Additional Material

This section contains additional supplementary material, of use to users at Stanford,

that is not part of the Unix manual supplied by Berkeley.

General Works
1. Changes from 4.1 BSD to 4.2 BSD Vax Unix at Stanford University

2. Ex/Vi Quick Reference Card

3. Unix EMACS manual

Programming

4. gprof: A Call Graph Execution Profiler

5. INGRES Reference Manual

System Programming, Installation and Administration

6. A 4.2bsd Interprocess Communication Primer
7. Changes to the Kernel in 4.2BSD

8. Using ADB to Debug the UNIX Kernel

9. Hints on Configuring VAX Systems for UNIX

- 10. Performance Effects of Disk Subsystem Choices for VAX Systems
Running 4.2BSD UNIX

Changes from 4.1BSD to 4.2BSD Vax Unix
at Stanford University

14 September 1984
There have been many changes made to Unix for the version known as 4.2BSD Unix"'. In addition,
some of the modifications made at Stanford to the previous version of Unix (4.1BSD) have themselves
been changed. This document, together with the attached document “Bug Fixes and Changes in
4.2BSD”, should answer most of your questions.
We do not list all the changes, merely the ones which might confuse the average user. Please

assume that other changes you encounter are not bugs, at least until you read the manual page.

Programs whose names or behaviours have changed

stty Formerly,the alterase option took no arguments; now it does. Please check your
Jogin files for this; for example, you probably will want a line in your .login file like:
stty new crt alterase th

telnet Now called puptelnet.

iptelnet Now called teinet, and has a slightly different (some might say worse) command
interface.

fip Now called pupftp.

ipftp Now called ftp, and has a d_ifferent command interface.

talk A completely different program, much fanciér.

echose_nd Now called pupecho.

backup Works better, can handle more than one file at a time.

Note: If you use a Sun workstation as a telnet terminal, this is no longer terminal typé “sun' (which
is now reserved for Sun Microsystems software.) The proper incantation (for csh users) is
% setenv TERM vgts
The *'vgts" terminal type comes in a variety of optional sizes, notably *vgts52" for large windows.

Programs that no longer exist

nwrite Use talk, write, or wall

spice Some of the source files have been mangled.
cifplot Not yet converted to 4.2BSD.

twunix Source files i;/ere lost years ago.

pgrind Subsumed by changes to vgrind (not tested)
nfmt Not converted to 4.2BSD. ’

Note that the “CMU IPC facility” which had been part of the kernel is no longer available.

gripe
cnest
ingroup
linelen

symichk

New programs

Mails a bug repori to the support staff.

Checks C source code to find ,impfoperly nested comments.
List members of a protection group.

Shows how long lines in a text file are.

Checks for incorrect symbolic links.

buildmake, makedep

cparen
dtree
btroff
rtar

shar

rdist

A pair of programs useful for maintaining makefiles.

Helps verify parenthesization of C expressions.

Prints fancy picture of directory structures.

Crude troff output to the Boise printer (doesn't really work)
Allows tar to be used with a tape drive on a different machine.

Takes a group of text files and produces a shell script that, when run, recreates
them. Useful for mailing a set of files to someone.

Complicated program used to distribute files automatically to other machines.

Ex Quick Reference
Entering/legving ex

Specifying terminal type

% setenv TERM ppe
$ TERM = ppe; export TERM

See also rser(1)

sh in Version 7 -

Some terminal types

csh and all version 6

% ex name edit name, start at end
‘% ex +n name ... at line n
% ex —t lag start at lag
%ex —r list saved files
% ex —r name recover file name
% ex name ... edit first; rest via :n
% ex —R name read only mode
$X exit, saving changes
s q! exit, discarding changes
Ex states
Command Normal and initial state. Input
prompted for by :. Your kill char-
acter cancels partial command.
Insert Entered by a | and c. Arbitrary
text then terminates with line hav-
ing only . character on it or abnor-
mally with interrupt.
Open/visual Entered by open or vi, terminates
with Q or *\.
Ex commands
abbrev ab next n unabbrev una
append a number su undo [
args ar open ° unmap unm
change ¢ preserve pre version ve
copy c0 print P visual vi
delete d put pu write w
edit e quit q xit X
file f read re yank ya
global g recover rec window z
insert i rewind rew escape !
join } set se Ishift <
list 1 shell sh primtnext CR
map source 0 resubst &
mark ma Sstop . st rshift >
move m substitute s scroll ‘D
Ex command addresses
n line n /pat next with pat
. current ?pat previous with pat
$ last x-n n before x
+ next xy x through y
- previous ‘x marked with x
+n n forward ” previcus contexi
oL 1t e

2621 43 adm3l dwl h19
2645 733 adm3a dw2 i100
3008 745 cl00 gt40 mime
33 act4 dm1520 gt42 owl
kY actS dm2500 h1500 11061
4014 adm3 dm3025 h1S10 wi52
Initializing options
EXINIT place set’s here in environment var.
set x enable option
set nox disable option
set x=vg/ give value val
set show changed options
set x? show value of oplion x
Useful options
autoindent ai supply indent
autowrite aw write before changing files
ignorecase ic in scanning
lisp () {)ares-exp's
list print "I for tab, $ at end
magle . [* special in patterns
number nu number lines
paragraphs para macro names which start ...
redraw simulate smart terminal
scroll command mode lines
sections sect macro names ...
shiftwidth sw for < >, and input "D
showmatch sm to) and } as typed
slowopen slow choke updates during insert
window visual mode lines
wrapscan ws = around end of buffer?
wrapmargin wm automatic line splitting
Scanning pattern formation

1 beginning of line

S end of line

. any character

\< beginning of word

\> end of word

Istd any char in st

(fsed ... iiot in str

Vi Quick Reference

Entering/leaving vi
% vi name edit name at top
% vi +n name ... at line n
% vi + name ... at end
%vi-r list saved files
% vi —r name recover file name
% vi name ... edit first; rest via :n
% vi —t tag start at tag
% vi +/pat name search for pat
% view name read only mode
22 exit from vi, saving changes
‘Z stop vi for later resumption
The display
Last line Error messages, echoing inputto : / ?

@ lines
~ lines

x
tabs

Vi states
Command

Insert

Last line

and !, feedback about i/o and large
changes.

On screen only, not in file.

Lines past end of file.

Control characters, "? is delete.
Expand to spaces, cursor at last.

Normal and initial state. Others
retutn here. ESC (escape) cancels
partial command.

Entered by a il AJeOcCs SR
Arbitrary text then terminates with
ESC character, or abnormally with
interrupt.

Reading input for : / ? or {; terminate
with ESC or CR to execute, interrupt
to cancel.

Counts before vi commands

line/column number 2 G|

scroll amount ‘D ‘U

replicate insert alAl

repeat effect most rest

Simple commands

dw delete a word

de ... leaving punctuation
dad delete a line

3dd ... 3 lines

liexESC inseri text abc

— e RO

A M

EOVL
-9

4

"L reprint screen if “? scrambles it
File manipulation

w write back changes

wq write and quit

q quit

q! quit, discard changes

e name edit file name

sef reedit, discard changes

e 4+ name edit, starting at end

@ +n edit starting at line »

e # edit alternate file

1 syncnym for e #

W name write file name

:w! name overwrite file name

:sh run shell, then return

demd run ¢md, then retumn

: edit next file in arglist

m args specify new arglist

H show current file and line

‘G synonym for :f

s lag 1o tag file entry rag

1 sta, following word is tag
Positioning within file

°F forward screenfull

‘8 backward screenfull

‘D scroll down half screen

‘U scroll up half screen

G goto line (end default)

/pat next line matching pat

?pat prev line matching par

] repeat last /or ?

N reverse last /or ?

Ipat/+n n’th line after pat

par?—=n n'th line before pat

n next section/function

] previous section/function

% find matching () { or)
Adjusting the screen

"L clear and redraw

‘R retype, eliminate @ lines

:CR redraw, current at window top

- ... at bottom

z. ... at center

/patlz— pat line at bottom

zn, use n line window

‘E scroll window down 1 fline

hae mmmall cldondncs sam £ lina

CHU HIJGIE U S5ILUiipsvey wessw

(delete or rubout) interrupts

... at first non-white in line

mx mark position with letter x

‘x to mark x

‘x ... at first non-white in line
Line positioning

H home window line

L last window line

M middle window line

+ next line, at first non-white

- previous line, at first non-white

CR return, same as +

jor} next line, same column

fork previous line, same column
Character positioning

1 first non white

0 beginning of line

$ end of line

hor— forward

lor— backwards

‘H same as ~—

space same as —

fx find x forward

Fx f backward

tx upto x forward

Tx back upto x

H repeat last fFtor T

» inverse of ;

| to specified column

% find matching (() or }

Words, sentences, paragraphs

Hwi—g—vp []

— e, —

word forward

back word

end of word

to next sentence

to next paragraph
back sentence

back paragraph
blank delimited word
back W

toend of W

Commands for LISP

Forward s-expression

... but don’t stop at atoms
Back s-expression

... but don’t stop al atoms

W erases last word

erase your erase, same as “H

kill your kill, erase input this line

\ escapes “H, your erase and kill

ESC ends insertion, back to command

-? interrupt, terminates insert

‘D backtab over autoindent

1°'D kill autoindent, save for next

D ... but at margin next also

‘v quote non-printing character
Insert and replace

a append afler cursor

i insert before

A append at end of line

I insert before first non-blank

. open line below

o open above _

34 replace single char with x

R replace characters
Operators (double to affect lines)

d delete

c change

< left shift

> right shift

1 filter through command

- indent for LiSP

y yank lines to buffer
Miscellaneous operations

C change rest of line

D delete rest of line

s substitute chars

S substitute lines

J join lines

x delete characters

X ... before cursor

Y yank lines
Yank and put

) put back lines

P put before

“xp put from buffer x

"xy yank to buffer x

*x delete into buffer x
Undo, redo, retrieve

] undo last change

U restore current line

.
[

repeat last change

POV P POV [] N PO PR PY Y

. Introduction.

. The Screen

. Input Conventions
. Invoking EMACS

1
2

3

4

5. Basic Commands
6. Unbound Commands

7. Getting Help

8. Buffers and Windows

9. Terminal types

10. Compiling programs

11. Dealing with collections of files
12. Abbrev mode

13. Extensibility

13.1. Macros

13.2. MLisp -- Mock Lisp
13.2.1. The syntax of MLisp expressions
13.2.2. The evaluation of MLisp expressions
13.2.3. Scope issues
13.2.4. MLisp functions
13.2.5. Debugging

13.3. A Sample MLisp Program

13.4. More on Invoking EMACS

14. Searching

14.1. Simple searches
14.2. Regular Expression searches

Unix Emacs

James Gosling @ CMU
May, 1982

Copyright (c) 1982 James Gosling

VWO © 0 N OO O G E A A O®

15. Keymaps .

16. Region Restrictions

17. Mode Lines

18. Multiple Processes under EMAcs

18.1. Blocking
18.2. Buffer Truncation
18.3. Problems

19. The EMACS database facility
., 20. Packages

20.1. abbrev -- define abbreviation for word in buffer
20.2. buff -- one-line buffer list
20.3. Buffer-edit -- a buffer management function
20.4. c-mode -- simple assist for C programs
20.5. capword -- different behavior for word capitalizations
20.6. dired -- directory editor
20.7. goto -- go to position in buffer
20.8. incr-search -- ITS style incremental search
20.9. ind-region -- indent (slide) blocks of lines left or right
20.10. info -- documentation reader
20.11. killring -- fancy text killing package
20.12. mhe -- a mail management system based on MH
20.13. occur -- find occurances of a string
20.14. process -- high level process manipulation
20.15. pwd -- print and change the working directory
20.16. rmail -- a mail management system
20.16.1. Sending Mail
20.16.2. Reading Mail
20.17. scribe -- weak assistance for dealing with Scribe documents
20.18. scribe-bib -- Scribe bibliography creation mode
20.19. spell -- a simple spelling corrector
20.20. srccom -- source comparison function
20.21. tags -- a function tagger and finder
20.22. text-mode -- assist for simple text entry
20.23. time -- a mode line clock
20.24. transp -- transpose words or lines
20.25. undo -- undo previous commands
20.26. writeregion -- write region to file

21. Command Description
22. Options

Reference Card

Index

17
19
19
20

y7)
2
2

23

24

24
25
25
26
26

27
27
28
29
29
30
i1
32
33
KX)
33

35
36
37
37
37
38
38
38
39
39

39
76

82

1. Introduction

“What is EMACS? It is a tree falling in the
forest with no one to hear it. It is a beautiful
flower that smells awful.”

This manual attempts to describe the Unix implementation of EMACS, an extensible display editor. It is an
editor in that it is primarily used for typing in and modifying documents, programs, or anything else that is
represented as text. It uses a display to interact with the user, always keeping an accurate representation of
what is happening visible on the screen that changes in step with the changes made to the document. The
feature that distinguishes EMACS from most other editors is its extensibility, that is, a user of EMACS can
dynamically change EMACS to suit his own tastes and needs.

Calling this editor EMACS is rather presumptuous and even dangerous. There are two major editors called
EMACs. The first was written at MIT for their ITS systems as an extension to TECO. This editor is the
spiritual father of all the EMACS-like editors; it’s principal author was Richard Stallman. The other was also
written at MIT, but it was written in MacLisp for Multics by Bernie Greenberg. This editor picks up where
ITS EMACS leaves off in terms of its extension facilities. Unix EMACS was called EMACS in the hope that the
cries of outrage would be enough to goad the author and others to bring it up to the standards of what has
come before,

This manual is organized in a rather haphazard manner. The first several sections were written hastily in an
attempt to provide a general introduction to the commands in EMACS and to try to show the method in the
madness that is the EMACS command structure. Section 21 (page 39) contains a complete but concise
description of all the commands and is in alphabetical order based on the name of the command. Preceding
sections generally do not give a complete description of each command, rather they give either the name of
the command or the key to which the command is conventionally bound. Section 22 (page 81) lists for each
key the command to which it is conventionally bound. The options which may be set with the sef command
are described in section 22, (page 76).

2. The Screen

EMACS divides a screen into several areas called windows, at the bottom of the screen there is a one line area
that is used for messages and questions from EMACS. Most people will only be using one window, at least
until they become more familiar with EMACS. A window is displayed as a set of lines, at the bottom of each
window is its mode line (For more information on mode lines see scction 17, page 19). The lines above the
mode line contain an image of the text you are editing in the region around dot (or poinf). Dot is the
reference around which editing takes place. Dot is a pointer which points at a position between two
characters. On the screen, the cursor will be positioned on the character that immediatly follows dot. When
characters are inserted, they are inscrted at the position where dot points; commands exist that delete
characters both to the left and to the right of dot. The text on the screen always reflects they way that the text
looks now.

3. Input Conventions

Throughout this manual, characters which are used as commands are printed in bold face: X. They will
sometimes have a control prefix which is printed as an uparrow character: tX is control-X and is typed by
holding down the control (often labeled ctr/ on the top of the key) and simultaneously striking X. Some will
have an escape (sometimes called meta) prefix which is usually printed thus: ESC-X and typed by striking the
escape key (often labeled esc) then X. And some will have a X prefix which is printed +XX which is typed by
holding down the control key, striking X, releasing the control key then striking X again.

For example, ESC-1J is typed by striking ESC then holding down the control key and striking J.

4. Invoking Emacs
EMACS is invoked as a Unix command by typing
emacs files
to the Shell (the Unix command interpreter). EMACS will start up, editing the named files. You will probably
only want to name one file. If you don’t specify any names, EMACS will use the same names that it was given

the last time that it was invoked. Gory details on the invocation of EMACS can be found in section 13.4, page
14.

5. Basic Commands

Normally each character you type is interpreted individually by EMACS as a command. The instant you
type a character the command it represents is performed immediatly.

All of the normal printing characters when struck just insert themselves into the buffer at dot.

To move dot there are several simple commands. +F moves dot forward one character, B moves it
backward one character. *N moves dot to the same column on the next line, +P moves it to the same column
on the previous line, ‘

String searches may be used to move dot by using the +S command to search in the forward direction and
1R to search in the reverse direction.

Deletions may be performed using tH (backspace) to delete the character to the left of dot and 1D to delete
the character to the right of dot.

The following table summarizes all of the .motion and deletion commands.

Direction
; Move Delete ,
Units of Motion Left Right _ Left Right
Characters +B tF +H +D
Words ESC-B ESC-F ESC-H ESC-D
Intra line tA tE 1K

‘Inter line ' ' P N

6. Unbound Commands

Even though the number of characters available to use for EMACS commands is large, there are still more
commands than characters. You probably wouldn’t want to bind them all to keys even if you could. Each
command has a long name and by that long name may be bound to a key. For example, 1F is normally
bound to the command named forward-character which moves dot forward one character.

There are many commands that are not normally bound to keys. These must be executed with the ESC-X
command or by binding them to a key (via the bind-to-key command). Heaven help the twit who rebinds
ESC-X. : ‘

The ESC-X command will print ": * on the last line of the display and expect you to type in the name of a
command. Space and ESC characters may be struck to invoke Tenex style command completion (ie. you type
in the first part of the command, hit the space bar, and EMACS will fill in the rest for you -- it will complain if
it can’t figure out what you’re trying to say). If the command requires arguments, they will also be prompted
for on the bottom line.

7. Getting Help

EMACS has many commands that let you ask EMACS for help about how to use EMACS. The simplest one is
ESC-? (apropos) which asks you for a keyword and then displays a list of those commands whose full name
contains the keyword as a substring. For example, to find out which commands are available for dealing with
windows, type ESC-?, EMACS will ask "Keyword:"” and you reply "window". A list like the following
appears:

beginning-of-window ESC-,
delete-other-windows +X1

delete-window +XD
end-of-window ESC-.
enlarge-window tXZ
line-to-top-of-window ESC-!
next-window XN
page-next-window ESC-tV
previous-window +XP
shrink-window 1X1+Z

split-current-window X2

To get detailed information about some command, the describe-command command can be used. It asks
for the name of a command, then displays the long documentation for it from the manual. For example, if
you wanted more information about the shrink-window command, just type
"ESC-Xdescribe-command shrink-window" and EMACS will reply:

shrink-window 1X1Z
Makes the current window one line shorter, and the window below
(or the one above if there is no window below) one line taller.
Can’t be used if there is only one window on the screen.

If you want to find out what command is bound to a particular key, describe-key will do it for you.
Describe-bindings can be used to make a "wall chart" description of the key bindings in the currently running
EMACS, taking into account all of the bindings you have made.

8. Buffers and Windows

There are two fundamental objects in EMACS, buffers and windows. A buffer is a chunk of text that can be
edited, it is often the body of a file. A window is a region on the screen through which a buffer may be
viewed. A window looks at one buffer, but a buffer may be on view in several windows. It is often handy to
have two windows looking at the same buffer so that you can be looking at two separate parts of the same file,
for example, a set of declarations and a piece of code that uses those declarations. Similarly, it is often handy
to have two different buffers on view in two windows.

The commands which deal with windows and buffers are: beginning-of-window (ESC-,), delete-other-

. windows (tX1), delete-region-to-buffer (ESC-tW), delete-window (+XD), end-of-window (ESC-.), enlarge-

window (tXZ), line-to-top-of-window (ESC-!), list-buffers (+X*B), next-window (*XN), page-next-window

(ESC-1V), previous-window (tXP), shrink-window (+XtZ), split-current-window (tX2), switch-to-buffer

(+XB), use-old-buffer (+X*+0O) and yank- buffer (ESC-1Y). See the command description section for more
details on each of these.

9. Terminal types

Grim reality being what it is, EMACS has to deal with a wide assortment of displays from many
manufacturers. Each manufacturer has their own perverted idea of how programs should communicate with
the display, so it is important for EMACS to correctly be told what type of terminal is being used. Under Unix,
this is done by setting the environment variable “TERM’. Normally, the operating system should set this to
correspond to the type of terminal that you are using and you won’t have to cencern yourself with it.
However, problems may arise and there are a few things that you should know.

‘TERM’ is a string variable whose value is the name of the type of terminal that you are using. If you are
using the standard Unix shell then it should be set using the commands:
TERM=,
export TERM
If you’re using the C shell (csh) then it should be set using the command:
setenv TERM ..

where °...’ is the appropriate terminal type. Consult your system administrator for a current list of valid
terminal types. A good place to look is the file “/etc/termcap”, it contains a list of all the terminals supported
by EMACS. A few of the more common values are:

concept-Inz For Concepts with the special firmware for EMACS.

concept Concept 100, 104 and 108’s from HDS.

h19 For Heathkit or Zenith model 19 terminals.

vt100 For VT100’s from DEC, or any of the thousands of look-alikes.
aaa For the Ann Arbor Ambassador.

10. Compiling programs |

One of the most powerful features of Unix EMACS is the facility prov1ded for compiling programs and
coping with error messages from the compilers. It essential that you understand the standard Unix program
make (even if you don’t use EMACS). This program takes a database (a makefile) that describes the

relationships among files and how to regenerate (recompile) them. If you have a program that is made up of
many little pieces that have to be individually compiled and carefully crafted together into a single executable
file, make can make your life orders of magnitude easier; it will automatically recompile only those pieces that
need to be recompiled and put them together. EMACS has a set of commands that gracefully interact with this
facility.

The +X1E (execute) command writes all modified buffers and executes the make program. The output of
make will be placed into a buffer called Error log which will be visible in some window on the screen. As soon
as make has finished EMACS parses all of its output to find all the error messages and figure out the files and
lines referred to. All of this information is squirreled away for later use by the +X+N command.

The tXtN (nex?) command takes the next error message from the set prepared by +XtE and does three
things with it:

e Makes the message itself visible at the top of a window. The buffer will be named Error log.
o Does a visit (see the +X1V command) on the file in which the error occurred.

e Sets dot to the beginning of the line where the compiler saw the error. This setting of dot takes
into account changes to the file that may have been made since the compilation was attempted.
EMACS perfectly compensates for any changes that may have been made and always positions the
text on the correct line (well, correct as far as the compiler was concerned; the compiler itself may
have been a trifle confused about where the error occurred)

If you've seen all the error messages tXtN will say so and do nothing else.
So, the general scenario for dealing with programs is:
o Build a make database to describe how your program is to be compiled.
e Compile your program from within EMACS by typing t+XtE.

o If there were errors, step through them by typing +XtN, correcting the error, and typing +XtN to
get the next.

e When you run out of error messages, type t+XtE to try the compilation again.

e When you finally manage to get your beast to compile without any errors, type +C to say goodbye
to EMACS.

e You’ll probably want to use sdb, the symbolic debugger, to debug your program.

11. Dealing with collections of files

The +XtE command doesn’t always execute the make program: if it is given a non-zero argument it will
prompt for a Unix command line to be executed in place of make. All of the other parts of tXtE are
unchanged, namely it still writes all modified buffers before executing the command and parses the output of
the command execution for line numbers and file names,

This can be used in some very powerful ways. For example, consider the grep program. Typing
"tUtXtEgrep -n MyProc *.cESC" will scan all C programs in the current directory and look for all
occurrences of the string "MyProc”. After grep has finished you can use EMACS (via the +X+N command) to
examine and possibly change every instance of the string from a whole collection of files. This makes the task
of changing all calls to a particular procedure much easier. Note: this only works with the version of grep in
/usr/jag/bin which has been modified to print line numbers in a format that EMACS can understand.

There are many more uses. The lint program, for example. Scribe users might find
"cat MyReport.ot1" tobeuseful.

A file name/line number pair is just a string embedded someplace in the text of the error log that has the
form "FileName, 1ine LineNumber”. The FileName may or may not be surrounded by quotes (). The
critical component is the string ", 1ine " that comes between the file name and the line number. Roll
your own file scanning programs, it can make your life much easier.

12. Abbrev mode

Abbrev mode allows the user to type abbreviations into a document and have EMACS automatically expand
them. If you have an abbrev called "rhp" that has been defined to expand to the string "rhinocerous party"
and have turned on abbrev mode then typing the first non-alphanumeric character after having typed "rhp"
causes the string "rhp” to be replaced by "rhinocerous party”. The capitalization of the typed in abbreviation
controls the capitalization of the expansion: "Rhp" would expand as "Rhinocerous party” and "RHP" would
expand as "Rhinocerous Party".

Abbreviations are defined in abbrev tables. There is a global abbrev table which is used regardless of which
buffer you are in, and a local abbrev table which is selected on a buffer by buffer basis, generally depending
on the major mode of the buffer.

Define-global-abbrev takes two arguments: the name of an abbreviation and the phrase that it is to expand
to. The abbreviation will be defined in the global abbrev table. Define-local-abbreyv is like define-global-
abbrev except that it defines the abbreviation in the current local abbrev table.

The use-abbrev-table command is used to select (by name) which abbrev table is to be used locally in this
buffer. The same abbrev table may be used in several buffers. The mode packages (like electric-c and text)
all set up abbrev tables whose name matches the name of the mode.

The switch abbrev-mode must be turned on before EMACS will attempt to expand abbreviations. When
abbrev-mode is turned on, the string “abbrev" appears in the mode section of the mode line for the buffer.
Use-abbrev-table automatically turns on abbrev-mode if either the global or new local abbrev tables are non-
empty.

All abbreviations currently defined can be written out to a file using the write-abbrev-file command. Such
a file can be edited (if you wish) and later read back in to define the same abbreviations again. Read-abbrev-
file reads in such a file and screams if it cannot be found, quietly-read-abbrev-file doesn’t complain (it is
primarily for use in startups so that you can load a current-directory dependant abbrev file without worrying
about the casc where the file doesn’t exist).

People writing MLisp programs can have procedures invoked when an abbrev is triggered. Use the
commands define-hooked-global-abbrev and define-hooked-local-abbrev to do this. These behave exactly as
the unhooked versions do except that they also associate a named command with the abbrev. When the
abbrev triggers, rather than replacing the abbreviation with the expansion phrase the hook procedure is
invoked. The character that trigged the abbrev will not have been inserted, but will be inserted immediatly
after the hook procedure returns [unless the procedure returns 0. The abbreviation will be the word
immediatly to the left of dot, and the function abbrev-expansion returns the phrase that the abbrev would
have expanded to.

13. Extensibility

Unix EMACS has two extension features: macros and a built in Lisp system. Macros are used when you
have something quick and simple to do, Lisp is used when you want to build something fairly complicated
like a new language dependant mode.

13.1. Macros

A macro is just a piece of text that EMACS remembers in a special way. When a macro is executed the
characters that make up the macro are treated as though they had been typed at the keyboard. If you have
some common sequence of keystrokes you can define a macro that contains them and instead of retyping
them just call the macro. There are two ways of defining macros:

The casiest is called a keyboard macro. A keyboard macro is defined by typing the start-remembering
command (+X() then typing the commands which you want to have saved (which will be executed as you type
them so that you can make sure that they are right) then typing the stop-remembering command (+X)). To
execute the keyboard macro just type the execute-keyboard-macro command (#Xe). You can only have one
keyboard macro at a time. If you define a new keyboard macro the old keyboard macro vanishes into the
mist.

Named macros arc slightly more complicated. They have names, just like commands and MLisp functions
and can be called by name (or bound to a key). They are defined by using the define-string-macro command
(which must be executed by typing ESC-Xdefine-string-macro since it isn’t usually bound to a key) which asks
for the name of the macro and it’s body. The body is typed in as a string in the prompt area at the bottom the
the screen and hence all special characters in it must be quoted by prefixing them with Q. A named macro
may be executed by typing ESC-Xname-of-macro or by binding it to a key with bind-to-key.

The current keyboard macro can be converted into a named macro by using the define-keyboard-macro
command which takes a name a defines a macro by that name whose body is the current keyboard macro.
The current keyboard macro ceases to exist.

13.2. MLisp -- Mock Lisp , '

Unix EMACS contains an interpreter for a language that in many respects resembles Lisp. The primary
(some would say only) resemblance between Mock Lisp and any real Lisp is the general syntax of a program,
which many feel is Lisp’s weakest point. The differences include such things as the lack of a cons function
and a rather peculiar method of passing parameters.

10

13.2.1. The syntax of MLisp expressions

There are four basic syntactic entities out of which MLisp expressions are built. The two simplest are
integer constants (which are optionally signed strings of digits) and string constants (which are sequences of
characters bounded by double quote [“*”] characters -- double quotes are included by doubling them: """" is
a one character string. The third are names which are used to refer to things: variables or procedures. These
three are all tied together by the use of procedure calls. A procedure call is written as a left parenthesis, “(”, a
name which refers to the procedure, a list of whitespace separated expressions which serve as arguments, and
a closing right parenthesis, “)”. An expression is simply one of these four things: an integer constant, a string
constant, a name, or a call which may itself be recursivly composed of other expressions.

String constants may contain the usual C excape sequences, "\n" is a newline, "\t" is a tab, "\r" is a
carriage return, "\b" is a backspace, "\e" is the escape (033) character, "\nnn" is the character whose octal
representation is nnn, and "t\c¢" is the control version of the character c.

For example, the following are legal MLisp expressions:

1 The integer constant 1.

"hi" A two character string constant

"\tX\EF" A two character string constant

""what?""" A seven character string constant

(+22) An invocation of the "+" function with integer arguments 2 and 2. "4" is the usual

addition function. This expression evaluates to the integer 4.

(setq bert (* 4 12)) An invocation of the function sefq with the variable bert as its first argument and and
expression that evaluates the product of 4 and 12 as its second argument. The evaluation of
this expression assigns the integer 48 to the variable bert.

(visit-file "mbox") An invocation of the function visi-file with the string "mbox" as its first argument.
Normally the visit-file function is tied to the key +XtB. When it is invoked interactively,
either by typing tXtB or ESC-Xvisit-file, it will prompt in the minibuf for the name of the
file. When called from MLisp it takes the file name from the parameter list. All of the
keyboard-callable function behave this way.

Names may contain virtually any character, except whitespace or parens and they cannot begin with a digit,
0 r C‘_’!.

L3122

13.2.2. The evaluation of MLisp expressions

Variables must be declared (bound) before they can be used. The declare-global command can be used to
declare a global variable; a local is declared by listing it at the beginning of a progn or a function body (ie.
immediatly after the function name or the word progn and before the executable statements). For example:

(defun
(foo 1
(setq 1 §6)

11

defines a rather pointless function called Joo which declares a single local variable i and assigns it the value 5.
Unlike real Lisp systems, the list of declared variables is not surrounded by parenthesis.

Expressions evaluate to values that are either integers, strings or markers. Integers and strings are
converted automaticly from one to the other type as needed: if a function requires an integer parameter you
can pass it a string and the characters that make it up will be parsed as an integer; similarly passing an integer
where a string is required will cause the integer to be converted. Variables may have either type and their
type is decided dynamically when the assignment is made. ’

Marker values indicate a position in a buffer. They are not a character number. As insertions and deletions
are performed in a buffer, markers automatically follow along, maintaining their position. Only the functions
mark and dot return markers; the user may define ones that do and may assign markers to variables. If a
marker is used in a context that requires an integer value then the ordinal of the position within the buffer is
used; if a marker is used in a context that requires a string value then the name of the marked buffer is used.
For example, if there has been assigned some marker, then (pop-to-buffer there) will pop to the
marked buffer. (goto-character there) willset dot to the marked position.

A procedure written in MLisp is simply an expression that is bound to a name. Invoking the name causes
the associated expression to be evaluated. Invocation may be triggered either by the evaluation of some
expression which calls the procedure, by the user typing it’s name to the ESC-X command, or by striking a
key to which the procedure name has been bound.

All of the commands listed in section 21 (page 39) may be called as MLisp procedures. Any parameters
that they normally prompt the user for are taken as string expressions from the argument list in the same
order as they are asked for interactivly. For example, the switch-to-buffer command, which is normally tied to
the tXB key, normally prompts for a buffer name and may be called from MLisp like this:
(switch-to-buffer string-expression).

13.2.3. Scope issues ,
There are several sorts of names that may appear in MLisp programs. Procedure, buffer and abbrev table
names are all global and occupy distinct name space. For variables there are three cases:

1. Global variables: these variables have a single instance and are created either by using declare-
global, set-default or setg-default. Their lifetime is the entire editing session from the time they are
created.

2. Local variables: these have an instance for each declaration in a procedure body or local block
(progn). Their lifctime is the lifetime of the block which declares them. Local declarations nest
and hide inner local or global declarations.

3. Buffer-specific variables: these have a default instance and an instance for each buffer in which
they have been explicitly given a value. They are created by using declare-buffer-specific. When a
variable which has been declared to be buffer specific is assigned a value, if an instance for the
current buffer hasn’t been created then it will be. The value is assigned to the instance associated
with the current buffer. If a buffer specific variable is referenced and an instance doesn’t exist for
this buffer then the default value is used. This default value may be set with cither setg-default or
set-default. 1f a global instance exists when a variable is declared buffer-specific then the global

12

value becomes the default.

13.2.4. MLisp functions
An MLisp function is defined by executing the defin function. For example:

(defun .
(silly
(insert-string "Silly!")
)

)
defines a function called silly which, when invoked, just inserts the string "Silly!" into the current buffer.

MLisp has a rather strange (relative to other languages) parameter passing mechanism. The arg function,
invoked as (arg i prompt) evaluatcs the /th argument of the invoking function if the invoking function was
called interactivly or, if the invoking function was not called interactivly, arg uses the prompt to ask you for
the value. Consider the following function:

(defun
(in-parens
(insert-string "(")
(insert-string (arg 1 "String to insert? "))
(insert-string ")")
)
)

If you type ESC-Xin-parens to invoke in-parens interactivly then EMACS will ask in the minibuffer "String to
insert? " and then insert the string typed into the current buffer surrounded by parenthesis. If in-parens is
invoked from an MLisp function by (in-parens "foo") then the invocation of arg inside in-parens will evaluate
the expression "foo" and the end result will be that the string "(foo)" will be inserted into the buffer.

The function interactive may be used to determine whether or not the invoking function was called
interactivly. Nargs will return the number of arguments passed to the invoking function.

This parameter passing mechanism may be used to do some primitive language extension. For example, if
you wanted a statement that executed a statement » times, you could use the following:

(defun
(dotimes n
(setq n (arg 1))
(while (> n 0)
(setq n (- n 1))
(arg 2)

)
)

Given this, the expression (dotimes 10 (insert-string "<>")) will insert the string "¢$" 10 times. [Note: The
prompt argument may be omitted if the function can never be called interactivly] .

13.2.5. Debugging
Unfortunatly, debugging MLisp functions is something of a black art. The biggest problem right now is
that if an MLisp function goes into an infinite loop there is no way to stop it.

There is no breakpoint facility. All that you can do is get a stack trace whenever an error occurs by setting
the stack-trace-on-error variable. With this set, any time that an error occurs a dump of the MLisp execution

13

call stack and some other information is dumped to the "Stack trace” buffer.

13.3. A Sample MLisp Program

The following piece of MLisp code is the Scribe mode package. Other unplementanons of EMACS, on ITS
and on Multics have modes that influence the behaviour of EMACS on a file. This behaviour is usually some
sort of language-specific assistance. In Unix EMACS a mode is no more that a set of functions, variables and
key-bindings. This mode package is designed to be useful when editing Scribe source files.

(defun :
The apply-look function makes the current word "look" different by changing the font that it
is printed in. It positions dot at the beginning of the word so you can see where the change will be
made and reads a character from the tty. Then it inserts "@c[" (where ¢ is the character typed)
at the front of the word and "]" at the back. Apply-look gets tied to the key ESC-1 so typing
ESC:1i when the cursor is positioned on the word “begin" will change the word to "@ifbegin]".
(apply-look go-forward
(save-excursion ¢
(if (! (eolp)) (forward-character))
(setq go-forward -1)
(backward-word)
(setq c (get- tty-character))
(if O c ')
{progn (insert-character '@')
(insert-character c)
(insert-character '[')
(forward-word)
(setq go-forward (dot))
(insert-character ']')

)
21f (= go-forward (dot)) (forward-character))

14

(defun
This function is called to set a buffer into Scribe mode
(scribe-mode
(remove-all-local-bindings)
If the string "LastEditDate= """ exists in the first 2000 characters of the document then the
Jollowing string constant is changed to the current date. The intent of this is that you should stick
at the beginning of your file a line like: “@string(LastEditDate= "Sat Jul 11 17:59:01 1981")",
This will automatically get changed each time you edit the file to reflect that last date on which
) . the file was edited.
(it (1 buffer-is-modified)
(save-excursion
(error-occurred
(goto-character 2000)
(search-reverse "LastEditDate=""")
(search-forward """")
(set-mark)
(search-forward """")
(backward-character)
(delete-to-killbuffer)
(insert-string (current-time))
(setq buffer-is-modified 0)

)

)

(local-bind-to-key "justify-paragraph” "\ej")
(l1ocal-bind-to-key "apply-look" "\el")
(setq right-margin 77)

(setq mode-string "Scribe")

(setq case-fold-search 1)
(use-syntax-table "text-mode")
(modify-syntax-entry "w -'")
(use-abbrev-table "text-mode")

(setq left-margin 1)

(novalue) -

)

(novalue)

13.4. More on Invoking EMACS
When EMACS is invoked, it does several things that are not of too much interest to the beginning user.

1. EMACS looks for a file called “.emacs_pro” in your home directory, if it exists then it is loaded,
with the Joad command. This is the mechanism used for user profiles -- in your .emacs_pro
file, place the commands needed to customize EMACS to suit your taste. If a user has not set up an
.emacs_pro file then EMACS will use a site-specific default file for initialization. At CMU this
file is named /usr/local/lib/emacs/maclib/profile.ml

2. EMACs will then interprete its command line switches. "-Kfilename>" loads the given file (only
one may be named), "-e<funcnamed” executes the named function (again, only one may be
named). -1 and -e are executed in that order, after the user profile is read, but before and file visits
are done. This is intended to be used along with the csh alias mechanism to allow you to invoke
EMACS packages from the shell (that is, assuming that there is anyone out there who still uses the
shell for anything other than to run under EMACS!). For example: "alias rmail emacs -
Trmail -ermail-com” will cause the csh "rmail" command to invoke EMACS running rmail.
Exiting rmail will exit EMACS.

15

3. If ncither argv nor argc have yet been called (eg. by your startup or by the command line named
package) then the list of arguments will be considered as file names and will be visited; if there are
no arguments then the arguments passed to the last invocation of EMACS will be used.

4. Finally, EMACS invokes it’s keyboard command interpreter, and eventually terminates.

14. Searching
EMACS is capable of performing two kinds of searchesl. There are two parallel sets of searching and
replacement commands that differ only in the kind of search performed.

14.1. Simple searches

The commands search-forward, search-reverse, query-replace-string and replace-string all do simple
searches. That is, the search string that they use is matched directly against successive substrings of the buffer.
The characters of the scarch string have no special meaning. These search forms are the easiest to understand
and are what most people will want to use. They are what is conventionally bound to 1S, tR, ESC-Q and
ESC-R.

14.2. Regular Expression searches

The commands re-search-forward, re-search-reverse, re-query-replace-string, re-replace-string and looking-at
all do regular expression searches. The search string is interpreted as a regular expression and matched
against the buffer according to the following rules:

1. Any character except a special character matches itself. Special characters are ‘\’ I “’ and
sometimes ‘¢’ ¥ ‘¢,

2. A ‘) matches any character except newline.

3.A \’ followed by any character except those mentioned in the following rules matches that
character.

4. A \w’ Matches any word character, as defined by the syntax tables.
5. A \W’ Matches any non-word character, as defined by the syntax tables.

6. A ‘\b’ Matches at a boundary between a word and a non-word character, as defined by the syntax
tables. :

7. A \B’ Matches anywhere but at a boundary between a word and a non-word character, as defined
by the syntax tables.

8. A “* Matches at the beginning of the buffer.

1Regular and Vanilla for those of you with no taste

16

9. A "\” Matches at the end of the buffer.
10. A "\’ Matches anywhére before dbt.
11. A °\>’ Matches anywhere after dot.
12. A "\=" Matches at dot.
13. A nonempty string s bracketed “[s]” (or “[¥ s}’ matches any character in (or not in) 5. In s, ‘\’
has no special meaning, and ‘I’ may only appear as the first letter. A substring a-b, with @ and b in

ascending ASCII order, stands for the inclusive range of ASCII characters.

14. A “\’ followed by a digit n matches a copy of the string that the bracketed regular expression
beginning with the # th “\(’ matched.

15. A regular expression of one of the preceeding forms followed by “* matches a sequence of 0 or
more matches of the regular expression.

16. A regular exprcséion, x, bracketed “\(x \)” matches what x matches.
17. A regular expression of this or one of the preceeding forms, x, followed by a regular expression of
one of the preceeding forms, y matches a match for x followed by a match for y, with the x match

being as long as possible while still permitting a y match.

18. A regular expression of one of the preceeding forms preceded by ‘4’ (or followed by ‘$), is
constrained to matches that begin at the left (or end at the right) end of a line.

19. A sequence of regular expressions of one of the preceeding forms seperated by ‘\|’s matches any
one of the regular expressions.

20. A regular expression of one of the preceeding forms picks out the longest amongst the leftmost
matches if searching forward, rightmost if searching backward.

21. An empty regular expression stands for a copy of the last regular expression encountered.

In addition, in the replacement commands, re-query-replace-string and re-replace-string, the characters in the
replacement string are specially interpreted:

o Any character except a special character is inserted unbhanged.
o A\’ followed by any character except a digit causes that character to be inserted unchanged.

e A ‘\’ followed by a digit n causes the string matched by the nth bracketed expression to be
inserted. '

e An ‘&’ causes the string matched by the entire search string to be inserted.
The following examples should clear a little of the mud:

Pika Matches the simple string “Pika”.

17

Whiskey.*JackMatches the string “Whiskey”, followed by the longest possible sequence of non-newline
characters, followed by the string “Jack”. Think of it as finding the first line that contains
the string “Whiskey” followed eventually on the same line by the string “Jack”

[a-z][a-z]* Matches a non-null sequence of loWer case alphabetics. Using this in the re-replace-string
command along with the replacement string “(&)” will place parenthesis around all
sequences of lower case alphabetics.

Guiness\ | BassMatches either the string ‘Guiness’ or the string ‘Bass’.
\Bed\b Matches ‘ed’ found as the suffix of a word.

\bsilly\W*twit\b
Matches the sequence of words ‘silly’ and ‘twit’ seperated by arbitrary punctuation.

15. Keymaps

When a user is typing to EMACS the keystrokes are interpreted using a keymap. A keymap is just a table
with one entry for each character in the ASCII character set. Each entry either names a function or another
keymap. When the user strikes a key, the corresponding keymap entry is examined and the indicated action is
performed. If the key is bound to a function, then that function will be invoked. If the key is bound to
another keymap then that keymap is used for interpreting the next keystroke.

There is always a global keymap and a local keymap, as keys are read from the keyboard the two trees are
traversed in parallel (you can think of keymaps as FSMs, with keystrokes triggering transitions). When either
of the traversals reaches a leaf, that function is invoked and interpretation is reset to the roots of the trees.

The root keymaps are sclected using the use-global-map or use-local-map commands. A new empty
keymap is created using the define-keymap command.

The contents of a keymap can be changed by using the bind-to-key and local-bind-to-key commands. These
two commands take two arguments: the name of the function to be bound and the keystroke sequence to
which it is to be bound. This keystroke sequence is interpreted relative to the current local or global keymaps.
For example, (bind-to-key "define-keymap"” "\tZd") binds the define-keymap function to the Keystroke
sequence ‘17’ followed by ‘d’.

A named keymap behaves just like a function, it can be bound to a key or executed within an MLisp
function. When it is executed from within an MLisp function, it causes the next keystroke to be interpreted
relative to that map.

The following sample uses the keymap to partially simulate the vi editor. Different keymaps are used to
simulate the different modes in vi: command mode and insertion mode.

(defun
(insert-before + Enter insertion mode
(use-global-map "vi-insertion-mode"))
(insert-after s Also enter insertion mode, but gfter

s+ the current character
(forward-character)
(use-global-map "vi-insertion-mode"))

18

(exit-insertion s Exit insertion mode and return to
s command mode
(use-global-map "vi-command-mode"))

(replace-one .
(insert-character (get-tty-character))
(delete-next-character))

(next-skip
(beginning-of~11ine)
(next-11ine)
(skip-white-space))

(prev-skip
(beginning-of-1ine)
(previous-1ine)
(skip-white-space))

(skip-white~space
(while (& (! (eolp)) (| (= (following-char) ' ') (= (following-char) '+i')))
(forward-character)))

(vi s Start behaving like vi
{(use-global-map "vi-command-mode"))

)

: setup vi mode tables
(define-keymap "vi-command-mode")
(define-keymap "vi-insertion-mode")

(use-global-map "vi-insertion-mode"): Setup the insertion mode map
(bind-to-key "execute-extended-command" "\tX")
(progn 1 ,
(setq 1 ' ') i .
(while (< 1 0177)
(bind-to-key "self-insert" 1)
(setq i (+ 1 1))))
(bind-to-key "self-insert" "\011")
(bind-to~-key "newline" "\015")
(bind-to-key "self-insert" "\012")
(bind-to-key "delete-previous-character" "\010")
(bind-to-key "delete-previous-character” "\177")
(bind-to-key "exit-insertion" "\033")

(use-global-map "vi-command-mode"); Setup the command mode map
(bind-to-key "execute-extended-command" "\+X")
(bind-to-key "next-1ine" "\tn")

(bind-to-key "previous-1ine" "\1p")
(bind-to-key "forward-word" "w")

(bind-to-key "backward-word"™ "b")

(bind-to-key "search-forward" "/")
(bind-to-key "search-reverse" "?")
(bind-to-key "beginning-of-line"” "0")
(bind-to-key "end-of-1ine" "$")

{bind-to-key "forward-character™ " ")
(bind-to-key "backward-character"™ "\th")
(bind-to-key "backward-character" "h")
(bind-to-key "insert-after” "a")

(bind-to-key "insert-before"™ "i")

(bind-to-key "replace-one" "r")

(bind-to-key "next-skip" "+")

(bind-to-key "next-skip" "\tm")

.(bind-to-key "prev-skip" "-")

(use-giobal-map "default-global-keymap")

19

16. Region Restrictions

The portion of the buffer which EMACS considers visible when it performs editing operations may be
restricted to some subregion of the whole buffer.

The narrow-region command sets the restriction to encompass the region between dot and mark. Text
outside this region will henceforth be totally invisible. It won’t appear on the screen and it won't be
manipulable by any editing commands. It will, however, be read and written by file manipulation commands
like read-file and write-current-file. This can be useful, for instance, when you want to perform a replacement
within a few paragraphs: just narrow down to a region enclosing the paragraphs and execute replace-string.

The widen-region command sets the restriction to encompass the entire buffer. It is usually used after a
narrow-region to restore EMACS’s attention to the whole buffer.

Save-restriction is only useful to people writing MLisp programs. It is used to save the region restriction for
the current buffer (and only the region restriction) during the execution of some subexpression that
presumably uses region restrictions. The value of (save-restriction expressions...) is the value
of the last expression evaluated.

17. Mode Lines

A mode line is the line of descriptive text that appears just below a window on the screen. It usually
provides a description of the state of the buffer and is usually shown in reverse video. The standard mode line
shows the name of the buffer, an “* if the buffer has been modified, the name of the file associated with the
buffer, the mode of the buffer, the current position of dot within the buffer expressed as a percentage of the
buffer size and and indication of the nesting within recursive-edit’s which is shown by wrapping the mode line
in an appropriate number of [’ ‘]’ pairs.

It is often the case that for some silly or practical reason one wants to alter the layout of the mode line, to
show more, less or different information. EMACS has a fairly general facility for doing this. Each buffer has
associated with it a format string that describes the layout of the mode line for that buffer whenever it appears
in a window. The format string is intcrpreted in a manner much like the format argument to the C printf
subroutine. Unadorned characters appear in the mode line unchanged. The ‘%’ character and the following
format designator character cause some special string to appear in the mode line in their place. The format
designators are:

Inserts the name of the buffer.

Inserts the name of the file associated with the buffer.
Inserts the value of the buffer-specific variable mode-string.
Inserts the valuc of the variable global-mode-string.

Inserts the position of "dot" as a percentage.

Inserts an **’ if the buffer has been modified.

Inserts (recursion-depth) ’s.

Inserts (recursion-depth) J's.

—— 4w 25

If a number n appears between the ‘%’ and the format designator then the inserted string is constrained to
be exactly n characters wide. Either by padding or truncating on the right.

20

At CMU the default mode line is built using the following format:
" %[Buffer: %b%* File: %f %M (%m) %XpX]"

The following variables are involved in generating mode lines:
mode-line-format 'This is the buffer specific variable that provides the format of a buffers mode line,

default-mode-line-format ,
This is the value to which mode-line-format is initialized when a buffer is created.

mode-string This buffer-specific string variable can be inserted into the mode line by using ‘%m’ in the
format. This is it’s only use by EMACS. Usually, mode packages (like ‘lisp-mode’ or ‘c-
mode’) put some string into mode-string to indicate the mode of the buffer. It is the
appearance of this piece of descriptive information that gives the mode line its name.

global-mode-string This is similar to mode-string except that it is global -- the same string will be inserted into
all mode lines by ‘%M’. It is usually used for information of global interest. For example,
the time package puts the current time of day and load average there.

18. Multiple Processes under Emacs

EMACS has the ability to handle multiple interactive subprocesses. The following is a sketchy description of
this capability.

In general, you will nof want to use any of the functions described in the rest of this section. Instead, you
should be using one of the supplied packages that invoke them, see 20.14 page 32. For cxample, the “shell”
command provides you with a window into an interactive shell and the “time” package puts the current time
and load average (continuously updated) into the mode line.

Multiple interactive processes can be started under EMACS (using “start-process” or "start-filtered-
process’). Processes are tied to a buffer at inception and are thereafter known by this buffer name. Input can
be sent to a process from the region or a string, and output from processes is normally attached to the end of
the process buffer. There is also the ability to have EMACS call an arbitrary MLISP procedure to process the
output each time it arrives from a process (see "start-filtered-process").

Many of the procedures dealing with process management use the concept of "current-process” and
"active-process”. The current-process is usually the most recent process to have been started. Two events can
cause the current-process to change:

1. When the present current-process dies, the most recent of the remaining processes is popped up to
take its place.

2. The current-process can be explicitly changed using the "change-current-process” command.

The active-process refers to the current-process, unless the current buffer is a live process in which case it -
refers to the current buffer.

Below is list of the current mlisp procedures for using processes:

21

active-process [unbound]: (active-process) -- Returns the name of the active process as defined in the section
describing the process mechanism. ‘

change-current-process [unbound]: (change-current-process "process-name') -- Sets the current process to the
one named.

continue-process [unbound]: (continue-process "process-name™) -- Continue a process stopped by stop-
process.

current-process [unbound]: (current-process) -- Returns the name of the current process as defined in the
section describing the process mechanism.

eot-process [unbound]: (eot-process "process-name™) -- Send an EOT to the process.
int-process [unbound]: (int-process "process-name") -- Send an interrupt signal to the process.
kill-process funbound]: (kill-process "process-name") -- Send a kill signal to the process.

list-processes [unbound]: (list-processes) -- Analagous to "list-buffers”. Processes which have died only
appear once in this list before completely disappearing. ‘

_ process-filter-name [unbound]: Returns the name of the filter procedure attached to some buffer.
process-id [unbound]: Returns the process id of the process attached to some buffer.

process-output [unbound]: (process-output) -- Can only be called by the on-output-procedure to procure the
output generated by the process whose name is given by MPX-process. Returns the output as a string.

process-status funbound]: (process-status "process-name") -- Returns -1 if "process-name" isn’t a process, 0 if
the process is stopped, and 1 if the process is running.

quit-process [unbound]: (quit-process "proéess-name") -- Send a quit signal to the process.

region-to-process [unbound]: (region-to-process "process-name") -- The region is wrappcd up and sent to the
process.

22

Variable silently-kill-processes: 1f ON EMACS will kill processes when it exits without asking any questions.
Normally, if you have processes running when EMACS exits, the question "You have processes on the
prowl, should I hunt them down for you" is asked. (default OFF)

start-filtered-process [unbound]: (start-filtered-process "command” "buffer-name” "on-output-procedure”) --
Does the same thing as start-process except that things are set up so that "on-output-procedure” is
automatically called whenever output has been received from this process. This procedure can access
the name of the process producing the output by refering to the variable MPX-process, and can
retrieve the output itself by calling the procedure process-output.

The filter procedure must be careful to avoid generating side-effects (eg. search-
forward). Moreover, if it attempts to go to the terminal for information, output from other
processes may be lost.

start-process [unbound]: (start-process "command” "buffer-name") -- The home shell is used to start a
process executing the command. This process is tied to the buffer "buffer-name" unless it is null in
which case the "Command execution” buffer is used. Output from the process is automatically
attached to the end of the buffer. Each time this is done, the mark is left at the end of the output
(which is the end of the buffer).

stop-process funbound]: (stop-process "process-name") -- Tell the process to stop by sending it a stop signal.
Use continue-process to carry on,

"o

String-to-process [unboimd]: (string-to-process "process-name" "string'") -- The string is sent to the process.

18.1. Blocking _

When too many characters are sent to a process in one gulp, the send will be blocked until the process has
removed sufficient characters from the buffer. The send will then be automatically continued. Normally this
process is invisible to the EMACS user, but if the process has been stopped, the send will not be unblocked and
further attempts to send to the process will result in an overwrite error message.

18.2. Buffer Truncation

EMACS does not allow process buffers to grow without bound. When a process buffer exceeds the value of
the variable process-buffer-size, 500 characters are erased from the beginning of the buffer. The default value
for process-buffer-size is 10,000. ‘

18.3. Problems

The most obvious problem with allowing multiple interactive processes is that it is too easy to start up
useless jobs which drag everyone down. Also when checkpointing is done, all buffers including the process
‘buffers are checkpointed. So if you have a one line buffer keeping time, it will take more system time to
checkpoint it than it will to keep it updated once a minute.

23

In addition to anti-social problems, there are some real bugs remaining:

o Sometimes when starting a process, it will inexplicably expire immediately. This often happens to
the first process you fire up.

e Subprocesses are assumed to not want to try fancy things with the terminal. EMACS doesn’t know
how to handle this and for now more or less ignores stty requests from processes. This means that
csh cannot be used from within EMACS. Running chat and ftp can also cause problems.
Someday, EMACS should try to handle stty’s.

o The worst problem is that background processes started outside EMACS will cause EMACS to hang
when they finally finish. This might get fixed if I want to think about it.

o If EMACS does crash or hang, you will find several orphan processes left hanging around. It is best
to do a ps and get rid of them.

19. The Emacs database facility

Unix EMACS provides a sct of commands for dealing with databases of a rather primitive form. These
databases are intended to be used in Aelp facilities to find documentation for a given keyword, but they have
many other uses: managed mailboxes or nodes in an info tree.

A database is a set of (key, content) pairs which may be retrieved or stored based on the key. Both the key
and the content may be arbitrary strings of characters. The content may be long, but there are restrictions on
the aggragate length of the keys.

A database search list is a list of databases. When a key is looked up in a database search list the databases
in the search list are examined in order for one containing the key. The content corresponding to the first key
that matches is returned. When a key is to have its content changed only the first database in the search list is
used. ‘

The commands available for dealing with databases are:

extend-database-search-list [unbound]: (extend-database-search-list dbname filename) adds the given data
base file to the data base search list (dbname). If the database is already in the search list then it is
left, otherwise the new database is added at the beginning of the list of databases.

Sfetch-database-entry [unbound]: (fetch-database-entry dbname key) takes the entry in the data base
corresponding to the given key and inserts it into the current buffer.

24

list-databases [unbound]: (list-databascs) lists all data base search lists.

put-database-entry [unbound]: (put-database-entry dbname key) takes the current buffer and stores it into the
named database under the given key.

There are four Unix commands provided for dealing with EMACS data bases (these are commands that you
give to the shell, not EMACS):

1. dbadd -- add entry to an Emacs data base
dbadd dbname key

2. dbcreate -- create an Emacs data base
dbcreate dbname

3. dblist -- list contents of an Emacs data base
dblist dbname [-1] [-p] newdbname

4. dbprint -- print an entry from an Emacs data base
dbprint dbname key

Dbadd adds the text from the standard input to the named database using the given key. Dbcreate creates
the named database, making it empty. Dbprint prints the contents of the entry from the database with the
given key.

Dblist with no arguments simply lists the keys of all the items in the database. With the -l option it prints
some internal information from the database of no interest to anyone but the implementor. The -p option
causes the key and content of every entry to be listed as a shell command file which when executed will
repeatedly invoke dbadd to rebuild the database. This form of dblist is handy when you want a readable ascii
file representation of a data base for shipping around or editing. Databases should be recreated periodically
to garbage collect them.

20. Packages

This chapter contains a description of a few of the packages that have been written for EMACS in MLisp.
To load some package, just type “ESC X load PackageName”. The title of each following section contains the
name of the package before the *

20.1. abbrev -- define abbreviation for word in buffer

abbreviate-word Prompts for an abbreviation for the current word. If a prefix argument is provided, the
- specified number of words are taken as the “word” to abbreviate. In any case, the
minibuffer will show exactly what is being abbreviated.

25

20.2. buff -- one-line buffer list
Loading the buff package replaces the binding for +X-1B (usually list-buffers) with one-line-buffer-list.

one-line-buffer-list Gives a one-line buffer list in the mini-buffer. If the buffer list is longer than one line, it
will print a line at a time and wait for a character to be typed before moving to the next
line. Buffers that have been changed since they were last saved are prefixed with an
asterisk (*), buffers with no associated file are prefixed with a hash-mark (#), and empty
buffers are prefixed with an at-sign (@).

20.3. Buffer-edit -- a buffer management function

This package provides a very nice buffer management package intended to replace the list-buffers function
normally bound to +XtB. It pops up a window that contains a buffer listing, and lets you move around that
buffer listing marking buffers for deletion, saving, unsaving, reverting, and so forth. This ability is incredibly
useful when you are editing a big system that has all kinds of files all over the place, because it lets you move
around freely from one file to another without having to remember or type buffer names.

When buffer-edit is run, normally by typing +X*B, it pops up a window whose contents is a buffer listing,
sorted so that the file buffers come first, with the cursor positioned on the line corresponding to the buffer in
which the command was executed. You can move the cursor from line to line in that buffer listing by using
the ordinary cursor-movement commands, or by using "n" for next and "p" for previous. When the cursor is
positioned on a line corresponding to some buffer B, various commands can be typed that will change the

disposition of B when the buffer is exited:

d Delete the buffer. The buffer will be removed from the editor’s tables using the EMACS
delete-buffer command. This command will not write out a modified buffer, so that
information will be lost if you delete a buffer with d.

¢ Close the buffer. The buffer will be written out to its attached file (if there is oné) aﬁd then it
will be deleted as with the d command.

T Revert the buffer. If it is not a file buffer, nothing will happen. If it is a file buffer, then the
current contents of the file will be read into the buffer, replacing its current contents. If you
have made extensive modifications to a buffer and then decide that you want to start over
again from the file copy, you can use this command. The buffer will not be deleted from
EMACS’ list of buffers.

S Save the buffer. The buffer will be written out to its attached file, exactly as with the +XtS
command.

m Mark the buffer as unmodified. This will remove the "M" flag from the buffer listing, and |
mark the buffer as not in need of being saved, but will not actually write the buffer out to
any file.

u Unmark the buffer. Any action flag set by one of the above commands will be removed.

In addition to those commands shown above that "mark" a buffer for processing when the buffer menu is
exited, there are commands that have immediate action at the instant that they are typed:

26

e Begin a recursive edit on the contents of the buffer.

q Exit without processing. If you change your mind about all of the buffer operations you have
flagged, you can go back and unmark them all by typing a u command for each one, or you
can just type a ¢ command, which will get you out of the buffer edit back to where you
entered it from.

g Exit and go to a buffer. This is the normal way of exiting from buffer-edit: you find the line
corresponding to the buffer that you would like to edit next, and type g. All of the marks are
processed, the various save, delete, and revert operations are performed, and the screen is
filled with the contents of the indicated buffer.

? Print some help text that includes a summary of these commands.

20.4. c-mode -- simple assist for C programs

begin-C-comment (ESC-‘) Initiates the typing in of a comment. Moves the cursor over to the comment
column, inserts "/* " and turns on autofill. If ESC-‘ is typed in the first column, the the
comment begins there, otherwise it begins where ever comment-column says it should.

end-C-comment (ESC-’) Closes off the current comment.

indent-C-procedure
(ESC-j) Takes the current function (the one in which dot is) and fixes up its indentation by
running it through the "indent” program.

20.5. capword -- different behavior for word capitalizations

The built-in EMACS functions ‘case-word-upper, case-word-lower, and case-word-capitalize all leave the
cursor where it began, and perform their operation on the word containing the cursor. Many people prefer to
have these functions skip forward over a word after capitalizing or uncapitalizing it. These functions provide
that service.

The capword package defines three functions, upper-case-word, lower-case-word, and capitalize-word.
Normally they are bound to ESC-U, ESC-L, and ESC-C respectively, though this package does not set up
those bindings.

20.6. dired -- directory editor

The dired package implements the dired command which provides some simple convenient directory
editing facilities. When you run dired it will ask for the name of a directory, displays a listing of it in a buffer,
and processes commands to examine files and possibly mark them for deletion. When you’re through with
dired it actually deletes the marked files, after asking for confirmation. The commands it recognizes are:

d Marks the current file for deletion. A ‘D’ will appear at the left margin. It does not
actually delete the file, it just marks it. The deletion will be performed when dired is
exited. It also makes the next file be the current one.

27

u Removes the deletion mark from the current file. This is the command to use if you
change your mind about deleting a file. It also makes the next file be the current one.

RUBOUT Removes the deletion mark from the line preceeding the current one. If you mark a file for
deletion with ‘d’ the current file will be advanced to the next line. RUBOUT undoes both
the advancing and the marking for deletion.

eV Examine a file put putting it in another window and doing a recursive-edit on it. To
resume dired type +C.

T Removes the current file from the directory listing. It doesn’t delete the file, it just gets rid
of the directory listing entry. Use it to remove some of the clutter on your screen.

q,tC Exits dired. For each file that has been marked for deletion you will be asked for
confirmation. If you answer ‘y’ the file will be deleted, otherwise not.
n, tN Moves to the next entry in the directory listing.
p, 1P Moves to the previous entry in the directory listing.
Vv Moves to the next page in the directory listing.
- ESC-v Moves to the previous page in the directory listing.
ESC< Moves to the beginning of the directory listing.
ESC- Moves to the end of the directory listing.

20.7. goto -- go to position in buffer

goto-line Moves the cursor to beginning of the indicated line. The line number is taken from the
prefix argument if it is provided, it is prompted for otherwise. Line numbering starts at 1.

goto-percent Moves dot to the indicated percentage of the buffer. The percentage is taken from the
prefix argument if it is provided, it is prompted for otherwise. (goto-percent n) goes to the
character that is n% from the beginning of the buffer.

20.8. incr-search -- ITS style incremental search

~ ITS EMACS has a the search command that is unusual in that it is "incremental”; it begins to search before
you have finished typing the scarch string. As you type in the scarch string, EMACS shows you where it would
be found. When you have typed enough characters to identify the place you want, you can stop. The incr-
search package perfectly emulates this in Unix EMACS. Typically one binds incremental-search to tS and
reverse-incremental-search to tR.

The command to search is S (incremental-search). +S reads in characters and positions the cursor at the
first occurrence of the characters that you have typed. If you type +S and then F, the cursor moves right after
the first "F". Type an "O", and see the cursor move to after the first "FO". After another "O", the cursor is
after the first "FOO" after the place where you started the search. At the same time, the "FOO" has echoed

28

at the bottom of the screen.

If you type a mistaken character, you can rub it out. After the FOO, typing a rubout makes the "O"
disappear from the bottom of the screen, leaving only "FO". The cursor moves back to the "FO". Rubbing
out the "O" and "F" moves the cursor back to where you started the search.

When you are satisfied with the place you have rcached, you can type an ESC, which stops searching,
leaving the cursor where the search brought it. Also, any command not specially meaningful in searches stops
the searching and is then executed. Thus, typing *A would exit the search and then move to the beginning of
the line. ESC is necessary only if the next command you want to type is a printing character, Rubout, ESC or
another search command, since those are the characters that would not exit the search.

Sometimes you search for "FOO" and find it, but not the one you expected to find. There was a second
FOO that you forgot about, before the one you were looking for. Then type another S and the cursor will
find the next FOO. This can be done any number of times. If you overshoot, you can rub out the 1S’s. You
can also repeat the search after exiting it, if the first thing you type after entering another search (when the
argument is still empty) is a 1S.

If your string is not found at all, the echo area says "Failing I-Search”. The cursor is after the place where
EMACS found as much of your string as it could. Thus, if you search for FOOT, and there is no FOOT, you
might see the cursor after the FOO in FOOL. At this point there are several things you can do. If your string
was mistyped, you can rub some of it out and correct it. If you like the place you have found, you can type
ESC or some other EMACS command to "accept what the search offered”. Or you can type +G, which throws
away the characters that could not be found (the "T" in "FOOT"), leaving those that were found (the "FOO"
in "FOOT™"). A second *G at that point undoes the search entirely.

The +G "quit” command does special things during searches; just what, depends on the status of the
search. If the search has found what you specified and is waiting for input, 1G cancels the entire search. The
cursoi moves back to where you started the search. If G is typed while the search is actually searching for
something or updating the display, or after search failed to find some of your input (having searched all the
way to the end of the file), then only the characters which have not been found are discarded. Having
discarded them, the search is now successful and waiting for more input, so a second +G will cancel the entire
search. Make sure you wait for the first +G to ding the bell before typing the second one; if typed too soon,
the second +G may be confused with the first and effectively lost.

You can also type TR at any time to start searching backwards. If a search fails because the place you
started was too late in the file, you should do this. Repeated *R’s keep looking for more occurrences
backwards. A S starts going forwards again. tR’s can be rubbed out just like anything else. If you know
that you want to scarch backwards, you can use *R instecad of *S to start the search, because 1R is also a
command (reverse-incremental-search) to search backward.

20.9. ind-region -- indent (slide) blocks of lines left or right

The ind-region package provides a function that will move a block of text lines left or right, for manually
meddling with indentation. The set of lines that it operates on is defined by point and mark, but in order to
behave intuitively it doesn’t quite use point and mark as a region. In particular, it will include the complete
contents of any line if any character of that line falls in the marked region, and it will also include a line if the

29

first character of that line is right after the end of the region. This behavior, while it sounds unusual, provides
visual fidelity: if you set the mark anywhere on one line, and then move the point to anywhere on another line
(including their beginnings or ends, respectively), then those lines will be included in the set of lines that is
indented left or right.

If no argument is provided, the function will assume an indentation of +4, which is a right shift of 4
spaces. In all cases, after the function has finished indenting a line it will compute the minimal sequence of
tabs and spaces to effect the indentation.

20.10. info -- documentation reader

Info is a system which lets you browse through the documentation for various systems. In particular, all the
EMACS documentation is available online through it. Both the describe-command and describe-variable
functions use it.

Rather than document Info extensivly here, I suggest that you run /nfo and use it to describe itself.

20.11. killring -- fancy text killing package

This package defines commands for killing and unkilling text. Commands to delete words. lines, and
regions actually send the text to a ring of killbuffers, where they can be yanked back. Multiple killing
commands in succession will concatenate text to the same buffer, so a single unkill can bring it all back. The
unkill-pop command can cycle the kill ring to retrieve previously-killed stuff. '

The following keys are redefined:

o tW
kill-region

e ESC-w
copy-region

¢ 1K
kill-lines

e ESC-k
copy-lines

e ESC~d
kill-word

e ESC-h
backward-kill-word

e ESC-del
backward-kill-word

e ESC-a

30

append next kill (pretend previous command was 1K)

o 1Y
unkill

e ESC-y :
unkill-pop (kill the region, back up one on the kill ring, and unkill)

There are usually four buffers in the killring. If you want more buffers in the ring (say 8), execute the
following mlisp functions BEFORE you load this file:
(setq-default nrings 8)

The +K function will behave pretty much the same as the old delete-t0-end-of-line did, unless you want
something better. The improved version bases its behavior on the horizontal position of the cursor at the time
the command is issued. If the cursor is at the beginning of the line, the command will assume you want to kill
the entire line, including the return at the end. If you’re at the end of the line, then it will remove the return
separating this line from the next. Otherwise, it will kill just to the end of the line. To get this function,
execute the following mlisp functions afier you load this file:

(setq-default &kill-1ines-magic 1)

20.12. mhe -- a mail management system based on MH

Mhe is an Emacs-based system that is used as a visual front end to the MH mail system. MH is the Rand
Mail Handler, which is available under license from the Rand Corporation. Mhe is used as a mail program to
send, receive, classify, move, archive, search, and edit mail using the basic MH programs as the underlying
mechanism. While mhe can certainly be loaded from any instance of EMACS, the customary usage is to use
mhe for a login shell, or else to execute it immediately after login, and then to sit in it all day, using it as both
an editor and a mail reader.

When initially run, mhe presents you with a buffer containing a listing of the headers of the mail messages
in your current mail folder; you can then peruse this buffer with all of the usual EMACS motion and search
commands. To delete a message, you position the cursor on the line corresponding to that message and type
"D"; to reply to a message, you position the cursor on the line corresponding to it and type "R". All of the
basic mail-handling commands in mhe are single-character commands, as follows:

n move cursor to next line

p move cursor to previous line

t type this message (the message represented by the current line). Pops up a window and
shows the message in it. Mhe key bindings are still in effect while the cursor is in that
window.

d delete this message. Marks it with a "D", and arranges for it to be deleted when the mhe
session is terminated.

1 move this message to another folder. Prompts for its name. Marks it with a "1" and arranges
for it to be moved with the mhe session is terminated.

! repeat previous * (move) command. Uses same destination folder as previous command, so
no prompting is done.

u , undelete/unmove: cancel delete or move command for this message. Since the deleting and

moving are not performed until mhe exits, those commands can be undone.

K) |

m mail a message. Pops up a window whosc contents are an empty mail message; you fill in the
"To:", "Subject:”, and "Cc:" fields as you wish. You can add "Fcc:" ficlds for file copies,
"Bec:" fields for blind copies, and any other fields that you wish (such as "Reply-to:", etc.).
Your standard EMACS key bindings will be used in this window. When you exit from the
recursive edit with +XtC, you will be asked for instructions on handling the message, e.g.
quit, send it, go back and edit it some more.

r reply to the current message. Splits the screen, showing the message text in one window and
the reply in the other. Quite similar to the "mail” command, except that the "Subject:",
"To:", and "Cc:" fields are filled in for you. You can change them if you want, of course.
When you send the reply, the original message will be annotated with a "Replied:" field and
the date, and the letter "R" will appear in the header listing.

f forward the current message. Pops up a message composition window, just like the "m
command, except that its initial contents are the contents of the current message. When you
send the message, the original that you forwarded will be marked with an annotation
showing that it has been forwarded to someone, and the letter "R" will appear in the header
listing.

e edit the current message. This command works just like the "type" command described
above, except that the keyboard has its "edit" key bindings, so that you can change the
message if you want.

i incorporate new mail. If the banner line shows that you have received new mail, you can
fetch it with this command. If you are currently working in some folder besides +inbox, and
if there is mail, then mhe will switch to folder +inbox before incorporating the mail.

g get a new mail folder. Prompts you for the name of a new folder, and then creates a new
header buffer in the name of that folder. The old header buffer is not destroyed, so that you
can switch back and forth between them as you see fit.

b get a bboard (bulletin board, otherwise known as newsgroup) folder. Mhe lets you read
newsgroup directories just as if they were mail in a mail folder.

tX+C Exit from Mhe.

? Pop up a help window. Its topmost few lines give a command summary, and if you scroll it

down, various further instructions are given.

Whenever the cursor is positioned in a header buffer, the above-mentioned key bindings are in effect. In
addition, all of the +X-prefix key bindings from your profile are left untouched, as are various other standard
EMACS key bindings like ESC-, 1S, and so forth.

20.13. occur -- find occurances of a string
The occur package allows one to find the occurances of a string in a buffer. It contains one function

Occurances When invoked, prompts with "Search for all occurances of: “. It then lists (in a new
buffer) all lines contain the string you type following dot. Possible options (listed at the
bottom of the screen) allow you to page through the listing buffer or abort the function.

In addition, a global variable controls the action of the function:

&Occurances-Extra-Lines
is a global variable that controls how many extra surrounding lines are printed in addition
to the line containing the string found. If this variable is 0 then NO additional lines are
printed. If this variable is greater than 0 then it will print that many lines above and below
the line on which the string was found. When printing more than one line per match in

32

this fashion, it will also print a seperator of ’--------==----- ’ so you can tell whefe the
different matches begin and end. At the end of the buffer it prints "<<<End of Occur>>>’.

20.14. process -- high level process manipulation
The process package provides high level access to the process control features of Unix EMACS. It allows
you to interact with a shell through an EMACS window, just as though you were talking to the shell normally.

shell

lisp

grab-last-line

lisp-kill-output

pr-newline

send-eot

send-int-signal

send-quit-signal

The' shell command is used to either start or reenter a shell process. When the shell
command is executed, if a shell process doesn’t exist then one is created (running the
standard “sh”) tied to a buffer named “shell’. In any case, the shell buffer becomes the
current one and dot is positioned at the end of it. In that buffer output from the shell and
programs run with it will appear. Anything typed into it will get sent to the subprocess
when the refurn key is struck. This lets you interact with a shell using EMACS, and all of it’s
editing capability, as an intermediary. You can scroll backwards over a session, pick up
pieces of text from other places and use them as input, edit while watching the execution of
some program, and much more...

The lisp command is exactly the same as the shell command except that it starts up
“cmulisp” in the “lisp” buffer. You can have both a shell and a lisp process going at the
same time. You can even have as many shells going as you want, but this package doesn’t
support it.

(ESC-=) This command takes the last string typed as input to the process and brings it
back, as though you had typed it again. So if you muff a command, just type ESC-=, edit
the line, and hit return again.

(#X1K) [this only applies to lisp processes] Erases the output from the last command. If
you don’t 'want to see the output of the last command any more, just type tX*K and it will
g0 away.

(*M -- return) Takes the text of the current line and sends it as input to the process tied to
the current buffer. Actually, if dot is on the last line of the buffer, it takes the region from
mark to the end of the buffer and sends it as input (output from a process causes the mark
to be set after the inserted text); if dot is not on the last line, just the text of that line is
shipped (presuming that your prompt is "$).

(+D) If dot is at the end of the buffer, then +D behaves just as it does outside of EMACS -- it
sends an EOT to the subprocess (end of file to some folks). If dot isn’t at the end of the
buffer, then it does the usual character deletion.

(\177 -- rubout) Sends an INT (Interrupt) signal to the subprocess, which should make it
stop whatever it is doing. ' '

(*\) Sends a QUIT signal to the subprocess, making it stop whatever it is doing and
produce a core dump.

33

20.15. pwd -- print and change the working directory
pwd Prints the current working directory in the mode line, just like the shell command “pwd”.

cd Changes the current working directory, just like the shell command “cd”. You should
beware that cd only changes the current directory for EMACS, if it has already spawned a
subprocess (a shell, for example) then a c¢d from within EMACS has no effect on the shell.

20.16. rmail -- a mail management system
EMACS may be used to send and receive electronic mail. The rmail command (Usually invoked as "ESC-
Xrmail") is used for reading mail, smail is used for sending mail.

20.16.1. Sending Mail

When sending mail, either by using the smail command or from within rmail, EMACS constructs a buffer
that contains an outline of the message to be sent and allows you to edit it. All that you have to do is fill in the
blanks. When you exit from smail (by typing +C usually -- when you're editing the message body you will be
in a recursive-edit) the message will be sent to the destinations and blindcopied to you. Several commands
are available to help you in composing the message:

justify-paragraph (ESC-j) Fixes up the line breaks in the current paragraph according to the current left and
right margins.

exit-emacs (+C) Exits mail composition and attempts to send the mail. If all goes well the mail
composition window will disappear and a confirmation message will appear at the bottom
of the screen. If there is some sort of delivery error you will be placed back into the
composition window and a message will appear. Bug: when delivery is attempted and
there are errors in the delivery, the message will have been delivered to the acceptable
addresses and not to the others. This makes retrying the message difficult since you have
to manually eliminate the addresses to which the message has alrcady been sent.

mail-abort-send (*XtA) Aborts the message. If you're part-way through composing a message and decide
that you don’t want to send it, +XtA will throw it away, after asking for confirmation.

mail-noblind-exit (+XtC) Exits smail and send the message, just as +C will, except that a blind copy of the

message will not be kept.
exit-emacs (+X1F) Same as +C.
exit-emacs (tX1S) Same as tC.

mail-append (tXa) Positions dot at the end of the body and sets margins and abbrev tables appropriatly.
mail-cc (1Xc) Positions dot to the "cc:" field, creating it if necessary.

mail-insert (tXi) Inserts the body of the message that was most recently looked at with rmail into the
body of the message being composed. If, for instance, what you want to do is forward a
message to someone, just rcad thc message with rmail, then compose a message to the
person you want to forward to, and type *Xi.

34

mail-subject (1+Xs) Positions dot to the "subject:" ficld of the message.

mail-to (th) Positions dot to the "to:" field of the message.

20.16.2. Reading Mail

The rmail command provides a facility for reading mail from within EMACS. When it is running there are
usually two windows on the screen: one shows a summary of all the messages in your mailbox and the other
displays the “current” message. The summary window may contain something like this:

02621525335022 29 Oct 1981 research!dmr [empty]
B 02621525335030 29 Oct 1981 =>Unix-Wizards A plea for understanding

026215256335040 31 Oct 1981 CSVAX.dmr rc etymology
02621525335072 3 Nov 1981 EHF fyi
A 02621352421000 3 Nov 1981 JIM copyrights
B 02621353040000 3 Nov 1981 =>JIM Re: copyrights
02621646433000 [empty] [empty] [empty]
B 02621647417000 4 Nov 1981 =>research!ikey Emacs
2N 02622024522003 5 November flaco cooking class

This is broken into five columns, as indicated by the underlining.

e The first column contains some flags: *>’ indicates the current message, ‘B’ indicates that the
message is a blindcopy (ie. A copy of a message that you sent to someone else), ’A’ indicates that
you've answered the message, and "N’ indicates that the message is new.

e The second column contains a long string of digits that is internal information for the mail system.
o The third contains the date on which the mail was sent.

e The forth contains the sender of the message, unless it is a blindcopy, in which case it contains the
destination (indicated by the "=>").

e The fifth column contains the subject of the message.

When in the summary window Rmail responds to the following commands:

rmail-shéll (") Puts you into a command shell so that you can execute Unix commands. Resume mail
reading by typing tC.

execute-extended-command
(:) An emergency trap-door for executing arbitrary EMACS commands. You should never
necd this.

rmail-first-message
(€) Look at the first message in the message file.

rmail-last-message (>) Look at the last message in the message file.
rmail-help (?) Print a very brief help message

exit-emacs (+C) Leave rmail. Changes marked in the message file directory (eg. deletions) will be

35

made.

rmail-search-reverse
(tR) Prompts for a search string and positions at the first message, scanning in reverse,
whose directory entry contains the string. ’

rmail-scarch-forward
(tS) Prompts for a search string and positions at the first message, scanning forward, whose
directory entry contains the string.

rmail-append (a) Append the current message to a file.

rmail-previous-page
(b) Moves backward in the window that contains the current message.

rmail-delete-message
(d) Flag the current message for deletion. It won’t actually be deleted until you leave rmail.

rmail-next-page (f) Moves forward in the window that contains the current message. To read a message
that is longer than the window that contains it, just keep typing f and rmail will show you
successive pages of it.

rmail-goto-message
(g) Moves to the nth message.

smail (m) Lets you send some mail.

rmail-next-message
(n) Moves to the next message.

rmail-previous-message
(p) Moves to the previous message.

exit-emacs (q) the same as +C
rmail-reply (r) Constructs a reply to the current message.
rmail-skip (s) Moves to the nth message relative to this one.

rmail-undelete-message
(u) If the current message was marked for deletion, u removes that mark.

20.17. scribe -- weak assistance for dealing with Scribe documents

Scribe mode binds justify-paragraph to ESC-j, defines appply-look and binds it to C-X-1, turns on autofill,
sets the right margin to 77 and updates the LastEditDate to the current date. It also binds index-entry to ESC-
I, and scribe-command to ESC-S.

If the string “LastEditDate = """ exists somewhere in the first 2000 characters of the document then then the
region extending from it to the next “" is replaced by the current date and time. You’re intended to stick in
your document something like:

36

@String(LastEditDate="Thu Jul 15 17:10:56 1982")

EMACS will automatically maintain the date. The date will only change in the file you make some changes,
the mere act of starting scribe-mode does not cause the date change to be permanent.

Apply-look reads a singlc character and then surrounds the current word with “@(” and “]”. So, if you’ve
just typed “begin”, typing ESC-l-i will change it to “@i[begin]”, which appears in the document as “begin”.
This use of the word “look” comes from the Bravo text editor.

Index-entry takes a number of words and creates a Scribe index entry for that phrase, on a separate line.
The current dot and mark are not modified. If the command is given with no prefix-argument, the current
word is used as the index item. If a positive argument rn is given, n words starting with the current word are
used as the index phrase; a negative argument n causes the » words ending with the current word to be used.
The easiest way to learn what the real rules are is to try it out; if you make a mistake, you can try again
without having to change the cursor position, then delete the wrong index entries once you’ve got a right one.

Scribe-command is used to create a Begin -- End bracket pair for a specified scribe command. You are
prompted for the name of the command (e.g., Index, Itemize, Description, etc.) For example, ESC-S Itemize
would insert

@Begin(Itemize)

GEnd(Itemize)

and would leave the cursor on the blank line inside the begin--end brackets. If you always create scribe
commands in this way, you’ll never have unbalanced begin--ends in your scribe files.

20.18. scribe-bib -- Scribe bibliography creation mode

Scribe-bib mode provides a set of functions that create Scribe bibliography database entries. For each
bibliography type scribe-bib mode provides a function that when executed prompts the user for appropriate
fields and constructs a new entry of the proper type. The name of each of these functions is identical to the
name of the corresponding bibliography type. Once the entry is created it can be edited using standard
Emacs commands. The bibliography creation functions are invoked by name using ESC-X and are listed
below:

@article Create an @Article bibliography entry. -

@book Create an @Book bibliography entry.
@booklet Create an @Booklet bibliography entry.
@inbook Create an @InBook bibliography entry.

@incollection Create an @InCollection bibliography entry.
@inproceedings Create an @InProceedings bibliography entry.
@manual Create an @Manual bibliography entry.

@mastersthesis Create an @MastersThesis bibliography entry.

37

@misc Create an @Misc bibliography entry.
@phdthesis Create an @PhdThesis bibliography entry.
@proceed_ings Create an @Proceedings bibliography entry.
@techreport Create an @TechReport bibliography entry.

@unpublished Create an @Unpublished bibliography entry.

20.19. spell -- a simple spelling corrector

The spell package implements the single function spell. It provides a simple facility for doing spelling
correction. If you invoke spell it will scan your file looking for spelling errors, then it will go through a
dialogue to let you fix them up. For each misspelled word EMACS will show you the word, some context
around it and ask you what to do. If you type ‘e’ or ‘+G’ the spelling corrector will exit. If you type ‘it will
ignore the word. If you type ‘r’ it will ask for the text to use in replacing the word and perform a query-
replace. Bug: This uses the Unix spell command which believes that its input is a source for the Unix
standard text formatter troff/nroff; Spell misbehaves on Scribe .mss files.

20.20. srccom -- source comparison function

srccom Compare text in two windows. To begin the comparison, place the dot at the beginning of
one of the two pieces of text to be compared, switch to the other window, and place the dot
at the beginning of the other piece of text. (If there are more than two windows, the two
windows to be compared must be adjacent, and the dot must be left in the upper one.)
When this command is invoked, it will search forward, stopping when either a difference is
encountered or the end of the buffer is reached. case-fold-search governs comparison of
case differences. The region is left around the equal portions in both windows.

20.21. tags -- a function tagger and finder

The tags package closely resembles the tags package found in Twenex EMACS. The database used by the
tag package (called a tagfile) correlates function definitions to the file in which the definitions appear. The
primary function of the tag package is to allow the user to specify the name of a function, and then have
EMACS locate the definition of that function. The commands implemented are:

add-tag Adds the current line (it should be the definition line for some function) to the current
‘ tagfile.
goto-tag goto-tag takes a single string argument which is usually the name of a function and visits

the file containing that function with the first line of the function at the top of the window.
The string may actually be a substring of the function name (actually, any substring of the
first line of the function definition). If gofo-tag is given a numeric argument then rather
than asking for a new string it will use the old string and search for the next occurrence of
that string in the tagfile. This is used for stepping through a set of tags that contain the
same string.

38

This is the most commonly used command in the tag package so it is often bound to a key:
Twenex EMACS binds it to ESC-,, but the Unix tag package doesn’t bind it to anything, it
presumes that the user will bind it (I use +X*+G).

make-tag-table Takes a list of file names (with wildcards allowed) and builds a tagfile for all the functions
in all of the files. It determines the language of the contents of the file from the extension.
This command may take a while on large directories, be prepared to wait. A common use
is to type "make-tag-table *.c”.

recompute-all-tagsGoes through your current tag file and for each file mentioned refinds all of the tags. This.
is used to rebuild an entire tag file if you've made very extensive changes to the files
mentioned and the tag package is no longer able to find functions. The tagfile contains
hints to help the system locate the tagged function, as you make changes to the various files
the hints become out of date. Periodically (no too often!) you should recompute the
tagfile.

visit-function Takes the function name at or before dot, does a gofo-fag on that name, then puts you into
a recursive-edit to look at the function definition. To get back to where you were, just type
+C. This is used when you’re editing something, have dot positioned at some function
invocation, then want to look at the function.

visit-tag-table Normally the name of the tagfile is ".tags" in the current directory. If you want to use
some other tagfile, visit-tag-table lets you do that.

20.22. text-mode -- assist for simple text entry
Implements the text-mode command which ties ESC-j to justify-paragraph and sets up autofill with a left
margin of 1 and a right margin of 77.

20.23. time -- a mode line clock

This package only implements one user-visible function, Zime, which puts the current time of day and load
average (continuously updating!) in the mode line of each window. It uses global-mode-string and the
subprocess control facility. Major!

20.24. transp -- transpose words or lines
- The transp package allows transposition of word and lines (similar to the function of transpose-character.)

transpose-word ~ Takes the two words preceding dor and exchanges them. (If dor is within a word, it is
counted as preceeding dot.)

transpose-line Takes the two lines preceding dot and exchanges them. (If dot is within a line, it is counted
as preceeding dot.)

There are also several global variables to control the transpose-line function:

&Default-Transpose-Direction
(dcfault 1) Tells transpose-line which other line to transpose with the current on. If this is
set to 1 (actually your favorite non-zero number will do) then transpose-line will use the

39

line above the current one and if it is 0 transpose-line will use the line below the current
one.

&Default-Transpose-Follow
(default 0) If this is set Non-zero it will cause transpose-line to leave the cursor(dot) on the
line that got transposed, and if this is set to Zero it will stay at the same place in the file!

& Default-Transpose-Magic

(default 0) This variable controls some magic inside the transpose Line function. If it is set
to zero, transpose-line will behave as controlled by the settings of the above variables. If
this is set Non-Zero then the magic is controlled by the cursor position when transpose-line
is invoked. If the cursor(dot) is somewhere in the middle of a line, then it behaves as if this
variable were 0. If the cursor is at the end of a line, or at the beginning of a line, the magic
will happen. If the cursor is at the beginning of the line transpose-line will override the
above variable settings and assert that you want to transpose with the above line and that
you want to follow the line you were on. If the cursor is at the end of a line transpose-line
will assume that you want to transpose with the next line and that you want to follow the
line you were on. The main reason for this magic is so that you can blip lines up and down
in your buffer real easily.

20.25. undo -- undo previous commands

The new-undo command, which is usually bound to +XtU allows the user to interactively undo the effects
of previous commands. Typing +X1tU undoes the effects of the last command typed: It will then ask “Hit
<space> to undo more”, each <{space> that you then hit will undo one more command. Typing anything but
space will terminate undoing. If it is terminated with anything other than <return> the termination character
will be executed just as though it were a normal command. new-undo is an undoable command, just like the
others, so if you find that you’ve undone too much just type +XtU again to undo the undo’s.

20.26. writeregion -- write region to file
This package only implements one function, write-region-to-file, which takes the region between dot and
mark and writes it to the named file.

21. Command Description

This chapter describes (in alphabetical order) all of the commands which are defined in the basic Unix
EMACS system. Other commands may be defined by loading packages. Each description names the
command and indicates the default binding.

(! ¢)) MLisp function that returns not €.

=

(!= ¢, e)) MLisp function that returns true iff el=e,

%
(% e, e,) MLisp function that returns e, % e, (the C mod operator).

&
& e e2) MLisp function that returns e & €

* e e2) MLisp function that returns N * e,

+
(+ e, &,) MLisp function that returns e + e
e e2) MLisp function that returns e, - e

/ .
(/ & e2) MLisp function that returns e / ey

<
« e e2) MLisp function that returns true iff e<e,

<«

(<4 e ez) MLisp function that returns e Ke, (the C shift left operator).

(=
(<= ¢, e,) MLisp function that returns true iff g <=e,

(= ¢ &) MLisp function that returns true iff e, = e,.

[unbound]
[unbound]
[unbound]
[unbound]
[unbound]
[unbound]
[unbound]
[unbound}
[unbound}
[unbound]
[unbound]

[unbound]

41

P ' [unbound]
Oe e,) MLisp function that returns true iff e, > e,. ‘

D= ' [unbound]
(>= e, e,) MLisp function that returns true iff ¢, >= e,.

» ‘ [unbound]
> e e,) MLisp function that returns e, >> e, (the C shift right operator).

t [unbound]
(r & ez) MLisp function that returns e, * e, (the C XOR operator).

active-process [unbound]
(active-process) -- Returns the name of the active process as defined in the section describing the process
mechanism. '

append-region-to-buffer [unbound]
Appends the region between dot and mark to the named buffer. Neither the original text in the destination
buffer nor the text in the region between dot and mark will be disturbed.

append-to-file [unbound]
Takes the contents of the current buffer and appends it to the named file. If the files doesn’t exist, it will be
created.

apropos , ESC-?
Prompts for a keyword and then prints a list of those commands whose short description contains that
keyword. For example, if you forget which commands deal with windows, just type "ESC-?windowESC".

arg [unbound]
(arg i [prompt]) evaluates to the i’th argument of the invoking function or prompts for it if called
interactively [the prompt is optional, if it is omitted, the function cannot be called interactivly]. For example,
(arg 1 "Enter a number: ")

Evaluates to the value of the first argument of the current function, if the current function was called from
MLisp. If it was called interactively then it is prompted for. As another example, given:
(defun (foo (+ (arg 1 "Number to increment? ") 1)))

then (foo 10) returns 11, but typing "ESC-Xfoo" causes emacs to ask "Number to increment? ". Language
purists will no doubt cringe at this rather primitive parameter mechanism, but what-the-hell... it’s amazingly
powerful.

42

arge {unbound]

Is an MLisp function that returns the number of arguments that were passed to EMACS when it was
invoked from the Unix shell. If either argc or argv are called early enough then EMACS’s startup action of
visiting the files named on the command line is suppressed.

argument-prefix) tU

When followed by a string of digits +U causes that string of digits to be interpreted as a numeric argument
which is generally a repetition count for the following command. For example, tU10t*N moves down 10 lines
(the 10’th next). A string of n tU’s followed by a command provides an argument to that command of 4"
For example, tUtN moves down four lines, and tUtU*tN moves down 16. Argument-prefix should never be
called from an MLisp function.

argv [unbound]

(argv i) returns the ith argument that was passed to EMACS when it was invoked from the Unix Shell. If
EMACS were invoked as "emacs blatto” then (argv 1) would return the string "blatto”. If either argc or argv
are called early enough then EMACS’s slartup action of visiting the files named on the command line is
suppressed.

auto-execute [unbound]

Prompt for and remember a command name and a file name pattern. When a file is read in via visit-file or
read-file whose name matches the given pattern the given command will be executed. The command is
generally one which sets the mode for the buffer. Patterns must be of the form "*string” or "string*":
"*string” matches any filename whose suffix is "string"; "string*" matches any filename prefixed by "string".

” "

For example, auto-execute c-mode *.c will put EMACS into C mode for all files with the extension ".c".

autoload [unbound]

(autoload command file) defines the associated command to be autoloaded from the named file. When an
attempt to execute the command is encountered, the file is loaded and then the exccution is attempted again.
the loading of the file must have redefined the command. Autoloading is useful when you have some
command written in MLisp but you don’t want to have the code loaded in unless it is actually needed. For
example, if you have a function named box-it in a file named box-it.ml, then the command
(autoload "box-it" "box-it.ml") will define the box-it command, but won’t load its definition from box-it.ml.
The loading will happen when you try to execute the box-it command.

backward-balanced-paren-line _ [unbound]
Moves dot backward until either

o The beginning of the buffer is reached.

e An unmatched open parenthesis, ’(, is encountered. That is, unmatched between there and the
starting position of dot.

~ @ The beginning of a line is encountered at "parenthesis level zero". That is, without an unmatched
’) existing between there and the starting position of dot.

43

The definitions of parenthesis and strings from the syntax table for the current buffer are used.

backward-character iB
Move dot backwards one character. Ends-of-lines and tabs each count as one character. You can’t move
back to before the beginning of the buffer.

backward-paragraph ' \ ESC-{
Moves to the beginning of the current or previous paragraph. Blank lines, and Scribe and nroff command
lines separate paragraphs and are not parts of paragraphs.

backward-paren [unbound]

Moves dot backward until an unmatched open parenthesis, ’(, or the beginning of the buffer is found.
This can be used to aid in skipping over Lisp S-expressions. The definitions of parenthesis and strings from
the syntax table for the current buffer are used.

backward-sentence ESC-A
Move dot backward to the beginning of the preceeding sentence; if dot is in the middle of a sentence, move
to the beginning of the current sentence. Sentences are seperated by a *.’, *? or ‘!’ followed by whitespace.

backward-word ESC-B
If in the middle of a word, go to the beginning of that word, otherwise go to the beginning of the preceding
word. A word is a sequence of alphanumerics.

baud-rate [unbound]

An MLisp function that returns what EMACS thinks is the baud rate of the communication line to the
terminal. The baud rate is (usually) 10 times the number of characters transmitted ber second. (Baud-rate)
can be used for such things as conditionally setting the display-file-percentage variable in your EMACS profile:
(setq display-file-percentage (O (baud-rate) 600))

beginning-of-file . ESC<
Move dot to just before the first character of the current buffer.

beginning-of-line tA
Move dot to the beginning of the line in the current buffer that contains dot; that is, to just after the
preceeding end-of-line or the beginning of the buffer.

44

beginning-of-window / ESC-,
Move dot to just in front of the first character of the first line displayed in the current window.

bind-to-key [unbound]
Bind a named macro or procedure to a given key. All future hits on the key will cause the named macro or

procedure to be called. The key may be a control key, and it may be prefixed by +X or ESC. For example, if

you want ESC-= to behave the way ESC-Xprint does, then typing ESC-Xbind-t0-key print ESC-= will do it.

bobp [unbound]
(bobp) is an MLisp predicate which is true iff dot is at the beginning of the buffer.

bolp [unbound]
(bolp) is an MLisp predicate which is true iff dot is at the beginning of a line.

buffer-size [unbound]
(buffer-size) is an MLisp function that returns the number of characters in the current buffer.

c-mode ‘ [unbound]
Incompletely implemented.

c= ‘ ‘ [unbound]

(c= ¢ e;) MLisp function that returns true iff e, is equal to e, taking into account the character
translations indicated by case-fold-search. If word-mode-search is in effect, then upper case letters are "c="
to their lower case equivalents.

case-region-capitalize [unbound]
Capitalize all the words in the region between dot and mark by making their first characters upper case and
all the rest lower case.

case-region-invert [unbound]
Invert the case of all alphabetic characters in the region between dot and mark.

case-region-lower [unbound]
Change all alphabetic characters in the region between dot and mark to lower case.

case-region-upper " [unbound]
Change all alphabetic characters in the region between dot and mark to upper case. ‘

45

case-word-capitalize [unbound]
Capitalize the current word (the one above or to the left of dot) by making its first character upper case and
all the rest lower case. '

case-word-invert) [unbound]
Invert the case of all alphabetic characters in the current word (the one above or to the left of dot).

case-word-lower ‘ [unbound]
Change all alphabetic characters in the current word (the one above or to the left of dot) to lower case.

case-word-upper [unbound]
Change all alphabetic characters in the current word (the one above or to the left of dot) to upper case.

change-current-process : [unbound]
(change-current-process "process-name") -- Sets the current process to the one named.

change-directory [unbound]
Changes the current directory (for EMACS) to the named directory. All future file write and reads (1X1tS,
+X1V, etc.) will be interpreted relative to that directory.

char-to-string [unbound]
Takes a numeric argument and returns a one character string that results from considering the number as
an ascii character.

checkpoint [unbound]
Causes all modified buffers with an out of date checkpoint file to be checkpointed. This function is
normally called automatically every checkpoint-frequency keystrokes.

Command prefix, also known as META ESC

The next character typed will be interpreted as a command based on the fact that it was preceded by ESC.
The name meta for the ESC character comes from funny keyboards at Stanford and MIT that have a Meta-
shift key which is used to extend the ASCII character set. Lacking a Meta key, we make do with prefixing
with an ESC character. You may see (and hear) commands like ESC-V referred to as Meta-V. Sometimes the
ESC key is confusingly written as $, so ESC-V would be written as $§V. ESC is also occasionally referred to as
Altmode, from the labeling of a key on those old favorites, model 33 teletypes.

46

command-prefix +X
The next character typed will be interpreted as a command based on the fact that it was preceded by tX.

compile-it +XtE

Make is a standard Unix program which takes a description of how to compile a set of programs and
compiles them. The output of make (and the compilers it calls) is placed in a buffer which is displayed in a
window. If any errors were encountered, EMACS makes a note of them for later use with +tXtN. Presumably,
a data base has been set up for make that causes the files which have been edited to be compiled. +X*E then
updates the files that have been changed and make does the necessary recompilations, and EMACS notes any
errors and lets you peruse them with +XtN.

If +X+E is given a non-zero argument, then rather than just executing make EMACS will prompt for a Unix
command line to be executed. Modified buffers will still be written out, and the output will still go to the
Error log buffer and be parsed as error messages for use with +XtN. One of the most useful applications of
this feature involves the grep program. "+UtXtEgrep -n MyProc *.cESC" will scan through all C source files
looking for the string "MyProc" (which could be the name of a procedure). You can then use 1XtN to step
through all places in all the files where the string was found. Note: The version of grep in my bin directory,
/usr/jag/bin/grep, must be used: it prints line numbers in a format that is understood by EMACS. (ie.
"FileName, line LineNumber)

concat [unbound]
Takes a set of string arguments and returns their concatenation.

continue-process ' [unbound]
(continue-process "process-name") -- Continue a process stopped by stop-process.

copy-region-to-buffer ' ’ [unbound]
Copies the region between dot and mark to the named buffer. The buffer is emptied before the text is
copied into it; the region between dot and mark is left undisturbed.

current-buffer-name ' ~ [unbound]
MLisp function that returns the current buffer name as a string.

current-column ’ [unbound]
(current-column) is an MLisp function that returns the printing column number of the character
immediately following dot.

47

current-file-name ' [unbound]
MLisp function that returns the file name associated with the current buffer as a string. If there is no
associated file name, the null string is returned.

current-indent [unbound]
(current-indent) is an MLisp function the returns the amount of whitespace at the beginning of the line
which dot is in (the printing column number of the first non-whitespace character).

current-process [unbound]
(current-process) -- Returns the name of the current process as defined in the section describing the process
mechanism.

current-time [unbound]

MLisp function that returns the current time of day as a string in the format described in CTIME(3), with
the exception that the trailing newline will have been stripped off, (substr (current-time) -4 4) is the current
year.

declare-buffer-specific [unbound]

Takes a list of variables and declares them to have buffer-specific values. A buffer-specific variable has a
distinct instance for each buffer in existance and a default value which is used when new buffers are created.
When a buffer-specific variable is assigned a value only the instance associated with- the currently selected
buffer is affected. To set the default value for a buffer-specific variable, use sefq-default or set-default. Note
that if you have a global variable which is eventually declared buffer-specific then the global value becomes
the default.

declare-global [unbound]
Takes a list of variables and for each that is not already bound a global binding is created. Global bindings
outlive all function calls. :

define-buffer-macro [unbound]
Take the contents of the current buffer and define it as a macro whose name is associated with the buffer.
This is how one redefines a macro that has been edited using edit-macro.

define-global-abbrev [unbound]
. Define (or redefinc) an abbrev with the given name for the given phrase in the global abbreviation table.

48

define-hooked-global-abbrev ‘ [unbound]

The commands define-hooked-global-abbrev and define-hooked-local-abbrev behave exactly as the
unhooked versions do (define-global-abbrev and define-local-abbrev) except that they also associate a named
command with the abbrev. When the abbrev triggers, rather than replacing the abbreviation with the
expansion phrase the hook procedure is invoked. The character that trigged the abbrev will not have been
inserted, but will be inserted immediatly after the hook procedure returns [unless the procedure returns 0}.
The abbreviation will be the word immediatly to the left of dot, and the function abbrev-expansion returns
the phrase that the abbrev would have expanded to.

define-hooked-local-abbrev : [unbound]
See the description of define-hooked-global-abbrev.

define-keyboard-macro [unbound]

Give a name to the current keyboard macro. A keyboard macro is defined by using the tX(and *X)
command; define-keyboard-macro takes the current keyboard macro, squirrels it away in a safe place, gives it
a name, and erases the keyboard macro. define-string-macro is another way to define a macro.

define-keymap [unbound]
(define-keymap "mapname”) defines a new, empty, keymap with the given name. See the section on
keymaps, 15 page 17, for more information.

define-local-abbrev [unbound]
Define (or redefine) an abbrev with the given name for the given phrase in the local abbreviation table. A
local abbrev table must have already been set up with use-abbrev-table.

define-string-macro [unbound]

Define a macro given a name and a body as a string entered in the minibuffer. Note: to get a control
character into the body of the macro it must be quoted with 1Q. define-keyboard-macro is another way to
define a macro.

defun ‘ [unbound]

(defun (name expressions...)...) is an MLisp function that defines a new MLisp function with the given
name and a body composed of the given expressions. The value of the function is the value of the last
expression. For example:

(defun
(indent-line ; this function just sticks a tab at
(save-excursion ; the beginning of the current line
{beginning-of-line) ; without moving dot.
(insert-string " ")
)
)

49

delete-buffer [unbound]
Deletes the named buffer. :

delete-macro [unbound]
Delete the named macro.

delete-next-character D

Delete the character immediatly following dot; that is, the character on which the terminals cursor sits.
Lines may be merged by deleting newlines.

delete-next-word ESC-D
Delete characters forward from dot until the next end of a word. If dot is currently not in a word, all
punctuation up to the beginning of the word is deleted as well as the word.

delete-other-windows X1
Go back to one-window mode. Generally useful when EMACS has spontaneously generated a window (as
for ESC-? or +X+B) and you want to get rid of it.

delete-previous-character . tH
Delete the character immediatly preceding dot; that is, the character to the left of the terminals cursor. If
you've just typed a character, tH (backspace) will delete it. Lines may be merged by deleting newlines.

delete-previous-character A RUBOUT
Delete the character immediatly preceding dot; that is, the character to the left of the terminals cursor. If
you’ve just typed a character, RUBOUT will delete it. Lines may be merged by dcleting newlines.

delete-previous-word ESC-H
If not in the middle of a word, delete characters backwards (to the left) until a word is found. Then delete
the word to the left of dot. A word is a sequence of alphanumerics.

delete-region-to-buffer ESC-+W
Wipe (kill, delete) all characters between dot and the mark. The deleted text is moved to a buffer whose
name is prompted for, which is emptied first.

delete-to- killbuffer _ ' W
Wipe (kill, delete) all characters between dot and the mark. The deleted text is moved to the kill buffer,
which is emptied first.

50

delete-white-space ' [unbound]
Deletes all whitespace characters (spaces and tabs) on either side of dot.

delete-window ' +XD
Removes the current window from the screen and gives it’s space to it’s neighbour below (or above) and
makes the current window and buffer those of the neighbour.

describe-bindings A [unbound]

Places in the Help window a list of all the keys and the name of the procedure that they are bound to. This
listing is suitable for printing and making you own quick-reference card for your own customized version of
EMACS.

describe-command [unbound]

Uses the Info system to describe some named command. You will be prompted in the minibuf for the
name of a command and then Info will be invoked to show you the manual entry describing it. You can then
use Info to browse around, or simply type tC to resume editing.

describe-key [unbound]

Describe the given key. ESC-Xdescribe-key ESC-X will print a short descrition of the ESC-X key. It
tells you the name of the command to which the key is bound. To find out more about the command, use
describe-command.

describe-variable ’ : [unbound]

Uses the Info system to describe some named variable. You will be prompted in the minibuf for the name
of a variable and then Info will be invoked to show you the manual entry describing it. You can then use Info
to browse around, or simply type +C to resume editing.

describe-word-in-buffer - +X1D

Takes the word nearest the cursor and looks it up in a data base and prints the information found. This
data base contains short one-line descriptions of all of the Unix standard procedures and Franz Lisp standard
functions. The idea is that if you’ve just typed in the name of some procedure and can’t quite remember
which arguments go where, just type +XtD and EMACS will try to tell you.

digit [unbound]
Heavy wizardry: you don’t want to know, "digit" should eventually disappear. ~

51

dot [unbound]

(dot) is an MLisp function that returns the number of characters to the left of dot plus 1 (ie. if dot is at the
beginning of the buffer, (dot) returns 1). The value of the function is an object of type "marker” -- if it is
assigned to a variable then as changes are made to the buffer the variable’s value continues to indicate the
same position in the buffer.

dump-syntax-table ' [unbound]
Dumps a readable listing of a syntax table into a buffer and makes that buffer visible.

edit-macro [unbound]

Take the body of the named macro and place it in a buffer called Macro edit. The name of the macro is
associated with the buffer and appears in the information bar at the bottom of the window. The buffer may
be edited just like any other buffer (this is, in fact, the intent). After the macro body has been edited it may
be redefined using define-buffer-macro.

emacs-version [unbound]
Returns a string that describes the current EMACS version.

end-of-file ESC->
Move dot to just after the last character of the buffer.

end-of-line _ 1E
Move dot to the end of the line in the current buffer that contains dot; that is, to just after the following
end-of-line or the end of the buffer.

end-of-window ~ ESC-.
Move dot to just after the last character visible in the window.

enlarge-window , tXZ
Makes the current window one line taller, and the window below (or the one above if there is no window
below) one line shorter. Can’t be used if there is only one window on the screen.

eobp [unbound]
(eobp) is an MLisp predicate that is true iff dot is at the end of the buffer.

eolp [unbound]
(eolp) is an MLisp predicate that is true iff dot is at the end of a line.

52

eot-process [unbound]
(eot-process "process-name") -- Send an EOT to the process.

erase-buffer [unbound]
Deletes all text from the current buffer. Doesn’t ask to make sure if you really want to do it.

erase-region [unbound]
Erases the region between dot and mark. It is like delete- to-killbuffer except that it doesn’t move the text to
the kill buffer.

error-message ‘ [unbound]
(error-message "string-expressions”) Sends the string-expressions to the screen as an error message where it
will appear at the bottom of the screen. EMACS will return to keyboard level, unless caught by error-occured.

error-occured [unbound]

(error-occured expressions...) executes the given expressions and ignores their values. If all executed
successfully, error-occured returns false. Otherwise it returns true and all expressions after the one which
encountered the error will not be executed.

exchange-dot-and-mark XX

Sets dot to the currently marked position and marks the old position of dot. Useful for bouncing back and
forth between two points in a file; particularly useful when the two points delimit a region of text that is going
to be operated on by some command like +W (erase region).

execute-extended-command ESC-X

EMACs will prompt in the minibuffer (the line at the bottom of the screen) for a command from the
extended set. These deal with rarely used features. Commands are parsed using a Twenex style command
interpreter: you can type ESC or space to invoke command completion, or ’?" for help with what you’re
allowed to type at that point. This doesn’t work if it’s asking for a key or macro name.

execute-keyboard-macro +XE

Takes the keystrokes remembered with ‘rX(and tX) and treats them as though they had been typed again.
This is a cheap and easy macro facility. For more power, see the define-string-macro, define-keyboard-macro
and bind-to-key commands.

execute-mlisp-buffer ~ [unbound]

Parse the current buffer as as a single MLisp expression and execute it. This is what is generally used for
testing out new functions: stick your functions in a buffer wrapped in a defun and use execute-mlisp-buffer to
define them.

53

execute-mlisp-line ' ESC-ESC
Prompt for a string, parse it as an MLisp expression and execute it. ‘

execute-monitor-command X!

Prompt for a Unix command then execute it, placing its output into a buffer called Command execution
and making that buffer visible in a window. The command will not be able to read from its standard input (it
will be connected to /dev/null). For now, there is no way to execute an interactive subprocess.

exit-emacs . 1C
Exit EMACS. Will ask if you’re sure if there are any buffers that have been modified but not written out.

exit-emacs , +X+C
Exit EMACS. Will ask if you're sure if there are any buffers that have been modified but not written out.

exit-emacs ' ESC-tC
Exit EMACS. Will ask if you’re sure if there are any buffers that have been modified but not written out.

expand-file-name [unboundj
Takes a string representing a file name and expands it into an absolute pathname. For example, if the
current directory is "/ust/frodo™ then (expand-file-name "../bilbo") will return "/usr/bilbo".

expand-mlisp-variable [unbound]
Prompts for the name of a declared variable then inserts the name as text into the current buffer. This is
very handly for typing in MLisp functions. It’s also fairly useful to bind it to a key for easy access.

expand-mlisp-word [unbound]}
Prompt for the name of a command then insert the name as text into the current buffer. This is very
handly for typing in MLisp functions. It’s also fairly useful to bind it to a key for easy access.

extend-database-search-list [unbound]

(extend-database-search-list dbname filename) adds the given data base file to the data base search list
(dbname). If the database is already in the search list then it is left, otherwise the new database is added at the
beginning of the list of databases.

fetch-database-entry " [unbound]
(fetch-database-entry dbname key) takes the entry in the data base corresponding to the gwen key and
inserts it into the current buffer.

54

file-exists [unbound]
(file-exists fm) returns 1if the file named by fh exists and is writable, 0 if it does not exist, and -1 if
it exists and is readable but not writable.

filter-region [unbound]

Take the region between dot and mark and pass it as the standard input to the given command line. Its
standard output replaces the region between dot and mark. Use this to run a region through a Unix style-
filter.

Jollowing-char [unbound]

(following-char) is an MLisp function that returns the character immediatly following dot. The null
character (0) is returned if dot is at the end of the buffer. Remember that dot is not ‘at’ some character, it is
between two characters.

Jorward-balanced-paren-line : [unbound]
Moves dot forward until either

e The end of the buffer is reached.

e An unmatched close parenthesis, °), is encountered. That is, unmatched between there and the
starting position of dot. ‘

o The beginning of a line is encountered at "parenthesis level zero”. That is, without an unmatched
’C existing between there and the starting position of dot.

The definitions of parenthesis and strings from the syntax table for the current buffer are used.

Jorward-character tF
Move dot forwards one character. Ends-of-lines and tabs each count as one character. You can’t move
forward to after the end of the buffer.

Jforward-paragraph ESC]
Moves to the end of the current or following paragraph. Blank lines, and Scribe and nroff command lines
separate paragraphs and are not parts of paragraphs.

Sforward-paren [unbound]

Moves dot forward until an unmatched close parenthesis, °), or the end of the buffer is found. This can be
used to aid in skipping over Lisp S-expressions. The definitions of parenthesis and strings from the syntax
table for the current buffer are used.

55

Jorward-sentence ESC-E
Move dot forward to the beginning of the next sentence. Sentences are seperated by a *.’, ‘?” or ‘1’ followed
by whitespace.

forward-word ESC-F

Move dot forward to the end of a word. If not currently in the middle of a word, skip all intervening
punctuation. Then skip over the word, leaving dot positioned after the last character of the word. A word is a
sequence of alphanumerics.

get-tty-buffer [unbound]
Given a prompt string it reads the name of a buffer from the tty using the minibuf and providing command
completion.

get-tty-character : [unbound]

Reads a single character from the terminal and returns it as an integer. The cursor is not moved to the
message area, it is left in the text window. This is useful when writing things like query-replace and
incremental search.

get-tty-command [unbound]

(get-tty-command prompf) prompts for the name of a declared function (using command completion &
providing help) and returns the name of the function as a string. For example, the expand-mlisp-word
function is simply (insert-string (get-tty-command ": expand-mlisp-word ")).

gel-tly-string [unbound]
Reads a string from the terminal using its single string parameter for a prompt. Generally used inside
MLisp programs to ask questions.

get-tty-variable [unbound]

(get-tty-variable prompf) prompts for the name of a declared variable (using command completion &
providing help) and returns the name of the variable as a string. For example, the expand-mlisp-variable
function is simply (insert-string (get-tty-variable ": expand-mlisp-variable ")).

getenv [unbound]
(getenv "varname™) returns the named shell environment variable. for example, (getenv "HOME") will
return a string which names your home directory.

56

global-binding-of [unbound]

Returns the name of the procedure to which a keystroke sequence is bound in the global keymap.
"nothing" is returned if the sequence is unbound. The procedure local-binding-of performs a similar function
for the local keymap.

golo-character [unbound]
Goes to the given character-position. (goto-character 5) goes to character position 5.

if [unbound]
(if test thenclause elseclause) is an MLisp function that executes and returns the value of thenclause iff test
is true; otherwise it executes elseclause if it is present. For example:

(if (eolp)
(to-col 33)
)

will tab ox}er to column 33 if dot is currently at the end of a line.

illegal-operation [urbound]

Illegal-operation is bound to those keys that do not have a defined interpretation. Executing illegal-
operation is an error. Most notably, +G, ESC-tG, +XtG are bound to illegal-opetation by default, so that
typing 1G will always get you out of whatever strange state you are in.

indent-C-procedure ESC-J
Take the current C procedure and reformat it using the indent program, a fairly sophisticated pretty printer.
Indent-C-procedure is God’s gift to those who don’t like to fiddle about getting their formatting right. Indent-
C-procedure is usually bound to ESC-J. When switching from mode to mode, ESC-J will be bound to
procedures appropriate to that mode. For example, in text mode ESC-J is bound to justify-paragraph.

insert-character ' [unbound]
Inserts its numeric argument into the buffer as a single character. (insert-character ’0’) inserts the character
’0’ into the buffer.

insert-file RS
Prompt for the name of a file and insert its contents at dot in the current buffer.

insert-filter : [unbound]
Insert a filter-procedure between a process and EMACS. This function should subsume the starr-filtered-
process function, but we should retain that one for compatibility I suppose...

57

insert-string ' [unbound]
(insert-string stringexpressions) is an MLisp function that inserts the strings that result from evaluating the
given stringexpressions and inserts them into the current buffer just before dot.

int-process [unbound]
(int-process "process-name") -- Send an interrupt signal to the process.

interactive _ [unbound]
An MLisp function which is true iff the invoking MLisp function was invoked interactively (ie. bound to a
key or by ESC-X).

is-bound [unbound]
an MLisp predicate that is true iff all of its variable name arguments are bound.

Justify-paragraph ' [unbound]

Take the current paragraph (bounded by blank lines or Scribe control lines) and pipe it through the "fmt"
command which does paragraph justification. justify-paragraph is usually bound to ESC-J when in text
mode.

kill-process ‘ } [unbound]
(kill-process "process-name™) -- Send a kill signal to the process.

kill-to-end-of-line tK

Deletes characters forward from dot to the immediatly following end-of-line (or end of buffer if there isn’t
an end of line). If dot is positioned at the end of a line then the end-of-line character is deleted. Text deleted
by the +K command is placed into the Kill buffer (which really is a buffer that you can look at). A tK
command normally erases the contents of the kill buffer first; subsequent tK’s in an unbroken sequence
append to the kill buffer. ’

last- key-struck [unbound]
The last command character struck. If you have a function bound to many keys the function may use last-
key-struck to tell which key was used to invoke it. (insert-character (last-key-struck)) does the obvious thing.

length [unbound]
" Returns the length of its string parameter. (length "time") => 4.

58

line-to-top-of-window ESC-!
What more can 1 say? This one is handy if you’ve just searched for the declaration of a procedure, and
want to see the whole body (or as much of it as possible).

list-buffers +X+B

Produces a listing of all existing buffers giving their names, the name of the associated file (if there is one),
the number of characters in the buffer and an indication of whether or not the buffer has been modified since
it was read or written from the associated file.

list-databases [unbound]
(list-databases) lists all data base search lists.

list-processes [unbound]
(list-processes) -- Analagous to "list-buffers”. Processes which have died only appear once in this list
before completely disappearing.

load ‘ ' : [unbound}]

Read the named file as a series of MLisp expressions and execute them. Typically a loaded file consists
primarily of defun’s and buffer-specific variable assignments and key bindings. Load is usually used to load
macro libraries and is used to load ".emacs_pro” from your home directory when EMACS starts up.

For example, loading this file:

(setq right-margin 75)

(defun (my-linefeed
(end-of-1ine)
(newiine-~and-indent)

)
)
(bind-to-key "my-linefeed” 10) ,

sets the right-margin to 75 and dcﬁnes a function called my-lmefeed and binds it to the linefeed key (which is
the ascii character 10 (decimal))

The file name given to load is interpreted relative to the EPATH environment variable, which is interpreted
in the same manner as the shell’s PATH variable. That is, it provides a list of colon-separated names that are
taken to be the names of directories that are searched for the named files. The default value of EPATH
searches your current directory and then a central system directory.

Temporary hack: in previous versions of EMACS loaded files were treated as a sequence of keystrokes. This
behaviour has been decreed bogus and unrcasonable, hence it has been changed. However, to avoid loud
cries of anguish the load command still exhibits the old behaviour if the first character of the loaded file is an
ESC.

59

local-bind-to-key [unbound]

Prompt for the name of a command and a key and bind that command to the given key but unlike bind-to-
key the binding only has effect in the current buffer. This is generally used for mode specific bindings that
will generally differ from buffer to buffer.

local-binding-of [unbound]

Returns the name of the procedure to which a keystroke sequence is bound in the local keymap. "nothing"
is returned if the sequence is unbound. The procedure global-binding-of performs a similar function for the
global keymap.

looking-at [unbound]

(looking-at "SearchString™) is true iff the given regular expression search string matches the text
immediatly following dot. This is for use in packages that want to do a limited sort of parsing. For example,
if dot is at the beginning of a line then (looking-at "[\t]*else]) will be true if the line starts with an "else". See
section 14, page 15 for more information on regular expressions.

mark [unbound]
An MLisp function that returns the position of the marker in the current buffer. An error is signaled if the

marker isn’t set. The value of the function is an object of type "marker” -- if it is assigned to a variable then as

changes are made to the buffer the variable’s value continues to indicate the same position in the buffer.

message [unbound]
(message stringexpressions) is an MLisp function that places the strings that result from the evaluation of
the given stringexpressions into the message region on the display (the line at the bottom).

modify-syntax-entry [unbound]

Modify-syntax-entry is used to modify a set of entries in the syntax table associated with the current buffer.
Syntax tables are associated with buffers by using the use-syntax-table command. Syntax tables are used by
commands like forward-paren to do a limited form of parsing for language dependent routines. They define
such things as which characters are parts of words, which quote strings and which delimit comments
(currently, nothing uses the comment specification). To see the contents of a syntax table, use the dump-
syntax-table command.

The parameter to modify-syntax-entry is a string whose first five characters specify the interpretation of the
sixth and following characters.

The first character specifies the type. It may be one of the following:

W A word character, as used by such commands as forward-word and case-word-capitalize.
space A character with no special interpretation.
¢ A left parenthesis. Typical candidates for this type are the characters °C, T and *{.

Characters of this type also have a matching right parenthesis specified (), T and ’}’ for
example) which appears as the second character of the parameter to modify-syntax-entry.

60

'y A right parenthesis. Typical candidates for this type are the characters °), '] and °}.
Characters of this type also have a matching left parenthesis specified ('C, [and *{’ for
example) which appears as the second character of the parameter to modify-syntax-entry.

19

A quote character. The C string delimiters " and * are usually given this cléss, as is the Lisp

|
N’ A prefix character, like \ in C or / in MacLisp.

The second character of the parameter is the matching parenthesis if the character is of the left or right
parenthesis type. If you specify that ’(is a right parenthesis matched by °), then you should also specify that
’Y is a left parenthesis matched by °C.

The third character, if equal to ’{’, says that the character described by this syntax entry can begin a
comment; the forth character, if equal to '}’ says that the character described by this syntax entry can end a
comment. If either the beginning or ending comment sequence is two characters long, then the fifth character
provides the second character of the comment sequence.

The sixth and following characters specify which characters are described by this entry; a range of
characters can be specified by putting a *-* between them, a ’-’ can be described if it appears as the sixth
character.

A few examples, to help clear up my muddy exposition:

(modify-syntax-entry "w -") : makes -’ behave as a normal word

. ; character (ESC-F will consider
; one as part of a word)

(modify-syntax-entry "(] [") : makes [behave as a left parenthesis
; which is matched by T’

(modify-syntax-entry ") ") : makes]’ behave as a right parenthesis
; which is matched by [’

move-dot-10-x-y [unbound]

(move-dot-to-x-y x y) switches to the buffer and sets dot to the positon of the character that was displayed
at screen coordinates x,y. If x and y don’t point to a valid character (eg. if they are out of bounds or point to a
mode line) an error is flagged.

This function is intended for use supporting mice and tablets. One way to do this is to have depressions of
the tablet button generate a sequence of keystrokes that EMACS sees as normal tty input. If, for example, the
tablet was to transmit the four charcters ESC-M-x-y when the button was depressed over character x,y then
the following function would provide simple support for it:

(defun (mouse-set-dot x y
(setqg x (get-tty-character))
(setq y (get-tty-character))
{move-dot-to-x-y x y)

))

(bind-to-key "mouse-set-dot" "\eM")

61

move-lo-comment-column [unbound]

If the cursor is not at the beginning of a line, ESC-C moves the cursor to the column specified by the
comment-column variable by inserting tabs and spaces as needed. In any case, it the scts the right margin to
the column finally reached. This is usually used in macros for language-specific comments.

nargs “ [unbound]
An MLisp function which returns the number of arguments passed to the invoking MLisp function. For
example, within the execution of foo invoked by (foo x y) the value of nargs will be 2.

narrow-region [unbound]

The narrow-region command sets the restriction to encompass the region between dot and mark. Text
outside this region will henceforth be totally invisible. It won’t appear on the screen and it won’t be
manipulable by any editing commands. This can be useful, for instance, when you want to perform a
replacement within a few paragraphs: just narrow down to a region enclosing the paragraphs and execute
replace-string.

newline | [unbound]
Just inserts a newline character into the buffer -- this is what the RETURN (+M) key is generally bound to.

newline-and-backup +0
Insert an end-of-line immediatly after dot, effectivly opening up space. If dot is positioned at the beginning
of a line, then +O will create a blank line preceding the current line and position dot on that new line.

newline-and-indent LINEFEED

Insert a newline, just as typing RETURN does, but then insert enough tabs and spaces so that the newly
created line has the same indentation as the old one had. This is quite useful when you’re typing in a block of
program text, all at the same indentation level.

next-error XN

Take the next error message (as returned from the +X1E (compile) command), do a visit (+X*V) on the file
in which the error occurred and set dot to the line on which the error occurred. The error message will be
displayed at the top of the window associated with the Error log buffer.

next-line *N
- Move dot to the next line. tN and tP attempt to keep dot at the same horizontal position as you move
from line to line.

62

next-page 1'%

Reposition the current window on the current buffer so that the next page of the buffer is visible in the
window (where a page is a group of lines slightly smaller than a window). In other words, it flips you forward
a page in the buffer. Its inverse is ESC-V. If possible, dot is kept where it is, otherwise it is moved to the
middle of the new page.

next-window : +XN
Switches to the window (and associated buffer) that is below the current window.

nothing [unbound]

Nothing evaluates the same as novalue (ie. it returns a void result) except that if it is bound to some key or
attached to some hook then the key or hook behave as though no command was bound to them. For
example, if you want to remove the binding of a single key, just bind it to "nothing”.

novalue [unbound]

Does nothing. (novalue) is a complete no-op, it performs no action and returns no value. Generally the
value of a function is the value of the last expression evaluated in it’s body, but this value may not be desired,
so (novalue) is provided so that you can throw it away.

page-next-window ESC-1V

Repositions the window below the current one (or the top one if the current window is the lowest one on
the screen) on the displayed buffer so that the next page of the buffer is visible in the window (where a page is
a group of lines slightly smaller than a window). In other words, it flips you forward a page in the buffer of
the other window.

If ESC-1V is given an argument it will flip the buffer backwards a page, rather than forwards. So ESC-tV
is roughly equivalent to 1tV and tUESC-tV is roughly equivalent to ESC-V except that they deal with the
other window. Yes, yes, yes. I realize that this is a bogus command structure, but I didn’t invent it. Besides,
you can learn to love it.

parse-error-messages-in-region ' [unbound]

Parses the region between dot and mark for error messages (as in the compile-it (+XtE) command) and sets
up for subsequent invocations of next-error (tXtN). See the description of the compile-it command, and
section 10 (page 6).

pause-emacs [unbound]

Pause, giving control back to the superior shell using the job control facility of Berkeley Unix. The screen
is cleaned up before the shell regains control, and when the shell gives control back to EMACS the screen will
be fixed up again. Users of the sea-shell (csh) will probably rather use this command than "return-to-
monitor"”, which is similar, except that it recursivly invokes a new shell.

63

pop-to-buffer [unbound]

Switches to a buffer whose name is provided and ties that buffer to a popped-up window. Pop-to-buffer is
exactly the same as switch-to-buffer except that switch-to-buffer ties the buffer to the current window, pop-to-
buffer finds a new window to tie it to.

preceding-char [unbound]

(preceding-char) is an MLisp function that returns the character immediatly preceding dot. The null
character (0) is returned if dot is at the beginning of the buffer. Remember that dot is not ‘at’ some character,
it is between two characters.

prefix-argument-loop [unbound]

(prefix-argument-loop <statements>) executes <statements> prefix-argument times. Every function
invocation is always prefixed by some argument, usually by the user typing +Un. If no prefix argument has
been provided, 1 is assumed. See also the command provide-prefix-argument and the variable prefix-
argument.

prepend-region-to-buffer [unbound]
Prepends the region between dot and mark to the named buffer. Neither the original text in the
destination buffer nor the text in the region between dot and mark will be disturbed.

previous-command ' : [unbound]

(previous-command) usually returns the character value of the keystroke that invoked the previous
command. In is something like last-key-struck, which returns the keystroke that invoked the current
command. However, a function may set the variable this-command to some value, which will be the value of
previous-command after the next command invocation. This rather bizarre command/variable pair is
intended to be used in the implementation of MLisp functions which behave differently when chained
together (ie. executed one after the other). A good example is 1K, kill-to-end-of-line which appends the text
from chained kills to the killbuffer.

To use this technique for a set of commands which are to exhibit a chaining behaviour, first pick a magic
number. -84, say. Then each command in this set which is chainable should
(setq this-command -84). Then to tell if a command is being chained, it suffices to check to see if
(previous-command) returns -34.

Did I hear you scream “hack™??

previous-line ' tP

Move dot to the previous line. tN and +P attempt to keep dot at the same horizontal position as you move
from line to line.

64

previous-page ESC-V

Repositions the current window on the current buffer so that the previous page of the buffer is visible in
the window (where a page is a group of lines slightly smaller than a window). In other words, it flips you
backward a page in the buffer. Its inverse is tV. If possible, dot is kept where it is, otherwise it is moved to
the middle of the new page. :

previous-window +XP
Switches to the window (and associated buffer) that is above the current window.

print [unbound]
Print the value of the named variable. This is the command you use when you want to inquire about the
setting of some switch or parameter.

process-filter-name [unbound]
Returns the name of the filter procedure attached to some buffer. :

process-id [unbound]
Returns the process id of the process attached to some buffer.

process-oulput [unbound]
(process-output) -- Can only be called by the on-output-procedure to procure the output generated by the
process whose name is given by MPX-process. Returns the output as a string.

process-status [unbound]
(process-status "process-name") -- Returns -1 if "process-name” isn’t a process, 0 if the process is stopped,
and 1 if the process is running. :

progn ([unbound]

(progn expressions...) is an MLisp function that evaluates the expressions and returns the value of the last
expression evaluated. Progn is roughly equivalent to a compound statement (begin-end block) in more
conventional languages and is used where you want to execute several expressions when there is space for
only one (eg. the then or else parts of an if'expression).

provide-prefix-argument [unbound]
(provide-prefix-argument <value> <statement>) provides the prefix argument <{value> to the <statement>.
For example, the most efficient way to skip forward 5 words is:
(provide-prefix-argument 5 (forward-word))

See also the command prefix-argument-loop and the variable prefix-argument.

65

push-back-character [unbound]

Takes the character provided as its argument and causes it to be used as the next character read from the
keyboard. It is generally only useful in MLisp functions which read characters from the keyboard, and upon
finding one that they don’t understand, terminate and behave as though the key had been struck to the
EMACS keyboard command interpreter. For example, ITS style incremental search.

put-database-entry [unbound]
(put-database-entry dbname key) takes the current buffer and stores it into the named database under the
given key.

query-replace-string ESC-Q

Replace all occurrences of one string with another, starting at dot and ending at the end of the buffer.
EMACS prompts for an old and a new string in the minibuffer (the line at the bottom of the screen). See the
section on searching, section 14 page 15 for more information on search strings. For each occurrence of the
old string, EMACS requests that the user type in a character to tell it what to do (dbt will be positioned just
after the found string). The possible replies are:

<{space> Change this occurrence and continue to the next.
n Don’t change this occurrence, but continue to the next
r Enter a recursive-edit. This allows you to make some local changes, then continue
the query-replace-string by typing t+C.
! Change this occurrence and all the rest of the occurrences without bothering to
ask.
. Change this one and stop: don’t do any more replaces. .
G Don’t change this occurrence and stop: don’t do any more replaces.
? (or anything elsc) Print a short list of the query/replace options.
quietly-read-abbrev-file [unbound]

Read in and define abbrevs appearing in a named file. This file should have been written using write-
abbrev-file. Unlike read-abbrev-file, an error message is not printed if the file cannot be found.

quit-process « [unbound]
(quit-process "process-name”) -- Send a quit signal to the process.

quote [unbound]

Takes a string and inserts quote characters so that any characters which would have been treated specially
by the reqular expression search command will be treated as plain characters. For example, (quote "a.h")
returns "a\.b".

66

quote-character tQ

Insert into the buffer the next character typed without interpreting it as a command. This is how you insert
funny characters. For example, to insert a 1L (form feed or page break character) type 1Q1L This is the only
situation where G isn’t interpreted as an abort character.

re-query-replace-string [unbound]

re-query-replace-string is identical to query-replace-string except that the search string is a regular
expression rather than an uninterpreted sequence of characters See the section on searching, section 14 page
15 for more information.

re-replace-string [unbound]

re-replace-string is identical to replace-string except that the search string is a regular expression rather than
an uninterpreted sequence of characters. See the section on searching, section 14 page 15 for more
information.

re-search-forward [unbound]

re-search-forward is identical to search-forward except that the search string is a regular expression rather
than an umntcrpreted sequence of characters. See the section on searching, section 14 page 15 for more
information.

re-search-reverse ' [unbound]

re-search-reverse is identical to search-reverse except that the search string is a regular expression rather
than an uninterpreted sequence of characters. See the section on searching, section 14 page 15 for more
information.

read-abbrev-file [unbound]
Read in and define abbrevs appearing in a named file. This file should have been written using write-
abbrev-file. An error message is printed if the file cannot be found.

read-file ' +XtR
Prompt for the name of a file; erase the contents of the current buffer; read the file into the buffer and
associate the name with the buffer. Dot is set to the beginning of the buffer.

recursion-depth [unbound]
Returns the depth of nesting within recursive-edit’s. It returns 0 at the outermost level.

67

recursive-edit [unbound]

The recursive-edit function is a call on the keyboard read/interpret/exccute routine. After recursive-edit is
called the user can enter commands from the keyboard as usual, except that when he exits EMACS by calling
exit-emacs (typing tC) it actually returns from the call to recursive-edit. This function is handy for packages
that want to pop into some state, let the user do some editing, then when they’re done perform some cleanup
and let the user resume. For example, a mail system could use this for message composition.

redraw-display tL
Clear the screen and rewrite it. This is useful if some transmission glitch, or a message from a friend, has
messed up the screen.

region-around-match [unbound]
Region-around-match sets dot and mark around the region matched by the last search. An argument of n

puts dot and mark around the #’th subpattern matched by “\(" and \)’. This can then be used in conjuction
with region-to-string to extract fields matched by a patter. For example, consider the following fragment that
extracts user names and host names from mail addresses:

(re-search-forward "\\([a-z][a-z]*\\) *@ *\\([a-z][a-z]*\\)")

(region-around-match 1)

(setq username (region-to-string))

(region-around-match 2)

(setq host (region-to-string))
Applying this MLisp code to the text "send it to jag@vlsi” would set the variable ‘username’ to "jag" and
‘host’ to "visi". '

region-lo-process [unbound]
(region-to-process "process-name”) -- The region is wrapped up and sent to the process.

region-to-string ‘ [unbound]
Returns the region between dot and mark as a string. Please be kind to the storage allocator, don’t use
huge strings.

remove-all-local-bindings [unbound]
Perform a remove-local-binding for all possible keys; effectively undoes all local bindings. Mode packages
should execute this to initialize the local binding table to a clean state.

remove-binding [unbound]
Removes the global binding of the given key. Actually, it just rebinds the key to illegal-operation.

68

remove-local-binding ' [unbound]

Removes the local binding of the given key. The global binding will subsequently be used when
interpreting the key. Bug: there really should be some way of saving the current binding of a key, then
restoring it later.

replace-string ESC-R

Replace all occurrences of one string for another, starting at dot and ending and the end of the buffer.
EMACS prompts for an old and a new string in the minibuffer (the line at the bottom of the screen). Unlike
query-replace-string EMACS doesn’t ask any questions about particular occurrences, it just changes them. Dot
will be left after the last changed string. See the section on searching, section 14 page 15 for more information
on search strings.

reset-filter [unbound]
Removes the filter that had been bound to some process in a buffer.

return-prefix-argument [unbound]

(return-prefix-argument n) sets the numeric prefix argument to be used by the next function
invocation to n. The next function may be either the next function in the normal flow of MLisp execution or
the next function invoked from a keystroke. Return-prefix-argument is to be used by functions that are to be
bound to keys and which are to provide a prefix argument for the next keyboard command.

return-1lo-monitor 1.

Recursivly invokes. a new shell, allowing the user to enter normal shell commands and run other programs.
Return to EMACS by exiting the shell; ie. by typing tD.

save-excursion ' [unbound]

(save-excursion expressions...)) is an MLisp function that evaluates the given expressions and returns the
value of the last expression evaluated. It is much like progn except that before any expressions are executed
dot and the current buffer are "marked" (via the marker mechanism) then after the last expression is executed
dot and the current buffer are reset to the marked values. This properly takes into account all movements of
dot and insertions and deletions that occur. Save-excursion is useful in MLisp functions where you want to go
do something somewhere else in this or some other buffer but want to return to the same place when you’re
done; for example, inserting a tab at the beginning of the current line.

save-restriction ‘ ' v [unbound}

Save-restriction is only useful to pcople writing MLisp programs. It is used to save the region restriction for
the current buffer (and only the region restriction) during the execution of some subexpression that
presumably uses region restrictions. The value of (save-excursion expressions...) is the value of
the last expression evaluated.

69

save-window-excursion [unbound]

save-window-excursion is identical to save-excursion except that it also saves (in a rough sort of way) the
state of the windows. That is, (save-window-excursion expressions...) saves the current dot, mark, buffer and
window state, executes the expressions, restores the saved information and returns the value of the last
expression evaluated.

When the window state is saved EMACS remembers which buffers were visible. When it is restored, EMACS
makes sure that exactly those buffers are visible. EMACS does not save and restore the exact layout o‘f the
windows: this is a feature, not a bug.

scroll-one-line-down ESC-Z

Repositions the current window on the current buffer so that the line which is currently the second to the
last line in the window becomes the last -- effectivly it moves the buffer down one line in the window. tZ is
its inverse.

scroll-one-line-up ' *Z
Repositions the current window on the current buffer so that the line which is currently the second line in
the window becomes the first -- effectivly it moves the buffer up one line in the window. ESC-Z is its inverse.

search-forward 1S

Prompt for a string and search for a match in the current buffer, moving forwards from dot, stopping at the
end of the buffer. Dot is left at the end of the matched string if a match is found, or is unmoved if not. See
the section on searching, section 14 page 15 for more information.

search-reverse TR

Prompt for a string and search for a match in the current buffer, moving backwards from dot, stopping at
the beginning of the buffer. Dot is left at the beginning of the matched string if a match is found, or is
unmoved if not. See the section on searching, section 14 page 15 for more information.

self-insert [unbound]
This is tied to those keys which are supposed to self-insert. It is roughly the same as
(insert-character (last-key-struck)) with the exception that it doesn’t work unless it is bound to a key.

send-string-lo-terminal [unbound}

(send-string-to-terminal "string™) sends the string argumetn out to the terminal with no conversion or
interpretation. This should only be used for such applications as loading function keys when EMACS starts up.
If you screw up the screen, EMACS won’t know about it and won’t fix it up automatically for you -- you’ll have
to type tL.

70

set ‘ funbound]

Set the value of some variable internal to EMACS. EMACS will ask for the name of a variable and a value to
set it to. The variables control such things as margins, display layout options, the behavior of search
commands, and much more. The available variables and switches are described elsewhere. Note that if set is
used from MLisp the variable name must be a string: (set "left-margin” 77).

set-auto-fill-hook [unbound]

set-auto-fill-hook associates a command with the current buffer. When the right margin is passed by the
attempt to insert some character the hook procedure for that buffer is invoked. The character that triggered
the hook will not have been inserted, but will be inserted immediatly after the hook procedure returns [unless
the procedure returns 0]. The hook procedure is responsible for maintaining the position of dot. last-key-
struck may be usually used to determine which character triggered the hook. If no hook procedure is
associated with a buffer then the old action (break the line and indent) will be taken. This procedure may be
used for such things as automatically putting boxes around paragraph comments as they are typed.

set-default [unbound]

This commands bears the same relationship to setg-default that set does to setq. It is the command that you
use from the keyboard to set the default value of some variable. See the description of setg-default for more
detailed information. -

set-mark ' @
Puts the marker for this buffer at the place where dot is now, and leaves it there. As text is inserted or
deleted around the mark, the mark will remain in place. Use tX1X to move to the currently marked position.

selg [unbound]
Assigns a new value to a variable. Variables may have either string or integer values. (setq i 5) setsito 5;
(setq s (concat "a" "b")) sets s to "ab".

setq-default [unbound]

Setg-default is used to set the default value of some variable. It can be a global parameter, a buffer-specific
variable or a system variable. It makes no matter, sefg-default will set the default. Setg-default is the
command to use from within some MLisp program, like your start up profile (".EMACS_pro"). For example,
(setq-default right-margin 60) will set the default right margin for newly created buffers to 60. In previous
versions of EMACS certain system variables had default versions from which default values were taken. So, to
set the default value of right-margin one would assign a value to default-right-margin -- but no more. Use
setq-default (or set-default instead.

The precise semantics of setg-default are:

‘o If the variable being assigned to has not yet been declared, then declare it as a global variable.

o If it is a global variable (whether or not the declaration was implicit) then assign the value to it just
as the setzq command would have done.

e Otherwise, if the variable is buffer specific then set the default value for the variable. This will be

7

used in all buffers where the variable hasn’t been explicitly assigned a value. Note that if you have
a global variable which is eventually declared buffer-specific then the global value becomes the
default. The intent of this is that users should be able to put setg-defaulf’s in their .emacs— pro’s
without concerning themselves over whether the variable will eventually be a simple global or
buffer-specific.

shell [unbound}]
The shell command is used to either start or reenter a shell process. When the shell command is executed,
if a shell process doesn’t exist then one is created (running the standard “sh”) tied to a buffer named “shell’.
In any case, the shell buffer becomes the current one and dot is positioned at the end of it. In that buffer
output from the shell and programs run with it will appear. Anything typed into it will get sent to the
subprocess when the return key is struck. This lets you interact with a shell using EMACS, and all of it’s
editing capability, as an intermediary. You can scroll backwards over a session, pick up pieces of text from
other places and use them as input, edit while watching the execution of some program, and much more...

shrink-window tXtZ
Makes the current window one line shorter, and the window below (or the one above if there is no window
below) one line taller. Can’t be used if there is only one window on the screen.

sit-for [unbound]
Updates the display and pauses for n/10 seconds. (sit-for 10) waits for one second. This is useful in such
things as a Lisp auto-paren balencer. ‘

split-current-window +X2

Enter two-window mode. Actually, it takes the current window and splits it into two windows, dividing the
space on the screen equally between the two windows. An arbitrary number of windows can be created -- the
only limit is on the amount of space available on the screen, which, sigh, is only 24 lines on most terminals
available these days (with the notable exception of the Ann Arbor Ambassador which has 60).

start-filtered-process [unbound]

(start-filtered-process “command" "buffer-name" "on-output-procedure”) -- Does the same thing as start-
process except that things are set up so that "on-output-procedure” is automatically called whenever output
has been received from this process. This procedure can access the name of the process producing the output
by refering to the variable MPX-process, and can retrieve the output itself by calling the procedure process-
output.

The filter procedure must be carcful to avoid generating side-cffects (eg. search-forward).
Moreover, if it attempts to go to the terminal for information, output from other processes may be
lost.

72

start-process [unbound]

(start-process "command” "buffer-name") -- The home shell is used to start a process executing the
command. This process is tied to the buffer "buffer-name" unless it is null in which case the "Command
execution” buffer is used. Output from the process is automatically attached to the end of the buffer. Each
time this is done, the mark is left at the end of the output (which is the end of the buffer).

start-remembering ' +X(
All following keystrokes will be remembered by EMACS.

stop-process ; [unbound]
(stop-process "process-name”) -- Tell the process to stop by sending it a stop signal. Use continue-process
to carry on.

stop-remembering 1X)
Stops remembering keystrokes, as initiated by +X(. The remembered keystrokes are not forgotten and may
be re-executed with +XE.

string-to-char [unbound]
Returns the integer value of the first character of its string argument. (string-to-char "0") = ’0’.

string-lo-process [unhound]
(string-to-process "process-name” "string") -- The string is sent to the process.

substr [unbound]

(substr str pos n) returns the substring of string str starting at position pos (numbering from 1) and running
for n characters. If pos is less than 0, then length of the string is added to it; the same is done for n.
(substr "kzin" 2 2) = "zi"; (substr "blotto.c" -22) = ".¢". '

switch-to-buffer . . ’ +XB

Prompt for the name of the buffer and associate it with the current window. The old buffer associated with
this window merely loses that association: it is not erased or changed in any way. If the new buffer does not
exist, it will be created, in contrast with +XtO.

system-name ‘ ‘ [unbound]
Is an MLisp function that returns the name of the system on which EMACS is being run. This should be the
ArpaNet or EtherNet (or whatever) host name of the machine.

73

temp-use-buffer [unbound]

Switch to a named buffer without changing window associations. The commands pop-to-buffer and switch-
to-buffer both cause a window to be tied to the sclected buffer, temp-use-buffer does not. There are a couple
of problems that you must beware when using this command: The keyboard command driver insists that the
buffer tied to the current window be the current buffer, if it sces a difference then it changes the current
buffer to be the one tied to the current window. This means that temp-use-buffer will be ineffective from the
keyboard, switch-to-buffer should be used instead. The other problem is that "dot" is really a rather funny
concept. There is a value of "dot" associated with each window, not with each buffer. This is done so that
there is a valid interpretation to having the same buffer visible in several windows. There is also a value of
"dot" associated with the current buffer. When you switch to a buffer with temp-use-buffer, this "transient
dot” is what gets used. So, if you switch to another buffer, then use temp-use-buffer to get back, "dot" will
have been set to 1. You can use save-excursion to remember your position.

to-col [unbound]
(to-col n) is an MLisp function that insert tabs and spaces to move the following character to printing
column n. '

transpose-characters +T

Take the two characters preceding dot and exchange them. One of the most common errors for typists to
make is transposing two letters, typing "hte" when "the" is meant. +T makes correcting these errors easy,
especially if you can develop a "+T reflex”.

undo [unbound]

Undoes the effects of the last command typed. Arbitrarily complicated commands may be undone
successfully. Only the buffer modifying effects of a command may be undone -- variable assignments, key
bindings and similar operations will not be undone. Even ‘undo’ may be undone, so executing undo twice in
arow effectivly does nothing. See the section on undoing, page 39.

undo-boundary [unbound]

undo-boundary lays down the boundary between two undoable commands. When commands are undone,
a ‘command’ is considered to be the series of operations between undo boundaries. Normally, they are laid
down between keystrokes but MLisp functions may choose to lay down more. See the section on undoing,
page 39.

undo-more [unbound]
- Undoes one more command from what was last undone. undo-more must be preceeded by either an undo
or an undo-more. This is usually used by first invoking undo to undo a command, then invoking undo-more
repeatedly to undo more and more commands, until you’ve retreated to the state you want to be back to. See
the section on undoing, page 39. '

74

unlink-file [unbbund]
(unlink-file fn) attempts to unlink (remove) the file named fn. It returns true if the unlink failed.

use-abbrev-table -~ [unbound]

Sets the current local abbrev table to the one with the given name. Local abbrev tables are buffer specific
and are usually set depending on the major mode. Several buffers may have the same local abbrev table. If
either the selected abbrev table or the global abbrev table have had some abbrevs defined in them, abbrev-
mode is turned on for the current buffer.

use-global-map [unbound]

(use-global-map "mapname") uses the named map to be used for the global interpretation of all key
strokes. use-local-map is used to change the local interpretation of key strokes. See the section on keymaps, 15
page 17, for more information.

use-local-map [unbound]

(use-local-map "mapname") uses the named map to be used for the local interpretation of all key strokes.
use-global-map is used to change the global interpretation of key strokes. See the section on keymaps, 15 page
17, for more information.

use-old-buffer +X10

Prompt for the name of the buffer and associate it with the current window. The old buffer associated with
this window merely loses that association: it is not erased or changed in any way. The buffer must already
exist, in contrast with +XB.

use-syntax-table [unbound]
Associates the named syntax table with the current buffer. See the description of the modify-syntax-entry
command for more information on syntax tables.

users-full-name » [unbound]
MLisp function that returns the users full name as a string. [Really, it returns the contents of the gecos field
of the passwd entry for the current user, which is used on many systems for the users full name.]

users-login-name [unbound]
MLisp function that returns the users login name as a string.

visit-file XtV

Visit-file asks for the name of a file and switches to a buffer that contains it. The file name is expanded to
it’s full absolute form (that is, it will start with a ’/"). If no buffer contains the file already then EMACS will
switch to a new buffer and read the file into it. The name of this new buffer will be just the last component of
the file name (everything after the last °/’ in the name). If there is already a buffer by that name, and it -
contains some other file, then EMACS will ask "Enter a new buffer name or <CR> to overwrite the old buffer”.
For example, if my current directory is "/usr/jag/emacs” and T do a XtV and give EMACS the file name
"./.emacspro”then the name of the new buffer will be ".emacspro” and the file name will be

75

"/usr/jag/.emacs pro”. +XtV is the approved way of switching from one file to another within an invocation
of EMACS.

while [unbound]
(while test expressions...) is an MLisp function that executes the given expressions while the test is true.

widen-region [unbound]
The widen-region command sets the restriction to encompass the entire buffer. It is usualy used after a
narrow-region to restore EMACS’s attention to the whole buffer.

window-height [unbound]
Returns the number of text lines of a window that are visible on the screen.

working-directory : ' funbound]
Returns the pathname of the current working directory.

‘write-abbrev- ﬁle‘ [unbound]
Write all defined abbrevs to a named file. This file is suitable for reading back with read-abbrev-file.

write-current-file ‘ +X1S
Write the contents of the current buffer to the file whose name is associated with the buffer.

write-file-exit +X*F
Write all modified buffers to their associated files and if all goes well, EMACS will exit.

write-modified-files : +XtM
Write each modified buffer (as indicated by +X1B) onto the file whose name is associated with the buffer.
EMACS will complain if a modified buffer does not have an associated file.

write-named-file ' X+W
Prompt for a name; write the contents of the current buffer to the named file,

yank-buffer ESC-tY
. Take the contents of the buffer whose name is prompted for and insert it at dot in the current buffer. Dot
is left after the inserted text.

76

yank-from-killbuffer ' 1Y
Take the contents of the kill buffer and inserts it at dot in the current buffer. Dot is left after the inserted
text.

/ ' ' [unbound]
(I &, &) MLisp function that returns el &

22. Options

This chapter describes (in alpahbetical order) all of the variables which the user may set to configure
EMACS to taste.

ask-about-buffer-names

The ask-about-buffer-names variable controls what the visit-file command does if it detects a collision when
constructing a buffer name. If ask-about-buffer-names is true (the default) then Emacs will ask for a new
buffer name to be given, or for C<CR> to be typed which will overwrite the old buffer. If it is false then a
buffer name will be synthesized by appending "<m>" to the buffer name, for a unique value of n. For
example, if 1 visit-file "makefile” then the buffer name will be "makefile”; then if I visit-file "man/makefile”
the buffer name will be "makefile<2>".

backup-by-copying

If true, then when a backup of a file is made (see the section on the backup-before-writing variable) then
rather than doing the- fancy link/unlink footwork, EMACS copies the original file onto the backup. This
preserves all link and owner information & ensures that the files I-number doesn’t change (you’re crazy if you
worry about a files I-number). Backup-by-copying incurs a fairly heafty performance penalty. See the section
on the backup-by-copying-when-linked variable for a description of a compromise. (default OFF)

backup-by-copying-when-linked

If true, then when a backup of a file is made (see the section on the backup-before-writing variable) then if
the link count of the file is greater than 1, rather than doing the fancy link/unlink footwork, EMACS copies the
original file onto the backup. If the link count is 1, then the link/unlink trick is pulled. This preserves link
information when it is important, but still manages reasonable performance the rest of the time. See the
section on the backup-by-copying variable for a description of a how to have owner & I-number information
preserved. (default OFF)

backup-when-writing

If ON EMACS will make a backup of a file just before the first time that it is overwritten. The backup will
have the same name as the original, except that the string ".BAK" will be appended; unless the last name in
the path has more than 10 characters, in which case it will be truncated to 10 characters. "foo.c” gets backed
up on "foo.c.BAK"; "/usr/jag/foo.c” on "/usr/jag/foo.c.BAK"; and "EtherService.c" on "EtherServi. BAK".
The backup will only be made the first time that the file is rewritten from within the same invocation of
EMACS, so if you write out the file several times the .BAK file will contain the file as it was before EMACS was
invoked. The backup is normally made by fancy footwork with links and unlinks, to achicve acceptable
performance: when "foo.c” is to be rewritten, EMACS effectivly executes a "mv foo.c foo.c.BAK" and then

71

creates foo.c a write the new copy. The file protection of foo.c is copied from the old foo.c, but old links to
the file now point to the .BAK file, and the owner of the new file is the person running EMACS. If you don’t
like this behaviour, see the switches backup-by-copying and backup-by-copying-when-linked. (default OFF)

buffer-is-modified

Buffer-is-modified is true iff the current buffer has been modified since it was last written out. You may
set if OFF (ie. to 0) if you want EMACS to ignore the mods that have been made to this buffer -- it doesn’t get
you back to the unmodified version, it just tells EMACS not to write it out with the other modified files.
EMACS sets buffer-is-modified true any time the buffer is modified.

case-fold-search
If set ON all searches will ignore the case of alphabetics when doing comparisons. (default OFF)

checkpoint-frequency .

The number of keystrokes between checkpoints. Every "checkpoint-frequency” keystrokes all buffers
which have been modified since they were last checkpointed are written to a file named "file. CKP". File is
the file name associated with the buffer, or if that is null, the name of the buffer. Proper account is taken of
the restriction on file names to 14 characters. (default 300)

comment-column
The column at which comments are to start. Used by the language-dependent commenting features
through the move-to-comment-column command. (default 33)

ctichar-with-t

If set ON control characters are printed as +C (an *1’ character followed by the upper case alphabetic that
corresponds to the control character), otherwise they are printed according to the usual Unix convention '\’
followed by a three digit octal number). (default OFF)

files-should-end-with-newline

Indicates that when a buffer is written to a file, and the buffer doesn’t end in a newline, then the user
should be asked if they want to have a newline appended. It used to be that this was the default action, but
some people objected to the question being asked. (default ON)

global-mode-string
- Global-mode-string is a global variable used in the construction of mode lines see section 17, page 19 for
more information.

78

help-on-command-completion-error
If ON EMACS will print a list of possibilities when an ambiguous command is given, otherwise it just rings
the bell and waits for you to type more. (default ON)

left-margin
The left margin for automatic text justification. After an automatically generated newline the new line will
be indented to the left margin.

mode-line-format
mode-line-format is a buffer specific variable used to specify the format of a mode line. See section 17, page
19 for more information.

mode-string
Mode-string is a buffer specific variable used in the construction of mode lines see section 17, page 19 for
more information.

needs-checkpointing
A buffer-specific variable which if ON indicates that the buffer should be checkpointed periodically. Ifitis
OFF, then no checkpoints will be done. (default ON) '

prop-up-windows

If ON EMACS will try to use some window other than the current one when it spontaneously generates a
buffer that it wants you to see or when you visit a file (it may split the current window). If OFF the current
window is always used. (default ON)

prefix-argument

Every function invocation is always prefixed by a numeric argument, either explicitly with +Un or provide-
prefix-argument. The value of the variable prefix-argument is the argument prefixed to the invocation of the
current MLisp function. For example, if the following function:

(defun
(show-it
(message (concat "The prefix argument is " prefix-argument))
)

)
were bound to the key tA then typing tUtA would cause the message “The prefix argument is 4” to be
printed, and 1U131A would print “The prefix argument is 13”. See also the commands prefix-argument-loop
and provide-prefix-argument.

9

prefix-argument-provided
True iff the execution of the current function was prefixed by a numeric argument. Use prefix-argument to
get it’s value.

prefix-string
The string that is inserted after an automatic newline has been generated in response to going past the right
margin. This is generally used by the language-dependent commenting features. (default ")

quick-redisplay

If ON EMACS won’t worry so much about the case where you have the same buffer on view in several
windows -- it may let the other windows be inaccurate for a short while (but they will eventually be fixed up).
Turning this ON speeds up EMACS substantially when the same buffer is on view in several windows. When
it is OFF, all windows are always accurate. (default OFF)

replace-case -

If ON EMACS will alter the case of strings substituted with replace-string or query-replace-string to match
the case of the original string. For example, replacing "which" by "that" in the string "Which is silly" results
in "That is silly”; in the string "the car which is red"” results in "the car that is red”; and in the string
"WHICH THING?" results in "THAT THING?".

right-margin :

The right margin for automatic text justification. If a character is inserted at the end of a line and to the
right of the right margin EMACS will automatically insert at the beginning of the preceding word a newline,
tabs and spaces to indent to the left margin, and the prefix string. With the right margin set to something like
(for eg.) 72 you can type in a document without worrying about when to hit the return key, EMACS will
automatically do it for you at exactly the right place.

scroll-step :

The number of lines by which windows are scrolled if dot moves outside the window. If dot has moved
more than scroll-step lines outside of the window or scroll-step is zero then dot is centered in the window.
Otherwise the window is moved up or down scroll-step lines. Setting scroll-step to 1 will cause the window to
scroll by 1 line if you’re typing at the end of the window and hit RETURN.

silently-kill-processes

If ON EMACS will kill processes when it exits without asking any questions. Normally, if you have
processes running when EMACS exits, the question "You have processes on the prowl, should I hunt them
down for you" is asked. (default OFF)

80

stack-trace-on-error

If ON EMACs will write a MLisp stack trace to the "Stack trace” buffer whenever an error is encountered
from within an MLisp function (even inside an error-occured). This is all there is in the way of a debugging
facility. (default OFF)

tab-size

A buffer-specific variable which specifies the number of characters between tab stops. It's not clear that
user specifiable tabs are a good idea, since the rest of Unix and most other DEC styled operating systems have
the magic number 8 so deeply wired into them. (default 8)

this-command
The meaning of the variable this-command is tightly intertwined with the meaning of the function previous-
command. Look at its documentation for a description of this-command.

track-eol-on-tN-1 P
If ON then +N and tP will "stick" to the end of a line if they are started there. If OFF +N and +P will try
to stay in the same column as you move up and down even if you started at the end of a line. (default ON)

unlink-checkpoint-files

If ON EMACS will unlink the corresponding checkpoint file after the master copy is written -- this avoids
having a lot of .CKP files lying around but it does compromise safety a little. For example, as you’re editing a
file called "foo.c" EMACS will be periodically be writing a checkpoint file called "foo.c.CKP" that contains all
of your recent changes. When you rewrite the file (with +X1F or +X1S for example) if unlink-checkpoint-
files is ON then the .CKP file will be unlinked, otherwise it will be left. (default OFF)

visible-bell

If ON EMAcs will attempt to use a visible bell, usually a horrendous flashing of the screen, instead of the
audible bell, when it is notifying you of some error. This is a more "socially acceptable” technique when
people are working in a crowded terminal room. (default OFF)

wrap-long-lines

If ON EMACS will display long lines by "wrapping” their continuation onto the next line (the first line will
be terminated with a ’\"). If OFF long lines get truncated at the right edge of the screen and a’§’ is display to
indicate that this has happened. (default OFF)

Unix Emacs Reference Card
SOME NECESSARY NOTATION

Any ordinary character goes into the buffer (no insert command
needed). Commands are all control characters or other
characters prefixed by Escape or a control-X. Escape is
sometimes called Meta or Altmode in EMACS.

1 A control character. tF means "control F",

ESC- A two-character command sequence where the first character is
Escape. ESC-F means "ESCAPE then F".

ESC-X string A command designated "by hand". "ESC-x read-file"
means; type "Escape”, then "x", then "read-file", then <cr>.

dot EMACS term for cursor position in current buffer.

mark An invisible set position in the buffer used by region commands.

region The area of the buffer between the dot and mark.

CHARACTER OPERATIONS
+B Move left (Back)

+F Move right (Forward)

1P Move up (Previous)

+N Move down (Next)

D Delete right

+H or BS or DEL or RUBOUT
Delete left

+T Transpose previous 2 characters (ht— -> th—)

+Q Literally inserts (quotes) the next character typed (e.g. 1Q-tL)

+U-n Provide a numeric argument of n to the command that follows
(n defaults to 4, eg. try tU-tN and +U-1U-1F)

tMorCR newline

1J or NL newline followed by an indent

WORD OPERATIONS

ESC-b Move left (Back)

ESC-f = Move right (Forward)

ESC-d Delete word right

ESC-h Delete word left

ESC-¢c Capitalize word

ESC-1 Lowercase word

ESC-u Uppercase word

ESC-t+ Invert case of word

LINE OPERATIONS

tA Move to the beginning of the line

1E Move to the end of the line

1+0 Open up a line for typing

1K Kill from dot to end of line (*Y yanks it back at dot)
PARAGRAPH OPERATIONS

ESC-[Move to beginning of the paragraph

ESC-] Move to end of the paragraph

ESC-j Justify the current paragraph

GETTING OUT

+X-tS Save the file being worked on

+X-tW Write the current buffer into a file with a different name
tX-tM Write out all modified files

+X-tF Write out all modified files and exit

tCor ESC-1C or tX-tC Finish by exiting to the shell
- Recursively push (escape) to a new shell
SCREEN AND SCREEN OPERATIONS

1V Show next screen page

ESC-V Show previous screen page

+L Redisplay screen

+Z Scroll screen up

81

ESC-Z Scroll screen down

ESC! Move the line dot is on to top of the screen
ESC:, Move cursor to beginning of window
ESC.. ~Move cursor to end of window

+X-2 Split the current window in two windows (same buffer s
each)

+X-1 Resume single window (using current buffer)

tX-d Delete the current window, giving space to window belon

+X-n Move cursor to next window

+X-p Move cursor to previous window

ESC-tV Display the next screen page in the other window

+X-tZ Shrink window

tX-z Enlarge window

BUFFER AND FILE OPERATIONS
tY Yank back the last thing killed (kill and delete are differe

+X-tV Get a file into a buffer for editing

+X-tR Read a file into current buffer, erasing old contents
+X-tI Insert file at dot

1X-10 Select a different buffer (it must already exist)

+X-B Select a different buffer (it need not pre-exist)

+X-1B Display a list of available buffers

ESC-tY Insert selected buffer at dot

ESC< Move to the top of the current buffer

ESC-> Move to the end of the current buffer

HELP AND HELPER FUNCTIONS

G Abort anything at any time.

ESC-? Show every command containing string (try ESC-? para)
ESC-X in{~ Browse through the Emacs manual.

+XtU Undo the effects of previous commands.

SEARCH

1S Search forward

tR Search backward

REPLACE

ESC-r Replace one string with another

ESC-q Query Replace, one string with another

REGION OPERATIONS

@ Set the mark)

+X-1X Interchange dot and mark (i.e. go to the other end of the
™w Kill region (1Y yanks it back at dot)

MACRO OPERATIONS
+X+(Start remembering keystrokes, ie. start defining a k
macro

1X-) Stop remembering keystrokes, ie. end the definition

tX-e Execute remembered keystrokes, ie. execute the k
macro

COMPILING (MAKE) OPERATIONS.

tX-tE Execute the "make" (or other) command, saving out)
buffer

+X-tN Go to the next error in the file

X! Execute the given command, saving output in a buffer

MAIL
1X-r Read mail.
+X-m Send mail

82

Index
Baud-rate 43
! 40 Begin-C-comment 26
1= 40 Beginning-of-file 43
Beginning-of-line 43
% 40 Beginning-of-window 44
- Bibliography support for Scribe 36
& 40 Bind-to-key 9,17, 44, 52, 59
&Default-Transpose-Direction 38 Bobp 4
&Default-Transpose-Follow 39 Bolp 44
&Default-Transpose-Magic 39 Buff 25
&Occurances-Extra-Lines 31 Buffer list 25 :
Buffer management function 25
* 40 Buffer-edit 25
Buffer-is-modified. 77
+ 40 Buffer-size 44
Buffer-specific 11, 47, 70
- 4
C-mode 44
.emacs—pro 14, 58, 70 C= 4
Case-fold-search 44,77
/ 40 Case-region-capitalize 44
Case-region-invert 44
< 40 Case-region-lower 44
<« 40 Case-region-upper 44
<= 40 Case-word-capitalize 45, 59
Case-word-invert 45
= 40 Case-word-lower 45
Case-word-upper 26, 45
> 4 Cd 33
>= 41 v : Change-current-process 21, 45
» 41 : Change-directory 45
Char-to-string 45
Abbrev-expansion 9, 48 Checkpoint 45
Abbrev-mode 8,74 Checkpoint-frequency 485, 77
Abbreviate-word 24 Clock 38
Active-process 21,41 Command prefix, also known as META 45
Append 29 Command-prefix 46
Append-region-to-buffer 41 Comment-column 26, 61, 77
Append-to-file 41 . Compare 37
Apropos 5,41 , Compile-it 46
Arg 41 Concat 46
Argc 42 Continue-process 21, 22, 46, 72
Argument-prefix 42 Copy-lines 29
Argv 42 Copy-region 29
Ask-about-buffer-names 76 Copy-region-to-buffer 46
Auto-execute 42 Ctlchar-with-+ 77 i
Autoload 42 Current-buffer-name 46
Current-column 46
Backup-before-writing 76 Current-file-name 47
Backup-by-copying 76, 77 Current-indent 47
Backup-by-copying-when-linked 76, 77 Current-process 21, 47
Backup-when-writing 76 Current-time 47
Backward-balanced-paren-line 42
Backward-character 43 Declare-buffer-specific 11, 47, 70
Backward-kill-word 29 Declare-global 10, 11, 47
Backward-paragraph 43 Default-mode-line-format 20
Backward-paren 43 Define-buffer-macro 47, 51
Backward-sentence 43 Define-global-abbrev 8, 47, 48

Backward-word 43 Define-hooked-global-abbrev 48

Define-hooked-local-abbrev 48
Define-keyboard-macro 9, 48, 52
Define-keymap 17, 48
Define-local-abbrev 8, 48
Define-string-macro 9, 48, 52
Defun 12,48

Delete-buffer 49
Delete-macro 49
Delete-next-character 49
Delete-next-word 49
Delete-other-windows 49
Delete-previous-character 49
Delete-previous-word 49
Delete-region-to-buffer 49
Delete-to-killbuffer 49, 52
Delete-white-space 50
Delete-window 50

Deleting files 26
Describe-bindings 5, 50
Describe-command 5, 50
Describe-key 5, 50
Describe-variable 50
Describe-word-in-buffer 50
Digit 50

Directory 33

Dired 26
Display-file-percentage 43
Dot 51

Dump-syntax-table 51, 59

Edit-macro 47, 51

Electricc 8

Emacs-version 51
End-C-comment 26
End-of-file 51

End-of-line 51
End-of-window 51
Enlarge-window 51

Eobp 51

Eolp 51

Eot-process 21, 52
Erase-buffer 52

Frase-region 52
Error-message 52
Error-occured 52, 80
Exchange-dot-and-mark 52
Execute-extended-command 52
Execute-keyboard-macro 9, 52
Execute-mlisp-buffer 52
Execute-mlisp-line 53
Execute-monitor-command 53
Exit-emacs 53
Expand-file-name 53
Expand-mlisp-variable 53, 55
Expand-mlisp-word 53, 55
Extend-database-search-list 23, 53

Fetch-database-entry 23, 53
File-exists 54
Files-should-end-with-newline 77

Filter-region 54
Following-char 54
Forward-balanced-paren-line 54
Forward-character 5, 54
Forward-paragraph 54
Forward-paren 54, 59
Forward-sentence 55
Forward-word 55, 59

Get-tty-buffer 55
Get-tty-character 55
Get-tty-command 55
Get-tty-string 55
Get-tty-variable 55
Getenv 55
Global-binding-of 56
Global-mode-string 19, 20, 77
Goto-character 56
Goto-line 27
Goto-percent 27
Grab-last-line 32

Help facilities 5, 23, 34, 39, 52,78

Help-on-command-completion-error 78

If 56

Illegal-operation 56, 67
Ind-region 28

Indent region 28
Indent-C-procedure 26, 56
Indenting code, manual 28
Index-entry 35

Info 29

Insert-character 56
Insert-file 56

Insert-filter 56
Insert-string 57
Int-process 21, 57
Interactive 57

Is-bound 57

Justify-paragraph 56, 57

Kill-lines 29
Kill-process 21, 57
Kill-region 29
Kill-to-end-of-line 57
Kill-word 29

Killing 29

Killring 29

Last-key-struck 57
Left-margin 78

Length 57
Line-to-top-of-window 58
Lisp 32

Lisp-kill-output 32
List-buffers 58
List-databases 24, 58
List-processes 21, 58

83

84

Load 58
Local-bind-to-key 17,59
Local-binding-of 59
Looking-at 185, 59

Mail, sending and receiving 30, 33
Mark 59

Message 59

Mode lines 3,19, 77,78
Mode-line-format 20, 78
Mode-string 19, 20, 78
Modify-syntax-entry 59, 74
Move-dot-to-x-y 60
Move-to-comment-column 61, 77

Nargs 61
Narrow-region 19, 61
Needs-checkpointing 78
Newline 61
Newline-and-backup 61
Newline-and-indent 61
Next-error 61
Next-line 61
Next-page 62
Next-window 62
Nothing 56, 59, 62
Novalue 62

Occur 31

Occurances 31

Occurances of a string 31
On-output-procedure 21,22, 64, 71
One-line-buffer-list 25

Page-next-window 62
Parse-error-messages-in-region 62
Pause-emacs 62

Pop-to-buffer 63,73
Pop-up-windows 78

Pr-newline 32

Preceding-char 63

Prefix arguments 42, 63, 64, 68, 78, 79

Prefix-argument 63, 64, 78
Prefix-argument-loop 63, 64, 78
Prefix-argument-provided 79
Prefix-string 79
Prepend-region-to-buffer 63
Previous-command 63
Previous-line 63
Previous-page 64
Previous-window 64

Print 64

Process-filter-name 21, 64
Process-id 21, 64
Process-output 21, 64
Process-status 21, 64
Processes, high level access 32
Profile 14, 58, 70

Progn 10, 64
Provide-prefix-argument 63, 64, 78

Push-back-character 65
Put-database-entry 24, 65
Pwd 33

Query-replace-string 15, 65, 79
Quick-redisplay 79
Quietly-read-abbrev-file 8, 65
Quit-process 21, 65

Quote 65

Quote-character 66

Re-query-replace-string 15, 66
Re-replace-string 15, 66
Re-search-forward 1S, 66
Re-search-reverse 15, 66
Read-abbrev-file 8, 65, 66, 75
Read-file 19, 42, 66
Reading mail 34

Receiving mail 34
Recursion-depth 66
Recursive-edit 19, 67
Redraw-display 67
Reference Card 81

Region restrictions 19, 61, 68, 75
Region-around-match 67
Region-to-process 21, 67
Region-to-string 67
Remove-all-local-bindings 67
Remove-binding 67
Remove-local-binding 67, 68
Replace-case 79
Replace-string 15, 19, 68, 79
Reset-filter 68
Return-prefix-argument 68
Return-to-monitor 62, 68
Right-margin 79

Save-excursion 68,73
Save-restriction 19, 68
Save-window-excursion 69
Scribe bibliography support 36
Scribe-bib 36
Scribe-command 35
Scroll-one-line-down 69
Scroll-one-line-up 69
Scroll-step 79
Search-forward 15, 69
Search-reverse 15, 69
Self-insert 69

Send-eot 32
Send-int-signal 32
Send-quit-signal 32
Send-string-to-terminal 69
Sending mail 33

Set 70

Set-auto-fill-hook 70
Set-default 11, 47,70
Set-mark 70

Setq 70

Setq-default 11, 47,70

Shell 32,71
Shrink-window §,71
Silently-kill-processes 22, 79
Sit-for 71

Spell 37
Split-current-window 71
Srccom 37
Stack-trace-on-error 80
Start-filtered-process 22, 71
Start-process 22, 71, 72
Start-remembering 9, 72
Stop-process 21, 22, 46, 72
Stop-remembering 9, 72
String-to-char 72
String-to-process 22,72
Substr 72

Summary 81

Switch-to-buffer 11,63, 72,73

System-name 72

Tab-size 80
Temp-use-buffer 73
Text-mode 38
This-command 80
Time 38

To-col 73
Track-col-on-+N-tP 80
Transp 38
Transpose-characters 73
Transpose-line 38
Transpose-word 38

Undo 39,73
Undo-boundary 39,73
Undo-more 39,73
Unkill 30

Unkill-pop 30

Unkilling 29
Unlink-checkpoint-files 80
Unlink-file 74
Upper-case-word 26
Use-abbrev-table 8,48, 74
Use-global-map 17, 74
Use-local-map 17, 74
Use-old-buffer 74
Use-syntax-table 59, 74
Users-full-name 74
Users-login-name 74

Visible-bell 80
Visit-file 10, 42, 74

While 75
Widen-region 19,75
Window-height 75
Working-directory 75
Wrap-long-lines 80

Write-abbrev-file 8, 65, 66,75

Write-current-file 19, 75
Write-file-exit 75

85

Write-modified-files 75
Write-named-file 75
Write-region-to-file 39

Yank-buffer 75
Yank-from-killbuffer 76

* 41

| 76

Reprinted from
Proceedings of the ACM SIGPLAN *'82 Symposium on Compiler Construction
SIGPLAN Notices 17, 8 (June 1982), pp 120-128

gprof: a Call Graph Execution Profiler!

y
Susan L. Graham
Peter B. Kessler
Marshall K. Mc Kusick

Computer Science Division
Electrical Engineering and Computer Science Department
University of California, Berkeley
Berkeley, California 94720

Abstract

Large complex programs are composed of many
small routines that implement abstractions for the
routines that call them. To be useful, an execution
profiler must attribute execution time in a way that
is significant for the logical structure of a program
as well as for its textual decomposition. This data
must then be displayed to the user in a convenient
and informative way. The gprof proﬁler accounts
for the running time of called routines in the run-
ning time of the routines that call them. The desxgn
and use of this profiler is described.

" 1. Programs to be Profiled

Software research environments
include many large programs both for production
use and for experimental investigation.. These pro-

grams are typically modular, in accordance with .

generally accepted principles of good program
design. Often they consist of numerous small rou-
tines that implement various abstractions. Some-
times such large programs are written by one pro-
grammer who has understood the requirements for
these abstractions, end has programmed them
appropriately. More {requently the program has
had multiple authors and has evolved over time,
changing the demands placed on the implementa-
tion of the ebstractions without changing the imple-
mentation itself. Finally, the program meay be
assembled from a library of abstraction implemen-
tations unexamined by the programmer.

Once a large program is executable, it is often
desirable to increase its speed, especially if small
portions of the program are found to dominate its

1This work was supported by grant HMCS80-05144 from the
Naticnal Science Foundation.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-074-5/82/006/0120 $00.75

normally .

execution time. The purpose of the gprof profiling
tool is to help the user evaluate alternative imple-
mentations of abstractions. We developed this tool
in response to our efforts to improve a code genera-
tor we were writing [Graham82].

The gprof design takes advantage of the fact
that the programs to be measured are large, struc-
tured and hierarchical. We provide a profile in
which the execution time for a set of routines that
implement an abstraction is collected and charged
to theat abstraction. The profile can be used to com-
pare and assess the costs of various implementa-
tions.

The profiler can be linked into a program
without special planning by the programmer. The
overhead for using gprof is low; both in terms of
added execution time and in the volume of profiling
information recorded.

2. Types of Profiling

There are several different uses !cr program
profiles, and each may require different information
from the profiles, or different presentation of the
information. We distinguish two broad categories of
profiles: those that present counts of statement or
routine invocations, and those that display timing
information about statements or routines. Counts
are typically presented in tabular form, often irn
paraliel with a listing of the source code. Timing
information could be similarly presented; but more
than one measure of time might be associated wit}
each statement or routine. For example, in the
framework used by gprof each profiled segment!
would display two times: one for the time used by
the segment itself, and another for the time inher:
ited from code segments it invokes.

Execution counts are used in many differen
contexts. The exact number of times a routine o:
statement is activated can be used to determine i
an algorithm is performing as expected. Cursory
inspection of such counters may show algorithm:
whose complexity is unsuited to the task at hand
Careful interpretation of counters can often sugges!
improvements to acceptable algorithms. Precise
examination can uncover subtle errors in ar

yrithm. At this level, profiling counters are simi-
to debugging statements whose purpose is to
w the number of times a piece of code is exe-
#¢d. Another view of such counters is as boolean
tes. One may be interested that a portion of
e has executed at all, for exhaustive testing, or
heck that one implementation of an abstraction
ipleiely replaces a previous one.

Execution counts are not necessarily propor-
al to the amount of time required to execute
routine or statement. Further, the execution
e of a routine will not be the same for all calls on
routine. The criteria for establishing execution
e must be decided. 1f a routine implements an
traction by invoking other abstractions, the time
nt in the routine will not accurately reflect the
e required by the abstraction it implements.
dlarly, if an ebstraction is implemented by
eral routines the time required by the abstrac-
1. will be distributed across those routines.

Given the execution time of individual routines,
of accounts to each routine the time spent for it
the routines it invokes. This accounting is done
essembling a call graph with nodes that are the
tines of the program and directed arcs that
resent calls from call sites to routines. We dis-
juish among three diflerent call graphs for a pro-
m. The complete call graph incorporates all rou-
»s and all potential arcs, including arcs that
resent calls to functional parameters or func-

the monitoring routine solution has certain advan-
tages. Whatever counters are needed by the moni-
toring routine can be managed by the monitoring
routine itself, rather than being distributed around
the code. In particular, & monitoring routine can
easily be called from separately compiled pro-
grams. In addition, different monitoring routines
can be linked into the program being measured to
assemble different proflling data without having to
change the compiler or recompile the program. We
have exploited this approach; our compilers for C,
Fortran?77, and Pascal can insert calls to a monitor-

"ing routine in the prologue for each routine. Use of

the monitoring routine requires no planning on part
of a programmer other than to request that aug-
mented routine prologues be produced during com-
pilation.

We are interested in gathering three pieces of
information during program execution: call counts
and execution times for each profiled routine, and
the ares of the dynamic call graph traversed by this

‘execution of the program. By post-processing of

12l variables. This greph contains the other two .

phs as subgraphs. The static call graph includes

routines and all possible arcs that are not calls .

‘unctional parameters or variables. The dynamic
| graph includes only those routines and arcs
versed by the profiled execution of the program.
s graph need not include all routines, nor need it
lude all potential arcs between the routines it
'ers. It may, however, include arcs to functional
‘ameters or variables that the static call graph
y omit. The stetic call graph can be determined
m the (static) program text. The dynamic call
ph is determined only by profiling an execution
the program. The complete call graph for a
nolithic program could be determined by data
v analysis techniques. The complete call graph

programs that change during execution, by
difying themselves or dynamicelly loading or
rrlaying code, may never be determinable. Both
: static call graph and the dynamic call graph are
'd by gprof, but it does not search for the com-
te call graph.

Gathering Profile Data

Routine calls or statement executions can be
asured by having a compiler augment the code
strategic points. The additions can be inline
'rements to counters [Knuth71] [Satterthwaite72]
iy78] er calls to monitoring routines [Unix]. The
unter increment overhead is low, and is suitable
* profiling statements. A call of the monitoring
atine has an overhead comparable with a call of 2
jular routine, and is therefore only suited to
ofiling on a routine by routine basis. However,

this data we can build the dynamic call graph for
this execution of the program and propagate times
along the edges of this graph to attribute times for
routines to the routines that invoke them.

Gathering of the profiling information .should
not greatly interfere with the running of the pro-
gram. Thus, the monitoring routine must not pro-
duce: trace output each time it is invoked. The
volume of data thus produced would be unmanage-
ably large, and the time required to record it would
overwhelmn the running time of most programs.

. Similarly, the monitoring routine can not do the

analysis of the profiling data (e.g. assembling the
call graph, propagating times around it, discovering
cycles, etc.) during program execution. Our solu-
tion is to gather profiling data in memory during’
program execution and to condense it to a flle as
the profiled program exits. This flle is then pro-
cessed by a separate program to produce the listing
of the profile data. An advantage of this approach is

“that the profile data {or several executions of a pro-

gram can be combined by the post-processing to
provide a profile of many executions.

The execution time monitoring consists of three
parts. The first part allocates and initializes the
runtime monitoring data structures before the pro-
grum begins execution. The second part is the mon-
itoring routine invoked from the prologue of each
profiled routine. The third part condenses the data
structures and writes them to a file as the program
terminates. The monitoring routine is discussed in
detail in the following sections.

3.1. Execution Counts

The gprof monitoring routine counts the
number of times each profiled routine is called. The
monitoring routine also records the arc in the call
graph that activated the profiled routine. The eount
is associated with the arc in the call graph rather
than with the routine. Call counts for routines can
then be determined by summing the counts on arcs
directed into that routine. In a machine-dependent

{ashion, the monitoring routine notes its own return
address. This address is in the prologue of some
profiled routine that is the destination of an arc in
the dynamic call graph. The monitoring routine
also discovers the return address for that routine,

thus identifying the call site, or source of the are. -

The source of the arc is in the caller, and the desti-
nation is in the callse. For example, if a routine A
calls a routine B, A is the caller, and B is the callee.
The prologue of B will include a call to the monitor-
ing routine that will note the arc from A to B and
either initialize or increment a counter for that arc.

One can not afford to have the monitoring rou-
tine output tracing information as each arc is
identified. Therefore, the monitoring routine main-
tains a table of all the arcs discovered, with counts
of the numbers of times each is traversed during
execution. This table is accessed once per routine
call. Access to it must be as fast as possible so as
not to overwhelm the time required to execute the
program.

Our solution is to access the table through a
hash table. We use the call site as the primeary key
with the callee address being the secondary key.
Since each call site typically calls only one callee,
we can reduce (usually to one) the number of minor
lookups based on the callee. Another alternative
would use the callee as the primary key and the call
site as the secondary key. Such an organization has
the advantage of associating callers with callees, at
the expense of longer lookups in the monitoring
routine. We are fortunate to be running in a virtual
memory environment, and (for the sake of speed)
were able to allocate enough space for the primary
hash table to allow 2 one-to-one mapping from call
site addresses to the primary hash table. Thus our

hash function is trivial to calculate and collisions -

oceur only for call sites that call multiple destina-
tions (e.g. functional parameters and functional
variables). A one level hash function using both call
site and callee would result in an unreasonably
large hash table. Further, the number of dynamic
cell sites and callees is not known during execution
of the profiled program.

Not all callers and caliees can be identified by
the monitoring routine. Routines that were com-
piled without the profiling eugmentations will not
call the monitoring routine as part of their prolo-
gue, and thus no arcs will be recorded whose desti-
nations are in these routines. One need not profile
all the routines in & program. Routines that are not
proflied run at full speed. Certain routines, notably
exception hendlers, are invoked by non-standard
calling sequences. Thus the monitoring routine may
know the destination of an are (the callee), but find
it difficult or impossible to determine the source of
the arc (the caller). Often in these cases the
apparent source of the arc is not a call site at all.
Such anomalous invocations are declared ''spon-
taneous'.

3.2 Execution Times

The execution times for routines can be iath-
ered in at least two ways. One method measures

the execution time of a routine by measuring the
elapsed time {rom routine entry to routine exit.
Unfortunately, time measurement is complicated
on time-sharing systems by the time-slicing of the
program. A second method samples the value of
the program counter at some interval, and infers
execution time from the distribution of the samples
within the program. This technique is particularly
suited to time-sharing systems, where the time-
slicing can serve as the basis for sampling the pro-
gram counter. Notice thst, whereas the first
method could provide exact timings, the second is
inherently a statistical approximation.

The sampling method need not require support
from the operating system: all that is needed is the
ability to set and respond to ‘‘alarm clock’ inter-
rupts that run relative to program time. It is
imperative that the intervals be uniform since the
sampling of the program counter rether than the
duration of the interval is the basis of the distribu-
tion. lf sampling is done too often. the interrup-
tions to sample the program counter will overwhelm
the running of the profiled program. On the other
hand, the program must run for enough sampled
intervals that the distribution of the samples accu-
rately represents the distribution of time for the
execution of the program. As with routine call trac-
ing, the monitoring routine can not afford to qutput
information for each program counter sample. In
our computing environment, the operating system
can provide & histogram of the location of the pro-
gram counter at the end of each clock tick (1/60th
of a second) in which a program runs. The histo-
gram is essembled in memory as the program runs.
This facility is enabled by our monitoring routine.
We have adjusted the granularity of the histogram
so that program counter values meap one-to-one
onto the histogram. We make the simplifying
assumption that. all calls to a specific routine
require the same amount of time to execute. This
assumption may disguise that some calls {or worse,
some call sites) always invoke a routine such that
its execution is faster (or slower) than the average
timne for that routine.

When the profiled program terminates, the arc
teble and the histogram of program counter sam-
ples are written to a file. The arc table is condensed
to consist of the source and destination addresses
of the arc and the count of the number of times the
arc was traversed by Lhis execution of the program.

. The recorded histogram consists of counters of the
~ number of limes the program counter was found to

be in each of the ranges covered by the histogram.
The ranges themselves are sumnmarized as & lower
and upper bound and a step size.

4. Post Processing

Having gathered the arcs of the call graph and
timing information for an execution of the program,
we are interested in attributing the time for each
routine to the routines that call it. We build a
dynamic call graph with arcs from caller to callee,
and propagate time {rom descendants to ancestors
by topologically sorting the call graph. Time

propeagation is performed from the leaves of the call
graph toward the roots, according to the order
assigned by & topological numbering algorithm. The
topological numbering ensures that all edges in the
graph go from higher numbered nodes to lower
numbered nodes. An example is given in Figure 1.
1f we propagate time from nodes in the order
assigned by the algorithm, execution time can be
propagated from descendants to ancestors after a
single traversal of each arc in the call graph. Each
parent receives some fraction of a child's time.
Thus time is charged to the caller in addition to
being charged to the callee. '

Let C, be the number of calls to some routine,

e, and] be the number of calls {from a caller » to a -

callee ¢. Since we are assuming each call to & rou-
tine takes the average amount of time for all calls
to that routine, the caller is accountable for C;/ C,
of the time spent by the callee. Let the S, be the
selfiime of a routine, ¢. The selitime of a routine
can be determined from the timing information
gathered during profiled progrem execution. The
total time, 7,, we wish to account to a routine r, is
then given by the recurrence equation:

T,=S5,+ % T.'X-E.q-
r CALLS ¢ (]

where » CALLS ¢ is a relation showing all routines ¢ '

called by a routine r. This relation is easily avail-
able from the call graph.

However, if the execution contains recursive
calls, the call graph has cycles that cannot be topo-
logically sorted. : In these cases, we discover
strongly-connected components in the call graph,
treat each such component as a single node, and
then sort the resulting graph. We use a variation of
Tarjan's strongly-connected components saigerithm
that discovers strongly-connecied components as it
is assigning topological order numbers [Tarjan72].

Time propagation within strongly connected
components is a problem. For example, a self-
recursive routine (a trivial eycle in the call graph) is
accountable for all the time it uses in all its recur-
sive instantiations. In our scheme, this time should
be shared among its call graph parents. The arcs
from a routine to itself are of interest, but do not
participate in time propagation. Thus the simple

@ ®
D
eéo
oo

;l‘opologieal ordering
Figure 1.

equation for time propagation does not work within
strongly connected components. Time is not pro-
pagated from one member of a cycle to another,
since, by definition, this involves propagating time

" .{rom & routine to itself. In addition, children of one

meinber of a cycle must be considered children of
all members of the cycle. Similarly, parents of one
member of the cycle must inherit all members of
the cycle as descendants. It is for these reasons
that we collapse connected components. Our solu-
tion collects all members of a cycle together, sum-
ming the time and call counts for all members. All
calls into the cycle are made to share the totel time
of the cycle, and all descendants of the cycle pro-
pagate time into the cycle as a whole. Calls among
the members of the cycle do not propagaie any
time, though they are listed in the call graph
profile.

Figure 2 shows a modified version of the call
graph of Figure 1, in which the nodes labelled 3 and
7 in Figure 1 are mutually recursive. The topologi-
cally sorted graph after the cycle is collapsed is
given in Figure 3.

Since the technique described above only col-
lects the dynamic call graph, and the program typi-
cally does not call every routine on each execution,
different executions can introduce different cycles
in thé dynamic call graph. Since cycles often have
a significant eflect on time propsgation, it is desir-
able to incorporate the static call graph sc that
cycles will have the same members regardless of
how the program runs.

Cycle to be collapsed.
Figure 2.

Topological numbering after eycle collapsing.
Figure 3.

The stetic call graph can be constructed from
the source text of the program. However, discover-
ing the static call graph from the source text would
require two moderately difficult steps: finding the
source text for the program (which may not be
evailable), and scanning and parsing that text,
which may be in any one of several languages.

In our programming system, the static calling
information is also contained in the executable ver-
sion of the program, which we already have avail-
able, and which is in language-independent form.
One can examine the instructions in the object pro-
gram, looking for calls to routines, and note which
routines can be called. This technique allows us to
add arcs to those already in the dynamic call graph.
If a statically discovered arc already exists in the
dynamic call graph, no action is required. Statically
discovered arcs that do not exist in the dynamic
call graph are added to the graph with a traversal
count of zero. Thus they are never responsible for
any time propagetion. However, they may affect
the structure of the graph. Since they may com-
plete strongly connected components, the static
call graph construction is done before topological
ordering.

5. Data Presentation

The dete is presented to the user in two
different formeats. The first presentation simply
lists the routines without regard to the amount of
time their descendants use. The second presenta-
tion incorporates the call graph of the program.

5.1. The Flat Profile

- The flat profile consists of a list of all the rou-
tines that are called during execution of the pro-
gram, with the count of the number of times they
are called and the number of seconds of execution
time for which they are themselves accountabie.
The routines are listed in decreasing order of execu-
tion time. A list of the routines that are never
called during execution of the program is alsc avail-
able to verify that nothing important is omitted by
this execution. The flat profile gives a quick over-
view of the routines that are used, and shows the
routines that are themselves responsible for large
fractions of the execution time. In practice, this
profile usually shows that no single function is
overwhelmingly responsible for the total time of the
program. Notice that for this profile, the individual
times sum to the total execution time.

$.2. The Call Graph Profile

Ideally. we would like to print the call ¢raph of
the program, but we are limited by the two-
dimensijonal nature of our output devices. We can-
not assume that a call grapli is planar, and even if it
is, that we can print a planar version of it. Instead,
we choose to list each routine, together with infor-
mation about the routines that are its direct
parents and children. This listing presents a win-
dow into the call graph. Based on our experience,
both parent informstion and child information is
important, and should be available without

searching through the output.

The major entries of the call graph profile a
the entries from the flat profile, augmented by t.
time propagated to each routine {rom its desce
dants. This profile is sorted by the sum of the tir
for the routine itself plus the time inherited frec

. its descendants. The profille shows which of t

higher level routines spend large portions of t
total execution time in the routines that they ce¢
For each routine, we show the amount of tir
passed by each child to the routine, which includ
time for the child itself and jor the descendants
the child (and thus the descendants of the routin
We also show the percentage these times represe
of the total time accounted to the chjld. Similar
the parents of each routine are listed, along wi
time, and percentage of total routine time, p
pagated to each one.

Cycles are handled es single entities. The cy:
as a whole is shown as though it were a single r¢
tine, except that members of the cycle are listed
place of the children. Although the number of c2
of each member from within the cycle are shov
they do not affect time propagation. When a child
8 member of a cycle, the time shown is t
appropriate fraction of the time for the whole cyc
Seli-recursive routines have their calls broken do

‘intc calls from the outside and self-recursive ca

Only the outside calls affect the propagation
time.
The iollowing example is a typical fragment ¢

@@
CEMIPLE)

Csus> CsuBe> CSUB3D

The entry in the call graph profile listing for t
example is shown in Figure 4.

The entry is for routine EXAMPLE, which has
Caller routines as its parents, and the Sub routi
as its children. The reader should keep in m
that all information is given with respect to EX
PLE. The index in the first column shows that EX
PLE is the second entry in the profile listing. '
EXAMPLE routine is called ten times, four times
CALLER1, and six times by CALLER2. Conseque:
407% of EXAMPLE's time is propagated to CALLER],
80% of EXAMPLE's time is propagated to CALL
The self and descendant fields of the parents s
the amount of self and descendant time EXAM

. propegates to them (but not the time used by

parents directly). Note that EXAMPLE calls it
recursively four times. The routine EXAMPLE ¢
routine SUB! twenty times, SUB2 once, and n¢
calls SUB3. Since SUB2 is called a total of five tin
20% of its self and descendant time is propagate:

~ EXAMPLE's descendant time fleld. Because SUB1

calied/total parents
index Xtime self descendants called+self name index
ealled(total children '
0.20 1.20 4/10 CALLER1 [7
0.30 1.80 6/10 CALLER2 (1
2] 415 050 3.00 10+4 EXAMPLE 2
1.50 1.00 20/40 SUB1 <cyclel> |[4
0.00 0.50 " 1/5 suB2 L
0.00 0.00 0/5 SUB3 11]
Profile entry for EXAMPLE.
Figure 4.

ember of cycle 1, the self and descendant times
1d call count fraction are those for the cycle as a
a0le. Since cycle 1 is called a total of forty times
.ot counting calls among members of the cycle), it
‘opagates 50% of the cycle’s self and descendant
me to EXAMPLE's descendant time fleld. Finally
ich name is followed by an index that shows where
1 the listing to find the entry for that routine.

Using the Profiles

The profiler is a useful tool for improving & set
routines that implement an abstraction. It can
¢ helpful in identitying poorly coded routines, and
evaluating the new algorithms and code that
'place them. Taking full advantage of the profiler
quires a careful examination of the call graph
‘ofile, and a thorough knowledge of the abstrac-
ons underlying the program.

The easiest optimization that.can be performed

& smell change to a control construct or data-

ructure that improves the running time of the
rogram. An obvious-starting point is a routine that
called many times. For example, suppose an out-
ut routine is the only parent of a routine that for-
ats the data. If this format routine is expanded
dine in the output routine, the overhead of a func-
on call and return can be saved for each datum
1at needs to be formatted.

The drawback to inline expansion is that the
ata abstractions in the program may become less
arameterized, hence less clearly defined. The
roflling will also become less useful since the loss
! routines will make its output more granular. For
xample, if the symbol table functions “‘lookup’’,
insert, and “'delete’ are all merged inte 2 single
arameterized routine, it will de impossible to
etermine the costs of any one of these individual
inctions from the profile.

Further potential for optimization lies in rou-
nes that implement data abstractions whose total
xecution time is long. For example, & lookup rou-
ne might be called only a few times, but use an
ieflicient linear search algorithm, that might be
eplaced with a binary search. Alternately, the
iscovery that a rehashing function is being called
xcessively, can lead to a different hash function or
larger hash table. If the data abstraction function
annot easily be speeded up, it may be advanta-

- This tool is best used in en iterstive approach:
profiling the program, eliminating one bottleneck,
then finding some other part of the program that
begins to dominate execution time. For instance,
we have used gprof on itsell; eliminating. rewriting,
and inline expanding routines, until reading data
files (hardly a target for optimization!) represents
the dominating factor in its execution time.

Certain types of programs are not easily
analyzed by-gprof. They eare typified by programs
that exhibit & large degree of recursion, such as
recursive descent compilers. The problem is that
most of the major routines are grouped into & single
monolithic cycle. As in the symbol table abstrac-
tion that is placed in one routine, it is impossible to
distinguish which members of the cycle are respon-
sible for the execution time. Unfortunately there
are ho easy modifications to these programs that
make them amenable to analysis.

A completely different use of the profiler is to
analyze the control flow of an unfamiliar program.
If you receive a program irom another user that you
need to modify in some small way, it is often
unclear where the changes need to be made. By
running the program on an example and then using
gprof, you can get a view of the structure of the
program.

Consider an example in which you need to

. change the output format of the program. For pur-

eous to cache its results, and eliminate the need to

erun it for identical inputs. These and other ideas
or pi'ogram improvement are discussed in [Bent-
ryB1].

poses of this example suppose that the call graph of
the output portion of the program has the {ollowing
structure:

Initially you look through the gprof output for the
system call “WRITE”. The format routine you will
need to change is probably among the perents of
the “WRITE" procedure. The next step is to look at
the profile entry for each of parents of "WRITE", in
this example either “FORMAT1" or *“FORMAT2', to
determine which one to change. Each format rou-
tine will have one or more parents, in this example
“CALC1", *CALC2"”, and '"CALC3". By inspecting the
source code for each of these routines you can

determine which format routine generates the out-
put that you wish to modify. Since the gprof entry
shows all the potential calls to the format routine
you intend to change, you can determine if your
modifications will affect output that should be left
alone. 1lf you desire to change the output of
**CALC2", but not "“CALC3", then formatting routine
“FORMATZ2'' needs to be split into two separate rou-
tines, one of which implements the new format.
You can then retarget just the call by "'CALC2' that
needs the new format. It should be noted that the
static call information is particularly useful here
since the test case you run probably will not exer-
cise the entire program.

7. Conclusions

We have created a profiler that aids in the
evaluation of moduler programs. For each routine
in the program, the profile shows the extent to
which that routine helps support various abstrac-
tions, and how that routine uses other abstractions.
The profile accurately assesses the cost of routines
at all levels of the program decomposition. The
profiler is easily used, and can be compiled into the
program without any prior planning by the pro-
grammer. I{ adds only five to thirty percent execu-
tion overhead to the program being profiled, pro-
duces no additional output until after the program
finishes, and allows the program to be measured in
its actuel environment. Finally, the profiler runs on

a2 time-sharing system using only the normal ser- .

vices provided by the operating system and com-
pilers.

8. References

[Bentley81]
Bentley, J. L., “'Writing Efficient Code”, Depart-
ment of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, CMU-CS-
81-116, 1981.

[GrahamB82)
Graham, S. L., Heary, R. R., Schulman, R. A,
*An Experiment in Table Driven Code Genera-
tion", SIGPLAN '82 Symposium on Compiler
Construction, June, 1882.

[Joy78]
Joy, W. N, Graham, S. L., Haley, C. B. ‘‘Berkeley
Pascal User's Manual", Version 1.1, Computer
Science Division University of Celifornia, Berke-
ley, CA. April 1878.

{Knuth71]
Knuth, D. E. “An empirical study of FORTRAN
programs’’, Sofiware - Practice and Experience,
1,105-133. 1871

{Satterthwaite?2)
Satterthwaite, E. ''Debugging Tools for High
Level Languages', Soiftware - Practice and
Experience, 2, 197-217, 1872

[Tarjan72)
Tarjan, R. E., "Depth first search and linear
graph algorithm,” SIAM J. Cormnputing 1:2, 146-
160, 1972.

[Unix]
Unix Programmer's Manual, “prof commeand’’,
section 1, Bell Laboratories, Murray Hill, NJ.
January 1878.

A 4.2bsd Interprocess Communication Primer
DRAFT of July 27, 1983

Samuel J. Leffier
Robert S. Fabry
William N. Joy

Computer Systems Research Group
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720
(415) 642-7780

ABSTRACT

This document provides an introduction to the interprocess communica-
tion facilities included in the 4.2bsd release of the VAX* UNIX** system.

It discusses the overall model for interprocess communication and intro-
duces the interprocess communication primitives which have been added to the
system. The majority of the document considers the use of these primitives in
developing applications. The reader is expected to be familiar with the C pro-
gramming language as all examples are written in C.

* DEC and VAX are trademarks of Digital Equipment Corporation.
** UNIX is a Trademark of Bell Laboratories.)

4.2bsd IPC Primer «2- Introduction

1. INTRODUCTION

One of the most important parts of 4.2bsd is the interprocess communication facilities. These
facilities are the result of more than two years of discussion and research. The facilities pro-
vided in 4.2bsd incorporate many of the ideas from current research, while trying to maintain
the UNIX philosophy of simplicity and conciseness. It is hoped that the interprocess communi-
cation facilities included in 4.2bsd will establish a standard for UNIX. From the response to the
design, it appears many organizations carrying out work with UNIX are adopting it.

UNIX has previously been very weak in the area of interprocess communication. Prior to
the 4.2bsd facilities, the only standard mechanism which allowed two processes to communicate
were pipes (the mpx files which were part of Version 7 were experimental). Unfortunately,
pipes are very restrictive in that the two communicating processes must be related through a
common ancestor. Further, the semantics of pipes makes them almost impossible to maintain
in a distributed environment.

Earlier attempts at extending the ipc facilities of UNIX have met with mixed reaction.
The majority of the problems have been related to the fact these facilities have been tied to the
UNIX file system; either through naming, or implementation. Consequently, the ipc facilities
provided in 4.2bsd have been designed as a totally independent subsystem. The 4.2bsd ipc
allows processes to rendezvous in many ways. Processes may rendezvous through a UNIX file
system-like name space (a space where all names are path names) as well as through a network
name space. In fact, new name spaces may be added at a future time with only minor changes
visible to users. Further, the communication facilities have been extended to included more
than the simple byte stream provided by a pipe-like entity. These extensions have resuited in a
completely new part of the system which users will need time to familiarize themselves with. It
is likely that as more use is made of these facilities they will be refined; only time will tell.

The remainder of this document is organized in four sections. Section 2 introduces the
new system calls and the basic model of communication. Section 3 describes some of the sup-
porting library routines users may find useful in constructing distributed applications. Section 4
is concerned with the client/server model used in developing applications and includes exam-
ples of the two major types of servers. Section 5 delves into advanced topics which sophisti-
cated users are likely to encounter when using the ipc facilities.

DRAFT of July 27, 1983 Lefller/Fabry/Joy

4.2bsd IPC Primer -3- Basics

2. BASICS

The basic building block for communication is the socket. A socket is an endpoint of
communication to which a name may be bound. Each socket in use has a zype and one or more
associated processes. Sockets exist within communication domains. A communication domain is
an abstraction introduced to bundle common properties of processes communicating through
sockets. One such property is the scheme used to name sockets. For example, in the UNIX
communication domain sockets are named with UNIX path names; e.g. a socket may be named
““/dev/foo”. Sockets normally exchange data only with sockets in the same domain (it may be
possible to cross domain boundaries, but only if some translation process is performed). The
4.2bsd ipc supports two separate communication domains: the UNIX domain, and the Internet
domain is used by processes which communicate using the the DARPA standard communica-
tion protocols. The underlying communication facilities provided by these domains have a
significant influence on the internal system implementation as well as the interface to socket
facilities available to a user. An example of the latter is that a socket ‘“‘operating’’ in the UNIX
domain sees a subset of the possible error conditions which are possible when operating in the
Internet domain.

2.1. Socket types

Sockets are typed according to the communication properties visible to a user. Processes
are presumed to communicate only between sockets of the same type, although there is nothing
that prevents communication between sockets of different types should the underlying com-
munication protocols support this.

Three types of sockets currently are available to a user. A stream socket provides for the
bidirectional, reliable, sequenced, and unduplicated flow of data without record boundaries.
Aside from the bidirectionality of data flow, a pair of connected stream sockets provides an
interface nearly identical to that of pipes®.

A datagram socket supports bidirectional flow of data which is not promised to be
sequenced, reliable, or unduplicated. That is, a process receiving messages on a datagram socket
may find messages duplicated, and, possibly, in an order different from the order in which it
was sent. An important characteristic of a datagram socket is that record boundaries in data are
preserved. Datagram sockets closely model the facilities found in many contemporary packet
switched networks such as the Ethernet.

A raw socket provides users access to the underlying communication protocols which sup-
port socket abstractions. These sockets are normally datagram oriented, though their exact
characteristics are dependent on the interface provided by the protocol. Raw sockets are not
intended for the general user; they have been provided mainly for those interested in develop-
ing new communication protocols, or for gaining access to some of the more esoteric facilities
of an existing protocol. The use of raw sockets is considered in section 5.

Two potential socket types which have interesting properties are the sequenced packet
socket and the reliably delivered message socket. A sequenced packet socket is identical to a
stream socket with the exception that record boundaries are preserved. This interface is very
similar to that provided by the Xerox NS Sequenced Packet protocol. The reliably delivered
message socket has similar properties to a datagram socket, but with reliable delivery. While
these two socket types have been loosely defined, they are currently unimplemented in 4.2bsd.
As such, in this document we will concern ourselves only with the three socket types for which
support exists.

* In the UNIX domain, in fact, the semantics are identical and, as one mlght expect, pipes have been imple-
mented internally as simply a pair of connected stream sockets.

DRAFT of July 27, 1983 Leffler/Fabry/Joy

4.2bsd IPC Primer -4- Basics

2.2. Socket creation
To create a socket the socket system call is used:

s = socket(domain, type, protocol);

This call' requests that the system create a socket in the specified domain and of the specified
type. A particular protocol may also be requested. If the protocol is left unspecified (a value of
0), the system will select an appropriate protocol from those protocols which comprise the com-
munication domain and which may be used to support the requested socket type. The user is
returned a descriptor (a small integer number) which may be used in later system calls which
operate on sockets. The domain is specified as one of the manifest constants defined in the file
<sysl/socket.h>. For the UNIX domain the constant is AF_UNIX*; for the Internet domain
AF_INET. The socket types are also defined in this file and one of SOCK_STREAM,
SOCK_DGRA:4, or SOCK_RAW must be specified. To create a stream socket in the Internet
domain the following call might be used:

s = socket(AF_INET, SOCK_STREAM, 0);

This call would result in a stream socket being created with the TCP protocol providing the
underlying communication support. To create a datagram socket for on-machine use a sample
call might be: '

s = socket(AF_UNIX, SOCK_DGRAM, 0);

To obtain a particular protocol one selects the protocol number, as defined within the
communication domain. For the Internet domain the available protocols are defined in
< netinetf/in.h> or, better yet, one may use one of the library routines discussed in section 3,
such as getprotobyname.

#include <sys/types.h>
#include <sys/socket.h>
#tinclude <netinet/in.h>
#include <netdb.h>

p; = getprotobyname("tcp");
s = socket(AF_INET, SOCK_STREAM, pp->p_proto);

There are several reasons a socket call may fail. Aside from the rare occurrence of lack of
memory (ENOBUFS), a socket request may fail due to a request for an unknown protocol
(EPROTONOSUPPORT), or a request for a type of socket for which there is no supporting
protocol (EPROTOTYPE).

2.3. Binding names

A socket is created without a name. Until a name is bound to a socket, processes have no
way to reference it and, consequently, no messages may be received on it. The bind call is used
to assign a name to a socket:

bind(s, name, namelen);

The bound name is a variable length byte string which is interpreted by the supporting
protocol(s). Its interpretation may vary from communication domain to communication
domain (this is one of the properties which comprise the ‘“‘domain’’). In the UNIX domain
names are path names while in the Internet domain names contain an Internet address and port
number. If one wanted to bind the name ‘‘/dev/foo™ to a UNIX domain socket, the following
would be used:

* The manifest constants are named AF_whatever as they indicate the ‘“‘address format™ to use in interpret-
ing names.

DRAFT of July 27, 1983 Leffler/Fabry/Joy

4.2bsd IPC Primer -5- Basics

bind(s, "/dev/foo", sizeof ("/dev/foo") — 1);

(Note how the null byte in the name is not counted as part of the name.) In binding an Inter-
net address things become more complicated. The actual call is simple,

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in sin;

l;f;)d(s, &sin, sizeof (sin));

but the selection of what to place in the address sin requires some discussion. We will come
back to the problem of formulating Internet addresses in section 3 when the library routines
used in name resolution are discussed.

2.4. Connection establishment

With a bound socket it is possible to rendezvous with an unrelated process. This opera-
tion is usually asymmetric with one process a ‘‘client’’ and the other a ‘“‘server’’. The client
requests services from the server by initiating a ‘‘connection’’ to the server’s socket. The
server, when willing to offer its advertised services, passively ‘‘listens’’ on its socket. On the
client side the connect call is used to initiate a connection. Using the UNIX domain, this might
appear as,

connect(s, "server-name”, sizeof ("server-name"));
while in the Internet domain,

struct sockaddr_in server;
connect(s, &server, sizeof (server));

If the client process’s socket is unbound at the time of the connect call, the system will
automatically select and bind a name to the socket; c.f. section 5.4. An error is returned when
the connection was unsuccessful (any name automatically bound by the system, however,
remains). Otherwise, the socket is associated with the server and data transfer may begin.

Many errors can be returned when a connection attempt fails. The most common are:

ETIMEDOUT
After failing to establish a connection for a period of time, the system decided there was
no point in retrying the connection attempt any more. This usually occurs because the
destination host is down, or because problems in the network resulted in transmissions
being lost.

ECONNREFUSED
The host refused service for some reason. When connecting to a host running 4.2bsd this
is usually due to a server process not being present at the requested name.

ENETDOWN or EHOSTDOWN
These operational errors are returned based on status information delivered to the client
host by the underlying communication services.

ENETUNREACH or EHOSTUNREACH
These operational errors can occur either because the network or host is unknown (no
route to the network or host is present), or because of status information returned by
intermediate gateways or switching nodes. Many times the status returned is not
sufficient to distinguish a network being down from a host being down. In these cases the
system is conservative and indicates the entire network is unreachable.

For the server to receive a client’s connection it must perform two steps after binding its
socket. The first is to indicate a willingness to listen for incoming connection requests:

DRAFT of July 27, 1983 Lefller/Fabry/Joy

4.2bsd IPC Primer -6- Basics

listen(s, 5);

The second parameter to the listen call specifies the maximum number of outstanding connec-
tions which may be queued awaiting acceptance by the server process. Should a connection be
requested while the queue is full, the connection will not be refused, but rather the individual
messages which comprise the request will be ignored. This gives a harried server time to make
room in its pending connection queue while the client retries the connection request. Had the
connection been returned with the ECONNREFUSED error, the client would be unable to tell
if the server was up or not. As it is now it is still possible to get the ETIMEDOUT error back,
though this is unlikely. The backlog figure supplied with the listen call is limited by the system
to a maximum of 5 pending connections on any one queue. This avoids the problem of
processes hogging system resources by setting an infinite backlog, then ignoring all connection
requests.

With a socket marked as listening, a server may accept a connection:

fromlen = sizeof (from);
snew = accept(s, &from, &fromlen);

A new descriptor is returned on receipt of a connection (along with a new socket). If the
server wishes to find out who its client is, it may supply a buffer for the client socket’s name.
The value-result parameter fromlen is initialized by the server to indicate how much space is
associated with from, then modified on return to reflect the true size of the name. If the
client’s name is not of interest, the second parameter may be zero.

Accept normally blocks. That is, the call to accept will not return until a connection is
available or the system call is interrupted by a signal to the process. Further, there is no way
for a process to indicate it will accept connections from only a specific individual, or individuals.
It is up to the user process to consider who the connection is from and close down the connec-
tion if it does not wish to speak to the process. If the server process wants to accept connec-
tions on more than one socket, or not block on the accept call there are alternatives;, they will
be considered in section 5.

2.5. Data transfer

With a connection established, data may begin to flow. To send and receive data there are
a number of possible calls. With the peer entity at each end of a connection anchored, a user
can send or receive a message without specifying the peer. As one might expect, in this case,
then the normal read and write system calls are useable,

write(s, buf, sizeof (buf));
read (s, buf, sizeof (buf));

In addition to read and write, the new calls send and recv may be used:

send(s, buf, sizeof (buf), flags);
recv(s, buf, sizeof (buf), flags);

While send and recy are virtually identical to read and write, the extra flags argument is impor-
tant. The flags may be specified as a non-zero value if one or more of the following is required:

SOF_OO0OB send/receive out 6f band data
SOF_PREVIEW look at data without reading
SOF_DONTROUTE send data without routing packets

Out of band data is a notion specific to stream sockets, and one which we will not immediately
consider. The option to have data sent without routing applied to the outgoing packets is
currently used only by the routing table management process, and is unlikely to be of interest
to the casual user. The ability to preview data is, however, of interest. When SOF_PREVIEW
is specified with a recv call, any data present is returned to the user, but treated as still

DRAFT of July 27, 1983 Lefller/Fabry/Joy

4.2bsd IPC Primer -7- Basics

“‘unread”’. That is, the next read or recv call applied to the socket will return the data previ-
ously previewed.

2.6. Discarding sockets

Once a socket is no longer of interest, it may be discarded by applying a close to the
descriptor,

close(s);

If data is associated with a socket which promises reliable delivery (e.g. a stream socket) when a
close takes place, the system will continue to attempt to transfer the data. However, after a
fairly long period of time, if the data is still undelivered, it will be discarded. Should a user
have no use for any pending data, it may perform a shutdown on the socket prior to closing it.
This call is of the form:

shutdown(s, how);

where how is 0 if the user is no longer interested in reading data, 1 if no more data will be sent,
or 2 if no data is to be sent or received. Applying shutdown to a socket causes any data queued
to be immediately discarded.

2.7. Connectionless sockets

To this point we have been concerned mostly with sockets which follow a connection
oriented model. However, there is also support for connectionless interactions typical of the
datagram facilities found in contemporary packet switched networks. A datagram socket pro-
vides a symmetric interface to data exchange. While processes are still likely to be client and
server, there is no requirement for connection establishment. Instead, each message includes
the destination address.

Datagram sockets are created as before, and each should have a name bound to it in order
that the recipient of a message may identify the sender. To send data, the sendro primitive is
used,

sendto(s, buf, buflen, flags, &to, tolen);

The s, buf, byflen, and flags parameters are used as before. The o and tolen values are used to
indicate the intended recipient of the message. When using an unreliable datagram interface, it
is unlikely any errors will be reported -to the sender. Where information is present locally to
recognize a message which may never be delivered (for instance when a network is unreach-
able), the call will return —1 and the global value errno will contain an error number.

To receive messages on an unconnected datagram socket, the recyfrom primitive is pro-
vided:

recvfrom(s, buf, buflen, flags, &from, &fromlen);

Once again, the fromlen parameter is handled in a value-result fashion, initially containing the
size of the from buffer.

In addition to the two calls mentioned above, datagram sockets may also use the connect
call to associate a socket with a specific address. In this case, any data sent on the socket will
automatically be addressed to the connected peer, and only data received from that peer will be
delivered to the user. Only one connected address is permitted for each socket (i.e. no multi-
casting). Connect requests on datagram sockets return immediately, as this simply results in
the system recording the peer’s address (as compared to a stream socket where a connect
request initiates establishment of an end to end connection). Other of the less important
details of datagram sockets are described in section 5.

DRAFT of July 27, 1983 Leffler/Fabry/Joy

4.2bsd IPC Primer -8- Basics

2.8. Input/Output multiplexing

One last facility often used in developing applications is the ability to multiplex i/o
requests among multiple sockets and/or files. This is done using the select call:

select(nfds, &readfds, &writefds, &execptfds, &timeout);

Select takes as arguments three bit masks, one for the set of file descriptors for which the caller
wishes to be able to read data on, one for those descriptors to which data is to be written, and
one for which exceptional conditions are pending. Bit masks are created by or-ing bits of the
form “1 << fd”. That is, a descriptor fd is selected if a 1 is present in the f@’th bit of the
mask. The parameter nfds specifies the range of file descriptors (i.e. one plus the value of the
largest descriptor) specified in a mask.

A timeout value may be specified if the selection is not to last more than a predetermined
period of time. If timeout is set to 0, the selection takes the form of a poll, returning immedi-
ately. If the last parameter is a null pointer, the selection will block indefinitely*. Select nor-
mally returns the number of file descriptors selected. If the select call returns due to the
timeout expiring, then a value of —1 is returned along with the error number EINTR.

Select provides a synchronous multiplexing scheme. Asynchronous notification of output
completion, input availability, and exceptional conditions is possible through use of the SIGIO
and SIGURG signals described in section 5.

* To be more specific, a return takes place only when a descriptor is selectable, or when a signal is received
by the caller, interrupting the system call.

DRAFT of July 27, 1983 | Leffler/Fabry/Joy

4.2bsd IPC Primer -9. Network Library Routines

3. NETWORK LIBRARY ROUTINES

The discussion in section 2 indicated the possible need to locate and construct network
addresses when using the interprocess communication facilities in a distributed environment.
To aid in this task a number of routines have been added to the standard C run-time library.
In this section we will consider the new routines provided to manipulate network addresses.
While the 4.2bsd networking facilities support only the DARPA standard Internet protocols,
these routines have been designed with flexibility in mind. As more communication protocols
become available, we hope the same user interface will be maintained in accessing network-
related address data bases. The only difference should be the values returned to the user.
Since these values are normally supplied the system, users should not need to be directly aware
of the communication protocol and/or naming conventions in use.

Locating a service on a remote host requires many levels of mapping before client and
server may communicate. A service is assigned a name which is intended for human consump-
tion; e.g. ‘‘the login server on host monet’’. This name, and the name of the peer host, must
then be translated into network addresses which are not necessarily suitable for human con-
sumption. Finally, the address must then used in locating a physical location and route to the
service. The specifics of these three mappings is likely to vary between network architectures.
For instance, it is desirable for a network to not require hosts be named in such a way that their
physical location is known by the client host. Instead, underlying services in the network may
discover the actual location of the host at the time a client host wishes to communicate. This
ability to have hosts named in a location independent manner may induce overhead in connec-
tion establishment, as a discovery process must take place, but allows a host to be physically
mobile without requiring it to notify its clientele of its current location.

Standard routines are provided for: mapping host names to network addresses, network
names to network numbers, protocol names to protocol numbers, and service names to port
numbers and the appropriate protocol to use in communicating with the server process. The
file <netdb.h> must be included when using any of these routines.

3.1. Host names
A host name to address mapping is represented by the hostent structure

struct hostent {

char *h_name; /* official name of host */
char “'h aliases; /* alias list */

int h_addrtype /* host address type */
int h_length; /* length of address */
char *h_addr; /* address */

kL

The official name of the host and its public aliases are returned, along with a variable length
address and address type. The routine gethostbyname(3N) takes a host name and returns a hos-
tent structure, while the routine gethostbyaddr(3N) maps host addresses into a hostent structure.
It is possible for a host to have many addresses, all having the same name. Gethostybyname
returns the first matching entry in the data base file /fetc/hosts;, if this is unsuitable, the lower
level routine gethostent(3N) may be used. For example, to obtain a hostent structure for a host
on a particular network the following routine might be used (for smpllcny, only Internet
addresses are considered):

DRAFT of July 27, 1983 Leffler/Fabry/Joy

4.2bsd IPC Primer -10- Network Library Routines

#include <sys/types.h>
#include <sys/socket.h>
##include <netinet/in.h>
#include <netdb.h>

struct hostent *
gethostbynameandnet (name, net)
char *name;
int net;

register struct hostent *hp;
register char **cp;

sethostent(0);
while ((hp = gethostent()) != NULL) {
if (hp->h_addrtype != AF_INET)
continue;
if (strcmp(name, hp->h_name)) {
for (cp = hp->h_aliases; cp && *cp != NULL; cp+ +)
if (stremp(name, *cp) == ()
goto found,
continue;

found:
if (in_netof (* (struct in_addr *)hp->h_addr)) == net)
break;

endhostent(0);
return (hp);

}

(in_netof(3N) is a standard routine which returns the network portion of an Internet address.)

3.2. Network names

As for host names, routines for mapping network names to numbers, and back, are pro-
vided. These routines return a netent structure:

/‘
* Assumption here is that a network number
* fits in 32 bits -- probably a poor one.

*/
struct netent { .
char *n_name; /* official name of net */
© char **n_aliases; - /* alias list */ ‘
int n_addrtype; /* net address type */ "
int n_net; /* network # */

|5
The routines getnetbyname(3N), getnetbynumber(3N), and getnetent(3N) are the network coun-
terparts to the host routines described above.

3.3. Protocol names

For protocols the protoent structure defines the protocol-name mapping used with the rou-
tines getprotobyname(3N), getprotobynumber(3N), and getprotoent(3N):

DRAFT of July 27, 1983 Leffler/Fabry/Joy

4.2bsd IPC Primer -11- Network Library Routines

struct protoent {

char *p_name; /* official protocol name */
char **p_aliases; /* alias list */
int p_proto; /* protocol # */

JH

3.4. Service names

Information regarding services is a bit more complicated. A service is expected to reside
at a specific “‘port”® and employ a particular communication protocol. This view is consistent
with the Internet domain, but inconsistent with other network architectures. Further, a service
may reside on multiple ports or support multiple protocols. If either of these occurs, the higher
level library routines will have to be bypassed in favor of homegrown routines similar in spirit
to the ‘‘gethostbynameandnet’’ routine described above. A service mapping is described by the
servent structure,

struct servent {

char *s_name; /* official service name */
char **s_aliases; . /* alias list */
int s_port; /* port # */

char *s_proto; /* protocol to use */
IR :
The routine getservbyname(3N) maps service names to a servent structure by specifying a ser-
vice name and, optionally, a qualifying protocol. Thus the call

sp = getservbyname ("telnet”, (char *)0);
returns the service specification for a telnet server using any protocol, while the call
sp = getservbyname ("telnet", "tcp");

returns only that telnet server which uses the TCP protocol. The routines getservbyport(3N)
and getservent(3N) are also provided. The getservbyport routine has an interface similar to that
provided by getservbyname, an optional protocol name may be specified to qualify lookups.

3.5. Miscellaneous

With the support routines described above, an application program should rarely have to
deal directly with addresses. This allows services to be developed as much as possible in a net-
work independent fashion. It is clear, however, that purging all network dependencies is very
difficult. So long as the user is required to supply network addresses when naming services and
sockets there will always some network dependency in a program. For example, the normal
code included in client programs, such as the remote login program, is of the form shown in
Figure 1. (This example will be considered in more detail in section 4.)

If we wanted to make the remote login program independent of the Internet protocols and
addressing scheme we would be forced to add a layer of routines which masked the network
dependent aspects from the mainstream login code. For the current facilities available in the
system this does not appear to be worthwhile. Perhaps when the system is adapted to different
network architectures the utilities will be reorganized more cleanly.

Aside from the address-related data base routines, there are several other routines avail-
able in the run-time library which are of interest to users. These are intended mostly to sim-
plify manipulation of names and addresses. Table 1 summarizes the routines for manipulating
variable length byte strings and handling byte swapping of network addresses and values.

The byte swapping routines are provided because the operating system expects addresses
to be supplied in network order. On a VAX, or machine with similar architecture, this is usu-
ally reversed. Consequently, programs are sometimes required to byte swap quantities. The

DRAFT of July 27, 1983 Leffler/Fabry/Joy

4.2bsd IPC Primer -12-

#include <sys/types.h>
#tinclude <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

main (argc, argv)

{

char *argv(];

struct sockaddr_in sin;
struct servent *sp;
struct hostent *hp;

int s;

sp = getservbyname ("login", "tcp");

if (sp == NULL) {
fpritztt; (stderr, "rlogin: tcp/login: unknown service\n");
exit(1);

hp = gethostbyname (argv[1]);

if (hp == NULL) {
fprintf(stderr, "rlogin: %s: unknown host\n", argv[1]);
exit(2);

bzero((char *)&sin, sizeof (sin));
beopy (hp->h_addr, (char *)&sin.sin_addr, hp->h_length);
sin.sin_family = hp->h_addrtype;
sin.sin_port = sp->s_port;
s = socket(AF_INET, SOCK_STREAM, 0);
if s < 0) {
perror("rlogin: socket");
exit(3);

if (connect(s, (char *)&sin, sizeof (sin)) < 0) {
perror("rlogin: connect”);
- exit(5); :

Figure 1. Remote login client code.

Network Library Routines

Call

Synopsis

bemp(sl, s2, n) | compare byte-strings; 0 if same, not 0 otherwise
becopy(sl, s2, n) | copy n bytes from si to s2
bzero(base, n) zero-fill n bytes starting at base

htonl(val) convert 32-bit quantity from host to network byte order
htons(val) convert 16-bit quantity from host to network byte order
ntohl(val) convert 32-bit quantity from network to host byte order
ntohs(val) convert 16-hit quantity from network to host byte order

Table 1. C run-time routines.

DRAFT of July 27, 1983

Leffler/Fabry/Joy

4.2bsd IPC Primer -13- Network Library Routines

library routines which return network addresses provide them in network order so that they
may simply be copied into the structures provided to the system. This implies users should
encounter the byte swapping problem only when interpreting network addresses. For example, if
an Internet port is to be printed out the following code would be required:

printf("port number %d\n", ntohs(sp->s_port));
On machines other than the VAX these routines are defined as null macros.

DRAFT of July 27, 1983 Leffler/Fabry/Joy

4.2bsd IPC Primer -14 - Client/Server Model

4. CLIENT/SERVER MODEL

The most commonly used paradigm in constructing distributed applications is the
client/server model. In this scheme client applications request services from a server process.
This implies an asymmetry in establishing communication between the client and server which
has been examined in section 2. In this section we will look more closely at the interactions
between client and server, and consider some of the problems in developing client and server
applications.

Client and server require a well known set of conventions before service may be rendered
(and accepted). This set of conventions comprises a protocol which must be implemented at
both ends of a connection. Depending on the situation, the protocol may be symmetric or
asymmetric. In a symmetric protocol, either side may play the master or slave roles. In an
asymmetric protocol, one side is immutably recognized as the master, with the other the slave.
An example of a symmetric protocol is the TELNET protocol used in the Internet for remote
terminal emulation. An example of an asymmetric protocol is the Internet file transfer proto-
col, FTP. No matter whether the specific protocol used in obtaining a service is symmetric or
asymmetric, when accessing a service there is a ‘‘client process’’ and a ‘‘server process’”. We
will first consider the properties of server processes, then client processes.

A server process normally listens at a well know address for service requests. Alternative
schemes which use a service server may be used to eliminate a flock of server processes clog-
ging the system while remaining dormant most of the time. The Xerox Courier protocol uses
the latter scheme. When using Courier, a Courier client process contacts a Courier server at
the remote host and identifies the service it requires. The Courier server process then creates
the appropriate server process based on a data base and ‘‘splices’ the client and server
together, voiding its part in the transaction. This scheme is attractive in that the Courier server
process may provide a single contact point for all services, as well as carrying out the initial
steps in authentication. However, while this is an attractive possibility for standardizing access
to services, it does introduce a certain amount of overhead due to the intermediate process
involved. Implementations which provide this type of service within the system can minimize
the cost of client server rendezvous. The portal notion described in the ‘‘4.2BSD System
Manual’ embodies many of the ideas found in Courier, with the rendezvous mechanism imple-
mented internal to the system.

4.1. Servers .

In 4.2bsd most servers are accessed at well known Internet addresses or UNIX domain
names. When a server is started at boot time it advertises it services by listening at a well know
location. For example, the remote login server’s main loop is of the form shown in Figure 2.

The first step taken by the server is look up its service definition:

sp = getservbyname("login", "tcp");

if (sp == NULL) {
fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(1);

)

This definition is used in later portions of the code to define the Internet port at which it listens
for service requests (indicated by a connection).

Step two is to disassociate the server from the controlling terminal of its invoker. This is
important as the server will likely not want to receive signals delivered to the process group of
the controlling terminal.

DRAFT of July 27, 1983 Leffler/Fabry/Joy

4.2bsd IPC Primer -15- Client/Server Model

main (argc, argv)
int argc;
char **argv,

int f;
struct sockaddr_in from;
struct servent *sp;

sp = getservbyname ("login", "tcp");

if (sp == NULL) {
fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(1);

)

#ifndef DEBUG
< < disassociate server from controlling terminal> >
#endif

.s.i‘n.sin _port = sp->s_port,
i: - socket(AF_INET, SOCK_STREAM, 0);
if (bind(f, (caddr_t)&sin, sizeof (sin)) < 0) {

}

iiéten(f, 5);
for ;) {
int g, len = sizeof (from);

g = accept(f, &from, &len);
if (g < 0) {
if (errno != EINTR)
perror ("rlogind: accept");
continue;

}

if (fork() == 0) {
close(f);
doit(g, &from);

close(g);

Figure 2. Remote login server.
Once a server has established a pristine environment, it creates a socket and begins

accepting service requests. The bind call is required to insure the server listens at its expected
location. The main body of the loop is fairly simple:

DRAFT of July 27, 1983 Leffler/Fabry/Joy

4.2bsd IPC Primer -16 - Client/Server Model

for (;;) {
int g, len = sizeof (from);

g = accept(f, &from, &len);
if @ <0){
if (errno != EINTR)
perror("rlogind: accept™);
continue;

)

if (fork() == 0) {
close(f);
doit(g, &from);

close(g);

An accept call blocks the server until a client requests service. This call could return a failure
status if the call is interrupted by a signal such as SIGCHLD (to be discussed in section 5).
Therefore, the return value from accepr is checked to insure a connection has actually been
established. With a connection in hand, the server then forks a child process and invokes the
main body of the remote login protocol processing. Note how the socket used by the parent for
queueing connection requests is closed in the child, while the socket created as a result of the
accept is closed in the parent. The address of the client is also handed the doit routine because
it requires it in authenticating clients.

4.2. Clients

The client side of the remote login service was shown earlier in Figure 1. One can see the
separate, asymmetric roles of the client and server ciearly in the code. The server is a passive
entity, listening for client connections, while the client process is an active entity, initiating a
connection when invoked.

Let us consider more closely the steps taken by the client remote login process. As in the
server process the first step is to locate the service definition for a remote login:

sp = getservbyname("login", "tcp");

if (sp == NULL) {
fprintf(stderr, "rlogin: tcp/login: unknown service\n");
exit(1);

}
Next the destination host is looked up with a gethostbyname call:

hp = gethostbyname (argv[1]);

if (hp == NULL) {
fprintf(stderr, "rlogin: %s: unknown host\n", argv(1]);
exit(2);

With this accomplished, all that is required is to establish a connection to the server at the
requested host and start up the remote login protocol. The address buffer is cleared, then filled
in with the Internet address of the foreign host and the port number at which the login process
resides:

DRAFT of July 27, 1983 Leffler/Fabry/Joy

4.2bsd IPC Primer -17- Client/Server Model

bzero((char *)&sin, sizeof (sin));

beopy (hp->h_addr, (char *)sin.sin_addr, hp->h_length);
sin.sin_family = hp->h_addrtype;

sin.sin_port = sp->s_port;

A socket is created, and a connection initiated.
s = socket(hp->h_addrtype, SOCK_STREAM, 0);

if s <0) {
perror ("rlogin: socket");
| exit(3);

if .(connect(s, (char *)&sin, sizeof (sin)) < 0) {
perror ("rlogin: connect");
exit(4);

}

The details of the remote login protocol will not be considered here.

4.3. Connectionless servers

While connection-based services are the norm, some services are based on the use of
datagram sockets. One, in particular, is the ‘‘rwho’’ service which provides users with status
information for hosts connected to a local area network. This service, while predicated on the
ability to broadcast information to all hosts connected to a particular network, is of interest as
an example usage of datagram sockets.

A user on any machine running the rwho server may find out the current status of a
machine with the ruptime(1) program. The output generated is illustrated in Figure 3.

arpa up 945, S users, load 1.15, 139, 1.31
cad up 2+12:04, 8 users, load 4.67, S5.13, 4.59
calder up 10:10, 0 users, load 0.27, 0.15, 0.14
dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65
degas up 25+09:48, Ousers,load 1.49, 143, 141
ear up 5+400:05, 0 users, load 1.51, 1.54, 1.56
ernie down 0:24

esvax down 17:04

ingres down 0:26

kim up 3+09:16, 8 users, load 2.03, 246, 3.11
matisse up 3+06:18, 0 users, load 0.03, 0.03, 0.05
medea up 3+09:39, 2 users, load 0.35, 0.37, 0.50
merlin down 19415:37

miro up 1407:20, 7 users, load 4.59, 3.28, 2.12
monet up 1400:43, 2 users, load 0.22, 0.09, 0.07
oz down 16:09

statvax up 2415:57, 3 users, load 1.52, 1.81, 1.86
ucbvax up 9:34, 2 users, load 6.08, S5.16, 3.28

Figure 3. ruptime output.

Status information for each host is periodically broadcast by rwho server processes on
each machine. The same server process also receives the status information and uses it to
update a database. This database is then interpreted to generate the status information for each
host. Servers operate autonomously, coupled only by the local network and its broadcast capa-
bilities.

DRAFT of July 27, 1983 Leffler/Fabry/Joy

4.2bsd IPC Primer - 18- Client/Server Model

The rwho server, in a simplified form, is pictured in Figure 4. There are two separate
tasks performed by the server. The first task is to act as a receiver of status information broad-
cast by other hosts on the network. This job is carried out in the main loop of the program.
Packets received at the rwho port are interrogated to insure they’ve been sent by another rwho
server process, then are time stamped with their arrival time and used to update a file indicating
the status of the host. When a host has not been heard from for an extended period of time,
the database interpretation routines assume the host is down and indicate such on the status
reports. This algorithm is prone to error as a server may be down while a host is actually up,
but serves our current needs.

main()

sp = getservbyname("who", "udp");

net = getnetbyname ("localnet");

sin.sin_addr = inet_makeaddr(INADDR_ANY, net);
sin.sin_port = sp->s_port;

s = socket(AF_INET, SOCK_DGRAM, 0);
i;ind(s, &sin, sizeof (sin));

sigset(SIGALRM, onalrm);
onalrm();
for ;) {
struct whod wd;
int cc, whod, len = sizeof (from);

cc = recvfrom(s, (char *)&wd, sizeof (struct whod), 0, &from, &len);
if (cc <=0) {
if (cc < 0 && errno != EINTR)
perror("rwhod: recv");
continue;

if (from.sin_port != sp->s_port) {
fprintf(stderr, "rwhod: %d: bad from port\n",
ntohs(from.sin_port));
continue;

)

if (!verify(wd.wd_hostname)) {
fprintf(stderr, "rwhod: malformed host name from %x\n",
ntohl(from.sin_addr.s_addr));
continue;

} . ‘
(void) sprintf(path, "%s/whod.%s", RWHODIR, wd.wd_hostname);
whod = open(path, FWRONLYFCREATEFTRUNCATE 0666);

(vond) time (&wd.wd_recvtime);
(void) write(whod, (char ‘)&wd cc);
(void) close(whod);

Figure 4. rwho server.

DRAFT of July 27, 1983 Leffler/Fabry/Joy

4.2bsd IPC Primer -19- Client/Server Model

The second task performed by the server is to supply information regarding the status of
its host. This involves periodically acquiring system status information, packaging it up in a
message and broadcasting it on the local network for other rwho servers to hear. The supply
function is triggered by a timer and runs off a signal. Locating the system status information is
somewhat involved, but uninteresting. Deciding where to transmit the resultant packet does,
however, indicates some problems with the current protocol.

Status information is broadcast on the local network. For networks which do not support
the notion of broadcast another scheme must be used to simulate or replace broadcasting. One
possibility is to enumerate the known neighbors (based on the status received). This, unfor-
tunately, requires some bootstrapping information, as a server started up on a quiet network
will have no known neighbors and thus never receive, or send, any status information. This is
the identical problem faced by the routing table management process in propagating routing
status information. The standard solution, unsatisfactory as it may be, is to inform one or
more servers of known neighbors and request that they always communicate with these neigh-
bors. If each server has at least one neighbor supplied it, status information may then pro-
pagate through a neighbor to hosts which are not (possibly) directly neighbors. If the server is
able to support networks which provide a broadcast capability, as well as those which do not,
then networks with an arbitrary topology may share status information®.

The second problem with the current scheme is that the rwho process services only a sin-
gle local network, and this network is found by reading a file. It is important that software
operating in a distributed environment not have any site-dependent information compiled into
it. This would require a separate copy of the server at each host and make maintenance a
severe headache. 4.2bsd attempts to isolate host-specific information from applications by pro-
viding system calls which return the necessary informationt. Unfortunately, no straightforward
mechanism currently exists for finding the collection of networks to which a host is directly
connected. Thus the rwho server performs a lookup in a file to find its local network. A
better, though still unsatisfactory, scheme used by the routing process is to interrogate the sys-
temn data structures to locate those directly connected networks. A mechanism to acquire this
information from the system would be a useful addition.

* One must, however, be concerned about “‘loops™. That is, if a host is connected to multiple networks, it
will receive status information from itself. This can lead to an endless, wasteful, exchange of information.
t An example of such a system call is the gethostname(2) call which returns the host’s ‘““official’’ name.

DRAFT of July 27, 1983 Leffler/Fabry/Joy

4.2bsd IPC Primer -20- Advanced Topics

5. ADVANCED TOPICS

A number of facilities have yet to be discussed. For most users of the ipc the mechan-
isms already described will suffice in constructing distributed applications. However, others will
find need to utilize some of the features which we consider in this section.

5.1. Out of band data

The stream socket abstraction includes the notion of ‘‘out of band’ data. Out of band
data is a logically independent transmission channel associated with each pair of connected
stream sockets. Out of band data is delivered to the user independently of normal data along
with the SIGURG signal. In addition to the information passed, a logical mark is placed in the
data stream to indicate the point at which the out of band data was sent. The remote login and
remote shell applications use this facility to propagate signals from between client and server
processes. When a signal is expected to flush any pending output from the remote process(es),
all data up to the mark in the data stream is discarded.

The stream abstraction defines that the out of band data facilities must support the reli-
able delivery of at least one out of band message at a time. This message may contain at least
one byte of data, and at least one message may be pending delivery to the user at any one time.
For communications protocols which support only in-band signaling (i.e. the urgent data is
delivered in sequence with the normal data) the system extracts the data from the normal data
stream and stores it separately. This allows users to choose between receiving the urgent data
in order and receiving it out of sequence without having to buffer all the intervening data.

To send an out of band message the SOF_OOB flag is supplied to a send or sendto calls,
while to receive out of band data SOF_OOB should be indicated when performing a recvfrom or
recv call. To find out if the read pointer is currently pointing at the mark in the data stream,
the SIOCATMARK ioctl is provided:

ioctl(s, SIOCATMARK, &yes);

If yesis a 1 on return, the next read will return data after the mark. Otherwise (assuming out
of band data has arrived), the next read will provide data sent by the client prior to transmis-
sion of the out of band signal. The routine used in the remote login process to flush output on
receipt of an interrupt or quit signal is shown in Figure 5.

s. 2 Signals and process groups

Due to the existence of the SIGURG and SIGIO signals each socket has an associated
process group (just as is done for terminals). This process group is initialized to the process
group of its creator, but may be redefined at a later time with the SIOCSPGRP ioctl:

DRAFT of July 27, 1983 ' Leffler/Fabry/Joy

4.2bsd IPC Primer -21.- Advanced Topics

oob()
{

int out = 141,
char waste[BUFSIZ], mark;

signal (SIGURG, oob);
/* flush local terminal input and output */
ioctl(1, TIOCFLUSH, (char *)&out);
for ;) {
if (ioctl(rem, SIOCATMARK, &mark) < 0) {
perror ("ioctl");
break;

if (mark)
break;
(void) read(rem, waste, sizeof (waste));

recv(rem, &mark, 1, SOF_OOB);

Figure 5. Flushing terminal i/o on receipt of out of band data.

ioctl(s, SIOCSPGRP, &pgrp);
A similar ioctl, SSIOCGPGRP, is available for determining the current process group of a socket.

5.3. Pseudo terminals

Many programs will not function properly without a terminal for standard input and out-
put. Since a socket is not a terminal, it is often necessary to have a process communicating
over the network do so through a pseudo terminal. A pseudo terminal is actually a pair of dev-
ices, master and slave, which allow a process to serve as an active agent in communication
between processes and users. Data written on the slave side of a pseudo terminal is supplied as
input to a process reading from the master side. Data written on the master side is given the
slave as input. In this way, the process manipulating the master side of the pseudo terminal has
control over the information read and written on the slave side. The remote login server uses
pseudo terminals for remote login sessions. A user logging in to a machine across the network
is provided a shell with a slave pseudo terminal as standard input, output, and error. The
server process then handles the communication between the programs invoked by the remote
shell and the user’s local client process. When a user sends an interrupt or quit signal to a pro-
cess executing on a remote machine, the client login program traps the signal, sends an out of
band message to the server process who then uses the signal number, sent as the data value in
the out of band message, to perform a killpg(2) on the appropriate process group.

5.4. Internet address binding

Binding addresses to sockets in the Internet domain can be fairly complex. Communicat-
ing processes are bound by an association. An association is composed of local and foreign
addresses, and local and foreign ports. Port numbers are allocated out of separate spaces, one
for each Internet protocol. Associations are always unique. That is, there may never be dupli-
cate <protocol, local address, local port, foreign address, foreign port> tuples.

The bind system call allows a process to specify half of an association, <local address,
local port>, while the connect and accept primitives are used to complete a socket’s associa-
tion. Since the association is created in two steps the association uniqueness requirement indi-
cated above could be violated unless care is taken. Further, it is unrealistic to expect user

DRAFT of July 27, 1983 Leffler/Fabry/Joy

4.2bsd IPC Primer -22- Advanced Topics

programs to always know proper values to use for the local address and local port since a host
may reside on multiple networks and the set of allocated port numbers is not directly accessible
to a user.

To simplify local address binding the notion of a ‘“‘wildcard’® address has been provided.
When an address is specified as INADDR_ANY (a manifest constant defined in
<netinet/in.h>), the system interprets the address as ‘‘any valid address’. For example, to
bind a specific port number to a socket, but leave the local address unspecified, the following
code might be used:

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in sin;

s = socket(AF_INET, SOCK_STREAM, 0);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = MYPORT;

bind(s, (char *)&sin, sizeof (sin));

Sockets with wildcarded local addresses may receive messages directed to the specified port
number, and addressed to any of the possible addresses assigned a host. For example, if a host
is on a networks 46 and 10 and a socket is bound as above, then an accept call is performed,
the process will be able to accept connection requests which arrive either from network 46 or
network 10.

In a similar fashion, a local port may be left unspecified (specified as zero), in which case
the system will select an appropriate port number for it. For example:

sin.sin_addr.s_addr = MYADDRESS;

sin.sin_port = 0,

bind(s, (char *)&sin, sizeof (sin));
The system selects the port number based on two criteria. The first is that ports numbered 0
through 1023 are reserved for privileged users (i.e. the super user). The second is that the port

number is not currently bound to some other socket. In order to find a free port number in the
privileged range the following code is used by the remote shell server:

DRAFT of July 27, 1983 . Leffler/Fabry/Joy

4.2bsd IPC Primer -23- Advanced Topics

struct sockaddr_in sin;

lport = IPPORT_RESERVED — 1;
sin.sin_addr.s_addr = INADDR_ANY;

for (;;) { ,

sin.sin_port = htons((u_short)lport);

if (bind(s, (caddr_t)&sin, sizeof (sin)) >= 0)
break;

if (errno != EADDRINUSE && errno != EADDRNOTAVAIL) {
perror("socket");

\ break;

lport--;

if (Iport == IPPORT_RESERVED/2) {
fprintf(stderr, "socket: All ports in use\n");
break;

}

The restriction on allocating ports was done to allow processes executing in a ‘‘secure’’ environ-
ment to perform authentication based on the originating address and port number.

In certain cases the algorithm used by the system in selecting port numbers is unsuitable
for an application. This is due to associations being created in a two step process. For exam-
ple, the Internet file transfer protocol, FTP, specifies that data connections must always ori-
ginate from the same local port. However, duplicate associations are avoided by connecting to
different foreign ports. In this situation the system would disallow binding the same local
address and port number to a socket if a previous data connection’s socket were around. To
override the default port selection algorithm then an option call must be performed prior to
address binding:

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *)0, 0);
bind(s, (char *)&sin, sizeof (sin));

With the above call, local addresses may be bound which are already in use. This does not
violate the uniqueness requirement as the system still checks at connect time to be sure any
other sockets with the same local address and port do not have the same foreign address and
port (if an association already exists, the error EADDRINUSE is returned).

Local address binding by the system is currently done somewhat haphazardly when a host
is on multiple networks. Logically, one would expect the system to bind the local address asso-
ciated with the network through which a peer was communicating. For instance, if the local
host is connected to networks 46 and 10 and the foreign host is on network 32, and traffic from
network 32 were arriving via network 10, the local address to be bound would be the host’s
address on network 10, not network 46. This unfortunately, is not always the case. For rea-
sons too complicated to discuss here, the local address bound may be appear to be chosen at
random. This property of local address binding will normally be invisible to users unless the
foreign host does not understand how to reach the address selected®.

* For example, if network 46 were unknown to the host on network 32, and the local address were bound to
that located on network 46, then even though a route between the two hosts existed through network 10, a
connection would fail.

DRAFT of July 27, 1983 Leffler/Fabry/Joy

4.2bsd IPC Primer -24- Advanced Topics

5.5. Broadcasting and datagram sockets

By using a datagram socket it is possible to send broadcast packets on many networks sup-
ported by the system (the network itself must support the notion of broadcasting; the system
provides no broadcast simulation in software). Broadcast messages can place a high load on a
network since they force every host on the network to service them. Consequently, the ability
to send broadcast packets has been limited to the super user.

To send a broadcast message, an Internet datagram socket should be created:
s = socket(AF_INET, SOCK_DGRAM, 0};
and at least a port number should be bound to the socket:

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = MYPORT;

bind(s, (char *)&sin, sizeof (sin));

Then the message should be addressed as:

dst.sin_family = AF_INET;
dst.sin_addr.s_addr = INADDR_ANY;
dst.sin_port = DESTPORT;

and, finally, a sendto call may be used:
sendto(s, buf, buflen, 0, &dst, sizeof (dst));

Received broadcast messages contain the senders address and port (datagram sockets are
anchored before a message is allowed to go out).

5.6. Signals

Two new signals have been added to the system which may be used in conjunction with
the interprocess communication facilities. The SIGURG signal is associated with the existence
of an ‘“‘urgent condition’. The SIGIO signal is used with *“‘interrupt driven i/0’’ (not presently
implemented). SIGURG is currently supplied a process when out of band data is present at a
socket. If multiple sockets have out of band data awaiting delivery, a select call may be used to
determine those sockets with such data. -

An old signal which is useful when constructing server processes is SIGCHLD. This sig-
nal is delivered to a process when any children processes have changed state. Normally servers
use the signal to *‘reap’ child processes after exiting. For example, the remote login server
loop shown in Figure 2 may be augmented as follows:

DRAFT of July 27, 1983 Leffler/Fabry/Joy

4.2bsd IPC Primer -25-

int reaper();

sigset (SIGCHLD, reaper);
listen(f, 10);
for (;;) {

int g, len = sizeof (from);

g = accept(f, &from, &len, 0);
if (8 <0) {
if (errno != EINTR)
perror("rlogind: accept");
continue; :

}

#include <wait.h>
reaper()

union wait status;

while (wait3 (&status, WNOHANG, 0) > 0)

}

Advanced Topics

If the parent server process fails to reap its children, a large number of ‘‘zombie”

processes may be created.

DRAFT of July 27, 1983

Leffler/Fabry/Joy

