
An APl Machine

by

Phi lip S. Abrams

February 1970

This document has been approved for public
release and sale; its distribution is unlimited.

Technical Report No.3

Prepa red for the U.S. Atom ic Energy Commission
under Contract No. AT(04-3)-515, and for the
Joint Services Electronics Programs, U.S. Army,
U.S. Navy, and U.S. Air Force under Contract
Nonr-225(83) NR 373 360.

su- SEL -70 -017

al61TAL SYSTEmS LABORATORY

STAnFORD ELE[TROnIES LABORATORIES
STAnFORD uniVERSITY • STARFORD, EALIFORRIA

AN APL MACHINE

by

Philip S. Abrams

February 1970

Reproduction in whole or in part
ia permi tted for any purpoae of
the United States Government.

This document has been approved for public
release and sa Ie; its distribution is unlimited.

Technical Report No. 3

Prepared for the

U.S. Atomic Energy Commission under Contract
No. AT(04-3)-515, and for the Joint Services
Electronics Programs, U. S. Army, U. S. Navy,

and U. S. Air Force under Contract
Nonr-225(83) NR 373 360

Digital Systems Laboratory
Stanford Electronics Laboratories

Stanford University Stanford, California

SEL-70-017

ABSTRACT

This dissertation proposes a design for a machine structure which is ap

propriate for APL and which evaluates programs in this language efficiently 0

The approach taken is to study the semantics of APL operators and data

structures rigorously and analytically. We exhibit a compactly representable

standard form for select expressions, which are composed of operators which

alter the size and ordering of array structures. In addition, we present a set

of transformations sufficient to derive the equivalent standard form for any

select expression. The standard form and transformations are then extended

to include expressions containing other APL operatorso

By applying the standard form transformations to storage access functions

for arrays, select expressions in the machine can be evaluated without having

to manipulate array values; this process is called beating. Drag-along is a

second fundamental process which defers operations on array expreSSions,

making possible Simplifications of entire expreSSions through beating and also

leading to more efficient evaluations of array expressions containing several

operations.

The APL machine consists of two separate sub-machines sharing the same

memory and registers. The D-machine applies beating and drag-along to defer

Simplified programs which the E-machine then evaluates. The major machine

registers are stacks, and programs are organized into logical segments.

The performance of the entire APL machine is evaluated analytically by

comparing it to a hypothetical naive machine based upon presently-available

implementations for the language. For a variety of problems examined, the

APL machine is the more efficient of the two in that it uses fewer memory

accesses, arithmetic operations, and temporary stores; for some examples,

the factor of improvement is proportional to the size of array operands.

-ii-

TABLE OF CONTENTS

Chapter

I. INTRODUCTION.

II.

A.

B.

C.

A Programming Language •

The Problem. • • • . .

Historical Perspective

D. Conclusion......

MATHEMATICAL ANALYSIS OF APL OPERATORS

A. On Meta-Notation •••.

B. Preliminary Definitions .

C. The Standard Form for Select Expressions

D. The Relation Between Select Operators and Reduction

E. The General Dyadic Form - A Generalization of Inner

and Outer Products ••

F. Conclusion.....

APPENDIX A: SUMMARY OF APL

APPENDIX B • • . • • • •••••

APPENDIX C: IDENTITY ELEMENTS

m. STEPS TOWARD A MACHINE DESIGN. 0 •

A. Drag-Along and Beating. . • . • • . • • •

B. Beating and Array Representation

C. Summary...........

APPENDIX A: TRANSFORMATIONS ON STORAGE ACCESS FUNCTIONS

INDUCED BY SELECTION OPERATORS • •

IV. THE MACHINE. • • . • • • • . • • • •

A. IBta Structures and Other Objects •

- iv-

Page

1

1

2

3

6

7

7

8

17

25

31

37

39

42

63

64

65

68

70

72

74

75

Chapter Page

B. Machine Registers. · · · · · · · · · · 79

1. Value Stack (VS). · · · · · 81

2. Location Counter Stack (LS) · · · · 81

3. Iteration Control Stack (IS) . · · · · 82

4. Instruction Buffer (QS) • . · · · · . . 82

C. Machine Control · · · · 83

D. The D- Machine • · · · · · · · 87

O. A Guide to the Examples • · · · · · 87

1. Storage Management Instructions • · · · · 91

2. Control Instructions • · · · · 94

E. The E-Machine . . · · · · · · 116

1. Array Accessing 116

2. Instruction Set · · · · · · 120

APPENDIX A: SUMMARY OF REGISTERS, ENCODINGS AND TAGS 137

APPENDIX B: A FUNCTIONAL DESCRIPTION OF THE E-MACHINE • . 143

APPENDIX C: EXPANSION OF D-MACHINE OPERATORS

FOR E- MACHINE • . . . · . · · · · 150

APPENDIX D: POWERS OF 2 · · · . . · · · · 162

V. EVALUATION · · · · 163

A. Rationale. . · · . . 163

B. The Naive Machine 164

C. Analysis of Drag-Along and Beating 0 · · · · 167

D. Example - A Simple Subclass of Expressions 173

E. Example - An APL One-Liner. . · · · · · · · · 176

F. Example - Matrix Inversion Programs 181

-v-

Chapter Page

G. Discussion. 189

VI. CONCLUSIONS • 191

A. Summary 191

B. Future Research. 195

C. Concluding Remarks 197

REFERENCES 198

vi

LIST OF TABLES

Chapter IV

1-1. Storage Management and Control Instructions ••

1-2.

1-3.

2.

3.

3-A.

3-B.

3-C.

Chapter V

Scalar Arithmetic Operators . . • •

Remaining Operators .in D-Machine •

Interpretation of ASGN and ASGNV in the D-Machine

E- Machine Instruction Set • . . • •

E-Machine - Simple Instructions ••

E-Machine - Control Instructions

E-Machine - Micro-Instructions .•

Page

88

89

90

93

• 122

. . • 123

• 124

• 125

1. Steps in Evaluation of APL Operators . . • . . • • • 168

2-A. Summary of Effort to Evaluate Operators - NAIVE MACHINE • 170

2-B. Summary of Effort to Evaluate Operators - APL MACHINE .• 171

3. Performance Ratios for Pr.imes Problem as a Function of N .• 179

4. Operation Count for One Pass Through Main Loop,

Program REC. • 0 • • • • • • • • • • 0 • • • •••• 180

5. Total Operation Count for Main Loop, Program REC . 181

6. Machine Comparison Ratios For Main Loop of REC. • • 183

7. Operation Count for One Pass Through Main Loop,

8.

9.

Program REel • • . . • . . • • • •

Total Operation Counts for Main Loop, Program REC1 •

Machine Comparison Ratios for Main Loop of REC1. . 0

- vii-

• 187

• 188

189

Chapter IV

1. Structure of M.

2. Maincycle routine

Chapter V

LIST OF FIGURES

1.

2.

3.

State of the regIsters before compress operator 0 •

Example program: REC • • •

'Optimized' example program: REC1 •

- viii -

Page

80

86

178

182

186

CHAPTER I

INTRODUCTION

an optimist is a guy that has never
had much experience

Don Marquis, archy and mehitabel

The electronic digital computer has progressed from being a dream, to an

esoteric curiosity, to its present pervasive and indispensable role in modern

society. Over the years, man's uses of computers have become increasingly

sophisticated. Of particular importance is the use of high-level programming

languages which have made machines more accessible to problem-solvers.

In general, the use of problem-oriented programming languages requires a

relatively complex translation process in order to present them to machines.

Although this can be done automatically by compilers, there is a wide gap to

bridge between the highly-structured concepts in a programming language such

as ALGOL, PL/I, or APL and the relatively atomic regime of today's computers.

In effect, there exists a mismatch between the kinds of tasks we want to present

to machines and the machines themselves. One possible way to eliminate this

difference is to investigate ways of structuring machines to bring them closer

to the kinds of problems people wish to solve with them.

Ao A Programming Language

A particular programming language in which this mismatch with contemporary

machines is especially obvious is APL, based on the work of K. Eo Iverson

(Iverson [1962]). APL is a concise, highly mathematical programming language

designed to deal with array- structured data. APL programs generally contain

expressions with arrays as operands and which evaluate to arrays, while most

-1-

other languages require that array manipulations be expressed element-by-element.

To complement its use of arrays as operands, APL is rich in operators which

facilitate array calculations. Also, it is highly consistent internally both syntac

tically and semantically, and hence could be called "mathematical". Because of

its use of structured data and its set of primitives which are quite different from

those of a classical digital computer, APL does not fit well onto ordinary machines.

It is possible to do so, and interpreters have been written for at least three dif

ferent machines (Abrams [1966J; Berry [1968]; Pakin (1968]). Finally, because

of its mathematical properties, it is possible to discuss the semantics of the

language rigorously and to derive Significant formal results about expressions in

the language.

Bo The Problem

The problem considered in this dissertation is to design a machine structure

which is appropriate to APL. "Machine structure" here means a general func

tional scheme and not a detailed logical design. The expected result is not a set

of specifications from which a circuit designer could produce a working device,

but rather a superstructure into which the features of the language fit cleanlyo

Thus, this design must in some sense be natural for the language. For example,

the primitive operations and data structures should include those of APL. In

addition, the machine should take advantage of all available information in order

to execute programs as efficiently as possible. We use the word "machine" in

a very broad sense: what it really means here is "algorithm" and not necessarily

any particular phYSical device. Such a machine could be implemented as a con

ventional program or as a hardwired device or as a microprogram in an appropriate

system. For the purposes of this work, it doesn't really matter.

-2-

"APL" means any programming language which includes the semantics of

APL\360 (Pakin [1968J). We shall not be concerned with the particular syntax

of APL, although this currently appears to be the best way to represent the

semantic ideas of the language. In short, the machine should be able to handle

array- structured data with ease and should be able to evaluate functions on such

data using the operators of APL as basic primitives.

The approach taken is to invest a considerable amount of effort in the analysis

of the mathematical properties of the operators and data structures of APL and

to exploit these results in the design of the machine. Thus, a major part of this

work will be dedicated to a rigorous, mathematical investigation of APL expres

sions. This study is contained in Chapter II. In Chapter III, the work of Chapter

II is related to the design of a machine, and the design goals are set forth in

detail. Chapter IV discusses the proposed machine deSign, and Chapter V is an

evaluation of the machine with respect to the goals of Chapter III.

It should be ~mphasized that the goal of designing an APL machine is a rather

broad one. Although there are clearly practical applications of such a design,

that is not the major focus of this work. Rather, we hope that by investigating

this language and machine in detail, it will be possible to learn something about

the basic processes in computing and find ways of reflecting these processes in

a machine structure. The results summarized in Chapter VI and the new research

problems suggested by this work indicate that this goal has been fulfilled.

C. Historical Perspective

For the purposes of this dissertation, we are primarily interested in previous

workinthe area of language-directed machine design (McKeemang.967J; Barton [1965J).

To some extent, all machine design can be considered to be language-directed, in

that one wishes to implement some particular (machine) language in a piece of

- 3 -

hardware. However, let us consider only the class of machines which might

better be called "higher language inspired"; that is, machines which are based

in some way on languages capable of expressing concepts at a higher level than

are normally associated with assembly code.

The first such machine was reported in 1954, and was a relay device capable

of directly evaluating logical expressions (Burks, Warren, and Wright [1954J).

In addition, this machine used input in parenthesis-free (Polish) notation, thus

doubling its historical interest. The logic machine typifies one major class of

language-inspired machine designs in that its machine language is identical to the

high-level source language. The other major class of language-inspired designs

is more concerned with the processing of the semantics of the source language,

rather than direct acceptance of the exact language by the machine. In fact, most

designs fall between the two extremes, as even those which accept the source

language directly do some preliminary transformations on it to produce a Simpler

intermediate language.

Other language-inspired machines accepting source language directly include

an ALGOL 60 machine (Anderson [1961J), two FORTRAN machines (Bashkow,

Sasson and Kronfeld [1967]; Melbourne and Pugmire [1965]), the ADAM machine,

based on a special symbol-oriented language (Mu1lery, Schauer and Rice [1963J;

Meggitt [1964J), and a machine for EULER, a generalization of ALGOL (Weber

[1967]). Of these deVices, some were to be implemented in hardware (e.g.,

Bashkow et al.; Mu1lery et alJ while others were implemented in microprogram

(Meggitt; Weber).

Machines which are more concerned with semantic proceSSing to the extent

that their machine languages are Significantly different from a higher-level

language include the Burroughs B5000 (Barton [1961J; Burroughs [1963J) which is

-4-

essentially an ALGOL machine, a PL/I machine (Sugimoto [1969]) and the Rice

University computer (niffe and Jadeit [1962J). Current work in this area includes

a PL/I machine (Wortman [1970J) and a micro-computer capable of emulating

high-level processes easily (Lesser [1969]).

Most of these efforts are not directly relevant to the work in this dissertation

and are thus reported here only for completeness. The common aspect of all these

designs is that they are concerned with the processing of more highly organized

information and programs than are found in the conventional von Neumann

type architectures. Most of them include generalized addressing schemes using

some modification of descriptors, as well as at least one stack.

Although the Burks, Warren, and Wright machine was the first to use Polish

notation as a machine language, the first commercially produced devices to do so

apparently were the -English Electric KDF9 (Davis [1960]) and the Burroughs B5000.

Both of these machines included stacks. Other related efforts not yet mentioned

are two machines based on lower-level machine languages, but intended to deal

with high-level primitives. One of these (Iliffe [1968]) is based on extensive use

of descriptor logic for both programs and data, while the other (Myamlin and

Smirnov [1968]) is somewhat more closely oriented toward higher-level languages.

The latter, in particular, does run-time evaluation of infix arithmetic expreSSions.

Aside from the work of Burks et al. , none of the designs in the literature seem

to be derived from explicit mathematical analysis of their input languages. Furthez;

except for simulations or actual performance, none of the papers in the literature

present satisfactory evaluations of their designs. This is not to say that the

designs are not satisfactory: to the contrary, the success of the Burroughs family

of computers and the KDF9 show that language-inspired designs are a viable ap

proach to the development of new machines. On the other hand, nobody seems to

have established exactly how viable such designs really are.

-5-

D. Conclusion

Having briefly reviewed the developments of language-inspired machine design

to date, they can now be left in the background. The present approach is different

from those in the past in that it is based on a mathematical analysis of the seman-

tics of the source language. Also, the evaluation of the resulting design is analytic,

and gives a clear comparison of this APL machine to other similar deviceso There

are, of course, similarities to the designs of the past. In particular, the use of

program segments, data descriptors, and stacks is not novel in itself, although

the machine developed here is substantially different from those mentioned in the

last section.

lIThe thing can be done,11 said the Butcher, 1'1 think.
The thing must be done, I am sure.

The thing shall be done! Bring me paper and ink,
The best there is time to procure. II

L. Carroll, The Hunting of the Snark

-6-

CHAPTER II

MATHEMATICAL ANALYSIS OF APL OPERATORS

This chapter examines the mathematical properties of some of the APL

operators. Mathematical definitions of the operators are given from which it is

possible to deduce their properties. We show that there is a standard form for

expreSSions containing select.ion operators, and that there is a complete set of

transformations to obtain it. A similar form which generalizes inner and outer

products is introduced with transformations appropriate to obtain it. Finally,

the relation between these operators and others in APL is discussed.

This kind of analysis is important for several reasons. First, in its own

right it contributes to the understanding of the operators and data-structures in

APL. Second, and most important for this work, it provides a strong mathematical

basis for the design of the machine to be discussed later. In particular, the ideas

discussed here are reflected in the drag-along and beating processes, which are

fundamental in the proposed machine design.

A. On Meta-Notation

APL is a programming language, and as such is best suited for describing

processes, while mathematics is primarily concerned with discussing relations

rather than processes. Thus, in order to do mathematics with APL, it is neces

sary to use some notations that are not available in the language itself. Some of

these meta-notations are actually extensions of the language which might well be

included in APL to make it more powerful, while others are necessitated by the

analytic approach, and do not reflect shortcOmings in APL. In the next section,

definitions of objects not in APL are clearly noted as such.

- 7 -

B. Preliminary Definitions

The definitions to follow are given partly in APL and partly in meta-notation.

Hence this and the remaining sections in this chapter assume a minimal "reading

lmowledge" of APL. The APL summary in Appendix A will be helpful to the reader

not fluent in this language. Also recommended are the APL\360 Primer (Berry

[1969]) and APL \360 Reference Manual (Pakin [1968]). At first, it might appear

that defining APL operators in terms of other (intuitively but not formally defined)

APL operators is elliptical. In fact, there is no circularity since the definitions

could be given in more primitive forms, but at the cost of less perspicuity. Since

the goal here is not the development of a coherent theory of APL expressions but

rather the illumination of the behavior of these expressions, the current mode of

explication was chosen. The use of "undefined" APL operators is made advisedly

and no special or esoteric applications of them are made in the following definitions.

The basic problem here is that of using a formalism to describe a formalism.

At some point it is necessary to assume a previous knowledge of something in

order to avoid an infinite regress. ''Nothing can be explained to a stone; the

reader must understand something beforehand." (McCarthy [1964], p. 7)

The definitions will be numbered Dn for easier reference. Theorems and

transformations will be numbered Tn and TRn, respectively. In APL expressions

to follow, the convention that unparenthesized subexpressions associate to the

right will be used wherever this does not lead to confusion. Material which can

be skipped in the first reading is enclosed in heavy brackets. For the most part,

this includes formal statements in definitions which are necessary for proving

theorems and correctness of transformations, but which are not essential to

understanding the content of this chapter.

- 8 -

DO. Identity: (Meta) If ,n and $ are expressions, then

A +-+f1jJ

means they have identical values.

The sign ~, is used for identity because the more traditional equality

sign '= , is reserved for use as a dyadic scalar operator in APL.

Dl. Conditional Expression: (Meta) The conditonal expression

IE B fHEN A ELSE C

has as its value the value of A if B +-+ 1, the value of C if B +-+ 0, and is

undefined otherwise.

McCarthy [1963] discusses formal properties of conditional expressions,

some of which are used in the proofs in this chapter.

D2. Index Origin: (Meta) The index origin is the lower bound on subscripts in

APL expressions. It will be referred to as IORG.

In general, this work attempts to show explicit dependencies on index origin.

However, to do so throughout simply complicates many expressions without adding

insight. Whenever it is unstated we use I-origin indexing.

D3. Interval Function: If N is a non-negative integer scalar, the interval

function of N, denoted by IN , is a vector of length N whose first element is

IORG, and whose successive elements increase by 1.

[FormallY, IN +-+ If. N=O fHEN EMPTY VECTOR flLSE (IN-l) ,N+IORG-1.]

Thus, one representation for the empty vector is lO.

D4. Odometer Function: (Meta) If R is a vector of non-negative integers, the

odometer function of R, denoted by 'lR, is a matrix with dimension (x/R),pR

- 9 -

whose rows are the mixed-radix representation to base R. of the (x/pR)

consecutive integers, starting with IORG. This extension is not a part

of APL, but is useful for discussing individual subscripts of an array.

[Formally, for each Iox/R, (lR)[I;J +-+ IORQ+RTI-IORG.]

Exam2le: 13,2 +-+1 1
1 2
2 1
2 2
3 1
3 2

D5. Row Membership: EL'l.. is a function whose left operand is a vector and

whose right operand is a matrix, defined as follows:

L ELT R +-+ IF (pL)=(pR)[2J THEN V/RA.=L ELSE O.

That is, the relation is true (has value 1) if and only if the left operand

vector is identical to one of the rows in the right operand matrix.

Example: (1,3) ELT 13,2 +-+ 0

(2,2) ELT 13,2 +-+ 1

00. List:(Meta) If L is a vector, then the list of L, denoted by ;/L, is a

subscript list made up of the elements of L. That is,

;/L +-+ L[1J;L[2J; ... ;L[pLJ.

Example: M[;/15J +-+ M[1;2;3;4;5J

D7. Ravel: The ravel of M, denoted by,M , is a vector containing the elements

of M in row-major order. The dimension is

p,M +-+ x/pM

If M is a scalar, then .M is a one-element vector.

- 10-

Example:

[Otherwise for each IElx/pM, (,M)[I] ++ M[;/(tPM)[I;JJ]

,1 3
5 7 ++ 1,3,5,7,9,11
9 11

,1,3,5 ++ 1,3,5

D8. Reshape: LetR be a vector of non-negative integers. Then the R reshape

of M , denoted by RpM. is an array with dimension R, whose elements are

taken from M (possibly with repetition) in row-major order.

Example:

[
Formally, for each L ELT lR,]

(RpM)[;/LJ ++ (,M)[IORG+(x/pM) IR~L-IORQJ

C3,2)P16 ++ 1 2
3 '+
5 6

'+p 1 , 2 , 3 ,4 ,5 ++ 1, 2, 3, '+

(2,'+)p13 ++ 1 2 3 1
2 312

D9. Partial Subscri.Jting: (Meta) M[[KJ SJ denotes the partial subscripting

of array M along the K th coordinate. In other words,

Formally,

M[[KJ SJ ++M[; ••• ;S; ••• ;J
t t t
1 K ppM

pM[[KJ SJ ++ «K-l)tpM),(pS),(K+pM)

and for each L flLT lpM[[KJ SJ.

if S is a vector, then

(M[[KJ SJ)[;/LJ ++ M[;/«K-l)tL),S[L[KJJ,K+LJ

and if S is a scalar, then

(M[[KJ SJ)[;/LJ ++ M[;/«K-l)tL),S,(K-l)+LJ

-11-

D10. Subscripting: If M is a rank-K array, then for any Sl,S2, ••• ,SKM1 ,SK

M[Sl; ••• ;SKMi;SK] ++ (••• «M[[ppM] SK])[[(ppM)-l] SKM1]) •••)[[1] Sl]

The above simply gives a formal definition for array subscripting. It looks

more complex than it really is because APL uses a different syntax for subscripting

than for other operators. If we write SK K[K] M instead of M[[K] S], then the

value of the above expression can be rewritten as:

Sl K[i] ••• SKMi K[(ppM)-fl SK K[ppM] M

DU. J-Function: Let LEN be a non-negative integer, ORG an integer, and8e:0 ,i.

Then i. LEN .ORG,S is an interval vector of length LEN whose least element

is ORG; if S ++ 0 then successive elements increase by 1, else they decrease

by 1. Formally,

i. LEN,ORG,S

++ ll'.. 8=0 THEN ORG+(lLEN)-IORG ELSE (LEN+ORG-1)-((lLEN)-l.QB.a) •.

J-vectors are a generalization of the interval function. hi particular, !I-vectors

can have any origin, are invariant under changes of IORG, and can run forward

or backward.

Example: l 4.2,0 ++ 2,3,4,5

l 4,2.1 ++ 5,4. 3,2 and these relations are true for any IORG.

D12. Subarray: (Meta) LetM be any array and F an array with dimension

(ppM),3. Then the subarray selected byF , denoted F!:M, is

F!:M ++ Mel F[i;];l F[2;]; ••• ;l F[ppM;]J

where the elements of Fare assumed to be in the domain of the above

expression.

- 12 -

A subarray selected by this function is compact. The subarray function will be

used to provide a standard representation for all the various ways of selecting

compact subarrays.

Example: Let pM +-+ 10 ,15

and E +-+ 4 3 0
351

then Ft:JvJ +-+ M[il.. 4,3,0 il.. 3,5,1J

+-+ MC3,4,5,6 7,6,5J

D13. Whole Array: (Meta) For any array M, the whole array of M, denoted

by t:JvJ, produces as a result the F such thatFt:JvJ +-+ M.

Example:

[FormallY, /:)}.1 +-+ ~(3,ppM)p(pM),«ppM)pIORG), (PPM)PO]

If pM +-+ 6,10,32, then /:)}.1 +-+ 6 1 0

and IORG +-+ 1
10 1 0
32 1 0

D14. Cross Section: (Meta) LetM be any array, F an array with dimension

(ppM),2 such that

(i) F[;1JEO,1

(ii) ("'F[;1J)/F[;2] +-+ (+/"'F[;1])pO

(iii) (F[;1]/F[;2]) ELT IF[;1]/pM

Then the F cross section of M, denoted by Ft:JvJ, is: pFYtl +-+ (-F[; 1 J) / pM

andforeach L ELT lpFYtl, (F~)[;/L] +-+ M[;/(x/F)+(-F[;1])\LJ

Cross section is used to formalize the subscripting of arrays by scalars. The

first column of F contains zeros for coordinates to be left intact. Condition (ii)

requires that if F[J;1] +-+ 0 then F[J; 2] +-+ o. This is primarily to make some

of the theorems easier to prove. Entries of 1 in F[; 1] correspond to coordinates

indexed by scalars in the corresponding element of F[;2] •

- 13-

Example: Let pM +-+ 4,7,13

F+-+1 2
0 0
1 10

then F/;:.M +-+ M[2 ; ;10J

D15. Take: If Mis any array and A is an integer vector with pA +-+ ppM and

(!A)~M, thenAtM is an array of the same rank of M, as follows: for each

IElppM, ifA[IJ;:::O then include the first A[IJ elements along theI th coordinate

of Mj otherwise .if A[IJ<othen take the last !A[IJ elements.

[
Formally, AtM +-+ FMJ]

where F +-+ 1sI(3,ppM)p(!A),(IORG+(A<O)x(pM)-!A),(ppM)pO .

D16. Drop: If M and A are as above, thenAtM is similar to the take except that

for each coordinate, the first (or last)!A[IJ elements are ignored.

[
Formally, AtM +-+ GfM]

where G +-+ 1sI(3,ppM)p«pM)-!A),(IORG+ofA),(ppM)pO

D17. Reversal: If M is any array then cp[KJM is the reversal of M along the K th

coordinate.

[
Formally cp[KJM +-+ HfM]

where H +-+ 1sI(3,ppM)p(MJ)[;1J,(fM)[;2J,K=lppM .

If the subscript on the operator is elided, it is taken to be ppM.

Example: Let M +-+ 1 2 3
456
789

- 14-

then, (2 , 2)tM +-+ 1 2 (2 , - 2)tM +-+ 2 3
4 5 5 6

(2,1 HM +-+ 8 9 C1,1HM +-+ 2 3
5 6

?Q[iJM +-+ 7 8 9
4 5 6
1 2 3

D1S. Transpose: If M is any array and A is an integral vector satisfying

(i) pA +-+ ppM

(ii) A/Au ppM i. e.,A contains only coordinate numbers of M

(iii) A/(1r /A)EA i.e., A is dense

then the transpose A?QM of M byA is defined as follows:

1. ppA?QM +-+ 1+(r/A)-IORG

2. For each IuppA?QM,

(pA?QM)[I] +-+ L/(A=I)/pM

3. For each L ELT 1 P A?QM,

(A?QM)[;/L] +-+ M[;/L[A]]

In other words, A permutes the coordinates of M. Transpose can also

specify an arbitrary diagonal slice.

Example: Suppose M is a matrix with pM +-+ 5.6. Then if R +-+ (2,1)?QM , and

IORQ. +-+ 1 we have ppR +-+ 1+2-1 +-+ 2 . Further, (pR)[1] +-+ L!(1=2,1)/5.6 +-+ 6

(pR)[2] +-+ L/(2 +-+ 2,1)/5,6 +-+ 5 andforeachL ELT 16,5. R[;/L] +-+ MC;/(.L)[2,1]]

or R[L[1J; L[2JJ +-+ M[L[2]; L[1JJ.

Thus, R is the ordinary matrix transpose of M •

N ow suppose M is same as above and R +-+ (1,1)?QM. Then, p pR +-+ 1 +1-1 +-+ 1.

So the result is a vector. Then (pR)[1 J +-+ UC1=1,1) /5,6 +-+ 5.

- 15-

Then for each L05, we haveR[LJ +-+ M[;/(,L)[1,lJJ

+-+ M[L ; LJ

So R is the main diagonal of M.

D19. Compression: If X is any vector and U is a logical vector of the same

length, then U /X is the result of suppressing from X all elements whose

corresponding entry in U is O. For an arbitrary array X, U/[I] X compresses

X along the I th coordinate.

Formally, for vector X, pU/X +-+ +/U and for each IElpU,

IF UCIJ=l XHEN(U/X)[+/ItU] +-+ X[IJ

This is not a constructive formula for (U/X)[I]; however, such a

formula is too complex to be useful here. For any array X ,

U/[I] X +-+ X[[I] U/t(pX)[IJ].

D20. Expansion: If X is any vector and Uis a logical vector with +/U +-+ pX,

then U\X is a vector with 0 elements wherever U has, and whose other

elements are taken from X in order.

The definition of expansion is extended to higher-dimensional arrays in

the same way as for compression.

[
Formally, p U \X +-+ p U and for each I o p U , 0]

(U\X) [I] +-+ IF U[I] THEN X[+ / I tU] ELSE

Example: (1,1,0,1,0)/1,2,3,4,5 ++ 1,2,4

(1,1,0,1,0)\1,2,3 ++ 1,2,0,3,0

- 16-

C. The Standard Form for Select Expressions

In this section the selection operators considered are take, drop, reversal,

transpose, and subscripting by scalars or ~-vectors. Because of the similarity

among the selection operators, we might expect that an expression consisting only

of selection operators applied to a single array could be expressed equivalently in

terms of some simpler set of operators. This expectation is fulfilled in the

standard form for select expressions, to be discussed below.

If the existence of a standard form is to be at all useful, there must be a way

to decide whether a particular expression has a standard form representation and

If so, there must be an effective method to obtain it. In the sequel we show that

every select expression has an equivalent standard form, and exhibit a set of

formal transformations which are sufficient to derive the standard form from an

arbitrary expression.

It may at first seem strange to include subscripting in the set of selection

operators, since its parameters are of a different kind than those for the other

select operators. In the other select operators such as take or drop, the left

operand is a count, which is independent of ways of accessing the argument array.

On the other hand, in subscripting the arguments act like maps rather than counts.

For example, an expression like A +M has meaning out of context, as long as the

values of A andM are known. Contrariwise the expression M[1 ; 3] cannot be

evaluated without knowledge of the index origin. In the theorems and proofs to

follow, the major complications often come from this dichotomy in the way of

specifying select operations, rather than from the actual content of the material.

Subscripting is included because its effect is similar to the other selection

operators, all of which change only the dimensions and orderings of their operands.

- 17 -

D21. Select Expression: Let 8 be any (well-:formed) array-valued expression.

Then $is as a select expression on 8 if it is a well-formed expression

consisting of an arbitrary number (including 0) of the following operators

applied to ~:

(i) Take

(ii) Drop

(iii) Reversal

(iv) Transpose

(v) Subscripting by scalars of ~-vectors

By extension, we will also include the subarray and cross section operators

in this class.

Example: Let M be a rank-3 array. Then by D21,

(2.1.3)~(~[2](4.-6.3)~M)[; ; J6.2.1]

is a select expression on M, but

-M[; ; 5.7.3.1]

is not because it contains the scalar operator' -, and the subscripting is not by

a scalar or I-vector. The definition also admits M as a select expreSSion on M.

D22. Equivalence Transformation: An equivalence transformation on expressions

is a rule of the form:

if set of assertions then 8 =>$

where 8 and $are expressions. If the set of assertions is true, then express.ion

~ may be replaced by expression 3, and the truth of the assertions guarantees

that ~=>6.

For example @ X is any vector then ~~x=>X) is an equivalence transformation,

since it is always true that if Xis any vector,#x ++ X.

- 18-

For any given transformation, it is necessary to prove that it is indeed

equivalence-preserving. If this is the case the transformation is said to be

correct. Note that the notions of expression and transformation and standard

form used here are informal ones. It is possible to make them rigorous, so as

to be acceptable to a logician, but that is irrelevant to the current aims and would

only serve to obfuscate the important mathematical relationships we are trying

to explicate. The correctness proof for each transformation will be called

"Proof of TRn".

D23. Standard Form: A select expression on an arrayM is in standard form

(SF) if it is represented as AIslF!:J.GflMwhereA,F,G are all of the correct

size and domain.

In the remainder of this section, we introduce a set of equivalence transfor

mations sufficient to transform most select expressions into standard form. In

the process we prove the correctness of each transformation. The effect of this

process is a proof of the following important theorem:

COMPLETENESS THEOREM 1: If 8 is any select expression on an array M,

then 8 can be transformed into an equivalent expreSSion gin standard form.

In order to obtain an SF representation of an arbitrary select expression, we

must first be able to eliminate the operators take, drop, reversal and subscripting.

The first four transformations below do this.

TRl. If M is any array and A is conformable to M for take, then AtM => F!:J.M

where F +-+ 1sl(3. ppM) p(IA) , (IORQ+(A <0)x(pM) -I A), (ppM)pO .

- 19 -

TR2. If M is any array and A is conformable to M for drop, then A+M => F!;,M

where F +-+ 1s1(3,ppM)p((pM)-/A),(IORG+OfA),(ppM)pO.

TR3. If M is any array then <j>[K]M => F!;,M

where F ~ 1s10,ppM)p(LW)[;1],(b.M)[;2],K=tppM.

These three transformations are obviously correct, as they follow directly from

the definitions of the operators take, drop, and reversal. Their proofs will thus

be omitted.

TR4. If M is any array then M[[K] ,z LEN ,ORG,S] => FLW

where F[K;] ~ LEN,ORG,S and (K;ttppM)/C1JF ~ (K;ttppM)/[l]LW

That the above is an equivalence transformation requires a small proof:

Proof of TR4:

We must prove that for any array M,

M[[K] ,z LEN,ORG,S] ~ FLW

where F is as given in TR4. In order to prove the identity, we show first that both

quantities have the same dimensions. Then we show that corresponding elements

of each are identical.

Let R ~ M[[KJ ,z LEN ,ORG,SJ.

1. By def.inition, pR ~ «K-l HpM), (p ,z LEN ,ORG,S) ,K+pM

~ «K-l)tpM),LEN,K+pM

and pFLW ~ F[;lJ

~ «K-1)t(LW)[;l]),LEN,K+(LW)[;lJ

~ «K-1)tpM),LEN,KtpM

~ pR

- 20-

2. For each L ~LT lpR,

R[;/L] ++ M[;/«K-i)tL),(~ LEN,ORG,S)[L[K]],X+L]

and (F~)[;/L] ++ (M[~ F[i;] ; ~ F[2;] ; .•• ; ~ F[ppM;]][;/L]

++ M[(~ F[i;])[L[1J]; ; (~ F[ppM;])[L[M]JJ

(by L3 in Appendix B).

But for each I~K, (~F[I;])[L[I]] ++ (~ (pM)[I],IORQ,O)[L[I]]

++ L[I] (by L4, Appendix B)

and(~ F[K;])[L[K]] ++ (~LEN,ORG,S)[L[K]]. Therefore,

(Ff:"M)[;IL] ++ M[L[i] ; L[2] ; ••. ; L[K-i] ; (.J.. LEN,ORG,S)[L[KJJ;

L[K+1]; •.• ;L[ppM]]

++ M[;/«K-i)tL),(~ LEN,ORG,S)[L[K]],X+L]

++ R [; / L J QED.

The preceding proof of TR4 is reasonably simple, and is representative of

the kind of proof required. Although similar in style, the proofs of the remaining

transformations are more complex. Since they add little to the exposition, they

are given in Appendix B.

The following transformation makes it possible to reduce the number of

occurrances of adjacent subarray operators in an expression.

TR5. If Mis any array and Fand G are conformable for subarrays, then

Ff:"Gt:,M => H6M

where pH ++ pF and for each IElppM, H[I;] ++ L,OR ,S

where ~ L,OR,S ++ (~ G[I;])[~ F[I;]]

Transformations TR1 through TR4 are used to eliminate instances of the

operators take, drop, reversal, and indexing from select expressions by trans-:=.

forming them into equivalent expressions involving subarray and cross section

operators. TR5 shows how to coalesce two adjacent occurrances of subarray into

- 21-

one. The remaining transformations, TR6 through TRIO are similar in spirit

and are used to permute the remaining operations into the order required by the

standard form.

TR6. If Mis any array and Fand G are conformable, then F6G~ => G' 6P' 6M - - ,

where G' ++ (~P[;1J)/[1]G

and P'[;1J ++ P[;1J

and PI[;2J ++

P[;1]x(G[;2J+«~G[;3])xP[;2J-IORG)+(G[;3]x(G[;1J+IORG+-1-P[;2]»)

TR7. If M is any array and P andG are conformable toM for cross section,

then PAG~ => H~

where H[;1J ++ G[;1]V(~G[;1J)\P[;1J

and H[;2J ++ G[;2J+(~G[;1])\P[;2J

TR8. If M is any array and P ,A are conformable to M for subarray and transpose,

respectively, then

PMls/M => Als/P[A; J~.

TR9. If M is any array, Q a scalar, JElppAls/M then

(Als/M)[[JJQJ => IF 1=ppAls/M THEN Bt:/'4 ELSE A'ls/Bt}1

where A' ++ (A~J)/A-J<A

and B[; 1 J ++ J = A

and B[;2J ++ QxB[;1J.

TRIO. If M is any array and B and A are conformable for transpose, then

Bls/Als/M = > ClSN

where C ++ B[AJ.

- 22-

Now that we have transformations TRl through TRlO which are proved correct

in Appendix B, we can outline a proof of Completeness Theorem 1. First

note that for any array M, M ++ (lppM)Q(t:J.1)!::.«(ppM),2)pO)[;#1.

1. Let ~ be any select expression on M which satisfies the hypotheses of the

theorem. Apply TRl, TR2, and TR3 to tff enough times to eliminate all instances

of the operators take, drop, and reversal. (In order to be absolutely rigorous,

we would have to prove a replacement theorem which says that if in an expression

J'I, an occurrance of a subexpression $ is replaced by an equivalent subexpression

$' (i. e., $ ++ $ r), then the resulting expressionAl is equivalent to A, only

A' ++ A. Call the result of this operation ~,. Note that ~, contains only

subscript, /:::', and /5;1 operations. Clearly ~r++ ~ because we have applied

only equivalence transformations.

2. Now for each instance of an indexed quantity, substitute the equivalent

expression using partial indexing, as per definition D10. Write this using the

IX notation mentioned there and apply TR4 to eliminate all instances of J-vector

subscripts and call the resulting expression 8". It should be obvious that ~!I

has the form 51 91 52 82 ... 5N 8N M, where the S quantities are left operands

for the operators 9 and the 8 's are /:::" /5;1 and IX in arbitrary order. Finally

substitute the expression (1 ppM)/5;I(t:J.1)M ((ppM), 2)pO)y.1 for M, and note that this

subexpression, call it 91N, is in standard form. Call the resulting expression .o/"N'

and again note that &IN ++ ~.

3. Consider the following algorithm: at each step, the input is

2IK ++ 51 91 52 92 ... 5K 9K 91K, where 9'K is in standard form, i. e.,

9'K ++ AK/5;IFK/:::,GK/lM •

(a) If K ++ 0 then the algorithm is terminated. Otherwise, look at the operator

9K. Do step 1, 2, or 3 below depending on whether 9X is~, /:::, or IX , respectively,

and return to step (a).

- 23 -

1. eK is transpose, lS? Apply TR10 to the expression SKlS?9K ~ SKlS?AKlS?FKt:.GK!J!4.

to get the equivalent QKlS?FKt:.GK!;!:4, where QK ~ SK[AKJ and call this 9K -1 •

2. eK is subarray, t:.. Apply transformations TR8 and TR5 to SKt:. ~ to

get SKfj,~ ~ SKMKlS?FKt:.GK!J!4 => AKlS?SK[AK;Jt:.FKt:.GK!;!:4 => AKlS?FK't:.GK!J!4. where FK'

is obtained by TR5.

3. eK is indexing by a scalar, IX[JJ 0 Apply transformations TR9, TR6,

and TR7 to SK IX[JJ9K. getting

SK IX[JJ AKlS?FKt:.GK!;!:4 => AK'lS?BKldFKt:.GK!;!:4

=> AK'lS?FK' t:.BK' IdGK!J!4

=> AK'lS?FK'6GK'!J!4.

In each of steps 1, 2, 3 above, a set of transformations was applied to the

subexpressionSK eK~K of ,o/'K. Call the resulting subexpression 9'K_1. Since all

transformations were equivalence transforms, it is clear that SK eK~ +-+ ~K-1.

Let .o/'K_1 be the resulting expression from plugging 9'K_1 into ,o/'Ko Clearly

.o/'K-1 +-+ .o/'KO Finally observe that each.?K is in standard form. Hence, in N steps,

the algorithm will terminate with result .0/() ~ .0/].+-+ ... +-+.o/'N ~ B, and ~ +-+ ~O'

which is in standard form. This is the desired result. QED.

SO far, we have defined a standard form for a subset of select expressions

and exhibited a complete set of transformations for obtaining the standard form

representation of an arbitrary expression in this class. Moreover, the proof of

the completeness theorem gives an algorithm for obtaining the SFofanexpression.

Note that there are alternate ways of formulating the standard form. For instance,

an equivalent formulation says that an expression is in standard form if it is

represented as AlS?BtC+<j>[KJ D!J!4 with B • C non-negative and K a vector of indices

so that the definition of <j>[KJ extends in the obvious way. The choice of USing

the meta-notation formulations was made for two major reasons. First, fewer

- 24-

transformations and therefore fewer proofs are needed to establish completeness.

Second, this formulation is closer to the way these results will be used in the

design of the machine.

Another point to note is that the standard form could be made more general,

by allowing more operators to be included in the set of selection operators. In

particular, compression and expansion might be included, as well as reshape

and catenation. The general rotation operator at first seems to be a possible

candidate for inclusion, but in fact does not fit in cleanly. This is primarily

because rotations involve taking residues of subscripts, which do not compose in

a simple way. A further extension would allow arbitrary indexing of select

expressions and perhaps extend operations on select expressions to operations

on their subscripts, as in the case q,V[SJ +-+ V[q,SJ .

A final point concerns the significance of the SF and completeness results.

These results are important in that they establish formally some of the relation

ships between APL-like operators which informally may appear obvious. This

not only provides a useful tool for the programmer, who may make formal trans

formations on his programs without a second thought, but it also provides a formal

basis for automatic transformation of programs and expressions. This second

property is heavily used in the design of the APL machine. Also important is

that results such as we have described aid in the understanding of array operators,

which might be used in generalizing them further or in strengthening the theoretical

foundation for operations on array data.

D. The Relation Between Select Operators and Reduction

Obviously there is more to APL than just selection operators. If the results

of the previous section are to be generally applicable, we must look into the

relationships between select operators and some of the other kinds of operators

- 25-

in an array language. One result that has been used implicitly in some of the

proofs in Section C is that selection operators are distributive with respect to

scalar arithmetic operators. For instance, (A+B)[S] ++ A[S]+B[S] and

-cpv ++ cp-V. This property follows immediately from the definition of scalar

arithmetic operators and the definitions of the select operators, and is stated

formally in the theorem T 1 below:

T 1. Let A and B be arrays with the sa"me dimensions and M and Q be monadic

and dyadic scalar arithmetic operators and '1 a selection operator; then

(i) if A !J B is defined,

X (A Q B) ++ (X A) Q (X B)

(ii) if M A is defined

XMA++MXA

Tl contains the restriction thatA Q Band M A be defined, in order to deal

with cases like « 1 .1 ,1) +1 .1 ,0) [1.2] in which the result is undefined as written

but is defined after distributing the indexing operator. This result is in fact more

general than as stated. It should be clear that the operator 'f. can also be rotation,

compression, expansion (for some scalar operators) or operators such as ravel

or reshape. A similar result holds if one of A or B is a scalar.

One of the most important constructions in APL is reduction which applies a

dyadic scalar operator between all elements of a vector. Reduction is not an

operator in the sense we have been using, but is more like a functional. As will

be shown below, it is possible to change the order of select operators and reductions

as well as to permute the coordinates of the reducee. As in the previous section,

these facts will have direct use in the APL machine. The remainder of this section

defines reduction formally, and presents a set of equivalence transformations

for expressions involving reductions.

- 26-

D24. Reduction: Ifl? is a dyadic scalar operator and Vis a vector, then thef?

reduction of V, written DIV, is a scalar defined as follows:

glv ++ IF (pV»l THEN VU] 12 V[2] 12 ••• 12 V[ppV]

ELSE IF (pV) = 1 'l..HEN V[l] ELSlJ.. (IDENTITY OF 12)

In the expression above, the operators 12 associate to the right, as usual.

The identities of the scalar dyadic operators are listed in Appendix C.

If M is any array and 12 is as above then the 12 reduction over theK th

coordinate of M is defined as follows:

plUCK] M ++ (K-1)tpM) .K+pM

and for each L ELT lP12/[K] M

(12/[K] M)[;IL] ++ 12IFAM

where F[;l] ++ K~lppM AND F[;2] ++ F[;l]\L

If the subscript K is elided in the expression 12/[K] M, it is taken to be

the last coordinate of M,which is ppM in I-origin and r /lppM in general.

In order to do some of the proofs required by this section, we will need to use the

membership and ranking operators, so these operators are defined formally first.

D25. Membership: If A is a scalar and B is any array, then the membership

relation AEB has value 1 if at least one of the elements of B is identical to

A , otherwise the value is o. The dimension of the result is the same as

that of A, and the definition is extended element-by-element on A.

[That is AEB ++ ~/Ao .=B]

ppB TIMES

D26. Ranking: If B is a vector and A is a scalar, then B lA denotes the index

of A in B, namely the least subscript I of B such thatA ++ B[I] •

[Formally, B1A ++ L/(A=B.A)I 11+pB.J

- 27-

From the expression above, it is clear that if AEB then the result is

1+f /1pB. The operation is extended to arbitrary arrays A element-by-

element.

rThUS, if A is any array, then for each L ELT 1 pA ,]

L (B1A)[;/LJ ++ L/(A[;/LJ = B,A[;/LJ)/11+pB.

An interesting question about reductions is under what circumstances can the

coordinates of the reducee be permuted, with reduction carried out on a different

coordinate, and still have the result remain the same? It is intuitively obvious,

for example, that + / [1 J M ++ + / [2 J (2,1) 1sW., when M is a matrix, since adding

the rows is the same as adding the columns of the transpose. Theorem T2 shows

that this kind of permuting can be carried out as long as the coordinates that are

left after reduction are in the same order.

T2. Let Mbe any array, !2. any scalar dyadic operator, K a scalar, and P any

permutation of 1 p pM. Then,

!2./[KJ M ++ /2./[P[KJJ PIsW.

if and only if

(P[KJ~lppM)/PllpP ++ (K~lppM)/lppM

Proof: See Appendix B.

The complicated condition in T2 is a formal statement of the requirement

that permutation by P does not disturb the ordering of the coordinates in Mother

than K.

Example: Let M be a rank-4 array. Then, by theorem T2, all of the follOWing

are true:

+/[2JM ++ +/[1J (2,1,3,4)~

++ +/[3J (1,3,2,4)~

++ +/[4J (1,4.2,3)~M

- 28 -

No other values of P satisfy the condition in T2. For instance if P +-+ 4,2,1,3,

P[2] +-+ 2 and PllPP +-+ 3,2,4,1. 80(271,2,3,4)/3,2,4,1 +-+ 3,4,1 which is

not (2 71,2,3,4)/1,2,3,4 +-+ 1,3,4. This theorem suggests the follow.ingtrans

formation:

TRll. If Mis any array and Qis a dyadic scalar operator, then

QI[K] M +-+ QI[LAST] A~M.

where LASTis the index of the last coordinate of M (ppM for I-origin and

r /lppM in general) and A +-+ (lK-1) ,LAST, ((K-1)+1 (ppM)-K)

TRll above and TRI2, TRI3, and TRI4 to follow can be used to transform a

select expression on a reduction to a reduction along the last coordinate of a

select expression.

TRI2. If M is any array and Q a dyadic scalar operator then

A~QIM => QI(A,1+rIA)~M.

TRI3. If Mis any array, Q a dyadic scalar operator, then

GtJQIM => QIG'tJM

where G' +-+ (ptJM) p (,G), CHpM) , IORG , o.

TRI4. If M is any array, Q a dyadic scalar operator, and Q a scalar,

then (QIM)[[J]Q] => QIM[[J]Q].

Proofs of TRll, TRI3, TRI4: Immediate from theorems T2, T3, T4.

Proof of T R12 : 8ee Appendix B.

Transformation TRll forces all reductions to be along the last coordinate of

their operand array. TRI2, TRI3, and TRI4 permit reduction to be lIfactored

out" of select expressions.

- 29 -

Given these transformations, we can extend the completeness result of the previous

section as follows:

COMPLETENESS THEOREM 2: If & is an expression on an array M containing

only selection operators and reductions, then it can be transformed into an

equivalent expression $of the formJ21 / 12i·· .12K/$' where the12I are the reduction

operators in the order they appeared in & and where9" is in standard form.

Since the proof of this theorem is similar to that for the first completeness theorem,

.it will be omitted. Such a proof depends on the correctness of transformations

TR11 through TR14, which follow from the theorems below:

T3 0 If M is any array, 1) a dyadic scalar operator then

G~Q/[KJM ++ Q/[KJG'~

where (K7 1ppM)/[lJG' ++ G AND G'[K;J ++ (~)[K;J

Proof: See Appendix B.

T4. For any array M and D a dyadic scalar operator,

G~Q/M ++ Q/G'y.1

where G' ++ ((ppM),2)p(.G),o,o

Proof: See Appendix B.

The following example takes an expression and derives the standard form of

Completeness Theorem 2.

Example: Let pM ++ 6,10,12,19 and consider the select expression with

reductions:

8++ (2,1)~+/[lJ(3,7,-4)tx/[4JM

ill each step, we note the transformations applied.

- 30-

10 8 ~(2 ,1) ~+ / [3 J (3 ,1 • 2) ~F!J. x / [4 JM

where F ~ 3 1 0
710
490

(TRll, TRl)

20 8~ +/[3J(2,1.3)~(3.1.2)~x/[4JG!J.M (TRI2, TRI3)

where G ~ 3 1 0
710
490

19 1 0

3. 8~ +/[3J(3.2,1)~x/[4JG!J.M

4. 8~ +/[3Jx/[4J(3.2.1,4)~G!J.M

5. 8~ +/[3Jx/[4J(3,2,1.4)~G!J.H&M

where H ~ 0 0
o 0
o 0
o 0

The above expression is in SF.

(TRIO)

(TRI2)

by definition of t:.

E. The General Dyadic Form - A Generalization of Inner and Outer Products

In APL there are three ways of applying dyadic scalar operators to a pair of

operands. The simplest, t.lte scalar product, is the element-by-element application

of a scalar operator to corresponding elements of conformable arrays. The next

simplest is the outer product, in which the result is obtained by applying the

operator to all possible pairs of elements, one from each operand array, in a

specified order. Finally, the inner product is a generalization of ordinary matrix

product in linear algebra, except that arbitrary (conformable) arrays may partici-

pate as operands and any pair of operators may be used. Before proceeding, let

us present the formal definitions of inner and outer products.

- 31 -

D27. Outer Product: If Mand N a.re arbitrary arrays and D is any dyadic scalar

operator, then the 12 outer product of M and N, written M o.12. N, is defined

as follows: pM o.12. N ~ (pM), pN. Then for each L ELT tpM o.12. N,

(M o.12. N)[;/LJ ~ M[;/(ppM)tLJ 12. N[;/(ppM)+LJ.

D28. Inner Product: If M and N are any arrays such that -HpM ~ itpN and if

12. and f are two dyadic scalar operators, then theQ-,F inner product of

M and N written M 12..E N, is defined as follows: pM 12..E. N ~ CHpM) ,HpN

and for each L EL'l. lpM 12..E. N, (M 12..E N)[;/L] ~ 12./(G/lM) E. HllN,

where G[;l] ~ «-l+ppM)pl),O

H[;l] ~ O,(-1+ppN)p1

H[;2] ~ O,(1-ppN)tL

G[;2J ++ CC1+ppM)tL) ,0

If one of M or N is a scalar, it is extended to a vector of the same length as

the reduction coordinate. In the sequel, we assume that all operands of inner

product are array-shaped (or have already been extended).

Example: (1,2,3) o.x 4,5 ~ 4 5
8 10

12 15

(1,2,3) f.+ 4,5,6 ~ r/(1,2,3)+4,5,6

++9

If M and N are conformable matrices, then

M +.x N

is the ordinary matrix product of linear a1gebrao

Although these three product forms appear to be different syntactically and

also in their effect, they are in fact intimately related, and can be considered

as aspects of the same thing. This section shows the close relationship between

scalar, inner, and outer products, and introduces a new (meta) form which

- 32-

includes these as special cases. We also investigate the effect of select operations

on this new construction called the general dyadic form (GDF), and show that it,

like the standard form on select expressions, is closed under application of select

operations.

The key to the relationship between these apparently diverse constructions

is the generalized transpose operation. By applying a transpose to an outer product,

it is possible to write an expression which specifies a diagonal slice of the original

outer product. For example, if V is a vector, M a matrix, then the expreSSion

1 1 21S;lVo. +M describes the result of adding V to each of the columns of M. It

would be desirable to understand this expression to mean the result it describes,

namely the result of adding the vector Vto the columns of M, rather than the process,

that is the transpose of the outer product of V and M. The difference is important

for two reasons. Using the first interpretation in a situation where the expreSSion

must actually be evaluated, as in a program, requires only the pertinent elements

of the result to be computed. This is especially important when the operands are

large arrays. Second, some information is lost by ignoring the partial results.

For example, the expression ((1 • 2) ... (1. 0)) [1] is undefined in the literal sense

but the apparent intended interpretation gives the value 1. Both in the case of

select expressions and in transposes of outer products this is a serious problem,

as it is in direct conflict with the semantics of APL. Formally, the definition of

the language renders expreSSions such as the one just mentioned undefined, yet

this is really a matter of taste and style. My contention is that at worst this

kind of situation should be an ambiguous one, since it is essentially an instance

of a side effect. That is, the programmer writing such an expression should not

depend on the processor of his program to indicate that a domain error occurred

in the evaluation of an irrelevant partial result. If that is what he wants, there

- 33 -

are direct ways of expressing it, such as writing A+(1,2) T (1. 0) , followed by A[1] .

In any case, I have taken the view that what should be evaluated is the intent of

an expression, if this is perceivable, rather than the literal expression itself.

Except in cases which produce side effects, both approaches compute identical

values.

Theorems T5 and T6 which follow, establish the essential connections among

the product forms and the transpose.

T5 0 If A and B are conformable for scalar product, and if 12 is a dyadic scalar

operator then A 12 B ++ «lppA),1.ppB)~A 0.12 B.

Proof: See Appendix B.

T6. If M and N are two arrays conformable for inner product and 12 and f. are

dyadic scalar operators, then M 12. f. N ++ 12/ A ~M o. f. N,

where A ++ (1.-1+ppM),(2p LAST1),(-1+ppM)+1.-1+ppN

and LAST1 is the index of second-to-Iast coordinates inM o.f. N

(in l-origin this is (ppM)+(ppN)-1 and r /1.(ppM)+(ppN)-1 in general).

Proof: See Appendix Bo

Example: (T6) If A andB are matrices then

A +.x B ++ +/(1,3,3,2)~A o.x B.

We can see this as follows:

(+/(1,3,3,2)~A o.x B)[I;JJ

++ +/«(1,3,3,2)~A o.X B)[I;J;J

++ +/A[I; JxB[;JJ

++ (A +.x B)[I;JJ

- 34-

In previous sections we have looked into the effect of select operators on

single arrays and scalar products. A natural question then is, what is the effect

of the select operators on inner and outer products. In order to approach an

answer, it was necessary to discover an alternate formulation of these constructions,

which facilitates this kind of analysis. Such an alternative is the general dyadic

form, def.ined below.

D29. General Dyadic Form: An expression on two array operands Rand S.

with dyadic scalar operatoI' 12 is in general dyadic form (G DF) if it is

expressed in the form:

A~R' 0.12 S'

and the following conditions are satisfied;

(i) R' and S' are the standard forms of select expressions on RandS.

(ii) A is a conformable transpose vector for which each of (ppR')tA

and (ppR')+Aare in ascending order, and each contains no duplicate

values.

(iii) (pA~R'o.12 S')[AJ ++ (pR'), pS'

The last condition guarantees that if A takes a diagonal slice of the outer product

R' 0.12 S', then the length of corresponding coordinates in R' andS' are the same.

This can always be done by performing a take operation affecting these coordinates

(see TR17).

Example: If V is a vector, M and N matrices, then the following are in GDF:

(1,1,2)~V 0.12 M.

(1.3.2.3)~ 0.12 (2.1)~N.

(1.1)~«1.1)~M) 0.12 V

- 35-

but the following are not in G DF because the conditions on A are not satisfied:

(1.3.3.2)~M o.~ N

(1.1.1)~M o.~ V

From definitions D27, D29 and Theorem T5, it is clear that the scalar product

and outer product of Rand S by ~ are special cases of the GDF, obtained by taking

A ~ (lppR),lppSand A ~ l(ppR)+ppS, respectively; D28 andT6 indicate that

an inner product can be expressed as a reduction of a GDF.

In discussing the effect of select operators on GDF's, we will present a series

of transformations, with proofs of their correctness in Appendix B. In the following

transformations, let

F~(ppR')tA and G~(ppR'HA.

TR15. IfW ~ A~R' o.~ S' is inGDF then H!J.W:::> A~U o.~ vwhere

U is the SF of R" ~ H[F; J!J.R'

V is the SF of Sir ~ H[G; JL\S'

TR16. If W is as above and Q is a scalar, then W[[JJQJ :::> B~U 0.[2 V

where B ~ (J~A)IA-J<A and

U is the SF of IF JEF THEN R'[[FlJJ QJ ELSE R'

Vis the SF of IF JEG THEN S'[[GlJJ QJ ELSE S'

TR170 If W is as above then B~W :::> (F I ,G') ~U o.~ V

where F' ~ (MEB[FJ) 1M

G' ~ (MEB[GJ)IM M ~ l(fIB)+1-IORG

U is the SF of R" ~ (F' lB[FJ)~(pB~W)[B[FJHR'

V is the SF of S" ~ (G' lB[GJ)~(pB~W)[B[GJHS'

- 36-

TR1B. If M and N are conformable for inner product and 12 and,E are dyadic scalar

operators, then M 12.,E N => 12IAIs:/M' o.,E N'

where A +-+ (l-1+ppM). LAST1. C1+ppM)+lppN

M' is the SF of M

N' is the SF of (LASTN. 1-1 +ppN)Is:/N

LAST1 is the index of the second-to-last coordinate of M o.,E N.

«ppM)+(ppN)-l in 1-origin; f/t(ppM)+(ppN)-l in general)

LASTN is the index of the last coordinate of N.

(ppN in I-origin; f /tppN in general).

These transformations are sufficient to establish:

COMPLETENESS THEOREM 3: Let 8 be an expression consisting only of

reductions and select operators applied to a scalar product, inner product, or

outer product of expressions d and fJJ, where d and fJJ are select expressions

on arrays A and B respectively. Then ~ can be transformed into an equivalent

expression f¥'of the form 121 1112 / ••• 12K/!$', where $' is in GDF and the 12r 's are

the reduction operators appearing in tE, in the same order. If the original

expression tE contained an inner product, 11K is the first operator of the inner

product.

Proof: Similar to Completeness Theorem 10

F. Conclusion

This chapter has discussed some of the formal mathematical properties of

the operators found in APL. Of particular interest are the completeness theorems,

which give conditions under which a subset of APL expressions can be put into

standard form. The general idea of the standard form is that sequences of selection

- 37-

operators on an expression can be transformed into a shorter sequence of opera

tions on the same expression. In other words, .if ~ is an expression and Q1 • ••• ,QK

are selection operators, then there is a process for finding A, F. and G such that

Q1 Q2 ... QK~ ++ A~F{)'G!l~.

Completeness Theorem 3 further shows that, in essence, selection operations on

inner, outer, or scalar products can be absorbed into the individual operands.

Also by Completeness Theorems 2 and 3, reductions can be factored out of select

expressions.

Clearly, the whole story has not been told at this point; indeed, the contents

of this chapter barely scratCh the surface of the general problem of analysis of

APL semantics. Even so, the results discussed are a sufficient base for the'

design of the APL machine discussed in the next chapters. In particular, the

analysis here provides a formal basis for the beating and drag-along processes,

which are the two foundations upon which the APL machine design rests.

- 38-

APPENDIX A

SUMMAR Y OF APL

Monadic form fB f Dyadic form AfB

Definition
or example

+B +-+ O+B

-B +-+ O-B

xB +-+ (B>O)-(B<O)

+B +-+- 1 tB

B rB LB
3.14 4 3 - --3.14 3 4

Name

Plus

Neqative

Siqnum

Reciprocal

Ceilinq

Flo.or

Name

+ Plus

Minus

x Times

t Divide

r Maximum

L Minimum

*B +-+ (2.71828 ••)*B Exponential * Power

Natural
loqarithm

Maqnitude

e Loqarithm

Residue

Definition
or example

2+3.2 +-+ 5.2

-2-3.2 +-+- 1.2

2x3.2 +-+ 6.4

2+3.2 +-+ 0.625

3r7 +-+- 7

3L7 +-+- 3

AeB +-+- Log B base A
AeB +-+- (eB)teA

Case
A;tO
A=0.B:2:0
A =0 .B<O

AlB
B-(IA)xLBtIA
B
Domain error

lO +-+ 1 Factorial l Binomial AlB +-+ (lB)t(!A)xlB-A
!B +-+- Bx lB-1 coefficient 215 +-+- 10 3!5 +-+- 10
or !B +-+- Gamma(B+1)

?B +-+- Random choice Roll
from \B

OB +-+- B x 3. 14159. • . Pi times

-1 +-+- 0 -0 +-+1

(-A)oB A
(1-B*2)*.5 0

Arcsin B 1
Arccos B 2
Arctan B 3

(-1+B*2)*.5 4
Arcsinh B 5
Arccosh B 6
Arctanh B 7

Not

AoB
(1-B*2)*.5
Sine B
Cosine B
Tanqent B
(1+B*2)*.5
Sinh B
Cosh B
Tanh B

Table of Dyadic 0 FUnctions

? Deal

o Circular

<
S

=

And
Or
Nand
Nor

Less
Not qreater
Equal
Not less
Greater
Not Equal

Primitive Scalar Functions

- 39 -

A Mixed Function (See
Table 3.8)

See Table at left

A B
o 0
o 1
1 0
1 1

AAB
o
o
o
1

AVB
o
1
1
1

Relations

1
1
1
o

1
o
o
o

Result is 1 if the
relation holds, 0
if it does not:

3S7 +-+- 1
7S3 +-+- 0

Reprinted by permission from APL \ 360: User's Manual © 1968 by International BuSiness Machines Corporation.

Name Sign' Definition or example!

Size pA pP ++ 4 pll - 3 4 p5 ++ 10

Reshape VpA Reshape A to dimension V 3 4p112 ++ E
12pll ++ \12 OpE++\O

Ravel .A .A - (x/pA)pA .11 ++\12 p.5 ++ 1

Catenate V V P \2 ++ 2 3 5 712 'T' 'BIS' ++ 'TBIS'
veAl P[2] ++3 P[4 3 2 1] ++7 5 3 2

Indexll4 IN[A;A] E[l 3;3 2 1] ++ 3 2 1
11 10 9

A[A; •• E[l;] ++ 1 2 3 4 ABCD
•• ;A] 1'[;1] ++ 1 5 9 'ABCDI'FGBIJKL'[Il] ++ I'FOB

IJK.L
Index 18 First 8 integers \4 ++ 1 2 3 4
generatorll \0 ++an -pty vector

Index ofll V1A' Least index of A p\:3 ++2 5 1 2 5
in V, or l-tpV p\1' ++3545

4 '+14 ++ .1 ~~~~
Take VtA Take or dzop I V[I) first 2 3tX ++ ABC

(V[I]~O) or last (V[I] <0) EFO
prop V+A elements of coordinate I -2tP ++ 5 7

I Grade uplUI IU me pezmutat10n Wh1Ch U 5:3~-41 3 2
would order A (ascend-

Grade- &lwnN 'A incr or descendinq) 93 5 3 2 ++ 2 1 3 4
1 3

Colllpressa VIA 1 0 1 OIP ++ 2 5 1 0 1 011' -5 -7
9 11

1 0 1/.[l]E ++ 1 2 3 4 ++ 1 0 11-1'
9 10 11 12

A BCD
Bxpandll V\A 1 0 1\12 ++ 1 0 2 1 o 1 1 l\X ++ I' FOB

I JXL
DCBA IJK.L

Revers.1I ~A 4IX ++ BGFll .[l]X ++ ex ++ llFGB
LKJI 4IP ++ 7 5 3 2 ABCD

BCDA
Rotatell 1A4IA 341P - 7 2 3 5 ++ -l41P 1 0 -l41X ++ EFGR

LUK
AI'I

VetA Coordinate I of A 2 UIX ++ BFJ
becollles coordinate COK

Transpose V[I] of result 1 1.E ++ 1 6 11 f)BL

.A Transpose last two coordinates _I' ++ 2 1_8
011 0

~ership A€A pfleY ++ pfl EeP -1010
PEl4 ++ 1 1 Q 0 000 0

Decode VJ.V 10..Ll 7 7 6 ++ 1776 24 60 60.11 2 :3 ++ 3723

Bncode VT8 24 60 60T:3723 ++ 1 2 3 60 60T3723 ++ 2 .3
Deal~ 1S?8 fI?Y ++ Randolll deal of fI elements fro. 1 Y

Primitive Mixed Fu:octioDS

1. Restrictions on argument ranks are
scalar, V for vector, M for matrix,
the first argument of S.\ A or 8 [A] ,
instead of a vector. A one-element
scalar.

indicated by: 8 for
A for Any. EXcept as
a scalar may be used
array may replace any

2. Arrays used 1 2 3 4 ABCD
inexample8: P ++ 2 :3 5 7 E ++ 5 6 7 8 X ++ EFOR

9 10 11 12 IJKL
3. FUnction depends on index origin.

•• Blision of any index selects all along that coordinate.

S. The function is applied along the last coordinate, the
symbols 1-, It, and e are equivalent to I, \, and .,
respectively, except that the function is applied along the
first coordinate. If [S] appears after any of the symbols,
the relevant coordinate is determined by the scalar S.

- 40-

Reprinted by permission from APL \ 360: User's Manual @ 1968 by International Business Machines Corporation.

Type of Array pA ppA pppA

Scalar 0 1
Vector N 1 1
Matrix M N 2 1
3-Dimens ional L M N 3 1

Dimension and RanK' Vectors

COnfo:rmability Definition
pA oB oAf.qB requirements Z+Af.qB

Z+f/AqB
V Z+f/AqB

U Z+f/AqB
U V U=V Z+f/AqB

V W W Z[I]+f/AqB[;I]
T U T Z[I]+f/A[I;]qB

U V W W U=V Z[I]+f/AqB[;I]
T U V T U=V Z[I]+f/A[I;]qB
T U V W T W U=V Z[I;eTJ+f/A[I;]qB[;J]

Inner Products for Primitive Scalar Dyadic FunctioDS f and g

Definition
pA pB pAo .qB Z+Ao .qB

Z+AqB
V V Z[I]+AqB[I]

U U Z[I]+A [I]qB
U V U V Z[I;J]+A[I]qB[J]

V W V W Z[I;J]+AqB[I;J]
T U T U Z[I ;J]+A [I; J:JqB

U V W U V W Z[I;J;K]+A[I]qB[J;K]
T U V T U V Z[I;J ;K]+A[I;JJqB[Kl
T U V W T U V W Z[I;J;K;L]+A[I;J]qB[K;L]

Outer Products for Primitive Scalar Dyadic Function g

Case pR Definition

R+H~V pV R+V
R+l 20fM pM R+M
R+2 1~M (pM)[2 1] R[I;J]+M[J;I]
R+l l~M l!pM R[IJ+M[I ;I]
R+l 2 3~T pT R+T
R+l 3 20fT (pT)[1 3 2] R[I;J;K]+T[I;K;J]
R+2 3 l~T (pT)[3 1 2] R[I;J;K]+T[J;K;I]
R+3 1 2~T (pT)[2 3 1] R[I;J;K]+T[K;I;J]
R+l 1 2~T (L/(pT)[1 2]).(pT)[3] R[I;J]+T[I;I;J]
R+l 2 l~T (L/(pT)[l 3]).(pT)[2] R[I;J]+T[I;J;I]
R+2 1 1~T (L/(pT)[2 3]).(pT)[1] R[I;J]+T[J;I;I]
R+1 1 l~T l!pT R[I]+T[I;I;I]

Transposition

- 41-

APPENDIX B

This appendix contains proofs for the transformations and theorems which

were deferred from the main part of Chapter II. They were omitted from the

text because they do not substantially contribute to the exposition of the material,

and are included here for completeness.

The various proofs are trying to establish the identity of two expressions &

and 50 This is generally done in two steps: in step 1, p& +-+ p$is shown and

in step 2, it is shown that the expressions are identical element-by-element.

Lemmas L1 through L9 state results used in the rest of this appendix. Since

they are all intuitively obvious, and since their proofs follow from the definitions,

these proofs will be omitted.

L1. If M is any array and V is a vector, then

(M[[K] V])[[K] U] +-+ M[[K] V[U]]

L2. If M is any array, I<J, and U and V are vectors or scalars, then

(M[[J] V])[[I] U] +-+ (M[[I] U])[[J-o=ppU] V]

L3. LetM be any array and S1 ,S2, . .. ,SK be subscript vectors. Then

for each L ~b.X t pM[S1 ;S2 ; ... ;SK] ,

(M[S1;S2; ... ;SK])[;/L] +-+ M[;/T]

where T is a vector with T[I] +-+ SI[L[I]]

for each IE t p pM .

L4. For any integral A (scalar or array) satisfying Ac.IORQ. and (A - IORQ.) <LEN,

a. (i LEN.ORG,O)[A] +-+ ORG+A-IORQ

b. (i LEN,ORG,1)[A] +-+ ORG+LEN+IORQ+-1-A

- 42-

c. (~LEN,ORG,S)[AJ ++ ORG+«~S)x(A-IORa»+(Sx(LEN+IORG+-1-A»

d. -~ LEN,ORG,S ++ ~ LEN,(-(ORG+LEN-1»,~S

e. K+~ LEN,ORG,S ++ ~ LEN,(ORG+K),S if K is an integer

f. <I>~ LEN ,ORG,S ++ ~ LEN ,ORG,~S

L5. If F tM is defined, then

(a) pFtM +-+ F[; 1 J

L6.

(b) for each L ELT 1 pF f).M ,

(FtM)[;/LJ ++ M[;/F[;2J+«~F[;3J)x(L-IORQ»+(F[;3Jx(F[;1J+IORG+-1-L»J

a. U/X[SJ ++ X[U/S]

b. U\U/X ++ UxX (if X is numeric)

c. U/U\X ++ X

d. U/V/X ++ (V\U)/X

e. (UAV)/X ++ (U/V)/(U/X)

f. U/(X ~ y) ++ (U/X) ~ (U/Y) for ~ a dyadic scalar opera tor

g. If ~ is a dyadic scalar operator with 0 ~ 0 ++ 0,

then U\(X ~ y) ++ (U\X) ~ (U\Y)

L7. If O-sORG1-IORG and (ORG1 +LEN1-IORG) <LEN then

a. (~LEN,ORG,O) [~ LEN1,ORG1,SJ ++ ~ LEN1,(ORG+ORG1-IORG),S

b. (~LEN,ORG,1)[~ LEN1,ORG1,SJ ++ ~ LEN1,(ORG+LEN+IORG-(ORG1+LEN1»,~S.

L8. If U and V are logical vectors with p V ++ + /~U

then ~(uv(~U)\V) ++ (~U)\~V.

L9. a. If B is a vector and if for any A,Ar::B is all ones, thenB[B1A] ++ A.

b. If P is a permutation of lPP then if R ++ PllPP, P[RJ ++ R[P] ++ lPP and

P +-+ R 1 1 pR • In other words, for permutation vectors, the ranking

operator is its own inverse.

- 43-

Proof of TR5:

1. pF!J.GtJ4 -+-7- pF[; 1 J -+-7- pHtJ4 (by L5)

2. For each L ELT lpF!J.GtJ4, (F!J.GtJ4)[;/LJ -+-7- (GtJ4) [;/SJ

where S[IJ -+-7- (l F[I;J)[L[IJJ

and (GtJ4)[; /SJ -+-7- M[;/TJ

where T[IJ -+-7- (l G[I;J)[S[IJJ

-+-7- (l G[I;J)[(l F[I;J)[L[IJJJ

-+-7- «l G[I;J)[i F[I;JJ)[L[IJJ

But (HtJ4)[;/LJ -+-7- M[;/UJ

where U[IJ -+-7- (l H[I;J)[L[IJJ

-+-7- «(l G[I;J)[i F[I;JJ)[L[IJJ

-+-7- T[IJ

Thus, T -+-7- U and (F!J.GtJ4) [;/L] -+-7- (H!J.M) [;/LJ. QED.

We can give explicit formulas for H in TR5. First, H[; 1 J -+-7- F[; 1 J and

H[;3J -+-7- F[;3J;tG[;3J. Finally, for each IElppM, H[I;2J -+-7- IF O=G[I;3J

THEN F[I;3J+G[I;3J-IORG ELSE (IORG++/G[I;l,2J)-+/F[I;l,2J.

Proof of TR6:

1. pF~G!J.M -+-7- (~F[;lJ)/pGtJ4

-+-7- (~F[;lJ)/G[;lJ

-+-7- G'[;lJ -+-7- pG'!J.F'~.

2. For each L ELT lpF~G!J.M,

(F!l.G!J.M)[:/LJ -+-7- (G!J.M)[;/L'J where L' -+-7- (x/F)+(..... F[;lJ)\L (byD14)

-+-7- M[;/SJ

- 44-

where (by L5),

S ++ G[;2J+«~G[;3J)xL'-IORG)+(G[;3Jx(G[;lJ+IORG+-l-L')

++ G[;2J+«~G[;3J)x(x/F)+«~F[;lJ)\L)-IORG)

+(G[;3Jx(G[;lJ+IORG+-l-«x/F)+(~F[;lJ)\L»

(G'~F'AM)[;/LJ ++ (F'~)[;/TJ

where

Thus, (G'~F'AM)[;/LJ ++ M;/UJ

where U ++ (x/F')+(~F'[;1J)\T

++ (x/F')+(~F'[;lJ)\(G'[;2J+«~G'[;3J)xL-IORG)

+(G'[;3Jx(G'[;lJ+IORG+-l-L»)

To complete the proof, we need to show that S ++ U. By lemma L6g,

X\A+B ++ (X\A)+(X\B).

and X\AxB ++ (X\A)x(X\B).

Thus, writing E ++ ~F' [; 1 J ++ ~F[; 1 J. and substituting for F' •

U ++ (F[;lJx(F[;lJxG[;2J+«~G[;3J)xF[;2J-IORG)

+(G[;3Jx(G[;lJ+IORG+-l-F[;2J»»

+(E\G'[;2J)+«E\~G'[;3J)x(E\L)-IORG)

+(E\G'[;3J)x(E\G'[;lJ)+IORG+-l-E\L

But E\Gt[;KJ ++ ExG[;KJ ++ (~F[;lJ)xG[;KJforKE1.2.3.

Making this substitution and commuting terms,

U ++ «F[;lJ+~F[;lJ)x(G[;2J+«~G[;3J)x-IORG)+G[;3JxG[;lJ+IORG-l)

+«~G[;3J)x(F[;lJxF[;2J)+(~F[;lJ)x(~F[;lJ)\L)

+G[;3Jx(F[;lJx-F[;2J)+(~F[;lJ)x-(~F[;lJ)\L •

But F[; 1 J +~F[; 1 J ++ (pF[; 1 J) p 1 and does not contribute to the product in the

- 45-

first term. Also,

(~F[;lJ)x(~F[;lJ)\L ++ (~F[;lJ)\L.

U ++ G[;2J+((~G[;3J)x(x/F)+(("'F[;lJ)\L)+IORG.)

+G[;3JxG[;lJ+IORG+-1-«x/F)+(~F[;lJ)\L)

++ S QED.

Proof of TR7:

1. pF~G~ ++ ("'F[;lJ)/pG~ ++ ("'F[;lJ)/(~G[;lJ)/pM

++ «"'G[;lJ)\"'F[;lJ)/pM (byL6d)

pH~ ++ ("'H[;lJ)/pM ++ ("'(G[;lJv("'G[;lJ)\F[;lJ»/pM

++ «"'G[;1])\"'F[;lJ)/pM (byL8)

++ pF~G~

2. For each L ELT tpF~G~.

(F~G~)[;/LJ ++ (G~)[;/(x/F)+("'F[;lJ)\LJ ++ M[;/SJ

where S ++ (x/G)+("'G[;1])\(x/F)+("'F[;l J)\L

(H~)[;/LJ ++ M[;/(x/H)+("'H[;lJ)\LJ ++ M[;/TJ

\vhere T ++ «G[;lJv("'G[;lJ)\F[;lJ)x(G[;2J+("'G[;lJ)\F[;2J»

+("'(G[;l)V("'G[;lJ)\F[;lJ»\L

Expanding the products, and noting that

G[;lJv(~G[;lJ)\F[;lJ ++ G[;lJ+(~G[;lJ)\F[;lJ.

we get

T ++ (x/G)+(G[;lJx("'G[;lJ)\F[;2J)+(G[;2Jx(~G[;lJ)\F[;lJ)

+«("'G[;lJ)\F[;lJ)x(~G[;lJ)\F[;2J)+«"'G[;lJ)\~F[;lJ)\L.

- 46-

So we must show that S ++ T. In simplifying T, we use the following, in

order: If U and V are logical vectors,

Ux(-U)\X ++ (pU)pO

(U\X)x(U\Y) ++ U\XxY

U\V\X ++ (U\V)\X

(L6g)

Also recall from the definition of !l that G[; 2] contains zeros wherever

G[; 1] does. Thus, we rewrite T:

T ++ (x/G)+(G[;2]x(-G[;1])\P[;1])+«-G[;1])\(x/P»+«~G[;1])\~P[;1])\L

But the second term goes away because of G[; 2] 's zeros.

T ++ (x/G)+«~G[;1])\(x/P»+(~G[;1])\(-P[;1])\L

++ (x/G)+(~G[;1])\«x/P)+(-P[;1])\L)

++ S QED.

Proof of TR8:

Clearly the ranks of both expressions are identical.

1. pPM~M ++ P[;1] (by L5)

Now, for each IEtppA~P[A;]1lli

(pA~P[A;]Illi)[I] ++ L/(A=I)/pP[A;]b.M ++ L/(A=I)/P[A;1]

++ L/P[(A=I)/A;1] (by L6a)

++' L/(+/A=I)pP[I;1] ++ P[I;1] ++ (pPM~M)[I]

2. For each L ELT lpPMtsw.

(PM~M)[;/L] ++ (A~M)[;/Q] ++ M[;/Q[A]]

where Q[I] ++ (i P[I;])[L[I]]

(A~P[A;]Illi)[;/L] ++ (P[A;]Illi)[;/L[A]] ++ M[;/S]

where SCI] ++ (i (P[A;])[I;])[(L[A])[I]]

++ (i P[A[I];])[L[A[I]]]

++ Q[A[I]] ++ (Q[A])[I]

Thus Q[A] ++ S. QED.

- 47-

Proof of TR9: The case of (pA~) +-+- 1 is trivial and will be omitted. Otherwise,

1. pp(A~)[[J]Q] +-+- (ppA{W)-1 +-+- <r /A)-1 (in I-origin)

ppA'~B~ +-+- riA' +-+- r/(A~)/A-J<A +-+- r/«A~J)/A-A<J)[L,E,G] (*)

where L,E.G exhausts 1.pA and such that A/A[L]<J and

A/A[E]=J andA/A[G]>J. (This is possible by commutativity of r.)

(*) +-+- r/(J~A[L,E,G])/A[L,E,G]-J<A[L.E,G]

+-+- r/«(pA[L])p1),«pA[E])pO),(pA[G])p1)/(A[L],A[E],A[G])

-«pA[L,E])pO),(pA[G])p1

+-+- r/A[L],(A[G]-1) +-+- (r/A[L])r(r/A[G])-1

If J +-+- r; A then A [G] +-+- 1. 0 and the result is r; A [L] +-+- (r; A) -1. Otherwise,

A[G] is non-empty and r/A[G] +-+- riA, so the result is sti.llCr/A)-l , since A

exba,usts 1. pA. by definition. Thus the ranks of both expressions are identical.

We now show the dimensions to be indentical.

For each In (r /A)-1,

(pA'~B~)[I] +-+- L/(I=A')/pB~ +-+- L/(I=(A~)/A-J<A)/(A~)/pM

+-+- L/«A~)/I=A-J<A)/(A~J)/pM +-+- L/«A~J)AI=A-J<A)/pM (by L6e)

By case analysis, we find that

Thus,

and

(A~J)AI=A-J<A +-+- IF I<J THEN I=A ELSE (I+1)=A

+-+- A=I+I'C.J

(pA'~B~)[I] +-+- L/(A=I+I'C.J)/pM +-+- (pA~)[I+I'C.J]

(p(A{W)[[J]Q])[I] +-+- «J~lpA)/pA{W)[I]

+-+- (pA~M)[«J~1.pA)/lppA~M)[I]J

+-+- (pA~M) [I + I'C.J] +-+- (pA' ~B~) [I]

Therefore both expressions have the same dimension.

- 48-

(by D18)

2. For each L ELT lp (A~M) [[J]Q],

«A~M)[[J]Q])[;/L] ++ (A~M)[;/«J-1)tL),Q,(J-1)+L]

++ M[;/(«J-1)tL) ,Q,(J-1 HL)[A]]

Call this subscript vector S.

(A'~BAM)[;/L] ++ (B~)[;/L[A']] ++ M[;/(x/B)+(~B[;1])\L[A']]

Call this subscript vector T. It remains to show that S ++ T. First,

pS ++ pT. For each IopS,

S[I] ++ «(J-1)tL),Q,(J-1)+L)[A[I]]

++ IF A[I]<J THEN L[A[I]] ELSfl. IF A[I]=J THEN Q ELSE «J-1HL)[A[I-J]]

So, S ++ (QxJ=A)+(J~A) xL[A -J <A] .

T ++ (QxJ=A)+(J~A)\L[(A~J)/A-J<A] ++ (QxJ=A)+(J~A)\(J~A)/L[A-J<A]

++ (QxJ=A)+(J~A)xL[A-J<A]

++ S QED.

Proof of TRIO: As in the proof of TR9, the hard part of this proof is to show that

the two expressions B~A~M and B[A]~Mhave the same dimension.

1. Clearly B[A]~M is well-defined since A exhausts lpB and pB[A] +-+ ppM.

ALso, ppB[A]~M ++ I/B[A] +-+ I/B ++ ppB~A~M. By def.inition of transpose,

for each IoppB~A~M.

(pB~A~M)[I] ++ L/(I=B)/pA~M ++ L/(pA~M)[(I=B)/lppA~M].

Let us write R ++ A~M and T ++ (I=B)!LppRo The remainder of this part

depends primarily on the associativity and commutativity of minimum (L).

(pB~A~M)[I] +-+ L/(pR)[T] ++ L/(pR)[T[1]]. (pR[T[2]], ... ,(pR)[T[ppT]]

+-+ L/(L/(A=T[1])/pM),(L/(A=T[2])/pM) •... ,(L/(A=T[ppT])/pM)

+-+ L/«A=T[1])/pM),«A=T[2])/pM), ... ,«A=T[ppT])/pM)

+-+ L/«A=T[1])v(A=T[2])v ... v(A=T[ppT]»/pM

+-+ L/(AET)/pM (by D25)

- 49-

NowI=B[AJ +-+ (I=B)[AJ sinceI is scalar. Also note that «I=B)[AJ)[KJ +-+ 1

if and only if A[KJET. Thus, I=B[AJ +-+ AET and

(pB[AJ~)[IJ +-+ L/(I=B[AJ)/pM

+-+ U(AET)/pM +-+ (pB~A~M)[IJ.

2. For each L ELT lpB~A~M,

QED.

(B~A~M)[;ILJ +-+ (A~M)[;IL[BJJ

+-+ M[;/(L[BJ)[AJJ

+-+ M[; IL[B[AJ J J

+-+ (B[AJ~M)[;ILJ

Proof of Theorem T2:

The only if part is easiest, as it depends only on the dimensions of the expressions

involved. Only if part:

By hypothesis, ill [KJ M +-+ ill [P[KJJ P~M.

Thus, the dimensions of both expressions are identical. Specifically,

pil/[K] M +-+ «K-l)tpM), K~pM +-+ (K~lppM)/pM

and pil/[P[K]] M +-+ (P[K]~lPpP~M)/pP~M

But, since P is a permutation of 1 p pM then pP +-+ ppM

and p~M +-+ (pM)[PllppM] +-+ (pM)[PllpP]

Also, ppP~M +-+ ppM. Hence,

pil/[P[K]] M +-+ (P[K]~lppM)/(pM)[PllPPJ

+-+ (pM)[(P[KJ~lppM)IPllPPJ (*)

and pil/[K]M +-+ (pM)[(K~lppM)/lppM] (**)

(by L6a)

But (*) +-+ (**) by hypotheses. Thus, the subscripts of (pM) are indentical

for each expression, i. e. ,

(P[K]~lppM)IPllpP +-+ (K~lppM)/lppM.

- 50-

We now proceed with the difficult part of the proof:

If part:

1. We must show that p!2/ [KJ M ++ p!2/ [P[KJ J Pls/M.

p!2/[KJ M ++ «K-1)tpM). K+pM ++ (K~lppM)/pM ++ (pM)[(K~lppM)/lppMJ

But ppPls/M ++ r /P ++ ppM. So for each I€1ppM.

(pPls/M)[IJ ++ L/(P=I)/pM ++ L/(pM)[(P=I)/lPpMJ ++ (pM)[(P=I)/lppMJ

since P has exactly one element equal to I.

++ (pM)[P1IJ (by D26)

Hence, pPls/M ++ (pM) [Pl1 pPJ • Now,

p!2/[P[KJJ Pls/M ++ (P[KJ~lppPls/M)/pP~ ++ (P[KJ~lppM)/(pM)[Pl1PPJ

++ (pM)[(P[KJ~lppM)IPllPPJ ++ (pM)[(K~lppM)/1PpMJ

by hypothesis

++ p!2/[KJ M.

Thus, the dimen.sions are identical.

2. The two expressions are identical element-by-element.

For each L ELT lP!2/[KJ M. (!2I[KJ M)[;ILJ ++ !2IF!JN

where F[;lJ ++ K~lppM

and F[; 2 J ++ F[; 1 J \L

(!2I[P[KJJ Pls/M)[;ILJ ++ !2IGAPls/M

where G[;lJ ++ P[KJ~lppM

and G[;2J ++ G[;lJ\L

Let us examine these two reducees element-by-element. First note that

they have the same rank. For, pFfJN ++ (K=lppM)/pM ++ (pM)[KJ

and pGAPls/M ++ (P[KJ=lppM)/pPls/M

++ (pPls/M)[P[KJJ

++ L/(P[KJ=P)/pM

++ (pM)[KJ.

- 51-

For each I E1 (pM) [KJ ,

where

(F~)[IJ ++ M[;/RJ

R ++ (x/F)+(~F[;lJ)\I

++ «K~lppM)\L)+(K=lppM)\I

++ (L,I) [(1K-l), (ppM) , (K-l)+1 (ppM) -KJ

(GQP~M)[IJ ++ (P~M)[;/(x/G)+(~G[;lJ)\IJ

++ (P~M)[;/«P[KJ~lppM)\L)+(P[KJ=lppM)\IJ

++ M[;/SJ

where S ++ «L,I)[(lP[KJ-l),C1+pL),(P[KJ-l)+l(pL)-(P[KJ-l)J)[PJ

«L,I)[(lP[KJ-l),(ppM).(P[KJ-l)+l(ppM)-P[KJJ)[PJ

To complete the proof, we must show that R ++ S.

In order to look more closely at S, we must find out more about P . Let

T ++ P11pP.

Then by hypothesis,

(P[KJ 7 1ppM)/T ++ (K~lppM)/lppM ++ (lK-l),K+1(ppM)-K.

Since Pis a permutation, A/(lpP)EP and we would expect to have A/(lpT)ET.

The above equation gives all of T except for the element which equals K.

There are pT places in T that K could occur, falling into three caseso By

examining each of these cases, we can deduce the structure of P. and thus the

value of S.

(a) P[KJ ++ K. Then T ++ (lK-l),K,K+1(ppM)-K ++ 1ppM.

Thus, P ++ 1ppM and S ++ R.

(b) P[KJ<K. Then, T ++ (lP[KJ-l),K,«P[KJ-l)+t(K-l)-(P[KJ-l»,K+1CppM)-K

- 52-

and by lemma L9

P +-+ TllpT

+-+ (lP[K]-1),(1+(P[K]-1)+1(K-P[K]»,P[K],K+l(ppM)-K

+-+ (lP[K]-l),(P[K]+lK-P[K]),P[K],K+l(ppM)-K

and then

S +-+ (L,I)[(lP[K]-1),«P[K]-1)+lK-P[K]),(ppM),K+l(ppM)-K]

+-+ (L,I)[(lK-l),(ppM),K+lCppM)-K] +-+ R

(c) P[K]>K. In this case, T +-+ (lK-l), (K+1P[K] -K),K ,P[KJ+lC ppM) -P[K]

and P +-+ TllpT +-+ (lK-l),P[K],«K-l)+lP[K]-K),P[KJ+lCppM)-P[K].

Then, S +-+ (L,I)[(lK-l),(ppM),«K-l)+lP[K]-K),(P[K]-l)+l(ppM)-P[K]]

+-+ (L,I)[(lK-l),(ppM),(K-l)+1(ppM)-K] +-+ R.

Hence, in all cases S +-+ R and therefore FY1 +-+ G~P~M

for each L ELf 1 pIZ/ [K] M,

and thus IZ/ [K] M +-+ IZ/ [P[K]] ~M. QED.

Proof of TR12:

10 The ranks of both expressions are clearly equalo Then, for each IElppA~IZ/M,

(pAqQ/M)[I] +-+ L/(A=I)/pIZ/M +-+ L/(A=I)/-lfpM

But also, for each IElpp(A,l+r /A)qM,

(p(A,l+r/A)qM)[I] +-+ L/(I=A,l+f/A)/pM +-+ L/«I=A)/-lfpM),(I=1+r/A)/-ltpM

so pIZ/(A,l+r/A)~M +-+ -lfp(A,l+f/A)~M +-+ pAqIZ/M

20 For each L ELT lpAqIZ/M,

(AqIZ/M)[;/L] +-+ (IZ/M)[;/L[A]] +-+ Q/F~

where F[;l] +-+ (r/lppM)~lppM +-+ «-l+ppM)pl),O

and F[;2] +-+ F[;l]\L[A] +-+ L[A],O

(IZ/(A,l+f/A)qM)[;/L] +-+ Q/G~(A,l+r/A)~M

- 53 -

where G[;1J ++ (r/lpp(A.1+rIA)~M)~lpp(A.1+rIA)~M

++ «-1+pp(A.1+rIA)~M)p1).0

++((ppA~Q.IM)p1).0

G[;2J ++ G[;1J\L ++ L.O

A typical element of this reducee is

(GQ(A.1+rIA)~M)[IJ ++ «A.1+rIA)~M)[;/(x/G)+(~G[;1J)\IJ

++ «A.1+rIA)~M)[;/(L.0)+«(pL)pO).I]

++ M[;/(L.I)[A.1+rIAJ ++ M[;/L[AJ.IJ ++ (FQM)[IJ

Thus, the two reducees are equalo QED.

Proof of Theorem T3:

10 pG~Q./[KJ M ++ G[;1J

pQ./[KJ G'~ ++ (K~lppM)/pG'~

++ (K~lppM)/G'[;1J ++ G[;1J ++ pG~Q./[KJ M

2. For each L ELT lpG~Q./[KJ M.

(G~Q./[KJ M)[;/LJ ++ (Q./[KJ M)[;/S] ++ Q.IF~

where S ++ G[;2J+«~G[;3J)xL-IORG)+G[;3JxG[;1J+IORG+-1-L

and F[;1] ++ K~lppM

and F[;2] ++ F[;1J\S

(Q./[KJ G'~)[;IL] ++ Q./F'QG'~

where F' [;1 J ++ K~lppG~ ++ K~lppM and F' [;2 J ++ F' [;1 J\L

But by TR6, F' QG' ~ ++ G "~F''!lM

where Gil ++ (~F'[;1J)/[1JG' ++ (~)[K;J

and F"[;1J ++ F'[;1J ++ F[;1J.

F "[; 2 J ++ F' [; 1 J xG I [; 2 J + ((~G I [; 3 J) xF I [; 2 J - IORG hG I [; 3] xG I [; 1]

+IORG+-1-F' [;2J

- 54-

But F'[;1]xF'[;2] ++ F'[;2]

and for J E1 • 2 • 3 •

F'[;1]xG'[;J] ++ F[;1]\G[;J]

Thus, distributing the F' [; 1 J term and substituting,

F"[;2J ++ (F[;1 J\G[;2J)+((F[;1]\ ("'G[;3J))x(F[;1]\L)-IORG)

+(F[;1J\G[;3J)x(F[;1J\G[;1J)+IORG+-1-F[;1J\L

++ F[;1J\G[;2]+(C"'G[;3])xL-IORG)+G[;3]xG[;1]+IORG+-1-L

++ F[;1]\S ++ F[;2]

Hence F" ++ F

and QED.

Proof of Theorem T4:

p~/G'~++ -1+pG'~ ++ -1+("'G'[;1])/pM ++ -1+CC"'G[;l]),l)/pM

++ ("'G[;1])/-1+pM ++ pG~D/M

2. For each L ELT tpGW/M,

(G~D/M)[;L] ++ (~/M)[;/(x/G)+("'G[;1])\L] ++ ~/F~

where F[;1] ++ (r /lppM)~tppM

F[;2] ++ F[;1]\(x/G)+("'G[;1])\L ++ (x/G')+ F[;1J\("'G[;1])\L

Further, (~/G'~)[;/L] ++ ~/F'AG'~ ++ ~/H~

where F'[;1] ++ (r/tppG'~)~tppG'~

and F' [; 2] ++ F' [; 1] \L

and, byTR7, H[;1] ++ G'[;1]v("'G'[;1])\F'[;1]

H[;2] ++ G'[;2]+("'G'[;1])\F'[;2]

- 55-

Now for each IElppF/JM.

(F/JM)[I] ++ M[;/(x/F)+(~F[;])\I]

++ M[;/«x/G')+F[;l]\(~G[;l])\L)+(~F[;l])\I]

++ M[;/«x/G)+(~G[;l])\L),I]

since F[;1] ++ (Cl +ppM)pl),O

and (~G'[;l])\F'[;l] ++ «~G[;l]).l)\F'[;l]

++ «~G[;1]).l)\ CHF' [-;1]) ,-1tF' [;1]

++ «~G[;l])\(-l+ppG'/JM)pl),O ++ (~G[;l]),O

So H[;l] ++ G'[;l]V(~G[;l]),O ++ (G[;l],O)v(~G[;l]),O ++ (f/lppM)~lppM

H[;2] ++ (G[;2],0)+«~G[;1],l)\F'[;2]

++ (G[;2],0)+«~G[;1])\-1+F'[;2]),0 ++ (G[;2]+(~G[;1])\L),0

and thus (H!JN)[I] ++ M[;/(x/H)+(~H[;l])\I]

++ M[;/(G[;2]+(~Gt;1])\L),I] ++ (F/JM)[I]

and so Hi;lM ++ F!JN.

Therefore Gb.D/M ++ 12/G'/JM. QED.

Proof of Theorem T5: There are two main cases.

a. One of A or B is a scalar and is extended to the size of the other operand.

Suppose A is scalar. Then, A 0.12 B ++ A 12 B, by definition, and

(1 P pA) • 1 P pB ++ (10), 1 p pB ++ 1 P pB, which is the identity transpose, and

similarly if B is a scalar.

b. A and B are arrays of identical dimension. Then

1. pp«lppA).lPpB)~A 0.12 B ++ (f/(lPpA),lppB)+l-IORG

++ (f/lppA)+l-IORG ++ ppA

and for each IE lppA,

(p«lppA),lppB)~A 0.12 B)[I] ++ L/(I=(lppA),lppB)/(pA).pB

++ L/(I=lppA)/pA ++ (pA)[I]

Thus, pA 12 B ++ p«lppA),lppB)~A 0.12 B.

- 56-

2. For each L ELT lpA 12. B.

«(tppA).tppB)~A o.12. B)[;/L] ++ (A o.12. B)[;/L.L] ++ A[;/L] 12. B[;/L]

++ (A 12. B)[;/L] QED.

Proof of Theorem T6:

1. ppA~M o.E N ++ (r/A)+l-IORQ ++ r/t(ppM)+(ppN)-l ++ l+ppM 12..E N

For each IE1pA~M o.f.. N.

(pA~M o.E N)[I] ++ L/(I=A)/pM o.E N ++ L/(I=A)/(pM).pN

++ IF IE1-1+ppM THEN (pM)[I] ELSE IF IE (-1+ppM)+1-1+ppN

THEN (pN)[2+I-ppM] ELSE L/(-l+pM).ltpN.

So, pA/sW o.E N ++ CHpM).(HpN).-ltpM

and therefore p12./A~M o.E N ++ -l+pA/sW o.E N

++ (-l+pM).l+pN ++ pM D.F N

2. For each L ELT lpM 12..E N.

(M 12..E N)[;/L] ++ 12./(GAM) E HQN

where G andH are as in D28. Also, (12./A~ o.E N)[;/L] ++ 12./EQA/sW o.E N

where E[;1] ++ (Cl+ppA~ o.E N)pl).O ++ «ppM 12..E N)pl),O

and E[;2] ++ E[;l]\L ++ L,O

To complete the proof, we must show that the two reducees above are identical.

Clearly both have the same dimension, namely -ltpM.

Then for each I E1 P -ltpM ,

«GAM) E H~)[I] ++ (GQM)[I] E (HQN)[I]

++ M[;/(Cl+ppM)tL) ,I] E N[;/I,(--l+ppN)1-L]

(EQA/sW o.E N)[I] ++ (A~M o.E N)[;/L.I] ++ (M o.E N)[;/(L,I)[A]]

++ (M o.E N)[;/«-l+ppM)tL),I,I,(--l+ppN)tL]

++ M[;/«-l+ppM)tL).I] E N[;/I,(--l+ppN)tL]

++ «G/i>1) E HQN) [I]

- 57-

Thus, {GtJ-1) E. HAN ~ EM~M 0.F:. N, and so thep reductions of each are

identical. QED.

Proof of TRI5:

1. The ranks of both expressions are the same since the subarray operator

does not affect ranks. So for each InppW,

(pA~U o.Q V)[IJ ~ L/(I=A)/pU o.Q V.

But pU 0.12. V ~ (H[F;JtJ?') 0.12. H[G;Jl:IS'-

~ (pH[F;JtJ?'),pH[G;Jl:IS'

~ H[F;lJ,H[G;lJ ~ H[F,G;lJ ~ H[A;lJ

Thus, (pA~U 0.12. V)[IJ ~ L!(I=A)/H[A;iJ ~ L/H[(I=A)/A;lJ ~ H[I;lJ

and therefore pA~U o.Q V ~ H[; 1 J ~ pHl:IW.

2. For each L ELT lpHl:IW,

(Hl:IW)[;/LJ ~ (A~R' o.Q S')[;/PJ ~ (R' 0.12. S')[;/P[AJJ

~ R'[;/P[FJJ Q S'[;/P[GJJ

where P ~ H[;2J+«""H[;3J)xL-IQRQ)+H[;3JxH[;iJ+IORG+-l-L

(A~U o.Q V)[;/LJ ~ (RIt 0.12. Slt)[;/L(AJJ

~ (H[F;J~')[;/L[FJJ Q (H[G;Jl:IS')[;/L[GJJ

~ R'[;/TJ 12. S'[;/T'J

where T ~ H[F;2J+«""H[F;3J)xL[FJ-IORG)+H[P;3JxH[F;lJ+IORG+-l-L[FJ

~ P[FJ

T' ~ P[GJ

and similarly,

Then (A~U o.Q V)[;/LJ ~ R'[;/P[FJJ 12. S'[;/P[GJJ ~ (Hl:IW)[;/LJ.

Finally, the result is in GDF since U and V are in SF and the value of A still

satisfies the required conditions. QED.

- 58-

Proof of TR16:

10 pW[[J] Q] +-+ (J;tlPpW)/pW. To determine pB~U o.Q V we must first find

pU o.Q V.

pU +-+ pR" +-+ IF JEF THEN pR'[[F1J] Q] ELSE pR'

There are two cases:

a o J EF. Then,

pR" +-+ pR'[[F1J] Q] +-+ «F1J);tlppR')/pR'

+-+ «F1J);tlppR')/(pW)[F] (by D29)

+-+ (pW)[«F1J);tlpF)/F]

+-+ (pW)[(F;tJ)/F]

+-+ «(J-1)fpW).(pW)[J].JipW)[(F;tJ)/F]

+-+ «(J-1)fpW),JipW)[(F;tJ)/F-J<F]

since J does not occur in (F;tJ) / F

+-+ (pW[[J] Q])[(F;tJ)/F-J<F]

bo If ~JEFthen (F;tJ) +-+ (pF)p1. So in this case,

pR" +-+ pR' +-+ (pW)[F] +-+ (pW[[J] Q])[(F;tJ)/F-J<F]

So pU +-+ (pW[[J] Q])[(F;tJ)/F-J<F] a.nd similarly,

pV +-+ (pW[[J] Q])[(G;tJ)/G-J<G].

Therefore, pU o.Q V +-+ (pW[[J] Q])[(F;tJ)/F-J<F),(G;tJ)/G-J<G]

+-+ (pW[[J] Q])[(J;tF,G)/(F.G)-J<F,G]

+-+ (pW[[J] Q])[(J;tA)/A-J<A]

Then for each IE 1 ppB~U o.Q V.

(pB~U o.Q V)[I] +-+ L!(I=B)/pU o.Q V

+-+ L/(I=(J;tA)/A-J<A)/(pW[[J] Q])[(J;tA)/A-J<~

+-+ L/(pW[[J] Q])[(I=(J;tA)/A-J<A)/(J;tA)/A-J<A]

+-+ (pW[[J] Q])[I]

- 59 -

and thus pBfS/U 0.12 V ++ pW[[JJ QJ.

2. For each L ELT lpW[[JJ QJ.

(W[[J] Q])[;/LJ ++ W[;/«J-l)tL),Q,(J-l)+LJ

++ (R' 0.12 S')[;/«(J-1)tL),Q,(J-1HL)[A]]

++ R'[;/T[F]] 12 S'[;/T[GJJ

where T ++ «J-1)tL) ,Q, (J-1 HL.

(B~U 0.12 V)[;/LJ ++ (R" 0.12 sIt)[;/L[B]J

++ R"[;/(ppR")tL[B]J 12 S"[;/(ppR"HL[BJ]

Consider the R" term above. There are two cases, as before:

a. ~J EF • Then,

R"[; / (ppR ")tUBJ] ++ R' [;/ (ppR')tL[(J~A) / A -J<A]]

++ R' [; / L [(p pR')t (J ~A) / A -J <A]]

++ R'[;/L[(J~F)/F-J<F]J ++ R'[;/L[F-J<F]]

++ R' [;/(«J-1)tL) ,Q. (J-1 HL)[FJ] ++ R' [;/T[F]J

b. JEF.

R"[; / (ppR")tUB]] ++ (R' [[F1J] Q]) [; /L[C1 +ppR')t(J~A) / A -J<A]]

++ (R'[[F1J] QJ)[;/L[(J~F)/F-J<F]]

++ (R'[[F1J] Q])[;/L[(-1+F1J)tF],L[(F1J)+F-1]]

because F is in ascending order and +/J=F ++ 1

++ R'[;/L[(-1+F1J)tF],Q,L[-1+(F1J)+F]]

++ R' [; /(«J -1)tL),Q. (J -1 HL) [(C 1 +F1J)tF) ,F[JJ, (F1J)+F]]

because of F 's order

++ R' [;/T[FJ]

And similarly, S"[;/(ppR"HL[B]] ++ S'[;/T[GJ]

Thus (W[[J] Q])[;/L] ++ (B~U 0.12 V)[;/L].

Finally, it is clear that the result is in GDF since U and V are in SF and B

satisfies the necessary conditions. QED.

- 60-

Proof of TR17:

1. pp(F' ,G')/s?U o.12. V +-+ (f /F' ,G')+l-IORG

+-+ (f/«MEB[FJ)/M),(MEB[GJ)/M)+l-IORG +-+ (f/(MEB[F,GJ)/M)+l-IORG

+-+ (f/M)+l-IORG +-+ (r/l(f/B)+l-IORG)+l-IORG

+-+ «Cf/B)+l-IORG)+IORG-l)+l-IORG +-+ (f/B)+l-IORG +-+ ppB/s?W

For each IElppB/s?W,

(pB/s?W)[IJ +-+ L/(I=B)/pW

and (p(F',G')/s?U o.12. V)[IJ +-+ L/(I=F',G')/pU o.12. V

+-+ L/(I=F' ,G')/(pRfI) ,pSI!

So we must findpR" and pS".

pR" +-+ p(F' lB[FJ)/si(pB/s?W)[B[FJJtR'

ppR" +-+ <r /F' lB[FJ)+1-IORG +-+ (f /lpF')+1-IORG +-+ pF'

Then, for each J E 1 P pR " ,

(pR")[JJ +-+ L/(J=F'lB[FJ)/p(pB/s?W)[B[FJJtR'

+-+ L/(J=F'lB[FJ)/(pB/s?W)[B[FJJ

+-+ L/(pB/s?W)[(J=F'lB[FJ)/B[FJJ

+-+ L/(pB/s?W)[(F'[JJ=B[FJ)/B[FJJ

+-+ (pB/s?W)[F'[JJJ

Hence pR" +-+ (pB/s?W) [F' J

and similarly, pS" +-+ (pB/s?W)[G' J,

andthus (p(F',G')/s?U o.12. V)[IJ +-+ L/(I=F',G')/(pB/s?W)[F',G'J

+-+ L/(pB/s?W) [(I=F' ,G')/F' .C' J

+-+ (pB/s?W) [IJ

and therefore p (F' • C') /S?U o.12. V +-+ pB/s?W.

- 61-

2. For each L ELT lpBIs/W,

(BIs/W)[;/L] ++ (R' o.Q S')[;/L[B[A]]]

++ R'[;/(ppR'HUB[A]]] Q S'[;/(ppR'HL[B[A]]]

++ R'[;/L[B[F]]] Q S'[;/L[B[G]]]

((F' ,G')Is/u o.Q V)[;/L] ++ (R" o.Q SfI)[;/L[F' ,G' JJ

++ R"[;/L[F']] Q S"[;/L[G']]

So we must calculate the R" and S JI terms above.

R"[;/L[F' JJ ++ «F' lB[F])Is/(pBIs/W)[B[F]]tR')[;/L[F']]

++ «pBIs/W)[B[FJJtR')[;/L[F' [F' lB[F]]]]

++ «pBIs/W)[B[F]]tR')[;/L[B[F]]

++ R' [;/UB[F]]]

since L ELT 1 pBIs/W

implies L[B[F]] ELT 1 (pBIs/W)[B[F]]

Similarly, S"[;/L[G']] ++ S' [;/UB[G]]]

Thus, «F' ,G')Is/U o.Q V)[;/L] ++ R'[;/L[B[F]]] Q S'[;/L[B[G]]]

++ (BIs/W) [; / L]

Finally, observe that the result is in GDF since U and V are in SF and F' and

G' are in order and contain no duplications by constructiono QEDo

Proof of TR18:

Immediate from T6.

- 62 -

APPENDIX C

IDENTITY ELEMENTS

Dyadic Identity Left-
Function Element Right

Times x 1 L R
Plus + 0 L R
Divide t 1 ,

R
Minus - 0 R
Power * 1 R
Logarithm • None
Maximum r -7.237 ••• E7S L R
Minimum l 7.237 ••• E7S L R
Residue I 0 L
Circle 0 None
Out of ,

1 L •
Or v 0 L R
And A 1 L R
Nor ... None
Nand 'fit None
Equal = i Apply L R
Not equal ~ 0 for L R
Greater > o~ logical R
Not less ~ 1 arguments R
Less < 0 only L
Not greater s 1 L

Identity Elements of Primitive Scalar Dyadic Functions

- 63-

Reprinted by permission from APL\360: User's Manual@ 1966 by InternatlonaillUBlne.s Machines Corporation.

CHAPTER In

STEPS TOWARD A MACHINE DESlGN

Never do today what you can
Put off till tomorrow.

William Brighty Rands

procrastination is the
art of keeping
up with yesterday

Don Marquis, archy and mehitabel

As demonstrated in Chapter II, there is a high degree of power and internal

consistency in the APL operators and data structures. This makes it possible to

write simple expressions which have the same semantic content as several state-

ments in comparable programming languages. This chapter discusses how to

exploit these features in the design of an APL machine.

In general, APL programs contain less detail than corresponding programs

in languages like ALGOL 60, FORTRAN, or PL/I. For instance, the maximum

value in a vector, V , of data can be expressed as r IV in APL while ALGOL requires

the following:

MAX : =smallestnumberinmachine ;

for: = 1 step 1 until N do

if V[I] > MAX then MAX: = V[I]:

While this aspect of APLoften makes programs shorter and less intricate than,

say, ALGOL programs, it also requires that an evaluator of APL be more complex

than one for ALGOL, especially if such expreSSions are to be evaluated efficiently.

On the other hand, a machine doing APL has greater freedom since its behavior is

specified less explicitly. In effect, APL programs can be considered as descriptions

of their results rather than as recipes for obtaining them. Further, the language

- 64 -

renders many of these descriptions obvious, both to the human reader and to a

machine, as in the case of r IV, while other languages encode them so intricately

that the original intention of the programmer is hidden. In the example above,

an APL machine can choose any method it pleases to find the maximum value

while an ALGOL machine doesn't know what result is expected.

This feature of APL also has some drawbacks in that some expreSSions for

results require unnecessary computations if calculated literally as written. For

instance, the expression 3t(2x-V) specifies a result which is the first 3 elements

of twice the negative of V. Presumably the programmer is only interested in these

three elements. However, the literal interpretation of this expreSsion proceeds

as follows:

1. Negate V (and store it somewhere).

2. Multiply the previous result by 2 (and store it).

3. Take the first 3 elements of the last result.

In case V is large, this process is grossly inefficient. The negation requires (p V)

fetches and stores as well as (pV) spaces for the value to be stored. The multi

plication requires another(p V) fetches, stores, and multiplies. In fact, the

desired result could have been found simply by negating the first three elements

of V and multiplying by 2. Clearly, we would like the APL machine to be able to

evaluate such programs efficiently~

A. Drag-Along and Beating

One approach to efficient and natural evaluation of APL expreSSions is to

exploit the mathematical properties of the language to simplify calculations. In

the machine, this approach is embodied in two fundamental new processes: ~

along and beating.

- 65-

Drag-along is the process of deferring evaluation of operands and operators

as long as possible. By examining a deferred expression it may be possible to

simplify it in ways which are impossible when only small parts of the expression

are available. In effect, drag-along makes the machine context-sensitive, while

most machines are context-free.

Consider the dr:ag-along evaluation of the example in the last section. If we

assume a stack machine, the machine code for this expression might be

1. LOAD V

2. NEGATE

3. LOAD 2

4. MULTIPLY

5. TAKE 3

The imme~ate execution of this sequence was already shown. Suppose now that

we temporarily defer instructions in a buffer instead of executing them as they

appear. After the first instruction, the buffer contains

LOAD V

After instruction 2, we have

LOAD V"
NEGATE J

where the pointer connects the negation with its deferred operand, V. After

instruction 4, the buffer contains

LOAD V'}
NEGATE J)
LOAD 2~.

MULTIPLY J
The evaluation of the TAKE is different from the previous operators since it is a

selection operator. TAKE can examine the contents of the buffer and change them,

- 66-

as below. Note that the deferred expression is equivalent to the original expression.

The process of making the changes in the buffer is called beating.

LOAD 3tV,

NEGATE J

(Note change in this instruction)

LOAD 2)

MULTIPLY

When values must finally be computed, only the desired elements will be accessed

and used. Thus, drag-along facilitates beating.

The other aspect of drag-along is that it eliminates intermediate array-shaped

results with consequent savings of stores, fetches, and space. In an expression

such as A+B+C+D the literal execution proceeds in three steps:

T1+C+D

T2+B+T1

T3+A+T2

If the variables A.B.C.D are vectors, each step above requires a vector-sized

temporary store and the last two steps require fetches to get the previous results

as operands. With drag-along, the entire expression is deferred finally to be

evaluated element-by-element as:

for I+1 step 1 until pA do

T3[IJ+A[IJ+B[IJ+C[IJ+D[IJ

This requires no extra fetches, stores, or temporary space to obtain the desired

result.

In the machine, drag-along will be applied to all array operands.E and 6and

to all monadic and dyadic operators MOP and DOP for which

(MOP .E)[; /LJ ++ MOP' (F1.E)[; /LJ

and

(.E DOP6)[;/LJ ++ (F1.E)[;/LJ DOP' (F26)[;/LJ

- 67-

where F1 and F2 are simple functions of arrays and MOP' and DOP' are similar to

MOP andI20P. An example of a function which is not dragged-along by the machine

is grade-up which is essentially a sort of its operand. Grade-up obviously does

not fit into the above scheme since F1 also becomes a sorting function which is

not simple as required.

B. Beating and Array Representation

Beating is the machine equivalent of calculating standard forms of select ex

pressions. If the effort to do beating followed by an evaluation of a standard form

is less than that to evaluate an expression directly, then the process is worthwhile.

We will see in the following chapters that this is in fact the case.

In order to apply beating we must specify a representation of the standard

form. One possibility is to maintain the A ,F. and G values for each array in an

expression to allow calculation of the standard form

A~FtJ.G~

as defined in Chapter II. However, these arrays contain redundant information

and it is desirable to find a more compact representation.

If we choose to represent arrays in row-major order we can utilize the rep

resentation of the storage access function as the representation of standard forms.

In this way, beating will consist of applying the transformations of Chapter n to

the mapping functions for arrays.

In the following discussion we can assume without loss of generality that the

index origin is zero. Situations where it is different reduce to the zero case by

subtracting IORG from all subscripts. Let A be a rank-N array. Then, assuming

that each element inA is to occupy one word in memory, the elementA[;/LJ will be

located at

VBASE+(pA)J.L

- 68-

whereVBASE is the address of A[O;O; ••• ;OJ. Thus, subscripts of arrays stored

in row-major order are representations of numbers in a mixed-radix number

system (Knuth [1968] p. 297). This representation is especially suitable for arrays

in APL because APL arrays are rectangular, dense, and homogeneous. Further,

this representation does not favor any array coordinate over another which is

essential in APL.

We can generalize the access function slightly by writing it in the form:

VBASE+ABASE++/DELxL

whereABASE is an additive constant, in this case zero, andDEL is the weighting

vector used to calculate the base value in (*) above. DEL is computed by

DEL[NJ+1

DEL[IJ+DEL[I+1Jx(pA)[I+1J for each IElN-1.

Example: LetM be a matrix with dimension 2.3. ThenDEL+-+3.1 and we set ABASE+-+O.

The layout of M in memory is

VBASE
-I-

M[O;oJ

+1 +2 +3 +4- +5

M[1;1J M[1;2J

Given this formulation of the storage access function, it is only necessary to

transform ABASE and DEL in order to obtain the effect of evaluating selection opera-

tions on an array 0

Example: IfM is the matrix in the previous example, then the mapping function

for (2.1)il:/M has the same VBASE. For the transpose we use ABASE' +-+0 and DEL' +-+1,3.

Note that the change in DEL corresponds to permuting it by 2,1. This new function

uses the same values that were stored forM, but accesses them as if they were

the transpose (2,1)iI:/M. To verify this, note that the address for « 2 .UiI:/M)[I;JJ

- 69 -

is

VBASE+ABASE'++/DEL'xI.J ++ VBASE+ABASE'+(1xI)+(3 xJ)

++ VBASE+ABASE+(3xJ)+(1xI)

++ VBASE+ABASE++/DELxJ,I

which is the location of M[J;IJ ++ « 2,1)~)[I;JJ.

This can be done for any selection operator by using transformations analogous

to those in Chapter II. Appendix A shows the beating transformations on access

functions for arrays. In the machine, beating is also applied to expressions con

taining reductions, scalar operators, and inner and outer products, based on the

results in Chapter II.

C. Summa:r,:y

At this point we have outlined the framework of a machine for APL. It is

pleasing to know that it will work since it is justified by theoretical results

developed earlier. The remainder of this dissertation discusses the structural

details of a machine based on the beating and drag-along processes and gives an

evaluation of its effectiveness. Let us outline some goals that such a design should

satisfy:

1. The machine language should be close to APL. That is, .it should contain

all primitives in the language and in a similar form. While it is well-known how

to design a machine to accept APL directly there is no particular advantage to

doing so. We are primarily concerned with processing the semantics of the

language, not its syntax. Thus there is no loss of generality in letting the machine

language be a Polish string version of APL. This has the further advantage of

freeing the machine from the particular external syntax of APL.

- 70-

2. The machine should be general and flexible. In particular, it should

not be so deeply committed to evaluating APL as to be useless for other purposes.

3. The machine should do as much as possible automatically. This includes

storage management, control, and Simplification of expressions. The programmer

should not have to be aware of the structure and internal functioning of the machine

at a level much beyond that specified in an APL program.

4. The machine should do simple things simply and complex tasks in pro

portion to their complexity. In other words, the work required for the machine

to execute a program or expression should be related in some straightforward

way to the program's complexity.

5. The machine should be efficient. This is perhaps the most important

focus of this work. Of course, the question of efficiency is related to the current

technology; at present, a major bottleneck in evaluating array-valued expressions

is use of memory D Thus we concentrate on reducing memory acceSSing and tem

porary storage space in the evaluation of APL programs.

6. The machine design should be elegant, clean, and perspicuous.

- 71-

APPENDIX A

TRANSFORMATIONS ON STORAGE ACCESS FUNCTIONS INDUCED BY

SELECTION OPERATORS

1. The storage access function for an array M contains the following information:

RANK +-+ ppM

RVEC +-+ pM

VBASE location of first element of .M

ABASE constant term of access polynomial

DEL vector of coefficients of access polynomial

Then, the element Me ;IL] is located at

VBASE+ABASE++IDELxL

2. This section lists the transformations on storage access functions which are

used to effect beating of selection operators. These transformations are given

as program segments written in index or.igin zeroo It is assumed that the parameters

to the various selection operators are conformable and in the proper domain.

b. Q+M

ABASE +- ABASE+DEL+.x(Q<O)xRVEC-IQ
RVEC +- IQ

ABASE +- ABASE+DEL+.x(Q>o)xIQ
RVEC +- RVEC- I Q

Co 1>.LUM --
ABASE +- ABASE+DEL[J]x(RVEC[J]-l)
DEL[J] +- -DEL[J]

- 72 -

d. _A~M

R + RVEC
D + DEL
RANK + l+Cr/A)
I + 0
DEL + RANKtDEL
RVEC + RANKtRVEC
RANK REPEAT

BEGIN
RVEC[I] + l/(I=A)/R
DEL[I] + +/(I=A)/D
I + I+1

ABASE + ABASE+DEL[J]xSCALAR
DEL + (J~tRANK)/DEL
RVEC + (J~tRANK)/RVEC
RANK + RANK-1

f. M[[K]J LEN.ORG.S]

ABASE + ABASE+DEL[K]xORG+(LEN-1)
RVEC[K] + LEN
IF S=l THEN DEL[K] + -DEL[K]

- 73-

CHAPTER IV

THE MACHINE

This chapter contains a functional description of a machine designed to process

the semantic content of APL programso

In general, the description will be given in English, although algorithmic

descriptions will be used as necessary to provide clarifications. The section will

be written in the style of a programming manual, with the addition of explanations

and rationales as require do

The APL machine (APLM) is conceptually composed of two separate machines,

each with its own language, sharing the same registers .and data structures. The

D-machine (DM) accepts APL-like machine code and does all the necessary analysis

on expressions. The DM produces code for the E-machine (EM), and in the process

does some Simplification of incoming expressions using drag-along and beating.

The E-machine does all the actual computations of values in the system. By using

a stacking location counter based on the organization of machine code into segments,

the overall control scheme for the machine is quite simple.

The current chapter consists of five sect.ions which present the APLM in a

logical sequence. Section A discusses the data structures and other manipulable

objects in the machine, and explains how they are managed in the machine's

memory. Section B continues by explaining the stacks and other registers in the

machine, followed by a discussion of the overall machine control, in Section C.

Finally, the details of the D-machine and the E-machine are set forth in Sections

D and E, respectively. Examples are used liberally throughout, to clarify opera

tional details of the APL machine.

- 74-

A. Data Structures and Other Objects

The manipulable objects in the machine fall into three main classes: data

values, descriptors and program segments. This section will describe these

three kinds of objects and how they are represented in the machine.

Scalars are the simplest kind of data. In APL, a scalar is an array of

rank- O. In practice, a scalar is a different kind of object than an array, and is

so treated in the machine. Although arrays are stored in the memory, M, of the

machine, scalars are not. They appear only in the machine registers, in particular

the value stack, and as immediate operands in a code string. In a real machine,

scalars would have an attribute of~, determining the kind of representation to

use for encoding and decoding them. In this work, we will assume that this is

handled automatically, and that all scalar data are the size of a single machine

word.

The most important data structure in the APLM is the array. The represen-

tation of an array is divided into two parts. The first is the value array which is

a row-major order linearization of the elements of the array. The second part

is a descriptor array (DA) for an array, which contains the rank, dimension, and

storage mapping function for the array. This separation makes it possible to have

multiple DA' s, not necessarily identical, referring to the same value array, which

makes beating possible. In this chapter, descriptor arrays will be shown in the

form:

@ARR
+01
+02
+03
+04

RC=2
VB=VARR

RANK=2
R(1)=003
R(2)=002

LEN=05
AB=OOO

D(1)=02
D(2)=01

@ARR is the address in memory of the first word of the descriptor array for the

array named ARR, which is shown above. The first word contains a reference

- 75-

count (RC) and a length (LEN) f.ield, as explained in the discussion on memory

in the APLM. The rank of the array is recorded in the third word of the DA;

words after that contain the elements of the dimension vector, labeled R(I). Thus

in this case, pARR is 3, 2. The second word in the DA encodes the base address

of the value part of the array (labelled VB for VBASE) and the constant term in

the storage mapping function (here labelled AB for ABASE). Finally, the DA

contains the coefficients of the storage mapping polynomial, DEL (labelled D(I)

here). Recall that for an array ARR, the element ARRG!L] is located at

VBASE + ABASE + +!DEL x (L - IORG);

This formula is the storage mapping function for any array.

In addition to array descriptors, the machine contains descriptors for

J-vectors. Recall from Chapter II that a J-vector is a vector of consecutive

integers which can be specified by a length, an origin, and a direction bit. We

assume that these three quantities can be encoded into a descriptor by the

function JCODE(length, origin, direction) and that there are appropriate decoding

functions. (See Appendix A.)

Finally, programs in the machine are represented internally as program

segments. A program segment is any sequence of machine commands and operands,

and is referenced by a segment descriptor. Segment descriptors contain an

encoding of the beginning address of a segment (relative to the beginning of the

function they are a part of) and the length of the segment. There is also a bit

which indicates the execution mode for the segment (see Section C).

Each defined function (program) is a segment, and logical subparts of the

function may also be represented as segments. As will be seen later, it is easy

to activate and de-activate segments in the APL machine. Briefly, the advantages

of organizing programs in segments is that these are the logical units of a program,

- 76-

while other organizations, such as paging, do not allow this kind of natural cor

respondence of form and function (pardon the pun~). An important property of

APLM instructions is that they contain no absolute addresses except for references

to NT, which remain constant in any compilation. All internal references to

other parts of a program are relative. Thus, all programs are relocatable.

Each function has a corresponding function descriptor, which is similar to

a DA. A function deSCriptor contains the following information:

FVBASE location in M of beginning of function segment

FLEN length of function segment

FIORG index origIn for this function

FISR logical variable -1 if function has a result

FPARS

FLCL

number of parameters

total number of local names

In addition, the rest of the function descriptor contains a list of all local names

in the function, in the order: result (if any), parameters (if any), local variables

(if any). The function descriptor for a function is used in calling and returning

from functions, as will be discussed in Section D.

Main memory in the machine is a linear array of words named M. The only

objects which reside in M are arrays, DA's, and program segments. All other

objects are stored in the machine's registers. In addition to M, there is an array

NT, the Nametable, which is an abbreviated symbol table. Every identifier in the

active workspace has an entry in NT, which contains descriptive information and

either an actual value or a pointer to where it can be found in M. Scalars and

J-vector descriptors are stored directly in NT. Thus, all references to variables

and functions in the machine go through the NT. This organization allows for

dynamic allocation and relocation of space in M, without having to alter any

- 77-

program references. The operation of NT is described more fully in the next

section under machine registers. Constant array values within a function are

stored as part of the program segment; they are addressed relative to the beginning

of the function, and so, too, remain relocatable.

Within M, two different allocation mechanisms are used, one for functions

and array values, and one for descriptor arrays. The reasons for this are that,

because of drag-along and beating,DA's are expected to have a shorter lifetime

than functions or array values. Further, in a given function, locally at least, it

is likely that DA's will be of similar sizes. Thus, it is feasible to keep an

available space list for DArs, with the hope that erased spaces can be reused

intact. We would therefore expect more efficient use of M by DA's than by array

values.

The free memory space (M) is arranged as follows: functions and array

values are allocated from the lowest address (BOTM) towards the top of M and

DA's are allocated from the top (TOPM) down. The space in the middle is the POOL,

with boundaries BOTP and TOPP. Each entry in M has a header word containing

an encoding of a reference count (see Collins [1965J), the length of the entry, and

a filler count. The latter field is used when space slightly larger than necessary

is allocated. Each time a reference to an entry is added or deleted, the reference

count field is adjusted. When a reference count goes to zero, meaning that there

are no uses of the entry anywhere in the system, the entry is made available in

one of two ways. If it is adjacent to the POOL, it is merged with POOL. Other

wise, it is added to the appropriate availability list, of which there are two, one

for DA' s and one for functions and array values.

The availability lists are doubly linked, and each entry contains a header

simi.lar to those for active entries. Wllen space is needed, the appropriate

- 78-

availability list is searched using the first-fit method (Knuth [1968J 436, ff). If

a fit is found, the space is allocated and the availability list adjusted. Otherwise,

space is taken from the POOL. If a request for M-space is made which cannot

be honored because there is not enough contiguous space available, a garbage

collection is made. The two halves of M are garbage-collected separately. In

collecting array space, all the DArs are scanned and a linked list is set up which

ties together all DArs pointing to the same entry. Then arrays are compacted

towards BOTM, with the links used to adjust the VBASE fields in the referent DA's.

If enough space is still not available, the DA I S are also compacted, using a

similar algorithm. Some coalescing of available space is also done by the al

location algorithm, GETSPACE. Figure 1 illustrates how M is structured.

B. Machine Registers

This section describes the registers and register-like structures in the APL

machine. The present description covers only the logical functions performed by

these registers and does not make any demands on how they are actually to be

implemented. Although most of the registers are not directly accessible to the

programmer, thorough knowledge of their use is important to understanding the

functioning of the machine.

There are several registers related to memory acceSSing and allocation.

The most important of these is the Nametable, NT. NT is an associatively ad

dressed stack, each entry of which contains a name field, a tag, and a value.

The name field of an entry contains an index for the identifier associated with the

entry. Permissible tags in NT are ST, for scalar quantities, JT, for encoded

J-vectors, UT, for undefined identifiers, DT, for arrays, and FT for functions.

ST and JT entries contain the actual value in their value field, while DT and FT

entries have descriptor addresses in their value fields.

- 79-

ARRAVAlL

Array availability list
forward linka-----

reference count --.---,~

BOTP -....-..fJ

POOL

DA Availability list
forward links --""1

DAAVAIL

TOPM

I-Ef------- Array availability -
backward links

~/////!t - Available apace

~E+------r--DA Availability list -
backward links

FIGURE l--Strueture of M.

- 80-

When a function is called, an entry is pushed to NT for each of the function t s

local variables and parameters, as listed in the function descriptor. Similarly,

when a function is de-activated, the reverse process occurs. Each time a variable

is accessed, NT is searched associatively from the top (latest entry). If a hit is

not found, then the desired variable must be global, and it is entered into NT.

This mode of maintaining the NT makes identifier behavior correspond to APL's

"dynamic block structure'! and facilitates recursive function calls.

The most important registers in the APL machine are four stacks. The use

of stacks permits elimination of addresses from most instructions and simplifies

the evaluation of recursive and nested programs.

1. Value Stack (VS)

VS is the main stack in the machine and is used in the evaluation of expressions

and in function calls. Each VS entry consists of a tag and a value part, as in NT

entries. In addition to scalars and function or DA pointers, VS can contain segment

descriptors, partially-evaluated addresses, function marks, and names.

2. Location Counter stack (LS)

Recall that machine code is organized into segments, characterized by a

starting address and a length. Each LS entry contains the starting address of a

segment (ORG), its length (LEN), a relative count, pointing to the next instruction

to be executed (REL), and control information. Each time a segment is activated,

its beginning address and length are pushed to LS, and the REL field is set to zero.

The address of the next instruction is then determined from the REL and ORa fields

on the top of LS. After each instruction fetch, the REL field at the top of LS is

incremented. When this value is equal to the length of the segment, the segment

is terminated by popping the top of LS, thereby reactivating the next entry. The

control information in LS is used to coordinate .it with the other stacks in the machine.

- 81-

3. Iteration Control Stack (IS)

Array-valued APL expressions implicitly specify an index set for the expres

sions. In this machine, IS is used to control (nested) iterations over this index

set in the element-by-element evaluation of array-valued expressions. The

operation of IS is coupled with LS as follows: when a set of iterations is begun,

the limits of the iteration are pushed into the iteration stack, and a segment is

activated containing the range of the iterations. Then, for each instruction in

the code segment, the necessary index values are taken from IS. When the segment

is completed, the entries in IS are stepped and if the required iterations are not

exhausted, the segment is re-initialized and repeated with the new IS values.

Eventually, the iterations are completed and the segment in the range also is

completed, in which case IS and LS are both popped, returning the machine to the

place it was to resume after the iterated code was completed. (See Section D.)

The IS behaves essentially like a nest of FORTRAN DO's. Each entry contains

a counter (CTR) (to origin zero), the maximum value of the counter (MAX),

direction bit (i. e., count up or down) (DIR) and control information. Although

the IS is partially accessible to the machine code, it is for the most part main

tained automatically. Like LS, IS could probably be incorporated into the value

stack, since these three stacks generally work in parallel. However, by separating

these stacks by their functions, the machine design becomes cleaner and more

perspicuous.

4. Instruction Buffer (QS)

Unlike LS and IS, the instruction buffer QS is logically separate from the

value stack. QS is not strictly a stack, since it is possible to access and alter

information at places other than its top. In the D-machine, instructions are

fetched from M, some of which are executed immediately, and others of which

- 82 -

are either evaluated by beating or are deferred in QS by drag-along. In entering

instructions in QS, the DM may change other related QS entries. When the

E-machine is activated, instructions are fetched from QS and executed directly,

generally in conjunction with VS and IS. QS contains operation and value fields,

similar to VS, a LINK field used to reference other deferred instructions, and

an AUX field, which is a logical vector acting as an access mask for array entries

(see Section E).

A final four registers in the machine are mentioned primarily for completeness.

These are:

. IORG

FBASE

FREG

ISMK

Index origin of current active function

Base address in M of current active function

VS index of function mark for current active function

IS index of topmost IS entry containing 1 in its MARK field.

The use of these registers is shown in the examples in following sections.

C. Machine Control

The purpose of the APL machine is to transform a set of data (the input) into

a second set (the output) according to encoded transformation rules (the program)

which are interpreted according to a predetermined scheme (the machine). This

entire process is called the evaluation of the program and input.

In the APL machine, programs are evaluated in two separate but related sub

machines. The D-machine takes its instructions from main memory, M, in the

form of Polish APL code, and does all the necessary domain testing and storage

allocation for the various operands. In addition, the DM does Simplification of

incoming expressions by drag-along and beating. The output of the D-machine is

values in VS and transformed code in the Q8, in the form of instruction segments

for the E-machine. At critical points, determined either by the programmer and

- 83-

the DM, control is passed to the E-machine, which executes the simplified

instructions in QS, producing values in VS and M. When done, the EM passes

control back to the DM, which resumes where it left off.

The division of labor between the two submachines is logically similar to that

between a compiler and its target machine. The DM plays the role of the algebraically

simplifying compiler, whose source language is essentially APL, and whose

target language is E-machine code. The E-machine as the target of theDM's

transformations is a conceptually simple computer which does nothing but compute

values. Given this scheme, a question which naturally arises is, Why bother with

the D-machine at all? Why not use a separate compiler in software and let it

produce code for a machine similar to our E-machine? Unfortunately, this is

impossible, since the behavior of the D-machine is dependent not only on the

source code (program), but is also dynamically dependent on the data. For instance,

consider a simple APL expression such as A + B. We would like the source code

for this expression to be something conceptually like

LOAD B (i. e., "load" B to the value stack)

LOAD A

ADD (i. e., add the values on top of the value stack and leave the

result there.)

The problem here is that we would like the machine to do different things depending

on the data. In particular, if both A and B are scalars at the time the above code
I

is executed, it would be desirable to have the LOAD instructions push the actual

scalar values to the stack, and to have the ADD do the actual addition. But if A

and B are conformable arrays, the desired action is to defer the entire operation

(both LOADs and the ADD) in the instruction buffer, to be performed later by the

E-machine.

- 84-

No compiler would be able to make these decisions!!: priori unless it knew

what data was to be used in running the program, or unless variables were suf

ficiently restricted by declarations. Further, much of the work done by the D

machine is domain testing, including rank and dimension checking, on dynamically

specified variables. Since this process is data-dependent, it must be performed

dynamically.

Both the D-machine and the E-machine share all the registers and the memory

of the entire APL machine. Further, both are controlled by a central cycle

routine, shown in Fig. 2. The key to the overall control of the APLM is the

location counter stack, LS, which contains active segments for both the DM and

the EM. In Fig. 2 we see that a major machine cycle takes the form:

a. Check to see if the current active segment has been completed. If not,

proceed to step b, otherwise see if this segment is under control of the

iteration stack. If it is, then step the iteration stack; in case IS does not

overflow, then reset the REL field to the beginning of the segment and

repeat this step. If the segment is not under control of IS or if it is and

the iteration stack overflowed, then de-activate the segment and repeat

this step.

b. Calculate the effective address of the current instruction and update the

location counter stack.

c. Select the appropriate machine, determined by the DIE bit in the current

active segment. If the DM is selected, then defer any arrays referenced

on the top of the value stack to the instruction buffer; also, fetch the

instruction and (if necessary) the second word of the instruction from

memory. Finally, decode and interpret the instruction and return. to

step a.

- 85-

Step a

-.{

Stepc

.... t------- SEGMENT EXHAUSTED

NO

YES

STEP
rrERATION

STACK

DE-ACTIVATE SEGMENT

.... .--CALC EFFECTIVE ADDRESS

'-~-UPDATE REL COUNTER

IS ITERATION
EXHAUSTED?

r:::::~:--\"!'!"'---WHICH MACHINE HAS CONTROL?

DECODE"
INTERPl\ET

QS(EA)
(E-MACHINE)

FETCHDM
OPCODE

IS TAG OF VS YES
JT, DT, or FDT

NO

FETCH 2nd WORD
IF NECESSARY

AND UPDATE REL

DECODE"
INTERPRET

OPCODE
(D-MACHINE)

PUSH ENTRY TO QS.
CHANGE VS ENTIty

TO 5EG DESCR.

FIGURE 2--Maincycle routine.

- 86-

D. The D-Machine

The D-machine evaluates programs written in "machine language" by generating

instructions in QS to be executed later by the E-machine. As discussed in Chapter

III, the use of a Polish string for the machine language rather than "raw" APL frees

the APLM from the particular concrete syntax of APL without sacrificing any of the

semantic content.

Most of the instructions in the APLM correspond directly to the APL primitives;

those which do not are the control instructions, which comprise a more powerful

set in the machine than are provided in the source language. All operands in DM

instructions are either relative addresses within the program segment or are NT

references or are immediate values. As a result, all programs in the machine

are relocatable. Since only constant data is contained in function segments,

programs are likewise re-entrant.

The D-machine instruction set is listed in Tables 1-1, 1-2, and 1-3. The

instructions are divided into three classes: storage management instructions,

control instructions, and operator instructions. It is clear from Table 1 that no

systems functions are included in the D-machine's repertoire. In a real imple

mentation of an APL machine, these instructions would have to be provided,

although for the current work, they are irrelevant. The remainder of this section

discusses the instructions of the D-machine, with examples to clarify the details.

O. A Guide to the Examples

The examples used in this chapter include program listings, register dumps,

and memory dumps. In shOWing program excerpts, we generally also show the

APL source expression, and give values, or at least attributes, for the operands.

Programs are shown in assembly language format, except that absolute addresses

are given. Although nothing has been said of the manner in which D-machine instructions

- 87-

TABLE 1-1

Storage Management and Control Instructions

9P222~ _______ ~~~~~~ _______________ P~~~!~~~3~ __________________________ _

A. Storage Management Instructions

LDS

LDSEG

LDJ

LDIS

LDCON

LDN

LDNF

AOON

ASGNV

B.

JMP

JMPO

JMPI

LEAVE

RETURN

ITM

DO

DOl

scalar

seg-descr

jcode 1,0,s

K

K

N

N

Control Instructions

K

K

K

Load scalar

Load segment descriptor

Load J-vector

Load iteration stack counter, K from top of IS

Load constant array, starting at FBASE +K

Load name N

Load name N and fetch value

ASSign (and discard value)

ASSign and leave value

Jump by K (signed) in current segment

Jump by K in current segment only .if top

of VS is 0

Pop VS in either case

Same as JMPO except test for 1

De-activate this segment

(i. e., pop LS and also IS if necessary.)

Return from current function

Iterate and mark

Call E-machine to work on top of VS

Same as DO except that temporary space is

allocated for the result, if any, and the result

is left on top of VS

- 88-

A. Dyadic

ADD
SUB
MUL
DN
MOD
MIN
MAX
PWR
LOO
CIR
DEAL
COMB
AND
OR
NAND
NOR
LT
LE
EQ
GE
GT
NE

Bo Monadic

PLUS
MINUS
SGN
RECIP
ABS
FLOOR
CEIL
EXP
LOOE
PI
RAND
FAC
NOT

+

x

.-

I
L
r
*
~

0

?

1\

v
1'<

¥

<
:<;

=
~

>
~

+

x

I
L
r
*
~

o
?

TABLE 1-2

Scalar Arithmetic Operators

Add
Subtract
Multiply
Divide
Modulus
Minimum
Maximum
Power
Logarithm
Circular functions
Random deal
Binomial coefficient or beta function
Logical and
Logical or
Logical nand
Logical nor
Less than
Less than or equal
Equal
Greater than or equal
Greater than
Not equal

Plus
Minus
Signum
Reciprocal
Absolute value
Floor
Ceiling
Exponential (base e)
Logarithm (base e)
Pi times
Random number
Factorial or gamma function
Logical not

- 89 -

TABLE 1-3

Remaining Operators in D- Machine

9P~~~~~! _____________ ~~ ____________ ~~Y~~2E _______________________________ _

A. Selection

TAKE t

DROP +
REV K ¢[K]

TRANS ~

INX K [[K]

B. Evaluated Immediatel;y

BASE

REP

GDU

GDD

CAT K
RAV

URHO

DRHO

UlOTA

C. Deferrable

ROT K

EPS

DIOTA

CMPRS K

EXPND K

SUBS K

D. Compound

RED K OP

GDF OP

1.

T

p

p

¢[K]

E

/[K]

\[K]

[

OP/[K]

Take

Drop

Reverse along Kth coordinate

Generalized transpose

Index on Kth coordinate

Base value (Decode)

Representation (Encode)

Grade up

Grade down

Catenate (top K on VS)

Ravel

Dimension

Restructure

Interval

Rotate on Kth coordinate

Membership

Rank

Compress on Kth coordinate

Expand on Kth coordinate

Subscript with K expressions in VS

Reduce along Kth coordinate by OP

General dyadic form with OP

- 90-

are encoded, we have chosen, for purposes of illustration, to show them as one or

two word quantities, depending on whether or not they have operands. All operand

addresses are shown symbolically and comments are used to explain the program

structure. In the register dumps, most of the material is 'self-explanatory 0 Field

headings are summarized in Appendix A. The top of each stack is indicated by an

arrow. Descriptor array addresses, which are pointers to the memory, are in the

form @A, for variable A, and value addresses in M are of the form VA. Again, in

the real machine, these would in fact be numerical addresses, but the symbolic

form is much clearer for examples. Fields in DAr S are labelled mnemonically.

Segment descriptors in VS or QS are shown in the form SCODE(SEGoX, m), where

m is 0 or 1 depending on whether the segment is a DM or an EM segment, and X

is the segment symbolic name (arbitrary). EM segments are delimited by "brackets"

along the right side of the QS display, in the format XY, meaning that segment X

starts here and segment Y ends here. The LINK field of QS contains relative pointers

and is interpreted according to the opcode. The contents of the A UX field is to be

interpreted as a logical vector, although in fact it may be encoded differently in an

actual APLM.

1. Storage Management Instructions

This class includes all instructions concerned primarily with the storing and

fetching of data. Each of the load instructions pushes a value to the value stack.

Of these, four have immediate operands; LDS, LDSEG, LDJ, and LDN push their

operands to VS with tags ST, roT, JT, and NPT respectively. LDIS K loads as a

scalar the current value of the CNT field of the iteration stack element K entries

from the top of IS. LDNF N refers to variable N in the nametable, and enters the

current value of the variable (from NT) into VS. In the case of NT entries with tag

DT (i. e., arrays), the reference count of the DA is increased by 1 when it is

- 91-

entered into VS, and the VS tag is set to FDT. The LDCON K instruction is used

to access a constant array stored in a function segment. Its operand K is a pointer

relative to the function origin pointing to the beginning of the DA for the constant

value. This DA is copied to the DA area of M, its VBASE is set to the beginning

of the function (FBASE), and its ABASE is set to K. The DA pointer is pushed to

VS with tag FDT.

Although all the load instructions just described push a value to VB, such

values do not always remain there. At the beginning of each D-machine cycle, the

top of VB is examined for tags FDT, DT, and JT (see Fig. 2). If one of these is

present, then the entry is deferred in QB, because it is array-valued. This is

done by pushing an E-machine instruction to QS of the form

OP @ARR 0 MASK.

OP is IFA, lA, or IJ, depending on whether the VB tag was FDT, DT, or JT;

@ARR is the DA pointer that was in the VS value field, and MASK is an access

mask. The access mask in this case is a logical vector whose last K bits are 1

when ARR is a rank.-K array. It will be used by the DM in beating and by the EM

in accessing this array. The LINK field in E- machine instructions of this type is

lUlused, and thus is shown as 0 above. The VS entry is then replaced by a segment

descriptor with tag SGT pointing to the one-word QS segment containing the deferred

operand. In general, this entire process is invisible in the examples below, and

the load instructions which generate array values can be thought of as doing the

deferral themselves.

Although ASGN and ASGNV are operators, they are included as storage

management instructions because they have the side-effect of causing values to

be stored. These instructions expect the top of VB to contain a destination, either

as a name (tag NPT) or as a QB descriptor pointing to a segment containing only

- 92-

TABLE 2

Interpretation of ASGN and ASGNV in the D-Machine

Top ofVS

a. tag = NPT or
tag=SGT and
deferred ex
pression has
one element

b. tag=NPT

c. tag=NPT

d. tag=NPT

e. tag== SGT and
deferred seg
ment consists
of a QS entry
with opcode IA

(Top-l) of VS

tag= Sf

tag= SGT and
deferred segment
is a J-vector

tag = SGT and
deferred segment
is a single DA
with reference
count of 1 and
value also has
reference count
ofl

tag= OOT and
deferred segment
is any arbitrary
array expreSSion

tag = OOT and
deferred segment
is any arbitrary
array expreSSion

Action

Do immediate aSSignment. That is, store
the scalar value in NT or in M, as appro
priate.

Do immediate assignment.

Do immediate assignment.

Allocate space for a DA and value of the
size necessary to store the result. Defer
the assignment in QS, as for scalar arith
metic operators.

Check ranks and dimensions for conformability.
If the Ths variable is a J-vector, it must first
be expliCitly evaluated. If the rhs expreSSion
contains instances of the !hs variable with dif
ferent permutations, then the rhs expression
is evaluated to temporary space. Finally,
the assignment is deferred as above.

- 93-

an IA instruction; the second entry in VS is the right-hand side of the assignment.

There are several possible actions taken by the DM in interpreting assignments,

depending on the VS contents. These cases are explained in Table 2. We have

assumed that "evil" side effects do not appear in the code; their treatment is

straightforward, but uninteresting. Also, it should be noted that although the

strategies outlined in Table 2 could be modified to alter the machine's performance,

the case analysis remains the same.

The final storage management instructions are INPUT and OUTPUT, which

are left further unspecified. These could be conceived of as read-only and write

only (serial) strings, which are used as primitives for writing functions such as

o and[!]

2. Control Instructions

The control instructions of the APLM are all concerned with directing the

flow of control among statements at the source-language level, and are all evaluated

by the D-machine.

The three jump instructions, JMP, JMPO, and JMPl are used to alter the

flow of control among statements in a function. Since no jumps are allowed out

side of a function, there is little difficulty in specifying this operation. All that

is necessary is to change the value of the relative pointer in the current segment

on LS. CYCLE is a special case of JMP, which sets the relative pointer to 0,

causing the current (D-mode) segment to be repeated. LEAVE pops LS and also

IS, if the segment is involved in an iteration. RETURN performs sim.ilarly

in returning from a call. on a function. In addition, it automatically erases the

locals for the current function from NT.

The interpretation of the 00 instruction depends on the top value on VS. If

the top of VS is a scalar then the DO acts as a no-oPe If the tag is SGT, then the

- 94-

segment described on VB is activated by pushing the segment descriptor to LB,

with VB being popped. In case thetag is NPT, the corresponding NT tag is examined,

and if the tag is FT, then the named function is activated, as described in the next

paragraph; all other cases are no-ops. The DOl instruction is similar to DO

except that if the top is VB and has tag NPT, the value referenced is copied to new

space, while if the tag is SGT, temporary space is allocated for the result and

the segment is evaluated. Thus, after executing a DOl, the top of VB contains an

entry with tag sr, JT, or FDT.

When a DO instruction encounters a function name on top of VB, the following

actions take place:

1. The function descriptor, referenced by the NT entry for the function, is

fetched. It is expected that all parameters to the function have been evaluated

and placed on top of VB, so that the topmost value is the leftmost parameter. The

parameter count, FP AR, in the function descriptor is fetched, and the top of VB

checked to see that there are that many values already there. If not, an error is

signaled. Otherwise, the machine goes through the list of local variables in the

function descriptor, making an entry in NT for each one. Each new tag in NT is

set to UT, for undefined, unless it corresponds to a parameter. Parameter values

are placed in NT and popped from the value stack in order.

2. A function mark entry is pushed to VB, with tag FMT containing an

encoding of the current values of FREG, IORG, and the name of the function being

activated.

3. lORG is set to the value in the function descriptor, and FREG is set to

the VS index of the function mark.

4. An entry is pushed into LS for the segment described by FVBASE and

FLEN in the function descriptor. FBASE is initialized to FVBASE, and the process

is completed.

- 95-

The segment just activated contains all the code for the function. When a RETURN

is executed within this function, the following occurs:

I. LS is popped, thereby de-activating the function.

2. The function name, encoded in the function mark onVS, is used to access

the function descriptor and then popped. If there is a result, the value is pushed

to VS, and its NT entry erased. All other NT entries for locals in the function,

together with their values, are also erased.

30 FREG and IORG are restored from the values in the function mark on VS.

The function mark is deleted and the result, if any, is moved into its place.

4. Finally, FBASE is set to point to the current active function (if any) by

accessing its function descriptor through its name in the newly-exposed function

marko

3. Operator Instructions

The operator instructions correspond to the primitive operators in APL.

They can be considered in four groupings, and are so discussed in the rest of this

section. Part a discusses the scalar arithmetic operators (Table 1-2); part b

contains a description of the selection operators which are evaluated by beating

(Table 1-3A); part c describes those operators which are generally executed

immediately (Table 1-3B); and part d covers remaining deferrable operators as

well as the compound operators (Table 1-3C, D).

a. Scalar arithmetic operators

If the top of VS contains two scalar values (or one if the operator is monadic)

then the operation is done immediately, leaving a result in VS and popping the

operand(s). This process is illustrated in Example 1. In fact, the operation is

pushed to QS and the E-machine is activated to perform the actual evaluation, but

this micro-process is invisible to the user.

- 96-

The other possible cases occur when the top two elements of VS are segment

descriptors for deferred code in QS or when one is a segment descriptor and the

other is a scalar. If one of the operands is a scalar, it is entered into QS and its

VB entry is replaced by an appropriate segment descriptor, reducing it to the

case of two segment descriptors in VS.

The D-machine compares the ranks and dimensions of the two operands for

conformability and signals an error if they don't match. Otherwise, the operation

is deferred by drag-along in QS and the top of VB adjusted so that it contains a

segment descriptor pointing to the entire deferred expreSSion in QB. Because of

the stack discipline in the machine, the deferred code for both operands will

always be contiguous in QS. The link field of the QB entry for the operator (with

opcode OP) is a relative backwards pointer to the earliest deferred operand in

the deferred subexpression. The AUX field is the same as the AUX field of the

two operands (see Example 2).

b. Selection Operators

The selection operators are evaluated in the D-machine by beating, the process

of performing a selection operation on an array-valued expression by changing

the storage mapping functions of its constituent array operands. The mathematical

analysis of Chapter II legitimizes this approach, and guarantees that the trans

formations used in beating produce the correct results. Before proceeding, let

us define what it means for an array-valued expression to be heatable.

An array-valued expreSSion deferred in QS is beatable if any of the follOWing

conditions apply:

(i) It is a single QB entry with opcode IFA or IJ.

(ii) It is a consecutive pair of QS entries of the form

S scalar 0 0

IRD ptr o R.

- 97 -

I

CO
ex>

EXAMPLE 1 - SCALAR OPERATUR f StALAK OPERA"OS ---.------.-
REGISTER DUMP
NEWn • 0 10KG • 0 F REG = OOMO

REL ORG LEN DIE IS FN NWT QP
LS: +-----+-----.-----+---+---+---+---+----+

I 010 I 000 I IDe I 0 I 0 I 1 I 0 I 00 I
--) I

EFFECTIYE AODR • 0210 IN M

F6ASt a 00200

TAG .YALUE UP VALUE LINK AUK
"S:' +-----+------------------+ QS: +-----+ ------------- ---+----+------+

I I I --> I
1ST I 256 I
I ST I 32 I

-->1

HAMPLE 1-1: BEFORE EXECUTlliG ADO AT IH2101

REGISTER DUMP
~EWIT • 0 10RG - 0 fMEG • OOCOO

MEL ORG lEN DIE IS FN hoT QP
lS: +-----+-----+----+---+--+---t---+----+

I 011 I COO I 100 1 0 1 0 1 1 I 0 1 00 I
I 1)00 I 000 1 001 I 1 1 0 I 0 1 0 I 00 1

--) I

EFFECTIYE ADDR = 0000 Ih QS

F8ASE = 00200

TAG VAlUE OP VALUE LINK AUX
~s:+-----+------------------. QS:+-----+------------------+----+------+

1 1 1 00 I OP 1 ADO I 1 1
1 ST 1 ZS6 1 --> 1
1 ST 1 32 I

-->1

THE ADD INSTRUCTI(;N AT ~12101 HAS BEEN FHCHEU. DECODED.
AIIO OEFERRED IN QS. SINCE 80TH OPERANOS ARE SCALARS.
THE DEFERRED SEGMENT IS ACTIVATED IMMEDIATELY. IHOTE lSI

EXAMPLE 1-2' AFTER DECODING ADD; UPERATION DEFERRED IN QS

------~~~~~~~-~:-~~~~~~-~~~~~!~~!-~~~~~~-~~~~~~~~---------------------------------
REGI S TER DUMP
IlEWIT = 0 IORG • 0 fREG • OOOOC

RU ORG LEN DIE IS Fill M"T OP
LSI +-----+-----+-----+---+---+---+---+--.-+

I 011 I 000 1 lCO I ole 1 I I 0 1 00 1
I 001 I 000 lOll 1 1 I 0 1 0 , 0 1 00 I

--> 1

EFFeCT lYE AOOP • 0001 Ih liS

FalSI" 002CO

TAG VALUE OP VALUE LINK AUX
~s:+-----+------------------+ QS: +----+----------------+----+------+

1 1 1
1 ST 1 288 1

00 1 OP 1 ADD 1 I I
--> I

-->1

EXAMPLE 1-3, AFTEM E-MAt.HI"'E EXEtUTlDN OF AOO; OS SEGMtN' EXHAUSTED

RFGISTER OUMP
NE.IT • 0 IORG • a FREG • 00000

REl DRG LEN DIE IS FN NNT QP
LS: +-----+-----+-----+---+---+---+---+----+

I all 1 000 I 100 I 0 1 0 1 1 1 0 1 00 1
--> 1

EFFfC fiVE AODR • 0111 IN M

F8ASE • 00200

TAG VALUE OP VALUE liNK AUX
vs:+-----+------------------+ QS: +----+-----------------t----+------+

1 1 1 --> 1
1 S T 1 268 1

--)1

EXAMPLE 1-10' AFTER RETUMN TC D-~ACHlhE. RESULT OF AOD IS ON YS

EXAMPLE 2 - SCALAR OPERATUR. ARRAY OPfRANDS

REGISTER ~UMP
NEWIT = a IORG = 0 fREG = aOOuD fBASt: = 00200

REL ORG LEN DIE IS FN NWT QP
LS: t-----t-----t-----+---+---+---+---+----+

, 010 I 000 1 lCO 1 0 0 1 1 1 0 I 00 1
--> 1

EFFECTIVE AODR = 0210 IN M

TAG VALUE OP VALUE LINK AUX
VS:+-----+------------------+ ~S:+-----+------------------+----+------+

I I 1 00 I I f A I ~A I I 01 11 I AA
I SGT 1 SCOOECSEG.A,11 I 01 I IFA 'jiB I 10111 1 sa
1 SGT I SCODE(SEG.B,l) I --> 1

-->1

AR~AYS wiTH OA'S AT 1000 AND 1010 ARt Of KANK 3 (NOTE QS AUX FIELDS).
NEXT INSTRUCTION IS Aoe AT 14(2101

EXAMPLE 2-1: ~EfORE EXECUTING ADO

REG I S TER OUMP
~EwIT = 0 IORG : 0 fl-tEG : 00000

REL ORG LEN DIE IS FN NwT ~P

LS: +-----+-----+-----+---+---t---t---+----+
I 011 1 000 1 100 I 0 I I) 1 1 1 0 I 00 1

--> I

EfFECTIVE AODR = 0211 IN M

fijA SE = 0020 C

TAG VALUE OP VALUE LINK AUX
VS:t-----+------------------+

I I I
I S6T I SCODE(SEG.C,ll I

-->1

QS:+-----+------------------t----+------+
00 1 I F A I .ilA I 1 0 111 1 C
01 , I fA I ajij I 1 0111 I
02 I OP I ADD 1 02 I I) III I _C

--> 1

EXAMPLE 2-2: AFTER OEfERRING ADU

- 99 -

(iii) It is a QS segment consisting of a scalar monadic operator operating

on a beatable sub- segment. That is, it is of form:

code for operand

• • •

• ••

OP optype 1 R

(iv) It is a QS segment consisting of a pair of heatable operands combined

by a dyadic scalar operator. One of these operands can optionally

he a scalar value. The form is:

code for right opnd

• • •

· . .
code for left opnd

• • •
OP optype f R

10.-___ -1

(v) It is a pair of heatable operands combined by GDF. The form is

similar to case (iv) above.

(vi) It is a reduction of a beatable operand, in the form:

k:

BRED 0 k 0

code for reducee A

•••

• • •

OP reduce-op

sav SEG.A

S -length

ITM

- 100-

A

(vii) In. addition to (i) through (vi) above, a single QS entry with opcode IA

is heatable, although it does not enter into the recursive definition.

When a selection operation is interpreted by the D-machine, the array-valued

operand is first checked for conformability 0 If the operand is beatable, then it

is beaten, according to the transformations shown in Chapter m, Appendix A. In

this process, if a DA to be transformed has a reference count of 1, indicating that
-

it is a local temporary result, then the DA can be modified directly. If the reference

count is greater than 1, then a copy must be made, and the copy is beaten. If the

result of a beating operation is a scalar value, then the segment is turned over to

the E-machine, which evaluates it and leaves the scalar result on the top of VS.

When the operand of a selection operation is not beatable, there are two

possible strategies to follow: In the case of the TRANS operation, there is no

choice: the operand must be evaluated by the E-machine and a temporary value

stored, which is then beaten as above. Otherwise, the selection operation can

be treated as a special case of subscripting, in which case an appropriate set of

E-machine instructions is dragged-along in Q8. (See Section d. for an explanation

of subscripting.) The choice of strategies is a second-order design deciSion,

and need not be made at this time, since either approach is viable. Example 3

illustrates both beating of selection operators and drag-along of scalar operators.

The DM code shown for the statement is a straightforward translation of the

APL statement into Polish. Note that the vector 2, -2 is a constant and is

"compiled" into the function segment. This approach avoids having to keep array-

valued constants in the memory with other array quantities; to do so would require

having an entry in NT for each such constant, and would complicate the storage

management functions. In Examples 3-1 and 3-2, the state of the "machine before

executing the sample code is shown; the values of the variables M and N are not

- 101-

EXAMPLE 3: DRAG-ALONG AND BEATING IN THE D-MACHINE

Consider the APL expression

At the time this is to be evaluated, pM+-+2. 2 and pN++3 .4 • Assume that R

has no current value. The machine code for this statement is shown as follows,

starting at location 250 in memory.

Addr

250

252

Op

LDNF

LDCON

Operand

N

90

254 TAKE

255

257

259

260

LDNF

REV

ADD

LDJ

M

o

JCODE(2, 1, 1)

262 TRANS

263

265

266

• • •

• • •
290

291

292

293

294

295

296

LDN

ASGN

...
R

RC=1 LEN=4

VB=O AB=94

RANK=1

R(1)=2 D(I)=1

RC=1 LEN=3

2

-2

Comments

Refers to constant 2. -2 with DA at 290

(Recall Q-base in all machine code)

This is the vector 2 .1

Assign (and discard value)

DA header

DA for constant vector 2 • - 2 •
See Section A for description
of format.

Header for value array

I Value

- 102 -

given, as they are irrelevant for this example. LS contains a descriptor for a

D-machine segment of length 100, which is the main segment of the function F.

The effective address is the sum. of the REL field of LS and FBASE, the beginning

of the value part of function F. VS contains a function mark for F which was

placed there when F was called.

In 3-3 and 3-4, the LDNF and LDCON instructions have been executed. Note

that each caused the deferral of an IF A instruction (fetch array element in the E-machine)

in QS. Also, for each deferred instruction, a QS segment descriptor was pushed

to V S. The LDCON instruction allocated space and made a copy of the descriptor

array for the constant which was in the function segment; the new DA is named Tl.

The VBASE for the constant is 200, the same as the FBABE of the function.

The TAKE operation (3-5,6) is evaluated by the DM using beating. The

descriptor array T2 was created for the result, and was derived from the DA for

N by the transformations listed in Chapter lIT, Appendix A. It is easy to see that

this DA is in fact the correct one. Also note that T 1 is no longer needed, and has

been erased. At this point, VS contains a segment descriptor which points to the

QS segment describing the result of the computation to data, which is the evaluation

of the subexpression (2. - 2) tN •

Examples 3-7 through 3-9 show the next LDNF instruction and the evaluation

of the reversal operation by beating. The process in this case is similar to that

for the TAKE. The ADD operation is deferred in 3-10 because both of its operands

were array values. The LINK field of the ADD in QS is 2, referring to the operand

2 elements earlier in QS. The top of VB now contains a descriptor for the entire

subexpression in QS which has been evaluated at this point. The LDJ instruction

(3-11) is executed Similarly to LDNF and LDCON in that it defers a value in QS.

- 103-

The TRANS instruction takes the transpose of the entire expression which

has been dragged along so far. In this case, since its operand is a sum, the

transpose is applied to both terms. Notice that although the deferred code in QS

has not been altered (3-12), the DArs which it references have been (3-13). The

LDN R instruction pushes a value with tag NPT to VS (3-14) as the next instruction

is an AS3N (3-15). This instruction notes that R was undefined (see NT~ in

Example 3-1) and allocates space for its DA and its value array. The space is

allocated based on the lmowledge of the size of the result deferred in QS. In

3 ... 15, we see the deferral of the assignmento The POP instruction in QS disposes

of the value after it has been assigned (in deferring ASGNV, no POPS are used).

In 3-16, the state of memory shows the new DA for R; also note that the address

of the DA for R (@ R) has been entered in NT by the AS3N evaluation.

c. Other Operators (Executed Directly)

The "other operators" include all those APL primitives which cannot be

deferred conveniently, or which are evaluated immedi.ately in the D-machine.

BASE is in this class because it has a scalar result, while REP, GDU, GDD are

included because they require rather complex calculations involVing their entire

operands simultaneously, which are impossible or difficult to do element-by-element.

URHO is easily done by the D-machine, and so is not deferred, as is UIOT A,

which produces a J-vector as result. The catenation operator, with operand K,

is a direction to catenate the top K elements of VS to form a vector. Thi.s is

done immediately (with the result being put in temporary space). The remainder

of the operators in this class are dealt with differently, depending on the values

of their operands.

- 104-

I-'
o
01

I

EXAMPLE 3 - O~AG-AlC"'G AND BEATING

--'EMOU DUMP

AOOR CONTENTS

----+------------------iM K(;""l l.tNa C5
+01 VB-V" A8~OCO
+02 RANK~2
+03 ~111·0'2 Ulll-02
+04 R121-00l OIZI=Ol

ADoR CUNTENTS

----+------------------.N RC,-l t EN.=05>
+0 l Y8=V~ AS=OOO
+02 RANKal
+OJ RIII-003 0111-04
+04 RI21-0040121-01

EXAMPLE 3-1: MEMORY SHORE ~XECUTl"G EXAMPLE coDe

Nr: TAG CO",rE"TS ---+---+-----------------
F ff .F
M oT liM

" ur .. "
R UT a

---REGISTER DUMP
~EW IT - 0 10MG ~REG - OOOO~

~El ORG LEN DIE IS FN ~hT ~P

lS: +-----+-----+----+---+---+---t---+----t
I 05~ I 000 I lCO I I) I a I 1 I a I 00 I

--) I

EFFECT IVE ADD~ • 0250 IN M

F8A Sk - C0200

TAG VALUE OP VALUE II NK .lUX
~S:+-----t------------------+ QS:+-----t------------------+----+-_____ •

I FMT I *FN MUK FO~ f* I --> I
-->1

~XAIIPlE 3-2: ~EGISTERS BEfORE ~XE'UTING EXAMPLE CODE

~EGISTER DUMP
hElotT = 0 IORG FREG - 00000 FDA SE • 00200

REl ORG lEN O/~ IS ~N N~T ~P

lS: .. -----.. -----.. - ... ---+---+---+--- .. ---+---- ..
0;4 I coo I I ... C I ,) I 0 I 1 I 0 I ~O I

--)

EFFECTiVE AODR - 0254 I~ II

TAG VALUk UP VALUE LINK .lUX
\l'S: +-----+---------------- -+ ,",5: +-- --- .. -----------------+----+---___ •

I FMT I *FN "ARK FOR F* I 00 I If A I .oN I I 0011 I AA
I SCT I Sc.oOEISEG.A.1I I 01 I IFA I .. n I I 0001 t Bd
I SCT I SCOOEI SEG.8.11 I --) I

-->1

lDNF PU,HEO QSIOII AND VSI1:I
LDCON PUSHED USII:I AND VSIZ:I

EXAMPLE 3-3; AFTE~ loNF AND LOCON

EXAMPLE 3 - DRAG-AlONG AND HEATING

--
~E~O~Y OUMP

ADD~ CON rENTS

----.------------------.oM RC-l LEN-O~
+01 VH'" VM ABsOOO
+02 " R.ANK:.:2
+03 Rill-C02 0111=02
+04 Rlll-0020121=01

AD OR teNTENTS

----+------------------iN Re- Z lfN-05
+01 V8-VN .la-DOD
+02 KANK*l
+03 RIII-003 0111-04
+04 ~I 21-004 0121-01

ADOR tONTENTS ----+---------------
.Tl ~C-l lEN-04

+01 VB-ZOO AS-094
+02 RANK-I
+03 RIII-0020111-01

DA FOR N NOw liAS MHCO OF 2. Tl IS A CUPY Uf THE Dol fUR Tlif VECTOR 2.-2

~XA~PU 3-4; M~MORV AfTE~ lOCGN

REG I S r E" DUMP
~E_1T • 0 lORG ~ 1 FREG • vOOOO f8ASE • 00200

lS:

-->

MEL ORC LkN DIE IS fN NWT ~P

+----+-----+ ----- t---+---+---.---+----+
I 0510 I 000 I 1<'0 I u I a I I I 0 I 00 I
I

EFFECTIVE AUOR - 02;4 I~ II

TAG VALU~ UP VAlUE LINK .lUX
V S: +-----+-----------------. QS: +---+-----------------+---+------+

I FMT I *FN MARK FUR f* I 00 I If A I ilTZ I I 0011 , All
I SCT I SCOOEISEG.A.lI I --) I

--)1

rliE TAK~ HAS ALTERED THE Dol FOR h, 'REAriNG A NEW COPY.

EXAMPLE 3-5' REGISTERS AfTER TAKE OPERATUR

MEMORV DUMP

AUOR CONTENTS

----+------------------.M RC=1 l~N-05
+01 VS-VI! AB-OOO
+02 RANK=2
+03 RIII-002 Ul11-02
+04 R121-002 0121=01

AOOR CONTENT S

----+------------------tiN Rt-l l£N=05
+01 ve'VN AB=O?O
+02 RANK-Z
+03 RIII-0030111-04
.04 R121-004 0121-01

AOUR CONrENTS

----+------------------iT2 RC-l lEN-05
+01 vs-v~ u-ooz
'OZ UNIt-Z
+03 RIII-002 DIII-O~
>04 Rlll-002 0121-01

rHE NEI< UA AT _12 'OMAII<S THE STORAGE ACCE>S FUNCTION fOIl THE
TAKE OPERATIUN ON N. WHltH WAS PRODUCED BY BEATING. NOTE IN 'ARTltULA.
THAT THE VBA5E Of T2 IS VN. WHICH POINTS TU rHE VAlUk ARRAY Of N. AIIIO
THAT THE DIMENSION OF T2 IS 2.2 • AS SPECifiED 8Y Tlif TAKE OPERATOR.
THE ABASE HAS tHA~~ED FROM 0 TO Z. TO ACCOUhT fUR THE -2 ELEMENT IN THE
PARAMETER II.E. TAKE FRCM THE ~NOI. FINAlLY. PiOTE rHAT THE VAlUE Uf ot&.
IN T2 IS THE SAM~ AS THAT FOR N.

EXAMPLE)-6' MEMORY AfTER TAKE OPERATOR

.....
o
0)

EXAMPLE 3 - DRAG-ALO~ti AND SEAT ING

REGISTER I)UMP
NEwlT * a 10RG • I fREti • ooccc F8ASE * 0020 0

REL O~G LEN DIE IS FN NwT QP
LS: .. -----+----- +- - - -- + - - - +- -- .. - -- .. -- - .. - - -- ..

056 I 000 I 100 I 0 I a I 1 I 0 I co I
--)

EfHCTIVE ADDR • 0256 IN"

fA. VALUE OP VALUE LINK AUX

~S:.-----+------------------. ~S:+-----+------------------+----+------+
I fMT I Of" "ARK fOR fO I 00 I IfA I ,",2 I I OCII I AA
I SGI I SCODEISEG.A,LI I 01 I If A I .;" I I 0011 I BH
I SGT I SCaDEI SE G.6.11 I --) I

--)1

EU.PLE 3-1: AfTER LOM M

REG I S ftR DUMP
~EwIT - a IDRG fHEG OOCOO

REL ORG LEN DIE IS F~ T QP
L 50: +--- --+-----+----- +---+ ----+ ---+---+----+

1 058 I 000 I 100 I 0 I a I I I a I 00 I
--) I

EFFECT IVE AODR 0258 I~ M

FBASE Dale 0

TAG VALUE OP VALUE LINK AUX
\I S: +------+-------- ----------+ QS: .. -----+------------------+ --- -+- -- ---+

I fMT I .f~ MARK FOo< F* I
I S6T I SCOOEC SE';.A.ll I

OOllfAl.T2 IIOOIIIAA
01 I I fA j .. T3 I I 0011 I btl

I 5G! I seCOEI5EG.B.ll I --) I
-->1

EXAMPLE 3-8: AFTER RfV

EXAMPLE 3 - DRAG-ALONG AND bEATING

M£MDRV DUMP

AOOR CONTH'TS ADOR CGNTENT&
----+------------------
ill'" Rt:-l LENir-OS lIN RC= 1 UN=05

+01 V8=-¥M AH:OO~ +01 VB=VN AS-OOO
+Q2 RANKa:2 +C'2 RA~K-2
+03 RIlI=a02011l-02 +03 RI11=OD3DI11-04
+04 RI21=0020121=01 .04 R121-004 0121-01

Aoua (CNTENTS

iiT2 RC=1 LEN-OS
+01 VS-VN Aa-002
+02 ttAHKa2
>03 Rlll-002 Dill-D.
+04 R121=002 0121-01

.T3
-01
+02
+03
.O~

RC-I LEN-OS
VB-V" AS*002

RANK-2
RIII=002 0111--2
R121=OC2 0121*01

NOTICE THE ... EW OA •• 0 • WHICH CUNIAINS TH~ACCESS fUNClION fOR THE
REVERSAL ON M. THE PART~ i/HI(H HAH CHANGED FR(JM THE DA AT iill ARE
ABASE. wHICH IS NU~ 2. M'lD DELlIl. wHICH IS -2 INloHAU Cf 2. THESE
CHANGES ACCOUNT FOR THE REVERSAL Of M. ANALuGOUSLY TU THE WAY THE DA
AT .T1 ACCOUNIS ~OR THE TAKE OPE~ATIUN ON N.

<XAMPLE 3-9: AfTEH REV

MEG I SHR DU,~P
~E~IT ~ 0 IORG = I HEG - ooco~

RfL URG LEN DIE I; fN NoT ·JP
lS: +-----+-----+-----+---+---+---+---+----+

I 05" I 000 I ICC I C I 0 I I I a I OC I
--) I

EfftCTlVf ADOP 0259 I~ M

f~ASE • 00200

TA. VALUE OP VALUE LINK AUX
V&: +-----+------------------+ QS.: +-----+ .. ------------ -- ---+----+------+

I fMl I 'f~ MA.K fOk~' I 00 I I f A I ",p I I 0011 I c_
I SGl I SCUOEISEG.C.II I Ol I (fA I .0 I I 0011 I

-->1 02 I UP I ADD I 02 I 0011 I _C
--> I

cUIlPLE 3-10: AHER AOU

....
~

HA"PLE 3 - DIUG-AlOIIG ANe BEATING

REGISTER DUMP
~E~IT - 0 IOIIG - I fREG - OOCOO

REL ORG LEN DIE IS fN NhT ~P

LS: +-----+-----+-----+---+---+---+---+----+
001 I 000 I ICC 1 0 I a I I I 0 I 00 I

--)

EFfECTIVE ADDR - 0261 IN"

fUSE - 00200

JAG VALUE OP VAlUE LINK AUX
"sa +-----t----------------t Qs:.-----.------------------.----·------·

I fliT I *FN IIARK FOR F* 1
I SGT I StODEI SEG.' ,II I
1 SGl t SCUDE I SEG.O,lI I

-)1

EXAIIPLE 3-1" AFTER LDJ

REGISTER OUIIP

00 1 IFA I iOTZ I I 0011 I C_
Ol 1 I FA I <IT] I 1 0011 1
oz 1 OP I ADO 1 02 1 DOlI 1 _C
0) I IJ I JCOOUZ,ltl1 I I 0001 1 IlD

--) 1

~E~IT - 0 IORG - L nEG. 00000 FBASE - 00100

ItEL ORG LEN DIE IS FN ~T wP
LS: +-----+-----+-----+---+---+---+---+----+

I 06Z I 000 I lac I 0 I 0 I I I 0 I 00 I
--) I

EFFECTI VE ADOII - OUZ IN M

TAG ValUE 0' VALUE 1INt1. AUX
vs:+----+----------------+ QS:+-----+------------------+----+------+

I FliT I *FN MARK FOR F* I
I SGl I SCODEISEG.,.II 1

-->1

00 1 IFA I ilT2 I I 0011 I L
01 I IFA I ill I I 0011 1
OZ I OP I ADD I 02 I 0011 I _~

--) I

txAMI'LE 3-12' REGISTERS AFlU TRANS

EXAMPLE 3 - DRAG-ALeNG AND bEATING

~UORY DUMP

ADOR CUNlENlS
----+------------------
iM RCal LEN-05

+01 YBaV,. .8-000
+Ol AANK-Z
+03 RIII-002 0111-02
+04 R121-00l Oill-DI

AOOR CDNfENTS
-~--.-----------------
iN RC-I UN-OS

+01 Y8aVN 48-000
+OZ RANK-Z
003 Rill-DOl 0111-0.
+04 RI21-004DI21-01

AODR tCNI ENTS
----+------------------
.TZ RC-I LEN-OS

+01 V8-VN A!P002
+OZ IlANKaZ
t03 IUlI-OOZ 0111-01
t04 Rln-002 01 ZI-04

iT3 RC-I LEN-05
+01 VB*V~ .la-aDZ
+02 RANK-Z
+03 RIII-002 0111.01
+04 Rlll-002 UI21--2

THE EFfeCT OF rHE TRANSPUSE ~AS TO AllER THto DA'S Al iT2 AND in.
lHE CHANGE IN 80TH CASES ~AS TO INTEKCHANGE RI II "ITH RI21, AOII.I
0111 .ITH U121. IT SHOULl) BE INTUITIVELY CLEAR lHAl THESE OA'S WILL
NOW ACCESS IHE TRANSPOSES OF THEIR PREVIOUS VALUES.

EXAMPLE 3-13. MENORY AFTtR TRANS INOTE ALTtRED OA'SI

REGISTER DUMP
hEWll • 0 IORG • 1 FAEG - 00000

MEL ORG LEN U/E IS FN NhT QP
LSJ +-----+-----+-----+---+---+---+---+----+

1 CD~ I 000 I loe I 0 I e I I I 0 I 00 I
--) I

EFFtCTlVE AIIDR • 02f,~ IN "

FUSE - 00200

TAG VALUE OP VALUE LINK AUX
vs:+-----+------------------+ ijSz.-----+------------------+----+------+

1 FNI I *FN NARK FOR FO I 00 1 IFA I iT2 I I 0011 I c_
1 SGr 1 SCOOE C SEG., ,II I Ol I IFA I <lTl I I DOll I
1 NP' I R I 02 1 UP I ADD 1 02 I 0011 1 _C

--> I --) I

EXAMPLE 3-1.' AfHR lON K

....
~

EXAMPLE 3 - DRAG-ALONG AND Bur ING

RFG I STER OUMP
~EWIT : a IORG fREG = 00000 fBASE 00200

RH ORG lEN DIE IS fN Nwr QP
LS: +-----+-----+-----+---+---+---+---+----+

I 065 I 000 I 1(,0 t u I 0 I 1 I 0 I 00 I
--> I

EFFECTIVE ADDR 0265 IN ~

TAG VALUE OP ~ALUE LINK AUX
~S:+-----+------------------+ QS:+-----+------------------+----+------+

I FMT I *fN MARK FOR F* I
I SGT I SCOOE(SEG.E.11 I

-->1

00 I I f A I IIIr 2 I I 0011 I E_
01 I IFA I .T3 I I 0011 I
02 I OP I ADO J 02 I 0011 I
03 I IFA I .. R I I 0011 I
04 I OP I ASGN I 02 I 0011 1
05 I POP I 0 I I 0011 I _~

--> I

EXAMPLE 3-15: REGISTERS AFTER ASGN

MEMORY DUMP

ADDR CONTENTS

----+------------------
iilM RC=~ LEN=05

+01 Vij=VM AB=OOO
+02 RANK=Z
+03 R(ll=OOZ 0111=02
+04 R121=002 OIZI=Ol

iN
+01
+02
+03
+04

RC=l LEN=C5
V8=VN AB=OOO

RANK=2
R(11=003 0111=04
R(ZI=004 OIZI=Ol

ik RC=l LEN~05
+01 V8=VR A8=000
+02 RANK=2
+03 RIll=002011'-OZ
+04 RIZI=002 0121=01

AOOR CONTENTS
----+------------------
.T2 RC=l LEN-05

+01 VS=VN AS=002
+02 RANK=2
+03 R(1'=002 Ul1'=01
+04 R121-002 D121~04

.13
+01
+OZ
+03
+04

RC=l LENs 05
VS=VM Aij=002

RANK=Z
R11I=00Z O(11=01
R121.002 0(ZI=-2

EXAMPLE 3-16: MEMORY AFTER ASGN

NT: TAG CONTENTS

---+---+-----------------
F FI oiIf
M or iolM
III OT iN
R OT .R

RA V and DRHO are difficult to defer in general because of the complex
..

calculations necessary to access an arbitrary element of the result. However,

there are special cases which are easy to defer, as follows:

(i) The right operand is a scalar or single-element quantity. The RAV

of such a value is a J-vector if it is an integer, or at worst is an

explicit one-element vector 0 Similarly, the DRHO of such a value

is deferred in QS as follows:

S value o o

IRD Tl o R
-

where @Tl is a DA for the result and R is the encoding of the ranko

The IRD instruction is essentially a note to the D-machine that the

result has dimension described in TI.

(ii) The right operand B is an expreSSion deferred in the form of (i) above.

In this case, all that has to be done is change the descriptor array

@TI.

(iii) The right operand is of the form

IFA @W o R

and @ W points to a DA which has not been altered by any select

operations which upset the ordering of the value part. That is, if

W is the array specified by @W and D is the vector containing the

value part, then W[;/L]+-+D[(pC)J.L] for all appropriate values ofL.

In this case, RA V is evaluated by providing a new DA with rank I and

dimension j(/pW. DRHO can be deferred if x /pA , where A is the

left operand of the DRHO, is less than or equal to x fpC also by

providing a new DA with dimension A.
-

If none of the above apply, then RAV and DRHO are evaluated immediately by

creating temporary values in M.

- 109-

de Other Operators and Compound Operators (Deferrable)

The D-machine evaluates this subclass of operator instructions by deferring

E-machine code in QS. The expansions are detailed in Appendix C and should be

easy to understand with a knowledge of the way the E-machine works. We will

here discuss only the SUBS instruction and the compound operators, as their

behavior is somewhat more complex.

The SUBS K operation corresponds to the symbol [in an APL program.

When decoded, it expects the top of VS to contain a QS segment descriptor for a

rank-K quantity and the next K entries on VS to be either scalars or QS segment

descriptors for the subscript expressions. An empty subscript position is created

by the LDSEG instruction with its operand a segment descriptor SCODE(O, 0, 0) of

length O.

There are two important cases to consider:

(i) If the subscriptee is beatable, then the subscript expressions are

examined in turn, starting from the rightmost (deepest in VS) to

find scalars or J-vectors. If found for, say, the Ith coordinate,

the equivalent of INX I with that operand is performed on the sub

scriptee by beating, causing new DA r s to be created for it. The VS

entry for this subscript is then deleted if it was a scalar. If it was

a J-vector, then the VS entry is changed to the empty segment and

the QS entry is deleted by moving all of QS down 1 to fill in the space

(with appropriate adjustments to descriptors). If, after all subscripts

have been examined it is found that the remaining stacked subscripts

are either empty or non-existent, then the result already exists, in

standard form, in QS. In this case, the remaining empty segment

descriptors are removed from VS and the result is the QS descriptor

- 110-

at the top of VS. Otherwise, the remaining subscripts are treated

as in the second case, described in the next paragraph.

(ii) If there are explicit non-scalar or non-J-vector subscript expreSSions

and/or the subscriptee is not beatable, then the subscripts must be

dragged along in QS. This is done by creating temporary index ac

cumulators (opcode XT) in QS and generating E-machine code to

activate the necessary subscript evaluations at the right times. If

the subscriptee is a reduction, QS is transformed according to the

transformation (OP/A) [pJ ---+ OP/A~ il and evaluation continues

as above. The details of the subscript expansion are shown in

Appendix C. Example 4 illustrates the process which has just been

described.

In evaluating a GDF, the machine first examines the operands. If they contain

deferred operators, then they are evaluated to temporary space first. This is

done to avoid unnecessary recalculation of subexpressions necessary to compute

a GDF. It also guarantees the possibility of applying SF transforms to GDF ex

preSSions by beating. Then all that is necessary is to alter the access masks in

the AUX fields of the deferred left operand in QS to provide the proper access

method for the E-machine. This is illustrated in Example 5 below. If the GDF

reduces to a simple case, e. g., if one of the operands is a scalar, then the ex

preSSion is treated as a normal scalar operator expreSSion (see part a above).

Efficient evaluation of reductions along coordinate K of the reducee R (in the

E-machine) depend on transformation TR11 (see Chapter II) which allows permu

tation of the reduction coordinate by transposing the reducee. In evaluating a

REDUCE along coordinate K the reducee is first checked to see .if it fits into one

- 111-

of the special cases of reduction:

(i) Empty reduction coordinate. The result is then an array with value

((K7!lppR)/pR)pIDENT where R is the reducee andIDENT is the

identity element for the reduction operator.

(ii) Reduction coordinate of length 1. The result is thenR[[KJ IORC]

If reducee is a scalar, the result is R.

(iii) Reducee is a vector. In this case, the reduction is activated im-

mediately in the E-machine, since the result is a scalar.

If none of the special cases is satisfied, the reduction is deferred by first doing

the transpose of TRll if necessary, and generating the deferred code in QS as

shown in Appendix C.

EXAMPLE 4: SUBSCRIPTING IN D-MACHINE

Consider the APL expression A[14 ; ; 2; VJ where A is a rank-4 array with

pA++5.4.6.3 and V++3,2,1.2 , with the index origin IORC ++ 1. The D-machine

for evaluating this expression is

250 LDNF V Vector V

252 LDS 2 Scalar 2

254 LDSEG SCODE(O, 0, 0) Empty subscript

256 LDS 4 Scalar 4

258 UIOTA Gives (.4

259 LDNF A Array A

261 SUBS 4 Do the subscript, expected operand rank is 4

263

The folloWing memory and register dumps show the steps the D-machine goes through

to evaluate this expression.

- 112 -

....
CC

I

EUIIPLE " - SUBSCRIPJlKG IN D-IIAeHINE ---
IIf~ORY DUIIP

ADDR COKTENTS
----+------------------
iA RC-l LEN-01

+01 V6=YI A8=oro
+02 RANK-".
+OJ RIll-ODS 0111-72
+0" RI21-00" 0121-18
+05 RUI-OOI> 013 1-03
+06 RI41-00] Olltl-Ol

AoDR CONTENTS
----+------------------
iV RC.a 1 LE,..·Olt

+0 I V8-VV A8-0oo
+02 RANK-.
+'3 RIll-DOlt 0111-01

EXAMPLE "-1' IIEMURY BEFORE ElECUT ING EXAIIPLE CUDE

REGI STER ~UMP

NT. TAG CUKJEK'S
---+---+-----------------
A oT OJA
V liT ~Y

~EWIT - 0 10RG = I FMEG • oocoo F~ASE OOloe

RH URG LEN DIE IS fN NWT \olP
LS: +-----+-----+-----+---+---+---+---+----+

1 0&1 1 COO 1 10C I 0 1 0 I I I C I 00 I
--> 1

EFFt:CTlVE AUoR • 0201 I~"

T A~ VALUE OP VALUE LINK AUX
~S: +-----t------------------+ Qs:+-----+------------------+----+------+

1 I 1 00 I If A I ii.. 1 I 0001 1 AI.
I SGT 1 seaDEISEG.A,1I I 01 I IJ 1 JtuDEI4,1,Ol 1 1 0001 I 66
1 ST 1 1 I 02 I IFA I d 1 I Illi I "
I SGT 1 SCODEISEG.NIL,OI I --> 1
1 SGT 1 SCUDEISEG.B,lI 1
1 SGT 1 SCOoEISEG.C,l1 I

-->1

VS CONTE"TS ARE THE SUBSCRIPTS ANU SUBSCRIPTEE. "UTt 'HE ACCESS IIASKS
IN THE AUX FIELD OF 115. THEY INDICATE THAI V A~O THt J-VECTOk AM.
VECTURS, AND A IS A RANK-4 ARRAV.

EXAMPLE "-2' AfTER ALL BuT THE SUBS UPERATilR

EXAMPLE" - SU8SCRIPJlNG IN C-IIACHINE

REGISTER DUIIP
~EWIT - 0 10RG - 1 FREG - OO~OO FUSE - 00200

REL ORG LEK DIE 15 FN N~T QP
LS' t-----+-----+----+---+---t---+---+----+

01>3 1 ODD 1 IDe I 0 1 () I I 1 II 1 O~ 1
-->

EFFEeJlVE AD DR - 0263 IN II

TAG YALUE OP YALUE LINK AUX
~s:+-----.------------------. QS~.-----+------------------+---_+------.

1 1 I 00 1 JMP I 0 I 06 I 1 D_
I SGT 1 SCOUEI SEG.D,lI 1 01 I IFA 1 iY 1 I 0001 I EI

-->1 CZ 1 IFA 1 .Tl 1 1 Dill 1 ff
03 1 Xl 1 XCOUEIO,3,l1 1 03 I
.lit 1 Xl I XCODEIO,3,II I 1
05 I Xl 1 XCOOEIO,2,II I I
06 I IXL I 0 I I 0100
01 1 XS 1 0 1 04 1
081IKLI0 I 1 DOlO
09 I XS 1 0 I 05 1
10 liSt 1 SCUDEIHG.E,II 1 I 0001
11 1 X~ 1 0 , 06 1
Il I SG I SCillltlSEG.hll I 09 1
13 1 IRo 1 .T2 I 1 Olll I _0

--> 1

YS AND QS HAVE BEEN IRA~SFURIIED BY THE SU8S UPERATIUN. THE SCALAR
SUBSCRIPT REDUCED THE RAK .. OF A ~y I, AND THE INrERVAL YECTUR
SHORTENED THE FIRST COORDIKATE ISEE UA AT _Til. THE REST OF THE
ceDE GENERATED IN QS IS FOR CALCULATING EXPLICIT SUdSCRIPT VALUES,
WHICH ARE KEPT IN THE XI eKTKIES. THESE ENTRIES CD~STITUTE •
PStUD()-ITERATlON SUCK. ISEE SECTION EI

EXA,~PLE 4-]' REGISTERS AFTER SUBS

MEMORY DUMP

ADDR CONT""S
----+------------------
.A RC-I LEN-01

+0 I nov lAB-DC 0
>02 RANK."
+03 Rl11=005 0111·72
+04 R121-004 0121-18
+05 RIll=OO/> 0131-01
>00 R141-00l 0141-01

AoOR CONTEroTS
----+------------------
~v RC-2 LEN-04

+OJ vS-V V u-oaa
+02 RANK-I
+0] Mil 1-004 0111-01

.. , I ll.'-I LEN~06
+01 va-VA AO-003
+02 IlAI'l .. -l
+03 RIll-DOlt 0111-12
.o~ RI,U-(lO~ Oezt-18
+C5 R131-003 U111-01

EXAMPLE It-It. IIEMURY AFIEM ~\j8S

ADDR tehTENTS
----+------------------
_T2 Re-l LEN-Ob

+0 I va- AI-OOO
+02 RAN"-!
00) RIll-DOlt Dill-I'
+04 R121-004 01ll-04
+O~ R U 1-004 01 "-01

EXAMPLE 5: GDF IN D-MACHINE

In the example expression, Mo. xN, both M and N are matrices with pM+--+4 .3

and N+-+p 3.2. D-machine code for this expression is

250

252

254

256

LDNF

LDNF

GDF

N

M

MUL DoGDF

Examples 5-1,2 show the machine state before evaluating this code. In 5-3, the

GDF operation has been deferred in QS. Notice that the access mask of M

in the AUX field of QS has been changed. The IRD entry, whose operand DA gives

the dimension of the result, contains 1111 in its AUX field, which instructs the

EMto use a 4-level iteration stack to evaluate the expression. The 1100 AUX for

M says that M-indices come from the two highest iterations, while the 0011 AUX

for N indicates that N is to use the two lowest.

An equivalent formulation of the contents of QS at this point is that it represents

the GDF in the form:

for I := 0 step 1 until 3 do

for J := 0 step 1 until 2 do

for K := 0 step 1 until 2 do

for L := 0 step 1 until 1 do

RESULT [I;J;K;L] := M[I;J] XN[K;L];

- 114-

.....
C11

----!~~~~!-~-:-~~-!~-~~~~~!---
IlEGISnll DUNP
NE~IT • 0 10llG - I FREG - 00000

REL ORG LEN DIE IS Fill N~f g,
lSI .-----+-----+----+---+--+--.---+----+

1 05~ I 000 1 ICC 1 0 I 0 I I I 0 1 00 1
--) I

EFFEtTlvt AODR - Ol5~ I .. N

FeASE - 00200

UG VALUE OP VALUE UNK "UK
VSI +---+------------------+ W$·+-----+------------------+----+------+

I 1 I 00 1 If A 1 jl'l I I 0011 1 loA
01 I If A I ill 1 I 0011 1 I. 1 sea I StODEIS£G ••• lI I

I SGT I StOOEISEG ••• II 1 --) 1
--)1

EUNPLE 5-1' IIEGISJ£RS BEFORE GOF

--
MEMOlIY /IUIIP

10011 CONTENTS ----.----------------
a.. RC-I LEN-OS

+01 Va-VII AI-ODD
+02 11_-2
+0) 11111-004 0111-03
+O~ 1I1l1-OOl 0121-01

IOOR tOMTENTS
----.------------------
iN lit-I LEN-05

+01 VI-VN AI-OOO
+02 ."N"-2
+03 MIlI-003DllI-02
+0' IIlll-D02 0121-01

UAIIPLE 5-2' MEIIORV IEFOIIE GOf

EXA~E ~ - GDF IN o-NAtHINE

IIEGISTEII DUMP
IIIE~n - Q lUll" • 1 FIIEG - 00000 F.ASf - 00200

MEL ORG LEN DIE IS fN NIIT lIP
LSI +-----+-----+-----+---+---+---+---+----+

1 05. 1 000 I 100 I 0 I 0 1 I 1 0 I 00 I
--) 1

EFFECTIVE AIlOM - 0256 IN N

TAG VALUE OP VALUE LINK AUX
YS,+-----+------------------+ '1151+----+--------------+---+-----+

I I I 00 1 IF" I iN I 1 0011 1 t_
I SGJ 1 SCODEISEG.C.lI I 01 I I FA 1 ill I I 1100 I

-->1 021GOPIMUL 1111111
03 1 IRD I <iTl I 1 1111 1 _t

--) 1

EX"NPLE 5-3' "FTER GDf - HUTE tHANG£O AUK FIELDS IN QS

MEMDAY DUM'

ADDR CONTENTS
---+-----------------
iN Rt-Z LEN-05

+01 Va-VM AI-OOO
.02 UNit-I
.OJ RIII.OO~ Dill-OJ
+O~ 11121-001 Olll-Ol

10011 tUNTEfilU
---+---------------
iN IIt-2 LEN-D5

+0 1 Va-VN A.-ODD
+OZ UNK-Z
+03 Rill-DOl 0111-02
+O~ 11121-002 0121-01

ADDR tONUNfS
----+-------------
.fl lit-I LEN-OT

+01 va- AIl-OOO
+02 II.ANII-~
+0) RIII-OD~ 0111-"
+0' RI2'-003 0121-06
+O~ Rlll-003 0111-02
+06 RI~I-002 01~1-01

<iTl WAS tllUIEO SIM .. LY fa REtOIlO TME R_ ANO 1I1M£IiSIDII VEt'OIl OF
TME RE$ULT Of DOING THE DUTEII PRODUCT. fHE ~OII£ IRD liN 115tJIII
SIGNIFIES fHIT ITS OPERAND DA IS D£Stlll .. TIVE. AND IS NOf TO IE
EXECUTED. IN THE i-MltHINE. 1110 IS IGNOIIED.

UA U 5-~' IIEIIOII' AFTER GDF

E. The E-Machine

The E-machine is a simple stack-oriented computer which evaluates array

valued expressions by iterating element-by-element over their index sets. The

EM takes its instructions from the instruction buffer (QS), where they were put

by the D-machine. Other machine registers are used in the same way as in the DM.

The central task of the EM is to access individual array elements in computing

array-valued expressions. As most of the complexity of the E-machine is related

to this task, we first discuss the accessing mechanisms in the EM. Given this,

it is a simple matter to explain the instruction set of the machine.

10 Array Accessing

a. Indexing Environment

Array reference instructions are entered in QS in the form

IFA @VAR o MASK

where @VAR is the address of a DA in M, and MASK is a logical access mask.

When such an instruction is first entered in QS by the D-machine, it is done without

regard to its context in the input expression. The E-machine must, in order to

evaluate it, determine its context, which takes the form of an indexing environment

for an array reference. The indexing environment of an instruction in QS is

determined by how the segment containing the instruction was activated, which in

turn relates to the form of the original expression input to the D-machine.

(i) If the QP field of the top of LS is zero, then the environment is simple,

and array references within this segment are based directly on the

iteration stack. A simple environment arises in variables not affected by

explicit subscripting or which are not operands in expressions which cause

expansions to be made by the DM. For example, in the statement A+B+C.

all variables have simple environment.

- 116-

(ii) If the QP field of LS is non-zero, then the environment is complex, and

array references in this segment are controlled by a pseudo-iteration

stack. In the statement A+B+C[V;W] , A and B will have simple environ

ments, but C will be complex as the reference to C is embedded in a

segment resulting from the expansion of the subscript operator. Note

that this concept is recursive. For example, we can also say that the

environment of the subexpression C[V;W] is Simple. This recursiveness

allows arbitrary levels of subscript nesting to be handled by the drag

along scheme of the D-machine.

The segment containing the IFA @C instruction is activated in the

EM by an sa instruction referring to a sequence of entries in QS of the

form:

XT XCODE(a, m1, c1)

XT XCODE(b, m2, c2) 0

Here, a and b are indices for C calculated from the subscripts V and W

by the expanded subscript code in QS. These quantities are, in turn,

computed from the current values in IS. m1 and m2 are the maximum

permissible values of a and b derived from pC, and c1 and c2 are change

flags. Thus, these XT entries correspond to the CNT, MAX, and CH

fields of the iteration stack, and are therefore called a pseudo-iteration

stack (pseudo-IS).

b. Ini.tialization of Access Instructions

Each array accessing instruction must be bound to its indexing environment

when first executed. This process is described below for IFA instructions and

is analogous for IA and IJ.

- 117 -

(i) Determine index sources

The encoded access mask in the AUX field of an instruction is used

to determine its indexing environment. For example, if the environment

is simple and the bit pattern in AUX is 0101 and the IS is four deep, then

the index sources are determined by (0,1,0,1)/0,1,2,3 which is the vector

1,3. Call this vector INX. Had the QP field of LS indicated a complex

indexing environment, then INX would have been based on. the length of the

pseudo-IS rather than on the length of IS.

(ii) Set up iteration control block

An iteration control block (ICB) is established at the top of QS,

containing the coefficients of the storage mapping function from the DA

for the array (DEL) and the INX vector, calculated above. An ICB contains

one word for each coordinate of the array being accessed, as shown below.

The fields marked Q1 and Q2 are both encoded into the VALUE field of

QS using the function QCODE (see Appendix A). The contents of the }th

ICB entry are:

field

OP

LINK

AUX

Q2

Ql

contents

if simple environment then NT else QT

INX[IJ

o

DEL [IJ

if simple environment then DEL [I] x (MAX field of IS

entry selected by LINK field) else 0

In addition, the last entry in an ICB is given opcode NLT or QLT, depending

on its environment.

- 118-

(iii) Initialize QS entry

The Q1 fields of the ICB just established are added to the ABASE

found in the array's descriptor array to produce the sum S. VBASE is

also fetched from the DA, and the DA is "erased" from QS by subtracting

1 from its reference count. The original IF A entry is then replaced by

FA QCODE(VBASE, S) IPTR 0

where IPTR is a pointer to the beginning of the ICB for this array.

This completes the initialization of array references. In effect, what has

been done is to replace the context-independent reference created by the D-machine,

by information which binds the reference to its indexing environment, and which

contains all information necessary to access the array (in the 1CB).

c. The Index Unit

The index unit (IU) is invoked by the E-machine every time it executes an

array-access instruction that has been initialized as above (i. e., FA, A, J)o

USing the information in the instruction, its ICB,and IS or a pseudo-IS, the IU

accesses the appropriate array element and pushes it to VS. The IU functions

differently, depending on the indexing environment:

(i) Simple environment

In this case, we know ~ priori that the elements of the array will

be accessed in a simple order, determined by the way IS is cycled, and this

information can be used to minimize the re-computation of the storage

mapping function for each element of the array. The IU looks at the

iteration stack entries for this array (specified in the ICB), starting at

the right-most coordinate. If the IS entry has changed (noted by CH bit)

but not recycled, then the IS adds the DEL component from the ICB to S;

if there was a change and a recycle, the Q1 field is subtracted from S.

- 119 -

The new S value is stored back in the instruction. This process continues

until an IS entry with no changes is found, in which case none of the

higher IS entries contain changes either. If the iteration is going backwards,

as in a reduce, then addition and subtraction are interchangedo

(ii) Complex environment

In the complex case, there is no way of predicting in advance how the

indices will proceed and each change requires an explicit evaluation of

part of the mapping function. This is done Similarly to the simple case,

by examining the pseudo-IS for each coordinate of the array. If a change

is recorded (in the X3 part of the XT entry) then the new index (Xl part) is

multiplied by DEL. This result is added to S and the Q1 field of the ICB is

subtracted from S with the new S stored back in QS. Finally, the product

just found is stored in the Q1 part of the IC B. This field thus records

partial values of the mapping polynomial.

The behavior of the machine in array accessing, as described above, is

illustrated in Example 6.

20 Instruction Set

Instructions in the E-machine can be considered in three groups:

a. Simple instructions

b. Control instructions

c. Micro-instructions, used primarily for maintaining pseudo-iteration stackso

In addition, as seen in the previous section, the instructions buffer contains entries

for pseudO-iteration stacks (opcode XT) and iteration control blocks (NT, QT, NLT, QLT).

Table 3 summarizes the E-machine repertoire, and Appendix B contains a detailed

algorithmic description of the E-machine's behavior. The remainder of this section

discusses these instructions in both functional and "programming" terms.

- 120-

a. Simple instructions

The S instruction, Load Scalar, pushes its value to VS with tag ST. IFA

fetches an array element according to its operand DA and the indexing environment,

and pushes it to VS with tag sr; similarly, IJ pushes an element of a J-vector to

VS, while IA pushes an address of an array element (tag AT). These instructions

can be considered simply at the programming level, as just described, although

the mechanism which they invoke is much more complex, as was seen in the previous

section.

The instructions OP and GOP have as operands the names of arithmetic

functions in the EM (monadic or dyadic). Executing an OP or GOP invokes the

named function, which operates on the top of VS, deleting the operands and pushing

the result, with tag sr. (This process is illustrated in Example 10) NIL is a

No-op, and does nothing. Recall from Section D and Appendix C that IRD and IRP

are generated by the D-machine to keep track of intermediate results in doing

drag-along. As they have no use in the E-machine, they are changed to NIL when

first executed.

b. Control instructions

The main control instructions are OOV and SG, whose operands are QS

segment descriptors. SGV pushes this descriptor to VS (with tag &iT) and is thus

analogous to LDSEG in the DM. 3} activates the named segment by pushing an

entry to LS; in this instruction, the LINK field is significant, in that it can change

the indexing environment. JMP, JO, J1, JNO, and JN1 are simply relative jumps

within QS; RED is also a relative jump, but in addition, it pushes to V S an entry

with tag RT, to be used as an accumulator for a reduction. (RED is generated by

the DM only in conjunction with reductions.)

- 121 -

MIT is used primarily to activate reduction segments. It takes BT entries

from the top of VB and uses them to push new iterations to lB. When the MIT

execution reaches an SGT entry on the top of VB, the referenced segment is activated

by pushing the descriptor information to LB. (See Appendix C for a description

of how reduction segments are deferred in QB.)

c. Micro-instructions

The set of micro-instructions are used by the E-machine to maintain pseudo

iteration stacks in Q8. They result from D-machine expansions of subscripting

and related operations. The micro-instructions are fully explained in Table 3-C,

and the DM expansions in Appendix C illustrate their use.

Notes:

TABLE 3

E-Machine Instruction Set

a. Each instruction is in the form

OP VALUE LINK AUX.

In the discussion, K is the address of the instruction in QB.

bo Instructions starting with the letter "I" are "uninitialized. fI That is, they

have not yet been bound to their indexing environments. They are changed to

similar instructions without the leading ''If! when first executed.

- 122 -

Operation

S

IFA
FA

IA
A

IJ
J

OP
GOP

NIL

IRD
IRP

TABLE 3-A

E-Machine - Simple Instructions

Name

Load &!alar

Load Array
Element

Load Array
Address

Load
J-Vector
Element

&!alar
Operator

No Operation

Result
Dimension

Definition

Push VALUE to VS, with tag ST.

IF A causes initialization, as described in

Section E.1. B., and the instruction becomes

FA. FA fetches an array element determined

by the indexing environment and pushes the

value to VS with tag ST.

IA causes initialization and the instruction

becomes A. A is similar to FA except that

the (encoded) address of the selected element

is pushed to VS with tag AT.

IJ is Similar to IF A, and becomes J after

initialization. The VALUE field is an encoded

descriptor of a J-vector, the correct element

of which is computed and pushed to VS with

tag ST.

The VALUE field is the name of a scalar

arithmetic operator. This is invoked and

takes its operands from the top of VS, leaving

a result there after deleting the operands.

No operation.

These instructions are used by the D-machine

and are left in QS when a segment is turned

over to the E-machine. Since they are of no

use to the EM, they are changed to NIL the

first time encountered.

- 123 -

TABLE 3-B

E-Machine - Control Instructions

Operation Name

SGV Load Segment

sa

Descriptor

Activate
segment

Definition

The VALUE field is a QB segment descriptor, with

addresses relative to Ko Make these addresses al>-

solute and push the descriptor to VB with tag SGT 0

The VALUE field is as in SGV, and LINK, if non-

zero, pOints to a pseudo-iteration stack in QB.

Activate the segment by pushing an entry to LB,

using the LINK information to alter the QP field of

LS if necessary.

JMP Jump Potential jump destination is K+LINK, where LINK
JO Jump if 0
Jl Jump if 1 is considered as a signed number. JMP is uncondi-
JNO Jump if 0

nondestructive tional.
JNl Jump if 1

nondestructive The others are conditional on the value on top of

RED

MIT

Begin
Reduction

Mark and
Iterate

VS. JO and Jl also pop VB.

Push an element with tag RT to VB to act as a re-

duction accumulator, and jump to K+LINK.

Scalar values on top of VB are used to start a new

iteration nest in lB. The absolute value of the VB

value, less 1, is the MAX field in IB; the iteration

direction (DIR) is forward (0) if VB is positive,

otherwise backward (1). The CNT field of IB is

initialized to 0 or MAX, depending on whether DIR

is 0 or 1. Moreover, the first entry in IS has its

MRK bit set to 1; all others are O. Each VB value

is popped. Finally, when an EGT entry is found it is

popped and the named segment is activated in LB.

- 124-

Operation

POP

DUP

ORG

CY

LVE

RPT

CAS

VXC

LXI
LX2

SXl
SX2

!XL
XL

XS

XC

ISC
SC

TABLE 3-C

E-Machine - Micro-Instructions

Name

Pop

Duplicate

Load IORG

Cycle

Leave

Repeat

Case

Exchange

Load from
Pseudo-IS

Store in
Pseudo-IS

Index load

Index Store

Definition

Pop top element of VS.

Fetch the VS entry, LINK elements from top of VS, and
push it to VS. (Does not disturb original copy.)

Push current value of IORG register to VS (tag Sf).

Step IS and repeat the current segment if IS hasn't
overflowed.

De-activate the current segment, erasing any associated
IS entries.

Repeat current segment from beginning. (Does not affect IS.)

If top of VS is not an integer scalar, then error else if the
value is N, then pop VS and execute the instruction at K+N
and resume execution at K+LINK.

Interchange top two entries on VS.

LINK fields are relative pointers to XT entries. Push Xl
(or X2) field of referenced entry to V S, tag ST.

Store top (ST) entry on VS in Xl (or X2) field of referenced
XT entry. Pop VS.

!XL is initialized to give XL, in which the LINK field pOints
to IS or a pseudo-IS element. XL gets the current iteration
value, adds IORG, and pushes the result to VS with tag ST.

Subtract IORGfrom Sf entry on top of VS; store in Xl field
of XT entry at K-LINK in QS; if the value just stored is
negative or greater than the X2 field of the same word,
signal an error. Set the X3 field (change bit) to 1, and
pop VS.

Index Change Set the change bit (X3 field) of the referenced XT entry to I.

Activate
Segment
Conditional

ISC is initialized to SC in same way as !XL. The VALUE
field of the instruction is a QS segment descriptor. If the
change bit in the referenced IS or pseudo-IS entry is 1,
then the segment is activated. Otherwise, the change bit
of the XT entry referenced by the following instruction is
set to 0, and this instruction is skipped.

- 125-

EXAMPLE 6:

This example illustrates typical behavior of the E-machine. Consider the

APL statement

E[I;]+EP>I-1+C+/(1 2 2 ~PTo.-PT[I;])*2)*O.5

and suppose it is encountered by the machine when the variables are as below:

EP is 0.0001

I is 2

PT is 0 0

o 1

1 0

1 1

E is 0 1 1 0

1 0 0 1

o 0 0 0

o 0 0 0

The D-machine code for this statement is as follows:

- 126-

D-Machine Code for Statement in Example 6:

Addr

200

202

204

206

208

210

212

214

216

218

219

220

223

224

226

227

228

230

231

233

235

237

239

240

250

251

252

253

254

255

256

Op

LDS

LDS

LDSEG

LDNF

LDNF

SUBS

LDNF

GDF

LDCON

TRANS

PWR

RED

PWR

LDS

ADD

MOD

LDNF

GT

LDSEG

LDNF

LDN

SUBS

ASGN

...

Operand

0.5

2

SCODE(O, 0, 0)

I

PT
2

PT
SUB

50

1 ADD

-1

EP

SCODE(O, 0, 0)

I

E

2

RC=l LEN=4

VB=O AB=54

RANK=l·

R(1)=3 D(l)=l

RC=l

1

2

LEN=4

257 3

Comments

Empty subscript

Result is PTe I;]

PTe. -PT[I; J

Constant vector 1.2.2

1 2 2 ~PTc.-PT[I;]

(1 2 2 ~PTc.-PT[I;])*2

+/(1 2 2 ~PTo.-PT[I;J)*2

(+/(1 2 2 ~PTo.-PT[I;])*2)*O.5 (CallthisR)

EP>I-1+R

Empty subscript

E[I;]

ECI;]+-EP:> 1-1+R

Header for DA of constant 1.2,2

Rest of DA -

Header for value of constant 1,2,2

Value array

- 127 -

Example 6-1 shows the instruction buffer containing the deferred code to

evaluate the sample statement. The transpose operation was evaluated in the D-

machine using beating, and its results are manifested in the access masks (AUX

field) in the instructions at locations 3 and 4.

Four temporary descriptor arrays were created by the DM as follows:

@T1 DA for PTe 2;] • (Recall that I is 2 in this example.)

@T2 DA containing dimension of the result of the GOP operation,

in this case 4,2.

@T3 DA containing dimension of the reduction result, in this case 4.

@T4 DA for E[2 ;]

The deferred code is equivalent to the following:

~ J := 0 step 1 until 3 ~

begin

end

REDUCE := 0;

for K := 1 step -1 unt.il 0 do

REDUCE := REDUCE + (PT[J;K] -PT[2 ;K])*2;

E[2;J] := 0.0001>1-1+(REDUCE*O.5);

The remainder of the example shows the D-machine's progress through the code

in QS, and contains comments which explain the machine's actions at each step.

- 128 -

....
~
to ,

EXAMPLE 0 -- ~-MA'HINE

REGISTEM DUMP
NEwlT - 1 IUR~ - a FME:~ & 00(;00 f~A'~ - 0020 a !>IIK - 00

REt ORG LEN O/~.S FN NoT ~P crR MlX 01. CH HIIK
L S; +-----+-.. ---+-----+---+---+---+---+----+ IS: +----- +----+--+---+---+

04C I coo I 01~ I 0 I a I I I 3 I 00 I I 000 I 001 I a I I I • I
000 I 000 I 022 I I I I I 0 I 3 I 00 I --)

--)

EffECT I H AilOR - 0000 II, QS

TAG VALU~ UP VALUE LINK AUX
vs:.-----.------------------. QS: +-----+--------------- ---+--- -+------+

I FliT I F'UDEI-I,O,fl I
--> I

00 SO. ~
C I REO 0
02 S 2
03 IfA "T1
04 IFA "PT
05 GUP >U8
06 IRO QoIT2
C7 UP PI'iR
OB UP AilO
09 SGV SCOOEIHG.A.l1
10 S -2
II MIT u
12 IRO .H3
13 UP P ••
14" -I
15 OP ADO
16 OP M~O

11 S 0.0001
18 OP GT
19 IA _14
20 OP ASGN
21 POP 0

-->

08 t
A_

0001
0011

02 0011
0011

05 0011
07 0011

0001
13 0001

02 0001
0001

02 0001
0001

02 00(;1

THE O-MACHINE" HAS JUST PASSED LaM"UL Tu T". E-MACH I~E. NO EXE('uIION
HAS TAKEN PLACE YET. T~E fUNCTION MA~K UN VS wAS PLA~ED THERE BY
ACTIVATING fUNCTIUN f. THE COhTENTS uF THE HARK ARE THE PKEVIOUS
VALUES Of fREG 1-11 AND 10"G 101, AND THE NAME Of THE FUNCTION If I.

SEGMENT A NITHIN QS EVALUATES THE RtOUCTluN FOUND IN THE SOURCE
COOc. THE ITERATION STACK IS SET UP TO 00 THE E~UIVAL~NT Of THE
"faR J :. 0 STEP I UNTIL 3" ITUATIUN.

EXAMPLE b-I: STATE Of THE REGISIERS BEfURE ExECUTION

EXAMPLE 6 -- E-MACHINE

MEMORY DUMP

AUOR CCNlENTS
--- -+---------- --------
'VPT MC=2 lEk.zQ9

+0 I a
+02 a
+)3
+e.
+05
+00
+01
+08

VE RC=2 LEN= \1
+01 a
+02 I
+03 I
+0' a
'05 I
+el> a
+01 a
'08 I
.09 0
+10 0
+11 0
+ll a
+13
+14
+15
+16

ADCR CCNTENTS
----+------------------
.Pl RC-2 l.t:Ns05
.01 VH=VPT A~~OOO

.02 RANK-=Z
oOJ RIII-OO. 0111-02
004 R121-001 0121-01

iiE
001
002
003
+0'

iolTl
+01
+02
+03

o>T 2
+01
+al
*03
+0"

,,13
+01
+02
+03

iT4
001
+02
+03

RC-I
VB=V<

LENz05
A~=OOO

RANK-2
RIlI=OO~ UIII=O'o
RI21-00" 0171-01

RC-I LEN-a'
V8-V'PT A8=004

KANKal
.111-0020111-01

RC~l Lf:N=u5
va- Aij=OOQ

RANK"'Z
R11I=004 0111=02
RI21-00? 0121-01

.C-I LEN=O'
VB= AS-O.)O

.ANK=I
",11=00' 0111-01

RC-l
V~=VE

LEN=O"
Aij=008

RANK-l
RIII-C04 0111-01

NT: TAG CONTENTS
---+---+-----------------
f fT .f
I ST 2
.T OT ilPT
f OT if
EP ST 0.0001

NOTE THAT IN THE NAMETA!LE, THE ENTRY fOR THE IDENTlfll:R PUINTS
TO iif. lHE TAG OF THE ENTRY IDENTIfIES IT AS A FUNCTION NAME.
iF IS THE ADDRESS Of THE FUNCTION DESCRIPTOR fOR f, WHICH IS NOT SHO.N.

EXAMPLE 6-2: STATE Of HEHCRV BEFURE EXECUTIUN

......
C.¢

o
I

EUMPLE 6 -- E-MACH I HE

~EG IS 'fA ~UMP
~EIIIT a I 10RG a 0 faEG a OOtOD FBASE a D02ilO ISMK a 00

REL ORG LEN DIE 15 FN "liT QP eTR MU OIR CH IUIK
lSI +-----+-----+-----+---+---+---+---+----+ IS~ +-----.-----+---+---+---+

--)

040 , 000 , 075 , 0 , 0 , I ,) , 00 , , 000 , C03 I a I I , I ,
001 I 000 I 022 I I I I I 0 I 3 I 00 I --) I

EFFEC ra VE AOIIR • 0001

fAG VAlUE

IN QS

OP VALUE liNK AUX
VS:+-----+------------------+ os: +-----+------------------.----+------+

, FliT' FCOIIEl-I.a.FI , ••• QS U~CH.NG.:O •••
'St I 0.5 , --),

THE INSTRUCtiON ILOAO SCAlARI PUSHEO ITS UPEUNC 10.51 Tu ~S.

EXAMPLE 6-): AfTER S

REGISTE~ DUMP
NEWIf a I IOMG - 0 ~~E(i - oeooo f8ASE • 00200 ISMI(a 00

REl ORG LEN OlE IS FN ~"T QP eTR MAX OIR eH MRK
l S: +-----+-----+-----+---+---+--- +---+--- ... + I S I + ... ----+-----+---+---+---.

, O~O I 000 , 075 , 0 I a I 1 I 3 , 00 , , ouO I 003 , 0 , 1 I I I
1 all , 000 , Jl2 , 1 , I I 0 , 1 I 00 , --) ,

--> ,

EFFECTIVE AOOR • u011 IN IolS

fAG VALUE OP VAlUE LINK AUX
v5: .. -----+-----------------+ QS: .---- .:...-------------- ---+----+------+

, FMT I fCOOE I-I.O.FI 1 ... ~S UNCHANGED".
, S T '0.5 ,
1 R T I ~ ,
I SGT 'S~UDEI'EG.A.lI I
1 ST '-2 I

--)1

TH~ RED UPERATOR PuSHEC THE RT ENTRY. TO dE useD AS AN ACCUMULATOR
fO~ THE RECUCTION. AND JUMPED TO QSI9,1. THE SGV INSTRUCTI~N IAT 91
PuSHED ITS OPERAN~ ITHt DESCRIPTOR FON SEG"eNT AI TO VS.
THe S INST.UCTION IAT IJI PUSHED THE -2 VAlue Te VS.
T~.SE roo eNTRIES .Ill 8E uSED 8Y TrlE ~IT INSTMUeTIJN TO ACIIVATE
THE REDUCT ION SEGMENT.

EXAMPLE 0-.' AfTER RED. SGV. AND S

EXAMPLE 6 -- E-MACH I ~E ---
REGISJER OUMP
~EwIT a I 10RG a ~ FREG a 00000 FUSE a 002(, C ISMK • 01

REl ORG LEN U/E IS FN Nllt QP CrR MAX OIR CH MRK
l S: +----- t-----+-----+---+---+--- to---.---- + [s: +-----+-----+---+---+---+

I 0100 I (00 I 015 I 0 I 0 I 1 I) t 00 I
, all , 000 , 022 , I I I , a I 1 I 00 I
I 000 I 002 I 001 I 1 , 1 I 0 , 1 , 00 I

I 000 I 00) t 0 I 1 I I I
I 00 I I 00 1 I I t 1 , 1 I

--> ,
--) I

EHEC ra VE AOOR 0002 IN QS

fAG VAlUE OP VALUE lIlliK AUX
~Sl.-----+------------------. ws:+-----+------------------.----+------+

I FliT' fCODH-l.O.FI , ••• QS UNCHA~GeO •••
'ST I 0.5 ,
'RT I 0 I -->,

MIT USED THE SCALAR -2 eN TOP OF VS TO SUMT A NE~ ITEkATIUN.
THE LENGTH JF THE ITERATION IS 2. AND THUS THE "Ax FIELD IN THE ITERATION
STACK IS ~fT fO 1. THE N~GATIVE SIGN OF THE VS E~TMY SIGNIFIED THAT THE
ITE~.TION IS TO RUN SACKWAROS IOIR-II; HENCE CTR STARTS AT I INSTEAD UF O.
THE NEXT VS ENTRY wAS A SEGMENT DESCRIPtUR fOR SEGMENT A IN QS.
MIT USEO THIS TO ACTivATe THE SEG"elliT. 8Y PUSHING A NEo ENTRY TO lS.
~OTE THAt 1111 THE r.Eo lS ENTRY. THE ,..T ~IT IS I; THIS WAS THE PKEVIOUS
VALUE Of NEwIT. NEIlIT IS NO.1 dECAUSE A NEo ITERATION HAS iEEN STARTED.

EXAMPLE 6-5: AftER MIT

ReGISTER OU"P
NEliar ~ 1 IU~G • 0 FREG • 00000 folASE • 00200 ISMK • 01

NeL ONG LEN DIE IS fN NoT QP
l~: +-----+-----+-----+---+---+---+---+----+ I~:

--)

0.0 000 015 0
012 I 000 , all 1 1 I
001 I ON 1 007 , I ,

EFfECTIVE AOOR : COO]

fAG VALUE

00 ,
I I 0 I 3 , 00 I
I , 0 , I I 00 , --)

I~ ~s

OP vALue

CTN ~AX OIR CH MRK
.-----.-----+---+---+---+
, ~OO , CO] , 0 , I , 1 1
I 001 1 001 , I , 1 , 1 ,
1

LINK AUX
\IS: .-----+--------- --- ------ + QS:+-----+------------------+----+------+

I FMT I fCODtI-I.O.FI I • •• QS Uh'HANGEO •••
'ST ,o.~ ,
I R T I 0 1
I ST I l ,

-->1

THE FINST INSTRUCTlOlli Of THE NeWLY-ACTlVAffO SEIiIIENT ISEG.AI IS S.
AT QSll; I. THIS INSTRUCTION PUSHED ITS OPERAND 121 TO VS.

eXAM"lE .-6: AFIER • CAT QSCZ" I

.....
t.:I
.....

E U "PtE 6 -- E-M:t.(;H I ~f --------------------------.--------------------------.-----------------------------
REG I S TER DUMP
NEMIT • 1 IORG • 0 fREG • 00000 faA SE • OOlC 0 IS"K • 01

REL ORG UN DIE IS FN NOT QP CTR MAX OIR CH MIlK
lS: +-----+-----+-----t---+--t----+---+----+ IS:; +-----+-----+--+---+---+

I 040 I 000 I 015 I 0 I a I 1 I] I co I
I 012 I 000 I all I 1 I I I 0 I] I 00 I

000 I C03 I 0 I 1 I 1 I
001 I 001 I I I I I 1 I

I 001 I 002 I oe7 I 1 I 1 I 0 I 1 I 00 I -->
--> I

EFHCTlVE ADOR • 000) IN liS

fAG VALUE OP VALUE LI"'K AUX
VSz+-----+------------------+ Qs:+-----+------------------t----+------t

I FMf J FC.OOEC-l,ih.fJ I 00 I 5 I 0.5 I I I
I Sf I 0.5 I 01 I REO I 0 I u8 I I
IRf I C I 02 I 5 I Z I I I A_
I ST I 2 I 03 I H I _COUEHPT.4) I 19 I I

-->1 04 I IFA I ~PT GOIl I
O~ I GOP I SUB 02 0011 I
06 I IRO I .T2 0011 I
or I 01' I PwR 05 0011 I
08 I OP I ADO 07 0011 I _
09 I SGV I ~COOEISEG.A.I) I
10 I S I -2 I
11 I MIT I 0 I
11 IRO I .n 0001 I
13 OP I PWR I] 0001 I
14 5 I -I I
15 uP I ADD 02 aDO! I
16 OP I MUD 0001 I
11 S I ~.OOOI I
18 OP I GT 02 0001 I
10 I- t .T4 0001 I
20 01' I ASG'" 02 0001 I
21 POP I C I
22 NL T I ~C DOE (I • II 01 I

-->

LOCATION 3 IN liS. WHICH PREVIOUSLY CO'HAINEu AN If A INSTkUCTlON, HAS
BEEN INITIALIZED TU FA. IHE ~ALUE fiELD NOW CONTAINi VPT. THE BASE
ADORESS KEFEREN(;EO IN THE UA AT iTI. AND THE ASASE 1'4) fROM THAT OA.
IN ADDITION. THE LINK FIELD Of QSI311 IS NOw A RELATIVE POINTER TO
QS(221). WHICH IS THE ITERATION CONTROl BLUCK FOM THIS ARRAY. THE SECOND
ELEKENT UF THE IC~ ENTRY (I.E. THE Q2 FIELUI IS THE DEL ~OM THIS Ak~AY.
'AKEN FRUM .TI. (SEE eXAMPLE 0-2 fOR CONTENTS Of Til. THE FI~ST EL~MENT
(QI FIELD) IS DEL TIMES THE "AX VALUE IN THE lOP ENTMY ON IS.

LS HAS NOT ~HANGED YET BECAUSE THE NEWLY-CREATED fA INSTRUCTION HAi
NCT YET ~EEN EXECUTED. THE INITIALllATION PROCESS ALSU ERASED THE DA
STARliNG AT tlTI. WHICH 15 NO LONGER ~.HRENtEO ANYWHERE IN THE M4CHI"E.

EXAMPLE ~-71 AFTER IFA

EXAMPLE 6 -- E-MACHINE ----------------------.--
REG I Sf ER OUMP
NE.IT • 1 IORG • 0 fHEG • 00000 F~AS~ • 00200 ISMK • 01

LS:

-->

REl OR<; LEN DIE IS FN NOT QP
+----. +-----+-----+---+---+---+---+----+
I ~4a I 000 I 015 I 0 I 0 I 1 I) I 00 I
I 012 I 000 I on I I I I I 0 I) I 00 I
I OOZ I 002 I OC1 I 1 I I I 0 I 1 I 00 I
I

EFFECTIVE AOOR • OG04 IN QS

IS:

-->

TAG VALUE OP VALUE

CT. ~u aiR CH MIlK
.-----+-----+---+---+---+

000 I 003 I 0 I I I I I
001 I 001 I I I I I 1 I

LINK AUX

~Slt-----t------------------+ QS:+-----+------------------+----+------+
I FMT I FCOOEI-I.O.f) I oc I i I J.5
1ST I 0.5 I 01 I UD I 0 08
I Rf I 0 I 02 I 5 I z A-
I ST I 2 I 03 I f' I QCOOEIVPT.51 19
I ST I a I 04 I If A I oJP' 0011

-->1 05 I GOP I iU8 02 0011
06 I IRO I .H2 0011
01 I 01' I PoR OS 0011
08 I 01' I ADO 07 0011 I _A
09 I SGV I SCOOEISEG.A.lI
10 I S I -2
11 I MIT 0
\2 I IRO .13 0001
1) I OP PoR 13 0001
14 I S -I
15 I OP AUO 02 JDOI
Ib I 01' MOO 0001
17 I 5 0.0001
\8 I UP OT 02 0001
19 I IA <iT4 0001
10 I OP ASGN oz 0001
21 , POP 0
22 I NU ~CilOE (I,ll 01

--> ,

THE AOORESS IN QS(jl) HAi BEE~ UPDATED SY THE INDEX UNIT AND THE VA~UE
IT REFERS TO HAS SEEN P~SHED TL vs. THUS THE VALUE (01 UN TUP OF VS
AT THIS POINT 15 PT(ZIII. IRECAlL THAT THO EFFECTIVE ADDRESS OF AN
ARRAY ELtMUT REHRENCEC IN AN FA INSTRUCT ION IS THE SUM llF ITS COOEIl
PARTS. PLUS I ITO COMPENSATE FUR THE ARRAY HEAOER WeRO) I.

EXAMPLE 6-8: AFTER fA

I-'
(.o:l
I:..:l

EkAMPLE 6 -- E-MACHINE

REGISTER OUMP
~EWIT • I IORG • 0 fREG • Dot 00 fdASE • OOlC a 15MI(. 01

REL ORG LEN DIE 15 FH NwT QP crR ~u aiR CH M"K
LS: +-----+-----+-----+---+---+---4>---+----+ IS; +-----.-----+--+---+---.

o~o 000 015 0 0 I 00
01Z I 000 I 022 I I I 1 I 0 I 3 I 00 I
DOl ! OOZ I 001 I 1 I 1 I 0 I I I DO I -->

-->

I 000 I 00) I 0 I I I 1 I
I 001 I DOl I [I I I I I
I

EFfeCTIVE ADDR • 0005 IN QS

U .. VALUE OP VALUE LINK .lUX
VS.l+----.-----------------· ~s:.-----.------------------+----.------. I FMT I fCDOEI-I,O,fl I 00 I 5 I 0.5

1ST I 0.5 I 01 I RED I a 01
I RT I 0 I 02 I S I 2 A_
I ST I 1 I 03 I FA I QCODEIVPT ,51 19
1ST I 0 I 04 I FA I QCooec YPT , II i9
1ST I 0 I 05 I GOP I sus 02 0011

-->1 06 I IRD I .Tl 0011
01 I OP I P~R 05 0011
ol8 I OP I ADO 01 0011 _A
09 I SGY I SCUUEIStG,A,1I
10 I S I -1
11 I MIT I 0
12 liMO I 4n 0001
13 lOP I P~. 13 0001
I~ I S I -I
U I OP I AIIO 02 0001
II> I OP I MOil 0001
11 IS I 0,0001
18 I OP I GT 02 0001
19 I U I 0114 0001
20 I OP I ASGN 02 0001
21 I POP I a
22 I NLT I OCOOEII,II 01
l) I ~T I QCOOEI6,21
l~ I NLT I QCOOElI, II 01

--> I

THE IFA AT 0514,1 HAS aeEN CHANGEO TO FA, AS IN EXAMPLE 6-1, AND THt
FA HAS IEfN EXECUTED, AS IN 6-8. THE TOP 1.0 ELEMENTS ON VS ARE NOW
PTlllI1 AND PTlOIlI, ALSO NOTE THE TWO Nf. ~NTRles or. THE TOP Of QS,
WHICH ARE TME IC8 fOR THE fA AT 0514;1.

EU"PLE 6-9' AfTER OSC411 I INITiAliZATION ANil UECUJlONI

EXAMPLE 6 -- E-MACHINE

REIO[STER DUMP
~tW[T • 1 [ORG • 0 fREG • 00000 FUSE· 00200 [5MK. 01

LSI

-->

REL ORG LEN DIE IS fN ~.T QP
+-----+-----+-----+---+---+---+---+----+
I 010 0 I 000 Ion I a I 0 I I I 3 I 00 I
I OIZ I 000 I 022 I 1 I 1 I a I 3 I 00 I
I 005 I 002 I 001 I I I I I 0 I I I DO I
I

EFFECTIVE ADOR • 0001 IN ~s

CTR MAk OIR CH ""I(
[S I +----+-----.--+---.---t

I 000 I 003 I 0 I I I I I
I 001 I 00 I I I I I I I I

--> I

raG VALUE OP VAlUE L110K .lUX

~s:+-----.------------------+ QS;+-----+------------------+----+------+
I ~MT I fCOOtl-I.O,fl I 00 S I 0.5 I I I
1ST I 0.5 I 01 REO I 0 I 08 I I
I AT I 0 I 02 S I 2 I I I A_
I ST I 1 I ~3 fA I QCOOEIVPT,SI I 19 I I
I ST I 0 I O~ fA I QCOOE I VPT, II I I¥ I I

-->1 05 GOP I SU8 I 02 I 0011
06 NIL I 0 I I
01 OP PWK I 05 I 0011
08 UP AOIl I 01 I 0011 I _A
09 SGY SCDOEISEG.A, II I
10 5 -2 I
11 MIT 0 I
12 IRO 4Tl I 0001
U OP PWR IU 0001
I~ S -I I
15 OP ADO I 02 0001
II> OP MOO I 0001
11 5 0,000 I I
18 OP GT I 01 0001
19 U .. l4 I 0001
20 OP ASliN I 02 0001
21 POP 0 I
12 NLT OC(JOtll,1l I 01
23 NT QCIlOEl6,21 I
2~ NLT ~DOEII,1l I 01

-->

THE sua HAS 8EEN OONE. liN THE E-MACHINE, GOP IS TREATED SAME AS OP.I
THE IRO OPtRAriON DECREASES THE RHCO uF ITS OPERAIIil 8Y I AND REPUCES
ITSELf BY Nil, THE NO-CP, BECAUSE IRO IS USEO 8Y THE D-MACHINE IUT
NOT 8Y THE E-~ACHINE,

EXAMPLE 6-10' AFTER SUS,IRD

.....
CA:I
CA:I

I

EXAMPLE 6 -- E-MACHINE --
REG 1ST fM DU"P
"'E~IT • I IORG - 0 FREG • 00000

LS:

--)

RH ORG UN OlE IS fN NIoT ~p

+-----+-----+-----+---+---+---+---+----+
0.0 000 075 0 1 a J I 00
012 1 coo 1 022 1 I I I 1 a 1 3 1 co 1
006 1 DOl 1 00 1 I I 1 I 1 0 1 I 1 00 I

EFFECT I VE AODR - 0008 IN QS

fBASE • 00200 ISMK - 01

CTR MAX Dlk CK MIlK
IS: +-----+-----+---+---.---+

--)

000 I 003 1 a I I 1 I I
00 I I 00 I I I 1 I 1 I 1

TAG VALUE OP VALUE LINK AUX
YS; +----.-:---------------- .. QS:+-----+------------------+----+------+

I FliT 1 ftODEI-l.O.FI I ••• QS UN~HANGtU •••
1 Sf 1 0.5 1
I RT 1 0 1
1 ST 1 0 1

-->1

PWR IAT QSll;II WAS APPLI~D TO THE TOP 2 ELEHtNTS UN THE VALUE STACK,
o AMO 2; THESE OPERANDS wERE DELETED AND THE RESUlT OF THE OPERATluN
HAS IIUN PU~HED TO VS. I •• 2 • 01

EXAMPLE &-11: AFT~R PWR

REG[STER DUMP
NEWIT - I 10RG • 0 fREG • OOCOO

REL ORG LEN DIE IS FN NoT ~P
lS: +-----+-----+-----+---+--+---+---+----+

I 0.0 1 000 1 J15 1 0 1 0 I II} 1 00 1
lOll 1 000 1 022 1 I 1 I 1 0 1 3 I CO 1
1 001 1 002 I 001 1 I I I 1 0 1 1 1 00 I

--> 1

EFFECTIVE AOOR • COOq IN QS

FBlS~ - 0020e ISMK • 01

CT" MAX DIR CH MRK
is: +-----+-----+---+---+---+

I 000 I DO} I 0 1 I I I I
1 001 1 00 I I I I I I 1 I

--) I

TAG VALUE OP VAlUt liNK AUX
"IS: *----+------------------+ QS; t-----+-----------------+----+------+

1 FMT I FCODEI-l.O.FI 1 ... gS UNCHANGED".
1 ST I 0.5 I
1 ST 1 0 1

-->1

THE ADD OPERATION, SEEING THAT ITS SECUND OPERAMU KAS TAG RT.
GIVES AS ITS RESULT THE fiRST OPERAND •• lrH rAG ST. THIS IS
ACCORDING TO rKE OEF Ifill TlON OF U.JUCrtON.

EXAllp\'E ~-ll' AFTER ADD

EXAMPLE b -- E-MAtKINE

REG I S TER DUll'
NEolT • a 10RG • a FREG - 00000 FbASE • 00200 ISIIK • 01

REL URG LEN DIE IS FN NWT UP CTR MAX DIR CH MIlK
LS: +-----+-----+-----+---+---+---+---.----+ IS: .---.... -----.--.---.--.

-~

0.0 000 1 075 0 a 1 I 3 00
012 1 000 1 022 1 1 I I 1 a 1 3 1 00 1
000 1 002 1 001 1 I I I I a 1 I 1 00 1

EFFECTIVE ADOR • 0002 IN ~S

1 000 1 003 I a 1 I I I 1
I 000 I DOl I 1 1 1 1 1 1

--) 1

TAG VALUE OP VALUE LINK AUX
vs: +-----+---------------.--- .. QS:' +-- ---+-------- --------+---+------+

I FMT I FCOOEC-I'r,FI I
1ST I 0.5 I
I Sf I a 1

• •• OS UNCHANGED •••

-->1

IN TKE LAST F~AiE' THE SEGMENT wAS CO~PLETED, SINCE ITS RELATIVE
ADORns WAS THE SAME AS ITS HNGTK. HOWEVER, SINCE THE IS BlT
wAS SET FOR THAT SEGMENT. THi [S ,AS STEPPED BUT U[DN'T UVERFLOW •
THUS. LS WAS RE-INITIALllED TO THE aEGINNING UF THE SEGMENT, TO
SE REPEATED WIT THE NE. [S VALUES. NOTE THAT NEwlT N~ IS O.
AT THIS POINT. THE EQUIVALtNT OF TKE ALGOLIC -REDUCE ,- REDUCE + ... -
H AS BEEN DONE F JR JoO A~D K'l.

THE SECCNO PASSi TKROUGH TKE REDU(;J1U1i SEGMENT PROCEEOS SIMILARLY
Te TKE fiRST. EXCEPT TKAT NO fURTHER IMIT[ALllATIUNS NEED SE DONE.
AT TKE END OF THIS ITERATIUM, REL-LEN 1M LS AND. AS 8EfORE, THE
ITERATION STACK .ILL BE STEPPED. HOwEVER, TKIS TIME IT OVERflO.S.
SO 8UTH LS AND IS ARE POPPEI)' RETURNING THE MACKINE TO THE
MAIN SEGMENT. 15EE NEXT FIGUREI

EXAMPLE &-I}' BEG[NNING Of SeGMENT wITH STEPPED IS

....
c,.:I
~

EXAMPLE • -- E-MAtH"~E

REG ISTER DUMP
NtwlT • 1 10RG • 0 FREG • 00000 fllASE • 00200 ISMX. 00

REL ORG LEN DIE IS FN NwT 0' 'TR MAX DIR 'M MRK
LSI +-----t-----+-----t---+--t---t---t----t IS: +-----• .:.----.---.... --.---.

I o~o I 000 1 on 1 0 I 0 1 I 1 3 1 00 1 I 000 1 DOl I 0 I 1 I 1 I
1 012 1 000 I all I I 1 1 1 a I] 1 00 1 -> I

--> I

EFfECTIVE AODR • 0012 IN QS

TAG VALUE 0' VALUE LINK AUX
VS' .----.-----------------. ijS: .----.-----------------.... ---.-----.

I fMT I '''OD£I-100,fl I 00 S I 0.5 I I I
I ST I 0.5 I 01 RED I a I O' I I
1 ST I 1 I 02 S I 2 I I I A_

->1 D] FA I QtOOEI YPT... I 19 I I
Olt flo I QtooEIYPT,OI I 19 I I
05 GOP I sua I Ol I 0011 I
06 NIL 1 0 I 1 I
OJ OP I PWIt I 05-1 0011
01 0' I ADO I 01 1 0011
09 SGY 1 StODElSEG.A,lI
10 S I-l
II MIT I 0
IZ IRD I illl
II 0' I '1111
1. S 1-1
15 0' I ADD
16 DP I MOD
U 5 I O.OGDI
11 OP I GT
19 fA I "fit
ZO 0' I ASGN
Zl PI)' I a
ZZ NLT 1 IItDDEI1,II
13 NT I QtOOEI6,ZI
Z' NLT I QtUDE 11,11

--)

REDUCE SEGMENT IS DOHE. ITS RESULT III IS ON TO' OF VS.
NOTE THAT NEIlIT liAS RESTORED TU 1 WHEN LS liAS POPPED.

u

OZ

OZ

Oi

01

01

0001
0001

0001
0001

0001
0001
0001

_A

THIS ST"Gf CORRESPONDS TO THE COMPLETION OF THE -FOR .- LOOP wiTH J-O.

EXAM'LE 6-11t. "FTEa RETURN fROM REDUCTION

EXAM'LE • -- E-MAtHINE

REGISTEIt DUM'
HEwn. 1 10RG • 0 fREG • OOliOO FBASE • 00200 lSMK. 00

REL ORG LEN DIE IS FN NWT g, tTR MAX DIR tH MRK
LS: t-----t-----t-----t---t---t--t---t----+ 151 +-----t-----t---t---t---t

I O~O I 000 I 075 1 a 1 0 I 1 1] 1 co I 1 000 I 00) I 0 I 1 I 1 I
I OlD I 000 I 022 I 1 I 1 1 0 I] I 00 I --> I

--> I

EFFEtTln ADDR • 0020 IN QS

TAG VALUE OP VALUE LINK AUX
VSlt-----t------------------t QS:t-----+------------------t----t------t

I FMT 1 FtooEI-l.0.FI I 00 S 0.5
1ST I 1 I 01 RED 0 01
IAT I QtooElVE,U I 02 S 2 A_

--)1 0] FA IItODEIVPT ,It I 19
Olt FA QtODtlVPT,OI 19
05 GOP SUII 02 0011
O. NIL 0
01 0' PIIR 05 0011
08 OP ADO 01 001l -"
09 SGY SCODEISEG.A,II
10 S -2
11 MIT 0
12 NIL 0
1) 0' 'NR 13 0001
14 5 -1

" 0' ADO 02 0001

" or MUD 0001
II 5 c. 000 1
11 0' GT 02 0001
19 " 1IC01ltlVE,II 0.
20 0' iSGN 02 0001
21 PO, 0
II NLT IItOOECl,lI 01
Zl NT QtDDEI •• 21
Zit NLT QtIlUE II ,11 01
25 NLT QtOOEu.lI

--)

QSllZIOI THROUGH 11511911 HAVE BEEN Exec;UIED. NOTE THAT THE ." "T QSI19"
liAS TRANSFORMED T~ " AND THAT ITS RESULT IS THE tODEO "DORESS IIITH
TAG 'n' ON TOP OF VS.

EXAMPLE 6-15. BEFORE ASGN

~
~
en

EXAMPLE b -- E-MACHINE

REGISTER DUMP
NEWIT _ 1 IORG _ 0 FREG - 00000 FBA Sf _ 00200 IS"'" - 00

REL ORG LEN DIE IS FN NIH QP CfK "AX CIR CH !IRK
LS: .-----+-----+-----+---+---+---+---+----+ IS: +-----+-----t---t---+---+

t O~O I 000 I 075 t 0 i a til 3 I 00 I i 000 I 001 I 0 I I I 1 I
I 022 t 000 I 022 I 1 I 1 , 0 I 3 I 00 , --) I

--> ,

EHEC TI VE AUDR _ 0022 IN QS

TAG VALUE OP VALUE LINK AUX
vs:+-----+------------------+ wS:.-----t------------------+----.------+

I ffll' I FCODt'.-l,OtFJ t ••• QS UNCHANGED •••
-->,

AFTER ASGN AND VPOP. THE VALUE eN VS HAS BEEN STUREO AT VE+I+& IN "EMORY.
SINCE THE SEG"ENT HH 8EEN COMPLETEU, THE IS .. ILL at STEPPED AND
LS WILL BE RESET TO THE BEGINNING SINCE THERE IS NO OVERfLOW.
THIS STAGE CURRESPONDS TO UNE PASS THROUGH THE "FOR J. RANGE. wITH J-O.

EXAMPLE 6-11 .. AT END Of MAIN SEGME~l. fiRST fiNE THIIOUGH

MeMORY DUMP

ADOR CONTENTS AODR CONTENTS AOCR CCNfENTS

----+------------------ ----+------------------ ----+------------------
iPT RC-l lENaO 5

+01 vs-vPT &B-OeD
+01 RANt(*2
+0) 11111_004 0111-02
+O~ Rlll-002 0121-01

iE RC-l lEN-OS
+0 I ve-VE A8-000
+02 RANK-Z
+0) 1111'-004 Oill-O~
+04 R121=004 DIlI-OI

VPT RC- 1 LEN-09
+CI 0
+02 0
+0] a
.o~ I
+05 I
+06 0
+01 I
+08 I

WE
+01
+02
+0]
+04
+05
+06
+01
+08
+09
+10
+11
+12
+13
Hit
+15
+16

R~BI

o
I
I
o
I
o
o
I
1
o
o
o
o
o
o
o

L:EN-11

ENTRIES FOR iTI,.o •• iT~ NOw H.VE REf COS Of O. ANO HAYE BEEN ADDED TO THE
LINKED AVAILABILITY liST. AUHOOIiH THIS IS /I"" SHO~N HERE.
THE ENTRY IN THE VALue ARRAy FOR E, Ai VE+9 IN MEIIORY, rlAS BEEN
CHANGED TO 1 ev THE ASSN OPERATION~ iHRS ~NrrRV [S E«2~O'o

UANPLE 6-U' SUTE Of " AHER fiRST HHf VHROUGH IH~ SEGMtNT

~--~-~!~~~~~!-~-::~:~~~~!~~--
REGISTER OUHP
NElOn - 0 IORG - 0 fREG _ 00000 FSASE - OOlOe ISMK • 00

R~l ORG LEN DIE IS FN NWT ~P CTR MAK DIR eH I411.K
lS: +-----+-----+-----+---+---+---+---+----+ IS: +----.---+--+---+---*

• OitO , 000 I 075 , 0 I 0 I I ,] , 00 , I 003 , 00] , 0 I 1 I 1 I
I 022 , oeo , OlZ , I , I , a I 3 I co , --) I

--> ,

EFF~C TI VE AOOR - 0022 Ih OS

TAG VALUE OP vALUE LINK AUX

~s:+-----.------------------+ US: +-----+---------------+----+----+
I F"T I fCOOEI-I,O.F I I 00 , S t 0.5

-->1 01 t REO t 0 08
02 , S , 2 A-
03 , FA , QCODEIVPT.". 19
04 , FA , QCODEIVPT.61 19
05 I GUP , SUB 02 0011
Ob , NIL , 0
07 , OP , PWR 05 0011
08 OP I AOU 07 0011 _A
09 SGV , SCUIIEI SEG.A.lI
10 S I -2
II HIT I 0
IZ Nil t a
13 OP I PWK 13 0001
I~ S , -1
15 UP , ADO OZ 0001
Ib OP I ~OD JOOI
11 S , 0.0001
18 OP I GT 02 0001
19 A , QCOOEIVE,lll 06
20 OP I ASGN 02 0001
ZI POP, a
22 NLT , IlCODE 11.11 01
23 NT I IlCOUElb.21
H NLT I ;jCUDElloIl 01
25 NLT I Il~OOE (] .11

--)

THE MAIN SEGMENT .. AS REPEATED 3 MORE TIMES IN THE SAM~ ~AY AS SHO.N
FUR THE fiRST PASS. AT THIS PCINT. 3 MORE VALUES HAVE 8EEN STURED
ANO THE IS ENTRY CORRESPONDING TO THIS SEGMENT HAS 8EEN EXHAuSrtO.
THIS PUINT CORRESPCNOS TO THE COMPLETIUN Of -fU~ J-.

EXAMPU 6-18' REGI S TERS AfTtR NEXT THREf PASSH THROUGH SEGMENT

.....
to:)
Q)

EXAMPLE 6 -- E-MACHI~E

REGISTER ~UMP
~EwIT : 3 IORG z 0 FRE:G 00000

REL URG LEN DIE IS FN NwT ~P

LS: +-----+-----+-----+---+---+---+---+----+
I 040 I COO I 075 I C ! Oil I 3 I 00 I

--> I

EFF~CTIVE AODR 0240 IN M

F8ASE = 00200

TAG VALUE OP VALUE LINK AUX
VS:+-----+------------------+ QS:+-----+----------------~-+----+------+

I FMT I FCODEI-l,O,FJ I
-->1

--> I

THE LAST fiGURE WAS THE END Of THE SEGMENT. THUS. IS ~AS
STepPED. SINCE IT OVERfLOWED, IS AND LS wERE POPPED.
DE-ACTIVATING THAT SEGMENT CHANGED CONTROL FROM THE E- TO THE D-MACHINE
AND THEREFORE QI wAS RESET TO THE BEGINNING OF THE SEGME~T
JUST COMPLETED.

EXAMPLE &-19: REGISTERS AT CCMPLETtCN OF E-MACHINE EVALUATION.

MEMORY DUMP

AOOR CONTENTS AOOK CONTENTS AOOR CONTENTS

----+------------------ ----+------------------ ----+------------------iPT RC=1 LEN=05
+01 VB=VPT AB=OOO
+02 RANK=2
+03 RIIJ8004 0(IJ=02
+04 R(2J=002 0121=01

iE RC=1 LEN=05
+01 VR=VE A8=000
+02 RANK"'2
+03 Rll'=004 0111=04
+04 RI21=004 012)=01

VPT RC=1 LEN" 09
+01 0
+02 a
+03 0
+04 1
+05 1
+0& 0
+07 1
+C8 1

VE:
+01
+02
+03
+04
+05
+06
+07
+08
+09
+10
+11
+12
+13
+14
+15
+16

RC=1
o
1
1
o
1
o
o
1
1
o
o
1
o
o
c
o

LEN=17

NOTICE THAT THE VALUES AT VE+9,lO,ll,12 HAVE CHANGED fROM EXAMPLE 6-2.
THESE CORRESPOND TO EI2;J, THE ENTIRE ROW OF E TO BE CALCULATED.

EXAMPLE 6-20: MEMORY AT COMPLETION OF E-MACHINE EVALUATION

APPENDIX A

SUMMARY OF REGISTERS, ENCODINGS AND TAGS

This appendix summarizes the uses of all machine registers and details the

fields in the various stacks. In addition, the several encodings used as parametric

functions in the design description are outlined. Because of the parametric nature

of the design, not much will be said about field sizes except to indicate the range

of the contents of a particular field or register. We assume that in any particular

incarnation of such a machine, all the fields are "big enough" to contain their

contents. In the detailed algorithms of Appendix B, the registers are construed

as arrays of scalars with some kind of encoding imposed upon the contents, if

necessary. While not completely rigorous, this approach serves to show how the

machine works without having to explicitly encode and decode all references to

regi sters at each step.

A. Registers

1. LS (Location Counter Stack)

Field
Name

REL

ORG

LEN

DIE

IS

Column
Index

o

1

2

3

4

Contents

Relative location in segment. Generally points to the next
instruction to be fetched.

Segment origin. For D-machine segments, this is relative to
FBASE. In the E-machine, the effective address is +/LS[LI-l;O,lJ
and in the D-machine it is FBASE++/LS[LI -1;0,1].

Length of segment. For D-machine segments, this is in words,
and for the E-machine, this is the number of QS entries for the
segment.

Segment mode. This field is 0 for the D-machine and 1 for E
machine segments.

Iteration mark. Has value 1 if this segment is associated with
an iteration in IS; otherwise it is O.

- 137 -

FN 5

NWT 6

QP 7

Function mark. Has value 1 (else 0) if this is the main segment
of an active function.

NEWIT value, stacked when a new iteration is activated.

QS pointer. Used by index unit for expression indexed from
QS rather than IS. (See Section E.)

2.. IS (Iteration Control Stack)

Field Column
Name Index

GTR 0

MAX 1

DIR 2

CH 3

MRK 4

Contents

Current iteration count. This value is always non-negative and
varies between 0 and the value in the MAX field, in the direction
indicated by the DIR field.

Maximum iteration count.

Direction of count. (0 for positive, 1 for negative.) If positive,
then CTR is initialized to O;otherwise it is initialized to MAX.

Change. Used by SI'EPIS routine in main control cycle to mark
all IS entries which have changed since the last cycle.

Mark. Has value 1 for the outermost iteration of each nest.
Otherwise, it is O. (See ISlVIK register, below.)

3. VS (Value Stack)

Field Column
Name Index Contents

TAG 0 Tag field. Identifies kind of entry in value field.

VALUE 1 Value.

4. QS (Instruction Buffer)

Field Column
Name Index

OP 0

VALUE 1

Contents

E-machine operation code. The QS contains instructions deferred
by the D-machine for later execution by the E-machine. Occas
sionally this field will contain a tag, such as XT, for an entry
which is a temporary value for the EM rather than an executable
instruction.

Value. Contains the value in immediate instructions and the
operand for others.

- 138-

LINK 2

AUX 3

5. NT (Nametable)

Field
Name

INX

TAG

Column
Index

o

1

CONTENTS 2

6. M(Memory)

Link. This is a signed integer used to reference other instructions
and entries in QS. It is taken relative to the QS index of the entry
in which it is found. By keeping links and segment origins relative
in QS, all deferred code is relocatable.

Access mask. Contains an encoding (MCODE) of the iteration
indices to use in accessing an array expression.

Contents

Symbol index. Since NT is content-addressable, the value of
INX must be carried with each entry. These indices (or names)
may be assigned in any arbitrary way. There is no built-in
restriction on their use.

Tag. Same as tag field in VS.

Value. Same as in VS.

In the APL machine, M is considered to be a vector of length MLENGTH of words

which can be addressed between BOTM and TOPM. The particular encodings used

in M are not specified except as necessary, e.g., in instructions such as LDSEG,

the M-entry containing the operand is in SCODE encoding. Otherwise, each scalar

value is assumed to take up one machine word, as is each instruction. This is

clearly inefficient in space utilization, and it would be expected that any real

implementation would specify more reasonable and detailed encodings for various

kinds of values. Nothing in the machine design is based on the word as the primary

unit of memory in the machine, so there should be no problem in making such

modifications.

- 139-

7. Other Scalar-Valued Registers

Register
Name

LI

II

VI

QI

NI

BOTP
TOPP

ARRAVAIL
DAAVAIL

FREG

IORG

FBASE

NEWIT

ISM!(

B. Encodipgs

Contents

LS index. (All stack indices point to the next available entry
in the stack.)

IS index.

VS index.

QS index.

NT index.

POOL pOinters for 'M allocation.

Pointers to beginning of availability chains for M allocation.

V S index of innermost active function mark. When a function
is activated, the previous values of FREG and IORG are stacked
in V S in the function mark, and restored on return.

Index origin for innermost active function ..

Function origin in M. Points to beginning of the segment
containing the innermost active function. Upon exit from a
fWlction, FBASE is restored to point to the correct base from
information in the stacked function mark.

Iteration tag. Set to 1 at the beginning of a new nest of iterations,
and used by the index unit to keep indexing straight. NEWIT is
stacked in LS and restored from there each time a new iteration
nest is activated.

IS index of the marked entry closest to the top of the iteration
stack. Used by IU.

The APL machine makes use of a few specific encoding functions. These are

used for encodings which could be expected to fit within a single machine word.

Although this bias is built into the design, it is inessential to the basic ideas used

in the design, and could be changed if necessary.

- 140-

1. SCODE org, len, m • This is the encoding of a segment descriptor.

m is 0 or 1 depending on whether this segment is for the D-machine or the E-machine.

org is the beginning address and len is the length of the segment. The inverse

(decoding) functions are SORG, SLEN, and SMODE, respectively. In the EM, if

a segment descriptor is in Q8, org is relative to its QS-index.

2. JCODE len, org, s • This is the encoding for a J-vector descriptor.

The inverse functions are JLEN, JORG, J8.

3. XCODE a, b, c • Encoding used for various purposes in the E-machine.

Generally, a and b are an index and its limit, respectively. c is always a single

bit quantity. It is conceivable that the functions BCODE, JCODE, and XCODE

might be identical in a particular implementation of the APL machine, as might

their inverses. The inverse functions for XCODE are Xl, X2, and X3, respectively.

4. QCODE a, b • This encoding is used in constructing ICB's during EM

executions. Each field is potentially as large as the machine's memory and might

be signed. The decoding functions are QI and Q2.

5. "MCODE mask • This is the encoding function which takes a logical

vector which is an access mask for an array and encodes it for storage in the A UX

field of QB. The inverse function is MXl.

6. FCODE freg, iorg, name • This is the encoding used in function marks

on VB. The inverses are Fl, F2, F3.

- 141-

This section summarizes the tags which can be used in VS and NT entries.

Tag VS

UT 1

ST 1

JT 1

DT 1

FDT 1

FT o

SGT 1

NPT 1

FMT 1

RT 1

AT 1

NT

1

1

1

1

o

1

o

o

o

o

o

Meaning

Undefined value.

Scalar value.

J-vector. Such entries are moved to QS from VS almost
immediately.

Descriptor array pointer. In VS means this is a result
to be assigned to, while in NT, all array values have this
tago As with JT, DT entries will be deferred to QS as soon
as they are noticed.

Similar to DT, except the array is to be fetched. Same
note applies.

Function descriptor pointer.

Segment descriptor.

Name pointer. This is an NT index.

Function mark.

Unused (so far) reduction accumulator.

Encoded M-address.

- 142-

APPENDIX B

A FUNCTIONAL DESCRIPTION OF THE E-MACHINE

The functional description of the E-machine which follows is written in an

informal dialect of APL. It differs from "standard" APL only in its sequence

controlling statements. Instead of using branches, more sophisticated, and more

easily understood, constructions are utilized. These are summarized briefly below:

1. BEGIN... END delimits a compound statement, as in ALGOL.

2. Likewise, conditional statements and expressions of the form

IF condition THEN • • • ELSE • • •

are as in ALGOL. However, in this description, the condition part

evaluates to 1 or 0, corresponding to TRUE or FALSE in ALGOL.

3. The case construction,

CASE n OF

BEGIN

S1

S2

...
Sk

END

chooses and executes the J!! statement in the sequence. This description

has omitted some BEGIN's and END's in compound statements within the

CASE statement and substituted typographical grouping. Although this is

not syntactically rigorous, it renders the description more readable.

4. The REPEAT statement repeats its range indefinitely. Within a repeated

statement, the CYCLE statement is used to resume the main (compound)

statement from the beginning, and LEAVE aborts the innermost REPEAT.

- 143-

A THE E-MACHINE -- A FUNCTIONAL DESCRIPTION

A MAIN CYCLE ROUTINE
B.E.~Ild.T.

D.llQ.1.N.
A THIS IS THE CONTROL ROUTINE IN FIGURE 2t HOWEVER,
A ONLY THOSE PARTS RELATED TO THE E-MACHINE ARE SHOWN.

IE. -CASTOG Xll.llN.
D. lilJiI.ll.

IE. LS[LI-1;0]~LS[LI-1;2] THEN
D.llQ.I!f. A TOP SEGMENT ON LS HAS O.vERFLOWED

IE. LS[LI-1;4]=1 T.ilN.

llN.P..

D.llQI!f. A ITERATION MAY RECYCLE
LS[LI-1;0]+0
STEPIS
NEWIT + 0
IE STEPTOG T.ll.ll!f. CYCLE

llfi.P..
A DEACTIVATE TOP SEGMENT AND TRY AGAIN
LPOP
CYCLE

K + +/LS[LI-1;0,1]
IE. -QS[K;O]~IAtIFA,IJ,ISC,IXL T.ll.E.ll.

LS[LI-1;0] + LS[LI-1;0]+1
1!f.P..

CASTOG + 0
A IF ACTIVE SEGMENT IS FOR D-MACHINE Xll.ll!f. ACTIVATE DM
IE. LS[LI-1;3]=0 T.ll.ll!f. DMACHINE 1~21
Qd.§ll DECODE QS[K;O] QE. A GOES TO LABELS BELOW
D.llQ.I!f. A DELIMITS RANGE OF Qd2E. STATEMENT
A 'LABELS' BELOW NAME E-MACHINE INTERPRETATION RULBS

S} VPUSH ST.QS[K;1]

IA } D + QS[K;1]
IFA) INX + GINX K

QS[K;2,0] + QI, IE. QS[K;O]=IA IRE!!. A E.~2E. FA
I + S + 0
T + IE. LS[LI-1;7]=0 T.~E.~ NT.NLT 1l~2E. QT.QLT
(pINX) 11E.~E.4X

D.llQ.I!J.

IlNJ2.

A + GETDEL D,I A A = DEL[I] FOR THIS ARRAY
S + S+R+IF T[O]=NT THEN AxIS[INX[IJ;l] ELSE 0
QPUSH T[I;-1+pINX].(QCODE R,A}.INX[IJ,O----
I + I+1

QS[K;l] + QCODE (GETVBASE D),S+GETABASE D
ERASE D

A) IU K
FA) VPUSH IE. QS[K;OJ=A XlilN. AT,QS[K;l]

llf£ll ST,FETCH QS[K;1]

- 144-

J) IUl K

OP) EXECUTE QS[K;lJ A QS[Ki1J ENCODES A SCALAR OP

RED) VPUSH RT,O
LS[LI-liOJ + K+QS[K;2J

DUP) IE K>VI Xg~N ERROR ~k§~ VPUSH VS[VI-K;J

VXC) IE VI<2 Xg~~ ERROR ~L§~ VS[VI-l,2;J+VS[VI-2.1;J

POP) VPOP

IJ) INX + GINX K
S + (JORG QS[K;lJ) + If O=JS QS[K;lJ Xg~M -IORG ~~§~

IORG + -1 + JLEN QS[K;lJ
QS[KiJ + J.(XCODE O.S.JS D).INX,O

IXL) QS[K;O,2J + XL.GINX K

XL) VPUSH ST. IE LS[LI-l;7J=0 Xli~M IS[QS[Ki2J;OJ Ek~E
IORG + Xl QS[QS[K;2];]

IRP) QS[K;J + NIL,O,O,O

IRD) ERASE QS[K;l]
QS[K;J + NIL.O.OtO

MIT) ISMK + II
li.~E.Ed.1

flEQIfl.
VI+VI-l
IE VS[VI;oJ=SGT XgEM LEAVE

EfL12.

~~~E IE VS[VI;OJ~ST XgEfl. ERROR 
IPUSH VS[ VI; 1 J ,II=ISMK 

LPUSH O.(SORG VS[VI-l;l]),(SLEN VS[VI-l;l]),l,l,O.O 
NEWIT + 1 

SGV) T + QS[K;l] A RECALL THAT SEG DESCRS ARE RELATIVE 
VPUSH SGT.SCODE (K-SORG T).(SLEN T),SMODE T 

SG) LPUSHS K 

ISC) QS[K;O,2J + SC,GINX K 

SC) T + IS[QS[K;2];3JANEWITVQS[K;2]~ISMK 

IE T XggM LPUSHS K 
E~§g IE QS[K+l;OJEXS.XC XliEfl. 

flE.QIfl. 

ENJ2 

LS[LI-l;OJ + LS[LI-1;0]+1 
S + K+l-QS[K+l;2J 
A SET CHANGE BIT TO 0 
QS[S;l] + XCODE (Xl QS[S;lJ).(X2 QS[S;lJ),O 

- 145 -



JMP) IE (QS[K;O]=JMP)v«QS[Ki O]€JO,JNO)AVS[V1-1,l]=0) 
JO ) V(QS[K;0]€J1.JN1)AVS[V1-1;1]=1 
Jl) Xg~! LS[L1-1;0] + K+QS[K;2] 
JNO) IE QS[K;O]€JO.Jl XH~~ VPOP 
JN1) 

CY) LS[LI-1;0] + LS[LI-1;2] 

CCY) T + K+QS[K;2] 
QS[T;l] + XeODE(1+Xl QS[T;1]),(X2 QS[T;l]),l 
LS[LI-1;0] + 0 

RPT) LS[LI-1;0] + 0 

LVE) LPOP 

CAS) IE -(VS[VI-1;0]=ST)AVS[VI-1;1]€\QS[K;2] XH~~ ERROR 
LS[LI-1;0] + K+QS[K;2] 
K + K+VS[VI-1;1] 
VPOP 
eASTOG + 1 

XS) J + K-QS[K;2] 
1 + VS[VI-1;1]-IORG 
VPOP 
IE (I<0)VI>X2 QS[J;l] THEN ERROR 

~&~~ QS[J;l] + XCODE I,(X2 QS[J;l]),l 

XC) J + K-QS[K;2] 
QS[J;l] + xeODE (Xl QS[J;1]).(X2 QS[J;l]).l 

LX1) VPUSH ST,Xl QS[K-QS[K;2];1] 

LX2) VPUSH ST.X2 QS[K-QS[K;2];1] 

SX1) T + K-QS[K;2] 
QS[T;l] + xeODE VS[V1-1;1].(X2 QS[T;l]),l 

SX2) T + K-QS[K;2] 
QS[T;l] + xeODE (Xl QS[T;l]),VS[VI-l;l].l 

ORG) VPUSH ST,IORG 

E~Q A END ~d~~ STATEMENT RANGE 

~HQ A E-MACHINE INTERPRETATION RULES 

- 146-



A AUXILIARY FUNCTIONS FOR E-MACHINE 

'iJ INX + GINX K;R 

'iJ 

A INX IS A VECTOR OF QS OR IS INDICES TO ACCESS ARRAY. 
A HIGHEST COORDINATE NUMBER (I.E. FASTEST VARYING) FIRST 
R + IE LS[LI-l;7]=O XH~M II ~~£~ QS[LS[LI-l;7];2] 
INX + ~«Rp2)T2LQS[K;3])/tR 

'iJ LPOP 

'iJ 

IE LI=O XH~M ERROR ~~g~ LI + LI-l 
IE LS(LI;4]=1 XggM POPIS 
IE LS[LI;5]=1 Xll~M FNRET 
NEWIT + LS[LI;6] 
A IE THIS CHANGES MODES Xffg~ CLEAN OFF QS 
IE LS[LI;3]>LS(LI-l;3] XH~~ 

11~r.~d.x. 
ll.~r;.IN. 

IE QI = LS[LI;l] XH~M LEAVE ~~£~ QI + QI-l 
IE QSEQI;O] ~ IFA,IA,RDT Xff~~ ERASE QS[QI;l] 

~M[l 

'iJ POPIS 
II + ISMK 
!1.~E~d.X 

ll.~r;.IM 
ISMK + ISMK-l 
IE ISMK=-l Xg~N. LEAVE ~~£~ IE IS[ISMK;4]=1 Xg~M LEAVE 

E.N.[l 

'iJ LPUSH V 
IE LI=LIMAX XH~M ERROR 
LS[LI;t7] + (6tV),NEWIT.IE O~-ltV Xli~M -ltV ~~£~ LS[LI-l;7] 
LI + LI+l 

'iJ LPUSHS K 
IE O=SMODE QS[K;l] X.H~N. ERROR 
LPUSH a,(K-SORG QS[K;l]),(SLEN QS[K;l]),l,O,O,CORR K 

'iJ 

- 147-



II IUl KiT;SiR 

'iJ 

Fl CALCULATE J- VECTOR ELEMENT IN FORM XCODE( CURR ,INCR, SlV) 
T + LS[LI-l;7J 
S + (Xl QS[K;lJ),O 
IE T=O XHE~ Fl IF THERE IS A CHANGE, USE NEW ITER VALUE 

fiEJJ.lli. 

lili.!2 

IE IB[QS[Xi2Ji3JANEWITvQS[Xi2J~ISMX XHli~ 
S + IS[QS[X;2J;0],1 

~L~E IE 1=X3 QS[T+QS[K;2J;lJ XH~~ S + (Xl QS[T+K;lJ),l 
IE. S[l]=l XHfl.N. 

lilifiI!l. 

~!i-'2 

T + X3 QS[X;l] 
S[o] + IE. T=O XHlili. S[oJ EL~li -S[OJ 
QS[K;lJ + XCODE S[OJ,(X2 QS[Ki1]),T 

VPUSH ST,S[OJ+X2 QS[KilJ 

'iJ IU X;IP;IQ;SiTiD 
Fl INDEX UNIT 
S+-O 
IQ +- X+QS[Ki2] A BEGINNING OF ICB FOR THIS ARRAY 
T +- LS[LI-li7J 
B.E.E.fl.4.X 

liEQI!i. 

fl.NJ2. 

IP +- QS[IQ;2J+T 
IE T=O XHlS.f!.. 

liEQIli. Fl THIS ARRAY INDEXED BY IS 

Iiti.!2. 
fl.L~Ii 

IE.. IS[IPi3JANEfVITVIP?ISMK 'lHIili. 
liEQI!l. 

Ii!!)2 

IE (IS[IPiOJ=O)AIS[IP;2J=0 'l.lili!i. 
S +- S-Ql QS[IQ;l] 

ELSE 
--l~ (IS[IP i OJ=IS[IP;1])AIS[IP;2J=1 'lHg!i. 

S + S+Q1 QS[IQ;lJ 
E.L~fl. IE IS[IP;2J=O 'l.illi!i. 

S +- S+Q2 QS[IQ;l] 
liL~li S +- S-Q2 QS[IQ;l] 

lifl.QIN A THIS ARRAY INDEXED FROM QS 
IE. O=X3 QS[IP;l] 'lilliE LEAVE ELgg 

liE.QI.lY. 
D + (Q2 QS[IQ;lJ)xX1 QS[IP;l] 
S +- S+D-Q1 QSCIQ;l] 
QB[IQ;lJ + QCODE D,Q2 QS[IQ;lJ 

E.~!2. 
IE QS[IQ;OJEILT,QLT 'lllfl.!i. LEAVE EL£~ IQ+-IQ+1 

QS[X;lJ +- QCODE (Q1 QS[X;1]),S+Q2 QS[X;lJ 

- 148 -



V R +- FETCH X 

v 

A X IS A Q-CODED ADDRESS OF FORM QCODE(VBASE,INCR) 
R +- M(l+(Ql X)+Q2 X;] 

V EXECUTE CODOP 

v 

A CODOP IS A DYADIC OR MONADIC SCALAR OPERATOR(ENCODED) 
A EXECUTE DECODES CODOP ON THE ELEMENTS OF VS: 

A IE ISDYADIC CODOP XH~M 
A !i.~QLM 
A VS(VI-l;l] +- VS[VI-l;l] (DECODE CODOP) VS[VI-2;1] 
A VPOP 
A ~NJ2. 
A "§.l!.§.E. 
A VS[VI-l;l] +- (DECODE CODOP) VS[VI-l;l] 

V STEPIS ; I;INCR 
A STEP THE ITERATION NEST IN IS 
A SET STEPTOG +- IE DONE XffE.~ 0 E.l!.§'~ 1 
STEPTOG +- 0 
I -+- II 
l1.E~E.d.X 

!i.E.{iI~ 

Elf)2 

I +- I-l 
IE (IS[I;OJ=0)AIS[I;2J=1 XHE~ 

"o'E{ir~ 
I~ IS[I;~] XHEM LEAVE E.l!.~~ 

IS[I;O,3] +- IS[I;l],l 
Eli.!l. 

~l!.§'E. IE (IS[I;O]=IS[I;1])AIS[I;2]=0 XH~li. 
!i.E-QIM 

IE IS[I;~] XHEli. LEAVE El!.§.E IS[I;O,3] +- 0,1 
EN.!l. 

El!.~E. 
li.EQl~ 

STEPTOG +- 1 
IS[I;3,0] +- i,IS[I;O] 

LEAVE 
Eli.l!. 

+ lr IS[I;2]=O XHEM 1 El!.§E 1 

V R +- CORR K 
R +- IE QS[K;2]=0 XH~~ 0 El!.~~ K - QS[K;2] 

v 

V IPUSH V;MX 

v 

A YEO] IS COUNT (SIGNED); V[l] IS MARK 
A CASE OF COUNT=O CANNOT OCCUR (HANDLED BY D-MACHINE) 

MX +- -l+IV[O] 
Ir II=IIMAX XHEli. ERROR 
IS[II;J +- (IE V[O]<O XHE.li. MX E.l!.2E O),MX,(V[O]<O).1.V(2] 
II +- II+l 

- 149 -



APPENDIX C 

EXPANSION OF D-MACHINE OPERATORS FOR E-MACIllNE 

This appendix shows how the D-machine expands complex primitives into 

deferred sequences of E-machine instructions. It is assumed that the constraints 

noted for each operator are met, and that all operands have been tested for domain, 

conformability, and so forth before being submitted for expansion. This is not 

an important constraint since, for example, the requirement that an operand be 

beatable can always be satisfied by explicitly evaluating an unbeatable operand to 

temporary space. 

Before the expansion of any of the dyadic operations, the value stack and the 

instruction buffer are as follows: 

VS QS 

OP VALUE LINK AUX 

•• o • 0 • 0 o •• . . . . 
SGT •• --------""'i ... ~{ I Code for right operand m2 

SGT •• --------....; .... ~{ I Code for left operand m1 

where m1 and m2 are the access masks for the deferred expressions, found in the 

AUX field of QS. In the sequel, segments in QS are delimited graphically by braces 

and pointer or Greek letters are used to avoid confusion with explicit relative ad-

dressing. 

1. GDF 

The operands deferred in QS must be simple array values. The operand of 

a GDF instruction is a dyadic scalar operator, OPRo ExpanSion produces the 

- 150-



following: 

VB QB 

OP VALUE LINK AUX 

. . . .. . . 
• Code for right operand m2 

\ Code for left operand mll .. 
SGT 

GOP OPR m3 

IRD T1 m3 

In the above, T1 points to a DA containing the result rank and dimension for the 

GDF. m1' is m2 shifted left by the rank of the right operand. m3 is the logical 

.2!: of m1' and m2 (i. e., m3 m1' m.2). Because of the requirement that the 

operands be simple array values, the segments in boxes each consist of a single 

IJ or IF A instruction. 

2. RED 

By the time an expansion is to be done, any necessary transposes on the 

reducee have been performed. The variable B has value 1 if the reducee is 

beatable and is 0 otherwise. The "before" picture is: 

VB QB 

• • . . . •• . .. . . 
SGT •• -------I .. ~{ I Code for reducee m1 

The reduce operator is OPR, giving rise to the expansion below: 

VB OP QB 

OP VALUE LINK AUX 

• • • •• . . • • • . . • • 
BGT RED 

{ I Code for reducee m1 
0'1 

OP OPR m1 

SGV 0'1 
B -len 
1\fiT 
IRD @T1 B -1 m 

- 151-



where len is the length. of the reduction coordinate and Tl is a DA with the rank 

and dimensions of the result. 

3. DIOTA 

The ranking operation, corresponding to dyadic i, requires that the left 

argument be a simple vector array value. This is because this operand is evaluated 

repeatedly during the E-machine execution of the following expansion. 

VS QS 
OP VALUE LINK AUK 

o • ••• • • . . . . . 
SGT 

Code for right operand m2 

JMP 

I Code for left operand mIl 
DUP 2 

OP NE 
0'1 JNl 

J POP 

LVE 

OP ADD 

ORG 

sav 0'1 

S len 

MIT 

VXC 

POP 

IRP 

len is the length of the left operand. It should be clear from working through the 

above expansion that it is simply a literal interpretation in E-machine code of the 

definition of the ranking operator. It is assumed that the D-machine win have 

checked for the case of an empty vector as either operand, producing the correct 

result automatically. If the rank of the result is 0, that is if the right operand is 

- 152 -



a scalar, the above expansion is executed immediately by the E-machine. The 

IRP instruction is similar to!RD, except that it points to an instruction in QS 

which contains dimension information instead of referring to an explicitly-created 

DA. 

4. EPB 

Before expanding the membership operator, a check is made for the special 

cases of right-operand scalar or l-element quantity. In these cases the operation 

done is A=B or A=(, B)[1], respectively. Similarly, if the left operand is scalar 

then A=B is done. otherwise, the expansion is made in QS as below: 

VB QB 

OP VALUE LINK AUX 

. . . . . • • • • • .. • • 
SGT JMP 

CTl{ I Code for right operand m2 

Code for left operand m1 

RED 7 

DUP 2 

EO CTl 

CT2 OP EQ 

OP OR 
JNO 2 

LVE 

SGV 0'2 

S lenl 

S len2 

• • • • • 
S lenK 

Mrr 
VXC 

POP 
mp 

- 153 -



where len1, len2, ••• , lenK dimension of right operand. As in the expansion for 

DIOTA, the expansion of EPS is a straightforward E-machine translation of the 

definition of the membership operator. 

5. SUBS 

Before the SUBS expansion takes place, the subscripts have been examined 

to see if they can be beaten into the subscriptee. If an expansion is needed, then 

there must be some subscripts left. Before expansion, the registers contain: 

VS 

... 
SGT •• ----------~ 

o • 

SGT •• -----------+ 

SGT •• ----------~~ 

The rank r of the subscriptee must be the same as the number of subscript 

expressions. The rank of the result is the sum of the ranks of the subscripts 

(counting empty subscripts as rank-1). Some of the SGT entries on the VS may 

be empty, that is of the form SCODE(SEG, NIL, 0). After expansion, the picture 

- 154-



has changed to: 

VS QS 
OP VALUE LINK AUX 

SGT JMP 

Code for rightmost 
non-empty subscript 

· . . . . . . 
• 0 

. . 
Code for leftmost 

non-empty subscript 

a1{ I Code for subscriptee 

fi XT XCODE(O,11, 1) 

· . 
XT XCODE(O, lr, 1) 

Calc subs-1 

XS 

.. . . . 
Calc subs r 

XS 

sa a1 fi 
IRD @T1 ° mr 

Where 11, 12, ••• , lr is the dimension of the subscriptee, minus 1. This field of 

the XT entries is used for checking purposes in the IU (see Section E). f3 is the 

QS index of the beginning of the XT back and @T1 is a DA with the rank and 

dimensions of the result. mr is the access mask of the result. The link field of 

f3 contains r, the rank of the subscriptee, which is used in the initialization of lA, 

IFA, IJ instructions. The lines in QS marked "Calc subs k" are one of the 

- 155 -



following: 

OP VALUE LINK AUX 

ISC SCODE(SEG.K'; 1) 0 m' 

!XL 0- 0 m' 

In the first case, the k:th subscript is to be computed explicitly, which is done by 

activating SEG K', one of the non-empty subscript segments on QS. In the second 

case, the segment that was stacked on VS for this subscript was empty, so the 

actual subscript used is the same as that which was controlling this coordinate 

from the outside. The mask m' in the AUX field specifies the index environment. 

Example 4 in this chapter shows a specific instance of an expanSion caused by the 

SUBS operator. 

The remaining operator expansions are similar to SUBS, in that they are all 

special cases of it. 

6. CMPRS 

The compressor (left operand) has been evaluated to a temporary space, if 

it was not there already, and checked to see if it contains only 0 and 1 elements. 

In addition, the number of 1's,call it DIM1, has been counted and Vil, the index 

in V of the first non-O value is known; call it XA. This process is unfortunately 

necessary since we must know the rank and dimension of the result before deferral. 

The same process must be applied to the expanSion operator. Unless the com

pressor falls into a special case which can be done immediately (i. e., scalar 1 

- 156-



or 0 or vector of a1l1's or all O's) then the following expansion is made: 

VS QS 

OP VALUE 

. . . •• • • • 
SGT JMP 

(J'l{ I Code for compressee 

0'2 {I Code for compressor 

A: XT xcode( 0, XA, 0) 
p: XT xcode(O, 11,1) 

• • • •• 
'}': XT xcode(O, lk, 1) 

· . . . . 
XT xcode(O, lr, 1) 
1XL 
JNO 
LX1 
OP SUB 
OP SGN 
JNO 
DUP 
LX1 
OP SUB 
XS 

0'3 sa 2 
JO 
LX1 
OP SUB 
SK1 
RPT 
DUP 
SX1 
LX2 
XS 
POP 
LVE 

0: 1XL 
XS 

· . • • • 
ISO 0'3 
XC 

· . • •• 
!XL 
XS 
SG 0'1 
IRD @T1 

- 157-

LINK 

•• 

0 

1 
r _ 

A 

1 
'Y 

'Y 
'}' 

i\ 

1 
2 
A 
'}' 

-

--

AUX 

. . 
m21 
m11 

mk' 

ml' 

mk' 

mr' 

mr 



where Ii, ••• lr are as in the SUBS expansion; m1' through mr' are the masks for 

the individual subscripts with mk' being the mask for the compressed coordinate. 

The first XT entry is used to hold XA and XL where XL is the last value of the 

external index for the compressed coordinate. The algorithm used is as follows: 

Algorithm for compression: We wish to find XT such that 

(U/[KJX)[ ••• ;1; ••• J- X[ ••• ;XT; •• oJ 

Let XL be the last value of I from which the last XT was calculated. XA is the 

index of the first 1 in U. Then, the QS expansion for compression calculates the 

new value of XT as a function cf the new I and old XT and XL as follows: 

if 1=0 then 

else 

begin 

end 

XL-O 

XT-XA 

repeat 

begin 

T~XL-1 

if T=Othen leave 

repeat 

begin 

XT-XT-T 

end 

XL-XL-T 

end 

if U[XT]=l then leave 

7. EXPND 

The EXPND operator is treated Similarly to CMPRS. In particular, the 

expandor (left operand) is checked to see that it is a logical quantity and the number 

of l' s is compared to the length of the expansion coordinate. If the expandor falls 

- 158 -



into one of the special cases (all ones, all zeros) the result is calculated immediately. 

Otherwise, the QS expansion that follows is made to implement the expansion 

algorithm below: 

Let R be (U/[KJX)[ ••• ;1;0. oJ. Then we want to find LX such that R-if ufiJ=o 

then 0 else XG .• ;LX; ••• J. LU is the index of the last found 1 in U and LX is the 

corresponding X index (on the Kth coordinate). 

if U[IJ=O ~ R-O else 

begin 

repeat 

end 

begin 

T-x1-LU 

if T= 0 then leave 

repeat 

LU-LU+T 

if ultlTI =1 then leave 

end 

LX-LX+T 

end comment main repeat; 

R-X[ ••• ;LX; ••• J 

- 159 -



VS 

• 0 • 

S1T 

QS 

OP VALUE 

o • ••• 

0'1 {I Code for expandee 

0'2 {I Code for expandor 

0: XT xcode(LU, Iu, 1) 
{3: XT xcode(O,11, 1) 

o • 0 •• 

'Y: XT xcode(O,lk,l) 
• • • 

A: XT xcode(O,lr, 1) 
LXI 
!XL 
OP SUB 
OP S1N 
JNO 
DUP 
LXI 
OP ADD 
XS 
SG 0'2 
JO 
LXI 

0'3: OP ADD 
XS 
RPT 
POP 
!XL 
XS 
o 0 

E: IXL 
XS 
S] 

sa 
CAS 
S 
sa 
IRD 

o 0 • 

0'1 
0'2 

o 
0'3 

a 

LINK AUX 

1 
r 

1 
o 
o 
o 

'Y 

'Y 

{3 

2 

• 0 

m2 

mk' I 

mk' 

ml' 

mr' 

mr 

Note that the sequence of IXL and XS instructions starting at E does not contain a 

reference to the ~th subscript pOSition as this has already been computed at the 

beginning of the segment activated by the CAS instruction. Also, in the above, the 

quantity .fu in the X2 field of the pseudo-iteration stack at is the length of vector 

- 160-



8. ROT 

Rotation is a special case of subscripting defined as follows: 

If N is a scalar t then R+N<I>[K]M means for each L -ELT tpM 

R[ ;ILJ++M[ ;/( (K-l )tL) , (IORG+(pM)[KJ I (N-IORG)+t(pM)[KJ) ,KfLJ 

If N is an integer array withpN++(K;oetppM)/pM then 

R[ ; ILJ++MC ;/( (K-l)tL) ,(IORG+(pM)[KJ I (N[ ;IL' ]-IORG)+t( pM)[KJ) ,KfLJ 

where L'~(K;oetppM)IL. 

Thus the expansion for ROT in QS is the same as for a general subscript with all 

but the Kth coordinate being !XL, XS pairs and the Kth coordinate being computed 

according to the above definition. The explicit expansion will be omitted Since it 

is similar to what has already been shown. 

- 161-



n 
2 n 

1 0 
2 1 
4 2 
8 3 

16 4 
32 5 
64 6 

128 7 
256 8 
512 9 

1 024 10 
2048 II 
4096 12 
8 192 13 

16 384 14 
32 768 15 
65 536 16 

131 072 17 
262 144 18 
524 288 19 

1 048 576 20 
2 097 152 21 
4 194 304 22 
8 388 608 23 

16 777 216 24 
33 554 432 25 
67 108 864 26 

134 217 728 27 
268 435 456 28 
536 870 912 29 

1 073 741 824 30 
2 147483 648 31 
4 294 967 296 32 
8 589 934 592 33 

17 179 869 184 34 
34 359 738 368 35 
68 719 476 736 36 

137 438 953 472 37 
274 877 906 944 38 
549 755 813 888 39 

1 099 511 627 776 40 
2 199 023 255 552 41 
4 398 046 511 104 42 
8 796 093 022 208 43 

17 592 186 044 416 44 
35 184 372 088 832 45 
70 368 744 177 664 46 

140 737 488 355 328 47 
281 474 976 710 656 48 
562 949 953 421 312 49 

1 125 899 906 842 624 50 
2 251 799 813 685 248 51 
4 503 599 627 370 496 52 
9 007 199 254 740 992 53 

18 014 398 509 481 984 54 
36 028 797 018 963 968 55 
72 057 594 037 927 936 56 

144 115 188 075 855 872 57 
288 230 376 lSI 711 744 58 
576 460 752 303 423 488 59 

1 152 921 504 606 846 976 60 
2 305 843 009 213 693 952 61 
4 611 686 018 427 387 904 62 
9 223 372 036 854 775 808 63 

18 446 744 073 709 551 616 64 
36 893 488 147 419 103 232 65 
73 786 976 294 838 206 464 66 

147 573 952 589 676 412 928 67 
295 147 905 179 352 825 856 68 
590 295 810 358 705 651 712 69 

I 180591 620 717411 303 424 70 
2 361 183 241 434 822 606 848 71 
4 722 366 482 869 645 213 696 72 

APPENDIX D 

POWERS OF 2 

-n 
2 
1.0 
0.5 
0.25 
0.125 
0.062 5 
0.031 25 
0.Qi5 625 
0.007 812 5 
0.003 906 25 
0.001 953 125 
0.000 976 562 5 
0.000 488 281 25 
0.000 244 140 625 
0.000 122 070 312 5 
0.000 061 035 156 25 
0.000 030 517 578 125 
0.000 015 258 789 062 5 
0.000 007 629 394 531 25 
0.000 003 814 697 265 625 
0.000 001 907 348 632 812 5 
0.000 000 953 674 316 406 25 
0.000 000 476 837 158 203 125 
0,000 000 238 418 579 101 562 5 
0.000 000 119 209 289 550 781 25 
0.000 000 059 604 644 775 390 625 
0.000 000 029 802 322 387 695 312 5 
0.000 000 014 901 161 193 847 656 25 
0.000 000 007 450 580 596 923 828 125 
0.000 000 003 725 290 298 461 914 062 5 
0.000 000 001 862 645 149 230 957 031 25 
0.000 000 000 9Jl 322 574 615 478 SIS 625 
0.000 000 000 465 661 287 307 739 257 812 5 
0.000 000 000 232 830 643 653 869 628 906 25 
0.000 000 000 116 415 321 826 934 814 453 125 
0.000 000 000 058 207 660 913 467 407 226 562 5 
0.000 000 000 029 103 830 456 733 703 613 281 25 
0.000 000 000 014 551 915 228 366 851 806 640 625 
0.000 000 000 007 275 957 614 183 425 903 320 312 5 
0.000 000 000 003 637 978 807 091 712 951 660 156 25 
0.000 000 000 001 818 989 403 545 856 475 830 078 125 
0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 
0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 
0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 
0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 
0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 
0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 
0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 
0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 
0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 
0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 
0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 
0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 
0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25 
0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625 
0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 5v7 812 5 
0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25 
0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125 
0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5 
0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25 
~000000000000000~~~~~~~~_~~~~_ 

0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5 
0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25 
0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125 
0.000 000 000 000 000 000 054 210 108 624 275 221 700 372 640 043 497 085 571 289 062 5 
0.000 000 000 000 000 000 027 105 054 312 137 610 850 186 320 021 748 542 785 644 531 25 
0.000 000 000 000 000 000 013 552 527 156 068 805 425 093 160 OlD 874 271 392 822 265 625 
0.000 000 000 000 000 000 006 776 263 578 034 402 712 546 580 005 437 135 696 411 132 812 5 
0.000 000 000 000 000 000 003 388 131 789 017 201 356 273 290 002 718 567 848 205 566 406 25 
0000 000 000 000 000 000 001 694 065 894 508 600 678 136 645 001 359 283 924 102 783 203 125 
0.000 000 000 000 000 000 000 847 032 947 254 300 339 068 322 500 679 641 962 051 391 601 562 5 
0000 000 000 000 000 000 000 423 516 473 627 150 169 534 161 250 339 820 981 025 695 800 781 25 
0.000 000 000 000 000 000 000 211 758 236 8U 575 084 767 080 625 169 910 490 512 847 900 390 625 

- 162 -



CHAPTER V 

EVALUATION 

In this chapter we examine the design for an APL machine proposed in 

Chapter IV and compare its performance to more conventional architectures. 

This is done by showing that the APLM is more efficient in its use of memory 

than a less sophisticated computer doing the same task. 

A. Rationale 

In Chapter lIT, a number of design goals for the APLM were stated: 

1. Machine language should be Hclose lf to APL. 

2. Machine should be general, flexible. 

3. Machine should do as much as possible automatically. 

4. Machine should expend effort proportional to the complexity of its task. 

5. Design should be elegant, clean, perspicuous. 

6. Machine should be efficient. In particular, it should be parsimonious of 

memory allocation and acceSSing. 

We can dispose of some of these in short order. To begin with, goals 1, 3, and 

4 have obviously been satisfied. Since the machine designed implements APL, to 

goal 2 we can reply that the machine is general and flexible at least to the extent 

that APL as a language is general and flexible. For example, even though the 

APLM does not include all of the LISP primitives, if it is easy to write a LISP 

interpreter in APL, then the machine should be able to handle them with ease. 

Although I believe that the goal of elegance has been satisfied, this is not the 

place to make such judgements, nor am I the one to make them. This particular 

aspect will have to be decided by less prejudiced readers. A seventh, unstated 

goal is that the design should indeed work. It should be clear to the reader who 

has reached this point that the basic machine structure proposed is in fact sound 

and that an APL machine as described will produce correct answers. 

- 163 -



This leaves the question of efficiency to be considered. Because we have not 

detailed a complete machine, traditional measures such as encoding efficiencies 

of comparisons of cycle times cannot be used. A major emphasis throughout this 

work has been to minimize the necessity for temporary storage in expression 

evaluation and simultaneously to minimize memory accessing. While these prob

lems are often of marginal importance in a conventional design, they are quite 

Significant in an APL machine, since operands are generally arrays. Thus a 

temporary store is no longer a single word, but is potentially an array of indefinite 

size. Similarly, the conventional problem of saving a single fetch where a quantity 

might be in a register, becomes the problem of saving 1000 fetches for an array 

operand. 

The remainder of this chapter is dedicated to the evaluation of machine ef

ficiency. We take an analytic approach here, but cannot hope to have a simple 

analytic model of the machine per se which would give clean, closed-form quanti

tative data about the APLM. Instead, the analysis compares the performance of 

the APLM to a fictitious flnaive machine, Tf which is simply a straightforward 

interpreter of the semantics of APL. 

The next sect.ion discusses the naive machine (NM) and outlines the assumptions 

upon which the comparisons will be based. In the sequel, we will compare the two 

machines by looking at the number of individual fetches, stores, operations, and 

temporary stores needed to do a particular task. Different tasks will be examined 

with this in mind. At the end of the chapter, these results will be summarized 

together with some conclusions. 

B. The Naive Machine 

Although the APL machine proposed in Chapter IV has never been implemented, 

there exist concrete examples of the naive machine. These include APL \ 7090 

- 164-



(Abrams [1966J), APL\1130 (Berry [1968J), and APL\360 (Falkoff and Iverson 

[196S]; Pakin [1968]). The main feature which distinguishes the NM from the 

APLM is that the APLM defers many computations while the naive machine 

evaluates each subexpression immediately after its operands have been evaluated. 

The APLM, by contrast, does some of its evaluations immediately (e. go, scalar 

results), defers some indefinitely (by drag-along), and does still others in a non

direct way (e. g., beating). 

The following list of assumptions clarifies in more detail the differences 

between the APLM designed in this work and our "standard" naive machine as 

used in the rest of this chapter. 

1. The naive machine uses the same representation for arrays as does 

the APL machine. If the naive machine is APL\360, then this is apprOximately 

true. In fact, APL\360 does not separate DAIs from value parts in array rep

resentations. On the other hand, APL\360 represents scalars as rank-O arrays, 

and is thus more inefficient in its handling of scalar values. We assume here 

that the NM keeps scalar values in a value stack as does the APLM. We have 

also (generously) assumed that the NM uses the J-vector representation for 

interval vectors. In general, these assumptions cast the naive machine in a 

better light than any current implementation of APL. 

2. The naive machine generates a result value whenever an operator is 

found and its operands are evaluated. (This is exactly the way APL\360 works. ) 

Further, we assume that the NM will use temporary space allocated to one of 

its operands for the result, if possible;. e. g., if the expression A+ B is to be 

evaluated, a new temporary space must be found to accommodate the result. 

However, if the expression is A+ B+C; the subexpression B+C will be evaluated 

first causing the creation of a temporary t which can then be used as the result 

destination for the value of A+t. 

- 165-



3. In an assignment to a variable, as in A-expression, the naive machine 

performs the assignment simply by storing a pointer to the temporary for the 

evaluated expression in the name table entry for A. Again, this is consistent with 

the functioning of APL\360. 

4. Each operation in either the NM or the APLM requires a fixed amount 

of overhead (e.g., rank checking, domain checking, space allocation, setup, 

drag-along, etc.). An analysis of the instructions for both machines shows that 

these processes take approximately the same effort in both machines. Since 

there is no way to compare this effort with the memory usage measures discussed 

here, it will be omitted. For a single statement, this overhead appears as a 

linear additive term. 

5. Since scalars are kept in the value stack in both machines and since the 

VB mechanism is not specified (e. g., it could be a hard-wired stack, or a fast 

scratchpad memory, or it could be kept in memory with other array values), all 

scalar fetches and stores will be ignored. The effort to evaluate array expressions 

always dominates the effort for scalar expressions. 

6. There are no distinctions made between data types in the APL machine. 

We thus assume that both the APLM and the NM use the same representation for 

individual data elements. 

7. All scalar operations take the same amount of time to perform. That is, 

an add or a multiply will each be counted as a single operation. 

8. Finally, it is assumed that both the naive machine and the APL machine 

are implemented in similar technologies so that the cost of memory accesses, 

storage allocations, and operations are the same for both machines. 

- 166-



c. Analysis of Drag-Along And Beating 

To begin the analysis, let us look at a subset of the operations of APL and 

derive some analytic results comparing the APLM and the NM. The set to be 

considered is 

1. Selection operations 

2. Monadic and dyadic scalar arithmetic operations 

3. Inner products 

4. Reductions of the above (this includes outer products) 

5. ASSignments of above to unconditioned variables or to variables conditioned 

by selection operators .. 

We consider only those expreSSions which are array-valued, as scalar expreSSions 

are done Similarly in both machines. Each operation requires the machine evalu

ating it to do a certain amount of work, summarized in Table 1 below. Tables 

2A and 2 B summarize the "effort" required to do these manipulations .. 

In Table 2, some of the entries contain conditional terms or factors. These 

account for the different possible initial conditions when a subexpression is evalu

ated. Also, notice that in Table 2B, some of the entries contain references to the 

functions DOF, OOS, and 000. These are functions which, given a deferred 

expreSSion as argument, return as values the number of fetches, stores, and 

operations, respectively, necessary to evaluate the expression. Thus, for the 

APL machine, Table 2B does not tell the whole story; we must also take into 

account the efforts to evaluate the final deferred expreSSion (by the E-machine). 

Hence, it is necessary to give detailed definitions of the DOF, OOS, and DOO 

functions. 

- 167-



TABLE 1 

steps in Evaluation of APL Operators 

NAIVE MACHINE APL MACHINE 

A. Selection 0Eerators 

I. Check rank, domain of operands. 1. Check rank, domain of operands. 
2. Get space for result DA, value. 2. Get space for result DA (if operand 

is a variable). 
3. Set up DA, M-headers. 3. Set up DA. 
4. Set up copy operation. 4. Adjust VS, QS. 
5. Do copy operation. 
6. Adjust VS. 

B. Monadic Scalar Operators 

1. Get space for result DAt value I. Defer operation to QS. 
(only if operand is a variable). 

2. Set up OA, M-headers if space 2. Adjust VS, QS. 
was gotten in step 1. 

3. Do the operation. 
4. Adjust VS. 

C. Dyadic Scalar Operators 

1. Check rank, dimensions of 1. Check rank, dimensions of operands. 
operands. 

2. Get space for result DA, value 2. If one operand is a scalar, move it 
(only if both operands are to QB. 
variables). 

3. Set up DA, M-headers if space 3. Defer operation to QS. 
was gotten in step 2. 

4. Do the operation. 4. Adjust VS, QS. 
5. Adjust VS. 

D. Outer Product 

1. Get space for result OA, value. 1. If operands are deferred subexpres-
sions, then evaluate them to temp space. 

2. Set up DA, M-headers. 2. Get space for result DA. 
3. Do the operation. 3. Set up DA. 
4. Adjust VS. 4. Defer operation to QS. 

5. Adjust VS, QS. 

- 168-



Table 1 (cont.). 

NAIVE MACIITNE 

E. Reduction 

1. Get space for result DA, value. 
2. Set up DA, M-headers. 

3. Do the reduction. 
4. Adjust VS. 

F. ASSignment to Simple Variable 

1. If right-hand side is a temp then 
go to step 6, otherwise do steps 
2 through 7. 

2. Get space for DA, value. 

3. Set up DA, M-headers. 
4. Set up copy operation. 
5. Do copy operation. 
6. Adjust VS. 
7. Adjust Nametable. 

G. Assignment to a Selected Variable 

1. Check dimensions of LHS, RHS. 
2. Set up copy operation. 

3. Do copy operation. 
4. Adjust VS. 

* 

APL MACHINE 

1. Get space for result DA. 
2. If reduction coordinate is other 

than the last, then do appropriate 
transpose. 

3. Set up DA. 
4. Defer operation to QS. 
5. Adjust VS, QS. 

1. If right-hand side is a temp then 
go to step 6, else proceed. 

2. If the LHS* variable is already 
defined and is of the correct size 
and does not appear permuted as 
an operand in the deferred RHS 
then go to step 5. 

3. Get space for DA, value of LHS. 
4. Set up DA and M-headers. 
5. Defer operation in QS. 
6. Adjust VS, QS. 
7. Adjust Nametable. 

1. Check dimensions of LHS, RHS. 
2. If RHS contains deferred instances 

of LHS variable which are permuted 
differently than LHS, then proceed 
else go to step 6. 

3. Get space for nA, value of RHS. 
4. Set up DA, M-headers. 
5. Evaluate RHS to this temp. 
6. Defer selected assignment to QS. 
7. Adjust V s, Q S. 

LHS and RHS refer to the left-hand side 
and right-hand side of an assignment 
arrow, respectively. 

- 169 -



I-' 
-.;J 

o 

TABLE 2A 

Summary of Effort to Evaluate Operators - NAIVE MACHINE 

OPERATOR FETCHES STORES TEMPS 

SELECTION 
(R IS: sel 8) x/pR 4+( ppR)+x/pR Pix(4+(ppR)+x/p~ 

SCALAR MONADIC 
(R IS: OP 8) x/pR (Pix( 4+ppR»+x/pR Pi x(4+(ppR)+x/pR) 

SCALAR DYADIC 
(R IS: &) OP.'¥) Ni xx/pR (P2 x(4+ppR»+x/pR P2 x(4+(ppR)+x/pR) 

OUTER PRODUCT 
(R IS: 6f o.OP.'¥') (x/p 8)+x/pR 4+(ppR)+x/pR 4+(ppR)+x/pR 

REDUCTION 
(R IS: OP/[K] 8) x/p 8 4+( ppR)+x/pR 4+(ppR)+x/pR 

ASSIGNMENT 
A+-6f Pi xx /p8 Pi x (4+(pp 8)+x/p 8) Pi x(4+(pp 8)+x/p 8) 

ASSIGNMENT 
(sel A)+-8 x/p sel A x/p sel A 0 

Notes: P1- if 6f is a var.iable then 1 else O. P2 - if 8 and §are both variables then 1 else 0 • 

N1-- if 6f and $' are both arrays then 2 else 1. 

OPERATIONS 

0 

x/pR 

x/pR 

x/pR 

x/p6f 

0 

0 



I-' 
..;J 
I-' 

I 

TABLE 213 

Summary of Effort to Evaluate Operators - APL MACHINE 

OPERATOR FETCHES STORES TEMPS OPERATIONS 

SELECTION 
(R IS: sel .g') 0 N1 x (3+ppR) N2 x (3+ppR) 0 

SCALAR MONADIC 
(R IS: OP 8) 0 0 0 0 

SCALAR DYADIC 
(R IS: .g'OPf}}') 0 0 0 0 

OUTER PRODUCT 
(R IS: eo .OP:¥) (P1xDOF(/1) )+(P2xDOF(;!j:) 3+( ppR)+( P1xDOS(e» 3+ppR (P1 xDOO(.g') ) 

+(P2 XDOS(f}}') ) +(P2xDOO(fY) ) 

REDUCTION 
(R IS: OP/[KJe) 0 3+(ppR)+P3xN1 x (4+ppR) 3+(ppR)+P3xN1 x(3+ppR) 0 

ASSIGNMENT 
A+/1 0 P4x( 4+ ppe) P4x( 4+( ppe)+x/pe) 0 

ASSIGNMENT 
(sel A)+~ P5xDOF(e) P5x(DOS(e)+4+(ppe)+x/p~) P5x( 4+( ppe)+x/p/1) P5xDOO(Q) 

NOTE S: Nl-Number of array opnds in ~ 
Pl-if .g' contains deferred operators then 1 else 0 
P3-- if K1T /tpp8 then 1 else 0 ----
P5 - if 11 must be evaluated first then 1 else 0 - --

- -~--.-.--~.-.-.--. ~-----. ----

N2 ---...- Number of opnds with reference count > 1 
P2- if f}}'contains deferred operators then 1 else 0 
P4- if /1 is a temp or A is defined and of correct 

Size and there are no indexing conflicts 
then 0 else 1 



For the set of expressions containing only selection operations, scalar 

arithmetic operations, outer products, reductions, and assignment, it is relatively 

simple to specify the DOF, DOS, and DOO functions. Recall that in the APL 

machine, expressions are deferred in QS, which contains an operation code and 

an access mask for each entry. Let the function OP(I) be the operation code for 

QS[l;] and MASK(J) have as its value the access mask in the AUX field of QS~;J. 

Finally, for a given expression in QS, let RR be the dimension of the final result. 

For each QS entry whose opcode is lFA, lA, OP, or GOP define the function 

D(l) whose value is a dimension vector as follows: if the entry is not within a 

reduce segment then D(I) is RRo Otherwise catenate an element with the length 

of each reduction coordinate; the innermost reduction corresponds to the last 

element of D(l). Thus, D(l) is the vector of limits of the iteration stack which 

are active when instruction QS ~;J is executed by the E-machine. The idea here is 

that D(I) represents the indexing environment of QS[l;]. If N(l) is the index of the 

rightmost 1 in MASK(I) (that is, N(l)-r/(MASK(l»/l.pMASK(I», then the following 

algorithm calculates the deSired functions: 

RF-RS-RO-O 

I -starting addr of deferred expression in QS 

repeat 

begin 

if OP(I) = lFA then RF- RF+x/N(I)tD(I) 

else if OP(l)=IA then RS-RS+x/N(I)tD(l) 
.... 

else if OP(I)€OP, GOP then RO-RS+X/N(I)tD(I) 

1-1+1 

if I > segment ending addr then leave 

end 

Then DOF(&,) - RF; DOS(er)-RS; DOO(&')-RO. 

- 172-



D. Example - A Simple Subclass of Expressions 

Since the input to either the naive machine or the APL Machine may be any 

arbitrary expression,it is difficult to produce a closed-form comparison of the 

performance of the two. However, we can look in detail at a simple subset of 

expressions and obtain some estimates on how the two machines compare. 

Consider the set of expressions of the form A+&', where &' is an expression con

taining only array- shaped operands combined by scalar arithmetic operators and 

selection operators. As an aid to the analysis, construct the tree corresponding 

to the expreSSion &', and number all the nodes corresponding to operators. Then, 

construct vectors RR, RD, TY, TV, N1 and N2 as follows: 

For each node I, representing RESULT T+&", where &" is the subexpression 

rooted at node I, 

RD[ I]+x / pRESULT 

RR[I]+ppRESULT 

<.gesult .!?imension of node I) 

@esultBank of node I) 

TY[I]+ if operator is a select then -1 else if monadic then 1 else 2 

TV[ IJ+ if all sons of node I are variable names then 1 else 0 

N1[I]+ number of leaves in the subtree of node I 

N2[I]+ number of leaves in the subtree of node I accessible through a path 

not including a select operation. 

Finally, let R be the number of array operands in &' 

M be the number of monadic scalar operators in &' (i. e. , +/1=TY) 

N be the number of dyadic scalar operators .in 8 (i. e. , +/2=TY) 

S be the number of selection operators in &' (i. e. , +;-1=T1) 

z be the number of elements .in g (i. e. , x/p&,) 

Y be the rank of G" (i. e. , pp &' ) 

P be: if APLM must get space for A then 1 else O. 

Note that in a well-formed expression N=R-1. 

- 173-



Then, from Tables 2A and 2B, and the definitions of DOO, OOB, and DOF, 

we see that the effort for each machine to evaluate B is as follows: 

NAIVE MACHINE 

fetches: 

stores: 

temps: 

+/RDx ITY 

C+/RD)++/(C-1=TY)vTVAC1~TY»/(4+RR) 

+/TV/(4+RR+RD) 

operations: +/Cl~TY)/RD 

APL MACHINE 

fetches: 

stores: 

temps: 

RxZ 

Z+(Px(4+Y»++/C-1=TY)/N1x(3+RR) 

(pX(4+Y+Z»++/C-1=TY)/N2 X(3+RR) 

operations: +/(l~TY)/Z 

In general, each formula above is the sum of the relevant entries in Tables 2A 

or 2B. As the fetch formulas are obVious, we show the derivation of the store 

count for the NM. First, each operator in B calculates a result which must be 

stored immediately which gives the term +/RD. Also, temporary space must be 

allocated for selection operations and those cases of scalar operators in which 

one of the operands is not itself a temporary. In such a case, another 

4+ (result-rank) words mustbe stored. (All but one of these is for the new DA; 

the other is for the header word for the value array.) The result ranks of the 

operations in B are in the vector RR. Thus, the compression selects those 

elements of 4+RR which correspond to the conditions just stated. In particular, 

C1=TY) is a vector having a one for each selection operator and TVA(1~TY) has 

a one for each monadic or dyadic scalar operator whose evaluation requires 

temporary space to be allocated. The sum of these terms gives the formula 

shown; the other formulas are derived Similarly. 

- 174-



We can form the ratios of the corresponding quantities for each machine and 

attempt to get some estimate of their values. RF, the ratio of fetches in the naive 

machine to fetches in the APL machine,is given by: 

RF +-+ ±LBDx ITY > 
RxZ -

+/ZxTY since 
RxZ 

Thus R'D > 2 M+S-2 
, 1: ~ + R 

Z5,RD. 

N=R-l 

Hence, for fetches, the APLM does at least twice as well as the NM if there are 

at least two monadic or select operators. The worst case is when M or S or N 

is 1 and the rest are 0, in which case the ratio is 1. The above also shows that 

the ratio increases (without bound) in proportion to the number of monadic and 

select operators in the expression 8. 

The ratio of stores for the two machines, RS , is: 

RS +-+ i.:t..LRD)+±L~Cl=T4vTV,,(15,TY) ) (4+Rli) 
Z+(px(4+Y»++/( 1=TY)/Nlx(3+RR) 

~RD)++/«-1=TY)vTV"(1<TY1)/(4+RR) 
~ 

Z+(px( 4+Y) )++/Cl=TY) /Nlx(3+RR) 

(M+N+S)++/«-l=TY)V~V"(l<TY»)/(~ 
+-+ 

1 ~4+Y»++/( 1=TY)/N1 X(3+RR) 
+ Z 

(SINCE pRD +-+ M+N+S) 

But the numerators of the two fractions with denominator Z are bounded, 

while Z can increase without bounds. Thus for large Z, 

RS-::::M+N+S 

That is, in expressions in which the size of the operand arrays is large (i. e., at 

least as many elements as there are operators) the NM requires more stores 

than the APLM, approximately in proportion to the number of operators in the 

expression. 

- 175 -



In the case of temporary storage allocated, the ratio, RT. is: 

RT ~ ___ -..tiTV.L..I ..... ( 4.:..+~R:.::'D,..:.+~RR~) ____ _ 
(px(4+Y+Z»++/( 1=TY)IN2x(3tRR) 

__ "':"+,L../:TVI(pRD)p(4+Y+Z) 
(4+ Y+Z)++ I( -l=TY) IN2x( 3+RR) 

~ ~_V ____ __ 
1+±LL:1=TY)IN2X(3+RR) 

4+Y+Z 

Again, the lower bound is greater than 1, since (+ITV)2:1. In this case, the 

ratio is of the order of + lTV • for large Z. which is a function of the tree structure 

of ff rather than an explicit function of its operator count. Note that in the case 

where ~ contains no select operations and pis O,the ratio is infinite, since the 

APLM requires no temporary storage. 

For the case of operations the ratio, RO, is: 

RO ~ tL(l<TY)IRD 
+/(lTY)/Z 

But Zg?Dand the compression in both numerator and denominator select the 

same terms. Thus,R02:1 • 

E. Example - An APL One-Liner 

APL makes it easy to produce simple one-line programs to do 

some interesting task. One such is the program (expression) for find

ing all the prime numbers less than or equal to N, as shown below. 

(Index origin is 1) 

PRIMES + (2=+/[1]O=(lN)o. ilN)/1N 

Although the algorithm used is clearly ineffiCient, such expressions are not 

uncommon. Since the APLM purports to be an efficient evaluator of expressions, 

.it is worthwhile to look at this example in more detail. The machine code for 

- 176-



this expression is: 

OP OPERAND COMMENTS 

LDNF N 

IOTA This gives the compressee, IN 

LDNF N 

IOTA 

LDNF N 

IOTA These are the IN operands of outer product 

GDF MOD ( IN) 0 • 11N - Matrix of remainders of all 

possible divisions 

LDS 0 

EQ 0::( IN) o. hN - Has 1 for each 0 remainder, 

else 0 

LDS 1 

RED ADD +/[1 JO=( IN) 0 • 11N - Add rows of this 

matrix 

LDS 2 

EQ 2=+/(1)0=( IN) o. 11N - Find which columns 

have two 1 entries 

LDS 1 

CMPRS Do compression. These are the primes 

LDN PRIMES Assign result to PRIMES 

ASGN 

Since the number of scalar operations performed is the same for both 

machines, this will not be measured. At the point before executing the LDS 1 

instruction which precedes the CMPRS, the state of the APL machine is as 

shown in Fig. 1 .. 

- 177-



VS QS 

OP VALUE LINK AUX 

SGT • ~I IJ (LN) 01 

SGT RED 8 

IJ (LN) 10 

IJ ( LN) 01 

GOP MOD 2 11 

IRD @Tl 11 

S 0 

OP EQ 2 11 

OP ADD 7 11 

SGV 

S (-N) 

MIT 

IRD @T2 01 

S 2 

OP EQ 2 01 

FIGURE 1--State of the registers before compress operator. 

Up to this point, the NM used memory as follows: 

Instruction Fetches Stores TemEs 

GDF N2+N N2+2N+16 N2+2N+16 (N+5 stores and temps 
necessary to evaluate 
each iN before GDF + 
the space for result) 

EQ N2 N2 0 

RED N2 N+5 N+5 

EQ N N 0 

TOTAL 3N2+2N 2N2+4N+21 N2+3N+21 

The count for the APLM at this point is 0 fetches, 9 stores, and 9 temps for the 

descriptors T1 and T2. However, when the CMPRS operator is found, the left 

operand must be evaluated as explained in· Chapter IV. Thus, the long QS segment 

- 178 -



must be handed over to the E-machine. This requires N2 +N fetches, N+5 stores, 

and N+5 temps. In order to do the CMPRS in the NM, the right operand (L N) 

must be evaluated,requiring N+5 each of stores and temps. The CMPRS itself 

takes another N+P fetches, P+5 stores, P+5 temps in the NM, where P is the 

length of the result. In the APLM, the CMPRS is expanded and deferred,as is 

the ASGN which follows. The NM requires no work to do the ASGN. The APLM, 

after this instruction, has its QS full of deferred code for the CMPRS and ASGN. 

It had to allocate P+5 temps for the result of ASGN (assuming PRIMES was not 

the correct size already). Passing the QS to the EM requires another N+P fetches 

and P stores for the APLM. Thus the grand totals are: 

NANE MACHINE 

APL MACHINE 

FETCHES 

3N2+3N+P 

N2+2N+P 

STORES 

2N2 +5N+P+31 

N+P+23 

TEMPS 

~+4N+P+31 

N+P+23 

Recall that P is really a function of N, the number of primes less than N, 

which is asymptotic to 10; N 0 Thus, we can evaluate the performance ratios 

between the two machines in some specific cases. These ratios are RF, RS, 

and RT, the ratios of NM fetches to APLM fetches, stores, and temporaries, 

respectively. Also of interest is RM, which counts all memory access (fetches 

+ stores), and is the ratio of these two quantities. Table 3 below tabulates these 

quantities for a few values of N. 

TABLE 3 

Performance Ratios for Primes Problem as a Function of N 

N P RF RS RM RT 

10 4 2.69 7.7 3.84 4.7 
100 25 2097 138.9 4.91 70.6 
500 95 2.99 813.3 4.98 408.0 

1000 168 2.997 1683.6 4.99 843.2 
5000 669 2.999 8788.8 4.998 4395.8 

10000 1229 2.9997 17779.2 4.9992 8891.0 
50000 5}¥3 2.99994 90656.6 4.9998 45329.7 
lim logN 

3 2N 5 N 
N-oo 

- 179 -



..... 
00 
o 
I 

8TATEMENT 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

TOTAL: 

FETCHE8 

8 

2K 

1.5K 

8 

48+4 

382+38 

38+3 

382+98+1 

282+28 

8 

882+238+16 
+3.5K 

TABLE 4 

Operation Count for One Pass Through Main Loop, Program REC 

NAIVE MACHINE APL MACHINE 

8TORE8 TEMP8 FETCHE8 8TORE8 TEMP8 

28+5 8+5 0 8+4 4 

2K+5 K+5 K K+9 K+9 

0 0 1.5K 0 0 

23 21 8 31 29 

48+20 28+20 48+4 48+38 28+38 

282+28+5 82+8+5 82+8 4 4 

38+8 8+6 8+1 8+9 8 

282+68+22 82+48+22 282+48 82+28+24 82+28+24 

282+28+12 282+28+12 82+8 82+8+16 82+8+16 

8+5 8+5 8 8+9 8+9 

682+208+105 482+128+101 482+128+13 282+108+144 282+68+141 
+2K +K +2.5K +K +K 



The above table indicates that the APLM does significantly better than the 

NM on this program. The RS figures may be deceptive since in terms of total 

memory accesses the ratio approaches a limit of 5. This is still Significant, as 

is the RT ratio, which increases linearly with N (for large N). 

F. Example - Matrix Inversion Programs 

As a final example, we analyze the performance of both machines on a 

standard example, a program which does matrix inversion by elimination with 

pivoting. To avoid charges of bias, the particular program used was taken from 

the literature rather than written by the author (Falkoff and Iverson [1968a], p. 19). 

The program REC is shown in Fig. 2 and has been changed only by altering the 

syntax of the conditional branch statements. This does not affect the measure:'" 

ments made here and is done purely for esthetic reasons. 

Table 4 counts the memory accesses and temporary stores statement-by

statement for one pass through the main loop in program. REC. This loop is 

executed 8 times. All but the terms involving the variable K are independent of 

the iteration count. K varies from S to 1 from the first pass to the last. Thus, 

we can obtain the totals for all passes through the loop by multiplying non-K terms 

by 8 and by summing the K terms. This gives the counts in Table 5 below: 

Naive 
Machine 

APL 
Machine 

TABLE 5 

Total Operation Count For Main Loop, Program REC 

FETCHES srORES TEMPS 

6~ +21a2 +1068 

3 2 
28 +10.58 +144.58 2ff +6. 5~ +141.58 

- 181-



V B + REC A ; P ; I ; J ; K ; S 
A MATRIX INVERSION BY ELIMINATION WITH PIVOTING 

1 IE (2=ppA)A=/pA Xgg~ ~Ll 
A ERROR EXIT 

2 L2: 0 + 'NO INVERSE FOUND' 
3 RETURN 

A S IS DIMENSION OF A 
A P RECORDS PERMUTATIONS OF ROWS OF A 
A K SELECTS SUBARRAY OF A FOR ELIMINATION 

4 Ll: P + \K + S + ltpA 
A ADJOIN NEW COL TO A FOR RESULTS 

5 A + «Spl)~O)\A 

6 L3: 

7 
8 

9 
10 

11 

12 

13 

14 
15 

16 

17 

A ***MAIN LOOP*** (REPEATED S TIMES) 
A INITIALIZE LAST COLUMN 

A[;S+l] + l=\S 
A FIND PIVOT ELEMENT, WITH ROW INDEX I 

.1 + !A[\K;l] 
I + J \ r 1.1 

A INTERCHANGE ROWS 1 AND I 
A RECORD THE INTERCHANGE IN P 

P[l,I] + P[I,l] 
A[l,I;lS] + A[I.ljlS] 

A CHECK FOR SINGULARITY 
IE lE-30 > !A[l;l] f r/!,A XHg~ ~L2 

A NORMALIZE PIVOT ROh' 
A[l;] + A[l;] f A[l;l] 

A ELIMINATION STEP 
A + A-«l~lS) x A[l;]) o.x A[l;] 

A ROTATE A TO PREPARE FOR NEXT STEP 
A THIS BRINGS 'ACTIVE' SUBARRAY TO UPPER LEFT 

A + 1 <I> [ 1 ] 1 <l>A 
P + l<1>P 

A ITERATE ON K 
IE O<K+K-l fll~~ ~L3 

A DO COLUMN PERMUTATIONS TO PRODUCE RESULT 
B + A[;PllS] 
'\l 

EIQQBE_l: EXAMPLE PROGRAM: REC 

- 182 -



In order to compare the performance of the APL machine to the naive machine, 

let us form the ratios of the corresponding counts and see how they behave for 

different values of 8. (Recall that 8 is the dimension of the matrix being inverted 

by the program under consideration.) The first derivatives of all three ratios are 

positive for 8>0, so that all ratios are increasing as 8 increases. Table 6 sum-

marizes the properties of the ratios as a function of 8. 

Let RF(8) by the ratio of fetches in the NM to those in the APLM, RS(8) be 

the ratio of stores, RT(8) be the ratio of temporary storage allocated, and RM(8) 

the ratio of all memory accesses (fetches + stores). Then, 

RF(8) = 8~ +24.75&1-17.75 

4~ +13.25&1-14.25 

6~+21S+106 R8(8) = ~..--....;...;;;.---.;~-
282 +10.58+144.5 

RM(8) = 1482+45.75&1-123.5 

6~+23.75&1-158.75 

RT(8) = 482+12.5&1-101.5 
282 +6.58+141. 5 

TABLE 6 

Machine Comparison Ratios For Main Loop of REC 

8 RF(8) RS(S) RM(S) RT(S) 

1 1.6 0.847 0.97 0.787 

2 1.75 0.99 1.18 0.878 

3 1.82 1.15 1.36 0.978 

5 1089 1.46 1.64 1.18 

10 1.95 2 0 04 1.99 1.54 

100 1.996 2.94 2.31 1.99 

1000 1.9996 2.995 2.332 1.9997 

limit 2 3 2 1/3 2 
S-oo 

- 183 -



An examination of Table 6 shows that for input arrays A of dimension greater 

than or equal to 3,3 the APL machine does better than the naive machine by using 

fewer fetches and stores. If pA is 4,4 or more, fewer temporaries are allocated 

by the APLM. Finally, the entries for S= 10 and S= 100 show that these improve

ments rapidly reach the theoretical limits. In the region &;4 the size of descriptor 

arrays is approximately the same as the size of the value part of vectors of length 

S and not much less than the size of arrays of dimension S, S. Thus for small S, 

the extra overhead in the APLM for creating descriptor arrays in drag-along 

predominates. However, as S increases, the APL machine improves Significantly 

compared to the naive machine in its economy of memory usage and access. 

The program REC used in the previous discussion was taken straight from 

the literature and was changed only by altering the branch commands and by 

replacing the operator a by an equivalent construction (because a is no longer a 

defined operator in APL). Primarily, it is important to emphasize that this is 

not a specially prepared example designed to tout the virtues of the APL machine. In 

some sense, this is a "typical" program. By looking more closely at Table 4 

we can get a clearer idea of where the APLM does better than the NM and where 

it lags behind. 

The APL machine does better (that is, uses fewer fetches, stores, and/or 

temporaries) than the naive machine on statements 6,7,11,12,13,14 does the 

same as the NM on statement 8, and worse on statements 9, 10, and 15. The 

places where the NM does better than the APLM are precisely those statements 

or expressions in which the more successful strategy is to do an immediate 

evaluation rather than defer the operation. All three are, in this example, state

ments of the form variable -T variable, where T is an arbitrary permutation of 

the subscripts of variable. In all three of these cases, the APLM does worse 

- 184-



only by an additive constant, which is the space (and stores) required for a DA 

to describe the deferred right-band side of the expression. The NM avoids this 

by evaluating directly. The same number of fetches are done by both machines 

for these statements. Of more interest are the cases where the APLM improves 

on the NM. In all situations these are statements involving more than one operation 

on the right-hand side of the assignment arrow. By USing drag-along and beating, 

the APLM requires fewer temporaries for intermediate results, which in turn 

requires fewer stores and consequently fewer fetches when the intermediate results 

are used later in the expression. The most dramatic demonstration of the efficacy 

of drag-along is shown in the use of temps in statements 6,11, and 12 and the 

stores in statement 11. In all these cases the APL mach.i.ne uses storage in 

proport.i.on to the number of array operands while the naive machine requires 

storage proportional to the size of the array operands. Also, with the exception 

of statement 10, the number of stores for each statement is proportional to the 

size of the result for the APLM while in the NM it is generally proportional to 

both the size of the result and the number of array operations. 

As an interesting experiment to see how much these measures of the machine's 

operation are a function of the actual machine design and how much they depend 

on the sample program, the author rewrote the function REC in the form shown 

in Fig. 3, where it is renamed RECI. RECI is the same algorithm used in REC 

except that the actual permutations of array A in lines 10 and 14 ofREC have been 

eliminated by using appropriate indexing instead. Also, statement 13 in REC 

(which corresponds to statement 14 in RECl) is recast to eliminate unnecessary 

operations and to minimize temporaries in both machines. An analysis of the 

main loop similar to that for program REC is summarized in Table 7. 

- 185-



V B + RECl A ; I ; J ; N i R ; S ; T ; W 
A MATRIX INVERSION BY ELIMINATION WITH PIVOTING 
A 'OPTIMIZED' VERSION 
A THIS PROGRAM DIFFERS FROM REC IN THAT ARRAY 
A PERMUTATIONS ARE DONE BY CHANGING THE 
A PERMUTATION VECTOR. R. RATHER THAN ACTUALLY 
A PERMUTING THE MAIN ARRAY. A IS THEN ACCESSED 
A BY INDEXING WITH R. 

1 IE (2=ppA)A=/pA XH~N +Ll 
2 L2: 0 + 'NO INVERSE FOUND' 
3 RETURN 
4 Ll: R + lS + (pA)[l] 

A S IS DIMENSION OF A 
A R RECORDS PERMUTATIONS AND IS USED TO ACCESS A 
A N COUNTS ITERATIONS 

5 N + 0 
A ADD NEW COL TO A; BUILD RESULT IN LEFT COL 

6 A + (D.Spl)\A 

A ***MAIN LOOP*** (REPEATED S TIMES) 
A FIND PIVOT ELEMENT 

7 L3: J + IA[(-N)+R;N+2] 
8 I + J 1 r/J 

A INTERCHANGE BY ALTERING PERMUTATION VECTOR 
9 R[l.I] + R[I,l] 

A INITIALIZE RESULT COLUMN 
10 A[;N+l] + R[I] = lS 
11 IE lE-3D > IA[R[l];] f r/l,A XH~~ +L2 

A NORMALIZE PIVOT ROW. AND SAVE IN W 
12 W + A[R[l];] + A[R[l];] f A[R[1];N+2] 

A T IS ACTIVE COLUMN 
13 T + A[;N+2] 

A ELIMINATION STEP 
14 A[l+R;] + A[l+Ri] - T[l+R] o.X W 

A 'ROTATE' A BY ROTATING R 
15 R + 14>R 

A ITERATE ON N 
16 IE S > N+N+l fH~~ +L3 
17 B + A[iRllS] 

'i/ 

EIQQB~_~: 'OPTIMIZED' EXAMPLE PROGRAM: RECl 

- 186-



..... 
00 
~ 

TABLE 7 

Operation Count for One Pass Through Main Loop, Program REC1 

STATEMENT FETCHES 

7 4S-4N 

8 1. 5S-1. 5N 

9 8 

10 S 

11 382+3S 

12 38+3 

13 8 

14 582+58-10 

15 8 

TOTAL: 882+19.58+1 
-5.5N 

* +5 once for entire loop 
** +8+6 once for entire loop 
*** +8+5 once for entire loop 

NAIVE MAClllNE 

STORES 

3S-3N+10 

0 

23 

28+5 

2S2+28+5 

38+8 . 

8+5 

482+48+19 

8+5 

682+168+80 
-3N 

A.P L MACHINE 

TEMPS FETCHES STORES 

2S-2N+10 2S-2N S-N+17 

0 1. 5S-1.5N 0 

21 8 31 

8+5 0 8+4 

82+8+5 82+8 4 

8+6 8+1 28+10 * 
8+5 8 8+4 * 
282+48+26 282+48-6 82+30 

8+5 8 8+9 

382+118+83 382+ 11. 58+3 82+68+109 
-2N -3.5N -N 

(+10 once) 

TEMPS 

S-N+17 

0 

29 

4 

4 

8 ** 
4 *** 
31 

8+9 

28+106 
-N 

(+28+ 11 once) 



In this algorithm, as in REC, the inner loop is performed S times. The 

CO'Wlts shown in Table 7 are independent of the iteration number except for terms 

involving variable N. Examination of the program shows that N goes from 0 to 

8-1, increasing by 1 with each pass through the loop. Thus, as in the case of 

REC, we can obtain total counts for the main loop by summing the N terms and 

multiplying the others by S. The results are summarized in Table 8. 

Naive 
Machine 

APL 
Machine 

TABLE 8 

Total Operation Counts For Main Loop, Program REC1 

FETCHES STORES TEMPS 

3i3 +10sa +84S 

sr+5. 5g2+109. 58+10 1. 5g2 +108. 58tH 

An immediate, rather startling observation from this table is that all of its 

entries are strictly less than the corresponding entries in Table 5 which summarizes 

the operations of REC. This is somewhat surprising because although the rewriting 

of the program was done in order to optimize it for the APL machine, it unexpectedly 

improved performance of the naive machine, as well. In any case, this simply 

lends more weight to the data summarized in Table 9, where the performance 

ratios are computed for the two machines operating on this program. 

For program REC1, based on the data in Table 8, the ratios are: 

RF(S) = 8g2 +16.758+3.75 

3i-+9. 75St4. 75 

RS(S) = 6i3+14.5g2+81.5S 
S3+5.5sr+109.5Stl0 

RM(S) = ~4S3+31.25i-+85.25S 
4S +15. 25i-+114.25St10 

RT(S) = 3S3 +10~ +84S 

1. 5~ +108. 58tH 

.. 188 .. 



TABLE 9 

Machine Comparison Ratios For Main Loop of REC1 

S RF(S) RS(S) RM(S) RT(S) 

1 1. 63 0.81 0.91 0.8 

2 1. 91 1.04 1.23 0.99 

3 2.07 1.29 1.53 1.21 

5 2.24 1.85 2.02 1. 77 

10 2.41 3.11 2.69 3.88 

100 2.64 5.77 3.44 120.2 

1000 2.66 5.98 3.49 1871.3 

limit 22/3 6 3.5 2S 
S-ao 

G. Discussion 

In the preceding sections we look at a number of typical inputs to the APL 

machine and find that in all but a few singular cases, it evaluates them more 

efficiently than a corresponding naive machine. This is a fair kind of comparison 

because although the naive machine mentioned here is hypothetical, it is based 

on the design of existing APL implementations, at least one of which is commercially 

available. The important question, of course, is what kinds of conclusions may 

we draw from these particular cases? I offer the following: 

1. Section D derives lower bounds, all greater than 1, for the ratio between 

memory accesses and temporary use on the two machines on a simple class of 

expressions. From this and the previous section it appears that the APLM 

evaluates expressions of the type analyzed in Chapter II more efficiently than 

the NM. 

2. Operations involving scalar operands are done equally well on both machines. 

- 189-



3. Sections E and F contain more realistic program examples which were 

analyzed in detail. In both cases, the APLM improves significantly on the NM 

in its use of memory. 

4. The only cases where the APLM does worse are those expressions 

containing a single operator which does not fit into the beating scheme, and for 

which the best evaluation strategy is to evaluate immediately, rather than to 

defer. In these cases, the NM does slightly better than the APLM but only by 

a small additive constant. (This being the space and stores for the APLM to 

construct a deferred descriptor. ) 

In view of the above, it is clear that in most cases, the APL machine design 

proposed here is more efficient than a naive machine in the sense that for any 

given program, the APLM uses fewer fetches, stores, and allocates fewer 

temporaries than the naive machine. * 

* A corollary worth noting is that there exist inputs ( i. e., programs) for which 
the APLM always performs worse than the NM according to the measures derived 
here. However, this should be neither startling nor alarming and does not detract 
from the general conclusion above. 

- 190-



CHAPTER VI 

CONCLUSIONS 

In this chapter, we will summarize all that has gone before and indicate some 

directions for future research on this subject. 

A. Summary 

Although the original goal of this investigation was to produce a machine 

architecture appropriate to the language APL, some of the work done in pursuit 

of this goal is intrinsically interesting in itself. In particular, we call attention 

to the mathematical analysis discussed in Chapter II. In Chapter II, we find that 

there is a subset of APL operators (the selection operators) whose compositions 

are also selection operators. Further, compositions of these operators can be 

represented compactly in a standard form. Moreover, there is a set of trans

formations sufficient to transform any expreSSion consisting solely of selection 

operators acting on a single array into an equivalent expression in standard form. 

By extenSion, similar results are described that apply to select expressions which 

include scalar arithmetic operators, reductions, and inner and outer products. 

One result, of at least theoretical interest, is that all inner products can be 

represented as a reduction of a transpose of an outer product (Theorem Tb). 

The general dyadic form is introduced in Chapter II as a vehicle for extending 

the results about selection operators on single arrays or scalar products to 

analogous results on inner and outer products. 

In Chapter ill, we show that if arrays are represented in row-major order 

and if the representation of the storage access function for an array is kept separate 

from the array value, then the result of applying a selection operator to an array 

can be obtained simply by transforming the mapping function. This approach is 

the basis for beating, one of the novel features of the APL machine. In mathematical 

- 191 -



terms, beating is equivalent to the following: if an array is construed as a function 

(the storage access function S) applied to an ordered set of values A, and if F1, 

F2, ••• , FN are selection operators then the sequence 

F1(F2( ••• (FN(S(A»») 

is equivalent to some new function T(A) where T is a functional composition with 0: 

T-(F1 0(F2 0( ••• o(FN 0 S»» • 
- -

Chapter IV describes a machine based on the beating process and the drag-

along principle. The latter says that all array calculations should be deferred as 

long as possible in order to gain a wider context of information about the expression 

being calculated. This is done because of the possibility that extra information 

might allow the simplification of the expression to be evaluated. This is particularly 

important when, as in APL, operands are array- shaped. In effect, a language 

like APL which allows sophisticated operations on structured data to be encoded 

very compactly, makes it possible to write expressions which, though innocent

looking, require much calculation. In fact, one major goal of the machine design 

is to minimize any unnecessary calculations in evaluating APL programs. Thus, 

drag-along becomes an important way of doing so. Drag-along combines all 

element-by-element operations in an incoming expression into a single, more 

complex, element-by-element operation which need only be done once for each 

element of the result array. This is based on the fact that for most APL operators, E.. 

A f.. B means for all L Elll'1p(A f.. B) 

(A f.. B)[;/LJ ++ (F1 A)[;/LJ f.. (~ B)[;/LJ, 

where F1 and E:l depend on f.. and are normally the identity function. Simply 

stated, this says that a single element of an array-valued expression can be com-

puted by evaluating a similar expression of single elements. 

- 192-



The APL Machine is divided into two submachines, the Deferral Machine 

and the Execution Machine, in order to facilitate drag-along and beating. Con

ceptually, the DM is a dynamic, data-dependent compiler which examines incoming 

expressions (machine code) and their operand values (data) and produces instructions 

to be executed by the EM. This code is deferred in an instruction buffer and can 

also be operated upon by the DM. At appropriate times, control is passed to the 

EM which executes the deferred instructions. Since EM code must compute an 

array-valued result, a stack of iteration counters are used by the E-machine to 

produce all elements of the result one at a time. A feature of the APLM which 

makes it easy for the DM to manipulate its own deferred code is that programs 

(and deferred code) are organized into segments which contain only relative ad

dresses. Thus pieces of program can be referenced by descriptors, and these 

pieces can be relocated at will simply by changing the descriptors and not the code. 

This scheme leads to the use of a stack of instruction counters, each one of which 

refers to a currently active segment in either the EM or the DM. Thus it is easy 

for the machine to change state and recover previous states, thereby simplifying 

the entire control process. 

Chapter V contains a discussion of the machine design in which it is shown 

that at worst, the APL Machine performs the same as a naive machine executing 

the same program and at best shows a significant improvement. The primary 

parameters used in the evaluation are measures of memory utilization. Other 

measures, such as encoding densities, are not appropriate, as this aspect of the 

machine design has not been specified. Such measures should be taken into account, 

however, if it is desired to implement a machine such as this. The evaluation of 

a subset of APL containing only scalar arithmetic operators and select operators 

shows that the APLM approaches the theoretical minimum of memory accesses 

- 193-



and temporary storage utilization for this class. Further, the ratio of accessing 

operations between the NM and the APLM are Significant since the NM expends 

effort for fetching and storing in proportion to the number of operators in an 

expreSSion while the APLM does fetches in proportion to the number of operands 

and stores only once. Similarly, it is noted that for this class of expreSSions, 

the APLM needs to allocate space only for the result of an expression while the 

NM requires temporary storage which is a function of the tree structure of the 

expression being evaluated. 

In the same chapter, an analysis of an APL "one-liner" and a matrix inversion 

program containing a more general mix of operators, shows that the APLM does 

better than the NJ\II by at least a factor of 2 on these measures. A final observation 

is that the APLM described here is not significantly different in complexity from 

a naive machine. Thus, it could presumably be implemented with approximately 

the same resources. Hence, it appears that this design is an improvement and 

could profitably be used in future incarnations of machines for APL. 

Although the APL machine is an improvement over the naive approach, it 

would be absurd to claim that it is the "final solution" to the problem. Clearly, 

it is not. There are still some functions, such as compreSSion or catenation, 

which it handles awkwardly. Similarly, it is distasteful (and inefficient) to evaluate 

operands of a GDF explicitly if they are other than simple select expressions. 

Ideally, there should be no temporary storage used for the evaluation of expreSSions 

without side effects (such as embedded aSSignment). Thus, there is still work 

to be done on this problem. 

- 194-



B. Future Research 

The ideas summarized here tend to fall into two classes - extensions or 

refinements of the work already reported, and new problems suggested by the 

current research. 

In the second category is the area of mathematical analysis of APL operators. 

The work in Chapter IT of this di.ssertation barely skims the surface of this topic. 

The general problem, of course, is at the heart of "Computer Science, 11 namely 

the study of data-structures and operations upon them. However, APL and its 

extensions are rich in mathematical interest and this field deserves further, 

more concentrated investigation. Similarly, the results found in Chapter II as 

well as the structure of the machine have implications for language design. An 

important next step is to take some of the ideas which appear in the machine or 

the analysis and attempt to map them back into the programming language. As a 

trivial example, the ease with which the machine evaluates select expressions 

suggests that there ought to be the possibility of more general select expressions 

allowed to the left of an assignment arrow, e. g., it should be possible to say 

(1 1 I!\>M)+A , meaning assign A to the main diagonal of M. Again, the ease with which 

the APLM does segment activation suggests that there should be some parallel 

facility in a programming language. At the very least, APL should contain some 

more sophisticated sequence-controlling operations such as case, conditional, 

and repeat constructs. A final possibility along these lines is suggested by the 

similarity among the various selection operations. Simply that there exists such 

a compact standard form suggests that there might be a different, perhaps more 

general, set of selection primitives which would be desirable in a language like APL. 

In the direction of refinements there are several areas of interest. One is 

to try to add more parallelism to the machine. In this work, we have used the 

- 195-



implied parallelism of APL in drag-along and beating, but it appears not to be 

fully exploited. For instance, there is the interesting possibility of making 

the DM and the EM more independent, thus gaining an amount of parallelism. 

There is no reason, for example, why there could not be multiple copies of both, 

working simultaneously on different parts of an expression or program. Another 

place where parallelism could be exploited is in the E-machine. Instead of doing 

everything in serial, much could possibly be done on a grander scale. 

It appears possible to extend the formulation of the standard form to include 

more operators such as catenation, restructuring, rotation, compression, 

expansion, and explicit indexing. If such a general form could be found, the operation 

of the machine could be simplified and perhaps made more efficient. 

In order to have any real implementation of the machine, it will have to be 

extended to include instructions for input and output and other systems-type 

functions. Also, as soon as an implementation is attempted, problems such as 

encoding of data and instructions will have to be broached. Similarly, it will 

probably be necessary to consider the question of data types in a real incarnation 

of the APL machine. Other machine extensions which might be 00nsidered is the 

addition of a set of registers (possibly stacks) for eliminating some of the problems 

of temporary storage in EM code which does not follow the stacking discipline of 

VS. This, in turn, entails the addition of instructions to the machine's repertoire, 

although these might not have to be visible to the programmer. 

Although on the one hand it is counter to the idea of a language-oriented 

machine, it might be desirable to give the (systems) programmer more direct 

control over the E-machine. In particular, this would make it possible to "pre

compile" particular segments for the EM when enough information is available in 

advance. An interesting extension of this is to allow the EM to call upon the DM 

- 196-



in the same way that the DM uses the EM. This would make the overall system 

more symmetric and might increase its power and versatility. 

A further area of investigation combines language and machine design. This 

is the problem of extending APL to include more general kinds of data structures, 

such as lists or records, and then attempting to fit these into the structure of the 

machine. This problem, in turn, makes further demands on the mathematical 

analysis of the language and its operators. 

Finally, it is important to investigate the possibility of extending some of 

the methods and results of this work to other languages and data structures. 

c. Concluding Remarks 

This chapter has summarized the mathematical analysis and machine design 

reported in this dissertation and has indicated some directions for fruitful investi-

gations in the future. It is pleasing to be able to end this work with a feeling of 

accomplishment, yet it is perhaps more satisfying to know that this is not really 

an ending, but a beginning. 

The Road goes ever on and on, 
Down from the door where it began. 
Now far ahead the Road has gone, 
And I must follow, if I can, 
Pursuing it with weary feet, 
Until it meets some larger way, 
Where many paths and errands meet. 
And whither then? •• 
I can not say. 

J. R. R. T olkien 

- 197-



REFERENCES 

Abrams, P. S. [1966J. An Interpreter for IIIverson Notation." Report No. 

CS47, Computer Science Department, Stanford University (August 17). 

Adams, D. A. [1968J. A Computation Model with Data Flow Sequencing. Report 

No. CS1l7, Computer Science Department, Stanford University (December). 

Amdahl, G. M. L1964. The structure of SYSTEM/360: Part m - Processing 

Unit Design Considerations. IBM Systems Journal, Vol. 3, No.2, 144-164. 

Amdahl, G. M., Blaauw, G. A. and Brooks, Jr., F. P. [1964a]. Architecture 

of the IBM SYSTEM/360. IBM Journal of Research and Development, 

Vol. 8, No.2 (April), 87-101. 

Anderson, J. P:"'[1961. A Computer for Direct Execution of Algorithmic 

Languages. 1961 Eastern Joint Computer Conference. The Macmillan 

Company, New York, 184-193. 

Bairstow, J. N. [1969]. Mr. Iverson's Language and How It Grew. Computer 

Deciijions, Vol. 1, No. 1 (September), 42-45. 

Barton, R. S. [1961]. A New Approach to the Functional Design of a Digital 

Computer. Proceedings of the Western Joint Computer Conference, 393-396. 

Barton, R. S. [1965]. The Interrelation Between Programming Languages and 

Machine Organization. Proceedings of the IFIP Congress 1965, Vol. 2, 

617-618. 

Bashkow, T. R. L19641. A Sequential Circuit for Algebraic statement Transla

tion. IEEE Transactions on Electronic Computers, Vol. EC-13 (April), 

102-105. 

Bashkow, T. R., Sasson, A. and Kronfeld, A. 1967. System Design of a 

FORTRAN Machine. IEEE Transactions on Electronic Computers, , 
Vol. EC-16, No.4 (August), 485-499. 

- 198-



Bayer, R. and Witzgall, C. [1968J. A Data Structure Calculus for Matrices. 

Report No. 20, Information Sciences Laboratory, Boeing Scientific Research 

Laboratories, Seattle, Washington, (May). 

Berry, P. [1969]. APL\360 Primer. Form No. C20-1702-0, International 

Business Machines Corp. , White Plains, New York. 

Berry, Po [1968]. APL\ 1130 Primer. Form No. C20-1697-0, International 

Business Machines Corp. , White Plains, New York. 

Branin, Jr., F. H., Hall, L. V., Suez, J., Carlitz, R. M., and Chen, T. C. 

[1965J. An Interpretive Program for Matrix Arithmetic. IBM Systems 

Journal, Vol. 4, No.1, 2-24. 

Breed, L. M. and Lathwell, R. H. [1968]. The Implementation of APL\360. 

Interactive Systf.;lms for Applied Mathematics, Academic Press, New York, 

390-399. 

Buchholz, W. [1962]0 Planning a Computer System, McGraw-Hill Book Co. , 

New York. 

Burks, A. W. , Warren, D. W. and Wright, J. B. [1954]. An Analysis of a 

Logical Machine Using Parenthesis-Free Notation. Mathematical Tables 

and Other Aids to Computation, Vol. 8, No. 46 (April), 53-57. 

Burroughs Corporation (1. 963J • The Operational Characteristics of the Proces

sors for the Burroughs B5000. Burroughs Corporation, Detroit, Michigan. 

Clark, E. R. [1967]. On the Automatic Simplification of Source-Language Pro

grams. Communications of the ACM, Vol. 10, No. 3 (March), 160-165. 

Cohen, J. [196.7J. A Use of Fast and Slow Memories in List-Processing Lan

guages. Communications of the ACM, Vol. 10, No.2 (February), 82-86. 

Collins, G. E. [1965J. Refco ill, A Reference Count List Processing System 

for the IBM 7079. Research Report No. RC-1436, IBM Research Division, 

Yorktown Heights, New York (May 11). 

- 199-



Davis, G. M. [1960J. The English Electric KDF9 Computer System. Computer 

Bulletin, Vol. 4, 119-120. 

Dijkstra, E. W. [1968]. Go To statement Considered Harmful. (letter) Com

munications of the ACM, Vol. 11, No.3 (March), 147-148. 

Elspas, B. , Goldberg, J., Green, M., Kautz, W. H., Levitt, K. N., Pease, 

M. C. , Short, R. A. , and Stone, H. S. l1966]. Investigation of Propagation

Limited Computer Networks. Report No. AFCRL-64-376 (ill). Stanford 

Research Institute, Menlo Park, California (June). 

Falkoff, A. D. [1965]. Formal Description of Processes - The First Step in 

Design Automation. Research Note No. NC-510, IBM T. J. Watson Research 

Center, Yorktown Heights, New York (June). 

Falkoff, A. D. and Iverson, K. E. [1968a]. The APL\ 360 Terminal System. 

Interactive Systems for Applied Mathematics, Academic Press, New York, 

22-37. 

Falkoff, A. D. and Iverson, K. E. [1968bJ. APL\ 360: User's Manual. Inter

national Business Machines Corp., Yorktown Heights, New York (July). 

Falkoff, A. D., Iverson, K. E. and Sussenguth, E. H. [1964J. A Formal De

scription of SYSTEM/360. IBM Systems Journal, Vol. 3, No.3, 198-262, 

(Errata; Ibid., Vol. 4, No.1, 84). 

Galler, B. A. and Perlis, A. J. [1962J. Compiling Matrix Operations. Com

munications of the ACM, Vol. 5, No. 12 (December), 590-594. 

Galler, B. A. and Perlis, A. J. [1967J. A Proposal for Definitions in ALGOL. 

Communications of the ACM, Vol. 10, No.4 (April), 204-219. 

Hellerman, H. [1964J. Experimental Personalized Array Translator System. 

Communications of the ACM, Vol. 7, No. 7 (July), 433-438. 

- 200-



Hill, U., Langmaack, H., Schwarz, H. R. and SeegmUller, G. [1962J. 

Efficient Handling of SUbscripted Variables in ALGOL 60 Compilers. Pro

ceedings of 1962 Rome Symposium on Symbolic Languages in Data Process

ing, Gordon and Breach, New York, 331-340. 

Hillegass, J. R. [196S]. Burroughs Dares to Differ. Data Processing Magazine 

(July). 

Hoare, C. A. R. [196S]. Subscript Optimization and Subscript Checking. Algol 

Bulletin, No. 29 (November) 33-44. 

niffe, J. K. [196S]. Basic Machine Principles. American Elsevier Publishing 

Company, New York. 

niffe, J. K. and Jodeit, J. G. [1962]. A Dynamic Storage Allocation System. 

Computer Journal, Vol. 5, 200-209. 

Iverson, K. E. [1966]. Elementary Functions: An Algorithmic Approach, 

Science Research Associates, Inc. , Chicago, Illinois. 

Iverson, K. E. [1964]. Formalism in Programming Languages. Communications 

of the ACM, Vol. 7, No.2 (February), SO-SS. 

Iverson, K. E. [1962J. A Programming Language, John Wiley and Sons, New 

York (1962). 

Iverson, K. E. [1963]. Programming Notation in Systems Design. IBM Systems 

Journal, Vol. 2, No.2 (June), 117-12S. 

Jodeit, J. G. [196SJ. Storage Organization in Programming Systems. Com

munications of the ACM, Vol. 11, No. 11 (November), 741-746. 

Knuth, D. E. [1967]. The Remaining Trouble Spots in ALGOL 60. Communica

tions of the ACM, Vol. 10, No. 10 (October), 611-61S. 

Knuth, D. E. [196SJ. The Art of Computer Programming, Vol. 1: Fundamental 

Algorithms, Addison Wesler, Reading, Massachusetts. 

- 201-



Korthage, R. R. [1965]. Deeply Nested Iterations. Communications of the 

ACM, Vol. 8, No.6 (June), 377-378. 

Lawson, H. W. [1968]. Programming-Language-Oriented Instruction Streams. 

IEEE Transactions on Computers, Vol. C17, No. 5 (May), 476-485. 

Lesser, V. R. [1969]. A Multi-Level Mirco Computer Architecture. Report 

No. CGTM-87 • Stanford Linear Accelerator Center, Stanford University, 

Stanford, California. 

Lowry, E. S. and Medlock, C. W. [1969]. Object Code Optimization. Com

munications of the ACM, Vol. 12, :No. 1 (January), 13-23. 

McCarthy, J. [1963]. A Basis for a Mathematical Theory of Computation. 

Braffort, P. and Hirschberg, D. (eds.), Computer Programming and 

Formal Systems, North-Holland Publishing Co. , Amsterdam, The Netherlands. 

McCarthy, J. [1966J. A Formal Description of a Subset of ALGOL. Steel, Jr. , 

T. B. (ed.), Formal Language Description Languages for Computer Pro

gramming, North-Holland Publishing Co., Amsterdam, The Netherlands, 1-7. 

McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P. and Levin, 

M. I. [1962aJ. Lisp 1.5 Programmer's Manual. MIT Press, Cambridge, 

Massachusetts. 

McCarthy, J. [1962b]. Towards a Mathematical Science of Computation. 

Proceedings of the IFIP Congress 1962, North-Holland Publishing Co. , 

Amsterdam, The Netherlands. 

McKeeman, W. M. [1966]. An Approach to Computer Language Design. Report 

No. CS48, Computer Science Department, Stanford University, (August 31). 

McKeeman, W. M. [1967]. Language Directed Computer Design. 1967 Fall Joint 

Computer Conference, Thompson Books, Washington, D. C., 413-417. 

Meggitt, J. E. [1964J. A Character C~mputer for High-Level Language Inter

pretation. IBM Systems Journal, Vol. 3, No.1, 68-78. 

- 202-



Melbourne, A. J. and Pugmire, J. M. [1965J. A Small Computer for the Direct 

Processing of FORTRAN Statements. The Computer Journal, Vol. 8 (April), 

24-28. 

Mendelson, E. [1965J. Introduction to lVIathematical Logic, D. Van Nostrand Co. , 

Princeton, New Jersey. 

Mikhnovskiy, S. D. [l965aJ. Addressing of Elements of a Block Using Address 

Scales. Glushkov, V. M. (ed.), Problems in Theoretical Cybernetics, 

Naukova Dumka Publishing House, Kiev, U. S. S. R. Translation: JPRS 

Washington, D. C. (1966), 71-80. 

Mikhnovskiy, S. D. [1965bJ. A Method for Abbreviated Notation of Blocks of 

Data. Ibid., 38-44. 

Mullery, A. P., Schauer, R. F. and Rice, R. [1963J. ADAM: A Problem 

Oriented Symbol Processor. 1963 Spring Joint Computer Conference, 

Spartan Books, Washington, D. C., 367-380. 

Myamlin, A. N. and Smirnov, V. K. [1968J. Computer with Stack Memory. 

IFIP Congress 68, D91-D96. 

Naur, P. (ed), [1963J. Revised Report on the Algorithmic Language ALGOL 60. 

Communications of the ACM, Vol. 6, No.1 (January), 1-17. 

Pakin, S. [1968J. APL\360 Reference Manual, Science Research Associates, 

Inc. , Chicago, illinois. 

Randell, B. and Russell, L. J. [1964J. ALGOL 60 Implementation, Academic 

Press, London. 

Satterthwaite, E. [1969J. MUTANT 0.5, An Experimental Programming Language. 

Report No. CS120, Computer Science Department, Stanford University, 

Stanford, California (February 17). 

- 203-



Sattley, K. [1961J. Allocation of Storage for Arrays in ALGOL 60. Communica

tions of the ACM, Vol. 4, No. 1 (January) 60-65. 

Senzig, D. N. and Smith, R. V. [1965]. Computer Organization for Array 

Processing. 1965 Fall Joint Computer Conference, Spartan Books, 

Washington, Do C. , 117-128. 

SUgimoto, M. [1969]. PL/I Reducer and Direct Processor. Proceedings of the 

24th National Conference, Association for Computing Machinery, New York. 

Wagner, R. A. [1968]. &>me Techniques for Algorithm Optimization with Ap

plication to Matrix Arithmetic Expressions. Computer Science Department, 

Carnegie-Mellon University (June 27). 

Weber, H. [1967]. A Microprogrammed Implementation of EULER on IBM 

System/360 Model 30. Communications of the ACM, Vol. 10, No.9 

(September), 549-558. 

Wilkes, M. Vo [1965J. Slave Memories and Dynamic Storage Allocation. IEEE 

Transactions on Electronic Computers, Vol. EC-14, No.2 (August), 270-271. 

Wirth, N. [1967]. On Certain Basic Concepts of Programming Languages. Report 

No. CS65, Computer Science Department, Stanford University, Stanford, 

California (May 1). 

Wirth, N. and Weber, H. [1966]. EULER: A Generalization of ALGOL and its 

Formal Definition. 

Part I: Communications of the ACM, Vol. 9, No. 1 (January), 13-23; 

Part II: Communications of the ACM, Vol. 9, No.2 (February), 89-99; 

Errata: Communications ofthe ACM, Vol. 9, No. 12 (December), 878. 

Wortman, D. W. [1970]. PL/I Directed Language Design (to appear). 

Yershov, A. P., Kozhokhin, G. I. and Volushin, U. M. [1963]. Input Language 

For Automatic Programming Systems, Academic Press, London. 

- 204-


