
SOME NOTES ON A DEL BASIS FOR LANGUAGE-ORIENTED OPERATING SYSTEMS

by

Michael J. Flynn

and

Martin Freeman

November 1979

TECHNICAL NOTE NO. 169

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 94305

The work described herein was supported in part by the Army Research Office -
Durham under contract no. DAAG29-78·0205 and by the National Science
Foundation under grant MCS 76-07682.

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 94305

Technical Note Nd. 169

November 1979

SOME NOTES ON A DEL BASIS FOR LANGUAGE-ORIENTED OPERATING SYSTEMS

by

Michael J. Flynn
and

Martin Freeman

ABSTRACT

The concept of a noninterruptable atomic function has been used for describing
operating systems. In this note we suggest certain extensions to this model of
operating systems for use in language directed architectures (called Directly
Executed Languages--DELs). Four categories of functions are defined: absorbed
functions, atomic functions, constructed functions and metalingual functions. A
possible scenario as to the relationship between this functional partitioning and
operating system routines is described.

The work described herei n was supported in part by the Army Research Offi ce -
Durham under contract no. DAAG29-78-0205 and by the National Science Foundation
under grant MCS 76-07682.

LANGUAGE-ORIENTED OPERATING SYSTEMS

Traditional language interpreters supported by conventional operating

systems usually require relatively elaborate interfaces to match the needs

of the interpreter with the services supplied by the operating system. In a

multi-language environment each language interpreter requires a different

interface. The operating system in this case is not di.rect1y integrated

into the language interpreter (Figure la).

In a language-oriented operating system, however, the choice of system

facilities is driven by the given language. In a multi-language environment,

the operating system must be flexible enough to provide support for many

different language features. For instance, a Fortran-like language would

probably make little demand of the operating system, perhaps only as far as

I/O operations are concerned; whereas a language like Concurrent Pascal would

probably be more demanding--e.g. support of concurrent processes. In any case,

the facilities required by each language must be taken into consideration

in designing the operating system.

We believe that there are a set of concepts, structures and mechanisms that

are conmon to higher-level languages, and that these elements can be em-

bodied in an operating system which directly supports the (concurrent) opera

tion of different language interpreters [lJ (Figure 1b).

1

A primary concept in developing such a system is that of an atomic function (or

action) [1,2,3J---a non-interruptable process providing support for language primitives.·

For example, the language primitive WRITE in Fortran might have as one of its

associated atomic functions the initiation of a channel commando Such lan-

guage primitives can be realized with sequences of atomic functions; interrupts

OS

(a) Matching Needs to as

Figure 1

being serviced at atomic boundaries.

I Interpreter I· · .. I Interpreter

J~ I"
W ~,

OS

(b) as Support Influenced by
Interpreter Needs

In designing and creating atomic functions it is desirable to achieve

as sizable an execution time as is possible in order to minimize the relative

significance of entry and exit overhead during interpretation. However,

peripheral device characteristics require that interrupts must be serviced

by a specified time after their occurrence or information will be lost as

well as, perhaps, opportunities for faster operation. Thus atomic functions

should be selected so that their execution times fit within a fixed time~nvelope.

A system structured by this approach has several advantages including

(1) a more transparent system design (e.g. providing direct support for lan

guage primitives), (2) the opportunity for efficient operation by minimizing

the number of objects interpreted, and (3) the natural protection mechanisms

inherent in an interpretive approach.

2

DIRECTLY EXECUTED LANGUAGES

Program forms or representations can be created which closely correspond

to particular high-level languages. Such forms are called high-level language

machines or in our terminology Directly Executed Languages [4,5J. These are

intermediate representations of original high-level language programs which are

particularly suited for interpretation by a host machine under an interpretive

program control. The DEL representation is an intermediate form of the program,

it is not the high-level language itself; the DEL is directed at representing HLL

objects rather than host objects, however. Thus, A * B + C appears as one DEL

instruction, *, and object names A, B, and C are coded with respect to their

environment (scope each as a single object),

e • g • cons ide r: A * B + C + D

LD X=O A * A B

* X=Q B + C D

+ X=O C (b) DEL code

STO X=O D

(a) Traditional Single Accumulator Representation (X=O means index unused}

Since each higher-level language has its own representation and interpreter, both

operations and operands are interpreted as defined by the higher-level languageo

The instruction vocabulary is exactly the same as the HLL actions. The data

types available (interpretive) again correspond to those defined in the HLL.

Careful DEL design will avoid the introduction of any object not present in the

HLL representation; i.e. no temporaries, etc. In the above, a powerful format

set associated with the OPS (operation) allow the result of the * to be

a source of the + operation. However the DEL is not the HLL values

either are or can be readily bound to operand names. Coding of objects is

not mnemonic; rather it is very concise. Object container sizes can be

3

restricted to 1092 of the number of such objects in the HLL scope of defini

tion--usually a significant savings over host oriented identifiers. Notice

in the above example the traditional machine includes an index field with

each instruction identifier, even though in this particular example it

is not used. The DEL identifier on the other hand should be regarded as

a concise pointer to a more detailed data descriptor of the object to be used.

Experience with the DELs for FORTRAN show static size improvement of

5 to 1 in required representation space and about 4:1 improvement over the

number of instructions to be interpreted when compared with traditional host'

oriented instruction sets [5].

A simple DEL implementation model is shown in Figure 2. The DEL

program representation lies in image store (main memory) while the interpreter

and the interpreter parameters lie in a special high speed interpretive

storage (corresponding to areadjwrite microprogram store)o The host is

unbiased with respect to any image instruction set--i .e. it is a special

purpose machine designed for high speed interpretation.

The resulting arrangement is sometimes called soft architecture. The

representa~on to be interpreted depends completely upon the interpreter.

Non-dedicated host machines (not dedicated to any particular image) incur

some overhead due to their inherent flexibility. However, this is more than

compensated for by the smaller number of objects required to be interpreted

in a DEL program representation. Moreover, specially dedicated host machines

could be defined which would more closely correspond to a particular HLL and

its environment, avoiding in this case even this interpretation overhead.

4

An operating system itself, of course, is an interpreter. It falls naturally

into the DEL model. However, the types of associated functions and their use

in an operating system require careful consideration of whether particular

r

ALU

Figure 2. DEL Storage Assignments

operating system actions should be regarded as belonging to the image program

representation or to the interpreter itself. This partitioning is of primary

importance in the remainder of our discussion.

RELATIONSHIP OF HIGHER-LEVEL LANGUAGES AND OPERATING SYSTEMS

An opportunity exists with a DEL structure based upon atomic functions for

a unification of the concepts in higher-level language design arid operating

~ystem construction. Clearly there exists a DEL for any given higher-level

language, and this DEL sits at the interface between the user and the hardware.

There can also be a DEL for the operating system which sits at the interface of

the language interpreter and the operating system support. This DEL would

consist of the atomic functions.

atomic
function

OS (DEL)

1
Switch

atomic
function

Figure 3. Logical Realization of an as DEL

atomic
function

6

. At this lower level, there could be a switching mechanism which sequen

ces through the atomic functions associated with a given request from a

language primitive. In a sense, the switch is a form of logical control

unit and the atomic functions are a form of logical functional units ·~(see'

Figure 3). This switch may be realized in many ways. It could take the same

form as the control for the higher-level language DEL (e.g. dynamic contour)

or could take the form of the Supervisor detailed in [6].

Protection

The protection of users and programs is natural in this type of system.

As an example, let us assume that the interpretive system is realized in

two level s:

1) the language interpreter level (level 2)
2) the as support level (level 1)

Protection of the address space and procedures of the language is

easily imbedded in the language interpreter. In fact, a great deal of

protection is afforded in most higher-level languages by the unavailability

of the use of the idea of a storage addresso A microprogrammable host

machine makes it possible for the implementation of protection mechanisms

to be efficient.

Protection is also possible tn the interface between level 2 and level

1. System support functions can be addressed by capabilities [7J. A capability

is a special kind of address for a virtual object that can only be created

by the system. In order to use the object the capability provides accessing

information. Of course the advantage of a capability scheme is that access

to a system facility can be checked without actually handling the system

object----i .e. checking can be accomplished entirely at level 2.

7

8

Atomic Functions

In the traditional view of architecture, the instruction set is the interface

between user programs and the system resources. The instructions are low-level

operations interpreted by a control unit activating system resources~ These

res·ources--f1ip-flops, register, memory locations, etc.-- are assumed to always

be immediately available and modifiable.

In designing atomic functions for the higher-level instruction set of an

operating system, we take a different view since the resources managed are more

complex. There are two possible partial characterizations of atomic functions

based upon resource allocation:

(1) those requiring explicit resource allocation, and

(2) those requiring implicit resource allocation.

Type (1) implies that there are atomic functions to allocate system resources

as well as to trans fer objects from one storage medi um to another. For example,

the code for an atomic function search may be in micro-storage ready for

execution but missing needed resources. The search function determines whether

an item is a member of a portion of a file. Before we can execute this function

we must execute:

(a) allocate (main memory)

(b) transfer (from disk memory to main memory).

Type (2) implies that the system itself provides resources for the associated

atomic function before execution, thus obviating the need for explicit allocate

and transfer atoms.

The advantage of type (1) functions is that the user has explicit access

to system resources and can program more complex function sequences. However,

if one considers the allocation of system resources as overhead, then making

resource allocation Bxplicitimplies that there will be some added system

overhead in executing the (overhead) atomic functions (e.g. allocate and

transfer). \~hile flexibil ity is diminished in type (2) functions, system

operation is more efficient----fewer atomic functions are required. Type (2)

functions are discussed fully in [6]. We will confine our discussion to

type (1) functions however, to allow language interpreters access to the

resource allocation mechanisms of the operating system.

Terminology

In the instruction set for a "well mapped" machine organization, in

structions are indivisible---i.e. they are non-interruptable and run to

completion. Furthermore, instruction sequencing is usually simple---in most

cases the next instruction follows in order with a usual limit of three

next instructions.

A DEL instruction, on the other hand, is a specification for a higher

level operation. This operation might handle more substantial resources

then registers, flip-flops, etc.---e.g. a block of memory instead of a

single memory location. Instead of simple branch instructions, CASE type

and computed GOTO type operations are possible. Language primitives such as

IF and DO are also possible. The increased semantic content gives rise to

a set of common atomic functions---the absorbed functions---that can be a

part of the realization of language primitives. An example of such a function

would be one which maps a logical address into a physical address. This is

especially useful in the case where the logical address is an index into the

dynamic contour. Another case of an absorbed function might be dynamic

storage allocation for an Algol-like language. The implication here is that

the storage resources of the underlying operating system are not necessarily

used dynamically but that initially the Algol interpreter is assigned a

portion of storage from the operating system. From then on th~ interpreter

9

manages this storage. Here we are trading storage efficiency for independence

(and indirectly speed).

To support a higher-level language interpreter an underlying operating

system must be constructed. We feel that a single-layered operating system

;s not able to efficiently support the multi-lingual, interpretively-oriented

situation. We propose a new multi-level model of operating system support in

which levels are associated with interpretive functional parameters. We

believe that the most variable aspects of an operating system are those most.

closely related with linguistic operatins and semanticso We therefore propose

a four-layered functional hierarchy (see Figure 4):

(1) Absorbed functions

(2) Constituent atoms

(3) Constructed OS functions

(4) Meta-lingual functions.

10

Unlike absorbed functions, constituent atoms are not a part of a particular

language interpreter. They are the atomic functions which provide the essential

resources of the operating system to the language intepretero These services

are provided in response to exception conditions and direct calls upon the

underlying operating system.

An exception handler can be constructed as a constituent atom. Typical

handl ers i nC~iude ones for page faul ts, memory protect; on vi 01 a ti ons, ar; thmet; c

exceptions (e.g. overflow), access rights violations, etc.

Certain language primitives cannot be represented as instructions to be

handled by the specific language interpreter, they call for services that an

operating system must provide. These services should be common to all language

interpreters---providing I/O operations, resource allocation, etc.

11

Constructed as functions are higher-level primitives composed of constituent

atoms. The PRINT command in a language can be a constructed function of

constituent atoms which realize the printing operating. Constructed functions

are interruptable between constituent atoms.

Meta-lingual functions are instructions that surround a userts program in

a batch environment and are commands typed at terminals in a timesharing

environment. Typical examples include LIST(file, LOAD(file), (see Figure 5).

Meta-lingual functions are composed of constructed as functions and constituent

as atoms.

It is in the meta-lingual functional definition that the as designer first

becomes the language designer. Conciseness, straight-forwardness and usefulness

of representation are hallmarks of successful meta-lingual command design. Even

at this level, however, flexibility is possible so that meta-lingual functions

(commands) may have alterable definitions depending upon the environment.

Figure 6 shows the levels of as function assignment in an interpretive

processor. The absorbed functions naturally lie within the language interpreter

itself. The routines for commonly used constituent atoms also reside in the

interpretive storage, while constructed as functions written in terms of constituent

,atoms and requiring a dual level of interpretation may lie in either the

interpretive storage or in the image storage. Meta-lingual functions,which

will surely consist of special constituent atomes as well as constructed functions,

res; de outs i de program storage unti 1 requi red.

To place in prespect;ve the ideas just presented, let us consider a typical

situation where these ideas may be employed. Consider an Algol-based system

about to execute a user routine (written in Algol) involveing I/O operations

via the meta-lingual function EXECUTE (routine). Let us view the overhead

functions that must come into play for it to start executing. Table la shows

the steps involved prior to execution. These steps are not necessarily in

order. Table lb, on the other hand, categorizes events occurring during the

execution of the routine according to the type of atomic function,called upon

to deal with the events.

CONCLUSIONS

The atomic model of operating system processes ;s a useful means of

incorporating directly executed languages into operating systems requirements.

The model recognizes that either the semantics of a lingual action (language

primitive) or the maximum time for interrupt exclusion will limit functional

definitions and hences form a uniform basis for partitioning functions. The

12

model, while attractive, cannot be accessed as to value until several implementations

are realized. This note describes the conceptual framework preliminary to

actual implementations.

(1) Absorbed Functions: as functions that are short enough to fit
within the interpretation of a language primitive

E.G. Language Primitive: MOVE A , B

o.S. Absorbed Functions: Relt2;t!
~

Excepti on (Protecti on
~ T

Atomic
Interpretati On

Excepti on ~<-- Capabi 1 i ty Check

Except; on < Memorr ~1app; ng

Language Primitive
Interpreti ve

ALB
MOVE

~
END

(2) Constituent OS atoms: as functions that lie outside the language
primitives, yet can be interpreted within atomic time requirements.
E.G. Capability Exception

Page Fault Handler
1/0 Buffer Allocation

13

(3) Constructed Functions: Language primitives which cannot be interpreted in
atomic time requirements
E.G. Read

Write

(4) Meta Lingual Functions: Constructed functions-that are system primitives
and that lie outside any single language.

Figure 4. O.S. Interpretive Hierarchy

FUNCTION

CLOSE

COpy
CREATE

DELETE

RUN

LIST
LOAD
~1ERGE

OPEN

META LINGUAL FUNCTIONS

PI\r<A~1ETEHS

<FILE>

(DESTI NAT ION F I LE')(SOURCE FILE>

<FI LEI

<FILE>

(CODE F I LEXI NPUT F I LE)<DlJTPUT FILE)

<FILE)

<FILE>

(FILE I») (FILE 2)

<FILE) J <ACCESS>

SEMANTI CS .

RESIDENT PORTIONS OF FILE RELEASED FROM
MAIN MEMORY ALONG WITH ASSOCIATED SYSTEM
INFORMt\TION.

COpy (SOURCE F I Lt) & CALL IT <0·1 ST I NAT ION FILE).

ALLOCATE APPROPRIATE SECONDARY STORAGE FOR
(FILE) AND MAKE SYSTEM ENTRIES FOR·<FILE).

DELETE (FILE) FROM THE CURRENT DIRECTORY OF
FILES.

RUN THE PROGRAM IN <CODE FILE> WITH INPUT FROM
(INPUT FILE) AND OUTPUT TO (OUTPUT FILE). .

LIST THE CqNTENTS OF <FILE).

BRING <FILE) INTO MAIN MEMORY.

<FILE 1> AND (FILE 2> ARE APPENDED TOGETHER
AND BECOME THE NEW <FILE 1).

IF <ACCESS) TYPE IS PROPER J OBTAIN PHYSICAL
ADDRESS OF <FILE) AND CONDITION MAIN MEMORY
FOR <FILE> ACCESS.

Figure 5

TRADITIONAL VIEW

META-LINGUAL
. LEVEL

LANGUAGE OR I ENTED V I Eltl

LAYERS OF INTERPRETATION IN AN OPERATING SYSTE~1

Figure 6a

15

r-
"I

t
j IN
l

I
I
I

. 1
I

!
l OS
1

INTERPRETER STORAGE
<t1 '~) I eRO 1 Er·10RY

LANGUAGE
(,

TERPRETER J

j.
& I

I

ABSORBED I CONSTITUENT

FUNCTIONS : as ATOMS
I

.';PADED AS

Ir1AGE STORAGE

(f1A IN [/1EMORY)

META LINGUAL IMAGE
t INTERPRETER PROGRAM
I NO. 1

l

• • ..
~ - I .

REQUI RED I I I INTERPRETER

I i FOR ,. ..
No.2 1

.1~- f< I NTERPRETE,R) i· f HLL NO. 1
I

STORAGE ASSIGNMENTS

Figure 6b

16

1

EXAMPLE:

Given a routine wrinteA in ALGOL involving I/O which is located on

secondary storage in object code form, what overhead functions must come

into play for the routine to start executing.

EXECUTE Routine

Steps Involved Prior to Execution Semantics

Find (Meta Lingual) Determine address of routine on
secondary store

Bring (Meta Lingual) Transfer code to image store

Migrate (Constituent Atoms) Transfer required constituent atoms
to microstore

17

Setup (Constituent Atoms) Initialize buffer allocation, type of
buffering, etc.

Initiate (Meta Lingual) Start program running

Table la

Events During Execution

Allocation of I/O Buffers

Elements Handling These Events

Constituent atom

Traps (overflow, memory protect, etc) Absorbed function

Termination

READ or WRITE language primitive

Page Fault

Dynamic Memory Allocation in Routine

Resumption from I/O wait

Table lb

Constructed as function

Constituent atom

Absorbed function

Constituent atom

18

REFERENCES

1 • Freeman, M., Jacobs, W. W., and Levy, L. S. "On the Cons tructi on of
Interactive Systems," Proceedings of the 1978 National Computer Conference,
June 1978, pp. 555-562.

2. Jacobs, W. W., "Contro1 Systems in Robots,!' Proceedings of the ACM 25th
Anniversary Conference, Vol. 1,1972, pp. 110-117.

3. Lomet, D. B. "Process Structuring, Synchronization and Recovery Using
Atomic Actions," Proceedings of ACM Conference on Languague Design for
Reliable Software, SIGPLAN Notices 12, 3 March 1977, pp. 128-137.

4. Flynn, M. J., liThe Interpreti ve Interface: Resources and Program Representaton
in Computer Organization,1I Proceedin s of the S m osium on Hi h Seed Com uters
and Algorithms, April 1977, D Kuck, et a1, Ed. cademic Press Pub ••

5. Flynn, M. J., "Computer Organizational Architecture," Operating Systems,
(Bayer, et. al., Edo) No. 60 in Lecture Notes in Computer Science, Springer
Verlag, 1978, pp. 18-98.

6. Freeman, Martin, Jacobs, W. W., and Levy, L. S., IIA Model -for the Construction
of Operating Systems,1I Proceedings of the 1978 Johns Hopkins Conference on
Information Sciences. and· Systems, April 1978.

7. Dennis, J. and van Horn, E., ItProgra-nmi;ing Semantics for Mu1tiprogrammed
Computations," CACM ~,3 (March 1966), pp. 143-155.

