
CS 110

ALGOL W (REV ISED)

LANGUAGE DESCR I PT ION

ERROR MES SAGES

NUMBER REPRESENTATION

DECK SET-UP

GRAMMAT ICAl DESCR I PT ION

pp. 1 to 65

pp. 66 to 75

pp. 76 to 89

pp. 90 to 91

pp. 92 to 103

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERS lTV

SEPTEMBER 1969

ALGOL W

LANGUAGE DESCRIPTION

by

Henry R. Bauer

Sheldon Becker

Susan L. Graham

Edwin Satterthwaite

1

"A Contribution to the Development

of ALGOL" by Niklaus Wirth and C=.o: A. R.

Hoarel) was the basis for a compiler de-

veloped for the IBM 360 at Stanford Univer-

sity. This report is a description of the

implemented language, ALGOL W. Historical

background and the goals of the language

may be found in the Wirth and Hoare paper.

1) Wirth, Niklaus and Hoare, C. A. R., "A
Contribution to the Development of ALGOL",
Comm. ACM 9, 6(June 1966), pp.413-431.

2

CONTENTS

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS ..•.••.••••.••••.• 6

101 .. Notation oo ••••• o ••. ,a.Jo.t •• o ••• " •••••••••••• 6

1.20 Definitions " 0 •• 0 ... 0 0 • 0 C) 0 u •• 0 0 •••• 6

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES ..•..•••••••.•••. 9

2.1. B·as ic Symbols 9

2.2. S;yntactic Entiti.es•••.••.••••••.•... " .•••.•••• 10

:3 • IDENT IFIERS 0 • • •••••••••••••••••••••••• , • • •••••••••••••••• 11

4 . VALUES Al'ID 'I'-~·FES ..••••• 0 ••••••••••••••••••••• 0 •••••••• 0 ••••• 014

4 .. 1. N1.llIlbers •.. 0 •••••• 0 •••••••••• _ ••••••• 0 •••• OJ ••••••• 15

4.2. Logical Values •••.•• 0 •••••• u ••••••••••••• 00" ••••• 16

4.3. Bit .Sequences ... 0 •• 0' •••••••••••.•••••••••••••••• 16

4.4. Strings .. ' .•..••.•.•.•.•••••.••..•••..•• 0 •••••••• 17

4.5 . References J ••• 0 ••••••••• u ••••••••••••••• 18

5 . DECLARA.TIONS ••...•.. , 0 • '0 •••••••••••••••••• 0 •••••••••• oJ • " ••••• 18

5 .1. Simple Variable Declarations ••..•.... 0 •••• 0 •• 0 •• 18

5 .2. Array Declarations " ..•••••. , •...•..••.••.. 20

5 . 3· Procedure Declarations .. v •• 0 • ••••••••••••••••••• 21

5 .4.; Record Class. Declarations ...••••..••.••.•••••••• 25

6. EXPR .. ESSIONS 0 0 ••••• " ••• " ••••••••••••••••••••••• 0 •••••• 25

6.1. Variables .. " '· .. 0 •••••••• , •• ··' ••••• 0 ••••••••••••• 27

6.2. Iuncti.on Designators 28

3

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

CONTENTS (cont.)

Arithmetic Expressions •••.••••••••••••••••••••• 29

Logical Expression's •••••• '. e'. · ... ' · · · · '.: · .'. · · · · · ·33

Bi t . Expre ssions 35

String Expressions ~ ••••••••• 36

Reference Expressions •••••••••••••••••••••••••• 37

Precedence of Operators 38

7 • STAT~S. • ." • • • • • • • •• • • • • ". • • • • ". • .39

7 .1.

7.2.

7·3.

7.4.

Blocks• . " 4JI ••••••• ' •••••••••• e
f

• ." .. • • • • • • • • • • • -.39

Assigrnnent Sta-tem.ents,40

Procedure Statements •••••••••.••.••••• '.' .••••••• 42

Gato Statements . ..• 44

7.5.' If'Statements , ... , ••••••..••. ~ •• ·~.) ..••••••• 45

Case 'St.atements ' ••.••••• ' ••••.•••••••• ' .'" , ••••••. 46

Iterative Statements'. '"' 47

Standard Procedures

7.8.1.

7.8.2.

7.8.3.

7. 8.4.

The Input/Output System •••• ,. ••• 50

Read Statements •••••••••••••••• 52

Write Statements ••••••••••••••• 53

Control Statements •••••• ~ •••••• 54

•• 49

8. . STANDARD FUNCTIONS AND PREDECIARED IDENTIFIERS •••••••••• , ••• ·.55

8.1.

8.2.

Standard Transfer Functions ••••••••••.•••••••• 55

Standard Functions .2f Analysis---•• -••••••• • ,. • • • ••• 57

4

8.3.

8.4.

8.5.

Time function ••••••••••••••••••••••••••••••••• 59

Predeclared Variables ••••• ~ ••••••••••••••••••• 59

Exceptional Conditions •••••••••••••••••••••••• 60

APPENDIX

1. CHARA.CTER ENCODING •••••••••••••••••••••••••••••••••• 65

5

1. TERMlNOLOGY, NOTATION AND BASIC DEFINITIONS

The Reference Language is a phrase structure language, defined by

a formal metalanguage. This metalanguage make·s use of; the notation and

definitions explained below. The structure of the; language AIaOL W

is determined by:

(1) V, the set of basic constituents of the language,
(2) tA, the set of syntactic entitie's, and

(3) P, the set of syntactic rules, or productions.

1.1. Notation

A syntactic entity is denoted by its name (a sequence of letters)

enclosed in the brackets < and >. A syntactic rule has the form

''<}.> ::= x

where <Ii> is a member of U, x is any possible sequence of basic con-

stituents and syntactic entities, simply to be called a "sequence".

The form

<Ii> ::=X I y I··· I ~

is used as an abbreviation for the set of syntactic rules

<Ie> ::=x

<Ie> ::=y

<Ii> ::= z

1.2. Definitions

1. A seq'..1ence x is said to directly produce a sequence y i~ and

6

only if there exist (possibly empty) sequences u and Wj 80 that

either (i) for some ,<If> in U, x :;: u<P:>w, y = UVW; and <J> .. :~

v i~ a rule in P; or (ii) x = uw, y = uvw and v is a "comment"

(see below).

2. A sequence x is said tqproduce a sequence y if and only it

there exists an ordered set of sequences s[O], s[l], •. , , 'a[n],

so that x = s[O], s[n] = y, and s[i-l] directly produc~s s[1] 'tor

all i = 1, ... , n.

3. A sequence x is s'aid to be an ALGOL W program if and only 1f'

its constituents are'members of the set V, and x can be produced

from the syntactic entity <program'>.

The sets V and Uare defined through enumeration of their members'

in Section 2 of this Report (cf. also 4.4.).. The syntactic rules are

given throughout the sequel of the Report. To provide explanations

for the meaning of ALGOL W programs, the letter sequences denoting

syntactic entities have been chosen to be English words describing

approximately the nature of that syntactic entity or construct. Where

words which have appeared in this manner are used elsewhel'e in'· the

text, they refer to the corresponding syntactic definition. Along

with these letter sequences the symbol" may occur. It is understood

that this symbol must, be re;plaoed by anyone of a finite set of Enc11sh

words (or word pairs). Unless otherwise specified in the part1ow..r

section, all occurrences of the 'symbol 1 wit~in,one syntactic rule

must be replaced consistently", and the repla~lng words are

7

integer

real

long real

complex

long complex

logical

bit

string

reference

For example, the production

<1 term> : ~:= <1 factor> (cf. 6.3.1.)

corresponds to

<integer term>

<real term>

<long real term>

<complex term>

<long complex term>

The production

<integer factor>

<real factor>

<long real factor>

<complex factor>

<long complex factor>

<1 0 primary> u ,.. long <1 1 primary> (cf. 6.3.1. and
table for long
6<3. 2 .7.) -corresponds to

<long real primary> . "- .!.~~ <real primary>

<long real pri.mary> !.I .-, .- lon~ <integer prj.mary>

<long complex prjmary> • v_ .lon~ <complex primary> ~ . -

It is recognized that typographical Entities exist of lower order

than basic symbols, called characters. The accepted characters are

those of the IBM System 560 EBC:DIC code.

The symbol ~mment fol.lowed by any sequence of ch~acters not

containing semicolons, followed by a semicolon, is called a comment.

A comment has no effect on tr.e meaning of a program, and is ignored

during execution of the program. An identifier (cf. 3.1.) immediately

8

following the basic symbol end is also regarded as a comment.

'rhe execution of a program can be consj dered as a sequence of

units of action. The sequence of these un} ts of action i.s defined as

the evaluation of expressions and the execut.ion of statements as de-

noted by the program. In the definition of the implemented language

the evaluation or execution of certain constructs is either (1) de-

fined by System 360 operations, e.g., real arithmetic, ,ot(2) left

undefined, e.g., the order of evaluation of arithmetic primaries in

expressions, or (3) said to be not valid or not defi.ned.

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

2.1. Basic Symbols

A B C D 1 E F G H I T IKILIMINlolpl .:)

Q R S T '1 u V W X y z 1

0 1 2 3 1 4 5 6 7 8 9

true I fal~ I " I null 1 # 1 v

integer 1 real I comElex I logical I bits 1 string

reference I long ~ long complex 1 arrq 1

procedur~ I record I
, 1 ; I : I . I .(I) 1 begin I end I if 1 then 1 else

~ I of I + 1 - 1 * 1 / 1 **1 ?-i "I .~ 1 shE. 1 shl 1 is

abs I long I shor~ I and I ~ I -, 1 I 1 -~ 1 -, = I < I

<::-.1>1>:=:1 ~~ 1
~ :=. I goto I ~ to I for 1 step 1 until I do 1 while 1
comment 1 ~~lue I result

All underlined words, which we call 'reserV'ed words", are repre-

sented by the same words in capital letters in an actual program J with

nc. :i.ntey Vel'! ing blanks.
9

Adjacent reserved words, identifiers (cf. 3.1.) and numbers must include

no blanks and must be separated by at least one blank space. Otherwise

blarik~ have no meaning and can be used freely to improve the read-

ability of the program.

2.2. Syntactic Entities

(with corresponding section numbers)

<actual parameter list>

<actual parameter>

<bit factor>

<bit primary>

<bit secondary>

<bit sequence>

<bit term>

<block body>

<block head>

<block>

<bound pair list>

<bound pair>

<case clause>

<case statement>

<control identifier>

<declaration>

<digit>

<dimension sp~cification>

<empty> see: page 34
<equality operator>

<expression list>

<field list>

<for clause>

<for list>

<formal array parameter>

<formal parameter list>

<formal parameter segment>

7·3
7·3
6.5
6.5
6.5
4.3
6.5
7.1

7·1
7·1
5.2

5.2

6

7.6
3.1

5

3.1

5.3

6.4
6.7
5.4

7·7
7.7
5.3
5.3
5.3

10

<formal type>

<go to statement>

<hex digit>

<identifier list>

<identifier>

<if clause>

<if statement>

<imaginary number>

<increment>

<initial value>

<iterative statement>

<label definition>

<label identifier>

<letter>

<limit>

<logical element>

<logical factor>

<logical primary>

<logical term>

<logical value>

<lower bound>

<null reference>

<procedure declaration>

<procedure heading>

<procedure identifier>

<procedure statement>

<program>

5.3
7.4
4.3
3.1
3.1
6

7·5
4.1

7·7
7·7
7·7
7.1
3.1

3.1

7·7
6.4
6.4
6.4
6.4
4.2
5.2

4.5
5.3
5.3
3.1 --

7·3
7

<prop~r procedure body.>

<proper prbcedure
. declaratioIt>

<record classdeclaratioIt>

<record class identifier>

<record clas's identifier
list>

<record designator>

<relation>

.<relational operator>

<s,cale factor>

<sign>

<simple bit expression>

<simple logical expression>

<simple reference
expression> '

<simple statement>

<simple string expression>

<simple r. expression>

<simple 1 variable>

<simple type>

<s'imple variable
declaration>

<statemen~ list>

<statement>

<st:r.j.ng primary>

<string>

<subarraydesignator list>

<subscript>

3. IDENTIEIERS

3.1. Syntax

5·3

5·3
5.4

3·1

5·1
6.7
6.4
6.4
4.1
4.1
6.5
6.4

6.7
7
6.6
6.3
6.1
5.1

5·1
7.6
7
6.6
4.4

7.-'
6.1

<subscript list> 6.1
<substring designator> 6.6
.~ array dec1aratiori> '5.2
<j array designator> 6.1

<1 array identifier> 3·1
<1 assignment statement> 7.2
<1 express~on list>' 6
<1 expres's i<?n> 6
<j factor> 6.3
<1 field designator> 6.1
<1 field identifier> 3·1
<1 function designator> ' 6.2
<1 function identifier> 3·1
<1 function procedure body> 5·3
<1 function procedure

declaration:> 5·3
<1 left part> 7·2
<1 number> 4.1
<1 primary> 6·3
<1 subarray designator> 7·;'
<1 term> 6·3
<1 variable>' 6.1

··<1-variable ~dentifier> 3·1
<unsealed real> 4.1
<upper bound> 5·2
<while clause> 7·7

<identifier.:> :: = <letter.> I <identifi.er> <letter> 'j <identifie~ <dig'1t>

. <1 variable identifier> :: = <identifier>

11

<1 array identifier.> ::= <identifier>

<procedure identifier> ::= <identifier>

<1 function identifier> ::= "<identifier>

<record class identifier> ::= <identifier>

<1 field identifier> ::= <identifier>

<label identifier> ::= <identifier.>

<control identifier> ::= <identifier>

<letter> .. - AI B I c I DIE I FIG I H I I I .. - J

NlolplQIRISITlulvlw
<digit> .. - o I 1 I 2 I 3 I" 4 1 5 I 6 I 7 I 8 t 9 .. -

K

X

<identifier list> .. - <identifier> I <identifier list> .. 0-

3. 2 . Semantics

L M

y Z

, <identifier>

Variables, arrays, procedures, record cl.asses and record fields

are said to be quanti ties. Identifiers serve to identify quanti ties ,.

or they stand as labels, formal parameters or control identifiers.

Identifiers have no inherent meaning, and can be chosen fre'ely in the

reference language. In an actual program a reserved word cannot be

used as an identifier.

Every identifier used in a program must be defined. This is

achieved through

(a) a declaration (cf. Section 5), if the identifier identifies a

quantity. It is then said to denote that quantity and to be a

1 variable identifier, 1 array identifier, 1 procedure identifier,

1 function identifier; record class identifier or 1 field iden-

tifier, where the symbol 1 stands for the appropriate word re-

flecting the type of the declared quantity;

(b) a label definition (cf. 7.1.), if the identifier stands as a

12

label. It is then said to be a label identifier;

(c) its occurrence in a formal parameter list (cf. 5.3.). It is then

said to be a formal parameter;

(d) its occurrence following the symbol for in a for claus"e (cf. 7.7.).

It is then said to be a control identifier;

(e) its implicit declaration in the language. Standard procedures,

standard functions, and predefined variables (cf. 7.8 and 8) may be

considered to be declared in a block containing the program.

The recognition of the definition of a given identifier is

determined by the following rules:

Step 1. If the identifier is defined by a declaration of a

quantity or by its standing as a label within the smallest block

(cf. 7.1.) embracing a given occurrence of that identifier, then

it denotes that quantity or label. A statement following a

procedure heading (cf. 5.3.) or a for clause (cf. 7.7.) is considered

to be a block.

Step 2. otherwise, if that block is a procedure body and if the

given identifier is identical with a formal parameter in th~ asso

ciated procedure heading, then it stands as that formal parameter.

Step 3. Otherwise, if that block is preceded by a for clause

and the identifier is identical to the control identifier of

that for clause, then it stands as that control identifier.

Otherwise, these rules are applied considering the smallest

block embracing the "block which has previously been considered.

13

If either step 1 or step 2 could lead to more than one definition,

then the identification is undefined.

The scope of a quantity, a label, a formal parameter, or a con-

trol identifier is the set of statements in which occurrences of an

identifier may refer by the above rules to the definition of that

quantity, label, formal parameter or control identifier.

3 ·3· Examples

I

PERSON

ELDERSIBLING

X15, X20, X25

4 . VALUES AND TYPES

Constants and variables (cf. 6.1.) are said to possess a value.

The value of a constant is determined by the denotation of the con-

stant. In the language, all .constants (except refe:-ences) 'have a

reference denotation (cf. 4.1.-4.4.). The value of a variable is the

one most recently assigned to that variable. A value is (recursively)

defined as either a stmple value or a structured value (an ordered set

of one or more values). Every value is said to be ofa certain type.

The following types of simple values are distinguished:

integer: the value is a 32 bit integer,

!!!!: the value is a 32 bit flo~ting point number,

long!!!!: the value is a 64 bit floating point number,

complex: the value i8.& complex number composed of two
numbers of type !!!!,

14

long complex: ,the,value is a complex number composed of two
long real numbers,

logical: the value is a logical value,

bits: the value isa linear sequence of 32 bits,

string: the value is a linear sequence of at most 256 char
acters,

~eference: the value is a reference to a record.

The following types of structured values are distinguished:"

array: the value is an ordered set of values, all of identi
cal simple type,

record: the value is an:ordered set of simple values.

A procedure may yield a value, in which case it is said to be a

function procedure, or it may p6tJY.ield a~v: .. lue,. 'in'Wlln.chcaae it 1s

called a proper procedure. The value of a function procedure is de-

,fined as the value which results from the execution of the procedure

body (cf. 6.2.2.).

Subseque~tly, the reference denotation of constants is defined.

~he reference denotation of any constant consists of a sequence of

characters. This, however, does not imply that the value of the de-

noted constant is a sequence of characters, nor that it has the pro-

perties of a sequence of characters, except, of course, in the case

of strings.

4 .1. Numbers

4.1.1. Syntax

<long complex number> ::= <complex number>L

<complex number>

< imaginary number>

: : = <imaginary n~ber>

::= <real number>! I <integer number>!

15

<long real number> ::= <real number>L / <integer number>L

<real number> ::= <unscaled real> / <unscaled real> <scale factor>

<integer number> <scale factor> / <scale factor>

<unscaled real> ::= <integer number> · <integer number>

·<integer number> / <integer nUmber>

<scale factor> ::= '<integer number> / '<sign> <integer number>

<integer number> ::= <digit> / <integer number> <digit>

<sign> :: = + I -

4.1.2. Semantics

Numbers are interpreted according to the conventional decimal

notation. A scale factor denotes an integral power of 10 which is

multiplied by the unscaled real or integer number preceding it. Each

number has a uniquely defined type. (Note that all <j number>s are

unsigned.)

4.1.3. Examples

1 • 5
0100 1'3

3.1416 6.02486'+23

2. 718281828459045235360287L

4.2. Logical Values

4.2.1. Syntax

,II

0.671

IlL

2.3'-6

<logical value> ::= ~ 1 false

4.3. ~ Sequences

4.3.1. Syntax

<bit sequence> ::= * <hex digit> 1 <bit sequence> <hex digit>

<hex digit> :: = 0 I' 1 1 2 I -3 I 4 / 5 I 6 1 71 8 1 9 I A I BI
C /D I E/ F

16

· Note tha.t 2 I •.• I F corre.,on's to ~lO I' ••. 1 ~5l0 ~

4.3.2'. Semantics

The numb~r of bits in a bit se<luence is 32 or 8 hex dicit a •. : :,ilhe

bit sequence is a.lways ,rep~esented by a 32 bit word, with the specified

bit sequence right justified in the word and zeros filled in en the

left.

4.3.3. Examples

#4F = 0000 0000 0000 0000 000.0 0000 01001111

#9 0000 0000 0000 0000 0000 0000 0000 1001

4.4'. Strings

4.4.1. Syntax

<string> : : = \ "<sequence of character&'>"

4.4.2. Semantics

Strings consist of ~y sequence of (at .oat 256) characters ac-'

cepted by the System 360 enclosed by ", the .tring:,:quQte ~ , If the

stripg quote a.ppears in the sequence of characters it mu~t be ~e-

diately followed by a second string quote which i, then ignered~ Th~

number of characters in a string is said t~ ~e the lencth of the
\

st~ing.

4.4.3. Examples

ttJOHN"

"""" is the string of length leens1.t~1lI of the string

quote.

17

4.5. References

4.5.1. Syntax

<null reference> : : = n}lll

4.5.2. Semantics

The reference value null fails to designate a record; if a refer-

'ence expression occurring in a field designator (cf. 6.1.) has this

value, then the field designator is undefined.

5. DECLARATIONS

Declarations serve to associate identifiers with the quantities

used in the program, to attribute certain permanent properties to

these quantities (e.g. typ~, structure), and to determine their scope.

The quantities declared by declarations are simple variables, arrays,'

procedures and ,record classes.

Upon exit from a block, all quantities declared or defined within

that block lose their value and significance (cf. 7.1.2. and 7.4.2.).

, Syntax:

'<declaration> :: = <simple variable declaration> I <1 array

declaration> I <procedure declaration>

<record class declaration>

5 .1. Simple Variable Declarations

5.1.1, Syntax

<simple varia.ble declaratio,n> :: = <simple type> <identifier list>

<s imple type> : : = integer I, ~ , long real I complex long

comPlex I logical I bits I bits (32) I

18

string I string «integer number» I reference

(<record class identifier list»

<record class identifier list> ::= <record class identifer> I
<record class identifier list> ,

<record class identifier>

5.1.2. Semantics

Each identifier of the identifier list is associated with a

variable which is declared to be of the ~ndicated type. A variable is

called a simple variable, if its value is simple (cf. Section 4). If

a variable is declared to be of a certain type, then this implies that

only values which are aSSignment compatible with this type (cf. 7.2.2.)

can be aSSigned to it. It is understood that the value of a'variable

is equal to the value of the expression most recently assigned to it.

A variable of,type bits is always' of length 32 whether'; 'or not

the declaration specification-is included.

A variable of type string has a length equal to the unsigried

integer in the declaration specification. If the simple type is

given only as string, the length of the variable is 16 characters~

A variable of type reference may refer only to records of the

record classes whose identifiers appear in the record class iderrti-

fier list of the referenc,e declaration specification.

5.1.3. Examples

integer I, J, 'K, M, N

real X, Y, Z

long comElex C

logical L

bits G, H

19

string (10) S, T

reference (PERSON) JACK'i' JILL

5.2 •. ArralDeclarations

5.2.1. Syntax

<1 array; <:\eclaration> : : = <simple type"> array <identifier list>

.«bound pair list»

<bound p~ir 'list> : : = <bound pair> I <bound pair list> ,<bound

pai~

<bound pai~

<lower bound>

<upper bound>

: : =
: : =
.. -.. -

5.2.2. Semantics

<lower bound> :: <upper bound>

<integer expression>

<integer expression>

Each identifier of the identifier list of an array declaration is

associate~ with a variable which is declared to lle of ,type array. A

variable of type array is an ordered set of' variables. whose ·:type 'is' the

'~pl$ ~~. ~receding· the ,sY1l1bol'arra,y'" The dimensipn of the' array 1s

th~ n~ber _ ot ,.eht:ries in the bound pair list.

Every element of an array· is identified by a list of indices.

The indices are the integers between and including the values of the

lower bound and the upper bound. Every expression in the bound pair

list is evaluated exactly once upon entr,y to the block in which the

declaration occurs. The bound.pail: cXl''f'essions can depend only on

var~ables and procedures global to the block in which the declaration

occurs. In order to be valid, for every bound pair, the value of the

upper bound must not be less than the valUe of the lower bound •.

5.2.,. Examples

integer array H(l::lOO)

20

~ array A, B(l: :M, 1: :N.~

string (12) ~ray STREET, TOWN, CITY (J::K + 1)

5.}. Procedure Declarations

5.3.1. Syntax

<procedure declaration> ::= <proper procedure declaration> I
<1 function procedure declaration>

<proper procedure declaration> .. -o •. - procedure <procedure heading>;

<proper procedure bodY>

<1 function procedure declaration> .. -.. - <s imple type> procedure

<procedure heading>;

<1 function procedure body>

<proper procedure body.> ::= <statement>

<1 function procedure body> : s = <1 expression> I <block body>

<1 expression> ~~

<procedure heading> ::= <identifier> I <identifie~> «formal

parameter list»

<formal parameter list> : ~ = <formal par~eter segment> I
<formal parameter list> ; <formal

parameter segment>

<formal parameter s.egment> : : = <formal type> <identifier list> I

<formal type>

<formal array parameter>

<simple type> I <simple type> val~e I <simple

type> result I <simple type> value result I
<simple type> ~oced~ ! procedure

<simple type> a:I.'ray· <ideiltifier

list> «dimension specification»

<dimension specification> ::= * I <dimension specification> , *

<formal array parameter> .. -.. -

5.3. 2 . Semantics

A procedure declaration associates the procedure body with the

identifier immediately following the symbol procedure. The principal

21

part of the procedure declaration is the procedure body. Other parts

of the block in whose heading the procedure is declared can then cause

this proced~e body to be executed or evaluated. A proper procedure

is activated by a procedure statement (cf. 7.3.), a function procedure

by a function designator (cf. 6.2.). Associated with the procedure

body is a heading containing the procedure identifier and possibly a

list of formal parwmeters.

5.3.2.1. Type specification of formal parameters. All formal para

meters of a formal parameter segment are of the same indicated type.

The type must be such that the replacement of the formal parameter by

the actual parameter of this specified type leads to correct ALGOL W

expression$ and statements (cf. 7.0. 2 .).

5.3. 2 .2. The effect of the symbols value and result appearing in a

formal type is explained by the following rule, which is applied to

the procedure body before the procedure is invoked:

(1) The procedure body is enclosed by the symbols begin and end

if it is not already enclosed by these symbols;

(2) For every formal par~eter wbose formal type contains the

symbol value or result (or both),

(a) a declaration followed by a semicolon is inserted after

the first begin of the procedure body, with a simple

type as indicated in the formal type, and with an iden

tifier different from any identifier valid at the place

of the declaration.

(b) throughout the procedure body, every occurrence of the

22

formal parameter identifier is replaced by the identifier

defined in step 2a;

(3) If the formal type contains the symbol value, an assignment

statement (cf. 7.2.) followed by a semicolon is inserted

after the declarations of the procedure body. Its left part

contains the identifier defined instep 2a, and its expression

consists of the formal parameter identifier. The symbol

value is then deleted;

(4) If the formal type contains the symbol result, an assignment

statement preceded by a semicolon is inserted before the symbol

end which terminates a proper procedure body. In the case

of a function procedure, an assignment statement preceded

by a semicolon is inserted after the final expression

of the function procedure body. Its left part contains the

formal parameter identifier, and its expression consists of

the identifier defined in step 2a. The symbol result is

then deleted.

5.3.2.}. Specification of array dimensions. The number of ,11*" IS

appearing in the formal array specification is the dimension of the

array parameter.

5.3.3. Examples

procedure INCREMENT;

real procedure MAX

if X < y then

X := X+l

(real value

y else X

23

X, y);

procedure COPY (real arr~ U, ,V (*, *); integer value A, B);

for I:= I until A do -- .-
for J:= l untilB do U(I,J) := V(I,J)

~ procedure HORNER (real array A (*); integer value N;

~ value X);

begin real S; S:= 0;

end

~ I ~ =. 0 until ·N do S : = S * X + A(I);

S

long !!:,.al procedure SUM (int.eger K, N; long real X);

begin long real Y; Y:= 0; K ~= N;

while K > = 1 de

begin Y:= Y + X; K:= K - 1

~;

Y

end

reference (PERSON) procedure YOUNGESTUNCLE (reference (PERSON) R);

begin reference (PERSON) P, M;

end

P : = YOUNGESTOFFSPRING (FATHER (FATHER (R)));

whil~ (p..., =~) .ancI (...,MALE (p)) or

'(P :::: FATHER (R)) do

p ~= ELDERSIBLING (p);

M : = YOUNGESTOFFSPRING (MOTHER (MCYI'HER (R)));

while (M..., = null) ~ (..., MALE (M)) ~

M ~;: ELDERSIBLING (M);

if P = null then MeIse ---
if M =. null then P else -- --
if AGE(P) < AGE(M) ~hen IfP else M

24

5.4. Record Class Declarations

5.4.1. Syntax

<record class declaration> ::~ record <identifier> (<field list»

<field list> ::= <simple variable declaration> I <field list> ;

<simple variable declaration>

5.4.2.' . Semantics

A record class declaration serves to define the structural pro-

perties of records belonging to the class. The principal constituent

of a record class declaration is a sequence of simple variable declar-

ations which define the fields and their simple types for the records

of this class and associate identifiers with the individual fields.

A record class identifier can be used in a record designator (cf. 6.7.)

to construct a new record of the given class.

5.4.:3. Examples

record NODE (reference (NODE) LEFT, RIGHT)

record PERSON (string NAME-, integer AGE;, logical MALE;'

reference (PERSON) FATHER, MOTHER, YOUNGESTOFFSPRING,

ELDERSIBLING)

6. EXPRESSIONS

Expressions are rules which specify how new values are computed

from existing ones. These new values are obtained by performing the
i

operations indicated by the operators on the values of the operands.

The operands are either constants, variables or function designators,

or other expressions, enclosed by parentheses if necessary. The evalu-

ation of operands other than constants may involve smaller units of

25

action such as the evaluation of other expressions or the execution

of statements. The value of an expression between parentheses is

obtained by evaluating that expression. If an operator has two operands,

then these operands may be evaluated in any order with' the exception

of the logical operators discussed in 6.4.2.2. Several simple types

of expressions are distinguished. Their structure is defined by the

following rules, in which the symbol r has to be replaced consistently

as described in Section 1, and where the triplets j 0' j l' j 2 have to

be either all three replaced by the same one of the words

logical

bit

string

reference

or by any combination of words as indicated by the following table,

which yields 10 given jl andj2:

integer

real

complex

integer

integer

real

complex

real

real

real

complex

complex

complex

complex

complex

1.
.0

has the quality "long" if either both j and 1 have that quality,
1 .2

or if one has the quality and the other is "integer".

Syntax:

<T expression> ::= <Simple j expression> I <case clause>

(<1 expression list»

<j 0 expression> ::= <if 'cause> <r 1 expression> else

<j 2 expression>

26

<1 expression list> ::= <1 expression>

<10 expression list> ::= <11 expression list> , <12 expression>

<if clause> :: = if <logical expression> then

<case clause> ::= ~ <integer expression> of

The construction

<if clause> <j 1 expression.~ !:!!! <T 2 expression>

causes the selection and evaluation ot' an expression on the basis of

the current value of the logical expression contained in the if clause.

If this value is true, the expression following the if clause is

selected; if the value is false, the expression following ~ is se-

lected. If j and j are simple type string, both string expressions
1 2· -

must have the same length. Theconstruction

<case clause> (<1 expression list»

causes the selection of the expression whose ordinal number in the

expression list is equal to the current value of the integer expression

contained in the case clause. In order that the case expression be

defined, the current value of this· expression must·be the ·ordinal number

of some expression in the expression list. If1 is simple type string,

all the· string expressions must have the same length.

6.1. Variables

6.1.1. Syntax

<Simple j variable> ::= <r variable identifier> I <T field designator> I
<T array designator>

<r variable> :: = <.simple jvariablo>

<string variable> ::= <substring designator>

<:r field designator> :: = < 1 field identifier> (<reference expression»

<:r array designator> :: = <:; 1array identifier> (<subscript list»

<subscript list> ::= <subscript> I <subscript list>, <subscript>

<subscript> ::= <integer expressipn>

27

6.1.2. Semantics

An array designator denotes the varia.ble whose indices are the

current values of the expressions in the subscript list. The value of

each subscript must lie within the declared bounds for that subscript

position.

A field designator designates a field in the record referred to

by its reference expression. The simple type of .the field designator

is defined by the declaration of that field ide~tifier in the record

class designated by. the reference expression of the field designator

(cf. 5.4.).

6.1.3. Examples

x A(I)

FATHER (JACK)

M(I~~, I-J)

MOTHER(FATHER(JILL))

6.2. Function Designators

6.2.1. Syntax

<j function designator> : := . <1 function identifier>: I <1 function

identifier> «actual parameter list»

6.2.2. Semantics

A function designator defines a value which can be obtained by ~

process performed in the following steps:

Step 1. A copy is made of the body of the function procedure

whose procedure identifier is given by the function designator

and of the actual parameters of the latter.

Steps 2, 3, 4, As specified in 7.3. 2 .

28

step 5. The copy of the function procedure body, modified as indicated

in steps 2-4, is executed. Execution of the expression which constitutes

. or is part of the modified procedure body consists of evaluation of that

expression, and the resulting value is the value of the function desig-

nator. The simple type of ~he function designator is the simple type

in the corresponding function procedure declaration.

6.2.3. Examples

MAX (X ** 2, Y ** 2)

SUM (I, 100, H(I»

SUM (I, M, SUM (J, N, A (I " J)))

YOUNGESTUNCLE (JILL)

SUM (I, 10, X(I) * Y(I»

HORNER (X, 10, 2.7)

6.3. Arithmetic ExpreSSions

6.3.1. Syntax

In any of the following rules, every occurrence of the symbol 1

must be systematically replaced by one of the following words (or

word pairs):

integer

real

long real

complex

long complex

The rules governing the replacement of the ~ymbols 1°' 1 land 1 2 are

given in 6.3.2.

<simple 1 expression> :: = < 1 term> I + < 1 term> I - < 1 term>

29

<simple 10 e:xpression> ::= <simple 11 expression> + <1"2 term>

<simple 11 expression> - <1"2 term>

<1" term> : : = <1" factor>

<1"0 term>

<1"0 term>

: : = <r 1 term> * <r 2 factor>

: : = <r 1 term> / <r 2 factor>

<integer term> ::= <integer term> div <integer factor>

<integer term> rem <integer factor>

<1"0 factor>

<rO primary>

<1"0 primary>

<To primary>

<j primary>

· .-· .-
· .-· .-
· .-· .-
· .-· .-

· .-· .-

<r 0 primary> I <r 1 factor> ** <integer primary>

abs <f 1 primary>

long <11 primary>

short <1" 1 primary>

<f variable> I <1" function designator>

(<r expression» I <r number>

<integer primary> ::= <control identifier>

6.3.2. Semantics

An arithmetic expression is a rule for computing a number.

According to its simple type it is called an integer expression,

real expression, long real expression, complex expression, or long

complex expression.

6.3.2.1. The operators +, -, *, and / have the conventional meanings

of addit-ion, subtraction, multiplication and division. In the relevant

syntactic rules of 6.3.1. the symbols 10, 11 and 12 have to be replaced

by any combination of words according to the following table which

indicates 10 for any combination of 11 and 12 •

Operators + , -

integer real complex

int.eger integer real complex

real real real complex

complex complex complex complex

30

j 0 has the quality "long" if both r 1 and 1'2 havEY the quality

"long", or if one has the quality "long" and the other is "integer".

Operator *

integer real complex

integer integer long real long complex

real long real long real long complex

complex long complex long complex long complex

11 or j2 having the quality "long" does not affect the type of

the result.

Operator /

integer

real

complex

integer

long real

real

complex

real

real

real

complex

complex

complex

complex

complex

rO.has the quality "long" if both 11 and 12 have the quality
"long", or if one has the quality "long" and the other is "integer",

or if both are "integer".

6.3. 2 .2 . The operator "_" standing as the first symbol of a simple

expression denotes the monadic operation of sign inversion. The type

of the result is the type of the operand. The operator "+" standing

as the first symbol of a simple expression denotes the monadic opera-

tion of identity.

6.3. 2 .3. The operator div is mathematically defined (for B ~ 0) as

A div B = SGN (A x B) X D (abs AJ abs B) (cf. 6. 3 . 2 . 6 .)

31

where th~ function 'propedures SGN and D are declared as

integer procedure SGN (integer value A);

if A < 0 then -1 ~ 1;

integer procedure D .(integer value A~ ,: B) ;

if A < B then 0 else D(A-B, B) + l'

6.3. 2 .4. The operator ~ (remainder) is mathematical).y defined as

A rem B = A - (A div B) X B --- ---
6.3. 2 .5. The operator ** denotes exponentiation of the fir~t operand

to the power of the second operand. In the relevant syntactic ruie of

6.},1. the symbols jo and jl are to be replaced by any of the follow

ing combinations of words:

long real
real

complex

integer

real

complex

jo has the quality "long" if j I does or if j I is lIintegerll.

6e30206. The monadic operator abs yields the absolute value or modulus

of the operand. In the relevant syntactic rule ot 6.3010 the symbols 10

and 11 have to be replaced by any of the following combinations of w'ords:

integer
«

real

real

integer

real

complex

If j 1 has the quality "l.ong", then so does TO.'

32

6.3.2.7. Precision of arithmetic. If the result of an arithmetic

operation is of simple type !!!!, complex, long !!!!, or ~ complex

then it is the mathematically understood result of the operation per-

formed on operands which may deviate from actual operands.

,In the relevant syntactic rules of 6.3.1. the symbols 10 and 11 '

must be rep1~ced by any of the following combinations of words (or

word pairs):

Operator ~

Operator short

6.3.3. Examples

C + A(I) * 1j(I)

long real real

long real integer

long complex complex

real

complex

long real

long complex

EXF (-X/(2 * SIGMA)) / S~T (2 * SIGMA)

6.4. Logicai Expressions

In the following rules for <relation> the symbols 10 and 1l 'must

either be identically replaced by anyone of the following words:

33

bit

string

reference

or by any of the words from:

complex

long complex

real

long real

integer

and the symbols 12 or j3 must be identically replaced by string or

must be replaced by any of real, long real~ integer 0

<simple logical expression> ::= <logical element> I <relation>

<logical element> : : = <logical term> I <logical element> or

<logical term>

<logical terni> .. -.. - <logical factor>

<logical factor>

<logical terni> and

<logical factor>

<logical primary>

:: = <logical primary> .., <logical primary>

: : = <logical value> I <logical variable>

<logical function designator>

«logical expression»

<relation> ::= <simple 10 expression> <equality operator>

<simple 11 expression> I <logical element>
<equality opera~or> <logical element> I
<simple reference expression>- is

, -
<record class identifier> I
<simple j~ expression> <relational operator>

c..

<simple 13 expressiolv

<relational operator> ::= < I < = I > = I >
<e qual i ty operator> : : = = I -, =
6.4.2. Semantics

A logical expression is a rule for computing a logical value. .. . '

34

6.4.2.1. The relational operators represent algebraic ordering for

arithmetic arguments and EBCDIC ordering for string arguments. If two

strings of unequal length are compared, the shorter string is extended

to the right by characters less than any possible string character.

The relational operators yield the logical value true if the relation

is satisfied for the values of the two operands; false otherwise. Two

references are equal if and only if they are both null or both refer

to the same record. Two strings are equal if and only if they have

the same length and the same ordered sequence of characters. The operator

is yields the logical value true if the reference expression designates a

record of the indicated record class; false otherwise. The reference·

value ~ fails to designate a record of any record class.

6.4.2.2. The operators t (not), and, and or, operating on logical

values, are defined by the following equivalences:

t X if X then false else true

X and Y

X or Y

6.4.3. Examples

P or Q

if X then Y else false

if X then true else Y

(X < Y) and (Y < z)
YOUNGEST OFFSPRING (JACK) t = null

FATHER (JILL) is PERSON

6.5. Bit Expressions

6.5.1. Syntax

<simple bit expression> ::= <bit term> I <simple bit expression>

or <bit term>

<bit term> ::= <bit factor> I <bit term> and <bit factor>

<bit factor> ::= <bit secondary> I t <bit secondary>

<bit secondary> ::= <bit primary> I <bit secondary> shl

<bit primary> " ". "-

<integer primary> I <bit secondary> shr

<integer primary>

<bit sequence> I <bit variable> I <bit

function designator> I (<bit expression»
PAGE 35

6.5.2. Semantics

A bit expression is a rule for computing a bit sequence.

The operators ~, ~, and I produce a result of type ~, every

bit being dependent on the corresponding bit(s) in the operand(s) as

follows:

x

o

o
1

1

y

o
1

o
1

IX

1

1

o
o

X and Y

o
o
o
1

X or Y

o

1

1

1

The operators ~ and shr denote the shifting operation to the

left and to the right respectively by the number of bit positions

indicated by the absolute value of the integer primary. Vacated bit

positions to the right or left respectively are assigned the bit

value O.

Examples

G and H ~ *38
G and I (H ~ G) shr 8

6.6. String Expressions

6.6.1. Syntax

<simple string expression> ::= <string primary>

<string primary> ::= <string> I <string variable> I <string

function designator> I «string expression»

<substring designator> ::=<simple string variable>

«integer expression>' <integer number»

36

6.6.2. Semantics

A string expression is a rule for computing a string (sequence of

, characters).

6.6.2.1. A substring designator denotes a sequence of characters of

the string designated by the string variable. The integer expressio~

preceding the I selects the starting character of the sequence. The

value of the expression indicates the position in the string variable •.

The value must be greater than or equal to 0 and less than the declared

length of the string variable. The first character of the string has

position O. The integer number following the, indicates the length

of the selected sequence and is the length of the string expression.

The sum of the integer expression and the integer number must be less

than or equal to the declared length of the string variable.

6.6.3. Example

string (10) S;

S (413)

S (I+J.l)

string (10) array T (1:~m,2::n);

T (4,6) (3. 5)

6070 Reference Expressions

6.7.1. Syntax

<simple reference expression> ::= <null reference> I <reference

variable> I <reference function

designator> I <record designator>

«reference expression»

37

<record designator> . e.. - <record class identifier> I <record

class identifier> «expression list»

<1 expression> I <expression list>, <expression list> e ._ .. -
<1 expression>

6.7.2. Semantics

A reference expression is a rule for computing a reference to a

record.

The value of a record designator is the reference to a newly

created record belonging to the designated record class. If the

record designator contains an expression list, then the values of the

expressions are assigned to the fields of the new record. The entries

in the expression list are taken in the same order as the fields in

the record class declaration, and the simple types of the expressions must

be assignment compatible with the simple types of the record fields

(cf. 7.2.2.).

6.7.3. Example

PERSON C'CAROLI!., 0, false, JACK, JILL, null, YOUNGEST OFFSPRING

(JACK))

6.8. Precedence of Operators

The syntax of 6.3.1., 6.4.1., and 6.5.1. implies the following

hierarchy of operator precedences:

long, short, abs

shl, shr, "**
-.

*, /, div, rem, and

38

+, -, .2!:.

<, < =, =, -, =, > =, >, is

Example

A = B and C is equivalent to A = (B and C)

7 • STATEMENTS

A statement denotes a unit of action. By the execution of a

statement is meant the performance of this unit of actionJwhich may

consist of smaller units of action such as the evaluation of expres-

sions or the execution of other statements.

7·1.

Syntax:

<program> : : = <block:>

<statement> ::= <simple statement> I <iterative statement> I
<if statement> <case statement>

<simple statement> .. - <block:> <1 assignment statement> .. -
<empty> <procedure statement> "

<goto statement>

Blocks

7·1.1. Syntax

<block:> .. -.. - <block body> <statement> end

<block body>

<block head>

::= <block head> I <block body> <statement>;

<block body> <label definition>

begin I <block head> <declaration>

<.label definition> : : = <identifier> :

7.1.2. Semantics

Every block introduces a new level of nomenclature. This is •
realized by execution of the block in the following steps:

39

Step 1. If an identifier, say A, defined in the block head or

in a label definition of the block body is already defined at

the place from which the block is entered, then every occurrence

of that identifier, A, within the block except for occurrence in

array bound expres'sions is systematically replaced by another

identifier, say APRIME, which is defined neither within the

block nor at the place from which the block is entered.

Step 2. If the declarations of the block contain array bound

expressions, then these expressions are evaluated.

Step 3; Execution of the statements contained in the block body

begins with the execution of the first statement following the

block head.

After execution of the last statement of the block body (unless

it is a goto statement) a block exit occurs, and the statement follow-

ing the entire block is executed.

7 .1.3. Example

begin real U;

U := X; X:= Y; Y.- Z; Z:= U

end

7.2. Assignment Statements

7.2.1. Syntax

In the following rules the symbols 10 and 11 must be replaced by

words'as indicated in Section 1, subject to the restriction that the

type 1 is assignment compatible with the type 1 as defined in 7.2.2.
1 0

40

<10 assignment statement> ::= <10 left part> <11 expression>

<10 left part> <11 assignment

statement>

<1 left part> ::= <1 variable>

7.2.2. Semantics

,,.-

The execution of a simple assignment statement

<10 assignment statement> ::= <10 left part> <11 expression>

causeR the assignment of the value of the expression to the variable.

If a shorter string is to be assigned to a longer one, the shorter

string is first extended to the right with blanks until the lengths are

equal. In a multiple assignment statement

«10 assignment statement> ::= <10 left part> <11 assignment

statement»

the assignments are performed from right to left. For each left part

variable, the simple type of the expression or assignment variable imme4iately

to the right must be assignment compatible with the simple type of that

variable.

A Simple type J
l

is said to be assignment compatible with a simple

type 10 if either

(1) the two types are identical (except that if 10 and 1i are

string, the length of the 10 variable must be greater than

or equal to the length of the 11 expression or assignment), or

(2) 10 is real or long~, and 11 is inte"ger, ~ or long

real or

(3) 10 is complex or long complex, and 11 is integer, real,

long real, complex or long complex.

In the case of a reference, the reference to be assigned must refer

to a record of one of the classes specified by the record class identifiers

associated with the reference variable in its declaration.

41

7. 2 .3. Examples

Z := AGE(JACK) .- 28 .-
X .- Y + abs Z .-
C .- I + X + C .-
P . - X-,= Y .-

7.3. Procedure Statements

7.3.1. Syntax

<pro"cedure statement> : : = <procedure identifier> I <procedure

identifier> «actual parameter list»

<actual parameter list>

<actual parameter> .. -.. -

<1 subarray designator>

• 0-0.- <actual parameter> I <actual

parameter list> , <actual parameter>

<1 expression> I <statement> I <1 subarray

deSignator> I <procedure identifier> I
<1 function identifier>

.. -.. - <1 array identifier> I <1 array

identifier> «subarray designator

list»

<subarray designator list> .. -.. - <subscript> I * I <subarray

deSignator list>, <sub script>

<subarray designator list>,*

7.3.2. Semantics

The execution of a procedure statement is equivalent to a process

performed in the following steps:

Step 1. A copy is made of the body of the proper procedure whose

procedure identifier is given by the procedure statement, and of

the actual parameters of the latter. The procedure statement is

replaced by the copy of the procedure body.

Step 2. If the procedure body is a block, then a systematic

change of identifiers in its copy is performed as specified by

42

step 1 of 7.1.2.

Step 3. The copies of the actual parameters are treated in an

undefined order as follows: If the copy is an expression

different from a variable, then it is enclosed by a pair of

parentheses, or if it is a statement it is enclosed by the symbols

begin and~.

Step 4. In the copy of the procedure body every occurrence of an

identifier identifying a formal parameter is replaced. by the copy

of the corresponding actual parameter (cf. 7.3.2~1.). In order

for the process to be defined, these replacements must lead to

correct ALGOL W expressions and statements.

Step 5. The copy of the procedure body, modified as indicated in

steps 2-4, is executed.

7.3.2.1. Actual-formal correspondence. The.correspondence between

the actual parameters and the form~l par~e~e~s is establish~d as

follows: The actual parameter list of the procedure statement (or

of the function designator) must have the same number of entries as

the formal parameter list of the prdc.edure declaration heading. The

correspondence is obtained by taking the entries of these two lists

in the same order.

7.3.2.2. Formal specifications. If a formal parameter is specified by

value, then the Simple type of the actual parameter must be assignment

compatible with the formal type. If it is specified as result, then the

formal type must be assignment compatible with the simple type of the

actual parameter. If it is specified by value result, both tne above

conditions must be satisfied. In all other cases, the types must be

identical. If an actual parameter is a statement, then the specification

of its corresponding formal parameter must be procedure.

7.3.2.3. Subarray designators. A complete array may be passed to a

procedure by specifying the name of the array if the number of subscripts

of the actual parameter equals the number of subscripts of the

corresponding formal parameter. If the actual array parameter has

more subscripts than the correspond~ng formal parameter, enough subscripts

must be specified by integer expressions so that the number of *'s appearing

in the subarray designator equals the number of subscripts of the

corresponding formal parameter. The subscript positions of the formal

array designator are matched with the pOSitions with *'s in the subarray

designator in the order they appear.

7.3.3. Examples

INCREMENT

COpy (A, B, M, N)

INNERPRODUCT (IP, N, A(I,*), B(*,J))

e..
7.4. Goto Sta~ents

7.4.1. Syntax

<goto statement> : ': = goto <label identifier> go to <label

identifier>

7.4.2. Semantics

An identifier is called a label identifier if it stands as a

label.

44

A goto statement determines that execution of the text be contin-

ued after the label definition of the label identifier. The 1dentitl-

cation of that label definition is accomplished in the following step.:

Step 1. If some label definition within the most recently acti-

vated but not yet terminated block contains the label identifier,

then this is the designated label definition. Otherwise,

Step 2. The execution of that block is considered as terminated

and Step 1 is taken as specified above.

7.5. l! statements

7.5.1. Syntax

<if statement> : : = <if clause> <statement> I <if clause>

<simple statement> else <statement>

<if clause> ::= if <logical expression> then

1.5.2 . Semantics

The execution of if statements causes certain statements to be

executed or skipped depending on the values of specified logical ex-

pressions. An if statement of the form

<if clause> <statement>

is executed in the following steps:

Step 1 .. The logical expression in the if clause is evaluated.

step 2. If the result of Step 1 is ~, then the statement

following the if clause is executed. Otherwise step 2 causes

no action to be taken at all.

An if statement of the form

<if clause> <simpl~ statement> else <statement>

is executed in the following steps:

Step 1. The logical expression in the if cla.use is evaluated.

Step 2. If the result of step 1 is ~, then the simple state-

ment following the if clause is executed. Otherwise the state-

ment following ~ is executed.

7.5.3. Examples

if X = Y ~ goto L

if X < Y then U := X else if Y < z then U := Y else V := Z - - -----
7.6. Case Statements

. 7 .6.1. Syntax

<case statement> :: = <!;ase clause> begin <statement list> ~

<statement list> ::= <statement> -, <statement list> ; <statement>

<case clause> ::= ~ <integer expression> of

7.6.2~ Semantics

The execution of a case statement proceeds in the following

steps:

Step 1. The expression of the case clause is evaluated.

Step 2. The statement whose ordinal number in the statement list

is equal to the value'obtained in Step 1 is executed. In order

that the case statement be defined, the current value of the ex-

pression in the case clause must be the ordinal number of some

46

statement of the statement list.

7.6.),. Examples

case I of

begin X := X + Y;

y := Y + Z;

Z := Z + X

end

case j of

begin H(I) := -H(I);

beginH(I-l) := H(I-l} + H(I); I := I-lend;

begin H(I-l) := H(I-l) X H(I); I:= I-I end;

begin H(H(I~l)) := H(I); I:; 1-2 end

end

7.7. Iterative Statements

7.7.1. Syntax

<iterative statement> <for clause> <...st. ~ement> I <while

clause> <statement>

<for clause> ::= for <identifier> := <initial value>

ste:p <increment> until <limit> do I for

<identifier> := <initial value> until <limit>

do I for <identifier> :=<for list> do

<for list> ::= <in~eger expression> I <f~r list> , <integer

expression>

<initial value> ::= <integer expression>

< increment>·

<limit> 00_ .. -
flo •• _

00- <integer express10~~

<integer expression>

<while clause> ~:= while <logical expression> do

7.7.2. Seme~tics

The iterative statement serves to express that a statement be

47

executed repeatedly depending on certain conditions specified by a

for clause or a while clause. The statement following the for clause

or the while clause always acts as a block, whether it has the form of

a block or not. The value of the control identifier (the identifier

following for) cannot be changed by assignment within the controlled

statement.

(a) An iterative statement of the form

for <identifier> := EI step E2 until E3 do <stat€ment>

is exactly equivalent to the block

begin <statement-O>; <statement-I>

; <statement-N> end

<statement-I>;

th in the I statement every occurrence of the control identifier

is replaced by the value of the expression (El + I X E2).

The index N of the last statement is determined by

N < (E3-EI) / E2 < N+l. If N < 0, then it is understood that

the sequence is empty. The expressions El, E2, and E3 are

evaluated exactly once, namely before execution of <statement-O>.

Therefore they can not depend on the control identifier.

(b) An iterative statement of the form

for <identifier> := El until E3 do <statement>

is exactly equivalent to the iterative statement

for <identifier> := EI step 1 until E3 do <statement>

(c) An iterative statement of the form

for <identifier> := El, E2, ••. , EN do <statement>

is exactly equivalent to the block

48

begin <statement-l>; <statement-2> ••• <statement-I>

<statement-N> end

when in the Ith statement every occurrence of the control identifier

is replaced by the value of the expression EI.

where it is. understood that L represents an identifier which is not

defined at the place from which the while statement is entered.

7 · 7.3 .. Examples

for V := 1 step 1 until N-l do S := S + A(U,V)

while (J > 0) and (CITY(J) I = S} do J :~ J-l

for I := X, X + 1, X+ 3, X + 7 do pel)

7.8. Standard Procedures

Standard procedures are provided in ALGOL W for the purpose of

communication with the input/output system. These standard procedures

differ from explicitly declared procedures in that the number and type

of actual parameters need not be identical in every procedure statement

in which the standard procedure identifier appears. In the following

descriptions, each 1. is to be replaced by anyone of
~

49

integer

real

long~

complex

long complex'

7.8.1. The Input/Output System

string «integer number»

logical

bits -

ALGOL W provides a single legible input stream and a single legible

output stream. These streams are conceived as sequences of records, each

record consisting, of a character sequence of fixed length. The input

stream has the logical properties of a sequence of cards in a card reader;

records consist of 80 characters. The output stream has the logical

properties of a sequence of lines on a line printer; records consist

of 132 characters, and the records are grouped into logical pages.

Each page consists of not less than one nor more than 60 lines.

Input records may be transmi ttedas strings without analysis.

Alternatively, it is possible to invoke a procedure which will scan the

sequence of records for data items to be interpreted as numbers, bit

sequences, strings, or logical values. If such analYSis is specified,

data items may be reference denotations of the corresponding constants,

(cf. Section 4). In addition, the following forms of arithmetic expressions

are acceptable data items, and the corresponding simple types are those

determined by the rules for expreSSions (cf. 6.3.):

(1) <sign> <T number>

where : j is one of integer, real, long real, complex, long

complex;

50

(2) <10 number> <sign> <r 1 number>

<sign> <r 0 number> <sign> <r 1 number>

where : 10 is one of integer, real, long real, and

11 is one of complex, long complex.

Data items are separated by one or more blanks. Scanning for data items

initially begins with the first character of the input stream; after

the initial scan, it normally begins with the character following the

one which terminated the most recent previous scan. Leading blanks are

ignored. The scan is terminated by the f~rst blank following the data

item. In the process, new records are fetched as necessary; character

position 80 of one record is considered to be immediately followed by

character position 1 of the next record. There exist procedures to

cause the scanning process to begin with the first character of a record;

if scanning would not otherwise start there, a new record is fetched.

Out~ut items are assembled into records by an editing procedure.

Items are automatically converted to character sequences and placed

in fields according to the simple type of each item, as described below:

Simple Type

integer

real

Field Description

right justified in a field containing

the number of characters specified by

the current value of INT~LDSIZE

(initialized to 14, cf. 8.,.) and followed

by 2 blanks

right justified in a field of 14 characters

and followed by 2 blanks

51

long real r"ight justified in a field of 22 characters

and followed by 2 blanks

complex two adjacent real ~ields

two adjacent long real fields long complex

logical right justified in a field of 6 characters

followed by 2 blanks

. string

bits

placed in a field exactly the length of

the string

same as real

The first field transmitted begins the output stream; thereafter, each

field is normally placed immediately following the most recent previously

transmitted field. If, however, the field corresponding to an item

cannot be placed entirely within a non-empty record, that item is made the

first field of the next record. In addition, there exist procedures to

cause the field corresponding to an item to begin a new record. Each

page group is automatically terminated after 60 records; procedures

are provided for causing earlier termination.

7.8.2. Read Statements

Implicit declaration headings:

procedure READ (11 resuit Xl;

procedure READON (11 result Xl;

(where n > = 1)

; 1 re suIt X);
n n

; 1 re sul t X);
. n n

Both READ and READON designate free field input procedures. Input

records are scanned as described in 7.8.1. Values on input records are

read, matched with the variables of the actual parameter list in order

of appearance, and assigned to the corresponding variables. The simple

52

type of each data item must be assignment compatible with the simple

type of the corresponding variable. For each READ statement, scanning

for the first data item is caused to begin with the first character of

a record; for a READON statement, scanning continues from the previous

point of termination as determined by prior use of READ, READON, or

IOCONTROL (cf. 7.8 •. 1 .•).

Implicit declaration heading:

procedure READCARD (string(80) result Xl' ••• , Xn);

(where n > = 1)

READCARD deSignates a procedure transmitting 80 character input

records without analysis. For each variable of the actual parameter list,

the scanning process is set to begin at the first character of a record

(by fetching a new record if necessary), all 80 characters of that record

are assigned to the corresponding string variable, and subsequent 'input

scanning is set to begin at the first character of the next sequential

record.

7.8.3. Write Statements

Implicit declaration headings:

procedure WRITE (11 value Xl; ••• ; 1n value Xn);

procedure WRITEON (11 value Xl; ••• ; 1n value Xn);

(where n > = 1)

WRITE and WRITEON designate output procedures with automatic format

conversion. Values of expressions of the-actual parameter list are converted

to character fields which are assembled into output records in order of

appearance (cf. 7.8.1.). For each WRITE statement, the field corresponding

53

to the first value is caused to begin an output record; for a WRITEON

statement, assembly continues from the previous point of tennination.

7.8.4. Control Statements

Implicit declaration heading:

procedure IOCONTROL (integer value Xl' ••• , Xn);

(where n > = 1)

IOCONTROL designates a procedure which affects the state of the

input/output system. Argument values with defined effect are listed below;

other values currently have no effect but are explicitly made available

for local use or future expansion.

Value

1

2

3

7 · 8. 5. Examples

READ (X, A(l))

Action (cf. 7.8.1.)

Subsequent input" scanning is set to begin

with the first character of a record.

Subsequent output assembly is set to begin

with the first field of a record.

Subsequent output assembly is set to begin

with the first field of a record which, in

turn, is caused to begin a new output page.

READCARD (S, LINE (10 \ 80)·)

WRITE ("AVERAGE =n, SUMjN)

WRITEON (X(l,J))

IOCONTROL (2)

54

8. STANDARD FUNCTIONS AND PREDECLARED IDENTIFIERS

The ALGOL W environment includes declarations and initialization of

certain procedures and variables which supplement the language facilities

previously described. Such declarations and initialization are considered

to be included in a block which encloses each ALGOL W program (with

terminating period eliminated). The corresponding identifiers are said

to be predeclared.

8.1. Standard Transfer Functions

Certain functions for conversion of values from one simple type

to another are provided. These functions are predeclared; the

corresponding implicit declaration he~dings are listed below:

integer procedure TRUNCATE (real value X);

comment the integer i such that

\ i \ < = \ X \ < \ i \ + 1 and i *X > = 0

integer procedure ENTIER (real value X);

comment the integer i such that

i < = X< i + 1 ;

integer procedure ROUND (real value X);

comment the value of the integer expression

if X < 0 then TRUNCATE(X-O.5) else TRUNCATE(X+O.5)

real procedure ROUNDrOREAL (long. real value X);
comment the properly rounded value of X

real procedure REALPART (complex value Z);
comment the real component of Z ;

long real procedure LONGREALPART (long complex value Z);
~ procedure IMAGPART (complex value Z);

comment the imaginary component of Z ;
long real procedure LONGIMAGPART (long complex value Z);

55

complex procedure IMAG (real value X);

comment the complex number a + Xi

long complex procedure LONGIMAG (long ~ value X);

logical procedure ODD (integer value N);

comment the logical value

N~2=1;

bits procedure BITSTRING (integer value N);

comment two's complement representation of N

integer procedure NUMBER (bits value X);

comment integer with two's complement representation X

integer procedure DECODE (string(l) value S);

comment numeric code for the character S (cf. Appendix 1)

string(l) procedure CODE (integer value N);

comment character with numeric code (cf. Appendix 1) given by

abs eN ~ 256)

In the following comments, the significance of characters in the prototype

formats is as follows:

D decimal digit in a mantissa or integer

E decimal digit in an exponent

A hexadecimal digit in a mantissa or integer

B hexadecimal digit in an exponent

+ sign (blank for positive mantissa or integer)

LI blank

Each exponent is unbiased. Decimal exponents represent powers of 10;

hexadecimal exponents represent powers of 16. Each mantissa (except 0)

represents a normalized fraction less than one. Leading zeroes are not

suppressed.

56

string(12) procedure BASEIO (real value X);

comment string encoding of X with format

u!EE!DDDDDDD ;

string(12) procedure BASE16 (real value X);

comment string encoding of X with format

LU!BB-:AAAAAA ;
string(20) procedure LONGBASEIO (long ~ value X);

comment string encoding of X with format

u! EE!DDDDDDDDDDDDDDD ;

string(20) procedure LONGBASE16 (long ~ value X);

comment string encoding of X with format

u..a!BB!AAAAAA.A.AAAJl. ;
string(12) procedure INTBASEIO (integer value N);

comment string encoding of N with format

u!DDDDDDDDDD ;

string(12) procedure INTBASE16 (integer value N);

comment unsigned, two1s complement string encoding of N with format

u..u..fAAMAAA ;

8.2. Standard Functions of Analysis

The following functions of analysis are provided in the system

environment. In some cases, they are partial functions; action for

arguments outside of the allowed domain is described in 8.5. These

functions are predeclared; the corresponding implicit declaration headings

are listed below:

~ procedure SQRT (real value X);

comment the positive square root of X,

domain : X > = 0 ;

long ~ procedure LONGSQ,RT (long ~ value X);

comment the positive square root of X,

domain : X > = 0 ;

57

complex procedure COMPLEXSQ,Rr (complex value Z);
comment principal square root of Z ;

long complex procedure LONGCOMPLEXSQRT (long complex value Z);

comment principal square root of Z ;

~ procedure .EXP (real value X);

comment e ** X ,

domain: X < 174.67 ;
long ~ procedure LONGEXP (long ~ value X);

comment e ** X ,

domain: X < 174.67 ;
~ procedure LN (real value X);

comment logarithm of X to ,the base e,

domain : X > 0 ;

long real procedure LONGLN (real value X);

comment logarithm of X to the base e,

domain : X > 0 ;

real procedure LOG (real value X);

comment logarithm of X to the base 10,
domain : X > 0 ;

long ~ procedure LONGLOG (long ~ value X);

comment logarithm of X to the base 10,

domain : X > 0 ;

real procedure SIN (real value X);

comment sine of X (radians),

domain : -823550 < X < 823550
long real procedure LONG-SIN (long real va lue X);

comment sine of X (radians),

domain: -3.537'+15 < X < 3.537'+15
real procedure COS (real value X);

comment cosine of X (radians)

domain : -823550 < X < 823550
long real procedure LONGCOS (long real value X);

comment cosine of X (radians),

domain: -3.537'+15 < X < 3.537'+15 ;

real procedure ARCTAN (~ value X);

comment arctangent (radians) of X,

range : -n/2 < ARCTAN(X) < n/2 ;

long real procedure LONGARCTAN (long real ~ X);

comment arctangent (radians) of X,

range : -n/2 < LONGARCTAN(X) < n/2 ;

8.3. Time Function

The ALGOL W environment includes a clock which measures elapsed

time since the beginning of program execution. The resolution of that

clock is 1/60 second. A predeclared runc~ion is provided for reading

the clock.

integer procedure TIME (integer value N);

comment returns elapsed time, in hundredths of a minute if N=O,

in sixtieths of a second otherwise;

-8.4. Predeclared Variables

The following variables are to be considered declared and initialized

by assignment in the conceptual block enclosing the entire ALGOL W program.

The values indicated for real and long real quantities are to be understood

as decimal approximations'to the actual machine-format values provided.

integer INTFIELDSIZE;

comment initialized to 14 ,
controls output field size for integers (cf. 7.8.1.);

integer MAXINTEGER;

comment initialized to 2147483647 ,
the maximum positive integer allowed by the implementation;

59

real EPSILON;

comment initialized to 9.536743' -07 ,
the largest positive real number E provided by the

implementation such that

1 + E = 1

long real LONGEPSI10N;

comment initialized to 2.22044604925031' ·-161 ,

the largest positive long real number E provided by

the implementation such that

l+E=l;

long real MAXREA1;

comment initialized to 7.23700557733226'+751 ,

the largest positive long real number provided by the

implementation;

long rea 1 PI;

comment initialized to 3.141592653589791

8.5. Exceptional Conditions

The facilities described below are provided in ALG01 W to allow

detection and control of certain exceptional conditions arising in

the evaluation of arithmetic expressions and standard functions.

Implicit declarations:

record EXCEPTION (logical XCPNOTED; integer XCP1IMIT, XCPACTION;

logical XCPMARK; string(64) XCPMSG);

reference (EXCEPTION)

OVFL, UNF1, DIVZERO,

INTOVF1, INTDIVZERO,

SQ,RTERR, EXPERR, IN10GERR, SINCOSERR

60

Associated with each exceptional condition which can be processed

is a predeclared reference variable to which references to records of

the class EXCEPTION can be assigned. Fields of such records control the

processing of exceptions. The association between conditions and

reference variables is as follows:

Reference Variable

OVFL

UNFL

DIVZERO

INTOVFL

INTDIVZERO

SQ,RTERR

EXPERR

INLOGERR

SINCOSERR

Conditions

real, long real, complex, long

complex (exponent) overflow

real, long real, complex, long

complex (exponent) underflow

real, long real, complex, long

complex division by zero

integer overflow

integer division by zero

negative argument for SQ,RT, LONGSQRT

argument ,?f EXP, LONGEXP out of

domain (cf. 8.2.)

argument of LN, LOG, LONGLN,

LONGLOG out of domain (cf. 8.2.)

argument of SIN, COS, LONGS IN,

LONGCOS out of domain (cf. 8.2.)

When one of the conditions listed above is detected, the corresponding

reference variable is interrogated, and one of the alternatives described

below is chosen.

If the value of the reference variable interrogated is null, the

condition is ignored and execution of the ADGOL W program continues.

In such situations, a value of 0 is returned as the value of a standard

61

function. For other condition, the result is that provided by the

underlying IBM Systern(360 hardwareg/. In determining such a result, it

is to be noted that in those cases in which the detection of exceptional

conditions can be inhibited at the hardware level, namely integer overflow

and exponent underflow, detection is so inhibited when the corresponding

reference is NULL.

If the value of the reference variable interrogated is not NULL,

the fields of the record designated by that reference are interrogated,

and processing action is that described by the algorithm given below in

the form of an extended ALGOL W procedure. Identifiers in lower case

represent quantities which transcen~ the ALGOL W language; they are

explained subsequently.

procedure PROCESS EXCEPT ION (reference(EXCEPTION) value CONDITION);

begin

XCPNOTED(CONDITION) :=~;

XCPLIMIT(CONDITION) := XCPLIMIT(CONDITION) - 1;

if (XCPLIMIT(CONDITION) < 0) ~ XCPMARK(CONDITION) then

WRITE("***** EXCEPI'ION NEAR CARD nnnn - It, XC PMS G (CONDITION)) ;

if XCPLIMIT(CONDITION) < 0 then endexecution else

if integercondition ~

resultant := default else

resultant := if XCPACTION(CONDITION) = 1 then adjustment else

if XCPACTION(CONDITION) 2 then OL else

default

end PROCESSEXCEPTION

This procedure is invoked with the value of the reference variable

appropriate to the condition as actual parameter. The significance of

the special identifiers used is as follows:

g;IBM System/360 Principles of Operation, IBM Systems Library, Form A22-682l

62

nnnn

endexecution

integercondition

default

resultant

adjustment

approximate li:n.e number of the source code

which was being executed when the exceptional

condition was detected'

procedure to 'terminate execution of the ALGOL W

program

logical value which is true if, and only if,

the condition being' proces'sed is integer overflow

or integer division by zero

result of the operation or function provided

by the ALGOL Wsystem prior to invocation of

the exception processing procedure'; this is

defined by the hardware~ for arithmetic

operations and i-s the value 0 for standard

functions

value to be returned as the result of the

arithmetic evaluation or standard function

invocation

adjusted result of the operation according to

the following table

Condition

exponent overflow,

division by zero

exponent underflow

Adju&tment

if default < a then

-~L else MAXREAL

OL

argument X out of domain for :

SQRT, LONGSQRT SQRT(abs X), LONGSQRT Cabs X)

EXP, LONGEXP ~L

LN, LONGLN -MAXREAL

LOG, LONG LOG -MAXREAL

SIN, LONGS IN OL

COS, LONGCOS OL

~IBM System/360 Principles of Operation, IBM Systems Library, Form A22-6~2l

The reference variable UNFL is initialized by the system to NULL.

All other reference variables listed above are initialized to references

to a special record which is accessible only by the system. Interrogation

of this record by the procedure described above has the effect of causing

the ALGOL W program to be terminated with a message indicating the type

of exception. Any other attempt to access any field of this record will

result in a reference error.

64

APPENDIX 1.- CHARACTER ENCODINGS

The following table presents the correspondence between printable

string characters and their (EBCDIC) integer encodings. This encoding

.. establishes the: ordering relation on characters and thus on strings.

Those characters in parentheses are not a'vailab1e on the line printer.

Integer codes no~ listed below do not correspond to any established

character.

64 space 129 (a) 193 A 240 0

.74 (p) 130 (b) 194 B 241 1

75 131 (c) 195 C 242 2

76 < 132 (d) 196 D 243 3

77 (133 (e) 197 E 244 4

78 + 134 .(r) 198 F 245 5

79 135 (g) 199 G 246 6

80 & 136 (h) 200 H 247 7
90 (!) 137 (i) 201 I 248 8

91 $ 145 (j) 209 J 249 9
92 * 146 (k) 210 K

93) 147 (1) 211 L

94 148 (m) 212 M

95 -, 149 (n) 213 N

96 150 (0) . 214 0

97 / 151 (p) 215 p

107 152 (q) 216 Q

108 % 153 (r) 217 R

109 162 (s) 226 S

110 > 163 (t) 227 T

III ? 164 (u) 228 u
122 165. (v) 229 V

123 =If 166 (w) 230 w
124 @ 167 (x) 231 X

125 168 (y) 232 Y

126 = 169 (z) 233 z
12"(,.

65

A~GQL W

ERROR .. MESSAGES

by

Henry .. R_~. Bauer
Sheldon Becker

Susan L. Graham

66

ALGOL W ERROR MESSAGES

I. PASS ONE MESSAGES

All Pass One messages appear on the first page following the program

listing. The message format is

CARD NO. (number) -- (message)

The (number) corresponds to the card number on which the error

was found. The (message) is one of those listed below.

INCORRECT SPECIFTN

INCORRECT CONSTANT

MISSING END

MISSING BEGIN

MISSING)

ILLEGAL CHARACTER

MISSING FINAL .

STRING INGTH ERROR

BITS LENGTH ERROR

MISSING (

TABLE OVERFLOW

synt~ctic entity of a declaration is

incorrect, e.g. variable string length.

syntax error in number or bitstring.

an END needed to close block.

an attempt to close outer block

before end of code.

) is needed.

a character, not i~ a string, is

unrecognizable.

program must be terminated by a. period.

string is of 0 length or length

greater than 256 ..

bits constant denotes no bits or

more than 32 bits.

(is needed.

terminating error - a compile time

table has exceeded its bounds.

67

TOO MANY ERRORS the ·maxiJmml··n\jlilJe~ of' errors for ·Pasa

One records has been reached •. Com

pilation' continue's but mesaases for

succeeding errors detected by Pasa

One are suppresse,d.

ID LENGTH> 256 more than 256 characters in'identifier. . .
. See also discussion of PROGRAM CHECK in IV.,

II. PASS TWO MESSAGES

The format of Pass Two error message's is'

(message), CARD NUMBER IS' (number). CURRENT SYMBOL IS' (1n~oming

symbol)

If a $STACK card is included .anywhere in the source deck, the

.SYNTAX ERROR message is followed by

STACK CONTAINS:

(beginning of file)

<symbol-l>

<symbol-n.'> . (top of stac;k)

The symbol names may differ somewhat from the metasymbols of

the syntax.

If any Pass One or Pass Two errors occur, compilation is termi-

nated at the end of Pass Two.

INCORRECT SI..MPLE TYPE <numbe:o <simple type> of entity is improper

as used. Number indicates explana

tion on list of simpl~ type errors.

68

ARRAY USED INCORRECTLY

IDENTIFIER MUST BE RECORD
CrASS ID

MISMATCHED PARAMTER

MULTIPLY-DEFINED SYMBOL <iden
tifier>

UNDEFINED SYMBOL <identifier>

INCORRECT NUMBER OF ACTUAL
PARAMETERS

INCORRECT DIMENSION

DATA AREA EXCEEDED

INCORRECT NUMBER OF FIELDS

INCOMPATIBLE STRING LENGTH

INCOMPATIBLE REFERENCES

BLOCKS NESTED TOO DEEP

REFERENCE MUST REFER TO
RECORD C IASS

EXPRESSION MISSING IN
PROCEDURE BODY

a variable must be used here.

reference declaration is incorrect.

formal parameter does not correspond

to actual parameter.

symbol defined more than once in a

block

symbol is not declared or defined.

the number of actual parameters to

a procedure does not equal the number

of f?rmal parameters declared for

the procedure.

the array has appeared previously

with a different number of dimensions.

too many declarations in the block.

the number of fields specified in a

record designator does not equal the

number of fields the declaration of

the record indicates.

length of assigned string is greater

than length of string assigned to.

record class bindings are inconsistent.

blocks are nested more than 7 levels.

reference must be bound to a record

class.

body of typed procedure must end

with an expression.

RESULT PARAMETER MUST BE
<T VAP:>

PROCEDURE HEAD lACKS SIMPLE
TYPE

<SYMBOL-I> UNREIATED TO
<SYMBOL-2>

SYNTAX ERROR

the actual parameter corresponding

to a result formal parameter must

be a <r VARIABLE>.

proper procedure ends with an

expression

the symbol\at' the top of the stack

(<SYMBOL-I» should not be followed

by the incoming symbol (<SYMBOL-2».

construction violates the rules of

the grammar. The input string is

skipped until the next END, H;",
BEGIN, or the end of the program.

More than one error me s sage may" be

generated for a single syntax error.

Simple Type Errors

25. Upper and lower bounds must be integer.

29. Upper and lower bounds must be integer.

32. Simple type of procedure and simple type of expression in

procedure body do not agree.

71. Substring index must be integer.

73. Simple variable preceding 1(1 must be string.

74. Substring length must be integer.

76. Field index must be reference or recor.d class identifier.

77. Array subscript must be integer.

81. Array subscript must be integer.

84. Actual parameters and formal parameters do not agree.

88. Actual parameters and formal parameters do not agree.

93. Expressions in if expression do not agree.

94. Expressions in ~ expression do not agree.

95. Expression in if clause must be logical.

70

98. Expressions in ~ expression do not agree.

99. Expression in ~ clause must be integer.

101. Arguments of = or -,= do not agree.

102. Arguments of relational operators must be integer, ~, or

long real.

103. Argument before is must be reference.

106. Argument of unary + must be arithmetic.

107. Argument of unary - must be arithmetic.

108. Arguments of + must be arithmetic.

109. Arguments of - must be arithmetic.

110. Arguments of or must be both logical or both bits~

112. Record field must be assignment compatible with declaration.

117. Arguments of * must be arithmetic.

118. Arguments of / must be arithmetic.

119. Arguments of div must be integer.

120. Arguments of rem must be integer.

121. Arguments of and must be both logical or both bits.

123. Argument of -, must be logical or bits.

125. Exponent or shift quantity must be integer; expression to be

shifted must be bits.

126. Shift quantity must be integer; expression to be shifted must be

bits.

130. Actual parameter of standard function has incorrect simple type.

134. Argument of long must be integer, real, or complex.

135. Argument of short must be .!ong real or long complex.

136. Argument of abs must be arithmetic.

148. Record field must be aS,signment compatible with declaration.

181. Expression is not assignment compatible with variable •.

182. Result of'assignment cannot be assigned to variable.

188. Limit expression in for clause must be integer.

190. Expression in for list must be integer.

191. As s ignment to for variable must be integer.,

193. Expression in for list must be integer.

195. Step element must be integer.

197. Expression in while clause must be logical.

71

III. PASS THREE ERROR MESSAGES

The form of Pass Three error messages is

***** (message)
***** NEAR CARD (number)

The number indicates the number of the card near which the error

occurred. The message may be

PROGRAM SEGMENT OVERFLOW

COMPILER STACK OVERFLOW

the amount of code generated for a

procedure exceeds 8192 bytes.

constructs nested too deeply.

CONSTANT POINTER TABLE TOO LARGE too many. literals appear in a

procedure.

BLOCKS NESTED TOO DEEPLY

DATA SEGMENT OVERFLOW

TOO MANY PROCEDURES

CARD TABLE OVERFLOW

IV. RUN TIME ERROR MESSAGES

parameters in procedure call are nested

too deeply; procedure calls in block

nested too deeply.

too many variables declared in the

block.

the program contains too many procedure

declarations; the number of procedures

allowed depends on the size of each

procedure and cannot exceed 52.

density of information on (non-blank

and non-comment) source cards is too low.

The form of run error messages is

RUN ERROR NEAR CARD (number) - (message)

SUBSTRING INDEXING substring selected not within named string.

CASE SELECTION INDEXING index of case statement or case expression

is less than 1 or greater than number of cases.

ARRAY SUBSCRIPrING array subscript not within declared bounds.

72

· LOWER BOUND > UPJ?ER BOUND

ARRAY TOO LARGE

ASSIGNMENT TO NAME PARAMETER.

DATA AREA OVERFLOW

ACTUAL-FORMAL PARAMETER MISMATCH
IN FORMAL PROCEDURE CALL

RECOR]) STORAGE AREA OVERFLOW

low~r bound is greater than upper

bound in array declaration.

The (n-l) dimensional array obtained

by deleting the right-most bound-

pair of the array being declared has

too many elementso The maximum number

of elements allowed in this (n-l)

dimensional array is given below,

according to the declared type of

the arrayo

logical, string

integer, real

bits, reference

long real, complex

long complex

maximum :/1= of .
elements in
first (n-l)
dimensions

32767

8191
8191
4095

2047

ass'ignment to a formal name parameter

whose corr'esponding actual parameter

is an expression, a literal, control

identIfier., or procedure name 0

storage available for program execu

tion has been exceededo

the number of actual parameters in

a formal procedure call is different

from the number of formal parameters

in the called procedure, or the

parameters are not assignment

compatible 0

no more storage exists for records.

73

LENGTH OF STRING INPUT

LOGICAL INPUT

'NUMERICAL INPUT'

REFERENCE INPur

READER EOF

REFERENCE

LINE ESTIMATE EXCEEDED

TIME ESTIMATE EXCEEDED

r/o ERROR

PROGRAM CHECK #nn

string read is not assignment compatible

with corresponding declared string.

quantity corresponding to logical

quantity is not true or false.

numerical input not assignment compatible

with specified quantity.

reference quantities cannot be read.

a system control card has been

encountered during a read request.

the null reference has been used to

address ,a record, or a reference bound

to two or more record classes was used

to address a record class to which it

was not currently pointing.

line estimate on %ALGOL card is

exceeded.

time estimate on %ALGOL card is

exceeded.

see consultant.

se e consultant.

Counts of certain exceptional conditions detected during program

. compilation or execution are maintained. If any of these are non-zero,

they are listed after the post-compilation or post-execution elapsed

time message in the following format:

nnnn PROGRAM CHECK NO xx

The number of times the condition was detected (modulo 10000) is

given by nnnn; the nature of the condition is indicated by xx according

l.r') the following table:

74

08 integer overflow

09 integer division by zero

12 real exponent overflow

13 real exponent underflow

15 real division by zero

This counting is inhibited for integer overflow and exponent

underflow whenever the value of the corresponding reference variaple

is null (cf. LANGUAGE DESCRIPTION, Section 8.5.).

v. OTHER

PRG PSW

COMPILER ERROR

INSUFFICIENT
STORAGE

see consultant.

see consultant.

insuffiCient memory available to complete compilation.

75

NOTES ON NUMBER REPRESENTATION

ON SYSTEM/360

AND RELATIONS TO ALGOL W

by

George E. Forsythe

76

The following notes are intended to give the

student of Computer Science 136 some orientation

into how numbers are represented in the IBM System/360

computers. Because we are using Algol W, some refer

ences are made to that language. However, very little

of what is said here depends on the peculiarities of

Algol W~ and this exposition is mostly applicable to

Fortran or Algol 60 with slight changes in wording.

It will also do for the floating-point numbers and

full-word integers of PL/lo Users of shorter or

longer integers or decimal arithmetic in PL/l will

need more orientation.

77

On IBM's system ,60, the followinsunits of 'information storage

are used:

a)

b)

c)

the ~it, a single a or 1
~

the~, a group of eight consecutive bits

the (short) word, a group of four conseeuti ve byte8~-- , ,

i.e., 32 consecutive Qits

d) the ~~, a group of two, consecutive short worela-

i.e", eight bytes or 64 bits.

For number representation in Algol W the ",ords and Ions words are

the main units of interest ..

INTEGERS.

Integers are stored in (short) words. or the 32 bits of a short

word, one is reserved for the sign ,(0 tor + and 1 for -), leaving

31 bits to represent the magnitude~ A positive or zero integer is

stored in a binary (base 2) representation v Thus 2110 (the subscript

means base 10) is stored as

0000 0000 00000000 0000 0000 0001 0101 0

t
sign bit

To confirm this, note that

21 . =- 2 x. 2
30

+ e.... + Q X 25 + 1 X 2
4, '+ 0 X 23 + ! X 22 + 2 X 21 + .! X 2

0
•

The latgest integer that can be stored in a word is
30,29 1 0 31

2 + 2 + 0 •• + 2 + 2 = 2 - 1 = (2147483647)10 •
, 31

Any attempt to create or store ,an int.eger larger than 2 - 1 will

produce erroneous results, and (unfortunately) the user will not always

be warned of the error 0 (Gee below~)

To save space 1n writing words on paper, each group of four bits

in a word is frequently converted to a single base-16 (hexadecimal)

digit, according to the following code:

base 2 base 16 base 2 base 16

0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 ; 1011 B
0100 ~ .. 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 ·F

Thus A, B, C, D, E, F are used as base-16 representations of the dectmal
numbers 10, 11, 12, 13, 14, 15 respectively. Nevertheless, integers are

stored as base-2 numbers.

Using hexadecimal notation, the decimal number 21 is represented

by

0000001516

Note that 1516 is the base-16 representation of 2110
Negative integers are stored in what is called the "two's canplement

form" . For example, -1 is stored as

1111 1111 1111 1111 1111 1111 1111 1111

= FFFFFFFF16
Also, -21 i$ stored as

1111 1111 1111 1111 1111 1111 illO 1011

= FFFFFFEB16
The representation for -21 is obtained from that for +21 by changing

ever'y 0 to 1 and every 1 to 0, and then adding + 1 in base .. 2 arithmetic

to'the result~ Similarly for any negative integerse Every negative

integer has 1 as its sign bit. The smallest integer storable in
31 System/360 is -2 = -21h7~·8;648 , and is represented by 8000000016

Another way to think of the representation of negative numbers is

to consider a 32-place binary accumulating register (the base-2 equivalent

of the decimal accumulating register in a desk calculating machine).

If one starts with all zeros in this register, one gets the representation

for -1 by subtracting 1. The process requires a "borrow" to propagate

to the left all the way across the register, leaving all ones, just as

on a decimal accumulator this would leave all nines. Continued sub

traction will give the representations for -2, -3, .0.

79

From the point of view of an accumulator we can also see what

happens when we ·create a positive number larger than 231 -1. For

example, ~f we add 1 to ~l~l, the resulting carry will go all the

way into the sign bit, leaving a sign bit of 1 with all other digits

zero. But this is the representation of _~l. Thus the attempt to

produce positive numbers in the range from ~l 'to approximately ~2
will yield a negative sign bit. Consequently, positive integers that

"overflow" into this range are sensed as negative by System/360. I The

mechanisms of AIGOL W for detecting integer overflow (not described in

this document) can be used to detect additions, subtractions, or

multiplications that produce integers outside the range ,from _231 to

~l_l (so-called integer overflow). Attempts to divide an integer by 0

will yield an error message and an ir~elevant quotient and remainder.

The behavior of System/360 on integer overflow is quite different

from the Burroughs B5500. In the latter machine, any integer that

overflows is replaced by a rounded floating-point number. There are

advantages to either approach to integer overflow, depending on the

application.

If the user suspects that integers in his program are getting

anywhere near 109, he should convert them to double-precision floating

point numbers by use of the Algol W operator LONG. Conversion to single~

precision floating-point numbers may lose some precision.

The most important thing for a scientific user to remember is that

integers in the range _231 to ~l_l are stored without any approximation.

Moreover, operations on integers (adding, subtracting, multiplying) are

done without any error, so long as all intermediate and final results

are integers between ~231 ana ~l~l. It is perhaps easier to remember

as safe the interval from -2,X 109 to 2 X 109 , obtained from the

useful approximation 210 • 103

80

The operations of di vision without remainder" (called DIV ln, A1col
W) and taking the remainder on division (called REM in Algol W) always

give integer answersu, If the divisor is 0, an erI'or message is given.

In Algol W.two operations on integers give results that are, not

stored as int.egers--namely / and *it

FLOATING-POINT NUMBERS

Numbers in many scientific computations will gravin magnitude

well beyond the J:'~ge of integers described above" To provide for

this, System/360 and most scientific computers' have a second way to

represent numbers--the so-called floating-point representation 0

The significance of the name "floating--point" is that the radix point

--for example, the dectmal point in base-IO numbers--is permitted to

float to the right or left ,9 t.hus permitting scaling of numbers by

va~ious pOl-rers of the radix ~ Although a decimal point that has floated

off to !~he left will produce a number writ.-cen like 0,,001345, the

numbers are actually represented in a form ~loser to what is often

called scientific notation} h.ere l~345XlO-3
In System/360, floating- Jint numbers !:lIe alway~ represented in

base-16 notation; ioe. ,l the!! Ix or number base,~ 160 This permits

us to write numbers in abbrevi ,+,ed form (as we did with integers earlier).

More important" the use of' base··16 conforms with the hardware arithmetic

processes in which shifting is done four bit.s at a time to speed up the

ope~ationsQ The speed-up is achieved at a slight cost in precision,

as .1b learned from detailed error analyses which we cannot go into here.

We first consider the floating-point representation of numbers by

a single word of 32 bitso This is the so-called single-precision

or short real numb'er, the number of "type REAL in Algol W 0 The 32 bits

of a word are numbered fram 0 to 31J from left to right, just to identity

them~ In floating"point representat.ion t.he left-hand eight bits (bits 0

to 7, equivalent to two hexadecimal digit.s) are devoted to the sign of

the number and the exponent of 16 'associated wi t.h the number. The right

hand 24 bit,s (hits 8to 31, eq'ui valent to six hexadecimal digits)

81

represent six significant hexadec~al digit8 (~ 81gnif1cand) ot the

number.

As with integers, the sign· of the number is denoted by bit 0,

w:tth 0 repr·esenting + and 1 representing - •

Bits 1 to 1 give the binary (base-2) representation ot a nOD

negative integer in the range 010 to 12110, inclusive. This in··

teger is called th~ biased exponent, for reasons now to be explained.

If this integer were taken directly as the exponent, we would have no

negative exponents, and our range of floating-'point numbers could not
-25 include such numbers a8 16 • It is desirabl~ to have an exponent

range that is approximately symmetric about zero. In SysteaV360 one

obtains the ~!xponent of the ,floating-point number by, subtracting

64 trom the biased exponent represented by bits 1 to 1. As. result,

the actual exponents ranse fran ·'64 to 63.

~le 24 bits 8 to 31 ot a number are regarded as six h8xadecimal

digits with a hexadecimal point at the lett-hand end. It the tloatlD1-

point number zero i8 beins represented, all the hexadecmal Usltl are
zero, at are all the other bits. Otherwise, at least one ot'the hexa

decimal digits must be nonzero. A floating-point number is said to be

normalized if the left-hand hexadecimal digit (the most' sign1fican:t

digit) of the significand 1s nonzero. In System/360 the floating-point

np"lbers are ordinarily normalized, and we will not consider any other

forms 0

We now give the floating-point representations of same .ample

numbl';.~'s. As w'e said before, the number zero is represented by 32 zero

bits, i .. e., b:! eight 0 hexadecimal digits. Thus zero is represented

by the same 'Tords in 'floating-point or integer form. No other number

has this property.

The number 1.0 is represented by the word

Si~bit
0,100 0001"

biased
exponent

~0001 0000 0000 0000 0000 0000,

s18n1t1cand

82

To check this, note that the sign is 0 (representing +). The bia.ed

exponent is 1000001
2

or ,6510 0 Subtracting ,6410 yield. 1 as the

true exponent. The hexadecimal significand is 10000°16 • Putting a

hexadecimal point at the left end gives the hexadecimal fraction

.10000016 ' which equals 1/16. ! Thus the above word reprelents
+ 1/16 times 161 , or 1.0. . '

To save writing, the above word is ordinarily written in the

hexadecimal form. 41100000. While op.e gradually learns to recognize

some floating-point numbers in this ,for.m, the author knows no easy way
to convert such a hexadecimal word into a real number. One .just haa

to take the right-hand six hexadecimal digit$, and prefix a hexadecimal

point. Then one examines the left-hand two-hexadecimal-digit number

(here 41) .. , If this is less than 8016 , the floating-point number ia

positive and one gets the true exponent by subtracting 4016 = 6410 .'

If the left-hand two-hexadecimal-digit number is 8016 or larger, the

floating-point number is negative, and one gets the true exponen~ by

subtracting C016 = 8016 + 4016 = 19210 and affixing a minus sign.

Some facility with hexadecimal arithmetic is required, if one has to

deal with such numbers.

In this presentation, we have considered the radical point to be

at the left of the six significant hexadecimal digits, and regarded
"-

the exponent as biased high by 6410 • As an alternative', the reader

may prefer to place the radix point just to the right of the most

significant digit of the significand, and regard the exponent as 'bias~d

high by 6510 • This brings the significand closer to usual scientific

notation but, of course, requires a trickier conversion to get the

true exponent.. The fact that either interpretation (and many others)

are possible shows that really the radical point is just in the eye of

the beholder, and not in the computer!

Several examples of floating-point numbers are now given in hexa

decimal notation, with the confirmation left to the reader.

decimal f'loat~-~oint

01t0 = 00000000
litO = 41100000
0.0625 = 40100000

16.0 = 42100000
256.0 43100000
-1.0 ::- C1100000

-16.0 = C2100000
3.5 = 41380000

The largest floating-point number is 7FFFFFFF, representing

.FFFFFF ~ 163F or (1 - 16-6) x 166
.3 ~ 7,.23 x 1075 • (Here 10 and 16 .

denote decimal numbers~)

The smallest positive normalized ~loating-point number is 00100000,

representing

Negatives of these two numbers can also be represented, and are

the eXtremes in magnitude of representable negative numbers.

Very few numbers can be exactly represented with six significant

decimal digits. (Exercise: Which ones can?) For example, 1/3 =.33333310
only approximately. In the same way, very few numbers can be exactly

represented with six significant nexadecimal digitso (Exercis~:

Which ones can?) For example, ~/3 = .55555516 only approximately.

Moreover, some numbers that are exactly representable in decimal are

only approximately representable in hexadecimal; for example,

1/10 == ,.10000010 e~actly; but

1/10 ::: .19999A16 only approximately.,

Thus round-off error enters into the representation of most

floating-point numbers on system/360, and the round off differs from

that with decimal numbers. This can easily give rise to unexpected

results. For example, if the above number u19999A16 (~ 0.110) is

multipli'ed by. the integer 10010 == 6416 ,one gets not A.0000016 =

10.010 ' but instead Au 0000316 , as a cumulative effect of the slightly·

high approximation to 0.110 . And A.0000316 rounds to 10.00002
10

on conversion to decimal.

The precision of a single-precision hexadecimal number is roughly

10-7 • One can think of this as being crudely equivalent to seven sig-

84

niticant dectmal digits~

Not only do errors appear in the repreientation of ~umbers inside

Syetem{360 (or any computer), but they arise" from arithmetic qperatianl

performed on numbers" For example, the product of two tloating-p.Oint

nWDbers may have up to 12 significant hexadectmal digits. When the

product is stored as a single-precision floating-point number, it must

be rounded to six hexadecimal digits~ This introduces an error, even"

though the factors might have been exact.

The story of round off' and its effect on arithmetic is a coa;»lex·

and interesting one~ Only within the current decade have there "begun

to appear even partly satisfactory methods ,to analyze round o~f, and

we cannot go into the matter now. Saine idea of this is obtained in

Computer Science l37~

When an Algol W program assigns decimal numbers or integer values

to variables of type REAL, these are immediat,ely converted to he~adectmal

floating-point numbers, with (usually) a round-off error.. When one

outputs numbers from the computer in Algol Wi they are converted to

decimal 0 Both conversions are done as well as possible, but introduce

changes in the numbers ~hat the ""~ogrammer must be aware of 0 And, of

course, all intermediate opera'" ions introdu',~e f'lrther round ofta and

p6ssibleerrors 0 It is unthin~c,:able to do the analysis necessary to

counteract these errors and get the true answer to the problemo If the

user wishes answers uncontaminated by round off, he should use integers

a~d integer arithmetic," and be prepared to guard against overflow 0

Fortunately most users can accept an indeterminate amount of

round off in their numbers, provided they have some assurance that

round off is not growing out of control" It is t.he business of numerical

analysts to provide algorithms whose round-off properties are reasonably

under control. This has been well accomplished in same areas, and hardly

at all in others.

DOUBLE PRECISION

The precision of single-precision floating-point numbers, seems

very adequate for most scientific and engineeri~g purpose.,being at the
level. of seven decimals 0 However, a considerable number of computations.

require stUl more precision i.n th.~ middle sanewhere) just in order to

came out With ordinar,y accuracy at the end. As a r~sult, System/360

haa provided an easy mechanism for getting a great deal more precision

in the computations. For this pu-~ose a double word of 64 bits is used

to store a floating-point number of so-called double pracision or .~

precision. In this representation, the sign and biased exponent are

found in the first word of the double-wo~d, with precisely the same

interpretation as with single-precision floating-point numberso The

second word of the double-word consists of eight hexadecinlal digits

immediately following the Six found in the first. word.. There is no

sign or exponent in the second word. T.nu.s a double··yord represents

a signed floating hexadecimal number '~ith 14 significant hexadecimal

.digitl. As before, nonzero numbers are norm.alized so that the most

significant digit of the 14 is nonzero ..

Examples:

long significand

1.OL = 41'100000 OOOOOOOa

O.lL = 40199999 9999999A

There is a full set of arithmetic operations for both single

and double-precision operations ,. Very crudely, for an example, single

precision multiplic~tion of single-precision fac~ors tak~B around 4 micro

seconds, while that for double-precision factors takee: around 7 micro

seconds. For modest problems the extra time is completely lost in the

several seconds of time lost to systems and compilers, and the use of

double-precision is strongly recommended for all scientific computation.

Normally the only possible disadvantage of using long precision is the

doubling in the amount of storage needed. If one has arrays with tens

of thousands of elements, the extra storage may be very costly. other

wise, it should not matter6
-11+ -17 Since 16 ~ 10 ,the. double-precision numbers are crudely

equivalent in precision tol7 significant decimal digits.

For a machine with the speed ot the 360/67, a number precision of

86

six hexadecimal digits (roughly se'iien der:ilnal.s) is considered very low,

while a precision of 14 hexadecimal digi.ts (roughly 11 decimals) ia'

very adequate"

'r:t,;e floating-point arithmetic

hardware ot System/360 provides the possibIlity ot detecting 1rilen

numbers have gone outside the ex.ponent range stated above.. 'lbe reader

may think that a range fran .r,(t.l.~hly 10'''79 t.o 1075 r;Jno'u.ld cover all

reasonable canputations" Whil,e exponent ov~rtlow and 'exponent Wldertlow

are not very cODlllon, they can be 'the cause of very elusive errors"

The evaluation ot a determinant is a (~ommon computation, and tor a matrix

, of order 40 is quite rapi~y done (if' you know' how)" If the matrix

elements are of the quite reasonable magnit'tlde 10'"'"3.:> the magnitude ot

the determinant will be no larger than I"o'ughly 10-90 (and probably'

much smaller), well below' the range of' representable floating-point

numbers" Such J.J."oblems are a frequent SOUl'ce of exponent undertlow 0

We shall not discuss here the me·;hailisms· of Algol W for detecting

exponent overflow and underflow, for theae should be Wl'itten up in

, another place" Even without these.~ we see tha.t floating-point numbers

behave well tor numbers tha:t,. a1."F" at lea.~t :1066 times as large as the

largest. integer in the system ~ Hence 1; ~e c)f fioating· ·point numbers

meets almost all the problems:&.ised b'y integer ,.,verflow (J And,P of

course;! it permits the use of a large set of' rational n'Umber8~ which

do not even enter the integer systemo

ALGOL W REALS AND LONG REALS

The Algol' W manual tells how to represent l"eal variables and

numbers to t.ake advantage of both single-and double-precisiono The

purp<.>se of this section is to' bring this information into rapport with

the hardware representation of numberso If a variable X is declared

REAL,'! one word is set aside for ita values" and it will be stored in

single-precision floating-point rom 0 If a variable is declared t.o be

LONG RE~j a double-word is set asi.de to hold its values;. and it wi,ll

be stored in double-precision for.mv

If a number is written in one of the decimal forms without an L

at the end, it will be chopped to single-precision, no matter how many

digits are set down. Thus 3.1415926535897932 will be immediately

chopp"ed to single-precision in the program, and all the superfluous

digits are lost at~. Thus the assignment statement

XX := 3.1415926535897932

will result in the double-word XX receiving an approximation to rr

in the more significant half, and all zeros in the less significant

half! Thus one gets a precision of only approximately seven decimals

for the pain of writing 17, and this may well contaminate all the rest

of the computation.

If one wants XX to be precise to appr9ximately full double precision,

one must write the statement in the form

XX : = 3.1415926535897932L •

With the declaration REAL X, the statement

X : = 3.l4l5926535897932L

will result in X having a single-precision approximation to n , as

the long representation of 11 is chopped upon assignment to X.

The reader should now go back and examine the specifications of

the types of various arithmetic expressions, as stated on pages 9, 10,

11 of the Algol W Notes, and on pp. 25, 26 of the Language Definition.

Some of the less expected effects are the following: Suppose we have

declarations

REAL X, Y, Z;

LONG REAL XX, YY, ZZ;

INTEGER I, J, K;

Then X*Y, I**J, and I*X are all long real.
The assignmen"t statement"

XX := X := Y*Z

will result in XX having a single-precision chopped version of Y*Z in

the more significant half, and zeros in the less significant word.

Moreover, I*I is INTEGER, but I**2 is LONG REAL.

88

If the reader understands the language Algol Wand the precedtDI

pages on number representation, "he should have a good basis tor un4er
standing the effects of mathematical algor~thms~ But he shou14 elva,.
remain wary of what a computer is actually doing to his numbers!

APPENDIX

§§

Algol W Deck Set-up

(Job Card)

//JOBLIB DD DSNAME=SYS2.PROGLIB,DISP=(OLD,PASS)

/ / EXEC AIGOLW

//ALGOLW.SYSIN DD *
%ALGOL

(program)

?bEOF

§ .{ (
%EOF

data)

/*

§ Optional

§§ May be repeated

Note: The Stanford AIGOL W system monitors execution time and number

bf lines of output for each job. The default limits on these quantities

are 10 seconds execution time and 500 lines of printed output. Alternately,

the programmer may explicitly specify limits on the %AIGOL card.

Columns 10-29 of that card are scanned for such specification according

to the following syntax:

90

(limit specification)

(time limit)

(minutes specification}

(seconds specification)

(line limit)

::= (time limit) I (time limit;, (line limit)

::= (minutes specification) I
(minutes specification) : (seconds specification)

::= (unsigned integer) (empty)

::= (unsigned integer) (empty;

::= (unsigned integer) (empty)

An empty field is given the corresponding default value. The program

is automatically terminated if necessary at the end of the indicated,

time. Similarly, the program is automatically terminated if necessary

after the indicated number of lines have been printed.

91

GRAMMATICAL DESCRIPTION OF ALGOL W

by

R. Floyd

92

In the grammatical description of ALGOL W on the following pages,

Roman capital letters, such as ABC D, stand for themselves. A script

letter, possibly accented, stands for a defined infinite class of symbol

strings; for ex~ple, J , as defined, s~hds for the class which includes

the symbols A, B, C, ••. , Z, AA, AB, ••• ,.A9, BA, •.. ,B9, ••. Z9, AM, ••• ,

Z99, AAAA, ••• A Greek letter, such as A , stands for a given finite

set of characters.

The symbol means "or"; if a is'defined as ale, this means that

a particular inscription is an a if it is a a or if it is a e .

The notation a* , or equivalently [a}* , means any number (including

zero) of inscriptions, one after another, each of which is an a. For

example, * {AlB} means A or B or AA or AB or BA or BB or AAA

or ... , or A ,where A means no inscription at all.

+ The notation a means any number (but at least one) of inscriptions,

a 00* one after another, each of which is an . It abbreviates For

example, [AIB}+ means A or B or AA or or BB or AAA, etc.

The notation [a] means an optional occurrence of a ; it abbreviates

[alA}.

The· notation . a I a means a or a5n or aaaaa, etc; it abbreviates

. afBl} * .
The notation a 1a means a and/or a ; it abbreviates ala\a&.
The curly brackets {} are used simply as parentheses to show the

scope of the above operators.

All other characters, such as / - , () / < etc., stand for themselves,

including * and + when they are not raised.

93

'$

Descriptive
Name

l.etter

digit

identifier

symbol

constant

function value

expression

simple statement

statement

block

declaration

type

procedure heading

program

The Grammar of a Simple Subset of ALGOL W

Symbol

A

6

J

cr

c

~

e

S'

S

B

~

1

"
p

Definition

AIBlciDIE1.·.lxIYlz

01112131···1819
A {A 16}*
Any symbol on the keypunch, except the double quote

6 +[. 6 *] 1 "cr + .,

J[(t+:-)]

•
[-] { J 1 c 1 ~ 1 (e,) f**{ * 1 /1 {+ 1-} {< I <= 1 = 1 >= 1> 1 .., = }

J: =e, 1 Jl[(et:)] 1 GO TO J IB
S' IIF e, THEN slIF e, THEN S' ELSE SIFOR J:=e, UNTIL e, DO S

* * BEGIN {~;} {s;IJ: } S END

~* * j c9 ,11 PROCEDURE"; {e, I BEGINf;Q ; } (S; I J:} e END}

INTEGER I REAL I LOGICAL I STRING (C)
~.

J(1(VALUEfPROCEDURE)c9, ;)

B.

Descriptive
Name

letter

digit

identifier

variable

symbol

constant

\D
function value

\.Jl

simple expression

simple expression
or relation

expression

argument

simple statement

empty

statement

Symbol

"-

5

8

'V

a

C

~

e"

e'

e

a

S'

A

S

The Grammar of ALGOL W

Definition

AIBlcIDIEI···lxIYlz

01112131···1819

"(,, 15 } *

t 818(e) 18(~) } [(e Ie)]

Any character on the keypunch, except the double quote.

t (5 + [.5 *] I .5+} tk (, [+ 1-] 8 + } } [I] [L f 1 TRUE I FALSE

1=If (8IAIBlcIDIEIF}+/ff(a/ ffff }+U\NULL

J[(n+;)] I
I '

[+I-][,]{ABSILONGISHORT}*('Vlcl~l(e)} (**ISHLISHR}[*I/IDIVIREMIAND}[+!-loR}

e" I e" « I<=! = 1>= I> /.=}e" I e" IS 8

e' /IF e THEN e ELSE elCASE e OF (e+;)
I

elsl J[((el*},)]
+ ~

{'V:=} elGo TO 818[(0 ,)]IAla

The empty statement; no character at all, or a space.

s' I IF e THEN s I IF e THEN s I ELSE S I CASE e OF BEGIN S I; END

* IWHILE e DO SIFOR J:=e {[STEP e] UNTIL el[,e} }DO S

\0
0\

Descriptive
Name

block

declaration

type

procedure heading

program

Symbol

/3

IJ

j

'it

p

Definition

* * BEGIN t~;} f S; I J:} S END

j r,lj ARRAY F,-(e.::e. I ,) IPROCEDURE"; S
* * rl-I I j PROCEDURE 'it; {e.1 BEGIN (;Q;} (S; I J:} e. ENO}I RECORD J(T J, ;)

-±
INTEGER ! [LONG] (REAL I COMPLEX} I LOGICAL I BITS [(32)] I STRING[(C)] I REFERENCE (J,) .
J[«(j [VALUE][RESULT]![j] PROCEDURE}JI~lj ARRAY~(*'~)';)]

/3

~

The Operators and Functions of ALGOL W, Their Formats, Meanings

and Type Constraints

Use of Symbols

t. = any ALGOL W expression.
1.

a. = value of expression e ..
1. 1.

k. = kind of data represented bya. corresponding to expression t.
1. 1. 1.

The kinds of data are:

.. 1. N = numeric

2. L = logical

3. S = string

4. B = bits

5. R = reference

d. = domain of a. when k. = N.
1. 1. 1.

The doma ins are:

1. I = integer

2. R = real

3. C = complex

They are ordered as follows: Ie R C C.

p. = precision of a. when k. = N.
1. 1. 1.

They are ordered as follows: S < L.

If d. = I, then p. = L.
1. 1.

Kinds of Arguments Domains of Numeric Precision of NUmeric
Format Meaning and Results Arguments and Resu1ts Arguments and Resu1ts

t l + t2 a l + a 2 N+N-+N d
l
+d

2
-+ max (d

l
, d

2
) . PI +P2 ~ min(PI ,P2)

t - t I ·2 a l - a 2 N-N-+N dl -d2 -+max(~,d2) PI -P2 .:... uiin(PI' P2)

tl* t2 a l X a 2 N*N-+M dl *d2 -+max(dl ,d2) Pi*P2 ~ L

tIl t2 a l / a 2 N/N -+N d1/d2 -+max(d1,d2,R) PI /P2 ~ min (PI' P2)

£'1** t2
'~2

N**N -+ N dl **I -+ max (~, R) Pi**~ ~ PI
.0/' .

1
+ tl a l

+N -+ N +d
l

-+ d
l +Pl -+ PI

- t -ctl
-N -+ N -d1 -+ dl

_po -+ P
\0 1 1 I
co

tl DIV t2 TRUNCATE (al /a2) I DIV I -+ I

tl REM t2 a l - (al DIV (2)* a2, IREMI-+I

the remainder of
tl DIV t2

ABS tl lOll' ABS N -+ N ABS dl -+min(dl,R) ABS PI ~ PI

LONG tl al LONG N -+ N LONG ~ -+ max (d1 , R) LONG PI ~ L where PI=s or d1=I

SHORT tl al SHORT N -+ N SHORl'd
l

-+ d
l SHORr PI ~ S where PI=L and d1 ~ I

Kinds of Arguments Domains of Numeric Precision of Numeric
Format Meaning and Results Arguments and Results Arguments a.nd Results

tl OR t2 ct
l

V ct2 LORL~L

BORB~B

tl .AND t2 ctl " ct2 LANDL~L

BANDB~B

, tl Nor ct
l

,L~L

,B~B

tl = t2 ctl = ct2 ~ = ~ ~L(where ~=k2) a.ny" any

tl -,:= t2 ctl * ct2 ~ ,= ~ ~ L(where ~=~) any any

tl < t2 ctl < ct2 N<N~L ~,d2 <.=. R any
S<S~L

\.0 tl <= t2 ctl ~ ct2 N<=N~L ~,~~R any
\.0 S<=S~L

tl >= t2 ctl 2: ct2 N>=N~L ~,~~R any
N>=S~L

tl > t2 ctl > ct2 N>N~L ~,d2 ~ R any
S>S~L

tl IS c92
ct

l
belongs to the R IS c9

2
~L

record class c92

tl SHL t2 ct
l

shifted left BSHLN~B d = I 2
ct

2
places

tl SHR t2 ct1 shifted right BSHRN~B d2 = I

ct
2

places

V 1 (t
2 It 3) characters ct2 s(NIN) ~ S d2=~=I through

ct2 + ct3 - 1 of ct1

Format

IF tl THEN t2 ELSE t3

C~E to of (ti'·· .,tn)

....
8

Meaning

if a
1

then a
2

,

otherwise a
3

a (1 < a < n) a - 0-o

Kinds of Arguments
and Resul.ts

IFL THEN k2 ELSE ~ -+ k

where ~. = ~ = k

CASE N OF (~,~, ••• ,kn)

-+ k where

~ =k2= ••• = kn = k

Domains of NUmeric
Arguments and Results

IF L THEN d
l

ELSE d
2

-+ max(~,d2)

CASE L OF (~,d2'.·· .,dn)

-+m8x(dI ,d2,···,dn)

Precision of Numeric
Arguments and Results

IF L THEN PI ELSE P2
-+min(P1,P2)

CASE L OF (P
1

, ••• ,Pn)

-+min(PI ,···,Pn)

I--'
0
I--'

All the following functions have the format F(el), where F is the function name.

We shall omit reference to the format, accordingly.

Function Meaning Kinds Domains

TRUNCATE The integer i, with the same sign
as aI' such that

,..I all - I < I i I s lall

ENTIER The integer i such that \ N-+N .R -+ I
a l - I < i Sal

ROUNp The integer i, with the same'sign
aI' such that

lall ... 1/2 < Iii sial' + 1/2

ROUNDTOREAL a l N-+N R-+R

REALPART The real part of a l } IMAGPART The imaginary part of a l
N-+N C-+R

lMAG a * I=i N-+N dl -+ C I .
(dl c: R)

Precision

Any

L-+S

Any -+ S*

Any -+ S*

*Note: A asterisk on a short precision-result means that prefixing the letters LONG to the function
name yields.a long precision result.

Function Meaning Kinds Domains Precision

SQRT ~, for ~l ~ ° N~N dl ~ R Any ~ S*

(dl ,= R)

COMPLEXSQRT ~ N~N Any~C Any ~ S*

EXP
a l , for a l < 174.67 e

LN -- loge (al), for a l > 0

LOG loglO (al), for a l > 0 (N~N dl ~R Any ~ S*

-SIN sin(al), for lall < 823550 (dl ~ R)

cos cos(al), -for lall < 823550

-1) I-' ARCTAN tan (aI' in the range
0
I\)

(0- iT/2, iT/2)

TIME elapsed time, in units of 1/100 I ~ I
minute if a1= 0, otherwise in

units of 1/60 second.

ODD a
l

is an odd number I~L

BITSTRING The sequence of bits which I~B
represents a l in binary.

See manuals for details.

Function Meaning Kinds Domains Precision

NUMBER The ,integer which a
1

represents B~I

in binary. '

DECODE The number which is used as a code 8(1) ~ I
for the character a

1
•

CODE The character for which a
1

is used I ~ 8(1)
as a code.

BASEIO A string of the form b£12~1234567 N ~ 8(12) ~ c.=. R Any
representing a1 as a power of ten

times a· fraction. (b represents a
blank space).

LONGBASEIO As above, for bt1~123456789012345 N~ 8(20) dl c.=. R Any

BASE16 A string of the fprm bbtl~123456 N ~ 8(12) ~~R Any
t-' representing a

1
as a power of

S sixteen times a fraction, both in
hexadecimal.

LONGBASE16 As above, for bb+~12345678901234 N ~ 8(20) dl ~ R Any

INTBASE10 A string of the form b:t.l234567890 I ~ S(12)
representing a

1
in decimal.

INTBASE16 A string of the form bbbb12345678 I ~ S(l2)
representing a1 in hexadec~al,
using two's complement notation.

