
FAST MULT I PLE-PREC IS ION EVA LUAT ION OF
ELEMENTARY FUNCTIONS

by

R. P. Brent

STAN-CS-75-515
AUGUST 1975

COMPUTER SCIENCE DEPARTMENT
School of Human ities and Sciences

STANFORD UNIVERSITY

,

Fast Multiple-precision Evaluation of Elementary Functions

Abstract

Richard P. Brent

Computer Science Department
Stanford University

Stanford, California 94305

and

Computer Centre
Australian National University

Box 4, C anb erra
ACT 2600, Australia

Let f(x) be one of the usual elementary functions (exp, log,

art an, sin, cosh, etc.), and let M(n) be the number of single­

precision operations required to multiply n-bit integers. We sho~

that f(x) can be evaluated, with relative error 0(2-n) , in

O(M(n) log(n)) operations as n -t co, for any floating-point number

x (with an n-bit fraction) in a suitable finite interval. From the

Schonhage-Strassen bound on M(n) , it follows that an n-bit approxi­

mation to f(x) may be evaluated in O(n log2(n) log log (n))

operations. Special cases include the evaluation of constants such

as :J(, e , and e:J(The algorithms depend on the theory of elliptic

integrals, using the arithmetic-geometric mean iteration and ascending

Landen transformations.

Keywords and Phrases: analytic complexity, arithmetic-geometric mean,

computational complexity, elementary function,

elliptic integral, evaluation of :J(, exponential,

Landen transformation, logarithm, multiple­

precision arithmetiC, trigonometric function.

CR Categories: 5·12,5·15,5·25

This research was supported in part by National Science Foundation grant
DCR71-01996 Ao4 and by National Science Foundation grant DCR72-03712.
Reproduction in whole or in part is permitted for any purpose of the
United States Government.

1

1. Introduction.

We consider the m.up.ber of operations required to evaluate the

elementary functions exp(x) , log(x) ~, art an (x) , sin(x) , etc.,

with relative error 0(2-n) , for x in some interval [a,b] , and

large n. Here, [a,b] is a fixed, nontrivial interval on which

the relevant elementary function is defined. The results hold for

computations performed on a multitape Turing machine, but to simplify

the exposition we assume that a standard serial computer with a

random-access memory is used.

Let M(n) be the number of operations required to multiply two

integers in the range [0,2n) . We assume the number representation

is such that addition can be performed in O(M(n)) operations, and

that M(n) satisfies the weak regularity condition

M(a: n) ~ ~M(n) , (1.1)

for some a: and ~ in (0,1), and all sufficiently large n.

Similar, but stronger, conditions are usually assumed either explicitly

[6] or implicitly [9]. Our assumptions are certainly valid if the

Schonhage-strassen method [9,11] is used to multiply n-bit integers

(in the usual binary representation) in a (n log(n) log log(n))

operat ions.

The elementary function evaluatione may be performed entirely in

fixed point, using integer arithmetic and some implicit scaling scheme.

However, it is more convenient to assume that floating..;point computation

is used. For example, a sign and magnitude representation could be

used, with a fixed-length binary exponent and an n-bit binary fra.ction. !

Our results are independent of the particular floating-point number

system are used, so long as the following' condit:ions are satisfied.

1. Real numbers which are not too large or small can be approximated

by floating-point numbers, with a relative error 0(2-n) •

2. Floating-point addition and multiplication can be performed in

O(M(n)) operations, with a relative error 0(2-n) in the result.

~ log(x) denotes the natural logarithm.

2

3. The precision n is variable, and a fJ.oating-point number with

preciSion n may be approximated, wi.thtrelative error O(2-m)

and in O(M(n)) operations, by a floating-point number with

precision m, for any positive m < n .

Throughout this paper, a floating-point number means a number in

some representation satisfying conditions 1 to 3 above, not a single­

precision number. We say that an operation is performed with

precision n if the result is obtained with a relative error O(2-n) •

It is assumed that the operands and result are approximated by floating­

point numbers.

The main result of this paper, established in Sections 6 and 7,
is that all the usual elementary functions may be evaluated, with

precision n, in O(M(n) log(n)) operations. Note that O(M(n)n)

operations are required if the Taylor series for log(l+x) is summed

in the obvious way. Our result improves the bound O(M(n) log2(n))

given in [3], although the algorithms described there may be faster

for small n .

Preliminary results are given in Section 2 to 5. In Section 2

we give, for completeness, the known result that division and

extraction of square roots to precision n require O(M(n)) operations.

Section 3 deals brieflY with methods for approximating simple zeros

of nonlinear equations +'0 precision n, and some results from the

theory of elliptic integrals are summarized in Section 4. Since our

algorithm~ for elementary functions require a knowledge of ~ to

precision n, we show, in Section 5, how this may be obtained in

O(M(n) log(n)) operations. An amusing consequence of the results of

Section 6 is that err may also be evaluated, to precision n, in

O(M(n) log(n)) operations.

From Theorem 5.1 of [3], at least O(M(n)) operations are

required to evaluate exp(x) or sin(x) to precision n. It is

plausible to conjecture that O(M(n) log(n)) operations are necessary.

Most of this paper is concerned with order of magnitude results,

and multiplicative constants are ignored. In Section 8, though, we

give upper bounds on the constants. From these bounds it is possible

to estimate how large n needs to be before our algorithms are faster

than the conventional ones.

3

After this report was written, Bill Gosper drew my attention to

the paper of Salamin [10], where an algorithm very similar to our

algorithm. for evaluating T(is described. A fast a.lgorithm for

evaluating log(x) was also found (independently) by Salamin

(see [2]).

2. Reciprocals and Square Roots.

In this section we show that reciprocals and square roots of

floating-point numbers may be evaluated,to precision n, in O(M(n))

operations. To simplify the statement of the following lemma, we

assume that M(x) = 0 for all x < 1 .

OJ

Lemma 2.1. If r € (0,1) ,then ~ M(rJn) = O(M(n)) as n ~ OJ •

j=O

Proof. If a and ~ are as in (1.1), there exists k such that
OJ. OJ.

~ M("Jn) ::; k ~ M(crJn) ::; kM(n)/ (l-~) + 0(1) , k
" ::;0:. Thus,

j=O j=O

by repeated application of (1.1). Since M(n) ~ 00 as n ~ OJ , the

result follows. 0

In the following lemma, we assume that 1/ c is in the allowable

range for floating-point numbers. Similar assumptions are implicit

below.

Lemma 2.2. If c is a nonzero floating-point number, then l/c can

be evaluated, to precision n, in O(M(n)) operations.

Proof. The Newton iteration

x . + 1 = x. (2 - ex.)
~ ~ ~

(2.1)

converges to 1/ c with order 2. In fact, if x. = (1 - £.) / e ,
~ l.

substitution in (2.1) gives £i+1 = £~. Thus, assuming \ £0 \ < 1/2 ,

4

i
we have \€i l < 2-2 for all i ~O , and xk is a sufficiently

good approximation to 1/ c if k ~ log2 ~. Th~s assumes that (2.1)

is satisfied exactly, but it is easy to show that it is sufficient to

use precision n at the last iteration

slightly greater than n/2 for i = k-2

efficient methods, are given in [3,4].)
Lemma 2.1. Since x/y = x(l/y) , it is

(i = k-l) , precision

, etc. (Details, and more

Thus, the result follows from

clear that floating-point

division may also be done in O(M(n)) operations. 0

Lemma 2.3. If c > 0 is a floating-point number, then c 1/2 can be

evaluated, to precision n, in O(M(n)) operations.

Proof. If c = 0 then cl / 2 = O. If c 1= 0 , the proof is similar

to that of' Lemma 2.2, using the Newton iteration xi+l = (xi + c/xi) /2 • 0

Lemma 2.4. For any fixed k > 0, M(kn) = O(M(n)) as n ~ 00 •

Proof. Since we can add integers less than 2n in O(M(n»

operations, we can add integers less than 2kn in O(kM(n» = O(M(n»

operations. The multiplication of integers less than 2kn can be

split into O(k2) multiplications of integers less than 2n , and

O(k2) additions, so can be done in O(k~(n» = O(M(n» operations. 0

3. Solution of Nonlinear Equations.

In Section 6 we need to solve nonlinear equations to precision n.

The following lemma is suffiGient for this application. Stronger results

are given in [3,4].

Lemma 3.1. If the equation f(x) = c has a simple root ,1= 0 ,

f' is Lipschitz continuous near " and we can evaluate f(x) to

precision n in O(M(n)~(n» operations, where ¢(n) is a positive,

monotonic increasing function, for x near "then , can be

evaluated to precision n in O(M(n)¢(n» operations.

5

Proof. Consider the discrete Newton iteration

x. - hi(f(x.) - c) / (f(x. + h.) - f(x.»
~ ~ ~ ~ ~

(3.1)

If h = 2-n/2, X. -, ::: O(2-n/ 2) , and the right side of (3.1) is
i ~

evaluated with precision n, then a standard analysis shows that

x
i
+1 - C = O(2-n) · Since a sufficiently good starting approximation Xo

may be found in 0(1) operations, the result follows in the same way

as in the p~oof of Lemma 2.2, using the fact that Lemma 2.1 holds with

M(n) replaced by M(n)¢(n) • The assumption 'F 0 is only necessary

because we want to obtain , with a relative (not absolute) error

O(2-n) .

Other methods, e.g. the secant method, may also be used if the

precision is increased appropriately at each iteration. I~

4. Results on Elliptic Integrals.

In this section we summarize some classical results from elliptic

integral theory. Most of the results may be found in [1], so proofs

are omitted. Elliptic integrals olf the first and second kinds are

defined by

F(cp,a)

and

cP . 2 2 1/2
E(cp,a) ::: S (1 - sin a sin 9) de

o
,

respectively_ For our purposes we may assume that a and cp are

in [0, 1C/2] • The complete elliptic integrals, F(rc/2 , a) and

E(rc/2, ex) , are simply written as F(a) and E(a) , respectively.

6

(4.1)

(4.2)

Legendre t S Relat ion.

We need the identity

and, in particular, the special case

(4.4)

Small Angle Approximation.

From (4.1) it is clear that

(4.5)

as 0: 0 .

Large Angle Approximation.

From (4.1),

, (4.6)

uniformly for . 0 ~ cP ~ CPo < rr./2 , as 0: rr./2. Also, we note that

F(cp, 1f./2) : = log tan(rr./4 + ~/2) (4.7)

Ascending Landen Transformation.

o < ~. + 1 < cp. < 1(/2 ,
1; 1 -

sin 0:. = tan
2

(0:. 1/2)
J.. 1+

, (4.8)

and

sin 0:. sin cpo ,
1 1

then

(4.10)

7

_ 1/2/ sO+l - 2s. (1+ s.) ,
~ 1 1

and (4.9) gives

where

and

v i +1 = W3/ (1+ (1+ w~)1/2) ,

2
wI = sin(2q>·+l-CP.) = 2s.v. / (1+ v.)

1 1 111

Arithmetic-geometric Mean Iteration.

(4.11)

(4.12)

(4.13)

, (4.14)

(4.15)

From the ascending Landen transformation it is possible to derive

the arithmetic-geometric mean iteration of Gauss: if a
O

= 1 ,

bo = cos ex > 0 ,

and

(a. + b.)/2
1 1

= (a.b.)1/2
1 1

then

,

,

lim a.
1 i -+00

1(/ [2F(ex)]

Also, if Co = sin ex and

then

E(ex) / F(ex) = 1 - £ 2 i - l c~
i=O 1

8

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

1m. Infinite Product.

Let si' ai and bi be as above, with a = rr./2 - aO ' so

So = bO/ao · From (4.11), (4.16) ~d (4·~7), it follows that

(1 + s.) /2 = a. + 1/ a . , and
~ ~ ~

co n [(1+s.)/2] = lim a.
'-~ ~ . ~
~=J ~ -+co

(4.21)

follows from (4.18). (Another connection between (4.11) and the

arithmetic-geometric mean iteration is evident if So = (1 - b~/a~) 1/2 .

Assuming (4.11) holds for i < 0 , it follows that

s . = (1_b~/a~)1/2 for all i >0 • This may be used to deduce
-~ ~ ~

(4.18) from (4.10).)

5. Evaluation of 1t ."

Let a
O

= 1 , A = lim a. , and T = lim t. , . ~ . ~
~ -+ <Xl ~ -+ <Xl

where a. ,b. and c. are defined by (4.16), (4.17) and (4.19) for
~ ~ 1

i ~ 1 , and
i

t. = 1/2 - Li
~

j-1 2
2 c ..

J
From (4.4), (4.18) and (4.20),

we have

(5. 1)

Since a i > bO > 0 for all i ~ 0 , and ci+1 = a i - a i+1 = a i+1 -bi '

1/2 2
(4.17) givesbi+1 = [(ai+1 + ci+1) (ai+1 - c i+1)] = a i+1 - 0 (c i+1) ,

2 so c i+2 = 0(ci+1) . Thus, the process converges with ord~r at

least 2, and 10g2 n + 0(1) iteration~ suffice to give an error

0(2-n) in the estimate of (5.1). A more detailed analysis shows

9

•

that 2 2
a.+l/t. < 1t < a./t.

1; 1. 1. 1.
for all i > 0 , and also

and 2 i+3 2 i
1t - a./t. 1 ,-.J 2 1t exp(-2 :n:)

1 1-

as i ~ 00. The speed of convergence is illustrated in Table 1 .

Table 1: Convergence of approximations to :n: •

2 2
i 1(- ai+l/t i a./t. - 1(

~ l.

0 2·3'-1 8.6' -1

1 1.0'-3 4.6'-2

2 7·4'-9 8.8'~5

3 1.8'-19 3 .l' ... 10

4 5·5'-41 3.7' -21 '

From the discussion above, it is clear that the following

algorithm, given in pseudo-Algol, evaluates :n: to precision n.

Algorithm for 1t.

-1/2 A ... 1; B 4- 2 ; T ... 1/4; X 4- 1;

while A-B > 2-n do

begin Y ... A; A ... (A+B) 12; B 4- (BY) 1/2;

T 4- T - ~(A -Y) 2; X 4- 2X
.\

end;

2 2
return A IT [or, better, (A+B) I (4T)] .

Since log2 n + 0(1) iterations are needed, it is necessary to

work with precision n+O(log log(n») , even though the algorithm is

numerically stable in the conventional sense. From Lemmas 2.2 to 2.4,

10

each iteration requires O(M(n)) operations, so ~ may be evaluated

to precision n in O(M(n) log(n)) operations. This is asymptotically

2 faster than the usual O(n) methods [8,13] if a fast multiplication

algorithm is used. A high-precision computation of ~ by a similar

algorithm is described in (5]. Note that, because the arithmetic-

geometric mean iteration is not self-correcting, we can not obtain a

bound O(M(n)) in the same way as for the evaluation of reciprocals

and square roots by Newton's method.

6. Evaluation of exp(x) and log(x) .

Suppose 5 > 0 fixed, and mE [0, 1-0] . If . 1/2
s~n 0: = m , o

we may evaluate F(O:O) to precision n in O(M(n) log(n)) operations,·

using (4.18) and the arithmetic-geometric mean iteration, as for the

special case F(~/4) described in Section 5. (When using (4.18) we

need ~, which may be evaluat ed as described above.) Applying the

ascending Landen transformation (4.8-10) with i = 0,1, ... ,k-l and

~O = ~/2 gives

F(Qlk,ak) = { II [(1 + sin ai)/2 l) F(ao) (6.1)

Since So = sin 0:0 = m1/ 2 ~ 01/ 2 > 0 , it follows from (4.11) that

s. ~ 1 as i ~ 00. In fact, if s. l-E., then
1. ~ ~

Ei+ 1 = 1-s i +1 1 - 2(1-E i) 1/2 / (2- (1) = fJ8 + Q (Ei) , so si ~ 1

with order 2 . Thus, after k,...., log2 n iterations we have

I
and, from (4.6) and (4.7),

11

As suming k > 0 , the error is uniformly ° (2 -n) for all

m E [5 , 1-5] , since CPk ~ CPl < rr/2 ·

Define the functions

and

where

T (m) = tan(rc/4 + cP)2) ,

cP = lim cp. •
00. ~

~ _00

Since s. - 1 with order
~

2 , the infinite

product in (6.3) is convergent, and U(m) is analytic for all

(6.2)

(6.3)

(6.4.)

mE (0,1) . Taking the limit in (6.1) and (6.2) as n (and hence k)

tends to CX), we have the fundamental identity

U(m) = log T(m) (6·5)

Using (4.11) to (4.15), 'we can evaluate

U(m) = (~ [(1+8 i) / 2l) F(ao) + O(2-n
) and

T(m) = (l+vk)/(l-vk) + 0(2-n) , to precision n, in O(M(n) log(n))

operations. The algorithms are given below in pseudo-Algol.

12

Algorithm for U(m) .

1/2 A ~ 1; B ~ (l-m) ;

while A-B > 2-n/ 2 do

begin C ~ (A+B) /2; B ~ (AB) ~/2 \ A ~ C end;

A ~ n/(A+B); S ~ m1/ 2 ;

while l-S > 2 -n/ 2 do

begin A ~ A(l+S) /2; 8 ~ 281/ 2/(1+8) end;

return A(l+S) /2.

Algorithm for T (m) •

1/2 V ~ 1; 8 ~ m ;

-n while l-S > 2 do

begin W ~ 28V/ (1+~) ;

, W ~ w/ (1+ (1_W2) 1/2) ;

W ~ (V+W) / (l-VW) ;

V ~ 'v/ (1+ (1+W2) 1/2) ;

S ~ 28
1

/
2

/ (l+S)
I

return (l+V)/(l-V) ~
j

Properties of U(m) .. an~ T (m) .

From (4.21) and (6.3),

U(m) = (n/2)F(Cia) /F(rr./2 - Cia) ,

where
1/2 .

sin Cia = m as before. Both F(Cia)

(6.6)

may

be evaluated by the arithmetic-geometric mea.n iteration, which leads

13

to a slightly more efficient algorithm for q(rn) than the one
I ;

above, because the division by (l+S) in the final "while" loop is

avoided. From (6.5) and (6.6), we have the special cases

U(1/2) = ~/2 and T(1/2) = e~/2. Also, (6.6) gives

U(m)U(l-m) = 1(2/4 ,

for all rn E (0,1) •

Although we shall avoid using values of m near 0 or 1, it

is interesting to obtain asymptotic expressions for U(m) and T(m)

as rn - 0 or 1. From the algorithm for T(rn) ,

as E - o. Thus, from (6.5),

2
U(l-E) = L(E) - E/4 + a(E)

where L(E) = 10g(4/El / 2) . Using (6.7), this gives

and hence

Some values of U(rn) and T(m) are given in Table 2.

14

Table 2: The functions U(m) and T(m)

m U(m) T(m)

0.01 0.6693 .1.9529

0.05 0.8593 2.3615
0.10 0·9824 2.6710

0.20 1.1549 3.1738

0.30 1.2972 3.6591

0.40 1.4322 4.1878

0·50 1.5708 4.8105

0.60 1·7228 5·6004

0·70 " 1·9021 6.6999
0.80 2.1364 8.4688

0·90 2·5115 12.3235

0·95 2.8714 17·6617

0·99 3.6864 39·8997

Evaluation of exp(x).

To evaluate exp(x) to precision n, we first use identities

such as 2 exp(2x) = (exp(x)) and exp(-x) = l/exp(x) to reduce the

argument to a suitable domain, say l<x<2 - - (see below). We then

solve the nonlinear ,equ~tion

U(m) = x , (6.8)

obtaining m to precision n, by a method such as the one described

in Section' 3. From Lemma 3.1, with ¢(n) = 10g(n) , this may be done

in O(M(n) log(n)) operations. Finally, we evaluate T(m) to

preCision n, again using O(M(n) 10g(n)) operations. From (6.5)

~nd (6.B), T(m) = exp(x) , so we have computed exp(x) to precision n •

Any preliminary transformations may now be undone.

15

Evaluation of log(x).

Since we can evaluate exp(x) to precision n in O(M(n) log(n))

operations, Lemma 3.1 shows that we can also evalute log(x) in

O(M(n) log(n)) operations, by solving the equation exp(y) = x to

the desired accuracy. A more direct method is to solve T(m) = x

(after suitable domain reduction), and then evaluate U(m) .

Further Details.

If x E [1,2] then the solution m of (6.8) lies in (0.10, 0.75) ,

and it may be verified that the secant method, applied to (6.8),

converges if the starting approximations are mO = 0.2 and ml = 0·7 .

If desired, the discrete Newton method or some other locally convergent
!

method may be used after a few iterations of the secant method have

given a good approximation to m .

Similarly, if x E [3,9] , the solution of T(m) = x lies in

(0.16, 0.83).:, and the secant method converges if mO = 0.2 and

m
l

= 0.8 .

If x = l+E where E is small, and for domain reduction the

relation

log(x) = log(Ax) -log().,)

is used, for some).,E (3,9) , then log().,x) and log().,) may be

evaluated as above, but cancellation in (6.9) will cause some loss

of precision in the computed value of log (x) • If lEI> 2-n , ~t

is sufficient to evaluate log().,x) and log().,) to precision 2n,

for at most n bits are lost through cancellation in (6.9). On the

other hand, there is no difficulty if lEI < 2-n , for then

16

log(l+£) = £(1+ 0(2-n)) . When evaluating exp(x) , a similar loss

of precision never occurs, and it is sufficient to work with precision

n+ O(log log(n)) , as in the evaluation qf 1t' (see Section 5). To

summarize, we have proved:

Theorem 6.1. If -00 < a < b < 00 , then O(M(n) log(n)) operations

suffice to evaluate exJ,>(x) to precision n, uniformly for all

floating-point numbers x E [a, b] ,as n 00. Similarly for log(x)

if a > 0 •

7. Evaluation of Trigonometric Functions.

Suppose e > 0 fixed, and x E [8,1] • Let So = sin 0b = 2-n/
2

/ /
2 1/2 and Vo = tan(<po 2) = x (1+ (l+x)), so ,tan CPo = x. Applying

the ascending Landen transformation, as for (6.1), gives

Also, from (4.5) and the choice of sO'
J I

F(<po,ao) = artan(x) + 0(2-n) (7.2)

l (1/2 .
From (4.11), si+l ~ si ,so there ~s some j ~ 10g2 n + 0(1)

such that s. E [1/4, 4/5] . Since s. - 1 with order 2, there is
J 1

some k ~ 2 10g2 n + 0(1) such that l-sk = 0(2-n) ~ From (4.6) and

(4.7), F(CPk'~) = log tan(~/4 + cpki2) + 0(2-
n

) • Thus, from (7.1)

and (7.2),

art an (x) = C It [2/ (l+Si)]} log tan(rc/4 + cpJ2) + 0(2 -n). (7.3)

17

If we evaluate tan(1(/4 + <Pk/2) as above, and use the algorithm of

Section 6 to evaluate the logarithm in (7.3), we have art an (x) to

precision n in O(M(n) log(n)) operations. The algorithm may be

written as follows.

Algorithm for art an (x) , x E [5,1] .

-n while l-S > 2 do

begin Q ~ 2Q/(1+S);

W 2SV/ (1+1);

W W/ (1 + (1_W2) 1/2) ;

W ~ (V+W)/(l-VW);

V ~ W/ (1 + (1+W2) 1/2) ;

S 2Sl /2/ (l+S)

return Q log«l+V)/(l-V)).

After k iterations, so at most 2 log2 n + 0(1) bits

of precision are lost because V is small. Thus, it is sufficient to

work with precision n+ O(log(n)) , and Lemma 2.4 justifies our claim

that O(M(n) log(n)) operations are sufficient to obtain art an (x)

to precision n .

If x is small, we may use the s~e idea as that described

above for evaluating log(l+e) : work with precision 3n/2 + O(log(n))

if x > 2-n/2 , and use art an (x) = x(l+ 0(2-n)) if 0 < x < 2-n/ 2 •

(Actually, it is not necessary to increase the working precision if

log«l+V)/(l-V)) is evaluated carefully.)

18

Using the identity art an (x) = ~/2 - artan(l/x) (x > 0) , we

can extend the domain to [0,(0) . Also, since art an (-x) == -artan(x) ,

there is no difficulty with negative x. To summarize, we have

proved the following theorem.

Theorem 7.1. O(M(n) log(n)) operations suffice to evaluate artan(x)

to precision n, uniformly for all floating-point numbers x, as

n -+ 00 •

Suppose Q E [5 , ~/2 - 8] . From Lemma 3.1 and Theorem 7.1, we

can solve the equation artan(x) = 9/2 to preCision n in

O(M(n) log(n)) operations, and thus evaluate x = tan(9/2) • Now

sin 9 = 2x/(1+x2), cos Q = (1_x2)/(1+x2) , etc., may easily be

evaluated. For arguments outside [B, 1(/2 - 5] , domain reduction

techniques like those above may be used. Difficulties occur near

certain integer multiples of ~/2, but these may be overcome (at

least for the usual floating-point number representations) by increasing

the working precision. We state the following theorem for sin(x) ,

but similar results hold for the other trigonometric functions (and

also, of course, for the elliptic integrals and their inverse functions).

Theorem 7.2. If [a,b] ~ (-~,~) , then O(M(n) log(n)) operations

suffice to evaluate sin(x) to preCision n, uniformly for all

floating-point numbers x E [a, b] , as n -+ 00 •

19

8. Asw:rwtotic Constants.

So far we have been concerned with order of magnitude results.

In this section we give upper bounds on the constants K such that

wen) ~ (K+o(l))M(n) 10g2 n , where wen) is the number of operations

required to evaluate rt, exp(x), etc., to precision n. The

following two assumptions will be made.

1. For all y > 0 and e: > 0 , the inequality M(yn) < (y+e:)M(n)

holds for sufficiently large n .

2. The number of operations required for floating-point addition,

conversion between representations of different precision (at

most n), and multiplication or division of floating-point

numbers by small integers, is o(M(n)) as n ~ 00 •

These assumptions certainly hold if a standard floating-point

representation is used, and the multiplication algorithm has

M(n) ~n(log(n))a(log log(n))~ for some a > 0 , provided ~ > 0

if a = 0 .

The following result is proved in [3]. The algorithms used are

similar to those of Section 2, but slightly more efficient.

Theorem 8.1. Precision n division of floating-point numbers may

be performed in (4+o(1))M(n) operations as n ~ 00, and square roots

may be evaluated in (11/2 + o(l))M(n) operations.

USing Theorem 8.1 and algorithms related to those of Sections 5

to 7, the following result is proved in (14].

20

Theorem 8.2. 1(may be evaluated to precis ion n in

(15/2 + 0(1))M(n) 10g2 n operations as n -+ co. If 1(and log 2

are precomputed, the elementary function f(x) can be evaluated to

precision n in (K+ o(l))M(n) log2 n operations, where

if f(x) = log(x) or exp(x) ,
K = {13

34 if f(x) = artan(x} , sin(x) , etc.,

and x is a floating-point number in an interval on which f(x) is

defined and bounded away from 0 and co.

For purposes of comparison, note that evaluation of log (l+x)

or log«l+x)/(l-x)) by the usual series expansion requires

(c + 0(1))M(n)n operations, where c is a constant of order unity

(depending on the ra~ge of x and the precise method used). Since

13 10g2 n < n for n ~.83" the O(M(n) log(n)) method for log(x)

could be faster than the O(M(n)n) method forn greater than a

few hundred.

Aclmowledgrnent.

The comments of Bill Gosper, Don Knuth and Daniel Shanks on an

earlier draft of this paper were very useful. This work was performed

while the author was visiting Stanford University.

21

References

[1] Abramowitz, M., and Stegun, I. A. Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables.

Na.tiona1 Bureau of Standards, Washington, D.C., 1964, Ch. 17.

[2] Beeler, M., Gosper, R. W., and Schroeppe1, R. "Hakmem,"

Memo No. 239, M.I.T. Artificial Intelligence Lab., 1972, 70-71.

[3] Brent, R. P. "The complexity of multiple-precision arithmetic,"

Froc. Seminar on Complexity of Computational Problem Solving,

(held at Australian National University, December 1974),

Queensland University Press, Brisbane, 1975, 126-165.

[4] Brent, R. P. Computer Solution of Nonlinear Equations,

Academic Press, New York, to appear, Ch. 6.

[5] Finkel, R., Guibas, L., and Simonyi, C. Manuscript in

preparation.

[6] Fischer, M. J., and Stockmeyer, L. J. "Fast on-line integer

mu1t iplication," J. Comput. System Sci. 9 (December 1974),

317-331.

[7] Gasper, R. W. "Acceleration of series," Memo no. 304, M.I.T.

Artificial Intelligence Lab., 1974.

[8] Guilloud, J. "Calculation of 1C to 1,000,000 places,"

Unpublished manuscript.

[9] Knuth, D. E. The Art of Computer Programming, Vol. 2. Addison­

Wesley, Reading, Mass., 1969. Errata and addenda: Report CS 194,

computer Science Dept., Stanford University, 1970.

[10] Salamin, E. "A fast algorithm for the computation of rc,"

submitted to Math. Compo

[11] Schonhage, A., and. Strassen, V. "Schnelle Mu1tiplikation

grosser Zahlen, II Computing 7 (1971), 281-292.

[12] SchroeP1?el, R. Unpublished.

[13] Shanks, D., and Wrench, J. W. "Calculation of 1C to 100,000

decimals," Math. Compo 16 (1962), 76-99.

[14] Brent, R. P. "Multiple-precision zero-finding methods and the

complexity of elementary function evaluation," Froc. Symposium

on AnalytiC Computational Complexity, (ed. J. F. Traub),

Academic Press, New York, 1975.

22

