
A VIRTUAL INPUT/OUTPUT SYSTEM FOR THE STANFORD EMMY
V-ACCESS

by

Jerry Huck

Technical Note No. 144

September 1978
Rev ised May 1979

Computer Systems Laboratory

Departments of Electrical Engineerin~ and Computer <)c ience

Stanford University

Stanford, California 94305

SU-326-P.39-33

T:1e work described herein was supported in part by the Department
of Energy under Contract EY-76-S-03-0326-PA 39.

Computer Systems Labor~tory
Departments of Electrical Engineering and Computer Sciences

Stanford University
Stanford, CA 94306

Technical Note No. 144

September 1978
Rev ised May 1979

A. VIRTUAL INPUT /QUTPUT SYSTSM FOR THE ST,\NFORD EMMY
V-ACCESS

by

Jerry Huck

ABSTRACT

SU-326-P.39-33

This report describes the system of virtual I/O support for
the Stanford Emmy. A PDP11/05 controls a pool of peripherals,
and communicates wi th the Emmy processor through a pair of mail­
boxes. By issuing appropriate requests practically any peri­
pheral can be emulated. Performance for single byte requests
exceed 1000 bytes/ sec.

The 'vork described herein \iaS supported in part by the Department
of Energy under contract EY-76-S-03-0326-PA 39.

Table of Contents

Introduction. ' ... 1

2 Mailbox protocols ••• 2

3 Files and Virtual Devices ••••••••••••••••••••••••••••••••••• 5

4 Mailbox Requests and the pmail procedure •••••••••••••••••••• 7

4. 1

4.2

Emmy
4. 1 • 1
}~. 1.2
4.1.3
4. 1 .4
4.1.5
4.1.6
4.1.7
4. 1 • 8
4.1.9
4. 1. 10
4.1.11
4.1.12
4.1.13
4. 1. 14

Unix
4.2. 1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2. 10
4.2.11
4.2.12
4.2.13
4.2. 14
4.2.15

to Unix Reque sts •••••••••••••••••••••••••••••••• 10
READ Request ••••••••••••••••••••••••••••••••••• 10
WR ITE Reque st •••..•..•.••••.•.•••••..•••...•... 11
SEEK Request •••••.•.••.•••..•...•••••..•••••.•. 11
READ IMMEDIATE Request ••••••••••••••••••••••••• 12
l~RITE IMMEDIATE Request •••••••••••••••••••••••• 13
ABORT -Reque st •••••••••••••••••••••••••••••••••• 13
RESET ALL DEVICES Request •••••••••••••••••••••• 1"4
TAPEREAD Request ••••••••••••••••••••••••••••••• 14
TAPEWRITE Request •••••••••••••••••••••••••••••• 14
SPT~1 Reque st ••••••••••••••••••••••••••••••••••• 15
~J/R~ Reque st .•.•.....••.••.•••..•...••......... 15
RElvIND Reque st ••.•..•....•.••...•.•••••..••••.. 15
REWRITE Request •••••••••••••••••••••••••••••••• 16
EXIT Request .•........•.........•..•.•....•.... 16

to Emmy Reque sts •••••••••••••••••••••••••••••••• 16
l1EAD FIN,,[SH Request •••••••••••••••••••••••••••• 17
~RITi FINISH Request ••••••••••••••••••••••••••• 18
SEEK FINISH Request •••••••••••••••••••••••••••• 18
READ-n~MEDIATE FINISH Request •••••••••••••••••• 18
WRITE IMMEDIATE FINISH Request ••••••••••••••••• 19
ABORT-FINISH Request ••••••••••••••••••••••••••• 19
R.ES ET -and BRE AK Reque sts ••••••••••••••••••••••• 19
DEVICE READY and DEVICE NOT REi\DY Requests ••••• 20
RESET ALL FINISH Request ••• -: ••••••••••••••••••• 21
TAPEREJ\D FINISH Request •••••••••••••••••••••••• 21
TAPEWRITE FINISH Request ••••••••••••••••••••••• 21
SPTM FINISH Reque st •••••••••••••••••••••••••••• 21
WRT!Jf-FINISH Request •••••••••••••••••••••••••••• 22
REWIND FINIS'H Request •••••••••••••••••••••••••• 22
REWRITE FINISH Request ••••••••••••••••••••••••• 22

Table of Contents (cont.)

5 Device assignment and the pcontrol procedure ••22
5. 1 Assign Command ••••• .23
5.2 Reassign Command •••25
5.3 ! Command •••••• · .25
5.4 Debug Command •••26
5.5 Break Command ••• · .26
5.6 Reset Command ••• 27
5.7 Status Command ••• .27
5.8 "'b Command ••••••27
5.9 Trace Command ••• •. 28
5. 10 Cd Command •••••• .28
5. 11 Kick Command ••• · .28
5. 12 Clear Command ••• . .• 29
5. 13 Commands Command ••• ••• 29
5. 14 Command •••••• .29
5. 15 Stty Command ••• .29
5. 16 Exit Command ••• • •. 31

6 Perfo rmance .. 31

Introduction

The emulation or interpretation of input/output operations for

current architectures is extremely difficult due to the ad hoc nature

of their design. Many devices are timing dep~ndent or have mainte­

nance modes unknown to users (and in some cases undocumented). Since

it was not our intention to provide a connector to which the image

machine's IIO device could be connected; a system of simulated devices

was developed to replace the real hardware.

For this purpose the "match"[4 J interface was designed to connect

the (unique) Emmy processor bus[1-2J to the Unibus. The Unibus is the

center of a system of devices that will provide virtual IIO support to

the Emmy processor. The control for the I/O system is a PDP 11/05

processor executing Bell Laboratories' Mini-Unix operation system[3J.

~1ini-Unix is a scaled down version of Unix capable of running wi thout

memory management. A 67"1byte disk drive, tape drive, and five asyn­

chronous serial communication lines are connected to the Unibus.

A virtual device is a linear space of bytes and allows three

operations on it: read, write, and seek. For example, a teletype key­

board is modeled as a read only device. TJ'ihereas a disk requires map­

ping the drive, head, cylinder, and sector into a linear space and al-

lows read, write, and seek operations. Virtual devices are mapped

into the ~1ini-Unix system as files. The !1ini-Unix file system makes

no distinction between ord inary files (maintained by the system on

disk) and special files that are the physical devices connected to

Mini-Unix. This lack of distinction between files allows complete

2

transparency of the actual device being accessed. Therefore a virtual

disk could be "assigned" to an ordinary file, say Itmp/dsk1, and go

through the normal file structure; or be "assigned" to a special file,

say /dev/si3, which is one of the system scratch disks.

The communication bet\ieen the Emmy system and the l'4ini-Unix system

is controlled through a pair of mailboxes. These mailboxes are loaded

with requests and the receiving system is signaled that the mail is

present. ane mailbox is for Emmy to Unix requests and the other is

for Unix to Emmy requests or acknowledgments. Executing on the Mini­

Unix system is the ~-access program \ihich processes the incoming and

outgoing mailbox requests. This program is d iv ided into three main

sections. The first, pmail, processes the incoming ~ail and generates

appropriate outgoing mail. The second, pcontrol, handles the confi­

guration and status of the active virtual devices, along with load and

dump control of the Emmy system. The third section is a simple vac­

cess debug facility for initial checkout of emulator I/O.

2 Mailbox protocols

The mailboxes are 16 byte blocks located at the low part of the

operating system in unused interrupt vector locations. The mailbox is

divided into various fields each 2 bytes long. The structure of the

. mailbox (from C) is shown in figure 1.

The Emmy to Unix mailbox is loaded by the Emmy processor and sig­

nals the Mini-Unix system by setting the flag member to a non-zero

value. The Emmy processor detects the receipt of the mail when the

struct mbox
{
int command;
int device;
int bufadr[2];
int count;
int flag;
int unassigned[2];
} E_TO.-!JNBOX, U_TO_EMBOX;

Figure 1: Mailbox structure

mail processing procedure (pmail) clears the flag.

3

The Unix to Emmy mailbox is loaded by "pmail", and the Emmy pro-

cessor is signaled by an interrupt (vector: 50 hex). The pmail pro-

cedure detects the receipt of the mail when the Emmy processor clears

the flag member. The mailbox protocols are not symmetric because the

Hini-Unix system does not allow fast enough latency between fielding

an interrupt and signal ing a user program (in this case the upmail"

procedure). Also there is no overlap of Hini-Unix system requests made

by "pmail" and consequently a test loop gives the smallest latency.

The following four procedures implement the above protocols for

putmail and getmail operations in each system.

1 •) putmail for Emmy processor.

putmail(contents);
begin
while E_TQ_UMBOX.flag is not equal to 0 do

pause a short time;
move contents to E TO UMBOX;
E_TO_UMBOX.flag ::-1;-
end;

2.) putmail for Mini-Unix system.

putmail(contents);
begin
while U_TO_EMBOX.flag is not equal to 0 do

pause a short time;
move contents to U_TO_EMBOX;
U TO EMBOX.flag := 1;
send-interrupt to Emmy;
end;

3.) getmail operation for Mini-Unix system

1* procedure that examines the Emmy_ to Unix mailbox and returns a

4

if the mailbox contains new mail along with that mail, 8nd a 0 if
empty.

*/
getmail (tmpbox)

begin
if E TO U1>1BOX.flag is equal to 0 then return(0);
7* maIl exists */
move contents of E TO U~1BOX to tmpbox;
E TO UMBOX.flag := 0;
return (1);
end;

4.) getmail operation for Emmy processor.
note: This procedure tvould be called directly by the interrupt.

getmail ()
begin
process the Unix to Emmy request;
U_TO_EMBOX.flag := 0;
end;

The E TO UMBOX is located at unibus addresses 110-126 (octal) and

Emmy bus byte addresses :80048-F80056 (hex) • The U TO EMBOX is locat-

ed at unibus addresses 250-266 (octal) and Emmy bus byte addresses

F800A8~F800B6 (hex).

5

1 Files and Virtual Devices

V-access provides a very simple interface to the Emmy processor.

I/O requirements are neatly packaged into mailbox messages and ack­

nowledgments clearly signal the completion of the request. Since the

transfers occur across a system bus, the error rates are negligible

and no error detection system exists. Constructing a disk emulation

is easily mapped into the V-access interface. Blocks are mapped 1 to 1

into some counterpart file in Mini-Unix. For each emulated disk ac­

tion a similar action is requested of V-access. For example a 5 block

disk read is emulated by seeking first to the start of the transfer

and requesting 5 blocks. This procedure becomes more difficult when

more unusual features are required. To illustr~te this consider the

program, say of a 360, that reformats the sectoring information dynam­

ically. The emulation of that function would require some scheme to

include sector information for various tracks and necessitate multiple

requests to determine the location of a given disk address. Another

aspect of IIO devices that a simple read, write, and seek operations

do not ad equately handle i.s magnetic tape functions. ~1agtapes store

implicit length information into each record. So searching for the

10th record is not a simple seek to 10 times the record size. For

these reasons and more (mostly efficiency), virtual devices are sup­

ported in three different fashions.

The first is the already mentioned block reads, write, and seeks.

Second is variable record "tape" access. When a device is declared to

be a tape device, variable length records can be read or written. ~l-

6

so tapemarks can be written and sensed for allowing easy emulation of

simple tape drives.

The layout of a file to be used as a tape device differs from the

simple linear vector. Tape files are organized with a4T{ byte record

length list followed by the actual records. Positive non-zero entries

indicate the size of the record. Zero entries signal tapemarks, while

a negative entry marks the end of file. The length list approach was

motivated by the need to minimize the number of system calls to Mini­

Unix and speed the operation of spacing to the next tapemark. This al­

lows only 2048 records per tape device. vfuile this may seem small, it

will exceed the Mini-Unix file size limit when the average record

length is greater than 512 bytes. Figure 3.1 illustrates the data

structure.

The third device type was motivated mostly for efficiency. Char-

acter devices expect byte (or word) at a time transfers. By antici-

pating this behavior data can be prefetched and buffered. This does

require certain restrictions. It is necessary to request either input

or output.!c Also seeking is not allowed. The obvious examples of dev­

ices suited to this device class are paper tape readers and punches.

One device that exists in its own class is the terminal keyboard.

Unique to this device is t~e lack of a end of file. Also reads to the

keyboard may never be fulfilled or may already have been fulfilled.

The special treatment of the keyboard device is explained when

relevant.

4096
bytes

..... 1..1'

~

200

200

0

400

0

0

-1

Tapemark

Tapemark

Tapemar~

End of
tape

,,--
2"'

7

Record #1 200 bytes

.... ,

Record #2 200 bytes
...
..-

Record #3

400 bytes

Note: This file would appear in Mi.ni-Unix ~ii th a 4896 byte length.

Figure 3.1: Internal data structure of ~~pe fil~s.

4 Mailbox Requests and the pmail procedure

All virtual devices are assigned a 16 bit (high bit=O) device

number identifying the device to the mail processing procedure,

"pmail" • This number is arbitraril y chosen by the ernul ator or inter-

preter. A request is identified by the associated request number,

which the "pmail" procedure uses to index a branch table.

The Emmy processor can view the mailbox as a call to an asynchro-

nous processor that will notify the initiator when completed. The

"pmail" proced ure processes the requests and generates an acknowledg-

8

ment upon completion. The acknowledgment indic~tes possible errors or

returns data. The first two fields of the mailbox ~lways hold the re­

quest number and a unique device number. Field 3 is double length and

varies in function dependent on the request. Typically it contains

either a 24 bit address or immediate data. It is desigated as the

"bufadr" field. The fourth field, designated as the "count" field,

likewise varies in function. It is mostly used to hold and return

transfer counts. The last field is used to prevent overwriting previ­

ous mail and is controlled by the previously discussed protocols.

Designated the "flag" field, it always is set by one processor and

cleared by the other, preventing any deadlock problems.

There is an incompatibility between the addressing conventions of

the Emmy system and the Unibus. In the Emmy sys·tem the left most byte

of a \iord or halft-lord is designated "byte zero", wher·eas the Unibus

designates the right byte "byte zero" . The "pmail" procedure

transfers data two ,different ways. Block devices transfer data as 16

bit quantities to/from main memory and 32 bit quantities to/from con­

trol store. Figure 4.1 illustrates the mapping of the addresses

between Unix, main memory and control store for the various combina­

tions of address and byte counts. It is sometimes necessary for the

user to swap bytes in order for data to appear correc tly. Data for

tape devices ·is swapped before transfer to the Emmy system and after

transfer out of the Emmy system. Tape devices are further restricteo

by requiring that transfers begin on hal fword boundries and request an

even number of bytes.

byte 0
byte 1
byte 2
byte 3
byte 4
byte 5
byte 6
byte 7

Transfer Between ~~my and Unix

Unix File

a
b
c
d
e
f
g
h

\-/ord 0
word 1
word 2
word 3

b
d
f
h

Emmy Main Memory

a
c
e
g

9

Emrny Control Store --------
ful word 10 I die I b I a I
fu 1 word 1 h g f e

Emmy Main Memory

Case 1: Even Address (0), Even Count (8) Case 3: Even Address (0). Odd Count (7)

byte 0
byte 1
byte 2
byte 3
byte 4
byte 5
byte 6
byte 7

b
a
d
c
f
e
h
g

hal fword 0 §rub a
halfword 1 d c
halfword 2 f e
halfword 3 h· g

byte 0
byte 1
byte 2
byte 3
byte 4
byte 5
byte 6
byte 7

b
a
d
c
f
e

XX
g

halfword 0 la
halfword 1 d c
halfword 2 f e
halfword 3 X g

Emmy Main Memory Emmy Main t1emory

Case 2: Odd Address (1), Even Count (8) Case 4: Odd Address (1), Odd Count (7)

byte 0
byte 1
byte 2
byte 3
byte 4
byte 5
byte 6
byte 7
byte 8
byte 9

X
b
a
d
c
f
e
h
g
X

halfword 0
halfword 1
halfword2
halfword 3 l

b·

a d
c f
e h

byte 0
byte 1
byte 2
byte 3
byte 4
byte 5
byte 6
byte 7
byte 8
byte 9

x - byte is preserved during read operation
XX - byte is destroyed during read operation

X
b
a
d
c
f
e

XX
g
X

Figure 4.1: Example Unix/Emmy transfers to illustrate address
mapping of data.

. halfword 0
halfword 1
halfword 2
halfword 3 ~. b . a d

c f
eXX

10

Virtual devices must be accessed consistantly. Tape devices may

only be manipulated with the tape requests. LikeTliise character dev-

ices may only be accessed via n-1MEDIATE requests.

4.1 Emmy to Unix Requests

Emmy to Unix requests initiate data transfers and file control for

the virtual devices. The valid requests with the mailbox field argu-

ments are shown in Table 1.

Name Number 3ufadr field Count field

READ 0 Srnmybus byte address byte count
HRITE 1 Ernmybus byte address byte count
SEEK 2 32 bit unsigned offset bias
READ IMMEDIATE 3 unused byte count
WRITE IMMEDIATE 4 4 byte irnmed iate d~ta byte count
ABORT 5 unused unused
RESET ~LL DEVICES 6 unused unused
NULL 7-10 unused unused
TAPE READ 11 Emmybusbyte address byte count
TAPE~iRITE 12 Emmybus byte address byte count
SPTH 13 unused direction
WRTI1 14 unused unused
RE1tlIND 15 unused unused
RBiRITE 16 unused unused
EXIT 17 unused unused

Table 4.1: Emmy to Unix requests

4. 1 .1 READ Request

The READ request ini tiates a transfer of the number of bytes

specified in the "count" field from the file indicated by the given

device number. The transfer starts at the specified Emmybus byte ad-

11

dress. The "countn field must have the high bit cleared. This allows

up to 32,766 bytes per request. The "pmail" procedure breaks the re-

quest into multiple 8192 byte transfers. If the request size is

greater than 8192 then the "count" and "address" fields must be even.

Control store reque st ~re further restricted where n count" and "ad-

dress" fields must be a multiple of 4.

4. 1 .2 WRITE Request

The WRITE request initiates a transfer of the number of bytes

specified in the "count" field. The data, starting at the given Em-

mybus byte address, is transfered to the file indicted by the device

number. The specified count must have the high bit cleared. The

"pmail" procedure breaks the request into multiple 8192 byte

transfers. If the request size is greater than 8192 then the "count"

and "address" fields must be even. Control store request are further

restricted where "count" and" address" fields must be a mul tiple of 4.

The "write request" is acknowledged after all of the data has been

transfered out of the Emmy system. This gives a reasonable amount of

overlap, since the acknowledgment will precede the last system write

to Mini-Unix.

~.l.l SEEK Request

The SEEK request updates the current file pointer by the amount in

the "bufadr" field. The bias located in the "count" field indicates

the type of update desired. The "file pointer" is a pointer to the

12

location in the virtual device's linear space where the next transfer

will take place. This pOinter is updated after each transfer. The

bias is interpreted as indicated by Table 2.

Bias Meaning File pointer (fE.)

0 absolute fp · - bufadr field .-
negative negative offset fp · - fp - bufadr field · -
positive posi tive offset fp · - fp + bufadr field · -

Table 2: Bias Interpretation for the SEEK Request~

The bias is interpreted a 16 bit two's complement quantity. The SEEK

request explicitly moves the "file pointer" in a file. READ and ,mITE

requests update the "file pOinter n implicitly by the size of the

transfer. If the ~1ini-Unix file which was r~ferenced does not allow

seeks (e.g. t~e CRT) then an error message is printed on the user's

terminal.

!.l.! READ IMMEDIATE Request

The READ_IMMEDIATE request transfers 1 to 4 bytes of data in the

request acknowledgment. This request is used for devices that require

small transfers to avoid the overhead of buffering the data. If the

Mini-Unix dev ice specified is a "tty", then the request is recorded

and only acl<nowledgedwhen t!1e data becomes available. Only requests

of 1 byte at a time are allowed from the user's keyboard ~ If the dev-

ice number is unassigned the request is ignored. An appropriate error

13

message is printed on the user's terminal. If an end of file is

reached on the device, then the request is ignored. An error message

indicating the device is written to the user's terminal.

i.l.2 WRITE IMMEDIATE Request

The ~VRITE_I\1t~EDIATE request requests that the number of bytes

(maximum of four) indicated by the "count" field be transfered from

the "bufadr" field to the specified virtual device. As tiaS true for

the READ IHMEDIATE request this request is primarily used for small

transfers to save buffering overhead and complexity. The ordering of

the "bufadr" field is:

Unibus loco Emmybus loco

bufadr[O] byte2 byte1 o 11 J~ X 'F8004C'

bufadr[1] byte4 byte3 0116 X 'F8004E'

If the device number is unassigned the request is ignored, and an er-

ror message is written to the user's terminal.

4. 1 .6 ABORT Request

The ABORT request terminates all previous requests for the speci-

fied virtual device. It only assures that, after the ~BORT is ack-

nowledged, further acknowledgments iiill be for requests made after the

ABORT. Between the sending and the acknowledgment of the ABORT re-

quest, previous requests could finish and be acknowledged.

14

~.1.1 RESET ALL DEVICES Request

The RESET~\LL_OEVICES request is the only request that doesn't

specify a particular device. Instead it clears all requests in pro­

gress and guaranties their termination when the RESET \LL DEVICES is

ac knowl edged. Tnis request is used mostly to emulate bus wide clears

and reset instructions.

~.l.~ TAPEREAD Request

The TAP'SREAD request initiates a tr~nsfer of the next record from

the file indicated by the given device number. The transfer starts at

the specified Emmybus byte address (must be on 2 byte boundry). If

the next record is smaller or equal to the spec ified "count" field t

then that number of bytes is transferred. All byte counts must be

even and have the high bit cleared. T,fuen the next record is larger t

only the number of bytes specified will be transferred. The rest of

the record is ignored. If a tapemark or end of tape is encountered no

data is transferred.

~.1.1 T~PEWRITE Request

The TAPEWRITE request initiates a transfer of the specified number

of bytes. The data, starting at the given Emmybus byte address, is

transferred to the file indicated by the device number. All addresses

and counts must be even. A. write operation creates a new "end of

tape" at the end of the record whether data existed past the current

record or not.

15

~.1.2Q SPTM Request

The SPTM request positions the file pointer (see section 4.1.3) to

the next tape mark. The direction is indicated by the "count" field.

When the "count" field is a -1, then the file pointer is spaced back-

wards and positioned to read the first encountered tape mark (or pos-

sibly the beginning of tape). Any other value in the "count" field

positions the file pointer foward in the file following the next tape

mark. Notice that forward spacing positions after the tapemark and

backward spacing before the tapemarl<. Forward spac ing past the end of

file is ignored and the file pointer is positioned after the last

record.

~.l . .ll WRT1"1 Request

The WRT?1 request writes a null length record which will subse-

quently be interpreted as a tape mark. The "count" and "bufadr"

fields are unused.

4.1.12 --- REWIND Reque st

THe REWIND request positions the file pointer to the beginning of

the tape. The "count" and "bufadr" fields are unused. This is

equivalent but not interchangeable (file types are different) with an

absolute SEEK request to zero.

16

~.1.1l R~wRITE Request

The REWRITE request executes the PASCAL REWRITE function to reset

the file pointer to zero and truncate the file to zero length.

~.l.~ EXIT Request

The EXIT request deassigns all active devices and returns to the

envoker of V-access (probably the SHELL). There is no acknowledgment

for this request except for the possible DEVICE~~OT_READY requests due

to deassignments. The "device" field is used to return a status byte

to the envoker of V-access.

4.2 Unix to Emmy Requests

Unix to Emmy requests are typically acl<nowledgments to earlier re­

quests, or control requests to the emulator. The valid requests with

the mailbox field arguments are sho\m in Table 3.

The processing of Emmy to Unix requests begins with verification

of the virtual device number. If it is unassigned, an error message

is written to the user's terminal. All acknowledgments return the

originally used virtual device number to identify the source of the

acknowledgment.

17

Request Name Number Bufadr Count

READ FINISH 1 unused number of bytes read
WRITE FINISH 1 unused number of bytes written
3EEK FINISH 2 unused error flag
READ-IMMEDIATE FINISH 3 immediate data number of bytes read - -WRITE P1HEDIATE FINISH 4 unused number of bytes written
ABORT-FINISH 5 unused error flag
RESET 6 unused unused
BREAK 7 unused unused
DEVICE READY 8 unused unused
RESET ALL FINISH 9 unused unused - -DEVICE NOT READY 10 unused unused
TAPEREAD FINISH 11 unused number of byes read
TAPl!:'oJRITE FINISH 12 unused number or bytes written
SPTM FINISH 13 unused error flag
WRTI1-FINISH 14 unused error flag
REWIND FINISH 15 unused error flag

Table 3: Unix to &~my Requests

~.~.l READ FINISH Request

The READ_FINISH request is generated by the "pmail" procedure to

acknowledge the completion of a previous READ request. The "count"

field indicates the actual number of bytes transferred. If the origi-

nal request specified an unassigned virtual device number the "count"

field is set to zero, ind icating an error. The" count" field is a1 so

set to zero when reading a device initially assigned to be only ac-

cessed \ii th READ _IM~1EDIATE requests (discussed in section 4). In any

event, a READ request is always acknowledged with a READ FINISH. The

"device" field will be unchanged.

18

~.~.~ WRITE FINISr; Request

The WRITEJ.INISH request is generated by the "pmail" procedure to

acknowledge the completion of a previous WRITE request. The "count"

field indicates the actual number of bytes transferred. If the origi­

nal request specified an unassigned virtual device number the "count!'

field is set to zero, ind ic at ing an error. The" count" field is al so

set to zero when transferring to a device initially assigned to be

only accessed with \vRITE_IMMEDIATE requests (discussed in section 4).

In any event a WRITE request is always acknowledged with a

WRITE FINISH. The "device" field will be unchanged.

~.~.l SEEK FINISH Request

The SEEK~FINISH request is generated by the "pmail" procedure to

acknowledge the ~ompletion of a previous SEEK request. If the origi­

nal request specified an unassigned, "character", or "tape" device

(described in section 4) then the "count" field is set to zero, indi­

cating an error. Otherwise the SEEK is assumed successful and the

"count" field is set to 1. If the location exceeds the bounds of the

file, then this error is not reported and subsequent requests are

unpredic table.

~.~.~ READ n1~1EDIATE FINISH Request

The READ IMMEDIATE FINISH request both ac knotl/l edges the

READ_D1MEDIATE request and includes the immediate data in the "bufadr"

field. The format of the immed iate data is the same as used in the

19

WRITE IHMEDIA.TE request (section 4.1.5). For the device that is as­

signed to the user's keyboard this request acts differently. In

essence the keyboard always assumes a character is desired and "pmail"

sends a READ_P1MEDIATE_FINISH request whenever anything is typed. So

a READ_IHMEDIATE request has no effect when the device is assigned to

the user's keyboard. This is done because the typical terminal used

in computer systems (teletypes and eRTs) will send a typed character

whether or not is to/as requested.

~.~.~ WRITE IMMEDIATE FINISH Request

The WRITE IMMEDI~TE FINISH request ac knowledges the

vlRITE H1MEDIATE Emmy to Unix request. "pmail" assumes the wri te

operation will be successful and immed iately sends this ac!<nowledgment

once the device number is found to be valid.

i.~.~ ABORT FINISH Request

The ABORT_FINISH request acknowledges the receipt of the ABORT re-

quest. ~ny other Emmy to Unix request in progress will be terminated

for the specified device. If the specified device number was invalid

the "count" field is set to zero to indicate the error, otherwise it

is set to one.

~.~.1 RESET and BREAK Requests

There are two special requests which are initiated by the user.

Their func tions are not spec ified by the "proail" procedure and are

20

left to the needs of the emulation.

It is intended that they be used as mac hine 1 evel interrupts ei­

ther at a console or system reset level. One typical emulation used

the break request to switch to console mode and the reset to force

reinitializing itself.

The RESET and BREAK device numbers are included in the "device"

field to allow device number parsing by the emulation or interpreta­

tion. The RESET request is generated by typing the arbitrarily as­

signed "reset" character on the user terminal. Likewise the "break"

request is generated by typing the "break" character on the terminal.

The "break" and "reset rt devices are initially unassigned and set to

zero.

~.£.~ DEVICE READY and DEVICE NOT READY Requests

The DEVICE_READY request is generated by the proced ure that con­

trols the assignment of virtual device numbers and the unix file

names. Hhen the device number is assigned to a unix file, the

DEVICE READY request is sent with the indicated device number to be­

used or discarded as the emulation sees fit.

The DEVICE NOT READY request signals the disassociation of a dev­

ice number and a unix file. For example, the nova emulation uses

these two requests to set and clear the device ready bits of its vir­

tual disk platters.

21

~.~.2 RESET ALL FINISH Request

The RESET l\LL FINISH request acknowledges the receipt of the

RESET ALL DEVICES request. The "device" field is set to the "reset"

device if one is assigned, otherwise the most recent value is used.

~.~ • .lQ. TAPEREAD FINISH Request

This request signals the completion of a previous TAPEREAD re-

quest. The "count" field indicates the actual number of bytes

transferred. If the "count" field is zero, then a tape mark was en-

countered. lfuen a -1 is returned an end of file was sensed. The

"device" field indicates which device is being acknowledged. Unas-

signed device numbers and non-tape devices in the initial TAPEREAD re-

quest will be acknowledged wi th a return in the "count" field of zero,

and an error message is written on the user's terminal.

4.2.11 TAPEWRITE FINISH Request

The TAPEHRITEYINI3H request signals the completion of a previous

TAPE \4RITE request. The "count" field indicates the actual number of

bytes transferred. "pmail" generally Bssumes the write operation will

be successful once the device number has been validated.

~.~. 12 SPT~1 FINISH Request

The SPTM....,:FINISH request acl<nowledges a previous SPT~1 request. The

spacing is assumed successful once the device number is validated.

The "count" field is set to 1 when val id and zero on any ,~rror.

22

~.~.1l ~mTM FINISH Request

The WRTH_FINISH request acknowledges a previous ~.vRT?>1 request. The

request is assumed successful once the device number is validated.

The "count" field is set to +1 when valid and zero on any error.

~.~.~ REWIND FINISH Request

The REWIND_FINISH request ackno\iledges a previous REWIND request.

The rewind is assumed successful once the device number is v~lidated.

The "count" field is set to +1 1t'/hen valid and zero on '3ny error.

'::.~ • ..l2. REl.iRITE FINISr; Request

THe REWRITE FINISH request acknowledges the completion of a

REWRITE request. Once the device number is verified the "count" field

is set to one indicating success, otherwise an error is signalled by

the "count" set to zero.

5 Device assignment 3nd the pcontrol procedure.

The association of unix file names with the virtual device numbers

is handled by the "pcontrol" procedure. This association is a strict

one to one mapping. Typing the special sequence "control b?" to the

"pmail" procedure enters "pcontrol", where "?" is any character other

than a "control b". The second character now becomes the first char­

acter of the command. If this second character had been a "control

b", then "pmail" would interprete the two "control b"'s as a Single

"control b" and generate a READ IMMEDIATE FINISH request (if the KEY-

23

BOARD is assigned).

The "pcontrol" procedure read s an entire I ine of text and executes

the appropriate command handler. While "pcontrol" is executing no

mail processing is done. All keywords used by "pcontrol" can be ab­

breviated to the shortest distinguishable string. The optional argu­

ments are parsed in the same manner allowing abbreviations. Numerical

arguments are interpreted as decimal numbers, if preceded by a zero,

they are interpreted as octal numbers. The following sections discuss

in detail each command.

5.1 ~ssign Command

The "assign" command associates the named unix file to the given

virtual device number. The Mini-Unix file can be either a ordinary or

special fil e. The command syntax is:

assign <device num> [to] {<file name>:RESET1BREAK1KEYBOARDI

CRTINONE} [[readlwrite][tape] I cread I cwrite]

The square brackets indicate optional arguments. The { ••• } re-

quires that one argument be chosen. If RESET or BREAK is used instead

of a Mini-Unix file name the RESET or BREAK device will be assigned to

the given number.

The user's terminal is a somewhat unique device since it acts both

as a display and keyboard device to the "pmail" procedure and as the

controller for the virtual access system. So (rather than use the

normal unix name /dev/tty?) two special names, KEYBOARD and CRT, are

24

reserved for the user terminal's keyboard and display screen respec-

tively. Different virtual device numbers must be used for the KEY-

BO~RD and the CRT since the device number must uniquely define the

Mini-Unix file it is assigned to.

If the device was already assigned "pccntrol" prompts the user to

ask if the device number should be reassigned. Reassignment causes

the current assignment to be terminated and the nel-l file name as-

signed. If the first letter of the reply is "y", then the number is

reassigned, otherwise the command is ignored. 1Jlhen the "NONE" opt ion

is used the device number is deassigned. Any further mail requests to

that number will result in an error.

The file name can be qualified to indicate the type of access al-

lowed. The qualifier "READ" and "WRITE" only permit read or write

mail requests to the file respectively. This is only enforced at the

Unix system level. This has the resul t that \~RITE requests tvill be

acknowledged without an error for devices assigned as "read" devices.

It remains the responsibility of the user to recognize this problem.

In order to reduce the number of costly system calls, a special qual­

ifier "cread" or "cwri te" is used to noti fy the "pmail" proced ure that

this device will only be

WRITE IMMEDIATE mail requests.

accessed via READ D1HEDIATE or

"pmail" will then use local buffers to

speed the transfers. The default access is standard read or write ac-

cess. Typically papertape readers and punches will be assigned with

the "cread" and "cwrite" qualifiers. Whereas a disk uses the default

access.

25

The last qualifier, "tape", signals that the file is to be a tape

device. If it doesn't exist a null length tape file is created.

Many errors are reported by the "assign" command. Usually the en­

tire command is ignored with no side effects. 0ne exception is that

an already assigned device number could be deassigned even when the

command line is in error.

5.2 Reassign Command

The "reassign" command is syntactically the same as the assign

command. Functionally the "reassign" command expects the specified

device number to already be assigned and associates the number with

the given file name. If the device number is unassigned, then "pcon­

troln prompts the user if the device number should be newly assigned.

A "y" as the first letter of the response assigns the device number

otherwise the command is ignored. The command syntax is:

reassign <device num> [to] {<file name>lRESETIBREAKlKEYBOARDl

CRTlNONE} [[readlwrite][tape] : cread l cwrite]

~.l Command

The "!" command submits the text string that follows the "! " to

the Mini-Unix shell program for execution.

26

5.4 Debug Command

The "debug" command invoces a preliminary debug routine to assist

the of emulator IIO systems. This procedure scans the input l<eyboard

and Emmy to Unix mailbox just as the "pmail" procedure does. But when

mail is received the contents of the mailbox are only displayed on the

terminal and the Emmy to Unix flag is cleared. The display is self-

explanatory and contains all of the mailbox values.

~Vhen a key is struck, "debug" collects a line of data, in octal,
I

to be sent as a Unix to ~~my request. The input syntax is:

<request> <device> <highadr> <lowadr> <count>

All five values must be typed. "debug" then reports the success or

failure in trying to send the request. An unsuccessfull response is

due to the Unix to Emmy mailbox flag still being set. This indicates

the prev ious mail request was not read.

"debug" mode is exited by t~ping a request with the request number

set to octal 40.

5.5 Break Command

The "break" command changes the break character to the specified

character. The space, newline, erase, and kill characters are illegal

and ignored. The character "N" is special and signifies no char~cter.

If "N" is used the break function will be turned off. The syntax is:

break [is] <break character:NONE>

27

5.6 Reset Command

The "reset" command changes the reset character to the specified

character. The space, newline, erase, ~nd kill characters are illegal

and ignored. The character "N" is special and signifies no character.

If "N" is used the reset function will be turned off. The syntax is:

reset [is] <reset characteriNONE>

5.7 Status Command

The "status" command displays all the current information on the

assigned device numbers. The device number is displayed in octal fol­

lowed by the Mini-Unix file name it is assigned to. The next column

indicates with a "t" if tracing is turned on. Following the trace

flag is the character, mode, and tape indi-~ator columns. A. character

device is signalled by a "c". The mode by "rn ,"ltl", or "f" to indicate

read, write, or update mode respectively. The tape indicator is set

to "t" when true. The last field is the current location (in octal)

of the file pointer for the device.

5.8 "'b Command

The "control b" command causes the "pcontrol" procedure to ter­

minate and return to the "pmail" procedure.

.28

2.~ Trace Command

The "trace" command forces all WRITE and WRITE IMMEDIATE commands

to the specified device number to be additionally displayed on the

user's terminal. The optional "OFF" argument disables a previous

trace command. The syntax is:

trace <device number> [OFF]

The device number specified must have been previously assigned to a

Mini-Unix file (excluding the CRT).

5.10 Cd Command

The "cd" command acts equivalent to the unix "chdir" command. The

current directory is changed to the text string that follows.

"/ etc/glob" is not used to interpret spec ial charac ters, consequentl y

the name must be spelled out exactly. The syntax is:

cd <directory name>

5.11 Kick Command

The "kick" command forces a one byte READ_D1MEDIATE Emmy to Unix

command to be processed for the specified device number. This is most

useful to restart a device, after a reassignment, when the emulator's

"device start" came prior to the reassignment. The syntax is:

kick <device number>

29

2'~ Clear Command

The "clear" command clears the two mailbox flags. This is used to

reset a hung mailbox.

~.1l Commands Command

The "commands" command redirects the input of command lines to the

specified file name. The commands are echoed on the display and exe­

cuted until an end of file is reached. Control then returns to the

user's terminal. The syntax is:

commands [from] <fil e name>

Command

The":" command is a comment and causes no action. The text that

appears after the " . " is ignored.

5 . 15 St ty Command

In order to understand the implications of the possible settings

of the user tty it is necessary for the reader to study in the Unix

manual the sections STTY (I) and STTY (II) . Ini tially the "pmail" pro­

cedure sets the terminal modes to:

raw, anyp, -tabs, nlO, tabO, erO, nl, -echo, -lcase.

This will very closely send characters and print characters as typed.

The expansion of tabs is the single exception.

30

When "pcontrol" is entered, the terminal modes are restored to

the values saved during initialization. The user may change and

display the current modes used by "pmail" ~vi th the "stty" command.

The syntax is the same as used by the Unix "stty" comrn~nd. The ef-

fects for most settings are straight forward. "cooked" mode is a

noteable exception. When a character is typed in cooke~ mode, vaccess

requests an entire line from the Mini-Unix system. After the line is

typed (with possible erase and kill processing), "pmail" processes the

characters by ei ther sending a burst of READ _ IMMEDL,\TE....;FINISH requests

to the Emmy system; or ignores them if the KEYBOARD was unassigned.

From the time the first character is typed untill the newline, vaccess

does not process any incoming mail. Once the line has been disposed

of, and before another character is typed, regular processing contin­

ues.

Using the KEYBOARD for block reads has some unpleasant side ef­

fects. Once t'he "pmail" procedure receives the READ request all "con­

trol bIt processing is suspended. After the request was handled (and

perhaps only partially so) "prnail" may pic k up more charac ter s that

precede another READ request and throw them away or generate

READ I1-1MEDIATES that will be unexpected. A.Il in all the terminal KEY­

BOARD should use the READ_IMMEDIATE requests to maintain data and pro-

gram integrety. Of course the CRT is not effected by the above dis-

cussion and is equally enamored to 1iRITE or HRITE I~1MEDIATE requests

for any setting of the terminal modes.

31

5.16 Exit Command

The "exit" command closes all files and terminates the vaccess

program. The program interrupt (rubout character) will prompt the

user if vaccess should exit. A yes response will exit in the same

manner as the "ex it" command.

6 Performance

The performance of an emulated IIO device is a function of many

di fferent fae tor s, the most important 0 f whic h Ls the "blocks i ze" .

Mailbox requests require a fixed amount of time to initially parse the

request type and device assignment. 0nce a device is identified the

transfer is started. The transfer time between the operating system

and the Vaccess program is directly proportional to the blocksize.

So, for small blocksizes the initial overhead dominates the total in­

teraction time, while for the larger blocksizes the transfer rate is

constant. Because of the buffering scheme used by the UNIX operating

system, blocksizes above 512 bytes result in near constant transfer

rates. There is one notable exception which involves the use of the

"raw" dev ice interface. Raw devic es byp~ss the normal buffer mechan-

ism and use direct disk transfers to the Vaccess program. For raw

devices, the transfer rate is proportional to the blocksize. This

provides much higher throughput when the blocksize exceeds 1024 bytes.

UNIX makes no distinction, logically, between the physical dev­

ices connected to it and its file system, but the transfer rates can

32

vary dramatically. Ordinary files are organized into a file system

and are maintained by the operating system. Ordinary files are the

easiest to manipulate but are limited to about one megabyte in size

(this is a Mini-UNIX restriction). Special files are the actual dev­

ices available on the system. Our current system divides the disk

into two 16 megabyte scratch regions and two system regions used for

swapping and the file system. Raw special files are special files

that bypass the UNIX buffering scheme. They are restricted to com­

plete block transfers (multiple of 512), but are ideal for disk emula­

tions because of the considerable speed advantage.

Figure 6. 1 shows the expected transfer rates for the various file

types and device structures. Tape devices refer to ordinary assigned

with the "tape" qualifier. The curve labelled "character" refers to

the expected transfer rates of ordinary files assigned with the

"cread" or "cwrite" qualifier. The ordinary, special, and raw special

labelled curves refer to the rates when assigned as block devices.

The curves were generated using blocksizes that are powers of two and

the actual curve between these points may be lower because of the

internal blocking used by the UNIX file system. Data for blocksizes

corresponding to card images and print images (80 and 132 bytes

respectively) fit very closely to the curve.

3 Special
Character

Y)
Y)

Ordi nary

-0
t:
0
u
0,)
~ 2
s-
QJ
D-

t/)

OJ,
»
..a
0
r-
or-
~

~
or--
OJ
4J ;) tt:S
::t::.

s... 1
OJ
4-
t/)

c
ct:S s-
l-

1 2 4 8 16

Slocksize (in bytes)

60

Raw Special
50 ~

, .
-0 l
c:

: 0 ~ , u
OJ
~ 40 ' '

s...
())
o.. i

t/)
()),
>,
..0 ;

0

::: 30
~

c: Special or-
-..-
()),
OJ ... --- ..- ... a=
s... 20 ~ OJ
tt-
t/)

c:
OJ
s-
I-

, 10
i

32 64 128 256 512 1024 2048 4096 8192

TRANSFER RATES FOR Er1ULATEO I/O DEVICES·
r: J(~IIR r: fi _ 1

'B1ocksize (in bytes)

,...

34

Appendix A: Mailbox Structure and Location

Unibus loco Emmy bus loco

struct mbox
{
int command; 0110 X 'F80048 ,
int device; 0112 X 'F8004A '
int bufadr[2] ; 0114 X 'F8004C'
int count; 0120 X 'F80050'
int flag; 0122 X 'F80052 ,
int unassigned[2]; 0124 X'F80054,
} E_TO_UMBOX;

struct mbox
{
int command; 0250 X 'F800A8'
int dev ice; 0252 X 'F800AA'
int bufadr[2]; 0254 X'F800AC'
int count; 0260 X 'F800eo'
int flag; 0262 X'F800B2'
int unassigned[2]; 0264 X 'F800B4'
} U_TO_EMBOX;

~ppendix B: Emmy to Unix Request summary

Request Mailbox Fields

Name Number . Device Bufadr Count Pmail action

READ ° Device number Address Byte count Transfer 'count' bytes
l4RITE 1 Device number I\ddress Byte count Transfer 'count' bytes
SEEK 2 Device numbp.r 32 bit offset bias Move file pointer

by bias
=0, absolute
)0, positive
<0, negative

READ IMMEDIATE 3 1)ev ice number unused Byte count Request data in
acknowledgment

WRITE IMHEDIATE 4 Device number Immed iate data Byte count Transfer 'count' bytes
ABORT 5 Dev ice number unused unused Terminate all active

requests
RESET ALL DEVICES 6 unused unused unused Terminate all active

requests for all devices
NULl. 7-10 unused unused unused
TAPEREAD 11 Dev ice number Address Byte count Transfer " count" bytes
TAPEWRITE 12 Device number Address Byte count Transfer "count" bytes
SPTI1 13 Device number unused Direction Space to indicated

= -1, Backt...rard Tapemark
~ -1, Forward

WRTM 14 Device number unused unused Write a tapemark
REWIND 15 Device number unused unused Position at BOT
REWRITE 16 Device number unused unused Position at start of

file and truncate to
zero length

EXIT 17 Return Code unused unuseri Terminate the V-access
program

Appendix C: Unix to Emmy Request Summary

Request Mailbox Fields

Name Number Device Bufadr Count Pmail action

READ FINISH 0 Device number unused Actual count READ
l'iRITE FINISH 1 Device number unused Actual count l~RITE

SEEK FINISH 2 Dev ice number unused Error flag * S~EK

READ IMMEDIATE FINISH 3 Device number Immediate data Actual count READ IMMEDIATE or
typed character

WRITE IMMEDIATE FINISH 4 Device number unused Orig inal count t-IR ITE IMMEDIATE
ABORT FINISH 5 Device number unused Error flag * ABORT
RESET 6 Reset device unused unused 'reset' character

typed on keyboard
BREAK 7 Break device unused unused 'Break' character

typed on keyboard
DEVICE READY 8 Device number unused unused assignment by

'pcontrol'
RESET ALL FINISH 9 Break device unused unused RESET ALL DEVICES
DEVICE NOT READY 10 Device number unused unus~d deassignment by

'pcontrol'
TAPEREAD FINISH 11 Device number unused Actual count TAPE READ
TAPEWRITE FINISH 12 Device number unused Actual count TAPEWRITE
SPTM FINISH 13 Device number unused Error flag * SPTM
WRTI1 F IN ISH 14 Dev ice number unused Error flag .J \.fRTH
RE\-IIND FINISH 15 Device number unused Error flag * REWIND
REWRITE FINISH 16 Device number unused Error flag * REWRITE

* = 1 t success
=0, error

37

Appendix D: Pcontrol Command Syntax Summary

assign <device num> [to] {<file name>:RES8T:8REAK:~EYBOARD:
CRTlNONE} [[read l',..rrite] [tape] l cread

break [is] <break characterlNONE>

cd <direotory name>

clear

commands [from] <fil e name>

debug

exit

kick <device number)

reassign <device num> [to] {<file name) l RESET l BREAK IKEYBOARD l
CRTINONE} [[readlwrite][tape] : cread

reset [is] <reset characterlNONE>

status

stty arg1, .••

trace <device number> [JFF]

! < shell command>

: <command comment>

cwri te]

cwrite]

38

References

[1] Neuhauser, C., "Emmy System Processor -- Principles of Opera­
tion", Technical Note No. 114, Computer Systems Laboratory,
Stanford University, Stanford C~ 94305.

[2] Neuhauser, C., "Emmy System Peripherals Principles of
iJperation", Technical Note No. 77 (out of print), Computer
Systems Laboratory, Stanford University, Stanford CA 94305

[3] Ritchie, D. M., Thompson, K., "The UNIX Time-sharing System.",
Communictions of the ~CM, Vol. 17, No.7, July 1974, pp
365-375 - -- --

[4] Shih, M., "Emmy/Unibus Interface Design Specification", Techn­
ical Note No. 109, Computer Systems Laboratory, Stanford
University, Stanford CA 94305.

