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1. Introduction. 

We consider the m.up.ber of operations required to evaluate the 

elementary functions exp(x) , log(x) ~, art an (x) , sin(x) , etc., 

with relative error 0(2-n) , for x in some interval [a,b] , and 

large n. Here, [a,b] is a fixed, nontrivial interval on which 

the relevant elementary function is defined. The results hold for 

computations performed on a multitape Turing machine, but to simplify 

the exposition we assume that a standard serial computer with a 

random-access memory is used. 

Let M(n) be the number of operations required to multiply two 

integers in the range [0,2n) . We assume the number representation 

is such that addition can be performed in O(M(n)) operations, and 

that M(n) satisfies the weak regularity condition 

M(a: n) ~ ~M(n) , (1.1) 

for some a: and ~ in (0,1), and all sufficiently large n. 

Similar, but stronger, conditions are usually assumed either explicitly 

[6] or implicitly [9]. Our assumptions are certainly valid if the 

Schonhage-strassen method [9,11] is used to multiply n-bit integers 

(in the usual binary representation) in a (n log(n) log log(n)) 

operat ions. 

The elementary function evaluatione may be performed entirely in 

fixed point, using integer arithmetic and some implicit scaling scheme. 

However, it is more convenient to assume that floating..;point computation 

is used. For example, a sign and magnitude representation could be 

used, with a fixed-length binary exponent and an n-bit binary fra.ction. ! 

Our results are independent of the particular floating-point number 

system are used, so long as the following' condit:ions are satisfied. 

1. Real numbers which are not too large or small can be approximated 

by floating-point numbers, with a relative error 0(2-n) • 

2. Floating-point addition and multiplication can be performed in 

O(M(n)) operations, with a relative error 0(2-n) in the result. 

~ log(x) denotes the natural logarithm. 
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3. The precision n is variable, and a fJ.oating-point number with 

preciSion n may be approximated, wi.thtrelative error O(2-m) 

and in O(M(n)) operations, by a floating-point number with 

precision m, for any positive m < n . 

Throughout this paper, a floating-point number means a number in 

some representation satisfying conditions 1 to 3 above, not a single­

precision number. We say that an operation is performed with 

precision n if the result is obtained with a relative error O(2-n) • 

It is assumed that the operands and result are approximated by floating­

point numbers. 

The main result of this paper, established in Sections 6 and 7, 
is that all the usual elementary functions may be evaluated, with 

precision n, in O(M(n) log(n)) operations. Note that O(M(n)n) 

operations are required if the Taylor series for log(l+x) is summed 

in the obvious way. Our result improves the bound O(M(n) log2(n)) 

given in [3], although the algorithms described there may be faster 

for small n . 

Preliminary results are given in Section 2 to 5. In Section 2 

we give, for completeness, the known result that division and 

extraction of square roots to precision n require O(M(n)) operations. 

Section 3 deals brieflY with methods for approximating simple zeros 

of nonlinear equations +'0 precision n, and some results from the 

theory of elliptic integrals are summarized in Section 4. Since our 

algorithm~ for elementary functions require a knowledge of ~ to 

precision n, we show, in Section 5, how this may be obtained in 

O(M(n) log(n)) operations. An amusing consequence of the results of 

Section 6 is that err may also be evaluated, to precision n, in 

O(M(n) log(n)) operations. 

From Theorem 5.1 of [3], at least O(M(n)) operations are 

required to evaluate exp(x) or sin(x) to precision n. It is 

plausible to conjecture that O(M(n) log(n)) operations are necessary. 

Most of this paper is concerned with order of magnitude results, 

and multiplicative constants are ignored. In Section 8, though, we 

give upper bounds on the constants. From these bounds it is possible 

to estimate how large n needs to be before our algorithms are faster 

than the conventional ones. 
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After this report was written, Bill Gosper drew my attention to 

the paper of Salamin [10], where an algorithm very similar to our 

algorithm. for evaluating T( is described. A fast a.lgorithm for 

evaluating log(x) was also found (independently) by Salamin 

(see [2]). 

2. Reciprocals and Square Roots. 

In this section we show that reciprocals and square roots of 

floating-point numbers may be evaluated,to precision n, in O(M(n)) 

operations. To simplify the statement of the following lemma, we 

assume that M(x) = 0 for all x < 1 . 

OJ 

Lemma 2.1. If r € (0,1) ,then ~ M(rJn) = O(M(n)) as n ~ OJ • 

j=O 

Proof. If a and ~ are as in (1.1), there exists k such that 
OJ. OJ. 

~ M("Jn) ::; k ~ M(crJn) ::; kM(n)/ (l-~) + 0(1) , k 
" ::;0:. Thus, 

j=O j=O 

by repeated application of (1.1). Since M(n) ~ 00 as n ~ OJ , the 

result follows. 0 

In the following lemma, we assume that 1/ c is in the allowable 

range for floating-point numbers. Similar assumptions are implicit 

below. 

Lemma 2.2. If c is a nonzero floating-point number, then l/c can 

be evaluated, to precision n, in O(M(n)) operations. 

Proof. The Newton iteration 

x . + 1 = x. (2 - ex. ) 
~ ~ ~ 

(2.1) 

converges to 1/ c with order 2. In fact, if x. = (1 - £.) / e , 
~ l. 

substitution in (2.1) gives £i+1 = £~. Thus, assuming \ £0 \ < 1/2 , 
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i 
we have \€i l < 2-2 for all i ~O , and xk is a sufficiently 

good approximation to 1/ c if k ~ log2 ~. Th~s assumes that (2.1) 

is satisfied exactly, but it is easy to show that it is sufficient to 

use precision n at the last iteration 

slightly greater than n/2 for i = k-2 

efficient methods, are given in [3,4].) 
Lemma 2.1. Since x/y = x(l/y) , it is 

(i = k-l) , precision 

, etc. (Details, and more 

Thus, the result follows from 

clear that floating-point 

division may also be done in O(M(n)) operations. 0 

Lemma 2.3. If c > 0 is a floating-point number, then c 1/2 can be 

evaluated, to precision n, in O(M(n)) operations. 

Proof. If c = 0 then cl / 2 = O. If c 1= 0 , the proof is similar 

to that of' Lemma 2.2, using the Newton iteration xi+l = (xi + c/xi ) /2 • 0 

Lemma 2.4. For any fixed k > 0, M(kn) = O(M(n)) as n ~ 00 • 

Proof. Since we can add integers less than 2n in O(M(n» 

operations, we can add integers less than 2kn in O(kM(n» = O(M(n» 

operations. The multiplication of integers less than 2kn can be 

split into O(k2) multiplications of integers less than 2n , and 

O(k2) additions, so can be done in O(k~(n» = O(M(n» operations. 0 

3. Solution of Nonlinear Equations. 

In Section 6 we need to solve nonlinear equations to precision n. 

The following lemma is suffiGient for this application. Stronger results 

are given in [3,4]. 

Lemma 3.1. If the equation f(x) = c has a simple root ,1= 0 , 

f' is Lipschitz continuous near " and we can evaluate f(x) to 

precision n in O(M(n)~(n» operations, where ¢(n) is a positive, 

monotonic increasing function, for x near "then , can be 

evaluated to precision n in O(M(n)¢(n» operations. 
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Proof. Consider the discrete Newton iteration 

x. - hi(f(x.) - c) / (f(x. + h.) - f(x.» 
~ ~ ~ ~ ~ 

(3.1) 

If h = 2-n/2, X. -, ::: O(2-n/ 2) , and the right side of (3.1) is 
i ~ 

evaluated with precision n, then a standard analysis shows that 

x
i
+1 - C = O(2-n) · Since a sufficiently good starting approximation Xo 

may be found in 0(1) operations, the result follows in the same way 

as in the p~oof of Lemma 2.2, using the fact that Lemma 2.1 holds with 

M(n) replaced by M(n)¢(n) • The assumption 'F 0 is only necessary 

because we want to obtain , with a relative (not absolute) error 

O(2-n) . 

Other methods, e.g. the secant method, may also be used if the 

precision is increased appropriately at each iteration. I~ 

4. Results on Elliptic Integrals. 

In this section we summarize some classical results from elliptic 

integral theory. Most of the results may be found in [1], so proofs 

are omitted. Elliptic integrals olf the first and second kinds are 

defined by 

F(cp,a) 

and 

cP . 2 2 1/2 
E(cp,a) ::: S (1 - sin a sin 9) de 

o 
, 

respectively_ For our purposes we may assume that a and cp are 

in [0, 1C/2] • The complete elliptic integrals, F( rc/2 , a) and 

E(rc/2, ex) , are simply written as F(a) and E(a) , respectively. 
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Legendre t S Relat ion. 

We need the identity 

and, in particular, the special case 

(4.4) 

Small Angle Approximation. 

From (4.1) it is clear that 

(4.5) 

as 0: ..... 0 . 

Large Angle Approximation. 

From (4.1), 

, (4.6) 

uniformly for . 0 ~ cP ~ CPo < rr./2 , as 0: ..... rr./2. Also, we note that 

F(cp, 1f./2) : = log tan( rr./4 + ~/2) (4.7) 

Ascending Landen Transformation. 

o < ~. + 1 < cp. < 1(/2 , 
1; 1 -

sin 0:. = tan
2

(0:. 1/2) 
J.. 1+ 

, (4.8) 

and 

sin 0:. sin cpo , 
1 1 

then 

(4.10) 
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_ 1/2/ sO+l - 2s. (1+ s.) , 
~ 1 1 

and (4.9) gives 

where 

and 

v i +1 = W3/ (1+ (1+ w~)1/2) , 

2 
wI = sin(2q>·+l-CP.) = 2s.v. / (1+ v.) 

1 1 111 

Arithmetic-geometric Mean Iteration. 

(4.11) 

( 4.12) 

(4.13) 

, ( 4.14) 

(4.15) 

From the ascending Landen transformation it is possible to derive 

the arithmetic-geometric mean iteration of Gauss: if a
O 

= 1 , 

bo = cos ex > 0 , 

and 

(a. + b.)/2 
1 1 

= (a.b. )1/2 
1 1 

then 

, 

, 

lim a. 
1 i -+00 

1( / [2F( ex) ] 

Also, if Co = sin ex and 

then 

E(ex) / F(ex) = 1 - £ 2 i - l c~ 
i=O 1 
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1m. Infinite Product. 

Let si' ai and bi be as above, with a = rr./2 - aO ' so 

So = bO/ao · From (4.11), (4.16) ~d (4·~7), it follows that 

( 1 + s.) /2 = a. + 1/ a . , and 
~ ~ ~ 

co n [(1+s.)/2] = lim a. 
'-~ ~ . ~ 
~=J ~ -+co 

(4.21) 

follows from (4.18). (Another connection between (4.11) and the 

arithmetic-geometric mean iteration is evident if So = (1 - b~/a~) 1/2 . 

Assuming (4.11) holds for i < 0 , it follows that 

s . = (1_b~/a~)1/2 for all i >0 • This may be used to deduce 
-~ ~ ~ 

(4.18) from (4.10).) 

5. Evaluation of 1t ." 

Let a
O 

= 1 , A = lim a. , and T = lim t. , . ~ . ~ 
~ -+ <Xl ~ -+ <Xl 

where a. ,b. and c. are defined by (4.16), (4.17) and (4.19) for 
~ ~ 1 

i ~ 1 , and 
i 

t. = 1/2 - Li 
~ 

j-1 2 
2 c .. 

J 
From (4.4), (4.18) and (4.20), 

we have 

(5. 1 ) 

Since a i > bO > 0 for all i ~ 0 , and ci+1 = a i - a i+1 = a i+1 -bi ' 

1/2 2 
(4.17) givesbi+1 = [( ai+1 + ci+1) (ai+1 - c i+1) ] = a i+1 - 0 (c i+1) , 

2 so c i+2 = 0(ci+1) . Thus, the process converges with ord~r at 

least 2, and 10g2 n + 0(1) iteration~ suffice to give an error 

0(2-n) in the estimate of (5.1). A more detailed analysis shows 
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• 

that 2 2 
a.+l/t. < 1t < a./t. 

1; 1. 1. 1. 
for all i > 0 , and also 

and 2 i+3 2 i 
1t - a./t. 1 ,-.J 2 1t exp( -2 :n:) 

1 1-

as i ~ 00. The speed of convergence is illustrated in Table 1 . 

Table 1: Convergence of approximations to :n: • 

2 2 
i 1( - ai+l/t i a./t. - 1( 

~ l. 

0 2·3'-1 8.6' -1 

1 1.0'-3 4.6'-2 

2 7·4'-9 8.8'~5 

3 1.8'-19 3 .l' ... 10 

4 5·5'-41 3.7' -21 ' 

From the discussion above, it is clear that the following 

algorithm, given in pseudo-Algol, evaluates :n: to precision n. 

Algorithm for 1t. 

-1/2 A ... 1; B 4- 2 ; T ... 1/4; X 4- 1; 

while A-B > 2-n do 

begin Y ... A; A ... (A+B) 12; B 4- (BY) 1/2; 

T 4- T - ~( A -Y) 2; X 4- 2X 
.\ 

end; 

2 2 
return A IT [or, better, (A+B) I (4T) ] . 

Since log2 n + 0(1) iterations are needed, it is necessary to 

work with precision n+O(log log(n») , even though the algorithm is 

numerically stable in the conventional sense. From Lemmas 2.2 to 2.4, 
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each iteration requires O(M(n)) operations, so ~ may be evaluated 

to precision n in O(M(n) log(n)) operations. This is asymptotically 

2 faster than the usual O(n) methods [8,13] if a fast multiplication 

algorithm is used. A high-precision computation of ~ by a similar 

algorithm is described in (5]. Note that, because the arithmetic-

geometric mean iteration is not self-correcting, we can not obtain a 

bound O(M(n)) in the same way as for the evaluation of reciprocals 

and square roots by Newton's method. 

6. Evaluation of exp(x) and log(x) . 

Suppose 5 > 0 fixed, and mE [0, 1-0] . If . 1/2 
s~n 0: = m , o 

we may evaluate F(O:O) to precision n in O(M(n) log(n)) operations,· 

using (4.18) and the arithmetic-geometric mean iteration, as for the 

special case F(~/4) described in Section 5. (When using (4.18) we 

need ~, which may be evaluat ed as described above.) Applying the 

ascending Landen transformation (4.8-10) with i = 0,1, ... ,k-l and 

~O = ~/2 gives 

F(Qlk,ak ) = { II [(1 + sin ai )/2 l) F(ao) ( 6.1) 

Since So = sin 0:0 = m1/ 2 ~ 01/ 2 > 0 , it follows from (4.11) that 

s. ~ 1 as i ~ 00. In fact, if s. l-E., then 
1. ~ ~ 

Ei+ 1 = 1-s i +1 1 - 2(1-E i ) 1/2 / (2- (1) = fJ8 + Q (Ei) , so si ~ 1 

with order 2 . Thus, after k,...., log2 n iterations we have 

I 
and, from (4.6) and (4.7), 
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As suming k > 0 , the error is uniformly ° (2 -n) for all 

m E [5 , 1-5] , since CPk ~ CPl < rr/2 · 

Define the functions 

and 

where 

T (m) = tan( rc/4 + cP )2) , 

cP = lim cp. • 
00. ~ 

~ _00 

Since s. - 1 with order 
~ 

2 , the infinite 

product in (6.3) is convergent, and U(m) is analytic for all 

(6.2) 

(6.3) 

(6.4.) 

mE (0,1) . Taking the limit in (6.1) and (6.2) as n (and hence k) 

tends to CX), we have the fundamental identity 

U(m) = log T(m) (6·5) 

Using (4.11) to (4.15), 'we can evaluate 

U(m) = (~ [(1+8 i ) / 2l) F(ao) + O(2-n
) and 

T(m) = (l+vk)/(l-vk) + 0(2-n) , to precision n, in O(M(n) log(n)) 

operations. The algorithms are given below in pseudo-Algol. 
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Algorithm for U(m) . 

1/2 A ~ 1; B ~ (l-m) ; 

while A-B > 2-n/ 2 do 

begin C ~ (A+B) /2; B ~ (AB) ~/2 \ A ~ C end; 

A ~ n/(A+B); S ~ m1/ 2 ; 

while l-S > 2 -n/ 2 do 

begin A ~ A(l+S) /2; 8 ~ 281/ 2/(1+8) end; 

return A(l+S) /2. 

Algorithm for T (m) • 

1/2 V ~ 1; 8 ~ m ; 

-n while l-S > 2 do 

begin W ~ 28V/ (1+~) ; 

, W ~ w/ (1+ (1_W2) 1/2) ; 

W ~ (V+W) / (l-VW) ; 

V ~ 'v/ (1+ (1+W2) 1/2) ; 

S ~ 28
1

/
2

/ (l+S) 
I 

return (l+V)/(l-V) ~ 
j 

Properties of U(m) .. an~ T (m) . 

From (4.21) and (6.3), 

U(m) = (n/2)F(Cia) /F( rr./2 - Cia) , 

where 
1/2 . 

sin Cia = m as before. Both F(Cia) 

(6.6) 

may 

be evaluated by the arithmetic-geometric mea.n iteration, which leads 
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to a slightly more efficient algorithm for q(rn) than the one 
I ; 

above, because the division by (l+S) in the final "while" loop is 

avoided. From (6.5) and (6.6), we have the special cases 

U(1/2) = ~/2 and T(1/2) = e~/2. Also, (6.6) gives 

U(m)U(l-m) = 1(2/4 , 

for all rn E (0,1) • 

Although we shall avoid using values of m near 0 or 1, it 

is interesting to obtain asymptotic expressions for U(m) and T(m) 

as rn - 0 or 1. From the algorithm for T(rn) , 

as E - o. Thus, from (6.5), 

2 
U(l-E) = L(E) - E/4 + a(E) 

where L(E) = 10g(4/El / 2) . Using (6.7), this gives 

and hence 

Some values of U(rn) and T(m) are given in Table 2. 
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Table 2: The functions U(m) and T(m) 

m U(m) T(m) 

0.01 0.6693 .1.9529 

0.05 0.8593 2.3615 
0.10 0·9824 2.6710 

0.20 1.1549 3.1738 

0.30 1.2972 3.6591 

0.40 1.4322 4.1878 

0·50 1.5708 4.8105 

0.60 1·7228 5·6004 

0·70 " 1·9021 6.6999 
0.80 2.1364 8.4688 

0·90 2·5115 12.3235 

0·95 2.8714 17·6617 

0·99 3.6864 39·8997 

Evaluation of exp(x). 

To evaluate exp(x) to precision n, we first use identities 

such as 2 exp(2x) = (exp(x)) and exp(-x) = l/exp(x) to reduce the 

argument to a suitable domain, say l<x<2 - - (see below). We then 

solve the nonlinear ,equ~tion 

U(m) = x , (6.8) 

obtaining m to precision n, by a method such as the one described 

in Section' 3. From Lemma 3.1, with ¢(n) = 10g(n) , this may be done 

in O(M(n) log(n)) operations. Finally, we evaluate T(m) to 

preCision n, again using O(M(n) 10g(n)) operations. From (6.5) 

~nd (6.B), T(m) = exp(x) , so we have computed exp(x) to precision n • 

Any preliminary transformations may now be undone. 
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Evaluation of log(x). 

Since we can evaluate exp(x) to precision n in O(M(n) log(n)) 

operations, Lemma 3.1 shows that we can also evalute log(x) in 

O(M(n) log(n)) operations, by solving the equation exp(y) = x to 

the desired accuracy. A more direct method is to solve T(m) = x 

(after suitable domain reduction), and then evaluate U(m) . 

Further Details. 

If x E [1,2] then the solution m of (6.8) lies in (0.10, 0.75) , 

and it may be verified that the secant method, applied to (6.8), 

converges if the starting approximations are mO = 0.2 and ml = 0·7 . 

If desired, the discrete Newton method or some other locally convergent 
! 

method may be used after a few iterations of the secant method have 

given a good approximation to m . 

Similarly, if x E [3,9] , the solution of T(m) = x lies in 

(0.16, 0.83).:, and the secant method converges if mO = 0.2 and 

m
l 

= 0.8 . 

If x = l+E where E is small, and for domain reduction the 

relation 

log(x) = log(Ax) -log().,) 

is used, for some ).,E (3,9) , then log().,x) and log().,) may be 

evaluated as above, but cancellation in (6.9) will cause some loss 

of precision in the computed value of log (x) • If lEI> 2-n , ~t 

is sufficient to evaluate log().,x) and log().,) to precision 2n, 

for at most n bits are lost through cancellation in (6.9). On the 

other hand, there is no difficulty if lEI < 2-n , for then 
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log(l+£) = £(1+ 0(2-n)) . When evaluating exp(x) , a similar loss 

of precision never occurs, and it is sufficient to work with precision 

n+ O(log log(n)) , as in the evaluation qf 1t' (see Section 5). To 

summarize, we have proved: 

Theorem 6.1. If -00 < a < b < 00 , then O(M(n) log(n)) operations 

suffice to evaluate exJ,>(x) to precision n, uniformly for all 

floating-point numbers x E [a, b] ,as n ..... 00. Similarly for log(x) 

if a > 0 • 

7. Evaluation of Trigonometric Functions. 

Suppose e > 0 fixed, and x E [8,1] • Let So = sin 0b = 2-n/
2 

/ / 
2 1/2 and Vo = tan(<po 2) = x (1+ (l+x) ), so ,tan CPo = x. Applying 

the ascending Landen transformation, as for (6.1), gives 

Also, from (4.5) and the choice of sO' 
J I 

F(<po,ao) = artan(x) + 0(2-n) (7.2) 

l ( 1/2 . 
From (4.11), si+l ~ si ,so there ~s some j ~ 10g2 n + 0(1) 

such that s. E [1/4, 4/5] . Since s. - 1 with order 2, there is 
J 1 

some k ~ 2 10g2 n + 0(1) such that l-sk = 0(2-n) ~ From (4.6) and 

(4.7), F(CPk'~) = log tan(~/4 + cpki2) + 0(2-
n

) • Thus, from (7.1) 

and (7.2), 

art an (x) = C It [2/ (l+Si)]} log tan( rc/4 + cpJ2) + 0(2 -n). (7.3) 
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If we evaluate tan( 1(/4 + <Pk/2) as above, and use the algorithm of 

Section 6 to evaluate the logarithm in (7.3), we have art an (x) to 

precision n in O(M(n) log(n)) operations. The algorithm may be 

written as follows. 

Algorithm for art an (x) , x E [5,1] . 

-n while l-S > 2 do 

begin Q ~ 2Q/(1+S); 

W .... 2SV/ (1+1); 

W .... W/ (1 + (1_W2) 1/2) ; 

W ~ (V+W)/(l-VW); 

V ~ W/ (1 + (1+W2) 1/2) ; 

S .... 2Sl /2/ (l+S) 

return Q log«l+V)/(l-V)). 

After k iterations, so at most 2 log2 n + 0(1) bits 

of precision are lost because V is small. Thus, it is sufficient to 

work with precision n+ O(log(n)) , and Lemma 2.4 justifies our claim 

that O(M(n) log(n)) operations are sufficient to obtain art an (x) 

to precision n . 

If x is small, we may use the s~e idea as that described 

above for evaluating log(l+e) : work with precision 3n/2 + O(log(n)) 

if x > 2-n/2 , and use art an (x) = x(l+ 0(2-n)) if 0 < x < 2-n/ 2 • 

(Actually, it is not necessary to increase the working precision if 

log«l+V)/(l-V)) is evaluated carefully.) 
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Using the identity art an (x) = ~/2 - artan(l/x) (x > 0) , we 

can extend the domain to [0,(0) . Also, since art an ( -x) == -artan(x) , 

there is no difficulty with negative x. To summarize, we have 

proved the following theorem. 

Theorem 7.1. O(M(n) log(n)) operations suffice to evaluate artan(x) 

to precision n, uniformly for all floating-point numbers x, as 

n -+ 00 • 

Suppose Q E [5 , ~/2 - 8] . From Lemma 3.1 and Theorem 7.1, we 

can solve the equation artan(x) = 9/2 to preCision n in 

O(M(n) log(n)) operations, and thus evaluate x = tan(9/2) • Now 

sin 9 = 2x/(1+x2), cos Q = (1_x2)/(1+x2) , etc., may easily be 

evaluated. For arguments outside [B, 1(/2 - 5] , domain reduction 

techniques like those above may be used. Difficulties occur near 

certain integer multiples of ~/2, but these may be overcome (at 

least for the usual floating-point number representations) by increasing 

the working precision. We state the following theorem for sin(x) , 

but similar results hold for the other trigonometric functions (and 

also, of course, for the elliptic integrals and their inverse functions). 

Theorem 7.2. If [a,b] ~ (-~,~) , then O(M(n) log(n)) operations 

suffice to evaluate sin(x) to preCision n, uniformly for all 

floating-point numbers x E [a, b] , as n -+ 00 • 
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8. Asw:rwtotic Constants. 

So far we have been concerned with order of magnitude results. 

In this section we give upper bounds on the constants K such that 

wen) ~ (K+o(l))M(n) 10g2 n , where wen) is the number of operations 

required to evaluate rt, exp(x), etc., to precision n. The 

following two assumptions will be made. 

1. For all y > 0 and e: > 0 , the inequality M(yn) < (y+e:)M(n) 

holds for sufficiently large n . 

2. The number of operations required for floating-point addition, 

conversion between representations of different precision (at 

most n), and multiplication or division of floating-point 

numbers by small integers, is o(M(n)) as n ~ 00 • 

These assumptions certainly hold if a standard floating-point 

representation is used, and the multiplication algorithm has 

M(n) ~n(log(n))a(log log(n))~ for some a > 0 , provided ~ > 0 

if a = 0 . 

The following result is proved in [3]. The algorithms used are 

similar to those of Section 2, but slightly more efficient. 

Theorem 8.1. Precision n division of floating-point numbers may 

be performed in (4+o(1))M(n) operations as n ~ 00, and square roots 

may be evaluated in (11/2 + o(l))M(n) operations. 

USing Theorem 8.1 and algorithms related to those of Sections 5 

to 7, the following result is proved in (14]. 
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Theorem 8.2. 1( may be evaluated to precis ion n in 

(15/2 + 0(1) )M(n) 10g2 n operations as n -+ co. If 1( and log 2 

are precomputed, the elementary function f(x) can be evaluated to 

precision n in (K+ o(l))M(n) log2 n operations, where 

if f(x) = log(x) or exp(x) , 
K = {13 

34 if f(x) = artan(x} , sin(x) , etc., 

and x is a floating-point number in an interval on which f(x) is 

defined and bounded away from 0 and co. 

For purposes of comparison, note that evaluation of log (l+x) 

or log«l+x)/(l-x)) by the usual series expansion requires 

(c + 0(1) )M(n)n operations, where c is a constant of order unity 

(depending on the ra~ge of x and the precise method used). Since 

13 10g2 n < n for n ~.83" the O(M(n) log(n)) method for log(x) 

could be faster than the O(M(n)n) method forn greater than a 

few hundred. 
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