
TREE META

(WORKING DRAFT)

29 December 1967

A META COMPILER SYSTEM

, FOR THE 'SDS 940

By

D. I. Andrews and J. F. Rulifson

Stanford Research Institute
Menlo Park, California

Note: This work was supported jointly by:

1)

\
2)

3)

National Aeronautics and Space Administration
Langley Research Center

Rome Air Development Center
, Griffiss Air Force Base

Advanced Research Projects Agency
Department of Defense

Copy NO. __ ~"_ .. __ __

Tree Meta - ABSTRACT - 29 DEC. 1967

Oa Tree Heta is a compiler-compiler system for context~free

languages. Parsing statements of the metalanguage resemble

Backus-Naur Form with embedded tree-building directives. Unparsing

rules include extensive tree-scanning and code-generation constructs.

Examples are drawn from algebraic and special-purpose languages, as

well as the process of bootstrapping the comprehensive,

self-defining, tree language from a simpler metalanguage. Thorough

implementation documentation for the Scientific nata System 940

appears in the discussion of the support subroutines and in the

apl1endices. A llistory of computer metalanguages, a tutoTiC11 guide to

Tree Heta, and the practical usefulness and scope of the system are
/

other topics of the report .. ':" \

Ob This is an interim project report" and reflects the current status

of,a porti~n of a constantly evolving programming system.

Oc Documentation level as of 29 December 1967 is Tr,n ,,3. .newp

1

Tree r·1eta - CONTENTS - 29 DEC .. 1967

Introduction

2 Basic Syntax

3 Program Environment

4 Formal Description (\

5 Detailed Examples

6 Conclusions and Future Plans

7 Bibliography

8 Tree Heta in Tree ~·teta

9 Tree r,feta Support Package

10 t1etalib

11 Hcta I I in a ~1acro Language (not included)

12 Extended ~·feta in }1eta I I (not included)

Tree Meta - CONTENTS - 29 DEC. 1967

13 Outline for a 30 Hinute talk on ~!eta (not included)

2

Tree t"1eta - INTRODUCTION - 29 DEC. 1967

1 Terms such as "metalanguage" and "metacompiler" have a variety of

meanings. 111eir usage within this report, however, is well defined.

1a "Language," without the prefix "meta," means any formal computer

language. These are generally languages like ALGOL or FORTRAN. Any

metalangauge is also a language •

. 1 b A compiler is a computer program ,vhich reads a formal-language

program as input and translates that program into instructions Hhich

may be executed by a computer. The term "compiler" also means a

listing of the instructions of the compiler.

1 C A language 'vhich can be used to describe other languages is a

metalanguage. English is an informal, general metalanguage which can

describe any formal language. Backus-Naur Form or BNF (NAUR1) is a

formal metalanguage used to define ALGOL. BNF is weak, for it

describes only the syntax of ALGOL, and says nothing about the

semantics or meaning. English, OIl the other hand, is powerful~ yet

its informality prohibits its translation into computer programs.

1d A metacompiler, in the most general sense of the term,' is a

program which reads a metalanguage program as input and translates

that program into a set of instructions. If the input program is a

complete description of a formal language, the translation is a

1 ()1

Tree Heta .- INTRODUCTION - 29 DEC. 1967

compiler for the language.

2 The broad meaning of the Hord "metacompiler," the strong, divergent

views of many people in the field, and our restricted use of the \vord

necessi tate a fonllal statement of the design standards and scope of Tree

Heta.

2a Tree Heta is buil t to deal \vi tll a specific set of languages and

an even more speci fie set of users. This project, therefo're, adds to

the ever-increasiT?g problem of the proliferation of machines and

languages, rather than attempting to reduce it. There is no attempt

to design universal languages, or machine independent languages, or

any of the other goals of many compiler-compiler systems o

2b Compiler-compiler systems may be rated on two almost independent

features: ,the syntax they can handle and the features within the

system which ease the compiler-building process.

2b 1 Tree He'ta

limited backup.

users to deal

is intended to parse context~freelaguages using

There is no intent or desire on the part of the

\.;i th snch problems as the fonTI~AN "continue"

statement, the YL/I "enough ends to Tllatch," or the AL(~OL "is it

procedure ol~is it a variable" question. Tree Het'a is only one

part of a system-building technique. There is flexibility at all

-~ . levels of the system and the design philosop!lY has been to take

102

Tree ~tcta - INTRODlJCTION - 29 DEC. 1967

the easy \vay out rather than fight old problems.

21>2 ~fany of the features considered necessary for R

compiler-compiler systcm are ahsent in Tree ~·leta. St~~h_._tbings ~s

symbol-tables that handle ALGOL-style blocks and variable types

are not included. Neither are there features for multidimensional

suhscripts or higher level macros. Th~_$,~ feat~.J.::'es are not present

because the users have not yet needed them.. None, ho\\ever, liould

be difficult to add.

21>3 Tree ~·1eta translates directly frOiil a high-level language to

machine code. This is not for the faint of heart. There is a

very small number of users (approximately 3) ; all are

machine-language coders of about the. same high level of

proficiency. The nature of the special-purpose languages deal t

with is such that general fonnal systems, 'viII not work. The data

structures and operations are too diverse to produce appropriate

code lvi th current state-of-the-art formal compiling techniques e

3 There are two classes of formal-definition compiler-writing schemes.

3a In tel1TIS of usage, the productive or synthetic appro'ach to

language definition is the most common. A productive grammar

consists primarily of a set of rules Hhich describe a method of

generating all the possible strings of the language.

103

Tree r,teta·.- INTRODUCTION - 29 DEC. 1967

3b The reductive or analytic technique states a set of rules which

describe a method of analyzing any string of char.acters and deciding

whether that string is in the languagc$ This approach simultaneously

produces a structure for the input string so that' code may be

compilede

3c TIle metacompilers are

neither purely productive

a combination of both schemes. They are

nor purely reductive, but merge hoth

techniques. into a.poHerful working system.

4 TIle metacompiler class

characterized by a common

of compiler-compiler systems

top-dmvn parsing algori thm and

may be

a common

syntax. These compilers are expressible in their OlVn language, whence

the prefix "meta."

4a The folloHing is a formal discussion of top-dm4n parsing

algorithms. It relies heavi lyon defini tions and fOTr.1ulisms ",'hich

are standard in ihe literature and may he skip~ed by the lay reader.

For a language L, \vi th vocabulary V, nonterminal vocabulary N,

productions r, and head S, the' top-down parse of a string II in L

starts l-Jith S and ,looks for a sequence of productions such that S=)u

(S produces u).

~.' 4a1 Let

104

Tree Heta '.- INTRODUCTION - 29 DEC. 1967

V = [E T F +, * (,) , X] . , , , ,

N = [E, T, r]

p :: [E : : = T / T + F

T : := F / p "* T

F : : = X / (E)]

L = eV,N,p,E)

4a2 TIle following intentionally incomplete ALGOL procedures will

perform a top-do\"n analysis of strings in L.

E := if T t.!.1...~l~ (if issymbolC'+')

then E else t~e) ~ false; comment issymbol (arg) is a

Boolean proceduTe wl1ich compares the next symbol in the input

string with its argument, arg. If there is a match the input

stream is advanced;

4a2b ~ E!~oE!.dure T; T := if F ~ Cif issymholC'*')

then T ~ true) ~ false;

4a2c !)o0.lea~ ~rocedure r; F::: if issymbol C' X t) then true

else if issymhol (' (') the21 (if E then. (if issymbol (') ') then

~ else false) else false) ~ fals~;

4a3 The left-recursion problem can readily be seen hy a slight

'modification of L" Change the first production to

1 05

Tree f,leta - INT}~ODUCTION - 29 DEC. 1967

E ::= T / E + T

and the procedure for E in the cOl'responding \Vay to

E := if T then true else if E

4a3a Parsing the string "X+X" J the procedure E \vi 11 call T J

which calls F, which tests for "X" and gives the result "true."

E is then true but only the first element of the string is in

the analysis, and the parse stops hefore completion. If the

input string is not a member of the language, T is false and E

loops infinitely.

4a3b The solution to the problem used in Tree Heta is the

arbitrary number operator. In 'Tree neta the first prouuction

could be

E :: = T$ ("+ U T)

where the dollar sign and the parentheses indicate that the

quantity can be repeated any number of tiraes, including 0 ..

4a3c Tree ~teta makes no check to ell sure that the compiler it

is producing ,"(lacks syntax rules containing
.,··e . ,'~

left recursion •

,TIlis problem is one of the more common mistakes made by

inexperienced metalanguage programmers.

4b The input language to the metacompiler closely resembles BNF.

The primary difference between a BNF rule

106

Tree ~teta .- INTRODUCTION - 29 DEC. 1967

<go to> ::= go to <label>

and a metalanguage Tule

GOTa = "GO" "TO" .1D;

is that the metalanguage has heen designed to use a computer-oriented

character set and simply delimited basic entities. The

a1'bi tral'y-number operator and parenthesis construction of the

metalanguage arc lacking in BNF. For example:

TERH = FACTOR $(("*" I "I" I "ttl) FACTOR);

is a metalanguage rule that lvould replace 3 BNF rules.

4c TIle

. language

abili ty of the compilers to be expressed in their O\vn

lIas resulted in the prolifer~tion of metacompiler systems •

Each one is easily bootstrapped from a more primitive version, and

complex compilers are built with little programming or debugging

effort.

5 The early history of metacompilers is closely tied to the history of

SIG/PLAN Working Group 1 on Syntax Driv~n Compilers. The group \vas

started in the Los Angles area primarily through the effort of Howard

Metcalfe (SClIHIDT1).

Sa In the fall of 1962, he designed two compiler-writing

interpreters (HETCALFE1). One used a bottom-to-top analysis

technique based on a method described by Ledley and Wilson (LEDLEY1).

The other used a top-to-bottom approach based on a work by Gtennie

107

Tree ~1eta - INTRODUCTION - 29 DEC. 1967

(GLENNIE1) to generate random English sentences froll1 a context-free

grammar.

Sb At the same time, Val Schone described two ttmetamachines"--one

generative and one analytic. The generative machine was implementcd,

and produced random algebraic expressions. Schorre implemented r·leta

I, the first metacompiler, on an IBH 1401 at UCLA in .Tanuary 1963

(SCIIORRE1) • His original interpreters and metamachines were \vri tten

directly in a pseudo-~achine language. Meta I, however, was written

in a higher-level syntax language able to describe its mvn

compilation into the pseudo-machine language. Heta I is described in

an unavailable paper given at the 1963 Colorado AC~' conference ..

Sc Lee Schmidt at Bolt, Beranek, and Newman Hrote a metacompiler in

Narch 1963 that utilized a CRT display on the" time-sharing PDP-l

(SCH~lIDT2) .. This compiler produced actual machine code rather than

interpretive code and was partially hoot5trapped from Heta I.

6 Schorre bootstrapped ~,1eta I I from ~1eta I during the Spring of 1963

(SCIIORRE2) • The paper on the refined l11ctacompiler system presented at

the 1964 Philadelphia AO·! conference is the first paper on a

metacompiler available as a general reference. The syntax and

implementation technique of Schorre's system laid the foundation for

most of the systems that followed. Again the system lias implemented on

a small 1401, and was used to implement a small ALGOL-like language.

lOR

Tree Heta - INTRODUCTION - 29 DEC. 1967

7 Hany simi lar systems immediately follm-Jcd. -

7a Roger Rutman of A. C. Sparkplug developed and implemented LOGIK,

a language for logical design simulation, on the I B~t 7090 in .Tanuary

1964 (RU1lfAN1) • TIlis compiler used an algori thm \vhich produced

efficient code for Boolean expressions.

7b Another paper in the 1964 ACH proceedings describes ~·teta I I I,

developed by

(SCHNEIDER1).

machine code

Schneider and .Johnson at UCLA for the IB~l 7090

~leta I I I represents an attempt to produce: efficient

for a lax:ge class of languages. It w.as implemented

completely in assembly languagee Two compilers Here written in Heta

111--CODOL, a compiler-writing demonstration compiler, and PUJU~GOL,

a dialect of ALGOL 60. (It \Vas pure gall to call it ALGOL). The

rumored f,IETAFORE, able to compile full AL(;OL, has

announced.

never been

7c Late in 1964, Lee Schmidt bootstrapped a metacompiler from the

PDP-l to the Reckman 420 (SCIIHIDT3).

generating language known as EQGEN.

It was a logic equation

8 Since 1964, System DevelopTi1ent Corporation has supported a major

effort in the development of metacompilers. Tllis effort includes

powerful metacompilers \'lritten in LISP which have extensive

109

Tree ~·feta INTRODUCTION - 29 DEC. 1967

tree~searching and backup capahili ty C!.K)OK1) (BOOK2) ~

9 An outgrowth of one of the Q-32 systems at SDC is Heta 5 (OPPENHEHn)

(SCIIAFFER1). This system has been successfully released to a wide

number of users and has had many string-manipulation applications other

than compiling. The Heta 5 system incorporates hackup of the input

stream and enough other facilities to parse any context-sensitive

language. It has many elaborate push-dO\"n stacks, attribute setting and

testing facilities, and output mechanisms. The fact that Heta 5

successfully translates~TOVIAL programs to 1'1./1 programs clearly

dem6nstrates its power and flexibility.

10 The LOT system was developed during 1966 at Stanford Research

Institute and WaS modeled very closely after Meta II (KIRKLEY1). I~ had

new special-purpose constructs allm'l'ing it to generate a compiler which

would in turn be able to compile a subset of PL/l. TIlis system had

extensive statistic-gathering facilities and \.,ras used to study 1he

characteristics of top-down analysis.. It also embedded systeTil control,

normally relegated to cOl:ltrol cards, in the metalanguage.

11 The concept of the metamachine originally put forth by GLENNIE is so

simple that three hardHare versions have heen designed and one actually

implemented,. TIle latter at Washington University in St. Louis 0 This

machine \,ras buil t from macromodular components and has for instructions

the codes described hy Schorre (SCHORRE2)"

110

Tree ~teta - BASIC SYNTAX - 29 DEC. 1967

A rnetaprogram is a set of metalanguages rules. Each rule has the

form of a BNF rule, \vi tIl output instructions embedded. in the syntactic

description.

1a The Tree r-teta compiler converts each of the rules to a set of

instructions for the computer.

1b As the rules (acting as instructions) compile a program, they

read an input stream of characters one character at a time.. Each new

character is subjected to a series of tests until an appropriate

syntactic description is found for that character" The next

character is then read and the rule testing moves forward through the

input.

2 The following four rules illustrate the basic constructs in the

system.. They will be referred to later by the reference numbers R1A

through R4A •

• null

R1A

.null

R2A

.null

R3A

.null

EXP = TEJU·1 ("+" EXP I "-" EXP I .E~fPTY);

TERH = FACTOR $("*" fACTOR I "I" FACTOR);

FACTOR = "-" fACTOR / PRHt;

201

Tree Meta- BASIC SYNTAX - 29 DECo 1967

R4A

.nu11

PRHI = • II> / • NtJ~1 / "C" EXP ") tI;

2a The identifier to the left of the initial equal sign names the

rule. This name is used to refer to the rule from other rules. The

name of rule nl A is EXP.

2b The right part of the rule--everything bet\veen the initial equal

sign and the trailing semicolon--is the part of the rule which

effects the scanning of the input.. Five basic types of entities may

occur in a right part~ Each of the entities represents some sort of

a test which l~esul ts in setting a general flag to ei ther "true tt or

"false".

2bl A string of characters bet\'lcen quotation marks (tI) represents

a literal string. These literal strings are tested against the

input stream as characters are read 0

2b2 Rule names may also occur in a right part. If a rule is

processing input and a name is reached, the named rule is invoked.

R3A defines a FACTOR as being either a minus sign followed by a

FACTOR, or just a PRIH.

2b3 The right part of the rule FACTOR has just ~)een defined as "a

string of elements," "or" "another string of elements." The

202

Tree Heta - BASIC SYNTAX - 29 DEC. 1967

"or's" are indicated by slash marks (I) and each individual string

is called an alternative. Thus, in the above example, the minus

sign and the rule name FACTOR are two elements in R3A. These two

elements make up an alternative of the rule.

2b4 The dollar sign is the arbitrary number operator in the

metalanguage. A dollar $ign must be followed by a single

element, and it indicates that this clement may occur an arbitrary

llUJllbcr of times (including zero). Parentheses may be used to

group a set of elements into a single element as in R1A and R2A.

2b5 The final basic entities may be seen in rule R4A. These

represent the basic recognizers of the metacompiler system. A

basic recognizer is a program in Tree ~Ieta ,that may be called upon

to test the input stream for an occurrence of 'a particular entity.

In Tree Heta the three recognizcrs are "identifier" as .10,

"number" as .NUH, and "string" as .SR. There is another basic

entity which is treated as a recognizer but does not look for

anything. It is .E~1PTY and it always returns a value of "true."

3 Suppose that the input stream contains the string X+Y when the rule

EXP is invoked during a compilation.

3a EXP first calls rule TER~fJ which calls FACTOR, which tests for a

minus sign. This test fails ano FACTOR then tests for a plus sign

203

Tree Heta - BASIC SYNTAX - 29 DEC. 1967

and fails again. Finally FACTOR calls PRIH, which tests for an

identifier. The character X is an identifier; it is recognized and

the input stream advances one character.

3b PRHf returns a value of "true" to FACTOR, which in turn returns

to TEH}l. TER~'f tests for an asterisk and fails. It then tests for a

slash and fails. The dollar sign in front of the parenthesized group

in TElt'!, however J means that the rul e has succeeded hecause TEm" has

found a FACTOR followed by zero occurrences of "asterisk FACTOH" or

"s lash FACTOR. tf Thus TEm,f returns a "true" value to EXP. EXP nOl'"

tests for a plus sign and finds it.

another character"

T}le input stream advances

3c EXP now calls on itself. All necessary information is saved so

that the return may be made to the right place. In calling on itself,

it goes through the sequence just described until it recognizes the

Y.

3d Thinking of the rules in this \.Jay is confusing and tedious. It

is best to think of each rule separately. For example: one should

think of R2A as defining a TERH to he a seri,es of FACTORs separated

by asterisks and slashes and not attempt to think of all. the possible

things a FACTOR could be.

4 Tree ~feta is different from most metacompiler systems in that it

204

Tree f·Ieta·.- BASIC SYNTAX - 29 DEC. 1967

builds a parse tree of the input str~am hefore producing any output.

Before we describe the syntax of node generation, let us first discuss

parse trees.

4a A parse tree is a structural description of the input stream in

terms of the given grammar.

4a.l Using the four rules above, the input stl~eam

.nu1l

.null X+Y~Z

.null

has the following parse tree

.null

.null EXP

.null

.null

.null

.null reTOIl

.null

.null PRH1 ACTOR

.null

.null X pnul PRUI

.null

.null y Z

205

Tree Meta ~ BASIC SYNTAX - 29 DEC. 1967

4a2 In this tree each node is either the name of a rule or one of

the primary entities recognized by the hasic recognizer routines ..

4a3 In this tree there is a great deal of subcategorization. For

example, Y is a PRH-! which, is a FACTOR, \oJhich is the left member

of a TERH. This degree of suhcategorization is generally

undesirable.

4b The tree produced by the metacompiler program is simpler than the

one above, yet it contains sufficient information to complete the

compilatione

4bl The parse tree actually produced is

.null

.nul1

/~ .null

.nul1 X ·fULT

.nul1

.null Y z

4b2 In this tree the names of the nodes are not the rule names of

the syntacticdefini tions, but rather the names of rules \.,rhich

will he used to generate the code from the tree.

4b3 The rules \vhich produce the above tree. are the same as the

206

Tree ~feta - BASIC SYNTAX - 29 DEC. 1967

.null

R1B

.null

R2B

(2)) ;

.null

R3B

.null

R4B

four previous Tules

appropriate node

with new syntax

generation e The

additions to perform the

complete Tules are:

EXP = TEffi.f ("+" EX}> : ADDI "- t9 EXP : SUB) (2) • B~tPTY) ;

TEm·f = FACTOR $ (("*" FACTOR :~·1ULTI "I" FACTOR :DIVD)

FACTOR = tI_" FACTOR :~f1NUS[l] I PRHI;

PRHI = • 10 I . NtH-·f / tI Cft EXP ")";

4c As these rules scan an input stream, they perform just like the

first set. As the entities are recognized, however, they are stored

on a push-down stack until the node-generation elements remove them

to make trees. We will step through these rules Hith the same sample

input stream:

.null x+y*z

4cl EXP calls TERH, which calls FACTOR, which calls PRHt, which

recognizes the X. The input stream moves fOTHard and the X is put

on a stack.

4c2 PRIH returns to FACTOR, \\'hich returns to TEmf, which returns

to EXP. The" plus sign is recognized and EXP is again called.

207

Tree Hcta - BASIC SYNTAX - 29 DEC. 1967

Again EXP calls TEmf, which calls FACTOR, which calls PRn.1, which

t:ecognizes the y. The input stream is advanced, and y is put on

the push-down stack. The stack Jlm.J contains y X, and the next

character on the input stream is the asterisk.

4c3 PRIH returns to FACTOR, which returns to TERH. The asterisk

is recognized and the input is advanced another character.

4c4 The rule TEmt nO\v calls FACTOR, which calls PRIH, \Vhich

recognizes the Z, advances the input stream, and puts the Z on the

push-down stack.

4cS The :~·tULT in now processed. This names the next node to be

put in the tree. Later we \-Jill see that in a complete

metacompiler program there will be a rule named ~!ULT which \ViII be

processed \vhen the time comes to produce code from the tree.

Next, the [2] in the t·ule TEm·, is processed. This tells the

system to construct a portion of a treee The branch is to have

two nodes, and they are to be the last two entities recognized

(they are on the stack). TIle name of the branch is to be ~nJLT,

since that was the last name given. The branch is constructed and

the top two items of the stack are replaced by the new node of the

tree.

4c5a The stack now contains

208

Tree Heta - BASIC SYNTAX - 29 DUC. 1967

.null MULT

.null X

4c5b The parse tree is now

.null

.null

A y z
.null

.null

4c5c Notice that the nodes are assembled in a left-to-right

order, and that the original order of recognition is retained.

4c6 Rule TERH now returns to EXP which names the next node hy

executing the :ADD, i.e., names the next node for the tree. The

[2] in rule EXP is nm." executed. A branch of the tree is

generated which contains the top two items of the stack and \.,rhose

name is ADD. The top t\~O items of the stack are removed, leaving

it as it \vas initially, empty. The tree is nmv complete, as first

shown, and all the input has been passed over.

5 The unparsing rules have t,.,o functions: they produce output and they

test the tree in much the same way as the parsing rules test the input

stream. This testing of the tree alOlvs the output to be based on the

deep structure of the input, and hence better output may be produced.

209

Tree Heta :"' BASIC SYNTAX - 29 DEC. 1967

Sa Before we discuss

describe the various

the

types

node-testing features, let us first

of output that may be produced. The

following list of output-generation features in the metacompiler

system is enough for most examples.

Sal TIle output is line-oriented, and the end of a line is

determined by a carriage return. To instruct the system to

produce a carriage return, one writes a backslash (upper-case L on

a Teletype) as an element of an unparse rule.

Sa2 To make the output more readable, there is a tab feature. To

put a tab character into the output stream, one writes a comma as

an element of an output rule.

Sa3 A literal string can be inserted in the output stream by

merely writing the literal string in the unparse ru1e._ Notice

that in the unparse rule a literal string becomes output, while in

the parse rules it becomes an entity to be tested for in the input

stream. To output a line of code which has L as a label, ADD as

an operation code, and SYS as an address, one would write the

following string of elements in anunparse rule:

• null "L" _, "ADD" J "SYS"

Sa4 As can be seen in the last example of a tree, a node of the

tree may be ei ther the name of an unparse .rule, such as ADD, or

210

Tree Heta ... BASIC SYNTAX - 29 DEC. 1967

.null

one of the basic entities recognized during the parse, such as the

identifier X.

5a4a Suppose that the expression x+y*z has been parsed and the

program is in the ADD unparse rule processing the Ann node

(later we Hill see how this state is reached). To put the

identifier X into the output stream, one writes "*1" (meaning

"the first node below") as an element. For example, to

generate a line of code \."i th the operation code ADA and the

operand field X, one would write:

, "ADA", *1

5a4b To generate the code for the left-hand node of the tree

one merely mentions "*1" as an element, of the unparse rule.

Caution must be taken to ensure that no' attempt is made to

append a nonterminal node to the output stream; each node must

be tested to be sure that it is the right type before it can be

evaluated or output.

5aS Generated labels are handled automatically. As each unparse

rule is entered, a new set of labels is generated. A label is

referred to by a number sign (upper-case 3 on a Teletype) follo'hTed

by a number. Every time a label is mentioned during the execution

of a rule, the label is appended to the output stremn. If another

rule is invoked in the middle of a rule, all the lahels are saved

Tree ~leta - BASIC SYNTAX - 29 DEC. 1967

and ne"" ones generated. Nhen a return is made the previous labels

are restored.

6 As trees are being buil t during the pal'se phase, a time comes when it

is necessary to generate code from the tree. To do this one writes an

asterisk as an element of a parse rule, for ex'ample

RSB PROGRMI = ". pnOGRAH" $ CST *) ". END";

which generates code for each statement after it has been entirely

parsed~ When the asterisk is executed, control of the program is

transferred to the rule \{hose name is the root (top node or last

generated node) of the tree. l"~len return is finally made to the rule

\.,hich initiated the output, the entire tree is cleared and the

generation process begins anew.

6a An unparse rule is a rule name followed by a series of output

rules. Each output rule begins with a test of nodes. The series of

output rules make up a set 'of highest-level alternatives. \\11en an

unparse rule is called the test for the first output rule is made.

If it is satisfied, the remainder of the alternative is executed; if

it is false, the next alternative output rule test is made. This

process continues until either a successful test is made or all the

alternatives have been tried. If a test is successful, the

alternative is executed and a return is made from the unparse rule

with the general flag set "true." If no test is successful, a return

is made 'vi th the general flag "false .. "

212

Tree ~leta - llASIC SYNTAX - 29 DEC. 1967

6b The simplest test that can be made· is the test to ensure that the

correct number of nodes emanate from the node being processed. The

ADO rule may begin

.null ADD[-,-J =>

The string within the brackets is known as an out-test. The hyphens

are individual items of the out-test. Each item is a test for a

node. All that the hyphen requires is that a node be present. The

name of a rule need not match the name of the node being processed.

.null

6bl If one Hishes to eliminate the test at the head of the

out-rule, one may write a slash instead of the bracketed string of

items. The slash, then, takes the place· of the test and is always

true. Thus, a rule which begins \vith a slash immediately after

the rule name may have only one out-rule. The rule

l-tT / => • E~lPTY;

is frequently used to flag the absence of an optional item in a

list of items. It may he tested in other unparse rules but it

itself always sets the general flag true and returns.

6b2 The nodes emanating from the node being evaluated are

referred to as *1, *2, etc., counting from left to right. To test

for equality between nodes, one merely writes *i for some i as

the desired item in an out-test. For example, to see if node 2 is

the same as node 1, one could write either [-,*1] or [*2,-]. To

213

Tree Heta - BASIC SYNTAX - 29 DEC. 1967

see if the third node is the same as the first, one could write

[-,*2,*1]. In thi~ case, the *2 could he replaced by a hyphen.

6b3 One may test t·o see if a node is an element which 'vas

generated by one of the basic recognizers by Mentioning the name

of the recognizer. Thus to see if the node is an identifier one

writes .ID; to test for a number one lJrites .Nm·f. To test whether

the first node emanating from the ADD is an identifier and if the

second node exists~ one writes [.ID,-].

6b4 To check for a literal string on a node one may write a

string as an item in an out-test. The construct [_,"1"] tests to

be sure that there are two nodes and that the second node is a 1.

The second node \.,ri 11 have been recognized by the • NU~'! hasic

recognizer during the parse phase.

6b5 A generated label may be inserted into the tree by using it

in a call to an unparse rule in another unparse rule. This

process will be explained later. To see if a node is a previously

generated label one writes a number sign follO\ved by a number. If

the node is not a generated label the test fails. If it is a

generated label the test is successful and the label is associated

\vi tIl the number follm.;ing the number sign. To refer to the 1 abe 1

in the unparse rule, one writes the number sign followed by the

number.

214

Tree ~leta . - BASIC SYNTAX - 29 DEC. 1967

6b6 Finally, one may test to see if the name matches a specified

name. Suppose that one had generated a node named STORE. The

left node emanating from it is the name of a variable and on the

right is the tree for an expression. An unparse rule may begin as

follows:

.null STORE[-,ADD[*l,"l"]] => , II}tIN tt *1

The *1 as an item of the ADD refers to the left node of the STORE.

Only a tree such as

.null

.null

.null

.null

STORE

. lAnD
.null ~
.null .ID 1

.null

would satisfy the test, where the two identifiers must be the same

or the test fails. An expression such as X """ X + 1 meets all the

requirements. The code generated (for the SDS 940) would be the

single instruction ~tIN X, which increments the cell X by one.

6c Each out-rule, or highest-level al tenlati ve, in an unparse rule

is also made up of al ternati ves. TIlese a1 ternati yes are separated by

slashes, as are the alternatives in the parse rules.

215

Tree ~,Ieta:- BASIC SYNTAX - 29 DEC. 1967

6cl The alternatives of the out-rule are called "out .. exprs." The

out-expr may begin with a test. or it may begin lVith instructions

to output characters. If it begins with a test, the test is made.

If it fails the next out-expr in the out-rule is tried. If the

test is successful, control proceeds to the next element of the

out-expr. When the out-expr is done, a return is made from the

unparse rule.

6c2 The test in an out-expr resembles the test for the out-nile.

There are two ~ypes of these tests.

6c2a Any nonterminal node in the tree may be transferred to by

its position in the tree rather than its namee For example, *2

would invoke the second node from the right. This operation

not only transfers control to' the specific node, but it makes

. that node the one from which the next set of nodes tested

emanate. After control is returned to the position immediately

following the *2, the general flag is tested. If it is "true"

the out-expr proceedes to the next element. If it is "false"

and the *2 is the first element of the out-expr the next

. alternative of the out-expr is tried. If the flag is "false"

and the *2 is not the first element of the out-expr, a compiler

error is indicated and the system stops.

6c2b The other type of test is made .hy invoking another

216

Trce ~1eta - BASIC SYNTAX - 29 DEC. 1967

.null

.unparse rule by name and tcsting the flag on the completion of

the rule. To call another unparse rule from an out-expr, one

wri tcs the name of thc rule followed by an argument list

enclosed in brackets. The argument list is a list of nodes in

the trec~ These nodes are put on the node stack, and whcn the

call is made the rule being called sees the argument list as

its set of nodes to analyze. For example:

ADD[HINl1S[-],-] => 5U3[*2,*1:*1]

6c2bl Only nodes and generated labels can be written as

arglmcnts. Nodes are written as *1, *2, etc •. To reach

other nodes of the tree one may write such things as *1:*2,

which means "the second node emanating from the first node

emanating from the node being evaluated. tt Referring to the

tree for the expression X+y*Z, if AnD is heing evaluated,

*2: * 1 is Y. To go up the tree one may \-1ri to an "uparro,.,.tt (1')

followed by a number before the asterisk-nllmber-colon

sequence. The uparrow means to go up that many levels

before the search is made UOlvn the tree. If r,HJL T were being

evaluated, 1'1*1 would he the X.

6c2b2 If a generated label is written as an argument, it is

generated at that time and passed to the called un1'arse· rule

so that that rule may use it or pass it on to other Tules.

The generated label is written just as it is in an output

217

Tree ~teta - BASIC SYNTAX - 29 DEC. 1967

element-":'a number sign follm.;ed by a number.

6c3 The calls on other unparse rules may occur anywhere in an

out-expr. If they occur in a place other than the first element

they are executed in the same way, except that after the return

the flag is tested; if it is false a compiler error is indicated.

This use of extra rules helps in making the output rules more

concise.

6c4 The rest of an out-expr is made up of output elements

appended to the output stream, as discussed above.

6d Somtimes it is necessary to set the general flag in an out-expr,

just as it is sometimes necessary in the parse Tules •• mtPTY rllay be

used as an element in an out-expr at any place.

6e Out-exprs may be nested, using parantheses, in the same way as

the al ternatives of the parse rules.

7 There are a few features of Tree f\feta which are not essential but do

make programming easier for the user.

7a If a literal string is only one character long, one may write an

apostrophe follo\-led by the character rather than writing a quotation

mark, the character, and another quotation mark. POI' exmnple: ts and

218

Tree ~leta - BASIC SYNTAX - 29 DEC. 1967

"S" are interchangeable in either a parse rule or an unparse rule e

7b As the parse rules proceed through the input stream they may come

to a point where they are in the middle of a parse alternative and

there is a fai 1 ure. This may happen for t\'iO reasons: hackup is

necessary to parse the input, or there is a syntax error in the

input. Backup will not he covered in this introductory chapter. If

a syntax error occurs the system prints out the line in error with an

arrO'., pointing to the character which cannot be parsed. The system

then stops. To eliminate this, one may write a question mark

follm.,red by a number followed by a rule name after any test except

the first in the parse equations. For example:

.null ST = .10 '= question 2 E EXP question 3 E ';

.null question 4 E :STORE[2] ;

Suppose this rule is executing and has called rule EXP, and EXP

returns \vi th the flag false. Instead of stopping Tree Heta prints

the line in error, the arrow, . and an error comment which contains the

number 3, and transfers control to the parse rule E.

7c Comments may be inserted anywhere in a metalanguage program where

blanks may occur. A comment begins and e:nds \vi th a percent sign t

and may contain any character except--of course, a percent sign.

7d In addition to the three basic recognizers .ID, • NUfl1 and .SR,

there are tl"rO others \~hich are occasionally very useful.

219

Tree ~1eta· - BASIC SYNTAX - 29 DEC. 1967

7d1 The symbol .LET indicates a single letter. It could be

thought of as a one-character identifi.er.

7d2 The symbol .CHR indicates any character. In the parse rules,

+.CHR causes the next character on the input stream to be taken as

input regardless of what it is Cl Leading blanks are not discarded

as for .ID, .NU~t, etc. The character is stored in a special way,

and hence references to it are not exactly the same as for the

other basic re~ognizers. In node testing, if one \.;ishes to check

for the occurrence of a particular character that was recognized

by a .CHR, one uses the single quote-character construct.. When

outputting a node item which is a character recognized by a .CHR,

one adds a :C to the node indicator. For example, *1 :C.

7e Occasionally some parts of a compilation are very simple and it

is cumbersome to build a parse tree and then output from itc For this

reason the abilitby to output di.rectly from parse rules has been

added.

7eI The syntax for outputting from parse rules is generally the

same as for unparse rules. The output expression is written

wi thin square brackets, hmvever. The items from the· input stream

which normally are put in' the parse tree may be copied to the

·output stream by referencing them in the output expression. The

220

Tree f'.lcta "" BASIC SYNTAX ... 29 DEC. 1967

most recent item recognized is referenced as

recognized previous to that arc *51, *52,

* or *50. Items

etc., counting in

reverse order--that is, counting down from the top of the stack

they are kept in.

7e2 Normally the i terns are rerf10veu from the s tack and put into

the tree. However, if they are just copied directly to the output

stream, they remain in the stack. They are removed by writing an

ampersand at the end of the parse rule (just before the

semicolon). This causes all input items added to the stack by that

rule to be removedc The input stack is thus the same as it \'las

when the rule was called.

221

Tree ~leta - PHOGRAH ENVIROtr:-·1ENT - 29 DEC 1967

When a Tree ~1eta program is campi led by the metacompi ler, a

machine-language version of the program is generated. However, it is not

a complete program since several routines are missing. All Tree Heta

programs have common functions such as reading input, generating output,

and manipulating stacks. It would be cumbersome to have the

metacompiler duplicate these routines for each program, so they are

contained in a libral'Y package for all Tree ~Ieta programs. The library

of routines must be loaded with the machine-language version of the Tree

Meta program to make it complete.

1 a The environment of the Tree ~teta program, as it. is running, is

the library of Toutines plus the various data areas.

1 b This section describes the enviromilent in its three logical

parts: input, stack organization, and output.

lbl This is a description of the current working version, with

some indications of planned improvements.

2 Input Hachinery

2a The input stream of text is broken into lines and put into an

input huffer. Carriage returns in the text are used to determine the

ends of lines. Any line longer than 80 characters is broken into two

301

Tree Heta :"" PRO(;RPJ'.I ENVIROW,tENT - 29 DEC 1967

lines. This line orientation is necessary for the following:

2al Syntax-error reporting

2a2 A possible anchor mode (so the compiler can sense the end of

a line)

2a3 An interlinear listing option.

2a4 In the . future, characters for the input buffer will be

obtained from another input buffer of arbitrary block size, but at

present they are obtained from the' system with a Character I/O

command.

2b It is the job of routine RLINE to fill the input line buffer. If

the listing flag is on, RLINE copies the nm\' line t.o the output file

(prefixed wi th a comment character--an asterisk for our assembler).

It also checks for an End-of-rile, and for a multiple blank

character, which is' a system feat.ure built into our text files.

There is a buffer pointer which indicates Hhich character is to be

read from the line buffer next, "and RLINE resets that pointer to the

first character of the line.

2c Input characters for the Tree ~feta proBram are not obtained from
-

the input line buffer, but from an input , ... indow, which is actually a

302

Tree r-feta - PROGRAH ENVIRON~IENT - 29 DEC 1967

character ring buffc'r. Such a buffer is necessary for backup. There

are three pointers into the input windO\\T. A program-character.

counter (peC) points to the next character to be read by the program.

This may be moved back by the program to effect backup. A

library-character counter (LCe) is never changed except by a libra.ry

routine when a new character is stored in the input window. pee is

used to compute the third pointer, the input-window pointer (IWP).

Actually, PCC and Lce are counters, and only IWP points into the

array RING which is the character ring huffer. LCC is never backed

up and always indicates the next posi tion in the \vindm·." where a new

character must be obtained from the input line bllffer c Backup is

registered in BACK. and is simply the difference between pec and LeC.

BACK is always negative or zero.

2d There a.re several routines which deal direct"lY with the input

\.;indm</ •

2dl The routine PUTIN takes the next character from the input

line buffer and stores it at the input-windO\v' position indicated

by IWP. This involves incrementing the input-buffer pointer, or

calling RLINE if the buffer is empty. PUTIN does not change IWP.

2d2 The routine INC is used to put a character into the input

windm"r • It increases IWP by one by calling a routine, tJPI\I/P,

which makes IWP wrap around the ring buffer correctly. If there is

303

Tree ~feta - PROGRNI I ENVIRO~1ENT - 29 DEC 1967

backup (i c> e. , if

and INC returns,

BACK is less than 0), BACK is increased by one

~ince the next character is in the window

already. Otherwise, LCC is increased by one, and rUTIN is called

to store the new character.

2d3 A routine called INCS is similar to INC except that it

deletes all blanks or comments which may be at the current point

in the input stream. This routine implements the comment and

blank deletion for .ID, .NUN, .SR, and other basic recognizers.

INCS first calls INC to get the next character and increment INP.

From then on, PlJTIN is called to store succeeding characters in

the input window in the same slot. As long as the current

character (at IWP) is a blank, INCS calls rUTIN to replace it with

the next character. The nonblank character is then compared \vi th

a comment character. INCS returns if the comI)arison fails, but

otherwise skips to the next comment character. When the end of

the comment is located, INCS returns to its blank-checking loop.

2d3a Note that comments do not get into the input window. For

this reason, BACK should be zero Hhen a comment is found in the

loop described above, and this provides a good opportunity for

an error check.

2d4 Before beginning any input operation, the INP pointer must be

reset, since the program may have set pec back. The routine WPREP

304

Tree ~teta - PROGRAH ENVIRO~tENT - 29 DEC 1967

computes the value of BACK from PCC-LeC"

between 0 and the negative of the window

computed from pec modulo the windm-/ size"
"

This value

size. IWP

must be

is then

2dS The program-library interface for inputting items from the

input stream consists of the routines In, NUr-f, SR, LET, and CHR.

The first four are quite similar. ID is typical of them, and

works as follows: First HFLAG is set false. WPREP is called to

set up IWP, then INCS is called to get the first character. If

the character at INP is not a letter, ID returns (~IFLA~ is still

false); otherwise a loop to input over letter-digits is executed.

When the letter-digit test fails the flag is set true, and the

identifier is stored in the string storage area. The class of

characters is determined by an array (indexed by the character

itself) of integers indicating the class. Before returning, In

calls the routine GOBI.. Hhich updates pee to the last character

read in (which was not part of the identifier). That is, pec is

set to LCC+BACK-l.

2d6 The occurrence of a given literal string in the input stream

is tested for by calling routine TST. The character count and the

string follm-/ the call instruction. TST deletes leading blanks and

inputs characters, comparing them one at a time with the

characters of the literal string. If at any point the match

failS, TST returns false. Upon reaching the end of the string, TST

305

Tree Heta':- PROGRN-I ENVIRONr-.fENT - 29 DEC 1967

sets the flag true, sets pee to LCC+BACK, and returns. In

additi6n to TST, there is a simple routine to test for a single

character strinR (TCIl).. It inputs one character (deleting

blanks), compares it to the given character and returns false, or

adjusts pee. and returns true.

3 Stacks and Internal Organization

3a Three stacks are available to the program. A stack called r,1STACK

is used to hold' return locations and generated labels for the

program's recursive routines. Another stack, called KSTACK, contains

references to input items. When a basic r~cognizer is executed, the

reference to that inpilt i tern is pushed into KSTACK. The third stack

is called NSTACK, and contains the actual tree. The three stacks are

declared in the Tree Heta program rather th~n the library: the

program determines the size of each.

3a1 The operation of HSTACK is very simple. At the heginning of

each routine, the current generated labels' and the location that

the routine was called from are put onto ~·1STACK. The routine is

then free to use the generated lahels or call other routines ..

The routine ends by restoring the generated labels from t,lSTACK and

returning •

. 3a2 KSTACK cdntains single-word entries. Each entry will

306

Tree !,leta - PROGHAJ'·1 ENVIHON~1ENT - 29 DEC 1967

eventually be placed in NSTACK as a node in the tree. The fonnat

of the node ''lords is as fa 11 ows: There are two kinds of nodes,

terminal and nontermina1.. Terminal nodes arc references to input

items. Hontenninal nodes are generated by the parse Tules, and

have names Hhich are names of output rules.

3a2a A tenninal node is a 24-bi t ''lord wi th ei ther a

string-storage index or a character in the address portion of

the Hord, and a' flag in the top part of the word. The flag

indicates which of the basic recognizers (In, NUH, SR, LET, or

CHR) is to read the item from the input stream. .newp

307

Tree ~teta - PROGRN,l ENVIROW,tENT - 29 DEC 1967

3a2b A nontenninal node consists of a word wi th the address of

an output rule in the address portion, and a flag in the top

part which indicates that it' is a nonterminal node. A node

pointer is'a word 'tIith an NSTACK index in the address and a

pointer flag in the top part of the word. Each Tlonterminal

node in NSTACK consists of a nonterminal node \vord followed by

a word containing the number of subnodes on that node, followed

by a terminal node word or node pointers for each subnode. For

example,

.null TREE N5TACK K5TACK

.null

.null ADD

.null

• null node ptr • . ~
.null 55 item X

.null X t,tuLT' 2 [
,~

.null node AnD "01

.null 55 item Z

.null 55 item y

.null 2

.null y z node ~1ULT 6/

.null

3a2c K5TACK contains terminal nodes (input items) and

308

Tree Heta - PROGRAt.·1 ENVIRON~1ENT - 29 DEC 1967

nonterminal node pointers which point to nodes already in

NSTACK. NSTACK contains nonterminal nodes.

3b String Storage is another stack-like area. . All the items read

from the input stream by the basic recognizers (except f:HR) are

stored in the string-storage area (55). This consists of a series of

character strings prefixed by their character counts. An index into

SS consists of the address of the character COlmt for a string.

Strings in SS are unique. A routine called STORE will search SS for

a given string, and enter it if it is not already there, returning

the SS index of that string.

3c Other Toutines perform housekeeping functions like racking and

unpacking strings, etc. There are three error-message writing

routines to write the three types of error messages (syntax, system,

and compiler). The syntax error routine copies the current input

line to the teletype and gives the line number. A routine called

FINISH closes the files, writes the number of cells used for each of

the four stack areas (KSTACK, MSTACK, NSTACK, and 5S), and terminates

the program ..

3cl At man)' points in the library routines, parameters are

checked to see if they are \vithin their bounds. The system error

routine is call ed if there is something \-,Trong. This routine

l'w'ri tos a number indicating \vhat the error is, and terminates the

309

Tree t·teta - PROGRPN ENVIRON~·tENT - 29 DEC 1967

progrruil. In the current version, the numbers correspond to the

follmving errors.

3cla (1) Class codes are illegal

3clb (2) Backup too far

3cl c (64) Character 'vi th code greater than 63 in ring buffer

3cld (4) Test for string longer than ring size

3cle (5) Trying to output a string longer than maximl~ string

length

3clf (6) String-storage overflow

3clg (7) Illegal character code

3clh (8) Tryihg to store SS element of length zero

. 3cl i (11) ~lSTACK overflO\v

3clj (12) NSTACK overflow

3c1k (13) KSTACK overflow

310

Tree Heta - PROGRAN ENVIRONHENT - 29 DEC 1967

3d There is a set of routines used by Tree Heta which are not

actually part of the library, but are loaded wi th the library for

Tree· ~teta. They are not included in the library since they are not

necessari ly required for every Tree t·teta program, but more likely

only for Tree Heta. They are called "support routines". The

routines I>erform short but frequently needed operations and serve to

increase code density in the metacompiler. Examples of the

operations are generating labels, saving and restoring labels and

return addresses on MSTACK, comparing flags in NSTACK, generating

nodes on NSTACK, etc.

4 Output Facilities

4a The output from a Tree ~teta program consists of a string of

characters. In the future it might be a string of bits constituting a

binary program, but at any rate it can he thought of as a stream of

data. The output facilities available to the program consist of a set

of routines to append characters, strings, and numbers to the output

stream.

4a1 A string in SS can be written on the output stream by calling

the routine OUTS with the 5S index for that string. OUTS checks

the 5S index and generates a system-error~ message if it is not

reas onab Ie.

311

Tree ~feta ~ PROGRAH ENVIRONHENT - 29 DEC 1967

4a2 A literal string of characters is written by calling the

routine LIT. The literal string folloHS the call as for TST.

4a3 A number is written using routine OUTS.· The binary

representation is given, and is written as a signed decimal

integer.

4a4 All of the above routines keep track of the number of

characters \Vri tten on the output 'stream (in CHNO). Based on this

count, a routine called TAB will output enough spaces to advance

the current output line to -the next tab stope Tabs are set at

8-character intervals. The routine CRLF will output a carriage

return and a line feed and reset CHNO.

4aS There are several routines that are convenient for debugging.,

One (WRSS) Hill print the contents of SS., Another (WRIW) will

print the contents of the input window.

312

Tree ~Ieta - rOm·fAL DESCRIPTION - 29 DEC 1967

This chapter is a formal description of the complete Tree Heta

language. It is designed as a reference guide.

1 a For clari ty, strings whlch would nOl'mally be delimited by

quotation marks in the metalanguage are capitalized insteao, in this

chapter only.

1 h Certain characters cannot be printed on the report-generating

output media but are on the telet)l)es and in the metalang~age--their

names, preceeded by periods, are used instead.. They are

.exclamation, .question,

.percent.

2 Programs and Rules

2a Syntax

.pound, • ampersand, • backs lash, and

2a1 program = .HETA .id (.LIST / .empty) size / • CONTINUE $rule

.END;

2a2 size = 'e siz S(', siz) t) / .empty;

2a3 siz = .chr '= .ntun;

401

Tree Heta - F()R~IAL DESCRIPTION - 29 DEC 1967

~ .

2a4 rule = .iei ('= ext (.ampersand I .empty) I 'I "=>" genl I

outrul) ';

2b Semantics

2bl A file of symbolic Tree ~feta code may be ei ther an orip-inal

main file or a continuation file. A compiler may be composed of

any number of files but there Jnay be onl)' one main file.

2b1a The mandatory identifier following the string .HETA in a

main file names the rule at \vhich the parse will hegin.

2b1b The optional .LIST, if present, will cause the compiler

currently being generated to list input wh"en it is compiling a

program.

2blc The size construct sets the allocation parameters for the

three stacks and string storage used by the Tree [·Ieta library.

The default sizes are those llsed by the Tree Heta compiler. M,

K, N, and S are the only valid characters; the size is

something \vhich must be determined by experience. The maximum

number of cells used during each comp~lation is printed out at

the end of the compilation.

402

Tree ~1eta - FOHHAL DESCRIPTION - 29 DEC 1967

2b2 When a file hegins with .CONTINUE, no initialization or

.storage-allocation code is produced.

2b3 There are three di fferent kinds of rules in a Tree ~·feta

program. All three begin with the identifier Hhich names the rule.

2b:,a Parse rules are distinguished by the == following the

identifier. If all the elements which generate possible nodes

during the execution of a parse rule are not built into the

tree, they must he popped from the kstack by \vriting an

ampersand immediately hefore the semicolon.

2b3b Rules with the string / ==) following the identifier may

only be composed of elements which produce output. There is no

testing of flags within a rule of this type.

2b3c Unparse rules have a left bracket fo 11m·ling the

identifier. This signals the start of a series of node tests.

3 Expressions

3a Syntax

3a1 ex]>:: '+ suback ('/ exp / .empty) / subexp ('/ exp / .empty);

403

Tree Heta' - Fom·1AL DESCH I PTION - 29 DEC 1967

3a2 suback = ntest (suback / .empty) / stest (suback / .empty);

3a3 subexp = (ntest / stest) (noback / .empty);

3a4 noback = (ntcst / stest (t .question .nun (.id I '.question)

/ .empty)) (noback I .empty);

3b Semantics

3bl The expressions in parse 'rules are composed entirely of

ntest, stest, and error-recovery constructs. TIle four rules

above, \~hich define the a1lo,-:ahle alternation and concatention of

the test, are necessary to reduce the instl'uctions executeu when

there is no bacKup of the input stream.

,3b2 An expression is essentially a series of subexpressions

separated by slashes. Each sUbexpression is CUI alternative of the

expression. The alternatives are executed in a left-to-right

order until a sllccessful one is found.' The rest of that

alternative is then executed and the rule returns to the rule

which invoked ito

3b3 The subexpressions are series of tests. Only subexpressions

which begin \.;i th a leftarrow are allowed to back up the input

stream and rescan it.

404

Tree t,leta-"... rOTH-fAL DESCRI PTION - 29 DEC 1967

3b3a Without the arr{)\v at the head of a subexprcssion, any

test other than the first within the sUbexpression may he

follm~ed by an error code. If the errOl~ code is ahsent and the

stest fails during compilation, the system prints an error

comment and stops. If the error code is present and the stcst

fails, the system prints the number follm.;ing the • .question in

the error code, and if the optional identifier is given the

system then transfers control to that rule; otherwise it stops.

3b3b If the test fails, the input stream is restored to the

position it had when the sUbexpression began to test the input

stream and the next alternative is tried. The input stream may

never be moved back more characters than are in the ring

buffer. Normally, backup is over identlfiers or words and the

"buffer is long enough.

4 Elements of Parse Rules

4a Syntax

4al ntcst = C': .id / t[C ·) .num I genp ') ('.backslash /

.empty) I ,< genp ,> C':backslash I .empty) I (.CllR I .*) / H=>"

I comm;

405

Tree ~teta - rOm·1AL DESCRIPTION - 29 DEC 1967

4a2 genp = genpl / .empty;

4a3 genp1 = genp2 (genpl / .empty);

4a4 genp2 = '* (5 .num / .empty) (L / C / N / .empt.y) / genu;

4aS comm = .mtPTY / '.exclamation .sr;

4a6 stest = ' • • id / .id / .sr / '(exp ') / ".chr / (.num '$ /

'$) (.num / .empty) stest / '- (.sr / ".chr);

4b Semantics

4bl The ntest elements of a parse rule cannot change the value of

the general f1 ag, and therefore need not be followed by

flag-checking code in the compiler.

4bla The: .id construct names the next node to he put into

the tree. The identifier must be the name of another rule.

4blb The [.num] constructs a node with the name used in the

last .id construct, and puts the nUJilher of nodes specified

after the arrm{ on the new node in the tree.

4blc The [genp] is used to Hrite output into the normal

406

Tree Heta .- FORHAL DESCRIPTION - 29 DEC 1967

output stream during the pars.c phase of the compilation.

4b1<1 The < genp :> is used to print output back on the user

teletype instead of the normal output stream. This is

generally used during long compilations to assure' the user that

the system is still up and running correctly.

4ble The occurrence of a .chr causes one character to he read

from the input stream into a special register which may be put

into the tr~e just as the terminal symbols recognized by the

other basic recognizers are.

4blf An asterisk causes the rule currently in execution to

perform a subroutine call to the rule named by the top of the

tree.

4hlg TIle "=>" ntest construct causes the input stream to be

moved from its current pO,si tion past the first occurrence of

the next stest.· This may be used to skip' over comments, or to

move the input to a recognizable point such as a semicolon

'after a syntax error.

4b2 The comm elements are common to both parse and unparse rules.

4b2a The .E~fPTY in any rule sets the gene.ral flag true.

407

Tree ~Ieta - FORHAL DESCRIPTION - 29 DEC 1967

4b2b The .exclamation-string construct is used to insert

patches into the compiler currently being produced. The string

following the .exclamation is ililmediately copied to the output

stream as a new line. This allows the insertion of any special

code at any point in a program.

4b3 Stests always test the input stream for a literal string or

basic entity. If the entity is found it is removed from the input

stream and stored in string storage. Its position in string

storage is saved on a pusJl-down stack so that the entity may later

be added as a terminal node to the tree.

4b3a A .id construct provides a standard machine-language

subroutine call to the identifier. Supplied with the Tree ~1eta

library are subroutines for .id, .Hum, .sr, .chr, and .let

which check for identifier, number, string, character, and

letter respectively.

4b3h An identifier by itself produces a call to the rule with

the name of the identifieTc

4b3c A literal string merely tests the. input stream for the

string. If it is found it is discarded. The

apostrophe-character constrllct functions like the literal

40R

Tree Heta - rOm-fAL DESCRIPTION - 29 DEC 1967

.string, except that the test is limited to one character.

4b3d The number-$-numbcr construct is the arbitrary-number

operation of Tree- ~teta. m$n preceding an element in a parse

rule means that there must be between m and 11 occurrences of

the next element coming up in the input. The default options

for m and n are zero and infinity respectively.

4b3e The hypheJl-string and hyphen-character constructs test in

the same \vay as the literal string and apostrophe-character

constructs. After the test, however, the flag is complemented

and the input-stream pointer is never moved forward. This

permits a test to he sure that something does not occur.

5 Unparse Rules

Sa Syntax

Sal outrul = '[outI' (outrul / .empty);

5a2 out I' == items ') "=)" outexp;

5a3 items = item (', items / .empty);

534 item = '- / .id t [outest / nsimpl / I .id / .sr / ,t echr /

409

Tree r·feta - FOHHAL DESCRIPTION - 29 DEC 1967

t .pound;

5b Semantics

5bl The unparse rules are similar to the parse rules in that they

test something and return a true or false value in the general

flag. The difference is that the parse rules test the input

stream, delete characters from the input stream, and build a tree,

while the unparse" rules test the tree, collapse sections of the

tree, and write output.

5b2 There are tHO levels of alternation in the unparse rules. The
, <

highest level is not written in the notmal style of Tree Meta as a

series of expressions separated by slashes; rather, it is written

in a "lay intended to reflect the matching of nodes and structure

\Vithin the tree. Each unparse rule is a series of these

highest-level alternations. The tree-matching parts of the

alternations are tried in sequence until one is found that

successfully matches the tree. The rest of the alternation is

then executed. There may be further test within the alternation,

but not complete failure as with the parse rules.

5b3 TIle syntax for" a tree-matclling pattern is a left bracket,a

series of items separated by cornmas, and a right bracket. TIle

items are matched against the" branches emanating from the current

410

Tree r·ieta - FomtAL DESCRIPTION - 29 DEC 1967

top node. The matching is done in a left-to-right order. As soon

as a match fails the next alternation is tried.

5b4 lfno alternation is sllccessful a false value is Teturned.

5b5 Each item of an unparse al ternation test rnay be one of five

different kinds of test.

Sb5a A hyphen is merely a test to be sure that a. node is

there. This sets up appropriate flags and pointers so that the

node may be refered to later in the unparse exrress~on if the

complete match is sU'ccessful.

5b5b The name of the node may be tested by writing an

identifer which is the name of a rule. The identifer must then

be follm>Jed by a test on the subnodes.

Sb5c A nonsimple construct, primarily an asterisk-number-colon

sequence, may be used to test for node equivalence. Note that

this does not test for complete substructure equivalence, but

merely to see if the node heing tested has the same name as the

node specified by the construct.

5b5d The • id, • num, • chr., • let, or • s1" checks to see if the

node is terminal anti was put on the tree by a oid recognizer,

411

Tree Heta .- FORHAL DESCRIPTION - 29 DEC 1967

• nun.l recognizer, etc. dnring the parse phase. This test is

very simple, for it merely checks a flag in the upper part a

l10rd.

Sb5e If a node is a terninal node in the tree,' and if it has

been recognized hy one of the basic recognizers in meta, it may

be tested against a literal string. TIlis is done by writing

the string as an item. 111e literal string does not have to he

put into the tree with a .sr recognizer; it can he any string,

even one put in with a .let.

5bSf If the node is terminal" and was generated by the .chr

recognizer it may be matched against another specific character

by \l'ri ting the apostrophe-character construct as an item.

SbSg Finally,

generated label.

the node may he tested to see if .it is a

TIle labels may be generated in the lmparse

expressions and then passed down to other 11l1parSe rules. The

test is made Hriting a .pound-numher construct as an item. If

the node is a generated label, not only is this match

'successftll but the label is made available to the elements of

the unparse expression as the number following the .pound.

6 Unparse Expressions

412

Tree Heta - rOP}tAL DESCRIPTION - 29 nEC 1967

6a Syntax

ual outexp:: sllbout (' / outexp / • empty) ;

6a2 SUb(;Hlt:: outt (rest / • empty) / rest;

6a3 rest:: outt (rest / .empty) / gen (rest / .empty);

6a4 outt:: .id '["arglst '] / '(outexp ') / nsimp1 (': (S / L /

N / C) / empty);

6a5 arglst = argmnt (' I arglst / .e~pty) / .empty;

6a6 argmnt:: nsimp / '.pound .num;

6a7 nsimp1 :: '1' nsimp / nsimp;

6a8 nsimp = '* .num (t. nsirnp / .empty);

6a9 genl :: (out / comm) (genl / .empty);

6a10 gen - comm / genu / ,< / ,>

6b Semantics

413

Tree ~Ieta - FOmlAL DESCRIPTION - 29 nEC 1967

6b1 The rest of the unparse rules follow more closely the style

of the parse rules. Each expression is a series of alternations

separated by slash marks.

6b2 Each al ternation is a test follO\ved by a series of output

instructions, calls of other unparse rules, and parenthesized

expressions. Once an unparse expression has begun executing calls

on other rules, elements may not fail; if they do a compiler error

is indicated and the system stops.

6b3 The first element of the expression is the test. This

element is a calIon another rule, which returns a. true or false

value. The call is made by Hriting the name of the rule followed

by a series of nodes. The nodes are put together to appear as

part of the tree, and when the call is made the unparse rule

called views the nodes specified as the current part of the tree,

and thus the part to raatchagainst and process.

6b3a Two kinds of things may be put in as nodes for the calls.

The simplest is a generated label. This is done by writing a

.pound follmvcd by a number. Only the numbers and 2 may be

used in die current system. If a label has not yet been

generated one is made up.. This label is then put into the

tree.

414

Tree ~Ieta·,.. romfAL DEseRI PTION - 29 DEC 1967

6b3b Any already constructed node Rlso may he put into the

tree in this neH position. The old node is not rcmoved--rather

a copy is made. An asterisk-number construct refers to nodes

in .the same \vay as the highest-level alternation.

61>4 This process of making new structures from the

already-existing tree is a very po\verful way of optimizing the

compiler and condensing the number of rules needed to handle

compilation.

61>5 The rest of the unparse expression is made up of output

commands, and more calls on unparse rules. As noted above, if any

except the first call of a expression fails a compiler error is

indicated and the system stops.

6b6 .Just as in the parse rules, hrokets may he useq to send

immediate printout to the 11ser Teletype.

"6b7 The asterisk-number-colon constnlct is lised frequently in the

Tree Heta system. It appears in the node-matching syntax as well

as in the form of an element in the llnparse expressions $ \\nen it

is in an expression it must specify a node \\'llich exists in the

tree.

6b7a If the node specified is the name of another Tule, then

415

Tree ~feta.- rom,fAL DESCRIPTION - 29 DEC 19()7

control is transferred to that node by the standard suhroutine

linkage.

6b7b If the node is terminal, then the terminal string

associated with the node is copied onto the output stream.

6b7c The simplest form

fo110\"ed by a number, in

counting the appropriate

of the construct is an asterisk

which case the node is found by

number of nodes from left to right.

This may be fo110\-1e<1 by a colon-number construct which means to

go down one level in the tree after performing the

asterisk-numher choice and count over the number of nodes

specified by the number following the colon. This process may

he repeated as often as desired, and one may therefore go as

deep as one wishes. All of this speciffcation may be preceded

'by an t-number construct which means to go up in ,the tree,

through parent nodes, a specified number of times before

starting down.

6b7d After the search for the node has been completed, a

·number of different types of output may be specified if the

node is terminal. There is a compiler error if the node is not

terminal.

6b7dl :s puts Ollt the literal string

416

Tree r·teta - FOmtAL nESCRIPTION - 29 DEC 1967

7 Output

6b7d2 :1 puts out the length of the string ;lS a decimal

number

6b7d3 :n puts out the string-storar,e index pointer if the

node iS;l string-storage element; otherHise it puts out the

decimal code for the node if it is a .chr node.

6b7d4 :c puts out the character if the node was constructed

with a .chr recognizer.

7a Syntax

7al genu = out /

.num (': / .empty);

.id '] ((.id / .num) I .empty) .] I '.pound

7a2 out = ('.backslash I f I .sr I ".chr / H+W" / "-w" / ".w" /

".pound"

7b Semantics

7bl TIle standard primitive output features include the following:

417

Tree ~feta .- FOrtHAL DESCJUPTION - 29 nEe 1967

7bla Write a carriage return \dth a backslHsh

7blb Write a tah with a comma

7blc Write a literal string by giving the literal string

7bld Write a single character using the apostrophe-character

construct

7bl e Wri te _ references to temporary storage by using a \"orking

counter. Three types of action may be performed \Vi th the

counter. +W adds one to the counter and \~ri tes the current

value of the counter onto the output stream. -l'l subtracts one

from the connter and does not write anything. • \V writes the

current value without changing it. Finally, .pound W writes the

maximum value that the counter ever reached during the

compilation.

7b2 The. id [(. nlim/ • irl)] is used to generate a call (940 Blt\t

instruction) with a single argument in the A register. It has

been used mostly as a debug"ging tool during various bootstrap

sessions with the system. For example, .CERR[5] generates a call

to the. subroutine CERR wi th a 5 in the A regis tel'.

"-7b3 .pound 2 means tfdefine generated label 2. at this point in the

418

Tree ~Ieta - rOTU-tAL DESCRIPTION - 29 DEC 19()7

program being compiled." It writes the generated label in the

output streafl followed by an EQU * . This construct is added only

to save space and writing.

419

Tree ,\feta - DETAILED EXAHPLES - 29 DEC 1967

1 This section of the report is merely the listings of compilers for

two languages.

2 The first language, known as SAL for "small algebraic language," is a

straigh tfor\vard algebraic ALGOL-like language.

3 The second example resembles Schorre's HETA II. This is the original

metacompiler that was used to bootstrap Tree ~feta. It is a one-page

compiler written in its own language ea subset of Tree Heta).

501

--0--

%TREE META SMALL ALGEBRA! C LANGUAGE - 29 SEPTEMBER 1967 %

.META PROGRAM .LIST

PROGRA.M = ".PROGRAtvI" DEC * $(DEC *> :STARTNCOJ ST * $('; 5T *>
" • FIN I SHu ? 1 E : EN DN [0 J * FIN I SH .;

DEC = ". DECLARE" • I D $('I • I D : DO (2]) ''; : DECN[1]';

E = RESET => ''; $(5T *> n. ENDtI 199E : ENDN[OJ * FINI SH;

5T = IFST / \vHILEST / FORST / 80S1' / lOST / BLOCK /
.ID (': :LBL[lJ 51' :DO[2J / .~ EXP :STORE[2]);

IF5T = ".IF" EXP It.THEN" 5T (".ELSE" ST :SIFTE[3J / .EMPTY :SIFT[2J)';

\sJHILEST = '1. \tjHILE" EXP II. DO" ST : \-.)HLC 2];

FORST = If.FOR" VAR t~ EXP ".BY" EXP ".TO" EXP ".DO" ST :FOR[S]';

GO S T = ". GO" " • TO n • I D : GO [1 J ;

1051' = ".OPEN" ("INPUT" • ID 'e .ID 'J :OPNINP[2J /
"OUTPUT" .ID '(.ID '] :OPNOUT[2J) /

". CLOSE" • I D: CLSFIL[1J /
".READIt .ID ': IDLIST :BRS38[2J /
tI.INPUTu .ID ': IDLI ST :XCIO[2J /
". '''R I TEn • I D ': vJL I 5 T : 0 UTN UM [2] /
It. OUTPUT" • I D': \\iLI ST : OUTCAR[2] ;

I DL IS l' = V AR (I DL 1ST : DO [2] / • EM PTY) .;

'lJJLIST = (.ID / .NUi1 / .SR> ("VjLIST :DO[2J / .EMPTY);

BLOCK = ".BEGIN" 51' $('; 51' :00[2]) ".END";

EXP = ". IF" EXP It. THEN" EXP tI. ELSE" EXP : AI F(3J / UNION;

lWION = INTERSECTION (','/ UNION :OR(2) / .EMPTY);

INTERSECTION = NEG ('& INTERSECTION :AND[2J / .EMPTY);

NEG = "NOT" NEGNEG / RELATION;

NEGNEG = "NOT II NEG / RELATION :NOT(1];

RELATION = SU{\1 ((.. <=u SUM :LE /
"<" SUM :LT /
It>=" StJ'M : GE /
u> .. SUM : G1' /

"= " St1t>l : EQ /
'/I 5Ut1 :NE) [2] / • EMPTY);

--1--

SUivj = TERM « '+ SUM : ADDI '- SUM·: SUB) (2] I t) E~1PTY';

TERM == FACTOR «. * TERM : MUL TI '/ TERM : DIV 1 D/ • t TEfu~ : REl1) [2] I (I EMPTY)':

FA.GTOH == '- FACTOR :tIJINUS[1J I '+ FACTOR I PRIMARY;

PHIMARY == VARIABLE / CONSTANT / t (EXP ');

VARIABLE == .ID :V.ARCIJ;

CON STANT == • Nu11 : CON [1 J;

SIFTE1[#1,-] => ,"BRU",#2\ #l"uEQU *"\ *2 #2,"EQU *U\,;

SIFTC,-] => LOPHC*1;#1,lf2J BRF[*1"t~2] #l,"EQU *n\ *2 #2.11"EQU *"\;

vjHL1[-,#2] => LOPRe*1,ffl,#2J BRF[*1,t/2J #l,"EQU *"\;

FORe ... , - ;-, -.I -] ==> <"00 NOT USE FOR STATErY1ENTS">1

LBL[-J ==> *l,"EQU *" . • .:I

LOPR[OR[-,-],'l,-] => LOPR[*1:*1,'1,#2J BRT[*l:*l,IIJ
#2, U EQU *n\ LO PRE * 1: * 2, If 1, * 3]

[AND[-,-],-,#lJ => LOPR(*1:*1,#2,#lJ BRF[*l:*l,#lJ
#2, "EQU *"\. LOPRe * 1: *2" *2, # 1 J

[NOT(-],'l,#2J ==> LOPR[*1:*1,12,#lJ
(-,-,,-] => (I El\1PTY;

BRT[OR[~'-].111J1] => BRT(*1:*2 ... #lJ
(AN DC - , - J .. # 1 J
[NOT[-]." If 1 J
(L E[-." -] -' If 1]
[LT[-.,,-JJl'#lJ
[EQ(-" J $I Ill]
[GE[- J' -] JI # 1 J
[-G1'(-,,-J,,1I1]
[N E[- " :.. J -' If 1 J
[-,fJ1J

B RF [0 R [... ." - J .. Ii 1]
[AN D[';",,"" J jl ff 1]
(NO T[-] -' If 1]

=> BET[* 1: *2, # 1]
== > BRFC * 1 : * 1, # 1]
::: > BL EC * 1 : * 1." * 1 : * 2, If 1 J
=> BLT(*1=*1,*1:*2,#lJ
=> BEQ[*1:*1.,,*1:*2,fflJ
F> BGEC*1:*1,*1:*2,#lJ
::: > BL E(* 1 : * 2 .. * 1 : * 1" if 1)
=> BNE[*1:*1,*1!*2J1tflJ
=> ACC[* 1J .. fiSKE =0"\ , nBr?:U"', #1\;

=> BRFC*1:*2,!JIJ
=> BEF[*1:*2~!!1)
:::: > BRT[* 1: * 1.1 t~ 1 J

I: L E[- " - J " If 1]
[LTC-,,-J .. fJl]
EEQ[-,-J,#lJ
[G r:C - " - J , # 1 J
I: GTE -" - J JJ 111]
[NEE - '" - J .. /I 1]
(-,,1I1J

=> BLEC*1:*2,*1:*1,'lJ
=> BGE[*1:*1,*1:*2~'lJ
=> BNE(*1:*1;*1:*2,#lJ
== > BL TC * 1 : '* 1" * 1 : * 2" # 1 J
::: > BL E[* 1 : * 1; * 1 : * 2, If 1]
= > B EQ[* 1 : * 1., * 1 : * 2; # 1]
=> AGe(* IJ ., HSKA =-1 U\ ., ftBRU"" 111\;

BLTE-.,-,61J => CTOKE.N[*lJ ACCC*2J ,"SKE" .. *l\,"SKG",,*l\ I
WORKE * 1] Acee *2] .I II SKEOi

, "1'+". v]\, U SKG tt
" "T+u. vl- \17\)

,,"BRU *+2tt
\ ., "BRU"" If 1\;

BL E[- " -" # 1] = > (TOK EN [* 2] Ace [* 1] .. " SK G n, * 2\ I
TOKENf. * 1] AGe[*2] '" "SKG", * 1 \ .. "BHU *+2"\ I
v]ORK[*2J ACG[*lJ ,"SKG"JI"T+"lI)vJ-~0\)

" "BRU" .. # 1 \;

BEQ[-;.-",#lJ => (TOKEN[*2J A.CC[*lJ ,"SKE",*2\ /
TOKEN[*lJ ACC(*2) ,,"SKEu .. *l\ /
WORK(*2J .ACeE * 1] .. n SKEu , f'T+" 0 i,1J- \'l\)

,,"BRU *+2"\ '" "BHU", # 1 \,;

BGEE- .. -",#lJ => (TOKEN(*lJ ACC(*2J ,"SKEiI,,*l,\,"SKG",*l\ I
~jORK[* 1] ACC[*2] .; tv SKEU., uT+". \1/'\, nSKG ff

" "T+" CI \3]-i,lJ\)
JJ "BED", # 1\;

BNE[-,-"U1J => (TOH:EN[*2J ACC(*l] ,tlSKE",,*2\ /
TO K r1'J [* 1] ACe [* 2] ,," SK EH

.. * 1 \ /
\vORK[*2] Acee * 1J ,," SKEu

Jo ftT+". H- vI\)
"nBRO", # 1\;

STORE(-,VAR[* 1J] => "*IT5 ALREADY THERE'"
[-,ADD(VAR[*lJ"CON["l U

]]] => "u£·lIN u,*l\
(- " A. D D(V .A.E [* 1] '" -]] = > .A C C [* 2 : * 2] , H A Dt"'P Z " * 1 \.
[-,SUB(VARC*l],-]] => ACCE*2:*2J ,nCN.A; AD:1 n*l\
(.... JI-] => BREG[*2J ","STBH ,,*l\ /

ACCC*2J J/"STA il,*l\;
ADDCMINUS[-],-] => SUBE*2,*1:*lJ

[-,,-J => 'fOKEN[*2] ACCe * 1] ""ADDu,,, *2\ /
\I]ORK[* 1] AGC[* 2J "If ADDu" "1'+ n _ \v- t,l\';

SUB[-" - J => TOKEN[*2] ACC(* 1] .I "SUBu
, *2\ /

TOK &'\J[* 1] (BREGE *2] "nCBA; CN.A; ADD "* 1 \ /
AGe[*2] ,,"CNA; ADD "* 1 \) /

HO F.K[*2] ACC[* 1] "u SUB", uT+". vl- v/\.;

MINUSe-] ==> TOKEJ:.J[*lJ _,"LD.P/' ... *l\ s,HeNAn \. I
BREGe * 1] :J U CBA; CNF1H

\ /

ACC[*lJ ,HCNA"\;

DIV I DE -" - J => TOK Ei'J [*2] (BEEGe * 1 J ,,"CBAH
\.. /

ACC[*l]) ,uRSH 23; DIV u*2\ /
\,,70RK[:-~2) (BEEG[* 1] ,,"CBf.-\H\ /

ACC[*l}) J'HHSH 23; DIV T+n",\.J""'\'],\;'

--3--

BREG[MULT[-,-]J => TOKEN[*1:*2J ACC[*l:*lJ ~"MUL",*1:*2n; HSH I'" /
TOKENC*l:*lJ ACC[*1:*2J ,,"iYlULU .,*l:*l"; RSH 1"\ /
VJOBKE * 1: * 1 J ACC[* 1: * 8J ,,"M UL"" f1IT+". ~"_t~n; RSH 1 n\

[RENC-,-]J => TOKEN[*1:*2J (BHEGC*l:*lJ ,"CBA"\ I
ACCe * 1]) ., "RSH 23; DIV 11* 1: *2\ I

t'JORKE * 1: *2J (BREGE * 1: * 1 J , "eBA"\ /

AC C [- J = > TO KEN [* 1 J , ilL DA"" * l' I
BREGE * 1 J " "CBA

It
" /

* 1,;

Ace C * 1 : * 1]) ., "R SH 23'; D IV T+ "
.W-V.Y"'; RSH 1"\';

vl0RK[-] = > BREG [* 1 J "n STB", "1'+ "+\'J\ /
, ACCE * 1 J ,," S TA", "T+ U+ Vi\;

TOKEN [V AR[& I DJ J = > • EMPTY
[CONE 0 NtJt~]] => 0 EMPTY';

MULT I => • Et1PTY;

REi.'1 I = > • EMP'TY';

AND / => CI EMPTY;

OR / => • E11PTY;

NOT I => .EMPTY,;

ENDN / => "T", HBSS"" T vI\ ,,"END",;

VAR[. I DJ => * 1';

CON[.NUM] => '= *1;

LE / => • Et'1PTY';

L T / => I> El·jPTY;

EQ / => • Er-1PTY;

GE / => • Ei.~PTY;

GT I => • B4PTY';

,NE / => • fl\1PTY';

"OPNINP[-,,-] => ,"CLE.AR; BRS 15; BRU '-'*2"; BRS 16; BRU H*2"; STA 91*1,\;

OPNOUT[-,-] => ,"CLEAH; BRS 18; BRU "*2.0; LDX :::3; ERS 19; BEU ft

*2"; STA n*l';

-- Ll--

CLSFIL[-J => ~"LDA "*1"; BES 20"\;

BRS38[-~.ID] => ~"LDA n*1"; LDB =10; BR.S 38; STA "*2\.
[-~-J. => BRS38(*1~*2:*lJ BRS38[*1~*2:*2J;

XCIO[-~.ID] => ~"CIO "*1"; STA "*2\
[-~-J => XCIO[*1~*2:*1] XCIO[*1,*2:*2J;

OUTCAR[-,. I DJ => , "LDA "*2"; CIO "* 1 \
[-, .NUMJ => , "LDA ="*2"; CIa "* 1\
[-, .SRJ => ,"LDA ="#1"; LDB ="*2:L"; LDX U*I"; BRS 36; BHU "*2\

1I1~ftASC fl' '*2"\,
[-,-] => OUTCAR[*1,*2:*lJ OUTCAR[*1,*2:*2J;

o UTNUM (-.I • I DJ = > , "L DA "* 1 " .; LDA = 10; BRS 38; U\
(-, .NOM] => ,"CDA ="*2"; CIO "*1\
[-,. SRJ => ,"LDA ="#1"; LDB =u*2:L" ; LDX "*1"; BRS 36; BRU "*2\

#l,"ASC ft' '*2' '\
[- ~ -] = > 0 UTNtR'l [* 1, * 2: * 1] 0 UTN UM [* 1, * 2 : * 2] ,;

STARTN I => "START", "EQU", n*,,\;

DECN[.IDJ => *l~IfBSS 1"\
[-] => DECNC*l:*lJ DECNC*1:*2J ,;

• END

--0--

PROGRM = ".META". I D ? 11 <uiVlETA I I 1. 1">
(If NOLIST EXTJlNUL.;$START BRM INITL"]
·["$KSTKSZ EQU 1.: SMSTKSZ EQU 100; $NST.t{SZ EQU 1; $SSSIZE EQU S50"J
(".LISTu [~UCLA; STA LI S'IFGH

) I tl EMPTY)
(" "BRM RLINE; BRM "*ft; BRM FIN! SHU]
(• (SI Z $ (• ,II S I Z) ') ? 17 E I • B·1PTY)

$S1' tt. ENDu ? 2E
("STAR BSS 1': SSTOP DATA SS+SSSIZE- 5.: $SS BSS SSSIZE"]
("$MSP DATA MSTK,; $MSPT DATA MSTK+t1STKSZ-S; $MSTK BSS MSTKSZ U

]

("$NSP DATA NSTK; $NSPT DATA NSTK+NSTKSZ- 5; $NSTK BSS NSTKSZ"]
['W$KSP DATA KSTK; $KSPT DATA KSTK+KSTKSZ- 5; $1(STK BSS KSTKSZ U

]

[,II "END"] <nDON E">,;
51' = • 1 D '= ? 3E <"ST"> [*, "ZRO': LDA *-1; BRM CLL"]

EXP ? LiE 1,: 1 5E (.I "BRU RTN"J':
EXP = SUBEXP $(' I, [JI uLDA t1FLAG;' SKE = 0; BRU "*1]

. SUBEXP) [* 1 .. "EQU *tt],;
SUBEXP ::: (GEN '; EL T (,II ,iLDA t-1FLAG'; SKE:;: 1': BRU "* 1])

$REST [*l,,"EQU *"];
REST = GEN I EL T (" uLDA r.1Fl..AG; SKE = 0.; BRU *+ 4"]

('? • NU1Vl ? 12E [" "LDA = "*"'; HBM ERRU]:
(.lD [,"BRM",*)I .'7 [,"BRS EXIT"])7 13E/

• l!1'r1PTY C, "CL1H BHt4 ERR;BRS EX I Tn]).;
ELT == ' • • ID ?6E (,,"BRMu,*tI; STA STARn] I

..• I D [" "BRM"." *J I
• SR [.I ttBffiil TST; DAT.A. n*L "'; ASC It,. * ' · J I
'(EXp·? 7 E') ? 8 E /
•• • CHR [~ULDA ="*N"; BRt1 TCHtI].;

G EN = • [$0 UT '] ? 1 0 E ["uBFl-1 CRL F"] /
'$ r*l,tlEQU *H] ELT ?9E

C"ttLDA MFLAG; SKE =0; BHU u* 1 "; MIN MFLA.G"J /
n. EMPTytl [, nLDA = 1'; STA MFLAGfl

] I
n.CERn [, lt BR?"l \~lPREF; BRt"Vl INC; LDA*Iv}P; STA STAR; MIN NCCpU] I

'< .SH ? 12E '> 113E [,ffBf{tvI LITT; DATA n*L"; .4.SC H' '*' 'Ii; BRt"1 CRLFTH I
U:::>" [*l,"EQU *"J ELT 114E

(" "L DA MFLAG; SKE:;: 0; BRU *+ 3; iVi IN N CCP; BRU n* 1) /
'! ~ SR ? 15£ [, *] .;

OUT = .SR L,,"BRM LIT; DATA "*L"; ASC H' '*"] I

E = =>
SIZ :::

'.. [, "BEM TF.Btt] /
'* (.NUM (,II tiLDA =47B; CIO FNUMO; t-1IN CHNO; LDA .GN u

"; BRM GENLAB; STA GN""'; BHM OUTN n
] /

'L [" "LDA* STAR; BR1'1 OUTN"] I
'N (" "LDA STAR; BF.M CUTN"] I
'C [" HLDA STAR; CIO FNUr.l0.i MIN eRNO n] /
• Et'-1PTY [" "LDA STAR'; BRN OUTS"])/

I' • eHR [" "LDA ::: tr*N u ; CIO FNDt"".10; MIN CHNO"] I
• : . (" nBRf>1 CRLFU

];

'; ("nBRU RTN"J $ST 1I.E..l\JDft 111E ["tlffiDH] FINISH;
'IR=" 4jNUr1 (ffSKSTKSZ EQU n*J I
"~1= 11 • NliM [" $M STK S2 EQU n* J 1-
uN=" • NtJ~1 [U £N STK SZ EQU "*] /
It s= n 1& NUt>r1 [tf $ SSSI Z E EQU n*];

• END

Tree ~feta··- J)ETAILED EXN'·lPLES - 29 DEC 1967

502

Tree f>1eta - CONCLUSIONS and FtJTURE PLANS - 29 DEC 1967

Since the \York on Tree Heta is still in progress, there are few

conclusions and plentiful future plans.

2 (TAKE THIS BRANCH OUT FOR THE ROHE HEPORT.) This report needs

extension in two areas, as well as constant updating as the system

evloves.

2a Section 5 should he completed. This \\Tas intended to be a

detailed example

Tree r,teta. The

of a small algebraic-language compiler written in

language is essentially compl~ted, but the

accompanying explanations are not.

2b Somewhere \vi thin the report there 'shoUld be a thorough

discussion of the bootstrap technique of meta.

3 There are many research projects that could he undertaken to improve

the Tree ~·teta system.

3a SOJllething which has never been done, and which we feel is very

important, is a complete study of the compiling characteristics of

top-down analysis techniques. This \vould include an accurate study of

where all the time goes during a compilation as ''I'ell as a study of

the flmv of control during hoth parse and unparse phases for

601

Tree ~1eta - CONCLUSIONS and FUTURE PLANS - 29 DEC 1 9() 7

different kinds of compilers and languages. At the same time it

would be Hortln"hile to try to get similia)~ statistics from other

compilers. It may be possible to interest some IEople at Stanford in

cooperating on this.

3b SDC has added an intermediate phase to their tnetacompiler system.

They call ita bottom-up phase, and it has the effect of putt ing_

various attributes and features on the nodes of the tree. This

allows one to Hrite simpler and faster node-matching instructions in

the unparse rules. We Hould like to investigate this scheme, for it

appears to hold the potential for allO\ving the compiler \oJri tel' to

conceptualize more complex tree patterns and thu$ utilize the

node-matching features to a fuller extent.

3c Yet another intermediate phase could be added to Tree neta which

would do transformations on the tree before the unparse rules produce

the final code. In attempts to write compilers in Tree Heta to

compile code for languages with complex data strl1ctures (such as

algebraic languages with matrix operations or string-oriented

languages with tree operations) and to make these compilers produce

efficient code, we have found that tree transformations similar to

those used for natural-language translation allow one to specify

easily and simply the rules for tree manipulation which permit the

unparse rules to produce efficient, dense code. Implementation of

the tree-transformation phase into the Tree Heta system would be an

602

Tree ~·1eta - CONCLUSIONS and FtJTlmE PLANS - 29 DEC 1967

extensive research project, but cO\lld add a completely new dimension

to the pmver of Tree ~feta.

3d There are a series of additions, some very small and some major,

which we intend to add to Tree ~1eta during the next year.

3d1 Other metacompiler systems have had a construct ,,,hich allO\.;s

nodes to have an arbitrary number of nodes emanating from them.

This requires additions in parse rules to specify sHch a search,

additions in the node-matching syntax, and additions in the output

syntax to scan and output any number of branches.

3d2 tIe have always feI t that it would be nice to have the basic

recognizers such as "identifiert' defined in the metalanguage.

There have been systems \'lith this feature, but the addition has

always had very bad effects on the speed of compilation. We feel

that this nelv freedom can be added to Tree Heta without having

telling effects on the compilation speed.

3d3 The error scheme for unparse rules is rather crude--the

compiler just stops. We would like to find a reasonable way of

accommodating such errors and putting the recovery-procedure

control in the metalanguage.

3d4 Currently the unparse rules expand into 6 times as many

603

Tree Heta - CONCLUSIONS and FUTURE PLANS - 29 DEC 1967

machine-language instructions as the parse rules. This happens

because we did not choose the most appropriate set of subroutines

and common procedures for the unparse Tules. \\fithollt changing the

syntax of Tree Meta or the way the stacks work, we feel that we

can reduce the size of the unparse rules by a factor of 4. This

lvould free a considerably larger amount of core storage for stacks

and enlarge the size of programs which Tree Neta could handle. It

would also make it run faster in time-sharing mode since less

lvould have to be slvapped into core to run it.·

3dS In doing some small tests on the speed of Tree Het~ \1e found

that hetter than 80 percent of the compilation time is spent

outputting strings of cha-racters to the system. The code that

Tree ~leta nmv produces is the simplest form of assembly code. It

would be a very simple task to make Tree ~feta able to directly

produce binary code for the loader Tather than symbolic code for

the assembler. A similar change could also be made to output

absolute code directly into core so that Tree ~·1eta could be used

as the compiler for systems that do incremental compilation.

3e Finally, there is the following list. of minor additions or

changes to be made to the Tree Meta system.

3el ~lake the library output routines do block I/O rather than

character I/O. This could cut compilation times by more that 70

604

Tree t,1eta·.- CONCLUSIONS and FUTURE PLANS - 29 DEC 1967

percent.

302 Fix Tree ~teta So that strings can be put into the tree and

passed down to other unparse Tules. This would allow the unparse

rules to be more llseful as subroutines and thus cut down the

number of unparse rules needed in a compiler.

3e3 Finally, we \-'Quld like to add the abi Ii ty to associate a set

of attributes \vi th each terminal entity as it is recognized, to

test these attributes later, and to add more or change them if

necessary_ To do this we would associate a single 24-bit word

with the string \.;hen it is put into string storage and add syntax

to the metalanguage to set, reset, and test the bits of the word.

605

Tree ~1eta - BIBLIOGHAPHY - 29 DEC 1967

1 (BOOK1) Erwin Book, "TIle LISP Version of the Heta Compiler," TECH

~fEMO 11-t-271 0/330/00, System Development Corporation, 2500' Colorado

Avenue, Santa ~1onica, California 90406, 2 November 1965.

2 (BOOK2) Erwin Book and D. V. Schorre, "A Simple Compiler Showing

Features of Extended HETA," SP-2822, System Development Corporation,

2500 Colorado Avenue, Sat:lta ~lonica, California 90406, 11 April 1967.

3 (GLENNIEl) A. E. Glennie, "On the Syntax ~fachine and the

Construction of a Universal Computer," Technical Report Number 2, AD

240-512, Computation Center, Carnegie'Institute of Technology, 1960.

4 (KIRKLEY1) Charles R. Kirkley and Johns F. Rulif.son, "The LOT System

of Syntax Directed Compiling,"

Report ISR 187531-139, 1966.

Stanford Research Institute Internal

5 (LEDLEY1) Robert Ledley and .r. ll. Wilson, "Automatic programming

language translation through syntactical analysis," Communications of

the Association for Computing ~tachinery, Vol. 5, No. 3 pp. 145-155,

~farch 1 962.

6 (t-1ETCALFE 1) Howard r,1etcalfe, ttA Parameterized Compiler Based on

Mechanical Linguistics," Planning Research Corporation R-311, Harch 1,

1963, also in Annual Review in Automatic Programming, Vol. 4, 125-165.

701

Tree Neta - BIBLIOGRAPHY - 29 DEC 1967

7 (NAUR1) Peter Naur et al., "ropert on the algorithmic language AU~OL

60," Communications of the Association for Compting ~1achinery, Vol. 3,

No.5, pp.299-384, ~tay 1960.

8 (OPPENHEIH1) D. Oppenheim and D. Haggerty, "~tETA 5: A Tool to

~fanipulate Strings of Data," Proceedings of the 21st National

Conference of the Association for Computing Hachinery, 1966.

9 (RUn.tAN1) Roger Rutman, "LOGIK, A Syntax Directed Compiler for

Computer Bit-Time Sinnilation," Haster Thesis, UCLA, August 1964.

10 (SCHMIDT1) L. O. Schmidt" "The Status Hit, ff Special Interest Group

on Programming Languages Working Group 1 ,NeHs Lett:er, 1964.

11 (SCJL\IIDT2) PDP-l

12 (SClIHIDT3) EQGEN

13 (SCII~IEDER 1) F. W. Schneider and G. D. Johnson, "A SyntaX-Directed

Compiler-Writing Compiler to Generate Efficient Code," Proceedings of

the 19th National Conference of the Association for Comput,ing ~1achinery,

1964.

14 (SCHORRE1) D. V. Schorre, "A Syntax-Directed S~·fALGOL for the 1401, tt

702

Tree ~tet'a - BIBLIOGRAPHY - 29 DEC 1967

proceedings of the 18th National r.onfercnce of the Association for

COmputing Hachinery, Denver, Colorado, 1963.

15 (SClIORRE2) D. V. Schorre, tI~tETA II, A Syntax-Directed Compiler

Writing Language," Proceedings of the 19th National Conference of the

Association for COmputing ~fachinery, 1964.

703

--0--

.META PROGRM %TREE 1.3%

PEOGRt1:::: (n.META" .ID ? 11 (u.LISTu :LISTCO]/ .E1v1PTY :NT(O]) SIZE
: BEG INC 3] /

·".CONTINUE" :MTCOJ) <"TREE 1.3"> :SETUP(1] * $(Ru1. .. E *)
n. END" ? 2E : ENDNC OJ * <"DONE">;

SIZE:::'(SIZ $('., SIZ :DO[2]) ') 150E / .B-1PTY :MTCO];

SIZ ::: • CHR '= 154E .NU?1 755E : SIZS[2];

RTJ1..E = • I D
('= EXP 13E ('& :KPOPKC IJ / • Et.'1PTY) : OUTPT[2] /
t / ":::: > " ? 3 E G EN 1 : S IMP [2] /
OUTRUL : OUTPT[2J) ? 5E '; ? 6E ;

EXP = '... SUBACK ? 7E (' / EXP ? 8E : BAL TER[2] / • ElvlP1'Y : BAL TER[1]) /
SUBEXP ('I EX? ?9E :ALTERC2JI .EMPTY);

SUBACK ::: NTEST (SUBACK : DOC 2J I • EMPTY) /
STEST (SUBACK : CONCAT[2] / • EMPTY);

SUBEX? = (NTEST / 51'ES1') (NOBAC!{ : CONCAT[2J I • Et'lPTY)';

NOBACK::: (NTEST / STEST ('1 .NUM 710E :LOADC1J (.ID / '1 :ZRO[O]) 111E
: ERCOD[3] / • Et·jPTY : ER[1]))
(NOBACK : DOC 2] / • EMPTY);

NTES T::: ':" ! D ? 1 2 E : N DL B [1] /
'[(.NUt1 'J 114E :MKNODE(1] I

GENP 'J ?S2E ('t/oE1V1PTY :OUTCH[O] :IX)[2J)) /
'< GENP '> ?53E (8t I .. EMPTY :OUTCREOJ :DO[2J) :TTY(lJ /
(ft.eHB" :GCHR I
'* : GO) [OJ I
U=>U STEST '? 15E : SCAN[1] /

G EN P = G EN P 1 / • Et1 P TY : ~1 T(0] .;

G ENP 1 :: G EN P2 (G EN P 1 : DO [2] / • Ei""l PTY) .;

GE1\1P2::: '* (lS oNUM ?51E :PAROUT[1] / .EMPTY :ZRO(O] :PAROUT[1])
('L :OL / 'c :OC I 'N :ON / ",E1\1PTY. :05)[0] :NOPT[2]1 GENU;

COMM :: If. E".~PTY" : SET[0] /
'! .. SR ? 1 8 E = IN ED[1] j .

STEST ::: 'Cl • I D ? 19E : PRIMe 1) /
• I D : CALL [1] I

.SR :S1'S1'[l] /
I(EXP 720E ') ?21E/
It .CHR :CTST[lJI

(.NUM t$?23E Its; :ZRO[O]) (eNU01 /.ENPTY :MT[O]) STEST ?2LjE :.A.RB[3JI
'- (.Sf{ :NSRE 1J / " .. eBB :NCHH(1J) ?26E :NTST(1];

--,,--

OUTRUL :: I[OUTH ?27E (OUTBUL :ALTEH(2J / .EMPTY) :OSET[IJ;

OUTR :: OUTEST u::>"? 29E OUTEXP ? 30E : CONCATC 2J.;

OUT EST :: ((' J :MT / B-J"
ITEMS 'J)

: ONE / u-I - J"
:CNTCK[lJ;

:T\~O / "_'_1_]" :THRE) [0] /

ITEMS :: ITEM (' I ITEMS ? 32E : I TMSTRE 2] / • E~J1PTY :LI TEMC 1 J) .;

ITEM :: '- :MT[O] /
.ID '[?33E OUTEST 134E :RITEM[2JI
N S I t-1 P 1 : NIT EM C 1] I
I. 0 I D ? 35E :-r I TEM[1] I
• SR : TTST(1] I
'f .CHR :CHTST[lJ /
'# • N Ui">1 ? 37 E : GN ITEM [1 J .;

OUTEXP:: SUBOUT ('/ OUTEXP :ALTER[2J / .E1'1PTY);

SUBOUT :: OUTT (REST : CONCAT[2] / • EMPTY) / REST;

REST = OUT'I" (REST :OER[2]1 • EMPTY) 1 GEN (REST :DO[2]1 .E1<lPTY);

ourT = .lD I[739E P.RGLST I] 7/-40E :OUTCLL[2J 1 '(OUTEXP t) 741E 1
NSlrJlPl (': ('S :OS,I '1.. :OL I 'N :ONI 'e :OC)(O] :NOPT[2J 1

• EMPTY : DO 1'1'[1 J);

ARGLST :: AHGtlINT :'ARGC 1] (', ARGLST : DOC 2] 0/ • E01PTY) / • E1'1PTY :MT[0];

ARGt>1NT = NSIMP :ARGLD[1] / 'Il .NUM :GENARGC 1];

NSIMPl :: ~ 't NSIMP :UP[2J / NSIMP :LKT[l];

NSIMP = '* .NUt·} (~ ': NSlr1P :CHASEC2J / oE~lPTY :LCHASE[1]);

GENl = (OUT/COMM) <GENl :DO(2) / .Et"VlPTY); .

GEN::: COMM / GENU I '< :TTY[OJ / '> :FILEO);

GENU:: . OUT /
to .ID ?42E '[?43E «.lD 1 .NGrr<l) :LOAD[lJ :CALL(2J 1

• EM PTY : CALL [1 J) '] /

'# .NUM :GNLBL[1] (': :DEFE 1] / .EMPTY) ;

OUT -- (', :OUTCR / '3 : OU1'AB) [0] I
• SR : 0 U1' SR [1] 1
., .CBR :OUTCHE1J /
ft+ v}" : UP1;jR1{[OJ : OUTHRK(1] 1
"_\,]11 : DvJN\t]RK(0] /
no \.JH :;YiT[OJ : OUTI::R1C /
• t 'vI :MAXi.:)RK(0] .;

E ::: • il-1PTY RESET => '; $(HULE *) u. END" ? 99E FINI SH;

--G-- _.

%OUT IUJLES%

SETUP (-] => ,,"NOL I S1' NUL" EXT; GEN OPD 101 B5" 1" 1'; BF OPD 1 02B5, 1" 1 "\
""ET OPD l03BS" 1" 1; PSHN OPD 104BS, 1" 1'; PSHK cPD 105E5, 1" 151

\

"MKND OPD 106BS, 1, t;NDLBL OPD 107B5" 1" 1; GET OPD 110ES, 1" 1."\
"BPTR OPD 111B5,,1,1.iBNPTR OPD 112B5,,1,,1;RIl OPD 113B5,,1,,"1"\
9tRI2 OPD 114.B5" 2; FLGT OPD 115B5" 1, 1; BE OPD 116B5" 1" 1 "\
"LAB OPD 117B5"1,,lJCE OPD 120B5" 1" l;LDKA OPD 121B5"1,, 1"\

n$KSTKSZ EQU 100.; $t1STKSZ E:QU 130; $NSTKSZ EQU 1300.; $SSTKSZ EQU 1400"\

* 1;

BEGINC-,,«",,-J => U$STAR1' BRr';l INI1L; CLA; S1'A WRK; STA X~}RKn\ *3 *2
,,"BRt1 RLINE; BRH "*1"; BRM FINISH"\;

LIST / => " CLA.i S1'A LISTFG,;tt,;

OUTPTC-,,-J => *1:S ,,"ZRO'; LDA *-1'; BRM CLLO"\ *2 "nBRU RTNO"\;

SIMP[-,,-J => *1 ,,"ZEO"\ *2 ,,"BRR "*1\;

BPL TER[- J => "nBRM SAV"\ * 1 "tlBRM RS1'R"\
(-" - J => ,,"BEt'1 SAV"\ * 1 ,,"BRtlJ: RSTR.i B1' ,. # 1 \ *2, If 1 0 DC J,;

D / => ,,"EQU *"\,;

.AL TERC -" SET(J] => * 1 *2
(CONC .. ~T(-.,-],,-J =>R'YlT[*1:*1"tJ1] *1:*2 ,"ERD "#2\ 1f1.D[] *2 #2.D[]
(-.,-] => *1 ,,"BT "#1\ *2 Il.DC];

PttlT(PHlr-1[-],lfl] => " "BRt·1 "*1:*1:Sn
; BF "#1"; MEG n*l:*l:S tlFLG,; PSHK =0"\

(-,,-] => *1 ,tfBF "Ifl\;
~~~-I"~' >, '; t 

ER(ALTER[-"SET[J]] => *1 
(-] => *1 ,nBE =-1"\; 

DO ( - " -] :: > * 1 * 2; 

CONCATE-,,-] => *1 ,"BF "H1\ *2 HI.DC]; 

LOAD[ .NUMJ => "nLDA =u* 1:: S'\ 
( • I D J == > " ttL DA "* 1 : S \ ; 

CPLL["'] => oJ "BRl'Vj "* 1 \ 
[-Jl-J => *2 ,,"BRM "*1'\; 

MT / => • Er-1PTY; 

CLA / => uCLA"; 

Z'RO / ==> "0"; 



--3--

NDLB[-] => ,,"NDLBL ="* 1\; 

MKNODE[-J => ,"MKND ="* 1\; 

AHBCZRO(]"MT[],-J => HloD[] *3,,"B1' "#1"; MIN MFLAG U
\ 

[.NUM,MTC),-J => ARB1[*lJ #l.DC] *3 
,,"SKR* 11SP; BT "ffl"; SKN* MSP; SRU *+3; BT U#1H'; MIN MFLAG IT -, 

• ARB3[ J' 
(-".NUM,-J => ARB1[*2J DleD(] *3 

,,"SKR* MSP; BT "#1"'; SKN* MSP"\ ARB2[*1,*2JJ 

ARB2[-, eNUM] => ,,"BRO *+l,L; CLA; STA MFLAGJ BRU *+4; LDA* MSP; SKG ="*2 
"-"*1"; MIN MFLAG"\ .ARB3(] 

[-] => ,,"BRU *+3; CLA,; STA MFLAG U
\ .ARB3[).; 

ARB3 1 => ,,"LDA =-1; AJ:;M MSP'; BRi1 RSTRH
\; 

GCHR 1=> ,,"B11M vlPREP; BRM INC; LD.A* I \'JP; MRG CHBFLG; MIN NCCP; PSHK :::: 0"1 

GO 1 =>" "BBl.'""l OUTREE; BT *+ 3; LDA = 2; BRM CERB II
\; 

SET / => S'''LDA =1; STA r1FLAG"\; 

TTY[-J => TTY[J *1 FIL[] 
(J => ,,"LDA :::: 1; STA FNUMO"\ XCHCH[],; 

FIL[] => ,,"LDA XFNtJL'-10J STA FNUHO"\; 

XCHCH/ => ,,"LDA TCHNO; XNA CHNO; STA TCHNO f1
\; 

STRING[-) ==> n DATA n*1 :L"; ASC n C' '*1' '\; 

CNTCK[-J => * 1 }1 "CLB; SKE NCNT; STB NFLAG n
\.; 

ONE 1 => ,,"LDA = 1 n \; 

THRE / => ~ uLDA == 3"\; 

11M STH [-, ... ] => * 1 .. "MIN CNT; EAX - 1 .. 2ft\ *2; 

LITEM [-] => *1 ,"[vlIN CNT; LDA CNT"\; 



-- Ll--

DUTeLL [-.,-] => s. tiLDA-NSP; S1'11. SNSP; NDLBL :;:"*1"'; CLA; STA CNT"\ 
,,""LDA KT; STA MEn \ *2 

,,"MKND CNT; PSHN SNSP'; LDX KT; BRt1* 0,2; BRr1 POPK U
\ 

,,"LDA* NSP'; STA NSP"\; 

ARG [- J => * 1 ; "PSHK :::: 0; MIN CNT U
\; 

LCHASE [-] => " "GET ="* 1\; 

DO I T [-] :::: > * 1 , "EN PTR nil 1 
9'1; CAX,; PSHK =0; Bffi'.l* 0" 2; BRM POPK; BHU *+2 U

\ 

111. D[] )# "BRt-1 OUTS"\; 

SCP.N [ ... J => fll.D[] *1 ~"BT *+3; t-1IN NeC?; BRU "#1\; 

S1'S1' (-] => ,,"BRN 1'S1''; H STRI NG[ * 1 J.; 

CTST [- J => "uLDA ="* 1 :N",; BRM TCH i1l
\; 

as / => n BRM OUTS"\; 

ON / => n E'TR =77777B; BRM OUTN"\; 

OL / => U C11.X; LDA. 0, 2; B:Rl~ DUTN"\'; 

DC / => " ETR ::::. 377B,; CIO FNUMO; MIN CHNo n
\; 

DElI (-] => *1 ,,"BRM LIT; DATA 6; ASC n, ps EQU *"t '\; 

OUTCR I => "HBRt.J: CRLF n
\; 

OUTSR [-] => ,,"BHM LIT.; " STRING(*lJ'; 

DUTCH [-] => ,,"LDA ="*l:N"; CIa FNUMO; I"iIN CHNO tl
\; 

ENDN / => "SSTOP 
"t'1 SF DATA 
"NSP DATA 

, "KSP DAT!-~ 

DATA SS+SSTZ{SZ'" 5; $SS BSS SSTKS2 u , 

MSTK; 5MSPT DATA MSTK+MSTKSZ- 5; $MSTK BSS MSTKSZ'" 
NSTK; $NSPT DATA NSTt(+NSTKSZ- 5; $NSTK BSS NSTKSZ"Y 
KSTK; $KSPT DATA 'KSTK+KSTKSZ- 5; SKSTK BSS KSTKSZ u , 

"\,;JR}( BSS 1; X~';RK BSS 1; END U
\; 



- .... 5 ...... 

I M ED [-] = > ~ * 1 \; 

NI TEN (- J => ~"STX I NDX; LDA KTfI\ * 1 
~ttCLB; LDX INDX; SKE 0 ... 2'; STB r,1FLAG"\; 

FITEME-] => ~"FLGT "*1:S"FLG"\; 

TTST[-] => ~flBRM SSTEST;" STRINGC*lJ; 

CHTST[-] => ... "CLB; LDA ="* 1 :N"'; MRG CHRFLG; SKE 0 ... 2,; STB MFLAG"\; 

GNI TEMC - J => ~ "FLGT GENFLG; ETR:: 77777B,; STA GNLB"* 1: S\; 

GENARG[ - J ::> ~ t1LAB GNLBu * 1: Sri; MRG GENFLG"\; 

NTST[ -] => ~ "LDA NCCP; STA SNCCP"\ * 1 
~ "LDA = 1; SKR MFLAG,; BRU *+2; STA MFLAG; LDA SNCCP; STA NGGP"\; 

NCHR[-] => ,"LDA =n*1:N tf
; BF11 TeH tt

\,; 

NSR(-] => ... "BRM 1'S1'; "STRING[*l]; 

UP["ln ... -J => ... "LDA* KSP"\. *2 
[ ... ,,-] => ... "LDX KSP'; LDA 1-"* 1: sn ... 2"\ *2; 

LKT( co J => ~ "LDA KT"\ * 1,; 

UPWBK / => , "MIN vlRK; LDA \~m{,; SKG X\tlRK; L'D.A Xl}JRK; STA Xv-JFK"\.; 
DvJW"JRJ{ / => ... "L DA =- 1'; ADM vJF.K" \ .; 
OUT\'jFJ([-] => *1 ... "LDA \~lRK; BRr.10UTN U

\; 

MAXvJRK I => ... uLDA XvlRK; BRM OUTN"\; 
SI ZS[ • CHR .. - J => * 1: en STKSZ EQU 11*2: S\,; 

KPOPK[-] => ~ "MIN t1SP; LDA KT; STA* NSP; MIN MSP; LDA KSP; STA* MSP"\ 
*1 , "LDX NSF; LDA 0,2; STA KSP; LDA -1,,2; STA KT; LDA =-2; AIX'<1 t4SP"\; 

PAROUTC ZRO[]] => ~ "LDA KT"\ 
["OU] => $ "LDA KT"\ 
[-] => , "LDKA ="* 1 \.; 

• END 



--0--

*POPS" SUBHOUTINES FOR TREE ME1A. 

* GEN POPD lOI00000B"I,,1 GE~NER~TE LPBEL. 
LDP: =478 
'CIO FNU~O 

MIN CHNO 
LDA*· 0 
SKE =0 
BRlJ *+4 
MIN GN 
LDA GN 
STA* 0 
BRM OUTN 
BRR 0 

* BF' POPD 102000008,,1,,1 BRANCH FALSE 
LDB =777777778 
SKB MFLAG 
BRR 0 
BRU* 0 

* BT POPD 103000008,,1,,1 BRANCH TRUE. 
LDB =777777778 
SKB MFLP,G 
8RU* 0 
BRR 0 

* PSHN POPD 10LJOOOOOB"I,,1 PUSH THE N SlACK 
LDB =777777778 
SK8* 0 
LDA* 0 
MIN NSP 
STt~* NSP 

OVN LDA. NSP 
SKG NSPT 
BRR 0 
LDA =12 
8Rrwj SERR 

*-
PSHK POPD 105000008,,1,,1 PUSH THE K STACK 

LDB =77777777B 
SKB* 0 
LDA* 0 
MIN l<SP 
XMA KT 
ST~* KSP 

OV}< LDA KSP 
SKG KSPT 
BRR 0 
LD,t\ =13 
BRM SERR 

* MKND POPD 106000008,,1,,1 MA.KE A NODE 
LDA* 0 



--1--

SIP MKNDI 
BRU MKI 

fVlK2 BRM POPK 
[v'1! N NSP 
STP* NSP 

MK 1· SKR f"iKNDl 
BRU MK2 
LOA MP·HK 
MRG PTRFLG 
MIN KSP 
XMA KT 
STA* KSP 
LDA* 0 
MIN MARK 
XMA* MARK 
STA MARK 
BRU OVN 

(\1KND 1 BSS 1 

* NDLBL POPD 10700000B"I,1 NODE LABEL 
LDA* 0 
MIN NSP 
5TII* NSP 
LDP.. NSP 
XMA MARK 
MIN NSP 
STA* NSP 
BRU OVN 

* GET POPD 11000000B~1~1 GET A NODE 
CAX 
P.DD 1,2 
SUB* 0 
Ct1x 
LDA 2,2 
BRf< 0 

* BPTR POPD 111000008,1,1 BRANCH IF (P. ) f.; POINTER 
LOB FLG~JSK 
SK[\-l PTRFLG 
BRR 0 
BRU* 0 

* BNPTR POPD 112000008,1,1 BRANCH IF NO PO INTFf~ . 
LOB FLGMSK 
SKM PTRFLG 
BRU* 0 
BER 0 

* R 11 POPD 113000008,1,1 RECo ITEM 1 
LOP 0",2 
LDB FLG{<SK 
SKM PTRFLG 
BRU RIF2 



- -2'--

STX RINDX 
LOX 0,,2 
LO.A* 0 
SKE 0 .. 2 

·8RU R IF 1 
LDA eNT 
MIN MSP 
SIP'" MSP 
f'-1JN MSP 
LDA NCNT 
STA* MSP 
MIN MSP 
LDA RINDX 
STA* MSP 
LOA MSP 
SKG MSPT 
BRU *+3 
LDA :: 1 1 
BRM SERR 
CXA 
BRM SETA 
CLA 
STP eNT 
MIN 0 
BRR 0 SKIP IF IT EJVj MATCHES 

RIFl LOX RINDX 
Rlfa2 CLA 

STA NFLAG 
BRR 0 

f( I NDX BSS 1 
RICNT BSS 1 

* RI2 POPD 114000008,,2 REC. ITEM 2 
LDA =-1 
LOX* f'.1SP 
ADM tJfSP 
LD8* MSP 
STB NCNT 
P..D~IJ MSP 
LDB* MSP 
STB eNT 
ADM MSP 
BRR 0 

* FLGT POPD 11585,1,,1 fLAG lEST 
LDA 0,,2 
LDB FLGMSK 
SKM* 0 
BRU FLGTF 
BRR 0 

FLGTF CLA 
STA MFLAG 
ERR 0 

* 



BE 

* LAB 

* CE 

* LDKP. 

* *SUES 

* $POPl< 

* $SETP. 

POPD 
LDB 
SKB 
BRR 
LDA* 
SKE 
BRU 
CLA 
BRM 
LDA:+: 
SKE 
SKG 
BRS 
ERU* 

POPD 
LDA* 
SKE 
BRR 
MIN 
LDA 
STA* 
BRR 

POPD 
LDB 
SK8 
BRR 
LDP,* 
BRf'tl 

POPD 
LDP 
SUB* 
CP-X 
LDP 
BRR 

ZRO 
LDE* 
LDP 
ADM 
CSA 
XM~ 

BRR 

ZRO 
CPX 
LDB 
ADD 
CPX 
STB 

11685,,1,1 
=777777778 
MFLAG 
0 
0 
=-1 
*+2 

ERR 
0 
0 
=0 
EXIT 
0 

11 785, 1" 1 
0 
=0 
0 
(-iN 

GN 
0 
0 

120B5,,1,,1 
=777777778 
MFLAG 
0 
0 
CERR 

1 21 8 5, 1 " 1 
KSP 
0 

1" 2 
0 

KSP 
=-1 
KSP 

KT 
POPK 

0 SET X TO TOP OF NODE GROUP" COUNT IN NCNT 

1,2 
1,2 

NCNT 



--Lj--

EAX 1,,2 
BRR SETA 

* 
$CLLS ZRO 

MIN MSP 
SlA* MSP 
LDA MSf> 
SKG MSPT 
BRR ellS 
LDA = 11 
BRM SERR 

* 
$RTNS NOP 

LD~ =-1 
LDB* MSP 
ADM MSP 
S18 *+2 
BRR *+1 
BSS 1 

* 
* $SAV ZRO 

LDA Necp 
MIN MSP 
STA* MSP 
LDA NSf-> 
MIN r.~SP 

STA* MSP 
LDA KSP 
MIN MSP 
STA* MSP 
LDA KT 
MIN MSP 
STA* twISP 
LDA tltSP 
S~<G MSPl 
SRi< SAV 
LDA = 1 1 
BRM SERR 

*. 
$RSTR ZRO 

B1 RSTT 
LDA =-1 
LD8* MSP 
A.DM MSP 
SIB KT 
LD8* MSP 
STB }(SP 
ADM MSP 
LDB* MSP 
STB NSF 
ADM t-';sp' 

LD8* MSP 
STB Necp 



--:;:.--



--6--

* $SSTEST ZHO 
MIN SST EST 
LDP.* SSTEST 
STA SSTCNl 
BRM MOD3 
LDB SSTEST 
ADM SS1ES1 
STA SST~"JDS 

STB SSTPTR 
MIN SSTPTR 
LDA 0,,2 
BPIH SS1Tl+l 
LDA:t 0,,2 
SKE SSTCNT 
BRU SSTT1+1 
STX INDX 
LDA 0,,2 
ADD =1 
LDB SS'TPTR 
LDX SSThDS 
BRM SKSE 
BRU SST11 
LDA CNT 
LDX INDX 
BRR SSTEST 

5S111 LDX INDX 
eLA 
STA MFLA G 
ERR SSTEST 

SSTPTR 8SS 1 
,SSTCNT BSS 1 
SSThDS SSS 1 

* $BEGN ZRO 
LDA =1 
srp. t-IFLAG· 
LDA KT 
BRM SETA 
CLA 
·STA CNT 
BRR BEGN 

* $CLLO ZRO 
BRM eLLS 
8RM SP\lGN 
8RR eLLO 

* $RTNO NOP 
BRM RSTGN 
BRLJ RTNS 
NOP 

* *CELLS 



--7--

* $ME BSS 
$INDX BSS 
$CNT BSS 
$NCNT ass 
$SNSP SSS 
$I-<T BSS 
$S}~FLG DATP 
$CHRFLG DATA 
$IDFLG DATA 
$NUMFLG DATA 
$PIRFLG DpTA 
$FLGMSK DATA 
$GENFLG DATA 
$MARl~ BSS 
1GN DATA 
$GNLBI DATA 
$GNLB2 DATA 
$SAVKT BSS 
$SAVKP SSS 
$LFTFLG DATA 

END 

t 
1 
1 
1 
1 
1 
lOBS 

1285 
485 
685 
285 
77685 
1685 
1 
o 
o 
o 
1 
1 
1485 



* AHPAS.LIBRARY FOR 9LlD tvJETA II At--JD TREE SYSTEMS. 
* PAHAMETERS FOR SIZF OF K, (v}" N STACKS .. .AND S5 AEEAo 
GOE?L 2ED 

* STORE 

Sl 

SST 

* SPUT 

LDA 
ADD 
SUB 
STA 
BRH 

ZRO 
LDA 
STA 
LDA 
SKE 
BHU 
LDA 
BHM 
LDA 
LDB 
LDX 
BRLVj 

LDA 
SKG 
BHU 
LDA 
STA 
LDA* 
B8M 
MIN 
ADM 
LDA* 
SKE 
BRU 
BHN 
CAX 
LDB 
LDA 
ADD 
BRM 
BHU 
LDA 
BRR 

LDA 
STA 
LDA 
5TA* 
I'rlIN 
LDA 
LDB 
LDX 
Bl~M 

LDA 
BRrv! 

MCCP 
BAC!{ 
=1 
NCCP 
GOBL 

=SS 
SSP 
LEN 
=0 
*+3 
=8 
SERB 
=STR 
=STEST, 
LEN 
PACK 
SSL 
SSP 
SPUT 
SSP 
SX 
SSP 
MOD3 
SSP 
SSP 
5X 
LEN 
51 
MOD3 

=5TEST 
SX 
= 1 
SKSE 
Sl 
SX 
STOHE 

SSL 
SX 
LEN 
SSL 
SSL 
=STH 
SSL 
LEN 
PACK 
LEN 
lYlO D3 



--1--

ADM SST... 
LDA SSL 
SKG SSTOP 
BHU SST 
·LD.A =6 
BHU SERR 

* SSP DATA 5S 
$SSL DATA S5 
SX ESS 1 
$MXSTR EQU 80 
STPTR ESS 1 
STR BSS MXSTH 
STEST BSS MXSTR 
$L1 STFG DATA - 1 
$RLINE ZRO 

MIN LINCNT 
L-DA EOF'LG 
SKE =0 
BHU HEOF 
LDA =12B 
SKN LISTFG 
CIO FNUMO 
LDX BUFNO 
BHU Rl+ 1 

RI BRX R3 
CIO FN lJ"M I 
SKN Ll STFG 
BRU R4 

H1S STA IBUF,2 
SKE == 1 SSB 
BRU R2 
LDA == 152B 
SKN LISTFG 
CIO FNUMO 
BHU FILL2 

R2 SKE = 137B 
BHU HI 
LD .. 4. =1 
STA EOF'LG 

FILL CLA 
STA IBUF,2 

FILL2 BRX R3 
BRU FILL 

R3 LDA BUFNO 
STA IBP 
ERR RLINE 

REOF BRM CRLFT 
BRM LI1'1' 
DATA 18 
Ase 'END OF FILE INPUT .. t 

BHM . CRLFT 
BRS EXIT 

R4 SKE == 152B 



--2--

CIa FNUMO 
BBU H1S 

EOFLG D/~'r.A 0 
$INC ZRO 

BRM UPl viP 
SKN BACK 
BRU *+3 
MIN BACK 
BRR INC 
MIN r~ccp 

B11M PUTIN 
BRR INC 

* PUTIN ZRO 
BRM PCHK 
LDX IBP 
MIN IBP 
LDA IBlJ11~" 2 
SKE = 1 ~5B 
BED P2 
BRM RLINE 

Pi CLA 
PI1 ST.A* IviP 

BRR PUTIN 
P2 SKE =135B 

BHU P3 
BF.M PCHK 
MIN IBP 
BRU Pl 

P3 SKG =63 
BRU P 11 
BHU PUTIN+ 1 

* peHK zr~o 

LDA MXIB 
SKG IBP 
BRt~ HLINE 
ERR PCHK 

* CHER ZHO 
LDX* ITNP 
LDA =64 
SKG* I \oJP 
BHU SERB 
LDX CLASS,2. 
CXA 
SKG =5 
SKG =0 
BHD *+2 
BRR CHER 
LDA = 1 
BHU SEl1R 

$\,JPHEP 2no 
CLA 



--3--

STA LEN 
LDA =STR 
STA STPTR 
LDA NGGP 
SUB MCCP 
STA BACK 
SKG =0 
SKG MRSIZ 
BRU viPER 
LDA NCGP 
ETR MODRSZ 
ADD =RING 
STA I viP 
ERR \'JPREP 

vJPER LDA =2 
BRU SEER 

* $INCS ZRO 
INCS2 BRM INC 

LD.A* I \!}P 
SKE =0 
BHU *+2 
BHU INCS3 
SKE CMNT 
BRR INCS 
LDA =9 
SKN BACK 
BRU *+2 
BHM SERR 
BRM PlJTIN 
LDA* IWF 
SKF. CrvlNT 
BHU *-3 

INCS3 BRM PUTIN 
BHU INCS2+ 1 

* !bID ZRO 
CLA 
STA MFLAG 
BRt4 \'}PREP 
BRM INCS 
BRM CHER 
BRU I DT1; 2 

ID1 BRr.l CIC", 
BRM INC 
BRM CHER 
BRU I DT2, 2 

IDF LDA =1 
STA t'-1FLAG 

[BriM GOEL 
')BRM STORE "'--_.-... 
BRR ID 

IDTl BRU STEt? 
ERR ID 



-- Ll--

BRU I D1 
BRR ID 
BRR ID 
BRR ID 

IDT2 ·BRU STER 
BRU I DF 
EHU I D1 
BHU ID! 
BHU IDF 
BRU IDr 

* CIC ZRO 
LDA* I vJP 
STA* STPTR 
MIN STPTR 
MIN LEN 
BRR CIC 

* LEN BSS 1 

* UPlv}P ZRO 
MIN I ~;p 
LDA IHP 
SKG MXlv] 
BRR UPI \\lp 
LDA =RING 
STA I V./P 
ERR UPIWP 

$TOUTS ZRO 
S1'A OUTP 
LDA *-2 
STA OUTS 
LDA TFLNO 
STA LITF 
BHU OU1'SA 

$OU1'5 ZEO 
S1'A cUTP 
LDA FNUMO 
STA LITF 

OUTSA LDA* OUTP 
SKG RSIZ 
BHU *+3 
LDA =5 
BRU SERR 
ADM eRNO 
CAB 
MIN OUTP 
LDA cUTP 
ETR =77777B 
LDX LITF 
BRS 3L! 

BRR OUTS 

* OUTP BSS 1 



-- 5--

* $OUTN ZRO 
SKG =- 1 
BRU OUTNN 

OU1NP STA OUTNB 
LDB =10 
LDX FNUMO 
BRS 36 
LDA =1 
SKG OUTNB 
BHU *+2 
BRH OUTN 
MIN CHNO 
MOL =10 
RSH 1 
CBA 
BRU *-7 

OU1NN MIN CHNO 
CNA 
STA OUTNB 
LDA = 15B 
CIO FNUt'10 
LDA OUTNB 
BRU OUTNP+ 1 

OUTNB BSS 1 

* $\l.1RSS NOP 
LDA =SS 
STA \,JRSPT 

vlRS 1 BRM CRLFT 
LD.A* \vRSPT 
STA vJRSS 1 
BEM \·.}OUT 
MIN \'JRSPT 
LDA \'}RSS 1 
BRM MOD3 
LDB \·JHSPT . 
ADlYi v.JRSPT 
LDA vJRSS 1 
xt~B 

LDX TELNO 
BRS 3L! 

LDf~ v}HSPT 
SKG SSL 
BRU v}RS 1 
BRM CF~LFT 

BRS EXIT 
\'JBSS 1 BSS 1 
\,JRSPT BSS 1 

* $CELFT ZHO 
LDA == 15SB 
CIO TELNO 
LDA = 152B 



--6-- , 

CIO TELNO 
BRR CRLFT 

* $CRLF ZRO 
LDA = 155B 
CIO FNUMO 
LDA = 152B 
CIa FNUMO 
LDA =1 
STA CHNO 
BRR CRLF 

* $LITT ZRO 
LDA *- 1 
STA LIT 
LDA TELNO 
STA LITF 
MIN LIT 
LDA* LIT 
BHU LI T\\7+ 3 

* $LIT ZRO 
LDA FNUMO 
STA LITF 

LIT'" MIN LIT 
LDA* LIT 
ADM CHNO 
STA LIT1 
CAB 
MIN LIT 
LDA LIT 
ETR =777778 
LDX LI1F 
BRS 3L! 

LDA LIT1 
BRM MOD3 
SUB =1 
ADt'i LIT 
BRR LIT 

LITF BSS 1 
LIT1 BSS 1 
$TABT ZRO 

LDA *-1 
STA TAB 
LDA TELNO 
STA LITF' 
BRU TABA 

$TAB ZRO 
LDA FNur·10 
STA LI TF 

TABA LDA CHNO 
ADD =. lOB 
ETH =7770B 
STA TAB3 



-- #""/--

TAB2 ro1IN CHNO 
CLA 
CIO LI TF 
LDA TAB3 
.SKE CHNO 
BRU TAB2 
BRR TAB 

TAB3 BSS 1 
$vJRI lr] NOP 

LDA =RING 
STA v]H I 1 

NLIN BRM CRLFT 
LDA BUFNO 
ADD =10 
CAX 

\-JRCK LDA \'iRIl 
SUB MXI \!i 
SKG =0 
BRU *+2 
BRS EXIT 
LDA* \'lR I 1 
CIa TELNO 
MIN \';Rll 
BRX NLIN 
BRU "lvRCK 

\tJRI 1 BSS 1 
$INITL ZRO 
AGAIN BRM CRLF'T 

BRM LITT 
DATA 7 
ASC • INPUT: 

, 
CLEAR 
BRS 15 
BRU AGAIN 
STA FNUMI 
CBA 
SKE =16B 
BRU *+2 
BHU AGAIN2 
LDA FNlJMI 
BRS 20 
BRU AGAIN 

AGAIN2 BRM CHLFT 
BHM LITT 
DATA 8 
ASC 'OUTPUT: • 
CLEAR 
LDA =03000000B 
BRS 16 
BRU AGAIN2 
STA FNl.JJYI0 
STA XFNUMO 
CBA 
SKE = 16B 



--8--

BRU *+2 
BRU *+L! 
LDA FNu"\rlO 
BRS 20 
BRU AGAIN2 
BRN CRLFT 
BRR INITL 

$FNUMO BSS 1 
$FNUMI BSS 1 
$XFNUMO BSS 1 
STELNO DATA 1 
$CHNO DATA 1 
$TCHNO DATA 1 
* A=UNPACKED PO INTER" B=PACKED" X=LENGTH 
PACK ZRO 

STA UPP 
S1'B pp 
STX PLEN 

PKl BHM SKOK 
BRR PACK 
LDA* UPP 
MIN Upp 
STA PX 
BRM SKOK 
BHU Pl{R 1 
LDB* Upp 
MIN UPF 
LSH 16 
LDA PX 
LSH 8 
STA PX 
BR[~ SKOK 
BRU PKR2 
LDB* Upp 
MIN Upp 
LSH 16 
LDA PX 
LSH 8 
STA* pp 
MIN PP 
BHU PKl 

* SKOK ZRO 
SKR PLEN 
MIN SKOK 
BRR SKOK 

* PKRl LDA PX 
CLB· 
LSH 16 

.STA* PP 
BRR PACK 

PKR2 LDA PX 
CLB 



LSH 8 
STA* pp 
BRR PACK 

* UPACK ZED 
STA UPF 
STB PP 
STX PLEN 
SKR PLEN 
BRU *+2 
BRR UPACK 

PK2 LD.A* PP 
RSH 16 
BRM PST 
RSH 8 
BTh"! PST 
BRM PST 
MIN pp 
BRU PK2 

* PST ZRO 
ETR =377B 
ST.A* Upp 
MIN Upp 
LDA* PP 
SKR PLF.N 
BRR PST 
BRR UPACK 

* PX BSS 1 
Upp BSS 1 
PP BSS 1 
PLEN BSS 1 

* SKSE ZRO 
STA pp 
STB Upp 
STX PLEN 

SKSl SKR PLEN 
BRU *+2 
BRU SKST 
LDA* PP 
SKE* Upp 
ERR SKSE 
MIN Upp 
t>lIN PP 
BRU SKSl 

SKST MIN SKSE 
BRR SKSE 

* $MOD3 ZRO 
SUB = 1 
HSH 23 
CLA 



-- 10--

IBUF 
BUFNO 
$ I \.jp 
IBP 
MXIB 
MXI,\.; 
BACK 
$NCCP 
MCCP 
RING 
$EXIT 
CLASS 

$ERR 

ERRC 
ERRY 
ERRN 

ERHl 

FRR2 

DIV 
ADD 
BRR 

BES 
Dl~TA. 

DATA 
DATA 
DATA 
DATA 
BSS 

DATA 
DATA 
BSS 

EG.1U 
DATA 

DATA 
DATA 
ZRO 
STA 
BRN 
BF.M 
DATA 
ASC 
LDA 
XMA 
BRM 
BRM 
DATA 
ASC 
LDX 
LDB 
LDA 
BRS 
BF.M 
LDX 
BHU 
MIN 
CIa 
BRX 
CXA 

=3 
=1 
MOD3 

80 
37660B 

RING-1 
37660B 
l10000B 
RING+255 
1 
o 

o 
256 

10 
1" 5" LJ, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 3, 3,3, 3" 3,3" 3 
5, 5, 5" 5, 5, 5, 5, 2, 2, 2, 2, 2, 2" 2,2" 2, 2, 2, 2, 2, 2,2,2,2, 2» 2 
2, 2, 2, 2, 2, 2, 2, 5, 5, 5, 5J' 5" 0" 0,0 

ERRNO 
CRLFT 
LITT 
13 
, SYN TJ1X ERED R ' 
::- 1 
ERRNO 
\vOUT 
1...1TT 
5 
'LINE' 
TELNO 
=10 
LINCNT 
36 
CRLFT 
Bl1FNO 
ERRN+ 1 
ERRNO 
TELNO 
ERHF 

SKE IBP 
BRU *+ 3 
LDA ERRNO 
STA ERRX 
LDA IBUF,2 
SKE 
BHU 
BRU 
SKE 
BHU 
BRU 
SKE 
BHU 
CIa 

:: 155B 
ERRl 
EHRF 
:: 152B 
ERR2 
ERRN 
= 135B 
EERC 
TELNO 



--11--

BHX ERRF 
LDA. IBUF" 2 
ADM ERRNO 
BRU ERRY 

ERRF BRM CRLFT 
CLA 
BRU *+2 
CIO TELNO 
SKR ERRX 
BRU *-2 
LDA ARRO\~ 

CIO TELNO 
BRM CRLFT 
BRR ERR 

* 
ERRNO BSS 1 
ERR X BSS 1 
AHRO\·j DATA 76B 
$SERR NOP 

STA SEt 
LDA = SE1'1 
LDB =13 
BRU SERR! 

$CERR NOP 
STA SEl 
LDA =CEtJI 
LDB =15 

SERR1 LDX TELNO 
EHS 34 
LDA SE1 
LDB =10 
LDX TEl.NO 
BRS 36 
BRt1 CRLF'T 
BRS EXIT 

SEr1 ASC • SY S TE:."'1 ERBOR • 
CEM ASC ' COr'1PILER ERROR , 
SEl BSS 1 

* RSIZ DATA 256 
MRSIZ DATA -256 
MODRSZ DATA 377B 
$MFLAG BSS 1 
CMNT DATA 5 
$LINCNT DATA 0 

* $\I}OUT ZRO 
LDB =10 
LDX TELNO 
BRS 36 
LDA =l.qB 
CIG TELNO 
CLA 
CIO TELNO 



--12--

BRR loJO UT 

* $T5T ZHO 
CLA 

-S1'A MFLAG 
MIN T5T 
BRftI v]PREP 
BRM INCS 
LDA* 1'5T 
SKG RSIZ 
BHU *+3 
LDA =4 
BHU SERR 
STA TST2 
BRM t-10 D3 
LDB 1'5T 
.ADM T5T 
CBA 
ADD =1 
CAB 
LDA =STEST 
LDX 1'S1'2 
STA TST1 
BRM UPACK 
SKR TS1'2 
BHU 1'S1'S1 
BRR 1'51' 

1'S1'S BRM INC 
MIN 1'51'1 

1'S1'S1 LD.A* TST1 
5KE* I ~JP 
ERR 1'S1' 
SKR 1'51'2 
BRU TS1'S 
LDA MCCP 
ADD BACK 
S1'A NCCP 
LDA =1 
STA MFLAG 
BRR TS1' 

1'S1'1 BSS 1 
TS1'2 BSS 1 

* 
* $SH ZRO 

CLA 
STA MFLAG 
BRM \'}PREP 
BRM INCS 
BRM CHER 
BHU STT1,2 

STR1 BRt>1 CI C ~. 

BRM INC 
BRM CHER 



--13--

BRU STT2,2 
5TH2 BRM GOBL 

r-l IN NCCP 
LDA =1 
·STA MFLAG 
BRt1 STORE 
BRR 5R 

* STT1 BRU STER 
BRR 5R 
BRR SR 
BRR 5R 
BRU STR1+ 1 DON'T COpy QUOTE 
BRR SR 

5TT2 BRU STER 
BRU 5TRl 
BRU 5TRl 
BRU 5THl 
BRU STH2 
BRU 5TRl 

* STEH LDA =7 
BRU SERR 

* $NTJ11 ZRO 
CLA 
STA MFLAG 
BRM yjPREP 
BRM INCS 
BRM CHER 
BRU NT1,,2 

N~11 ERN CIG· 
BP11 INC 
BRtvl CHER 
BRD NT2" 2 

NMF LDA =1 
STA MFLAG 
BRM GOBL 
BIQVJ STORE 
BRR NOM 

* NT1 BRU STER 
BRR NUM 
BRR NUM 
BRU Nt'41 
BRR NlJ11 
BRR NUM 

NT2 BRU STER 
BRU NNF 
BHU NMF 
BRU NM 1 
BRU N!:1F~ 

BHU Nc-1F 
$LET zno 



--1L!--

CLA 
STA MFLAG 
BRM WPREP 
Br~1 INCS 
·BRM CHER 
BRD LET1" 2 

LET2 BP .... NJ CIe 
LDA =1 
STA MFLAG 
B.RM GOBL 
MIN NCCP 
BRt1 STORE 
BRR LET 

LETl BRU STER 
ERR LET 
SRU LET2 
ERE LET 
BRR LET 
BriE LET 

* 
* 
* $FINI SH NOP 

LDA =137B 
CIa FNliMO 
CIa FNUMO 
CIa FNTJr10 
CIa FNh'MO 
CIO FNUMO 
LDA FNUNO 
BRS 20 
BRU LINITS 

* $TCH ZRO 
STA TCHl 
CLA 
STA MFLAG 
BRi'4 WPREP 
BRM INCS 
LDA* I \.JP 
SKE TCHl 
ERR TCH 
MIN MFLAG 
LDA MCCP 
ADD BACK 
STA NCCP 
BRR TeB 

TeHl BSS 1 

* TOP MACRO D 
LDA D(1)9SPT 
STA DCl.).SP 
LDA ::::- 1 
AI;M D(l).SP 

~ 



-- 15--

* 

LDA* 
SKE 
BEU· 
BRlJ 
LDA 
SUB 
SKG 
CLA 
BFM 
ENDYI 

$L 1M ITS BR."'1 
BRt'1 
DATA 
ASC 
TOP 
TOP 
TOP 
LDA 
SUB 
BRM 
BRM 
BRS 
END 

D(l).SP 
=0 
*+2 

*- 5 
D( 1). SP 
=. D( 1). STK 
=0 

ltJOUT 

CRLFT 
LITT 
5 
'USED' 

K 
M 
N 
SSL 
=SS 
WOUT 
CBLFT 
EXIT 


	0000
	0001
	001
	002
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	501
	501a
	501b
	501c
	501d
	501e
	501f
	502
	601
	602
	603
	604
	605
	701
	702
	703
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15

