SU~326-P.39-33

A VIRTUAL INPUT/NUTPUT SYSTEM FOR THE STANFORD EMMY
V-ACCESS

by

Jerry Huck

Technical Note No. 144

September 1978
Revigsed May 1979

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University

Stanford, California 94305

'he work deseribed herein was supported in part by the Department«
of Energy under Contract EY-76-S-03-0326-PA 39.

SU-~326-P,39-33

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Sciences
Stanford University
Stanford, CA 94305

Technical Note No. 144

September 1978
Revised May 1979

A VIRTUAL INPUT/DUTPUT SYSTEM FOR THE STANFORD EMMY
V~ACCESS

by

Jerry Huck

ABSTRACT

This report describes the system of virtual I/D support for
the Stanford Emmy. A PDP11/05 controls a pool of peripherals,
and communicates with the Emmy processor through a pair of mail-
boxes. By 1issuing appropriate requests practically any peri-
pheral can be emulated. Performance for single byte requests
exceed 1000 bytes/sec.

The work described herein was supported in part by the Department
of Energy under contract EY-76-S-03-0326-PA 39.

Table of Contents

Introduction....... et ecerasessrenanane ctecseaveteanns seesens 1
Mailbox protocolsS.iveeeeereaccnannes Ceeeeeesanane cecesscnans 2
Files and Virtual Devices........... cetieeceetcsnaennn ceeeesDd

Mailbox Requests and the pmail procedure......ceeeeeeeeeesea?

4.1 Emmy to Unix Requests....veveveeeeearoconanass ceeaean 10
4.1.1 READ Request....... Ceeesecrsaresassssannnas eeso 10
4.1.2 WRITE Request...iiceiveveroacas et acereeasaaas 11
4,1.3 SEEK Request........... Ceeseas e P
4.1.4 READ TMMEDIATE Request............ ceeeeennn e 12
4,1.5 WRITE _IMMEDIATE Request.....civineinennneneanns 13
B,1.6 ABORT REQUEStee seeeeeeenenneenennnennnnennnnassll
4.1.7 RESET_ALL_DEVICES Request T
4.1.8 TAPEREAD REQUESE et vttt e et ernnnnnneseennnnnnnas 14
4,1.9 TAPEWRITE Request....... Ceeceseaesans Cereraenae 14
B,1.70 SPTM ReQUESt . e ieeeeeeennnneannnn O ceeaea 15
.7.17 WRTM ReqUESE.uiuieieeneersoeesocssasosacesnsnnens 15
B.7,12 REWIND REQUEST.uiieieeerooescoceasscassasanssesld
4,1.13 REWRITE REQUEST...veeeererereceaeesacacnannsns .16
BU.1.14 EXIT ReQUESE.eeeviveernesoeesossoasssoasacsonens 16

4.2 Unix to Emmy Requests....... et eaecesesaieasscaseaaslb
4,2.1 READ FINTSH RequesSt....ieevreruicernnns P I
4.2.2 WRITE FINISH Request....cieivivienncennnns veeea 18
4.,2,3 SEEK ! FINISH Request........ PP B
4. 2.4 READ IMMEDIATE FINISH Request 18
4,2.5 WRITE IMMEDIAT? _FINISH Request B B
4,2.6 ABORT_FINISH Request.. Ceesecseereernarsenan 19
4,2.7 RESET and BREAK Requests Ceeereeeareeeeearanen 19
4.2.8 DEVICE_READY and DEVICE NOT READY Requests.....20
4,2.9 RESET ALL _FINISH Request ceeesesl
4.2.10 TAPFREAD FINISH REQUESt.ueererrronnneasesennnssll

~ 4,2.11 TAPEWRITE _FINISH Request........ -
42,12 SPTM_fINISH Request....... et eseetesarenenneas 21
4,2,13 WRTM_FINISH RequesSt...ieeeieeervrecasanscnsonans 22
4.2.14 REWIND FINISH Request..........c.... T~ 224
4.2.15 REWRITE FINISH Request......cieevenens teeseeeie 22

Table of Contents (cont.)

evice assignment and the pcontrol procedure....veveeeens .22
Assign Command......cevueee S~
Reassign Command..cuiieeeicerrnereeseoesssessaasannnns 25
! COMMANd e eeeeeeeseeeeasossassossossasoscssnsonnssas 25
Debug Command........... Cerecnenas Ceesaseecaanaans «..26
Break Command.......... Cresssréssarecarans Ceeeeennas .25
Reset Command......veeeveeeeaeenns Ceeereceean -y
Status Command....ccoeevenne Chesecesttastaen e e d7
“b Command....eeeneeeenns Ceereccareneae Ceteeteeenen .27
Trace Command............ cereeans cereseea ceene ee...28
Cd Command....eeesececeesosoonnscssscossonsssssonsns ...28
Kick COMMand ... eeeeesoecococenconosasssssssssscsasss el
Clear Command....cceeeeesss <L
Commands CoOmMMAand....veeeeesecascossscoscsoosnsocsnanssssld
cCommand..sierieneoannannans Ceesan Ceeeeesseceneennenn 29
Stty Command.......... C et seereeceasecsensasasens v ee.29
Exit Command....ceeeeeeeeeoeesocsenooosnsoasnoasnoanss 31

.

.

.

OOVl Wi -0

.

.

[GEGREUBUEGORVIEG RGO RV RV RO RV RV RV EVIRY) Bw)

P OrMaANC .t ittt it teeetseotoneseenssaassssansncnsnsanss 31

1 Introduction

The emulation or interpretation of input/output operations for
current architectures is extremely difficult due to the ad hoc nature
of their desizn. Many devices are timing dependent or have mainte-
nance modes unknown to users (and in some cases undocumented). Since
it was not our intention to provide a connector to which the image
machine's I/0 device could be connected; a system of simulated devices
was developed to replace the real hardware.

For this purpose the "match"[4] interface‘was designed to connect
the (unique) Emmy processor bus[1-2] to the Unibus. The Unibus is the
center of a system of devices that will provide virtual I/0O support to
the Emmy processor. The control for the I/D system is a PDP 11/05
processor executing Bell Laboratories' Mini-Unix operation system{3].
Mini-Unix is a scaled down version of Unix capable of running without
memory management. A 67Mbyte disk drive, tape drive, and five asyn-
chronous serial communication lines are connected to the Unibus.

A virtual device is a linear space of bytes and allows three
oberations on it: read, write, and seek. For example, a teletype key-
board is modeled as a read only device. Whereas a disk requires map-
ping the drive, head, cylinder, and sector into a linear space and al-
lows read, write, and seek operations. Virtual devices are mapped

“into the Mini-Unix system as files. The Mini-Unix file system mékes
no distinction between ordinary fileé (maintained - by the system on
disk) and special files that are the physical devices connected to

Mini-Unix. This lack of distinction between files allows complete

transparency of the actual device being accessed. Therefore a virtual
disk could be M"assigned" to an ordinary file, say /tmp/dskl, and go
through the normal file structure; or be "assigned" to a special file,
say /dev/si3, which is one of the system scratch disks.

The communication between the Emmy system and the Mini-Unix system
is controlled through a pair of mailboxes. These mailboxes are loaded
with raquests and the receiving system is signaled that the mail is
present. One mailbox 1is for Emmy to Unix requests and the other is
for Unix to Emmy requésts or acknowledgments. Executing on the Mini-
Unix system 1is the v-access program which processes the incoming and
outgoing mailbox requests. This program is divided into three main
sections. The first, pmail, processes the incoming mail and generates
appropriate outgoing mail. The second, pcontrol, handles the confi-
guration and status of the active virtual devices, along with load and
dump control of the Emmy system. The third section is a simple vac-

cess debug facility for initial checkout of emulator I1I/0.

2 Mailbox protocols

The mailboxes are 16 byte blocks located at the low part of the
operating syétem in unused interrupt vectér locations. The mailbox is
divided into various fields each 2 bytes long. The structure of the

.mailbox (from C) is shown in figure 1.

The Emmy to Unix mailbox is loaded by the Emmy processor and sig-

nals the Mini-Unix system by setting the flag member to a non-zero

value. The Emmy processor detects the receipt of the mail when the

struct mbox
{
int command;
int device;
int bufadr(2];
int count;
int flag;
int unassigned(21];
} E_TO_UMBOX, U_TO_EMBOX;

Figure 1: Mailbox structure

mail processing procedure (pmail) clears the flag.

The Unix to Emmy mailbox is loaded by "pmail", and the Emmy bpro-
cessor 1is signaled by an interrupt (vector = 50 hex). The pmail pro-
cedure detects the receipt of the mail when the Emmy processor clears
the flag member. The mailbox protocols are not symmetric because the
Mini-Unix system does not allow fast enough latency between fielding
an interrupt and signaling a user program (in this case the "pmail"
procedure). Also there is no overlap of Mini-Unix system requests made
by "pmail" and consequently a test loop gives the smallest latency.

The following four procedures implement the above protocols for

putmail and getmail operations in each system,.

1.) putmail for Emmy processor.

putmail(contents);
begin
while E TO UMBOX.flag is not equal to O do
pause a short time;
move contents to E_TO UMBOX;
E_TO UMBOX.flag := 1;
~end;

2.) putmail for Mini-Unix system.

putmail(contents);

begin

while U _TO_EMBOX.flag is not equal to 0 do
pause a short time;

move contents to U_TO_EMBOX;

U_TO _EMBOX.flag := 1;

send interrupt to Emmy;

end;

3.) getmail operation for Mini-Unix system

/* procedure that examines the Emmy to_Unix mailbox and returns a 1
if the mailbox contains new mail along with that mail, and a 0 if
empty.)

*/

getmail(tmpbox)
begin
if E_T0 _UMBNX.flag is equal to 9 then return(0);
/* mail exists */
move contents of E TO_UMBOX to tmpbox;
E_TO _UMBOX.flag := 0O;
return(1);
end;

4.) getmail operation for Emmy processor.
note: This procedure would be called directly by the interrupt.
getmail()
begin
process the Unix to Emmy request;
U_TO_EMBOX.flag := O;
end;
The E_TO UMBOX is located at unibus addresses 110-126 (octal) and
Emmy bus byte addresses F80048-F80056 (hex). The U_TO EMBOX is locat-
ed at unibus addresses 250-266 (octal) and Emmy bus byte addresses

F800A8-F800B6 (hex).

3 Files and Virtual Devices

V-access provides a very simple interface to the Emmy processor.
I/0 requirements are neatly packaged into mailbox messages and ack-
nowledgments clearly signal the completion of the request. Since the
transfers occur across a system bus, the error rates are negligible
and no error detection system exists. Constructing a disk emulation
is easily mapped into the V-access interface. Blocks are mapped 1 to 1
into some counterpart file in Mini-Unix. For each emulated disk ac-
tion a similar action is requested of V-access. For example a 5 block
disk read is emulated by seeking first to the start of the transfer
and requesting 5 blocks. This procedure becomes mofe difficult when
more unusual features are required, To illustrate this consider the
_program, say of a 360, that reformats the sectoring information dynam-
ically. The enulation of that function would require some scheme to
include sector information for various tracks and necessitate multiple
requests to determine the location of a given disk address. Another
aspect of 1I/9 devices that a simple read, write, and seek operations
do not adequately handle is magnetic tape functions. Magtapes store
implicit 1length information into each record. So searching for the
10th record is not a simple seek to 10 times the record size. For
these reasons and more (mostly efficiency), virtual devices are sup-
ported in three differant fashions.

The first is the already mentioned block reads, write, and seeks.
Seéond is variable record "tape" access. When a device is declared to

be a tape device, variable length regords can be read or written, Al-

so tapemarks can be written and sensed for allowing easy emulation of
simple tape drives,

The layout of a file to be used as a tape device differs from the
simple 1linear vector. Tape files are organized with a UX byte record
length list followed by the actual records. Positive non-zero entries
indicate the size of the record. Zero entries signal tapemarks, while
a negative entry marks the end of file., The length list approach was
motivated by the need to minimize the number of system calls to Mini-
Unix and speed the operation of spacing to the next tapemark. This al-
lows only 2048 records pér tape device. While this may seem small, it
will exceed the Mini-Unix file size 1limit when the average record
length is greater than 512 bytes. Figure 3.1 illustrates the data
structure.

The third device type was motivated mostly for efficiency. Char-
acter devices expect byte (or word) at a time transfers. By antici-
pating this behavior déta can be prefetched and buffered. This does
reQuire certain restrictions. It is neéessary to request either input
or outputk% Also seeking is not allowed. The obvious examples of dev-
ices suited to this device class are paper. tape readers and punches.

One device that exists in its own élass is the terminal keyboard.
Unique to this device is the lack of a end of file., Also reads to the
keyboard may never be fulfilled or may already have been fulfilled.
The special treatment of the keyboard device is explained when

relevant.

Tapemark

Record #1

4096 { 200 bytes

bytes

Y

Record #2 200 bytes

Record #3

> 400 bytes

-

Note: This file would appear in Mini-Unix with a 4396 byte length.

Figure 3.1: Internal data structure of tape files.

4 Mailbox Requests and the pmail procedure

A1l virtual devices are assigned a 16 bit (high bit=0) device
number identifying the device to the mail processing procedure,
"pmail". This number is arbitrarily chosen by the emulator or inter-
preter, A request is 1identified by the associated request number,
which the "pmail" procedure uses to index a branch table.

The Emmy processor can view the mailbox as a call to an asynchro-
nous processor that will notify the initiator when completed. The

"pmail" procedure processes the requests and generates an acknowledg-

ment. upon completion. The acknowledgment indicates possible =2rrors or
returns data. The first two fields of the mailbox always hold the re-
quest number and a unique device number. Field 3 is double length and
varies in function dependent on the request. Typically it contains
either a 24 bit address or immediate data. It 1is desigated as the
"bufadr" field. The fourth field, designated as the "count" field,
likewise varies in function. It is mostly used to hold and return
transfer counts. The last field is used to prevent overwriting previ-
ous mail and is controlled by the previously discussed protocols.
Designatad the "flag" field, it always is set by one processor and
cleared by the other, preventing any deadlock problems.

There is an incompatibility between the addressing conventions of
the Emmy system and the Unibus. In the Emmy system the left most byte
of a word or halfword is designated "byte zero", whersas the Unibus
designates the right byte "byte zero". The "pmail" procedure
transfers data two ,different ways. Block devices transfer data as 16
bit quentities to/from main memory and 32 bit quantities to/from con-
trol store. Figure 4.1 illustrates the mapping of the addreises
between Unix, main memory and control store for the various combina-
tions of address and byte counts. It is sometimes necessary for the
user to .swap bytes in order for data to appear eorrectly. Data for
tape devices is swapped before transfer to the Emmy system and after
transfer out of the Emmy system. Tape devices are further restricted
by requiring that transfers begin on halfword boundries and request an

even number of bytes.

Transfer Between Emmy and Unix

Unix File Emmy Control Store
byte 0 a word 0O b |a fulwordi{0O jd{c |b |a
byte 1 b word 1 dfc fulword {1 [h |g |f |e
byte 2 c word 2 fie
byte 3 d word 3 hig
byte U4 e
byte 5 f
byte 6 g
byte 7 h

Emmy Main Memory Emmy Main Memory

Case 1: Even Address (0), Even Count (8) Case 3: Even Address (0), 0dd Count (7)

byte O b halfword 0| b | a byte 0 b halfword 0O bl a
byte 1 a halfword 1] d ¢ byte 1 a halfword 1 djc
byte 2 d halfword 2| f |e byte 2 d halfword 2| fle
byte 3 c halfword 3| h g byte 3 [halfword 3 [XX] g
byte 4 f byte 4 f
byte 5 e byte 5 e
byte 6 h byte 6 | XX
byte 7 g byte 7 g
Emmy Main Memory ' Emmy Main Memory
Case 2: 0dd Address (1), Even Count (8) Case U4: 0dd Address (1), 0dd Count (7)
byte O X halfword O X|b byte 0 X - halfword O X1 b
byte 1 b halfword 1 ald byte 1 b halfword 1 atd
byte 2 a halfword 2 c|f byte 2 a halfword 2 ¢t £
byte 3 d halfword 3 | e|h byte 3 d halfword 3 | e XX
byte 4 e byte 4 e
byte 5 f byte 5 f
byte 6 e byte 6 e
byte 7 h byte 7 | XX
byte 8 g byte 8 g
byte 9 X byte 9 X
X -~ byte is preserved during read operation

XX - byte is destroyed during read operation

“ Figure 4.1: Example Unix/Emmy transfers to illustrate address
mapping of data.

Virtual devices must be accessed consistantly.

only be manipulated with the tape requests.

ices may only be accessed via IMMEDIATE requests.

4.1 Emmy to Unix Requests

Tape dev

10

ices may

Likewise character dev-

Emmy to Unix requests initiate data transfers and file control for

the virtual devices.

ments are shown in Table 1,

Name

READ
WRITE
SEEK

READ_TMMEDIATE
WRITE_IMMEDIATE

ABORT

RESET_ALL DEVICES

NULL
TAPEREAD
TAPEWRITE
SPTM

WRTM
REWIND
REWRITE
EXTT

4.1.1

READ Raquest

The READ request initiates a
specified in the '"count" field from the

device number.

Number

OV =W N -2 O

7-10

1"
12
13
14
15
16
17

The transfer starts at the

Bufadr field

Emmybus byte address
Emmybus byte address
32 bit unsigned offset
unused
4 byte immediate data
unused
unused
unused
Emmybus byte address
Emmybus byte address
unused
unused
unused
unused
unused

Table 4.1: Emmy to Unix requests

transfer of the

byte count
byte count
bias
byte count
byte count
unused
unused
unused
byte count
byte count
direction
unused
unusead
unused
unused

number

The valid requests with the mailbox field argu-

Count field

of bytes

file indicated by the given

specified Emmybus byte ad-

11

dress. The "count" field must have the high bit cleared. This allows
up to 32,766 bytes per request. The "pmail" procedure brzaks the re-
quest into multiple 8192 byte transfers. If the request size is
greater than 8192 then the "count" and "address" fields must be even.
Control store request are further restricted where "count™ and "ad-

dress" fields must be a multiple of 4.

4.1.2 WRITE Request

The WRITE request initiates a transfer of the number of bytes
specified in the "count" fiszld. The data, starting at the given Em-
mybus byte address, is transfered to the file indicted by the device
number. ‘The specified count must have the high bit cleared. The
"pmail"™ procedure breaks the request into multiple 8192 byte
transfers. If the request size is greater than 8192 then the "count"
and "address" fields must be even. Control store request are further
restrictaed where "count" and "address" fields must be a multiple of 4.
The "write request" is acknowledged after all of the data has been
transfered out of the Emmy system. This gives a reasonable amount of
overlap, since the acknowledgment will precede the last system write

to Mini-Unix.

4.1.3 SEEK Request

The SEEK request updates the current file pointer by the amount in
the "bufadr" field. The bias located in the "count" field indicates

the type of update desired. The "file pointer" is a pointer to the

location in the virtual device's linear space where the next transfer
will take place. This pointer is updated after each transfer. The

bias is interpreted as indicated by Table 2.

Bias Meaning File pointer (fp)

0 absolute fp := bufadr field
negative negative offset fp := fp - bufadr field
positive positive offset fp := fp + bufadr field

Table 2: Bias Interpretation for the SEEK Request.

The bias is interpreted a 15 bit two's complement quantity. The SEEX
request explicitly moves the "file pointer" in a file. READ and WRITE
requests update the "file pointer" implicitly by the size of 'the
transfer. If the Mini-Unix file which was referenced does not allow
seeks (e.g. the CRT) then an error message is printed on the wuser's

terminal.

4.1.4 READ IMMEDIATE Request

\

The READ IMMEDIATE request transfers 1 to U bytes of data in the
request’acknowledgment. This request is used for devices that require
small transfers to avoid the overhead of buffering the data. If the
Mini-Unix device specified 1is a "tty", then the request is recorded
and only acknowledged when the data becomes available. Only requests
of 1 byte at .a time are allowed from the user's keyboard. If the dev-

ice number is unassigned the request is ignored. An appropriate error

13

message is printed on the user's terminal. If an end of file is
reached on the device, then the request is ignored. An error message

indicating the device is written to the user's terminal.

4.1.5 WRITE IMMEDIATE Request

The WRITE TMMEDIATE request requests that the number of bytes
(maximum of four) indicated by the "count" field be transfered from
the "bufadr”" field to the specified virtual device. As was true for
the READ IMMEDIATE request this request is primarily used for small
transfers to save buffering overhead and complexity. The ordering of

the "bufadr" field is:

Unibus loc. Emmybus loc.
bufadr{0] byte2 bytel 0114 X'w800u4cC!

bufadr(1] byteld byte3 0116 X'F3004E"

If the device number is unassigned the request is ignored, and an er-

ror message is written to the user's terminal.

4.1.6 ABORT Request

The ABORT request terminates all previous requests for the speci-
fied virtual device. Tt only assures that, after the ABORT is ack-
nowledged, further acknowledgments will be for requests made aftef the
ABORT. Between the sending and the acknowledgment of the ABORT re-

quest, previous requests could finish and be acknowledged.

14

4.1.7 RESET ALL DEVICES Request

The RESET_ALL DEVICES request is the only request that doesn't
specify a particular device. Instead it clears all requests in pro-
gress and guaranties their tefmination when the RESET ALL DEVICES is
acknowledged. This request is used mostly to emulate bus wide clears

and reset instructions.

4.1.8 TAPEREAD Request

The TAPEREADVrequest initiates a transfer of the next record from
the file indicated by the given device number. The transfer starts ath
the specified Emmybus byte address {(must be on 2 byte boundry). If
the next record is smaller or equal to the specified "count" field,
then that number of bytes is transferred. All byte counts must be
even and have the high bit cleared. When the next record is larger,
only the number of bytes specified will be transferred. The rest of
the record is ignored. If a tapemark or end of tape is encountered no

data is transferred.

4.1.9 TAPEWRITE Request

The TAPEWRITE request initiates a transfer of the specified number
of bytes. The data, starting at the given Emmybus byte address, is
transferred to the file indicated by the device number. All addresses
and counts must be even. A write operation creates a new "end of
tape" at the end of the record whether data existed past the current

record or not.

15

4.1.10 SPTM Request

The SPTM request positions the file pointer (see section 4.1.3) to
the next tape mark. The direction is indicated by the "count" field.
When the "count" field is a -1, then the file pointer is spaced back-
wards and positioned to read the first encountered tape mark (or pos-
sibly the beginning of tape). Any other value in the "count" field
positions the file pointer foward in the file following the next tape
mark. Notice that forﬁard spaciﬁg positinns after the tapemark and
backward spacing bhefore the tapemark. quward spacing past the end of
file is ignored and the file pointer is positioned after the last

record.

4.1.11 WRTM Request

The WRTM request writes a null length record which will subse-
quently be interpreted as a tape mark. The "count" and "bufadr"

fields are unused.

4.1.12 REWIND Request

THe REWIND request positions the file pointer to the beginning of
the tape. The '"count" and "bufadr" fields are unused. This is
equivalent but not interchangeable (file types are different) with an

absolute SEEK request to zero.

16

4.1.13 REWRITE Request

The REWRITE request executes the PASCAL REWRITE function to reset

the file pointer to zero and truncate the file to z2ro length.

4.1.1 EXIT Request

The EXIT request deassigns all active devices and returns to the
envoker of V-access (probably the SHELL). There is no acknowledgment
for this request except for the possible DEVICE NOT READY requests due
to deassignments. The "device" field is used to return a status byte

to the anvoker of V-access.

4.2 Unix to Emmy Requests

Unix to Emmy requests are typically acknowledgments o earlier re-
questé, or control requests to the emulator. The valid requests with
the mailbox field arguments are shown in Table 3.

The processing of Emmy to Unix requests begins with verification
of the virtual device number. If it is unassigned, an error message
is written to the user's terminal. All acknowledgments return the
originally used virtual device number to identify the source of the

acknowledgment.

17

Request Name Number Bufadr Count
READ FINISH 1 unused number of bytes read
WRITE FINISH 1 unused number of bytes written
SEEK_FINISH 2 unused error flag
READ_IMMEDIATE FINISH 3 immediate data number of bytes read
WRITE IMMEDIATE FINISH y unused number of bytes written
ABORT FINISH 5 unused error flag
RESET 5 unused unused
BREAK 7 unused unused
DEVICE_READY 8 unused unused
RESET ALL_FINISH 9 unused unused
DEVICE NOT _READY 10 unused unused
TAPEREAD_FINISH 11 unused number of byes read
TAPEWRITE FINISH 12 unused number or bytes written
SPTM_FINISH 13 unused error flag
WRTM_FINISH 14 unused error flag
REWIND FINISH 15 unused error flag

Table 3: Unix to Emmy Requests

4.2.1 READ FINISH Request

The READ FINISH request is generated by the "pmail" procedure to
acknowledge the completion of a previous READ request. The "count"
field indicates the actual number of bytes traunsferred. If the origi-
nal request specified an unassigned virtual device number the "count"
field is set to zero, indicating an error. The "count" field is also
set fto zero when reading a device initially assigned to be only ac-
cessed with READ_IMMEDIATE requests (discussed in section 4). 1In any
event, a READ request is always acknowledged with a READ FINISH. The

"device" field will be unchanged.

18

4.2.2 WRITE FINISH Request

The WRITE FINISH request is generated by the "pmail" procedure to
acknowledge the completion of a previous WRITE request. The "count"
field indicates the actual number of bytes transferred. If the origi-
nai request specified an unassigned virtual device number the "count!
field is set to zero, indicating an error. The "count" field is also
set to zero when transferring to a device initially assigned to be
only accessed with WRITE IMMEDIATE requests (discussed in section 4).
In any event a WRITE request is always acknowledged with a

WRITE FINISH. The "device" field will be unchanged.

4.2.3 SEEK FINISH Request

The SEEK FINISH request is genera£ed by the "pmail" procedure to
acknowledge the completion of a previous SEEK request. If the origi-
nal request specified an unassigned, '"character", or "tape" device
(described 1in section 4) then ﬁhe "ecount" field is set to zero, indi-
cating an error. Otherwise the SEEX is assumed successful and the
"count" field is seﬁ to 1. If the location exceeds the bounds of. the
file, then this error is not reported and subsequent requests are

unpredictable.

4.2.4 READ IMMEDIATE FINISH Request -

- The READ IMMEDIATE FINISH request both acknowledges the
READ TMMEDIATE request and includes the immediate data in the "bufadr"

field. The format of the iﬁmediate data is the same as used in the

19

WRITE _IMMEDIATE request (section 4.1.5). For the device that is as-
signed to the wuser's keyboard this request acts differently. In
essence the keyboard always assumes a character is desired and "pmail"
sends a READ TMMEDIATE FINISH request whenever anything is typed. So
a READ_IMMEDIATE request has no effect when the device is assigned to
the wuser's keyboard. This is done because the typical terminal used
in computer systems (teletypes and CRTs) will send a typed character

whether or not is was requested.

4.2.5 WRITE IMMEDIATE FINISH Request

The WRITE_IMMEDIATE FINTSH request acknowledges the
WRITE IMMEDIATE Emmy to Unix request. "pmail" assumes the write
operation will be successful and immediately sends this acknowledgment

once the device number is found to be valid.

4.2.6 ABORT FINTSH Request

The ABORT_FINISH request acknowledges the receipt of the ABORT re-
quest. Any other Emmy to Unix request in progress will be terminated
for the specified device. If the specified device number was = invalid
the T"count" field is set to zero to indicate the error, otherwise it

is set to one.

4.2.7 RESET and BREAK Requests

There are two special requests which are initiated by the user.

Their functions are not specified by the "pmail" procedure and are

20

left to the needs of the emulation.

It is intended that they be used as machine level interrupts ei-
ther at 23 console or system reset level. One typical emulation used
the break request to switch to console mode and the reset to force
reinitializing itself.

The RESET and BREAK device numbers are included in the "device"
field to allow device number parsing by the emulation or interpreta-
tion. The RESET request is generated by typing the arbitrarily as-
signed '"reset" character on the user terminal. Likewise the "break"
request is generated by typing the "break" character on the terminal.
The '"break" and '"reset!" devices are initially unassigned and set %o

Zero.

4.2.8 DEVICE READY and DEVICE NOT READY Requests

The DEVICE READY request is generated by the procedure that con-
trols the assignment of virtual device numbers and the unix file
names. When the device number is assigned to a unix file, the
DEVICE_BEADY request 1is sent with the indicated device number to be
used or discarded as the emulation sees fit,

The DEVICE NOT READY request signals the disassociation of a dev-
ice number and a unix file, For example, the nova emulation uses
these two requests to set and clear the device ready bits of its vir-

tual disk platters.

21

4.2.9 RESET ALL FINISH Request

The RESET_ALL FINISH request acknowledges the receipt of the
RESET_ALL DEVICES request. The "device" field is set to the "reset"

device if one is assigned, otherwise the most recent value is used.

4.2.10 TAPEREAD FINISH Request

This request signals the completion of a previous TAPEREAD re-
quest. The "count"™ field indicates the actual number of bytes
transferred. If the "count" field is zero, then a tape mark was en-
countered, When a -1 is returned an end of filz was sensed. The
"deviece" field indicates which device is being acknowledged. Unas-
signed device numbers and non-tape devices in the initial TAPEREAD re-
quest will be acknowledged with a return in the "count" field of zero,

and an error message is written on the user's terminal.

4.2.11 TAPEWRITE FINISH Request

The TAPEWRITE FINISH request signals the completion of a previous
TAPE_WRITE request. The "count" field indicates the actual number of
bytes transferred. "pmail" generally assumes the write operation will

be successful once the device number has been validated.

4.2.12 SPTM FINISH Request

The SPTM_FINISH request acknowledges a previous SPTM request. The
spacing is assumed ~successful once the device number is validated.

The "count" field is set to +1 when valid and zero on any error.

4.2.13 WRTM FINISH Request

The WRTM_FINISH request acknowledges a previous WRTM request. The
request 1s assumed successful once the device number is validated.

The "count" field is set to +1 when valid and zero on any error.

4.2.14 REWIND FINISH Request

The REWIND FINISH request acknowledges a previous REWIND request.
The rewind is assumed successful once the device number is validated.

The "count" field is seft to +1 when valid and zzro on any error.

4.2.15 REWRITE FINISH Request

THe REWRITE FINISH request acknowledges' the completion of a
REWRITE request. Once the device number is verified the "count" field
is set to one indicating success, otherwise an error is signalled by

the "count" set to zero.

5 Device assignment and the pcontrol procedure.

The association of unix file names with the virtual device numbers
is handled by the "pcontrol" procedure. This association is a strict
one to one mapping. Typing the special sequence "control b?" to the
"pmail" - procedure enters "pcontrol", where "?" is any character other
than a "control b". The second character now becomes the first char-
acter of -the command. If this second character had been a "controi
b"™, then "pmail™ wouid interprete the two "control b"'s as a single

"control ' b" and generate a READ IMMEDIATE FINISH request (if the KEY-

BOARD is assigned).

The "pcontrol" procedure resads an entire line of text and executes
the appropriate command handler. While "pcontrol" is executing no
mail processing is done. All keywords used by "pcontrol"™ can be ab-
breviated to the shortest distinguishable string. The optional argu-
ments are parsed in the same manner allowing abbreviations. Numerical
arguments are interpreted as decimal numbers, if preceded by é zero,
they are interpreted as octél numbers. The following sections discuss

in detail each c¢ommand.

5.1 Assign Command

The "assign" command associates the named unix file to the given
virtual. device number. The Mini-Unix file can be either a ordinary or

special file. The command syntax is:

assign <device num> [to] {<file name> |RESET|BREAK|XEYBOARD|

CRTINONE} [[readiwritell[tape] | cread | cwrite]

The square brackets indicate optional arguments. The {...} re;
quires that one argument be chosen. AIf RESET or BREAK is used instead
of a Mini-Unix file name the RESET or BREAK device will be assigned to
the given,number.

The user's terminal is a somewhat ﬁnique device since it acts both
as a display and kéybbard device to the "pmail" procedure and as the
controller fof thé virtual access systém. So (rather than use the

normal unix name /dev/tty?) two special names, KEYBOARD and CRT, are

reserved for the user terminal's keyboard and display screen respec-
tively. Different virtual device numbers must be used for the KEY-
BOARD and the CRT since the device number must uniquely define the
Mini-Unix file it is assigned to.

If the device was already assigned "pcontrol" prompts the user to
ask if the device number should be reassigned. Reassigmnment causes
the current assignment to be terminated and the new file name as-
signed. If the first letter of the reply is "y", then the number is
reassigned, otherwise the command is ignored. When the "NONE" option
is used the device number is deassigned. Any further mail requests to
that number will result in an error,.

The file name can be qualified to indicate the type of access al-
lowed. The qualifier "READ" and "WRITE" only permit read or write
mail requests to the file respectively. This is only enforced at the
Unix system level, This has the result that WRITE requests‘will be
acknowledged without an error for devices assigned as "read" devices.
Tt remains the responsibility ofvthe user to recognize this problem,
In order to reduce the number of costly system calls, a special qual-
ifier "cread" or "ecwrite" is used to notify the "pmail" procedure that
this device will only be accessed via READ IMMEDIATE or
- WRITE _TMMEDIATE mail requests. "pmail" will then use iocal buffers to
speed the transfers. The default access is standard read or write ac-
cess. Typically papertape readers and punches will be assigned with
the "cread" and "owrite" qualifiers., Whereas a disk uses the default

access.

The last qualifier, "tape", signals that the file is to be a tape
device. If it doesn't exist a null length tape file is created.

Many errors are reported by the "assign" command. Usually the en-
tire command 1is ignored with no side effects. One exception is that
an already assigned device number could be deassigned even when the

command line is in error.

5.2 Reassign Command

The "reassign" command is syntactically the same as the assign
command . Functionally the M"reassign" command expects the specified
device number to already»be assigned and associates the number with
the given file name. If the device number is unassigned, then "pcon-
trol" prompts the user if the device number should be newly assigned.
A "y" as the first letter of the response assigns the device number

otherwise the command is ignored. The command syntax is:

reassign <device num> [to] {<file name> |RESET|BREAK |KEYBOARD|

CRTINONE} [[readiwritelltapel | cread | cwrite]

5.3 ! Command

The "!" command submits the text string that follows the "I" to

the Mini-Unix shell program for execution.

26

5.4 Debug Command

The "debug" command invoces a preliminary debug routine to assist
the of 2mulator I/0 systéms, This procedure scans the input keyboard
and Emmy to Unix mailbox just as the "pmail" procedurs does. But when
mail is received the contents of the mailbox are only displayed on the
terminal and the Emmy to Unix flag is cleared. The display is self-
explanatory and contains all of the mailbox values,

When a key is struck, "debug" collects a line of data, in octal,
to be sent as'a Unix to Emmy request. The input syntax is:

<request> <device> <highadr> <lowadr> <count>

All five values must be typed. "debug" then reports the success or
failure in trying to send the request. An unsuccessfull reéponse is
due to the Unix to Emmy mailbox flag still being set. This indicates
the previous mail request was not read.

"debug" mode is exited by typing a request with the request number

cF

set to octal 40.

o1
f»

Break Command

The "break" command changes the break character to the specified
character. The space, newline, erase, and kill characters are illegal
and ignored. The character "N" is special and signifies no character.

If "N" is used the break function will be turned off. The syntax is:

break [is] <break character|NONE>

27

5.6 Reset Command

The "reset" command changes the reset character to the specified
character. The space, newline, srase, and kill characters are illegal
and ignored. The character "N" is special and signifies no character.

If "N" is used the reset function will be turned off. The syntax is:

reset [is] <reset character|NONE>

5.7 Status Command

The "status" command displays all the current information on the
assigned device numbers. The device number is displayed-in octal fol-
lowed by the Mini—Upix file name it is assigned to. The next column
indicates with a "t" if tracing is turned on. Following the trace
flag is the character, mode, and tape indicator columns. A character
device is signalled by a "ec". The mode by "r","w" 6 or "¥" to indicate
read, write, or update mode respectively. The tape indicator is set

to "t" when true. The last field is the current location (in octal)

of the file pointer for the device.
5.8 b Command

The "control b" command causes the "pecontrol" procedure to ter-

minate and return to the "pmail" procedure.

5.9 Trace Command

The "trace" command forces all WRITE and WRITE_TMMEDIATE commands
to the specified device number to be additionally displayed on the
user's terminal. The optional "CFF"™ argument disables a previous

trace command. The syntax is:
trace <device number> [OFF]

The device number specified must have been previously assigned to a

Mini-Unix file (excluding the CRT).

5.10 €d Command

The "cd" command acts equivalent to the unix "chdir" command. The
current directory 1is changed to the text string that foliows.
"/ete/glob" is not used to interpret special charactérs, consequently

the name must be spelled out exactly. The syntax is:

cd <directory name>

5.11 Xick Command

The "kick" command forces a one byte READ IMMEDIATE Emmy to Unix
command to be processed for the specified device number. This 1is most
useful to restart a device, after a reassignment, when the emulator's

"device start" came prior to the reassignment. The syntax is:

kick <device number>

29

5.12 Clear Command

The "clear" command clears the two mailbox flags. This is used to

reset a hung mailbox.

5.13 Commands Command

The "commands" command redirects the input of command lines to the
specified file name. The commands are echoed on the display and exe-
cuted until an end of file is reached. Control then returns %£o the

user's terminal. The syntax is:

commands [from] <file name>

5.14 ¢ Command

The ":" command is a comment and causes no action. The text that

appears after the ":" is ignored,

5.15 Stty Command

In order to understand the implications of the possible settings
of the user tty it is necessary for the reader to study in the Unix
manual the sections STTY(I) and STTY(II). Initially the "pmail" pro-
cedure sets the terminal modes to:

raw, anyp, -tabs, nl0, tab0, cr0, nl, -echo, -lcase.

This will very closely send characters and print characters as typed.

The expansionvof tabs is the single exception.

30

When "pcontrol" 1is entered, the terminal modes are restorsd to
the values saved during initialization. The user may change and
display the current modes used by "pmail” with the "stty" command.
The syntax 1is the same as used by the Unix "stty" command. The ef-
fects for most settings are straight forward. "cooked™ mode is a
noteable exception. When a character is typed in cooked mode, vaccess
requests an entire line from the Mini-Unix system. After the line 1is
typed (with possible erase and kill processing), "pmail" processes the
characters by either sending a burst of READ TMMEDIATE FINISH requests
to the Emmy system; or ignores them if the'KEYBOARD was unassigned.
From the time the first character is typed untill the newline, vaccess
does not process any incoming mail. Once the line has been disposed
of, and before another character is typed, regular processing contin-
ues.

Using the KEYBOARD for block reads has some unpleasant side ef-
fects. Once the "pmail" procedure receives the READ request all "con-
trol b" processing is suspended. After the requeSt was handled (and
perhaps only partially so) "pmail" may pick up more characters that
precede another READ request and throw them away or generate
READ IMMEDIATES that will be unexpected. All in all the terminal XKEY-
BOARD should use the READ_IMMEDIATE requests to maintain data and pro-
gram integrety. Of course the CRT is not effected by the above dis-
cussion and is equally enamored to WRITE or WRITE IMMEDIATE requests

'~ for any setting of the terminal modes.

31

5.16 Exit Command

The "exit" command <¢loses all files and terminates the vaccess
program. The program interrupt (rubout character) will prompt the
user if vaccess should exit. A yes response will exit in the same

manner as the "exit" command.
6 Performance

The paerformance of an emulated 1I/9 device is a function of many
different factors, the most important of which is the "blocksize".
Mailbox resquests require a fixed amount of time to initially parse the
request type and device assigmment. Once a device is identified the
transfer is started. The transfer time between the operating system
and the Vaccess program is directly proportional to the blocksize.
So, for small blocksizes the initial overhead dominates the total in-
teraction time, while for the larger blocksizes the transfer rate is
constant. Because of the buffering scheme used by the UNIX operating
system, blocksizes above 512 bytes result in near constant transfer
rates. There is one notable exception which invdlves the use of‘ the
"raw" device interface. Raw devices bypass the normal buffer mechan-

~ism and use direct disk transfers to the Vaccess program. For raw
devices, the transfer rate 1is proportional to the blocksize. This

provides much higher throughput when the blocksize exceeds 1024 bytes.

UNIX makes no distinction, logically, between the physical dev-

ices connected to it and its file system, but the transfer rates can

32

vary dramatically. Ordinary files are organized into a file system
and are maintained by the operating system. Ordinary files are the
easiest to manipulate but are limited to about one megabyte in size
(this 1is a Mini-UNIX restriction). Special files are the actual dev-
iices available on the system. Our current system divides the disk
into two 16 megabyte scratch regions and two system regions used for
swapping and the file system., Raw special files are special files
that bypass the UNIX buffering scheme. They are restricted to com-
plete block transfers (multiple of 512), but are ideal for disk emula-

tions because of the considerable speed advantage,

Figure 6.1 shows the expected transfer rates for the various file
types and device structures., Tape devices refer to ordinary assigned
with the "tape" qualifier. The curve labelled "character" refers to
the expected ¢transfer rates of ordinary files assigned with the
"cread" or "cwrite" qualifier. The ordinary, special, and raw special
labelled curves refer to the rates when assignéd as block devices.
The curves were generated using blocksizes that are powers of two- and
the actual curve between these points may be lower because of the
internal blocking used by the UNIX file system. Data for blocksizes
corresponding to card images and print images (80 anq,132 bytes

respectively) fit very closely to the curve,

33

Transfer Rate (in kilobytes per second)

>

Special
Character :

.
-
l—

| L
1 1
1 2 4 8 16

‘8locksize (in bytes)

Ordinary

"60' .-

50 -1+

40 -t

Transfer Rate (in ki]obytes per second)
3
{
]

~ Raw Special

.»\v\\

Special

.Ordinarfz*

Tape

1 | { | |] |) 1 5
i | I 1 { T I T 1 »

32 64 512 1024 2048 4096 8192

~ Blocksize (in bytes)

TRANSFER RATES FOR EMULATED I/0 DEVICES -

FICHRE 6 1

Appendix A:

struct
{
int
int
int
int
int
int

mbox

command;
device;
bufadrl(2];
count;

flag;
unassigned[2];

} E_TO_UMBOX;

struct
{
int
int
int
int
int
int

mbox

command ;
device;
bufadr(2];
count ;

flag;
unassigned(2];

} U_TO_EMBOX;

Unibus loc.

Mailbox Structure and Location

Emmy bus loc.

0110
0112
0114
0120
0122
0124

0250
0252
0254
0260
0262
0264

X'F80o048"
X'F8004A"
X'Fgoouc!
X'F80050"
X'F80052"
X'F80054"

X'F800A8'
X'F800AA"
X'F800AC!
X'F800B0'
X'v80082'
X'Fg800B4!

34

Appendix B: Emmy to Unix Request summary

wn
i Request Mailbox Fields
Name Number . Device Bufadr Count
READ 0 Device number Address Byte count
WRITE 1 Device number Address Byte count
SEEK 2 Device number 32 bit offset bias
=0, absolute
>0, positive
<0, negative
READ TWMMEDTATE 3 Device number unused Byte count
WRITE IMMEDIATE y Device number TImmediate data Byte count
ABORT 5 Device number unused unused
RESET_ALL_DEVICES 6 unused unused unused
NULL 7-10 unused unused unused
TAPEREAD 1 Device number Address Byte count
TAPEWRITE 12 Device number Address Byte count
SPTM 13 Device number unused Direction
= -1, Backward
-1, Forward
WRTM 14 Device number unused unused
REWIND 15 Device number unused unused
REWRITE 16 Device number unused unused
EXIT 17 Return Code unused unused

Pmail action

Transfer 'count' bytes
Transfer 'count' bytes
Move file pointer

by bias

Request data in
acknowledgment

Transfer 'count' bytes
Terminate all active
requests

Terminate all active
requests for all devices

Transfer "count" bytes
Transfer "count" bytes
Space to indicated
Tapemark

Write a tapemark
Position at BOT
Position at start of
file and truncate to
zero length

Terminate the V-access
program

Appendix C: Unix to Emmy Request

3%

Request

Name

READ_FINISH
WRITE FINISH
SEEK_FINISH
READ_TMMEDIATE FINISH

WRITE IMMEDIATE FINISH
ABORT FINISH
RESET

BREAK
DEVICE READY

RESET_ALL_FINTSH
DEVICE NOT READY

TAPEREAD FINTSH
TAPEWRITE_FINTSH
SPTM_FINISH
WRTM_FINISH
REWIND FINISH
REWRITE FINTISH

Number

W N = O

[T, N

M
12
13
L]
15
16

Device

Device
Device
Device
Davice

Device
Device
Reset

Break

Device

Break
Device

Device
Device
Device
Device
Device
Device

number
number
number
number

number
number
device

device

number

device

number

number
number
number
number
number
number

Summary

Mailbox Fields

Bufadr

unused

unused

unused
Immediate data

unused
unused
unused

unused
unused

unused
unused

unused
unused
unused
unused
unused
unused

Count

Actual count
Actual count
Error flag *
Actual count

Original count
Error flag *
unused

unused
unused

unused
unusead

Actual count
Actual count
Error flag *
Error flag *
Error flag *
Error flag *

=1, success
=0, error

Pmail action

READ
WRITE

SEEK

READ IMMEDIATE or
typed character
WRITE IMMEDIATE
ABORT

'reset' character
typed on keyboard
'Break' character
typed on keyboard
assignment by
'pcontrol!
RESET_ALL DEVICES
deassignment by
'pcontrol' -
TAPEREAD
TAPEWRITE

SPTM

WRTM

REWIND

REWRITE

37

dppendix D: Pcontrol Command Syntax Summary

assign <device num> [to] {<file name> |RESET |BREAK!XEYRDARD]
CRTINONE} [[readiwritelltape] | cread | cwrite]

break [is] <break character{NONE>
ed <directory named>

clear

commands [from] <file name>

debug

exit

kick <device number>

reassign <device num> [to] {<file name>|RESET|BREAK|KEYBOARD!
CRTINONE} [[readiwritelltape] | cread | cwrite]

reset [is] <reset character|NONE>
status

stty arg?t,...

trace <device number> [JFF]
!<shell command>

“b

<command comment>

(11

(31

(4]

38

References

Neuhauser, C., "Emmy System Processor -- Principles of Opera-
tion", Technical Note No. 114, Computer Systems Laboratory,
Stanford University, Stanford CA 94305,

Neuhauser, C., "Emmy System Peripherals -- Principles of
Operation", Technical Note WNo. 77 (out of print), Computer
Systems Laboratory, Stanford University, Stanford CA 94305

Ritchie, D. M., Thompson, X., "The UNIX Time-sharing System.",
Communictions of the ACM, Vol. 17, No. 7, July 1974, pp

365-375

Shih, M., "Emmy/Unibus Interface Design Specification”, Techn-
ical Note No. 109, Computer Systems Laboratory, Stanford
University, Stanford CA 94305,

