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ABSTRACT 

This is a preliminary report on the development of 

emulator code for the Stanford EMMY. 

Emulation is introduced as an interpretive computing 

technique. Various classes of emulation and their correlation 

to the image machine are presented. 

Functional and structural overviews of three emulators 

for the Stanford EMMY are presented. These are IBM System/360; 

CRIL; and DELtran. Performance estimates are included for 

each of these systems. 
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BASIC CONCEPTS 
"These are the best of timings, 
these are the worst of timings" 

This is a preliminary report on the general structure of various emulators 

for the Stanford EMMY. It is too early to provide firm space and time measure­

ments (indeed, it may be that programs will have to be measured pragmatically 

to obtain solid engineering data); however, planning estimates are included. 

Emulation is the implementation of an image machine by mapping the states 

of this image machine into substates of a given host machine (in this case, 

the Stanford EMMY), and then programming the host machine to perform state 

transitions over this substate as required by the image architecture. Three 

image architectures will be discussed: 

1) IBM System/360 -- A general-purpose register-oriented ·image machine. 

2) CRIL -- A Polish Suffix, stack-oriented image machine whose design 

is tuned to a specific source language. 

3) DELtran -- An experimental "mixed" image machine combining many of 

the desirable features of both a stack-oriented and a register­

oriented architecture. 

The emulators described here are all "Class B" in terms of the following 

criterion: 

Class A 

Class B 

Class C 

Class D 

Class F 

transforms all image substates precisely as would a true 

image machine (i.e., duplicates failure modes). 

transforms all image substates corresponding to "correct 

programs" as would a true image machine (i.e., may fail 

differently). 

transforms a selected subset of image substates as would 

a true image machine. 

transforms a selected subset of image substates in a manner 

such that the behavior of a true image machine could be predicted. 

bears little or no relation to a true image machine. 

- I -



This level precision is not actually required for the global purposes of the 

Stanford Emulation Laboratory. The final classification of these emulators 

may drop to Class C~ or even Class D, when they are actually tested on a working 

EMMY host. 

This report will be updated to reflect significant changes, additional data. 

and hard results as they become available. The substance of the work to date, 

however, should be useful in understanding the nature of emulator structure and 

planning specific, comparative experiments on the yet-to-be-realized EMMY lab 

system. 

SYSTEM 360 EMULATOR 

INTRODUCTION 

This section describes a Class B S/360 emulator for the Palyn EMMY. Based 

on EMMY CPU timing and the code developed thus far, performance should be 

approximately that of a model 50. A timing summary is included in the appendix 

for both Model I and Model II control store. 

The reader is assumed familiar with both the Palyn EMMY [1], the IBM 

System/360 [3]~ and the IBM S/360 Model 50 [5]. 

The emulator implements the 360 basic instruction set with certain extensions 

(available as options on certain 360 models). 

1) Address Specification Interrupts 

no boundary restrictions are enforced since the memory controller performs 

all necessary alignment. Timing estimates assume optimal alignment. 

2) Optional Features 

Storage protect not supported and storage key field of PSW ignored. 

Decimal feature not supported - decimal instruction will result in an 

operation specification exception. 

Floating Point feature not supported at this time. Floating Point 

instruction will result in an operation specification exception. 

Extended Control and Dynamic Address Translation not supported. 

3) Internal Timer not supported. Main Storage locations X'50' thru X'52' 

have no special significance. 
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4) Timing estimates are included for EMMY CPU with Model I and Model II Control 

Storage. In both cases, optimal Main Storage operand alignment is assumed. 

Based on IBM studies [4], about 20 instructions account for 70% of the 

instruction usage in 360 instruction streams. It was therefore decided that 

these instructions should be as fast as possible. A reasonable optimization of 

these and certain VFL instructions should result in Model 50 performance. 

PHILOSOPHY 

Image instruction execution consists of three phases, Operation Decode 

(DECODE), Format Decode and Effective Address Calculation (EAxx), and Execution 

and Prefetch (OPxx). In addition, frequently used functions, such as condition 

code setting and exception testing for arithmetic operation, are handled by 

common routines. These appear in line for the RR-format instructions to allow 

these to achieve the fastest possible speed. 

The five classes of 360 interrupts are handled by a common routine. This 

minimizes microstorage overhead. 

I/O is handled in the same manner for both low and high speed devices. 

Initially, all I/O will be to the Data Point. As more devices are added to the 

bus, I/O can either be mapped by the emulator, or by the Datapoint. Handling of 

low speed devices may also be done on a word by word multiplexed basis, with the 

EMMY CPU acting as a channel (it may also be necessary to handle high speed devices 

this way). 

FO~~T 

DECODE 
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As devices are added to the bus, it may well be desirable to implement 

device controllers around microprocessors, to allow some degree of device 

emulation with lower CPU overhead. 

ORGANIZATION OF MICROMEMORY 

The first 16 words of Micromemory are the 16 general registers of 360 

architecture. The next 8 words represent the 4 floating point registers 

(floating point is not yet implemented). The 360 PSW is stored in Micromemory 

in decoded format. The high order half remains as it appears in mainstorage 

upon retrieval. The low order half is parsed as follows: 

BUS CONTROL BYTE UNSPECIFIED EUTRY ADDRES:> POINTER 

31 24 23 22 21 16 15 14 11-

31 24 Initial BUS Control byte for t1ain Store accesses 
23 22 Actual 360 ILC 
21 16 unspp.cified 
15 14 must be zeros 
11 0 Semantic Routine entry point 

FIGURE 3. Semantic Painter 

16 words 
tl ..... ol'ds 
3 words 

20 words 

5 words 

40 words 

1.5 K words 

2 K words 

256 words 

360 General Purpose Registers 
360 Floating Point Registers 
Program Status Word (decoded) 
IPL and Inturrupt code 
Operation Decode 
Format Decode 

, 
Semantic Routines 

unused 

Semantic Pointers 
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OPERATION 

Instruction Prefetching: 

Instructions are prefetched by the previous execution routine, thereby 

ensuring that instructions are immediately available to the Decode routine. 

The Conditional Branch instruction initially assumes no branch is to be taken, 

and prefetches the next sequential instruction upon entry to the execution 

routine. The branch target instruction is then prefetched. In this way, if 

it is determined that a branch should be taken, the penalty will be minimized. 

The Decode routine performs two levels of operation decoding as well as 

initial parse of the 360 instruction. The first decode is that of the instruction 

length code. This is used as an increment to a 4-element transfer vector table. 

In this way, the proper routine to parse the instruction, update program counter, 

and calculate addresses will be selected. (Actually, the final entry of this 

table in the actual RR format decode routine, thus eliminating a branch and 

speeding the decode of this class of instruction.) 

The second level of decode involves the selection of semantic pointer to 

the execution entry point from microstore. These pointers are stored in the 

high order 256 words of microstore. Since only the low order 12 bits of these 

pointers are actually used to address microstore, the remainder can contain 

special information pertinent to each specific instruction execution, such as 

actual instruction length code and memory control bytes. Loading of the host 

MAR with this pointer sets the I-codes. The actual ILC for each instruction is 

set in this way. 

Format decoding proceeds with as much generality as possible. This requires 

some functions to be repeated in several execution sequences, however, the 

simplification of the decoding process seems a worthwhile tradeoff. Predefined 

holding registers contain pertinent portions of the parsed and decoded 360 

instruction. Exit from the Format Decode is a register transfer to R0, the 

micro control register. 

An interesting tradeoff was made in the RR format decode. A 500 ns 

reduction in execution time (4.3 nsto 3.8 ns) was achieved by doing a partial 
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Next Instruction Address--mainstorage address of the next target instruction 

in host register 1 (Rl-PC). 

360 condition code (CC) occupies its own word in micromemory, as does the 

Program Mask. 

ILC is stored in host register 0 (R0=MAR). 

The high-order 256 words of control store contain pointers to the entry 

points of various execution routines. Bits 31-12 of these pointers are not used 

to address microstore, and may contain information pertinent to each specific 

execution sequence. The emulator code resides in the low-order part of the 

block of micromemory between these storage areas. 

It is assumed that the image machine will be interrupted infrequently. 

Therefore, the extra overhead required to reformat the 360 PSW at each 

interruption is acceptable. 

FIELDS IN MICROMEMORY 

PS\~O S~1AS K '---r--«~»r;p =r: == ;EROS 

31 24 23 20 19 16 15 

PS~Jl 

1 
P~iSK 

31 3029 ?8 27 24 23 

I 
... -~ ,a~ 

corm CC 
CO:JE 

31 30 29 

J ILC {RO) ILC I 
24 23 22 21 ,IJ1 I 

I I PC (RI) BUS INST ADOR CNTRL 
31 24 23 

FIELOS IN REGISTERS 
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decode in the RR decode routine. Parsing and Program Counter updating is 

complemented in the execution routine. This is done utilizing unused portions 

of already existing microinstructions in the execution code, resulting in a size 

reduction as well as the above mentioned speed increase. The same technique 

could not effectively be employed in other decode sequences. 

Upon entry to the execution routine, a holding register still contains the 

semantic pointer word. In addition, the I-codes of R0 have been loaded with 

the information in bits 21-16 of the semantic pointer. Useful information from 

the holding register is usually retrieved immediately, and this register used 

as a scratch in the execution sequence. 

Again, execution will include a prefetch of the next target instruction. 

CODING AND TESTING 

Performance 

Sample code for the Decode, Format Decode and certain representative 

instructions has been developed. Performance estimates, for a CPU with Model II 

control store and no overlap or concurrency, indicates approximately Model 50 

execution speed. The RR Format instructions are equivalent; AR instruction 

takes about 3.18 ~s, while a model 50 required 3.75 ~s. Rx format instructions 

are also somewhat slower; an Add Word required 6.30 ~s, while the model 50 

requires 5.50 ~s. SS format instructions are significantly faster than Model 

50, however. 

Testing of the routines will consist of walking through each routine as it 

is coded to ensure the proper information is available at the proper times. In 

addition, individual segments of code will be tested on the machine for proper 

information transfer. Testing of the integrated Emulator will consist of the 

running of Benchmark software, significantly the PL360 monitor subsystem 

developed by McClure. 
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CRIL EMULATOR 

INTRODUCTION 

CRIL is an intermediate, executable text developed by ICL for the CORAL 

source language and existing line of ICL microprogrammable hosts. The CRIL 

image machine contains a dynamic evaluation stack (up to 17 elements deep) and 

8 data sector base registers. Its machine language manipulates these resources 

directly, and is organized along the lines of a Polish Suffix notation. 

Instructions are of varying length, and more than one instruction may be 

packed into a single word of program store. Instructions are packed from right­

to-left (least significant bits on the right with respect to the normal order of 

execution. Fields within an instruction are ordered right-to-left with respect 

to the normal sequence of interpretation. Each instruction explicitly indicates 

whether the next instruction is to be Fetched from a new word in program store 

(Fetch mode), or is contained in the Currently obtained program word (Continue 

mode) • 

The first instruction in a program word begins six bits in from the right 

(least significant) end of the word. Bits from other packed instructions may 

wrap around the left (most significant ) end of the instruction word into these 

six low-order bit positions. 

Finally, there are a number of error conditions which must be checked for 

when the CRIL machine is running in a special "Debug-Trace" mode. These conditions 

are transparent, however, when running in a normal "Production" mode. In terms 

of our classification of emulators, then, the CRIL machine can be run in a Class A 

or Class B mode. 

PHILOSOPHY 

Image machine instruction execution proceeds in three phases: Operation 

Decode, Operation Execution, Next Instruction Fetch. The fetch of the next 

instruction is included, rather than the fetch of the current instruction, due 

to the nature of the CRIL sequencing rules. Since EMlfi lacks a right-circular 

shift, it was necessary to convert the circular CRIL decode rules int~ logical 

right shift rules. The emulator nucleus developed so far depends on the 

following assumptions: 
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1) No program word is so packed that either: 

or 

a) cyclic looping occurs within the word (i.e., all of the instructions 
in the word are Continue-mode, in which case a non-terminating loop 
will result since every CRIL instruct!on capable of ~odifying the 
Program Counter is Fetch mode). 

b) any bit is used ~s part of the encoding of more than one instruction 
(!.e., instructions do not "ov~rlap"). 

2) All bits not part of an instruction encoding (i.e., "unused") are low (zero). 

3) Only Class B emulation (Production mode) is required. 

STORAGE ORGANIZATION 

All internal CRIL resources are mapped into EMMY's Micro Store as indicated 

in the table below: 

CRIL Resource EMMY Resource 

(8) Addressing Registers Micro Store, words 0:7 

(17) Evaluation Stack cells Micro Store, words 8:24 

Top-Of-Stack Pointer Micro Register 7 

Ra operand Micro Register 4 

Rb operand Micro Register 5 

Program Counter Micro Register I 

Instruction Register Micro Register 3 

Additionally, Micro Register 2 is used for general indexing during all phases of 

instruction execution, and Micro Register 6 is used as a "Pre-Fetch" all for the 

next image program word. 

CODING TECHNIQUES 

Since CRIL instruction fields are interpreted naturally from rignt-to-Ieft, 

beginning six bits from the low order pqsition of an instruction word, each Fetch 

cycle starts by: 

1) Moving the program word containing the current stream of CRIL instructions 
into the image instruction register (IR) while fetching the next program 
word into the prefetch register (PF) and updating the program counter 
register (PC). 

2) Duplicating this program word in the indexing register (XR) adjacent to 
the instruction register (IR). 

3) Right aligning the low order bit of the first CRIL instruction in the current 
program word by using a shift left (double) to simulate a shift right 
circular (single). 
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Each n-bit field extraction is subsequently achieved by: 

1) Isolating the low-order n bits of the instruction register using either 
an EMMY Extract or And instruction. 

2) Shifting the instruction register right (single) n bits. 

Operation decode consists of a field extraction followed by a relative branch 

forward by the value of the field. 

PERFORMANCE 

The entire emulator, including I/O, should fit easily into the available 4K 

Micro Store. Typical execution times for "simple" operations range from 3 to 6 11S 

on the Stanford EMMY (1.t-2.5 on a production EMMY). This is certainly cost­

effective in comparison to existing CRIL emulators which run at 15-30 11S per 

instruction and require more costly host support. Exact instruction timings, 

as well as a preliminary version of the emulator itself may be found in [6]. 

DELtran EMULATOR 

INTRODUCTION 

DELtran is an intermediate, executable text language developed specifically 

for evaluating BASIC FORTRAN on the Stanford EMMY. Its design follows the general 

precepts set forth in [7]. The DELtran image machine contains a dynamic evaluation 

stack (number of elements memory-limited), and a program-dependent number of 

Randomly Accessable "register" cells. Each of these storage resources can be 

manipulated directly by DELtran instructions. 

Instruction units are of varying lengths, and more than one instruction can 

be packed into a single word. Also, instruction units can extend across program 

word boundaries, although the individual syllables of which they are constructed 

must lie entirely within a single word (note: an n-bit syllable with m trailing 

zero's may be packed into the low order n-m bits of a program word). 

RAM cells are accessed indirectly through a table of dynamic descriptions 

(or SCOPE), and may refer to either scalar or array variables. Parameter-passing 

is achieved by coping dynamic descriptors for the actual arguments into the space 

reserved for the dynamic descriptors for the formats (e.g., a true call-by-reference). 
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PHILOSOPHY 

The execution of a typical DELtran instruction unit takes place in three 

phases: 

1) Lead Syllables parse/decode--during this phase, the general type and lexical 
format of an instruction are determined; 

2) Reference Syllable parse/decode--during this phase, the actual operands of 
an instruction unit are recognized and a "standard interface" established 
for the next phase; 

3) Operator Syllable parse/decode/execute--during this phase, the image machine 
state is transformed according to the DELtran operator specified by that 
instruction and the dynamic values in the interface established by the 
previous phase. 

DELtran syllables are encoded so that the zero-value means "fetch a new program 

word" and frequently-used interpretations are assigned codes with trailing zeros. 

This promotes efficient packing of syllables into program words. 

DELtran resources map into the host machine as follows: 

DELtran Resource 

Evaluation Stack cells 

Dynamic descriptors (Scope) 

Top-Of-Stack pointer 

Current Program Word 

Operand 1 Value (p) 

Operand 2 Value (q) 

Result Location (r) 

Addressing State (s) 

Program Counter 

EMMY Resource 

Micro Store; anchored at high end, 
grows toward low end. 

Micro Store; anchored just above 
emulator code, grows toward high end. 

Micro Register 1 

Micro Register 3 

Micro Register 4 

Micro Register 5 

Micro Register 6 

Micr0 Register 7 

Micro Store, word 0 

Additionally, Micro Register 2 is used for general indexing operations, and Micro 

Register 7 contains auxiliary DELtran State information. 

CODING TECHNIQUES 

A double-shift left operation is used to move the next syllabel in a DELtran 

instruction stream from the Current Program Word into the indexing register. 

Reference Syllables are then checked for validity by decrementing the index 

register and testing for a negative value (it will be positive or zero unless the 

syllable value was zero originally). If the resulting value is equal to minus 
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one, a new program word is fetched, and the entire operation repeated. Semantic 

Syllables are checked for zero-value through indexing into a "jump table", each 

element of which is an entry point into the routine for the code corresponding 

to the offset of the element. In this case, the zeroth element in the table is 

the entry point to a routine which fetches a new program word. 

PERFORMANCE 

The basic emulator, excluding the evaluation stack and Scope areas, will 

require less than 800 words of Micro Store. Allowing 1.2K words for dynamic 

data, the emulator should require about 2K words. Typical instruction units 

will execute in 6 to 10 ~s, however, this does not indicate the comparative 

performance of DELtran to 360 machine code. To perform a comparative analysis 

the ratio of DELtran instruction units to 360 instructions, as generated by a 

BASIC FORTRAN compiler, must be taken into consideration. Preliminary estimates 

based on very small fragments show that one DELtran instruction unit is worth 

at least 3 or 7 360 instructions (functional surrogate fragment), and possibly 

8 to 10 360 instructions (process control surrogate fragment). 

On a "production" EMMY, with a 100 ns Micro Store and 30 ns internal cycle, 

the DELtran machine would execute instruction units in 4 to 7 ~s. If an additional 

one or two Micro Registers were available, this would drop to 2.5 to 5 ~s. 
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