
DIGITAL SYSTEMS LABORATORY

STANFORD ELECTRONICS LABORATORIES
DEPARTMENT OF ElECTRICAL ENGINEERING

STANFORD UNIVERSITY' STANFORD, CA 94305

INTERPRETIVE MACHINES

by

John K. lliffe

June 1977

Technical Report No. 149

The work described herein was supported in part by the
Joint Services Electronics Program under Contract No.
NOOO 14-75-0601. The lectures also form part of a course
on "The Microprocessor and its Application" held at the
University College Swansea under the auspices of the
Informatics Training Group of the E.E.C. in September 1977.

SU-SEL 77-030

SU-SEL 77-030

INTERPRETIVE MACHINES

by

John K. Iliffe

June 1977

Technical Report No. 149

Digital Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, CA 94305

The work described herein was supported in part by the Joint Services
Electronics Program under Contract No. NOOOl4-75-060l. The lectures also
form part of a course on "The Microprocessor and its Application'! held at
the University College Swansea under the auspices of the Informatics Training
Group of the E.E.C. in September 1977.

SU-SEL 77-030

Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 94305

Technical Report No. 149

June 1977

INTERPRETIVE MACHINES

by

John K. Iliffe

ABSTRACT

These lectures survey attempts to apply computers directly to high level
languages using microprogrammed interpreters. The motivation for such work
is to achieve language implementations that are more effective in some measure
of translation, execution or response to the user than would otherwise be
obtained. The implied comparison is with the established technique of compiling
into a fixed general-purpose machine code prior to execution. It is argued
that while substantial benefits can be expected from microprogramming it does
not represent the best approach to design when the contributing factors are
analysed in a general system context, that is to say when wide performance
range, multiple source language, and stringent security requirements have to
be satisfied. An alternative is suggested, using a combination of interpre
tation and a primitive instruction set and providing security at the microprogram
level.

The work described herein was supported in part by the Joint Services
Electronics Program under Contract No. NOOOl4-75-060l. The lectures also
form part of a course on "The Hicroprocessor and its Application" held at
the University College Swansea under the auspices of the Informatics Training
Group of the E.E.C. in September 1977.

INTERPRETIVE MACHINES

J. K. Iliife

International Computers Limited

These lectures survey attempts to apply computers directly to
high level languages using microprogrammed interpreters. The
motivation for such work is to achieve language implementations
that are more effective in some measure of translation, execution
or response to the user than would otherwise be obtained. The
implied comparison is with the established technique of compiling
into a fixed general-purpose machine code prior to execution. It
is argued that while substantial benefits can be expect-ed from
microprogramming_ it does not represent the best approach to design
when the contributing factors are analysed in a general system
context, that is to say when wide performance range, multiple
source language, and stringent security requirements have to be
satisfied. An alternative is suggested, using a combination of
interpretation and a primitive instruction set and providing
security at the microprogram level.

The early lectures review the history and terminology of micro
programmable machines. Knowledge of conventional practice is
assumed. Readers already experienced in microprogramming should
skip rapidly to Lecture 3.

1 MICROINSTRUCTION DESIGN

If we abandon the conve~tional machine code (at least temporar
ily) as a means of defining the computer's function set it is
necessary to fall back on the next level of description, i.e. the
microcode. A very extensive literature has grown up around that
subject in recent years, but I think it is true to say that no
commonly accepted theory or principles have emerged: that is the
consequence of rapid changes in the process of manufacturing
logical devices which force a continual revision of the economics
of design. In the introductory lectures we shall study the
evolution of microprogrammed machines, but one can do little more
than present a collection of techniques. For detailed study of
application to machine language interpretation the student is
referred to Husson (1970), where an extensive bibliography to

1968 will be found, and to Boulaye (1971), for a shorter survey of
techniques. In the following notes I can do no more than provide
an outline of design principles and introduce terminology.

The branch of technology that enables a raw microprocessor to
interpret a given order code is termed 'microsystem design'. If
one machine is to interpret one order code it is a very localised
affair. If several machines must imitate two or three order codes
the need for standard procedures and documentation arises: in the
~jor application areas this is treated very much as an extension
of the logic design. Tucker (1967) and Husson have written infor
matively on that aspect of microsystems. However, high level
languages are not nearly as well defined as machine codes, they
are generally more complex, subject to greater variation, and out
si.de the control of any one laboratory. __ A survey by _ Rosin high-:
lights some of the difficulties involved, Rosin (1969). We shall
return to that subject in the last lecture, showing how it affects
machine design. For the time being, let us recall how a micro
programmed machine handles the interpretation of a single 'target
instruction set' or 'machine code'.

The first application of microprogrannning as a formal technique
is generally attributed to the designers of EDSAC-2 at Cambridge
University, Wilkes (1958). It is a systematic way of controlling
the flow of signals through the data paths of a processing unit,
each path, or in some cases each function of the processor, being
determined by a bit in a microinstruction. If we regard the state
of the processor as defined by the assembly of registers and con
trol flip-flops, then a microinstruction determines a simple tran
sition from one state to another. The attraction of the technique
is that transformations of any complexity can be composed by apply
ing a sequence of microinstructions: the limitations imposed by ad
hoc control logic, which are apparent in the areas of machine
definition and construction, are greatly reduced. At a time when
relatively complex target instructions are thought to be the key
to greater machine efficiency, the introduction of microinstruc
tions obviously has great attraction.

The source of microinstructions is a store, which will be
called the control memory in the present context. A single bit
in the microinstruction can control the transmission of an entire
field from one register along several parallel paths in one
processor 'cycle'; another bit, or group of bits, will select a
destination register and field. It is fairly easy to evolve a
requirement for fifty or more bits in the microinstruction to
control the possible data paths in the processor.

The second requirement of the microinstruction is to determine
its successor. Application of a sequencing rule determines the
string of actions carried out by the processor which, when properly
defined, will interpret a target instruction. One of the simplest

2

ways of sequencing is to.l>lace the next microinstruction address
lll· the one currently being obeyed. To achieve conditional branch
ing effects it is necessary. to use the state of the processing
logic in the calculation of at least part of the next address.
The elements of the machine can be visualised as in Figure 1.
The machine operates in three steps; i.e.:

1. Access control memory using the microinstruction address.

2. Use the microinstruction to control the state transition
of the processor logic

3~ Use microinstruction digits and the result of step 2 to
determine the next microinstruction address.

CONTROL
J('!. "'.

(STEP

MEr~ORY

M-INSTR. ADDRESS

(STEP 3)

MICROINSTRUCTION

PROCESSOR
LOGIC

STATUS

MICROSEQUENCER

Figure 1: Microprogram Control

3

The development of microprogrammable machines from the above
principle of d(~sign leads to great elabora,tion of detail, the
main considerations being (a) optimising 'the use ofcontral
memory, (h) achieving balanced timirig of control memory and
processor logic~ and (c) organising,the registers and data paths
of the processor to suit the class of target machines of interest.
I shall discuss each aspect of design~ giving examples from some
of the earlier microprogrammed machines.

1.1 Minimising the Cost of Control Memory

Exploitation of microprogramming was not widespread until
suitable techniques for loading and manufacturing control memory
had been developed. Such techniques are discussed by Husson
(Chapter 5), where it can be seen that the predominant forms of
construction allowed microinstructions to be read but not written
under program control. That is clearly sufficient for a well
defined and fixed instruction set. The later development of
semiconductor control memories with write capability has been
the main stimulus to further research in microprogram application.
With all memories, however, the main design requirement is to
deliver the information required at the right time and in as few
bits as possible.

Considerations of space lead to various forms of microinstruc
tion coding. The form in which a single microinstruction bit
controls a uniqtle processor g~te (or data path) is termed direct
control. If we can find sets of mutually exclusive control
signals, such that not more than orie is activated in a given
cycle, it is poss!~le to encode them: a field of K bits will
activate one of 2 control lines, or none at all. That is
obviously the case when one of, say, 8 registers can be gated to
one input of an adder. The same technique is used in machine
code design. It is illustrated below by the structure of the
IBM 360/30 microinstruction and by most of the 'first generation'
microcodes, all of which may be said to use encoded control, the
individual fields controlling microorders.

Three other common forms of coding deserve mention. In bit
steering the particular control lines activated by a microorder
(or bit) are determined by another field of the microinstruction.
The second field directs the first to one or another set of con
trol lines; it is appropriate when the processor logic can be
partitioned into sections that do not require activation on every
cycle (and can to some degree proceed in parallel). It has been
used in combination with other techniques, for example in the RCA
Spectra 70/45, Honeywell 4200 and IBH 360/25. Carried to the
extreme, the' microinstruction ends up as a function group and a
number of operand fields, which would be difficult to distinguish
at first sight from a conventional machine code.

4

The second technique derives from the observation that over
many sequences of microinstructions the values of certain control
lines will remain constant, therefore they can be set in advance
and. taken as an implicit extension of the microinstruction. That
technique will be referred to as preset control. It applies~ for
_example, if particular carry or shift paths are fixed in advance,
or if one of several possible register sets is being used.

Finally, it is easy to see that all 2
100

versions of a lOO-bit
direct control microinstruction will not be used, and instead of
attempting to encode individual fields it would be possible to
list all the distinct microinstructions in a particular application
and select those required by indexing a store containing the list.
For example, in a particular application there-may be less than
1024 distinct microinstructions. In that case a 2000 word micro-
pregram can be compressed into 20 000 bits, a saving of 90%. All
that is required is that the fully encoded microinstruction index
another store 100 bits wide containing the 1024 fully decoded
instructions (the second store is called the nanostore). The net
saving in storage space is thus 40%.

It is more like that some of the fields of the microinstruc
tion will be fully used, leaving a residual field to be handled
in the above way. The Nanodata QM-I machine, Rosin et a1 (1972),
provides an illustration. The 16 bit microinstruction is loaded
into one of the microregisters, a six bit field is then used to
select a 342-bit nanoinstruction. The latter can use the remain
ing ten microinstruction bits as operand selectors, so it is
appropriate to regard them as a form of preset nanocontrol
(Figure 2). At this point the designer faces the same set of
choices at nanomachine level as we have already discussed in
connection with micromachines. He could use direct control: in
fact, QM-I does not, but obeys a far more elaborate sequence of
nanoorders. The reader is referred to the literature for details •

...-______ -;MI CHO ItlSlf.:UCTI ON /\DDHESS
..t I

COHTrWL

nE110RY

~:ANO
STORE

r-11 CROREG I STERS

~'l I CfW J 11STRUCTI m~

--~'''\
PRESeT \
(l~)~ ,

" \ , \

"~CONTROL LI NES , --

PROCESSOR
LOGIC

Figure 2: Nanoprogram Control

5

1.2 Timing and Control Considerations

It will be shown later that interpreting one of the common
target instructions takes approximately 20 microorders and two
main memroy cycles. If a premium is placed on memory utilisation
it follows that the effective microorder rate must be ten times
that of main memory: to achieve that the early machines use a
horizontal or multi-order microinstruction that activates between
five and ten processor Piths in parallel. Themicroinstruction
rate is synchronised to "2 or "3 the memory cycle time So that a
1.S l1sec core memory would be associated with a 750nsec or 500nsec
microinstruction rate. Horizontal coding achieves speed at the
expense of generality and ease of programming: in the next
lecture we shall introduce a more 'relaxed' form of code in which
each microinstruction contains only one or.two micr(Jorders, which
is naturally called vertical control.

The elementary steps of the machine execution cycle have
already been indicated. If no overlap is attempted then the
major components--control memory and processor--are alternately
idle while the othel. completes its task (remember that read-only
memories, and even writable semiconductor memories, may require
very little time to recover for the next cycle). In order to
achieve higher performance it is necessary to use faster and
therefore more expensive components, or to overlap the elementary
steps. The options are superficially the same as in machine code
design. The main differences derive from the fact that micro
programs have been for the most part fixed, comparatively small,
and have made extensive use of multiway branch or switch instruc
tions: the alternative 'of using a sequence of tests to decode
a target instruction would simply be too slow.

A control memory address is frequently composed from several
fields whose values are determined at different points in the
machine cycle. The high order fields are normally known first,
so the construction of an address reflects a gradual narrowing
down of the alternatives until the exact microinstruction can
be fetched.

In the IBM 360/Model 30, for example, a block address is
found as part of the preset control, not normally affected by
the current microinstruction; a functional branch is a field
inserted directly from the microinstruction, and a switch is the
low-order two-bit field of the'control memory address, computed
from the processor state. Thus, the successor to any instruction
is within the current block of 256 (see diagram) and may be
dependent on the outcome of one or two conditions or register
values.

6

preset from processor logic
microinstruction

IBM 360/30 :~~~~~STRUCTION I BLOCK I FU;:~~=AL I SWITCH I
\ve can now see more clearly when the overlap of processor and

control memory cycles can be achieved. If the control address is
determined by the processor state at the end of the current micro
instruction then although access might be initiated on the basis·
of block/functional branch fields the final decision has to be
delayed until the state of the processor logic is known (the
example given above falls into that category).

If the control address is determined by the processor state at
the end of the previous instruction, then the control memory can
be accessed while obeying the current instruction, e.g.

TIME

----tOBEY
/

Previous l1inst: STATU~
l1inst: / OBEY / STATUS Current ACCESS

Next l1inst: ACCESS / OBEY------

The timing considerations just described are shared with very
much more sophisticated processors: they result from any attempt
to overlap one instruction with others and it is easy to see that
the more 'changes in direction' in the flow of control the less
effective are the overlap arrangements. It is true to say that
microprogram is more afflicted by conditional and computed
branches than machine language program, for which reason designers
are reluctant to throwaway the contents of the micropipeline and
may ask the coder to deal with various 'run-on' conditions. What
this means in practice is that one or two instructions in written
sequence after a branch may be obeyed, e.g. in decoding a hypo
thetical target instruction the microsequence is written:

Extract function field

Branch to address + function

m3 Increment target instruction counter

Here, although the branch m2 is taken, the following microinstruc
tion is still obeyed. It is in avoiding or dealing with such
coding peculiarities and in taking account of critical memory or
1-0 timing constraints that microprogramming differs from conven
tional coding, or has done so in the past. Luckily, increasing

7

hardware power has removed many of the characteristics of micro":'
program from modern machines, perhaps the only positive way in
which a microprocessor can be distinguished from a'mirti' is ih
!t:s dedicatIon to the task of modelling processors tather than
users' problems.

1.3 Highway and Register Organization

The basic requirements for imitating a given target ihsttuc~
tion set are:

(a) arithmetic primitives for composing the arithritetic.,
logical and addressing functions of the target machine;

(b) memory mapping and resolution compatible with the stbre
structure of the target machine;

(c) imitation of the internal control states, registers and
register access requirements of the target machine;

and (d) peripheral interfaces that reflect the forma.ts, sta.tUs
and timing expected by the target machine.

Within this field the degree of dedication varies with the
performance/cost objective. Different design tea.ms ha.ve gone
about the same task in quite different ways:· Husson (p4l4) tnakes
the point that although the IBM 360 and RCA Spectra 70 achieve the
same architecture the latter is a much more 'specific' design
than the IBN models.

In this subsection I shall illustrate features of micrbpro~
cessor design referring to the IBM 360/Modei 30 which 't.Jas One of
the earliest models of the IBM 360 range and, a.s it happens, the
subject of an early experiment in language oriented design that
I shall refer to later. Further details will be fouild iri Botila.ye
(1971) and Weber (1967).

Figure 3 shows the data paths in the centra.l processor of the
IBM 360/Model 30. There are twelve registers, each of one byte~
Apart from the main memory address and data buffers (MN and IQ no
specific allocation of content is made by hardware. T~ed.ata
paths are uniformly 8 bits. The microinstructioIi is 60 bits
long, encoded into the following micro order groups:

(i) Store access: Fields CM, CN, CU

(ii) Data flow: 4-bit literal field CK

(iii) ALU control: CA, CF, CB, CG, CV~ CD, CC, CZ

(iv) Sequencing: CR, CL

(v) Status: CS

8

STORE DATA BUS
-------------------------------------~;

MAIN &
LOCAL

MEMORY

,

. T
('.1 N '" CU

,CM
/ M-BUS

/

CN
/ N-BUS

STATUS
~ ~ . ~. ,

: Ii
I

:
~ ,
:: A-BUS
I I

CB
/

B-BUS /

/

: :
; '1 I A 1 I B leG
:! I CF I'
~ --'- lH - Ll/

-+R I J U V L T S G D
I H - L -I [Q / Q 1/ I'CV

: ~---~~y~--l
1 CC/~ ALU ! ICARRvl
I --~I;";;;""'-~; ,
I I

: CD" DEC IMAL I

: "'-J CORRECT :

: J i
I~ ____ ~~--~~--~~--~~------~------~ V + Z-BUS CZ / STATUS

'STATUS

Figure 3: Simplified Data Flow of the IBM 360/Model 30 CPU

9

For example, under group (i):

CM (3 bits) indicates: No action

Read from address IJ, UV, or LT to R

Regenerate

Write from R

eu (2 bits) selects main or local (register) storage.

Under'group (iii):

CA (4 bits) selects one of 10 inputs to the ALU through the
A register

CB (2 bits) selects one of R, L, D or the literal CKCK

CC (3 bits) selects the actual ALU function

CF (3 bits) modulates the A-input to ALU, i.e. high digit,
low digit, none, low or cross-over

CG (2 bits) modulates the B-input to the ALU

CV (2 bits) selects true,complement or six-correct form of B

CZ (4 bits) gives the destination, one of ten registers.

Thus in one microinstruction, which takes 75Qnsec, an 8-bit
arithmetic or logical operation is carried out, half a main store
cycle is controlled, and the next microinstruction is selected.
In the next cycle the main store operation must be completed
while other operations are carried out.

If we consider the loop of instructions which interpr~t$ the
target machine code it clearly consists of first fetching the
instruction, then looking at the function/format digits and pre
paring each operand by computing an address and acce$sing the store
when necessary, and then branching to the 'semantic' microsequence
that interprets the target function. The instruction will normally
terminate by servicing interrupts before proceding to the next in
sequence. Elementary IBM 360 instructions take between 15 and 30
llsecs in execution, i.e. 20-40 microinstructions: the large number
reflects the fact that any address or arithmetic calc\.l.lation
involving operands of more than 8 bits has to be carried out
serially by byte.

In order to achieve higher performance the mieroregisters
and internal data paths must be more closely matched to those of
the target machine, and supplementary functional units introduced
to minimise the 'mismatch' between the microprocessor and the
target system architecture.

10

2. GENERALIZED HOST MACHINES

\-Ie have seen some of the ways in which specific features are
built into micro-progranunable machine to, help in modelling particu
lar order codes. However, our main objective is to consider sys
tems at a level removed from machine,code, where the target
instruction sets can to some extent be chosen to suit the available
hardware: in the .1ast lecture we can attempt to answer the question
of ' whether the need for specific adaptation will still arise.

I shall now discuss design generalisations that have been
fa~ored in recent years as the result of rapid reduction in the
cost of storage and logi~al devices. In the latter context
'regularity' of hardware is at least as important as circuit or
g~te count, which is greatly to the benefit of the microprogrannner.
I shall refer to the class of processors under discussion as host:
machines in order to suggest their role and to avoid undue emphasis
on 'microprogram' or 'microprocessor' technology. In practice,
the principal use of host machines has been in the form of instruc
Set emulators (e.g. IBM 360 imitating the IBM 1401). The design
objective of producing a 'universal emulator' became feasible with
the introduction of writable control memories. It is clear from
t.he outset that machines capable of imitating any instruction set
at competitive speed could not be produced at competitive cost,
nevertheless such a machine is invaluable as a vehicle for research
into computer architectures. The IeL Research Emulator El, Iliffe
May (1972), the Standard Computer 'Corporation MLP-900, Rakocsi
(1972), the Stanford University E}mY, Neuhauser (1975), and the
Nanodata Corporation QM-l, Rosin, et a1 (1972), provide examples
of generalised facilities, while in the commercial· field the
Borroughs Corporation B-1700 is particularly interesting from the
point of view of memory allocation.

All the machines in this category use vertical instruction
coding which allows much greater flexibility in function sequenc
ing than the older horizontal designs, and at the same time a
simpler and more familiar form of program input. The reader may
compare the example of microprogramming given in Weber (1967) with
the program style of any of the machines mentioned above, which
bears comparison with a conventional assembly program listing
exc~pt for the primitive nature of the arithmetic, the absence
of address modification, and the elaborate field selection and
branching functions.

In moving to vertical coding it is normally the case that the
main memory system has a much higher data rate than the host needs,
even with the fastest control store. The extra capacity is used
in direct memory access by 1-0 devices, in dual processor con
figurations, and in many instances by using the main memory as a
source of microinstruction. The last option is particularly
attractive because it affords an esca~e from the rigid limitation

11

on microprogram that is imposed by a separate control store. On
the other hand it does impose a control structure which is
difficult to rationalise: perhaps the simplest view is to look
upon the interpreter as providing system standards, operating sys
tem interfaces, protection, etc, which are not normally present
at the microcontral level.

The following subsections correspond to the main design areas
noted in the last lecture. with illu&trations drawn from the
machines mentioned above. Further examples can be-found in less
readily accessible specifications for many machines currently on
the market.

2.1 Generalised Arithmetic and Data Paths

One of the obvious ways in which MSI or LSI components affect
the arithmetic system is in allowing register lengths to be
standardised at a reasonably high value, rather than making use
of specialised lengths seen in earlier machines. The effects are
to speed up the machine and to save control memory, because
operations previously performed by a loop of microinstructions
can now be carried out in one.

The host is still specialised with regard to arithmetic width
and shift paths. Two methods have been employed for variable
precision arithmetic up to a prescribed field size:

(i) using a third input to the ALU, which is in fact a mask allow
ing carries to propagate. The sec MPL-900 allows the micro
instruction to select one of 32 possible masks which can be
used to propagate carry to the 'normal' sign position. A
mask may also be used to permit operations on unpacked fields
such as 6-bit characters stored in byte positions. One of the
difficulties of working with unpacked data, however, is that
it may eventually have to be aligned to an external interface
such as the store address bus.

(ii) allow the effective ALU width to be variable, i.e. taking
sign, carry and zero-test signals from any position of the
ALU. This method is used in the El emulator and the B-1700,
where the sign is part of preset control. If there are more
than one arithmetic widths in use concurrently it is desirable
to have more than one preset sign position, selected by micro
instruction.

Variation in ALU width has an obvious counterpart in shift
functions. To reproduce exactly the shift patterns of a word of
arbitrary length it is necessary to preset the point at which end
connections are made, which is more difficult to engineer than
sign adjustment because a stream of bits is being handled. The
El emulator does allow shift lengths from one to 64 bits, but the

12

logic is expensive and most designers have settled for single or
double le.ngth shifts and rotations. For high level language
interpretation that is probably suffi6ient.

A final area where both the ALU and shifter are affected is in
the type of arithmetic carried out. The predominant types are
bLnary integer~ decimal, and floating point. Generalised
facilities for· the last are usually complex and of limited value
in either the commercial or research context. Decimal facilities
can be built into the ALU in varying degrees, from fully signed
operations down to facilities for detecting carries at the decimal
digit positions. The choice rests entirely on the final cost!
performance required. Although an important area of design it can
be 'factored out t in comparative studies of language-oriented and
fixed instructions set machines, for which reason I shall not
extend the discussion at this point. It is important to remember
that if a host has good arithmetic facilities then any lapse in
handling the control or data access side of a ·language will be
conspicuous, and conversely.

If the path from memory is not selective enough (and it usually
is not) facilities are required for extracting fields from micro
registers for input to the ALU. Such facilities are expensive and
may be confined to limited field selection or to particular
registers (e.g. in the shift unit). Thus, the B-1700 provides full
extraction on one 24-bit register and 6-bit subfield addressing on
most others. The El emulator can extract any byte from the 15
ulicroregisters for comparison or control purposes. The MLP-900
can conveniently use the third ALU input to select fields within
registers. Apart from the obvious hardware cost of selecting any
field in any register, space will be taken to identify the field
in microinstructions. It does not appear that high level languages
demand complete genera1ity~ and 'limitations could be accepted
simply on the grounds of coding efficiency.

2.2 Memory Mapping and Address Translation

The unstructured nature of machine codes, allowing instructions
to be used as data, and vice-versa, requires a strict correspond
ence to be maintained between the target machine and its represen
tation in the host. (There are exceptions: in mapping the IBM
1401 onto the IBM 360 it is more convenient for the latter to use
EBCDIC character codes, converting to and from BCD in those
instructions sensitive to BCD formats). In most instances the
target machine word is 'rounded up' when necessary to fit the
host, not attempting to make use of every bit in store. However,
the B-1700 goes to the length of resolving memory addresses to the
bit level and allowing any string of up to 24 bits to be read or
written, starting (or finishing) at a given position. In that
case 100% memory utilisation can always be achieved.

13

The memory word or part-word is made available. for analysis
iB- the microregisters. It is an advantage to be able to select
from tl.-lO or three potential· data regis ters in order to avoid
extra 'move' microinstructions. At this point there is also the
opportunity to map the data into a more easily managed form. The
'cros.spoints' of the El emulator and- 'language boards' of the
~~P-900 hoth allow the choice by program of alternative hardwired
data paths to and from memory. They may be used, for example, to
prepare an instruction for decoding, to align 6-bit characters
to 8-bit byte boundaries, or to handle parity conventions on a
'foreign' data bus. The diagram shows the cross point paths used
by El to read IeL 1900 instructions, which enable function,
register and modifier fields to be accessed without shifting the

STORE DATA REGISTER

Q
o

PA~~ITY

f"11 CROREG I STER
Oxxx

210

aaaa aaaa aaaal
7654 32101

Ofmm Of~~ aaaa aaaa
610 010

target instruction microregister. The effect of the crosspoint is
to save 5 or 6 steps in the typical interpretive loop of 25-30
microinstructions. It can be seen as complementing the internal
data selection functions: in a machine with powerful field
selection orders crosspoints would be less important.

Apart from data, addresses have to be matched to the conven~
tions of the host. For example, if the target machine uses
decimal addressing and the host uses binary then conversion must
take place before accessing the store. Similarly, if the target
machine operates in virtual program space then virtual to real
translation is called for. If page and segment table accesses
are implicit in each memory reference the address conversion could
easily exceed the combined steps of instruction decode and instruc
tion execution. The alternative of using hardware assistance-
allowing the host to work in virtual space--is expensive and still
leads to delay in memory access. Fortunately, in the environment
of high level language execution it is possible to work in a
virtual address space but avoid most of the overhead of address
translation.

2.3 Representing the Target Machine State

The primary data of an interpretive program are the registers,
the program counter, the instruction register, control flags,

14

channel status and control words of the target machine. A
generalised host would expect to have ro'om for the largest target
machine state of "intere$t, but even so it is unlikely to require
more than a few hundred bytes of storage "Jor that purpose, which
often justifies a file of fast registers, the scratchpad (or
local memory in IBM), in addition to the microregisters themselves.

It is a connnon requirement to access the scratchpad using an
index value. For example, a target machine 'register-register Y

instruction contains two indices. Microinstructions do not admit
the type of address calculation found in.machine instructions sets,
therefore it is necessary to carry out some preliminary scratch
pad address calculation. That happens oft'en enough--at least
Once in most target instructions--to justify building in predic
tive indexing hardware-, which works in the following way. Certain
microregister fields are designated (by preset parameters) as
scratchpad indices. When any of those field values changes a
scratchpad access is initiated (relative to a preset base), so
that the corresponding scratchpad element is available for read
ing or writing in the next microinstruction (compare the main
store address registers of the CDC 6600). The crosspoints for
the El emulator are designed to place the target instruction

PRESET INDEX DESCRIPTOR

MICROREGISTER~

BYTE'
RANGE'"

".

".
".

2

/

, ,

2 3 1

]

I

BYTE/
\A/ORD
ACCESS

8

BASE ADDRESS
IN SCRATCHPAD

register and modifier digits in the position of predictive indices,
allowing the register and modifier values to be used without delay.

The primary data of a high level language machine are the
intermediate results, control flags, and the control, stack and
environmental pointers that allow access to contextually relevant
data. For the most widely used languages the 'state' can be
mapped into a register file quite easily; moreover, its access
patterns correspond closely to those of conventional target
machines, hence the scratchpad organisation of a 'universal
emulator' is equally applicable to the major programming languages.
Whether there are alternative organisations suited to a wider
class of languages is a question we shall consider later: it might
be argued that a language is 'major' because it happens to fit
onto conventional hardware, and that when that constraint is
removed more attention can be given to problem-oriented languages.

15

2. L~ 9~neralised Control of Peripherals

At this point we must draw a broad distinction bet,.,een
e~ulation of the non-privileged users' instruction set and that
of the operating system. The latter would include instructions
for channel selection, requesting device status and sending
commands as well as receiving and sending data. It may also
include special addressing modes for channel control words, page
and segment table control, interrupt register and timer access,
handkeys, displays, fault indicators and so on. Full-scale
emulation, to the extent of running the target machine's periph~
eraIs, engineering test programs, channel commands and operating
systems involves at least twice the design effort of the non
privileged instruction set alone and will almost certainly involve
physi.cal adaptation of the peripheral interfaces.

In the present'context, recognising that most languages are
non-specific with regard to the means of peripheral control, the
preferred approach is to match the 1-0 statements to the host
system using machine language and microcode procedures.

2.5 The Effect of Large Scale Integration

The level of complexity achievable in bipolar LSI devices has
reached the point of presenting complete slices (2 or 4 bits) of
control or arithmetic circuitry in a single package. However,
such circuits are only realised in favourable commercialhechnical
situations, i.e. wide applicability and high functional content
in relation to edge connection. Some of the machine features
discussed above would fail on both counts. On the other hand, I
have indicated that language execution makes less stringent
demands then universal emulation, hence the 'generality' aimed at
by device manufacturers may well provide effective support for
the target instruction sets of interest in the context of high
level languages.

How much does generality cost in terms of performance? That
is impossible to say without detailed analysis of a range of
target machines. An indication can be given by comparing the
vertical encoding of the IeL register-store 'ORX' instruction on
the El emulator with the horizontal form for the 1904E. In terms
of microorders, the El obeys 30 compared with 14 for the special-
ised host. The difference is by sequence control (13:6), function
decode (5:2) and operand access (10:5). However, the most start
ling figure in each case is the ratio of support activity to 'use
ful' function: about 15:1. Our main concern in designing
language-oriented target machines must be to reduce that ratio.

16

3. INTERPRETATION OF HIGH LEVEL LANGUAGES

The existence of readily microprogramme,d. I:t9~t machines
naturally gives rise to speculation about the likely return from
bypassing the normal instruction set. To do so succeefully involves
the solution of a range of problems concerning definition, security,
expansion, maintainability and so on, whose solution is taken for
granted in conventional systems. Before looking at the broader
problems it would be reassuring to have some measure of the poten~
tial advantage of microcoding.t which is the subject of this lecture.

It is easy to find performance improvements in the region of
10:1 or more for a particular algorithm expressed in microcode
compared with machine code. In evaluating such figures it must be
remembered that they derive from three contributing sources:
(i) the inherent speed of microcode which is the result of the
simplicity of the instructions and the use of high speed control
store; (ii) occasional advantages of the microfunctions over the
target machine functions, especially in bit manipulation and con
trol sequencing; and (iii) advantages gained from bypassing the
architectural f"ramework of the target machine, especially its
protection mechanisms.,

It yould be meaningless to draw conclusions from isolated
algorithms. The minimum basis of comparison is taken to be the
combination of hardware and software supporting one of the major
programming languages, which provides the syntax and semantics
for a broad class of problems. The main parameters of performance
are taken to be:

(i)

(ii)

(iii)

(iv)

(v)

compile and load time

execution time

size of the support system

object program size

diagnostic aids in (i) and (ii)

The two techniques used for performance comparison are bench
mark testing, in which space and time measures are obtained for a
representative sample of source programs, and factoring, in which
performance is inferred from independent measures on .artificially
chosen statements. From the design point of view the second is
much more useful, though except in the case of Algol 60 there do
not appear to be any widely published sets of reference statements.
Needless to say, the object of design is to optimise performance
at a etven system cost over a prescribed set of languages.

The weights attached to the measured parameters will vary from
one class of use to another and no attempt will be made to deter
mine them here. The aim is to show howyariations in processor

17

function--specifically those brought a.bout by microprogramming-
affect the parameters (i) - (iv). At the same time the qualita
tive effect of diagnostic aids will be assessed. It will be seen
that the time measures depend partly on performance of a second
language which will be referred to as the system implementation
language (SI1) , so whether the machine is good at compiling
Fortran, say, depends on\vhat it has to do to produce executable
cod.e, and how well it does it: as far as possible the second fac..,..
tor will be isolated by measuring the overall performance of run
time support modules. Hhich applies also to execution of the func
tions of the language by stored microprogram or hardware becaus.e
that does not usually vary from one language implementation to
another and it can be measured in basic arithmetic speeds. It
would be relevent, hmvever, if one implementation chose to use a
decimal radix~ while another implementation of the same language
on the same machine used binary. Most of the language implemen
ta~ions reported in the literature have been rendered useless from
the design point of view by not keeping the executive algorithms
constant: in other words, if a performance gain P is generated
it is impossible to tell how much of P derived from the interpre
tive technique and how much from improved arithmetic or run-time
support.

The following subsections make a broad distinction between
procedure coding, illustrated by some of the scientific languages,
and data access, which is examined in the context provided by
Cobol.

3.1 Algol, Euler and Expression Evaluation

Factored measurements of Algol performance are reported by
Wichman (1973). In Table 1 I have abstracted some figures for
machines with roughly comparable arithmetic times. It is well
known that the Burroughts B-6700 uses a target instruction set
tailored to the representation of Algol: its effect can be seen
in the times for procedure entry. One would also expect it to be
effective in array assignement, but in this particular case the
compilers spot the indices [l,lJ etc and generate optimised code
for the conventional machines. The advantage of the language
oriented code is to simplify the compiler rather than speed up
execution.

The importance of individual statement times depends on the
weights attached to them in the final performance measure. In
general, arithmetic and array access operations have the highest
weights, procedure entry is an order of magnitude less important,
and array declarations an order of magnitude less than that. It
must be remembered that experimentally observed times reflect a
complex combination of hardware, software and support system.
Implicit in many decisions is the designers' assessment of
different language features, and his budget reflects an assessment

18

of the importance of the language as a whole.

TABLE 1: SOME ALGOL STATEMENT EXECUTION TIMES

Statement Execution time in microseconds

B-670O' IBM 370'/165 Univac 1108

x := 1.0 5.5 1.4 1.5
x ::;:: 1 2.7 1.9 1.5
x := y 3.9 1.4 1.5
x := y + z 5.5 1.4 3.4
x := y * z 11.3 1.4 4.0

e1[lJ := 1 5.3 1.6 2.7
e2[1,1] := 1 7.7 1.7 5.8
e3[1,1,1] := 1 11.3 1.7 9.0

begin array a[1:5O'O'];end 40'8. 242. 918.

p1(x) 28.6 60.7 127.
p2(x,y) 30'.5 83.6 137.

[Note: The times for the IBM 370' probably err on the low side

because of the effect of the cache]

In comparing object code size, Wichman gives the following
figures normalised with respect to Atlas:

Burroughs B-55O'O' 0'.16

Univac 1108 0'.31

CDC-66DD 0'.56

The advantage of the Algol-oriented intermediate form in compari
son with some of the best conventional systems is evident. To
understand how such results are obtained we must examine some
target machine states and the functions applied to them.

The advantage of language-oriented intermediate code is that,
provided an 'expression-evaluation' mechanism is built in to the
interpreter, the details of register transfers that are usually
found in machine code can be omitted. The compiler is simplified,
the code is more compact. It is not inherently faster, because
the data access is indirect, but in many instances that is more
than compensated by savings in other parts of microprogram. The
stack mechanism is the best known means of expression evaluation:
the reader is no doubt familiar with the reverse polish form of
code used in Burroughts B670O' and other mechines and the various
stack and environmental (display) pointers associated with it.

19

However, the apparent simplicity of the Burroughts represent a""'"
tion leads to some complexity in the machine functions themselves.
The value call operator (VALe) has to be able to detect and
interpret all the operand types that can legitimately be presented
in the course of computation, including indirect references
through the stack and procedural definitions arising in paramater
lists. In most applications the questions answered by examining
tqgs could be answered in advance by the compiler: as a general
rule unnecessary tests at execution time should be avoided except
as deliberate backup for the compiler, the support system or da.ta
security.

In contrast, dynamic tag testing is essential to languages
such as Euler and APL because the type of a variable is not pre
dictable at compile time. Let us examine the Euler representation
in greater detail and see how one of the target machine syllables
fits onto the architecture of the IBM 360/Model 30 described in
the first lecture (for greater detail, see Weber (1967».

The representation of a variable is a [tag,value] pair, the
tags having the following significance:

0 Null 5 Reference (m, lac)

1 Integer 6 Procedure (m, link)

2 Real 7 List (length, lac)

3 Boolean 8 (Unassigned)

4 Label (mp, pa) 9 Block mark (in stack)

The run-time environment consists of three storage areas: Program,
which is indexed by pa (program address) and link (return address);
Variable, indexed by lac (location), where all defined data is to
be found, and the Stack, which consists simply of block marks
giving static and dynamic chain links, references to parameters
in the Variable space, and intermediate results. Operators exist
to test the tag of a variable, e.g.

Is A an integer?

returns the boolean value true or false. Standard operators such
as + - * / mod max abs can~applied to numeric values, yielding
numeric results~nd failing if illegal tags are encountered.

A list is an ordered set of values, each of which is either q,u
elementary type or a list. Lists can be created dynamically, and
operators exist for enquiring the length, detaching the tail,
selecting an element and concatenating two lists. The existence
of reference variables causes the variable space to be maintained
by scanning pointers and recovering space which is no longer
referenced, updating pointers when compacting the active- stor~"

areas.

20

The Euler program area consists of sequences of operator
syllables (bytes), each followed by the appropriate number of
bytes giving literal values or indices. The program is represent
ed in reverse Polish form, e.g. the statement:

'if v < n or t = 0 then d else e' --
would be represented by the following string of 27 bytes:

I
I vale I I @ Ibn: disp I Ivalel

load (v) (load @n) en)

[§ lorl pa(d)11 thenl pa(e)1

t'est true? Y:d N: goto e

Note that the @ operator forms a reference on the stack, which
val~ converts to the corresponding value. The translation is
thus a simple reordering of the input string, replacing variables
by [block number, displacement] pairs. The latter are converted
into [mark number, loc] pairs on loading to the stack. In the
program the logical connectives give a destination to which con
trol passes if the top of stack element has the required value.
Figure 4 gives the microcode for the and, or and then operators.
A Boolean variable has the binary form-'OOllOOOy'~e. tag 3
and value y = 1 for true. The microregisters IJ are used as
program counter, UV points to the top of stack. For simplicity,
the address incrementing microorders, which are really byte
serial, have been written as 'IJ + l' etc.

The sample microsequence checks the tag of the operand and
interprets the logical connective in 8 microinstructions, 4 main
m~mory cycles, or 6 ~sec (7.5 if false). The corresponding IBM
360 target instructions would take the form:

CLI
BE
CLI
BNE
SH

o (STACK) , LOGT
ORTRUE
O(STACK), LOGF
TYPERROR
STACK, ='4'

The interpretation of that sequence 'takes 32 ~sec if f true ', 90
~sec if 'false'. It occupies 24 bytes of program as opposed to
3. That puts microprogram interpretation in its most favorable
li~ht: dynamic type assignment, minimal arithmetic content and
naive compiling techniques. It is easy to see that even with
dynamic type .assignment it is often possible for the compiler .. to

21

CYCLE: MN ~ IJ READ fvlAIN

IJ <E- IJ -f 1 /* FETCH INSTRUCTION */

G<E-R WRITE rlAIN

BRANCH ON RORI

II ~ .
(00) (01) (10) (11)

t~N ~ UV READ MAIN

BRANCH ON G2G3 /* FETCH TOP OF STACK */

. 1 • ..
(00) (01) (10) (11)

R If- R + #DO NRITE r'1A IN

HZ) LZ SET S4 SS

BRANCH ON G4G,...
~ J

• • ..
(00) (01) (10) (11)

MN +- IJ READ t1AI N

IJ ~ IJ + i /* DESTINArrION */

t - BRANCH ON G6SS
.. • ~

(00) : (01) (10) (11).

(OR" TRUE): I~ R {fIR I TE t1AIN

TYPE TEST S4 /* GO TO ERROR IF FALSE */ I

f"IN +- IJ READ MAIN
/* DESTINATION */

J~R \~RITE MAIN

GO TO CYCLE

Figure 4: Microcode for Euler Logical Connectives

22

predict the result of an operation as far as type is concerned,
and to omit further checks, as in:

if x =y .~ ..

which must give a Boolean on top of the stack.

The advantage in space which results from the syllabic form of
target instruction is a combination of two effects: the localisa
tion of the operator/operand space implied by the source language,
and the use of working registers implied by the stack. It would
be possible to compress an operand 'address' to 3 or 4 bits, for
example, provided changes of 'context', in which the full meaning
of the operand is expanded, can be effected without excessive
overhead. Unfortunately, very little is known about the conse-
quences of one choice or another; it is not even clear that pro
cedure boundaries should playa part in defining context. The use
of a stack mechansim may not be optimal: we can see that some
run-time maintenance activity is involved of which a compiler could
avoid, and it is known that the majority of expressions found in
practice are of very simple forms which do not require the full
generality of stack evaluation. Roevel and Flynn (1977) suggest
an alternative primitive form of instruction which recognises many
important special cases. Space gains of up to 5:1 for Fortran
compared with IBM System 370 optimising compiler are reported.

3.2 Cobol Interpretation

The major parts of a Cobol program are the Data and Procedure
Divisions. The program operates on files of records and uses
internal records for workspace. Each possible record format is
declared in the Data Division: the same physical record may be
mapped according to many different declarations, so there is no
question of concealing representations or placing descriptive tags
as parts of the record. The elementary items of data have a wide
variety of representations with a dozen or so basic data types.
The elementary items are named, and may be collected into named
groups, which in turn may be grouped, up to the level of the
record name itself. With the aid of PICTURE descriptions editing
characters can be inserted in a field for output (and conversely
for input) with the result that the 'type' code associated with a
data item can be of almost any length.

Within a record individual items or groups of items may be
repeated. The number of actual occurrences may vary, depending
on a field in a fixed position in the same record. Repeated items
are selected by following the repeated group or field name in the
Procedure Division by one or more subscripts, or by using an
implied Index value. The coefficients of the associated storage
mapping function can be determined by the compiler.

23

The Procedure Division is composed of a number of Segments,
~vhose significance derives from the days of programmed overlays.
A Segment comprises a number of labelled paragraphs, e;u'.h contain"
ing one or more sentences. A sentence consists of 0ne or more
Cobol statements.

Individual statements have a fairly simple syntax, a verb
followed by data names and Segment or paragraph names, e.g.

ADD p TO Q GIVING DAY_TOTAL ROUNDED

where P, Q and DAY TOTAL are data names. The definition of Cobol
implies strict observation of decimal rounding and truncation and
is subject to the types of operands and the size of intermediate
rE-.")sults (18 digits). The compiler is required to indicate if
operands are incompatible, or if intermediate results ~re out of
range. Some indication of verb frequencies is given by the
following measures from a benchmark test:

VERB DYNAMIC STATIC
USAGE USAGE

MOVE 30% 33%
IF 30% 18%
GaTO 11% 19%
ADD 10% 6%
PERFORH 7uI

/0 8%
WRITE 4% 3%
READ 3% 2%
Others 5% 11%

Thus for execution purposes seven verbs account for 95% of executed
statements, while the same seven account for almost 90% of stored
statements. The target code can be chosen purely as a compromise
between compiler and microcode, without concern for reconstructing
the source string (which affects APL coding for example). The
final form depends on what are regarded as reasonable limits for
field sizes in one Cobol source module. In the target instruction
listed in Table 2 the maxima are taken to be:

Variables: 4096 Indices: 256 Files: 256 ; Data areas: 64

Procedure variables: 256.

In the design used here, which is based on a Cobol interpreter
\.;ritten for the ICL El emulator, each Cobol statement is represent:
ed by a sequence of l6-bit target instructions.

24

TABLE 2:

.Format III

Format 112

·RUNTIME:

A COBOL TARGET INSTRUCTION LANGUAGE

f=O:
£=1:
f=2:
£=3:
f=6:

f=7:
£=8:
£=9:

f=lO:
£=11:
f=13:

4 12
f n

Source operand at DQT[n]
Destination at DQT[n]
Operand at DQT[n]
Operand n
Branch within code area, offset n
448
f l" v n

~-byte literal operand, type v
Scale operand, partial result, •.• , by n
Arithmetic; scale first operand by n

v [ADD , SUBTRACT, SUBTRACT-GIVING,MULTIPLY~
DIVIDE, DIVIDE-REMAINDER, ••. , etc]

Branch DEPENDING, via Procedure variablen
Branch n, depending on condition v
v [MOVE , COt·WARE, SET INDEX, DEBUG, STOP, ,.

and call RUNTI~m support]

ACCEPT TIME, DATE, DAY, DISPLAY,
OPEN, CLOSE, READ, WRITE, REWRITE, START, DELETE,
CANCEL, CALL, EXIT, etc.

Cobol control structure is the source of some complexity be
cause of the use of procedure variables and debugging options.
Apart from the normal branching determined by GOTO statements it
is possible to specify that a particular paragraph or sequence of
paragraphs should be PERFORMed one or more times, or until a
condition is sat·isfied (possibly varying some elements on each
repetition). A simple compiler cannot tell in advance which
paragraphs will be the subject of PERFORM, so it will insert a
possible branch to a 'procedure variable' at the end of each
paragraph: if PERFORM does not apply, the branch 'drops through'
to the next paragraph in sequence. Further complication derives
from the ALTER verb, which can be used to change the destination
of a GOTO. Rather than change the stored object code the branch
is again directed through the procedure variable table.

The complication arising from debugging is that any attempt
to access a named data item, paragraph, file or index may be
required to enter a debug procedure. In most compilers that means
that the code generated for handling debugged elements is differ
ent from (and slower than) normal code, even when executing with
DEBUG OFF. In interpretive systems the s.ame target code is
generated in all cases and the branch is taken in the interpreter.

25

In the Data Division all names are mapped unambiguously into
indices in the lists of data qualifi~rs (DQT), file and index
table. Procedure variables are indexed in the Procedure Division.
Information built up during the compilation phase can be carried
over into execution without change in many cases. Figure 5 shows
the modular structure of Cobol as fa~ as it affects the interpre
ter. The nQT contains a 64-bit descriptor for each variable,
givir..g:

the index of the base pointer for the record currently
c6ntaining the variable
offset and limit of the variable within the record area
whether the debug option applies
operand type and scaling information
if subscripted, the index of mapping parameters in the
subscript information table
if edited, the index of editing parameters in the edit
information table.

At runtime the data qualifier element DQT[n] is interpreted to
give the address pointer to a sequence of bytes (or bits) within
the area deflned by the base. About 20 microsteps are required to
extract tile data attributes and place them in micrbregisters,
followed by whatever is needed to extract the data itself and
present it for the next operation. Hence the management of the
DQT represents a significant part of the interpretive overhead.

In measuring Cobol performance the time and space requirements
of a set of test statements were measured, and final figures of
merit obtained by weighting the results according to dynamic or
static usage. For space, a gain of 1:3 resulted in comparison
with the ICL 1900 program requirements. It appeared possible to
improve on that by adding to the function set. For time, an over
all improvement of 1:2.5 was observed in .comparison with the
conventional compiler on the ICL 1900. That figure is disappoint
ing. It is accounted for in part by the arithmetic complexity of
Cobol. Nevertheless the average Cobol statement appears to need
about 200 microsteps (as opposed to 500), and in several instances
the conventional compiler generates code that runs faster than the
interpreter, for much the same reason as we saw earlier in looking
at Algol implementations. However, another factor proves to be
significant: the time spent in the interface between the language
interpreter and the supporting SIL.

26

4. INTERPRETIVE SYSTEM DESIGN

Improving on the range-defined instruction sets of fifteen
ye.ars ago without meeting comparable system objectives is not
particularly difficult. To present a realistic alternative it
must be shown how programming standa,rds can be maintained through
a very wide power range; it must be possible to develop and main
tain new languages and subsystems taking full advantage of the
architecture without endangering system se.curity; storage and con
trol structures must be created to suit modern applications rather
than those of the early 1960's. As far as I know, no 'microsystem'
has been developed with the required properties. Even so, it is
not sufficient to show that variable microcode achieves better
results than fixed instruction sets: we also need to be con
vinced that it is the best way of uS.ing modern technology. In
this lecture I shall draw together some of the results observed in
language-oriented machine design and suggest two alternative
system frameworks in'which the demonstrated advantages could be
retained.

4.1. The Effect on Lansuage Parameters

As I have already indicated, many of the measures of language
performance are affected strongly by the choice of supporting
system, which we suppose to be reflected in the semantics of the
System Implementation Language (SIL). For example, suppose the
SIL is in fact a copy of the Executive package of a conventional
machine range, and that a Cobol application package is obeyed
(a) using the fixed instruction set and (b) using a Cobol target
code such as discussed in the last lecture. Then the observable
effect on storage requirements would be as fo~lows (using typical
figures for the ICL 1900):

Fixed instr. ~code
Cobol target ~code
Executive (kernel) functions:
System functions (spooling,
command language, etc)
Cobol run-time support:
Cobol application - data (say)

- code (say)
Total

(a)
Fixed Instr.

16 Kbyte
0

16 Kbyte

20 Kbyte
25 Kbyte

9 Kbyte
9 Kbyte

95 Kbyte_

(b)
Fixed+Cobo1

16 Kbyte
9 Kbyte

16 Kbyte

20 Kbyte
25 Kbyte

9 Kbyte
3 Kbyte

98 Kbyte

In other words, the reward for a great deal of effort and invest
ment in control memory is negligible as far as storage is concerned.
Of course, one can present the picture in other ways and use the
speed gain to advantage if there is sufficient 1-0 capacity, but
the point remains that unless the support system gains similar
advantages from the interpretive techniques the improvement in
language performance will be seriously diluted. Let us assume,

27

therefore, that the SIL itself benefits fro~ the use of micro~
pl-ogram~ The effect may be see,n as space redl.lct:tQTI ?nd a gflin in
speed; more prob?bly it will be seen as illlprovement iJ;1 function
and flexibility. In reviewing the paJ;a.meters Listed earli~r
some of the requirements of the SIL will be noted~

(i) Compile and Load Time.

Substantial (say a factor of 5) gains in speeq can be maqe in
the portions of a compiler concerned with lexical a,nq syntCl.~

aqalysis, and to a lesser extent in code generatton~ by microcode
'interpretation of syntax tables. Where in-line coding has been
used in the past the speed gain is smaller but significant saving
in space is achieved by table-driven techniques. Compile time is
indirectly affected by the choice of object code llnder (ii)~

Load time is normally determined by the sllPporting system.
If all programs have to be mapped into a (virtual or real) linear
store the time and space overheads in starting a job step may be
significant (comparable with the compiler itself in many conven
tional systems). Horeover, the operating inconvenience is
significant and may result in such anomalies as sepa.rate 'batch'
and 'load-and-go' language systems. There is no reason, however,
why the SIL functions should not allow program execution with
explicit structure. For example, the operating environment shown
in Figure 5 can be maintained with no appreciable execlltion over
head on the part of the SIL~ In that case, the loaq time is
negligible.

(ii) Execution Time

Excluding arithmetic and 1-0, execution time is governed by
the time of access to vari~bles and the chqnge of control envirort~
ments, i.e. the subsets of the program space immediately available
from particular points in the program. It is the 'local~sation'
of the environment which allows short addresses to be used and
produces the greatest contribution to code compa~tion. The dia
gram shows the components of a generalised acc~s,~ chain. Pata
elements are assumed to be created in blocks (activa,tion reGards
or file areas) which are not necessarily cQntigupus in, stot'e, but
selE;ctable by an index n. Data identifieJ;s in the source text
are mapped into indices m, which are used to +ef~r to a ta.ble of
attributes (cf the nQT in Cobol) which give reco:rd po:Lnter~ off
set, size, type, and possibly other information derived by the
compiler and required during execution~ In g~ne~al~ several sets
of attributes may refer to the same record, and one set of
attributes can refer to several record area.s ~4ro~gh dynamic
adjustment of the control environment).

28

ill

SIZE, '"'

TYPE)

OBJECT CODE ATTRIBUTES

(SiATIC

...

g t----....

CONTROL
ENVIRONMENT

DATA
STORAGE

DYNAMIC)

Languages differ in the amount of attribute information
carried into the execution phase, the method of changing the con
trol environment, the time at which attributes are assigned, and
hence in the ways of distributing components of the access chain
in storage. In Fortran, for example, attributes and record
pointers can be absorbed into the object code; in APL the object
code and attributes are dynamically assigned; in Algol the (g,n)
pair and size can be absorbed into the object code while the type
is sometimes attached to the data in the form of a tag. Where
explicit maintenance of attribute and environment is demanded by
the language there can be significant gains from using microcode.
The ratio of addressing and control instructions to arithmetic in
the output of a conventional compiler is in the region of 4:1, so
assuming a 5:1 speed increase from microcoding the former an over
all speed gain of 5:1.8 or 2.8:1 is indicated. One would expect
more for the highly structured or 'dynamic' languages. Further
speed gains can be expected where specialised arithmetic functions
are called for, e.g. array, complex, controlled precision or
character string manipulation. A minimum overall gain of 3:1 in
speed of ~ ·production' compiler to range standards would be a
realistic objective for the languages in common use.

A language allowing free assignment of pointers (reference
variables) entails potentially serious support overheads in the
assignment and recovery of space, not necessarily eliminated by
the provision of a large virtual store. Even if the SIL recognises
pointers it seems preferable for the language subsystem to under
take its own space management to take advantage of known local
characteristics. The language 'pointer' is evaluated in terms of
tht~ underlying program structure at the time of use: that opera
tion occurs frequently and benefits from processor adaptation to
the extent that once an evaluation has been carried out the result
crin be used repeatedly on successive items of data. It is then
required of the SIL to allow language interpreters to work with

29

'absolute' as well as virtual addresses. In the next subsection
we shall see what that implies. (The alternative of having both
the SIL and the language microcode work in a virtual space support
ed by hardware can be disregarded because of the delay in access
ing memory and the poor store utilization that results.)

Space management functions are principally concerned with
searching for and updating pointers and physically moving blocks
of data. They are time consuming and in many languages their use
is discouraged by artificial means, so the gain from making them
more efficient would be seen in program flexibility (in the user
language and the SIL) rather than in execution time.

(iii) Size of Support System

The SIL code benefits in two ways: in many situations, e.g.
in compiling to language-oriented code, it has to do less; and
it does it more efficiently than other high level system program
ming languages, or more elegantly thana macroassembler. Size
reductions in the region of 5:1 have been achieved for compilers.
Each language microcode represents a space overhead of at least
10 Kbytes, plus a similar amount for the resident SIL.

(iv) Object Program Size

Tailoring the object code to fit the source language shows the
clearest gains over conventional systems because of the elimina
tion of unnecessary function, register and address bits. An
overall reduction in procedure size of 4:1 for large programs,
including attribute tables, would be a realistic aim. No signi
ficant gains in data mapping over a conventional system with word
and character addressing can be expected. Gains in space can be
seen as gains in main memory and channel capacity and to a smaller
extent in file space.

(v) Diagnositc Aids.

As any APL user discovers, interpretive methods can give
exceptionally good diagnostic information, sufficient to overcome
eccentricities of the language itself. Unfortunately, diagnostic
quality is one that cannot be measured and is often overlooked in
favoul' of marginal improvements in the others.

4.2 Microsystem Problems

The use of microprogram brings its own problems, and raises
the question of whether the implied comparison with machines of
the mid-60's was the correct one to use. In the system context,
the obstacles to using interpretive microprogram are as follows.

30

(A) Range Definition

The microprogram appropriate to a high performance machine is
.quite different from that of a slower microprocessor. There
is also an absolute speed limitation: a machine ~xecuting
t~rget instructions at 10 MIPS is obeying microerders at least
10 times as fast, which is beyond the power of vertically
encoded (i.e. easily programmed) host machines.

(B) Security

Microprogram derives part of its speed advantaLe by ignoring
the security checks inherent in fixed instruction sets. For
a small amount of microprogram under control ef the manufac
turer that is tolerable. The language performance figures
obtained in practice give the interpreter responsibility for
resources normally r~garded aspretected, i.e. absolute
addresses, in which case the security of the system is in the
hands of language implementors.

(C) Flexibility

Microprogram is a static form of code. It cannet easily be
meved in store. Fast centrol memories and scratchpads are
necessarily small, so. the problems of sharing resources
between interpreters and scheduling their use have to be
solved.

Of the above, (B) alone is sufficient to. prevent widespread
use of microprogram in commercial systems. Four types of response
can be recognised:

1. Embed the Microprogram in a Conventienal System

We have already noted that the space and time advantages are
diluted in the centext ef a conventional system, nevertheless,
those that remain are ebtained with minimum investment in redesign.
The IBM APL Assist Feature running under DOS/VS, OS/VSl and OS/VS2
has been made available on the System/370 Models 135, 138, 145 and
148 (Rassitt' and Lyen (1976». It consists of an additional 20
Kbytes of microprogram, resident in main store, which interprets
APL statements. It carries eut virtual--real address translation
according to the rules ef the host system, but returns control to
the host to service interrupts and page faults. Hence,system
integrity depends upon correct use ef addresses in the APL micre
code.

2. Extend Security Boundaries to the Microprogram Level

Thein-line checks that can be used witho.ut impalrlng perfor
mance are restricted to. key comparison, locko.ut en fixed sized

31

blocks of store, etc. The El emulator provides write protection
on 16-word frames of scratchpad, 64-word frames of control memory,
16 KW'ord frames of main memory and all 1-0 multiplex positions.
The main drawback to such schemes is their "inaccuracy and the
difficulty encountered in handling dynamically changing or moving
pcog~ams, which occur quite frequently in modern systems.

3. Control Address Formation in Microcode

An alternative, which can be seen as a generalisation of the
first approach, is to validate addresses when they are formed,
then to restrict their use so that further checks are unnecessary.
The SIL 1.s responsible for forming addresses (from segment capa
bilities); the language microcode can modify them within given
limits 2nd a~cess the store directly. Addresses are distinguished
by tags so that the SIL can find and update them when necessary,
independent of the source language. This method is used in the
Variable Computer System(Iliffe and Nay (1974» on the EI emulator,
which makes provision for tag manipulation. For complete security,
however, specialised hardware support is necessary.

4. Separate the Language Processors Physically

A special case of the second approach, which is attractive
because technology is available in the form of low-cost micro
programmable machines. The separation is conceptually physical,
in the form of multiple processor-memory pairs, but it could be
achieved by time-slicing.

From the general design viewpoint either of the last two
approaches can be used to provide a viable system model. Each
intends to cover a wide range of performance by using multiple
computers. From 3 it can be seen that because access to program
space is controlled the SIL and user programs can coexist in the
main memory and control store (if it exists), and that programs
can be distributed over the available memory space. This
'distributed program' model is well suited to the class of
applications with dynamically changing program requirements, or
which can he expressed in terms of cooperating parallel processes.

From 4 a more specialised 'dedicated language' model is derived.
Each program, together with its interpreter, has unrestricted use
of the local memory space of a processor-memory pair during
execution, but it is rolled in and out by the scheduler which forms
part of the SIL. The SIL microcode and system procedures can be
protected by holding them in read-only memory. Access to shared
data or to overlays must be through some form of secondary store
manager, which checks the rights of the user against declared
accessibility of the data, a relatively slow operation. The
disadvantages of the dedicated-language model are the sensitivity
of programs to physical store sizes, the amount of unptoductjve

32

traffic between central (i.e. secondary) memory and language
processors, the poor utilization of processor and memory resources
(if it is argued that processors and memory are give-away items,
why bother with microprogram at all?). Nevertheless, such a
system is in many ways the easiest to understand, it is least
affected by failure of one of the processor-memory pairs, and it
le.uds its·elf to the 'personal computer' mode of working in the
same way that private cars lend themselves to private transport,
however inefficient.

Each model presupposes the use of a system implementation
language (SIL) whose aim is to provide a set of functions that
can be used in all language applications to reduce development
effort and code duplication at both micro- and target machine
levels. In so ·doing it sets standards that can also be used in
the variable part. There is no doubt that certain operations such
as input-output and frequently used arithmetic procedures are
properly part of the SIL. How far one can go depends on the type
of system: if the integrity of system data cannot be guaranteed
(which is the case for dedicated-language models) the amount of
support the SIL can give is limited. On the other hand, commit
ment of the SIL to support facilities that are rarely used compli
cates the system and wastes resources. The interesting design
area is thus the 'fringe' of functions just inside or just outside
the SIL, which I can best illustrate by reference to the Variable
Computer System d.eveloped on the El research emulator and later
transferred to another host machine.

4.3 An Example of a_ SIL: The Variable Computer System

VCS is implemented at two levels of control: microprogram and
the system target language (VCSL) in which all compilers and sys
tem utilities are written. The VCS procedures can be called
either at microcode or at machine code level. It follows that if
a microprogrammed procedure is called from machine level, or vice
versa, some code must be obeyed to adapt from one level to the
other. It is undesirable to impose restrictions at this point
ber;:.anse one cannot always predict whether a procedure will be
committed to microprogram; the descrimination must be dynamic or
immediately before task initiation, at worst. For that reason
the list of procedure activations associated with any process con-·
tains both micro and machine level linkage information. Again,
it is undesirable to impose limits on the depth of procedure call,
therefore linkage information is stacked in main memory, the host
machine link stack having very limited use.

Procedure activations form part of the process state vector
(PSV), which also contains VCS registers, environment pointer,
current program pointer and various flag bits that are mapped into
the host registers. As calculation proceeds it is possible that
other host registers will be used, but it is required that all

33

state information will be contained in the PSV at points where a
change 0 f procedure or process may occur. In that \..ray the ves
can eftect process mQn2p;ement w-ithout explicit knowledge of the
language ~tate, and with a fair degree of independence of the
h;);:-; t machine. Similarly, by recognising tagged addresses the VCS
<::~W c:-lrry out store management without explicit declaration of
the n~Lpping used in current processes.

Ptocedut"(:-' entry and exit is controlled through a dynamic chain
of lU;,~ckvd 1 tnks. The purpose of the marks is to distinguish task
initiatioIl, system call and user procedure calls, allowing various
levels of restart to be employed and providing excellent diagnostics
at both control levels.

The intt~rpretation to be placed on a program segment is
indicdt(~d by a control type assigned to a particular compiler.
Control tyP!~ zero is useu for pure data: any attempt to obey it
will fail. Control type 1 is for system use, type 2 for VCSL
target code, and type values for language extensions, e.g. to
Cob-c}l, APL, etc, are assigned 3, !~, •.. on a global basis. The
control type is examined on procedure call and return (in the case
of machine level code), branching to the appropriate interpreter.

It can bee seen that the PSVvs are key control structures that
must be protected if system security is to be ensured. The most
efficient and flexible has is for protection is a capability scheme
such as that of the Basic Language t>1achine. Many of the VCS
functions are concerned with creating and manipulating abstract
system objects in a consistent way, the PSV's being the representa
tion of the abstract idea of a 'process'. In particular, we find
functions for:

(i) setting up operating environments (bases) and defining
the resources found in them;

(ii) creating, starting and stopping processes;

(iii) entering and leaving procedures;

and (iv) controlling access to resources.

Here a 'resource' is a storage segment, PSV, 1-0 device, or a set
of resources. The recursive nature of this definition allows each
base to be constructed as a tree. Clearly, the integrity of any
object depends in the end on maintaining the integrity of its
representation, i.e. the store, and of the procedures that are
applied to it, i.e. the activation records contained in the PSV's.

P~ogram structure is dynamic. A new base is able to share the
inforr:t;1tion available to its 'parent' at the time of its creation,
with the effect that a hierarchy of bases is set up with the
'system? at the apex. The base structure is important in building

34

language subsystems and dependent application environments:
Figure 5 shows a typical three-level base structure to which
one or more Cobol modules might be attached.

SYSTU'1
BASE

U\NGUAGE
SUBSYSTEM
BASE

LAr~G U.'\t, ~
DEVELOPi'lUlT
BASE

USER #1:

US~R #'2.:

COBOL OBJECT CODE
I, DATA BUFFERS

RECORD AREA PO IIHERS

- , SYSTEH I~ODULES LJI
l

COHPILER

RUNTIHE SUPPOR'l'

SUBSYSTEM DEVICES
& PROCESSES

] TEST PROGRA>!S &' DATA

~----{

IN!-'U'!'
OUTP,-i7
AHEi\S

DATA QUALIFIERS
EDIT INFORMATION
STORE MAPPING
INDEX TABLE
PROCEDURE VARIABLES
FILE DESCRIPTORS
INITIALISING CODE
DEBUG CONTROL

FROM PROCEDURE
DIVISION

Figure 5:

FHOH DATA
DIVISION

QUALIFIER
TABLE

VCS Base Hierarchy

35

Resources are defined by various types of capability, found
~n capability segments at the branch points of the program tree.
The most time-critical ves functions are those concerned with
forming addresses from segment capabilities (codewords), and with
using them to access memory. For sy~tem reasons a codeword refers
indirectly to store via a global segment table (GST). The corres
ponding address retains the GST index in order to check the
accessibility and position of the segment, which happens each time
an add~ess is loaded into a register (from the PSV). The access
c6de 1s used to control shared (read-only) access by several
processes or unique (update) access by individuals. All such
control and conversion together with the recycling of GST indices
and memory is exercised by ves microprogram, which provides a
good example of the application of microcode to system problems.

The 'read', 'write' and 'modify' instructions which should
strictly speaking be found on the ves function list are too
critical to handle by microsubroutine call. Users are therefore
allowed to issue them directly for binary data and trusted to
observe the limit and protection codes.

CODEWORD

GST[g]

ADDRESS [tag]

I [type] [GST index]

[access control] [fbI] I fbI: [limit]

[type] [GST index] [limit] [bl] [DATA]

absolute or relativised
byte location

In the course of design numerous candidates for positions in
the ves function list have to be considered. A fundamental pro
blem in extending the system is to achieve valuable effect with
out degrading overall performance. Sometimes a microcode branch
is obtained 'for free', while at other times a new facility en
tails extra tests in a critical path. The available control store
in a range of host machines has also to be considered. Options
considered in that light are:

(i) selection of set elements by key rather than index
value;

(ii) provision of paging facilities;

(iii) static chaining in the procedure activation list;

(iv) introduction of a third segment type consisting of a
set of tagged elements;

36

(v) use of semaphore variables for interprocess communication.

There are many possible variations of the addressing rule such
as (i)" and (ii) but each entails a loss of space or time that
skilled programmers will try to circumvent. The best programming
environment appears to be a set of dynamically constructed,
variable sized segments: they make optimal use of store and
"their access overheads are well understood. It is left to sub
"system designers to map programs efficiently onto the tree struc
ture, so that the store management implicit in a language such as
APL is carried out in part by the language subsystem (which is
aware of the details of APL usage) and in part by VCS functions
which provide the containers for the APL workspaces.

VCS procedures are not intended to represent high level con
trol structures directly, though they happen to be adequate for
VCSL and simple languages such as Fortran. Recognition of stlatic
levels involves extra work in procedure managem"ent and a variety
of actions dealing with special cases that could not be built in
to a fixed system, so it is intended that such structures be
mapped by the language microcode into simulated control stacks.
It seemed probable that mapping a display structure such as those
found in P~gol-derived languages would benefit from the ability to
manipulate sets of addresses, but the practical implementations
studied so far have used indirect mapping techniques, i.e. a new
form of 'pointer' peculiar to the language is invented and mapped
dynamically onto the VCS structures (cf the Data Qualifiers in
Cobol). The advantage of such techniques is that they can take
account of language parameters in the design of pointers, but we
noted earlier that 20 or more microsteps may be taken to recon
struct the absolute VCS address.

Finally, various forms of semapore signalling were consid
ered, but only a minimal 'busy' flag was implemented in the PSV.
The argument against greater elaboration is that the access
mechanism of the Global Segment Table already provides direct con
trol over shared resources, associating the control variable with
the resource itself, so there is little point in providing more
obscure functions to the same end. The release of a segment for
rescheduling at the end of a critical section is not automatic:
to force it at procedure exit, for example, would again imply
intolerable overheads, so an explicit VCS Release function is
required.

The Variable Computer System provides support for language
oriented microprograms in easily portable form: an investment of
about 8 Kbytes of microcode transfers the VCS functions, VCSL
support codes, compilers, utilities, etc to a new host machine.
It provides the type of support which is needed if the advantages
of microcode are to be fully realised for each language, and
although the function list could be improved in the light of .

37

experience I think it is a sound method of exploiting the current
generation of general purpose emulators, acknowledging that system
security rests on the correct design of language interpreters.

4.4 Future Developments

Careful choice of words has left' the most critical question
unanswered: leaving aside short-term expedients, is a general pur
pose host machine with two levels of writable control the best
starting point for processor design? I think not, for three
reasons.

Firstly, the arguments that have been used are based on mea
sures of high level language implementation, whereas a substantial
part of information processing still lies outside that well
defined area. Several systems of mediocre performance and limited
applicability have resulted from the assumption that a high level
language or set of languages would cover the field. On the other
hand without the formality of high level constructs it is diffi
cult to see how to make use of writable control memory.

But even accepting the limitations of high level languages it
can still be argued that the interpretive approach is not optimal
in many instances and that the system problems outlined earlier
have still not been solved. It has to be shown that there is a
better approach to language implementation with the range and
flexibility of conventional systems. We begin by drawing a
distinction between the inherent coding advantages of micropro
grammed interpretation and the benefits which result from using
fast storage or ducking behind the range architecture.

Microprogrammed interpreters have improved on fixed, complex
target instruction sets to the extent that much of the redundant
information in the instruction stream has been eliminated. The
figures given earlier show a reduction from 500 to 200 microsteps
for the average Cobol statement, or a reduction from 15:1 to 6:1
in the ratio of support steps to useful arithmetic and logic.
That suggests there is still room for improvement, which might be
found in a hybrid form of control in which in-line and interpre
tive methods can be mixed. After all, an interpreter is simply a
means of calling a subroutine from the target instruction stream:
its weakness is that the interpretive overhead is paid on every
syllable. In other words, if we think in terms of an 8-bit
function syllable, 128 codes might be assigned to hard-wired
functions, the other 128 to procedure entries in a variable
'control environment'.

The starting point I suggest is that each language should be
analysed from the point of view of minimising the product of micro
steps and space in the representation of programs, covering both
instruction and descriptor decoding. I expect, though I do not

38

know of a fully tested example, that the best code a compiler can
produce will be a mixture of microsteps and monosyllabic procedure
calls. In other words, the separation into 'interpreter' and
'target' code is no longer relevent.

The problem of presenting the control stream to the processor
at high speed cannot be solved by committing the entire interpreter
to control memory because it is now diffused through the program
space. As it happens, it was not at all clear how to do that in
a flexible roanner for a general purpose multilanguage system. The
conversion of 'microsteps' to 'nanoseconds' can best be treated in
the broader context of speeding up memory access rates: look ahead,
use cache buffers, or in the last resort pay more, but do not
attempt to deal specifically with the restrictions of control
memory or scratchpad. It will be noted in passing that for the
multicomputer architectures envisaged the path from memory to
processor is shorter than that of a centralised system with shared
store highways, therefore the benefit of high speed control memory
would be less marked.

Returning to system problems, we are left with (A) range cover,
which it was (and still is) hoped to achieve using multiple compu-
ters, and (B) security. The dedicated-language system is not
affected by the use of hybrid control: no assumptions are made
about program security. The distributed-program system does
depend on controlled address formation, which was achieved in the
Variable Computer System by a policy of trusting the language
subsystems. With hybrid control it becomes imperative to have
hardware-enforced protection. It is also the case that many of
the key VCS functions at present implemented by microsl.lbroutine
calls could be implemented by·in-line code.

The above discussion has been based on vaguely defined 'micro
steps' comparable with the vertical microinstructions of preserit
day machines. The reader may feel concerned at reverting to a
processor style not far removed from that of twenty years ago. Is
there a danger of inventing more and more complex microsteps and
repeating the evolutionary cycle that led to the IBM System/360
and other 'range' architectures? The return in space that can be
expected from more complex instructions depends on finding
frequently repeated diagrams or n-grams that can be suitably
packaged. They are more likely to occur in arithmetic, where
'hardened' floating point and decimal operation can be expected,
then in control sequences. It would not be surprising to see the
host arithmetic functions develop in the direction of current
machine codes (with type interpretation placed on descriptor or
tag gields), but the many nodes of data access appear to benefit
very little from complex addressing rules.

39

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE CO~IPLETING FORM

1. REPORT NUMBER r GOVT ACCESS'ON NO, 3, REC,P,ENT'S CATALOG NUMBER

Technical Report No. 149
4. TITLE (and Subtitle)

INTERPRETIVE MACHINES

7. AUTHOR(s)

John K. Iliffe

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Stanford Electronics Laboratories
Stanford University
Stanford, CA 94305

11. CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Research
Department of the Navy
Washington, DC 22217

14. MONITORING AGENCY NAME 8< ADDRESS(il different from Controlling Office)

16. DISTRIBUTION STATEMENT (of this Report)

5. TYPE OF REPORT 8< PERIOD COVERED

Technical Reprot
6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBER(s)

N00014-75-060l

10. PROGRAM ELEMENT. PROJECT. TASK
AREA 8< WORK UNIT NUMBERS

12. REPORT DATE

June 1977
13. NUMBER OF PAGES

15. SECURITY CLASS. (of this report)

Unclassified
ISs. DECLASSI FICATIONI DOWNGRADING

SCHEDULE

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

17. DISTRIBUTION STATEMENT (01 the abstract entered in Block 20, if different from Report)

lB. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and Identify by block number)

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

The lectures survey attempts to apply computers directly to high level
languages using microprogrammed interpreters. The motivation for such work is
to achieve language implementations that are more effective in some measure of
translation, execution or response to the user than would otherwise be obtained.
The implied comparison is with the established technique of compiling into a
fixed general-purpose machine code prior to execution. It is argued that while
substantial benefits can be expected from microprogramming it does not represent
the best approach to design when the contributing factors are analysed in a

DO rORM
1 JAN 73 EDITION OF 1 NOV 65 IS OBSOLETE 1473

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(WlIen Data Entered)

general system context, that is to say when wide performance range, multiple
source language, and stringent security requirements have to be satisfied.
An alternative is suggested, using a combination of interpretive and a
primitive instruction set and providing security at the microprogram level.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

JSEP REPORTS DISTRIBUTION LIST

Department of Defense

Director
National Security Agency
Attn: Dr. T. J. Beahn
Fort George G. Meade, MD 20755

Defense Documentation Center (12)
Attn: DDC-TCA (Mrs. V. Caponio)
Cameron Station
Alexandria, VA 22314

Assistant Director
Electronics and Computer Sciences
Office of Director of Defense

Research and Engineering
The Pentagon
Washington, D.C. 20315

Defense Advanced Research
Projects Agency

Attn: (Dr. R. Reynolds)
1400 Wilson Boulevard
Arlington, VA 22209

Department of the Army

Commandant
US Army Air Defense School
Attn: ATSAD-T-CSM
Fort Bliss, TX 79916

Commander
US Army Armament R&D Command
Attn: DRSAR-RD
Dover, NJ 07801

Commander
US Army Ballistics Research Lab.
Attn: DRXRD-BAD
Aberdeen Proving Ground
Aberdeen, MD 21005

Commandant
US Army Command and

General Staff College
Attn: Acquisitions, Library Div.
Fort Leavenworth, KS 66027

Commander
US Army Communication Command
Attn: CC-OPS-PD
Fort Huachuca, AZ 85613

Commander
US Army Materials and

Mechanics Research Center
Attn: Chief, Materials Sci. Div.
watertown, MA 02172

Commander
US Army Materiel Development

and Readiness Command
Attn: Technical Lib., Rm. 7S 35
5001 Eisenhower Avenue
Alexandria, VA 22333

Commander
US Army Missile R&D Command
Attn: Chief, Document Section
Redstone Arsenal, AL 35809

Commander
US Army Satellite Communications

Agency
Fort Monmouth, NJ 07703

Commander
US Army Security Agency
Attn: IARD-T
Arlington Hall Station
Arlington, VA 22212

Project Manager
ARTADS
EAI Building
West Long Branch, NJ 07764

NOTE: One (1) copy to each addressee unless otherwise indicated.

1 7/77

Commander/Director
Atmospheric Sciences Lab. (ECOM)
Attn: DRSEL-BL-DD
Whi te Sands Miss ile Range, NM 88002

Commander
US Army Electronics Command
Attn: DRSEL-NL-O

(Dr. H. S. Bennett)
Fort Monmouth, NJ 07703

Director
TRI-TAC
Attn: TT-AD (Mrs. Briller)
Fort Monmouth, NJ 07703

Commander
US Army Electronics Command
Attn: DRSEL-CT-L (Dr. R. Buser)
Fort Monmouth, NJ 07703

Director
Electronic Warfare Lab. (ECOM)
Attn: DRSEL-WL-MY
White Sands Missile Range, NM 88002

Executive Secretary, TAC/JSEP
US Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709

Commander
Frankford Arsenal
Deputy Director
Pitman-Dunn Laboratory
Philadelphia, PA 19137

Project Manager
Ballistic Missile Defense

Program Office
Attn: DACS-DMP (Mr. A. Gold)
1300 Wilson Boulevard
Arlington, VA 22209

Commander
Harry Diamond Laboratories
Attn: Mr. John E. Rosenberg
2800 Powder Mill Road
Adelphi, MD 20783

HQDA (DAMA-ARZ-A)
Washington, D.C. 20310

2

Commander
US Army Electronics Command
Attn: DRSEL-TL-E (Dr. J. A. Kohn)
Fort Monmouth, NJ 07703

Commander
US Army Electronics Command
Attn: DRSEL-TL-EN

(Dr. S. Kroenenberg)
Fort Monmouth, NJ 07703

Commander
US Army Electronics Command
Attn: DRSEL-NL-T (Mr. R. Kulinyi)
Fort Monmouth, NJ 07703

Commander
US Army Electronics Command
Attn: DRSEL-NL-B (Dr. E. Lieblein)
Fort Monmouth, NJ 07703

Commander
US Army Electronics Command
Attn: DRSEL-TL-MM (Mr. N. Lipetz)
Fort Monmouth, NJ 07703

Commander
US Army Electronics Command
Attn: DRSEL-RD-O (Dr. W. S. McAfee)
Fort Monmouth, NJ 07703

Director
Night Vision Laboratory
Attn: DRSEL-NV-D
Fort Belvoir, VA 22060

Col. Robert Noce
Senior Standardization Representative
US Army Standardization Group, Canada
Canadian Force Headquarters
Ottawa, Ontario, Canada KIA)K2

Commander
US Army Electronics Command
Attn: DRSEL-NL-B (Dr. D. C. Pearce)
Fort Monmouth, NJ 07703

Commander
Picatinny Arsenal
Attn: SMUPA-TS-T-S
Dover, NJ 07801

Dr. Sidney Ross
Technical Director
SARFA-TD
Frankford Arsenal
Philadelphia, PA 19137

Commander
US Army Electronics Command
Attn: DRSEL-NL-RH-1

(Dr. F. Schwering)
Fort Monmouth, NJ 07703

Commander
US Army Electronics Command
Attn: DRSEL-TL-I

(Dr. C. G. Thornton)
Fort Monmouth, NJ 07703

US Army Research Office (3)
Attn: Library
P. O. Box 12211
Research Triangle Park, NC

Director
Division of Neuropsychiatry
Walter Reed Army Institute

of Research
Washington, D.C. 20012

Commander
White Sands Missile Range
Attn: STEWS-ID-R

27709

White Sands Missile Range, NM 88002

Department of the Air Force

Mr. Robert Barrett
RADC/ETS
Hanscom AFB, MA 01731

Dr. Carl E. Baum
AFWL (ES)
Kirtland AFB, NM 87117

Dr. E. Champagne
AFAL/DH
Wright-Patterson AFB, OH 45433

Dr. R. P. Dolan
RADC/ETSD
Hanscom AFB, MA 01731

3

Mr. W. Edwards
AFAL/TE
Wright-Patterson AFB, OH 45433

Professor R. E. Fontana
Head, Dept. of Electrical Engineering
AFIT/ENE
Wright-Patterson AFB, OH 45433

Dr. Alan Garscadden
AFAPL/POD
Wright-Patterson AFB, OH 45433

USAF European Office of
Aerospace Research

Attn: Major J. Gorrell
Box 14, FPO, New York 09510

LTC Richard J. Gowen
Department of Electrical Engineering
USAF Academy, CO 80840

Mr. Murray Kesselman (ISCA)
ROme Air Development Center
Griffiss AFB, NY 13441

Dr. G. Knausenberger
Air Force Member, TAC
Air Force Office of Scientific

Research, (AFSC) AFSOR/NE
Bolling Air Force Base, DC 20332

Dr. L. Kravitz
Air Force Member, TAC
Air Force Office of Scientific

Research, (AFSC) AFSOR/NE
Bolling Air Force Base, DC 20332

Mr. R. D. Larson
AFAL/DHR
Wright-Patterson AFB, OH 45433

Dr. Richard B. Mack
RADC/ETER
Hanscom AFB, MA 01731

Mr. John Mottsmith (MCIT)
HQ ESD (AFSC)
Hanscom AFB, MA 01731

Dr. Richard Picard
RADC/ETSL
Hanscom AFB, MA 01731

Dr. J. Ryles
Chief Scientist
AFAL/CA
Wright-Patterson AFB, OH 45433

Dr. Allan Schell
RADC/ETE
Hanscom AFB, MA 01731

Mr. H. E. Webb, Jr. (ISCP)
Rome Air Development Center
Griffiss AFB, NY 13441

LTC G. Wepfer
Air Force Office of Scientific

Research, (AFSC) AFOSR/NP
Bolling Air Force Base, DC . 20332

LTC G. McKemie
Air Force Office of Scientific

Research, (AFSC) AFOSR/NM
Bolling Air Force Base, DC 20332

Department of the Navy

Dr. R. S. Allgaier
Naval Surface Weapons Center
Code WR-303
White Oak
Silver Spring, MD 20910

Naval Weapons Center
Attn: Code 5515, H. F. Blazek
China Lake, CA 93555

Dr. H. L. Blood
Technical Director
Naval Undersea Center
San Diego, CA 95152

Naval Research Laboratory
Attn: Code 5200, A. Brodzinsky
4555 Overlook Avenue, SW
Washington, D.C. 20375

Naval Research Laboratory
Attn: Code 7701, J. D. Brown
4555 Overlook Avenue, SW
Washington, D.C. 20375

4

Naval Research Laboratory
Attn: Code 5210, J. E .. Davey'
4555 Overlook Avenue, SW
Washington, D.C. 20375

Naval Research Laboratory
Attn: Code 5460/5410, J. R. Davis
4555 Overlook Avenue ,. SW
Washington, D.C. 2037'5

Naval Ocean Systems center
Attn: Code 75, W. J. Dejka
271 Catalina Boulevard
San Diego, CA' 92152

Naval Weapons center
Attn: Code 601, F. C. Essig
China Lake, CA 93555

Naval Research Laboratory
Attn: Code 5510, W. L. Faust
4555 Overlook Avenue " SW
Washington, D.C. 20375

Naval Research Laboratory
Attn: Code 2627, Mrs.D. Folen
4555 Overlook Avenue, SW
Washington, D.C. 20375

Dr. Robert R. Fossum
Dean of Research
Naval Postgraduate School
Monterey, CA 93940

Dr. G. G. Gould
Technical Director'
Naval Coastal System Laboratory
Panama City, FL 32401

Naval Ocean Systems Center
Attn: Code 7203, V. E. Hildebrand
271 Catalina Boulevard
San Diego, CA 92152

Naval Ocean Systems Center
Attn: Code 753, P. H. Johnson
271 Catalina Boulevard
San Diego, CA 92152

Donald E. Kirk
Professor and Chairman

Electronic Engineer, SP-304
Naval Postgraduate School
Monterey, CA 93940

Naval Air Development Center
Attn: Code 01, Dr. R. K. Lobb
Johnsville
Warm~nster, PA 18974

Naval Research laboratory
Attn: Code 5270, B. D. McCombe
4555 Overlook Avenue, SW
Washington, D.C. 20375

Capt. R. B. Meeks
Naval Sea Systems Command
NC #3
2531 Jefferson Davis Highway
Arlington, VA 20362

Dr. H. J. Mueller
Naval Air Systems Command
Code 310
JP #1
1411 Jefferson Davis Highway
Arlington, VA 20360

Dr. J. H. Mills, Jr.
Naval Surface Weapons Center
Electronics Systems Department
Code DF
Dahlgren, VA 22448

Naval Ocean Systems Center
Attn: Code 702, H. T. Mortimer
271 Catalina Boulevard
San Diego, CA 92152

Naval Air Development Center
Attn: Technical Library
Johnsville
Warminster, PA 18974

Naval Ocean Systems Center
Attn: Technical Library
271 Catalina Boulevard
San Diego, CA 92152

5

Naval Research Laboratory
Underwater Sound Reference Division
Technical Library
P. O. Box 8337
Orlando, FL 32806

Naval Surface Weapons Center
Attn: Technical Library
Code DX-21
Dahlgren, VA 22448

Naval Surface Weapons Center
Attn: Technical Library
Building 1-330, Code WX-40
White Oak
Silver Spring, MD 20910

Naval Training Equipment Center
Attn: Technical Library
Orlando, FL 32813

Naval Undersea Center
Attn: Technical Library
San Diego, CA 92152

Naval Underwater Systems Center
Attn: Technical Library
Newport, RI 02840

Office of Naval Research
Electronic and Solid State

Sciences Program (Code 427)
800 North Quincy Street
Arlington, VA 22217

Office of Naval Research
Mathematics Program (Code 432)
800 North Quincy Street
Arlington, VA 22217

Office of Naval Research
Naval Systems Division
Code 220/221
800 North Quincy Street
Arlington, VA 22217

Director
Office of Naval Research
New York Area Office
715 Broadway, 5th Floor
New York, NY 10003

Office of Naval Research
San Francisco Area Office
One Hallidie Plaza, Suite 601
San Francisco, CA 94102

Director
Office of Naval Research

Branch Office,
495 Summer Street
Boston, MA 02210

Director
Office of Naval Research

Branch Office
536 South Clark Street
Chicago, IL 60605

Director
Office of Naval 'Research

Branch Office
1030 East Green Street
Pasadena, CA 91101

Mr. H. R. Riedl
Naval Surface Weapons Center
Code WR-34
White Oak Labor~tory
Silver Spring, MD 20910

Naval Air Development Center
Attn: Code 202, T. J. Shopple
Johnsville
Warminster, PA 18974

Naval Research Laboratory
Attn: Code 5403, J. E. Shore
4555 Overlook Avenue, SW
Washington, D.C. 20375

A. L. Slafkovsky
Scientific Advisor
Headquarters Marine Corps
MC-RD-1
Arlington Annex
Washington, D~C. 20380

Harris B. Stone
Office of Research, Development,

Test and Evaluation
NOP-987
The Pentagon, Room 5D760
Washington, D.C. 20350

6

Mr. L. Sumney
Naval Electronics$ystems Command
Code 3042, NC #1
2511 Jefferson Davis Highway
Arlington, VA 20360

David W .. Taylor
Naval Ship Resear,ch and

Development Center
Code 522.1
Bethesda, MD 20084

Naval Research Laboratory
Attn: Code.4105, Dr. S. Tei tIer
4555 Overlook Avenue, SW
Washington, D.C. 20375

Lt. Cdr. John Turner
NAVMAT 0343
CP #5, .Room 1044
2211 Jefferson Davis Highway
Arlington, VA 20360

Naval Ocean Systems Center
Attn: Code 746, H. H. Wieder
271 Catalina Boulevard
San Diego, CA 92152

Dr. W. A. Von Winkle
Associate Technical Director

for Tec~nology
Naval Underwa,ter Sys,tems Center
New London, CT 06320

Dr. Gernot M. R. Winkler
Director, Time Service
US Naval Observatory
Massachusetts. Avenue ,at

34th Street, NW
Washington, D.C. 20390

Other Government Agencies

Dr. Howard W. Etzel
Deputy Director
Division of Materials Research
National Science Foundation
1800 G Street
Washington, D.C. 20550

Mr. J. C. French
National Bureau of Standards
Electronics Technology Division
Washington, D.C. 20234

Dr. Jay Harris
Program Director
Devices and Waves Program
National Science Foundation
1800 G Street
Washington, D.C. 20550

Los Alamos Scientific Laboratory
Attn: Reports Library
P. O. Box 1663
Los Alamos, NM 87544

Dr. Dean Mitchell
Program Director
Solid-State Physics
Division of Materials Research
National Science Foundation
1800 G Street
Washington, D.C. 20550

Mr. F. C. Schwenk, RD-T
National Aeronautics and

Space Administration
Washington, D.C. 20546

M. Zane Thornton
Deputy Director, Institute for

Computer Sciences and Technology
National Bureau of Standards
Washington, D.C. 20234

Nongovernment Agencies

Director
Columbia Radiation Laboratory
Columbia University
538 West 120th Street
New York, NY 10027

Director
Coordinated Science Laboratory
University of Illinois
Urbana, IL 61801

7

Director of Laboratories
Division of Engineering and

Applied Physics
Harvard University
Pierce Hall
Cambridge, MA 02138

Director
Electronics Research Center
The University of Texas
Engineering-Science Bldg. 112
Austin, TX 78712

Director
Electronics Research Laboratory
University of California
Berkeley, CA 94720

Director
Electronics Sciences Laboratory
University of Southern California
Los Angeles, CA 90007

Director
Microwave Research Institute
Polytechnic Institute of New York
333 Jay Street
Brooklyn, NY 11201

Director
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, MA 02139

Director
Stanford Electronics Laboratory
Stanford University
Stanford, CA 94305

Stanford Ginzton Laboratory
Stanford University
Stanford, CA 94305

Officer in Charge
Carderock Laboratory
Code 18 - G. H. Gleissner
David Taylor Naval Ship Research

and Development Center
Bethesda, MD 20084

Dr. Roy F. Potter
3868 Talbot Street
San Diego, CA 92106

