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"A Contribution to the Development 

of ALGOL" by Niklaus Wirth and C=.o: A. R. 

Hoarel ) was the basis for a compiler de-

veloped for the IBM 360 at Stanford Univer-

sity. This report is a description of the 

implemented language, ALGOL W. Historical 

background and the goals of the language 

may be found in the Wirth and Hoare paper. 

1) Wirth, Niklaus and Hoare, C. A. R., "A 
Contribution to the Development of ALGOL", 
Comm. ACM 9, 6(June 1966), pp.413-431. 

2 



CONTENTS 

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS ..•.••.••••.••••.• 6 

101 .. Notation ........ oo ••••• o ••. ,a.Jo.t •• o ••• " •••••••••••• 6 

1.20 Definitions .... " .... 0 •• 0 ... 0 0 • 0 C) 0 ......... u •• 0 0 •••• 6 

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES ..•..•••••••.•••. 9 

2.1. B·as ic Symbols ...................................... 9 

2.2. S;yntactic Entiti.es ....•••.••.••••••.•... " .•••.•••• 10 

:3 • IDENT IFIERS .... 0 • • •••••••••••••••••••••••• , • • •••••••••••••••• 11 

4 . VALUES Al'ID 'I'-~·FES ..••••• 0 ••••••••••••••••••••• 0 •••••••• 0 ••••• 014 

4 .. 1. N1.llIlbers •.. 0 •••••• 0 •••••••••• _ ••••••• 0 •••• OJ ••••••• 15 

4.2. Logical Values •••.•• 0 •••••• u ••••••••••••• 00" ••••• 16 

4.3. Bit .Sequences ... 0 •• 0' •••••••••••.•••••••••••••••• 16 

4.4. Strings .. ' .•..••.•.•.•.•••••.••..•••..•• 0 •••••••• 17 

4.5 . References ......... J ••• 0 ••••••••• u ••••••••••••••• 18 

5 . DECLARA.TIONS ••...•.. , 0 • '0 •••••••••••••••••• 0 •••••••••• oJ • " ••••• 18 

5 .1. Simple Variable Declarations ••..•.... 0 •••• 0 •• 0 •• 18 

5 .2. Array Declarations ...... " ..•••••. , •...•..••.••.. 20 

5 . 3· Procedure Declarations .. v •• 0 • ••••••••••••••••••• 21 

5 .4.; Record Class. Declarations ...••••..••.••.•••••••• 25 

6. EXPR .. ESSIONS ...... 0 0 ••••• " ••• " ••••••••••••••••••••••• 0 •••••• 25 

6.1. Variables .. " '· .. 0 •••••••• , •• ··' ••••• 0 ••••••••••••• 27 

6.2. Iuncti.on Designators ............................. 28 

3 



6.3. 

6.4. 

6.5. 

6.6. 

6.7. 

6.8. 

CONTENTS (cont.) 

Arithmetic Expressions •••.••••••••••••••••••••• 29 

Logical Expression's •••••• '. e'. · ... ' · · · · '.: · .'. · · · · · ·33 

Bi t . Expre ssions ................................... 35 

String Expressions .................... ~ ••••••••• 36 

Reference Expressions •••••••••••••••••••••••••• 37 

Precedence of Operators ......................... 38 

7 • STAT~S. • • • • • • • • • • • • • • • • • • • • • • • • • • • • ." • • • • • • • •• • • • • ". • • • • ". • .39 

7 .1. 

7.2. 

7·3. 

7.4. 

Blocks ......• . " 4JI ••••••• ' •••••••••• e
f 

• ." .. • • • • • • • • • • • -.39 

Assigrnnent Sta-tem.ents, .......................... .40 

Procedure Statements •••••••••.••.••••• '.' .••••••• 42 

Gato Statements . ..• 44 

7.5.' If'Statements ........... , ... , ••••••..••. ~ •• ·~.) ..••••••• 45 

Case 'St.atements ' ••.••••• ' ••••.•••••••• ' .'" ..... , ••••••. 46 

Iterative Statements'. '"' ........................... 47 

Standard Procedures 

7.8.1. 

7.8.2. 

7.8.3. 

7. 8.4. 

The Input/Output System •••• ,. ••• 50 

Read Statements •••••••••••••••• 52 

Write Statements ••••••••••••••• 53 

Control Statements •••••• ~ •••••• 54 

•• 49 

8. . STANDARD FUNCTIONS AND PREDECIARED IDENTIFIERS •••••••••• , ••• ·.55 

8.1. 

8.2. 

Standard Transfer Functions ••••••••••.•••••••• 55 

Standard Functions .2f Analysis---•• -••••••• • ,. • • • ••• 57 

4 



8.3. 

8.4. 

8.5. 

Time function ••••••••••••••••••••••••••••••••• 59 

Predeclared Variables ••••• ~ ••••••••••••••••••• 59 

Exceptional Conditions •••••••••••••••••••••••• 60 

APPENDIX 

1. CHARA.CTER ENCODING •••••••••••••••••••••••••••••••••• 65 

5 



1. TERMlNOLOGY, NOTATION AND BASIC DEFINITIONS 

The Reference Language is a phrase structure language, defined by 

a formal metalanguage. This metalanguage make·s use of; the notation and 

definitions explained below. The structure of the; language AIaOL W 

is determined by: 

(1) V, the set of basic constituents of the language, 
(2) tA, the set of syntactic entitie's, and 

(3) P, the set of syntactic rules, or productions. 

1.1. Notation 

A syntactic entity is denoted by its name (a sequence of letters) 

enclosed in the brackets < and >. A syntactic rule has the form 

''<}.> ::= x 

where <Ii> is a member of U, x is any possible sequence of basic con-

stituents and syntactic entities, simply to be called a "sequence". 

The form 

<Ii> ::=X I y I··· I ~ 

is used as an abbreviation for the set of syntactic rules 

<Ie> ::=x 

<Ie> ::=y 

<Ii> ::= z 

1.2. Definitions 

1. A seq'..1ence x is said to directly produce a sequence y i~ and 
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only if there exist (possibly empty) sequences u and Wj 80 that 

either (i) for some ,<If> in U, x :;: u<P:>w, y = UVW; and <J> .. :~ 

v i~ a rule in P; or (ii) x = uw, y = uvw and v is a "comment" 

(see below). 

2. A sequence x is said tqproduce a sequence y if and only it 

there exists an ordered set of sequences s[O], s[l], •. , , 'a[n], 

so that x = s[O], s[n] = y, and s[i-l] directly produc~s s[1] 'tor 

all i = 1, ... , n. 

3. A sequence x is s'aid to be an ALGOL W program if and only 1f' 

its constituents are'members of the set V, and x can be produced 

from the syntactic entity <program'>. 

The sets V and Uare defined through enumeration of their members' 

in Section 2 of this Report (cf. also 4.4.).. The syntactic rules are 

given throughout the sequel of the Report. To provide explanations 

for the meaning of ALGOL W programs, the letter sequences denoting 

syntactic entities have been chosen to be English words describing 

approximately the nature of that syntactic entity or construct. Where 

words which have appeared in this manner are used elsewhel'e in'· the 

text, they refer to the corresponding syntactic definition. Along 

with these letter sequences the symbol" may occur. It is understood 

that this symbol must, be re;plaoed by anyone of a finite set of Enc11sh 

words (or word pairs). Unless otherwise specified in the part1ow..r 

section, all occurrences of the 'symbol 1 wit~in,one syntactic rule 

must be replaced consistently", and the repla~lng words are 
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integer 

real 

long real 

complex 

long complex 

logical 

bit 

string 

reference 

For example, the production 

<1 term> : ~:= <1 factor> (cf. 6.3.1.) 

corresponds to 

<integer term> 

<real term> 

<long real term> 

<complex term> 

<long complex term> 

The production 

<integer factor> 

<real factor> 

<long real factor> 

<complex factor> 

<long complex factor> 

<1 0 primary> u ,.. long <1 1 primary> (cf. 6.3.1. and 
table for long 
6<3. 2 .7.) -corresponds to 

<long real primary> . "- .!.~~ <real primary> 

<long real pri.mary> !.I .-, .- lon~ <integer prj.mary> 

<long complex prjmary> • v_ .lon~ <complex primary> ~ . -

It is recognized that typographical Entities exist of lower order 

than basic symbols, called characters. The accepted characters are 

those of the IBM System 560 EBC:DIC code. 

The symbol ~mment fol.lowed by any sequence of ch~acters not 

containing semicolons, followed by a semicolon, is called a comment. 

A comment has no effect on tr.e meaning of a program, and is ignored 

during execution of the program. An identifier (cf. 3.1.) immediately 
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following the basic symbol end is also regarded as a comment. 

'rhe execution of a program can be consj dered as a sequence of 

units of action. The sequence of these un} ts of action i.s defined as 

the evaluation of expressions and the execut.ion of statements as de-

noted by the program. In the definition of the implemented language 

the evaluation or execution of certain constructs is either (1) de-

fined by System 360 operations, e.g., real arithmetic, ,ot(2) left 

undefined, e.g., the order of evaluation of arithmetic primaries in 

expressions, or (3) said to be not valid or not defi.ned. 

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES 

2.1. Basic Symbols 

A B C D 1 E F G H I T IKILIMINlolpl .:) 

Q R S T '1 u V W X y z 1 

0 1 2 3 1 4 5 6 7 8 9 

true I fal~ I " I null 1 # 1 v 

integer 1 real I comElex I logical I bits 1 string 

reference I long ~ long complex 1 arrq 1 

procedur~ I record I 
, 1 ; I : I . I .( I ) 1 begin I end I if 1 then 1 else 

~ I of I + 1 - 1 * 1 / 1 **1 ?-i "I .~ 1 shE. 1 shl 1 is 

abs I long I shor~ I and I ~ I -, 1 I 1 -~ 1 -, = I < I 

<::-.1>1>:=:1 ~~ 1 
~ :=. I goto I ~ to I for 1 step 1 until I do 1 while 1 
comment 1 ~~lue I result 

All underlined words, which we call 'reserV'ed words", are repre-

sented by the same words in capital letters in an actual program J with 

nc. :i.ntey Vel'! ing blanks. 
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Adjacent reserved words, identifiers (cf. 3.1.) and numbers must include 

no blanks and must be separated by at least one blank space. Otherwise 

blarik~ have no meaning and can be used freely to improve the read-

ability of the program. 

2.2. Syntactic Entities 

(with corresponding section numbers) 

<actual parameter list> 

<actual parameter> 

<bit factor> 

<bit primary> 

<bit secondary> 

<bit sequence> 

<bit term> 

<block body> 

<block head> 

<block> 

<bound pair list> 

<bound pair> 

<case clause> 

<case statement> 

<control identifier> 

<declaration> 

<digit> 

<dimension sp~cification> 

<empty> see: page 34 
<equality operator> 

<expression list> 

<field list> 

<for clause> 

<for list> 

<formal array parameter> 

<formal parameter list> 

<formal parameter segment> 

7·3 
7·3 
6.5 
6.5 
6.5 
4.3 
6.5 
7.1 

7·1 
7·1 
5.2 

5.2 

6 

7.6 
3.1 

5 

3.1 

5.3 

6.4 
6.7 
5.4 

7·7 
7.7 
5.3 
5.3 
5.3 

10 

<formal type> 

<go to statement> 

<hex digit> 

<identifier list> 

<identifier> 

<if clause> 

<if statement> 

<imaginary number> 

<increment> 

<initial value> 

<iterative statement> 

<label definition> 

<label identifier> 

<letter> 

<limit> 

<logical element> 

<logical factor> 

<logical primary> 

<logical term> 

<logical value> 

<lower bound> 

<null reference> 

<procedure declaration> 

<procedure heading> 

<procedure identifier> 

<procedure statement> 

<program> 

5.3 
7.4 
4.3 
3.1 
3.1 
6 

7·5 
4.1 

7·7 
7·7 
7·7 
7.1 
3.1 

3.1 

7·7 
6.4 
6.4 
6.4 
6.4 
4.2 
5.2 

4.5 
5.3 
5.3 
3.1 --

7·3 
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<prop~r procedure body.> 

<proper prbcedure 
. declaratioIt> 

<record classdeclaratioIt> 

<record class identifier> 

<record clas's identifier 
list> 

<record designator> 

<relation> 

.<relational operator> 

<s,cale factor> 

<sign> 

<simple bit expression> 

<simple logical expression> 

<simple reference 
expression> ' 

<simple statement> 

<simple string expression> 

<simple r. expression> 

<simple 1 variable> 

<simple type> 

<s'imple variable 
declaration> 

<statemen~ list> 

<statement> 

<st:r.j.ng primary> 

<string> 

<subarraydesignator list> 

<subscript> 

3. IDENTIEIERS 

3.1. Syntax 

5·3 

5·3 
5.4 

3·1 

5·1 
6.7 
6.4 
6.4 
4.1 
4.1 
6.5 
6.4 

6.7 
7 
6.6 
6.3 
6.1 
5.1 

5·1 
7.6 
7 
6.6 
4.4 

7.-' 
6.1 

<subscript list> 6.1 
<substring designator> 6.6 
.~ array dec1aratiori> '5.2 
<j array designator> 6.1 

<1 array identifier> 3·1 
<1 assignment statement> 7.2 
<1 express~on list>' 6 
<1 expres's i<?n> 6 
<j factor> 6.3 
<1 field designator> 6.1 
<1 field identifier> 3·1 
<1 function designator> ' 6.2 
<1 function identifier> 3·1 
<1 function procedure body> 5·3 
<1 function procedure 

declaration:> 5·3 
<1 left part> 7·2 
<1 number> 4.1 
<1 primary> 6·3 
<1 subarray designator> 7·;' 
<1 term> 6·3 
<1 variable>' 6.1 

··<1-variable ~dentifier> 3·1 
<unsealed real> 4.1 
<upper bound> 5·2 
<while clause> 7·7 

<identifier.:> :: = <letter.> I <identifi.er> <letter> 'j <identifie~ <dig'1t> 

. <1 variable identifier> :: = <identifier> 
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<1 array identifier.> ::= <identifier> 

<procedure identifier> ::= <identifier> 

<1 function identifier> ::= "<identifier> 

<record class identifier> ::= <identifier> 

<1 field identifier> ::= <identifier> 

<label identifier> ::= <identifier.> 

<control identifier> ::= <identifier> 

<letter> .. - AI B I c I DIE I FIG I H I I I .. - J 

NlolplQIRISITlulvlw 
<digit> .. - o I 1 I 2 I 3 I" 4 1 5 I 6 I 7 I 8 t 9 .. -

K 

X 

<identifier list> .. - <identifier> I <identifier list> .. 0-

3. 2 . Semantics 

L M 

y Z 

, <identifier> 

Variables, arrays, procedures, record cl.asses and record fields 

are said to be quanti ties. Identifiers serve to identify quanti ties ,. 

or they stand as labels, formal parameters or control identifiers. 

Identifiers have no inherent meaning, and can be chosen fre'ely in the 

reference language. In an actual program a reserved word cannot be 

used as an identifier. 

Every identifier used in a program must be defined. This is 

achieved through 

(a) a declaration (cf. Section 5), if the identifier identifies a 

quantity. It is then said to denote that quantity and to be a 

1 variable identifier, 1 array identifier, 1 procedure identifier, 

1 function identifier; record class identifier or 1 field iden-

tifier, where the symbol 1 stands for the appropriate word re-

flecting the type of the declared quantity; 

(b) a label definition (cf. 7.1.), if the identifier stands as a 
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label. It is then said to be a label identifier; 

(c) its occurrence in a formal parameter list (cf. 5.3.). It is then 

said to be a formal parameter; 

( d) its occurrence following the symbol for in a for claus"e (cf. 7.7.). 

It is then said to be a control identifier; 

(e) its implicit declaration in the language. Standard procedures, 

standard functions, and predefined variables (cf. 7.8 and 8) may be 

considered to be declared in a block containing the program. 

The recognition of the definition of a given identifier is 

determined by the following rules: 

Step 1. If the identifier is defined by a declaration of a 

quantity or by its standing as a label within the smallest block 

(cf. 7.1.) embracing a given occurrence of that identifier, then 

it denotes that quantity or label. A statement following a 

procedure heading (cf. 5.3.) or a for clause (cf. 7.7.) is considered 

to be a block. 

Step 2. otherwise, if that block is a procedure body and if the 

given identifier is identical with a formal parameter in th~ asso

ciated procedure heading, then it stands as that formal parameter. 

Step 3. Otherwise, if that block is preceded by a for clause 

and the identifier is identical to the control identifier of 

that for clause, then it stands as that control identifier. 

Otherwise, these rules are applied considering the smallest 

block embracing the "block which has previously been considered. 

13 



If either step 1 or step 2 could lead to more than one definition, 

then the identification is undefined. 

The scope of a quantity, a label, a formal parameter, or a con-

trol identifier is the set of statements in which occurrences of an 

identifier may refer by the above rules to the definition of that 

quantity, label, formal parameter or control identifier. 

3 ·3· Examples 

I 

PERSON 

ELDERSIBLING 

X15, X20, X25 

4 . VALUES AND TYPES 

Constants and variables (cf. 6.1.) are said to possess a value. 

The value of a constant is determined by the denotation of the con-

stant. In the language, all .constants (except refe:-ences) 'have a 

reference denotation (cf. 4.1.-4.4.). The value of a variable is the 

one most recently assigned to that variable. A value is (recursively) 

defined as either a stmple value or a structured value (an ordered set 

of one or more values). Every value is said to be ofa certain type. 

The following types of simple values are distinguished: 

integer: the value is a 32 bit integer, 

!!!!: the value is a 32 bit flo~ting point number, 

long!!!!: the value is a 64 bit floating point number, 

complex: the value i8.& complex number composed of two 
numbers of type !!!!, 
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long complex: ,the,value is a complex number composed of two 
long real numbers, 

logical: the value is a logical value, 

bits: the value isa linear sequence of 32 bits, 

string: the value is a linear sequence of at most 256 char
acters, 

~eference: the value is a reference to a record. 

The following types of structured values are distinguished:" 

array: the value is an ordered set of values, all of identi
cal simple type, 

record: the value is an:ordered set of simple values. 

A procedure may yield a value, in which case it is said to be a 

function procedure, or it may p6tJY.ield a~v: .. lue,. 'in'Wlln.chcaae it 1s 

called a proper procedure. The value of a function procedure is de-

,fined as the value which results from the execution of the procedure 

body (cf. 6.2.2.). 

Subseque~tly, the reference denotation of constants is defined. 

~he reference denotation of any constant consists of a sequence of 

characters. This, however, does not imply that the value of the de-

noted constant is a sequence of characters, nor that it has the pro-

perties of a sequence of characters, except, of course, in the case 

of strings. 

4 .1. Numbers 

4.1.1. Syntax 

<long complex number> ::= <complex number>L 

<complex number> 

< imaginary number> 

: : = <imaginary n~ber> 

::= <real number>! I <integer number>! 

15 



<long real number> ::= <real number>L / <integer number>L 

<real number> ::= <unscaled real> / <unscaled real> <scale factor> 

<integer number> <scale factor> / <scale factor> 

<unscaled real> ::= <integer number> · <integer number> 

·<integer number> / <integer nUmber> 

<scale factor> ::= '<integer number> / '<sign> <integer number> 

<integer number> ::= <digit> / <integer number> <digit> 

<sign> :: = + I -

4.1.2. Semantics 

Numbers are interpreted according to the conventional decimal 

notation. A scale factor denotes an integral power of 10 which is 

multiplied by the unscaled real or integer number preceding it. Each 

number has a uniquely defined type. (Note that all <j number>s are 

unsigned.) 

4.1.3. Examples 

1 • 5 
0100 1'3 

3.1416 6.02486'+23 

2. 718281828459045235360287L 

4.2. Logical Values 

4.2.1. Syntax 

,II 

0.671 

IlL 

2.3'-6 

<logical value> ::= ~ 1 false 

4.3. ~ Sequences 

4.3.1. Syntax 

<bit sequence> ::= * <hex digit> 1 <bit sequence> <hex digit> 

<hex digit> :: = 0 I' 1 1 2 I -3 I 4 / 5 I 6 1 71 8 1 9 I A I BI 
C /D I E/ F 
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· Note tha.t 2 I •.• I F corre.,on's to ~lO I' ••. 1 ~5l0 ~ 

4.3.2'. Semantics 

The numb~r of bits in a bit se<luence is 32 or 8 hex dicit a •. : :,ilhe 

bit sequence is a.lways ,rep~esented by a 32 bit word, with the specified 

bit sequence right justified in the word and zeros filled in en the 

left. 

4.3.3. Examples 

#4F = 0000 0000 0000 0000 000.0 0000 01001111 

#9 0000 0000 0000 0000 0000 0000 0000 1001 

4.4'. Strings 

4.4.1. Syntax 

<string> : : = \ "<sequence of character&'>" 

4.4.2. Semantics 

Strings consist of ~y sequence of (at .oat 256) characters ac-' 

cepted by the System 360 enclosed by ", the .tring:,:quQte ~ , If the 

stripg quote a.ppears in the sequence of characters it mu~t be ~e-

diately followed by a second string quote which i, then ignered~ Th~ 

number of characters in a string is said t~ ~e the lencth of the 
\ 

st~ing. 

4.4.3. Examples 

ttJOHN" 

"""" is the string of length leens1.t~1lI of the string 

quote. 
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4.5. References 

4.5.1. Syntax 

<null reference> : : = n}lll 

4.5.2. Semantics 

The reference value null fails to designate a record; if a refer-

'ence expression occurring in a field designator (cf. 6.1.) has this 

value, then the field designator is undefined. 

5. DECLARATIONS 

Declarations serve to associate identifiers with the quantities 

used in the program, to attribute certain permanent properties to 

these quantities (e.g. typ~, structure), and to determine their scope. 

The quantities declared by declarations are simple variables, arrays,' 

procedures and ,record classes. 

Upon exit from a block, all quantities declared or defined within 

that block lose their value and significance (cf. 7.1.2. and 7.4.2.). 

, Syntax: 

'<declaration> :: = <simple variable declaration> I <1 array 

declaration> I <procedure declaration> 

<record class declaration> 

5 .1. Simple Variable Declarations 

5.1.1, Syntax 

<simple varia.ble declaratio,n> :: = <simple type> <identifier list> 

<s imple type> : : = integer I, ~ , long real I complex long 

comPlex I logical I bits I bits (32) I 
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string I string «integer number» I reference 

(<record class identifier list» 

<record class identifier list> ::= <record class identifer> I 
<record class identifier list> , 

<record class identifier> 

5.1.2. Semantics 

Each identifier of the identifier list is associated with a 

variable which is declared to be of the ~ndicated type. A variable is 

called a simple variable, if its value is simple (cf. Section 4). If 

a variable is declared to be of a certain type, then this implies that 

only values which are aSSignment compatible with this type (cf. 7.2.2.) 

can be aSSigned to it. It is understood that the value of a'variable 

is equal to the value of the expression most recently assigned to it. 

A variable of,type bits is always' of length 32 whether'; 'or not 

the declaration specification-is included. 

A variable of type string has a length equal to the unsigried 

integer in the declaration specification. If the simple type is 

given only as string, the length of the variable is 16 characters~ 

A variable of type reference may refer only to records of the 

record classes whose identifiers appear in the record class iderrti-

fier list of the referenc,e declaration specification. 

5.1.3. Examples 

integer I, J, 'K, M, N 

real X, Y, Z 

long comElex C 

logical L 

bits G, H 
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string (10) S, T 

reference (PERSON) JACK'i' JILL 

5.2 •. ArralDeclarations 

5.2.1. Syntax 

<1 array; <:\eclaration> : : = <simple type"> array <identifier list> 

.«bound pair list» 

<bound p~ir 'list> : : = <bound pair> I <bound pair list> ,<bound 

pai~ 

<bound pai~ 

<lower bound> 

<upper bound> 

: : = 
: : = 
.. -.. -

5.2.2. Semantics 

<lower bound> :: <upper bound> 

<integer expression> 

<integer expression> 

Each identifier of the identifier list of an array declaration is 

associate~ with a variable which is declared to lle of ,type array. A 

variable of type array is an ordered set of' variables. whose ·:type 'is' the 

'~pl$ ~~. ~receding· the ,sY1l1bol'arra,y'" The dimensipn of the' array 1s 

th~ n~ber _ ot ,.eht:ries in the bound pair list. 

Every element of an array· is identified by a list of indices. 

The indices are the integers between and including the values of the 

lower bound and the upper bound. Every expression in the bound pair 

list is evaluated exactly once upon entr,y to the block in which the 

declaration occurs. The bound.pail: cXl''f'essions can depend only on 

var~ables and procedures global to the block in which the declaration 

occurs. In order to be valid, for every bound pair, the value of the 

upper bound must not be less than the valUe of the lower bound •. 

5.2.,. Examples 

integer array H(l::lOO) 
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~ array A, B(l: :M, 1: :N.~ 

string (12) ~ray STREET, TOWN, CITY (J::K + 1) 

5.}. Procedure Declarations 

5.3.1. Syntax 

<procedure declaration> ::= <proper procedure declaration> I 
<1 function procedure declaration> 

<proper procedure declaration> .. -o •. - procedure <procedure heading>; 

<proper procedure bodY> 

<1 function procedure declaration> .. -.. - <s imple type> procedure 

<procedure heading>; 

<1 function procedure body> 

<proper procedure body.> ::= <statement> 

<1 function procedure body> : s = <1 expression> I <block body> 

<1 expression> ~~ 

<procedure heading> ::= <identifier> I <identifie~> «formal 

parameter list» 

<formal parameter list> : ~ = <formal par~eter segment> I 
<formal parameter list> ; <formal 

parameter segment> 

<formal parameter s.egment> : : = <formal type> <identifier list> I 

<formal type> 

<formal array parameter> 

<simple type> I <simple type> val~e I <simple 

type> result I <simple type> value result I 
<simple type> ~oced~ ! procedure 

<simple type> a:I.'ray· <ideiltifier 

list> «dimension specification» 

<dimension specification> ::= * I <dimension specification> , * 

<formal array parameter> .. -.. -

5.3. 2 . Semantics 

A procedure declaration associates the procedure body with the 

identifier immediately following the symbol procedure. The principal 
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part of the procedure declaration is the procedure body. Other parts 

of the block in whose heading the procedure is declared can then cause 

this proced~e body to be executed or evaluated. A proper procedure 

is activated by a procedure statement (cf. 7.3.), a function procedure 

by a function designator (cf. 6.2.). Associated with the procedure 

body is a heading containing the procedure identifier and possibly a 

list of formal parwmeters. 

5.3.2.1. Type specification of formal parameters. All formal para

meters of a formal parameter segment are of the same indicated type. 

The type must be such that the replacement of the formal parameter by 

the actual parameter of this specified type leads to correct ALGOL W 

expression$ and statements (cf. 7.0. 2 .). 

5.3. 2 .2. The effect of the symbols value and result appearing in a 

formal type is explained by the following rule, which is applied to 

the procedure body before the procedure is invoked: 

(1) The procedure body is enclosed by the symbols begin and end 

if it is not already enclosed by these symbols; 

(2) For every formal par~eter wbose formal type contains the 

symbol value or result (or both), 

(a) a declaration followed by a semicolon is inserted after 

the first begin of the procedure body, with a simple 

type as indicated in the formal type, and with an iden

tifier different from any identifier valid at the place 

of the declaration. 

(b) throughout the procedure body, every occurrence of the 
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formal parameter identifier is replaced by the identifier 

defined in step 2a; 

(3) If the formal type contains the symbol value, an assignment 

statement (cf. 7.2.) followed by a semicolon is inserted 

after the declarations of the procedure body. Its left part 

contains the identifier defined instep 2a, and its expression 

consists of the formal parameter identifier. The symbol 

value is then deleted; 

(4) If the formal type contains the symbol result, an assignment 

statement preceded by a semicolon is inserted before the symbol 

end which terminates a proper procedure body. In the case 

of a function procedure, an assignment statement preceded 

by a semicolon is inserted after the final expression 

of the function procedure body. Its left part contains the 

formal parameter identifier, and its expression consists of 

the identifier defined in step 2a. The symbol result is 

then deleted. 

5.3.2.}. Specification of array dimensions. The number of ,11*" IS 

appearing in the formal array specification is the dimension of the 

array parameter. 

5.3.3. Examples 

procedure INCREMENT; 

real procedure MAX 

if X < y then 

X := X+l 

(real value 

y else X 
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procedure COPY (real arr~ U, ,V (*, *); integer value A, B); 

for I:= I until A do -- .-
for J:= l untilB do U(I,J) := V(I,J) 

~ procedure HORNER (real array A (*); integer value N; 

~ value X); 

begin real S; S:= 0; 

end 

~ I ~ =. 0 until ·N do S : = S * X + A(I); 

S 

long !!:,.al procedure SUM (int.eger K, N; long real X); 

begin long real Y; Y:= 0; K ~= N; 

while K > = 1 de 

begin Y:= Y + X; K:= K - 1 

~; 

Y 

end 

reference (PERSON) procedure YOUNGESTUNCLE (reference (PERSON) R); 

begin reference (PERSON) P, M; 

end 

P : = YOUNGESTOFFSPRING (FATHER (FATHER (R))); 

whil~ (p..., =~) .ancI (...,MALE (p)) or 

'(P :::: FATHER (R)) do 

p ~= ELDERSIBLING (p); 

M : = YOUNGESTOFFSPRING (MOTHER (MCYI'HER (R))); 

while (M..., = null) ~ (..., MALE (M)) ~ 

M ~;: ELDERSIBLING (M); 

if P = null then MeIse ---
if M =. null then P else -- --
if AGE(P) < AGE(M) ~hen IfP else M 
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5.4. Record Class Declarations 

5.4.1. Syntax 

<record class declaration> ::~ record <identifier> (<field list» 

<field list> ::= <simple variable declaration> I <field list> ; 

<simple variable declaration> 

5.4.2.' . Semantics 

A record class declaration serves to define the structural pro-

perties of records belonging to the class. The principal constituent 

of a record class declaration is a sequence of simple variable declar-

ations which define the fields and their simple types for the records 

of this class and associate identifiers with the individual fields. 

A record class identifier can be used in a record designator (cf. 6.7.) 

to construct a new record of the given class. 

5.4.:3. Examples 

record NODE (reference (NODE) LEFT, RIGHT) 

record PERSON (string NAME-, integer AGE;, logical MALE;' 

reference (PERSON) FATHER, MOTHER, YOUNGESTOFFSPRING, 

ELDERSIBLING) 

6. EXPRESSIONS 

Expressions are rules which specify how new values are computed 

from existing ones. These new values are obtained by performing the 
i 

operations indicated by the operators on the values of the operands. 

The operands are either constants, variables or function designators, 

or other expressions, enclosed by parentheses if necessary. The evalu-

ation of operands other than constants may involve smaller units of 
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action such as the evaluation of other expressions or the execution 

of statements. The value of an expression between parentheses is 

obtained by evaluating that expression. If an operator has two operands, 

then these operands may be evaluated in any order with' the exception 

of the logical operators discussed in 6.4.2.2. Several simple types 

of expressions are distinguished. Their structure is defined by the 

following rules, in which the symbol r has to be replaced consistently 

as described in Section 1, and where the triplets j 0' j l' j 2 have to 

be either all three replaced by the same one of the words 

logical 

bit 

string 

reference 

or by any combination of words as indicated by the following table, 

which yields 10 given jl andj2: 

integer 

real 

complex 

integer 

integer 

real 

complex 

real 

real 

real 

complex 

complex 

complex 

complex 

complex 

1. 
.0 

has the quality "long" if either both j and 1 have that quality, 
1 .2 

or if one has the quality and the other is "integer". 

Syntax: 

<T expression> ::= <Simple j expression> I <case clause> 

(<1 expression list» 

<j 0 expression> ::= <if 'cause> <r 1 expression> else 

<j 2 expression> 
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<1 expression list> ::= <1 expression> 

<10 expression list> ::= <11 expression list> , <12 expression> 

<if clause> :: = if <logical expression> then 

<case clause> ::= ~ <integer expression> of 

The construction 

<if clause> <j 1 expression.~ !:!!! <T 2 expression> 

causes the selection and evaluation ot' an expression on the basis of 

the current value of the logical expression contained in the if clause. 

If this value is true, the expression following the if clause is 

selected; if the value is false, the expression following ~ is se-

lected. If j and j are simple type string, both string expressions 
1 2· -

must have the same length. Theconstruction 

<case clause> (<1 expression list» 

causes the selection of the expression whose ordinal number in the 

expression list is equal to the current value of the integer expression 

contained in the case clause. In order that the case expression be 

defined, the current value of this· expression must·be the ·ordinal number 

of some expression in the expression list. If1 is simple type string, 

all the· string expressions must have the same length. 

6.1. Variables 

6.1.1. Syntax 

<Simple j variable> ::= <r variable identifier> I <T field designator> I 
<T array designator> 

<r variable> :: = <.simple jvariablo> 

<string variable> ::= <substring designator> 

<:r field designator> :: = < 1 field identifier> (<reference expression» 

<:r array designator> :: = <:; 1array identifier> (<subscript list» 

<subscript list> ::= <subscript> I <subscript list>, <subscript> 

<subscript> ::= <integer expressipn> 
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6.1.2. Semantics 

An array designator denotes the varia.ble whose indices are the 

current values of the expressions in the subscript list. The value of 

each subscript must lie within the declared bounds for that subscript 

position. 

A field designator designates a field in the record referred to 

by its reference expression. The simple type of .the field designator 

is defined by the declaration of that field ide~tifier in the record 

class designated by. the reference expression of the field designator 

( cf. 5.4.). 

6.1.3. Examples 

x A(I) 

FATHER (JACK) 

M(I~~, I-J) 

MOTHER(FATHER(JILL)) 

6.2. Function Designators 

6.2.1. Syntax 

<j function designator> : := . <1 function identifier>: I <1 function 

identifier> «actual parameter list» 

6.2.2. Semantics 

A function designator defines a value which can be obtained by ~ 

process performed in the following steps: 

Step 1. A copy is made of the body of the function procedure 

whose procedure identifier is given by the function designator 

and of the actual parameters of the latter. 

Steps 2, 3, 4, As specified in 7.3. 2 . 
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step 5. The copy of the function procedure body, modified as indicated 

in steps 2-4, is executed. Execution of the expression which constitutes 

. or is part of the modified procedure body consists of evaluation of that 

expression, and the resulting value is the value of the function desig-

nator. The simple type of ~he function designator is the simple type 

in the corresponding function procedure declaration. 

6.2.3. Examples 

MAX (X ** 2, Y ** 2) 

SUM (I, 100, H(I» 

SUM ( I, M, SUM (J, N, A ( I " J) ) ) 

YOUNGESTUNCLE (JILL) 

SUM (I, 10, X(I) * Y(I» 

HORNER (X, 10, 2.7) 

6.3. Arithmetic ExpreSSions 

6.3.1. Syntax 

In any of the following rules, every occurrence of the symbol 1 

must be systematically replaced by one of the following words (or 

word pairs): 

integer 

real 

long real 

complex 

long complex 

The rules governing the replacement of the ~ymbols 1°' 1 land 1 2 are 

given in 6.3.2. 

<simple 1 expression> :: = < 1 term> I + < 1 term> I - < 1 term> 
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<simple 10 e:xpression> ::= <simple 11 expression> + <1"2 term> 

<simple 11 expression> - <1"2 term> 

<1" term> : : = <1" factor> 

<1"0 term> 

<1"0 term> 

: : = <r 1 term> * <r 2 factor> 

: : = <r 1 term> / <r 2 factor> 

<integer term> ::= <integer term> div <integer factor> 

<integer term> rem <integer factor> 

<1"0 factor> 

<rO primary> 

<1"0 primary> 

<To primary> 

<j primary> 

· .-· .-
· .-· .-
· .-· .-
· .-· .-

· .-· .-

<r 0 primary> I <r 1 factor> ** <integer primary> 

abs <f 1 primary> 

long <11 primary> 

short <1" 1 primary> 

<f variable> I <1" function designator> 

( <r expression» I <r number> 

<integer primary> ::= <control identifier> 

6.3.2. Semantics 

An arithmetic expression is a rule for computing a number. 

According to its simple type it is called an integer expression, 

real expression, long real expression, complex expression, or long 

complex expression. 

6.3.2.1. The operators +, -, *, and / have the conventional meanings 

of addit-ion, subtraction, multiplication and division. In the relevant 

syntactic rules of 6.3.1. the symbols 10, 11 and 12 have to be replaced 

by any combination of words according to the following table which 

indicates 10 for any combination of 11 and 12 • 

Operators + , -

integer real complex 

int.eger integer real complex 

real real real complex 

complex complex complex complex 
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j 0 has the quality "long" if both r 1 and 1'2 havEY the quality 

"long", or if one has the quality "long" and the other is "integer". 

Operator * 

integer real complex 

integer integer long real long complex 

real long real long real long complex 

complex long complex long complex long complex 

11 or j2 having the quality "long" does not affect the type of 

the result. 

Operator / 

integer 

real 

complex 

integer 

long real 

real 

complex 

real 

real 

real 

complex 

complex 

complex 

complex 

complex 

rO.has the quality "long" if both 11 and 12 have the quality 
"long", or if one has the quality "long" and the other is "integer", 

or if both are "integer". 

6.3. 2 .2 . The operator "_" standing as the first symbol of a simple 

expression denotes the monadic operation of sign inversion. The type 

of the result is the type of the operand. The operator "+" standing 

as the first symbol of a simple expression denotes the monadic opera-

tion of identity. 

6.3. 2 .3. The operator div is mathematically defined (for B ~ 0) as 

A div B = SGN (A x B) X D (abs AJ abs B) ( cf. 6. 3 . 2 . 6 . ) 
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where th~ function 'propedures SGN and D are declared as 

integer procedure SGN (integer value A); 

if A < 0 then -1 ~ 1; 

integer procedure D .( integer value A~ ,: B) ; 

if A < B then 0 else D(A-B, B) + l' 

6.3. 2 .4. The operator ~ (remainder) is mathematical).y defined as 

A rem B = A - (A div B) X B --- ---
6.3. 2 .5. The operator ** denotes exponentiation of the fir~t operand 

to the power of the second operand. In the relevant syntactic ruie of 

6.},1. the symbols jo and jl are to be replaced by any of the follow

ing combinations of words: 

long real 
real 

complex 

integer 

real 

complex 

jo has the quality "long" if j I does or if j I is lIintegerll. 

6e30206. The monadic operator abs yields the absolute value or modulus 

of the operand. In the relevant syntactic rule ot 6.3010 the symbols 10 

and 11 have to be replaced by any of the following combinations of w'ords: 

integer 
« 

real 

real 

integer 

real 

complex 

If j 1 has the quality "l.ong", then so does TO.' 
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6.3.2.7. Precision of arithmetic. If the result of an arithmetic 

operation is of simple type !!!!, complex, long !!!!, or ~ complex 

then it is the mathematically understood result of the operation per-

formed on operands which may deviate from actual operands. 

,In the relevant syntactic rules of 6.3.1. the symbols 10 and 11 ' 

must be rep1~ced by any of the following combinations of words (or 

word pairs): 

Operator ~ 

Operator short 

6.3.3. Examples 

C + A(I) * 1j(I) 

long real real 

long real integer 

long complex complex 

real 

complex 

long real 

long complex 

EXF (-X/(2 * SIGMA)) / S~T (2 * SIGMA) 

6.4. Logicai Expressions 

In the following rules for <relation> the symbols 10 and 1l 'must 

either be identically replaced by anyone of the following words: 
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bit 

string 

reference 

or by any of the words from: 

complex 

long complex 

real 

long real 

integer 

and the symbols 12 or j3 must be identically replaced by string or 

must be replaced by any of real, long real~ integer 0 

<simple logical expression> ::= <logical element> I <relation> 

<logical element> : : = <logical term> I <logical element> or 

<logical term> 

<logical terni> .. -.. - <logical factor> 

<logical factor> 

<logical terni> and 

<logical factor> 

<logical primary> 

:: = <logical primary> .., <logical primary> 

: : = <logical value> I <logical variable> 

<logical function designator> 

«logical expression» 

<relation> ::= <simple 10 expression> <equality operator> 

<simple 11 expression> I <logical element> 
<equality opera~or> <logical element> I 
<simple reference expression>- is 

, -
<record class identifier> I 
<simple j~ expression> <relational operator> 

c.. 

<simple 13 expressiolv 

<relational operator> ::= < I < = I > = I > 
<e qual i ty operator> : : = = I -, = 
6.4.2. Semantics 

A logical expression is a rule for computing a logical value. .. . ' 

34 



6.4.2.1. The relational operators represent algebraic ordering for 

arithmetic arguments and EBCDIC ordering for string arguments. If two 

strings of unequal length are compared, the shorter string is extended 

to the right by characters less than any possible string character. 

The relational operators yield the logical value true if the relation 

is satisfied for the values of the two operands; false otherwise. Two 

references are equal if and only if they are both null or both refer 

to the same record. Two strings are equal if and only if they have 

the same length and the same ordered sequence of characters. The operator 

is yields the logical value true if the reference expression designates a 

record of the indicated record class; false otherwise. The reference· 

value ~ fails to designate a record of any record class. 

6.4.2.2. The operators t (not), and, and or, operating on logical 

values, are defined by the following equivalences: 

t X if X then false else true 

X and Y 

X or Y 

6.4.3. Examples 

P or Q 

if X then Y else false 

if X then true else Y 

(X < Y) and (Y < z) 
YOUNGEST OFFSPRING (JACK) t = null 

FATHER (JILL) is PERSON 

6.5. Bit Expressions 

6.5.1. Syntax 

<simple bit expression> ::= <bit term> I <simple bit expression> 

or <bit term> 

<bit term> ::= <bit factor> I <bit term> and <bit factor> 

<bit factor> ::= <bit secondary> I t <bit secondary> 

<bit secondary> ::= <bit primary> I <bit secondary> shl 

<bit primary> " ". "-

<integer primary> I <bit secondary> shr 

<integer primary> 

<bit sequence> I <bit variable> I <bit 

function designator> I (<bit expression» 
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6.5.2. Semantics 

A bit expression is a rule for computing a bit sequence. 

The operators ~, ~, and I produce a result of type ~, every 

bit being dependent on the corresponding bit(s) in the operand(s) as 

follows: 

x 

o 

o 
1 

1 

y 

o 
1 

o 
1 

IX 

1 

1 

o 
o 

X and Y 

o 
o 
o 
1 

X or Y 

o 

1 

1 

1 

The operators ~ and shr denote the shifting operation to the 

left and to the right respectively by the number of bit positions 

indicated by the absolute value of the integer primary. Vacated bit 

positions to the right or left respectively are assigned the bit 

value O. 

Examples 

G and H ~ *38 
G and I (H ~ G) shr 8 

6.6. String Expressions 

6.6.1. Syntax 

<simple string expression> ::= <string primary> 

<string primary> ::= <string> I <string variable> I <string 

function designator> I «string expression» 

<substring designator> ::=<simple string variable> 

«integer expression>' <integer number» 
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6.6.2. Semantics 

A string expression is a rule for computing a string (sequence of 

, characters). 

6.6.2.1. A substring designator denotes a sequence of characters of 

the string designated by the string variable. The integer expressio~ 

preceding the I selects the starting character of the sequence. The 

value of the expression indicates the position in the string variable •. 

The value must be greater than or equal to 0 and less than the declared 

length of the string variable. The first character of the string has 

position O. The integer number following the, indicates the length 

of the selected sequence and is the length of the string expression. 

The sum of the integer expression and the integer number must be less 

than or equal to the declared length of the string variable. 

6.6.3. Example 

string (10) S; 

S (413) 

S (I+J.l) 

string (10) array T (1:~m,2::n); 

T (4,6) (3. 5) 

6070 Reference Expressions 

6.7.1. Syntax 

<simple reference expression> ::= <null reference> I <reference 

variable> I <reference function 

designator> I <record designator> 

«reference expression» 
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<record designator> . e.. - <record class identifier> I <record 

class identifier> «expression list» 

<1 expression> I <expression list>, <expression list> e ._ .. -
<1 expression> 

6.7.2. Semantics 

A reference expression is a rule for computing a reference to a 

record. 

The value of a record designator is the reference to a newly 

created record belonging to the designated record class. If the 

record designator contains an expression list, then the values of the 

expressions are assigned to the fields of the new record. The entries 

in the expression list are taken in the same order as the fields in 

the record class declaration, and the simple types of the expressions must 

be assignment compatible with the simple types of the record fields 

(cf. 7.2.2.). 

6.7.3. Example 

PERSON C'CAROLI!., 0, false, JACK, JILL, null, YOUNGEST OFFSPRING 

(JACK) ) 

6.8. Precedence of Operators 

The syntax of 6.3.1., 6.4.1., and 6.5.1. implies the following 

hierarchy of operator precedences: 

long, short, abs 

shl, shr, "** 
-. 

*, /, div, rem, and 
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+, -, .2!:. 

<, < =, =, -, =, > =, >, is 

Example 

A = B and C is equivalent to A = (B and C) 

7 • STATEMENTS 

A statement denotes a unit of action. By the execution of a 

statement is meant the performance of this unit of actionJwhich may 

consist of smaller units of action such as the evaluation of expres-

sions or the execution of other statements. 

7·1. 

Syntax: 

<program> : : = <block:> 

<statement> ::= <simple statement> I <iterative statement> I 
<if statement> <case statement> 

<simple statement> .. - <block:> <1 assignment statement> .. -
<empty> <procedure statement> " 

<goto statement> 

Blocks 

7·1.1. Syntax 

<block:> .. -.. - <block body> <statement> end 

<block body> 

<block head> 

::= <block head> I <block body> <statement>; 

<block body> <label definition> 

begin I <block head> <declaration> 

<.label definition> : : = <identifier> : 

7.1.2. Semantics 

Every block introduces a new level of nomenclature. This is • 
realized by execution of the block in the following steps: 
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Step 1. If an identifier, say A, defined in the block head or 

in a label definition of the block body is already defined at 

the place from which the block is entered, then every occurrence 

of that identifier, A, within the block except for occurrence in 

array bound expres'sions is systematically replaced by another 

identifier, say APRIME, which is defined neither within the 

block nor at the place from which the block is entered. 

Step 2. If the declarations of the block contain array bound 

expressions, then these expressions are evaluated. 

Step 3; Execution of the statements contained in the block body 

begins with the execution of the first statement following the 

block head. 

After execution of the last statement of the block body (unless 

it is a goto statement) a block exit occurs, and the statement follow-

ing the entire block is executed. 

7 .1.3. Example 

begin real U; 

U := X; X:= Y; Y.- Z; Z:= U 

end 

7.2. Assignment Statements 

7.2.1. Syntax 

In the following rules the symbols 10 and 11 must be replaced by 

words'as indicated in Section 1, subject to the restriction that the 

type 1 is assignment compatible with the type 1 as defined in 7.2.2. 
1 0 
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<10 assignment statement> ::= <10 left part> <11 expression> 

<10 left part> <11 assignment 

statement> 

<1 left part> ::= <1 variable> 

7.2.2. Semantics 

,,.-

The execution of a simple assignment statement 

<10 assignment statement> ::= <10 left part> <11 expression> 

causeR the assignment of the value of the expression to the variable. 

If a shorter string is to be assigned to a longer one, the shorter 

string is first extended to the right with blanks until the lengths are 

equal. In a multiple assignment statement 

«10 assignment statement> ::= <10 left part> <11 assignment 

statement» 

the assignments are performed from right to left. For each left part 

variable, the simple type of the expression or assignment variable imme4iately 

to the right must be assignment compatible with the simple type of that 

variable. 

A Simple type J
l 

is said to be assignment compatible with a simple 

type 10 if either 

(1) the two types are identical (except that if 10 and 1i are 

string, the length of the 10 variable must be greater than 

or equal to the length of the 11 expression or assignment), or 

(2) 10 is real or long~, and 11 is inte"ger, ~ or long 

real or 

(3) 10 is complex or long complex, and 11 is integer, real, 

long real, complex or long complex. 

In the case of a reference, the reference to be assigned must refer 

to a record of one of the classes specified by the record class identifiers 

associated with the reference variable in its declaration. 
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7. 2 .3. Examples 

Z := AGE(JACK) .- 28 .-
X .- Y + abs Z .-
C .- I + X + C .-
P . - X-,= Y .-

7.3. Procedure Statements 

7.3.1. Syntax 

<pro"cedure statement> : : = <procedure identifier> I <procedure 

identifier> «actual parameter list» 

<actual parameter list> 

<actual parameter> .. -.. -

<1 subarray designator> 

• 0-0.- <actual parameter> I <actual 

parameter list> , <actual parameter> 

<1 expression> I <statement> I <1 subarray 

deSignator> I <procedure identifier> I 
<1 function identifier> 

.. -.. - <1 array identifier> I <1 array 

identifier> «subarray designator 

list» 

<subarray designator list> .. -.. - <subscript> I * I <subarray 

deSignator list>, <sub script> 

<subarray designator list>,* 

7.3.2. Semantics 

The execution of a procedure statement is equivalent to a process 

performed in the following steps: 

Step 1. A copy is made of the body of the proper procedure whose 

procedure identifier is given by the procedure statement, and of 

the actual parameters of the latter. The procedure statement is 

replaced by the copy of the procedure body. 

Step 2. If the procedure body is a block, then a systematic 

change of identifiers in its copy is performed as specified by 
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step 1 of 7.1.2. 

Step 3. The copies of the actual parameters are treated in an 

undefined order as follows: If the copy is an expression 

different from a variable, then it is enclosed by a pair of 

parentheses, or if it is a statement it is enclosed by the symbols 

begin and~. 

Step 4. In the copy of the procedure body every occurrence of an 

identifier identifying a formal parameter is replaced. by the copy 

of the corresponding actual parameter (cf. 7.3.2~1.). In order 

for the process to be defined, these replacements must lead to 

correct ALGOL W expressions and statements. 

Step 5. The copy of the procedure body, modified as indicated in 

steps 2-4, is executed. 

7.3.2.1. Actual-formal correspondence. The.correspondence between 

the actual parameters and the form~l par~e~e~s is establish~d as 

follows: The actual parameter list of the procedure statement (or 

of the function designator) must have the same number of entries as 

the formal parameter list of the prdc.edure declaration heading. The 

correspondence is obtained by taking the entries of these two lists 

in the same order. 

7.3.2.2. Formal specifications. If a formal parameter is specified by 

value, then the Simple type of the actual parameter must be assignment 

compatible with the formal type. If it is specified as result, then the 

formal type must be assignment compatible with the simple type of the 

actual parameter. If it is specified by value result, both tne above 



conditions must be satisfied. In all other cases, the types must be 

identical. If an actual parameter is a statement, then the specification 

of its corresponding formal parameter must be procedure. 

7.3.2.3. Subarray designators. A complete array may be passed to a 

procedure by specifying the name of the array if the number of subscripts 

of the actual parameter equals the number of subscripts of the 

corresponding formal parameter. If the actual array parameter has 

more subscripts than the correspond~ng formal parameter, enough subscripts 

must be specified by integer expressions so that the number of *'s appearing 

in the subarray designator equals the number of subscripts of the 

corresponding formal parameter. The subscript positions of the formal 

array designator are matched with the pOSitions with *'s in the subarray 

designator in the order they appear. 

7.3.3. Examples 

INCREMENT 

COpy (A, B, M, N) 

INNERPRODUCT (IP, N, A(I,*), B(*,J)) 

e.. 
7.4. Goto Sta~ents 

7.4.1. Syntax 

<goto statement> : ': = goto <label identifier> go to <label 

identifier> 

7.4.2. Semantics 

An identifier is called a label identifier if it stands as a 

label. 
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A goto statement determines that execution of the text be contin-

ued after the label definition of the label identifier. The 1dentitl-

cation of that label definition is accomplished in the following step.: 

Step 1. If some label definition within the most recently acti-

vated but not yet terminated block contains the label identifier, 

then this is the designated label definition. Otherwise, 

Step 2. The execution of that block is considered as terminated 

and Step 1 is taken as specified above. 

7.5. l! statements 

7.5.1. Syntax 

<if statement> : : = <if clause> <statement> I <if clause> 

<simple statement> else <statement> 

<if clause> ::= if <logical expression> then 

1.5.2 . Semantics 

The execution of if statements causes certain statements to be 

executed or skipped depending on the values of specified logical ex-

pressions. An if statement of the form 

<if clause> <statement> 

is executed in the following steps: 

Step 1 .. The logical expression in the if clause is evaluated. 

step 2. If the result of Step 1 is ~, then the statement 

following the if clause is executed. Otherwise step 2 causes 

no action to be taken at all. 



An if statement of the form 

<if clause> <simpl~ statement> else <statement> 

is executed in the following steps: 

Step 1. The logical expression in the if cla.use is evaluated. 

Step 2. If the result of step 1 is ~, then the simple state-

ment following the if clause is executed. Otherwise the state-

ment following ~ is executed. 

7.5.3. Examples 

if X = Y ~ goto L 

if X < Y then U := X else if Y < z then U := Y else V := Z - - -----
7.6. Case Statements 

. 7 .6.1. Syntax 

<case statement> :: = <!;ase clause> begin <statement list> ~ 

<statement list> ::= <statement> -, <statement list> ; <statement> 

<case clause> ::= ~ <integer expression> of 

7.6.2~ Semantics 

The execution of a case statement proceeds in the following 

steps: 

Step 1. The expression of the case clause is evaluated. 

Step 2. The statement whose ordinal number in the statement list 

is equal to the value'obtained in Step 1 is executed. In order 

that the case statement be defined, the current value of the ex-

pression in the case clause must be the ordinal number of some 
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statement of the statement list. 

7.6.),. Examples 

case I of 

begin X := X + Y; 

y := Y + Z; 

Z := Z + X 

end 

case j of 

begin H(I) := -H(I); 

beginH(I-l) := H(I-l} + H(I); I := I-lend; 

begin H(I-l) := H(I-l) X H(I); I:= I-I end; 

begin H(H(I~l)) := H(I); I:; 1-2 end 

end 

7.7. Iterative Statements 

7.7.1. Syntax 

<iterative statement> <for clause> <...st. ~ement> I <while 

clause> <statement> 

<for clause> ::= for <identifier> := <initial value> 

ste:p <increment> until <limit> do I for 

<identifier> := <initial value> until <limit> 

do I for <identifier> :=<for list> do 

<for list> ::= <in~eger expression> I <f~r list> , <integer 

expression> 

<initial value> ::= <integer expression> 

< increment>· 

<limit> 00_ .. -
flo •• _ 

00- <integer express10~~ 

<integer expression> 

<while clause> ~:= while <logical expression> do 

7.7.2. Seme~tics 

The iterative statement serves to express that a statement be 
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executed repeatedly depending on certain conditions specified by a 

for clause or a while clause. The statement following the for clause 

or the while clause always acts as a block, whether it has the form of 

a block or not. The value of the control identifier (the identifier 

following for) cannot be changed by assignment within the controlled 

statement. 

(a) An iterative statement of the form 

for <identifier> := EI step E2 until E3 do <stat€ment> 

is exactly equivalent to the block 

begin <statement-O>; <statement-I> 

; <statement-N> end 

<statement-I>; 

th in the I statement every occurrence of the control identifier 

is replaced by the value of the expression (El + I X E2). 

The index N of the last statement is determined by 

N < (E3-EI) / E2 < N+l. If N < 0, then it is understood that 

the sequence is empty. The expressions El, E2, and E3 are 

evaluated exactly once, namely before execution of <statement-O>. 

Therefore they can not depend on the control identifier. 

(b) An iterative statement of the form 

for <identifier> := El until E3 do <statement> 

is exactly equivalent to the iterative statement 

for <identifier> := EI step 1 until E3 do <statement> 

(c) An iterative statement of the form 

for <identifier> := El, E2, ••. , EN do <statement> 

is exactly equivalent to the block 
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begin <statement-l>; <statement-2> ••• <statement-I> 

<statement-N> end 

when in the Ith statement every occurrence of the control identifier 

is replaced by the value of the expression EI. 

where it is. understood that L represents an identifier which is not 

defined at the place from which the while statement is entered. 

7 · 7.3 .. Examples 

for V := 1 step 1 until N-l do S := S + A(U,V) 

while (J > 0) and (CITY(J) I = S} do J :~ J-l 

for I := X, X + 1, X+ 3, X + 7 do pel) 

7.8. Standard Procedures 

Standard procedures are provided in ALGOL W for the purpose of 

communication with the input/output system. These standard procedures 

differ from explicitly declared procedures in that the number and type 

of actual parameters need not be identical in every procedure statement 

in which the standard procedure identifier appears. In the following 

descriptions, each 1. is to be replaced by anyone of 
~ 
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integer 

real 

long~ 

complex 

long complex' 

7.8.1. The Input/Output System 

string «integer number» 

logical 

bits -

ALGOL W provides a single legible input stream and a single legible 

output stream. These streams are conceived as sequences of records, each 

record consisting, of a character sequence of fixed length. The input 

stream has the logical properties of a sequence of cards in a card reader; 

records consist of 80 characters. The output stream has the logical 

properties of a sequence of lines on a line printer; records consist 

of 132 characters, and the records are grouped into logical pages. 

Each page consists of not less than one nor more than 60 lines. 

Input records may be transmi ttedas strings without analysis. 

Alternatively, it is possible to invoke a procedure which will scan the 

sequence of records for data items to be interpreted as numbers, bit 

sequences, strings, or logical values. If such analYSis is specified, 

data items may be reference denotations of the corresponding constants, 

(cf. Section 4). In addition, the following forms of arithmetic expressions 

are acceptable data items, and the corresponding simple types are those 

determined by the rules for expreSSions (cf. 6.3.): 

(1) <sign> <T number> 

where : j is one of integer, real, long real, complex, long 

complex; 

50 



(2) <10 number> <sign> <r 1 number> 

<sign> <r 0 number> <sign> <r 1 number> 

where : 10 is one of integer, real, long real, and 

11 is one of complex, long complex. 

Data items are separated by one or more blanks. Scanning for data items 

initially begins with the first character of the input stream; after 

the initial scan, it normally begins with the character following the 

one which terminated the most recent previous scan. Leading blanks are 

ignored. The scan is terminated by the f~rst blank following the data 

item. In the process, new records are fetched as necessary; character 

position 80 of one record is considered to be immediately followed by 

character position 1 of the next record. There exist procedures to 

cause the scanning process to begin with the first character of a record; 

if scanning would not otherwise start there, a new record is fetched. 

Out~ut items are assembled into records by an editing procedure. 

Items are automatically converted to character sequences and placed 

in fields according to the simple type of each item, as described below: 

Simple Type 

integer 

real 

Field Description 

right justified in a field containing 

the number of characters specified by 

the current value of INT~LDSIZE 

(initialized to 14, cf. 8.,.) and followed 

by 2 blanks 

right justified in a field of 14 characters 

and followed by 2 blanks 
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long real r"ight justified in a field of 22 characters 

and followed by 2 blanks 

complex two adjacent real ~ields 

two adjacent long real fields long complex 

logical right justified in a field of 6 characters 

followed by 2 blanks 

. string 

bits 

placed in a field exactly the length of 

the string 

same as real 

The first field transmitted begins the output stream; thereafter, each 

field is normally placed immediately following the most recent previously 

transmitted field. If, however, the field corresponding to an item 

cannot be placed entirely within a non-empty record, that item is made the 

first field of the next record. In addition, there exist procedures to 

cause the field corresponding to an item to begin a new record. Each 

page group is automatically terminated after 60 records; procedures 

are provided for causing earlier termination. 

7.8.2. Read Statements 

Implicit declaration headings: 

procedure READ (11 resuit Xl; 

procedure READON (11 result Xl; 

(where n > = 1) 

; 1 re suIt X ); 
n n 

; 1 re sul t X ); 
. n n 

Both READ and READON designate free field input procedures. Input 

records are scanned as described in 7.8.1. Values on input records are 

read, matched with the variables of the actual parameter list in order 

of appearance, and assigned to the corresponding variables. The simple 
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type of each data item must be assignment compatible with the simple 

type of the corresponding variable. For each READ statement, scanning 

for the first data item is caused to begin with the first character of 

a record; for a READON statement, scanning continues from the previous 

point of termination as determined by prior use of READ, READON, or 

IOCONTROL (cf. 7.8 •. 1 .• ). 

Implicit declaration heading: 

procedure READCARD (string(80) result Xl' ••• , Xn); 

(where n > = 1) 

READCARD deSignates a procedure transmitting 80 character input 

records without analysis. For each variable of the actual parameter list, 

the scanning process is set to begin at the first character of a record 

(by fetching a new record if necessary), all 80 characters of that record 

are assigned to the corresponding string variable, and subsequent 'input 

scanning is set to begin at the first character of the next sequential 

record. 

7.8.3. Write Statements 

Implicit declaration headings: 

procedure WRITE (11 value Xl; ••• ; 1n value Xn); 

procedure WRITEON (11 value Xl; ••• ; 1n value Xn); 

(where n > = 1) 

WRITE and WRITEON designate output procedures with automatic format 

conversion. Values of expressions of the-actual parameter list are converted 

to character fields which are assembled into output records in order of 

appearance (cf. 7.8.1.). For each WRITE statement, the field corresponding 

53 



to the first value is caused to begin an output record; for a WRITEON 

statement, assembly continues from the previous point of tennination. 

7.8.4. Control Statements 

Implicit declaration heading: 

procedure IOCONTROL (integer value Xl' ••• , Xn); 

(where n > = 1) 

IOCONTROL designates a procedure which affects the state of the 

input/output system. Argument values with defined effect are listed below; 

other values currently have no effect but are explicitly made available 

for local use or future expansion. 

Value 

1 

2 

3 

7 · 8. 5. Examples 

READ ( X, A(l) ) 

Action (cf. 7.8.1.) 

Subsequent input" scanning is set to begin 

with the first character of a record. 

Subsequent output assembly is set to begin 

with the first field of a record. 

Subsequent output assembly is set to begin 

with the first field of a record which, in 

turn, is caused to begin a new output page. 

READCARD ( S, LINE (10 \ 80)· ) 

WRITE ( "AVERAGE =n, SUMjN ) 

WRITEON ( X(l,J) ) 

IOCONTROL (2) 
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8. STANDARD FUNCTIONS AND PREDECLARED IDENTIFIERS 

The ALGOL W environment includes declarations and initialization of 

certain procedures and variables which supplement the language facilities 

previously described. Such declarations and initialization are considered 

to be included in a block which encloses each ALGOL W program (with 

terminating period eliminated). The corresponding identifiers are said 

to be predeclared. 

8.1. Standard Transfer Functions 

Certain functions for conversion of values from one simple type 

to another are provided. These functions are predeclared; the 

corresponding implicit declaration he~dings are listed below: 

integer procedure TRUNCATE (real value X); 

comment the integer i such that 

\ i \ < = \ X \ < \ i \ + 1 and i *X > = 0 

integer procedure ENTIER (real value X); 

comment the integer i such that 

i < = X< i + 1 ; 

integer procedure ROUND (real value X); 

comment the value of the integer expression 

if X < 0 then TRUNCATE(X-O.5) else TRUNCATE(X+O.5) 

real procedure ROUNDrOREAL (long. real value X); 
comment the properly rounded value of X 

real procedure REALPART (complex value Z); 
comment the real component of Z ; 

long real procedure LONGREALPART (long complex value Z); 
~ procedure IMAGPART (complex value Z); 

comment the imaginary component of Z ; 
long real procedure LONGIMAGPART (long complex value Z); 
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complex procedure IMAG (real value X); 

comment the complex number a + Xi 

long complex procedure LONGIMAG (long ~ value X); 

logical procedure ODD (integer value N); 

comment the logical value 

N~2=1; 

bits procedure BITSTRING (integer value N); 

comment two's complement representation of N 

integer procedure NUMBER (bits value X); 

comment integer with two's complement representation X 

integer procedure DECODE (string(l) value S); 

comment numeric code for the character S (cf. Appendix 1) 

string(l) procedure CODE (integer value N); 

comment character with numeric code (cf. Appendix 1) given by 

abs eN ~ 256) 

In the following comments, the significance of characters in the prototype 

formats is as follows: 

D decimal digit in a mantissa or integer 

E decimal digit in an exponent 

A hexadecimal digit in a mantissa or integer 

B hexadecimal digit in an exponent 

+ sign (blank for positive mantissa or integer) 

LI blank 

Each exponent is unbiased. Decimal exponents represent powers of 10; 

hexadecimal exponents represent powers of 16. Each mantissa (except 0) 

represents a normalized fraction less than one. Leading zeroes are not 

suppressed. 
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string(12) procedure BASEIO (real value X); 

comment string encoding of X with format 

u!EE!DDDDDDD ; 

string(12) procedure BASE16 (real value X); 

comment string encoding of X with format 

LU!BB-:AAAAAA ; 
string(20) procedure LONGBASEIO (long ~ value X); 

comment string encoding of X with format 

u! EE!DDDDDDDDDDDDDDD ; 

string(20) procedure LONGBASE16 (long ~ value X); 

comment string encoding of X with format 

u..a!BB!AAAAAA.A.AAAJl. ; 
string(12) procedure INTBASEIO (integer value N); 

comment string encoding of N with format 

u!DDDDDDDDDD ; 

string(12) procedure INTBASE16 (integer value N); 

comment unsigned, two1s complement string encoding of N with format 

u..u..fAAMAAA ; 

8.2. Standard Functions of Analysis 

The following functions of analysis are provided in the system 

environment. In some cases, they are partial functions; action for 

arguments outside of the allowed domain is described in 8.5. These 

functions are predeclared; the corresponding implicit declaration headings 

are listed below: 

~ procedure SQRT (real value X); 

comment the positive square root of X, 

domain : X > = 0 ; 

long ~ procedure LONGSQ,RT (long ~ value X); 

comment the positive square root of X, 

domain : X > = 0 ; 
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complex procedure COMPLEXSQ,Rr (complex value Z); 
comment principal square root of Z ; 

long complex procedure LONGCOMPLEXSQRT (long complex value Z); 

comment principal square root of Z ; 

~ procedure .EXP (real value X); 

comment e ** X , 

domain: X < 174.67 ; 
long ~ procedure LONGEXP (long ~ value X); 

comment e ** X , 

domain: X < 174.67 ; 
~ procedure LN (real value X); 

comment logarithm of X to ,the base e, 

domain : X > 0 ; 

long real procedure LONGLN (real value X); 

comment logarithm of X to the base e, 

domain : X > 0 ; 

real procedure LOG (real value X); 

comment logarithm of X to the base 10, 
domain : X > 0 ; 

long ~ procedure LONGLOG (long ~ value X); 

comment logarithm of X to the base 10, 

domain : X > 0 ; 

real procedure SIN (real value X); 

comment sine of X (radians), 

domain : -823550 < X < 823550 
long real procedure LONG-SIN (long real va lue X); 

comment sine of X (radians), 

domain: -3.537'+15 < X < 3.537'+15 
real procedure COS (real value X); 

comment cosine of X (radians) 

domain : -823550 < X < 823550 
long real procedure LONGCOS (long real value X); 

comment cosine of X (radians), 

domain: -3.537'+15 < X < 3.537'+15 ; 



real procedure ARCTAN (~ value X); 

comment arctangent (radians) of X, 

range : -n/2 < ARCTAN(X) < n/2 ; 

long real procedure LONGARCTAN (long real ~ X); 

comment arctangent (radians) of X, 

range : -n/2 < LONGARCTAN(X) < n/2 ; 

8.3. Time Function 

The ALGOL W environment includes a clock which measures elapsed 

time since the beginning of program execution. The resolution of that 

clock is 1/60 second. A predeclared runc~ion is provided for reading 

the clock. 

integer procedure TIME (integer value N); 

comment returns elapsed time, in hundredths of a minute if N=O, 

in sixtieths of a second otherwise; 

-8.4. Predeclared Variables 

The following variables are to be considered declared and initialized 

by assignment in the conceptual block enclosing the entire ALGOL W program. 

The values indicated for real and long real quantities are to be understood 

as decimal approximations'to the actual machine-format values provided. 

integer INTFIELDSIZE; 

comment initialized to 14 , 
controls output field size for integers (cf. 7.8.1.); 

integer MAXINTEGER; 

comment initialized to 2147483647 , 
the maximum positive integer allowed by the implementation; 
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real EPSILON; 

comment initialized to 9.536743' -07 , 
the largest positive real number E provided by the 

implementation such that 

1 + E = 1 

long real LONGEPSI10N; 

comment initialized to 2.22044604925031' ·-161 , 

the largest positive long real number E provided by 

the implementation such that 

l+E=l; 

long real MAXREA1; 

comment initialized to 7.23700557733226'+751 , 

the largest positive long real number provided by the 

implementation; 

long rea 1 PI; 

comment initialized to 3.141592653589791 

8.5. Exceptional Conditions 

The facilities described below are provided in ALG01 W to allow 

detection and control of certain exceptional conditions arising in 

the evaluation of arithmetic expressions and standard functions. 

Implicit declarations: 

record EXCEPTION (logical XCPNOTED; integer XCP1IMIT, XCPACTION; 

logical XCPMARK; string(64) XCPMSG); 

reference (EXCEPTION) 

OVFL, UNF1, DIVZERO, 

INTOVF1, INTDIVZERO, 

SQ,RTERR, EXPERR, IN10GERR, SINCOSERR 
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Associated with each exceptional condition which can be processed 

is a predeclared reference variable to which references to records of 

the class EXCEPTION can be assigned. Fields of such records control the 

processing of exceptions. The association between conditions and 

reference variables is as follows: 

Reference Variable 

OVFL 

UNFL 

DIVZERO 

INTOVFL 

INTDIVZERO 

SQ,RTERR 

EXPERR 

INLOGERR 

SINCOSERR 

Conditions 

real, long real, complex, long 

complex (exponent) overflow 

real, long real, complex, long 

complex (exponent) underflow 

real, long real, complex, long 

complex division by zero 

integer overflow 

integer division by zero 

negative argument for SQ,RT, LONGSQRT 

argument ,?f EXP, LONGEXP out of 

domain (cf. 8.2.) 

argument of LN, LOG, LONGLN, 

LONGLOG out of domain (cf. 8.2.) 

argument of SIN, COS, LONGS IN, 

LONGCOS out of domain (cf. 8.2.) 

When one of the conditions listed above is detected, the corresponding 

reference variable is interrogated, and one of the alternatives described 

below is chosen. 

If the value of the reference variable interrogated is null, the 

condition is ignored and execution of the ADGOL W program continues. 

In such situations, a value of 0 is returned as the value of a standard 
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function. For other condition, the result is that provided by the 

underlying IBM Systern(360 hardwareg/. In determining such a result, it 

is to be noted that in those cases in which the detection of exceptional 

conditions can be inhibited at the hardware level, namely integer overflow 

and exponent underflow, detection is so inhibited when the corresponding 

reference is NULL. 

If the value of the reference variable interrogated is not NULL, 

the fields of the record designated by that reference are interrogated, 

and processing action is that described by the algorithm given below in 

the form of an extended ALGOL W procedure. Identifiers in lower case 

represent quantities which transcen~ the ALGOL W language; they are 

explained subsequently. 

procedure PROCESS EXCEPT ION (reference(EXCEPTION) value CONDITION); 

begin 

XCPNOTED(CONDITION) :=~; 

XCPLIMIT(CONDITION) := XCPLIMIT(CONDITION) - 1; 

if (XCPLIMIT(CONDITION) < 0) ~ XCPMARK(CONDITION) then 

WRITE("***** EXCEPI'ION NEAR CARD nnnn - It, XC PMS G (CONDITION)) ; 

if XCPLIMIT(CONDITION) < 0 then endexecution else 

if integercondition ~ 

resultant := default else 

resultant := if XCPACTION(CONDITION) = 1 then adjustment else 

if XCPACTION(CONDITION) 2 then OL else 

default 

end PROCESSEXCEPTION 

This procedure is invoked with the value of the reference variable 

appropriate to the condition as actual parameter. The significance of 

the special identifiers used is as follows: 

g;IBM System/360 Principles of Operation, IBM Systems Library, Form A22-682l 
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nnnn 

endexecution 

integercondition 

default 

resultant 

adjustment 

approximate li:n.e number of the source code 

which was being executed when the exceptional 

condition was detected' 

procedure to 'terminate execution of the ALGOL W 

program 

logical value which is true if, and only if, 

the condition being' proces'sed is integer overflow 

or integer division by zero 

result of the operation or function provided 

by the ALGOL Wsystem prior to invocation of 

the exception processing procedure'; this is 

defined by the hardware~ for arithmetic 

operations and i-s the value 0 for standard 

functions 

value to be returned as the result of the 

arithmetic evaluation or standard function 

invocation 

adjusted result of the operation according to 

the following table 

Condition 

exponent overflow, 

division by zero 

exponent underflow 

Adju&tment 

if default < a then 

-~L else MAXREAL 

OL 

argument X out of domain for : 

SQRT, LONGSQRT SQRT(abs X), LONGSQRT Cabs X) 

EXP, LONGEXP ~L 

LN, LONGLN -MAXREAL 

LOG, LONG LOG -MAXREAL 

SIN, LONGS IN OL 

COS, LONGCOS OL 

~IBM System/360 Principles of Operation, IBM Systems Library, Form A22-6~2l 



The reference variable UNFL is initialized by the system to NULL. 

All other reference variables listed above are initialized to references 

to a special record which is accessible only by the system. Interrogation 

of this record by the procedure described above has the effect of causing 

the ALGOL W program to be terminated with a message indicating the type 

of exception. Any other attempt to access any field of this record will 

result in a reference error. 
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APPENDIX 1.- CHARACTER ENCODINGS 

The following table presents the correspondence between printable 

string characters and their (EBCDIC) integer encodings. This encoding 

.. establishes the: ordering relation on characters and thus on strings. 

Those characters in parentheses are not a'vailab1e on the line printer. 

Integer codes no~ listed below do not correspond to any established 

character. 

64 space 129 (a) 193 A 240 0 

.74 (p) 130 (b) 194 B 241 1 

75 131 (c) 195 C 242 2 

76 < 132 (d) 196 D 243 3 

77 ( 133 (e) 197 E 244 4 

78 + 134 .(r) 198 F 245 5 

79 135 (g) 199 G 246 6 

80 & 136 (h) 200 H 247 7 
90 ( ! ) 137 (i) 201 I 248 8 

91 $ 145 (j) 209 J 249 9 
92 * 146 (k) 210 K 

93 ) 147 (1) 211 L 

94 148 (m) 212 M 

95 -, 149 (n) 213 N 

96 150 (0) . 214 0 

97 / 151 (p) 215 p 

107 152 (q) 216 Q 

108 % 153 (r) 217 R 

109 162 (s) 226 S 

110 > 163 (t) 227 T 

III ? 164 (u) 228 u 
122 165. (v) 229 V 

123 =If 166 (w) 230 w 
124 @ 167 (x) 231 X 

125 168 (y) 232 Y 

126 = 169 (z) 233 z 
12"( ,. 
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ALGOL W ERROR MESSAGES 

I. PASS ONE MESSAGES 

All Pass One messages appear on the first page following the program 

listing. The message format is 

CARD NO. (number) -- (message) 

The (number) corresponds to the card number on which the error 

was found. The (message) is one of those listed below. 

INCORRECT SPECIFTN 

INCORRECT CONSTANT 

MISSING END 

MISSING BEGIN 

MISSING ) 

ILLEGAL CHARACTER 

MISSING FINAL . 

STRING INGTH ERROR 

BITS LENGTH ERROR 

MISSING ( 

TABLE OVERFLOW 

synt~ctic entity of a declaration is 

incorrect, e.g. variable string length. 

syntax error in number or bitstring. 

an END needed to close block. 

an attempt to close outer block 

before end of code. 

) is needed. 

a character, not i~ a string, is 

unrecognizable. 

program must be terminated by a. period. 

string is of 0 length or length 

greater than 256 .. 

bits constant denotes no bits or 

more than 32 bits. 

( is needed. 

terminating error - a compile time 

table has exceeded its bounds. 
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TOO MANY ERRORS the ·maxiJmml··n\jlilJe~ of' errors for ·Pasa 

One records has been reached •. Com

pilation' continue's but mesaases for 

succeeding errors detected by Pasa 

One are suppresse,d. 

ID LENGTH> 256 more than 256 characters in'identifier. . . 
. See also discussion of PROGRAM CHECK in IV., 

II. PASS TWO MESSAGES 

The format of Pass Two error message's is' 

(message), CARD NUMBER IS' (number). CURRENT SYMBOL IS' (1n~oming 

symbol) 

If a $STACK card is included .anywhere in the source deck, the 

.SYNTAX ERROR message is followed by 

STACK CONTAINS: 

(beginning of file) 

<symbol-l> 

<symbol-n.'> . (top of stac;k) 

The symbol names may differ somewhat from the metasymbols of 

the syntax. 

If any Pass One or Pass Two errors occur, compilation is termi-

nated at the end of Pass Two. 

INCORRECT SI..MPLE TYPE <numbe:o <simple type> of entity is improper 

as used. Number indicates explana

tion on list of simpl~ type errors. 
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ARRAY USED INCORRECTLY 

IDENTIFIER MUST BE RECORD 
CrASS ID 

MISMATCHED PARAMTER 

MULTIPLY-DEFINED SYMBOL <iden
tifier> 

UNDEFINED SYMBOL <identifier> 

INCORRECT NUMBER OF ACTUAL 
PARAMETERS 

INCORRECT DIMENSION 

DATA AREA EXCEEDED 

INCORRECT NUMBER OF FIELDS 

INCOMPATIBLE STRING LENGTH 

INCOMPATIBLE REFERENCES 

BLOCKS NESTED TOO DEEP 

REFERENCE MUST REFER TO 
RECORD C IASS 

EXPRESSION MISSING IN 
PROCEDURE BODY 

a variable must be used here. 

reference declaration is incorrect. 

formal parameter does not correspond 

to actual parameter. 

symbol defined more than once in a 

block 

symbol is not declared or defined. 

the number of actual parameters to 

a procedure does not equal the number 

of f?rmal parameters declared for 

the procedure. 

the array has appeared previously 

with a different number of dimensions. 

too many declarations in the block. 

the number of fields specified in a 

record designator does not equal the 

number of fields the declaration of 

the record indicates. 

length of assigned string is greater 

than length of string assigned to. 

record class bindings are inconsistent. 

blocks are nested more than 7 levels. 

reference must be bound to a record 

class. 

body of typed procedure must end 

with an expression. 



RESULT PARAMETER MUST BE 
<T VAP:> 

PROCEDURE HEAD lACKS SIMPLE 
TYPE 

<SYMBOL-I> UNREIATED TO 
<SYMBOL-2> 

SYNTAX ERROR 

the actual parameter corresponding 

to a result formal parameter must 

be a <r VARIABLE>. 

proper procedure ends with an 

expression 

the symbol\at' the top of the stack 

(<SYMBOL-I» should not be followed 

by the incoming symbol (<SYMBOL-2». 

construction violates the rules of 

the grammar. The input string is 

skipped until the next END, H;", 
BEGIN, or the end of the program. 

More than one error me s sage may" be 

generated for a single syntax error. 

Simple Type Errors 

25. Upper and lower bounds must be integer. 

29. Upper and lower bounds must be integer. 

32. Simple type of procedure and simple type of expression in 

procedure body do not agree. 

71. Substring index must be integer. 

73. Simple variable preceding 1(1 must be string. 

74. Substring length must be integer. 

76. Field index must be reference or recor.d class identifier. 

77. Array subscript must be integer. 

81. Array subscript must be integer. 

84. Actual parameters and formal parameters do not agree. 

88. Actual parameters and formal parameters do not agree. 

93. Expressions in if expression do not agree. 

94. Expressions in ~ expression do not agree. 

95. Expression in if clause must be logical. 
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98. Expressions in ~ expression do not agree. 

99. Expression in ~ clause must be integer. 

101. Arguments of = or -,= do not agree. 

102. Arguments of relational operators must be integer, ~, or 

long real. 

103. Argument before is must be reference. 

106. Argument of unary + must be arithmetic. 

107. Argument of unary - must be arithmetic. 

108. Arguments of + must be arithmetic. 

109. Arguments of - must be arithmetic. 

110. Arguments of or must be both logical or both bits~ 

112. Record field must be assignment compatible with declaration. 

117. Arguments of * must be arithmetic. 

118. Arguments of / must be arithmetic. 

119. Arguments of div must be integer. 

120. Arguments of rem must be integer. 

121. Arguments of and must be both logical or both bits. 

123. Argument of -, must be logical or bits. 

125. Exponent or shift quantity must be integer; expression to be 

shifted must be bits. 

126. Shift quantity must be integer; expression to be shifted must be 

bits. 

130. Actual parameter of standard function has incorrect simple type. 

134. Argument of long must be integer, real, or complex. 

135. Argument of short must be .!ong real or long complex. 

136. Argument of abs must be arithmetic. 

148. Record field must be aS,signment compatible with declaration. 

181. Expression is not assignment compatible with variable •. 

182. Result of'assignment cannot be assigned to variable. 

188. Limit expression in for clause must be integer. 

190. Expression in for list must be integer. 

191. As s ignment to for variable must be integer., 

193. Expression in for list must be integer. 

195. Step element must be integer. 

197. Expression in while clause must be logical. 
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III. PASS THREE ERROR MESSAGES 

The form of Pass Three error messages is 

***** (message) 
***** NEAR CARD (number) 

The number indicates the number of the card near which the error 

occurred. The message may be 

PROGRAM SEGMENT OVERFLOW 

COMPILER STACK OVERFLOW 

the amount of code generated for a 

procedure exceeds 8192 bytes. 

constructs nested too deeply. 

CONSTANT POINTER TABLE TOO LARGE too many. literals appear in a 

procedure. 

BLOCKS NESTED TOO DEEPLY 

DATA SEGMENT OVERFLOW 

TOO MANY PROCEDURES 

CARD TABLE OVERFLOW 

IV. RUN TIME ERROR MESSAGES 

parameters in procedure call are nested 

too deeply; procedure calls in block 

nested too deeply. 

too many variables declared in the 

block. 

the program contains too many procedure 

declarations; the number of procedures 

allowed depends on the size of each 

procedure and cannot exceed 52. 

density of information on (non-blank 

and non-comment) source cards is too low. 

The form of run error messages is 

RUN ERROR NEAR CARD (number) - (message) 

SUBSTRING INDEXING substring selected not within named string. 

CASE SELECTION INDEXING index of case statement or case expression 

is less than 1 or greater than number of cases. 

ARRAY SUBSCRIPrING array subscript not within declared bounds. 
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· LOWER BOUND > UPJ?ER BOUND 

ARRAY TOO LARGE 

ASSIGNMENT TO NAME PARAMETER. 

DATA AREA OVERFLOW 

ACTUAL-FORMAL PARAMETER MISMATCH 
IN FORMAL PROCEDURE CALL 

RECOR]) STORAGE AREA OVERFLOW 

low~r bound is greater than upper 

bound in array declaration. 

The (n-l) dimensional array obtained 

by deleting the right-most bound-

pair of the array being declared has 

too many elementso The maximum number 

of elements allowed in this (n-l) 

dimensional array is given below, 

according to the declared type of 

the arrayo 

logical, string 

integer, real 

bits, reference 

long real, complex 

long complex 

maximum :/1= of . 
elements in 
first (n-l) 
dimensions 

32767 

8191 
8191 
4095 

2047 

ass'ignment to a formal name parameter 

whose corr'esponding actual parameter 

is an expression, a literal, control 

identIfier., or procedure name 0 

storage available for program execu

tion has been exceededo 

the number of actual parameters in 

a formal procedure call is different 

from the number of formal parameters 

in the called procedure, or the 

parameters are not assignment 

compatible 0 

no more storage exists for records. 
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LENGTH OF STRING INPUT 

LOGICAL INPUT 

'NUMERICAL INPUT' 

REFERENCE INPur 

READER EOF 

REFERENCE 

LINE ESTIMATE EXCEEDED 

TIME ESTIMATE EXCEEDED 

r/o ERROR 

PROGRAM CHECK #nn 

string read is not assignment compatible 

with corresponding declared string. 

quantity corresponding to logical 

quantity is not true or false. 

numerical input not assignment compatible 

with specified quantity. 

reference quantities cannot be read. 

a system control card has been 

encountered during a read request. 

the null reference has been used to 

address ,a record, or a reference bound 

to two or more record classes was used 

to address a record class to which it 

was not currently pointing. 

line estimate on %ALGOL card is 

exceeded. 

time estimate on %ALGOL card is 

exceeded. 

see consultant. 

se e consultant. 

Counts of certain exceptional conditions detected during program 

. compilation or execution are maintained. If any of these are non-zero, 

they are listed after the post-compilation or post-execution elapsed 

time message in the following format: 

nnnn PROGRAM CHECK NO xx 

The number of times the condition was detected (modulo 10000) is 

given by nnnn; the nature of the condition is indicated by xx according 

l.r') the following table: 
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08 integer overflow 

09 integer division by zero 

12 real exponent overflow 

13 real exponent underflow 

15 real division by zero 

This counting is inhibited for integer overflow and exponent 

underflow whenever the value of the corresponding reference variaple 

is null (cf. LANGUAGE DESCRIPTION, Section 8.5.). 

v. OTHER 

PRG PSW 

COMPILER ERROR 

INSUFFICIENT 
STORAGE 

see consultant. 

see consultant. 

insuffiCient memory available to complete compilation. 
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The following notes are intended to give the 

student of Computer Science 136 some orientation 

into how numbers are represented in the IBM System/360 

computers. Because we are using Algol W, some refer

ences are made to that language. However, very little 

of what is said here depends on the peculiarities of 

Algol W~ and this exposition is mostly applicable to 

Fortran or Algol 60 with slight changes in wording. 

It will also do for the floating-point numbers and 

full-word integers of PL/lo Users of shorter or 

longer integers or decimal arithmetic in PL/l will 

need more orientation. 
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On IBM's system ,60, the followinsunits of 'information storage 

are used: 

a) 

b) 

c) 

the ~it, a single a or 1 
~ 

the~, a group of eight consecutive bits 

the (short) word, a group of four conseeuti ve byte8~-- , , 

i.e., 32 consecutive Qits 

d) the ~~, a group of two, consecutive short worela-

i.e", eight bytes or 64 bits. 

For number representation in Algol W the ",ords and Ions words are 

the main units of interest .. 

INTEGERS. 

Integers are stored in (short) words. or the 32 bits of a short 

word, one is reserved for the sign ,(0 tor + and 1 for -), leaving 

31 bits to represent the magnitude~ A positive or zero integer is 

stored in a binary (base 2) representation v Thus 2110 (the subscript 

means base 10) is stored as 

0000 0000 00000000 0000 0000 0001 0101 0 

t 
sign bit 

To confirm this, note that 

21 . =- 2 x. 2
30 

+ e.... + Q X 25 + 1 X 2
4, '+ 0 X 23 + ! X 22 + 2 X 21 + .! X 2

0
• 

The latgest integer that can be stored in a word is 
30,29 1 0 31 

2 + 2 + 0 •• + 2 + 2 = 2 - 1 = (2147483647)10 • 
, 31 

Any attempt to create or store ,an int.eger larger than 2 - 1 will 

produce erroneous results, and (unfortunately) the user will not always 

be warned of the error 0 (Gee below~) 

To save space 1n writing words on paper, each group of four bits 

in a word is frequently converted to a single base-16 (hexadecimal) 

digit, according to the following code: 



base 2 base 16 base 2 base 16 

0000 0 1000 8 
0001 1 1001 9 
0010 2 1010 A 
0011 ; 1011 B 
0100 ~ .. 1100 C 
0101 5 1101 D 
0110 6 1110 E 
0111 7 1111 ·F 

Thus A, B, C, D, E, F are used as base-16 representations of the dectmal 
numbers 10, 11, 12, 13, 14, 15 respectively. Nevertheless, integers are 

stored as base-2 numbers. 

Using hexadecimal notation, the decimal number 21 is represented 

by 

0000001516 

Note that 1516 is the base-16 representation of 2110 
Negative integers are stored in what is called the "two's canplement 

form" . For example, -1 is stored as 

1111 1111 1111 1111 1111 1111 1111 1111 

= FFFFFFFF16 
Also, -21 i$ stored as 

1111 1111 1111 1111 1111 1111 illO 1011 

= FFFFFFEB16 
The representation for -21 is obtained from that for +21 by changing 

ever'y 0 to 1 and every 1 to 0, and then adding + 1 in base .. 2 arithmetic 

to'the result~ Similarly for any negative integerse Every negative 

integer has 1 as its sign bit. The smallest integer storable in 
31 System/360 is -2 = -21h7~·8;648 , and is represented by 8000000016 

Another way to think of the representation of negative numbers is 

to consider a 32-place binary accumulating register (the base-2 equivalent 

of the decimal accumulating register in a desk calculating machine). 

If one starts with all zeros in this register, one gets the representation 

for -1 by subtracting 1. The process requires a "borrow" to propagate 

to the left all the way across the register, leaving all ones, just as 

on a decimal accumulator this would leave all nines. Continued sub

traction will give the representations for -2, -3, .0. 
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From the point of view of an accumulator we can also see what 

happens when we ·create a positive number larger than 231 -1. For 

example, ~f we add 1 to ~l~l, the resulting carry will go all the 

way into the sign bit, leaving a sign bit of 1 with all other digits 

zero. But this is the representation of _~l. Thus the attempt to 

produce positive numbers in the range from ~l 'to approximately ~2 
will yield a negative sign bit. Consequently, positive integers that 

"overflow" into this range are sensed as negative by System/360. I The 

mechanisms of AIGOL W for detecting integer overflow (not described in 

this document) can be used to detect additions, subtractions, or 

multiplications that produce integers outside the range ,from _231 to 

~l_l (so-called integer overflow). Attempts to divide an integer by 0 

will yield an error message and an ir~elevant quotient and remainder. 

The behavior of System/360 on integer overflow is quite different 

from the Burroughs B5500. In the latter machine, any integer that 

overflows is replaced by a rounded floating-point number. There are 

advantages to either approach to integer overflow, depending on the 

application. 

If the user suspects that integers in his program are getting 

anywhere near 109, he should convert them to double-precision floating

point numbers by use of the Algol W operator LONG. Conversion to single~ 

precision floating-point numbers may lose some precision. 

The most important thing for a scientific user to remember is that 

integers in the range _231 to ~l_l are stored without any approximation. 

Moreover, operations on integers (adding, subtracting, multiplying) are 

done without any error, so long as all intermediate and final results 

are integers between ~231 ana ~l~l. It is perhaps easier to remember 

as safe the interval from -2,X 109 to 2 X 109 , obtained from the 

useful approximation 210 • 103 
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The operations of di vision without remainder" (called DIV ln, A1col 
W) and taking the remainder on division (called REM in Algol W) always 

give integer answersu, If the divisor is 0, an erI'or message is given. 

In Algol W.two operations on integers give results that are, not 

stored as int.egers--namely / and *it 

FLOATING-POINT NUMBERS 

Numbers in many scientific computations will gravin magnitude 

well beyond the J:'~ge of integers described above" To provide for 

this, System/360 and most scientific computers' have a second way to 

represent numbers--the so-called floating-point representation 0 

The significance of the name "floating--point" is that the radix point 

--for example, the dectmal point in base-IO numbers--is permitted to 

float to the right or left ,9 t.hus permitting scaling of numbers by 

va~ious pOl-rers of the radix ~ Although a decimal point that has floated 

off to !~he left will produce a number writ.-cen like 0,,001345, the 

numbers are actually represented in a form ~loser to what is often 

called scientific notation} h.ere l~345XlO-3 
In System/360, floating- Jint numbers !:lIe alway~ represented in 

base-16 notation; ioe. ,l the!! Ix or number base,~ 160 This permits 

us to write numbers in abbrevi ,+,ed form (as we did with integers earlier). 

More important" the use of' base··16 conforms with the hardware arithmetic 

processes in which shifting is done four bit.s at a time to speed up the 

ope~ationsQ The speed-up is achieved at a slight cost in precision, 

as .1b learned from detailed error analyses which we cannot go into here. 

We first consider the floating-point representation of numbers by 

a single word of 32 bitso This is the so-called single-precision 

or short real numb'er, the number of "type REAL in Algol W 0 The 32 bits 

of a word are numbered fram 0 to 31J from left to right, just to identity 

them~ In floating"point representat.ion t.he left-hand eight bits (bits 0 

to 7, equivalent to two hexadecimal digit.s) are devoted to the sign of 

the number and the exponent of 16 'associated wi t.h the number. The right

hand 24 bit,s (hits 8to 31, eq'ui valent to six hexadecimal digits) 

81 



represent six significant hexadec~al digit8 (~ 81gnif1cand) ot the 

number. 

As with integers, the sign· of the number is denoted by bit 0, 

w:tth 0 repr·esenting + and 1 representing - • 

Bits 1 to 1 give the binary (base-2) representation ot a nOD

negative integer in the range 010 to 12110, inclusive. This in·· 

teger is called th~ biased exponent, for reasons now to be explained. 

If this integer were taken directly as the exponent, we would have no 

negative exponents, and our range of floating-'point numbers could not 
-25 include such numbers a8 16 • It is desirabl~ to have an exponent 

range that is approximately symmetric about zero. In SysteaV360 one 

obtains the ~!xponent of the ,floating-point number by, subtracting 

64 trom the biased exponent represented by bits 1 to 1. As. result, 

the actual exponents ranse fran ·'64 to 63. 

~le 24 bits 8 to 31 ot a number are regarded as six h8xadecimal 

digits with a hexadecimal point at the lett-hand end. It the tloatlD1-

point number zero i8 beins represented, all the hexadecmal Usltl are 
zero, at are all the other bits. Otherwise, at least one ot'the hexa

decimal digits must be nonzero. A floating-point number is said to be 

normalized if the left-hand hexadecimal digit (the most' sign1fican:t 

digit) of the significand 1s nonzero. In System/360 the floating-point 

np"lbers are ordinarily normalized, and we will not consider any other 

forms 0 

We now give the floating-point representations of same .ample 

numbl';.~'s. As w'e said before, the number zero is represented by 32 zero 

bits, i .. e., b:! eight 0 hexadecimal digits. Thus zero is represented 

by the same 'Tords in 'floating-point or integer form. No other number 

has this property. 

The number 1.0 is represented by the word 

Si~bit 
0,100 0001" 

biased 
exponent 

~0001 0000 0000 0000 0000 0000, 

s18n1t1cand 
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To check this, note that the sign is 0 (representing +). The bia.ed 

exponent is 1000001
2 

or ,6510 0 Subtracting ,6410 yield. 1 as the 

true exponent. The hexadecimal significand is 10000°16 • Putting a 

hexadecimal point at the left end gives the hexadecimal fraction 

.10000016 ' which equals 1/16. ! Thus the above word reprelents 
+ 1/16 times 161 , or 1.0. . ' 

To save writing, the above word is ordinarily written in the 

hexadecimal form. 41100000. While op.e gradually learns to recognize 

some floating-point numbers in this ,for.m, the author knows no easy way 
to convert such a hexadecimal word into a real number. One .just haa 

to take the right-hand six hexadecimal digit$, and prefix a hexadecimal 

point. Then one examines the left-hand two-hexadecimal-digit number 

(here 41) .. , If this is less than 8016 , the floating-point number ia 

positive and one gets the true exponent by subtracting 4016 = 6410 .' 

If the left-hand two-hexadecimal-digit number is 8016 or larger, the 

floating-point number is negative, and one gets the true exponen~ by 

subtracting C016 = 8016 + 4016 = 19210 and affixing a minus sign. 

Some facility with hexadecimal arithmetic is required, if one has to 

deal with such numbers. 

In this presentation, we have considered the radical point to be 

at the left of the six significant hexadecimal digits, and regarded 
"-

the exponent as biased high by 6410 • As an alternative', the reader 

may prefer to place the radix point just to the right of the most 

significant digit of the significand, and regard the exponent as 'bias~d 

high by 6510 • This brings the significand closer to usual scientific 

notation but, of course, requires a trickier conversion to get the 

true exponent.. The fact that either interpretation (and many others) 

are possible shows that really the radical point is just in the eye of 

the beholder, and not in the computer! 

Several examples of floating-point numbers are now given in hexa

decimal notation, with the confirmation left to the reader. 



decimal f'loat~-~oint 

01t0 = 00000000 
litO = 41100000 
0.0625 = 40100000 

16.0 = 42100000 
256.0 43100000 
-1.0 ::- C1100000 

-16.0 = C2100000 
3.5 = 41380000 

The largest floating-point number is 7FFFFFFF, representing 

.FFFFFF ~ 163F or (1 - 16-6) x 166
.3 ~ 7,.23 x 1075 • (Here 10 and 16 . 

denote decimal numbers~) 

The smallest positive normalized ~loating-point number is 00100000, 

representing 

Negatives of these two numbers can also be represented, and are 

the eXtremes in magnitude of representable negative numbers. 

Very few numbers can be exactly represented with six significant 

decimal digits. (Exercise: Which ones can?) For example, 1/3 =.33333310 
only approximately. In the same way, very few numbers can be exactly 

represented with six significant nexadecimal digitso (Exercis~: 

Which ones can?) For example, ~/3 = .55555516 only approximately. 

Moreover, some numbers that are exactly representable in decimal are 

only approximately representable in hexadecimal; for example, 

1/10 == ,.10000010 e~actly; but 

1/10 ::: .19999A16 only approximately., 

Thus round-off error enters into the representation of most 

floating-point numbers on system/360, and the round off differs from 

that with decimal numbers. This can easily give rise to unexpected 

results. For example, if the above number u19999A16 (~ 0.110) is 

multipli'ed by. the integer 10010 == 6416 ,one gets not A.0000016 = 

10.010 ' but instead Au 0000316 , as a cumulative effect of the slightly· 

high approximation to 0.110 . And A.0000316 rounds to 10.00002
10 

on conversion to decimal. 

The precision of a single-precision hexadecimal number is roughly 

10-7 • One can think of this as being crudely equivalent to seven sig-
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niticant dectmal digits~ 

Not only do errors appear in the repreientation of ~umbers inside 

Syetem{360 (or any computer), but they arise" from arithmetic qperatianl 

performed on numbers" For example, the product of two tloating-p.Oint 

nWDbers may have up to 12 significant hexadectmal digits. When the 

product is stored as a single-precision floating-point number, it must 

be rounded to six hexadecimal digits~ This introduces an error, even" 

though the factors might have been exact. 

The story of round off' and its effect on arithmetic is a coa;»lex· 

and interesting one~ Only within the current decade have there "begun 

to appear even partly satisfactory methods ,to analyze round o~f, and 

we cannot go into the matter now. Saine idea of this is obtained in 

Computer Science l37~ 

When an Algol W program assigns decimal numbers or integer values 

to variables of type REAL, these are immediat,ely converted to he~adectmal 

floating-point numbers, with (usually) a round-off error.. When one 

outputs numbers from the computer in Algol Wi they are converted to 

decimal 0 Both conversions are done as well as possible, but introduce 

changes in the numbers ~hat the ""~ogrammer must be aware of 0 And, of 

course, all intermediate opera'" ions introdu',~e f'lrther round ofta and 

p6ssibleerrors 0 It is unthin~c,:able to do the analysis necessary to 

counteract these errors and get the true answer to the problemo If the 

user wishes answers uncontaminated by round off, he should use integers 

a~d integer arithmetic," and be prepared to guard against overflow 0 

Fortunately most users can accept an indeterminate amount of 

round off in their numbers, provided they have some assurance that 

round off is not growing out of control" It is t.he business of numerical 

analysts to provide algorithms whose round-off properties are reasonably 

under control. This has been well accomplished in same areas, and hardly 

at all in others. 

DOUBLE PRECISION 

The precision of single-precision floating-point numbers, seems 



very adequate for most scientific and engineeri~g purpose.,being at the 
level. of seven decimals 0 However, a considerable number of computations. 

require stUl more precision i.n th.~ middle sanewhere) just in order to 

came out With ordinar,y accuracy at the end. As a r~sult, System/360 

haa provided an easy mechanism for getting a great deal more precision 

in the computations. For this pu-~ose a double word of 64 bits is used 

to store a floating-point number of so-called double pracision or .~ 

precision. In this representation, the sign and biased exponent are 

found in the first word of the double-wo~d, with precisely the same 

interpretation as with single-precision floating-point numberso The 

second word of the double-word consists of eight hexadecinlal digits 

immediately following the Six found in the first. word.. There is no 

sign or exponent in the second word. T.nu.s a double··yord represents 

a signed floating hexadecimal number '~ith 14 significant hexadecimal 

.digitl. As before, nonzero numbers are norm.alized so that the most 

significant digit of the 14 is nonzero .. 

Examples: 

long significand 

1.OL = 41'100000 OOOOOOOa 

O.lL = 40199999 9999999A 

There is a full set of arithmetic operations for both single 

and double-precision operations ,. Very crudely, for an example, single

precision multiplic~tion of single-precision fac~ors tak~B around 4 micro

seconds, while that for double-precision factors takee: around 7 micro

seconds. For modest problems the extra time is completely lost in the 

several seconds of time lost to systems and compilers, and the use of 

double-precision is strongly recommended for all scientific computation. 

Normally the only possible disadvantage of using long precision is the 

doubling in the amount of storage needed. If one has arrays with tens 

of thousands of elements, the extra storage may be very costly. other

wise, it should not matter6 
-11+ -17 Since 16 ~ 10 ,the. double-precision numbers are crudely 

equivalent in precision tol7 significant decimal digits. 

For a machine with the speed ot the 360/67, a number precision of 
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six hexadecimal digits (roughly se'iien der:ilnal.s) is considered very low, 

while a precision of 14 hexadecimal digi.ts (roughly 11 decimals) ia' 

very adequate" 

'r:t,;e floating-point arithmetic 

hardware ot System/360 provides the possibIlity ot detecting 1rilen 

numbers have gone outside the ex.ponent range stated above.. 'lbe reader 

may think that a range fran .r,(t.l.~hly 10'''79 t.o 1075 r;Jno'u.ld cover all 

reasonable canputations" Whil,e exponent ov~rtlow and 'exponent Wldertlow 

are not very cODlllon, they can be 'the cause of very elusive errors" 

The evaluation ot a determinant is a (~ommon computation, and tor a matrix 

, of order 40 is quite rapi~y done (if' you know' how)" If the matrix 

elements are of the quite reasonable magnit'tlde 10'"'"3.:> the magnitude ot 

the determinant will be no larger than I"o'ughly 10-90 (and probably' 

much smaller), well below' the range of' representable floating-point 

numbers" Such J.J."oblems are a frequent SOUl'ce of exponent undertlow 0 

We shall not discuss here the me·;hailisms· of Algol W for detecting 

exponent overflow and underflow, for theae should be Wl'itten up in 

, another place" Even without these.~ we see tha.t floating-point numbers 

behave well tor numbers tha:t,. a1."F" at lea.~t :1066 times as large as the 

largest. integer in the system ~ Hence 1; ~e c)f fioating· ·point numbers 

meets almost all the problems:&.ised b'y integer ,.,verflow (J And,P of 

course;! it permits the use of a large set of' rational n'Umber8~ which 

do not even enter the integer systemo 

ALGOL W REALS AND LONG REALS 

The Algol' W manual tells how to represent l"eal variables and 

numbers to t.ake advantage of both single-and double-precisiono The 

purp<.>se of this section is to' bring this information into rapport with 

the hardware representation of numberso If a variable X is declared 

REAL,'! one word is set aside for ita values" and it will be stored in 

single-precision floating-point rom 0 If a variable is declared t.o be 

LONG RE~j a double-word is set asi.de to hold its values;. and it wi,ll 

be stored in double-precision for.mv 



If a number is written in one of the decimal forms without an L 

at the end, it will be chopped to single-precision, no matter how many 

digits are set down. Thus 3.1415926535897932 will be immediately 

chopp"ed to single-precision in the program, and all the superfluous 

digits are lost at~. Thus the assignment statement 

XX := 3.1415926535897932 

will result in the double-word XX receiving an approximation to rr 

in the more significant half, and all zeros in the less significant 

half! Thus one gets a precision of only approximately seven decimals 

for the pain of writing 17, and this may well contaminate all the rest 

of the computation. 

If one wants XX to be precise to appr9ximately full double precision, 

one must write the statement in the form 

XX : = 3.1415926535897932L • 

With the declaration REAL X, the statement 

X : = 3.l4l5926535897932L 

will result in X having a single-precision approximation to n , as 

the long representation of 11 is chopped upon assignment to X. 

The reader should now go back and examine the specifications of 

the types of various arithmetic expressions, as stated on pages 9, 10, 

11 of the Algol W Notes, and on pp. 25, 26 of the Language Definition. 

Some of the less expected effects are the following: Suppose we have 

declarations 

REAL X, Y, Z; 

LONG REAL XX, YY, ZZ; 

INTEGER I, J, K; 

Then X*Y, I**J, and I*X are all long real. 
The assignmen"t statement" 

XX := X := Y*Z 

will result in XX having a single-precision chopped version of Y*Z in 

the more significant half, and zeros in the less significant word. 

Moreover, I*I is INTEGER, but I**2 is LONG REAL. 
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If the reader understands the language Algol Wand the precedtDI 

pages on number representation, "he should have a good basis tor un4er
standing the effects of mathematical algor~thms~ But he shou14 elva,. 
remain wary of what a computer is actually doing to his numbers! 



APPENDIX 

§§ 

Algol W Deck Set-up 

(Job Card) 

//JOBLIB DD DSNAME=SYS2.PROGLIB,DISP=(OLD,PASS) 

/ / EXEC AIGOLW 

//ALGOLW.SYSIN DD * 
%ALGOL 

( program ) 

?bEOF 

§ .{ ( 
%EOF 

data ) 

/* 

§ Optional 

§§ May be repeated 

Note: The Stanford AIGOL W system monitors execution time and number 

bf lines of output for each job. The default limits on these quantities 

are 10 seconds execution time and 500 lines of printed output. Alternately, 

the programmer may explicitly specify limits on the %AIGOL card. 

Columns 10-29 of that card are scanned for such specification according 

to the following syntax: 
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(limit specification) 

(time limit) 

(minutes specification} 

(seconds specification) 

(line limit) 

::= (time limit) I (time limit;, (line limit) 

::= (minutes specification) I 
(minutes specification) : (seconds specification) 

::= (unsigned integer) (empty) 

::= (unsigned integer) (empty; 

::= (unsigned integer) (empty) 

An empty field is given the corresponding default value. The program 

is automatically terminated if necessary at the end of the indicated, 

time. Similarly, the program is automatically terminated if necessary 

after the indicated number of lines have been printed. 

91 



GRAMMATICAL DESCRIPTION OF ALGOL W 

by 

R. Floyd 
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In the grammatical description of ALGOL W on the following pages, 

Roman capital letters, such as ABC D, stand for themselves. A script 

letter, possibly accented, stands for a defined infinite class of symbol 

strings; for ex~ple, J , as defined, s~hds for the class which includes 

the symbols A, B, C, ••. , Z, AA, AB, ••• ,.A9, BA, •.. ,B9, ••. Z9, AM, ••• , 

Z99, AAAA, ••• A Greek letter, such as A , stands for a given finite 

set of characters. 

The symbol means "or"; if a is'defined as ale, this means that 

a particular inscription is an a if it is a a or if it is a e . 

The notation a* , or equivalently [a}* , means any number (including 

zero) of inscriptions, one after another, each of which is an a. For 

example, * {AlB} means A or B or AA or AB or BA or BB or AAA 

or ... , or A ,where A means no inscription at all. 

+ The notation a means any number (but at least one) of inscriptions, 

a 00* one after another, each of which is an . It abbreviates For 

example, [AIB}+ means A or B or AA or or BB or AAA, etc. 

The notation [a] means an optional occurrence of a ; it abbreviates 

[alA}. 

The· notation . a I a means a or a5n or aaaaa, etc; it abbreviates 

. afBl} * . 
The notation a 1a means a and/or a ; it abbreviates ala\a&. 
The curly brackets {} are used simply as parentheses to show the 

scope of the above operators. 

All other characters, such as / - , () / < etc., stand for themselves, 

including * and + when they are not raised. 
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Descriptive 
Name 

l.etter 

digit 

identifier 

symbol 

constant 

function value 

expression 

simple statement 

statement 

block 

declaration 

type 

procedure heading 

program 

The Grammar of a Simple Subset of ALGOL W 

Symbol 

A 

6 

J 

cr 

c 

~ 

e 

S' 

S 

B 

~ 

1 

" 
p 

Definition 

AIBlciDIE1.·.lxIYlz 

01112131···1819 
A {A 16}* 
Any symbol on the keypunch, except the double quote 

6 +[ . 6 *] 1 "cr + ., 

J[ (t+:-)] 

• 
[ -] { J 1 c 1 ~ 1 (e, ) f**{ * 1 /1 {+ 1-} {< I <= 1 = 1 >= 1> 1 .., = } 

J: =e, 1 Jl[ (et:)] 1 GO TO J IB 
S' IIF e, THEN slIF e, THEN S' ELSE SIFOR J:=e, UNTIL e, DO S 

* * BEGIN {~;} {s;IJ: } S END 

~* * j c9 ,11 PROCEDURE"; {e, I BEGINf;Q ; } (S; I J:} e END} 

INTEGER I REAL I LOGICAL I STRING ( C) 
~. 

J(1(VALUEfPROCEDURE)c9, ; ) 

B. 



Descriptive 
Name 

letter 

digit 

identifier 

variable 

symbol 

constant 

\D 
function value 

\.Jl 

simple expression 

simple expression 
or relation 

expression 

argument 

simple statement 

empty 

statement 

Symbol 

"-

5 

8 

'V 

a 

C 

~ 

e" 

e' 

e 

a 

S' 

A 

S 

The Grammar of ALGOL W 

Definition 

AIBlcIDIEI···lxIYlz 

01112131···1819 

"(,, 15 } * 

t 818( e) 18(~) } [ (e Ie) ] 

Any character on the keypunch, except the double quote. 

t ( 5 + [ .5 *] I .5+} tk (, [ + 1-] 8 + } } [ I] [L f 1 TRUE I FALSE 

1=If (8IAIBlcIDIEIF}+/ff(a/ ffff }+U\NULL 

J[ (n+;) ] I 
I ' 

[+I-][,]{ABSILONGISHORT}*('Vlcl~l(e)} (**ISHLISHR}[*I/IDIVIREMIAND}[+!-loR} 

e" I e" « I<=! = 1>= I> /.=}e" I e" IS 8 

e' /IF e THEN e ELSE elCASE e OF (e+;) 
I 

elsl J[((el*},)] 
+ ~ 

{'V:=} elGo TO 818[(0 ,)]IAla 

The empty statement; no character at all, or a space. 

s' I IF e THEN s I IF e THEN s I ELSE S I CASE e OF BEGIN S I; END 

* IWHILE e DO SIFOR J:=e {[STEP e] UNTIL el[,e} }DO S 



\0 
0\ 

Descriptive 
Name 

block 

declaration 

type 

procedure heading 

program 

Symbol 

/3 

IJ 

j 

'it 

p 

Definition 

* * BEGIN t~;} f S; I J:} S END 

j r,lj ARRAY F,-(e.::e. I ,) IPROCEDURE"; S 
* * rl-I I j PROCEDURE 'it; {e.1 BEGIN (;Q;} (S; I J:} e. ENO}I RECORD J(T J, ; ) 

-± 
INTEGER ! [LONG] (REAL I COMPLEX} I LOGICAL I BITS [ (32) ] I STRING[ (C) ] I REFERENCE ( J, ) . 
J[«(j [VALUE][RESULT]![j] PROCEDURE}JI~lj ARRAY~(*'~)';)] 
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The Operators and Functions of ALGOL W, Their Formats, Meanings 

and Type Constraints 

Use of Symbols 

t. = any ALGOL W expression. 
1. 

a. = value of expression e .. 
1. 1. 

k. = kind of data represented bya. corresponding to expression t. 
1. 1. 1. 

The kinds of data are: 

.. 1. N = numeric 

2. L = logical 

3. S = string 

4. B = bits 

5. R = reference 

d. = domain of a. when k. = N. 
1. 1. 1. 

The doma ins are: 

1. I = integer 

2. R = real 

3. C = complex 

They are ordered as follows: Ie R C C. 

p. = precision of a. when k. = N. 
1. 1. 1. 

They are ordered as follows: S < L. 

If d. = I, then p. = L. 
1. 1. 



Kinds of Arguments Domains of Numeric Precision of NUmeric 
Format Meaning and Results Arguments and Resu1ts Arguments and Resu1ts 

t l + t2 a l + a 2 N+N-+N d
l 
+d

2 
-+ max ( d

l
, d

2
) . PI +P2 ~ min(PI ,P2) 

t - t I ·2 a l - a 2 N-N-+N dl -d2 -+max(~,d2) PI -P2 .:... uiin(PI' P2) 

tl* t2 a l X a 2 N*N-+M dl *d2 -+max(dl ,d2) Pi*P2 ~ L 

tIl t2 a l / a 2 N/N -+N d1/d2 -+max(d1,d2,R) PI /P2 ~ min ( PI' P2) 

£'1** t2 
'~2 

N**N -+ N dl **I -+ max ( ~, R) Pi**~ ~ PI 
.0/' . 

1 
+ tl a l 

+N -+ N +d
l 

-+ d
l +Pl -+ PI 

- t -ctl 
-N -+ N -d1 -+ dl 

_po -+ P 
\0 1 1 I 
co 

tl DIV t2 TRUNCATE (al /a2) I DIV I -+ I 

tl REM t2 a l - (al DIV ( 2)* a2, IREMI-+I 

the remainder of 
tl DIV t2 

ABS tl lOll' ABS N -+ N ABS dl -+min(dl,R) ABS PI ~ PI 

LONG tl al LONG N -+ N LONG ~ -+ max ( d1 , R) LONG PI ~ L where PI=s or d1=I 

SHORT tl al SHORT N -+ N SHORl'd
l 

-+ d
l SHORr PI ~ S where PI=L and d1 ~ I 



Kinds of Arguments Domains of Numeric Precision of Numeric 
Format Meaning and Results Arguments and Results Arguments a.nd Results 

tl OR t2 ct
l 

V ct2 LORL~L 

BORB~B 

tl .AND t2 ctl " ct2 LANDL~L 

BANDB~B 

, tl Nor ct
l 

,L~L 

,B~B 

tl = t2 ctl = ct2 ~ = ~ ~L(where ~=k2) a.ny" any 

tl -,:= t2 ctl * ct2 ~ ,= ~ ~ L( where ~=~) any any 

tl < t2 ctl < ct2 N<N~L ~,d2 <.=. R any 
S<S~L 

\.0 tl <= t2 ctl ~ ct2 N<=N~L ~,~~R any 
\.0 S<=S~L 

tl >= t2 ctl 2: ct2 N>=N~L ~,~~R any 
N>=S~L 

tl > t2 ctl > ct2 N>N~L ~,d2 ~ R any 
S>S~L 

tl IS c92 
ct

l 
belongs to the R IS c9

2 
~L 

record class c92 

tl SHL t2 ct
l 

shifted left BSHLN~B d = I 2 
ct

2 
places 

tl SHR t2 ct1 shifted right BSHRN~B d2 = I 

ct
2 

places 

V 1 ( t
2 It 3 ) characters ct2 s(NIN) ~ S d2=~=I through 

ct2 + ct3 - 1 of ct1 



Format 

IF tl THEN t2 ELSE t3 

C~E to of (ti'·· .,tn) 

.... 
8 

Meaning 

if a
1 

then a
2

, 

otherwise a
3 

a (1 < a < n) a - 0-o 

Kinds of Arguments 
and Resul.ts 

IFL THEN k2 ELSE ~ -+ k 

where ~. = ~ = k 

CASE N OF (~,~, ••• ,kn) 

-+ k where 

~ =k2= ••• = kn = k 

Domains of NUmeric 
Arguments and Results 

IF L THEN d
l 

ELSE d
2 

-+ max(~,d2) 

CASE L OF (~,d2'.·· .,dn) 

-+m8x(dI ,d2,···,dn) 

Precision of Numeric 
Arguments and Results 

IF L THEN PI ELSE P2 
-+min(P1,P2) 

CASE L OF (P
1

, ••• ,Pn) 

-+min(PI ,···,Pn) 



I--' 
0 
I--' 

All the following functions have the format F(el ), where F is the function name. 

We shall omit reference to the format, accordingly. 

Function Meaning Kinds Domains 

TRUNCATE The integer i, with the same sign 
as aI' such that 

,..I all - I < I i I s lall 

ENTIER The integer i such that \ N-+N .R -+ I 
a l - I < i Sal 

ROUNp The integer i, with the same'sign 
aI' such that 

lall ... 1/2 < Iii sial' + 1/2 

ROUNDTOREAL a l N-+N R-+R 

REALPART The real part of a l } IMAGPART The imaginary part of a l 
N-+N C-+R 

lMAG a * I=i N-+N dl -+ C I . 
(dl c: R) 

Precision 

Any 

L-+S 

Any -+ S* 

Any -+ S* 

*Note: A asterisk on a short precision-result means that prefixing the letters LONG to the function 
name yields.a long precision result. 



Function Meaning Kinds Domains Precision 

SQRT ~, for ~l ~ ° N~N dl ~ R Any ~ S* 

(dl ,= R) 

COMPLEXSQRT ~ N~N Any~C Any ~ S* 

EXP 
a l , for a l < 174.67 e 

LN -- loge (al ), for a l > 0 

LOG loglO (al ), for a l > 0 ( N~N dl ~R Any ~ S* 

-SIN sin(al ), for lall < 823550 (dl ~ R) 

cos cos(al ), -for lall < 823550 

-1 ) I-' ARCTAN tan (aI' in the range 
0 
I\) 

(0- iT/2, iT/2) 

TIME elapsed time, in units of 1/100 I ~ I 
minute if a1= 0, otherwise in 

units of 1/60 second. 

ODD a
l 

is an odd number I~L 

BITSTRING The sequence of bits which I~B 
represents a l in binary. 

See manuals for details. 



Function Meaning Kinds Domains Precision 

NUMBER The ,integer which a
1 

represents B~I 

in binary. ' 

DECODE The number which is used as a code 8(1) ~ I 
for the character a

1
• 

CODE The character for which a
1 

is used I ~ 8(1) 
as a code. 

BASEIO A string of the form b£12~1234567 N ~ 8(12) ~ c.=. R Any 
representing a1 as a power of ten 

times a· fraction. (b represents a 
blank space). 

LONGBASEIO As above, for bt1~123456789012345 N~ 8(20) dl c.=. R Any 

BASE16 A string of the fprm bbtl~123456 N ~ 8(12) ~~R Any 
t-' representing a

1 
as a power of 

S sixteen times a fraction, both in 
hexadecimal. 

LONGBASE16 As above, for bb+~12345678901234 N ~ 8(20) dl ~ R Any 

INTBASE10 A string of the form b:t.l234567890 I ~ S(12) 
representing a

1 
in decimal. 

INTBASE16 A string of the form bbbb12345678 I ~ S(l2) 
representing a1 in hexadec~al, 
using two's complement notation. 




