
A TALE OF THREE EMULATORS

by

Lee W. Hoevel
and
Walter A. Wallach, Jr.

November 1975

Technical Report No. 98

The work described herein
was partially supported by
the U. S. Air Force Office
of Scientific Research under
Grant No. AFOSR-75-2865.

SU-SEL-75-045

DllilTIl SVSTEmS LllOIlTORV

STARFORD ELE[TRORI[S LABORATORIES
STAnFORD uniVERSITY • STAnFORD, I:AllFORnlA

A TALE OF THREE EMULATORS

by

Lee W. Hoevel

and

Walter A. Wallach, Jr.

November 1975

Technical Report No. 98

DIGITAL SYSTEMS LABORATORY

Stanford Electronics Laboratories

Stanford University

Stanford, California

SU-SEL 75-045

The work described herein was partially supported by the U. S. Air Force
Office of Scientific Research under Grant no. AFOSR-75-2865.

Digital Systems Laboratory
Stanford Electronics Laboratories

Technical Report No. 98

November 1975

A TALE OF THREE EMULATORS

by

Lee W. Hoevel

and

Walter A. Wallach, Jr.

ABSTRACT

This is a preliminary report on the development of

emulator code for the Stanford EMMY.

Emulation is introduced as an interpretive computing

technique. Various classes of emulation and their correlation

to the image machine are presented.

Functional and structural overviews of three emulators

for the Stanford EMMY are presented. These are IBM System/360;

CRIL; and DELtran. Performance estimates are included for

each of these systems.

Basic Concepts

360 Emulator

Introduction

Philosophy

CONTENTS

Organization of Micro Memory

Operation

Coding & Testing

CRIL Emulation

Introduction

Philosophy

Coding Techniques

Performance

DELtran Emulator

Introduction

Philosophy

Coding Techniques

Performance

References

1

2

2

3

4

6

7

8

8

8

9

10

10

10

11

11

12

13

BASIC CONCEPTS
"These are the best of timings,
these are the worst of timings"

This is a preliminary report on the general structure of various emulators

for the Stanford EMMY. It is too early to provide firm space and time measure­

ments (indeed, it may be that programs will have to be measured pragmatically

to obtain solid engineering data); however, planning estimates are included.

Emulation is the implementation of an image machine by mapping the states

of this image machine into substates of a given host machine (in this case,

the Stanford EMMY), and then programming the host machine to perform state

transitions over this substate as required by the image architecture. Three

image architectures will be discussed:

1) IBM System/360 -- A general-purpose register-oriented ·image machine.

2) CRIL -- A Polish Suffix, stack-oriented image machine whose design

is tuned to a specific source language.

3) DELtran -- An experimental "mixed" image machine combining many of

the desirable features of both a stack-oriented and a register­

oriented architecture.

The emulators described here are all "Class B" in terms of the following

criterion:

Class A

Class B

Class C

Class D

Class F

transforms all image substates precisely as would a true

image machine (i.e., duplicates failure modes).

transforms all image substates corresponding to "correct

programs" as would a true image machine (i.e., may fail

differently).

transforms a selected subset of image substates as would

a true image machine.

transforms a selected subset of image substates in a manner

such that the behavior of a true image machine could be predicted.

bears little or no relation to a true image machine.

- I -

This level precision is not actually required for the global purposes of the

Stanford Emulation Laboratory. The final classification of these emulators

may drop to Class C~ or even Class D, when they are actually tested on a working

EMMY host.

This report will be updated to reflect significant changes, additional data.

and hard results as they become available. The substance of the work to date,

however, should be useful in understanding the nature of emulator structure and

planning specific, comparative experiments on the yet-to-be-realized EMMY lab

system.

SYSTEM 360 EMULATOR

INTRODUCTION

This section describes a Class B S/360 emulator for the Palyn EMMY. Based

on EMMY CPU timing and the code developed thus far, performance should be

approximately that of a model 50. A timing summary is included in the appendix

for both Model I and Model II control store.

The reader is assumed familiar with both the Palyn EMMY [1], the IBM

System/360 [3]~ and the IBM S/360 Model 50 [5].

The emulator implements the 360 basic instruction set with certain extensions

(available as options on certain 360 models).

1) Address Specification Interrupts

no boundary restrictions are enforced since the memory controller performs

all necessary alignment. Timing estimates assume optimal alignment.

2) Optional Features

Storage protect not supported and storage key field of PSW ignored.

Decimal feature not supported - decimal instruction will result in an

operation specification exception.

Floating Point feature not supported at this time. Floating Point

instruction will result in an operation specification exception.

Extended Control and Dynamic Address Translation not supported.

3) Internal Timer not supported. Main Storage locations X'50' thru X'52'

have no special significance.

- 2 -

4) Timing estimates are included for EMMY CPU with Model I and Model II Control

Storage. In both cases, optimal Main Storage operand alignment is assumed.

Based on IBM studies [4], about 20 instructions account for 70% of the

instruction usage in 360 instruction streams. It was therefore decided that

these instructions should be as fast as possible. A reasonable optimization of

these and certain VFL instructions should result in Model 50 performance.

PHILOSOPHY

Image instruction execution consists of three phases, Operation Decode

(DECODE), Format Decode and Effective Address Calculation (EAxx), and Execution

and Prefetch (OPxx). In addition, frequently used functions, such as condition

code setting and exception testing for arithmetic operation, are handled by

common routines. These appear in line for the RR-format instructions to allow

these to achieve the fastest possible speed.

The five classes of 360 interrupts are handled by a common routine. This

minimizes microstorage overhead.

I/O is handled in the same manner for both low and high speed devices.

Initially, all I/O will be to the Data Point. As more devices are added to the

bus, I/O can either be mapped by the emulator, or by the Datapoint. Handling of

low speed devices may also be done on a word by word multiplexed basis, with the

EMMY CPU acting as a channel (it may also be necessary to handle high speed devices

this way).

FO~~T

DECODE

- 3 -

'1
PW I

SWAP ~ .

As devices are added to the bus, it may well be desirable to implement

device controllers around microprocessors, to allow some degree of device

emulation with lower CPU overhead.

ORGANIZATION OF MICROMEMORY

The first 16 words of Micromemory are the 16 general registers of 360

architecture. The next 8 words represent the 4 floating point registers

(floating point is not yet implemented). The 360 PSW is stored in Micromemory

in decoded format. The high order half remains as it appears in mainstorage

upon retrieval. The low order half is parsed as follows:

BUS CONTROL BYTE UNSPECIFIED EUTRY ADDRES:> POINTER

31 24 23 22 21 16 15 14 11-

31 24 Initial BUS Control byte for t1ain Store accesses
23 22 Actual 360 ILC
21 16 unspp.cified
15 14 must be zeros
11 0 Semantic Routine entry point

FIGURE 3. Semantic Painter

16 words
tl ol'ds
3 words

20 words

5 words

40 words

1.5 K words

2 K words

256 words

360 General Purpose Registers
360 Floating Point Registers
Program Status Word (decoded)
IPL and Inturrupt code
Operation Decode
Format Decode

,
Semantic Routines

unused

Semantic Pointers

- 4 -

o

FIGURE 4. Micromemory
Usage

OPERATION

Instruction Prefetching:

Instructions are prefetched by the previous execution routine, thereby

ensuring that instructions are immediately available to the Decode routine.

The Conditional Branch instruction initially assumes no branch is to be taken,

and prefetches the next sequential instruction upon entry to the execution

routine. The branch target instruction is then prefetched. In this way, if

it is determined that a branch should be taken, the penalty will be minimized.

The Decode routine performs two levels of operation decoding as well as

initial parse of the 360 instruction. The first decode is that of the instruction

length code. This is used as an increment to a 4-element transfer vector table.

In this way, the proper routine to parse the instruction, update program counter,

and calculate addresses will be selected. (Actually, the final entry of this

table in the actual RR format decode routine, thus eliminating a branch and

speeding the decode of this class of instruction.)

The second level of decode involves the selection of semantic pointer to

the execution entry point from microstore. These pointers are stored in the

high order 256 words of microstore. Since only the low order 12 bits of these

pointers are actually used to address microstore, the remainder can contain

special information pertinent to each specific instruction execution, such as

actual instruction length code and memory control bytes. Loading of the host

MAR with this pointer sets the I-codes. The actual ILC for each instruction is

set in this way.

Format decoding proceeds with as much generality as possible. This requires

some functions to be repeated in several execution sequences, however, the

simplification of the decoding process seems a worthwhile tradeoff. Predefined

holding registers contain pertinent portions of the parsed and decoded 360

instruction. Exit from the Format Decode is a register transfer to R0, the

micro control register.

An interesting tradeoff was made in the RR format decode. A 500 ns

reduction in execution time (4.3 nsto 3.8 ns) was achieved by doing a partial

- 6 -

Next Instruction Address--mainstorage address of the next target instruction

in host register 1 (Rl-PC).

360 condition code (CC) occupies its own word in micromemory, as does the

Program Mask.

ILC is stored in host register 0 (R0=MAR).

The high-order 256 words of control store contain pointers to the entry

points of various execution routines. Bits 31-12 of these pointers are not used

to address microstore, and may contain information pertinent to each specific

execution sequence. The emulator code resides in the low-order part of the

block of micromemory between these storage areas.

It is assumed that the image machine will be interrupted infrequently.

Therefore, the extra overhead required to reformat the 360 PSW at each

interruption is acceptable.

FIELDS IN MICROMEMORY

PS\~O S~1AS K '---r--«~»r;p =r: == ;EROS

31 24 23 20 19 16 15

PS~Jl

1
P~iSK

31 3029 ?8 27 24 23

I
... -~ ,a~

corm CC
CO:JE

31 30 29

J ILC {RO) ILC I
24 23 22 21 ,IJ1 I

I I PC (RI) BUS INST ADOR CNTRL
31 24 23

FIELOS IN REGISTERS

- 5 -

0

J

0
I

I
0

J

decode in the RR decode routine. Parsing and Program Counter updating is

complemented in the execution routine. This is done utilizing unused portions

of already existing microinstructions in the execution code, resulting in a size

reduction as well as the above mentioned speed increase. The same technique

could not effectively be employed in other decode sequences.

Upon entry to the execution routine, a holding register still contains the

semantic pointer word. In addition, the I-codes of R0 have been loaded with

the information in bits 21-16 of the semantic pointer. Useful information from

the holding register is usually retrieved immediately, and this register used

as a scratch in the execution sequence.

Again, execution will include a prefetch of the next target instruction.

CODING AND TESTING

Performance

Sample code for the Decode, Format Decode and certain representative

instructions has been developed. Performance estimates, for a CPU with Model II

control store and no overlap or concurrency, indicates approximately Model 50

execution speed. The RR Format instructions are equivalent; AR instruction

takes about 3.18 ~s, while a model 50 required 3.75 ~s. Rx format instructions

are also somewhat slower; an Add Word required 6.30 ~s, while the model 50

requires 5.50 ~s. SS format instructions are significantly faster than Model

50, however.

Testing of the routines will consist of walking through each routine as it

is coded to ensure the proper information is available at the proper times. In

addition, individual segments of code will be tested on the machine for proper

information transfer. Testing of the integrated Emulator will consist of the

running of Benchmark software, significantly the PL360 monitor subsystem

developed by McClure.

- 7 -

CRIL EMULATOR

INTRODUCTION

CRIL is an intermediate, executable text developed by ICL for the CORAL

source language and existing line of ICL microprogrammable hosts. The CRIL

image machine contains a dynamic evaluation stack (up to 17 elements deep) and

8 data sector base registers. Its machine language manipulates these resources

directly, and is organized along the lines of a Polish Suffix notation.

Instructions are of varying length, and more than one instruction may be

packed into a single word of program store. Instructions are packed from right­

to-left (least significant bits on the right with respect to the normal order of

execution. Fields within an instruction are ordered right-to-left with respect

to the normal sequence of interpretation. Each instruction explicitly indicates

whether the next instruction is to be Fetched from a new word in program store

(Fetch mode), or is contained in the Currently obtained program word (Continue

mode) •

The first instruction in a program word begins six bits in from the right

(least significant) end of the word. Bits from other packed instructions may

wrap around the left (most significant) end of the instruction word into these

six low-order bit positions.

Finally, there are a number of error conditions which must be checked for

when the CRIL machine is running in a special "Debug-Trace" mode. These conditions

are transparent, however, when running in a normal "Production" mode. In terms

of our classification of emulators, then, the CRIL machine can be run in a Class A

or Class B mode.

PHILOSOPHY

Image machine instruction execution proceeds in three phases: Operation

Decode, Operation Execution, Next Instruction Fetch. The fetch of the next

instruction is included, rather than the fetch of the current instruction, due

to the nature of the CRIL sequencing rules. Since EMlfi lacks a right-circular

shift, it was necessary to convert the circular CRIL decode rules int~ logical

right shift rules. The emulator nucleus developed so far depends on the

following assumptions:

- 8 -

1) No program word is so packed that either:

or

a) cyclic looping occurs within the word (i.e., all of the instructions
in the word are Continue-mode, in which case a non-terminating loop
will result since every CRIL instruct!on capable of ~odifying the
Program Counter is Fetch mode).

b) any bit is used ~s part of the encoding of more than one instruction
(!.e., instructions do not "ov~rlap").

2) All bits not part of an instruction encoding (i.e., "unused") are low (zero).

3) Only Class B emulation (Production mode) is required.

STORAGE ORGANIZATION

All internal CRIL resources are mapped into EMMY's Micro Store as indicated

in the table below:

CRIL Resource EMMY Resource

(8) Addressing Registers Micro Store, words 0:7

(17) Evaluation Stack cells Micro Store, words 8:24

Top-Of-Stack Pointer Micro Register 7

Ra operand Micro Register 4

Rb operand Micro Register 5

Program Counter Micro Register I

Instruction Register Micro Register 3

Additionally, Micro Register 2 is used for general indexing during all phases of

instruction execution, and Micro Register 6 is used as a "Pre-Fetch" all for the

next image program word.

CODING TECHNIQUES

Since CRIL instruction fields are interpreted naturally from rignt-to-Ieft,

beginning six bits from the low order pqsition of an instruction word, each Fetch

cycle starts by:

1) Moving the program word containing the current stream of CRIL instructions
into the image instruction register (IR) while fetching the next program
word into the prefetch register (PF) and updating the program counter
register (PC).

2) Duplicating this program word in the indexing register (XR) adjacent to
the instruction register (IR).

3) Right aligning the low order bit of the first CRIL instruction in the current
program word by using a shift left (double) to simulate a shift right
circular (single).

- 9 -

Each n-bit field extraction is subsequently achieved by:

1) Isolating the low-order n bits of the instruction register using either
an EMMY Extract or And instruction.

2) Shifting the instruction register right (single) n bits.

Operation decode consists of a field extraction followed by a relative branch

forward by the value of the field.

PERFORMANCE

The entire emulator, including I/O, should fit easily into the available 4K

Micro Store. Typical execution times for "simple" operations range from 3 to 6 11S

on the Stanford EMMY (1.t-2.5 on a production EMMY). This is certainly cost­

effective in comparison to existing CRIL emulators which run at 15-30 11S per

instruction and require more costly host support. Exact instruction timings,

as well as a preliminary version of the emulator itself may be found in [6].

DELtran EMULATOR

INTRODUCTION

DELtran is an intermediate, executable text language developed specifically

for evaluating BASIC FORTRAN on the Stanford EMMY. Its design follows the general

precepts set forth in [7]. The DELtran image machine contains a dynamic evaluation

stack (number of elements memory-limited), and a program-dependent number of

Randomly Accessable "register" cells. Each of these storage resources can be

manipulated directly by DELtran instructions.

Instruction units are of varying lengths, and more than one instruction can

be packed into a single word. Also, instruction units can extend across program

word boundaries, although the individual syllables of which they are constructed

must lie entirely within a single word (note: an n-bit syllable with m trailing

zero's may be packed into the low order n-m bits of a program word).

RAM cells are accessed indirectly through a table of dynamic descriptions

(or SCOPE), and may refer to either scalar or array variables. Parameter-passing

is achieved by coping dynamic descriptors for the actual arguments into the space

reserved for the dynamic descriptors for the formats (e.g., a true call-by-reference).

- 10 -

PHILOSOPHY

The execution of a typical DELtran instruction unit takes place in three

phases:

1) Lead Syllables parse/decode--during this phase, the general type and lexical
format of an instruction are determined;

2) Reference Syllable parse/decode--during this phase, the actual operands of
an instruction unit are recognized and a "standard interface" established
for the next phase;

3) Operator Syllable parse/decode/execute--during this phase, the image machine
state is transformed according to the DELtran operator specified by that
instruction and the dynamic values in the interface established by the
previous phase.

DELtran syllables are encoded so that the zero-value means "fetch a new program

word" and frequently-used interpretations are assigned codes with trailing zeros.

This promotes efficient packing of syllables into program words.

DELtran resources map into the host machine as follows:

DELtran Resource

Evaluation Stack cells

Dynamic descriptors (Scope)

Top-Of-Stack pointer

Current Program Word

Operand 1 Value (p)

Operand 2 Value (q)

Result Location (r)

Addressing State (s)

Program Counter

EMMY Resource

Micro Store; anchored at high end,
grows toward low end.

Micro Store; anchored just above
emulator code, grows toward high end.

Micro Register 1

Micro Register 3

Micro Register 4

Micro Register 5

Micro Register 6

Micr0 Register 7

Micro Store, word 0

Additionally, Micro Register 2 is used for general indexing operations, and Micro

Register 7 contains auxiliary DELtran State information.

CODING TECHNIQUES

A double-shift left operation is used to move the next syllabel in a DELtran

instruction stream from the Current Program Word into the indexing register.

Reference Syllables are then checked for validity by decrementing the index

register and testing for a negative value (it will be positive or zero unless the

syllable value was zero originally). If the resulting value is equal to minus

- 11 -

one, a new program word is fetched, and the entire operation repeated. Semantic

Syllables are checked for zero-value through indexing into a "jump table", each

element of which is an entry point into the routine for the code corresponding

to the offset of the element. In this case, the zeroth element in the table is

the entry point to a routine which fetches a new program word.

PERFORMANCE

The basic emulator, excluding the evaluation stack and Scope areas, will

require less than 800 words of Micro Store. Allowing 1.2K words for dynamic

data, the emulator should require about 2K words. Typical instruction units

will execute in 6 to 10 ~s, however, this does not indicate the comparative

performance of DELtran to 360 machine code. To perform a comparative analysis

the ratio of DELtran instruction units to 360 instructions, as generated by a

BASIC FORTRAN compiler, must be taken into consideration. Preliminary estimates

based on very small fragments show that one DELtran instruction unit is worth

at least 3 or 7 360 instructions (functional surrogate fragment), and possibly

8 to 10 360 instructions (process control surrogate fragment).

On a "production" EMMY, with a 100 ns Micro Store and 30 ns internal cycle,

the DELtran machine would execute instruction units in 4 to 7 ~s. If an additional

one or two Micro Registers were available, this would drop to 2.5 to 5 ~s.

- 12 -

REFERENCES

1. Neuhauser~ Charles, "An Emulation Oriented, Dynamic
Mic~oprogrammable Processor (Version 3)", Stanford Electronics
Laboratory Technical Note #65, October 1975.

2. Neuhauser, Charles, An Emulation Oriented, Dynamic Micro­
programmable Processor Version II, Hopkins Computer Report
#281, Johns Hopkins University, Baltimore, MD.

3. IBM, IBM System/360 Principles of Operation, Order No.
GA22-682l-8, November 1970.

4. Connors, W.D., Mercer, U.S. and Sorline, T.A., S/360
Instruction Usage Distribution, TR 001 2025, System
Development Division, IBM, Poughkeepsie, N.Y., May 8, 1970

5. IBM S/360 Model 50 Functional Characteristics, Order No.
A22-6989-0.

6. Palyn Associates, Inc., "A Preliminary Study of CRIL on
EMMY" , Sept. 1975.

7. Hoevel, Lee, "Languages for Direct Execution", Proceedings
of the 7th Annual Workshop on Microprogramming (SIGMICRO 7).

- 13 -

