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"A Contribution to the Development of ALGOL" by Niklaus Wirth and
C. A. R. Hoarel/ was the basis for a compiler developed for the IBM 360 at
Stanford University. This report is a description of the implemented
language, ALGOL W. Historical background and the goals of the language

may be found in the Wirth and Hoare paper.

HISTORICAL NOTE

This document is a major revision of and supersedes CS 110. The revisions
were made in order to document a significantly improved version of the ALGOL W
compiler. This version was known as X ALGOL W during the spring and summer
of 1971. 1In addition to new debugging facilities documented under Compiler
Options, the new version of the compiler has slightly more meaningful error

messages documented in the completely re-written Error Messages section.

Various minor corrections and changes have been made throughout the book,
and some examples have been added. There is now an index, and a complete
list of all words the compiler treatsbin any special way. Below is a quick
summary of the changes in the AIGOL W language:

1. Reserved words:

There are three new reserved words: algol, assert, and fortran.

2. New statements and functions:
There is now an ASSERT statement (cf. Section 7.5a).
Procedures can be declared with empty bodies that instead specify that
a linkage to an externally-compiled algol or fortran procedure is needed
(ef. Section 5.3). A new standard function, TRACE, is added as part

of the debugging facility (ef. Section 7.8.6).

1'/Wirth, Niklaus and Hoare, C. A. R., "A Contribution to the Development
of ATLGOL", Comm. ACM 9, 6 (June 1966), pp. 413-L431.



Conversions:

Conversions from integer to real now go to long real.

String compdrisons:

In comparing strings of different lengths, the shorter is extended
with blanks before the comparison is done.

String assignments:

String assignments are done in a single action, instead of character-
by-character left-to-right. This prevents erroneocus answers when
assigning a string to a substring of itself.

Deleted facility:

The standard functions COMPLEXSQRT and LONGCOMPLEXSQRT are no

longer in the ALGOL W library. (cf. Deck Setup and Compiler

Options, Section 3, for use of the Fortran library.)

The present author wishes to thank all those who have gone before him,

especially Ed Satterthwaite for his extraordinary care in building the

debugging facilities.
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1. TERMINOLOGY

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS

The Reference Language is a phrase structure language, defined by
s formal metalanguage. This metalanguage mekes use of the notation and
definitions explained below. The structure of the language ALGOL W

is determined by:

(1) V, the set of basic constituents of the language,
(2) Uu, the set of syntactic entities, and
(3) ©, the set of syntactic rules, or productions.

1.1. Notation
A syntactic entity is denoted by its name (a sequence of letters)

enclosed in the brackets < and >. A syntactic rule has the form
<A =X

where <A> is a member of U, x is any possible sequence of basic con-
stituents and syntactic entities, simply to be called a ''sequence".

The form
< i=x|y| ... |2

i1s used as an abbreviation for the set of syntactic rules

.........

1.2. Definitions

1. A sequence x is said to directly produce a sequence y if and




. TERMINOLOGY

only if there exist (possibly empty) sequences u and w, so that
either (i) for some <A> in U, x = wWAW, y = uvw, and <A> i:=
v is a rule in P; or (ii) x = uw, ¥y = uvw and v is a "comment"

(see below).

2. A sequence x is said to produce a sequence y if and only if
there exists an ordered set of sequences s(0], s(1], ... , s[n],
so that x = s[0], s[n] =y, and s[i-1] directly produces s[i] for

all i =1, ... , n.

3. A sequence x is said to be an ALGOL W progrem if and only if
its constituents are members of the set ¥V, and x can be produced

from the syntactic entity <program>.

The sets V and U are defined through enumeration of their members
in Section 2 of this Report (cf. also 4.4.). The syntactic rules are
given throughout the sequel of the Report. To provide explanations
for the meaning of ALGOL W programs, the letter sequences denoting
syntactic entities have been chosén to be English words describing
approximately the nature of that syntactic entity or construct. Where
words which have appeared in this manner are used elsewhere in the
text, they refer to the corresponding syntactic definition. Along
with these letter sequences the symbol T may occur. It is understood
that this symbol must be‘replaced by any one of a finite set of English
words {or word pairs). Unless otherwise specified in the particular
section, all occurrences of the symbol T within one syntactic rule

must be replaced consistently, and the replacing words are



1. TERMINOLOGY

integer logical
real bit

long real string
complex reference

long complex
For example, the production
<T term> ::= <J factor> (cf. 6.3.1.)

corresponds to

<dnteger term> <integer factor>

<real term> <real factor>

]

<long real term> <long real factor>

1]

<complex term> <complex factor>

<long complex term> : <long complex factor>

The production

<T, primary> ::= long <T, primary> (cf. 6.3.1. and
—_ 1l
table for long
6.3.2.7.)
corresponds to
<long real primary> ::= long <real primary>
<dong real primary> ::= long <integer primary>

<long complex primary> ::= long <complex primary>

It is recognized that typographical entities exist of lower order
than basic symbols, called characters. The accepted characters are
those of the IBM System 360 EBCDIC code.

The symbol comment followed by any sequence of characters not
containing semicolons, followed by a semicolon, is called & comment.

A comment has no effect on the meaning of a program, and is ignored

during execution of the program. An identifier (cf. 3.l.) immediately

10



2. SYMBOLS

following the basic symbol end is also regarded as a comment.

The execution of & program can be considered as a sequence of
units of action. The sequence of these units of action is defined as
the evaluation of expressibns and the execution of statements as
denoted by the program. In the definition of the implemented language
the evaluation or execution of certain constructs is either (1) defined
by System 360 operations, e.g., real arithmetic, or (2) left undefined,
e.g., the order of evaluation of arithmetic primaries in expressions,

or (3) said to be not valid or not defined.

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

2.1. Basic Symbols

AlBlcio]lElrlelrlzlalxlsliM|INlo]|ep]
elrls|rluiviwlxlylz]
oli1lelzlulslelr]8]9l

true | false | " | nu1l | # | * l
integer | real | complex | logical | bits | string |

reference l long real | long complex | array |

procedure | record I

’ | l | l | | begin | end | if | then | else |
case l of l + | - | l | ** I div | rem ‘ shr | shl | is |
abs | long l short | and | or l-q | | | = | = ‘ < !
<=|>|>—l : |

l goto | go to I for | step | until | do | while |
camment l value | result | assert | algol [ fortran

All underlined words, which we call "reserved words", are represented
by the same words in capital letters in an actual program, with no

intervening blanks.



2. SYMBOLS

Adjacent reserved words, identifiers (cf. 3.1.) and numbers must include

no blanks and must be separated by at least one blank space. Otherwise

blanks have no meaning and can be used freely to improve the read-

ability of the program.

2.2. Syntactic Entities

(with corresponding section numbers)

<actual parameter list> T.3 <formal type> 5.3
<actual parameter> 7.3 <go to statement> 7.k
<bit factor> 6.5 <hex digit> 4.3
<bit primary> 6.5 <identifier list> 3.1
<bit secondary> 6.5 <identifier> 2,1
<bit sequence> 4.3 <if clause> 6
<bit term> 6.5 <if statement> 7.5
<block body> 7.1 <imaginary number> b1
<block head> T.1 <increment> 7.7
<block> 7.1 <initial value> 7.7
<bound pair list> 5.2 <iterative statement> 7.7
<bound pair> 5.2 | <label definition> 7.1
<case clause> 6 <label identifier> 3.1
<case statement> 7.6 <letter> 3,1
<control identifier> 3.1 <limit> T.7
<declaration> 5 <logical element> an
<digit> S 3.1 <logical factor> 6.k
<dimension specification> 5.3 <logical primary> 6.k
<empty> 7 <logical term> 6.4
<equality operator> 6.4 <logical value> .2
<expression list> 6.7 <lower bound> 5.2
<field list> 5.4 <null reference> k.5
<for clause> 7.7 <procedure declaration> 5.3
<for list> i <procedure heading> 5.3
<formal array parameter> 5.3 <procedure identifier> 3.1
<formal parameter list> 5.3 <procedure statement> T.3
<formal parameter segment> 5.3 <program> 7




5. IDENTIFIERS

wni
\N .

:}:ZZZ zzz:uu: pody> Coubetring designator> PX:
decluration> 53 | S Srey SerTonerons o3
<record class declaratiom> 5.4 <T array identifier> 3.1
<record class identifier> 3.1 <T assignment statement> 7.2
<reco§?s§iass identifier 5.1 <T expression list> €
<record designator> 6.7 <7 expressiorn> 6
<relatior> 6.4 <J factor> 6.3
‘<relational operator> 6.4 <7 field designator> 6.1
cscale factors 4.1 | <7 field identifier> 3.1
<sigr> L1 <J function designator> 6.2
<simple bit expressior> 6.5 <7 function identifier> 3.1
<simple logical expression> 6.k <J function procedure body> 5.3

i T io
<simple reference <J function procedure

expression> 6.7 declaretiorn> 5.3
.2
<simple statement> 7 <T left part> 7
<simple string expression> 6.6 <J numbez> bl
<simple J expressior> 6.3 <J primary> 6.3
. . <J subarray designator> 7.3
T .
<s;mple variable> 6.1 < term> 6.
<simple type> 5.1 <T variable> 6.1
<simple variable <T variable identifier> 3.1
decleratiorn> 5.1 | <unscaled real> 4.1
<statement list> 7.6 | <upper bound> 5.2
<statement> 7 <while clause> 7.7
<striang primary> 6.6
<string> L4
<subarray designator list> 7.3
<subscript> 6.1
3.  IDENTIFIERS
3.1. Syntax
<identifier> i:= <letter> | <identifier> <letter> | <identifier> <digit> |

<identifier> _
<7 variable identifier> ::= <identifier>
13



5. IDENTIFIERS

<J array identifier> ::= <identifier>
<procedure identifier> ::= <identifier>

<J function identifier> ::= <identifier>

<record class identifier> ::= <identifier>
<7 field identifier> ::= <identifier>
<label identifier> ::= <identifier>
<control identifier> ::= <identifier>

<letter> ::= A|B|Cc|D|E|F|]G|H]|TI | o | k] L | M|
N|o|P|laq|R]s|T|ulv]|w|lx|Y]|z
<digit> ::= o] 1|23 |us]s5s|6]7]|8]9

<identifier ligt> ::= <identifier> I <identifier list> , <identifier>

3.2. Semantics
Variables, arrays, procedures, record classes and record fields
are said to be quantities. Identifiers serve to identify quantities,
or they stand as labels, formal parameters or control identifiers.
Identifiers have no inherent meaning, and can be chosen freely in the
reterence language. In an actual program a reserved word cannot be
used as an identifier.
Every identifier used in a program must be defined. This is
achieved through
(a) a declaration (cf. Section 5), if the identifier identifies a
quantity. It is then said to denote that quantity and to be a
T variable identifier, 7 array identifier, T procedure identifier,
T function identifier, record class identifier or T field iden-
titier, where the symbol T stands for the appropriate word re-
flecting the type of the declared quantity;

\b) a label detinition (cf. 7.1.), if the identifier stands as a

14



5-

IDENTIFIERS

(c)

(d)

(e)

label. It is then said to be a label identifier;

its éccurrence in a formal parameter list (cf. 5.3.). It is then
said to be a tormal parameter;

its occurrence following the symbol for in a for clause (et 7.7.).
It is then said to be a control identifier;

its implicit declaration in thé language. Standard procedures,
standard functions, and predefined variables (cf. 7.8 and 8) may ve

considered to be declared in a block containing the program.

The recognition of the definition of a given identitier is

determined by the following rules:

Step 1. If the identifier is defined by a declaration of u

quantity or by its standing as a label within the smallest block

(cf. 7.1.) embracing a given occurrence of that identifier, then

it denotes that quantity or label. A statement following a

procedure heading (cf. 5.3.) or a for clause (cf. 7.7.) is considered

to be a block.

Step 2. Otherwise, if that block is a procedure body and if the
given identifier is identical with a formal parameter in the asso-

ciated procedure heading, then it stands as that formal parameter.

Step 3. Otherwise, if that block is preceded by a for clause
and the identifier is identical to the control identifier of

that for clause, then it stands as that control identifier.

Otherwise, these rules are applied considering the smallest

block embracing the block which has previously been considered.

15



4., VAIUES and TYPES

If either step 1 or step 2 could lead to more than one definition,
then the identification is undefined.

The scope of a guantity, a label, a formal parameter, or a
control identifier is the set of statements in which occurrences of an
identifier may refer by the above rules to the definition of that

quantity, label, formal parameter or control identifier.

3.3, Examgles

I
PERSON

ELDERSIBLING
X15, X20, X25

4, VAIUES AND TYPES

Constants and variables (cf. €.1.) are said to possess a value.

Tne value of a‘constant is determined by the denotation of the constant.
In the language, all constants (except references) have a
reference denotation (ef. 4.1. -L4.k.). The value of a variable is the
one most recently assigned to that variable. A value is (recursively)
defined as either a simple value or a structured value (an ordered set
of one or more values). Every value is said to be of a certain type.
The following types of simple values are distinguished:

integer: the value is a 32 bit integer,

real: the value is a 32 bit floating point number,

long real: the value is a 64 bit floating point number,

complex: the value is a complex number composed of two
numbers of type real,

16
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long complex: the value is a complex number composed of two
long real numbers,

logical: the value is a logical value,
bits: the value is a linear sequence of 32 bits,

string: the value is a linear sequence of at most 256
string
characters,

referenceﬁ the value is a reference to a record.
The following types of structured values are distinguished:

array: the value is an ordered set of values, all of
identical simple type,

record: the value is an ordered set of simple values.

! procedure may yield a value, in which case it is said to be &
function procedure, or it may not yield a value, in which case it is
celled a proper procedure. The value of & function procedure is
defined as the value which results from the execution of the procedure
body (cf. 6.2.2.).

Subsequently, the reference denotation of constants is defined.
The reference denotation of any constant consists of a sequence of
charecters. This, however, does not imply that the value of the
denoted constant is a sequence of characters, nor that it has the
properties of a sequence of characters, except, of course, in the case

of strings.

4.1. Numbers
L.1.1. Syntax

<long camplex number> ::= <complex number>L

<complex number> ::= <imaginary number>

<imaginary number> ::= <real number>I l <integer number>T

17



L. VALUES and TYPES

<long real number> ::= <real number>L \ <integer number>L
<real number> ::= <unscaled real> | <unscaled real> <scale factor>

<integer number> <scale factor> l <scale factor>
<unscaled real> ::= <integer number> - <integer number> \
-<integer number> | <integer number> .
<scale factor> ::= '<integer number> | '<sign> <integer number>
<integer number> ::= <digit> | <integer number> <digit>
<sign> ::=+ l -

(Note: a long complex constant may have the I and L in either order

in a program, but they must be in the order IL on data cards.)

L.l1.2. Semantics

Numbers are interpreted according to the conventional decimal
notation. A scale factor denotes an integral power of 10 which is
multiplied by the unscaled real or integer number preceding it. Each
number has a uniquely defined type. (Note that all <T number>s are

unsigned.)

4.1.3. Examples

1 .5 1T
0100 1'3 0.671
3.1h16 6.024861+23 11T

2.718281828459045235360287L 2,316

L.2. Logical Values

4.2.1. Syntax

<logical value> ::= true false

k.3, Bit Sequences

4.3.1. Syntax

<bit sequence> ::= # <hex digit> 1 <bit seguence> <hex digit>

18
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<hex digit>::=0 |1 |2 |3 |4 |5]|6|7|8|9|Aa]|B]
c|p|E|F

Note that 2 | ... | F corresponds to, 219 | oo | 151 -

4,3,2, Semantics
| The number of bits in a bit sequence is 32 or 8 hex digits. The
bit sequence is always represented by a 32 bit word with the specified

bit sequence right justified in the word and zeros filled in on the leit.

k,3.3. Examples

#LF
#9

0000 0000 0000 0000 0000 0000 0100 111l
0000 0000 0000 0000 0000 0000 0000 1001

il

i

bk, Strings
h.h,1. Syntax

<string> ::= "<sequence of characters>"

4.Lh.2. Semantics

Strings consist of any sequence of (at most 256) characters
accepted by the System 360 enclosed by ", the string quote. If the
string quote appears in the sequence of characters it must be immediately
followed by a second string quote which is then i‘ghored., The number of

characters in a string is said to be the length of the string.

L.4.3. Examples

"JOH].\I"
nnnn 35 the string of length 1 consisting of the string quote.

19



5. DECLARATTONS

4.5, References
4L.5.1. Syntax
<null reference> ::= null

4.5.2. Semantics
The reference value null Tails to designate a record; 1if a refer-
ence expression occurring in a field designator (2f. 6.1.) has this

value, then the field designator is undefined.

R DECLARATIONS

Declarations serve to assoclate identifiers with the quantities
used in the program, to attribute certain permanent properties to
these quantities (e.g;. type, structure), and to determine their scope.
The gquantities declared by declarations are simple variables, arrays,
procedures and record qlasses.

Upen exit from a block, all quantities declared or defined within

that block lose their value and significance (cf. 7.1.2. and 7.4.2.).

Syntax:

<declaration> ;:= <simple variable declaratiorn> | <7 array
daclaration> | <procedure declaratior> l

<record class decliaratiomn>

5.1. Simple Variable Declarations

5.1.1. Syntax

<simple variable declaratior}> ::= <simple type> <identifier list>

<gimple type> ::= integer | real | long real I complex | long
complex | logical | bits | bits (32) |

20



5.

DECLARATTONS
string | string (<integer number>) | reference
(<record class identifier list>)
<record class identifier list> ::= <record class identifer> ‘

<record class identifier list> ,

<record class identifier>

5.1l.2. Semantics

Each identifier of the identifier list is associated with a
variable which is declared to be of the indicated type. A variable is
called a simple variable, if its value is simple (cf. Section 4). If
a variable is declared to be of a certain type, then this implies that
only values which are assignment compatible with this type (cf. 7.2.2.)
can be assigned to it. It is understood that the value of a variable
is equal to the value of the expression most recently assigned to it.

A variable of type bits is always of length 32 whether or not
the declaration specification is included.

A variable of type string has a length equal to the unsigned
integer in the declaration specification. If the simple type is
given only as string, the length of the variable is 16 characters.

A variable of type reference may refer only to records of the
record classes whose identifiers appear in the record class identi-

fier list of the reference declaration specification.

5.1.3. Examples
integer I, J, K, M, N
real X, Y, Z
tong complex C

logical L
bits G, H



5.2.

5. DECLARATIONS

string (10) S, T

reference (PERSON) JACK, JILL

Array Declarations

5.2.1. Syntax

<J array declaration> ::= <simple type> array <identifier list>
(<bound pair list>)

<bound pair list> ::= <bound pair> | <oound pair list>,<bound pair>

<bound pair> ::= <lower bound> :: <upper bound>

<lower bound> ::= <integer expression>

<upper bound> ::= <integer expression>

5.2.2. Semantics

EBach identifier of the identifier list of an array declaration is

associated with a variable which is declared to be of type array. A

variable of type array is an ordered set of variables whose type is the

simple type preceding the symbol array. The dimension of the array is

the number of entries in the bound pair list.

Every element of an array is identified by a list of indices. The

indices are the integers between and including the values of the lower

bound and the upper bound. Every expression in the bound pair list is

evaluated exactly once upon entry to the block in which the declaration

occurs. The bound pair expressions can depend only on variables and

procedures global to the block in which the declaration occurs. In order

to be valid, for every bound pair, the value of the upper bound must not

be less than the value of the lower bound.

5.2.3. Examples

integer array H(1::100)
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5.3,

real array A, B(1::M, 1::N)
string (12) array STREET, TOWN, CITY (J::K + 1)

Proc edu_re Declarations

5.5.1. Syntax

<procedure declaration> ::= <proper procedure declaration> i
<7 function procedure declaration>
<proper procedure declaration> ::= procedure <procedure heading>;
<proper procedure body> |
<7 function procedure declaration> ::= <simple type> procedure
<procedure heading>;
<7 function procedure body>
<proper procedure body> ::= <statement> ] <external procedure>
<7 function procedure body> ::= <7 expression> | <block body>
<7 expression> end | <external procedure>
<procedure heading> ::= <identifier> | <identifier> (<formal
parameter 1list>)
<formal parameter list> ::= <formal parameter segment> l
| <formal parameter list> ; <formal
parameter segment>
<formal parameter segment> ::= <formal type> <identifier 1list>
<formal array pa.raine’cer>
<formal type> ::= <simple type> | <simple type> value | <simple
type> result | <simple type> value result |

<simple type> procedure | procedure

<formal array parameter> ::= <simple type> array <identifier
list> (<dimension specification>)
<dimension specification> ::= * \ <dimension specification> , *

<external procedure> ::= fortran <string> ‘ algol <string>
5.3.2. Semantics

A procedure declaration associates the procedure body with the

identifier immediately following the symbol procedure. The principal
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part of the procedure declaration is the procedure body. Other parts
of the block in whose heading the procedure is declared can then cause
this procedure body to be executed or evaluated. A proper procedure
is activated by a procedure statement (cf. 7.3.), a function procedure
by a function designator (cf. 6.2.). Associated with the procedure
body is a heading containing the procedure identifier and possibly a

list of formal parameters.

5.3.2.1. Type specification of formal parameters. All formel para-
meters of a formal parameter segment are of the same indicated type.
The type must be such that the replacement of the formal parameter by

the actual parameter of this specified type leads tc correct ALGOL W

expressions and statements (cf. 7.3.2.).

5.3%.2.2. The effect of the symbols value and result appearing in a
formal type is explained by the following rule, which is applied to
the procedure body before the procedure is invoked:
(1) The procedure body is enclosed by the symbols begin and end
if it is not already enclosed by these symbols;
(2) For every formal parameter whose formal type contains the

symbol value or result (or both),

(a) a declaration followed by & semicolon is inserted after
the first begin of the procedure body, with a simple
type as indicated in the formai type, and with an iden-
tifier different {rom any identifier valid at the place
of the declaration.

(b) throughout the procedure body, every occurrence of the
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formal parameter identifier is replaced by the identifier
defined in step 2a;

(3) If the formal type contains the symbol value, an assignment
statement (cf. 7.2.) followed by a semicolon is inserted
after the declarations of the procedure body. Its left part
contains the identifier defined in step 2a, and its expression
consists of the formal parameter identifier., The symbol
value is then deleted;

(hj If tre formal type contains the symbol result, an assignment
statement preceded by a semicolon is inserted before the symbol
end which terminates a proper procedure body. In the case
of a function procedure, an assignment statement preceded
by a semicolon is inserted after the final expression
of the function procedure body. Its left part contains the
formal parameter identifier, and its expression consists of
the identifier defined in step 2a. The symbol result is

then deleted.

5.3.2.3. Specification of array dimensions. The number of "*"'s
appearing in the formal array specification is the dimension cf the

array parameter.

5.3.2.4. External procedures. The body of a procedure can be just the construct
fortran <string>

or the construct

algol <string> .
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In these cases, the actual body of the procedure is specified in a program

that is compiled separately (externally). The <string> 1is a one-to-eight

character external name that is used in the separate compilation. Thus, the

example on page 27 could be used to refer to a FORTRAN program that begins:
SUBROUTINE PLOTSB(N) ...

(cf. Deck Setup and Compiler Options, Section 3 for details).

5.5.5. Examples

procedure INCREMENT; X := X+1

real procedure MAX (real value X, Y);
if X <Y then Y else X

procedure COPY (real array U, V (¥,%); integer value A, B);
for T := 1 until A do

1 until B do U(I,J) := V(I,J)

real procedure HORNER (real array A (¥*); integer value N;

for J :

real value X);

begin real S; § := 03
for I := 0O until N do § :=8 * X + A(I);
S

end

long real procedure SUM (integer X, N; long real X);

begin long real Y; Y := 0; K := N;
while K > = 1 do
begin ¥ :=Y + X; K :=K - 1
end;
Y

end
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reference (PERSON) procedure YOUNGESTUNCLE (reference (PERSON) R);
begin reference (PERSON) P, M; '
P := YOUNGESTOFFSPRING (FATHER (FATHER (R)));
while (P - = null) and (- MALE (P)) or
(P = FATHER (R)) do
P := ELDERSIBLING (P);
M := YOUNGESTOFFSPRING (MOTHER (MOTHER (R)));
while (M- = null) and (- MALE (M)) do
M := ELDERSIBLING (M);
if P =null then M else
if M =null then P else
if AGE(P) < AGE(M) then P else M

]

end

procedure PLOTSUBROUTINE (integer value I); fortran "PLOTSB"
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5.4, Record Class Declarations

5.4,1. Syntax
<record class declaration> ::= record <identifier> (<field list>)
<field list> ::= <simple variable declaration> | <field list> ;

<simple variable declaration>

5.4.2. Semantics

A record class declaration serves to define the structural pro-
perties of records belonging to the class. The principal constituent
of a record class declaration is a sequence of simple variable declar-
ations which define the fields and their simple types for the records
of this c¢lass and associgte identifiers with the individual fields.
A record class identifier can be used in a record designator (cf. 6.7.)

to construct a new record of the given class.

5.4.3. Examples

record NODE (reference (NODE) LEFT, RIGHT)

record PERSON (string NAME; integer AGE; logical MALE;
reference (PERSON) FATHER, MOTHER, YOUNGESTOFFSPRING,

ELDERSIBLING)

6. EXPRESSIONS

Expressions are rules which specify how new values are computed
from existing ones. These new values are obtained by performing the
operatinns indicated by the operators on the values of the operands.
The operands are either constants, variables or function designators,
or other expressions, enclosed by parentheses if necessary. The evalu-

ation of operands other than constants may involve smaller units of
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action such as the evaluation of other expressions or the execution of
statements. The value of an expression between parentheses is obtained

by evaluating that expression. If an operator has two oﬁera.nds » then
these operands may be evaluated in any order with the exception of the
logical operators discussed in 6.4.2.2. Several simple types of
expressions are distinguished. Their structure is defined by the following
rules, in which the symbol T has to be repla.c'ed consistently as described
in Section 1, and where the triplets j’o, :I'l, :re have to be either all
three replaced by the same one of the words

logical
bit
string
reference

or by any combination of words as indicated by the following table,

which yields :!'O given :rl and 3’2:

T
S'l S integer real complex
integer integer real complex
real real real complex
complex complex complex complex
:ro has the quality "long" if either both :rl and 3’2 have that

quality, or if one has that quality and the other is "integer".

Syntax:

<7 expression> ::= <simple T expression> | <case clause>
(<7 expression list>)
k<TO expression> ::= <if clause> <j’l expression> else
<72 expression>
<7 expression list> ::= <Texpression>
<:r'O expression list> ::= <:r:L expression list> , <fr2 expression>
<if clause> ::= if <logical expression> then

<case clause> ::= case <integer expression> of
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The construction

<if clause><<Tlexpression>‘g£§g<<T2expression>
causes the selection and evaluation of an expression on the basis of
the current value of the logical expression contained in the if clause.
If this value is true, the expression following the if clause is selected;
if the value is false, the expression following else is selected. If

T, and 72 are simuwle type string, the shorter expression will be padded

1
on the right with blanks to make it the length of the longer one. The

construction

<case clause> (<7 expression list>)
causes the selection of the expression whose ordinal number in the
expression list is equal to the current value of the integer expression
contained in the case clause. In order that the case expression be
defined, the current value of this expression must be the ordinal number
of some expression in the expression list. If T 1is simple type string,
the string expressions will be padded on the right with blanks to make
all alternatives the length of the longest one.

Examples of expressions

X -I A¥B COLUMN rem 5 (X+Y)**3  long abs BALANCE
if X=3 then Y+37 else z¥2.1

case I of (3.1k, 2.78, L4u8.9)

case DECODE(C)-128 of ("a", "B", "c", "D", "E", "F")

6.1. - Variables
6.1.1. Syntax

<simple T variable> ::= <JTvariable identifier> | <T field designator>
<7 array designator>

<T variable> ::= <simple T variable>

<string variable> ::= <substring designator>

< T field designator> ::= <7 field identifier> (<reference expression>)

<Tarray designator> ::= <Tarray identifier> (<subscript list>)

<subscript list> ::= <subscript> i <subscript list> , <subscript>

<gsubscript> ::= <integer expression>
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6.1.2. Semantics

An array designator denotes the variable whose indices are the
current values of the expressions in the subscript list. The value of
each subscript must lie within the declared bounds for that subscript
position.

A field designator designates a field in the record referred to
by its reference expression. The simple type of the field designator
is defined by the declaration of that field identifier ‘in the record
class designated by the reference expression of the field designator

(ef. 5.4.).

6.1.3. Examples

X A(I) M(I+J, I-J)
FATHER (JACK) MOTHER (FATHER(JILL) )

6.2. Function Designators

6.2.1. Syntax

<7 function designator> ::= <3’funétion identifier> | <7 function

identifier> (<actual parameter 1list>)

6.2.2. Semantics
A function designator defines a value which can be obtained by a

process performed in the followingvsteps:

Step 1. A copy is made of the body of the function procedure
whose procedure identifier is given by the function designator

and of the actual parameters of the latter.

Steps 2, 3, L. As specified in 7.3.2..
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Step 5. The copy of the function procedure body, modified as indicated
in steps 2-4, is executed. Execution of the expression which constitutes
cr is part of the modified procedure body consists of evaluation of that
expression, and the resulting value is the value of the function desig-
nator. The simple type of the function designator is the simple type

in the corresponding function procedure declaration.

6.2.3. Examples

MAX (X %% 2, Y ** 2)

suM (I, 100, H(I))

suM (I, M, SUM (J, N, A(I,J)))
YOUNGESTUNCLE (JILL)

suM (1, 10, X(I) * ¥(1))
HORNER (X, 10, 2.7)

6.3. Arithmetic Expressions

6.3.1, Syntax

In any of the followiné rules, every occurrence of the symbol T
must be systematically replaced by one of the following words (or
word pairs):

intveger
real

long real
complex

long complex
The rules governing the replacement of the symbols TO’ TlA and Tg are
given in 6.3.2.

<simple 7 expression> ::= <7 term> | + <7 term> l - <7 term>
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<simple T, expression> ::= <simple T, expression> + <T, term> |
<simple Tl expression> -‘<72term>
<Tterm> ::= <7 factor>
<3’O term> ::= <Tlterm> * <3’2 factor>
<T tem> ::= <:rlterm>/ <7, factor>
<integer term> ::= <integer term> div <integer factor> |
<integer tefm>-ggg <integer factor>
<T,factor> ::= <T,primary> | <7, factor> ** <integer primary>
<3’Oprimary> t:= abs <:rlpr1'ma.ry>
<:ropr1‘mary> ::= long <3’lprimary>
<TO primary> ::= short <j’lpri_mary>
<Tprimary> ::= <7Tvariable> | <7 function designator> |
(<7 expression>) | <7 number>
<integer primary> ::= <control identifier>

6.3.2. Semantics

An arithmetic expression is a rule for computing a number.

According to its simple type it is called an integer expression,
real expression, long real expression, complex expression, or long

complex expression.

6.3.2.1. The operators +, -, ¥, and / have the conventional meanings

of addition, subtraction, multiplication and division. In the relevant
syntactic rules of 6.3.1. the symbols :ro, :rl and :!’2 have to be replaced
by any combination of words according to the following table which

indicates j'o for any combination of 3’1 and. 12. (Also see page 13k.)

6.3.2.2. The operator "-" standing as the first symbol of a simple

expression denotes the monadic_ operation of sign inversion. The type of
the result is the type of the operand. The operator "+" standing as the -
first symbol of a simple expression denotes the monadic operation of

identity.
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€.3.2.3. The operator div is mathematically defined (for B £ 0) as
A div B = 3GN (AxB) xD (abs A, abs B) (ef. 6.3.2.6.)
A and B both must be integer expressions.

For the purpose of the definition above, SGN and D mean

integer procedure SGN (integer value A);
if A <O then -1 else 1;

integer procedure D (integer value A, B);
if A < B then O else D(A-B, B) +1

6.3.2.4.  The operator rem (remainder) is mathematically defined as
Arem B=A-(Adiv B) xB

A and B both must be integer expressions.

6.3.2.5. The operator ** denotes exponentiation of the first operand
to the power of the second operand. In the relevant.syntactic rule of
6.3.1. the symbols TO, Tl,
of words from the table below. If the value of the exponent, N, is

and 72 are to be replaced by some combination

positive, then the first operand is multiplied by itself N times; if N

is negative, the expression is evaluated as 1/(first operand**(-N));

if N is zero, the result is always l. If the first operand is zero and
the second operand is negative, then division by zero will result. Note
that -1*¥*N is parsed as -(1¥*N); use (-1)**N instead. To force something

like I**J (wherée I >0 and J > 0) to be an integer, use TRUNCATE(I**J).

6.3.2.6. The monadic operator abs yields the absolute value or modulus
of the operand. In the relevant syntactic rule of 6.3.1. the symbols T,

and Tl have to be replaced by the same types.

£.3.2.7. Precision of arithmetic. If the result of an arithmetic

operation is of simple type real, complex, long real, or long complex
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then it is the mathematically understood result of the operation

performed on operands which may deviate from actual operands.

In the relevant syntactic
must be replaced by any of the

in the tables below.

Operators + | -

T

rules of 6.3.1. the symbols Tyr Tpp and T

2

combinations of words (or word pairs)

Tl g integér real long real complex long complex
integer integer real long real complex long complex
real real real real complex complex
long real long real real long real complex long complex
complex complex complex complex complex complex
long complex| long complex complex long complex complex long complex

Operator *
T2
Tl integer real complex
integer integer long real long complex
real long real long real long complex
complex long complex long complex long complex
Tl or 72 having the quality "long" does not affect the type of the result.
Operator /
12
Tl integer real long real complex Jlong complex
integer long real real long real complex long complex
real real real real complex complex
long real long real real long real complex Long complex
complex complex complex complex complex complex
long complex | long complex complex long complex complex long complex
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Table of values for div and rem operators

J IdivJ I remJg
10 2 5 0]
11 2 5 1
10 -2 -5 0
11 -2 -5 1
-10 2 -5 0
=11 2 -5 -1
-10 -2 5 0
-11 -2 5 -1

Operator **

T2
Tl integer
integer long real
real long real
long real long real
complex long complex
long complex | long complex

Operator long

%o 71

long real integer

long real real

long real long real
long complex | complex

long complex | long complex

Operator short

To 71

real integer

real real

real long real
complex complex
complex long complex
6.3.3. Examples

C + A(I) * B(I)
EXP (-X/(2 * SIGMA)) / SQRT (2 * SIGMA)
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6.4.

Logical Expressions

6.4.1. Syntax

In the following rules for <relation> the symbols TO and Tl must

either be identically replaced by any one of the following words:

and the symbols Te or T

bit
string

reference

or by any of the words from:

camplex

long complex
real

long real

integer

3 must be identically replaced by string or

must be replaced by any of real; long real. integer.

<simple logical expressior> ::= <logical element> | <relatior>
<logical element> ::= <logical term> | <logical ‘element> or

<logical tern>

<logical term> ::= <logical factor> | <logical term> and

<logical factor>

<logical factor> ::= <logical primary> | -1 <logical primary>
<logical primary> ::= <logical value> | <logical variable> |

<logical function designator> I
(<logical expressior>)

<relatiorn> ::= <simple IO expression> <equality operator>

<simple Tl expressior> I <logical element>
<equality operator> <logical element> |

<simple reference expression> is

<record class identifier> l

<gimple 3’2 expression> <relational operator>
<simple 3'3 expression>

<relational operator> ::=< | <= |[>= |>
<equality operator> i:== | - =
6.4 .2, Semantics

A logical expression is a rule for camputing a logical valug.
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v.4.2.1. The relational operators represent algebraic ordering for
arithmetic arguments and EBCDIC ordering for string arguments. If two
strings of unequal length are compared, the shorter string is first
extended to the right with blanks. The relational operators yield the
logical value true if the relation is satisfied for the values of the
two operands; false otherwise. Two references are equal if and only if
they are both null or both refer to the same record. The operator is
yields the logical value true if the reference expression designates a
record of the indicated record class; false otherwise. The reference

value null fails to designate a record of any record class.

6.4.2.2. The operators — (not), and, and or, operating on logical
values, are defined by the following equivalences:

- X if X then false else true

X and Y if X then Y else false

X or Y iﬁ X then true else Y

6.4.,3. Examples

PorQ

(X < Y) and (Y < 2)
YOUNGESTOFFSPRING (JACK) — = null
FATHER (JILL) is PERSON

o

Bit Expressions

A
.

6.5.1. Syntax

<simple bit expression> ::= <bit term> | <simple bit expression>
or <bit term> ‘

<bit term> ::= <bit factor> | <bit term> and <bit factor>

<bit factor> ::= <bit secondary> | — <bit secondary>

<bit secondary> ::= <bit primary> | <bit secondary> shl
<integer primary> | <bit secondary> shr
<integer primary>

<bit primary> ::= <bit sequence> | <bit variable> | <bit

function designator> l (<vit expression>)
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6.5.2. Semantics

A bit expression is a rule for computing a bit sequence.

The operators and, or, and — produce a result of type bits, every
bit being dependent on the corresponding bit(s) in the operand(s) as

follows:

The operators shl and shr denote the shifting operation to the
left and to the right respectively by the number of bit positions
indicated by the absolute value of the integer primary. Vacated bit
positions to the right or left respectively are assigned the bit

value O.

6.5.3. Examples

G and H or #38
G and - (H or G) shr 8

6.6. String Expressions

6.6.1. Syntax

<simple string expression> ::= <string primary>
<string primary> ::= <string> | <string variable> ] <string
function designator> | (<string expression>)
<substring designator> ::= <simple string variable>
(<integer expressiom>l <integer number>)

(The | stands for the vertical bar character | .)
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6.6.2. Semantics

A string expression is a rule for computing & string (sequence of

characters).

6.6.2.1. A substring designator denotes a sequence of characters of
the string designated by the string variable. The integer expression
preceding the @ selects the starting character of the sequence. The
value of the expression indicates the position in the string variable.
The value must be greater than ¢r equal to O and less than the declared
length of the string variable. The first character cf the string has
position O. The integer number following the § indicates the length
of the selected sequence and is the length of the string expression.
The sum of the integer expression and the integer number must be less

than or equal to the declared length of the string variable.

6.6.3. Example

string (10) s;
s (4U3)
s (1+JW1)

string (10) array T (l::m,2::n);
T (4,6) (3W5)

[oxY
N
~

Reference Expressions

6.7.1. Syntax

<simple reference expression> ::= <null reference> | <reference

| variable> I <reference functiocn
designator> | <record designator> |

(<reference expression>)
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<record designator> ::i= <record class identifier> | <record
class identifier> (<expression list>)
<expression list> 1:1:= <J expression> | <expression list>,
< expression>

6.7.2. Semantics

A reference expression is a rule for computing a reference to a
record.

The value of a record designator is the reference to a newly
created record belonging to the designated record class. If the
record designator contains an expression list, then the values of the
expressions are assigned to the fields of the new record. The entries
in the expression list are taken in the same order as the fields in
the record class declaration, and the simple types of the expressions must
be assignment compatible with the simple types of the record fields

(cf. 7.2.2.).

6.7.3. Example

PERSON ("CAROL", O, false, JACK, JILL, null, YOUNGESTOFFSPRING
(JACK))

6.8. Precedence of QOperators

The syntax of 6.3.1., 6.4.1., and 6.5.1. implies the follawing
hierarchy of operator precedences:

long, short, abs

shl, shr, ¥*¥

]

*, [/, div, rem, and

*, - or

<, <=, =, -4 =, >=, >, _jﬁ
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Example

A=Band C is equivalent to A = (B and C)

STATEMENTS

A statement denotes a unit of action. By the execution of a

statement is meant the performance of this unit of action, which may

consist of smaller units of action such as the evaluation of expressions

or the execution of other statements.

T.1.

Syntax:

<program> ::= <statement>.
<proper procedure declaration>. l
<7 function procedui*e declaration> .
<statement> ::= <simple statement> | <iterative statement> |
<if statement> | <case statement>
<simple statement> ::= <block> | <7 assignment statement> |
<empty> | <procedure statement> |
<goto statement>

(Note: the terminating period is optional.)

Blocks

T.l.1. Syntax

<block> ::= <block body> <statement> end

<block body> ::= <block head> | <block body> <statement>;
:\ <block body> <label definition>

<block head> ::= begin l <block head> <declaration> ;

<label definition> ::= <identifier> :

T7.1.2. Semantics

Every block introduces a new level of nomenclature. This is

realized by execution of the block ih the following steps:

Lo



7. STATEMENTS

Step 1. If an identifier, say A, defined in the block head or
in a label definition of the block body is already defined at
the place from which the block is entered, then every occurrence
of that identifier, A, within the block except for occurrence in
array bound expressions is systematically replaced by another
identifier, say APRIME, which is defined neither within the

block nor at the place from which the block is entered.

Step 2. If the declarations of the block contain array bound

expressions, then these expressions are evaluated,

Step 3. Execution of the statements contained in the block body
begins with the execution of the first statement following the
block head. H
After execution of the last statement of the block body (unless
it is a goto statement) a block exit occurs, and the statement follow-
ing the entire block is executed.

T7.1.3. Example

begin real U;
U:=X; X:=Y; Y:=2; Z :=U

end

T7.2. Assignment Statements

7.2.1, Syntax

In the following rules the symbols J . and Il must be replaced by

0
words as indicated in Section 1, subject to the restriction that the

type Tl is assignment compatible with the type TO as defined in 7.2.2.
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<TO assignment statement> ::= <TO left part> <Tl expression>
<IO left part> <Tl assignment

statement>

<J left part> ::= <J variable> :=

T.2.2. Semantics

The execution of a simple assignment statement

<TO assignment statement> ::= <IO left part> <Il expression>
causes the assignment of the value of the expression to the variable.
If a shorter string is to be assigned to a longer one, the shorter
string is first extended to the right with blanks until the lengths are
equal. In a multiple assignment statement

(<TO assignment statement> i:= <TO left part> <Tl assignment
statement>)

the assignments are performed from right to left. For each left part
variable, the simple'type of the expression or assignment variable immediately
to the right must be assignment compatible with the simple type of that
variable.
A simple type Tl is said to be assignment compatible with a simple
type TO if either
(1) the two types are identigal (except that if T, and Tl are
st;ing, the length of the TO variable must be greater than
or equal to the length of the Tl expression or assignment), or
(2) 7T, is real or long real, and Tl is integer, real or long

0

real or

(3) T, is complex or long complex, and T, is integer, real,

long real, complex or long complex.

In the case of a reference, the reference to be assigned must refer
to a record of one of the classes specified by the record class identifiers

ascociated with the reference variable in its declaration.

L



T.

STATEMENTS

T.2.3. Examples

Z := AGE(JACK) := 28
X:=Y+abs 2
C:=I+X+C
Pi=X—=Y

Procedure Statements

7.3.1. Syntax

<procedure statement> ::= <procedure identifier> | <procedure
identifier> (<actual parameter list>)
<actual parameter list> i:= <actual parameter>.| <actual
parameter list> , <actual parameter>
<actual parameter> ::= <J expression>-| <statement> | <J subarray
designator> l <procedure identifier> |
<JT function identifier>
<J subarray designatbr> tt= <J array identifier> | <T array
identifier> (<subarray designator
list>)
<subarray designator list> ::= <subscript> | * | <subarray
' designator list>,<subscript> |

<subarray designator list>,*

T.3.2. Semantics

The execution of a procedure statement is equivalent to a process

performed in the following steps:

Step 1. A copy is made of the body of the proper procedure whose
procedure identifier is given by the proceduré statement, and of

the actual parameters of the latter. The procedure statement is

replaced by the copy of the procedure body.

Step 2. If the procedure body is a block, then a systematic

change of identifiers in its copy is performed as specified by
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step 1 of 7.1.2.

Step 3. The copies of the actual parameters are treated in an
undefined order as follows: If the copy is an expression
different from a variable, then it is enclosed by a pair of
parentheses, or if it is a statement it is enclosed by the symbols

begin and end.

Step 4. 1In the copy of the procedure body every occurrence of an
identifier identifying a formal parameter is replaced by the copy
of the corresponding actual parameter (cf. 7.3.2.1.). In order
for the process to be defined, these replacements must lead to

correct ALGOL W expressions and statements.

Step 5. The copy of the procedufe body, modified as indicated in

steps 2-U4, is executed.

7.3.2.1, Actual-formal correspondence. The correspondence between
the actual parameters and the formal parameters is established as
follows: The actual parameter list of the procedure statement (or
of the function designator) must have the same number of entries as
the formal parameter list of the procedure declaration heading. The
correspondence is obtained by taking the entries of these two lists

in the same order.

7.3.2.2, Formal specifications. If a formal parameter is specified by
value, then the simple type of the actual parameter must be assignment
compatible with the formal type. If it is specified as result, then the
formal type must be assignment compatible with the simple type of the

actual parameter. If it is specified by value result, both the above
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conditions must be satisfied. In all other cases, the types must be
identical. If an actual parameter is a statement, then the specification

of its corresponding formal parameter must be procedure.

T.3.2.3. Subarray designators. A complete array may be passed to a
procedure by specifying the name of the array if the number of subscripts
of the actual parameter equals the number of subscripts of the
corresponding formal parameter, If the actual array parameter has
more subscripts than the corresponding formal parameter, enough subscripts
must be specified by integer expressions so that the number of *'s appearing
in the subarray designator equals the number of subscripts of the
corresponding formal parameter. The subscript positions of the formal
array designator are matched with the positions with *'s in the subarray
designator in the order they appear.

7.3.3. Examples

INCREMENT
copY (A, B, M, N)
INNERPRODUCT (IP, N, A(I,*), B(*,J))

7.4. Goto Statments

7.4.1. Syntax

<goto statement> ::= goto <label identifier> | go to <label
identifier>

7.4.2. Semantics

An identifier is called a label identifier if it stands as a

label.
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A goto statement determines that execution of the text be continued

after the label definition of the label identifier. The identification

of that label definition is accomplished in the following steps:

Step 1. If some label definition within the most recently activated
but not yet terminated block contains the label identifier, then

this is the designated label definition. Otherwise,

Step 2. The execution of that block is considered as terminated

and Step 1 is taken as specified above.

lﬁ Statements

7.5.1. Syntax

<if statement> ::= <if clause> <statement> | <if clause>
<simple statement> else <statement>
<if clause> ::= if <logical expression> then

7.5.2. Semantics

The execution of if statements causes certain statements to be

executed or skipped depending on the values of specified logical

expressions. An if statement of the form

<if clause> <statement>

is executed in the following steps:

Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of Step 1 is true, then the statement
following the if clause is executed. Otherwise step 2 causes

no action to be taken at all.
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An if statement of the form

<if clause> <simple statement> else <statement>

is executed in the following steps:

T.5a

Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of step 1 is true, then the simple statement
following the if clause is executed. Otherwise the statement

following else is executed.

T7.5.3. Examples

ifX =Y then goto L
i{ X <Y then U := X else iﬁ Y<ZthenU :=Y else V :=2

Assert Statements

7.5a.1 Syntax

<assert statement> ::= assert <ldogical expression>

T.5a.2 Semantics
The assert statement is equivalent to the if statement:

if —«(<logical expression>) then endexecution

where "endexecution" signifies a procedure which terminates the execution
of an ALGOL W program. The assert statement can be used both as a
debugging aid (asserting conditions which should be true, but may not

be if a bug exists), and as a program documentation aid.
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Case Statements

7.6.1. Syntax

<case statement> <case clause> begin <statement list> end

<statement> | <statement list> ; <statement>

<statement list>
<case clause> ::= case <integer expression> of

7.6.2. Semantics

The execution of a case statement proceeds in the following steps:
Step 1. The expression of the case clause is evaluated.

Step 2. The statement whose ordinal number in thé statement 1list
is equal to the value obtained in Step 1 is executed. In order
that the case statement be defined, the current value of the
expression in the case clause must be the ordinal number of some
statement of the statement list.

7.6.3. Examples

case I of
begin X := X + Y3
Y :=Y + Z;
Z :=2Z+X
end
case j of
begin H(I) := -H(I);
begin H(I-1) := H(I-1) + H(I); I := I-1 end;
begin H(I-1) := H(I-1) * H(I); I := I-1 end;

begin H(H(I-1)) :=H(I); I :=I-2 end

end
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7.7. Iterative Statements

T7.7.1. Syntax

<jterative statement> ::= <for clause> <statement> | <while
clause> <statement>
<for clause> ::= for <ddentifier> := <initial value>
step <increment> until <limit> do | for
<identifier> := <initial value> until <limit>
do | for <identifier> := <for list> do

<for 1list> ::= <integer expression> | <for list>, <integer
expression>

<initial value> ::= <integer expression>

<increment> ::= <dinteger, expression>

<limit> ::= <integer expression>

<while clause> ::= while <logical expression> do

7.7.2. Semantics

The iterative statement serves to express that a statement be

Example FOR statement Values I takes on
for I:=1 step 2 until 10 do 1, 3, 5 T, 9

for I:=1 step 2 until 1 do 1

for I:=1 step 2 until -10 do none

for I:=1 step -2 until 10 do none

for I:=1 step -2 until 1 do 1

20_1_' I:=l Step -2 until -10 E l, "l, "‘5’ "'5, "7, ‘9
for I:=1 step O until 10 do 1, 1, 1, 1, 1, 1, ...
_f_g}: I:=l Step 0 lmtil l @_ 1, l’ l, l, l’ l, s
for I:=1 step O until -10 do none

Table of results for various FOR statements.
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executed repeatedly depending on certain conditions specified by a

for clause or a while clause. The statement following the for clause
or the while clause always acts as a block, whether it has the form of
a block or not. The value of the control identifier (the identifier
foldowing fgz) cannot be changed by assignment within the controlled
statement.

(a) An iterative statement of the form

for <identifier> :; El step E2 until E3 do <statement>
is exactly equivalent to the block

begin <statement-0>; <statement-1> ... ; <statement-I>;

«es 3 <statement-N> end

in the Ith statement every occurrence of the control identifier
is replaced by the value of the expression (EL + I x E2).

The index W of the last statement is determined by
N < (E3-E1) / E2 < N+1. If N < 0, then it is understood that
the sequence is empty. The expressions El, E2, and E3 are
evaluated exactly once, namely before execution of <statement-0>.

Therefore they can not depend on the control identifier.
(b) An iterative statement of the form

for <identifier> := El until E3 do <statement>
is exactly equivalent to the iterative statement

for <identifier> := El step 1 until E3 do <statement>

(c) An iterative statement of the form
for <identifier> := El, E2, ... , EN do <statement>

is exactly equivalent to the block
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(d)

7.8.

begin <statement-1>; <statement-2> ... <statement-I> ; ...
<statement-N> end

when in the Ith statement every occurrence of the control identifier

is replaced by the value of the expression EI.

An iterative statement of the form
while E 29 <statement>
is exactly equivalent to

begin
L: if E then -

begin <statement> ; goto L end

end

where it is understood that L represents an identifier which is not

defined at the place from which the while statement is entered.

T77.3. Examples

for V := 1 step 1 until N-1 do § := S + A(U,V)

while (J > 0) and (CITY(J) -~ =S) do J :=J-1

for I :=X, X+ 1, X+ 3, X+ 7 do P(I)

Standard Procedures

Standard procedures are provided in ALGOL W for the purpose of

communication with the input/output system. These standard procedures

differ from explicitly declared procedures in that the number and type

of actual parameters need not be identical in every procedure statement

in which the standard procedure identifier appears. In the following

descriptions, each Ii is to be replaced by any one of
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integer string (<integer number>)
real logical

long real bits

complex

long complex

7.8.1. The Input/Output System

AIGOL W provides a single legible input stream and a single legible
output stream. These streams are conceived as sequences of records, each
record consisting of a character sequence of fixed length. The input
stream has the logical properties of a sequence of cards in a card reader;
records consist of 80 characters. The output stream has the logical
properties of a sequence of lines on a line printer; records consist
of 132 characters, and the records are grouped into logical pages.

Fach page consists of not less than one nor more than 60 lines.

Input records may be transmitted as strings without analysis.
Alternatively, it is possible to invoke a procedure which will scan the
sequence of records for data items to be interpreted as numbers, bit
sequences, strings, or logical values. If such analysis is specified,
data items may be reference denotations of the corresponding constants
(cf. Section 4). 1In addition, the following forms of arithmetic expressions
are acceptable data itéms, and the corresponding simple types are those

determined by the rules for expressions (cf. 6.3.):

(1) <sign> <T number>
where : T is one of jinteger, real, long real, complex, long

complex;
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(2) <J, number> <sign> <J, number>
<sign> <TO number> <sign>><31'number>
where : TO is one of‘integer, real, long‘real, and
Tl is one of complex, long complex.
Data items are separated by one or more blanks. Scanning for data items
initially begins with the first character of the input stream; after
the initial scan, it normally begins with the character following the
one which terminated the most recent previous scan. Leading blanks are
ignored. The scan is terminated by the first blank following the data
item. In the process, new records are fetched as necessary; character
position 80 of one record is considered to be immediately followed by
character position 1 of the next record. There exist procedures to
cause the scanning process to begin with the first characfer of a record;
if scanning would not otherwise start there, a new record is fetched.
Output items are assembled into records by an editing procedure.

Items are automatically converted to character sequences and placed

in fieldé according to the simple type of each item, as described below:

Simple Type Field Description
integer right justified in a field containing

the number of characters specified by
the current value of INTFIELDSIZE
(initialized to 1%, cf. 8.Bh) and followed
by 2 blanks

real right justified in a field of 14 characters
and followed by 2 blanks
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long real right justified in a field of 22 characters
and followed by 2 blanks

complex two adjacent real fields

‘long complex two adjacent long real fields

logical right justified in a field of 6 characters

followed by 2 blanks

string placed in a field exactly the length of
the string
bits same as real

The first field transmitted begins the output stream; thereafter, each
field is normally placed immediately following the most recent previously
transmitted field. If, however, the field corresponding to an item

cannot be placed entirely within a non-empty record, that item is made the
first field of the next record. In addition, there exist procedures to
cause the field corresponding to an item to begin a new récord. Each

page group is automatically terminated after 60 records; procedures

are provided for causing earlier termination.
7.8.2. Read Statements

Implicit declaration headings:
procedure READ (Tl result X;; ... ;3 7 result Xn);

procedure READON (Tl result X 5 ... ; I result Xn);

(where n > = 1)
Both READ and READON designate free field input procedures. Input
records are scanned as described in 7.8.1. Values on input records are
read, matched with the variables of the actual parameter list in order

of appearance, and assigned to the corresponding variables. The simple
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type of each data item must be assignment compatible with the simple
type of the corresponding variable. For each READ statement, scanning
for the first data item is caused to begin with the first character of
a record; for a READON statement, scanning continues from the previous
point of termination as determined by prior use of READ, READON, or
IOCONTROL (cf. 7.8.1.).

Implicit declaration heading:

procedure READCARD (string(80) result X)5 enes Xn);

(where n > = 1)

READCARD designates a procedure transmitting 80 character input
records without analysis. For each variable of the actual parameter list,
the scanning process is set to begin at the first character of a record
(by fetching a new record if necessary), all 80 characters of that record
are assigned to the corresponding string variable, and subsequent input
scanning is set to begin at the first character of the next sequential

record.
7.8.3. Write Statements

Implicit declaration headings:

procedure WRITE (Tl value X;3 ... 5 T value Xn);
procedure WRITEON (T, value X ; ... ; T value X );
(where n > = 1)

WRITE and WRITEON designate output procedures with automatic format |
conversion. Values of expressions of the actual parameter list are converted
to character fields which are assembled into output records in order gf A
appearance (cf. 7.8.1.). For each WRITE statement, the field corresponding
to the first value is caused to begin an output record; for a WRITEON

statement, assembly ccntinues from the previous point of termination.
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7.8.4. Control Statements.
Implicit declaration heading:

procedure IOCONTROL (integer value Xl,...,xn);

(where n > = 1)
TOCONTROL designates a procedure which affects the state of the
input/output system. Argument values with defined effect are listed
below; other values currently have no effect but are explicitly made

available for local use or future expansion.

Value Action (ef. 7.8.1.)

1 Subsequent input scamming is set to begin with the first
character of a record. Does nothing if already
positioned at the first character of a record.

2 Subsequent output assembly is set to begin with the
first character of a record. Does nothing if already
positioned at the first character of a record.

3 Like IOCONTROL(2), except that the new record is also
caused to begin a new output page. Does nothing if already
positioned at the first character at the top of a page.

b Subsequent automatic page ejects on the printed output
are suppressed, thus allowing more than 60 records on
a page. This suppresses only the automatic page eject
after 60 records; IOCONTROL(3) still works. (Note that
some operating systems also have a feature to force
page ejects after 60 records .~

5 Subsequent automatic page ejects on the printed output
are allowed; undoes TOCONTROL(4). While the automatic
page eject is suppressed, page and line counts are stiil
maintained based on 60 records per page, SO a program may
still be cut off for exceeding the page estimate. Alsc,
after an TOCONTROL(5), the first automatic page eject may
occur after 1 to 60 more records, unless the counters are
re-synchronized at that point via IOCONTROL(3).

T2 Subsequent use of READ and READON are to use only the first
T2 characters of a record; the last eight are ignored.
READCARD still reads all 80 characters.

80 Subsequent use of READ and READON are to use all 80

characters of a record.

*
*/ At Stanford, a /* PRINT EJECT=NO card must be included next to the
/* SERVICE card. 58
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7.8.5. Examples

READ ( X, A(1) )

READCARD ( S, LINE(10|80) )
WRITE ( "AVERAGE =", SUM/N )
WRITEON ( X(1,J) )

TOCONTROL (2)

7.8.6 TRACE standard procedure

The number of times each source statement is traced by the debugging
facilities, or the number of times each source statement can generate a
significance error message (c.f. $DEBUG and §$NORM in the Deck Setup
section) can be modified at execution time by the standard procedure
TRACE. Typical use would be TRACE(O); at the beginning of a program to
initially turn the facility off, TRACE(n); at the beginning of a particular
section of code to be watched, and TRACE(O); at the end of that section.

Implicit declaration heading:

procedure TRACE (integer value N);

comment changes the upper bound for statement tracing

or significance error messages:

if N >0 then N becomes the statement tracing bound,
if N = Ob then statement tracing and floating-point

interpretation are suspended,
if N <O then ABS(N) becomes the significance error
| message bound;
TRACE has no effect unless a $DEBUG,3 $DEBUG,4 or ¢NORM option card

has been used.

X TRUNCATE (X) ENTIER(X) ROUND (X)
2.3
2.5
2.7 2 2 3
-2.3 -2 -3 -2
-2.5 | -2 -3 -3
-2.7 -2 -3 -3

Table of values for TRUNCATE, ENTIER, and ROUND

59



8. STANDARD FUNCTIONS

8.  STANDARD FUNCTIONS AND PREDECLARED IDENTIFIERS

The ALGOL W environment includes declarations and initialization of
certain procedures and variables which supplement the language facilities
previously described. Such declarations and initialization are considered
to be included in a block which encloses each ALGOL W program (with
terminating period eliminated). The corresponding identifiers are said

to be predeclared.

8.1. Standard Transfer Functions

Certain functions for conversion of values from one simple type
to another are provided. These functions are predeclared; the
corresponding implicit declaration headings are listed below:

integer procedure TRUNCATE (real value X);

comment the integer i such that
lil <= |x] < ]il + 1 and i > =0
integer procedure ENTIER (real value X)3;

comment the integer i such that
i<=X<i+ 1

integer procedure ROUND (real value X);

comment the value of the integer expression
if X < O then TRUNCATE(X-0.5) else TRUNCATE(X+0.5) ;
integer procedure EXPONENT (real value X);

comment O if X = 0, otherwise the largest integer i such that
i< = 1ogl6(lxl) + 1.
This function obtains the exponent used in the §/360
~representation of the real number;
real procedure ROUNDTOREAL (long real value X);

comment the properly rounded value of X ;

real procedure REALPART (complex value Z);

comment the real component of Z ;
long real procedure LONGREALPART (long complex value Z);
real procedure IMAGPART (complex value Z);

comment the imaginary component of Z ;

long real procedure LONGIMAGPART (long complex value Z);
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complex procedure IMAG (real value X);

comment the complex number O + Xi ;

long complex procedure LONGIMAG (long real value X);

logical procedure ODD (integer value N);

comment the logical value
Nrem?2=1;
bits procedure BITSTRING (integer value N);

comment two's complement representation of N ;
integer procedure NUMBER (bits value X);

comment integer with two's complement representation X ;

integer procedure DECODE (string(l) value S);

comment numeric code for the character S (cf. Appendix 1) ;

string(l) procedure CODE (integer value N);

comment character with numeric code (cf. Appendix 1) given by
abs (N rem 256) ;

In the following comments, the significance of characters in the prototype

formats is as follows:

D decimal digit in a mantissa or integer

E decimal digit in an exponent

A hexadecimal digit in a mantissa or integer

B hexadecimal digit in an exponent

+ sign (blank for positive mantissa or integer)

blank

C

Each exponent is unbiased. Decimal exponents represent powers of 10;
hexadecimal exponents represent powers of 16. Each mantissa (except 0)
represents a normalized fraction less than one. Leading zeroes are not

suppressed.
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string(12) procedure BASE1O (real value X);

comment string encoding of X with format
+EE+DDDDDDD
string(12) procedure BASE16 (real value X);

comment string encoding of X with format
Lo PBBHAAAAAA
string(20) procedure LONGBASELO (long real value X);

comment string encoding of X with format
;+EE+DDDDDDDDDDDDDDD ;
string(20) procedure LONGBASE16 (long real value X);

comment string encoding of X with format
LUEBBtAAAAAAAAAAAAAA;
string(12) procedure INTBASELO (integer value N);

comment string encoding of N with format

st DDDDDDDDID

>

string(12) procedure INTBASE16 (integer value N);

8. STANDARD FUNCTIONS

comment unsigned, two's complement string encoding of N with format

s AAAAAAAA |

Standard Functions of Analysis

The following functions of analysis are provided in the system

listed below:

real procedure SQRT (real value X);

comment the positive square root of X,
domain : X > = 0 ;

long real procedure IONGSQRT (long real value X);

comment the positive square root of X,

domain : X > = 0 ;
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real

procedure EXP (real value X);

long

comment e ¥* X |
domain : X < 17L4.67 ;
real procedure LONGEXP (long real value X);

comment e ¥* X |
domain : X < 17L4.67 ;

procedure IN (real value X);

real

long

comment logarithm of X to the base e,
domain : X > 0 ;
real procedure LONGLN {long real value X);

real

comment logarithm of X to the base e,
domain : X > 0 ;

procedure I0OG (real value X);

long

comment logarithm of X to the base 10,
domain : X > 0 ;
real procedure LONGLOG (long real value X);

real

long

comment logarithm of X to the base 10,

domain : X > 0 ;

procedure SIN (real value X);

comment sine of X (radians),

domain : -82%550 < X < 823550»;
real procedure LONGSIN (long real value X);

real

comment sine of X (radians),
domain : -3.537'+15 < X < 3.537'+15 ;
procedure COS (real value X);

long

comment cosine of X (radians)
domain : -823550 < X < 823550 ;
real procedure LONGCOS (long real value X);

comment cosine of X (radians),
domain : -3.537'+15 < X < 3.537'+15 ;
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real procedure ARCTAN (real value X);

comment arctangent (radians) of X,
range : -1m/2 < ARCTAN(X) < m/2 ;
long real procedure LONGARCTAN (long real value X);
comment arctangent (radians) of X,
range : -m/2 < LONGARCTAN(X) < m/2 ;

8.3. Time Function

The ALGOL W environment includes a clock which measures elapsed
time since the beginning of program execution. The resclution of that
clock is 1/60 second. A predeclared function is provided for reading
the clock.

integer procedure TIME (integer value N);

comment Argument Result Units
- time of day -
-1 seconds/60
- elapsed execution time -
0 minutes/100
1 seconds/60
2 seconds/38L00

The result for any other argument is not defined;

8.4. Predeclared Variables

The following variables are to be considered declared and initialized
by assignment in the conceptual block enclosing the entire ALGOL W program.
The values indicated for real and long real quantities are to be understood
as decimal approximations to the actual machine-format values provided.

integer INTFIELDSIZE;

comment initialized to 14 ,
controls output field size for integers (cf. 7.8.1.);
integer MAXINTEGER;
comment initialized to 2147483647 ,

the maximum positive integer allowed by the implementation;
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real EPSILON;
comment initialized to 9.536743'-07 ,

the largest positive real number € provided by the

implementation such that
l1+e=13;
long real LONGEPSILON;
comment initialized to 2.220LL4604925031'-16L ,

the largest positive long real number € provided by

the'implementation such that
l+e=1;
long real MAXREAL;
comment initialized to 7.23700557733226'+75L ,
the largest positive long real number provided by the
implementation;
long real PI;
comment initialized to 3.14159265358979L ;

8.5. Exceptional Conditions

The‘facilities described below are provided in AIGOL W to allow
detection and control of certain exceptional conditions arising in
the evaluation of arithmetic expressions and standard functions.

"Implicit declarations:

record EXCEPTION (logical XCPNOTED; integer XCPLIMIT, XCPACTION;
logical XCPMARK; string(64) XCPMSG);
reference (EXCEPTION)
OVFL, UNFL, DIVZERO,
INTOVFL, INTDIVZERO,
SQRTERR, EXPERR, LNLOGERR, SINCOSERR ;
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Associated with each exceptional condition which can be processed
is a predeclared reference variable to which references to records of
the class EXCEPTION can be assigned. Fields of such records control the
processing of exceptions. The association between conditions and
reference variables is as follows: |

Reference Variable Conditions

OVFL real, long real, complex, long
complex (exponent) overflow
UNFL real, long real, complex, long

complex (exponent) underflow

DIVZERO real, long real, complex, long
complex division by zero

INTOVFL integer overflow

INTDIVZERO integer division by zero

SQRTERR negative argument for SQRT, LONGSQRT

EXPERR argument of EXP, ILONGEXP out of
domain (cf. 8.2.)

INLOGERR argument of IN, LOG, LONGLN,
LONGLOG out of domain (cf. 8.2.)

SINCOSERR argument of SIN, COS, LONGSIN,

LONGCOS out of domain (cf. 8.2.)

When one of the conditions listed above is detected, the corresponding
reference variable is interrogated, and one of the alternatives described
below is chosen.

If the value of the reference variable interrogated is null, the
condition is ignored and execution of the AIGOL W program continues.

In such situations, a value of O is returned as the value of a standard
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function. For other conditions the result is that provided by the
underlying IBM System/560 hardwareg/. In determining such a result, it

is to be noted that in those cases in which the detection of exceptional
conditions can be inhibited at the hardware level, namely integer overflow
and exponent underflow, detection is so inhibited when the corresponding
reference is NULL.

If the value of the reference variable interrogated is not NULL,
the fields of the record designated by that reference are interrogated,
and processing action is that described by the algorithm given below in
the form of an extended AIGOL W procedure., Identifiers in lower case
represent quantities which transcend the ALGOL W language; they are
explained subsequently.

procedure PROCESSEXCEPTION (reference(EXCEPTION) value CONDITION);
XCPNOTED(CONDITION) := true;
XCPLIMIT(CONDITION) := XCPLIMIT(CONDITION) - 1;
if (XCPLIMIT(CONDITION) < O) or XCPMARK(CONDITION) then
WRITE("%%%¥% ERROR NEAR COORDINATE nnnn -");
if XCPLIMIT(CONDITION) < O then endexecution else
if integercondition then
resultant := default else
resultant := if XCPACTION(CONDITION)
if XCPACTION(CONDITION)
default
end PROCESSEXCEPTION

i

1 then adjustment, else

2 then OL else

]

This procedure is invoked with the value of the reference variable
appropriate to the condition as actual parameter. The significance of

the special identifiers used is as follows:

g/vIBM System/360 Principles of Operation, IBM Systems Library, Form A22-6821
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nnnn approximate coordinate of the source code
which was being executed when the exceptional

condition was detected

endexecution procedure to terminate execution of the ALGOL W
program
integercondition logical value which is true if, and only if,

the condition being processed is integer overflow
or integer division by zero
default result of the operation or function provided
by the AIGOL W system prior to invocation of
the exception processing procedure; this is

3/

defined by the hardware for arithmetic
operations and is the value O for standard
functions

resultant value to be returned as the result of the
arithmetic evaluation or standard function
invocation

adjustment adjusted result of the operation according to

the following table

Condition Adjustment
exponent overflow, if default < O then
division by zero -MAXREAL else MAXREAL
exponent underflow OL

argument X out of domain for :

SQRT, LONGSQRT SQRT (abs X), LONGSQRT(abs X)
EXP, LONGEXP MAXREAL

IN, LONGIN -MAXREAL

LOG, LONGLOG -MAXREAL

SIN, LONGSIN oL

C0S, LONGCOS OL

5 IBM System/360 Principles of Operation, IBM Systems Library, Form A22-6821
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STANDARD FUNCTIONS

The reference variable UNFL is initialized by the system to NULL.

All other reference variables listed above are initialized to references

to a special record which is accessible only by the system. Interrogation

of this record by the procedure described above has the effect of causing

the ALGOL W program to be terminéted with a message indicating the type

of exception.

result in a reference error.

Any other attempt to access any field of this record will

condition XCI%CTION#I or 2 XCPACTION=1 XCPACTION=2 Reference=NULL
OVFL exponent 128 + MAXREAL 0 exponent 128
too small too small
UNFL exponent 128 0 0 0
too large
DIVZERO dividend + MAXREAL 0 dividend
INTOVFL true result true result true result true result
+ 2¥%32 + 2¥%32 + 2%%32 + 2%¥%32
INTDIVZERO dividend dividend dividend dividend
SQRTERR 0 sqrt(abs x) 0 0
EXPERR 0 MAXREAL 0 0
INLOGERR 0 -MAXREAT, 0 0
SINCOSERR 0 0 0 0

Table of Results for Exceptional Conditions



8. STANDARD FUNCTIONS

Fxample:

It is desired to allow up to ten overflows, but to each time replace
the result with MAXREAL and to print a warning message.

The values needed for this are:

XCPNOTED FALSE this will be changed to TRUE if an overflow occurs.
XCPLIMIT 10 allow up to ten overflows before being cut off.
XCPACTION 1 replace the result with + MAXREAL.

XCPMARK TRUE print a message each time an overflow occurs.
XCPMSG L message to be printed.

The following assignment statement will establish the proper
environment:

OVFL := EXCEPTION(FALSE, 10, 1, TRUE, "OVERFLOW FIXED UP");
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CHARACTER CODES

APPENDIX 1 - CHARACTER ENCODINGS

The following table presents the correspondence between printable

string characters and their (EBCDIC) integer encodings.

This encoding

establishes the ordering relation on characters and thus on strings.

Those characters in parentheses are not available on the line printer.

Integer codes not listed below do not correspond to any established

character.

6L
T4
75
76
7
78
79
80
90
91
92
9
9k

space
(£)

(

(Also see CODE, DECODE on page 159.)

R — 4+~ A

.- — % 4

| | . ~

\%

)

129
130
131
132
133
134
135
136
137
145
146
147
148
149
150
151
152
153
162
163
164
165
166
167
168
169

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(1)
(3)
(k)
(1)
(m)
(n)
(o)
(p)
(a)
(r)
(s)
(t)
(u)
(v)
(w)
(x)
(v)
(z)

193
194
195
196
197
198
199
200
201
209
210
211
212
213
21k
215
216
217
226
227
228
229
230
231
232
233
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24h
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ERROR MESSAGES

ALGOL W ERROR MESSAGES

The compiler is divided into three passes: pass 1 reads the program,
lists it, and saves it in meméry in a compressed (tokenized) form;
pass 2 parses the program, examining each statement to see if it is written
properly; pass 3 generates the 360 machine code for the program. Each
pass is capable of detecting a different set of errors. (There is also
a fourth, loader, pass that on rare occasions may generate messages.)
Errors may also occur while a compiled program is executing; these are

called Run-Time errors.

Pass One Error Messages

All pass 1 error messages are of the form:

ERROR lxxx NEAR COORDINATE yyyy —- message
Yyyy corresponds to one of the coordinate numbers in the first column on
the program listing. If you have many statements on a card, only the
coordinate of the first one is on the program listing. Some messages are
only warnings, in which case the fixup action taken is indicated below.

The messages are:

1001 INCORRECTLY FORMED DECLARATION
a) STRING(x) or BITS(x), where x is not a number.
b) STRING(0) or STRING(> 256). FIXUP: treated as STRING(1).
¢c) BITS (not 32).

1002 WARNING: INCORRECT CONSTANT

a) More than 256 digits. FIXUP: treated as O.
b) A bad exponent. FIXUP: exponent treated as O.

1003 MISSING "END"
Final "." or /¥ card or % card encountered before an END matching
each BEGIN. The coordinate indicated may be two or three more than

the last coordinate on your listing. (Check the block numbers in

the second column of your program listing.)
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100% UNMATCHED "END" (DELETED)
An END encountered after what appeared to be the final END. When
possible, the innermost END is deleted. (Check the block numbers

in the second column of your program listing.)

1005 WARNING: MISSING ")"
STRING(x or BITS(x with no closing ")". FIXUP: supplied.

1006 WARNING: ILLEGAL CHARACTER
A strange character accidently keypunched (or overpunched). It is
likely that the character will print as a blank, so look at your card.
The characters on a standard kéypunch that are illegal except in
comments and strings are: ¢ & ! $ 4 2 @ . FIXUP: treated
as a blank.

1007 WARNING: MISSING FINAL "."
May occur if the program ends with an un-terminated string constant

or an un-terminated comment.

1008 WARNING: INVALID STRING LENGTH
‘a) A string constant of length > 256. FIXUP: truncated to 256
characters. (You may have left out a quote.)
b) An empty string constant (""). FIXUP: replaced with "?".

1009 WARNING: INVALID BITS LENGTH
a) "#" not followed by hex digits. FIXUP: replaced with #0.
b) "#" followed by more than 8 hex digits. FIXUP: replaced
with #0.

1010 MISSING "("
REFERENCE not followed by "(".

1011 ERROR TABLE OVERFLOW

More than 50 error messages from pass 1. The rest are lost.

1012 COMPILER TABLE OVERFLOW
The program is too big to fit in memory during compilation. The
following is a list of tables which could be full at this point.
If you re-compile with more memory, the starred tables will be

bigger.
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* BCD POINTERS -- if all of your names are short (3, 4 letters)
this table may fill up before the id table.

BLOCK LIST -- 511 entries, one for each BEGIN, PROCEDURE (except

for formal parameter specification), and FOR.

BLOCK STACK -- this has a fixed size of thirty entries. It will
overflow if you have 31 BEGINs nested within each other. (The
block numbers in the second column of your program'listing show
how full this stack is.)

* ID TABLE .-- place for the characters in your identifiers.
* NAME TABLE -- table of attributes of all declared identifiers.

* PROGRAM TOKEN SPACE -- the internal text for the program. This
is the most likely table to be full.

¥ REFERENCE LIST -- information about each variable declared of
type REFERENCE.

1013 WARNING: ID LENGTH > 256
One of the names in your program is much too long. FIXUP: truncated

‘to 256 characters.

1014 WARNING: UNEXPECTED "."
An apparently final "." not followed by % card or /* card, such as
in a constant with an inadvertant space: . 123 . FIXUP: treated

as a blank.

1015 TOO MANY RECORD CLASSES
Only 15 are allowed.

1016 WARNING: SEQ FIELD OUT OF ORDER

a) The numeric part of columns 73-80 was not gieater than the
numeric part of the previous card.

b) The alphabetic part of columns 73-80 was not the same as the
alphabetic part on the previous card.

In either case, the offending card(s) is marked with {#H## on the

listing. This message appears only once in any single compilation.

The coordinate specified is the coordinate on the first erroneous

card.
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1017 WARNING: SEQ FIELD CONTAINS TRASH

a) The first card of the deck did not contain a sequence number,
but columns 73-80 on this card are not all blank. (A statement
may have accidently run past column 72).

b) The first card of the deck has a non-blank sequence field
(columns 73-80), but there are no digits in it.

In either case, the offending card(s) is marked with *¥%¥ on the

listing. Like 1016, this message appears at most once, and the

coordinate refers to the first instance.

1018 WARNING: ";" DELETED BEFORE "ELSE"

This is a common mistake that the compiler fixes up.

Pass Two Error Messages

All pass 2 error messages have the format:
FERROR 2xxx NEAR COORDINATE yyyy - message
(FOUND NEAR "...")

yyyy corresponds to one of the coordinate ﬁumbers in the first column
on the program listing. If you have many statements on a card, only the
coordinate of the first one is on the program listing. ",.." is the
program text being scanned at the time the error is detected (which may
be somewhat after the actual point of error). If any pass one or pass
two error messages occur (other than warnings), then compilation stops
at the end of pass two. Often many érror messages are generated for

what is essentially a single mistake.
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2001 MORE THAN ONE DECLARATION OF "XXXX" IN THIS BLOCK

The variable XXXX has been declared more than once in the same block.

2002 "XXXX" IS UNDEFINED
The variable or label XXXX has not been declared in the current block

or in one containing it.

2003 SYNTAX ERROR
This is a "catch-all" message that is produced when the compiler cannot
find anything more meaningful to say. The current context will point
to the part of the program being analyzed when the error was DETECTED,
but in general the real error may be much earlier in the program. If
the current context is at or near a semi-colon and you cannot find
any errors there, try looking at the beginning of the statement which
ends at that semi-colon. If the current context is at or near an
END, try looking at the corresponding BEGIN. For example, if
ELSE BEGIN ... END; occurs, but not after an IF, the compiler will

not detect the error until it reaches END;

2004 IDENTIFIER MUST BE RECORD CLASS ID
In a declaration REFERENCE(xyz) , =xyz is not the name of a record

class.

2005 MISMATCHED PARAMETER
A procedure call is passing an actual parameter which is not of the

same type as the formal parameter in the procedure declaration.

2006 INCORRECT NUMBER OF ACTUAL PARAMETERS
The number of actual parameters in a procedure call does not equal

the number of formal parameters in the procedure declaration.

2007 INCORRECT DIMENSION
a) The number of dimensions of an actual parameter does not equal the
number of dimensions declared for the corresponding formal parameter.
b) The wrong number of subscripts have been used in an array element

reference.

2008 DATA AREA EXCEEDED
The data for each PROCEDURE or BEGIN block with declarations is limited
to 4096 bytes. Read the suggestions for 3001.
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2009

2010

2011

2012

2013
2014

2015

2016

2017

2018

INCORRECT NUMBER OF FIELDS
In creating a record, too many or too few initial values have been

specified.

INCOMPATIBLE STRING LENGTHS /
a) In STRING1l := STRING2 , STRING2 is longer than STRING1.
b) In STRING3(x|y) , y is larger than the declared size of STRING3.

c) A long string has been passed to a shorter formal string parameter.

INCOMPATIBLE REFERENCES

A reference variable refers to a wrong record class.

BLOCKS NESTED TOO DEEPLY

Non-trivial blocks (i.e., BEGIN blocks with declarations, or the
blocks associated with a PROCEDURE) are nested more than eight deep
(including the BEGIN at the start of the program). The error is
detected early in the ninth block. Also, procedure calls nested too

deeply.

WARNING: ";" SHOULD NOT FOLLOW EXPRESSION

In BEGIN ... expression j; END the semi-colon is incorrect but ignored.

REFERENCE MUST REFER TO RECORD CLASS
In REFERENCE(xyz)... , Xyz 1is not a record class.

EXPRESSION MISSING IN PROCEDURE BODY
A function PROCEDURE must have its final value specified by an

expression standing alone immediately before the END.

IMPROPER COMBINATION OF TYPES

Mixing incompatible types as alternatives of a conditional or case

expression.

RESULT PARAMETER MUST BE A VARIABLE
In a procedure declaration, a formal parameter is declared
... RESULT xyz , but a call to that procedure has passed an expression

which is not a variable.

PROPER PROCEDURE ENDS WITH AN EXPRESSION
A procedure which returns no value nonetheless ends with an expression.
(This sometimes happens when a final assignment statement has been

mis-punched A = B , instead of A :=3B .)
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2019

2020

2021

2022

2023

202k

2025

2026

ERROR MESSAGES

"TYOXXX" CANNOT FOLLOW "YYYY" HERE
There are no legal programs in which XXXX and YYYY can be written
together. This is much like 2003. (You may have left out a

semi-colon, & comma, or an operator.)

ARRAY USED INCORRECTLY

A simple variable must be used here.

TOO MANY CONSTANTS IN PROCEDURE

No more than 256 different constants are allowed.

INCORRECT STRING LENGTH
In S(x|y) , vy is negative, zero, or greater than 256.

COMPILER TABLE OVERFLOW

The program is too big to fit into memory during compilation -~ there
is no more room for the parse trees that represent the program at
this point. If you re-compile with more memory, there will be more

room available for the program.

TOO MANY PROCEDURES
Only 255 different procedures or BEGIN blocks with declarations are
allowed by the compiler.

CONSTANT OUT OF RANGE

a) The absolute value of an integer is greater than (2%¥31)-1
(o9+ digits).

b) The absolute value of the adjusted exponent in a real number is
greater than 75. The exponent written is first adjusted to

include the number of digits written in front of the decimal point.

INDEX OF ARRAY OR STRING MUST BE INTEGER
a) In S(x[y) » X 1is not an integer expression.
b) In Arrayname(...X...) , X 1is not an integer expression.

(You may have accidently used a REAL variable.)
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2027 INCORRECT OPERAND TYPE(S) FOR XXXX

XXXX is a unary operator.

a) LONG is applied to something which is LOGICAL, STRING, BITS,
or REFERENCE. '

b) SHORT is applied to something which is LOGICAL, STRING, BITS,
or REFERENCE.

c) — (not) is applied to something which is neither LOGICAL nor BITS.

d) Prefix + or - is applied to something which is LOGICAL,
STRING, BITS, or REFERENCE.

e) ABS is applied to something which is- LOGICAL, STRING, BITS, or
REFERENCE.

f) In Recordvariable(x) , x ig not a REFERENCE.

g) In FOR I:=x... , X 1is not an integer expression.

h) In various other contexts, an INTEGER or LOGICAL operand is

required.

2028 INCORRECT OPERAND TYPE(S) FOR XXXX
XXX is a binary operator. Even when the error is in the first
operand, the error is detected after both operands are inspected.
a) AND or OR is applied to expressions which are not both BITS or
both LOGICAL. This case often happens in an IF statement when
necessary parentheses are left out:
IFX<YOR Z =5 THEN ...
As written, y is to be ORed with z before anything else is
calculated. Try instead:
IF (X <Y) OR (Z = 3) THEN ...
b) A relational operator (like > ) is applied to something which
is COMPLEX, LOGICAL, or REFERENCE.
¢) SHL or SHR is appiied to something which is not BITS, or the
shift amount i1s not INTEGER.
d) In x IS Recordclass , X is not a REFERENCE.
e) In x*¥y , x is LOGICAL, STRING, BITS, or REFERENCE, or y is
not INTEGER.
f) In a FOR statement, the UNTIL expression is not INTEGER.

g) In various other contexts, an INTEGER operand is required.
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2029 INCORRECT PARENTHESIZATION OF EXPRESSION
This often occurs in conjunction with 2027 or 2028. Usually,

additional parentheses are required in the expression.

2020 ASSIGNMENT INCOMPATIBILITY
An attempt to assign an expression of one type to a variable of a
different type (or pass an actual parameter to a formal parameter
of a different type). The only automatic conversions allowed are
INTEGER to REAL, INTEGER to LONGREAL, REAL to/from LONGREAL,
INTEGER/REAL/LONGREAL to COMPLEX/LONGCOMPLEX, COMPLEX to/from
LONGCOMPLEX. (You cannot assign REAL to INTEGER without using
TRUNCATE, . ENTTER, or ROUND.)

2031 WARNING: NAME PARAMETER SPECIFIED
In a PROCEDURE declaration, it is usually intended that each formal

parameter have VALUE specified.

2052 SIMPLE VARIABLE USED INCORRECTLY
In " x( ", x is a simple variable and not STRING.

2033 75 ERRORS. COMPILATION TERMINATED
Something is drastically wrong with your program. To save time

and paper, the rest of the program is ignored.

2999 DEBUG TABLE OVERFLOW
If $DEBUG,x is specified with x equal to 2, 3, or 4, then a table
is created with a fixed maximum of 448 entries, where one entry is used for
each GROUP of statements that all occur together with no labels,
branches or conditional expressions. All the statements in such a
group are guaranteed to be executed the same number of times. Also,
this message occurs if the compressed form of the program occupies
more than 65536 bytes of memory (the compressed form is used to

generate the pseudo-listing with the statement counts).

Pass Three Error Messages

Pass 5 error messages are of the form:
ERROR 2xxx NEAR COORDINATE yyyy - message
Yyyy corresponds to one of the coordinate numbers in the first column on
the program listing. If you have many statements on a card, only the
coordinate of the first one is on the program listing.
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All of the pass 3 errors are disastrous, so compilation terminates
immediately. After any pass 5 error, a table is
listed of (coordinate number, byte offset, byte length) triples, indicating
how much code was generated for each statement in the current program
segment. The last entry of this table and the last two byte lengths are

usually garbage.

%001 PROGRAM SEGMENT OVERFLOW
This error message occurs because of a design constraint of the

compiler: the total amount of machine code and constants for any
PROCEDURE or other BEGIN block with declarations must be less than
8192 bytes. All of the constants for a block are allocated in front
of the first statement. Therefore, if the byte offset of the first
statement is very large, constants are taking up too much space.

This sometimes happens in programs with too many string constants

(ten 80-character string constants take up 800 bytes). The coordinate
indicated may or may not be very accurate. The only solutions are

to make your program smaller, or to add some artificial PROCEDUREs

or BEGIN blocks with at least one declaration, such that part ot the

block that was too big is forced into another segment.

3002 COMPILER STACK OVERFLOW
While generating code for a statement, the compiler uses a push-down
stack to keep track of where it is in the statement tree. If you
are about to get a PROGRAM SEGMENT OVERFLOW (3001), you may get this

message instead.

3003 COMPILER LOGIC ERROR
Internal consistency checks performed by the compiler have failed.

Take your card deck, exactly as it is, to a consultant.

3004 PROGRAM AREA OVERFLOW
Although the words are similar to 3001, this is entirely different.
This message means that there is no more room in memory to put the
machine code for your program (like 2023 and 1012). If you
re-compile with more memory, there will be more room available for

the machine code.
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5005 DATA SEGMENT OVERFLOW
The data for each PROCEDURE or BEGIN block with declarations is
limited to 4096 bytes, Read the suggestions for 3001.

3006 COORDINATE TABLE OVERFLOW
In order to supply the coordinate number in run-time error messages,
a table is built of (coordinate number, address in machine code)
pairs. If you re~compile with more memory, this table will be larger.

3007 TOO MANY PRCCEDURE CALLS
References to only 31 procedures are allowed within any single

procedure,

Loader Error Messages

Loader error messages are all of the form:
*%% TOADING ERROR - message

Like pass > messages, these are disastrous and terminate processing.

DUPLICATE GLOBAL NAME - XXX Two procedures with the same name were
loaded.
INSUFFICIENT STORAGE Not enough room to run the program.

Re-run with more memory.

INVALID OBJECT RECORDS A bad object card was presented, often

an extra blank card.

NO EXECUTABLE STATEMENTS No main program was loaded, only external
procedures.

TOO MANY PROCEDURES Only 96 program segments are allowed by

the loader.

UNDEFINED GLOBAL NAME - XXX An external procedure wgs declared, but
not loaded.
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Run Time Error Messages

All run error messages are of the form:
RUN ERROR NEAR COORDINATE yyyy IN procedure name - message

After a run error, a post-mortem dump of all of the program's variables 1is
given, unless it is explicitly turned off with a $DEBUG,O card. To keep
the dump reasonably small, at most eight values are dumped from an array.
If the same identifier is declared in many blocks (note that the index
variable in a FPOR loop is considered to be declared in a block around Just
the FOR statement), then that identifier will be listed many times.
Variables which have never been assigned any meaningful value are printed

as 1o

ACTUAL-FORMAL, MISMATCH IN PROCEDURE CALL, PARAMETER #xx
The actual parameter passed is not assignment compatible with the

formal parameter.

ARRAY SUBSCRIPTING

An array subscript was not within the declared bounds.

ARRAY TOO TARGE
The first n-1 dimensions of an array declaration define too many
elements. The product of the size of a single element times the
first n-1 dimeﬁsion lengths (upper bound - lower bound+ 1) must

be strictly less than 32768 . The element sizes are:

logical 1
integer, real, bits,
reference L
long real, complex 8
long complex 16
string length of a single string
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ASSERTION xxxxxxx FAILED
An assertion was not true. =xxxxxxx 1is a running count of how
many assertions were true, to give a feel for how long the program

had run.

ASSTGNMENT TO NAME PARAMETER
Attempt to assign to a name parameter whose actual argument is not a
variable, but is instead an expression, a constant, or a control

identifier.

CASE SELECTION INDEXING
Index in a case statement or case expression is less than 1 or

greater than the number of cases.

DATA AREA OVERFLOW
No more storage is left for variables. This will happen if a program
gets in a loop calling itself recursively, or if there really is not

enough memory.

DIVISION BY ZERO
May also be caused by O0%*%(-n)

EXP ERROR
The argument to EXP must be less than 174.67 .

INCOMPATIBLE FIELD DESIGNATOR
An attempt has been made to access a field of a record, but the
reference does not designate a record of the corresponding class

(it might be NULL or undefined).

INCORRECT NUMBER OF PARAMETERS
The number of actual parameters in a procedure call is different

from the number of formal parameters declared in the called procedure.

INTEGER DIVISION BY ZERO
An integer operation attempted to divide by zero.

INTEGER OVERFLOW
An integer operation produced a number whose absolute value is
bigger than (2%¥%¥31)-1 . The standard functions ROUND, TRUNCATE,
and ENTIER will produce an integer overflow if presented with
arguments whose absolute value is bigger than (2¥%31)-1 .
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LENGTH OF STRING INPUT
The string read was longer than the string variable has room for.
This sometimes happens if a string ends in exactly column 80 of a
card, and another string begins in column 1 of the next card, since
the two quote marks (col 80 and col 1) are pért of the same string.
Put at least one blank in between (or a whole blank card). Also,

check for a missing quote.

LN/LOG ERROR

An attempt to take the logarithm of a negative or zero number.

LOGICAL INPUT
The quantity read was not TRUE or FALSE.

NULL OR UNDEFINED REFERENCE
An attempt has been made to access a record field using a null or

never initialized reference.

NUMERICAT, INWUT
The number read was not assignment compatible with the variable in
the READON or READ statement. This sometimes happens when running
from a terminal if the line numbers on the data cards are accidently

read.

OVERFLOW
A real operation produced a number whose absolute value is bigger
then 7.2'+75 . This may occur when dividing by a very small number,
such as in 1'+50/1'-50 .

PAGE ESTIMATE EXCEEDED
The page estimate on the $ALGOL card is exceeded. Note that any
tracing ($DEBUG,3 or 4) output is included in this page limit.
(cf. Deck Setup and Compiler Options, page 103.)

PROGRAM CHECK #nn

The compiler or the code it generated was wrong. If this happens,

take your card deck, exactly as it is, to a consultant.
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READER EOF
No more data cards. A % card or a /¥ card was read instead. This

is a normal way to terminate in many programs.

RECORD STORAGE ARFA OVERFLOW

No more storage exists for records.

REFERENCE INPUT

References cannot be read.

SIN/COS ERROR

See the domain restrictions in Section 8.2.

SQRT ERROR
Attempt to take the square root of a negative number,

STRING INPUT
A nmull string or a string greater than 256 characters was read. See
LENGTH OF STRING INPUT above.

SUBSTRING INDEXING
" Substring selected extends off one end of the string

TIME ESTIMATE EXCEEDED
The time estimate on the #AIGOL card is exceeded.

UNDERFLOW
A real operation produced a number whose agbsolute value is less than
5.k'-79 , but not exactly zero. This may occur when dividing by a

very large number, such as in l'-SO/l'+50 .
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ABEND Messages

You may occasionally get terse messages on the first page of your
output of the form:
*%% ABNORMAL JOB END **% SYSTEM CODE X xxx
or
COMPLETION CODE - SYSTEM = xxx

where xxx might be:

222 You ran out of time or lines as specified on your
322 JOB card (not the limits on the #ALGOL card).
722 (cf. page 103.)

The compiler probably made a mistake. After

ocL verifying that the deck or catalogued procedure
och includes both a //SYSPRINT and //SYSIN DD card,
océ

take your deck, exactly as it is, to a consultant.
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NUMBER REPRESENTATION

The following notes are intended to give the
student of Computer Science 105 or 106 some orientation
into how numbers are represented in the IBM System/360
computers. Because we are using Algol W, some refer-
ences are made to that language. However, very little
of what is said here depends on the peculiarities of
Algol W, and this exposition is mostly applicable to
Fortran or Algol 60 with slight changes in wording.

It will also do for the floating-point numbers and
full-word integeres of PL/1. Users of shorter or
longer integers or decimal arithmetic in PL/1 will

need more orientation.
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NUMBER REPRESENTATION

On IBM's system 360, the following units of information storage
are used:

a) the bit, a single O or 1

b) the byte, a group of eight consecutive bits

c) the (short) word, a group of four consecutive bytes --
i.e., 32 consecutive bits

a) the long word, a group of two consecutive short words --
i.e., eight bytes or 64 bits.

For number representation in Algol W the words and long words are

the main units of interest.
INTEGERS

Integers are stored in (short) words. Of the 32 bits of a short
word, one is reserved for the sign (0 for + and 1 for -), leaving
21 bits to represent the magnitude. A positive or zero integer is
stored in a binary (base 2) representation. Thus 2110 (the subscript

means base 10) is stored as
0000 0000 0000 0000 0000 0000 0001 0101 .
;ignbit

To confirm this, note that

21-0x20+ ... +0x27+1x2t+0x2

Pr1xefroxetrix .

The largest integer that can be stored in a word is

204 229 et 0Pt s (21k74836MT) | -

ol L1 win

produce erroneous results, and (unfortunately) the user will not always

Any attempt to create or store an integer larger than

be warned of the error. (See below.)
To save space in writing words on paper, each group of four bits
in a word is frequently converted to a single base-16 (hexadecimal)

digit, according to the following code:
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base 2 base 16 base 2 base 16
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 L 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

Thus A, B, C, D, E, F are used as base-16 representations of the decimal

numbers 10, 11, 12, 13, 1k, 15 respectively. Nevertheless, integers are
stored as base-2 numbers.

Using hexadecimal notation, the decimal number 21 is represented by
-0000001516

Note that 1516 is the base-16 representation of 2110 .

Negative integers are stored in what is called the "two's complement
form". TFor example, -1 is stored as
1111 1iir 1111 131y 1111 1111 1111 o111,

= FFFFFFFFl6 .

Also, -21 is stored as
1111 111t 1111 1111 1111 1111 1110 1011

The representation for -21 is obtained from that for +21 by changing

everﬁ O to 1 and every 1 to O, and then adding +1 in base-2 arithmetic

to the result. Similarly for any negative integers. Every negative
integer has 1 as its sign bit. The smallest integer storable in
System/360 is 2t -2147483648 , and is represented by 8ooooooo16 .
Another way to think of the representation of negative numbers is

to consider a 32-place binary accumulating register (the base-2 equivalent)
of the decimal accumulating register in a desk calculating machine).

If one starts with all zeros in this register, one gets the\representation
for -1 by subtracting 1. The process requires a "borrow" to propagate

to the left all the way across the register, leaving all ones, just as

on a decimal accumulator this would leave all nines. Continued

subtraction will give the representations for -2, -3, ...
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From the pocint of view of an accumulator we can also see what
_happens when we create a positive number larger than 251 -1. For

51

example, if we add 1 to 277-1, the resulting carry will go all the
way into the sign bit, leaving a sign bit of 1 with all other digits
zero. But this is the representation of —251; Thus the attempt to
produce positive numbers in the range from 251 to approximateiy 232
will yield a negative sign bit. Consequently, positive integers that
"overflow" into this range are sensed as negative by System/360. The
mechanisms of AIGOL W for detecting integer overflow (not described in
this document) can be used to detect additions, subtractions, or
multiplications that produce integers outside the range from —251 to

251-1 (so-called integer overflow). Attempts to divide an integer by O

will yield an error message and an irrelevant quotient and remainder.
The behavior of System/560 on integer overflow is quite different
from the Burroughs B5500. In the latter machine, any integer that
overflows is replaced by a rounded floating-point number. There are
advantages tc either approach to integer overflow, depending on the
application. '
If the user suspects that integers in his program are getting

9

anywhere near 107, he should convert them to double-precision flcating-
point numbers by use of the Algol W operator ILONG. Conversion to single-
precision floating-point numbers may lose some precision.

The most important thing for a scientific user to remember is that

integers in the range -251 to 251

-1 are stored without any approximation.
Moreover, operations on integers (adding, subtracting, multiplying) are
done without any error, so long as all intermediate and final results
are integers between -251 and 231—1. It is perhaps easier to remember
as safe the interval from -2 x lO9 to 2 x 109 , obtained from the

useful approximation 210 = lO5 .
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The operations of division without remainder (called DIV in Algol W)
and taking the remainder on division (called REM in Algol W) always give
integer answers. If the divisor is O, an error message is given.

In Algol W two operations on integers give results that are not

stored as integers -- namely / and ** .
FLOATING-POINT NUMBERS

Numbers in many scientific computations will grow in magnitude
well beyond the range of integers described above. To provide for
this, System/560 and most scientific computers have a second way to

represent numbers -- the so-called floating-point representation.

The significance of the name "floating-point"

is that the radix point
-- for example, the decimal point in base-10 numbers -- is permitted to
float to the right or left, thus permitting scaling of numbers by
various powers of the radix. Although a decimal point that has floated
off to the left will produce a number written like 0.001345 , the
numbers are actually represented in a form closer to what is often

called scientific notation, here 1.5h5><1o‘5 .

In System/360, floating-point numbers are always represented in

bace-16 notation; i.e., the radix or number base is 16. This permits

us to write numbers in abbreviated form (as we did with integers earlier).

More important, the use of base-16 conforms with the hardware arithmetic

precesses in which chifting is done four bits at a time to speed up the

operations. The speed-up is achieved at a slight cost in precision,

as is learned from detailed error analyses which we cannot go into here.
We first consider the floating-point representation of numbers by

a single word of 32 bits. This is the so-calied single-precision

or EEEEE real number, the number of type REAL in Algol W. The 32 bits

of a word are numbered from O to 31, from left to right, just to identify
them. In floating-point representation the left-hand eight bits (bits O
to 7, equivalent to two hexadecimal digits) are devoted to the sign of
the number and the exponent of 16 associated with the number. The right-

hand 24 bits (bits 8 to 31, equivalent to six hexadecimal digits)
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represent six significant hexadecimal digits (the significand) of the

number.

As with integers, the sign of the number is denoted by bit O,
with O representing + and 1 representing - .

Bits 1 to 7 give the binary (base-2) representation of a non-

negative integer in the range O to 127 inclusive. This in-

10 10’
teger is called the biased exponent, for reasons now to be explained.

If this integer were taken directly as the exponent, we would have no
negative exponents, and our range of floating-point numbers could not
include such numbers as 16'25 . It is desirable to have an exponent
range that is approximately symmetric about zero. 1In System/ 360 one

obtains the true exponent of the floating-point number by subtracting

64 from the biased exponent represented by bits 1 to 7. As a result,
the actual exponents range from -64 to 63.

The 24 bits 8 to 31 of a number are regarded as six hexadecimal
digits with a hexadecimal point at the left-hand end. If the floating-
point number zero is being represented, all the hexadecimal digits are
zero, as are all the other bits. Otherwise, at least one of the hexa-
decimal digits must be nonzero. A floating-point number is said to be
normalized if the left-hand hexadecimal digit (the most significant
digit) of the significand is nonzero. 1In System/560 the floating-point
numbers are ordinarily normalized, and we will not consider any other
forms.

We now give the floating-point representations of some sample
numbers. As we said before, the number zero is represented by 32 zero
bits, i.e., by eight O hexadecimal digits. Thus zero is represented
by the same words in floating-point or integer form. No other number
has this property.

The number 1.0 is represented by the word

sign bit
L—-—00,100 0001 0001 0000 0000 0000 0000 0000, .
biased significand
exponent :

gk
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To check this, note that the sign is O (representing +). The biased
exponent is lOOOOOl2 or 6510 . Subtracting 6hio yields 1 as the
true exponent. The hexadecimal significand is 10000016 . Putting a
hexadecimal point at the left end gives the hexadecimal fraction
.10000016 , which equals 1/16. Thus the above word represents

+ 1/16 times 167, or 1.0 .

To save writing, the above word is ordinarily written in the
hexadecimal form L41100000 . While one gradually learns to recognize
some floating-point numbers in this form, the author knows no easy way
to convert such a hexadecimal word into a real number. One just has
to take the right-hand six hexadecimal digits, and prefix a hexadecimal
point. Then one examines the left-hand two-hexadecimal-digit number

(here 41). 1If this is less than 8016 , the floating-point number is
positive and one gets the true exponent by subtracting hol6 = 6hlo .
If the left-hand two-hexadecﬁnal-digit number is 8016 or larger, the
floating-point number is negative, and one gets the true exponent by
subtracting CO,, = 8016 + h016 = 192,, and affixing a minus sign.
Some facility with hexadecimal arithmetic is required, if one has to
deal with such numbers.

‘ In this presentation, we have considered the radical point to be
at the left of the six significant hexadecimal digits, and regafded

the exponent as biased high by 6“10 . As an alternative, the reader
may prefer to place the radix point just to the right of the most
significant digit of the significand, and regard the exponent as biased
high by 6510 . This brings the significand closer to usual scientific
notation but, of course, requires a trickier conversion to get the

true exponent. The fact that either interpretation (and many others)
are possible shows that really the radical point is just in the eye of
the beholder, and not in the computer! |

Several examples of floating-point numbers are now given in hexa-

decimal notation, with the confirmation left to the reader.
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decimal floating-point
0.0 = 00000000
1.0 = 41100000
0.0625 = 40100000
16.0 = 42100000
256.0 = 43100000
-1.0 = C1100000
-16.0 = 2100000
3.5 = 41280000

The largest floating-point number is T7FFFFFFF , representing
FFFFFF x 167 or (1 - 16" x 1672 2 7.25 x 1077 . (Here 10 and 16
denote decimal numbers.)

The smallest positive normalized floating-point number is 00100000,
representing

E : 5.L0 x 10779

Negatives of these two numbers can also be represented, and are
the extremes in magnitude of representable negative numbers.

Very few numbers can be exactly represented with six significant
decimal digits. (Exercise: Which ones can?) For example, 1/3 = .55553510
only approximately. In the same way, very few numbers can be exactly
represented with six significant hexadecimal digits. (Exercise:

Which ones can?) For example, 1/5 = .55555516 only approximately.
Moreover, some numbers that are exactly representable in decimal are
only approximately representable in hexadecimal; for example,

1/10 -100000, ) exactly; but

.19999Al6 only approximately.

It

1/10

Thus round-off error enters into the representation of most~

floating-point numbers on System/560, and the round off differs from
that with decimal numbers. This can easily give rise to unexpected
results. For example, if the above number .19999A, . (= O.llo) is
multiplied by the integer 100
lO.Olo ’

high approximation to O.l:]_O .

10 = 6h16 » one gets not A.00000,, =

but instead A.OOOOBl6 , as a cumulative effect of the slightly

And A.OOOO516 rounds to Z].O.OOOOQ:LO

on conversion to decimal.

The precision of a single-precision hexadecimal number is roughly

-7

10 . One can think of this as being crudely equivalent to seven
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significant decimal digits.

Not only do errors appear in the representation of numbers inside
System/360 (or any computer), but they arise from arithmetic operations
performed on numbers. For example, the product of two floating-point
numbers may have up to 12 significant hexadecimal digits. When the
product is stored as a single-precision floating-point number, it must
be rounded to six hexadecimal digits. This introduces an error, even
though the factors might have been exact.

The story of round off and its effect on arithmetic is a complex
and interesting one. Oniy within the current decade have fhere begun
to appear even partly satisfactory methods to analyze round off, and
we cannot go into the matter now. Some idea of this is obtained in
Computer Science 127.

When an Algol W program assigns decimal numbers or integer values
to variables ofbtype REAL, these are immediately conveited to hexadecimal
floating-point numbers, with (usually) a round-off error. When one
outputs numbers from the‘computer in Algol W, they are converted to
decimal. Both conversions are done as well as possible, but introduce
changes in the numbers that the programmer must be aware of. And, of
course, all intermediate operations introduce further round offs and
possible errors. It is unthinkable to do the analysis necessary to
counteract these errors and get the true answer to the problem. If the
user wishes answers uncontaminated by round off, he should use integers
and integer arithmetic, and be prepared to guard against overflow.

Fortunately most users can accept an indeterminate amount of
round off in their numbers, provided they have some assurance that
round off is not growing out of control. It is the business of numerical
analysts to provide algorithms whose round-off properties are reasonably
under control. This has been well accomplished in some areas, and hardly

at all in others.
DOUBLE PRECISION

The precision of single-precision floating-point numbers seems
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very adequate for most scientific and engineering purposes, being at the
- level of seven decimgls. However, a considerable number of computations
require still more precision in the middle somewhere, just in order to
come out with ordinary accuracy at the end. As a result, System/36o

has provided an easy mechanism for getting a great deal more precision
in the computations. For this purpose a double word of 64 bits is used

to store a floating-point number of so-called double precision or long

precision. In this representation, the sign and biased exponent are
found in the first word of the double-word, with precisely the same
interpretation as - with single-precision floating-point numbers. The
second word of the double-word consists of eight hexadecimal digits
immediately following the six found in the first word. There is no
sign or exponent in the second word. Thus a double-word represents
a signed floating hexadecimal number with 14 significant hexadecimal
digits. As before, nonzero numbers are normalized so that the most

significant digit of the 14 is nonzero.

Examples:
long significand
1.0L = 41100000 00000000
0.1L = L0 199999 9999999A

There is a full set of arithmetic operations for both single
and double-precision operations. Very crudely, for an example, single-
precision multiplication of single-precision factors takes around 4 micro-
seconds, while that for double-precision factors takes around 7 micro-
seconds. For modest problems the extra time is completely lost in the
several seconds of time lost to systems and compilers, and the use of
double-precision is strongly recommerided for all scientific computation.
Normally the only possible disadvantage of using long precision is the
doubling in the amount of storage needed. If one has arrays with tens
of thousands of elements, the extra storage may be very costly. Other-
wise, it should not matter.

Since 16'11* z 107
equivalent in precision to 17 significaﬂt decimal digits.

For a machine with the speed of the 360/67, a number precision of

» the double-precision numbers are crudely
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six hexadecimal digits,(roughly seven decimals) is considered very low,
while a precisioh of 14 hexadecimal digits (roughly 17 decimals) is
very adequate. The floating-point arithmetic hardware of System/360
provides the possibility of detecting when numbers have gone outside
the exponent range stated above. The reader may think that a range
from roughly lO'79 to lO75 should cover all reasonable computations.

While exponent overflow and exponent underflow are not very common, they

éan be the cause of very elusive errors. The evaluation of a determinant
is a common computation, and for a matrix of order L0 is quite rapidly
done (if you know how). If the matrix eléments are of the quite
reasonable magnitude 10~3 , the magnitude of the determinant will be

no larger than roughly 107P (and probably much smaller), well below
the range of representable floating-point numbers. Such problems are

a frequent source of exponent underflow.

We shall not discuss here the mechanisms of Algol W for detecting
exponent overflow and underflow, for these should be written up in
another place. Even without these, we see that floating-point numbers
behave well for numbers that are at least 1066 times as large aus the
largest integer in the system! Hence use of floating-point numbers
meets almost all the problems raised by integer overflow. And, of
course, it permits the use of a large set of rational numbers, which

do not even enter the integer system.

ATGOL W REALS AND LONG REALS

The Algol W manual tells how to represent real variables and
numbers to take advantage of both single-and double-precision. The
purpose of this section is to bring this information into rapport with
the hardware representation of numbers. If a variable X is declared
REAL, one word is set aside for its values, and it will be stored in
single-precision floating-point form. If a variable is declared to be
LONG REAL, a double-word is set aside to hold its values, and it will

be stored in double-pfecision form.
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) If a number is written in one of the decimal forms without an L
at the end, it will be chopped to single-precision, no matter how many
digits are set down. Thus 3.1415926535897932 will be immediately
chopped to single-precision in the program, and all the superfluous
digits are lost at once. Thus the assignment statement
XX := 3.1415926535897932
will result in the double-word XX receiving an approximation to
in the more significant half, and all zeros in the less significant
half! Thus one gets a precision of only approximately seven decimals
for the pain of writing 17, and this may well contaminate all the rest
of the computatian.
If one wants XX to be precise to approximately full double precision,
one must write the statement in the form |
XX := 3.1415926535897932L .
With the declaration REAL X, the statement
X := 3.1415926535897932L
will result in X having a single—precision approximation to m, as
the long representation of m is chopped upon asSignment to X.
The reader should now go back and examine the specifications
of the types of various arithmetic expressions, as stated on pages 9, 10,

11 of the Algol W Notes, and in Section 6.3 of the Language Definition.

Some of the less expected effects are the following: Suppose we have
declarations

REAL X, Y, Z;

LONG REAL XX, YY, ZZ;

INTEGER I, J, K;

Then X¥Y, I**J, and I¥X are all long real.

The assignment statement

XX =X 1= ¥Y¥Z

will result in XX having a single-precision chopped version of Y*Z in
the more significant half, and zeros in the less significant word.

Moreover, I*I is INTEGER, but I**2 is IONG REAL.
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If the reader understands the language Algol W and the preceding
pages on number representation, he should have a good basis for
understanding the effects of mathematical algorithms. But he should

always remain wary of what a computer is actually doing to his numbers!
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AIGOL W Deck Setup and Compiler Options

1. Simple Deck Setup

QUICK partition BATCH partition
(Job and Keyword cards) (Job and Keyword cards)
/* SERVICE CLASS=Q '
// EXEC ALGOLW // EXEC ALGOLW
//SYSIN DD * //SYSIN DD *

§{  PALGOL 8 SALGOL

§8 (program) 8 (program}

4DATA 4DATA

: { - (data) : { {data)

/* /*

§ Optional.
§& May be repeated -- second and following %ALGOL cards are

required.
For simple cases, the above control cards are sufficient. More

complicated cases are discussed later under 3. Linkage to Separately-

Compiled Procedures.

1.1 Time and Page Limits

To avoid using too much computer time or paper when a program has
mistakes in it, both the operating system and the ALGOL W system monitor
the amount of time and pages used. The operating system keeps track of
the total time uséd for compiling one or more programs, executing them;
printing any post-mortem dumﬁs, loading the compiler into core, interpreting
the operating system control cards, etc. The operating system also keeps

track of the total amount of printed output from a run -- control card

listing, compiler listing, actual execution output, error messages,
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post-mortem dump, etc. The limits for these totals are specified on

the JOB card in tenths of minutes and thousands of lines; exceeding these
JOB card limits results in an ABEND 322 message from the operating
system and no other information.

The ALGOL W system monitors the amount of time and pages used by
each program just during its execution, not during its compilation or
during any post-processing. If these execution limits aré ‘exceeded,
ALGOL W will print a run-time’error message (TIME ESTIMATE EXCEEDED or
PAGE ESTIMATE EXCEEDED) with the coordinate of the program statement
executing at the time. The subsequent post-mortem dump and optional
program listing can be very ﬁelpf‘al in determining what went wrong.

To make sure that the ALGOL W system is able to get out this information,
the JOB card limits always should be sufficiently bigger than the ALGOL W
limits.

The normal ALGOL W execﬁtion‘limits are 10 seconds and 9 pages
(60 lines/page). These may be changed by specifying different limits on
the $ALGOL card in columns 8-29:

$ALGOL TIME=sss, PAGES=ppp
vhere sss is the maximum execution time in seconds; ppp is the maximum
number of pages of execution and tracing output. TIME may be abbreviated T ;

PAGES, P . Time and Pages may be given in either order.

Example: for 2 minutes and 20 pages, use:

$ALGOL T=120,P=20
(Previous versions of the compiler had slightly different control cards:
4ECF instead of 4DATA, and min:sec,pages instead of TIME= and PAGES= .

These older conventions are also accepted by the present compiler.)
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1.2 Other $ALGOL Card Parameters

Two other execution environment options may appear on the $ALGOL
card. MARGIN=72 specifies that READ and READON should only scan the
first 72 columns of data cards. MARGIN=80 specifies that READ and READON
should scan &1l 80 columns of data cards. The default value is MARGIN=80,
unless the program source cards are sequence numbered; in that case, it
is assumed that the data cards are also sequence numbered and MARGIN=T72
is the default. MARGIN may be abbreviated MARG. (cf. Section 7.8.L.
for dynamic control of this margin.) SIZE=xxxK specifies that the
maximum amount of dynamic space requested by either the compiler or the
execution library is xoc*1024 bytes. This directive is only used in
rare cases to prevent the compiler from using all of the core available
to it.

TIME, PAGES, MARGIN, and SIZE may be specified in any order.
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2. Compiler Options

Any of the following cards can appear in a deck between a %ALGOL

and the next fcard:

"~ $NOLIST

$1.IST

$TITLE,"..."

$SYNTAX

$STACK

$DUMP*ab, cc

$NOCHECK

$DEBUG, n(m)

Do not list subsequent source cards. The compiler normally

lists a1l input cards.
List subsequent source cards: this undoes a previous $NOLIST.

Start the program listing on the next page, and place
"..." (up to 30 characters) as a title in the middle of
the heading line.

Analyze the program for syntax errors, but do not execute.

Dump the current parsing stack if a pass 2 syntax error should

occur, with the most recent syntactic element listed last.

Dump certain internal tables during a compilation. This
option in general is used only by those maintaining the
compiler, but is documented here for the sake of completeness.
Since its use significantly increases the amount of printed
output for even small compilations, random experimenting is

discouraged. See the table at the end of this section.

Omit checking subscript ranges and reference compatibility
and omit initialization of variables to

"undefined".

Activate the tracing, statement counting, and post-mortem
dump facilities of the ALGOL W system.

The single digit n specifies:

O nothing fancy (use this to minimize the space used by
the system) .

1 a post-mortem dump of all the program's variables if
execution terminates abnormally, else nothing.

2 the above plus counts of how often each statement was

executbed.
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3 the above plus a statement-by-statement trace of each

value stored.
L the above plus a trace of each value fetched.

If tracing is specified ($DEBUG,3 or $DEBUG,4) and the standard
procedure TRACE (cf. Section 7.8.6.) is not used, then

each ALGOL statement will be traced in symbolic form the

first m times it is executed. FEach time a statement is
traced, it produces at least two lines of output (included

in the run-time limit), so a 100 statement program with

$DEBUG, 3(2) will produce at least 400 lines of output

(unless it dies an early death).

THE DEFAULT IS $DEBUG,1 -- post-mortem dump, but no counts

or traces.

The following abbreviated control cards are acceptable:

$DEBUG for $DEBUG,L4(2)
$DEBUG, x for $DEBUG,x(2)
(no DEBUG card) for $DEBUG,1

All variables are initialized to a bit pattern considered
to represent an undefined value (printed in the traces and
post-mortem dump as "?" ). TFor some data types, all bit
paetterns can be valid, so valid data can appear to be

undefined.

See Section L4, page 111, for a detailed explanation of the debugging

facilities.

105



2. COMPILER OPTIONS

$NORM,a,b Activate the floating-point significance tracing facilities

of Algol W.

This facility interprets the operation of each

floating-point add and subtract executed by the program,

counting the number.of base 16 digits of preshift and postshift.

If these shifts exceed the limits specified by a and Db
respectively, then a one-line SIGNIFICANCE ERROR message is

written.

This facility allows the user to examine inaccuracies

in his computer results which are due to either

(1)

or (2)

The parameters
the range 0-16.

a significance error.

adding/subtracting numbers of widely varying sizes,

involving large pre-alignment shifts,.

effectively subtracting numbers which are almost equal,

involving large post—normalization shif'ts.

Preshifts

>a or postshifts

a and b are one- or two-digit numbers in

> b will cause

The table below is a summary of the

hardware and interpreter meanings of the shift counts ("larger"

and "smaller" refer to absolute values of the operands, and

"digit" refers to a base 16 digit).

a

preshift REAL operands LONG REAL operands

0 (fTrace all add/sub. Trace all add/sub.

1-5 Trace if more than a few Trace if more than a few
digits of smaller operand digits of smaller operand
are lost. are lost.

6 Trace if only one digit of Trace if more than a few
smaller operand is retained digits of smaller operand
as guard digit, or none at are lost.
all.

T Trace if operands are incom- Trace 1f more than a few
mensurate; result is larger digits of smaller operand
one. are lost.

8-13 | Tracing off. Trace if more than a few
digits of smaller operand
are lost.

1k Tracing off. Trace if only one digit of
smaller operand is retained
as guard digit, or none at
all.

15 Tracing off. Trace if operands are incom-
mensurate; result is larger
operand.

16 Tracing off. Tracing off.
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b
postshif}///’REAL operands LONG REAL operands
0 rETace all add/sub. Trace all add/sub.
1-5 Trace if post-normalize by | Trace if post-normalize by
more than a few digits. more than a few digits.
6 Trace if only digit of Trace if post-normalize by
result is guard digit or more than a few digits.
result is O.
T Trace if result is exactly | Trace 1f post-normalize by
0. more than a few digits.
8-13 | Tracing off. Trace if post-normalize by
, more than a few digits.
14 Tracing off. Trace if only digit of
» result is guard digit, or
result is O.
15 Tracing off. . Trace 1if result is exactly O.
16 Tracing off. Tracing off.

FOR A ROUGH LOOK AT A NUMERICAL PROGRAM, $NORM,3,3 IS
RECOMMENDED .

If a significance error occurs; the following message will be

printed:

’ PRESHIFT
. =7 K R HH
*¥¥% STGNIFICANCE ERROR NEAR xxx IN yyy: 1111 + 2222 POSTSHIFT Z

where xxx 1s the coordinate number of the statement being
executed.
yyy  is the name of the procedure being executed.
1111 is the first operand, in decimal.
2222 is the second operand, in decimal.
+ is + for a floating-point add, - for a subtract.

zZ is the number of base 16 digits actually shifted.

To keep the amount of printed output meaningful, the message
will be printed only for the first 10 times that a significance
error occurs at each coordinate. The tenth méssage will have
three dots instead of the last three asterisks. The limit of
ten messages can be changed during execution via the standard
procedure TRACE (cf. Section 7.8.6), allowing the user to turn
off the significance checking in part of a program and then to

turn it on again.
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For each coordinate, a count is kept of how many significance
errors have occurred in that statement. These counts are
printed as a small table at the end of execution. The table
has a maximum of 49 entries, plus one overflow entry that
totals all lost counts as occuring at coordinate 0000 . Any

individual count greater than 65534 is printed‘as "E5535+" .

Overhead: Using this facility increases the size of the machine
code generated by about 3% to 5% (8 bytes for each floating ’
add/sub). The interpreter slows down the execution of each
floating add or subtract by about a factor of 100, but in
typical programs, the overall slowdown will only be a factor

of 2 or 3. If TRACE(O) is used to turn off the interpretation
except in selected portions of a program, the increase in

execution time can be as low as 10%.

Restrictions:

(1) When actually source tracing with $DEBUG,3> or L ,
floating-point operations will not be interpreted. When
the $DEBUG interpreter is not operating (typically after
a statement has been executed twice), then the significance

interpreter can.

(2) This facility cannot be used with $DEBUG,0 or with

- separate compilation, linkedit, and execution.
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$DUMP* options

The $DUMP¥ card specifies two things: what tables to be dumped, and
which segments in the program the dumping applies to. For example, the

360 machine code for only one of many procedures can be dumped.

General format:

$DUMP*ab, cc

a 1is a single digit and is ignored.

b is a single digit and asks for some combination of 5 tables to be

dumped.

cc is exactly two digits -- a number in the range 0 to 63, or two blanks.
If cc is blank, then tables for all segments will be dumped.
If cc is a number, then the machine code for only that segment will
be dumped. Many $DUMP* cards may be used to specify more than one
segment. If the b digits are different, the last one is used.

tables dumped:
pass2 pass?2 pass2 pass? pass3
b digit | parse tree nametable editcode 360 code w/ some 360 code w/ most
(hex) addresses missing addresses inserted
0
1 X
2 X X
3 X
4 X X
5 X X X
6 X X
7 X X X X
8 X X X X X
X X X X (same as 7)
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3. Linkage to Separately-Compiled Procedures

AIGOL W provides a facility for pre-compiling procedures and linking
them back together again. For small programs, it is not worthwhile to
use this facility, since re-compiling a procedure may be faster than
punching an object deck and reading it back in. A facility is provided

for generating standard IBM linkages for calling FORTRAN programs .

3.1 Compiler Organization

As shown in the diagram below, there are actually two versions of the
ALGOL W compiler; both versions use exactly the same code for the various
bphases of the compiler and for the run-time library, but the monitor
phase is slightly different. The compile, load, and go incore version
is called ALGOIW; it can handle object decks only in a crude way, but
its in-core loader handles the debugging feature information. The
compile only version is called ALGOLY; it produces standard 0S/360 object
decks, but cannot pass any debugging information (so $DEBUG,0 is forced).
The output from ALGOLY can be_l?nk-edited with other object decks or load
modules, including those produced by Fortran G or H. In order to be
executable, the object decks from ALGOLY must be link-edited or loaded
with the ALGOL library and with the ALGOL run-time monitor (ALGOLX). To
facilitate this, all object decks for ALGOL main programs include
external references to the monitor and to the iibrary.

The restricted object deck facility for the compile, load and go
version only handles:

1) object decks

2) of procedures (not main programs)

3) from ALGOL W

L)  run with no debugging features ($DEBUG,0) .
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If a procedure declaration is compiled and a //SYSPUNCH DD card is
supplied, then an 0S/360 object deck for that procedure is preduced. This
deck can then be used with the link-editor or 0S/360 loader as above, or
it can be read back into the compile, load, and go system when the main
program is compiled. For this purpose, the deck setup is extemded to:
r
§{ <ALGOL
$DEBUG,0 (must be specified)
{main program) )

$OBJECT
(procedure object deck(s))

{ ¢DATA
8
LU (asta)

W

§8

.

§

§ Optional.

§§ May be repeated -- second and following %ALGOL cards

are required.
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COMPILE, LOAD, and GO INCORE

Source !

COMPILER
(ALGOLW)

N\
\

5. SEPARATE COMPILATIONS

COMPILE and use 0S/360
LOADER or LINKEDITOR

Source

COMPILER
(ALGOLY)

OBJECT DECK

INCORE OBJECT CODE
AND DEBUG INFO

(

ALGOLW
OBJECT DECKS

(

08/360
OBJECT DECK

OTHER ALGOLW
OBJECT DECKS

ATGOLW
LIBRARY
and MONITOR

(ALGOLX)

I

0S/360 LOADER
or LINKEDITOR
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3.2 Control Cards for Using 08/360 Loader

Three catalogued procedures are provided: ALGOICG, ALGOIC, and
ALGOLG, for compile and load, compile only, and load only respectively.
In all of them, the object decks are passed in the same way that
Fortran object decks are passed, so (for instance) ALGOIC and FORTHC can
be intermixed and followed by ALGOLG. The stepnames are COMP and GO.
Parameters given on a $ALGOL card are not passed to the GO step; instead,

the EXFC card parameter field is decoded the same way.

Example:
//STEPA EXEC ALGOLCG, PARM.GO="MAP, EP=ALGOLX/TIME=5, PAGES=15"

3.3 Calling External Procedures

In a program which calls an external procedure, a dummy procedure
declaration and body are used to establish the proper correspondence

(cf. Section 5.3.2.4). The symbols algol and fortran in that dummy body

indicate the use of ALGOL W and standard IBM linkages respectively; the
associated string is extended (with blanks) or truncated to eight characters
and is used as the entry point name of the external procedure. For a
FORTRAN external procedure, the entry point name is just the name of the
FORTRAN subroutine or function. For an independently compiled ALGOL W
procedure, the entry point name is the procedure identifier extended

(with " # "s)”or truncated to five characters and followed by "001" .
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Examgle:
[ INTEGER PROCEDURE MYFUNCTI ON(REAL VAIUE X);
BEGIN INTEGER I;
first .
compilation < :
I
L END.
f
BEGIN
INTEGER K,L,M;
REAL A,B;
INTEGER PROCEDURE YOURFUNCTION(REAL VAIUE Y);
second ALGOL "MYFUNOO1";
compilation < .
K := YOURFUNCTION(A);
END.

.

A FORTRAN subroutine or subprogram can be used as an ALGOL W procedure.
The type correspondence between ALGOL W and FORTRAN is given by the

following table:

ALGOL W IBM FORTRAN IV
integer INTEGER*4

real REATL*L

long real REAT*8

camplex C OMPLEX*8

long complex COMPLEX*16
logical LOGICAL*1
string (n) | (LOGICAL*n)
bits LOGICAL*k
reference - - -
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String functions are not implemented. The fo]loﬁng formal parameter

types are allowed and are interpreted as indicated:

(1) (simplo:e T type)

The corresponding actual parameter is examined. If that parameter
is a variable, the address of that variable is computed (once only)
and transmitted. Otherwise, the expression which is the actual

parameter is evaluated, the value is assigned to an anonymous local

variable, and the address of that variable is transmitted.

(2) (simi:le T type) value , (simple T type) result ,
(simple T type) value result

As in ALGOL W procedures, & local variable unique to the call is
created, and the address of that variable is transmitted.

(3) (simple T’ type) array
The address of the actual array element with uxiit indices in each
subscript position is computed and transmitted, even if that element
lies outside the declared bounds of the ALGOL W array. Arrays with
only one dimension and arrays with unit lower subscript bounds will
have elements with indices which are identical in ALGOL W and
FORTRAN routines. Array cross-sections should not normally be

used as actual parameters of FORTRAN subprograms.

If FORTRAN inpvut/ output or FORTRAN error handling facilities are to be

used, the subroutine package IBCOM, or a suitable substitute, is required.
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Exa_mgle '
r
BEGIN
. COMPLEX Z;
COMPLEX PROCEDURE COMPLEXSQRT (COMPLEX VALUE A);
Algol W < FORTRAN "FAKEIT";
compilation .

Z := COMPLEXSQRT(2);

B

( FUNCTION FAKEIT(X)
COMPLEX FAKEIT,X
Fortran _
B ton { FAXEIT = CSQRT(X)
RETURN

END
.
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L. Compiler Output

4.1. Introduction

The printed output of the compiler consists of five general

categories:
1) Source card listing
2) Error messages
3) Run-time and tracing output
4) sStatement counts
5) Post-mortem dump

The amount of output in some of these categories can be controlled

by various compiler options (cf. Compiler Options, page 104).

1)
2)
3)

k)
5)

(In the

$NOLIST, $LIST, $TITLE.

No control.

$DEBUG,3 or $DEBUG,4 activates the tracing. The standard
procedure TRACE (cf. Section 7.8.6.) dynamically controls the
tracing output. ;

$DEBUG,2 , 3 or U4 activates the statement counts.

If a program terminates with & run error and $DEBUG,0 was not

used, a post-mortem dump is produced.

explanation which follows, circled numbers are keyed to the

circled numbers on the sample output.)

L.1.1.

Source Card Listing

The source listing consists of four columns of output:

a)

Coordinate number @

This statement count is incremented once for each semi-colen
(except end-of-comment), BEGIN, or ELSE in the program. If there
are many statements on & card @ , the coordinate listed refers
to the first statement on that card. All error messages and

tracing information are keyed to the coordinete numbers.
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b) Block nesting level (:)
The nesting level counter is incremented by one for each BEGIN
in the program and decremented by one for each END. The counter
is printed only when it changes; then the first character in
this column refers to the nesting level of the first BEGIN on
the card, and the second character refers to the nesting level
of the last END on the card. If you have the proper number of
BEGINs and ENDs, the nesting level for the last card should
be 1.

c) Card image (::)

Columns 1-72 of each card are printed exactly as they were

read. $ option cards are rot printed.

d) Sequence field @
Columns 73%-80 of each card are printed here, with eight spaces

between column 72 (card image) and column 73 (sequence field) (E).

The source card listing is followed by a line giving the options
which will be in effect during the execution of the program . These
include the debugging option (specified by a $DEBUG card), the time limit
in seconds, the page limit, the word NOCHECK if that option has been
specified (cf. Section 2, Compiler Options), and the words MARGIN=72 if
the initial right margin for READ, and READON is set at column 72 instead
of 80. This last option is set if the source deck is sequence numbered,
on the assumption that the data cards are also (cf. Section 7.8.4. for more

details on margins).

4.1.2. Error Messages

These are printed immediately after the source card listing and are

further explained in the Error Messages section of this manual.

4.1.3. Compile Time and Amount of Code

The last line of the compilation gives the amount of time spent in
the compiler and either the phrase NO CODE GENERATED if fatal error
messages occurred, or the phrase (xxxxx, yyyyy) BYTES OF CODE GENERATED if
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compilation was successful. xxxxx is the number of bytes of /360
machine language generated. yyyyy 1is the number of bytes of

information generated for the debugging facilities:

$DEBUG, n
and above information included

0 (i.e., always) Table relating coordinate numbers to program
addresses, for creating RUN ERROR messages.

1 Table of names and types of each variable used, for
post-mortem dump and tracing.

2 A compressed version of the source code, for the
pseudo-listing.

3,4 Additional editing markers in the compressed source

code, for breaking the tracing at the proper points,
and for more closely correlating the machine code

with the source code.

L.1.4. Run-time and Tracing Output

This category includes an optional statement-by-statement trace of
the program as it executes (:) (explained in more detail below), any
output that the program itself produces in WRITE and WRITEON statements ,
and perhaps a run error message saying why the program terminated (:).
If the tracing were turned off, the output would look like that on page

118.

4.1.5. Statement Counts

This optional print-out consists of a pseudo-listing of the
program @ with coordinate numbers and counts of how many times
each statement was executed (::). To determine how many times a particular

statement was executed, follow the vertical bars straight up and to the
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left until a number is encountered. For example, the statement count
for the IF at coordinate 0012 is found by following the bars up to
coordinate 0005 , then up‘and left to the 6. on the preceding line;

if this path goes through the statement where the program terminated
prematurely (::), then subtract one from the count. Thus, the IF
statement at coordinate 0012 was executed 5 times (true 1 time, false
L times). The pseudo-listing has all the comments removed and is

formatted to show the block structure of the program. You are encouraged

to make use of the statement counting facility in order to better under-

stand just where your program is spending its time.

4.,1.6. Post~Mortem Dump

This error analysis aid (::) shows the nameé and values of all
variables which were active at the time the program stopped. By looking
at the félues of the variables used in the last statement executed (::),
it is easier to determine what (if anything) went wrong. The exact

format of the dump is discussed below.
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STAUF A ALGOL B (1£J8NT2) 19 JANUARY 1972 _3 21:54
d"e ©) @
00go 1- BEGIN

0001 == COMMENT PR0G3IAM TO EIND AVEPAGE OF GROUPS OF NUMBERS. cACH GROUP

0001 -- €MD S WITH THE NUM3EE -13

ceoy --

0001 -- INTESEP SUMyCOUNT ,yua;

0002 -- wHILE TRISS DO COMMENT (DOP UNTIL INPUT EXHASUTED:

0002 2- BEGIN @

0003 -- COMMENT THIS CARD WAS A SEQUENCE NUMBER FIELD —=me-memcececceze=<d] ABCD1234%ses
0003 -- @ SUN = FOUNT := N3

0006 -- FEADTNINUNE) S WRITEONINUMB)S

00086 == MHILE N¥Ie=] OO0

00C6 13- REGTY

0007 -- SUM = SUM ¢ NUMS;

0008 -~ COUNT 3= COUNT & 1:

0009 -- READOV(MUMB) 3 WRITENN{ NUNB)

0010 =3 END3

0011 == IF COUNT2) THEN WRITE(®EMPTY GROUP®) ELSE

0012 -- WRITF(®COUNT @ COUNT,SUM @ ,SUM, PAVERAGE *, SUM/COUNT) ;

0013 == T1OCCNYAIrLL?)

2013 =2 )

0013 =1 1)

@ ExECuTION OPTICNST DEIUGH4(7) TINE=1Y SECONDS PAGES=9

1Tt

STANFORD ALGOL ¥ (16JANT2)

CONPILATIUN DIAGNOSTICS 19 JANUARY 1972 23 21154

@ R0 117 NEAR COOPOINATE CON3 - WAFNING: SEQ FIELD CONTAINS TRASH
@ 19Ce14 SECONDS IN COMPILATION, (*-'528, C1336) BYTES OF CODE GENEAATED

Sample Computer Output

PAGE

1
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STT

=> TRACING (MAIN):

n002 1.--1 WHILE TRUE DO
* = TRUE;
noC3 le=-1 SUM = COUNT := O
@ COUNT 3= 03 SUM := 0
0004 le-=} READON(NUMB)
INPUT RECORD: *1 2 3 -1 29.
NUMB := 13
0005 1e=-1 WR ITEONINUMB )
NUMB = ]1;
1
0006 le=-1 WHILE NUMB ~= -1 DO
NUMB = 1; * = TRUE:
2907 le--1 SUM := SUM + NUMB
SUM = 0; NUMB = 1; SJUM := 13
0008 lo-~1 COUNT := COUNT + 1
COUNT = 0; COUNT := 1:
0c09 1e—1 READON (NUMB)
NUMB 1= 2;
0010 le==1 WRITEON(NUMB)
M8 = 2;
2
nCos | (WHILE NUMB ~= -1)
NUMB = 23 = = TRUE:
0007 2=~} SUM 2= SUM ¢ NUMB
SUM = 13 NUMB = 2; SUM := 33
0C08 2e==1 COUNT := COUNT + 1
COUNT = 1; COUNT := 2;
0009 2.--1 READON{NUMB )
NUMB := 33
2010 2.--1 Wk I TEON( NUMB )
NUMB = 33
3
0006 1 (WHILE NUMB ~= -1}
NUMB = 3; # = TRUE; oe.
-1
=> TRACING (MAIN):
ool1 1o~-1| IF COUNT = 0 THEN
COUNT = 3; # = FALSE;
0011 le=-} WRITE (®COUNT ", COUNT, "SUM ", SUM, AVERAGE ", SUM/COUNT)
COUNT
COUNT = 3;
;
SuM
SUN = 63
6
AVERAGE
SUM = 63 COUNT = 33
2.00000009000000
0013 1.--1 I0CONTROL(2)
2002 | (WHILE TRUE)
* = TRUE;
0003 2.-~1 SUM := COUNT := 0
COUNT := 03 SUM 3= 03
0004 2.--1 READON{NUMB)
INPUT RECORD: *37 32 24 88 1 0 2 -1 30.
NUMB 1= 57% .

Execution Output for the Preceding Progrum

‘N
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0005 2.--1 WRITEON(NUMB)
NUMB = 573
57

0006 2.--1 WHILE NUMB -~= -1 0O
NUMB = 57; * = TRUE; ...

N

IAIN0 HATIANOD

32 24 a8 1 -1
=> TRACING (MAIN):
ocll 2e=1 IF COUNT = O THEN
COUNT = 73 * = FALSE;
0011 2.~-1 WRITE (®COUNT =, COUNT, ®"SUM %, SUM, BAVERAGE ", SUM/COUNT)
COUNT
COUNT = 73
7
SuUM
SUN = 204;
204
AVERAGE
SUM = 204; COUNT = 73
29.1428571428571
0013 2.~-| IOCONTROL(2)
0002 i (NHILE TRUE)
* = TRUE; .o.o
(4] o -1
COUNT 2 Sum O AVERAGE [+]
-1
=> TRACING (MAIN):
o011 1e--1 WRITE (YEMPTY GROUP™) N
ENPTY GROUP
LE X ]
4 S [} 7 -
COUNT 4 SUM 22 AVERAGE 5 .50000000000000
RUN ERROR NEAR COORDINATE 0004s IN (MAIN) - READER ECF

000.15 SECONDS IN EXECUTION

Execution Output continmed



=@EXECU
2000

0001
0002
0002

0004
0005
0006
0006
0010
0011
0011
00l2
0013
0013
0013

T@N FLOW SUHH‘@

INTEGER SUM, COUNT, NUMB;
WHILE TRUE DO
BEGIN SUM 2= COUNT := O3

1 -"*'ll BEGIN
|
6.~-|
ERROR - = ~-~~~ ceee——
| REA
ERROR ~Z- ~mmmmececme—
| w1
| WHI
16.--1
|
Se==1 IF
lo”‘l
4o~}
L3 a"l lm
1 END
0o-~1 END

®t> TRACE OF ACTIVE SEGMENTS

it

=> SEGMENT NAME:

(MAIN)

VALUES OF LOCAL VARIABLES:

SUM = 0

DON {NUMB) ;

TEONINUNB )
LE NUNB ~= -1 DO

BEGIN SUM 3= SUM ¢ NUMB; COUNT := COUNT ¢ |;

END3
COUNT = 0 THEN

MRITE (“EMPTY GROUP™} ELSE .
WRITE (®COUNT ®, COUNT, ®SUM ®, SUM, AVERAGE ", SUM/COUNT);

ONTROL € 2)

COUNT = 0

NUME = =]

Pseudo-listing and Fost-mortem Dump

READON(NUMB) 3

WRITEON{NUNB)

‘1
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3 -1
& AVERAGE 2 «00000C00000000

COUNT 3 SUM
57 32 26 88 1 -1 &
COUNT 7T Sum 204 AVERAGE 29.1428571428571 .
] (4} -1 a
COUNT 2 SuM C AVERAGE ] g
-1
EMPTY GROUP E
4 5 6 7 -1
COUNT 4 Sum 22 AVERAGE 5.+ 50000000000000. g
e mmam ———— - - ——- ——— 3
RUN ERRGR NEAR COORDINATE 0004, IN (MAIN) - READER EOF
000.03 SECONDS IN EXECUTION
=> TRACE OF ACTIVE SEGMENTS
=> SEGMENT NAME: (MAIN)
VALUES OF LOCAL VARIABLES:
SUM = O CounY = 0 NUNS = -]

Output of the Preceding Program with no Tracing ($DEBUG,1)
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4.2. Details of the Tracing Output

The tracing features of ALGOL W allow the programmer to watch the
statement-by-statementbexecution of his program. The tracing output
consists of four kinds of information for each statement:

a) The coordinate of the statement. (:)

b) The number of times that statement has been executed. (:)

c) The source statement itself. (:)

d) A description of the values used in the statement. (:)

There are special notations for procedure calls, for iterations and for

showing data cards.

4.2.1. Basic Notations

For each value fetched during the execution of a statement, the
fetch and store trace ($DEBUG,4) prints VARIABLE NAME = VALUE (:).
The store trace only ($DEBUG,3) suppresses all of thece fetch values.
For each value stored (assigned), the tracing prints
VARTABLE NAME := VALUE (:) . For each logical expression in an IF or
WHILE statement the value of the expression is printed as * = TRUE
or * = FALSE <::> . If tracing is suspended because the next statement
has already been executed m times (cf. Compiler Options for details of
$DEBUG,n(m) ) or because the TRACE function is used, then three dots are
printed(::> (::). The second and subsequent times through a WHILE or
FOR loop are indicated by the WHILE or FOR statement in parentheses .
Whenever a new card is needed by READ or READON, the complete card image
is printed as INPUT RECORD: " 80 characters " (::). Note that in general

string values are printed with quotes on each end, but any quotes within
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the string are not doubled. Reference values are printed as

Recordclass . #

h.2.2.

- XYZ;

, where # is a unique number (in order of allocation).

Procedure Call Notations

= TRACING XYZ;

(PARAMETER ASSIGNMENT )

((PARAMETER IN xxx AT yyyy:

FPARM

FPARM'

:- APARM

:= value

Indicates a call to procedure XYZ @ .

Indicates that a new procedure is being

traced @ .

A dummy statement indicating whatever
calculations must be performed in binding

the actual parameters to the formal

parameters @ .

trace))

If the actual parameter is an expression, then
this notation gives the name of the calling
routine, the coordinate of the call, and a
trace of the expression evaluation @ .
Note that in the first example given, the
expression MAKELONG(I) is actually another
procedure call, whose tracing terminates about
25 lines later. There is a second example @
on the next page.

Indicates the correspondence between the formal

parameter and the actual parameter @ .

In the case of VALUE and VALUE RESULT
parameters, this indicates the value assigned
to the local copy of the formal parameter .
The local copy is then used inside the

procedure .

Used as the name of an expression which
otherwise has no name @ .
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= value
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Indicates the value returned from s function

procedure @ This notation is

preceded by & blank line to indicate a
return to tracing the calling procedure.
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=> TRACING (®AIN):
le==|

coo1

bt e

23
12
45
45
45
55

is
49
22
29
73
i1

345
61
22
16

-28

5

*> TRACING LGNGDIV:

0245

lo=vl

=> TRACING CGPY:

cosc
@cces
008
o83
o84

ocss
€083
ocs4

oces
cos83
cos87
ogeés

G246

©)

©)

le--1
le=-1
le==]
1e-=}

Lo}

le—-|
i
2.--|

2.—1
|
l1o==}
1e==1{

le==|

=> TRACING ZERC:

cory

E C247

C248

0249

0250

le=—1}

le==|
la==|

lo==|

TRACE (0)

N
NN

RM 3= COPY(N)
-> cory;

<PARAMETER ASSIGNMENT>
IN := N'; N°* = RNODE.32; IN* := RNODE.32;

P := IN
1N* = RNODE.32;
= NULL
Q = NULL;

P := RNODE.32;

WHILE P -= NAL 00
P = RNODE.32; # = TRUE;

C s= RNCDE{Q, V

AL(P))

C = NULL; LINK(RNODE.36) := NULL;

VAL{RNGDE.36)

P = LINK(P)

P = RNODE.32:
(WHILE P ~= NULL)

:= 53 3= RNODE.36;

P = RNODE.32; VAL(RNODE.32) = S;

LINK{RNODE.32) = RNODE.33; P t*» RNODE.333

P = RNODE.33; #* = TRUE;

Q = RNODE(Q, V
Q = RNUDE.36;
VAL{RNODE.3T)
P := LINK(P)
P = RNODE.33;
(WHILE P -~= NULL)
P = NULL; & = FA
REVERSE(Q)
=» REVERSE;
Q
Q = RNDDE.36;

COPY{..) = RNODE.
Q := ZERQ
-> ZERO;

RNQDE{(NULL,y O)
LINK{RNIDE.38) :=

ZERU = RNODE.38:
LN = LENGTH(N)

=> LENGTH; LENGT
LO = LENGTH(D)

=> LENGTH; LENGT
IF LN < LD THEN
LN =23 LD = 23

le==| REVERSE (R™)

=> REVERSE;

AL(P))

LINK(RNOUDE.37) := RNODE.36; P = RNODE.33;

i= 53 Q = RNODE.37;

LINK(RNODE.33) = NJLL; P := MULLS

LSE; @

363 RM := RNODE.36;

NULL: VAL(RNODE.38) := 03

Q = RNODE.38;
Hleo) = 25 LN 3= 23

Hiee) = 25 LD := 23

* = FALSE; @

Tracing Output

(§oxBUG, 4(2))

VALIRNODE.33) = 5;

N
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=> TRACING (MAIN):

€001
0328

0329
0330
0331

le==| INTFIELDSIZE := 3
le=~1| 8IGM := 1O

BIGM := 10;
le—=1| HALFM = §

HALFM 3= 5;
le==| ~HILE TRUE 0O

¢ = TRUE;

leo==1| READON(T, J)

INPUT RECORD: *95 999

0332

le=—1|

®

@’) TRACING LCAGMPY:

¢t

C19¢

le==}

2> TRACING MAKELCNG:

001«
cole
ao17
go18
aol19
0020
0021
0022
8023
0024
0019
0026

le=-|
ot @
le==}
1=}
le=-i
le==]
lo-=|
lo==~}|
Lo==|
le==|
i
1o~={

®
®

=> TRACING MAKELONG:

cole
0016
0017
oo18
6019
0020

2.--|
2.--|
2.--}
2.~-=]
2=}

2.--1

I 3= 99; J := 999;
R 3= LONGPPY(MAKELONG(I) s MAKELONG(J))
=2 LINGMPY;

CPARAMETER ASSIGNMENT>
<K< PARAMETER IN (MAIN) AT 0332: -> MAKELONG;

CPARAMETER ASSIGNMENT>
INT 2= 0I5 1 = 99; [INT® := 99
ANSWER 3= RNODE(NULL, INT REM BIGM)
LINK{RNODE.1) 3= NULL; INT* = 99; BIGM = 10; VALIRNODE.1) 3= 9; ANSWER := RNODE.1;
R2 := ANSWER
ANSWER = RNODE.1: R2 := RNODE.1;
INT2 := INT DIV BIGM
INT* = 99; BIGM = 103 INT2 := 9;
WHILE INT2 -= 0 DO
INT2 = 9; = = TRUE;
R 3= RNODE(NULL, INT2 REM BIGM)
LINK{RNUDE.2) == NULL; INT2 = 9; BIGM = 133 VAL(RNODE.2) := 9; R == RNODE.23
ASSERT LINK({R2) = NULL
R2 = RMUDE«1l; LINK(RNODE.1l) = NULL:
LINK(R2) := R
R2 = RNUDE.13 R = RNODE.2; LINK(RNODE.l) 3= RNODE.2;
R2 3= R
R = RNODE.27 RZ := RNODE.2;
INT2 := INT2 DIV BIGM
INT2 = 953 BIGM = 10; [INT2 := 0;
(WHILE INT2 ~= O)
INT2 = 03 s = FALSE;
ANSWER
ANSWER = RNODE.1;

MAKELONG(..} = RNUDE.lé >> @
N1l := #; # = RNUDE.l; N1°® 3= RNUDE.1;
<< PARAMETER IN (MAIN) AT 0332: -> MAKELONG;

<PARAMETER ASSIGNMENT>

INT 3= J;7 J = 999; INT* := 999;
ANSWER 3= RNUDE(WNULLy INT REM BIGM) )
L INKIRNODE.3) := NULL; INT* = 999; BIGM = 10; VALI(RNODE.3) := 93 ANSWER := RNODE.3:
R2 := ANSHER

ANSWER = RNUDE.3; R2 := RNODE.3;

INT2 := INT DIV BIGM

INT* = 9995 BIGM = 103 INT2 := 993
WHILE INT2 ~= 0 DO

INT2 = 99; & = TRUE;

R 3= RNUDE(NULL, INT2 REM BIGM)

Tracing Output continued

n
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LINK(RNODE.4) := NULL; INT2 = 99; BIGM = 10; VAL(RNODE.4) :=>93 R 3= RNIDE.&;

ocal 2.-=} ASSERY LINKE(R2) = NULL

R2 = RNODE.3; ULINK{RNODE.3) = NuUtLL;
o0caz2 24==} LINK(R2) := )

R2 = RNUDE.3; R = RNODE.4; ULINK({RNODE.3) 3= RNODE.%}
€023 2.=-} R2 :=

R = RWUDE.4; R2 := RNODE.4;
002« 2e==1] INT2 2= INT2 DIV BloM

INT2 = 99; BIGA = 103 INT2 := 93
co19 [} (WHILE INT2 == 0)

INT2 = 9; * = TRUE; ... @

*> TRACING MAKELONG:
0026 2.=1 ANSHER
ANSHWER = RNODE.3;

MAKELONG(..) = RNODE.3; O>>
N2 :~ #3 # = RNODE.3: N2' := RNUDE.3:

o197 le—| P = NI
N1* = RNODE.1; P := RNODE.1;
€198 1=~ Q = N2
N2' = RNODE.3; Q := RNODE.3;
0199 1o~} R := RNODE(NULL, O)
LINK{RNJDE.6) := NULL; VALIRNODE.6) := 05 R 3= RNODE.63
€200 lo==| ANSWER := R
R = RNODE.6; ANSMER :x= RNODE.63
0201 1o—} RIGHTPARTIAL := R
R = RNOOE.6: RIGHTPARTIAL := RNODE.6:
0202 Lo==| IF  (IVAL(P) = OF AND {(LINK(P} = NULL)}) OR ((VALL£32) = O) AND
P = RNODE.1; VAL{RNODE.1) = 9; 'Q = RNODE.3; VALIRNODE.3) = 93
0202 lo==1} WHILE P -~= NULL 00
P = RNODE.1l; =* = TRUE:
0203 le==| IF  RIGHTPARTILAL = NULL THEN
RIGHTPARTIAL = RNODE.6; * = FALSE;
0207 le==|{ R = RIGHTPARTIAL
RIGHTPARTIAL = RNODE.63 R := RNODE.6:
0208 lo==1| C =0
€ := 03
€209 le==1] = N2
N2* = RNODE.3; Q := RNODE.3:
ozlio le—=1} WHILE Q ~= NULL DO
Q = RNODE.3; ¢ = TRUE;
0211 le—=| A = HIGH(VAL(P)*VAL(Q)}

=> HIGH;

=> TRACING HIGH:
0075 le=—1| <PARAMETER ASSIGNMENT>
<< PARAMETER IN LONGMPY AT 0211: P = RNODE.1; VAL(RNDDE.1l) = 9;
VAL(RNODE3) = 9; >
NUMB := #; # = 813 NUMB' := 813
co7s l1o==| NUMB DIV BIGM
NUMB* = 81; BIGM = 103
@ HIGH(..) = 8; A := 8;
021% 1,==1| B = LOW(VAL(P)*VAL(U))
-> LuM;
=> TRACINu LOw:
0073 le—1| CPARAMETER ASSIGNMENT>
. << PARAMETER IN LONGMPY AT 0212: P = RNODE.l; VAL(RNODE.1) = 93

Tracing Output continued

(LINK(Q) = NULL))D
* = FALSES

Q = RNDDE.3:

Q = RNODE.3:

THEN

n
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4. COMPILER OUTPUT

k.3, Details of the Post-mortem Dump

The post-mortem dump begins with = TRACE OF ACTIVE SEGMENTS @ s

then the complete call chain is printed starting with the procedure which

was active at the point of termination and working beck to its caller,

etc. For each procedure, the following information is printed:

a)

b)

The name of the procedure @ The outermost procedure is
called "(MAIN)" and a simple BEGIN block is named "(BLOCK)" .

The names and values of the local variables in the procedure @
Uninitialized values print as "%?" @ Local copies of
parameters are named with pr:i_mes@- Strings are printed with
a single quote added on each end, but quotes within the string
are not doubled. At most eight values are printed from an array,
usually the first seven and last one @ Reference values
are printed as Recordclass .# , where # 1is a unique number
(in order of allocation). The control variables in FOR statements
are all distinct even if they are spelled the same way. So if

I 1is used in many FOR statements, it will be dumped many times @ .

The name of the calling routine and the coordinate of the call .
For NAME parameters, a procedure may be re-entered (environment

re-established) to evaluate the corresponding argument @ @
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292 18e--1| BEGIN TItl) == I3 WlI) = 1/{2%NN); BLSy 1) 1= 1.0;

0296 1 END;

0297 | LINPROGINU + 1, 2®NN, NU ¢ 1, B, 38, C, W, Z, IN, E&R);
G268 i IF ERP ~= 2 THEN

0298 Co==1{ WRITE(®EAXOR NO. ", ERR) GCLSE

0298 [ PEY | FOR 1 2= C STEP 1 UNTIL 2¢N -1 0O

0258 Oo~=| WFITE(®INDEX ", IN(I), ™ VALUE ", W(I)}

0298 1 END

@ => TRACE OF ACTIVE SEGMENTS
2> SEGMENT NAME: AR
@ AB WAS REENTERED FROM GMAT, NEAR COORDINATE 0072, TO ACCESS A PARAMETER
x> SEGMENT MAME: GMAT
VALUES OF LOCAL VARIABLES:
RI? = 2 ClY = ?
GMAT WAS ACTIVATED FROM AB, NEAR COORDINATE 0242
=> SEGMENT MANE: AB
@ AB wAS REENTERED FROM TRISOLV, NEAR COORDINATE 0033, TO ACCESS A PARAMETEK
© => SEGMENT NMAME: TRISOLV

VALUES OF LOCAL VARTABLES:

FID® = 1 FIE® = -1 T =2
CRERTY = ? 1 =7
TRISOLY WAS ACTIVATED FROM DECOMPOSE, NEAR COORDINATE 0081
=> SEGMENT NANE: ODECOMPOSE
VALUES OF LOCAL VARIABLES:
BCTTON® = O TOP! = 0 1=¢
4 =2
DECCNPOSE WAS ACTIVATED FROM AB, NEAR COORDINATE 0242
() => secment Name: a8 '
@ VALUES OF LOCAL VARIABLES:
o1 = ? 02 = ?
AR WAS ACTIVATED FROM LINPROG, NEAR CODRDINATE 0249
+> SEGMENT NAME: LINPROG
VALLES OF LOCAL VARIABLES:
@ #o =8 N = 18
Qloy = ? @ Q1) = ? Qe2) = ?
Qté) = 7 AaUS) = ? Q6 = 2
I MDY = 7 HIl) = 2 H(2) = ?
o F{e) = ? 4S5y = 7 H{4) = ?
wio) = ? w1y =2 Wi2) = 2
wis) = ? AlE) = 2 wio) = 2
Y(0) = 2 vil) = 2 Y(2) = ?
Y(4) = 2 v(5) = 2 Yi6) = ?
vio) = ? vil) = 2 vi2) = ?

Post-mortem Dump

cee

sse

PV =

d =

Q(3)
Qi8)
H{3)
Hi8)
wi3)
w(R)
Yi3)
vi8)
vi3)

?

L I I B )

NN NVN DN NN

"

LNdLNO WATIANOD



via) = 7
°(3,0) = ?
PL6,0) = ?
1x(C) = 0
IxXte) = 4
°0(0) = 0
eC(4) = &
VL E3 7
GAMMA = 7
J =17

T2 = ?

v{s) = 2
PL1,0) = ?
2{5,C) = ?
ixtl)

X =7
INFINITY = 7,237005°+75

(:) LINPROG WAS ACTIVATED FROM (MAI'), NEAR COORDINATE 0297

=> SEGMENT NAME: (MAIH)

® YALUES OF LOCAL VARIABLES:
LN = 9
J =2
88(0) = 1.000000
BB{4) = 0
w(0) = 0.05555555
Wi4) = 0.05555555
Clo) =0
Ct4) = 0.00097T65625
PSILO) = O
PSI(4) = 0.5C00000
B(0,0) = 1.000000
B(4s0) = O
Ut-3) = -0.7500000
UL1) = 0,2500€00
IN(C) = O
ING4) = &
7=17
1 =16 *

Nz 3

4= 4

88(1) = 0

BB(S) = 0

W(l} = 0.05555555
W(5) = 0.05555555

cr)y =0

C(S) = -0.0009765625
PSI(1) = 0.,1250000
PSI(S) = 0.6250000
Bl{1l,0) = 0.6666679
B{5,0) = 0

Ut-2) = -0.5000000
Ul2}) = 0.5000000
INCL) = 1

IN(S) = 5

I =7=

J=17¢x=

* LAST VALUE OF CONTROL IDENTIFIER PRIGR TO NORMAL EXIT

Post-mortem Dump continued

Vie) = ?
P{2,0)
P(5,2)
Ixt2) = 2
IXte) =
ROt 2Y
ROC6)
aLoHa
(vl = -}

L=0

PREVI = -T7.237005°¢75

~ ~

weNno

MU = 7

ERR = 0

8B(2) = C

8B8{6) = ¢

W(2) = 0.05555555
W{6) = 0.£5555555
Ct2) = 3,051758'-05
Cl6) = 9.,007«15771

PSI{2) = 0.2500000
PSIt(6) = 0.7500000
B(2,0) = 2,666665
8{64,0) = 0

U(-1}) = -0.2500000
U{3) = 0.,7530000
IN2) = 2

IN(6) = €

I =-3 %

1 =17 =

XX

LYY

soe

vis) = ?
Pi(3,0) = ?
P(&,8) = ?
1X(3) = 3
Ixt2e) = ?
RO(3) = 3
RO(8) = &
BETA = 0O

I =2

T = 2

ETA = 9,536743°-07

| S 4

NNKL = 8

88(3) =0

B8(20) = ?

W(3) = 0,0555555%
Wiz20) = ?

C(3) = -3,051758°-0%
C(20) = ?

PSI(3) = 0,3750000
PSI(20) = ?

B8(3,0) = 0,66666¢5
8(10,20) = ?

uo) = o

u(1o) = ?

IN(3) = 3

INC20) = 2

I =8

1=2 (EE)

M

T
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GRAMMATICAL DESCRIPTION OF ALGOL W

R. Floyd
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GRAMMATICAL DESCRIPTION

In the grammatical description of ALGOL W on the following pages,
Roman capital letters, such as A B C D, stand for themselves. A script
letter, possibly accentcd, sténds for a defined infinite class of symbol
strirgs; for example, ¢ , as defined, stands for the class which includes
the symbols A, B, C, ..., Z, AA, AB, ...,A9, BA,...,B9,...Z9, AAA, ...,
7299, AAAA, ... . A Greek letter, such as A , stands for a given finite
set of characters.

The symbol means "or"; if @ is defined as B|C’, this means that
a particular inscription is an Q@ kif it is a B or if it isa C .

The notation 0* , or equivalently fa}* , means. any number (including
zoro) of inscriptioné, one after another, eaph of which is an @ . For
example, {AlB}* means A or B or AA or AB or BA or BB or AAA
or ..., or A , where A means no inscription at all.

The notation 0+ means any number (but at least one) of inscriptions,
one after another, each of which is an @ . It abbreviates 00* . For
example, {AlB}+ means A or B or AA or ... or BB or AAA, etc.

The notation [Q] means an optional occurrence of @ ; it abbreviates
falal.

The notation atg means @ or 032 or QXX , etc; it abbreviates
army” .

The notation @ LB means @ and/or A ; it abbreviates @|B|a8 .

The curly brackets { } are used simply as parentheses to show the
scope of the above operators.

All other characters, such as / - , () / < ete., stand for themselves,

including * and + when they are not raised.
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The Grammar of a Simple Subset of ALGOL W

Descriptive

Name Symbol Definition
letter X ~alBlcinlEl...|x|Ylz
digit 5 ol1]2|3l...18]9
identifier $ x (a]6)"
symbol g Any symbol on the keypunch, except the double quote
constant c 6+[.6*]I ngtae
function value F A (E.'-; )] N
expression € {-] {JlCl"f'l(&)i’**{'*l/} {+]-} {<|<=l=|>=|>] ==}
simple statement S ' J:=8‘J[(§+:)]‘GO T0 & |3
statement s S'|1F & THEN S|IF & THEN S' ELSE S|FOR $:=€ UNTIL € DO S
block B BEGIN {83} {S;]9: }'s mD
declaration 9 T 3’:\1 PROCEDURE%(;f&IBEGIN{ﬂ;}*{S;Ics:}*e END}
type T INTEGER | REAL | LOGICAL | STRING(C)
procedure heading 's =9(T{VALUE|PRO'CEDURE}§T ,; )

P B.

program
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Descriptive
Name

letter
digit
identifier
variable
symbol

constant

function value
simple expression

simple expression
or relation

- expression

argument
simple statement
empty

statement

The Grammsr of ALGOL W

Definition

alsic|plel -+ IxlY]Z

olriafzf---[8]2
Aals]_y"

(s]s(e) |$(ED) 3 eley]

Any character on the keypunch, except the double guote.

({67 1.6711.6") A {'[+]-1 "3} 1)(5) |TRUE|PALSE
1# (6 lalBlclolelF)* (o] "} |

S[(@;))

NOIIJTYDSHA TV OI IVINWYYD

[+|-]Pw]{ABSILONGISHORT}*{V|C|?|(3)}’{**|SHL|SHR;{*|/!DIV!REM|AND}{+I-IOR}

e’ lell {<|<=I=|>=l>l‘—l=}€z” ’e”‘ Is S

€'|IF & THEN € ELSE €|CASE € OF (£%;)

els| sl(lel*},)1]

_+_.
fv:=)"¢|co 10 3]3[(a,)1[AlB
The empty statement; no character at all, or a space.

S’'|IF € THEN S|IF € THEN S’ ELSE S|CASE € OF BEGIN S+ END
|WHILE € DO S|FOR S:=€ {[STEP &) unriL €|{,e}"Ipo s



oet

Descriptive
Name

block

declaration

type

procedure heading

program

Symbol  Definition
<] BEGIH {s;}* {S;IJ:}*S END
9 T 5|7 armay 5T, (E7:EY,) | PROCEDURE ¥ S
|7 PROCEDURE ¥; {&|BEGIN {Q;}*{S;IJ:}*(’, END} |RECORD &(T 37, ;)
T INTEGER| [LONG]{ REAL | cOMPLEX} | LOGICAL|BITS[ (32) ] |sTRING[ (C) ]| REFERENCE(ST)
¥ S[ ({7 [VALUE][RESULT]|{T] PROCEDURE}S, |T ARRAY':’T*_,_(:"_’:-)%;)]
P {s{ml.]
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The Operators and Functions o1 ALGOL W, Their Formats, Meanings

and Type Constraints

Use of Symbols

(¢
1]

o =

*x
]

d. =
i

pi=

any ALGOL W expression.
value of expression &i.
kind of data represented by ai corresponding to expression €i.

The kinds of data are:

1. N = numeric
2. L = logical
3, 8 = string

L, B = bits

5. R = reference

domain of o, when ki = N.

The domains are:

1. I = integer
2. R = real
. C = complex

They are ordered as follows: I C RC C.

precision of o when ki = N.
They are ordered as follows: S < L.

If di = I, then p, = L. TI.e., integers are converted to long real.
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Kinds of Arguments Domains of Numeric Trecision of Numeric

et

Format Meaning and Results Arguments and Results Arguments and Results
El+ g, o +oa, N+ N-oN d,*+d, - max(dl, d2) P;*P, mm(pl,pz)
el- &, @y - o N-NoN d, -d, - max(dl,dQ) P,-P, = mln(pl,pe)
‘ * *
61* 82 ay X o N *¥N-o>M dl d2 - max(dl, de) pl""p2 - L
i N

t‘,l/ €, oy / o, N/N - N dl/d2 - max(dl, dg,R) pl/p2 - mln(pl,pe,

o

2 \
* X% *¥ e
61 e, oy N¥*N - N 4, %1 - max(dl,R) P,**L - p;
+ el oy +N - N +dl — dl +pl - Py
- el -y -N >N —dl - dl Py 2Py
€ D;V e, TRUNCATE(ozl/o:Q) IDIVIoI
», - ¥*

e, REM €,  a;- (o) DIV ay)* o, IREMI T

the remainder of

£

61 DIV o

ABS &g lall ABS N —» N ABS d, - min(d,,R) ABS p, - p;
Fl 5 =

LONG £, a , LONG N » N LONG d; - max(dl, R) LONG p; — L where p;=s or d,=I
SHORT El oy SHORT N -» N SHORT dl - dl SHORT pl — S where pl=L and le: I

NOTIATHOSAQ TVOT TVWWHH D
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Kinds of Arguments Domains of flumeric Precision of Numeric
Format Meaning and Results Arguments and Results Arguments and Results
€ OR € o, V o LORL->L
1 2 L 2 BORB—B
£, AND € o, N o LANDL - L
1 2 1 2 B AND B —» B
- € NOT o -~ L->L
1 1 -~ B-—>B
€ =& @ = a, k) =k, > L(where kl=k2) any any
51 -= 52 oy :]; oy k1 = k2 — L(where kl=k2) any any
& < ¢ o, < o N<N-L 4,,4, < R any
1 2 1 2 S<S oL 1772 =
€. <= ¢ o, L« N<=N->1L d.,4., € R any
1 2 1 2 S <= S oL 1’72 -
g, >=¢ a, > N> N->L d,,d, < R any
1 2 i 2 N>S o1 1’72
e, > o, >ao N>N->L d,,d. € R any
1 2 1 2 S>> 1’2
. 3
81 IS 82 oy belongs to the R IS 5 = L
record class :92
e .. =
!:‘,1 SHL 5 oy shifted left BSHL N-B d2 I
dp places
81 SHR 32 oy shifted right BSHRN—-B d2 =71
oz2 places
v.(e.le.) characters « S(N|N) > 8 a = =1
172 through 2 2 =%

oz,2+<15-lofal
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Kinds of Arguments

Domains of Numerice

Precision of Numeric

Format Meaning and Results Arguments and Results Arguments and Lesult:
N i
IF 61 THE 62 ELSE 63 if oy then Oy IF L THEN k2 ELSE 1% -k IF L THEN dl ELSE d2 IF L THEN 12 EISE Py
otherwise oz where k2 = 1% =k - max(d ,d2) - mln(Pl’Pg)

CASE & of (el,...,en) @ (1 <o< n)

(o]

9¢T

CASE N OF (kl,ke,...,kn)
— k where

H:k?-: ees = kn =k

CASE L OF (dl,dg,....,dn)
- max(dl,dg,...,dn)

CASE L OF (pl,...,pn)

- min(pl, .e .,pn)

NOTIJI¥DSHA TVOLLYWNVYD
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All the following functions have the format F(é‘,l), where F is the function name.

We shall omit reference to the format, accordingly.

Function Meaning Kinds Domains Precision
TRUNCATE The integer i, with the ssme sign )

a3 a,, such that

1

loy | - 1 < Tl < oy |
ENTIER The integer i such that M-N R-»1 Any

a, - 1<i<g :

1 -1
ROUND The integer i, with the same sign

oy such that '

iall -1/2< )il < ]ozll +1/2 J
EXPONENT The largest integer i such that N-N R~1 Any

i< logl6(|al.\.) + 1

or 0O if o = 0
ROUNDTOREAL oy N -+N R ~R LS
REALPART The real part of oy

N -N C =R, Any - 5%
IMAGPART The imaginary part of o
IMAG al*/—l N -~N dl—»C Any - 5%
(d; cR)

* . .
Note: An asterisk on a short precision-result means that prefixing the letters LONG to the function
name yields a long precision result.
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Functicn Meaning Kinds Domains Precision
SQRT Jal, for oy >0 N >N dl-a R Any — S¥*
(4, € R)
o h
EXP e 7, for a; < 174 .67
LN loge(cvl), for o) >0
J¥*
LOG log,, (@), for ay >0 > N - N a, » R Any — S
SIN sin(a,), for |a, | < 823550 (4, ¢ B)
cos cos(al), for |al| < 823550
ARCTAN tan-l(al), in the range J
(" "/2’ 11/2)
TIME elapsed time, in units of 1/100 I-T
minute if @, = 0, otherwise in
units of 1/60 second.
ODD al is an odd number I-L
BITSTRING The sequence of bits which I-B

represents o, in binary.

1
See manuals for details.

-
|

T TV OLLYINNYRD
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Function

representing o, in hexadecimal,
using two's complement notation.

See also pages 56-59 for READ, READON, READCARD, WRITE, WRITEON, IOCONTROL.
See also pages 64-66 for INTFIELDSIZE, MAXINTEGER, EPSILON, MAXREAL, PI.

Meaning Kinds Domains Precision
NUMBER The integer which oy represents B-o1
in binary.
DECODE The number which is used as a code S(1) » I
for the character a,. (See page T7T1.)
CODE The character for which o, is used I - S(1)
as a code. (See page T1l.)
BASE10 A string of the form b+12+1234567 N - s(12) d, SR Any
representing oy as a power of ten
times a fraction. (b represents a
blank space).
LONGBASE1O As above, for bi;21;23h567890125h5 N — S(20) dl<5 R Any
BASE16 A string of the form bb+12+123456 N - S(12) dl CR Any
representing o, as a power of
sixteen times a fraction, both in
hexadecimal.
LONGBASE16  As above, for bb+12+12345678901234 N — S(20) d; SR Any
INTBASELO A string of the form b+1234567890 I —aSkl2)
representing al in decimal.
INTBASE16 A string of the form bbbbl234k5678 I - 8(12)
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Abend messages ceveoescses
Actual parameter ........
Arithmetic expression ....
Array declaration ..coeese
ASSERT statement ....
Assignment compatibility .
Assignment statement ..
Binding of identifiers ...
Bit expression
Block .e.....
Boolean expression
Built-in functions ....
Call, procedure .
CASE expression e....
CASE statement
Character encoding
Comment
Compiler options
Conditional expression ...
Constants
Constants for input ......
Control cards
Control, T/0 veveeveecenn.
Conversions
Coordinates ....
Copy rule
Data types ....
Deck setup ...
Declaration ..
Double precision
representation ...
Error messages ceievessens
Exceptional conditions ...
Expression . .
Field designator .e..vce..
Floating-point
representation ........
FOR statement ..
Formal parameter ......e..
Fortran linkage .ececeeee.
Function declaration .....
Function designator
GOTO statement .....
Identifier seveeve..s
IF expression eeeveceecses
IF statement ...vovcvvuvene
Incompatibility, assign ..
Input/output eeve....
Integer representation ...
TOCONTROL ...

ooooooo

L A A A )

ooooooo

ooooooo

e 6 oo

5
65
28
28

93
51
ol
107
25
31
b7
13
29
48
Ll
5L
0

Index

kgl

140

Iterative statements ..... 51
KeyWords eeevecessnenasns ees 11
LaDELl veerecenecenansanaans U2
Logical expresSsion «eeeve.e. 37
Name parameter o.e.ecoecees U5
New 1ine eececee. . eesass 58
NEW DAEE cenreravencnens .. 58
Normalization ........ ceees Ok
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