
SU-326-P.39-30

A NOVA 3 EMULATOR ON THE STANFORD EMMY SYSTEM

by

Daniel R. Hafeman

June 1978

TECHNICAL NOTE NO. 141

Digital Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305

The work described herein was supported in part by the Department of Energy
under COAtract No. EV-76-S-03-03Z6-PA 39.

Digital Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, CA 94305

Technical Note No. 141

June 1978

A NOVA 3 EMULATOR ON THE STANFORD EMMY SYSTEM

by

Daniel R. Hafeman

ABSTRACT

A NOVA 3 Emulator based on the EMMY host machine and the Stanford
Emulation Laboratory is described. This is a "class A" code emulator
(emulates user accessible aspects of the NOVA 3) and includes a basic set
of emulated peripherals, such as paper tape, TTY and real-time clock. Of
particular interest is the software interface between the emulator and the
laboratory peripheral system via the UNIX operating system. Through this
interface the emulator user may employ the full power of UNIX to create,
organize and access file, while using the EMMY host for efficient emulation.

Instruction times for the NOVA emulation are provided together with
an analysis of the host1s effectiveness in supporting the emulation. An
appendix describes the emulation of the NOVA 3 front panel for laboratory
users interested in operating the emulator.

The work described herein was supported in part by the Department of Energy
under Contract No. EY-76-S-03-0326-PA 39.

1.0 INTRODUCTION

This paper describes the emulation of a Nova 3 computer on the
Stanford Emmy System. The Nova architecture, when' contrasted with
other target machines currently running on Emmy, displays some unique
architectural characteristics. It is not a register oriented machine
(only four accumulators) and has a very simple state structure;
specifically only three state flags. Because of this simple
organization, condition flags like underflow, zero, etc., do not exist
and therefore condition testing must be performed within the
instructions that generate the conditions. Therein lie the problems
that make "soft" Nova emulation extremely dificult and slow.

This discussion focuses on the implementation of the Nova 3 code
emulator. Two accompanying papers describe the Cartridge Disk
Interface and the Console Emulator.

2.0 NOVA 312 CODE EMULATOR

2.1 The Target Machine

Three versions of the emulated Nova (Novaem) have been implemented;
the first two are paper tape systems, and the third contains a 4047A
cartridge disk system. They are:

1) Novem - a Nova 312 using the Datapoint Genacc (1) program to
simulate teletype, paper tape reader, and paper tape punch 10
devices.

2) NovaemU - A Nova 312 using the recently implemented Mini UNIX
(2) interface to simulate teletype, paper tape reader, and paper
tape punch 10 devices.

3) NovaemCD - a Nova 312 with a 4047A cartridge disk system
installed. It uses the Mini UNIX system to simulate 10 devices.

Each of the machines represents a fully implemented Nova 3
minicomputer with hardware multiply/divide options installed. ~ll of
the machines support:

a) 32K words of memory,

b) ASR33 teletype: NovaemU and NovaemCD support
r~ader/punch. Novaem provides a teletype without
reader/punch.

c) DG paper tape punch,

d) DG Paper tape reader,

e) Real time clock,

f) Hardware multiply/divide,

g) A complete Nova 3 console.

Novaem fully represents (class A) the Nova" instruction set as
described in the Data General programmer's Reference Manual. No
additional discussion is required here.

There are limitations to the emulation specifically in the I/O area.
They are:

a) The Nova console is only a functional emulation of the
Nova 3 console. See Console Emulator User's Guide.

b) The Real time clock provides timing intervals of 83,
500, 50 and 5 ms as compared to 16, 100, 10 and 1 ms for a
real Nova. The times were increased to compensate for
instruction execution speed differences.

c) I/O t.iming is significantly different since I/O devices
are emulated by the Datapoint and UNIX systems.

d) The code emulator runs at approximately 10% of the speed
of a real Nova 3.

Novaem supports neither the memory mapped unit (MMU), nor the power
fail option. The power fail flag is wired off (power never fails).

3.0 IMPLEMENTATION

3.1 State Mapping

key to the design of any emulator is the representation of target
state in the Host. This data structure greatly influences the
performance of the emulator. Ideally all Nova registers would map
into Emmy registers and all Nova state flags would be represented by
equivalent Emmy flags.

~n early design of Novaem attempted to use the ICODE field of Emmy RO
to contain Nova state flags. This failed for two reasons:

1) Since Icode fields are swapped on subroutine calls, any
procedure called by a procedure could not gain acess to the
state information. Thus only a single level of subroutine
nesting could be allowed.

2) Interrupt handlers have no access to the state for the
same reasons.

This seems to be a severe limitation of the Emmy since there is no
other fast mechanism available to perform state testing. A global
ICODE space is needed.

Novaem attempts to create such a space by reserving R2 as the state
register as shown in figure 3-1. Bits 16-23 of R2 contain state
information tested regularly. Since these bits correspond to the
Icode field of RO a "fast" insert may be performed prior to testing.
For interrupt synchronization reasons, R2 is fixed and may not be
temporarily swapped out by any routine.

Rl, bits 14-0, contain the Nova PC. Bits 15-23 must = 0, and bits
24-31 define the Emmy main memory command field which specifies: 2
byte addressing, a two byte data word, right justified, and sign
extended. All Emmy main memory accesses use this format.

R5 is reserved as the instruction register, IR. All instructions are
parsed left to right as shown in figure 3-2. Decoding is implemented
with the double register left logical shift instruction using R4 and
R5 as the register pair.

R3, R4, and R6 are general purpose registers.

R7 is reserved for future software probes.

The Nova accumulators, stack pointer, and frame pointer reside in
locations 0-5 of Emmy control store. The 16 bit Nova registers ace
right justified. Bits 16-31 of each word remain unused and take on no
assumed value.

Locations 7-16 Hex (CR0-CRI5) provide scratch storage foe storing Emmy
state on subroutine calls. Any number of subroutine levels ace
allowed but all subroutines must cooperate in the use of the stocage

STATE (EMMY R2) :

31 29 24 23 22 21 20 19 18 17 16 15 14 13

II/II ICNTI 8 I B I111I 801 H I IS! I I C IIERI IRI/////I/II/I

**IR --Interrupt request; Emulates Nova 1/0 Bus Interrupt line.
It is set by any 1/0 device that enters an interrupt request,
i.e. increments ICNT.

IER --Interrupt enable request; ,Managed by INTEN/INTDIS
instr uct, ions.

C --Carry.
FI..AfY

**1 --Inter r upt 8'-tl. tI'I8I!IU-•• ; 1<- IR dur ing instr uct ion decode.

IE --Interrupt enable; IE <- IER during instruction decode.

H --Halt.

80 --Stack overflow flag; Managed by M03stack instructions.
When SO <- 1 thenI,IR <- 1 and ICNT <- ICNT +1.

B --Busy; Managed by M63WAIT. When Busy=0, Novaem is in console
emulator mode and is halted. When Busy=l, Novaem is either
in reset or code emulation modes.

8 --Start request; Set by M80, console emulator, when code
emulation is to be resumed. It is cleared by M63WAIT prior
to entering M60, code emulator.

**ICNT--A count of the number of interrupt requests pending. When
ICNT >0, then IR=1, and when ICNT=0, then IR=0 and 1=0.

**Note: An I/O device sets IR and increments ICNT when issuing an
an interrupt. 1<- IR at the beginning of M60. To retract
an interrupt request, a device must decrement ICNT and if
ICNT=0, then both I and IR must be cleared. This register
may be inspected while in console emulator mode by typing:
HR2/. The Hex contents will be displayed.

Figure 3-1 Novaem State Register

since no stack structure exists~ This means that a routine must be
aware of the memory and register resources used by any routine-It
calls.

Locations 17-25 Hex (IRl-IR15) are scratch storage for a single level
of interrupt. Therefore, Emmy interrupts must be disabled during the
whole of any interrupt procedure.

The I/O table starts at Hex 80 as illustrated in figure 3-5. Section
3J3 describes I/O mapping in detail. It is important here to note
tHat the device I/O registers, RegA-RegC, reside in this table. The
last entry in the table represents the CPU 10 functions: namely the
console switch register, address register, and display register.
These are maintained by the console emulator and used by the CPU
(device = 77) I/O instructions. The first entry into the table, a
record of zeroes, is the I/O table for all non ·installed devices. It
is currently used only as a header into the I/O table.

Figure 3-3 summarizes the above discussion by presenting an Emmy
control store memory map. Notice that the code emulator starts at Hex
400.

3.1.2 Nova State Register

As stated earlier, Emmy R2 is used as the Nova State Register. All
global CPU state information is found in this register. This state is
now defined (see figure 3-1).

IE, IER (bits 18,15), interrupt enable and interrupt enable request.
IE is the Nova interrupt enable bit. It is updated from IER prior to
instruction decode. IER is managed by the CPU I/O instructions.

I, IR (bits 14,17), interrupt and interrupt request. I is the Nova
interrupt flag. If interrupts are enabled (IE=lland 1=1 then the
interrupt u-code is executed at competion of the current instruction.
I is updated from IR prior to instruction decode. IR and leNT
describe the state of the interrupt request line on the Nova I/O Bus.
When IR=l, one or more devices are requesting an interrupt and ICNT
(~its 24-29) defines the number of requesting devices. If ICNT=0 then
I, IR must = 0. If ICNT >0 then IR must = 1.

To issue an interrupt request, a device must increment leNT and set
IR=l. To clear the request, the device dec~ements ICNT and if it = 0
proceeds to clear IR and I.

C (bit 16), Nova carry flag. Carry is maintained by the Nova
arithmetic and stack instructions.

SO (bit 20), Nova Stack Overflow flag. SO (- 1 when a stack ovec.flow
has been detected (see Nova programmer's Reference Manual). When SO
is set, during a stack instruction, both I and IR are also set and
ICNT incremented. If interrupts are enabled, the stack overflow teap
procedure is executed at completion of the current instruction.

S, B, H (bits 23, 22, 19); Start, Busy, and Halt. These bits define
the running status of Novaem. If Novaem is not in console emulator
mode, then Busy will = 1. Halt <- 1 when a request to enter console
emulator mode has been received. This can occur in two ways; 1) a
halt instruction is executed, or 2) the operator performs a console
break function at which time the Datapoint oc UNIX issues a halt
u-interrupt to set H. If H=l at the completion of the curcent
isntcuction, an exit is made to the console emulator and B <- 0.

The console emulator starts a Nova Program cunning in one of 3 ways
using start and halt:

1) S=l, H=l (single step). Start is cleared at instruction
fetch time. At completion of the current instruction, an
exit to the console emulator is made since H=l.

2) S=l, H=0 (continue). Stact is cleared at instruction
fetch time. Program execution will continue until H<-1.

3) S=0, H=0 and procedure M62ST is executed (start). A
Nova start function is performed as desccibed in the
programmer's Reference Manual. Execution will continue
until H<-1.

In all cases the Busy flag = 1 during execution.

3.1.3 Nova Macro States

Three Macro states are defined for Novaem:

1) Reset. Novaem is executing the initialization procedure;
Busy=l.

2) Console emulator. Novaem is emulating the Nova Console and is
not executing code; Halt=l and Busy=0.

3) Running. Novem is performing code emulation; Halt=0 and
Busy=l.

3.2 Code Emulator

Figure 3-4 is a flow diagram of the Novaem code emulator and Table 3-1
lists all procedures used in Novaem.

3.2.1 Instruction Sequencing and Control.

Routines M60-M64 perform all instruction sequencing and initial
instruction decoding. This code was designed with speed as the key
design go~l since some oc all of these routines must be executed once
per Nova instruction.

M60 starts the instruction cycle by updating the interrupt and
interrupt enable flags feom their respective request flags (section
3.12). Next, the instruction, already in IR (Emmy R5), undergoes

initial decoding and a branch is made to the appropriate execution
routine (see table 3-1). All instructions return to M60RETl - M60RET4
to increment the PC and start the next instruction fetch. ~t this
point, while the fetch is in progress, the halt and interrupt flags
are examined. If neither is set, the program loops back to the
beginning of M60. Otherwise, further testing is performed to
determine which flag is set. Halt causes a branch to M63 which in
turn clears Busy and exits to M80, the console emulator. If Halt =0
and Interrupt =1, M64 performs the interrupt sequence before returning
to M60. This involves fetching the instruction at (0).

Two interesting observations should be noted:

1) The PC is incremented at completion of the instruction
cycle since all relative address calculations use the
address of the current instruction as the base.

2) The state control flags are sampled while the next
instruction fetch is in progress. This allows normal
interrupt free sequencing'to overlap instruction fetch at
the expense of an extra instruction fetch when an interrupt
does occur, or a dummy fetch if halt is set.

Since five Emmy instructions are executed between starting the fetch
and examining IR, Emmy main memory access speed is not a performance
consideration here.

3.2.2 Instruction Execution

The execution units defined in table 3-1 perform further decoding and
execution of the instructions. Except for the I/O execution routine
(M04), speed was again the principal design consideration. However,
here is where speed degregation is at its worst.

M10, arithmetic instructions~ must decode four additional fields to
complete the instruction (figure 3-2). One can combine fields at the
expense of redundant code resulting in fewer decode steps. This was
done, for example, with the carry and shift fields in M10. Any further
combination would have resulted in an exponential growth in code
redundancy. For example, if the skip field is combined with the carry
preset and shift options, a 7 bit field results with 128 almost
i~entical execution routines required. M10, alone, would require 1/2
K"of storage. However, only two Emmy Instruction times (1.4 us) can
be saved.

MOO, M03, and M10 avoid the use of subroutines at the expense of code
redundancy. M10, however, does use the address generation routine,
P00, to calculate absolute Nova addresses: the code redundancy would
have been excessive otherwise. P00 must perform bounds checking on
each address to facilitate the auto increment/decrement features of
the Nova memory: a function that clearly needs hardware assistance.
Three Emmy instructions (2.1 us) are required just to determine that
the address is not in the auto increment/decrement range. If it is in
range, an additional 4 instructions may be required to determine if an
iricrement or decrement is to be performed.

START
1
o M60
1

DECODE INITIAL OPCODE
(BITS 0-4)*

1
I __________________ V

BIT 15=1
l\RITH
METIC
INSTRUC
TIONS

o M10
I
I
I·
I
I
1
V

DECODE FUNCTION
FIELD (BITS 5-7)

I
1

DECODE CARRY AND
SHIFT FIELDS

(BITS 8-11)
1

·1
DECODE NO LOAD

(BIT 12)
I .
I

DECODE SKIP
FIELD (BITS 13-15)

I
I
I
I
I
I
V

o MQJ0
BITS 15-13 I
NOT=011" I
CLASS ZERO I

INSTRUCTIONS I

BITS 15-13
=011
STACK AND
I/O

o M01
I
I
I
I

I INSTRUCTIONS I
I
V

DECODE ADDRESS
(BITS 5-15)

I
I
I
I
I
I
I
I
I

I
V

DECODE DEVICE
CODE (BITS 10-15)

I
1

/ \
DEVICE / \ DEVICE CODE
CODE=l / \ NOT=l
STACK. / \ 10 INSTR.
INSTR. I I

1 I
o M03 0 M04, M02
I I I

I
I
I

DECODE FUNCTION DECODE OPERATION

o M60
I
V

END

I
I
I
I
I
I
V

(BITS 5-9) (BITS 5-7)
I I
I I
I DECODE SPECIAL
I FUNCTION
I (BITS 8-9)
I I
I I
V V

*Bit numbering uses DG standard: Bit 0 = left most bit.

Figure 3-2. Instruction Decoding Chart

028

40

70

80

AA

400

NOVA STATE

SCRATCH AREA

11111111111111111111111llll/1
/////////////////////////////

INTERRUPT VECTORS

lllllllllil/lllllllllllllllll
/11//1////////////////1//1///

I/O TABLES

lllllllllll/lllllllllllllllll
///1/////////////////////////

. 1 CODE EMULATOR
703 1

704 1------------------------
1 CONSOLE EMULATOR

9C5 1

9C6 1-------------------------
1 INTERRUPT HANDLERS

A7F 1 1------------------------
1

\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/

Emmy Registe(ls:

Rl - Nova PC
R2 - Nova State
R5 - Inst(luction Reg
R3, R4, R6 - Scatch Registe(ls

Figu(le 3-3. Memo(lY Map fo~ NovaemU

NAME

M00

M0l

M02

M03

M04

MAIN ROUTINES

DESCRIPTION

Executes class zero non' I/O instructins (Bit 15 of
instruction=0) .

Decodes all I/O, CPU, and stack instructions.

Executes CPU instructions.

Executes all stack instructions.

Executes all non CPU instructions:

M04TTYI
M04TTY0
M04PTR
M04PTP
M04RTC
M04CDS

- teletype keyboard
- teletype printe('
- paper tape reader
- paper tape punch
- real time clock
- cartridge ~isk system.

M05 Executes Nova hardware multiply.

M06 Executes Nova hardware divide.

M10 Executes class 1 instructions (Bit 15 of instr. = 0).

M60, Performs initial instruction decoding, instruction
sequencing, and control.

M62 Novaem initialization routine:

M63

M80-M400

100-I127

M62ST - emulates Nova start function
M62RS - emulates Nova reset.

Provides the code emulator interface to to the console
emulator.

Console emulator.

U-interrupt handlers.

Table 3-1. List of Nova Routines and procedures
(PAGE. t or::.7)

NAME

P00,P03

P01

P02

P04

P05-Pl3

P14-Pl5

Pl6WFF

p2l-P25

KEY PROCEDURES USED IN NOVAEM

DESCRIPTION

Forms absolute Nova main memory address calculation.

Executes Nova I/O clear function for simple device
interfaces.

Sets done and issues Nova interrupt for simple
devices.

Emulates the Nova IORST pulse on the I/O bus.

Console emulator procedures.

Saves/restores Emmy registers in/from IRO-IRI5.

Used in NovaemU and NovaemCD to wait fo~ Emmy-to-UNIX
mailbox to become available.

Cartridge disk emulator procedures.

Table 3-1. List of Nova Routines and Procedures - Continued.
(PAGE: ;. aF2~)

(Jill" ZIt)

pI<O~~lfm

1\\)

I

I
I

I
I

I
r .
t

,~~
.. I/O ry=

~=====t:t===~,MAIL-I~,==;, .
I ~~ES

I
I

I
... 11

Ieo - II27 °

Del/leE I'
i.o

HA"'OLE~S

(Il/iERRl/pr)

Il'
I

r:.:Y- - .,
P02

I Pf(O(E~1
I/JONE I
L. ___

...J.

,
•
~

l.-_

I~or - -,
I Pl?oeE~EI
• aE"'~ I

), , I
0,- ___ ~

, t

,~

(110 .$KfP: p(!~ PC1>j..)
SkiP; pC~Pe1"e

I"t~ 2. R t:. S'E. r I
Hl6Z ..srAI{r

.. ~

J,av'e ::/
M03
STACK

INST,f
f/cT/bNS

\r

,It
m""
UPPlJrE Pc.
'Itt/srI? (/CTIoA/ .l'tr~F£rCH

.

I

" MOO
Ci.tfSS 0 '- __

II'IST,f- " J
11(..71,,/1.& I

I

I
I

m If)

C.LJtSS t
7"STII
U~/()HS

,it I ,If

\. !fALl

IYJ6"'f

'''' Z}I1EI?RlJPT

DISAt3LE IflrEf.{f(upTs
(0) ~ Pc.

1'c. +-7."" !fDP/(
:r,vsT~f)e71,,1tI fETCH

,
I f:>5'~P031
t M()~()v~Et

__ ~ t;PEI(III11f) j

I I FETcH I
I - - - -1

?...J
" (

rIlTEp./fIlPr)
..5eqf)EIIICF

FIGURE 3-4
/fOVA_~~

FLOw ___ D/~GRIIH1

The Stack instructions also suffer performance degregation, due to
decoding, since this class can only be detected by observing that bits
0-4 define an I/O instruction and that bits 10-15 specify device code
1. Then an additional decode step is required to specify the
instruction within the class.

The I/O instructions, supposedly executed relatively infrequently,
attempt to save space by the use of subroutines wherever possible.
These instructions interact with the u-interrupt handlers via the I/O
table, discusse~ in the next section.

3.3 I/O structure

The most complex data structure in Novaem is the I/O table; it
essentially emulates the Nova I/O Bus. Figure 3-5 shows the
organization of this table.

Each I/O recoed represents a single device on the Nova BUs, and the
order of the records in the table determines the relative priority of
the I/O devices. The Record consists of six Emmy words.

The first 3 words map one to one with the device I/O registers,
RegA-RegC, and are used by the Nova DIA-DOC instructions. Bits 16-31
of these words are generally not used.

The fourth word, called Reg Temp, provides temporary status
information and is used only by the CPU and Cartridge Disk I/O
emulators.

The fifth word (IOFR) contains the state of the I/O device as seen by
the Nova I/O Bus. The device busy and done flags correspond to the
same flags in the real N6va. Bits 8-13 define the I/O bus device
code.

Bit 0, interrupt, is set whenever an interrupt request has been issued
by this device; that is, 'the device u-intecrupt handler has
incremented ICNT in R2. Bits 16-31 define the done field (DONEF).
When the done flag is set, a bit specified by the device's I/O mask
bit assignment (see Nova Peripherals Manual), is also set in this
field.

Fbr example, the paper tape reader is assigned mask bit 11 in the DG
peripheral structure. Therefore, when a read operation completes, the
paper tape reader u-interrupt handler sets both the done bit and bit
20 in DONEF. The MSKO instruction uses DONEF to determine which new
devices will be generating interrupt requests and which old devices

.must retract their requests when the I/O mask is changed.

The final word of the set contains the address of the initialization
routine that is to be executed for this device during I/O reset
(IORST). Procedure P04IORST scans through the I/O table executing
each device's reset routine. Most peripherals use procedure P04CL as
their reset procedure and thus the last word in their I/O records
contains the label P04CL.

31 15

IOTZERO:

010
-----~------------------------------

010

< I/O device entries>

IOTCPU: ------------------------------------
FPSW: Console Emulator Switch Reg.

FPAR: I Console Emulator Nov~ Adde. Reg. I

FPDR: I Console Emulator Display·Reg.(DR) I

FPSAR: I Console Emulator Emmy Addr. Reg. I

IOFR: III III

RESET: I LABEL P04END (terminates reset)

IOTZERO --Serves as the table header record and contains all zeroes.

IOTCPU --Serves as the termination record of the table and as the
console emulator scratch area. Bit 15 of IOFR must = 1. It
terminates the MSK0 execution routine. Bit 0 of IOFR always
equals 1 (interrupt always pending) to terminate the INTA
interrupt search loop. RESET contains the label, P04END,
which terminates the IORST reset loop.

Figure 3-5 lOT Table (Page 1 of 2)

IOTxxx:
31 16 15

REG~: I111111111111111111111111 Device Reg A

REGB: I111111111111111111111111 Device Reg B

REGC: 11/111111111111111111///1 Device Reg C

TEMP: (Device scratch storage)

31 16 15 13 5 4 321 0

IOFR: DONEF 1 0 I DEV. NUM.INI~IBIDIII

RESET: CONTROL STORE ADDRESS OF RESET ROUTINE

xxx --Name of device. For example, IOTPTR is the paper tape reader
entry.

I --Interrupt issued; I=l when the device has incremented ICNT
and set IR.

D --Nova I/O Bus Done flag.

B --Nova I/O Bus Busy flag.

~ --~bort; A=l when an abort is in progress on this device. It
is cleared when abort finish mail arrives.

N --Not UNIX device. N=l when the device does not use UNIX
services. The real time clock is such a device.

DONEF --Done flag field. When done is set, a bit corresponding to
the device's mask bit is also set in this field.

DEV NUM--Contains the UNIX device number for this peripheral if

NOTE:

N=0. Bits 8-13 define the Nova I/O device code. Thus,
each peripheral has a three octal character UNIX device #.
The two most significant characters define the Nova device
code. Up to 8 UNIX devices, then, may be assigned to the same
Nova device code.

Bit 15 of IOFR must = 0 for all entries in lOT except for
IOTCPU where this bit = 1.

Figure 3-5 I/O TABLE (Page 2 of 2)

The I/O mask word facilitates the emulation of the Nova software
controlled priority interrupt system. As stated earlier, it is
maintained by the MSKO instruction execution unit. A device
u-interrupt handler issues a Nova interrupt (increments leNT and sets
IR in R2) whenever its DONEF field flanded" with IOMSK yields a non
zero result.

3.3.1 Device U-Interrupt Handlers

Routines 100-1127 form the set of device interrupt handlers. Unlike
the PDP-II Emulator (2), all interrupt processing is performed by the
appropriate u-interrupt handler when the interrupt is received. Since
only a single layer of interrupt nesting is allowed, Emmy interrupts
must remain off during this process.

The u-interrupt handlers must update device registers as required and
update. the devices I/O status. This generally involves setting the
done flag, clearing the busy flag, and issuing a Nova interrupt if the
device'S interupt logic is enabled~ that is, if the entry in DONEF
shines through the current mask word.

At completion of interrupt processing, the UNIX or Datapoint mailbox
busy flag is cleared and the previous Emmy process restored.

4.0 EVALUATION OF NOVAEM

4.0 Validation

V~lidation of Novaem constituted an extremely important phase in the
development of Novaem. Since the only specification of the machine
available is the Programmer's Reference Manual, there is no precise
description of the Nova 3 to which Novaem can be compared.

Validation was performed in 3 steps:

1) Sample code sequences defined in the programmer's
Reference Manual were coded and executed, and the results
carefully compared with those given.

2) The Nova 3 functional diagnos~ics tests were
successfully run. These included the TTY functional
diagnostics, Nova Instruction Exerciser, and the Nova
Arithmetic Tests. These programs perform extensive
instruction, addressing, and bounds checking.

probably the extra time required to design a class A code
emulator is more then compensated for during validation.
The author has found that testing an emulator without the
aid of diagnostics is at least as challenging and time
consuming as the design and implementation of the emulator.

3) Actual usee programs were run. Specifically Single User
Basic and the SOS Editor were tested.

4.lPerfocmance

Instruction execution speeds were measured by an evaluation program
which executed each instruction, in a loop, a fixed number of times.
The Nova real time clock was used as the time base. Table 4-1 shows
the results of this test and, from the table, one can conclude that
Novaem runs at 8 to 10% the speed of a real Nova.

Notice that Novaem compares most favorably with the Nova 3 on
instructions that have low decoding overhead and high function
content. For example, Novaem executes the RET instruction only 5.4
times slower then the Nova, but executes the primitive instruction,
ADD, 19 times slower. This is additional evidence that the Emmy is
more efficent at instruction execution then at instruction decoding.

The average Emmy instruction rate was measured directly using a
counter with Novaem executing the diagnostics and Single User Basic.
Dividing each Nova instruction execution time by the average Emmy
instruction execution time gives the average number of Emmy
instructions executed per Nova instruction.

4.2 Program Size and Efficency

--------------1-------------- --------------
INSTRUCTION I EMULATED TIME NOVA 3 TIME

I IN US IN US
AVE # OF EMMY **
INSTR/NOVA INSTR

I
--------------1-------------- --------------
LDA,STA 15.7 2.0
ISZ 18 2.4
JMP 14.55 1.0
JSR 16.65 1.2

For each level
of indit'ection
add

Fot' auto inct'e
ment and dect'e
ment add

Fot' Skip add

COM, MOV
NEG, INC, ADD
AND
ADC, SUB

I
I
I

Variations arel
due

MUL
DIV

PSHA
POPA
SAV
RET

to optionsl

MTFP, MTSP
MFFP, MFSP

DIA
DOA

3.5 1.0

8.8 1.4

1.0 .2

18.4 to 20.7 1.0
19.5 to 21.8 1.0
19.9 to 22.0 1.0
20.9 to 22.6 1.0

27.5 5.8
29.4 5.8

16.9 1.9
15.7 2.1
35.2 6.5
33.6 6.5
13.4 1.0
13.8 1.0

14.9 2.2
23.0 2.2

to 1.3
to 1. 3
to 1.3
to 1.3

21.7
24.8
20.1
23.0

4.8

12.1

1.3

28.5
26.9
27.5
28.9

38.0
40.6

23.3
21.7
48.3
46.4
18.5
19.1

20.6
31.77

MSKO 46.2 2.2 64.0
INTA 23.2
INTEN/INTDIS I 13.8
READS I 14.6
--------------1--------------

2.2 32.2
2.2 19.1
2.2 20.2

to 30.0
to 30.1
to 30.4
to 31.2

Table 4.1 Novaem Performance (Pf...';r: ' r;r-:\

** Based upon ~ovaem measurements, the average Emmy instruction
period = 724ns.

~verage Measured Execution Performance:
-------------- -----.--------- --------------1-----------------
PROGRAM NOVA INSTR. AVE # OF 1 AVE EMMY INSTR.

RATE EMMY INSTR 1 PERIOD
PER NOVA 1
INSTR 1

-------------- -------------- --------------1-----------------
Code Exercisor 51 KIPS 27.8 1 714 ns

1

Arithmetic 49 KIPS 28.5 1 716 ns
Test 1

1

Single User 52.5 KIPS 26 1 735 ns
Basic 1

-------------- -------------- --------------1-----------------

Table 4.1 Novaem Performance - Continued

(PkYE Z Dr.?:)

The Nova Code Emulator, not including the Cartridge Disk system,
requires 980 words of program storage along with another 40 words of
data storage. The entire program including u-interrupt handlers and
the Console Emulator, uses 1663 words of storage. Notice, in figure
3-3, that the Console Emulator requires almost as much storage as the
entire code emulatot. .

The following Emmy code efficiency numbers were determined by randomly
sampling the static code in the Nova Code Emulator:

A-occupancy 98%
T-occupancy 82%
Full usage 80%
Total bit occupancy = 91%.

These results indicate that the storage efficiency of Novaem isn't
too bad and considerably better then that reported fo~ the PDP-II
emulator. The reader should beware, however, that these numbers can
be deceiving. The author, while coding Novaem, often made use of
otherwise unused T instructions to preset registers for possible later
use--often not needed. However, such instructions were reported as
having full usage.

5.0 IMPROVEMENTS

5.1 Emulator Optimization

Novaem's performance is acceptable in the research environment for
which it was designed. However, as a Nova 3 computer, its execution
speed is clearly unacceptable. The redesigned Emmy alleviates the
speed problem somewhat by offering a factor of 3 speed improvement.
Careful recoding of Novaem could yield an additional 10% improvement.
However, even with both improvements, Novaem still doesn't match the
performance of a real Nova 3. It is clear from previous discussion
that Novaem needs hardware assistance in performing instruction
decoding. without it, one can avoid multiple decoding steps only by
processing the entire instruction as one opcode field, requiring a
sparse 64K word jump table. A personality module is required to
perform front end instruction processing~ This module, for example,
would detect the stack instructions by simultaneously monitoring the
device code and opcode fields of the class zero instructions. It
would present a single well defined high entropy opcode field to Emmy.
In additon, this module would perform the carry preset and shift
functions of class A instructions.

5.2 Emmy Optimization

Several ideas for improving Emmy performance have been collected over
the course of the project. Some of these are listed below:

1) Emmy needs a bit addressable register for containing
target state information, that isn't disturbed by subroutine
calls/returns or interrupts. The register should be
available as an operand to the condition testing
instructions, like the ICODE and CCODE fields of R0.

2) Some mechanism is required to specify the size, in bits,
of the registers to be used in arithmetic operations that
set flags~ for example, a carry out of the 16th bit should
set the Emmy carry flag in a 16 bit addition. Novaem spends
considerable time extending 16 bit operands to 32 bits so
that the Emmy condition codes can be used.

3) Novaem must mask out bits 16-23 of its program counter
on each increment in order to emulate the 15 bit Nova
program counter. This step alone is a .75 us operation.
Dedicating a register, in hardware, as the target program
counter, and specifying its size in software would eliminate
this step.

4) Of course the obvious things such as A and T machine
parallel operation, a wider control word (64 bits), and more
Emmy registers would surely improve performance.

6.0 CONCLUSIONS

The project was an incredible learning experience. It pointed out,
without doubt, that real time "soft" emulation of an existing
architecture is a tough job. However, with a fast host and hardware
assistance in decoding, it still may be feasible. A writable PLA chip
would be really useful. With it, one could exploit the benefits of a
hardware personality card, but still have a totally soft machine since
the emulator u-code would program the PLA at initialization.

REFERENCES

1) GENACC Program Listing
Digital Systems Lab, Stanford Electronics Lab
Stanford University, March 1978

2) Charles Neuhauser
"An Emmy Based PDPll/20 Emulation"
Diqital S~stems Lab, Stanford Electronics Lab
Stanfo~d ~nlverslty, Marcfi 1977

3) Charles Neuhauser
"Emmy System Processor -- Principles of Operation"
Digital Systems Lab, Stanford Electronics Lab
Stanford University, May 1977

4) Lee W. Hoevel
"Deltran: Principles of Operation. A directly Executed
Language For Fortran II"
Digital Systems Lab, Dept. of Electrical Engineering and Computer
Science
Stanford University, March 1977

5) Digital Equipment Corp
"PDPll/03 Processor ijandbook"
Copyright 1975

6) Data General Cocpofation
"programmer's Reference Manual--Nova Line Computers"
Doc # 015-000023-04
Copyright August 1976

7) Data General Corporation
"programmer's Reference Manual--Periphecals"
Doc # 015-000021-00 Rev. 00 .
Copyright ~ovember 1974

8) Data General Corporation
"Exerciser for NOVA 3"
Doc # 096-000363-02
Copyright 1976

APPENDIX

NOVA 3 CONSOLE EMULATOR

1.0 INTRODUCTION

Since the Nova Console Emulator is not a class A representation of the
real Nova 3 front panel, the description of the console in the
Programmer's Reference Manual should be discarded. The Nova console
emulator uses the system teletype (or CRT) as the physical interface
to the operator. The program is highly interactive, providing an
interface similar to LSI-II ODT (S), and as such may be easily
learned.

This document provides a functional description of the console
emulator.

2.~ ENTRY INTO CONSOLE EMULATOR MODE

Novaem enters Console Emulator Mode when:

1) Initialization is completed following startup of Novaem.

2) A Nova halt instruction is executed by the code
emulator.

3) The user issues a "break" command. The break command is
performed by typing a Control X on UNIX or a "cancel" on the
Data Point. The Halt flag is set in the Novaem State
Register resulting in an exit to Console Emulator following
completion of the current instruction.

4) The user issues a "hard reset" command. The Reset
command is performed by typing a Control Z on UNIX or a
Genacc Reset Command on the Data Point. An Emmy u-interrupt
is issued causing Novaem to abort the current instruction
and immediately execute the initialization code at which
time an exit to the console Emulator occurs.

At entry to the console Emulator, Novaem will type the following
message~

PC= aaaaaa DR= dddddd
@

"a" and "d" are octal digits. PC is the Nova Program Counter, and DR
is the Nova Consle Display Register.

Note: The contents of DR are only important following a
Nova Halt instruction. The Halt instruction AC field allows
the programmer to specify an accumulator to be displayed at
the console. Novaem accomplishes this function by setting
DR = <selected ac> and displaying it at entry to the console
emulator. The @ character is the console prompt indicating
that Novaem is ready for user console commands.

While Novaem is busy, the console serves as the teletype device.
Specifically, unlike a real ~ova,the switch register cannot be
modified. Only the Reset and Break commands are ~nabled.

3.0 FUNCTIONS

3.1 "I" Slash~

This command opens the memory location defined by the address
descriptor immediately proceeding it. If no descriptor is provided
then the last accessed Nova memory location is opened.

Four types of address descriptors exist.

1) Nova Memory

1-6 octal characters represents a 15 bit Nova memory
address. The console will respond with the octal contents
of the location.

2) Nova Internal Registeps

ACO-AC3
SP
FP
SR
PC
FL

- accumulators 0-3
- stack pointer
- frame pointer
- console Switch register (used by the READS instruction)
- Program Counter
- Carry, Stack OVF, and Interrupt enable flags

The console will respond with the octal contents of the
selected register in all cases except for FL. If FL is
selected, Novaem responds as follows:

@ FLI C=<one binary digit> O=<binary digit> I=<binary digit>.

Where "e" is the carry flag, "0" the stack overflow flag,
and "I" the interrupt enable flag.

3) Emmy Control Store

A CS<3 hex characters> addresses a control store location ip
the Emmy. The console responds with the hex contents of the
location.

4) Emmy Registers

A HR<0-7> addresses an internal Emmy register. The console
responds with the Hex contents of the location. This is
especially useful in examining the State Register, HR2.

Example:

@ 157/ 177776

The user types 157 followed by the "I". The console responds with its
contents.

If a "I" is typed with a null address descriptor, the console responds
by printing the address of the last Nova memory location opened,
echoes the "I", and prints its contents.

If an illegal address descriptor is entered, the "I" is ignored and
the bell rung. The user should correct the error, or abort the line
with a control Y .

3.2 nCR" Carriage Return

The carriage return closes the currently opened file, if no errors
have occurred, and processes any command that may have been given.

Commands are:

1) Update contents of opened location.

The user opens a location as described above and then enters
an octal or hex number, depending on the type of location
opened, and types CR. The cons6le responds with a CR LF and
a new prompt. The contents of the opened location ace
updated and closed.

2) Update the Switch Register, SR, and enter the Nova Code
Emulator: <~-6 character octal number><command>.

Valid commands are:

SS - Single step the Nova Processor. Novaem will exit
console mode, execute the instruction pointed to by PC, and
re-enter console mode as described in section 2.

ST - Start the Nova Processor. Novaem will perform a bus
wide IORST, set PC=SR, and enter instruction Emulation mode.

CT - Resume execution. Novaem will enter instruction
emulation mode fetching the instruction pointed to by pc.

BT - Perform Bootstrap. Novaem will perform the program
load function described in the programmer's Reference
Manual.

RS - Reset the Code and I/O Emulators. Novaem will perform
a bus wide IORST and return to console mode as described in
section 2 above.

If the octal number proceeding the command is null then SR remains
modified.

If an error is detected in the line typed by the usee, the CR is
ignored and the bell rung. The user should respond by either
correcting the error or explicitly aborting the command with a conteol
Y. Only 8 characters are accepted per entry. Any additional
characters will be ignored and the bell rung. The console emulator

assumes that input streams are left justified. Thus, if an octal
location is opened and an 8 character number is entered, then only the
leftmost six characte~s will be accepted.

Example:

@ ACO/ 012345 l000ST CR

Upon detecting the CR, the console sets SR=1000 and exits to M62ST to
perform the Nova start sequence which sets PC=SR. Thus the command
effectively starts Novaem running at location 1000.

Example:

@ PC/ 000500 l08S CR
PC= 000501 DR= 000500
@

The single step command causes a single Nova instruction to the be
executed and sets SR=10.

Example:

@ 157/ 177776 123 CR
@

If 157 is examined it will now contain 123:

@ 157/ 123

Example:

@FL/ C=l 0=0 I=l 010 CR
@

The carry flag will now =0, overflow will =1, and Interrupt Enable
will =0. If less then 3 characters are typed before the carriage
return, an error is indicated with a bell.

Example:

@100/ 012345 CR
@

The contents of 100 remain undisturbed.

3.3 "InClose and Increment

Closes the currently opened location and displays the contents of the
Nova memory location following the one last opened. The command
functions like carriage return except that it only accepts the "Update
Opened Location" command. All Code Emulator commands are rejected as
errors.

Example:

@150/ 000001 123 I
151/ 125000

Location 150 will now = 123 and location 151 is opened. Notice that
increment only operates on Nova memory addresses. For example,
suppose ACO is examined, after closing location 151, and closed with
the I command. Location 152 will be opened next instead of ACl:

@ACO/ 177777 I
152/ 127000

3.4 "Un Close and Decrement

Like the "I" command except that. the Nova memory location preceding
that last opened is examined.

Example:

@150/ 000001 123 D
147/ 001000

"Control Y" Abort Current Line

The currently opened location is closed, unmodified, and the current
line aborted. The console responds with *** CR LF @.

Example:

@123/ 177770 control Y ***
@

4.0 SWITCH REGISTER

While Novaem is executing code, the switch register is unavailable to
the user. To update the SR while a program is in execut.ion, the usee
should:

1) Enter a break (Control X).

2) update SR

3) Resume execution with at continue, CT, command.

Example:

@Control X
PC= 001011 SR= 000000
!SR/ 000000 <desired contents) CT CR

Code execution will resume.

No internal state information is lost since the exit to the console
emulator occurs at the completion of the 'current inst.ruction.

REFERENCES

1)

2)

3)

GENACC Program Listing
Digital Systems Lab, Stanford Electronics Lab
Stanford University, March 1978

Charles Neuhauser
"An Emmy Based PDPll/20 Emulation"
Digital Systems Lab, Stanford Electronics Lab
Stanford University, March 1977

Charles Neuhauser
"Emmy System Processor -- principles of Operation"
Digital Systems Lab, Stanford Electronics Lab
Stanford University, May 1977

4) Lee W. Hoevel
"De1tran: Principles of Operation. A directly Executed
Language For Fortran II"
Digital Systems Lab, Dept. of Electrical Engineering and Computer
Science
Stanford University, March 1977

5) Digital Equipment Corp
"PDPll/03 Processor Handbook"
Copycight 1975

6) Data General Corporation
"programmer's Reference Manual--Nova Line Computers"
Doc # 015-000023-04
Copyright August 1976

7) Data General Corporation

8)

"programmer's Reference Manual--Peripherals"
Doc # 015-000021-00 Rev. 00
Copyright November 1974

Data General Corporation
"Exerciser for NOVA 3"
Doc # 096-000363-02
Copyright 1976

