
CS 148

NOTES ON AVOID ING "GO TOil STATEMENTS

BY

D. E. KNUTH

R. W. FLOYD

TECHN ICAl REPORT NO. CS 148

JANUARY 1970

COMPUTER SCIENCE DEPARTMENT

School of Human ities and Sciences

STAN FOR D UN I VER S ITY

NOTES ON AVOIDING "GO TO" STATEMENTS

By

D. E. Knuth and R. W. Floyd

The research reported here was supported by IBM Corporation.

NOTES ON AVO]J)ING "GO TO" STATEMENTS

D. E. Knuth and R. W. Floyd

During the last decade there has been a growing sentiment that the

use of "go to" statements is undesirable, or actually harmful. This

attitude is apparently inspired by the idea that programs expressed

solely in terms of conventional iterative constructions ("for", "while",

etc.) are more readable and more easily proved correct. In this note

we will make a few exploratory observations about the use and disuse of

go to statements, based on two typical programming examples (from

"symbol table searching ll and "backtracking").

In the first place let us consider systematic ways for eliminating

go to statements. There are two apparent ways to achieve this:

(a) Recursive procedure method. Suppose that each statement of a

program is labeled. Replace each labeled statement

L: S

by

procedure L; begin S; Lf end

where Lf is the static successor of the statement S. A go to statement

becomes simply a procedure call. The program ends by calling a null

procedure. This construction shows that the mere elimination of go to

statements does not automatically make a program better or easier to

1

follow; "go to" is in some sense a special case of the procedure calling

mechanism. (It is instructive in fact to consider this construction in

reverse, realizing that it is sometimes more efficient to replace

procedure calls by go to statements~)

(b) Regular expression method. For convenience, imagine a program

expressed in flowchart form, as a directed graph. It is well known that

all paths through this graph can be represented by "regular expressions!!

involving the operations of concatenation, alternation, and "star"; these

latter correspond to familiar constructions in programming languages

which do not depend on go to statements. Therefore it appears that

!go to! statements can be eliminated, although it may be necessary to

duplicate the code for other statements in several places. This process

is essentially what John Cocke calls "nOde splitting".

Consider, for example the following well-known programming

situation:

for i := 1 step 1 until n do

if A[i] x then go to found;

not found: n . - i; A [i] . - x; B [i] . - 0;

found: B[i] .- B[i]+l;

(Let us assume, for convenience, that i n+l if the for loop is

exhausted.) It is not obvious that the go to statement here is all that

unsightly, but let us suppose that we are reactionary enough that we

really want to abolish them from programming languages. [See Dijkstra

Comm. ACM 11 (1968L 147-148.] One way to avoid the go to is to use a

recursive procedure:

2

procedure find;

if i > n then begin n := i; A[i] := x; B[i] := 0 end

else if A[i] 1= x then begin i . - i+l; find end;

i := 1; find; B[i] := B[i]+l;

An optimizing compiler could perhaps produce the same code for both

programs, but again it is debatable which program is most readable and

simple.

Other solutions change the structure of the program slightly:

(a) i := 1;

while i ~ n and A(i] 1= x do i := i+l;

if i > n then begin n := i; A[i] := x; B[i] .- 0 end;

B[i] := B[i]+l;

(b) i:=l;

while A[i] 1= x do

begin i := i+l;

if i > n then begin n .- i; A[i] := x; B[i] .- 0 end

end;

B [i] : = B [i]+ 1;

Solution (b) assumes that n > O. Both solutions increase the amount of

calculation that is specified: (a) tests "i > nil twice, while (b)

tests "A[i] 1= x" af'ter n has been increased.

The flowchart of the original program is:

3

START

STOP

i := 1

02 == i .- i+l

03 == n .- i; A[i] := x; B[i] .- 0

04 == B[i] := B[i]+l

By a suitable extension of BNF we can write a grammar for all

flowcharts producible by a language without procedure calls or go to

statements:

<program> START

~
<statement>

1
STOP

J,
<statement>

J, l 1-
<basic statement>

1
<statement>

~

! "'- J,
<basic statement> <conditional statement> <iterative statement>

L 1 J,

4

J,
<conditional statement>

~
cb
7~

<statement> <statement>

\/
~

<iterative statement> <stat~~
~

YES NO

yo rs
<statement> <statement>

Here cr denotes a "statement" and 'r denotes a "test".

We have not completely analyzed this grammar, although it appears to

be unambiguous; there is probably an efficient parsing algorithm which

will decide whether or not a given flowchart is derivable from the

grammar, constructing a derivation when one exists. But we can easily

prove that the above flowchart is E:.2! producible by this grammar. In fact,

a stronger result is true:

Theorem. No flowchart producible by the above grammar specifies

precisely the computations of the above example flowchart (*).

This theorem contradicts our observations above about regular

expressions being reducible to concatenation, alternation, and iteration;

5

for our flowcharts provide each of these operations, yet they cannot

reproduce the computations in (*). What went wrong? Perhaps it is

that regular expressions are nondeterministic, while computations are

inherently deterministic; but no, it is well known that regular expressions

may be considered to be deterministic. The difference really lies in

the nature of computational tests.

Thus, let us consider a special class R of regular expressions;

R describes all computational sequences (paths in the flowchart)

producible by flowcharts corresponding to a language without go-to

statements:

the empty sequence is in R.

aER, for all statements a.

R1R2ER, for all Rl and R2ER.

(~yR11~NR2)' for all Rl and R2ER and all tests ~.

(~yRl)*~NER' (~~l)*~yER' for all R1ER and all tests ~.

Here the subscripts Y and N denote the "YES" or "NO" branches in

the flowchart.

To prove the theorem, consider the computational sequences producible

by the flowchart (*); they may be described by the regular expression

We will show that the corresponding regular event (the sequences defined

by this regular expression) cannot be defined by any of the regular

expressions in R .

6

Every regular expression in R which specifies infinitely many

sequences includes some test T with one of the following two properties:

(i) Every occurrence of Ty is followed by at least one occurrence

of TN

or (ii) Every occurrence of TN is followed by at least one occurrence

of Ty .

The infinitely many sequences specified by (**) do not have any

such test since the sequences include

Hence no regular expression in R can produce the regular event (**),

and the theorem is proved. I
Perhaps the reader feels that the above proof is too "slick", or

that something has been concealed. In fact, this is quite true; we

have penalized the class of flowcharts too severely! Compound tests

such as liT and T" have not been allowed sufficient latitude. Our
1 2

flowchart grammar should be extended as follows: Replace

in the definitions of <conditional statement> and <iterative statement>

by

t
<condition>

YEt ":0

7

and add the new definition

<c ond{ t ion>
1

<condition>
1

<condition>

YEs! ~o iNO N?/ \YES
<condition>

YES! ~o

The grammar now becomes ambiguous in several cases, although the ambiguity

can be removed at the expense of some complications which are irrelevant

here. More important is the change to grammar R, where we are allowed

to substitute

1" ' Y
for 1"N 1" ' N for 1"y

or 1"'-r" for -r
NN N (1"' 11"'1"") N NY for 1"y

whenever -r,1"',-r" are tests. Thus since * CY 1 (1" NCY 2) 1" yCY 4 ER, , so is

* CY l ('1: lN1"2NCY 2) (1"lyl'1:lN'1:2Y)CY 4 '

and this is the same as (**) with deleted. The theorem above is

almost false! But we can still prove it by an exhaustive case analysis,

considering all possible substitutions of compound tests and showing

that none are permissible because of the presence of CY 3 .

The theorem becomes almost false in another sense too, when compound

conditions are considered, since the expression

* CY 1 (1" IN'1: 2NCY 2) (1" lY 1 1" lN1" 2Y) (1" lYCY 31'1: IN)CY 4

8

is in and it differs from (**) only in that ~lY becomes and

becomes The sequences are essentially the same

except that redundant tests are made. We could therefore consider

equivalence operations on regular expressions, allowing commutativity

of successive tests, and an idempotent law ~Y~Y = ~Y. In that case

our theorem would become false; but we can easily find another flowchart

for which the theorem still applies: Simply put another statement box cr 5

between ~l and ~2. Then no two tests are adjacent, and our original

"slick" proof immediately shows that the regular event defined by

is not equivalent to any regular event definable with R. (When no

two tests are adjacent compound conditions cannot appear, nor do any of

the equivalences apply, so none of the extensions affect the original

proof of the theorem.)

Therefore our "slick" proof is vindicated, and ~ have proved the

existence of programs whose go to statements cannot be eliminated

without introducing procedure calls.

Let us now consider a second example program, taken this time from

a typical "backtracking" or exhaustive enumeration application. Most

backtrack problems can be abstracted into the following form:

9

start: m[l] := 0; k := 0;

up: k:= k+l; list(k); a[k] := m[k];

try: if a[k] < m[k+l] then begin move (a[k]); go to up end;

down: k:= k-l;

if k = 0 then go to done;

unmove (a[k]);

a[k] := a[k]+l; go to try;

done:

Here the procedures list, move, unmove may be regarded as manipulating

a variable-width stack s[O],s[l], ••• of possible choices in this

abstracted algorithm. Procedure list(k) determines all possible choices

at the k-th level of backtracking, based on the previously made choices

a[l], •.• ,a[k-l]. If there are c choices now possible, list(k) will

set m[k+l] := m[k]+c , and it will also set the stack entries

s[m[k]+l], ••• ,s[m[k]+c] to identify the choices. (Note that c can

be zero. The choices might be, for example, where to place the k-th

queen on a chessboard, given positions of k-l other queens, if we are

trying to solve the queens' problem.) Procedure move(t) makes the

decision to choose alternative s[t] this usually means that some

internal tables need to be updated. Procedure unmove(t) reverses the

decisions made by move(t) .

It is not necessary to understand the exact mechanism of this

construction, although people familiar with backtracking should find

the previous paragraph self-explanatory; the main point is that essentially

all backtracking programs have the form of the above program, when

appropriate sequences of code are substituted for list(k), move(a[k]) ,

and unmove(a[k]) , hence the program is worth considering from the

standpoint of go-to elimination.

10

First we can eliminate go-tots by introducing a procedure:

procedure backtrack(k); value k; integer k;

begin list(k); a[k] ::::: m[k];

while a[k] < m[k+l] do

begin move(a[k]); backtrack(k+l); unmove(a[k]);

a [k] . - a [k]+ 1

end

end backtrack;

mel] ::::: 0; backtrack(l);

This use of recursion is rather clean, so the above program is attractive

except for the procedure-calling overhead (which is important since

backtrack programs typically involve many millions of iterations).

It is an interesting exercise to prove this program e<luivalent to our

first version.

Now let's try to eliminate the go to statements without introducing

a new procedure. The flowchart is:

START

11

cr l = mel] ::::: 0; k := 0

cr 2 = k ::::: k+l; list(k); a[k] ::::: m[k]

'r 1 = a[k] < m[k+l']

cr 3 = move(a[k])

cr 4 = k : = k-l

'r 2 =k=0

cr 5 = unmove(a[k]); a[k] ::::: a[k]+l

Here we have the basic flowchart structure

instead of the previous situation when we had

It turns out that node-splitting works in this case but not the other;

we can make two copies of node cr 2

obtain

START

STOP

in the above flowchart and we

This diagram obviously satisfies the conditions of our flowchart grammar

above, so we can avoid the go to statements.

12

What is the resulting program? Our flowchart grammar above allows

more general iterative statements than present-day programming languages

will admit. A general iterative construction might be written

but today's languages only consider the case that a l is empty:

or if a2 is empty:

We can always re1o.Tite (***) in the equivalent form

but this is quite unattractive when al is long, so a programmer will

certainly prefer to use go to statements in that case. If we want to

teach programmers to avoid go to statements, we must provide them with

a suffiCiently rich syntax of iterative statements to serve as a

substitute.

Using (***) leads to the following program for backtracking without

go to statements:

m[l] := 0; k := 1; 1ist(1); all] .- 0;

begin loop

while ark] < m[k+1] do

begin move(a[k]);

k .- k+l; 1ist(k); ark] := m[k]

end;

k := k-l;

exit loop if k 0;

unmove(a[k]); ark] := a[k]+l

end loop;

13

This code, although free of "go to statements", involves an uncomfortable

element which may not make it very palatable: the "while a[k] < m[k+l]1I

is a rather peculiar condition since k varies and the test involves

different variables each time. This is quite different in effect from

the appearance of' the same clause in our recursive procedure backtrack(k)

It is possible to think of the program in a fairly natural way nevertheless,

for example (in tree language) as follows:

start at root of search tree;

begin loop

while possible to go down and left in tree do so;

move up one level in the tree;

exit loop if at the root;

move to the right in the tree;

end loop;

this is a typical tree traversal algorithm. Yet it is debatable whether

or not the elimination of go to statements was an improvement.

The syntax in (***) is perhaps not the best way to improve

iteration statements. An alternative proposal, based on some unpublished

ideas of Wirth, has just been implemented as an extension to stanford's

ALGOL W compiler: The statement

repeat <block>

has the effect of

and the statement

exit

has the effect of

14

where L2 is the second implicit label corresponding to the smallest

repeat block statically enclosing the ~ statement. Thus, (***)

becomes

repeat begin 0"1; if' 1"1 then exit; 0"2 end;

and we can even write our symbol table search routine without go to

statements:

i := 1;

repeat begin

while i < n do if' A[i] = x then exit else i := i+l;

n . - i; A [i] : = x; B [i] : = 0 ; exit

end;

B[i] .- B[i]+l;

Here the "repeat loop" is never repeated, but the desired ef'f'ect has

been achieved. It appears doubtful that this repeat-exit mechanism

will be able to eliminate go to statements in general, since it only

allows a "one-level exit"; further study of' these issues is indicated.

15

