
″*********** ***********″
″*********** THE STEP PROCESSOR ***********″
″*********** ***********″
″*********** BY JACK W. SIMPSON ***********″
″*********** COMPUTATION RESEARCH GROUP ***********″
″*********** STANFORD LINEAR ACCELERATOR CENTER ***********″
″*********** MENLO PARK, CALIFORNIA ***********″
″*********** ***********″
″*********** PRINTED IN USA ***********″
″*********** ***********″

1

ABSTRACT

A macro processor which implements both trigger and syntax macros is described. Trigger macros are
implicitly called by the appearance of certain character sequences called triggers in the input text, while
syntax macros are explicitly called from other macros. Local trigger macros may be defined in order to
restrict the context in which they may be called. Macros of all types may be called recursively. The syntax of
the macro patterns allows nesting of patterns, alternation, negation, optional matching, and iteration. Any of
these constructs may be nested within any others to whatever degree desired.

The replacement text is generated by procedures which support integer, string, and symbol table data types;
the appropriate operations for each of these; and conversion between data types. Replacement text can be
directed to the input stream, output files, or other macros. The normal control statements such as
IF-THEN-ELSE, WHILE, FOR, and GOTO are present. The language in which macro definitions are
written is easily extensible and if desired can be made to conform to the syntax of whatever language is being
processed. Except for a few limitations and a few extensions the capabilities of the processor are much the
same as those specified in the IBM Language Point 2257 proposal.

The macro processor itself is distributed as an ANSI standard FORTRAN program and so can be
implemented easily on any medium to large size computer.

ii STEP Processor

Contents

1.0 Introduction 1
1.1 Summary of Contents 2

1.1.1 Notation 3

2.0 Macro Processing 4
2.1 Trigger Macros 4

2.1.1 Elementary Macro Writing - Examples 5
2.1.2 Extensions Needed for Macro Language Processing 6

2.2 Syntax Macros 7
2.3 Top Down Compiling 10
2.4 Recursive Matching 12

3.0 Overview of the STEP Processor 14
3.1 Internal Structure 14
3.2 Basic Functioning of the Processor 14

3.2.1 Initial Conditions 15
3.2.2 Input/Output Files 15

4.0 Input Reader 16
4.1 General Input Formatting 16
4.2 Processor Initialization 16
4.3 Character Set 17
4.4 Quoted String Conversion 18
4.5 Identifiers 21
4.6 Text Atomization 21

5.0 Macro Pattern Definition: Match Items 22
5.1 Pattern Strings 22
5.2 Syntax Macro Calls 23

5.2.1 Primitive Syntax Macros 24

6.0 Macro Pattern Definition: Pattern Construction 29
6.1 Simple Patterns 29

6.1.1 The Alternation Control Symbol 29
6.1.2 The Bracket Control Symbols 29
6.1.3 Detailed Description of the Matching Process 31
6.1.4 Activation Points 32
6.1.5 The Parentheses Control Symbols 33
6.1.6 The Negation Control Symbol 33
6.1.7 Iterative Matching 34
6.1.8 Backup and Match Retry 35
6.1.9 Trigger Macro Patterns 35

6.2 The Pattern Compiler 36

7.0 Macro Replacement Procedure Definition: Introduction, Data Types, and
Expressions 37

7.1 Integer Data Type 38
7.1.1 Integer Variables 38

7.2 String Data Type 38
7.2.1 String Variables 38
7.2.2 Match Variables 38

Contents iii

7.2.3 Existence of Match Variables 40
7.3 The GLOBAL Array 40
7.4 Syntax Descriptions for the Replacement Procedure Language 41

7.4.1 Integer Expressions 42
7.4.2 String Expressions 43
7.4.3 Logical Expressions 43

8.0 Macro Replacement Procedure Definition: Statements 46
8.1 STRING Statement 46
8.2 Arithmetic Assignment Statement 46
8.3 String Assignment Statement 46
8.4 IF Statement - (Base Language) 47
8.5 SCAN Statement 47
8.6 ANSWER Extension Statement 49
8.7 RESCAN Extension Statement 50
8.8 OUTPUT Statement 51
8.9 WARN Extension Statement 53
8.10 MERGE Statement 53
8.11 FAIL Statement 53
8.12 RETURN Statement 54
8.13 MEND Statement - (Base Language Only) 54
8.14 Null Statement 54
8.15 IF Extension Statement 54
8.16 FOR Extension Statement 55
8.17 WHILE Extension Statement 55
8.18 LOOP Extension Statement 55
8.19 GO TO Extension Statement 56
8.20 EXIT Extension Statement 56
8.21 NEXT Extension Statement 56

9.0 Macro Replacement Procedure Definition: Intrinsic Functions, Listings, and
Object Code 57

9.1 Symbol Array Facility 58
9.2 Symbol Array Pointers 59
9.3 The MARK and DROP Statements 60
9.4 Replacement Procedure Compiler Listings 61
9.5 Object Code 61
9.6 Efficiency 62
9.7 Syntax Summary 62

10.0 Macro Definition 63
10.1 Local Trigger Macros - Scope Rules 63
10.2 Macro Definition Macros 64
10.3 The Protect Option 66

11.0 Output Processor 67
11.1 Text Atomization 67
11.2 Output Format 67

12.0 Techniques for Macro Definition and Use 69
12.1 Four Ways to Implement Language Structure Extension 69
12.2 Beware of Short Triggers 72

13.0 Conclusion 74
13.1 Changes for the Future 74

iv STEP Processor

13.2 References 74

Appendix A 75

Appendix B: Standard Macro Language Extensions 78

Appendix C: General Examples 83
Example 1: Constant Propagation in Expressions 83
Example 2: SNOBOL Pattern Matching Statements in PL/I 86
Example 3: Structured FORTRAN Preprocessor 88

Contents v

vi STEP Processor

1.0 Introduction

The STEP processor belongs to the class of text processing programs known as
macro processors. It is designed primarily to allow user defined languages or
language extensions to be easily and quickly implemented. Text processing by STEP
can be thought of as being table driven, with the data elements contained in the
table being called macros. Each of these macros can be thought of as a formula or
rule for transformations to be performed on the input data being read by the
processor. This input data could, for example, be the source of a computer program
which is written in a specialized language and must be transformed into text suitable
for input to a specific compiler or assembler.

The macros, which are user defined, can be thought of as the software which directs
the hardware (the STEP processor) in the performance of its task. A simple example
of the definition of a macro and the actions that it would cause the processor to
take will now be described.

When no macros are defined, the processor simply reads text from its input file and
writes that text unchanged to its output file. A simple text replacement macro could
be defined by the appearance in the input of the string

MACRO TRIGGER: 'INTEGER'; RESCAN 'REAL'; END MACRO; (1.1)

The string MACRO TRIGGER: can for the present be thought of simply as an indicator
to the processor that a macro definition follows. When this or any other macro
definition is encountered in the input it is recognized by another macro, which
removes it from the input stream, possibly translates it into an intermediate form,
and passes it to internal compilers. The internal compilers translate the macro
definition into object code which is stored in the processor's tables. The macro
definition in this case consists of three statements each of which is terminated by a
semicolon. The significant portion of the macro is its first and second statements,
while the third serves to indicate the end of the definition. The first statement of a
macro definition is always a pattern matching statement and indicates the type of
text in the input that is to be transformed. In this case it is the string INTEGER. This
string is delimited by apostrophes in order to separate it from the various control
symbols and other entities that might appear in the first statement of a more
complex macro definition. The keyword RESCAN in the second statement indicates
that the string which follows it (REAL) is to replace any occurrences of the pattern in
the input. Thus the input

INTEGER X,Y,Z;
MACRO TRIGGER: 'INTEGER'; RESCAN 'REAL'; END MACRO; (1.2)
INTEGER A(1),B,C(INTEGER);

will appear in the output as

INTEGER X,Y,Z; (1.3)
REAL A(1),B,C(REAL);

The first occurrence of the string INTEGER is not transformed since it appears before
the macro is defined. Actually the output of the processor may have slight
differences in formatting from (1.3), but for the present discussion these are
unimportant.

It should be emphasized that the macro defined in (1.2) is an extreme simple case of
the types of macros that can be defined using STEP.

Introduction 1

1.1 Summary of Contents
The primary purpose of this manual is to instruct the reader in how to define and
use macros with the STEP processor. Examples will be used whenever possible to
help clarify in the reader's mind the various rules and concepts as they are
introduced. While at first the examples given may seem trivial, as more of the
features of the processor are defined and made available for their use, the examples
will take on a more practical flavor. Many of these examples will demonstrate ways
to extend an existing language. Unless otherwise stated, the base language that is
extended is similar to FORTRAN, except that it is free field, with statements being
separated by semicolons.

2.0, “Macro Processing” on page 4 begins with a discussion and examples of
simpler types of macros and then attempts to motivate the need for some of the
more complex ways in which STEP macros can be used. Explanations given will
aid the reader's intuition in understanding the examples in this section. This
understanding can then be completed by the more detailed discussions of macro
definition and usage given in later sections. The two types of STEP macros, syntax
macros and trigger macros, are introduced and a short description of their behavior
and some possible uses complete this section.

3.0, “Overview of the STEP Processor” on page 14 presents an overview of the
STEP processor. First its structure is briefly outlined and then the method by
which it reads, transforms, and writes text is explained in a little more, although not
yet complete, detail. The various I/O files used by the processor are also briefly
described.

4.0, “Input Reader” on page 16 discusses the input readers and several
miscellaneous details of the STEP processor which could not conveniently be
explained elsewhere.

The next two sections constitute a reference manual for STEP macro pattern
definitions. The first of these deals with the elements from which all macro patterns
are constructed: the pattern string and the syntax macro call. 6.0, “Macro Pattern
Definition: Pattern Construction” on page 29 defines the various control symbols
used in constructing complex patterns from these elements. A detailed account of an
example matching process is also given.

The next three sections are a reference manual for the replacement procedure
compiler. 7.0, “Macro Replacement Procedure Definition: Introduction, Data
Types, and Expressions” on page 37 discusses data types and the expressions which
can be formed from them. 8.0, “Macro Replacement Procedure Definition:
Statements” on page 46 discusses the statements in the replacement procedure
language. The next section completes the discussion of the compiler with intrinsic
functions, listing format, and a few suggestions on how the compiler should best be
used.

10.0, “Macro Definition” on page 63 completes the formal discussion of macro
definition with rules for defining and using local trigger macros. Also included is a
discussion and example of using STEP macros for extending the macro definition
language itself. The section ends with a discussion of the protect option, which
allows the invocation of certain classes of STEP macros to be temporarily inhibited.

2 STEP Processor

The text that has been transformed by the matcher is formatted for output by the
output processor, which is described in 11.0, “Output Processor” on page 67. The
STEP output processor is somewhat unusual in that it effectively performs some
limited lexical scanning operations on the text that is input to the macro processor.

12.0, “Techniques for Macro Definition and Use” on page 69 is a relatively
unstructured collection of hints and techniques for writing and using macros.
Finally, the conclusion in 13.0, “Conclusion” on page 74 describes a number of
changes that the processor has yet to undergo.

This manual is directed toward the macro writer who will be using the STEP
processor to implement or extend computer programming languages and not the
end user of a language which is defined by a particular set of STEP macros. The
macro writer is expected to be an experienced programmer with knowledge of more
than one high level language. Depending upon the complexity of his task, a
knowledge of some of the techniques of compiler construction may also be helpful.
This is not to say that users of languages implemented by the macro writer cannot
write macros, because even though the full capabilities of the STEP processor may
be more than they wish to learn, the macro writer, using the ability of STEP macros
to process the definitions of other STEP macros, can easily implement a simpler
macro definition language to accompany the language being defined or extended.
Such a macro language would perhaps use only a small subset of the full capabilities
of the macro definition language and could be made to have a syntax similar or
identical to that of the language being defined or extended.

 Many existing general purpose macro processors are somewhat elegant in the
simplicity of their macro definitions and as a result of this require complex
combinations of interacting macros in order to perform some tasks. STEP makes no
claims to elegance or simplicity; it does, however, claim practicality. There are many
different statements, control symbols, and matching rules that must be learned in
order to use the processor effectively, and the functioning of the recursive matching
process is at times difficult, although not impossible, to understand. Once the user
has learned to use the processor, however, he will find that many of the complex
things that he wishes to do can be done in a straightforward manner without the
necessity of resorting to various tricks or complex constructions of macros.

1.1.1 Notation
When portions of a macro definition, keywords, or characters that are used in the
coding of macro definitions or input text for the processor are included directly in
the text of this manual they will normally be distinguished easily enough and not
need to be delimited by quotation marks or any other special symbols. In those few
instances where confusion could arise, however, quotation marks will be used as
delimiters and should not be considered as part of the actual text that would be
passed to the processor.

Introduction 3

2.0 Macro Processing

2.1 Trigger Macros
In its simplest form, a macro processor is a program which, upon recognition of
certain strings in an input text stream, substitutes for these strings corresponding
strings called replacements. The recognition, or triggering, process is accomplished
by matching a prefix string of the current input stream against patterns, which are
text strings stored in the processor. To increase the flexibility of this process the
patterns may be allowed to contain formal arguments, so that portions of the input
text might be required to match identically those parts of a pattern before and after
the formal argument, while another portion of the input, called the actual argument,
has only a few restrictions on its content.

For example, a macro for the STEP processor could have pattern

ADD' A1:BAL 'TO' A2:BAL 'AND STORE INTO' A3:BAL ';' (2.1)

where the text delimited by apostrophes must be matched literally and the BAL terms
denote formal arguments which are distinguished from each other by the labels A1,
A2, and A3. The occurrence in the input text of

ADD 32 TO VAR AND STORE INTO INT; (2.2)

would match the above pattern and cause its corresponding replacement to be
produced. The production of the replacement can be governed by a template of the
form

A3 '=' A1 '+' A2 ';' (2.3)

where items delimited by apostrophes can be thought of as character string
constants and items not so delimited as character string variables representing the
actual arguments. The replacement is then formed by substitution of the actual
arguments 32, VAR, and INT, for the occurrences in the template of A1, A2, and A3,
which correspond to the first, second, and third formal arguments occurring in the
pattern. The replacement for the above example would then be

INT = 32 + VAR ; (2.4)

In order to define this macro one would then write

MACRO TRIGGER:
'ADD' A1:BAL 'TO' A2:BAL 'AND STORE INTO' A3:BAL ';';
RESCAN A3 '=' A1 '+' A2 ';' ; (2.5)
END MACRO;

The pattern appears as the first statement of the definition while the replacement
template appears in the second. The necessity of delimiting the pattern and parts of
the replacement template by apostrophes is in part demonstrated by the fact that the
semicolons which appear in both the pattern and in the replacement template must
not become confused with the semicolons which terminate statements in the macro
definition. The macros (2.5) and (1.1) are called trigger macros because their activity
is triggered by the appearance of strings in the input stream which match their
patterns.

4 STEP Processor

2.1.1 Elementary Macro Writing - Examples
A few examples of the practical use of some of the macro concepts thus far
introduced are now given for the benefit of the reader who is new to macro
processing. The more experienced reader will find these examples similar to those
arising from common usage of other macro processors and may wish to skip this
section.

The first example illustrates how common declarations in a large FORTRAN
program can be centralized by the use of macros of the form

MACRO TRIGGER:
'COMMON/PLOT1D/;';
RESCAN 'COMMON/PLOT1D/VAR(3,6,32),IDENT(8,8),'

'FCENTR(2,20,36),QLOG(100);' (2.6)
'LOGICAL QLOG; INTEGER VAR,IDENT;' ;

END MACRO;

The FORTRAN programmer may define this macro, and others like it, at the
beginning of a large group of FORTRAN routines in order to save writing the same
common declarations again and again in each routine, and indeed, to insure that the
common declarations in each routine are the same. If a program modification
requires that a common declaration be changed, then the change need only be
applied to one place in a macro and it will be propagated throughout the rest of the
program. For really large programs, macros like the following could then be defined

MACRO TRIGGER:
'INCLUDE GRAPHICS COMMONS;';
RESCAN 'COMMON/PLOT1D/; COMMON/PLOT2D/;' (2.7)

'COMMON/CHARS/; COMMON/SCOPEC/;';
END MACRO;

Note that the text produced by this macro is placed back into the input stream
where it is further converted by macros like (2.6). When writing a graphics
subroutine the appropriate common blocks can now be declared by one statement.

The second example illustrates how a macro which makes use of a single formal
argument can be used to provide a shorthand notation for a common type of
program statement. In some programs it is often necessary to increment or
decrement a variable by one. This is normally done by coding a statement like

ISCOPE(IARRAY,JARRAY*64+38,KARRAY*32-16) = (2.8)
ISCOPE(IARRAY,JARRAY*64+38,KARRAY*32-16) + 1;

This extreme example suggests that writing the ISCOPE array with all of its subscript
expressions only once would lessen the chance of a coding error, not to mention
saving wear and tear on the programmer. The new syntax might be

+ ISCOPE(IARRAY,JARRAY*64+38,KARRAY*32-16); (2.9)

So a statement beginning with a '+' (or '-') means that the variable in the
statement must be incremented (or decremented) by one. The macro implementing
the increment statement could be written

MACRO TRIGGER:
';+' BAL ';';
RESCAN ';' BAL '=' BAL '+1;'; (2.10)
END MACRO;

Note that the terminating semicolon of the previous statement is used to ensure that
the '+' operator is the first character of the statement that it appears in. Also, since

Macro Processing 5

only one formal argument appears in the pattern of (2.10), it does not need to be
labelled.

2.1.2 Extensions Needed for Macro Language Processing
Suppose now that the macro writer has produced a special purpose language having
statements similar to (2.2) for a certain user community. The statements are
translated by a macro processor into a FORTRAN like base language having
statements of the form (2.4). The members of the user community have decided not
to learn FORTRAN, but instead prefer to program entirely in the macro defined
special purpose language. If one of these programmers were to code the incorrect
statement

ADD A TO B AND STORE INTO 38; (2.11)

it would be translated without complaint by (2.5) into the incorrect base language
statement

38 = A + B ; (2.12)

Later, upon reaching this statement, the base language compiler will return to the
user the following diagnostic:

STATEMENT SYNTAX ERROR: 38=A+B; (2.13)

Since the object (FORTRAN) code, with which the user is unfamiliar, appears in
the diagnostic, it may be difficult to trace the error back to the faulty source
statement. Indeed, the translation process for a single statement in some macro
defined languages may involve a number of macros, some of which may be
considerably more complex than (2.5), so that tracing an error in the macro
produced object code back to the source may be impossible for one who is familiar
with neither the base language nor the translating macros.

While the macro processor can simply insert the actual arguments into various parts
of the replacement as in the example above, it may also have the ability to make
decisions as to the nature of the arguments and formulate its replacement
accordingly. For example, if the actual argument represented by A3 is inspected and
found to be a number rather than a variable, instead of the normal replacement
action an error message could be sent to a diagnostic file. In order to direct the
operation of this and various other replacement functions available in such an
extended processor, the replacement template must instead become a replacement
procedure with perhaps arithmetic and logical as well as text handling facilities.

If the type of text acceptable as an actual argument could be appropriately restricted
the above problem could also have been avoided. For example, a more specific
pattern could be written:

'ADD' A:BAL 'TO' B:BAL 'AND STORE INTO' ID ';' (2.14)

where ID is a new kind of formal argument whose actual argument must be an
identifier. Nearly anything was allowed to be the actual argument corresponding to
BAL. So while (2.2) would still match the above pattern, (2.11) would not, and so
would be passed as written by the user to the base language compiler which would
now produce the diagnostic

STATEMENT SYNTAX ERROR: ADD A TO B AND STORE INTO 38; (2.15)

which the user will more readily understand.

6 STEP Processor

2.2 Syntax Macros
Because the ID formal argument is so specific as to what its actual argument must
be, it can be thought of as a pattern in its own right, which in this case generates
replacement text identical to that which it matched. So the pattern in (2.14) can be
said to have an explicit call to the ID macro from which it receives the replacement
text that it will use as its third actual argument. In addition to macros which match
identifiers, it would also be useful to have macros with patterns capable of matching
other syntactic elements such as integers or even more complex constructs such as
arithmetic expressions. These syntax (See 13.2, “References” on page 74, item 1)
macros would be activated by explicit call from other macros, as in (2.14), and
would return their replacement text to the calling macro.

The two types of macros basic to the STEP processor have now been introduced.
The first of these is the trigger macro, examples of which are (1.1) and (2.5). A
trigger macro is implicitly called by the appearance in the input of a string matching
the first quoted string in its pattern. After its pattern matches, the macro's remaining
statements generate the replacement text, which is normally returned directly to the
input stream where it replaces the string which was matched. The processor's scan
of the input stream then resumes at the beginning of this replacement. The second
type is the syntax macro. Each syntax macro is given a name (for example, ID) and
must be explicitly called by the appearance of that name in the pattern of another
syntax or trigger macro. After the pattern of the syntax macro matches the input the
macro's remaining statements generate the replacement text which is usually
returned as an argument to the calling pattern. The statements of a trigger macro
definition must be preceded by the text ″MACRO TRIGGER:″ while the syntax macro
definition statements are preceded by ″MACRO SYNTAX: name″, where name is an
identifier which will be used to explicitly invoke the new macro. To better
understand the distinction between these two types of macros the following two
examples are given.

The base language is to be extended by a statement which will allow any scalar
variable to be negated. The NEGATE macro is defined as

MACRO TRIGGER: 'NEGATE' ID ';';
RESCAN ID '=-' ID ';'; (2.16)
END MACRO;

The identifier MACRO indicates to the processor that a macro definition follows. The
next identifier tells what type of macro is being defined, and, as mentioned earlier,
the final statement signals the end of the definition. For the moment the ID syntax
macro will be assumed to exist, to have a pattern which matches any identifier, and
to produce that same identifier as its replacement text. Note that the appearance of
ID in the pattern of (2.16) is a call to the ID syntax macro, while its appearance in
the replacement template is as a string variable which has been initialized to the text
matched by the ID macro. The input text to be scanned consists of the statements

CALL FCN(NEGATE,VAR); (2.17)
NEGATE VAR;

The scan of the input text begins under the control of the processor, which causes
the scan to proceed on an atom by atom basis. For the present an atom is defined
to be any identifier, integer (sequence of digits), or single non-alphanumeric
character. The atoms in the first line of (2.17) are then

 CALL FCN (NEGATE , VAR) ;

Macro Processing 7

The atom CALL is first scanned, and when no matching macros are found is passed
to the output file. In the same way the atoms FCN and ″(″ are scanned and passed
to the output file. When the processor begins to scan the next atom it passes control
of the scanning process to the NEGATE macro which matches character by character
the string NEGATE in its pattern with the same sequence of characters in the input.
The NEGATE macro then passes control of the scanning process to the ID syntax
macro which finds a comma instead of the beginning of an identifier and so fails to
match the input. The ID macro then returns control and word of its failure to the
pattern of the NEGATE macro, causing it to fail also. The NEGATE macro then returns
control of the scan to the processor which restores the environment to what it was
before the NEGATE macro was called. The processor then passes scan control to other
trigger macros which have not yet been tried and when these fail passes the atom
NEGATE to the output file. After the next four atoms are scanned and passed to the
output file the processor again encounters the atom NEGATE and passes control to the
trigger macro which again matches the character string NEGATE in the input and
passes control to the ID syntax macro. This time the syntax macro finds a valid
identifier (VAR), matches it, and returns control of the scanning process to the
NEGATE macro. The NEGATE macro resumes by matching the semicolon in its pattern
with one that it finds in the input.

With the successful completion of matching, all text scanned under control of the
NEGATE macro and macros called from it is removed from the input and the second
statement of the NEGATE macro is executed. The keyword RESCAN indicates that the
text produced from the following template is to be returned to the input stream to
replace the text that the pattern matched. ID appears in the second statement as a
string variable representing the text string argument returned to the NEGATE macro as
a result if its first statement's call to the syntax macro ID. Thus the string variable
ID has the value VAR. The replacement text is then the concatenation of the strings
ID, '=-', ID, and ';' so that the result of the appearance of (2.17) in the input is the
production in the output of the statements

CALL FCN(NEGATE,VAR); (2.19)
VAR=-VAR;

The next example illustrates how a simplified arithmetic expression can be parsed
using syntax macros and converted to another form. A trigger macro is used to find
the expressions to be converted.

Arithmetic expressions having the infix operators add (+) and multiply (*) must be
converted to reverse polish notation in which each operand and operator is
separated from the others by a comma. The precedence of the multiply operator in
the original expression is higher than that of the add operator, and parentheses can
be used in the normal way to change the order of evaluation. The expressions to be
converted will appear in a statement preceded by the identifier POLISH and
terminated by a semicolon. This statement is replaced by a statement containing the
polish expression. The following trigger macro is used to find the expressions.

MACRO TRIGGER: 'POLISH' EXPRESSION ';';
RESCAN EXPRESSION ';'; (2.20)
END MACRO;

The syntax macro EXPRESSION is called to recognize the original expression, and
must return the converted expression to the POLISH trigger macro. This macro and
two others it must call are defined

8 STEP Processor

MACRO SYNTAX: EXPRESSION
TERM '+' EXPRESSION | TERM2:TERM ;
IF TERM2 THEN

ANSWER TERM2;
ELSE

ANSWER TERM ',' EXPRESSION ',+' ;
END IF
END MACRO;

MACRO SYNTAX: TERM
FACTOR '*' TERM | FACT2:FACTOR ;
IF FACT2 THEN

ANSWER FACT2; (2.21)
ELSE

ANSWER FACTOR ',' TERM ',*' ;
END IF
END MACRO;

MACRO SYNTAX: FACTOR
'(' EXPRESSION ')' | ID | NUM ;
IF EXPRESSION THEN

ANSWER EXPRESSION ;
ELSE

ANSWER SOURCE;
END IF
END MACRO;

A number of new items are introduced in the definition of the EXPRESSION syntax
macro. The pattern for EXPRESSION is really two patterns which are separated by an
alternation symbol (|). If the first pattern fails to match the input the second will
be tried. The EXPRESSION macro will fail if neither of these two sub-patterns can
match the input. The pattern of the EXPRESSION macro has two calls to the TERM
syntax macro. In order to distinguish between these it is necessary to give one of
them the label TERM2. The text returned to the EXPRESSION macro by its second call
to TERM can then be referred to in later statements by the string variable TERM2. If a
syntax macro call is not labelled a default label the same as the name of the macro
is assumed. Note that the pattern for the EXPRESSION macro calls itself recursively.
The second to the last statements of the EXPRESSION macro definition form what is
now called the replacement procedure. The first of these statements tests for the
existence of the TERM2 string variable. If the second half of the pattern matched the
input the TERM2 variable will exist and the statement immediately following the IF
clause will be executed. Otherwise the first half of the pattern must have matched
successfully and the ANSWER statement following the ELSE clause is executed. The
keyword RESCAN has been replaced by ANSWER, which indicates that the text
produced by the following template is to be returned to the calling macro as an
argument rather than to the input stream. In the third definition a call to the NUM
syntax macro appears. NUM, like ID, is assumed to have been defined and to have a
pattern which matches a contiguous sequence of digits. The text matched by NUM is
returned unaltered to the calling macro. The keyword SOURCE is introduced in an
ANSWER statement of the FACTOR macro. SOURCE is a string variable which always
equals the text matched by the entire pattern of the macro. Its use avoids the need
for two ANSWER statements - one to execute if the call to ID was successful, and
another for the call to NUM.

If the expression macro EXPRESSION is activated with the text A*B in the input, it will
activate the TERM macro, which will activate the FACTOR macro, which will search for
the character ″(″ . Upon failing, FACTOR will try its next alternative and call the ID

Macro Processing 9

primitive which would successfully match the A and return it to TERM. TERM will then
match the ″*″ character and then call TERM, and so on. Eventually the first half of
the EXPRESSION pattern will search for a ″+″ and fail, causing this entire process to
be redone, this time successfully, using the second alternative in the EXPRESSION
pattern.

The conversion to polish notation is quite easy. Each execution of each replacement
procedure assumes that the syntax macros called by it return polish expressions. If
necessary, the replacement procedure will move an infix operator from between to
behind the two polish expressions it receives, thus making the entire expression that
it returns polish also. If the first alternative of the pattern of the FACTOR macro
matches the input, the parentheses, which can be thought of as surrounding a polish
expression, are simply removed. The statements

POLISH A+B;
POLISH A+B*C; (2.22)
POLISH U+V*(X+Y)+Z;

will then appear in the output as

A,B,+;
A,B,C,*,+; (2.23)
U,V,X,Y,+,*,+,Z,+;

As an exercise, the reader may wish to trace the conversion of the first two
statements in (2.22).

2.3 Top Down Compiling
The syntax macros in (2.21) can be called recursively, although only right recursion
is used in their definitions. Because most expressions in higher level languages
associate to the left, it is difficult to use a right recursive grammar for their
definition. In order to avoid this problem one might think of using left recursion in
the definition of the EXPRESSION macro and write

MACRO SYNTAX: EXPRESSION
EXPRESSION '+' TERM | TERM ; (2.24)
etc.

The first thing that EXPRESSION will do upon being called is to call EXPRESSION, which
in turn will immediately call EXPRESSION, and so on until the processor's stacks fill
causing a diagnostic to be printed and the first alternative of the original call to
EXPRESSION to fail (except for this action, processing would then continue
unaffected). This problem is typical of the construction of a syntax recognizer for a
recursive descent compiler, and is normally eliminated by the introduction of
iterative notation for syntax definition. (See 13.2, “References” on page 74, item 2)
A simple example of an iterative pattern can be written

<3, ID>; (2.25)

This pattern will match any sequence of three or more identifiers which must be
separated by blanks. Thus the pattern

'BEGIN' <3, ID> ';' (2.26)

will match each of the first two lines of (2.27), but not the third.

10 STEP Processor

BEGIN A BB CC;
BEGIN FORTRAN ALGOL PL1 THIS THAT OTHER; (2.27)
BEGIN THIS THAT;

The pattern of the EXPRESSION macro in (2.21) can then be replaced by

<1, TERM / '+'>; (2.28)

The integer appearing just inside the left bracket indicates that at least one TERM
must be found in the input in order for the whole pattern to be considered
successful. The part of the pattern occurring after the slash is considered a separator
or delimiter which must appear between successive appearances of the portions of
the input matched by the TERM macro. Control of the matching process can be
thought of as passing out of the iterative construct at the slash, or exit symbol,
rather than at the right hand end. Thus the sequence of three TERMs and two
separators

A + B*C + D (2.29)

will be matched by the pattern (2.28), while the same pattern except for the slash
would only match the sequence

A + B*C + (2.30)

The string variable TERM in the replacement procedure for (2.28) must now become
an array of strings, so that TERM(2) will represent the text returned by the second
matching of the TERM syntax macro. The pattern of the TERM macro can also be
rewritten using iteration, so that the minus sign can now be safely added to the
EXPRESSION macro and the division operator to TERM without any undesirable effects.
The iterative pattern is useful for many other purposes. For example, if the syntax
macro STATEMENT has been written which will match any statement in a given
language, a block of statements might be matched by the pattern

'BEGIN' <1, STATEMENT> 'END' ; (2.31)

If the syntax macro patterns can be called syntax recognizers and their
accompanying replacement procedures called semantic routines, the STEP processor
becomes a top-down recursive descent compiler generator. One trigger macro
(whose trigger could be, for example, SUBROUTINE) would be needed to start the
compilation process, which could thereafter proceed through calls to syntax macros.
The example in appendix C shows how a FORTRAN preprocessor was
implemented in this way. The ″master″ macro in this example is triggered by the
appearance in the input of the string

BEGIN PROCESSOR SCAN (2.32)

and then passes control of the scan to the pattern

<0, SUBROUTINE | FUNCTION | BLOCK_DATA | MAIN_PROGRAM > (2.33)

The above pattern will attempt to find zero or more occurrences of a SUBROUTINE,
FUNCTION, or BLOCK DATA subprogram or a main program in the text that it scans.
The syntax macros for SUBROUTINE, etc. must next be defined, then the syntax
macros that they will call are defined, and so on, so that the definition of the
language proceeds from the topmost general constructs down to the more detailed
parts such as the syntax for statements, then variables, operators, etc. The various
facilities needed by a compiler, such as stacks, symbol tables, etc. have not yet been
mentioned but are implemented in the STEP processor. When operating as a
compiler generator, use is often made of the OUTPUT statement, which is similar to
ANSWER and RESCAN except that it causes text to be passed directly to the output file.

Macro Processing 11

A syntax macro might then be called to recognize a term in an arithmetic
expression, generate assembly code to calculate the term and store it in a temporary
variable. The assembly code would then be written to the output file while the name
of the temporary variable containing the result is returned to the calling macro via
the ANSWER statement.

2.4 Recursive Matching
Because of the recursive nature of the STEP processor, it is possible for the input
text to activate a trigger macro at any time, even during the matching of another
trigger or syntax macro. To illustrate this recursive matching the following macro is
defined.

MACRO TRIGGER:
'SUM OF' A:FORTEXP 'AND' B:FORTEXP ; (2.34)
RESCAN '(' A '+' B ')' ;
END MACRO;

where FORTEXP is assumed to be defined as a syntax macro which will recognize any
valid FORTRAN arithmetic expression and return it unchanged to the caller. The
input

X = SUM OF VAR AND INT*C ; (2.35)

will then appear in the output as

X = (VAR+INT*C); (2.36)

If instead the user writes

X = SUM OF SUM OF X AND Y AND C ; (2.37)
| | |
1 2 3

the SUM macro will be called when the input scan pointer reaches position 1. The SUM
macro then controls the progress of the scan until the scan pointer reaches position
2, where, just before the call to FORTEXP, the status of the current matching process
for the SUM macro is saved and the SUM macro is reinvoked. When the scan pointer
reaches position 3 in (2.37) the second invocation of the SUM macro will have
terminated with the input text and scan pointer position shown below

X = SUM OF (X+Y) AND C ; (2.38)
|

The original invocation of the SUM macro now resumes where it left off by calling
FORTEXP, which will match the string (X+Y). The statement finally appearing in the
output will be

X = ((X+Y)+C); (2.39)

Note that (2.34) is something like a converse of (2.21): it translates what are
essentially prefix polish notation expressions into infix notation. It is interesting that
FORTEXP, which was written to parse expressions in the base language, is effectively
called by the first invocation of the SUM macro to recognize an expression (SUM OF X
AND Y) of the extended language. To be technically correct, the matching process for
the trigger macros should be called reentrant rather than recursive, since a trigger
macro cannot call itself: it can only call syntax macros.

The STEP processor allows for the definition of both global and local trigger
macros. Whether any macros of either type are active or not, if the input scan

12 STEP Processor

pointer reaches the beginning of the occurrence of the pattern of one of the global
trigger macros, the status of the current matching process, if any, will be saved and
that macro will be activated. The protect option, which is described in section X,
allows trigger macro activation to be suppressed by other macros when desired.
Local trigger macros are activated in the same way that global trigger macros are
except that their definitions must have been nested immediately within the definition
of the macro (either trigger or syntax) that is currently active. All syntax macros are
globally known.

Although it is difficult to think of using trigger macros to produce a true bottom up
syntax recognizer, the matching process for the global trigger macros is certainly
bottom up: macros are activated as the input text scan pointer reaches the
appropriate strings in the input. The MORTRAN macro processor, which allows
only non-recursive global trigger macros, is a good illustration of the power of this
type of matching. The use of local trigger macros will allow for more control over
the context in which trigger macro activity takes place.

Macro Processing 13

3.0 Overview of the STEP Processor

3.1 Internal Structure
The STEP processor consists of about 1400 lines written in a special
implementation language. An ANSI FORTRAN program of about 3500 lines is
produced after this implementation language is processed by a set of STEP macros,
thus insuring portability of the processor. The user, at his option, may write macros
which will translate the languages he implements into ANSI FORTRAN, so that
his programs, as well as the processor, are portable.

The processor consists of the following major components:

 1. Input reader - input on cards is transformed into input suitable for the main
processor.

 2. Matcher - performs all pattern matching as well as trigger macro invocation.

 3. Executive - an interpreter which executes the macro replacement procedure.

 4. Output processor - the code produced by the main processor is written to the
code file.

 5. Pattern compiler - the pattern portion of a macro definition is translated and
checked.

 6. Replacement compiler - the replacement procedure portion of a macro
definition is compiled and checked.

 7. Linker - the compiled macro is linked to contained macros, other trigger
macros, and perhaps the syntax macro symbol table.

 8. Symbol Table Facility - a collection of subroutines used to allocate, search, and
update symbol tables.

 9. Miscellaneous - various utility subroutines used to convert integers to text, do
garbage collection, initialization, and other odd jobs.

3.2 Basic Functioning of the Processor
When the STEP processor begins execution, the input file is read and reformatted
by the input reader and sent to the matcher. The matcher attempts to find trigger
macros which will match the input text which starts at the location indicated by the
input scan pointer. If none is found, the output processor is called to write out one
or more of the characters, after which it updates the scan pointer. This process will
continue until a trigger macro matches or the end of the input is reached.

When a trigger macro (or a macro called explicitly or implicitly from it or its
descendents) is in control, no more characters are passed to the output processor
(unless a type four output statement is executed). Characters are still received from
the input reader as the matching process requires them.

For each of these macros which successfully matches the input, a corresponding
replacement procedure is activated which normally returns the replacement to the
point from which the macro was called. If, as is the case for a trigger macro, the call

14 STEP Processor

originates from the input text then the replacement is normally substituted for the
text which was matched, the input scan pointer is reset to the beginning of this
replacement text, and the matching process resumes. If, as is the case for a syntax
macro, the the call originates from the pattern of another macro, the replacement is
returned to the calling macro as an argument. Text can also be generated by the
replacement procedure which, by means of the OUTPUT statement, is passed directly
to the code or an auxiliary file.

When an outer level trigger macro (the one that began to match when no other
macros were active) has successfully matched and finally terminates, it normally will
have generated text to replace the input text which it (and the macros called from it)
matched, and will have reset the input scan pointer to the beginning of this text,
after which the process described at the beginning of this subsection resumes.

3.2.1 Initial Conditions
The only macros initially present in the processor are five primitive syntax macros
(described in section V) and the MACBOOT trigger macro. The MACBOOT macro will
match and pass to the internal compilers any text string beginning with the string
MACBOOT followed by a base language STEP macro definition, the format of which is
described later. Among the first macros defined using this ″bootstrap″ macro will
normally be a more sophisticated macro defining macro. Macro definitions may
appear anywhere in the input, but will affect only the input text processed after they
are compiled.

3.2.2 Input/Output Files
The five file types presently used by the STEP processor are:

 1. All input, including STEP control cards and macro definitions, is read from the
source file. This file must include a special control card which terminates the
input.

 2. The listing file contains a listing of the source file, which will include macro
definitions along with any diagnostics which the processor generates. In the left
margin of each source line are: (1) a character which will be an apostrophe (')
or quotation mark (″) if the beginning of the source line is within a quoted
string of either type; and (2) the nest level count, which is described in the next
section. If appropriate flags are set by macros or control cards, special macro
definition listings and macro execution traces will also appear in the listing file.

 3. All text produced by WARN statements in macro replacement procedures is
written on the warning file. Normally this and the listing file are merged (same
unit numbers used for each).

 4. The code file will contain the ″object code″ produced by macro translation of
the source.

 5. There may be up to six auxiliary files. Text may be written to these by means of
an OUTPUT statement. These files may then be rewound and copied into the code
file in any order desired through the use of the MERGE statement. The
auxiliary files are written in an internal format and so may only be used as
″scratch″ files by the processor.

Overview of the STEP Processor 15

4.0 Input Reader

4.1 General Input Formatting
The input reader serves as the interface between the text in columns 1 to 72 on
input cards, and the continuous stream of characters received by the pattern
matcher. The current input reader allows comments to be enclosed in quotation
marks (″) . Comments are changed to a single blank by the input reader and so are
never seen by the matcher. By including the appropriate control card in the input
the user can cause the input reader to supply the closing quotation mark for those
comments not otherwise closed by the end of a card.

Except for those contained in quoted strings, all multiple contiguous blanks,
including those resulting from the conversion of a comment, are changed to a single
blank. Blanks are compressed in order to save space in text storage areas and to
allow the processor to run a little more efficiently. Multiple blanks may still appear
in the input as a result of input text replacement by trigger macros.

The nest level count, mentioned in the previous section, is simply an integer whose
value is printed in front of each line of the source listing. This number is normally
controlled by the macros in a way to be described later. It may be convenient,
however, to use the bracket symbols ('<' and '>' on most machines), as in the
language implemented by the MORTRAN processor, to delimit groups of
statements. This is identical to the use of the DO-END group in PL/I. As an aid to
the use of this symbol, the nest level count can be updated by the input reader. In
this case the nest level is incremented each time a left bracket (<) is encountered and
decremented for a right bracket. To be counted, a bracket must not be in a
comment, in a quoted string, or nested within parentheses. It is also possible to
allow the nest level count to control the indentation of the source listing.
Instructions on how to control the nest level count are given in the description of
the GLOBAL array in 7.0, “Macro Replacement Procedure Definition:
Introduction, Data Types, and Expressions” on page 37.

Control cards are written with '/C' in the first two columns. The entire control card
is intercepted before it reaches the input reader, and so is not passed on to the
matcher. The input to the processor must always be terminated by /CE in the first
three columns. The only other type of control card currently allowed is of the form

/C{INTEGER},{INTEGER}

where the second integer may be preceded by a minus sign. The purpose of this
control card is given in the description of the GLOBAL array in 7.0, “Macro
Replacement Procedure Definition: Introduction, Data Types, and Expressions” on
page 37.

4.2 Processor Initialization
The first five cards encountered by the input reader contain special initialization
information used by the processor and are here shown in the form assumed by this
manual.

16 STEP Processor

 62 9 10 37
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_$,.+-*/()=;:'″#@?|&¬<>!%
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_$,.+-*/()=;:'″#@?|&¬<>!%''
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_$,.+-*/()=;:'″#@?|&¬<>!%''
 6 9 6 1 2 3 4 7 8

(4.1)

The first four of these cards are discussed in the next subsection. The fifth card
contains up to nine numbers in 9I4 format which are used to set the FORTRAN
unit numbers for the listing, code, warning, and up to six auxiliary files respectively.
The unit number for the initial source file cannot be set in this way and so must be
set at processor generation time. The processor as initially received is a FORTRAN
program for which the first routine is a BLOCK DATA subroutine. The last
statement of this routine is a DATA statement in which the variable IIU, which is
the unit number for the initial source file, is initialized to 5. This is easily changed if
necessary.

4.3 Character Set
Characters are divided into four major classes in the STEP processor. These are (1)
the digits; (2) the letters, which depending upon the initialization, may contain a few
additional characters; (3) special characters used by the processor, such as ″ | ″ , ″<″,
and ″>″, which are used in macro pattern definition; and (4) all other characters.
Characters in classes three and four are also called delimiters.

Each character that is to be accepted as input to the processor is mapped into an
integer ranging from zero up to some maximum number M. If X is the maximum
positive integer allowed in the type of storage locations chosen to hold the mapped
characters, then the relationship between M and X can be expressed

M <= (X-3)/2 (4.2)

The input character set and its internal mapping are determined by the first few
cards read when the processor is started. The first of these contains four numbers in
4I4 format, as shown in the first line of (4.1). Let these numbers be represented by
A, B, C, and D. A then is the total number of distinct input characters. The internal
numbers representing the characters will then range from zero to A −1. The numbers
representing the digits will range from zero to B, which will usually equal nine. If,
for example, B is equal to seven, all integer arithmetic and conversion to text done
by the processor will be in octal. The lowest number representing a letter will be C
and the highest D. The twenty four characters (including blank) after the dollar sign
($) are required for use by the processor (actually ″#″, ″%″, ″!″ , and ″?″ are not
used for anything at present). The ordering of these characters or their substitutes is
important, but they are in no way reserved from any other possible use. The
following relationships must hold:

B>=C-1 C<=D D+24<A (4.4)

These twenty four characters are called special characters as mentioned above. More
characters can easily be added to the character set beyond these special characters if
desired, as long as the value of A is increased accordingly.

The characters making up the input set are read starting from the second card in the
input. If more than 64 characters will be used then multiple cards must be used with
characters starting in the first column and 64 characters on all but the last. The
positions of the characters on the input card(s) correspond to their position in the

Input Reader 17

internal map with the character in the first column of the first card being mapped
into zero. In (4.1) the input set consists of 62 characters and is given by the second
line. Note that the characters '$' and '_' (internal values 36 and 37) are considered
to be letters.

SPECIAL NOTE: In the current processor the four numbers of the first
initialization line are fixed to the values given in (4.1) until further modifications are
completed.

Note that while characters can be switched and substituted on this card, the results
can be confusing if it is not done with care. For example, the coding and actions of
arithmetic expressions in macro definitions might be difficult to correlate if the
positions of the characters ″+″ and ″*″ were exchanged. If ″!″ were mapped into the
number D+16 (D=37 for (4.1) so this is 53 in the internal map and column 54 on
the input card) in place of ″ | ″ , the user would have to remember to separate
alternative portions of a macro pattern by ″!″ and that ″!″ would then be used to
denote the ″OR″ operation in the replacement procedure base language.

Each of the characters appearing on the input mapping cards must be distinct. This
includes the character blank. Any character not on this initialization card(s) that
appears later in the input will produce a diagnostic and be ignored.

Following the cards describing the input character set come those for the output set.
The internal character set is mapped into the characters given by the appropriate
columns on the output card(s) before being written. These cards follow the same
formatting rules as do the preceding cards and make use of two additional columns
which will be described in the next subsection. Except for these last two, the
columns of this card(s) are normally identical to the corresponding columns of its
predecessor(s), but this is not necessary. For example, to gain the flexibility of
having two characters, ″ . ″ and ″!″ , represent ″ . ″ the user could change column 61
on the output map card in (4.1) to ″ . ″ . The two characters would then be treated
differently by the processor until they are written into the code file, where they
would both appear as ″ . ″ . The output map is also used to transform the internal
characters for all other forms of output except the listing file. These will include
traces of the matching process and listings of the macro compilers. The characters in
the output map need not be distinct.

The fourth line in (4.1) is a second output character set which is used to map any
text produced with the NOTRIG option (see the RESCAN statement in 8.0, “Macro
Replacement Procedure Definition: Statements” on page 46) that appears in output
produced by the trace facility. The first output character set is used when NOTRIG text
is written by the output processor. In (4.1) the second output character set is the
same as the first, but it need not be. The letters in the fourth line of (4.1) could be
lower case, for example.

4.4 Quoted String Conversion
A quoted string consists of a string of characters delimited by apostrophes ('). The
characters within a quoted string may include quotation marks or multiple
contiguous blanks, all of which will be passed on to the matcher.

The manipulation of quoted strings is complicated by the fact that these strings will
often contain an apostrophe, which is the same character as that used to delimit a
quoted string. The usual method of inserting an apostrophe into a quoted string is

18 STEP Processor

to code it as two adjacent apostrophes. Thus, in order to form a quoted string from
the characters

DON'T (4.5)

the user would code

'DON''T' (4.6)

The four apostrophes in the above quoted string are normally interpreted differently
by the user. The first and last apostrophes are string delimiters, while the other two
represent the single character apostrophe.

In order to make character strings easier to handle, the input reader changes two
adjacent apostrophes that are contained by a quoted string into a single apostrophe.
The apostrophes used to delimit the quoted string are changed into internal string
delimiter characters. After this is done, the string (4.6) will contain five rather than
six characters and the substring and string length functions (to be introduced later)
will work as the user intends. If the internal string delimiter character is represented
by a lower case d and the characters to the left of each example are not in a quoted
string then the following examples illustrate the transformation made by the input
reader.

'DON''T' -> dDON'Td
 '''STRING''' -> d'STRING'd (4.7)
 X='STRING:''ABC''' -> X=dSTRING:'ABC'd
 TRIGGER: 'X=''STRING:''''ABC'''''''; ->

TRIGGER: dX='STRING:''ABC'''d;

In addition to having the quoted string contain the number of characters intended,
the conversion of quoted strings will make the matching of quoted strings simpler:
after matching the opening string delimiter the matching process proceeds until the
closing string delimiter is found. Since they are a different character, any apostrophes
that might be contained by the string cannot stop the matching process prematurely.
Thus the macro

MACRO TRIGGER:
'''' BAL '''' ; (4.8)
etc.

will match an entire quoted string including the string delimiters, even if the string
contains apostrophes. It is perhaps confusing at this point to note that the
apostrophes which are to match the string delimiters must be doubled since they are
contained in a quoted string, but this fact will be clarified shortly.

The last line in (4.7) is actually a pattern to match the previous line in (4.7), but
since patterns to match specific characters must be enclosed by apostrophes it was
necessary to double all of the apostrophes in the third line to produce the pattern in
the fourth. If the string in the macro pattern is to match the string as it would
appear in the input, however, its internal representation must be identical to the
string in the input. Therefore it is necessary to ″undouble″ the apostrophes in
quoted strings appearing in macro definitions twice. For example,

TRIGGER: 'X=''STRING:''''ABC'''''''; (4.9)

is converted by the input reader to

TRIGGER: dX='STRING:''ABC'''d; (4.10)

which is converted by the macro compilers to

Input Reader 19

TRIGGER: mX=dSTRING:'ABC'dm; (4.11)

The string delimiter ″d″ is converted by the macro compilers to a pattern string
delimiter ″m″. Single apostrophes are converted by the macro compiler to a string
delimiter in the same way as they are by the input reader. The string delimited by
the pattern string delimiters in (4.11) is now the same as the third string in (4.7)
after it is converted by the input reader. This second conversion is done for all
quoted strings in a macro definition. Thus if the user codes the replacement
procedure statement

RESCAN '''DON''''T'''; (4.12)

the compiled RESCAN statement would contain the (delimited) text

mdDON'Tdm (4.13)

When executed, this RESCAN statement would place the string

dDON'Td (4.14)

into the input.

Quoted strings which were converted at input must be converted back by the output
processor. Thus the quoted string in (4.14), if not further converted by the macros,
will appear in the output as

'DON''T' (4.15)

Apostrophes in (4.14) are changed to two adjacent apostrophes and string delimiters
are changed to single apostrophes. The output processor is not concerned with the
macro pattern string delimiters since these occur only in compiled macro definitions.
Other functions of the output processor are described in 9.0, “Macro Replacement
Procedure Definition: Intrinsic Functions, Listings, and Object Code” on page 57.

Conversion of quoted strings then occurs in three places in the processor: the input
reader, the macro compilers, and the output processor. Text returned to the input
via the RESCAN statement does not pass through the input reader since it is
necessarily derived from text that has already been processed there.

The last two columns on the output map card(s) contain the characters into which
the internal representations of the string delimiter and macro pattern string delimiter
characters will be converted on output. Since these characters are internally
generated they will never appear in the input and so do not appear on the input
map card(s). Although these two characters are never written into the code file, they
can appear in the listing file as a result of the trace option, which causes the text
produced by macro replacement procedures to be listed. An apostrophe is normally
used to represent each of these characters, as shown in (4.1). If extra information is
needed from the trace output, however, these two internal characters can be mapped
into a different external representation, such as a lower case ″d″ and ″m″ .

Normally it is not necessary to give any thought to the conversion of quoted strings
that occurs within the processor. All that the user normally needs to remember is
that if an apostrophe is needed, normally an apostrophe should be coded. If the
apostrophe must be in a quoted string it should be coded as two adjacent
apostrophes. If an apostrophe must be placed into a quoted string that is contained
by another quoted string it must be coded as four adjacent apostrophes, etc. This
description has been included for those few occasions when the user will need to
know exactly what is happening to quoted strings during the matching process.

20 STEP Processor

4.5 Identifiers
All identifiers used by the STEP system must begin with a letter (see the above
character set subsection) and contain only digits and letters. Embedded blanks are
not allowed. Identifiers are used as syntax macro names and labels in the patterns,
and as statement labels, variable names, and function names in the replacement
procedures. The ID primitive macro, which is described later, will match any
identifier.

4.6 Text Atomization
The input processors of many compilers contain lexical analyzers which transform
the stream of input characters into a stream of tokens, or atoms, which would be
identifiers, integers, perhaps floating point numbers, and so on. These functions are
not performed by the STEP input reader, so that the pattern matcher will deal with
the input on a character by character basis. Because of the way in which the scan is
controlled both by the processor when no macros are active (see 9.0, “Macro
Replacement Procedure Definition: Intrinsic Functions, Listings, and Object Code”
on page 57) and by the macros themselves (see 6.0, “Macro Pattern Definition:
Pattern Construction” on page 29) an effective form of text atomization usually
exists. For this reason an atom is defined to be any contiguous sequence of
alphanumeric characters, any contiguous sequence of blanks, a quoted string, or any
non-alphanumeric non-blank character.

Input Reader 21

5.0 Macro Pattern Definition: Match Items

The syntax used for the definition of macro patterns has been to a great extent
borrowed from that used by the IBM Language Point 2257. (See 13.2,
“References” on page 74, item 4) It bears some resemblance to BNF notation, with
the significant addition of iterative notation. The necessity of using right recursion in
the syntax definitions for top-down parsing is thereby avoided.

The only items within a pattern that will cause matching to take place are calls to
syntax macros (which are written as identifiers) and quoted strings. These two
constructs, calls to syntax macros and quoted strings, will be called match items.
All other syntactic symbols in the pattern control the way in which matching
occurs, and are therefore called control symbols. Example (2.14), which is
reproduced here, is a pattern which contains four quoted strings and three syntax
macro calls.

'ADD' A:BAL 'TO' B:BAL 'AND STORE INTO' ID ';' (5.1)

A macro pattern is then defined as a collection of match items together with control
symbols which appears as the first statement of a macro definition. Later this
definition will be modified with the introduction in 8.0, “Macro Replacement
Procedure Definition: Statements” on page 46) of the SCAN statement, which allows
macro patterns to appear in the replacement procedure.

5.1 Pattern Strings
A quoted string within a pattern is called a pattern string, and is matched on a
character by character basis with the input text. Exceptions to this character by
character matching occur for blanks in the input. One blank in a pattern string will
match one or more contiguous blanks in the input. One or more blanks in the input
for which no corresponding blanks in the pattern string exist are allowed if

 1. the blanks occur before the character in the input which matches the first
character in the pattern string.

 2. the blanks are delimited on at least one side by a non-alphanumeric character.
Consecutive blanks in pattern strings are compressed to a single blank when the
patterns are compiled.

For example, the pattern string 'ABC(123)' will match the input strings

ABC(123) ABC (123) (5.2)

but will not match

AB C(123) ABC (1 2 3) (5.3)

The pattern string 'GO TO 123' will match the input strings

GO TO 123 GO TO 123 (5.4)

but will not match

GOTO 123 GO TO123 (5.5)

The pattern string 'HERE TO THERE' will match the input strings

HERE TO THERE HERE TO THERE (5.6)

22 STEP Processor

In order that pattern string matching terminate at what will normally be an atom
boundary in the input an otherwise successful match is made to fail if the last input
character matched is alphanumeric and the character immediately following it is also
alphanumeric. This requirement may be relaxed by coding an asterisk immediately
after a pattern string when a macro is being defined. Thus the macro

MACRO TRIGGER: 'PI'; RESCAN '3.14'; END MACRO; (5.7)

will convert the input

PI SPIN PIN (PI+PIT)*A; (5.8)

into

3.14 SPIN PIN (3.14+PIT)*A; (5.9)

The same input, if processed by the macro

MACRO TRIGGER: 'PI'*; RESCAN '3.14'; END MACRO; (5.10)

would become

3.14 SPIN 3.14N (3.14+3.14T)*A (5.11)

The PI in SPIN will not be converted unless the input scan pointer is left pointing to
the P in SPIN by some other macro whose pattern could, for example, end with
'S'*. Normally this will not be the case.

Pattern strings of zero length are not allowed and will cause the processor to
generate a diagnostic message if encountered in a macro definition.

Exceptions to some of the rules given above for pattern string matching occur when
quoted strings or portions of quoted strings are being matched. Those portions of a
pattern string occurring after an odd number of apostrophes (each of which was
originally coded in the pattern string as two adjacent apostrophes) are treated
somewhat differently during macro definition in that multiple contiguous blanks are
not compressed. When these portions of a pattern string are being matched against
the input, blanks are treated as any other character (e.g. three blanks in the pattern
string are required to match three blanks in the input). These rules would then
apply when the pattern string begins matching outside a quoted string in the input
and then enters the string by matching its left string delimiter. Normal matching
conditions would again prevail if the pattern string matched the quoted string's
closing delimiter.

A pattern string can be considered to simply return to the surrounding pattern an
unaltered copy of the text that it matches.

5.2 Syntax Macro Calls
A syntax macro call will itself match no text unless it is a call to one of the
predefined STEP primitive syntax macros. Otherwise control will be passed to the
pattern of the syntax macro that is called. Eventually, of course, control must be
passed to either a pattern string or a primitive syntax macro.

Macro Pattern Definition: Match Items 23

5.2.1 Primitive Syntax Macros
Primitive syntax macros have been implemented primarily for reasons of efficiency.
While each of them could be replaced by a syntax macro using only pattern string
match items, the patterns of such macros would have long alternative sequences of
single character quoted strings that would take considerable amounts of time when
matching. As an example, the ID primitive macro could be replaced by the following
three syntax macros.

MACRO SYNTAX: ID (P=2)
LETTER <0, ¬<' '> <LETTER | DIGIT >> ;
ANSWER SOURCE;
END MACRO;

MACRO SYNTAX: LETTER
'A'* | 'B'* | 'C'* | 'D'* | 'E'* | 'F'* | (5.12)
'G'* | 'H'* | 'I'* | 'J'* | 'K'* | 'L'* |
'M'* | 'N'* | 'O'* | 'P'* | 'Q'* | 'R'* |
'S'* | 'T'* | 'U'* | 'V'* | 'W'* | 'X'* |
'Y'* | 'Z'* | '_'* | '$'* ;
ANSWER SOURCE;
END MACRO;

MACRO SYNTAX: DIGIT
'0'* | '1'* | '2'* | '3'* | '4'* | '5'* |
'6'* | '7'* | '8'* | '9'* ;
ANSWER SOURCE;
END MACRO;

The reader should not concern himself with completely understanding the first of
these three example macros at this point, since it makes use of some as yet
undefined constructs. The pattern for the ID macro defined in (5.12) must first
match a letter, after which it may match zero or more letters or digits which may
not be preceded by a blank.

Currently five STEP primitive macros are available, but more can easily be added if
required.

ID: The ID macro will match any identifier, which is defined as a string of
one or more letters and digits beginning with a letter and containing no
embedded blanks. The character after the identifier will be a delimiter.
Note that there is no requirement on the character immediately before
the identifier. In other words, when the ID macro begins to scan the
input to look for an identifier it starts at the current location of the input
scan pointer and will not consider any characters which occupy
preceding locations in the input. Thus if the input contains the string

ABC001 (5.13)
|

with the input scan pointer at the position shown, the ID macro will
successfully match and return the identifier C001. Note that no match
item that can be defined in a STEP macro can test whether or not it
begins to match on an atom boundary, although most match items do
test that the matching process completes on one. Normally this should
not be a problem, because if the previous matching process terminates
with the input scan pointer on an atom boundary, as it normally will,
the next matching process must then begin on an atom boundary.

24 STEP Processor

NUM: The NUM macro will match any string of one or more decimal digits.
Matching terminates when a character other than a digit is encountered.
Again, there is no requirement on the character preceding the matched
string.

STR: The STR macro will match any quoted string. It will match the entire
string including the delimiting apostrophes, even if the string contains an
embedded apostrophe (which must have been coded as two adjacent
apostrophes).

DEL: The DEL macro will match any single non-alphanumeric character.
Multiple blanks are matched as one whether they occur inside of a
quoted string or not.

CHAR: The CHAR macro will match any single character. Multiple blanks are
matched as one whether they occur inside of a quoted string or not.

Except for CHAR and DEL, all of the above primitive macros (and also the pattern
strings) will additionally ″match″ any leading blanks that might occur as they begin
to scan the input. Trailing blanks are not matched, since a call to DEL or CHAR, or a
pattern string expecting a blank, could occur in the pattern immediately following
one of the calls to a primitive syntax macro.

BAL: The BAL syntax macro, or formal argument as it was called in 2.0,
“Macro Processing” on page 4, requires either a pattern string or an
alternative sequence of pattern strings to immediately follow it. For the
present this discussion will assume that BAL is followed by a single
pattern string. When a BAL syntax macro is called during the matching of
a pattern string against the input, it will match any string (possibly of
zero length) up to the first occurrence of the input of a string matching
its following pattern string. BAL returns the string that it matches
unchanged. The following examples illustrate the use of BAL.

PATTERN INPUT TEXT FIRST SECOND
BAL BAL

RETURNS RETURNS

'ABC(' BAL ')' ABC(123) 123 (5.14)
 'ABC'BAL'123' ABC DEF 123 DEF
 'ABC'BAL'%23' ABC%23 zero length
 BAL','BAL';' A,B,C,D; A B,C,D

BAL will not match a string containing a semicolon, unbalanced
parentheses, or part of a quoted string. It may match text containing an
entire quoted string, however. The following examples illustrate these
restrictions.

PATTERN INPUT TEXT FIRST SECOND
BAL BAL

RETURNS RETURNS

BAL','BAL';' A(4,6 B(3); *** NO MATCH *** (5.15)
BAL','BAL';' A(4,6),B(3); A(4,6) B(3)
'AB'BAL'XYZ' ABC;XYZ *** NO MATCH ***
'AB'BAL'XYZ' ABC'XYZ'D XYZ 'XYZ'D
'AB'BAL'XYZ' AB)(XYZ *** NO MATCH ***

An exception to the above rules arises when the text matched by BAL
contains a quoted string. This text may then contain unbalanced
parentheses and semicolons if these characters are also contained by the

Macro Pattern Definition: Match Items 25

quoted string. For example, the pattern 'AB'* BAL 'XYZ' will match the
input ABC'));('XYZ. In this case BAL will return the text C'));('.

In addition to the restrictions mentioned above, the point in the input at
which the BAL ceases and its trailing pattern string begins to match must
be an atom boundary. In other words, at least one of the characters
adjacent to this point must be a delimiter. For example, if the pattern
BAL 'ABC' is used to match the input 123ABC*ABC, the BAL syntax macro
will match the text 123ABC* and its trailing pattern string will match the
second occurrence of ABC. A quoted string is considered for this purpose
to be an atom, so that, as mentioned above, BAL is not allowed to match
across the left boundary of a quoted string without matching the entire
quoted string. In the fourth example of (5.15) the first XYZ is in a quoted
string, and if the pattern string trailing BAL matched it, BAL itself would
have matched only the left quote of the quoted string 'XYZ'.

It is also possible for BAL to be followed by an alternative sequence of
pattern strings which must appear within brackets. BAL will then match
all text up to the first occurrence in the input of text matching any one
of the alternative pattern strings that follow it, provided, of course, that
the above described restrictions on unbalanced parentheses, semicolons,
and atom boundaries are satisfied. For example, the pattern
BAL<'STOP'|';'> will match the text ″ONE TWO STOP;″ except for the
semicolon and BAL itself will return the text ″ONE TWO″ . If the same
input were to be matched by the pattern

BAL<A:'STOP'|B:'STO'*> (5.16)

BAL would return the same text and the pattern string labelled A would
match the identifier STOP, since the leftmost pattern strings in the
alternative sequence are tried first. If pattern (5.16) were used to match
the input ″ONE TWO STOPPED″ then BAL would again return the same text
as before and this time the pattern string labelled B would match the first
three characters in STOPPED since it is not constrained by the lack of an
atom boundary as is the first pattern string in the sequence.

ATOMS: The ATOMS syntax macro behaves exactly as does BAL, except that it is
allowed to match strings containing semicolons and unbalanced
parentheses. Because of this more care must be taken when using ATOMS
than when using BAL, since there is nothing to stop ATOMS from matching
the entire input stream if the appropriate terminating string is not found
there. ATOMS will fail only if it attempts to match beyond the end of
input.

ATOMS can be used to match a portion of the input that was incorrectly
coded. For example, the macro

26 STEP Processor

MACRO SYNTAX: STATEMENT
DO_STATE |
IF_STATE |
ASSIGN_STATE|

.

.

.
WRITE_STATE | (5.17)
ATOMS ';' ;

IF ¬ATOMS THEN
ANSWER MATCH;

ELSE
WARN '**ERROR-' ATOMS '-DELETED';

END IF
END MACRO;

will always match either a statement of whatever language is defined by
the syntax macros that it calls, or will match an arbitrary string of text
up to and including a semicolon and declare it to be an incorrectly coded
statement. Using the STATEMENT macro a pattern to match a subroutine
having no arguments can now be written

MACRO SYNTAX: SUBROUTINE
'SUBROUTINE;'
BODY: <0, ¬<'END;'> STATEMENT> (5.18)
'END;' ;
ANSWER 'SUBROUTINE;' BODY 'END;';
END MACRO;

The negation symbol (¬), which is explained in the next section, will
cause the subpattern in loop brackets to fail if ″END;″ is encountered in
the input. It is assumed that any conversion of the input text that might
be done is performed by the macros DO_STATE, IF_STATE, etc. which are
called by STATEMENT. The above macro will match the subroutine
declaration and all statements, correct or incorrect, up to and including
the END statement. Incorrect statements are deleted from the ANSWERed
text and cause diagnostic messages to be printed.

TEXT: The TEXT macro is similar to the BAL and ATOMS syntax macros except
that there are no restrictions of any kind on the text that it will match.
The TEXT macro will match the input on a character by character basis
up to the first occurrence of the specified string. The text that it returns
will contain all of the matched input and may include unbalanced
parentheses, quotes and any number of semicolons. Like ATOMS, TEXT
will fail only if it attempts to match beyond the end of input. The
pattern string (or strings if an alternative sequence is used) that follows
TEXT is treated differently than a normal pattern string in that multiple
blanks are always retained. At match time this pattern string(s) must
match character by character with the input. TEXT and its following
pattern string(s) have no regard for atom boundaries. An asterisk
following a pattern string which terminates a TEXT macro will be ignored
by the macro compilers, since in any case this type of pattern string need
not terminate matching on an atom boundary.

An example of the use of TEXT is the pattern TEXT'E'TEXT'IJ', which
will match all of the text ″ABC'DEF'GHIJ″, with the first call to TEXT
returning ABC'D and the second call returning F'GH. The pattern

Macro Pattern Definition: Match Items 27

TEXT<A:''''|B:''''''> (5.19)

could match text that begins within a quoted string, and would
terminate after matching either the closing string delimiter (A) or an
apostrophe coded within the quoted string (B). If this is confusing one
should reread the portion of section IV dealing with quoted string
conversion. Note that TEXT and ATOMS are interchangeable as far as
the matching process of (5.19) is concerned.

Note that each of the BAL, ATOMS, and TEXT syntax macros must always be
immediately followed either by a pattern string as defined at the beginning of 5.0,
“Macro Pattern Definition: Match Items” on page 22, or by a sequence of pattern
strings which are separated from each other by alternation symbols. If the latter is
the case the entire sequence must be enclosed in angle brackets (″<″ and ″>″). It is
permissible to label a TEXT, BAL, or ATOMS syntax macro call, and is also legal to
label either the single pattern string following it or any of the pattern strings in an
alternative sequence. The entire bracketed sequence of pattern strings following one
of these syntax macros may not be labelled, however. The following patterns should
illustrate these rules.

LAB1: BAL LAB2:'STOP' LEGAL
A:TEXT <';'|B:'END'|C:'RETURN;'> LEGAL
ATOMS LABEL:<'THIS'|'THAT'> ILLEGAL

The exact meaning of these labels will be described in the ″Match Variable″ portion
of 7.0, “Macro Replacement Procedure Definition: Introduction, Data Types, and
Expressions” on page 37.

In later versions of STEP, it is intended that the primitive macros can be defined by
the user at processor generation time. Thus, for example, if many floating point
numbers were present in the input text, a primitive macro might be installed to
match them more efficiently.

28 STEP Processor

6.0 Macro Pattern Definition: Pattern Construction

6.1 Simple Patterns
The simplest form of macro pattern is composed of one match item, which would
be either a pattern string or syntax macro call. Next in complexity is a pattern
composed of a sequence of match items. Such a pattern will successfully match the
input only if its first match item can match a portion of the input which begins at
the location indicated by the input scan pointer when the pattern was activated, and
if each following match item can match a portion of the input which begins
immediately after the portion matched by its predecessor. If any one of the match
items fails to match the input, the whole pattern will fail. An example of this type of
pattern is seen in (5.1), which has three match items.

6.1.1 The Alternation Control Symbol
The alternation control symbol is coded as a vertical bar (|) and is used to divide
one pattern into two or more alternative patterns. The whole pattern is considered
to have successfully matched the input if any one of its alternative patterns
successfully matches. The leftmost member of an alternative sequence is always
matched against the input first. If it fails, the input scan pointer backs up to the
position it held when the failing member began to match and the next alternative is
tried. This process continues until one of the alternative patterns matches or all fail.
When a member of an alternative sequence matches the input all remaining
members to its right are ignored and the entire sequence is considered to have
successfully matched. The FACTOR syntax macro in (2.21) is a good example of a
simple alternative sequence in a pattern.

MACRO SYNTAX: FACTOR
'(' EXPRESSION ')' | ID | NUM ; (6.1)
etc.

The first alternative in the above pattern consists of three match items: a pattern
string followed by a syntax macro call which is in turn followed by another pattern
string. The next two alternatives each consist of one syntax macro call. Note that
the scope of the alternation symbol in (6.1) is delimited by either a boundary of the
whole pattern or another alternation symbol. Thus the alternation symbol in the
pattern

A B C | D E F (6.2)

does not apply to C and D only, but to the patterns A B C and D E F.

6.1.2 The Bracket Control Symbols
A group of match items and control symbols enclosed in brackets is viewed by the
rest of the containing pattern, as well as by the rest of this manual unless otherwise
stated, as a single match item that as a unit will either succeed or fail to match the
appropriate portion of input text. For example, the pattern

A B C D E F (6.3)

consists of six syntax macro calls, each of which must successfully match the input if
the entire pattern is to be successful. This pattern can be rewritten as

A B < C D E > F (6.4)

Macro Pattern Definition: Pattern Construction 29

This new pattern will match a certain portion of the input if and only if (6.3) is
capable of matching the same text. While (6.3) consists of six match items, the new
pattern consists of four. The six syntax macros are called to match the input in the
same sequence as before, and the failure of any one of the six to match will still
cause the entire pattern to fail, although in a different way than before. If one of the
bracketed syntax macro calls were to fail, its failure will now cause its containing
pattern, consisting of the three bracketed syntax macro calls, to fail. The failure of
the bracketed match item will then in turn cause the entire pattern to fail.

One of the chief uses of the bracket symbols is to delimit the scope of the
alternation symbol. Thus it is possible to rewrite (2.5) as

MACRO TRIGGER:
'ADD' TERM1:<ID | NUM> 'TO' TERM2:<ID | NUM>

'AND STORE INTO' RESULT:ID. ';' ; (6.5)
RESCAN RESULT '=' TERM1 '+' TERM2 ';';
END MACRO;

where the match item <ID|NUM> can be thought of as a call to a syntax macro which
will match either an identifier or a string of digits. Note that a bracketed match item
may be labelled as if it were a single match item (which, as far as the surrounding
pattern is concerned, it is). Again, the label is used by the macro's replacement
procedure to access and manipulate the text (which in this case will be either an
identifier or a string of digits) returned by the match item labeled. If the brackets
were absent the above pattern would match successfully any one of the following
statements:

38 TO NAME
ADD VARIABLE (6.6)

123 AND STORE INTO ABC;

Bracketed expressions in a pattern may be nested to any level desired. Thus the
pattern

'ADD' <TERM1:<ID | NUM> 'TO' TERM2:<ID | NUM>
| RANGE:NUM 'ELEMENTS OF' ARRAY:ID.> (6.7)
'AND STORE INTO' RESULT:ID. ';' ;
etc.

allows extended ADD statements to be written in which it is now additionally
possible to sum a specified number of elements of an array and store the result.
Thus either of the following statements can be matched by (6.7).

ADD IVAR TO 123 AND STORE INTO K; (6.8)
ADD 43 ELEMENTS OF ARRAY AND STORE INTO IVAR;

While the number of nested brackets in a macro definition is not limited, there is a
limit on the amount of nesting allowed during the matching process. The number of
macros activated but not yet terminated plus the sum of the number of bracketed
expressions entered but not yet exited for each of these calls is at any given instant
limited to the value of the parameter $MATCHSAV. The default value of this parameter
is 100 and can easily be changed at processor generation time. Any macro or
bracketed match item which causes this limit to be exceeded will be forced to fail by
the processor and a diagnostic message will be printed. Except for this action,
however, the normal matching process will continue.

30 STEP Processor

6.1.3 Detailed Description of the Matching Process
Enough of the syntax for writing patterns has now been illustrated to enable the
reader to understand the following description of the matching process. Because of
the detail involved in the following description, the casual reader may wish to skip
to the next subsection describing the bracket control symbols.

If the ADD macro in (6.5) has been defined, the processor, after its scan pointer
reaches the first character of the string

ADD IVAR TO 123 AND STORE INTO K ; (6.9)

will try to match it against the local trigger macros whose definitions were
immediately contained in the definition of the macro that is currently active. If no
local macros match, none exist, or no macro is currently active, the global trigger
macros are then tried. After perhaps trying and failing to match several other trigger
macros (macros defined after the 'ADD' macro are tried first), the processor begins to
match the pattern in (6.5) with the text in (6.9).

The string ADD in (6.9) is matched character by character with the first match item
(which for a trigger macro must be a quoted string) in (6.5). After the first item (or
″trigger″) of the pattern is matched, and with the input scan pointer positioned
immediately after the ADD, the processor looks to see if the ADD macro has any local
trigger macros that can be matched, and failing this, looks for global trigger macros
that consist of, or start with, the string 'IVAR'. If none are found the ID syntax
macro is entered but not activated. At this point the processor checks for any
trigger macros local to ID that might be tried, but since ID is one of the primitives
there are none, so that the ID macro is finally activated.

The processor will not try to match any other trigger macros until the ID macro
completes, successfully or not, its task. After ID has successfully matched IVAR plus
all leading blanks, the alternation symbol is encountered in the pattern and all
remaining items, including other bracketed expressions, within the brackets are
skipped. With the input scan pointer immediately following IVAR, the macros local
to the ADD macro and then the global trigger macros are searched for one which will
match the text ″TO 123 AND...″. When (hopefully) none are found the pattern string
'TO' will be matched with the corresponding text, plus leading blanks, in the input.
With the input scan pointer at the first of the leading blanks before the ″123″ the
usual search through the local and global trigger macros will be made, after which
the ID syntax macro is activated and fails, returning control to the pattern of the
'ADD' macro. Any pattern items, including bracketed items containing alternation
symbols, that might have followed the second occurrence of ID in (6.5) will be
skipped over until the alternation symbol is reached. The input scan pointer backs
up until it is at the location occupied before the current bracketed expression in the
pattern was entered (before the ″123″), and the processor prepares to call the NUM
syntax macro. The global trigger macros and those local to the ADD macro are not
checked at this point because they already were before ID was called. If NUM were to
have any local trigger macros they would be matched against the input, however.
This matching process will continue until the semicolon at the end of (6.9)
successfully matches the corresponding item in the pattern, after which the
replacement procedure of the ADD macro is called.

Normally, the replacement procedure for a trigger macro generates what is called
rescan text. This text effectively replaces the text that the macro matched, and the
input scan pointer is reset to point at its beginning. The input text is not actually
replaced, however, since a match failure may cause the input scan pointer to back

Macro Pattern Definition: Pattern Construction 31

up to a location before that at which this trigger macro was activated, upon which
the original input should be reinstated.

If at some point the ADD macro had failed to match the input in (6.9), the input scan
pointer would have backed up to the position it occupied when the ADD macro
was first called, that is, before the ADD in (6.9), and any remaining global trigger
macros would be called.

6.1.4 Activation Points
When a macro pattern has control, implicit calls to trigger macros may only take
place just before a pattern string match item becomes active or a syntax macro is
called. Before a pattern string becomes active, trigger macros local to the containing
pattern and then the global trigger macros are tried. The same is done just before a
syntax macro call is reached, after which the syntax macro is entered and its local
macros are tried. Finally the syntax macro itself is activated. If at any time a trigger
macro is successful, it will generate a replacement for the input text that it matched,
after which both local and then global trigger macros are retried. Finally when all
trigger macros available in the current context are tried and none are successfully
matched by the current input text, the processor continues with either the match of
the pattern string or the syntax macro call. Note that the pattern string 'AND
STORE INTO' in (6.5) is one string, or match item, in the pattern and will be
matched as a unit, so that trigger macro activity can take place only when the input
scan pointer is positioned before the AND and not when it is before the other two
identifiers. This could be altered by writing the pattern in (6.5) as

'ADD' TERM1:<ID | NUM> 'TO' TERM2:<ID | NUM> (6.10)
'AND' 'STORE' 'INTO' RESULT:ID. ';' ;

The locations of the input scan pointer for which trigger macros can be invoked are
called activation points. Although the activation points are in the input text, their
locations depend upon the macro pattern which currently controls the scan. If no
macros are active the activation points are defined by the output processor (see 9.0,
“Macro Replacement Procedure Definition: Intrinsic Functions, Listings, and
Object Code” on page 57) to be at the beginning of each atom in the input. There
are then no activation points within any of the input matched by a single pattern
string or any of the primitive syntax macros, including TEXT.

The interaction of syntax and trigger macros described above indicates that language
extension could be made into a two stage process. Suppose that the base language
being extended is FORTRAN. The first stage could then involve the definition of
an extended base language for which a top down parse is conducted by a set of
syntax macros. This set could be activated by one trigger macro as described in 2.0,
“Macro Processing” on page 4. The extended base could possibly be defined to be a
structured FORTRAN such as RATFOR, IFTRAN, or MORTRAN. (See 13.2,
“References” on page 74, items 3-5.) Further extensions could then be made by
trigger macros. Note that these trigger macros, and any syntax macros which they
call, would be invoked for any given portion of the input before the corresponding
extended base syntax macros are, and thus should produce code in the extended
base, not the base, language. The two stages could then be quite independent, since
as far as the trigger macros are concerned, the extended base language is the base
language.

32 STEP Processor

6.1.5 The Parentheses Control Symbols
Parentheses are used to delimit optional match items in the pattern. The match
items within parentheses will be matched as a unit if they appear in the input text,
but need not be there for the entire pattern to match successfully. If EXPR matches
arithmetic expressions, then the pattern

'FOR' ID '=' EXPR 'TO' EXPR ('BY' EXPR) 'DO' (6.11)

will match both

FOR I=A+1 TO A*C BY 3 DO (6.12)
FOR I=A+1 TO A*C DO

Note that both the 'BY' and its accompanying expression must be present or both
must be absent for the optional match item to match. The pattern

'FOR' ID '=' EXPR 'TO' EXPR ('BY') (EXPR) 'DO' (6.13)

would allow for the (probably undesirable) possibility of one of either the BY or its
accompanying expression appearing in the input without the other. The parentheses
will also delimit the scope of the alternation control symbol, so that

(ID|NUM) (6.14)

could be considered by its containing pattern as a call to a syntax macro which
would match an identifier, or an integer, or, if neither of these items appeared at the
appropriate place in the input, a null string.

6.1.6 The Negation Control Symbol
The negation (¬) symbol is used in conjunction with the bracket symbols to insure
that a given portion of text is not present in that which is currently being matched.
The bracketed pattern following a negation symbol will signal a failure to the
surrounding pattern if it matches the input successfully. If it fails, however, the input
scan pointer will back up to its position previous to the negation symbol being
encountered in the pattern, the bracketed item will be considered to have
successfully matched, and the matching process will resume with the next item in
the surrounding pattern. The pattern

'BEGIN' ¬<'FORTRAN'|'ALGOL'> ID 'END' (6.15)

will match an occurrence in the input of the string 'BEGIN', followed by any
identifier except 'FORTRAN' or 'ALGOL', which then must be followed by the string
'END'. Only the first two of the following four strings can then be successfully
matched by (6.15).

BEGIN PASCAL END
BEGIN FORTRA END (6.16)
BEGIN FORTRAN END
BEGIN ALGOL END

A left bracket must follow the negation symbol; a parenthesis or a loop bracket
(described below) may not. The definition of ID in (5.12) is a good example of the
use of the negation control symbol.

Macro Pattern Definition: Pattern Construction 33

6.1.7 Iterative Matching
Iterative syntax rules and patterns to match multiple occurrences of a given
construct in the input text can be written by enclosing the appropriate match items
and control symbols within loop brackets. Loop brackets are distinguished by
placing after the left bracket symbol (<) an integer, which in turn must be followed
by a comma. The integer gives the minimum number of times that the pattern
within the loop brackets must successfully match the input before the loop construct
as a whole is considered successful. The loop brackets may optionally contain the
exit (/) control symbol which specifies the point at which control is passed out of
the loop pattern. The pattern

'INTEGER' < 2, ID / ',' > ';' (6.17)

matches the text (ignoring normal recursive trigger activity)

INTEGER ABC,I001, X; (6.18)

by first matching the string INTEGER in the normal manner. The ID syntax macro
next matches the ABC after which the commas in the pattern and input are
matched. When the closing loop bracket is encountered in the pattern, the pointer
into the pattern kept by the processor (hereafter called the pattern pointer) is reset
to point to the ID syntax macro call. This time I001 will be matched by the ID
macro. When the pattern pointer reaches the exit symbol for the second time the
loop is considered to have successfully been matched the minimum number of times
(2) specified in its pattern, whereupon the current input scan pointer value is saved
and a flag is set. If, after this, further attempts to match the pattern within the loop
brackets fail, the input scan pointer will be reset to the saved value and the flag
being set will cause the loop construct to signal the completion of a successful
match to the surrounding pattern.

As matching continues the commas in the input and pattern are matched and the
pattern pointer is reset for the second time. After X matches the ID macro the exit
symbol is encountered and the saved input scan pointer is replaced by the current
one. The semicolon in the input will now fail to match the comma in the pattern,
causing the input scan pointer to back up to its most recently saved value
(immediately after the X). The matching process now resumes with the first match
item past the loop brackets and the semicolons in the pattern and input are
successfully matched. Loop patterns may be nested; thus the pattern

'DIMENSION'* <1, ID '(' <1, NUM/','> ')' / ',' > (6.19)

will successfully match any FORTRAN DIMENSION statement. If the exit
symbol is omitted in defining a loop construct, the processor will insert one just
before the closing loop bracket.

The exit symbol and right loop bracket will delimit the scope of an alternation
symbol. The left loop bracket will not delimit the scope of an alternation symbol
unless no exit symbol was coded for that loop. Thus the brackets within the loop
brackets are redundant in the first line below while in the second they are not.

<1, ID / <'+'|'-'>>
<1, <ID | NUM> / ','>

This ″fault″ of the left loop bracket could be removed by having the pattern
compiler convert the construct

< number, subpattern / subpattern >

into

34 STEP Processor

< number, <subpattern> / subpattern >

if the first subpattern contained alternation symbols which were not in turn
contained by brackets of any type. This may be done if the author determines that it
is worth the trouble.

There is an implementation defined limit for the number of nested loops allowed in
a single macro pattern which can be easily changed by altering the $LPNEST
parameter (default value is eight) at processor generation time. The number of
macros activated but not yet terminated plus five times the number of loop match
items entered but not yet exited is limited to the value of the parameter $MATCHLOOP.
The default value of this parameter is 200 and is also easily changed.

6.1.8 Backup and Match Retry
Although the input scan pointer may be backed up when alternative portions of a
pattern are being matched, the pattern pointer always moves forward through the
macro pattern during matching. The one exception to this rule is that of loop
matching which has been described above. Thus, except for simple alternation, the
matcher will not seek out alternate paths through the pattern if one path fails. Thus
the pattern

< ID | ID2:ID. '(' EXPR ')' > '=' EXP2:EXPR ';' (6.20)

will not match the text

ARRAY(3)=4+A; (6.21)

because the first ID syntax macro call will match 'ARRAY', after which the pattern
pointer will jump out of the bracketed match item, try to match '=', and fail. Since
the pattern pointer is now past the alternative in the brackets, that alternative
cannot be tried. To avoid this problem, alternative sequences should begin with the
match items that will match the most text, one or more of the match items
following the alternative sequences can be instead included after each member of the
sequence, or optional match items might be used to avoid part or all of the
alternation. Each of these three ideas are applied to the above pattern as follows:

< ID '(' EXPR ')' | ID2:ID. > '=' EXP2:EXPR ';'
< ID '=' | ID2:ID. '(' EXPR ')=' > EXP2:EXPR ';' (6.22)

ID ('(' EXPR ')') '=' EXP2:EXPR ';'

While in this case the last is preferred for both speed and space, any of these
patterns should perform in a satisfactory manner. It should nearly always be
possible to write patterns in which backup is unnecessary. (See 13.2, “References”
on page 74, item 7)

A description of the syntax rules for macro pattern definition is given in appendix A.

6.1.9 Trigger Macro Patterns
A few restrictions should be observed when writing patterns for trigger macros. A
trigger macro pattern must begin with a pattern string which is called the trigger.
The trigger may be as short as one character, may not begin with a blank, and may
not be nested within brackets, parentheses, or loop brackets. The trigger should
have no alternative, that is, any alternation symbol appearing in a trigger macro
pattern must be nested within at least one level of brackets, parentheses, or loop
brackets. Failure to observe any of these rules will result in a diagnostic and refusal
to compile the offending macro.

Macro Pattern Definition: Pattern Construction 35

A trigger macro is called and given control of the scan only when its entire trigger
appears in the input. The user should therefore be careful about using trigger macros
having very short triggers, because such macros can be more easily called by the
input, and once called there is a certain amount of processor overhead involved in
passing control of the scan, stacking the environment, etc. even if the macro fails.
Another danger arising from short triggers is discussed in 12.0, “Techniques for
Macro Definition and Use” on page 69.

6.2 The Pattern Compiler
During macro definition, patterns are thoroughly checked for syntactic correctness
and are stored in the macro buffer in a translated form. Syntax macro calls are
linked to appropriate locations in the syntax symbol table, whose members will in
turn be linked to the syntax macros themselves by the LINK routine when these
macros have been compiled. This level of indirection allows macros with references
to syntax macros to be compiled before the corresponding syntax macros themselves
are defined.

36 STEP Processor

7.0 Macro Replacement Procedure Definition: Introduction,
Data Types, and Expressions

Each macro defined consists of an initial pattern and a replacement procedure. As
will be seen in the discussion of the SCAN statement in 8.0, “Macro Replacement
Procedure Definition: Statements” on page 46, the replacement procedure may
contain additional patterns. The replacement procedure is activated upon the
completion of a successful match of the pattern with the input text. When a macro
is defined a FORTRAN subroutine compiles the replacement procedures from a
higher level language, which is hereafter called the replacement base language or just
base language, into a reverse polish string. The polish string is then interpreted by
another FORTRAN subroutine whenever the replacement procedure is activated.
The base language cannot be compiled directly to machine code if the processor is
to remain machine independent. In order to keep the compiler subroutine to a
manageable size, the only control statement currently implemented in the base
language is the conditional branch, or IF statement as in

IF (I=1) LABEL1; (7.1)

If the expression is true the statement labelled by LABEL1 is the next executed,
otherwise control passes to the next statement after the IF. Since a logical
expression evaluates to the integer 1 if true, and unconditional GOTO may be coded

IF(1)LABEL1; (7.2)

Since the recognition and passing of a macro definition to the pattern and
replacement base language compilers is done under the control of macros, it is
natural to allow these macros to process the macro definitions before they are
passed on. Although the user is certainly free to write a set of macros to extend the
replacement base language anyway that he chooses, a ″standard″ set of base
language extension macros is supplied with the processor and appears in appendix
B. Although these macros serve several minor purposes, they are primarily designed
to implement and check for the correct use of the control structures

IF - ELSEIF - ELSE - END IF
FOR - END FOR
WHILE - END WHILE
LOOP - END LOOP (7.3)
GO TO
EXIT, NEXT (for loops)

All base language statements except MEND are valid statements in the extended
language, but some, such as the conditional branch are rarely used. Hereafter
references to the IF statement, unless qualified, will refer to the IF construct in the
extended language. In the remainder of this section and the two following sections,
care will be taken to point out those properties of the replacement procedure
language which are implemented by macros in the ″standard″ set and are therefore
not connected with the processor in any other way.

The integer, string, and match variables used by the replacement procedure are local
to the procedure and temporary; being allocated upon activation and de-allocated
when the procedure terminates. The GLOBAL and symbol array variables and text
produced by ANSWER and RESCAN statements are not affected by macro activation and
termination, although they may be altered by statements within a replacement
procedure.

Macro Replacement Procedure Definition: Introduction, Data Types, and Expressions 37

7.1 Integer Data Type
An integer constant is a string of numeric characters containing no blanks, commas,
or decimal points. It is interpreted as a decimal integer whose value must lie
between implementation defined limits. Integer constants may be preceded by a plus
or minus sign, but these do not change the value of the stored constant; they will be
interpreted as operators in the normal fashion when the statement containing the
constant is executed.

7.1.1 Integer Variables
An identifier appearing in a replacement procedure is assumed to be an integer
variable unless it is declared otherwise. An integer variable may assume any value
valid for a FORTRAN integer variable on the machine on which STEP is running.

7.2 String Data Type
A string is a sequence of zero or more characters which is treated as a unit. A string
constant is written simply by enclosing the characters in the string with apostrophes.
If an apostrophe is desired in a string it must be written as two consecutive
apostrophes. Thus the string

DON'T DO THAT (7.4)

is written as the string constant

'DON''T DO THAT' (7.5)

String constants may be of any length. A string constant of zero length may be
written as two adjacent apostrophes provided that it is not contained in another
quoted string.

7.2.1 String Variables
An identifier will represent a string variable if its first appearance in the procedure is
in a STRING declaration statement, which is defined later. The length of a string
represented by a string variable is not limited and will be equal to the length of
whatever string is assigned to it. A string variable can also have the value null,
which is not the same as a zero length string, but can be thought of as a string
having negative length. All string variables are initialized to null upon procedure
entry.

7.2.2 Match Variables
Text matched by the pattern of a macro is accessed in its replacement procedure by
means of match string variables, which are hereafter called match variables. A match
variable can be used in the replacement procedure like a normal string variable. A
match variable is declared in the macro pattern by writing its associated identifier,
followed by a colon, in front of a match item, left loop bracket, left parenthesis, or
left bracket (except for the left bracket delimiting an alternative sequence of pattern
strings following a BAL, ATOMS, or TEXT syntax macro). The matching process will
cause the values of each match variable declared in the pattern to be initialized by
the replacement text, minus any leading blanks, returned by the match item that it
labels. It is not necessary to delete trailing blanks from a match variable because
normally none are matched by the corresponding match item.

38 STEP Processor

If a string containing only blanks is matched the appropriate match variable is
initialized to a single blank character.

The match variable which labels a syntax macro call will be set to the text returned
by that macro. A syntax macro returns all text to the calling macro by means of the
ANSWER statement, described below. If a syntax macro call is not labeled it will be
assumed to have a label identical to its name. Thus the two patterns

'FOR' ID '=' EXPR 'TO' EXPR 'DO' (7.6)
'FOR' ID:ID. '=' EXPR:EXPR 'TO' EXPR:EXPR 'DO'

are identical to the processor.

The text returned by a bracketed item, for normal, optional, or loop brackets, is
composed of the replacement strings produced by each matching of each match item
within the brackets concatenated together in the order in which the matchings
occurred. It is possible, for example, to have a match variable represent an entire
pattern string including arguments by simply enclosing the string in brackets and
labeling the match item thus formed. Although leading blanks are removed from the
text returned by the bracketed match item, any blanks between the portions of text
returned by the various items contained by the brackets are not.

In each pattern in (7.6) the match variable 'EXPR' is used to label two match items.
When match variables are multiply declared the last declaration occurring in the
pattern is the one recognized. Thus the text returned by the first call to the EXPR
syntax macro will be inaccessible by the replacement procedure for (7.6), although
the matching process for the pattern is unaffected. This pattern could instead be
written

'FOR' ID '=' EXPR 'TO' EXP2:EXPR 'DO' (7.7)

which allows the text returned by all three macro calls to be accessed.

A single match item may not have multiple labels. Thus

ID1: ID2: ID (7.8)

is not legal, while

ID1: <ID2:ID.> (7.9)

is, since the syntax macro call ID and the bracketed construct are considered to be
two different match items by the processor.

Any match variable whose declaration appears inside loop brackets is declared to be
an array of strings whose dimension is equal to the number of loops within which it
is nested. These match variables must have the appropriate number of subscripts
separated by commas in order to be accessed in the replacement procedure. Each
subscript must be an integer expression, which is defined below. Following the
FORTRAN convention, the first subscript will refer to the innermost loop, and so
on. For example, in a replacement procedure for (6.19) the match variable NUM(2,3)
will be initialized to the second subscript of the third variable in the DIMENSION
statement being matched. Permissible values for a subscript range from one up to
the number of times the loop referred to is successfully matched. The highest
permissible value for a given subscript in a match array variable is found by
substituting an asterisk (*) for that subscript and omitting any subscripts to the left.
The array match variable will then have an integer rather than a string value and
will equal the subscript limit. Again using (6.19) as an example, NUM(*) and ID(*)

Macro Replacement Procedure Definition: Introduction, Data Types, and Expressions 39

will each be integers whose values will be equal to the number of variables
appearing in the DIMENSION statement that was matched, while NUM(*,2) will
equal the number of subscripts appearing in the second variable. If the
DIMENSION statement did not have a second variable, NUM(*,2) would be zero.

7.2.3 Existence of Match Variables
Any non-array match variable declared in the pattern will exist, but may be
initialized to null if its corresponding match item matched no input text. A match
variable array element, however, will not exist if any one of the loops in which its
declaration is nested does not match successfully the number of times indicated by
the appropriate subscripts. Note that while an iteration of the loop containing the
declaration must match as a whole, the match item corresponding to a particular
variable declared in the loop need not. In other words, it is possible for a match
variable array element to exist and be initialized to null.

The number of times a nested loop pattern will match will in general vary with the
match iteration of the outer loops, so that the maximum permissible value for a
subscript will depend upon the values of the subscripts, if any, to its right. An
attempt to access a nonexistent array element will return a null string and a run-time
diagnostic. If the leftmost subscript is an asterisk, however, no diagnostic will be
issued and the integer value returned will be zero if the remaining subscripts are out
of bounds or if the containing loop did not match at all. For example, if only four
variables are in a DIMENSION statement matched by (6.19), then NUM(*,5) would
be zero, and no diagnostic is issued.

7.3 The GLOBAL Array
GLOBAL is an integer array whose size is implementation defined. A GLOBAL array
element may be used anywhere and in the same way that a normal integer variable
is used. The values assigned to the GLOBAL array will remain until another assignment
is done or a control card (see below) is read. These values are not affected by
procedure activation and backups. Each element of the GLOBAL array is initialized to
zero when the processor is started.

Values in the GLOBAL array are also changed by control cards of the form

/C{INTEGER},{INTEGER}

where the beginning slash must be in column one and no embedded blanks are
allowed. The second integer may be preceded by a minus sign. The value of the
second argument is stored in the GLOBAL array element whose index is the first
argument.

The lower limit for GLOBAL array indices is zero while the upper limit is
implementation defined. A diagnostic is printed if the index is out of this range in a
replacement procedure or control card. The value returned in a replacement
procedure would then be the zeroth element of the array.

Elements one to twenty of the GLOBAL array are used as control variables by the
processor. These elements can be thought of as switches which have the value one
when on and zero when off. The locations currently used are

 1. COMPILE. If this switch is turned on by the replacement procedure of a
trigger macro then all of the text produced by the ANSWER statements of that
procedure is considered to be a macro definition and is passed to the pattern

40 STEP Processor

and replacement procedure compilers. The ANSWER text returned to the caller is
then a string of zero length and the switch is turned off. There is no effect upon
any RESCAN text produced by the same macro. This switch should not be set by
a control card.

 2. QUOTE. Normally a comment must be enclosed in double quotes (″) . If this
switch is on then comments not closed by a double quote before the end of the
card will be closed by the processor.

 3. TRACE. If this switch is on any ANSWER and RESCAN text produced by a
replacement procedure will be dumped into the listing file along with the words
″ANSWER″ or ″RESCAN″ and the name of the macro if it is a syntax macro, or its
trigger if it is a trigger macro. The normal disposition of the ANSWER and RESCAN
produced text is not interfered with.

 4. LISTING. The pattern compiler will output the pattern of the macro being
compiled to the listing file if this switch is on. The replacement procedure will
also be listed on a statement by statement basis. Note that compiler diagnostics
are listed regardless of the status of this switch.

 5. OBJECT. When this switch is on the object code produced for each statement
by the replacement compiler will be listed after that statement.

 6. NEST SWITCH. As described in 4.0, “Input Reader” on page 16 it is possible
for the input reader to update the nest level count when bracket symbols are
encountered. This will be done if GLOBAL(6) is set equal to one.

 7. NEST COUNT. The nest count itself is kept in GLOBAL(7) so that it may be
easily accessed by the macros. The nest count value is printed in front of each
source listing line.

 8. INDENTATION AMOUNT. This, as all other elements of the GLOBAL array,
is initialized to zero, so that no nest level related indentation appears in the
source listing. Each line of the source listing will be indented by an amount
equal to the nest level count multiplied by the indentation amount.

Elements 21 to 30 of the GLOBAL array are by convention reserved for the use of
macros extending the macro definition language.

7.4 Syntax Descriptions for the Replacement Procedure Language
For the remainder of this manual, STEP macro patterns are used to define the
syntax of the various expressions and statements that are introduced. In order to do
this, the existence of several syntax macros will for the moment be assumed. INTVAR,
STRVAR, and MATVAR will match the name of any integer, string, or match variable,
respectively. Any of these macros could be defined using a pattern which consisted
of a call to the ID syntax macro and a replacement procedure which looked up the
resulting identifier using the symbol table facility, which is described later. If the
identifier did not represent the proper class of variable, a FAIL statement, which is
also described later, could be executed and the macro would act as if its pattern had
never matched the identifier in the first place.

Macro Replacement Procedure Definition: Introduction, Data Types, and Expressions 41

7.4.1 Integer Expressions
An integer expression is a combination of arithmetic operators, integer constants,
integer variables, and functions which have integer values. The syntax of and the
operators used in these expressions is identical to that allowed by FORTRAN with
the exception of the exponentiation operator.

The arithmetic operators, listed in descending priority, are

+ , - (UNARY OPERATORS)
* , /
+ , -

where operators on the same line have equal priorities. An expression may not
contain adjacent arithmetic operators, nor may it contain adjacent operands. When
two operations in an expression have equal priority the leftmost one is done first.
Parentheses are used in the normal manner to change the order of evaluation.
Examples of integer expressions are:

1 -A A+1*4 -(NUM(*,2)+A)*B/(I-8) (7.10)

It is assumed that A, B, and I were not declared as match variables in the pattern
and were not declared as string variables in the replacement procedure. Except for
declaration statements, an integer expression may appear anywhere that an integer
constant would be allowed in a replacement procedure statement.

The pattern INTEXP which matches all integer expressions accepted by the base
language compiler is written

MACRO SYNTAX: INTEXP
<1, TERM / '+' | '-'>;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: TERM
<1, FACTOR / '*' | '/'>; (7.11)
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: FACTOR
('+'|'-') < 'GLOBAL(' INTEXP ')' | INTVAR | NUM |

MATVAR '(*' <0, ',' INTEXP> ')' |
'(' INTEXP ')' | INTFCN | SYMPNTR | SYMREF>;

ANSWER MATCH;
END MACRO;

The definition for INTFCN, which matches any function that returns an integer value,
will be given in 9.0, “Macro Replacement Procedure Definition: Intrinsic Functions,
Listings, and Object Code” on page 57. The definitions of SYMPNTR and SYMREF will
be given in the subsection on the symbol array facility. The pattern ('+'|'-') in
FACTOR will match both unary operators, while the infix '+' and '-' will be matched
in the INTEXP pattern. Again, note that a match variable having an asterisk as its first
subscript is treated as an integer. The above macros have been written so as to
reflect operator precedence rules.

42 STEP Processor

7.4.2 String Expressions
A string element is defined as a string constant, a string variable, a match variable or
array element, or a function which evaluates to a string. String expressions consist of
one or more string element separated by the concatenation operator (||), which is
the only string operator available. Various string functions that are available, such as
substring, will be described in the section on functions. The concatenation infix
operator operates only on variables, constants, or expressions having string data
type. The result is the creation of a new string formed by joining the operands in the
order written. Parentheses are allowed in string expressions and will change the
order in which the concatenations are done, but are of little practical use. The
priority of the concatenation operator is higher than that of the arithmetic operators
although this is seldom of importance since autoconversion between the string and
integer data type is never done. Its priority is also higher than those of the relational,
logical, and symbol array (described later) operators. If U and V are string variables,
the following are valid string expressions:

V V||U||'ABC' ('ABC'||V)||U (7.12)

The pattern STREXP to match all string expressions accepted by the base language
compiler is written

MACRO SYNTAX: STREXP
<1, <STRELEMENT | '(' STREXP ')'> / '||'>;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: STRELEMENT
STR | STRVAR | STRFCN | MATREF | SYMREF; (7.13)
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: MATREF
MATVAR ('(' <1, INTEXP / ','> ')');
ANSWER MATCH;
END MACRO;

The definition of STRFCN, which matches any function which evaluates to a string,
will be given in the section on functions. Again, the definition of SYMREF is given in
the subsection on the symbol array facility.

7.4.3 Logical Expressions
A logical expression always evaluates to an integer. The value of this integer may
then be interpreted as false (zero) or true (nonzero). A logical expression can be an
arithmetic expression, a relational expression, or, in the proper context, a match
variable. A logical expression may also be composed of other logical expressions
separated by the infix logical operators ″&″ or ″ | ″ , or preceded by the prefix
operator ″¬″.

A relational expression is composed of a relational operator with an expression on
each side. Both expressions must evaluate to an integer or both must evaluate to a
string. The relational operators are

= ¬= < <= > >=

all of which have the same priority, which is lower than that of the arithmetic and
string operators. A relational expression will evaluate to a 1 or a 0, depending upon
whether the relation is satisfied or not. Strings are compared by a left to right
character by character comparison according to the collating sequence defined by

Macro Replacement Procedure Definition: Introduction, Data Types, and Expressions 43

the internal character mapping (see 4.0, “Input Reader” on page 16). In the event
that all of the characters in one string are the same as the first characters in another
the longer string is considered to be greater. A null string or match variable will
always compare as strictly less than a string of zero length. In the future, it may be
possible to introduce more flexibility in the ordering of the internal character map in
STEP so that the collating sequence at compile time could be adjusted to coincide
with that at run time, which will in general be machine dependent.

A match variable is considered to be a logical expression if it appears as the sole
argument of an IF statement or is directly operated on by one of the three logical
operators. It will evaluate to zero if its value is null, and to a nonzero value if it is
not null. This allows for a convenient way to check whether or not a given portion
of the macro pattern matched the input or not.

The logical operators are, in order of decreasing priority, ″¬″, ″&″, and ″ | ″ . The
priorities of the logical operators are lower than those of the arithmetic, relational,
string, and symbol array operators. The result of operation by a logical operator is
always 1 or 0, depending upon whether the expression is true or false.

Logical and relational operations of equal priority are performed left to right.
Parentheses can be used in the normal manner to change the order of evaluation.
Note that the expression

7 > 6 > 5 < 3 (7.14)

is perfectly acceptable to the base compiler. The operations would be performed
from left to right: 7 > 6 evaluates to 1, then 1 > 5 evaluates to 0, and finally 0 < 3
evaluates to 1. The extension macros will not, however, allow such an expression as
the argument of an extended IF, ELSEIF, or WHILE statement. A plus or minus sign
immediately following a relational or logical operator is interpreted as a prefix
operator. If NUM is a two dimensional match variable array, ID is a match variable, S,
T, and U string variables and all other variables are of integer type, then example
logical expressions can be written as

I (S < T | I = 6) & J
I=6 ID > 'ABCD' | NUM(2,3) < ID
NUM(2,3) | I = 6 NUM(*,2) > 6 (7.15)

Note that while NUM is used as a logical variable in the third example, it is used as a
string variable in the fifth, even though it occurs adjacent to the ″ | ″ logical operator.
The higher priority of the ″<″ operator prevents the ″|″ from directly operating on
the NUM match variable. NUM(*,2) is, of course, treated as an integer.

The way in which logical and integer expression have been mixed is perhaps
unfortunate but cannot be avoided without introducing a separate logical variable
type along with the appropriate declaration statement into the base language
compiler. Except for a restriction to binary relational expressions in certain contexts,
the extension macros do not place any further restrictions on the mixing of
logical/integer expressions.

The pattern LOGEXP which matches all logical expressions accepted by the base
compiler is written

MACRO SYNTAX: LOGEXP
<1, LOGTERM / '|'>;
ANSWER MATCH;
END MACRO;

44 STEP Processor

MACRO SYNTAX: LOGTERM
<1, LOGELEMENT / '&'>;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: LOGELEMENT (7.16)
('¬') <RELATION | INTEXP | MATREF | '(' LOGEXP ')'>
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: RELATION
<1, INTEXP / RELOP> | STREXP R2:RELOP S2:STREXP ;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: RELOP
'=' | '¬=' | '<=' | '<' | '>=' | '>';
ANSWER MATCH;
END MACRO;

The three calls to INTEXP in the pattern for the FACTOR macro in (7.11) and the call
to INTEXP in the pattern of the MATREF macro in (7.13) must now be changed to
LOGEXP in order to coincide with the way in which the base language compiler
operates. For this reason LOGEXP will appear many places in future syntax definitions
where the reader might at first expect to see INTEXP. The text matched by LOGEXP in
these cases will still be referred to as an integer expression. Note that the order in
which some of the relational operators appear in the pattern for RELOP is important.
The restrictions on the use of a match variable as a logical variable are not given by
the above macros. In practical work, this extension of the meaning of the match
variable has proven very convenient, although it is particularly messy to place into
the grammar, or patterns, which describe the language syntax.

Macro Replacement Procedure Definition: Introduction, Data Types, and Expressions 45

8.0 Macro Replacement Procedure Definition: Statements

The statements currently implemented in the base language replacement procedure
compiler are the STRING, Assignment, IF, OUTPUT, FAIL, MARK, DROP, SCAN, MERGE,
RETURN, and MEND statements. All of the above words except Assignment are reserved
by the compiler and may not be used in a macro definition for any other purpose.
The identifiers THEN, NOTRIG, USING, NONEW, and LOCAL, which are options of various
statements, are also reserved. The statements implemented by the extension macro
set are discussed after those of the base language.

8.1 STRING Statement
The STRING statement can be matched by the pattern

'STRING' <1, ID> ';' ;

All of the identifiers appearing in a STRING statement are declared to be variables
having string data type, and must not appear in any statement previous to the
STRING statement. The compiler will issue a diagnostic and the macro will be
deleted after compilation if any variable appearing in a string statement has appeared
previously anywhere else in the macro definition. The STRING statement produces
no executable code.

8.2 Arithmetic Assignment Statement
A pattern to match an arithmetic assignment statement can be written

<'GLOBAL(' LOGEXP ')' | INTVAR> '=' LOGEXP ';' ;

The expression on the right side is evaluated and stored into the integer variable.
Automatic type conversion between integer and string data types is not done upon
assignment or under any other conditions. The following are valid arithmetic
assignment statements:

I=6 I=6 *(J+K/3) I=I=6 | NUM(*,2) (8.1)

8.3 String Assignment Statement
A string assignment statement will match the pattern

<STRVAR | MATREF> '=' STREXP ';' ;

The quantity on the right hand side is evaluated to form a string which is thereafter
represented by the variable on the left. Note that the match variables are only
initialized by the pattern matching process, and may be reset to other string values
in the replacement procedure. Any non-array match variable declared in the pattern
exists and can have values assigned to it, even if the match item it corresponds to
did not match anything. Match variable array elements can have strings assigned to
them only if they exist.

46 STEP Processor

8.4 IF Statement - (Base Language)
The format of the base language IF statement is

'IF(' LOGEXP ')' ID ';' ;

The arithmetic or logical expression is evaluated. If it is true (nonzero) control is
transferred to the statement which is preceded by the label. If it is false control
transfers to the next statement after the IF. If a match variable appears alone as the
IF expression it will be evaluated as a logical expression as described above. Thus if
NUM and ID are match variables

IF (NUM) LABEL1 ; (8.2)

is legal whereas

IF (NUM+ID) LABEL1; IF(NUM*6) LABEL; (8.3)

are not. Example IF statements are:

IF(3 = I) LAB1; IF(38-I*(8+J)) LAB3;
IF (NUM(3,2) > STRING||STR2) LAB2; (8.4)
IF(¬ NUM(3,2)) LAB1;

where the last of these makes use of the match variable as a logical variable. While
the IF statement may be used in the extended language, it almost never is. If it must
be, the target label should never be the identifier THEN!

The base language compiler does not recognize a GO TO statement. Instead of the
statement

GO TO LABEL1; (8.5)

one may code

IF(1) LABEL1; (8.6)

8.5 SCAN Statement
The SCAN statement can appear in either of the two following forms:

'SCAN' MACRO_PATTERN ';' ;
'USING' STREXP 'SCAN' MACRO_PATTERN ';'; (8.7)

The two types of SCAN statement shown above will be called types one and two,
respectively. The SCAN statement allows the replacement procedure to gain direct
access to the STEP pattern matcher. The type one SCAN statement causes the input
text, starting from the current location of the input scan pointer, to be matched
against the macro pattern following the keyword SCAN. The match variables declared
in the pattern are initialized by the results of the match just as they are for the first
pattern in the macro. In the following macro definition the syntax macros
NORMAL_LIST and CONVRT_LIST will each match a list of items following a
DIMENSION statement, but will generate different code. The value of a flag stored
in GLOBAL(25) indicates which of these syntax macros is to be used.

Macro Replacement Procedure Definition: Statements 47

MACRO SYNTAX: DIMENSION
'DIMENSION';
ANSWER MATCH;
IF GLOBAL(25)=1 THEN

SCAN NORMAL_LIST; (8.8)
ANSWER NORMAL_LIST;

ELSE
SCAN CONVRT_LIST;
ANSWER CONVRT_LIST;

END IF
END MACRO;

In the next example, the syntax macro STATEMENT is assumed to exist and to match
any statement of a given language, after which it writes the statement, perhaps in a
modified form, directly to the code file via the OUTPUT statement. A simple macro to
match a subroutine can then be written

MACRO SYNTAX: SUBROUTINE
'SUBROUTINE' ('('ARGLIST')')';';
OUTPUT MATCH;
SCAN <0, STATEMENT>;
SCAN END: 'END;' ; (8.9)
IF ¬END THEN

WARN 'MISSING END INSERTED';
END IF
OUTPUT 'END;';
END MACRO;

After the subroutine declaration and argument list have been matched they must be
immediately inserted into the code file so that they will appear before the code
generated by the calls to the STATEMENT macro, so the SUBROUTINE macro must ″break
out″ of its pattern matching process in order to do this. The scan statement in this
case simply allows the matching process to resume where it left off. Note that a
subroutine containing thousands of statements can be matched as a unit by the
above macro, since the text produced by the matching process is not stored in the
processor's buffers, as it would be if STATEMENT ANSWERed all of its text back to
SUBROUTINE.

The concept of a distributed pattern makes it necessary to modify the definition of a
STEP macro as a pattern followed by a replacement procedure. A macro definition
then consists of pattern matching and other replacement procedure statements. The
first statement of a macro must be a pattern and is called the initial pattern. The
initial pattern must always be successfully matched against the input if the remaining
statements of the macro are to be executed. If a subsequent pattern is activated by a
type one SCAN statement and fails to match, the input scan pointer is reset to its
value before the abortive match started and all of the match variables declared in
that pattern are set to null. Except for this action the execution of the replacement
procedure continues with the next statement. The syntax of the pattern appearing in
each SCAN statement must follow the rules already specified for the initial pattern of
a syntax macro. Match variables must not appear in a replacement procedure
before they are declared in either the initial pattern or a SCAN statement. If the same
match variable name is declared more than once in any pattern, or in more than one
pattern, a warning diagnostic is printed and the match variable will refer to the text
matched by the last match item appearing in the replacement procedure which
corresponds to that match variable. Any match variable that has not matched text
or is nested within part of a pattern that failed to match text will be initialized to

48 STEP Processor

null. A pattern in a SCAN statement may be repeatedly matched against the input.
Thus the previous example can be rewritten

MACRO SYNTAX: SUBROUTINE
'SUBROUTINE' ('(' ARGLIST ')') ';';
OUTPUT MATCH;
LOOP

SCAN STATEMENT; (8.10)
IF ¬STATEMENT THEN EXIT; END IF

END LOOP
SCAN END:'END;';
etc.

All match variables in the SCAN statement's pattern will reflect the progress of each
successive match as if it were the first. Note that if the match variable STATEMENT
exists, it will be a string of length zero since STATEMENT does not answer any text, but
only does OUTPUTs. If for some reason STATEMENT does ANSWER text back to
SUBROUTINE, that text is deleted just before the same SCAN statement is executed
again. This is necessary if the STATEMENT match variable is to be initialized to the text
to be matched in the next iteration, or initialized to null if the text cannot be
matched. If STATEMENT produces RESCAN text then that text is placed into the input
exactly as it would be by (8.9). The production of RESCAN text in this particular
instance would cause a call to the STATEMENT macro in either type of loop to scan the
text produced by its predecessor.

The type two SCAN statement causes the scan pointer to be temporarily redirected to
the string resulting from the evaluation of the string expression following the
keyword USING. This string is matched exactly as if it were the entire input to the
processor; trigger macros can be activated and syntax macro calls nested to any level
during the scan. The end of the string is treated as the end of input, so that any
pattern attempting to move the input scan pointer beyond the end of the string will
be forced to fail. The type two SCAN statement does not affect the values of the MATCH
and SOURCE functions (these are defined in the next section). When the pattern of the
SCAN statement, successfully or unsuccessfully, completes matching, the scan pointer
reverts to the input and is reset to the value it held before the type two SCAN
statement was encountered.

8.6 ANSWER Extension Statement
The format of the ANSWER statement is

'ANSWER' ('NOTRIG') <1, STRELEMENT> ';' ;

where the keyword NOTRIG is optional and each of the string elements when
evaluated have string data type. As seen above, a string element is a string
expression with the exception that no operators that are not nested within at least
one level of parentheses are allowed. The only operator which could be used in
violation of this rule is the string concatenation operator, whose use in this way in
an ANSWER statement would be redundant. If after its evaluation, a string element is
neither null nor of zero length and does not have a leading blank, one is inserted.
The elements are concatenated together in the order of their appearance to form one
string. Before the replacement procedure terminates, all text strings thus formed are
concatenated in the order in which their corresponding ANSWER statements were
executed. The resulting text is returned to the calling macro if the macro that is
terminating is a syntax macro. If it is a trigger macro the text is simply deleted
unless it is to be passed to the macro definition compilers.

Macro Replacement Procedure Definition: Statements 49

The insertion of the leading blanks in front of any item is suppressed by placing a
dot (.) in front of that item. If S is a string variable and ID and NUM are match
variables and ID='FORTRAN', NUM='123', and S='T' then

ANSWER 'L'.NUM ID; produces ' L123 FORTRAN'
ANSWER .S'NOW' S S.S; produces 'T NOW T TT' (8.13)

It is necessary to separate two adjacent match or string variables and two adjacent
string constants appearing in an ANSWER statement by blanks in order to avoid
confusion as to their meaning. It is not necessary to insert blanks between a string
constant and string variable or any other two items which can be distinguished. The
NOTRIG option is described with the definition of the RESCAN statement below.

The ANSWER statement is actually an extended statement, and will not be recognized
by the base language compiler. The only conversion made by the macro definition
macros is to convert 'ANSWER' to 'OUTPUT(1)', however. See the section on the
OUTPUT statement for a further description.

8.7 RESCAN Extension Statement
The format of the RESCAN statement is the same as that for the ANSWER statement
except that the keyword 'ANSWER' is replaced by 'RESCAN'. One text string is
produced from all of the RESCAN statements executed in the replacement procedure
in the same way as for the ANSWER statement, but this text string then effectively
replaces the text which the macro pattern matched, after which the input scan
pointer is set to its beginning. Subsequent text matching will commence with this
″replacement″ text being scanned. Should the input scan pointer ever back up past
the beginning of this replacement text, however, the text matched by the pattern
which produced the replacement text, which may itself be original input or
replacement text generated earlier, will be reinstated. Both trigger and syntax macros
may produce RESCAN text, although the majority of it will normally be produced by
the trigger macros. ANSWER and RESCAN statements may appear in the same
replacement procedure and will not interfere with each other.

If the NOTRIG option is coded for either an ANSWER or a RESCAN statement the text
produced is altered so that it can never cause trigger macro invocation. In all other
respects, however, this alteration of the text is undetectable. The altered text can
then be matched in the normal way by any match item of any macro pattern except
for the trigger of a trigger macro pattern. A trigger can never match altered text. The
alteration is permanent, so that even if the altered text is broken up or assigned to
string variables in a replacement procedure and passed up through several levels of
macro calls via ANSWER statements before being placed into the input via a RESCAN
statement, the text originally altered will remain so. For example, it may be
desirable to abbreviate calls to a certain subroutine which nearly always has the
same arguments with the help of the following macro.

MACRO TRIGGER: 'CONVRT' ;
RESCAN 'CALL' ;
RESCAN NOTRIG 'CONVRT'; (8.14)
RESCAN '(132,I,J)';
END MACRO;

If text produced using the NOTRIG option is underlined, the statement CONVRT
becomes CALL CONVRT(132,I,J) with the input pointer reset to the beginning of
CALL. When the scan resumes and the scan pointer finally reaches CONVRT, the
reinvocation of the above trigger macro will now be inhibited. The macro

50 STEP Processor

MACRO TRIGGER: 'CALL' 'CONVRT' ; (8.15)
etc.

would match the text produced by (8.14), however, because a trigger macro is called
by the appearance of its trigger in the input, after which matching proceeds without
regard to altered text. Altered text need not start or stop on atom boundaries, nor
can it define atom boundaries. Thus the syntax macro

MACRO SYNTAX:BB
ID ;
ANSWER NOTRIG 'DECL'; (8.16)
ANSWER .'ARE';
END MACRO;
etc.

will match any identifier and return the single atom DECLARE, where the altered text
is again underlined, to the calling macro. If a macro to call BB is defined

MACRO TRIGGER:
'START' BB ;
STRING S,T;
S=SUBS(BB,1,5); T=SUBS(S,2); (8.17)
RESCAN T.'ABC';
END MACRO;

The text returned to the input when this trigger macro successfully matches the
input would be

ECLAABC (8.18)

where the altered text is again underlined.

When text altered by the NOTRIG option is printed by the trace facility it will be
mapped through the second output character set as described in 4.0, “Input Reader”
on page 16.

As with ANSWER, the RESCAN statement is actually an extended statement and will not
be recognized by the base language compiler. The only conversion made by the
macro definition macros is to change 'RESCAN' to 'OUTPUT(2)', however.

8.8 OUTPUT Statement
The format of the OUTPUT statement is

'OUTPUT' ('(' LOGEXP ')') ('NOTRIG') <1, STRELEMENT> ';';

If LOGEXP is present and evaluates to an integer between four and ten then on a
statement by statement basis the string elements are concatenated exactly as for the
ANSWER statement, with the dot (.) having the same significance, and the resulting
text is written to an output file. Text is written immediately after each OUTPUT
statement completes execution, not when the replacement procedure terminates. If
the integer expression is not present or evaluates to four then the text is written to
the code file. If the integer expression is present and evaluates to a number between
six and ten the text is written to one of the five auxiliary files. The auxiliary file
numbers six through ten correspond in order of appearance to the five auxiliary file
unit numbers on the card following the output map initialization card.

If LOGEXP is present and evaluates to one, two, or five, then the OUTPUT statement
behaves as an ANSWER, RESCAN, or WARN statement, respectively. In fact, the ANSWER,

Macro Replacement Procedure Definition: Statements 51

RESCAN, and WARN statements are just shorthand for particular forms of the OUTPUT
statement. Thus it is possible to have one OUTPUT statement behave as an ANSWER,
RESCAN, WARN, or OUTPUT statement simply by changing the internal ″unit″ number.
Throughout this manual, if it is not qualified, the word OUTPUT will refer to the
default form of the OUTPUT statement which writes directly into the code file.

If an initial pattern or the pattern of a type one SCAN statement fails to match the
input at some point, the input scan pointer is backed up to the beginning of the text
that was to be processed by the offending pattern. Any text produced by the ANSWER
or RESCAN statements of the macros implicitly or explicitly called during the abortive
match disappears. Text produced by types four to ten of the OUTPUT statement will
not, however, disappear because it has already been written to an external file. Since
it is not logically consistent for a macro to cause OUTPUT text to be generated and
then fail, back up, and allow some other macro to independently match the same
input and produce output of its own, in the future the following restriction may be
placed into the processor. The input scan pointer would not be allowed to back up
past or into the input (or RESCAN) text that was matched by any initial pattern or
type one SCAN statement before the last type 4-10 OUTPUT statement has been
executed in any macro replacement procedure. Any pattern match failure or FAIL
statement (described later) execution attempting an illegal backup would be trapped
by the processor and a diagnostic would be issued. The position of the scan pointer
would not be changed. Except for this action, processing would continue unaffected.
Meanwhile, it is therefore important that some macros be written so that when their
execution passes a certain point, they never fail. Consider, for example, the
following macro

MACRO SYNTAX: MAIN_PROGRAM
<0, DECLARE_STATE>
<0, EXEC_STATE>
'END;' ; (8.19)
OUTPUT 'END;';
END MACRO;

This macro will match a main program consisting of declaration statements,
followed by executable statements, which in turn must be followed by an END
statement. The DECLARE_STATE and EXEC_STATE macros both OUTPUT the text that they
match in a possibly altered form. The EXEC_STATE macro would look something like

MACRO SYNTAX: EXEC_STATE
¬<'END;'>
<IF_STATE |
ASSIGN_STATE |
OTHER_STATE | (8.20)

.

.

.
TEXT ';' >;
(replacement procedure)
END MACRO;

EXEC_STATE matches anything but an END statement. If the user neglected to insert an
END statement at the end of his code, then the EXEC_STATE loop in MAIN_PROGRAM will
match right up to the end of input, where even TEXT will fail, then the 'END;'
pattern string in MAIN_PROGRAM will attempt to match and fail, causing MAIN_PROGRAM
to fail. The processor will then generate a diagnostic when the scan pointer tries to
back up to the beginning of the first declaration statement that was matched. The
solution to this situation is to replace the pattern string in MAIN_PROGRAM by the

52 STEP Processor

pattern END:('END;') and generate a WARN diagnostic if the match variable END does
not exist. The OUTPUT statement will then insert the END; into the code file anyway
and MAIN_PROGRAM would match the entire input successfully. Most of the processor
generated diagnostics, such as the one described above, exist in order to help the
macro writer debug his macros and should never be seen by the end users of those
macros.

8.9 WARN Extension Statement
The format and function of the WARN statement on a statement by statement basis is
again identical to those of the ANSWER statement with the exception of the keyword
change. As each WARN statement ends execution, the text formed by it is output to
the listing file, thus allowing the macro writer the ability to compose and list out
diagnostic messages or any other useful information that he desires.

As with ANSWER, the WARN statement is actually an extended statement, and will not
be recognized by the base language compiler. WARN is a particular instance of the
OUTPUT statement whose argument is 5.

8.10 MERGE Statement
The MERGE statement has the format

'MERGE' <1, LOGEXP / ','> ';';

Starting from the left, each integer expression is evaluated to form a number that
must be between six and ten. The corresponding auxiliary file is then rewound and
copied into the code file. After copying is completed each auxiliary file is again
rewound and is ready to be reused. The MERGE statement will probably soon be
replaced by more general file handling statements which will in addition provide for
multipass processing and one or more forms of INCLUDE statements.

8.11 FAIL Statement
The FAIL statement has the format given by the pattern

'FAIL;' ;

The replacement procedure for a macro will not be activated unless its
corresponding initial pattern has matched the input successfully. If, before any type
one SCAN statement is executed, a replacement procedure executes a FAIL statement,
it is immediately terminated with no ANSWER or RESCAN text being produced, the
input scan pointer is reset to the beginning of the text scanned by the initial pattern,
and the macro containing the FAIL statement informs the surrounding pattern that it
has failed to match. Thus the macro having the pattern

'BEGIN' ID 'END' ; (8.21)

could behave exactly as (6.15) if the following statements appeared at the beginning
of its replacement procedure:

IF ID = 'FORTRAN' | ID = 'ALGOL' THEN
FAIL; (8.22)

END IF

Macro Replacement Procedure Definition: Statements 53

If a type one SCAN statement was executed before the FAIL, then the input scan
pointer is reset to the beginning of the input text that the SCAN statement matched. If
the pattern of that SCAN statement had failed to match in the first place, the input
scan pointer is not altered. The execution of the replacement procedure then
continues with the next statement. FAIL allows the macro to ″undo″ the previous
pattern match if the replacement procedure determines that such action is necessary.
The execution of a type two SCAN statement has no effect on the subsequent
execution of a FAIL statement.

8.12 RETURN Statement
The format of the RETURN statement is

'RETURN;';

Execution of the replacement procedure is terminated and the text strings produced
by the ANSWER and RESCAN statements are concatenated and stored. If the trace switch
is set the text produced by the ANSWER and RESCAN statements is also output to the
listing file.

8.13 MEND Statement - (Base Language Only)
The format of the MEND statement is

'MEND;' ;

This statement performs the same functions as the RETURN statement, and in addition
serves as a compiler directive indicating the end of the replacement procedure. The
MEND statement should never appear in a macro written in the extended language as
it is generated automatically by the END MACRO statement which is described later.

8.14 Null Statement
A Null statement is written by simply coding a semicolon. Its function is similar to
that of the FORTRAN CONTINUE statement. It may be labeled like any other
statement and multiple Null statements may be written. Thus

LAB1: LABEL2: ;;; LABEL3:;A=B ; (8.23)

is a legal construction and all three labels will refer to the beginning of the
statement A=B;.

8.15 IF Extension Statement
A pattern matching the IF extension statement can be written

'IF' LOGEXP 'THEN' <0, STATEMENT>
<0, 'ELSEIF' LOGEXP 'THEN'

<0, STATEMENT>
('ELSE' <0, STATEMENT>)
'END IF' ;

The syntax macro STATEMENT is assumed to have been defined to match any
statement of the extended macro definition language. Again, the extended language
includes all base language statements except MEND. The rules for evaluation of the

54 STEP Processor

logical expression in the IF and ELSEIF clauses are are slightly different from those
for the base language IF statement. These rules are given by the LEXPR macro in
appendix B, although the NLEXP macro, also in appendix B, is actually used for
scanning the logical expressions in IF statements. The two identifiers END IF are
always required as a termination for the extended IF statement. The
IF - ELSEIF - ELSE - END IF construct with all contained statements (some of
which might be other extended IF statements) is considered to be a single statement
of the extended language and will be matched by the STATEMENT macro. Note that
ELSEIF is a single identifier; when split into two it becomes an ELSE clause whose
first statement is an IF. This is quite legal, although an extra END IF is required to
close the new IF statement.

8.16 FOR Extension Statement
A pattern matching the FOR statement can be written

'FOR' INTVAR '=' LOGEXP ('TO' LOGEXP) ('BY' LOGEXP) 'DO';
<0, STATEMENT>

'END FOR' ;

INTVAR matches the loop index, which will be initialized to the value of the first
integer expression and thereafter incremented by the value of the third integer
expression. Before each iteration the value of the loop index is compared with that
of the second integer expression. Control is transferred to the first statement
following the FOR loop if the value of the loop index is greater. If the third integer
expression is absent then the loop index is incremented by one. If the second is
absent looping continues until terminated by a GO TO, RETURN, or EXIT statement.

8.17 WHILE Extension Statement
A pattern matching the WHILE statement is written

'WHILE' LOGEXP 'DO'
<0, STATEMENT>

'END WHILE' ;

Looping will continue as long as the logical expression, which is checked before
each iteration, remains true. The rules for evaluating the logical expression in the
WHILE statement are the same as those for the IF extension statement.

8.18 LOOP Extension Statement
A pattern matching the LOOP statement is written

'LOOP' <0, STATEMENT> 'END LOOP' ;

Looping will continue until terminated by execution of a GO TO, RETURN, or EXIT
statement.

Macro Replacement Procedure Definition: Statements 55

8.19 GO TO Extension Statement
The GO TO statement is matched by

'GO TO' ID ';' ;

A base language statement of the form IF(1) ID; is generated.

8.20 EXIT Extension Statement
The EXIT statement is matched by

'EXIT;';

and must appear within the range of a FOR, WHILE, or LOOP statement. EXIT will
cause a transfer of control to the first statement following the innermost loop within
which it is nested.

8.21 NEXT Extension Statement
The NEXT statement is matched by

'NEXT;';

and must appear within the range of a FOR, WHILE, or LOOP statement. NEXT causes
the next iteration of the innermost loop within which the NEXT statement is nested to
be commenced immediately.

56 STEP Processor

9.0 Macro Replacement Procedure Definition: Intrinsic
Functions, Listings, and Object Code

The functions currently implemented in the replacement procedure compiler are
SUBS, INDEX, LEN, CS, CN, MATCH, SOURCE, and SCANOK. All of the above identifiers
are reserved by the compiler and must not be used in a macro definition for any
other purpose. The word GLOBAL, which can be thought of as representing a
function, is also reserved. Function arguments may be any expressions, including
those involving other functions, that are allowable by the compiler and whose data
type is correct. Arguments are first evaluated, after which the function is evaluated.

'SUBS(' STREXP ',' LOGEXP (',' LOGEXP) ')'
result is string

SUBS produces a substring of the first argument. The second argument specifies the
starting column of the substring while the third argument specifies its length. If the
third argument is omitted the remainder of the string after the starting position is
returned. For example, SUBS('FORTRAN',4,3) returns the value 'TRA', while
SUBS('FORTRAN',4) returns 'TRAN'.

If the second argument evaluates to less than one, it is set equal to one. If the third
argument is less than zero it is set equal to zero. Any portions of the resulting
substring which extend beyond the boundaries of the first argument are truncated.
If the entire substring is specified to be outside of the first argument a zero length
string is returned.

'INDEX(' STREXP ',' STREXP ')'
result is integer

INDEX returns the starting position of the second argument within the first. If the
second argument is not a substring of the first the value zero is returned. For
example, INDEX('FORTRAN','RTR') returns the value 3.

'LENGTH(' STREXP ')'
result is integer

LENGTH returns the length of the string resulting from the evaluation of its argument.

'CS(' LOGEXP ')'
result is string

CS returns a string of digits corresponding to its argument. If the argument is
negative a minus sign is appended on the front. There are no leading, trailing, or
embedded blanks in the strings returned by CS.

'CN(' STREXP ')'
result is integer

The argument must evaluate to a string of digits, with an optional plus or minus
sign. Leading, trailing, and embedded blanks are allowed, but the string must
contain at least one digit. If the argument conforms to the conditions it is converted
to an integer value. If the conditions are not satisfied the integer result is set to zero
and a run-time diagnostic is printed along with the value of the argument.

'MATCH'
result is string

Macro Replacement Procedure Definition: Intrinsic Functions, Listings, and Object Code 57

MATCH is actually a match variable, and returns a result identical to that which would
be returned if the entire initial pattern were placed in brackets and labelled. Its value
is thus all text strings returned by the syntax macro calls and pattern strings in the
initial pattern of the macro concatenated in the order in which these items were
matched. MATCH can be used in any way that an ordinary match variable can be used.

'SOURCE'
result is string

The original text matched by the initial pattern of the current macro or, if any have
been executed, the latest type one SCAN statement, is returned. This text may be the
original input to the processor or may be composed in part or entirely of rescan text
produced by trigger macro calls occurring any time before the pattern in question
was activated, but will not contain any rescan text produced after this time.
Assignments can be made into MATCH, but not SOURCE.

'SCANOK'
result is integer

The function SCANOK, which has no arguments and can appear anywhere (except in
declaration statements) that an integer constant is allowed, will return the value true
or false as a result of the execution of a type two SCAN statement. SCANOK will be
true only when the SCAN statement's pattern matches the entire string. It is then
possible for the pattern to match part of the string successfully and SCANOK to be
false. For example, SCANOK is true for the first statement that follows and false for
the second.

USING '123' SCAN NUM ;
USING '123ABC' SCAN NUM ; (8.11)

In the second statement, the call to the NUM syntax macro successfully matches
'123', but does not match the entire string. Note that because the NUM macro will
not match a trailing blank, SCANOK is false after the first of the two following
statements complete execution and true after the second.

USING '123 ' SCAN NUM ; (8.12)
USING ' 123' SCAN NUM ;

The value of SCANOK for a particular replacement procedure is not defined if the last
pattern matched was the initial pattern or that of a type one SCAN statement.

9.1 Symbol Array Facility
A symbol array is basically a one or two dimensional array in which the first
subscript may be an arbitrary string having length greater than zero. Macros
recognizing a reference to any symbol array variable can be written

MACRO SYNTAX: SYMREF
ID '(' < '@' STREXP | SYMPNTR | LOGEXP>

(',' LOGEXP) ')' ;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: SYMPNTR
ID <('.NONEW')('.LOCAL')|('.LOCAL')('.NONEW')>

'@' STREXP;
ANSWER MATCH;
END MACRO;

58 STEP Processor

Thus, to look up the fourth attribute of the identifier VAR and store it in the integer
I, one would code

I=THISYM(@'VAR',4);

where THISYM is the name of the symbol array being used and any string expression
may follow the @ operator. If, on the other hand, the replacement procedure decides
that the fourth attribute of the identifier matched by ID must be equal to K, the
attribute can be set by

THISYM(@ID,4)=K;

If no entry for the string represented by ID exists in THISYM, one will be created by
the above statement.

A symbol array may be declared at any point in a replacement procedure as long as
its declaration occurs before any usage. All symbol arrays are global in scope. If the
replacement procedures of two separate macros declare symbol arrays having the
same name, then they will both access the same symbol array. The first time a
particular symbol array is declared in a replacement procedure space is allocated and
initialized to hold it and its name is entered into the symbol array directory (which
is actually just another symbol array). Subsequent declarations of the same symbol
array in other macros will be required to be identical to the first one.

A pattern to match a symbol array declaration can be written

'SYMBOL' <1, ('STRING') ID '(*' (','NUM) ')'/','> ';'

The following declaration statement gives an example of each of the four possible
types of symbol arrays

SYMBOL TABLE(*), MAT(*,6),
STRING RAT(*), STRING CAT(*,7);

Each element of TABLE is a single integer which is indexed by a string expression
(indicated by the asterisk). Each element of RAT is a single string of arbitrary
length. The symbol array MAT is perhaps closer to the type of symbol table a
compiler might use. Each element of MAT consists of six integers, which can be
indexed by the second subscript. This subscript must be an integer expression whose
value can range from one to six. Each of the elements of the CAT symbol array will
consist of seven strings. A symbol array variable may be used anywhere that an
integer or string variable of the same type is allowed.

9.2 Symbol Array Pointers
A symbol array pointer is an integer. The string preceded by the ″@″ operator which
appears as the first subscript of a symbol array is evaluated to an integer before
being used to index the array. If more than one numerically subscripted item in a
single symbol array element are to be accessed, time and macro storage space can
usually be saved by making use of a pointer variable. Thus, instead of the sequence

A=MAT(@'ABC',1);
B=MAT(@'ABC',2);
C=MAT(@'ABC',3);

STRING RAT(*), STRING CAT(*,7);

one should code

Macro Replacement Procedure Definition: Intrinsic Functions, Listings, and Object Code 59

K=MAT@'ABC';
A=MAT(K,1);
B=MAT(K,2);
C=MAT(K,3);

Thus the symbol array name directly followed by the ″@″, or symbol array, operator,
which in turn is directly followed by a string expression, will evaluate to an integer
which can be used as the first index of the symbol array. In case the reader is
interested, the expressions

MAT(@'ABC',1) and MAT(MAT@'ABC',1)

are identical as far as the processor is concerned.

It is lookup and not assignment that forces allocation of a new element of a symbol
array. All integers stored in a newly allocated symbol array element will have the
value zero and all strings will be null strings. At times it is necessary to see whether
a given element is contained in a symbol array without creating it if it is not there.
This can be done by adding the suffix 'NONEW' which is separated by a dot from the
symbol array name. The expression

TABLE.NONEW @ 'ABC'

will be nonzero and point to the element 'ABC' in TABLE if that element exists.
Otherwise it will evaluate to zero. The expression

TABLE @ 'ABC'

will never evaluate to zero and will always point to the element 'ABC' in TABLE, even
if that element did not previously exist.

The NONEW suffix is allowed only in expressions which determine a symbol array
pointer, and is not allowed in an actual reference to a symbol array element. Thus
the statement

I=TABLE.NONEW('ABC');

will be flagged as an error by the compiler.

The priority of the symbol array operator '@' is lower than that of the
concatenation operator, so that in the expression

TABLE@U||'ABC'||V

the two concatenations will be done before the resulting string expression is
converted into an integer index into the TABLE array.

 Great care should be taken in using symbol array pointers as their run-time values
are not checked. The use of pointers can, however, offer great flexibility in symbol
table construction since elements of one symbol array may contain pointers into
other symbol arrays.

9.3 The MARK and DROP Statements
Patterns to match a MARK and a DROP statement can be written

'MARK' ID ';' ;
'DROP' ID ';' ;

These statements allow segmentation of symbol arrays. Each time a MARK statement
for a particular symbol array is executed, the tree data structure for that symbol

60 STEP Processor

array (the current tree) is placed on a stack and a new tree is allocated and becomes
the current tree. When a string is to be looked up, the current tree is searched first,
then the tree on the top of the stack, then the next tree on the stack, and so on until
a match for the string is found. If no match is found and NONEW was not specified
then a new element is allocated in the current tree. The suffix LOCAL enables the
search for a matching string to be confined to the current tree. The suffix NONEW may
be used along with LOCAL if desired (LOCAL and NONEW may appear in either order).
Thus

I=TABLE.LOCAL.NONEW('ABC');

will cause only the current tree of the symbol array TABLE to be searched for the
string 'ABC' and will evaluate to zero of it cannot be found there.

Each time a DROP statement is executed for a given symbol array, the current tree
data structure for that array is deleted and the space that it occupied is reclaimed. A
tree is removed from the top of that symbol array's stack and becomes the current
tree. It is possible to DROP a symbol array even if it has never been MARKed, because
when a symbol array is first declared it is MARKed in the process in order to allocate
space for its first tree. In this case all of the elements of that symbol array are
deleted and the array cannot again be used until it is MARKed.

The keeping of symbol tables for the compilation of code for block structured
languages is one example of the usefulness of the MARK/DROP feature of the symbol
arrays.

9.4 Replacement Procedure Compiler Listings
When the listing switch (GLOBAL(4)) is equal to one a listing is produced of the
replacement procedure being compiled. One statement is listed on each line and is
preceded by the line number, which starts at one for the first statement compiled,
and the relative offset. The offset gives the number of storage locations from the first
storage location to be used by the macro being compiled to the first of the locations
in which the statement is stored. Run-time diagnostic messages will give the relative
offset at which an error has occurred during procedure execution so that a compile
listing can be used, perhaps with the aid of an object listing (produced when
GLOBAL(5)=1), to pinpoint the source of the error. Any error found in a
replacement procedure statement is listed immediately after that statement.

9.5 Object Code
The replacement compiler produces reverse polish code which is interpreted by
another subroutine in the STEP processor. During replacement procedure
execution each operand will be stacked and each operation executed as it is
encountered. All operands and operators are numbers between 0 and 63 so that it is
possible to store them as characters on most machines. If necessary, those few
numbers which are outside the above range (such as some integer constants) are
split up in an implementation defined way for storage into characters.

After each statement is compiled it undergoes a trial execution to insure that none
of the run-time stacks will overflow, that no data type inconsistencies exist, and that
the statement can be properly evaluated. A statement error detected before this trial
evaluation is flagged as a syntax error, and no object listing can be produced. An
error found by the evaluation, which occurs after the object listing is produced, will
be flagged as a statement structure error. Some errors, such as subscripting errors,

Macro Replacement Procedure Definition: Intrinsic Functions, Listings, and Object Code 61

cannot be caught at compile time. Errors detected at compile time will usually force
the compiled macro to be deleted from the macro storage buffers, although the
compilation will continue on to completion in order that any other errors in the
macro might be detected.

9.6 Efficiency
The following rules are recommended in order that replacement procedures execute
faster and occupy less space. A match variable used more that two or three times
should be assigned to a string variable which then can be used in its place. The same
applies to a match array element used more than once. Needless assignments should
not be done: if a complicated integer expression is to be evaluated only once and
used as an array subscript or function argument it may itself appear in the index or
argument list.

9.7 Syntax Summary
A complete description of the syntax requirements for writing replacement
procedures is given in appendix A.

62 STEP Processor

10.0 Macro Definition

If GLOBAL(1) is turned on in the replacement procedure of a trigger macro, all of the
text produced by the ANSWER statements of that procedure is considered by the
processor to be a macro definition. Such a definition must consist first of the
keyword 'TRIGGER' followed by a colon for a trigger macro definition, or of the
keyword 'SYNTAX' followed by a colon and the name of the syntax macro.
Following this, an optional protection level (see below) may be coded within
parentheses. Next must come the macro pattern which is terminated by a semicolon.
The final item in the definition is the base language replacement procedure, which
must contain an MEND statement as its last statement. The syntax for a complete
base language macro definition is given in appendix A.

10.1 Local Trigger Macros - Scope Rules
A trigger macro will be local to another syntax or trigger macro if its definition is
nested within the other macro's definition. Thus the first of the three macros in
(2.21) could be defined with two trigger macros local to it by writing

MACRO SYNTAX: EXPRESSION
TERM '+' EXPRESSION | TERM2:TERM ;
MACRO TRIGGER: 'PARM1';

RESCAN '123';
END MACRO;

MACRO TRIGGER: 'PARM2';
RESCAN '321'; (10.1)
END MACRO;

IF TERM2 THEN
ANSWER TERM2 ;

ELSE
ANSWER TERM ',' EXPRESSION ',+' ;

END IF
END MACRO;

The strings PARM1 and PARM2 will only be transformed just before or during the
period in which the EXPRESSION macro immediately controls the scan, and then only
at an activation point as defined by EXPRESSION. With the EXPRESSION macro now
redefined, the trigger macro defined in (2.20) would convert input text as shown in
the following example.

POLISH PARM1+PARM2; -> 123,321,+;
POLISH PARM1*(PARM2+A); -> 123,321,,+,*; (10.2)
POLISH A+B*PARM1; -> A,B,PARM1,*,+;

Note that PARM1 in the third example was not converted because the TERM macro,
and not EXPRESSION, was in control of the scan when PARM1 was encountered. The
activation points for EXPRESSION, TERM, and FACTOR in the third line of (10.2) can
be indicated as follows:

EXPR: POLISH A+B*PARM1;
|||

TERM: POLISH A+B*PARM1; (10.3)
| |||

FACTOR: POLISH A+B*PARM1;
| | |

Macro Definition 63

The trigger macros, being local to EXPR, could only be invoked at the beginning of
each term in the expressions and at an addition operator. A more desirable result
could perhaps have been achieved by making the trigger macros local to FACTOR or
TERM.

Local trigger macros may have trigger macros defined local to themselves. Syntax
macros are always global and their definitions should not be nested within other
macro definitions. If this is done a diagnostic will be issued by the processor
although the syntax macro will still be correctly compiled.

Note that the definition of the local trigger macro must be recognized by whatever
macro defining macro is being used during the scan of another macro definition.
This means that the local trigger macro definition should start at an activation point
within the containing macro definition. While it is possible to have several different
macros for recognizing and processing various styles of macro definitions and
passing them to the macro compilers, a local trigger macro definition and the
definition of its containing macro must be processed by the same macro if they are
to be linked together properly.

In addition to making trigger macro invocation more context dependent, the use of
local trigger macros can allow the processor to run more efficiently because the it
normally will not attempt to match a local trigger macro against the input nearly as
often as it will a global trigger macro.

10.2 Macro Definition Macros
The bootstrap trigger macro 'MACBOOT', which is supplied with the processor, will
match a base language macro definition if it is preceded by the trigger string
'MACBOOT'. The MACBOOT macro in compiled form is contained by a data statement in
the processor. If it were to be coded in base language form it would be written

MACBOOT TRIGGER: 'MACBOOT'
MACDEF:<<'TRIGGER'|'SYNTAX'>
<0,¬<'MEND;'> ATOMS ';'> 'MEND;'>; (10.4)
ANSWER MACDEF; GLOBAL(1)=1; MEND;

Note that the activation points in macro definitions processed by MACBOOT are at the
boundaries between their statements, at the front of any labels that might exist.
Because of this the MEND statement in a macro definition processed by MACBOOT must
not be labelled if it is to be recognized and terminate the scan of the MACBOOT macro
properly. As described earlier, the MACBOOT macro is rarely used except to define an
enhanced macro definition language. A number of base language macro definitions
can be found in appendix B, which contains a listing of the standard macro language
extension macros. A simpler set of extension macros, using scanning techniques that
are perhaps inferior to those used by the standard set, illustrates the macro definition
language enhanced by IF-ELSE, FOR, and GO TO statements. The use of the brackets
in this example as a DO-END pair has been mentioned before in the section on the
input reader.

64 STEP Processor

MACBOOT SYNTAX:EXP1
ID ('('<1,EXP3/','>')') | NUM | '('EXP6')' | STR ;

ANSWER MATCH; MEND;
MACBOOT SYNTAX:EXP3 <1,EXP1/ '*'|'/'|'+'|'-' >;

ANSWER MATCH; MEND;
MACBOOT SYNTAX:EXP4 EXP3 (RELOP EXP3) ;

ANSWER MATCH; MEND;
MACBOOT SYNTAX:EXP6 <1, ('¬') EXP4/'&'|'|'>;

ANSWER MATCH; MEND;

MACBOOT SYNTAX:RELOP
'=' | '¬=' | '>=' | '>' | '<=' | '<' ;
ANSWER MATCH; MEND;

MACBOOT TRIGGER: 'MACRO' TYP:<'TRIGGER:'|'SYNTAX:'> (ID)
'<' ATOMS ';' STMENT '>' ;
ANSWER TYP ID A1 ';' STMENT '; MEND;' ;
GLOBAL(1)=1;
MEND;

MACBOOT SYNTAX: STMENT <0,<0, ID ':'> ¬<'>'> TEXT ';'> ;

MACBOOT TRIGGER: 'FOR' ID '=' EXP3
('TO' TO:EXP3)('BY' BY:EXP3) '<' STMENT '>';
STRING START,NEXT,S;
GLOBAL(21)=GLOBAL(21)+10; I=GLOBAL(21);
START='L'||CS(I);
NEXT='L'||CS(I+1);
RESCAN ID '=' EXP3 '; IF(1)' START ';';
IF(BY)LAB1;
BY='1';

LAB1: RESCAN NEXT.':' ID '=' ID '+' BY ';' START.':;';
IF(¬TO) LAB3;
RESCAN 'IF(' ID '>' TO ') L'.CS(I+2) ';';

LAB3: RESCAN STMENT ' IF(1)' NEXT '; L'.CS(I+2).':;' ;
MEND;

MACBOOT TRIGGER: 'IF' EXP6 '<' STMENT '>'
ELSE:('ELSE<' M2:STMENT '>') ;
GLOBAL(21)=GLOBAL(21)+10; I=GLOBAL(21);
RESCAN 'IF(¬(' EXP6 ')) L'.CS(I) ';' STMENT ;
IF(¬ELSE) IF1;
RESCAN 'IF(1) L'.CS(I+1)';' ;

IF1:RESCAN 'L'.CS(I).':;' ;
IF(¬ELSE) IF2;
RESCAN M2 'L'.CS(I+1).':;' ;

IF2:;
MEND;

MACBOOT TRIGGER: 'GO TO' ID ';' ; (10.5)
RESCAN 'IF(1)' ID ';'; MEND;

ANSWER MATCH; MEND;

The macro whose trigger is MACRO will be the new macro defining macro. The
extended statements are all implemented by trigger macros local to the STMENT
syntax macro. STMENT will match a sequence of macro definition statements which
are loosely defined to be anything followed by a semicolon. STMENT will also
specifically match any preceding statement labels so that the activation points in the
macro definition being processed are at the beginning of each label and at the
beginning of each statement. The groups of statements that STMENT is to match will
always be delimited by left and right bracket symbols, so it is necessary that the

Macro Definition 65

outermost loop in the STMENT macro be terminated when a right bracket is
encountered.

Two of the more complex language extension trigger macros are those used to
implement the FOR and IF-ELSE statements. Each of these use the GLOBAL(21) array
element to generate unique statement labels. The IF-ELSE and FOR statements nested
within other such statements are processed recursively before their containing
constructs are.

10.3 The Protect Option
A macro defined with the protect option specified will cause trigger macro
invocation to be suppressed from the time that the macro gains control of the scan
up until its replacement procedure finally terminates. This means that trigger macro
activity is inhibited during the matching of the protected macro and during the
matching of any syntax macros or their descendants to any level which are called
from it. A macro is given a protection level of one or two by coding the string (P=1)
or (P=2) just before its pattern. Thus the first of the following three macros

MACBOOT SYNTAX:EXPRESSION (P=2)
TERM '+' EXPRESSION | TERM2:TERM ;
etc.

MACBOOT SYNTAX:TERM (10.7)
FACTOR '*' TERM | FACT2:FACTOR ;
etc.

MACBOOT SYNTAX:FACTOR
'(' EXPRESSION ')' | ID | NUM ;
etc.

is defined to have a protection level of two, which means that all trigger macro
activity is suppressed while EXPRESSION, TERM, or FACTOR (assuming the latter two are
called from EXPRESSION) are being matched. If (P=1) is instead coded, then all global
trigger macros would be suppressed, but any trigger macros local to EXPRESSION,
TERM, FACTOR, or other trigger or syntax macros activated during the matching
process for EXPRESSION are allowed to be invoked as usual. Note that example (5.12)
was coded with P equal to two so that trigger macros could not be invoked in the
middle of matching for an identifier. Actually, P equal to one would be sufficient
since there are no trigger macros local to ID, DIGIT, or LETTER in (5.12).

The protect level is not additive. Thus if a macro defined to have protection level
one calls a syntax macro also defined with protection level one, the protection level
is still one, and not two. The maximum of the protection levels of all active macros
is the one used, so that if two macros are active, one of which is level one and the
other level two, the protection level is two regardless of which macro called the
other.

66 STEP Processor

11.0 Output Processor

When no macros are in control and no trigger macros will match the text beginning
at the input scan pointer, the output processor is called. Starting at the input scan
pointer, this routine will write into the code file one or more characters and then
update the input scan pointer to point to the first character that was not written.
The number of characters written is defined below. The processor will then begin
again its attempts to match trigger macros against the input stream which now
begins at a new location. Those characters written into the code file are no longer
accessible to the processor.

11.1 Text Atomization
The number of characters written by the output processor is always determined by
the following three rules which are applied in the order written:

 1. If any leading blanks are present they are written and then the first non-blank
character is written.

 2. The character just written is examined and one of the following rules is applied.

a. If the character just written is an apostrophe, then the entire quoted string
including the trailing apostrophe is written.

b. If the character just written is a letter or a digit, all immediately following
letters and digits are written.

c. If a delimiter, excluding apostrophe and blank, has just been written no
more non-blank characters will be written.

 3. Any trailing blanks present are written and the input scan pointer is set to the
next character.

Thus a form of text atomization is present when no macros are in control, so that
the outermost trigger macro will not begin matching in the middle of an identifier or
quoted string. Thus ″atoms″ as defined by the output processor are (1) any quoted
string, (2) any contiguous string of alphanumeric characters, and (3) any delimiter,
except an apostrophe or a blank.

The amount of atomization present when macros are active is defined by the macros
themselves, since trigger macro activation can only then take place just before a
pattern string or syntax macro call becomes active. For example, the STR, DEL, ID,
and NUM primitive macros and normal pattern strings will always release control with
the input scan pointer on an atom boundary. The CHAR primitive or a pattern string
followed by an asterisk might not do this, however.

11.2 Output Format
A general output processor and a FORTRAN output processor are currently
available. The general processor allows the TAB and NEWLINE directives to be
used in OUTPUT statement types four to ten. Normally text is written in columns one
to 72 as received from the main processor. A string of less than forty contiguous
alphanumeric characters not contained within a quoted string will, however, not be
broken at a line boundary but instead will be moved to the beginning of the next
line. NEWLINE simply causes any following text to begin on a new line. If that

Output Processor 67

text would have begun on a new line anyway, no action is taken. TAB must always
have a numeric argument ranging from one to 72. TAB will cause the text which
follows to be started in the specified column. If that column has already been passed
one blank will be inserted before the following text is written. Note that a dot (.)
appearing between a TAB directive and a string element that is to be written will
have no affect on the output, thus

OUTPUT TAB(40).'ABC';
OUTPUT TAB(40) 'ABC'; (11.1)

are identical and will both cause the string 'ABC' to appear starting in column forty.
The length of each record produced by the output processor is eighty characters.
Presently the last eight characters will always be blanks.

TAB and NEWLINE directives are interpreted by the output processor, not the
matcher or replacement procedure interpreter. Because of this the directives are not
allowed in ANSWER and RESCAN statements: they cause internal instructions to be
inserted into text that the matcher and interpreter can not presently handle. While
this seems a desirable restriction at the moment, it may prove otherwise later. It is
straightforward to allow format control items in any text strings handled by the
main processor. Except for being matched by specific primitive syntax macros they
would be ignored but passed on by the matcher and replacement procedure
interpreter.

While the general output processor is quite capable of producing code formatted
according to FORTRAN rules, it is something of a burden to do so. For this reason
a FORTRAN output processor is available. The text processed by this routine is
converted to FORTRAN statements by interpreting semicolons as end of statement
indicators and adding continuation markers where necessary. Any decimal digits
which are the first characters of one of these statements are assumed to compose the
label for that statement and so will begin in column one. The remainder of that
statement and any statements not beginning with digits will begin in column seven.
The length of each record in the code file is 80 characters.

68 STEP Processor

12.0 Techniques for Macro Definition and Use

12.1 Four Ways to Implement Language Structure Extension
The following examples show different ways in which the same extended statement
can be added to the FORTRAN like base language, and should illustrate some of
the advantages and pitfalls of each. An extended IF statement is to be added to the
base language in order to allow more than one statement to be executed if the
argument of the IF is true. The syntax of this statement will be

'IF LOGEXP '<' <1, STATEMENT> '>' (12.1)

where LOGEXP and STATEMENT match and return FORTRAN logical expressions and
statements, respectively. The bracket symbols are used as a DO-END group, as
described earlier. If STATEMENT matches only statements of the FORTRAN base
language, and the GLOBAL(21) array element is used to generate unique statement
label numbers, then a trigger macro to convert (12.1) can be written

MACRO TRIGGER:
'IF' LOGEXP '<' GROUP:<1, STATEMENT> '>';
LABEL=GLOBAL(21)+10; GLOBAL(21)=LABEL;
RESCAN 'IF(.NOT.(' LOGEXP '))GO TO' CS(LABEL) ';'

GROUP (12.2)
CS(LABEL) 'CONTINUE;';

END MACRO;

An extended IF statement which is nested within another extended IF statement will
be recursively converted into a string of FORTRAN statements, so that the
subpattern labelled by GROUP will always see base language statements. Problems
may arise, however, when large members of statements are contained by an IF
construct or many IF statements are nested within each other. The processor must
retain all statements scanned by the IF macro's loop construct in its internal storage
areas. This may not be possible if one IF construct encompasses a great number of
statements. In addition, at each level of recursion, all statements scanned by the
above macro must be placed back into the input where they will be scanned again,
so that a statement nested within several IF constructs must be scanned and
recognized a number of times equal to its nesting level. In a language with several
such extended constructs, such as the extended macro definition language, this
continual rescanning could lead to serious inefficiencies. If these difficulties are not
significant in a particular application, however, the above macro should work
satisfactorily. Example (10.5) in 10.0, “Macro Definition” on page 63 is an example
of a set of macros which use some of the techniques illustrated above to extend the
macro definition language. The basic conclusion from this example is that trigger
macros which do RESCANs should not be used to match constructs which might
contain large amounts of text, or which might be nested within each other to a high
degree.

The next syntax macro provides a second way of translating (12.1).

Techniques for Macro Definition and Use 69

MACRO SYNTAX: IF_STATE
'IF' LOGEXP '<' GROUP:<1, STATEMENT> '>';
LABEL=GLOBAL(21)+10; GLOBAL(21)=LABEL;
ANSWER 'IF(.NOT.(' LOGEXP '))GO TO' CS(LABEL) ';'

GROUP (11.3)
CS(LABEL) 'CONTINUE;';

END MACRO;

This macro requires the existence of a calling macro, which, if the extended IF
statement is to be considered a statement in the new language, must be the same
macro that IF_STATE calls, namely STATEMENT. Whereas before STATEMENT matched
statements in the base language, it must now match those of the extended language.
STATEMENT must ANSWER text back when called by IF_STATE if the latter is to work
properly. Since STATEMENT also calls IF_STATE, it appears that if the type of text
matching done by the above macro is consistently employed then each macro will
ANSWER the text it produces to the macro that called it. The buck must stop
somewhere, of course, and in this case a convenient place might be a trigger macro
which recognizes an entire program unit, such as a subroutine. Such a macro might
be called by the appearance of the string SUBROUTINE in the input. The SUBROUTINE
macro would probably OUTPUT the translated source into the code file. Extended IF
statements, or similarly defined constructs, can still be nested within each other since
STATEMENT, which is called by IF_STATE, will recognize and translate an extended IF
statement. This time, however, each statement is scanned only once, no matter now
many extended language constructs that it is nested within.

The standard replacement procedure language extension macros in appendix A use
the above method to convert macro definitions into the base language, since the
final results must be retained within the processor. The trigger macro which
originates the matching process passes the converted text directly to the macro
compilers by executing an ANSWER statement and setting GLOBAL(1) equal to one. To
summarize the second example, the problem of continually rescanning statements
nested within extended language constructs is solved, but the problems that might
arise from extended constructs containing large amounts of text remain.

In order to relieve the processor's internal buffers from having to store large
quantities of text contained by an extended language construct, the macro defining
such a construct can be divided into two macros.

MACRO TRIGGER:
'IF' LOGEXP '<';
LABEL=GLOBAL(21)+10; GLOBAL(21)=LABEL;
STACK_POINT=GLOBAL(22)+1; GLOBAL(22)=STACK_POINT;
IF STACK_POINT>100 THEN

WARN 'LABEL STACK OVERFLOW';
ELSE

GLOBAL(STACK_POINT)=LABEl;
END IF
RESCAN 'IF(.NOT.(' LOGEXP '))GO TO' CS(LABEL) ';';
END MACRO; (11.4)

70 STEP Processor

MACRO TRIGGER:
'>';
STACK_POINT=GLOBAL(22); GLOBAL(22)=STACK_POINT-1;
IF STACK_POINT<50 THEN

WARN 'LABEL STACK UNDERFLOW';
ELSEIF STACK_POINT<=100 THEN

RESCAN CS(GLOBAL(STACK_POINT)) 'CONTINUE;';
END IF
END MACRO;

Elements fifty to one hundred of the GLOBAL array are being used as a stack to keep
track of statement labels. The opening portion of an extended IF statement
generates a branch to a label and stacks that label. The closing portion, which is
simply a right bracket, unstacks the appropriate label and generates a target
statement for the previous branch. If several extended language constructs make use
of the bracket symbols as DO-END pairs then a second number describing the
statement type must also be stacked, but the above macros illustrate the basic idea
being discussed. Label numbers were effectively stacked for the previous two
examples, but this was done automatically as part of the STEP processor's normal
recursive operation, and the user did not have to concern himself with it. The above
macros then solve both of the problems discussed earlier. Very little space for
storing text is required of the processor because only small portions of extended
language statements are recognized, converted, and returned to the input from where
they will be passed into the code file. Statements of the base language need not be
recognized by any macros at all, and so can be immediately passed to the code file
when first encountered. Nested constructs will be handled correctly as long as the
stack does not overflow.

There are several disadvantages to the above method, however. First of all, macro
writing becomes more difficult and the resulting macros are harder to read because
the macro must explicitly do work previously done by the processor. If nothing else,
it is at least aesthetically unpleasant to have to write more than one macro to handle
a single extended language construct. This problem becomes more apparent if an
IF-ELSEIF-ELSE-END IF construct or a CASE statement must be implemented in this
fashion. It is also unfortunate that the right bracket becomes a reserved symbol: any
time a right bracket is encountered, whether in the proper context or not, a label is
unstacked and a statement is generated. Assuming that right brackets are used in the
proper context, what happens if a trigger macro X, which belongs to some other
part of the language extension macro set, becomes active and scans some text which
includes a right bracket, and then fails at some later point? When the right bracket
is encountered during the scan of macro X, the appropriate trigger macro is
recursively activated and a label is unstacked and used to generate a CONTINUE
statement. When X finally fails, the CONTINUE statement will disappear along
with any other ANSWER or RESCAN text produced during the matching of X. The
unstacking of the label is, however, a permanent effect and is not undone. Since the
translation process has no way of recovering from such a disaster, the only safe
environment in which to use the above macros is one in which no recursive trigger
macro operation is allowed. This is easily achieved by coding all macros with a
protection level of two.

A STATEMENT macro, which is necessary to the operation of the preceding two
examples, is not needed for the present one. In fact, it would be awkward to add
macros to recognize all possible statements (including incorrect ones) to this scheme.
In some ways this could be an advantage: macros need only be written for
constructs that must be converted, others will simply be passed on the the base

Techniques for Macro Definition and Use 71

language compiler. This, of course, means that many of the syntax errors that might
exist will be caught by the base language compiler and so will not be related to the
original source.

The original problems of processor storage space and continual rescanning of nested
statements are not present in this third example, but enough new problems and
restrictions on processor operation have been added to make this method
unattractive for many applications.

Perhaps the most satisfactory way in which to implement the extended If statement
is given by the macro

MACRO SYNTAX: IF_STATE
'IF' LOGEXP '<';
LABEL=GLOBAL(21)+10; GLOBAL(21)=LABEL;
OUTPUT 'IF(.NOT.(' LOGEXP '))GO TO' CS(LABEL) ';';
SCAN <0, STATEMENT>; (11.5)
SCAN BRACKET: '>';
OUTPUT CS(LABEL) 'CONTINUE;';
END MACRO;

The STATEMENT macro would OUTPUT the text that it scans immediately, so that text
will not build up in the processor. Some of the advantages of the above macro are
illustrated in the sections on the SCAN and OUTPUT statements. The full control of the
scanning process makes it easy to check for various types of errors. For example, if
STATEMENT is similar to the EXEC_STATE macro of (8.20), and if the user of these
macros forgot to code one or more closing brackets (a common error when using
bracket notation), then the loop over STATEMENT in the above example might be
terminated by encountering an END statement. Note that, without even trying, the
above macro will correct this error. It would be desirable, however, to add

IF ¬BRACKET THEN
WARN '**MISSING RIGHT BRACKET INSERTED**'; (11.6)

END IF

after the last SCAN statement in (11.5).

12.2 Beware of Short Triggers
The author once coded five trigger macros which were to match extended
FORTRAN statements. In order to insure that these macros could only start to
match at the beginning of a statement a trigger string containing only a semicolon
was used to match the terminating semicolon of the previous statement. The form
of each of the five macros was similar to

MACBOOT TRIGGER: ';' (NUM) 'PATTERN STRING' ... (11.7)
etc.

The optional NUM syntax macro call would match a statement label, if any. Other
macros which would at times place null statements consisting of only a semicolon
into the input were also present. Events had conspired to place four consecutive
semicolons into the input in front of a macro definition, and when the scan pointer
reached the first of these, the last of the five short trigger macros to be defined was
invoked. After the trigger of this macro matched the first of the four semicolons in
the input, and before the NUM syntax could be called, the second semicolon caused
the same trigger macro to be invoked recursively. The third and fourth semicolons
caused two more copies of the same trigger macro to be invoked, after which the

72 STEP Processor

macro definition was found which caused the trigger macro which handled that to
be invoked. At this point the macro calls were nested five deep. Finally, after the
macro compilers were finished, the scan pointer was beyond the macro definition
and the most recently invoked copy of the trigger macro which was called by the
fourth semicolon resumed to match the input and quickly failed. The input scan
pointer then backed up to the fourth semicolon and one of the other macros having
only a semicolon in its trigger was invoked. Again, as this macro attempted to
match the macro definition was encountered and compiled again. The trigger macro
then failed as before and the scan pointer backed up, etc. Finally, when the author
looked at the listing, he found the compiler listing for the same macro appearing
over and over again until the job exceeded the operating system's line count and was
terminated. After a moderate amount of time spent tearing his hair out trying to find
a loop in the processor, the author found that the combination of input and macros
present at the time of the ″loop″ would cause the macro definition to appear 625
(the number of macros having a semicolon for a trigger raised to the power of the
number of consecutive semicolons in the input) times.

Had it not been for the effects of macro definition, the processor would have been
able to complete its translation of the input correctly although it would have worked
harder than necessary to do it.

Techniques for Macro Definition and Use 73

13.0 Conclusion

It is probable that this preliminary version of the STEP processor will undergo a
great deal of change in the near future. Many additions are contemplated, some of
which are in various stages of completion. Comments and questions about the
processor and any of the projected changes listed below would be appreciated.

13.1 Changes for the Future
It should be possible to develop macros to aid the user in developing custom
primitive syntax macros at processor generation time. These could have a significant
effect on processor efficiency under appropriate circumstances.

The STEP system performs only a single pass on the source being processed. It
should be straightforward to add appropriate control statements to allow multi-pass
processing. Since different sets of macros would probably be used for each pass, a
method of reading macro object code directly into the macro storage areas from a
file might save execution time.

An INCLUDE facility is necessary before the processor can be thought of as being
complete.

Should it ever prove desirable, it would be straightforward to introduce a new type
of procedure which would have the same form as a replacement procedure, but
would be called explicitly from other replacement procedures instead of being
activated by a successful pattern match. These would serve as external subroutines
for the replacement procedures and could be passed arguments.

13.2 References
 1. Leavenworth, B. M., Syntax Macros and Extended Translation. Comm ACM

(Nov. 1966), Vol. 3. pp. 790-793.

 2. Gries, David, Compiler Construction for Digital Computers, p. 93, John Wiley
and Sons, NY.

 3. Cook, A. J. and Shustek, L. J., A user's Guide to MORTRAN2. CGTM No.
165, Stanford Linear Accelerator Center, Menlo Park, California.

 4. IBM. PL/I Language Point 2257 proposal.

 5. Kernighan, Brian W., RATFOR - A Preprocessor for a Rational Fortran,
Software-Practice and Experience, Vol. 5, 395-406 (1975).

 6. The information on IFTRAN was obtained from a brochure by the General
Research Corp. in Santa Barbara, California.

 7. Gries, p. 97.

74 STEP Processor

Appendix A

A group of base language STEP macros are given which match a base language STEP
macro definition and any components thereof. A macro definition is syntactically correct if
and only if it can be matched by the MACDEF syntax macro which is given below. These
macros as written all execute an ANSWER MATCH (OUTPUT(1) MATCH) statement, and so only
perform the task of syntax recognition. It should be possible to define a set of macros to
completely process macro definitions into the object form used internally by STEP, thus
eliminating the need for the pattern and replacement compilers. A large amount of macro
object code would have to be inserted into the system somehow to start the process, though.

″MATCH A BASE LANGUAGE MACBOOT DEFINITION″
MACBOOT SYNTAX: MACDEF MACTYP (PROTCT) PATTRN ';' REPLAC ;

OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: MACTYP 'TRIGGER:'|'SYNTAX:' ID;
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: PROTCT '(P=' <'0'|'1'|'2'> ')' ;
OUTPUT(1) MATCH; MEND;

″MATCH A STANDARD MACBOOT PATTERN DEFINITION″
MACBOOT SYNTAX: PATTRN

<1, < (PATLAB':') MATITM | '¬<'MATITM'>' > / ' ' | '|' > ;
OUTPUT(1) MATCH; MEND;

″MATCH A MATCH ITEM IN A PATTERN DEFINITION″
MACBOOT SYNTAX: MATITM

PATSTR | SYNCAL | '('PATTRN')' | '<'PATTRN'>'
| '<'NUM ',' PATTRN ('/' PATTRN) '>' ;
OUTPUT(1) MATCH; MEND;

″MATCH A PATTERN STRING IN A PATTERN DEFINITION″
MACBOOT SYNTAX: PATSTR

STR ('*') ;
OUTPUT(1) MATCH;
MEND;

″MATCH A SYNTAX MACRO CALL″
MACBOOT SYNTAX: SYNCAL

<'ID'|'NUM'|'DEL'|'STR'|'CHAR'
| <'BAL'|'ATOMS'|'TEXT'> <PATSTR| '<' <1,PATSTR/'|'> '>' >
| ID ;
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: PATLAB
ID;
OUTPUT(1) MATCH; MEND;

″MATCH A REPLACEMENT PROCEDURE PORTION OF A MACRO DEFINITION″
MACBOOT SYNTAX: REPLAC

<0, <0, LABEL ':'> MSTATE > 'MEND;';
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: LABEL ID ;
OUTPUT(1) MATCH; MEND;

″MATCH A REPLACEMENT PROCEDURE STATEMENT EXCEPT MEND″
MACBOOT SYNTAX: MSTATE

STRING | SYMBOL | ASSIGN | IF | OUTPUT | SCAN | FAIL
| RETURN | NULL ;
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: STRING 'STRING' <1, ID / ',' > ';' ;
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: SYMBOL
'SYMBOL' <1, ('STRING') ID '(*' (',' NUM) ')'/','>';';
OUTPUT(1) MATCH; MEND;

Appendix A 75

MACBOOT SYNTAX: ASSIGN
< INTVAR | 'GLOBAL('LOGEXP')' > '=' LOGEXP ';'
| < STRVAR | MATVAR > '=' STREXP ';';
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: IF 'IF(' < LOGEXP | MATVAR > ')' LABEL ';';
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: OUTPUT
'OUTPUT' ('(' INTEXP ')') <1,<' '|'.'>STRELM> ';';
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: MERGE
'MERGE' <1,LOGEXP / ','> ';';
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: SCAN
('USING' STREXP) 'SCAN' PATTERN ';';
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: MKDP
<'MARK' | 'DROP'> ID ';';
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: FAIL 'FAIL;';
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: RETURN 'RETURN;';
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: NULL ';' ;
OUTPUT(1) MATCH; MEND;

″MATCH AN INTEGER EXPRESSION″
MACBOOT SYNTAX: LOGEXP <1, LOGTERM / '|' > ;

OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: LOGTERM <1, LOGELEMENT / '&'>;
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: LOGELEMENT
('¬') <RELATION | INTEXP | MATREF>

OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: RELATION
<1, INTEXP / RELOP> | STREXP R2:RELOP S2:STREXP ;
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: INTEXP ('+'|'-') <1, TERM / '+' | '-' >;
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX:TERM <1, FACTOR / '*' | '/' >;
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX:FACTOR
'GLOBAL(' LOGEXP ')' | INTFCN | INTVAR | SYMREF

| SYMPNTR | '('LOGEXP')' ;
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX:RELOP
'=' | '¬=' | '<=' | '<' | '>=' | '>' ;
OUTPUT(1) MATCH; MEND;

″MATCH ANY FUNCTION WHICH RETURNS AN INTEGER VALUE″
MACBOOT SYNTAX: INTFCN 'INDEX(' STREXP ',' STREXP ')'

| 'LEN(' STREXP ')'
| 'CN(' STREXP ')'
| ID '(*' <0, ',' LOGEXP > ')'
| 'SCANOK' ;

OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: INTVAR ID;
OUTPUT(1) MATCH; MEND;

76 STEP Processor

″MATCH ANY STRING EXPRESSION″
MACBOOT SYNTAX:STREXP <1, STRELM / '||' >;

OUTPUT(1) MATCH; MEND;

″MATCH ANY STRING ELEMENT″
MACBOOT SYNTAX: STRELM

STRFCN | MATVAR | STRVAR | SYMREF | '('STREXP')';
OUTPUT(1) MATCH; MEND;

″MATCH ANY FUNCTION WHICH RETURNS A STRING″
MACBOOT SYNTAX: STRFCN 'SUBS(' STREXP ',' LOGEXP (',' LOGEXP) ')'

| 'CS(' LOGEXP ')'
| MATCH | SOURCE ;

OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: MATVAR ID ('(' <1, LOGEXP / ',' > ')') ;
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: STRVAR ID;
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: SYMREF
ID '(' <'@' STREXP | LOGEXP | SYMPNTR> (',' LOGEXP) ')' ;
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: SYMPNTR
ID <('.NONEW')('.LOCAL') | ('.LOCAL')('.NONEW')> '@' STREXP;
OUTPUT(1) MATCH; MEND;

Appendix A 77

Appendix B: Standard Macro Language Extensions

The standard macro definition language extension macro set does not completely parse and
check the base language, it only converts extended language constructs into base language
counterparts. The following macros only represent a few day's work to code and debug, and
so can be easily changed if required.

The 21st element of the GLOBAL array is used to generate unique statement labels. The 23rd
element is set to a number which indicates (for error checking purposes only) the type of
extended construct that the scan pointer is immediately nested within. Its value is one for the
LOOP and WHILE constructs, two for the FOR construct, and three for the IF-ELSEIF-ELSE
construct. The 22nd element of the GLOBAL array is used to check for errors when processing
NEXT and EXIT statements. If these statements do not appear nested (not necessarily
immediately) within a FOR, WHILE, or LOOP construct an error is flagged. Note that
DeMorgan's rules are fully applied to any logical expression which must be negated.

 62 9 10 37
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_$,.+-*/()=;:'″#@?|&¬<>!%
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_$,.+-*/()=;:'″#@?|&¬<>!%''
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_$,.+-*/()=;:'″#@?|&¬<>!%''
 6 9 6 1 2 3 4 7 8

″*********** ***********″
″*********** THE STEP PROCESSOR ***********″
″*********** ***********″
″*********** BY JACK W. SIMPSON ***********″
″*********** COMPUTATION RESEARCH GROUP ***********″
″*********** STANFORD LINEAR ACCELERATOR CENTER ***********″
″*********** MENLO PARK, CALIFORNIA ***********″
″*********** ***********″
″*********** PRINTED IN USA ***********″
″*********** ***********″

MACBOOT TRIGGR:
'MACRO' TYPE:ID. ':' (ID) ;
GLOBAL(23)=0; GLOBAL(22)=0;
SCAN GROUP:<1,MSTMNT> 'END MACRO';
OUTPUT(1) TYPE ':' ID GROUP ';MEND;';
GLOBAL(1)=1; MEND;

MACBOOT SYNTAX: MSTMNT
LAB:<0,ID ':'>
<'IF' IFSTMT |
'FOR' FORSTM |
'WHILE' WHILST |
'LOOP' LOOPST |
'ANSWER' ANSTAT |
'RESCAN' RESTAT |
'OUTPUT' OUTSTA |
'WARN' WRSTAT |
OTHER:<(KEY:ID.) (TYPE:ID.) ATOMS ';'>> ;

IF (KEY='ELSEIF' | KEY='ELSE') IFSTAT;
IF (KEY='END') MACEND;
OUTPUT(1) LAB IFSTMT FORSTM WHILST LOOPST

ANSTAT RESTAT OUTSTA WRSTAT OTHER;
RETURN;

IFSTAT: IF (GLOBAL(23)=3) MFAIL;
OUTPUT(5) 'MISPLACED ELSE/ELSEIF DELETED';
OUTPUT(2) TYPE ATOMS ';' ; RETURN;

MACEND: IF (GLOBAL(23)¬=0 | TYPE='MACRO') MFAIL;
OUTPUT(5) '″'.KEY TYPE.'″ DELETED - NOTHING TO CLOSE';
OUTPUT(2) ATOMS ';'; RETURN;

MFAIL: FAIL;

78 STEP Processor

MACBOOT TRIGGR:
'NEXT;';
I=GLOBAL(22);
IF (I=0) ERROR;
OUTPUT(2) 'IF(1) L'.CS(I+1) ';' ;
RETURN;

ERROR: OUTPUT(5) '″NEXT″ DELETED - NOT WITHIN LOOP';
MEND;

MACBOOT TRIGGR:
'EXIT;';
I=GLOBAL(22);
IF (I=0) ERROR;
OUTPUT(2) 'IF(1) L'.CS(I+2) ';' ;
RETURN;

ERROR: OUTPUT(5) '″EXIT″ DELETED - NOT WITHIN LOOP';
MEND;

MACBOOT TRIGGR:
'GO TO' ID ';' ;
OUTPUT(2) 'IF(1)' ID ';';
MEND;

MACBOOT TRIGGR:
'IF' $LEXPR 'THEN' <'GO TO' ID | A:'NEXT' | B:'EXIT'>

';END IF';
OUTPUT(2) 'IF(' $LEXPR ')' ID;
IF(ID) MACEND;
I=GLOBAL(22); IF(I¬=0) MOK; FAIL;

MOK: OUTPUT(2) 'L';
IF(B) BE;
OUTPUT(2) .CS(I+1);
IF(1) MACEND;

 BE: OUTPUT(2) .CS(I+2);
MACEND: OUTPUT(2) ';'; MEND;

;MEND;

MACBOOT SYNTAX: IFSTMT
$NLEXP 'THEN' | BAL 'THEN' ;
IF (¬BAL) LAB0;
OUTPUT(5) 'BAD EXPRESSION IN IF STATEMENT';

LAB0: MSAVE=GLOBAL(23); GLOBAL(23)=3;
SCAN

GROUP1:<0,MSTMNT>
<0, 'ELSEIF' EXP2:$NLEXP 'THEN'

GROUP2:<0,MS2:MSTMNT>>
('ELSE' GROUP3:<0,MS3:MSTMNT>)
'END' ID ;

L1=GLOBAL(21)+10; GLOBAL(21)=L1; L2=L1;
OUTPUT(1) 'IF(' $NLEXP ')L'.CS(L1+1) ';'

GROUP1 ;
I=1; EIFNO=GROUP2(*);

ELSEIF: IF (I>EIFNO) ELSE;
OUTPUT(1) 'IF(1)L'.CS(L1+2) ';L'.CS(L2+1).':;' ;
L2=GLOBAL(21)+10; GLOBAL(21)=L2;
OUTPUT(1) 'IF(' EXP2(I) ')L'.CS(L2+1) ';'

GROUP2(I);
I=I+1; IF(1) ELSEIF;

ELSE: IF (¬GROUP3) ENDIF;
OUTPUT(1) 'IF(1)L'.CS(L1+2) ';L'.CS(L2+1).':;'

GROUP3 ;
ENDIF: IF (GROUP3 | GROUP2(*)¬=0) EXTRA;

OUTPUT(1) 'L'.CS(L1+1).':;' ; IF(1) CHECK;
EXTRA: OUTPUT(1) 'L'.CS(L1+2).':;' ;
CHECK: IF (ID='IF') MACEND;

OUTPUT(5) '″END IF″ INSERTED BEFORE ″END' ID.'″' ;

Appendix B: Standard Macro Language Extensions 79

OUTPUT(2) 'END' ID;
MACEND: GLOBAL(23)=MSAVE; MEND;

MACBOOT SYNTAX: FORSTM
ID '=' $AEXPR ('TO' TO:$AEXPR)('BY' BY:$AEXPR) 'DO'

| ATOMS <'DO' | ';'> ;
IF (ID) LAB0;
OUTPUT(5) 'INCORRECT ″FOR″ STATMENT SYNTAX';

LAB0: I=GLOBAL(21)+10; GLOBAL(21)=I;
LSAVE=GLOBAL(22); GLOBAL(22)=I;
MSAVE=GLOBAL(23); GLOBAL(23)=2;
SCAN
GROUP:<0,MSTMNT> 'END' ENDID:ID. ;

STRING START, NEXT, LAST;
START='L'||CS(I); NEXT='L'||CS(I+1); LAST='L'||CS(I+2);
OUTPUT(1) ID '=' $AEXPR ';IF(1)' START ';' ;
IF(BY) LAB1;
BY='1';

LAB1: OUTPUT(1) NEXT.':' ID '=' ID '+' BY ';' START.':;' ;
IF(¬TO) LAB3;
OUTPUT(1) 'IF(' ID '>' TO ')' LAST ';' ;

LAB3: OUTPUT(1) GROUP 'IF(1)' NEXT ';' LAST.':;' ;
GLOBAL(22)=LSAVE; GLOBAL(23)=MSAVE;
IF (ENDID='FOR') MACEND;
OUTPUT(5) '″END FOR″ INSERTED BEFORE ″END' ENDID.'″' ;
OUTPUT(2) 'END' ENDID;

MACEND:; MEND;

MACBOOT SYNTAX: WHILST
$NLEXP 'DO' | ATOMS <'DO' | ';'> ;

IF ($NLEXP) LAB0;
OUTPUT(5) 'BAD EXPRESSION IN ″WHILE″ STMNT';

LAB0: I=GLOBAL(21)+10; GLOBAL(21)=I;
LSAVE=GLOBAL(22); GLOBAL(22)=I;
MSAVE=GLOBAL(23); GLOBAL(23)=1;

SCAN
GROUP:<0,MSTMNT> 'END' ID;

STRING NEXT, LAST; NEXT='L'||CS(I+1); LAST='L'||CS(I+2);
OUTPUT(1) NEXT.':IF(' $NLEXP ')' LAST ';'

GROUP
'IF(1)' NEXT ';' LAST.':;';

GLOBAL(22)=LSAVE; GLOBAL(23)=MSAVE;
IF (ID='WHILE') LAB1;
OUTPUT(5) '″END WHILE″ INSERTED BEFORE ″END' ID.'″' ;
OUTPUT(2) 'END' ID;

LAB1: ;MEND;

MACBOOT SYNTAX: LOOPST
CHAR ;
I=GLOBAL(21)+10; GLOBAL(21)=I;
LSAVE=GLOBAL(22); GLOBAL(22)=I;
MSAVE=GLOBAL(23); GLOBAL(23)=1;
SCAN
GROUP:<0,MSTMNT> 'END' ID ;

STRING NEXT, LAST; NEXT='L'||CS(I+1); LAST='L'||CS(I+2);
OUTPUT(1) NEXT.':;' GROUP 'IF(1)' NEXT ';' LAST.':;' ;
GLOBAL(22)=LSAVE; GLOBAL(23)=MSAVE;
IF(ID='LOOP') MACEND;
OUTPUT(5) '″END LOOP″ INSERTED BEFORE ″END' ID.'″' ;
OUTPUT(2) 'END' ID;

MACEND:; MEND;

80 STEP Processor

MACBOOT SYNTAX: ANSTAT
ATOMS ';';
OUTPUT(1) 'OUTPUT(1)' MATCH;
MEND;

MACBOOT SYNTAX: RESTAT
ATOMS ';';
OUTPUT(1) 'OUTPUT(2)' MATCH;
MEND;

MACBOOT SYNTAX: OUTSTA
UNIT: ('(' BAL ')') ATOMS ';';
OUTPUT(1) 'OUTPUT';
IF(UNIT)LABEL;
OUTPUT(1) '(4)';

LABEL: OUTPUT(1) MATCH;
MEND;

MACBOOT SYNTAX: WRSTAT
ATOMS ';';
OUTPUT(1) 'OUTPUT(5)' MATCH ;
MEND;

MACBOOT SYNTAX: $LEXPR
<1, $OREXP / '|'>;
OUTPUT(1) MATCH;
MEND;

MACBOOT SYNTAX: $OREXP
<1, $LOGIC / '&'>;
OUTPUT(1) MATCH;
MEND;

MACBOOT SYNTAX: $LOGIC
$RELAT | ('¬') $REF | '('$LEXPR')' | '¬('$NLEXP')' ;
IF ($NLEXP) LABEL;
OUTPUT(1) MATCH; RETURN;

LABEL: OUTPUT(1) '('$NLEXP')';
MEND;

MACBOOT SYNTAX: $RELAT
NOT:('¬') A:$AEXPR $RELOP B:$AEXPR ;
IF (¬NOT) LABEL;
$RELOP=SUBS('¬== <=< >=> ',

INDEX('= ¬=> >=< <=',$RELOP) , 2);
LABEL: IF (A¬='0') NSWTCH;

STRING S; S=A; A=B; B=S;
NSWTCH:;

IF (B¬='0') NORMAL;
IF ($RELOP='¬=') NEQU;
IF ($RELOP¬='=' & $RELOP¬='= ') NORMAL;
OUTPUT(1) '¬' ;

NEQU: OUTPUT(1) A ;
RETURN;

NORMAL: OUTPUT(1) A $RELOP B;
MEND;

MACBOOT SYNTAX: $AEXPR
<1,SIMEXP/ '*' | '/' | '+' | '-' | '||' > ;
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: SIMEXP
¬<'THEN'|'DO'><$REF | NUM | '(' $AEXPR ')' | STR> ;
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: $REF
ID ('(' < $AEXPR | '*' > <0, ',' $AEXPR > ')') ;
OUTPUT(1) MATCH; MEND;

Appendix B: Standard Macro Language Extensions 81

MACBOOT SYNTAX: $RELOP
'=' | '¬=' | '>=' | '>' | '<=' | '<' ;
OUTPUT(1) MATCH; MEND;

MACBOOT SYNTAX: $NLEXP
<1, $NOREX / $NOR>;
OUTPUT(1) MATCH;
MEND;

MACBOOT SYNTAX: $NOR
'|';
OUTPUT(1) '&';
MEND;

MACBOOT SYNTAX: $NOREX
<1, $NTINS $LOGIC / $NANOP>;
IF ($LOGIC(*)>1) LABEL;
OUTPUT(1) MATCH; RETURN;

LABEL: OUTPUT(1) '(' MATCH ')';
MEND;

MACBOOT SYNTAX: $NANOP
'&';
OUTPUT(1) '|';
MEND;

MACBOOT SYNTAX: $NTINS
N:('¬');
IF (N) LABEL;
OUTPUT(2) '¬';

LABEL:; MEND;

82 STEP Processor

Appendix C: General Examples

Example 1: Constant Propagation in Expressions
The following macro set recognizes FORTRAN integer expressions and folds all constants
possible as it does so. Note that constant folding will take place across a division operator
only if the division can be performed with no remainder or if no variables appear to the left
of the division operator. Local trigger macros operate asynchronously during the expression
parse to simplify certain forms.

MACRO SYNTAX: ARIEXP
PREOP:('+'|'-')<1, TERM / INOP:<'+'|'-'>>;

MACRO TRIGGR:
'+(' UNARY:('+'|'-') ARIEXP ')' ENDOP:<')'|'+'|'-'>;
IF ¬UNARY THEN UNARY='+'; END IF
RESCAN UNARY ARIEXP ENDOP;
END MACRO;

MACRO TRIGGR:
'-(' (PMCONV) ARICON ')' ENDOP:<')'|'+'|'-'>;
IF ¬PMCONV THEN PMCONV='-'; END IF
RESCAN PMCONV ARICON ENDOP;
END MACRO;

STRING OPERAT,S;
NTERMS=TERM(*);
OPERAT=PREOP; SUM=0; ANSFLG=0;

FOR I=1 TO NTERMS DO
S=TERM(I);

″IF A MINUS SIGN WAS APPENDED BY TERM, CHANGE SIGN
OF OPERAT.″
IF SUBS(S,LENGTH(S),1)='-' THEN

S=SUBS(S,1,LENGTH(S)-1);
IF OPERAT='-' THEN

OPERAT='+';
ELSE

OPERAT='-';
END IF

END IF

″USE SCAN TO FIND OUT IF THIS TERM IS A CONSTANT -
IF IT IS ADD TO TOTAL INSTEAD OF ANSWERING TEXT″
USING S SCAN NUM;
IF SCANOK THEN

SUM=SUM+CN(OPERAT||S);
ELSE

IF ANSFLG=1 | OPERAT='-' THEN ANSWER OPERAT; END IF
ANSFLG=1;
ANSWER S;

END IF
OPERAT=INOP(I);

END FOR

″FINALLY, APPEND THE CONSTANT PORTION TO THE REST″
IF SUM¬=0 | ANSFLG=0 THEN

IF SUM>0 & ANSFLG=1 THEN ANSWER '+'; END IF
ANSWER CS(SUM);

END IF
END MACRO;

Appendix C: General Examples 83

MACRO SYNTAX: ARICON
(PMCONV) <1, TERM / PM2:PMCONV>;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: PMCONV
PLUS:'+' | MINUS:'-';
IF PLUS THEN

ANSWER '-';
ELSE

ANSWER '+';
END IF
END MACRO;

MACRO SYNTAX:TERM
INSST <1, <1, '*' FACTOR> | '/' DIVIDE:FACTOR>;

MACRO TRIGGR:
'/(';
RESCAN NOTRIG MATCH;
END MACRO;

MACRO TRIGGR:
'(' MINUS:('-') TERM MINUS2:('-') ')' ¬<'**'>;
USING MATCH SCAN '(' BAL '/' BAL ')';
IF SCANOK THEN FAIL; END IF
RESCAN TERM;
I=1;
IF MINUS THEN I=-1; END IF
IF MINUS2 THEN I=-I; END IF
IF I<0 THEN RESCAN '*(-1)'; END IF
END MACRO;

STRING FACSTR,DIVSTR;
PRODUC=1; ALG=0; SIGN=1;
LIM2=FACTOR(*);

″THIS LOOP CORRESPONDS TO THE OUTER LOOP IN THE ABOVE PATTERN″
″NO MORE THAN ONE DIVISOR IS DEALT WITH DURING EACH ITERATION″
FOR II=1 TO LIM2 DO

LIM=FACTOR(*,II);
FOR I=1 TO LIM DO

FACSTR=FACTOR(I,II);
USING FACSTR SCAN NUM | '(-' MNEG:<NUM2:NUM|REF> ')';
IF MNEG THEN FACSTR=MNEG; SIGN=-SIGN; END IF
IF SCANOK & ¬REF THEN

PRODUC=PRODUC*CN(FACSTR);
ELSE

IF ALG¬=0 THEN ANSWER '*'; END IF
ANSWER FACSTR;
ALG=1;

END IF
END FOR

IF PRODUC=0 THEN EXIT; END IF

IF DIVIDE(II) THEN
DIVSTR=DIVIDE(II);
USING DIVSTR SCAN NUM3:NUM |

'(-' DNEG:<NUM4:NUM | REF2:REF> ')';
IF DNEG THEN DIVSTR=DNEG; SIGN=-SIGN; END IF
IF SCANOK & ¬REF2 THEN

DIV=CN(DIVSTR);
RESULT=PRODUC/DIV;
IF RESULT*DIV¬=PRODUC & ALG¬=0 THEN

GO TO KEEP; END IF

84 STEP Processor

PRODUC=RESULT;
ELSE KEEP:

IF ALG=0 | PRODUC¬=1 THEN
IF ALG¬=0 THEN ANSWER '*'; END IF
ANSWER CS(PRODUC);

END IF
ANSWER '/' DIVSTR;
PRODUC=1;

END IF
END IF

END FOR

″FINALLY, APPEND THE CONSTANT PORTION TO THE REST″
IF PRODUC¬=1 | ALG=0 THEN

IF ALG¬=0 THEN ANSWER '*'; END IF
ANSWER CS(PRODUC);

END IF

″IF AN ODD NUMBER OF UNARY MINUS SIGNS HAVE BEEN REMOVED FROM″
″A TERM, INFORM ARIEXP OF THIS FACT″
IF SIGN<0 THEN ANSWER .'-'; END IF
END MACRO;

MACRO SYNTAX: INSST ″INSST IS USED IN ORDER THAT EVERY FACTOR″
CHAR; ″APPEARING IN A TERM WILL BE PRECEDED BY″
RESCAN '*' CHAR; ″THE APPROPRIATE OPERATOR. THIS ALLOWS″
END MACRO; ″THE PATTERN FOR TERM TO BE CONVENIENTLY″

″STRUCTURED″
END MACRO;

MACRO SYNTAX: FACTOR
<REF | NUM | '(' ARIEXP ')'> EXPON:('**' FACTOR) ;
IF ARIEXP THEN

USING ARIEXP SCAN REF2:REF | NUM2:NUM ;
IF SCANOK THEN ANSWER ARIEXP EXPON; RETURN; END IF

END IF
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: REF
ID ('(' <1,ARIEXP/ ',' > ')') ;
ANSWER MATCH;
END MACRO;

″NOW WRITE A TRIGGER MACRO TO TEST THE EXPRESSION MACROS″

MACRO TRIGGR:
'STARTEXP' ARIEXP ';';
RESCAN NOTRIG MATCH;
END MACRO;

″NOW CONVERT THE EXPRESSIONS IN THE FOLLOWING LINES″

STARTEXP A*(B+C/D);
STARTEXP 2*(3+4);
STARTEXP 2*(A+3-B+4)*9;
STARTEXP A+2-(8+G*C(3-A+4))+G-5;
STARTEXP A*5*3/2*4+B*3*4/6*C;
STARTEXP (A+C*4/2)/8*C+9-3*R*5/1;

When this macro was tested, the above input expressions were converted to

STARTEXP A * (B + C / D) ;
STARTEXP 14 ;
STARTEXP (A - B + 7) * 18 ;
STARTEXP A - G * C(- A + 7) + G -11 ;
STARTEXP A * 15 / 2 * 4 + B * C * 2 ;
STARTEXP (A + C * 2) / 8 * C - R * 15 + 9 ;

Appendix C: General Examples 85

Example 2: SNOBOL Pattern Matching Statements in PL/I
The following macro set will implement a SNOBOL-like pattern matching statement as an
extended PL/I statement. The macros were transliterated from the IBM Language Point
2257 proposal, example 3. Various utility macros, such as REF, LABEL, etc. were copied from
page 10 of the proposal. The implementation is not identical to that in the proposal because
of various errors that were corrected.

The following macros would process the statement

(SNOBOL): REPEAT: A(I) X '.' Y = '' /S(REPEAT);

In this particular statement, A(I) represents a character string that is searched for the
substring X||'.'||Y. If the substring is found and the equal sign followed by a string
expression has been coded then the substring is replaced by the string expression on the
right side of the equal sign (in this case the substring is removed). If the slash is coded then
one or two labels must follow it surrounded by parentheses and preceded by the letter S for
success or F for failure. Control is passed to the appropriate label depending upon the
success or failure of the pattern match.

The PL/I code generated from the above statement is

REPEAT: NTEMP$$$=INDEX(A(I), X||'.'||Y);
IF NTEMP$$$¬=0 THEN DO

A(I)=SUBSTR(A(I),1,NTEMP$$$) || '' ||
SUBSTR(A(I),NTEMP$$$+LENGTH(X||'.'||Y));

GO TO REPEAT;
END;

where the indentation has been added by the author.

MACRO TRIGGR:
'(SNOBOL):' (PREFIX) (LABLST)

REF STRNG1 ('=' STRNG2:STRNG1)
('/' <1, T:('S'|'F') '('LABEL')'>) ';';

STRING STMT1,STMT2; ERROR=0;

″NOW CHECK THE TARGET LABELS AND GENERATE CODE INTO
INTO STMT1 FOR SUCCESS LABEL AND STMT2 FOR FAILURE LABEL″

FOR I=1 TO T(*) DO
IF T(I)='S' THEN

IF STMT1>='' THEN
ERROR=1;

ELSE
STMT1=PREFIX||' GO TO '||LABEL(I)||';';

END IF
ELSEIF T(I)='F' THEN

IF STMT2>='' THEN
ERROR=1;

ELSE
STMT2='ELSE'||PREFIX||' GO TO '||LABEL(I)||';';

END IF
ELSE

ERROR=1;
END IF

END FOR

″NOW FIELD ERRORS FOUND WHEN LOOKING FOR TARGET LABELS″

IF ERROR¬=0 THEN
WARN 'ERROR IN SNOBOL STATEMENT -- STATEMENT DELETED';
OUTPUT '/* **** ERROR **** STATEMENT - ' SOURCE

'- DELETED */';
RETURN;

86 STEP Processor

END IF;

″OUTPUT THE CODE FOR THE STATEMENT″

OUTPUT PREFIX LABLST
'NTEMP$$$=INDEX(' REF ',' STRNG1 ');'
'IF NTEMP$$$¬=0 THEN DO;';

IF STRNG2 THEN
OUTPUT PREFIX

REF '=SUBSTR(' REF ',1,NTEMP$$$)||'
STRNG2 '||SUBSTR(' REF
',NTEMP$$$+LENGTH(' STRNG1 '));';

END IF
OUTPUT STMT1 'END;' STMT2;
END MACRO;

MACRO SYNTAX: STRNG1 ″A SNOBOL STYLE STRING EXPRESSION,″
<1, ITEM: <REF | STR> / ' '>;
ANSWER ITEM(1); ″WHERE A BLANK INDICATES CONCATENATION″
FOR I=2 TO ITEM(*) DO ″IS RECOGNIZED AND TRANSLATED INTO ITS″

ANSWER '||' ITEM(I); ″PL/I COUNTERPART.″
END FOR;
END MACRO;

MACRO SYNTAX:EXPR ″A PL/I EXPRESSION OF NEARLY ANY TYPE″
<1, PRIMIT / OPERAT>; ″WILL BE MATCHED BY THIS AND THE″
ANSWER MATCH; ″FOLLOWING MACROS″
END MACRO;

MACRO SYNTAX: PRIMIT
'(' EXPR ')' | <'¬'|'+'|'-'> EXPR |
REF | STR | NUM ;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: OPERAT ″THIS MATCHES A PL/I INFIX OPERATOR″
'**' | '*' | '/' | '+' | '-' | '>=' | '>' | '<=' |
'<' | '¬=' | '=' | '¬>' | '¬<' | '||' | '&' | '|' ;
ANSWER MATCH; ″IT IS RETURNED UNALTERED TO THE CALLER″
END MACRO;

MACRO SYNTAX: REF ″THIS MATCHES A PL/I REFERENCE″
<1, ID ('(' <1, EXPR / ','> ')') / '->' | '.'>;
ANSWER MATCH; ″AND RETURNS IT UNALTERED″
END MACRO;

MACRO SYNTAX: LABLST ″THIS MACRO MATCHES A SEQUENCE OF ONE″
<1, LABEL ':'>; ″OR MORE PL/I LABELS (IDENTIFIERS)″
ANSWER MATCH; ″FOLLOWED BY COLONS″
END MACRO;

MACRO SYNTAX: LABEL ″THIS MACRO MATCHES A SINGLE PL/I LABEL,″
ID; ″WHICH IS SIMPLY AN IDENTIFIER. A MORE″
ANSWER MATCH; ″COMPLEX MACRO MIGHT ADDITIONALLY CHECK″
END MACRO; ″THAT THE ID IS REALLY A LABEL BY USING″

″THE SYMBOL TABLE FACILITY.″

MACRO SYNTAX: PREFIX
'(' <1, ID / ','> '):';
ANSWER MATCH;
END MACRO;

Appendix C: General Examples 87

Example 3: Structured FORTRAN Preprocessor
The following macro set is quite long, and forms the nucleus of a structured FORTRAN
preprocessor. The preprocessor is written with the aid of the macro language extension set
given in appendix B. The appearance of the text BEGIN PROCESSOR SCAN in the input will
trigger the preprocessor, which will then retain control of the scan until the end of input is
reached. Main programs must begin with the identifier PROGRAM. Language extensions
implemented include IF-ELSEIF-ELSE, SELECT (a type of case statement), WHILE, UNTIL,
LOOP, EXIT, and other statements. The entire FORTRAN base language, including
FORMAT statements, is completely parsed and checked for correctness. In addition to this,
certain conveniences not recommended for general use have been added according to the
whims of the author. For example, one need not code the IF in an IF statement, but simply
begin the statement with a left parenthesis. This is implemented by a local trigger macro.
Also, to save keystrokes, one may replace the keyword ELSEIF by an asterisk, etc.

At present this preprocessor is primarily concerned with the extension of the control
structures of the base language, and for this purpose it would not be necessary to do a
complete parse, but only to recognize and convert the extended statements. With a little
more work, however, the symbol table facility could be put to use and allow this macro set
to be extended so that new data types and structures could be added to the language.

The GLOBAL(31) array element is used to generate unique statement labels, while GLOBAL(32)
is used to pass a symbol array pointer from the LABGEN syntax macro, which recognizes
statement label declarations, to the immediately following statement. This information is
presently needed only for the implementation of the EXIT:label:; and the NEXT:label:;
statements. Note that the constant propagation macros ARIEXP, TERM, and FACTOR which
appear in a previous example can easily be substituted for their counterparts in this macro
set.

This is the preprocessor that is used for the development of STEP itself. To give an idea of
the type of language that these macros process, the following routine that performs all of the
MARK and DROP functions for the replacement procedures is listed from the STEP source.

SUBROUTINE MKDP(IA,IAS,IER); INTEGERALL; CMMNS; SYMCMMNS;

IER=0; IL=AP(IAS+3);

(IA=MRK$)
< +AP(IAS+2); ″INCREMENT MARK COUNT IN HEADER″
(IFBLK=0)<ERR('SYMBOL ARRAY PNTR OVERFLOW'); STOP;>
J=IFBLK; IFBLK=AP(J); ″REMOVE BLOCK FROM FREE BLOCK LIST″
(AP(J+1)=1)CALL AGARBG(1);″IF DROP MARKED IT, COLLECT GARBAGE″
AP(J+1)=IL; AP(IAS+3)=J+1; ″MARK LINK NEW TO OLD & HEADER TO NEW″
AP(J)=0; AP(J+3)=0; ″ZERO NEXT BLOCK & TREE ROOT POINTERS″
J=J+4; AP(J-2)=J; ″LINK FREE LIST HEADER TO 1ST ELEMENT″
IN=AP(IAS+1); (0>IN) IN=-IN; IN=IN+3; NUM=$($BLKLEN-4)/IN;
DO I=1,NUM<JJ=J; J=J+IN; AP(JJ)=J;> AP(JJ)=0;>

ELSE
< -AP(IAS+2); ″DECREMENT MARK COUNT″
(IL=0)<ERR('NO DROP ON SYMBOL ARRAY'); RETURN;>
AP(IAS+3)=AP(IL); J=IL-1; ″DELETE BLOCK FROM MARK LIST″
WHILE(J¬0)<JJ=J; J=AP(J); ″SAV ADDR OF NEXT BLOCK IN J″

IN=JJ+$($BLKLEN-1); DO I=JJ,IN<AP(I)=0;> ″CLEAR BLOCKS″
(IFBLK¬0)<AP(IBBLK)=JJ;> ″IF FREE BLOCK LIST EMPTY″
ELSE <IFBLK=JJ;> ″IF NOT EMPTY″
IBBLK=JJ; AP(JJ+1)=1;>> ″PNT TO LAST BLK & MARK FOR AGARBG″

RETURN; END;

88 STEP Processor

″*********** ***********″
″*********** THE STEP PROCESSOR ***********″
″*********** ***********″
″*********** BY JACK W. SIMPSON ***********″
″*********** COMPUTATION RESEARCH GROUP ***********″
″*********** STANFORD LINEAR ACCELERATOR CENTER ***********″
″*********** MENLO PARK, CALIFORNIA ***********″
″*********** ***********″
″*********** PRINTED IN USA ***********″
″*********** ***********″

″********** FORTRAN PREPROCESSOR MACRO SET FOLLOWS ********″

MACRO TRIGGR:
'BEGIN PROCESSOR SCAN'
<0,< MAINPR | BLOCKD | SUBROU | FUNCTI | SERROR >>;
WARN '*** PROCESSOR SCAN COMPLETED ***';
END MACRO;

MACRO SYNTAX: MAINPR
'PROGRAM' ROUTIN ;
END MACRO;

MACRO SYNTAX: BLOCKD
'BLOCK DATA' TERMIN (IMPLIC) ;
OUTPUT 'BLOCK DATA;' IMPLIC;
SCAN <0,< DCSTAT | ERRORS>> 'END;' ;
OUTPUT 'END;' ;
END MACRO;

MACRO SYNTAX: SUBROU
'SUBROUTINE' ID ('(' ARGLST ')') TERMIN ;
OUTPUT MATCH ;
SCAN ROUTIN ;
END MACRO;

MACRO SYNTAX: FUNCTI
(TYPE) 'FUNCTION' ID ('(' ARGLST ')') TERMIN ;
OUTPUT MATCH ;
SCAN ROUTIN;
END MACRO;

MACRO SYNTAX: TERMIN
T:(';');
IF ¬T THEN

WARN '*** MISSING TERMINATOR INSERTED ***';
END IF
ANSWER ';';
END MACRO;

MACRO SYNTAX: RBRACK
A:('>');
IF ¬A THEN

WARN 'MISSING RIGHT BRACKET INSERTED';
END IF
END MACRO;

MACRO SYNTAX: TYPE
'REAL'|'DOUBLE PRECISION'|'INTEGER'|'COMPLEX'|'LOGICAL';
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: SERROR
';' | ATOMS ';';
IF ATOMS THEN

WARN '*** STRING ' ATOMS ' -- FOUND BETWEEN PROGRAM UNITS';
END IF
END MACRO;

Appendix C: General Examples 89

MACRO SYNTAX: ARGLST
<1, ID / ',' > <0, ',*'>;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: ROUTIN
(IMPLIC) <0,DCSTAT> ;
SYMBOL LABEL(*,2) ;
GLOBAL(31)=90; GLOBAL(32)=0; GLOBAL(33)=0;
LOOP

SCAN SGROUP < '>' | END:'END;'> ;
IF END THEN EXIT; END IF
WARN '*** EXTRA RIGHT BRACKET DELETED ***';

END LOOP
OUTPUT 'END;' ;
DROP LABEL; MARK LABEL;
END MACRO;

MACRO SYNTAX: SGROUP
<0, <0, LABGEN> STATEM>;

MACRO TRIGGR:
'WHILE(' BAL ')<' ;
RESCAN 'UNTIL(¬(' BAL '))<' ;
END MACRO;

MACRO TRIGGR:
'(' BAL ')';
RESCAN 'IF(' BAL ')' ;
END MACRO;

MACRO TRIGGR:
'<*' ¬<'*+'>;
RESCAN 'LOOP<';
END MACRO;

MACRO TRIGGR:
'>UNTIL(' BAL ');';
RESCAN ';IF(' BAL ')EXIT;>';
END MACRO;

MACRO TRIGGR:
'>WHILE(' BAL ');';
RESCAN ';IF(¬(' BAL '))EXIT;>';
END MACRO;

″MACRO TRIGGR:
'D=' ATOMS ';';
IF GLOBAL(40)=0 THEN FAIL; END IF
GLOBAL(41)=GLOBAL(41)+1;
RESCAN NOTRIG 'I001=D; D=';
RESCAN ATOMS ';(P(IGL+3)=1)<OUTPUT I001,D,TX(D),V,TX(V),IA,
IAP,LL,LA,LOF,LF,M;('' ** ' CS(GLOBAL(41)) ' ** '',12I7);>';
WARN 'MARK--' CS(GLOBAL(41));
END MACRO;″

″MACRO TRIGGR:
'P(' BAL ')=' ATOMS ';';
I=GLOBAL(41)+1; GLOBAL(41)=I;
RESCAN 'I001=' BAL ';(I001=991|I001=992)'

'<OUTPUT;('' STOP AT' CS(I) '''); STOP;>';
RESCAN NOTRIG 'P(I001)=';
RESCAN ATOMS ';';
WARN 'MARK--' CS(I) ;
END MACRO;″

″MACRO TRIGGR:
'(' BAL ')' ¬<'<'> ATOMS ';';
RESCAN 'IF(' BAL ')<' ATOMS ';>';
END MACRO;″

90 STEP Processor

MACRO TRIGGR:
'ASSERT' ATOMS '(' BAL ');';
RESCAN 'IF(¬('.BAL.'))'

'<ERR(''ASSERTION '.ATOMS.' FALSE'');STOP 12;>';
END MACRO;

MACRO TRIGGR:
'+' ATOMS ';';
RESCAN ATOMS '=' ATOMS '+1;';
END MACRO;

MACRO TRIGGR:
'-' ATOMS ';';
RESCAN ATOMS '=' ATOMS '-1;';
END MACRO;

MACRO TRIGGR:
'G:' BAL ':;';
RESCAN 'GO TO :'.BAL.':;';
END MACRO;

END MACRO;

MACRO SYNTAX: DCSTAT
 'COMMON' CMSTAT |
 'DIMENSION' DMSTAT |
 'REAL' RLSTAT |

'DOUBLE PRECISION' RLSTAT |
'COMPLEX' RLSTAT |
'INTEGER' IGSTAT |
'LOGICAL' LGSTAT |
'EQUIVALENCE' EQSTAT |
'DATA' DTSTAT |
'EXTERNAL' EXSTAT |
';' ;
END MACRO;

MACRO SYNTAX: STATEM
'IF' IFSTAT |
'IF' OLDIF |
'DO' DOSTAT |
'LOOP' LPSTAT |
'UNTIL' ULSTAT |
NEXIT |
'GO'*'TO' GOSTAT |
'CALL' CLSTAT |
ASSIGN |
'SELECT' SELECT |
'OUTPUT' OTSTAT |
'INPUT' INSTAT |
'REWIND' RUNIT |
'BACKSPACE' BUNIT |
'END'*'FILE' EUNIT |
'ERR' ERSTAT |
'ENTRY' ENSTAT |
'RETURN' RTSTAT |
'STOP'* STOPST |
DCSTAT |
';' |
ERRORS ;
GLOBAL(32)=0;
END MACRO;

MACRO SYNTAX: IMPLIC
'IMPLICIT ' ATOMS ';';
OUTPUT MATCH;
END MACRO;

Appendix C: General Examples 91

MACRO SYNTAX: CMSTAT
<1, ('/' (BLKNAM:ID.) '/') <1,DCLREF/','> / SLSH> TERMIN ;
OUTPUT 'COMMON' MATCH ;
END MACRO;

MACRO SYNTAX: SLSH
'/';
RESCAN MATCH;
END MACRO;

MACRO SYNTAX: DMSTAT
DCLGEN ;
OUTPUT 'DIMENSION' MATCH ;
END MACRO;

MACRO SYNTAX: RLSTAT
('*4'* | '*8'*) DCLGEN ;
OUTPUT 'REAL' MATCH ;
END MACRO;

MACRO SYNTAX: IGSTAT
('*2'* | '*4'*) DCLGEN ;
OUTPUT 'INTEGER' MATCH ;
END MACRO;

MACRO SYNTAX: LGSTAT
('*1'* | '*4'*) DCLGEN ;
OUTPUT 'LOGICAL' MATCH ;
END MACRO;

MACRO SYNTAX: EQSTAT
<1, '(' DCLREF ',' DCLREF ')' / ',' > ';';
OUTPUT 'EQUIVALENCE' MATCH ;
END MACRO;

MACRO SYNTAX: DTSTAT
<1, <1, DCLREF / ','> '/' <1, DTITEM/ ','> '/' / ','> ';';
OUTPUT 'DATA' MATCH ;
END MACRO;

MACRO SYNTAX: DTITEM
(NUM'*')< ('+'|'-')<FLT|NUM>|STCONS|'T'|'.TRUE.'|'F'|'.FALSE.'> ;
ANSWER MATCH ;
END MACRO;

MACRO SYNTAX: EXSTAT
<1, ID/',' > TERMIN;
OUTPUT 'EXTERNAL' MATCH;
END MACRO;

MACRO SYNTAX: DCLGEN
<1, MAIN:<ID('('<1,<NUM|D2:ID.>/','>')')> DATA:('/' BAL '/') /

COMMA:','> TERMIN ;
L=ID(*);
FOR I=1 TO L DO

ANSWER MAIN(I) COMMA(I);
IF DATA(I) THEN

RESCAN 'DATA' ID(I) DATA(I) ';';
END IF

END FOR
ANSWER ';';
END MACRO;

MACRO SYNTAX: DCLREF
ID ('(' <1,NUM/','> ')') ;
ANSWER MATCH;
END MACRO;

92 STEP Processor

MACRO SYNTAX: FLT
(NUM ¬<' '>) '.'

(¬<' '> NUM2:NUM) (<'E'|'D'> ('+'|'-') NUM3:NUM);
IF ¬(NUM | NUM2) THEN FAIL; END IF
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: LABGEN
':' BAL ':' ;
SYMBOL LABEL(*,2) ;
K=LABEL@BAL; L1=LABEL(K,1);
IF L1=0 THEN

L1=GLOBAL(31)+10; GLOBAL(31)=L1; LABEL(K,1)=L1;
END IF
OUTPUT CS(L1) 'CONTINUE;';
GLOBAL(32)=K;
END MACRO;

MACRO SYNTAX: IFSTAT
'(' LOGNEG ')<' ;
L1=GLOBAL(31)+10; GLOBAL(31)=L1; L2=L1; FLAG=0; FLAG2=0;
OUTPUT 'IF(' LOGNEG ')GOTO' CS(L1+1) ';' ;
SCAN SGROUP RBRACK;
LOOP

SCAN <'*('|'ELSEIF('> LOG2:LOGNEG ')<' ;
IF ¬LOG2 THEN EXIT; END IF FLAG=1; FLAG2=1;
OUTPUT 'GOTO' CS(L1+2) ';' CS(L2+1) 'CONTINUE;' ;
L2=GLOBAL(31)+10; GLOBAL(31)=L2;
OUTPUT 'IF(' LOG2 ')GOTO' CS(L2+1) ';' ;
SCAN GROUP2: SGROUP RBRACK;

END LOOP
SCAN ELSTAT: 'ELSE<' ;
IF ELSTAT THEN

FLAG=1; FLAG2=0;
OUTPUT 'GOTO' CS(L1+2) ';' CS(L2+1) 'CONTINUE;' ;
SCAN GROUP3: SGROUP RBRACK;

END IF
IF FLAG THEN

IF FLAG2 THEN OUTPUT CS(L2+1) 'CONTINUE;'; END IF
OUTPUT CS(L1+2);

ELSE
OUTPUT CS(L1+1);

END IF
OUTPUT 'CONTINUE;' ;
END MACRO;

MACRO SYNTAX: OLDIF
'(' LOGEXP ')';
OUTPUT 'IF(' LOGEXP ')';
END MACRO;

MACRO SYNTAX: ASSIGN
REF '=' ARIEXP TERMIN | LOGREF '=' LOGEXP TERMIN ;
OUTPUT MATCH;
END MACRO;

MACRO SYNTAX: SELECT
'USING' ID '<';
SYMBOL CASYM(*); MARK CASYM;
ENDLAB=GLOBAL(31)+10; GLOBAL(31)=ENDLAB;
OUTPUT 'GO TO' CS(ENDLAB) ';';
MAXC=0;
LOOP

SCAN 'CASE' <1, NUM/ ','> BRAC:'<';
IF ¬BRAC THEN EXIT; END IF
LOC=GLOBAL(31)+10; GLOBAL(31)=LOC;
FOR I=1 TO NUM(*) DO

CP=CASYM.LOCAL@NUM(I);

Appendix C: General Examples 93

IF CASYM(CP)¬=0 THEN WARN '** CASE LABEL'NUM(I)'USED TWICE';
END IF

CASYM(CP)=LOC;
K=CN(NUM(I)); IF (K>MAXC) THEN MAXC=K; END IF

END FOR
OUTPUT CS(LOC) 'CONTINUE;';
SCAN SGROUP RBRACK;
OUTPUT 'GO TO' CS(ENDLAB+2) ';';

END LOOP

″NOW OUTPUT THE COMPUTED GO TO STATEMENT″

OUTPUT CS(ENDLAB)
″ 'IF('ID'.GT.'CS(MAXC)')GO TO'CS(ENDLAB+1)';' ″ ″CDC″
'GO TO (';

STRING COMMA;
FOR I=1 TO MAXC DO

CP=CASYM.LOCAL.NONEW@CS(I);
IF CP¬=0 THEN

OUTPUT COMMA CS(CASYM(CP));
ELSE

OUTPUT COMMA CS(ENDLAB+1);
WARN ' ** CASE' CS(I) 'NOT REFERENCED **';

END IF
COMMA=',';

END FOR
OUTPUT '),' ID ';' CS(ENDLAB+1) 'CONTINUE;';
SCAN CELSE: 'CASE ELSE<';
IF CELSE THEN

SCAN SGROUP RBRACK;
″ELSE

PUT ERROR MESSAGE AND STOP STATEMENT HERE″
END IF
SCAN RBRACK;
OUTPUT CS(ENDLAB+2) 'CONTINUE;';
DROP CASYM;
END MACRO;

MACRO SYNTAX: DOSTAT
PARMS:<ID '=' START:<ID2:ID.|NUM> ',' FINISH:<ID3:ID.|NUM2:NUM>

(',' STEP:<ID4:ID.|NUM3:NUM>)> '<' ;
SYMBOL LABEL(*,2) ;
K=GLOBAL(32);
IF K=0 THEN

L1=GLOBAL(31)+10; GLOBAL(31)=L1;
ELSE

LABEL(K,2)=1;
L1=LABEL(K,1);
GLOBAL(32)=0;

END IF
LSAVE=GLOBAL(33); GLOBAL(33)=L1;
OUTPUT 'DO' CS(L1+1) PARMS ';';
SCAN SGROUP RBRACK;
OUTPUT CS(L1+1) 'CONTINUE;' CS(L1+2) 'CONTINUE;';
GLOBAL(33)=LSAVE;
END MACRO;

MACRO SYNTAX: LPSTAT
'<' ;
SYMBOL LABEL(*,2) ;
K=GLOBAL(32);
IF K=0 THEN

L1=GLOBAL(31)+10; GLOBAL(31)=L1;
ELSE

LABEL(K,2)=1;
L1=LABEL(K,1);
GLOBAL(32)=0;

END IF

94 STEP Processor

LSAVE=GLOBAL(33); GLOBAL(33)=L1;
OUTPUT CS(L1+1) 'CONTINUE;';
SCAN SGROUP RBRACK;
OUTPUT 'GO TO' CS(L1+1) ';' CS(L1+2) 'CONTINUE;';
GLOBAL(33)=LSAVE;
END MACRO;

MACRO SYNTAX: ULSTAT
'('LOGEXP ')<' ;
SYMBOL LABEL(*,2) ;
K=GLOBAL(32);
IF K=0 THEN

L1=GLOBAL(31)+10; GLOBAL(31)=L1;
ELSE

LABEL(K,2)=1;
L1=LABEL(K,1);
GLOBAL(32)=0;

END IF
LSAVE=GLOBAL(33); GLOBAL(33)=L1;
OUTPUT CS(L1+1) 'IF(' LOGEXP ')GO TO' CS(L1+2) ';' ;
SCAN SGROUP RBRACK;
OUTPUT 'GO TO' CS(L1+1) ';' CS(L1+2) 'CONTINUE;';
GLOBAL(33)=LSAVE;
END MACRO;

MACRO SYNTAX: NEXIT
<A:'NEXT' | B:'EXIT'> (':' BAL ':') ';' ;
SYMBOL LABEL(*,2) ;
IF A THEN J=1; ELSE J=2; END IF
IF BAL THEN

K=LABEL.NONEW@BAL;
IF K=0 THEN GO TO ERROR; END IF
IF LABEL(K,2)¬=1 THEN GO TO ERROR; END IF
OUTPUT 'GO TO' CS(LABEL(K,1)+J) ';';

ELSE
I=GLOBAL(33);
IF I¬=0 THEN

OUTPUT 'GO TO' CS(I+J) ';' ;
ELSE

ERROR: WARN '** STATEMENT' SOURCE 'DELETED**';
END IF

END IF
END MACRO;

MACRO SYNTAX: LABREF
':' BAL ':' ;
SYMBOL LABEL(*,2) ;
K=LABEL@BAL; L1=LABEL(K,1);
IF L1=0 THEN

L1=GLOBAL(31)+10; GLOBAL(31)=L1; LABEL(K,1)=L1;
END IF
ANSWER CS(L1);
END MACRO;

MACRO SYNTAX: GOSTAT
LABREF ';' ;
OUTPUT 'GO TO' LABREF ';';
END MACRO;

MACRO SYNTAX: CLSTAT
ID ('('<1,<ARIEXP|LOGEXP|STCONS> /','> <0, ',&' LABREF> ')') ';' ;
OUTPUT 'CALL' MATCH ;
END MACRO;

Appendix C: General Examples 95

MACRO SYNTAX: OTSTAT
('(' UNIT:<ID|NUM> ')') IOLIST ';' (FMTEXP TERMIN) ;
IF ¬UNIT THEN UNIT='ILU'; END IF
OUTPUT 'WRITE(' UNIT ;
IF FMTEXP THEN

L1=GLOBAL(31)+10; GLOBAL(31)=L1;
OUTPUT ',' CS(L1) ;

END IF
OUTPUT ')' IOLIST ';';
IF FMTEXP THEN

OUTPUT CS(L1) 'FORMAT' FMTEXP ';' ;
END IF
END MACRO;

MACRO SYNTAX: INSTAT
('(' UNIT:<ID|NUM> ')') IOLIST ';' (FMTEXP TERMIN) ;
IF ¬UNIT THEN UNIT='IIU'; END IF
OUTPUT 'READ(' UNIT ;
IF FMTEXP THEN

L1=GLOBAL(31)+10; GLOBAL(31)=L1;
OUTPUT ',' CS(L1) ;

END IF
OUTPUT ')' IOLIST ';';
IF FMTEXP THEN

OUTPUT CS(L1) 'FORMAT' FMTEXP ';' ;
END IF
END MACRO;

MACRO SYNTAX: IOLIST
<0,< REF ¬<'='> | '(' IOLIST ',' ID '='

<NUM|ID> ',' <NUM|ID> (',' <NUM|ID>) ')'>/ ','> ;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: FMTEXP
'(' (<1,'/'>(',')) <0, FMTITM/FCOMSL> ((',')<1,'/'>) ')' ;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: FCOMSL
SL1:<0, '/'> COMMA:(',') SL2:<0, '/'> ;
IF ¬SL1 & ¬SL2 THEN

IF ¬COMMA & GLOBAL(35)=0 THEN FAIL; END IF
ANSWER ',' ;

ELSE
ANSWER SL1.SL2 ;

END IF
END MACRO;

MACRO SYNTAX: FMTITM
(NUM) FMTEXP |
STCONS | N1:NUM 'X' | 'T'*N2:NUM |
(N3:NUM)<'A'*|'R'*|'I'*|'L'*|'Z'*> N4:NUM |
(N5:NUM 'P'*)(N6:NUM) <'D'*|'E'*|'F'*|'G'*> N7:NUM '.' N8:NUM ;
IF STCONS THEN GLOBAL(35)=1; ELSE GLOBAL(35)=0; END IF
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: RUNIT
<ID | NUM> TERMIN ;
OUTPUT 'REWIND' MATCH ;
END MACRO;

MACRO SYNTAX: BUNIT
<ID | NUM> TERMIN ;
OUTPUT 'BACKSPACE' MATCH ;
END MACRO;

96 STEP Processor

MACRO SYNTAX: EUNIT
<ID | NUM> TERMIN ;
OUTPUT 'END FILE' MATCH ;
END MACRO;

MACRO SYNTAX: ERSTAT
'(' (A:<1,'/'>(',')) <1,<STCONS | IOLIST ':' FMTITM> / FCOMSL>

((',') B:<1,'/'>) ');' ;
L1=GLOBAL(31)+10; GLOBAL(31)=L1;
OUTPUT 'WRITE(ILU,' CS(L1) ')';
L=IOLIST(*); RFLAG=0;
FOR I=1 TO L DO

IF IOLIST(I) THEN
IF RFLAG THEN OUTPUT ','; END IF
OUTPUT IOLIST(I) ;
RFLAG=1;

END IF
END FOR
OUTPUT ';' CS(L1) 'FORMAT(' A '11H ERROR**** ,'

STCONS(1) FMTITM(1);
FOR I=2 TO L DO

OUTPUT FCOMSL(I-1) STCONS(I) FMTITM(I) ;
END FOR
OUTPUT B ');';
END MACRO;

MACRO SYNTAX: ENSTAT
ID ('(' ARGLST ')') TERMIN ;
OUTPUT 'ENTRY' MATCH;
END MACRO;

MACRO SYNTAX: RTSTAT
(NUM) TERMIN;
OUTPUT 'RETURN' NUM ';' ;
END MACRO;

MACRO SYNTAX: STOPST
(NUM) TERMIN;
OUTPUT 'STOP' NUM ';' ;
END MACRO;

MACRO SYNTAX: DCWARN
CHAR; RESCAN CHAR;
WARN '** DECLARE STATEMENT OUT OF ORDER **';
END MACRO;

MACRO SYNTAX: ERRORS
¬<'>' | 'END;'> ATOMS ';';
WARN '** STATEMENT -- ' SOURCE ' -- PASSED';
OUTPUT MATCH;
END MACRO;

MACRO SYNTAX: STCONS
STR;
STRING S; S=STR;
L=LENGTH(S)-2;
S=SUBS(S,2,L);
ANSWER CS(L).'H';

LOOP
I=INDEX(S,'''''');
IF I=0 THEN EXIT; END IF;
IF SUBS(S,I+1)='''''' THEN

ANSWER .SUBS(S,1,I);
S=SUBS(S,I+2);

ELSE
ANSWER .SUBS(S,1,I-1).'''''';
S=SUBS(S,I+1);

END IF

Appendix C: General Examples 97

END LOOP
ANSWER .S;
END MACRO;

MACRO SYNTAX: LOGEXP
<1, OREXP / OR >;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: OREXP
<1, ANDEXP / AND >;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: ANDEXP
RELATN | (NOT) LOGIC | '(' LOGEXP ')' | NOT '(' LOGNEG ')' ;
IF ¬LOGNEG THEN

ANSWER MATCH;
ELSE

ANSWER '(' LOGNEG ')' ;
END IF
END MACRO;

MACRO SYNTAX: LOGIC
LOGREF | '.TRUE.' | '.FALSE.' ;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: LOGREF
REF;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: RELATN
(NOT) A:ARIEXP RELOPF B:ARIEXP;
IF NOT THEN

RELOPF=SUBS('.EQ.NE.GT.GE.LT.LE.',
INDEX('.NE.EQ.LE.LT.GE.GT.',RELOPF),4);

END IF
ANSWER A RELOPF B;
END MACRO;

MACRO SYNTAX: RELOPF ″NOTE-TWO TEMPORARY CHANGES IN THIS MACRO ***″
'=' | '¬' | '>=' | '>' | '<=' | '<' ;
ANSWER '.'.SUBS('EQNEGTGELELE',INDEX('= ¬=> >=< <=',MATCH),2).'.';
END MACRO;

MACRO SYNTAX: NOT
'¬' ¬<'='>;
ANSWER '.NOT.';
END MACRO;

MACRO SYNTAX: AND
'&';
ANSWER '.AND.';
END MACRO;

MACRO SYNTAX: OR
'|' ¬<'|'>;
ANSWER '.OR.';
END MACRO;

MACRO SYNTAX: REF
ID ('(' <1,ARIEXP/ ',' > ')') ;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: LOGNEG
<1, ORNEG/NOR>;
ANSWER MATCH;
END MACRO;

98 STEP Processor

MACRO SYNTAX: NOR
OR;
ANSWER '.AND.';
END MACRO;

MACRO SYNTAX: ORNEG
<1, NOTINS ANDEXP / NAND>;
IF (ANDEXP(*)>1) THEN

ANSWER '(' MATCH ')' ;
ELSE

ANSWER MATCH;
END IF
END MACRO;

MACRO SYNTAX: NAND
AND;
ANSWER '.OR.' ;
END MACRO;

MACRO SYNTAX: NOTINS
(NOT) ;
IF ¬NOT THEN RESCAN '¬'; END IF
END MACRO;

MACRO SYNTAX: ARIEXP
('+'|'-') <1, TERM / '+'|'-'>;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: TERM
<1, FACTOR / '*'|'/'>;
ANSWER MATCH;
END MACRO;

MACRO SYNTAX: FACTOR
< REF | FLT | NUM | '(' ARIEXP ')' > ('**' FACTOR);
ANSWER MATCH;
END MACRO;

MACRO TRIGGR:
'$(' EVALU ')';
RESCAN EVALU;
END MACRO;

MACRO SYNTAX: EVALU
('+'| PREFIX:'-')<1, <1, EFACTR/TIMES:'*'|'/'>/

PLUS:'+'|'-'> ;
LIM=EFACTR(*);
FOR II=1 TO LIM DO

ELIM=EFACTR(*,II);
F=CN(EFACTR(1,II));
FOR I=2 TO ELIM DO

FACTOR=CN(EFACTR(I,II));
IF TIMES(I-1,II) THEN

F=F*FACTOR;
ELSE

F=F/FACTOR;
END IF

END FOR
IF II=1 THEN

IF PREFIX THEN F=-F; END IF
SUM=F;

ELSEIF PLUS(II-1) THEN
SUM=SUM+F;

ELSE
SUM=SUM-F;

END IF
END FOR
ANSWER CS(SUM);
END MACRO;

Appendix C: General Examples 99

MACRO SYNTAX: EFACTR
('-') NUM | '(' EVALU ')';
IF NUM THEN ANSWER MATCH;
ELSE ANSWER EVALU; END IF
END MACRO;

100 STEP Processor

