suggested to us by George Goble of Purdue University.

The 4.2BSD handler for RH750/RH780 interfaced disk drives contains several constants
which to determine how much time is provided between an interrupt signaling the completion
of a positioning command and the subsequent start of a data transfer operation. These lead
times are expressed as sectors of rotational delay. If they are too small, an extra complete rota­
tion will often be required between a seek and subsequent read or write operation. The higher
bit rate and rotational speed of the 2351A Fujitsu disk drives required increasing these con-
stants. .--

The hardware change involved allowing for slightly longer delays in arbitrating for cycles
on the SBI bus by starting the bus arbitration cycle a little further ahead of when the data was
ready for transfer. Finally we had to increase the rotational delay between consecutive blocks
in the file because the higher bandwidth from the disk generated more memory contention,
which slowed down the processor.

CSRG TR/X July 27, 1983 Kridle, et. al.

Performance - 9 - Results

4.2BSD File Systems Tests - Emulex SC780 Disk Controller Evolution
Logically Sequential Transfers

from an 8K/IK 4.2BSD File System (Kbytes/sec.)
Test Inadequate Search Lead OK Search Lead OK Search Lead

Initial SBI Arbitration Init SBI Arb. Improved SBI Arb.

1 Drive 2 Drives 1 Drive 2 Drives 1 Drive 2 Drives
read_8192 320 370 440 (60%) n.m. 560 (70%) 480 (58%)
write_ 4096 250 270 300 (63%) n.m. 440 (98%) 440 (98%)
write_8192 250 280 340 (60%) n.m. 490 (98%) 490 (98%)
rewrite 8192 250 290 380 (48%) n.m. 760 000%) 560 (72%)

Logically Sequential Transfers
from an 4K/IK 4.2BSD File System (Kbytes/sec.)

Test Inadequate Search Lead OK Search Lead OK Search Lead
Initial SBI Arbitration . - Init SBI Arb. Improved SBI Arb .

;

1 Drive 2 Drives 1 Drive 2 Drives 1 Drive 2 Drives
read_8192 200 220 280 n.m. 490 (77%) 370 (66%)
write 4096 180 190 300 n.m. 380 (98%) 370 (98%)
write=8192 180 200 320 n.m. 380 (99%) 370 (97%)
rewrite 8192 190 200 340 n.m. 490 (87%) 350 (66%)

CSRG TR/X July 27, 1983 Kridle, et. al.

Performance - 10 - Conclusions

6. Conclusions

Peak available throughput is only one criterion in most storage system purchasing deci­
sions. Most of the V AX UNIX systems we are familiar with are not I/O bandwidth con­
strained. Nevertheless, an adequate disk bandwidth is necessary for good performance and
especially to preserve snappy response time. All of the disk systems we tested provide more
than adequate bandwidth for typical VAX UNIX system application. Perhaps in some 1/0-
intensive applications such as image processing, more consideration should be given to the peak
throughput available. In most situations, we feel that other factors are more important in mak­
ing a, storage choice between the systems we tested. Cost, reliability, availability, and support
are some of these factors. The maturity of the technology purchased must also be weighed
against the future value and expandability of newer technologies.

Two important conclusions about storage systems in general can be drawn from these
tests. The first is that buffering can be effective in smoothing the the effects of lower bus
speeds and bus contention. Even though the UDASO is located on the relatively slow UNIBUS,
its performance is similar to controllers located on the faster processor busses. However, the
SC780 with only one sector of buffering shows that little buffering is needed if the underlying
bus is fast enough. . --r.' -;:':;-.) ~ 1 ',::,;~,vm':-" ' __ '.

, Placing more intelligence in the controller seems to hinder UNIX system performance
more ,than it helps. Our profiling tests have indicated that UNIX spends about the same per­
centage of time in the SC780 driver and the UDASO driver (about 10-14%). Normally UNIX
uses a disk sort algorithm that separates reads and writes into two seek order queues. The read
queue has priority over the write queue, since reads cause processes to block, while writes can
be done asynchronously. This is particularly useful when generating large files, as it allows the
disk allocator to read new disk maps and begin doing new allocations while the blocks allocated
out of the previous map are written to disk. Because the UDASO handles all block ordering,
and because it keeps all requests in a single queue, there is no way to force the longer seek
needed to get the next disk map. This disfunction causes all the writes to be done before the
disk map read, which idles the disk until a new set of blocks can be allocated.

The additional functionality of the UDASO controller that _~llows it to transfer simultane­
ously from two drives at once tends to make the two drive transfer tests run much more
effectively. Tuning for the single drive case works more effectively in the two drive case than
when controllers that cannot handle simultaneous transfers are used.

Acknow ledgements
We thank Paul Massigilia and Bill Grace of Digital Equipment Corp for helping us run our

disk tests on their UDASO/RA81. We also thank Rich Notari and Paul Ritkowski of Emulex
for making their machines available to us to run our tests of the SC780/Eagles. Dan McKin­
ster, then of Systems Industries, arranged to make their equipment available for the tests. We
appreciate the time provided by Bob Gross, Joe Wolf, and Sam Leffier on their machines to
refine our benchmarks. Finally we thank our sponsors, the National Science Foundation under
grant MCS80-0S 144, and the Defense Advance Research Projects Agency (000) under Arpa
Order No. 4031 monitored by Naval Electronic System Command under Contract No. N00039-
82-C-023S.

References

[McKusick83]

CSRG TR/8

McKusick, M., Joy, w., Leffier, S., and Fabry, R. "A Fast File System
for UNIX", University of California at Berkeley, Computer Systems
Research Group Technical Report #7, 1982.

July 27, 1983 - Kridle, et. al.

Performance

Appendix A

read_8192

#define BUFSIZ 8192
main (argc, argv)
char ··argv;
(

write_ 4096

char buf[BUFSIZ];
int i, j;

j == open(argv[I], 0);
for (j == 0; i < 1024; i + +)

readG, buf, BUFSIZ);

#define BUFSIZ 4096
main (argc, argv)
char ··argv;
(

write_8192

char buf[BUFSIZ];
int i, j;

j == creat(argv[I], 0666);
for (j == 0; i < 2048; i + +)

write(j, buf, BUFSIZ);

#define BUFSIZ 8192
main (argc, argv)
char ··argv;
{

char buf[BUFSIZ];
int i, j;

j == creat (argv [I], 0666);
for G == 0; i < 1024; i + +)

write(j, buf, BUFSIZ);

- 11 -

CSRG TR/8 July 27, 1983

Appendix A

Kridle, et. al.

Performance

rewrite_8192

#define BUFSIZ 8192
main (argc, argv)
char **argv;
{

char buf[BUFSIZ);
int i, j;

j == open (argv [1], 2);
for (i == 0; i < 1024;1 + +)

write(j, buf, BUFSIZ)~

- 12-

CSRG TR/8 July 27, 1983

Appendix A

Kridle, et. al.

