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ABSTRACT 

The concept of a noninterruptable atomic function has been used for describing 
operating systems. In this note we suggest certain extensions to this model of 
operating systems for use in language directed architectures (called Directly 
Executed Languages--DELs). Four categories of functions are defined: absorbed 
functions, atomic functions, constructed functions and metalingual functions. A 
possible scenario as to the relationship between this functional partitioning and 
operating system routines is described. 
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LANGUAGE-ORIENTED OPERATING SYSTEMS 

Traditional language interpreters supported by conventional operating 

systems usually require relatively elaborate interfaces to match the needs 

of the interpreter with the services supplied by the operating system. In a 

multi-language environment each language interpreter requires a different 

interface. The operating system in this case is not di.rect1y integrated 

into the language interpreter (Figure la). 

In a language-oriented operating system, however, the choice of system 

facilities is driven by the given language. In a multi-language environment, 

the operating system must be flexible enough to provide support for many 

different language features. For instance, a Fortran-like language would 

probably make little demand of the operating system, perhaps only as far as 

I/O operations are concerned; whereas a language like Concurrent Pascal would 

probably be more demanding--e.g. support of concurrent processes. In any case, 

the facilities required by each language must be taken into consideration 

in designing the operating system. 

We believe that there are a set of concepts, structures and mechanisms that 

are conmon to higher-level languages, and that these elements can be em-

bodied in an operating system which directly supports the (concurrent) opera

tion of different language interpreters [lJ (Figure 1b). 
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A primary concept in developing such a system is that of an atomic function (or 

action) [1,2,3J---a non-interruptable process providing support for language primitives.· 

For example, the language primitive WRITE in Fortran might have as one of its 

associated atomic functions the initiation of a channel commando Such lan-

guage primitives can be realized with sequences of atomic functions; interrupts 
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In designing and creating atomic functions it is desirable to achieve 

as sizable an execution time as is possible in order to minimize the relative 

significance of entry and exit overhead during interpretation. However, 

peripheral device characteristics require that interrupts must be serviced 

by a specified time after their occurrence or information will be lost as 

well as, perhaps, opportunities for faster operation. Thus atomic functions 

should be selected so that their execution times fit within a fixed time~nvelope. 

A system structured by this approach has several advantages including 

(1) a more transparent system design (e.g. providing direct support for lan

guage primitives), (2) the opportunity for efficient operation by minimizing 

the number of objects interpreted, and (3) the natural protection mechanisms 

inherent in an interpretive approach. 

2 



DIRECTLY EXECUTED LANGUAGES 

Program forms or representations can be created which closely correspond 

to particular high-level languages. Such forms are called high-level language 

machines or in our terminology Directly Executed Languages [4,5J. These are 

intermediate representations of original high-level language programs which are 

particularly suited for interpretation by a host machine under an interpretive 

program control. The DEL representation is an intermediate form of the program, 

it is not the high-level language itself; the DEL is directed at representing HLL 

objects rather than host objects, however. Thus, A * B + C appears as one DEL 

instruction, *, and object names A, B, and C are coded with respect to their 

environment (scope each as a single object), 

e • g • cons ide r: A * B + C + D 

LD X=O A * A B 

* X=Q B + C D 

+ X=O C (b) DEL code 

STO X=O D 

(a) Traditional Single Accumulator Representation (X=O means index unused} 

Since each higher-level language has its own representation and interpreter, both 

operations and operands are interpreted as defined by the higher-level languageo 

The instruction vocabulary is exactly the same as the HLL actions. The data 

types available (interpretive) again correspond to those defined in the HLL. 

Careful DEL design will avoid the introduction of any object not present in the 

HLL representation; i.e. no temporaries, etc. In the above, a powerful format 

set associated with the OPS (operation) allow the result of the * to be 

a source of the + operation. However the DEL is not the HLL values 

either are or can be readily bound to operand names. Coding of objects is 

not mnemonic; rather it is very concise. Object container sizes can be 
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restricted to 1092 of the number of such objects in the HLL scope of defini

tion--usually a significant savings over host oriented identifiers. Notice 

in the above example the traditional machine includes an index field with 

each instruction identifier, even though in this particular example it 

is not used. The DEL identifier on the other hand should be regarded as 

a concise pointer to a more detailed data descriptor of the object to be used. 

Experience with the DELs for FORTRAN show static size improvement of 

5 to 1 in required representation space and about 4:1 improvement over the 

number of instructions to be interpreted when compared with traditional host' 

oriented instruction sets [5]. 

A simple DEL implementation model is shown in Figure 2. The DEL 

program representation lies in image store (main memory) while the interpreter 

and the interpreter parameters lie in a special high speed interpretive 

storage (corresponding to areadjwrite microprogram store)o The host is 

unbiased with respect to any image instruction set--i .e. it is a special 

purpose machine designed for high speed interpretation. 

The resulting arrangement is sometimes called soft architecture. The 

representa~on to be interpreted depends completely upon the interpreter. 

Non-dedicated host machines (not dedicated to any particular image) incur 

some overhead due to their inherent flexibility. However, this is more than 

compensated for by the smaller number of objects required to be interpreted 

in a DEL program representation. Moreover, specially dedicated host machines 

could be defined which would more closely correspond to a particular HLL and 

its environment, avoiding in this case even this interpretation overhead. 
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An operating system itself, of course, is an interpreter. It falls naturally 

into the DEL model. However, the types of associated functions and their use 

in an operating system require careful consideration of whether particular 
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operating system actions should be regarded as belonging to the image program 

representation or to the interpreter itself. This partitioning is of primary 

importance in the remainder of our discussion. 

RELATIONSHIP OF HIGHER-LEVEL LANGUAGES AND OPERATING SYSTEMS 

An opportunity exists with a DEL structure based upon atomic functions for 

a unification of the concepts in higher-level language design arid operating 

~ystem construction. Clearly there exists a DEL for any given higher-level 

language, and this DEL sits at the interface between the user and the hardware. 

There can also be a DEL for the operating system which sits at the interface of 

the language interpreter and the operating system support. This DEL would 

consist of the atomic functions. 

atomic 
function 

OS (DEL) 

1 
Switch 

atomic 
function 

Figure 3. Logical Realization of an as DEL 

atomic 
function 
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. At this lower level, there could be a switching mechanism which sequen

ces through the atomic functions associated with a given request from a 

language primitive. In a sense, the switch is a form of logical control 

unit and the atomic functions are a form of logical functional units ·~(see' 

Figure 3). This switch may be realized in many ways. It could take the same 

form as the control for the higher-level language DEL (e.g. dynamic contour) 

or could take the form of the Supervisor detailed in [6]. 

Protection 

The protection of users and programs is natural in this type of system. 

As an example, let us assume that the interpretive system is realized in 

two level s: 

1) the language interpreter level (level 2) 
2) the as support level (level 1) 

Protection of the address space and procedures of the language is 

easily imbedded in the language interpreter. In fact, a great deal of 

protection is afforded in most higher-level languages by the unavailability 

of the use of the idea of a storage addresso A microprogrammable host 

machine makes it possible for the implementation of protection mechanisms 

to be efficient. 

Protection is also possible tn the interface between level 2 and level 

1. System support functions can be addressed by capabilities [7J. A capability 

is a special kind of address for a virtual object that can only be created 

by the system. In order to use the object the capability provides accessing 

information. Of course the advantage of a capability scheme is that access 

to a system facility can be checked without actually handling the system 

object----i .e. checking can be accomplished entirely at level 2. 

7 
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Atomic Functions 

In the traditional view of architecture, the instruction set is the interface 

between user programs and the system resources. The instructions are low-level 

operations interpreted by a control unit activating system resources~ These 

res·ources--f1ip-flops, register, memory locations, etc.-- are assumed to always 

be immediately available and modifiable. 

In designing atomic functions for the higher-level instruction set of an 

operating system, we take a different view since the resources managed are more 

complex. There are two possible partial characterizations of atomic functions 

based upon resource allocation: 

(1) those requiring explicit resource allocation, and 

(2) those requiring implicit resource allocation. 

Type (1) implies that there are atomic functions to allocate system resources 

as well as to trans fer objects from one storage medi um to another. For example, 

the code for an atomic function search may be in micro-storage ready for 

execution but missing needed resources. The search function determines whether 

an item is a member of a portion of a file. Before we can execute this function 

we must execute: 

(a) allocate (main memory) 

(b) transfer (from disk memory to main memory). 

Type (2) implies that the system itself provides resources for the associated 

atomic function before execution, thus obviating the need for explicit allocate 

and transfer atoms. 

The advantage of type (1) functions is that the user has explicit access 

to system resources and can program more complex function sequences. However, 

if one considers the allocation of system resources as overhead, then making 

resource allocation Bxplicitimplies that there will be some added system 

overhead in executing the (overhead) atomic functions (e.g. allocate and 



transfer). \~hile flexibil ity is diminished in type (2) functions, system 

operation is more efficient----fewer atomic functions are required. Type (2) 

functions are discussed fully in [6]. We will confine our discussion to 

type (1) functions however, to allow language interpreters access to the 

resource allocation mechanisms of the operating system. 

Terminology 

In the instruction set for a "well mapped" machine organization, in

structions are indivisible---i.e. they are non-interruptable and run to 

completion. Furthermore, instruction sequencing is usually simple---in most 

cases the next instruction follows in order with a usual limit of three 

next instructions. 

A DEL instruction, on the other hand, is a specification for a higher

level operation. This operation might handle more substantial resources 

then registers, flip-flops, etc.---e.g. a block of memory instead of a 

single memory location. Instead of simple branch instructions, CASE type 

and computed GOTO type operations are possible. Language primitives such as 

IF and DO are also possible. The increased semantic content gives rise to 

a set of common atomic functions---the absorbed functions---that can be a 

part of the realization of language primitives. An example of such a function 

would be one which maps a logical address into a physical address. This is 

especially useful in the case where the logical address is an index into the 

dynamic contour. Another case of an absorbed function might be dynamic 

storage allocation for an Algol-like language. The implication here is that 

the storage resources of the underlying operating system are not necessarily 

used dynamically but that initially the Algol interpreter is assigned a 

portion of storage from the operating system. From then on th~ interpreter 
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manages this storage. Here we are trading storage efficiency for independence 

(and indirectly speed). 

To support a higher-level language interpreter an underlying operating 

system must be constructed. We feel that a single-layered operating system 

;s not able to efficiently support the multi-lingual, interpretively-oriented 

situation. We propose a new multi-level model of operating system support in 

which levels are associated with interpretive functional parameters. We 

believe that the most variable aspects of an operating system are those most. 

closely related with linguistic operatins and semanticso We therefore propose 

a four-layered functional hierarchy (see Figure 4): 

(1) Absorbed functions 

(2) Constituent atoms 

(3) Constructed OS functions 

(4) Meta-lingual functions. 
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Unlike absorbed functions, constituent atoms are not a part of a particular 

language interpreter. They are the atomic functions which provide the essential 

resources of the operating system to the language intepretero These services 

are provided in response to exception conditions and direct calls upon the 

underlying operating system. 

An exception handler can be constructed as a constituent atom. Typical 

handl ers i nC~iude ones for page faul ts, memory protect; on vi 01 a ti ons, ar; thmet; c 

exceptions (e.g. overflow), access rights violations, etc. 

Certain language primitives cannot be represented as instructions to be 

handled by the specific language interpreter, they call for services that an 

operating system must provide. These services should be common to all language 

interpreters---providing I/O operations, resource allocation, etc. 
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Constructed as functions are higher-level primitives composed of constituent 

atoms. The PRINT command in a language can be a constructed function of 

constituent atoms which realize the printing operating. Constructed functions 

are interruptable between constituent atoms. 

Meta-lingual functions are instructions that surround a userts program in 

a batch environment and are commands typed at terminals in a timesharing 

environment. Typical examples include LIST(file, LOAD(file), (see Figure 5). 

Meta-lingual functions are composed of constructed as functions and constituent 

as atoms. 

It is in the meta-lingual functional definition that the as designer first 

becomes the language designer. Conciseness, straight-forwardness and usefulness 

of representation are hallmarks of successful meta-lingual command design. Even 

at this level, however, flexibility is possible so that meta-lingual functions 

(commands) may have alterable definitions depending upon the environment. 

Figure 6 shows the levels of as function assignment in an interpretive 

processor. The absorbed functions naturally lie within the language interpreter 

itself. The routines for commonly used constituent atoms also reside in the 

interpretive storage, while constructed as functions written in terms of constituent 

,atoms and requiring a dual level of interpretation may lie in either the 

interpretive storage or in the image storage. Meta-lingual functions,which 

will surely consist of special constituent atomes as well as constructed functions, 

res; de outs i de program storage unti 1 requi red. 

To place in prespect;ve the ideas just presented, let us consider a typical 

situation where these ideas may be employed. Consider an Algol-based system 

about to execute a user routine (written in Algol) involveing I/O operations 

via the meta-lingual function EXECUTE (routine). Let us view the overhead 

functions that must come into play for it to start executing. Table la shows 



the steps involved prior to execution. These steps are not necessarily in 

order. Table lb, on the other hand, categorizes events occurring during the 

execution of the routine according to the type of atomic function,called upon 

to deal with the events. 

CONCLUSIONS 

The atomic model of operating system processes ;s a useful means of 

incorporating directly executed languages into operating systems requirements. 

The model recognizes that either the semantics of a lingual action (language 

primitive) or the maximum time for interrupt exclusion will limit functional 

definitions and hences form a uniform basis for partitioning functions. The 
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model, while attractive, cannot be accessed as to value until several implementations 

are realized. This note describes the conceptual framework preliminary to 

actual implementations. 



(1) Absorbed Functions: as functions that are short enough to fit 
within the interpretation of a language primitive 

E.G. Language Primitive: MOVE A , B 

o.S. Absorbed Functions: Relt2;t! 
~ 

Excepti on ( Protecti on 
~ T 

Atomic 
Interpretati On 

Excepti on ~<-- Capabi 1 i ty Check 

Except; on < Memorr ~1app; ng 

Language Primitive 
Interpreti ve 

ALB 
MOVE 

~ 
END 

(2) Constituent OS atoms: as functions that lie outside the language 
primitives, yet can be interpreted within atomic time requirements. 
E.G. Capability Exception 

Page Fault Handler 
1/0 Buffer Allocation 
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(3) Constructed Functions: Language primitives which cannot be interpreted in 
atomic time requirements 
E.G. Read 

Write 

(4) Meta Lingual Functions: Constructed functions-that are system primitives 
and that lie outside any single language. 

Figure 4. O.S. Interpretive Hierarchy 



FUNCTION 

CLOSE 

COpy 
CREATE 

DELETE 

RUN 

LIST 
LOAD 
~1ERGE 

OPEN 

META LINGUAL FUNCTIONS 

PI\r<A~1ETEHS 

<FILE> 

(DESTI NAT ION F I LE')(SOURCE FILE> 

<FI LEI 

<FILE> 

(CODE F I LEXI NPUT F I LE)<DlJTPUT FILE) 

<FILE) 

<FILE> 

(FILE I») (FILE 2) 

<FILE) J <ACCESS> 

SEMANTI CS . 

RESIDENT PORTIONS OF FILE RELEASED FROM 
MAIN MEMORY ALONG WITH ASSOCIATED SYSTEM 
INFORMt\TION. 

COpy (SOURCE F I Lt) & CALL IT <0·1 ST I NAT ION FILE). 

ALLOCATE APPROPRIATE SECONDARY STORAGE FOR 
(FILE) AND MAKE SYSTEM ENTRIES FOR·<FILE). 

DELETE (FILE) FROM THE CURRENT DIRECTORY OF 
FILES. 

RUN THE PROGRAM IN <CODE FILE> WITH INPUT FROM 
(INPUT FILE) AND OUTPUT TO (OUTPUT FILE). . 

LIST THE CqNTENTS OF <FILE). 

BRING <FILE) INTO MAIN MEMORY. 

<FILE 1> AND (FILE 2> ARE APPENDED TOGETHER 
AND BECOME THE NEW <FILE 1). 

IF <ACCESS) TYPE IS PROPER J OBTAIN PHYSICAL 
ADDRESS OF <FILE) AND CONDITION MAIN MEMORY 
FOR <FILE> ACCESS. 

Figure 5 



TRADITIONAL VIEW 

META-LINGUAL 
. LEVEL 

LANGUAGE OR I ENTED V I Eltl 

LAYERS OF INTERPRETATION IN AN OPERATING SYSTE~1 

Figure 6a 
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EXAMPLE: 

Given a routine wrinteA in ALGOL involving I/O which is located on 

secondary storage in object code form, what overhead functions must come 

into play for the routine to start executing. 

EXECUTE Routine 

Steps Involved Prior to Execution Semantics 

Find (Meta Lingual) Determine address of routine on 
secondary store 

Bring (Meta Lingual) Transfer code to image store 

Migrate (Constituent Atoms) Transfer required constituent atoms 
to microstore 

17 

Setup (Constituent Atoms) Initialize buffer allocation, type of 
buffering, etc. 

Initiate (Meta Lingual) Start program running 

Table la 

Events During Execution 

Allocation of I/O Buffers 

Elements Handling These Events 

Constituent atom 

Traps (overflow, memory protect, etc) Absorbed function 

Termination 

READ or WRITE language primitive 

Page Fault 

Dynamic Memory Allocation in Routine 

Resumption from I/O wait 

Table lb 

Constructed as function 

Constituent atom 

Absorbed function 

Constituent atom 
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