A TREE META FOR THE XDS 940

by
J. F. Rulifson

April 1968

Augmentation Research Center

Stanford Research Institute

Menlo Park, California

\

This material was contained as Appendix D in the
final Report for Rome Air Development Center on
Contract AF 30(602)-4103

APPENDIX D -~ TREE META: Introduction

1 Terms such as "metalanguage" and "metacompiler" have a variety of
meanings. Their usage within this report, however, is well defined,

1A '"Language," without the prefix "meta," means any formal computer
language. These are generally languages like ALGOL or FORTRAN. Any
metalangauge is also a language.

1B A compiler is a computer program that reads a formal-language
program as input and translates that program into instructions that
may be executed by a computer. The term "compiler" also means a
listing of the instructions of the compiler,

1C A language that can be used to describe other languages is a
metalanguage. Fnglish is an informal, general metalanguage that can
describe any formal language. Backus-Naur Form or BNF (Nurl) is a
formal metalanguage wused to define ALGOL., BNF is weak, for it
describes only the syntax of ALGOL, and says nothing about the
senantics or meaning. Fnglish, on the other hand, is powerful, yet
its informality prohibits its translation into computer programs.

1D A metacompiler, in the most general sense of the term, is a
program that reads a metalanguage program as input and translates
that program into a set of instructions, If the input program is a
complete description of a formal language, the translation is a
compiler for the language.

2 The broad mecaning of the word "metacompiler," the strong, divergent
views of many people in the field, and our restricted we of the word
necessitate a formal statement of the design standards and scope of Tree
Meta,

2A Tree Meta is built to deal with a specific set of languages and
an even more specific set of users. This project, therefore, adds to
the ever-increasing problem of the proliferation of machines and
lanpuages, rather than attempting to reduce it, There is no attempt
to design universal languages, or machine independent languages, or
any of the other goals of many compiler-compiler systems.

2B Compiler-compiler systems may he rated on two almost independent
features: the syntax they can handle and the features within the
system that ease the compiler-building process.

2B1 Tree Meta - is intended to parse context-free laguages using
limited backup, There is no intent or desire on the part of the
users to deal with such problems as the FORTRAN 'continue"
statement, thc PL/I "enough ends to match,'" or the ALGOL '"is it
procedure or is it a variable'" question, Tree Meta is only one
part of a system-building technique. There is flexibility at all
levels of the system and the design philosophy has been to take

APPENDIX D -- TREE META: Introduction

the easy way out rather than fight old problems.

2B2 Many ~of the features considered necessary for a
compiler-compiler system are absent in Tree M%éd Such things as
symbol-tables that handle ALGOL-style blocks and variable types
are not included., Neither are there features for multidimensional
subscripts or higher level macros. These features are not present
because the users have not yet needed them, None, however, would
be difficult to add, ‘

2B3 Tree Meta translates directly from a high-level language to
machine code. This is not for the faint of heart, There is a
very “small number of users (approximately 3); all are
machine-language coders of about the same hireh level of
proficiency. The nature of the special-purpose languages dealt
with is such that general formal systems will not work. The data
structures and operations are too diverse to produce appropriate
code with current state-of-the-art formal compiling techniques.

3 There are two classes of formal-definition compiler-writing schemes.

3A In terms of usage, the productive or synthetic approach to
language definition 1is the most common, A productive grammar
. consists primarily of a set of rules that describe a method of
generating all the possible strings of the language.

330 The reductive or analytic technique states a set of rules that
describe ‘a method of analyzing any string of characters and deciding
whether that string is in the language. This approach simultaneously
produces a Structure for the input string so’ that code may be

compiled,

3C The metacompilers are a combination of both schemes. They are
neither purely productive nor purely reductive, but merge bhoth
techniques into a powerful working system,

4 The metacompiler class of compiler-compiler systems may bhe
characterized by a common top-down parsing algorithm and a common
syntax, These compilers are expressible in their own language, whence

the prefix '"meta."

4A The following is a formal discussion of top-down parsing
algorithms, It relies heavily on definitions and formalisms which
are standard in the literature and may be skipped by the lay rcader.
For a language L, with vocabulary V, nonterminal vocabulary X\,
productions P, and head S, the top-down parse of a string u in L
starts with S and looks for a sequence of productions such that S=u

(S produces u),

APPENDIX D -- TREE META: Introduction

4A1 Let
v=[Et TJ F’ +D *’ (’)l x]
N=[E, T, F]
P=1[E ¢t:=T/ T+ F
T:t=F/F*T
Fi::=X/ (E)
L = (V,N,P,E)

4A2 The following intentionally incomplete ALGOL procedures will
perform a top-down analysis of strings in L,

4A2A boolean procedure E[; E := if T then (if issymbol('+')
then E else true) else false; comment issymbol (arg) is a
Boolean procedure that compares the next symbol in the input
string with its argument, arg. If there is a match the input
stream is advanced; ’

4A2B boolcan procedure T; T := if F then (if issymbol('*')
then T elsec true) else false;

4A2C boolean procedure F; F := if issymbol('X') then true
else if issymbol('(') then (if E then (if issymbol(')') then
true else false) clse false) else false;

4A3 The left-recursion problem can readily be seen by a slight
modification of L, Change the first production to

E::=T/E+T
and the procedure for E in the corresponding way to

E := if T then true else if £

4A3A Parsing the string "X+X", the procedure E will call T,
which calls F, which tests for "X'" and gives the result '"true."
E is then true but only the first element of the string is in
the analysis, and the parse stops before completion., If the
input string is not a member of the language, T is false and E
loops infinitely.

4A3B The solution to the problem used in Tree Meta is the
arbitrary number operator. In Tree Meta the first production
could be ’

E ote= TS("+" T))
where the dollar sign and the parentheses indicate that the
quantity can be repeated any number of times, including O.

4A3C Tree Mcta makes no check to ensure that the compiler it
is producing lacks syntax rules containing 1left recursion,
This problem is one of the more common mistakes made by

APPENDIX D <- TREE META: Introduction

s .

inexperienced metalanguage programmers.,

4B The input language to the metacompiler closely resembles BNF.
The primary difference between a BNF rule’

{go to> ::= go to (label)
and a metalanguage rule

GOTO = "GOH llm" .ID;
is that the metalanguage has been designed to use a computer-oriented
character set and simply delimited Dbasic entities. The
arbitrary-number operator and parenthesis construction of the
metalanguage are lacking in BNF, For example:

TERM = FACTOR §(("*'" / /" / ") FACTOR);
is a metalanguage rule that would replace 3 BNF rules.

4C The ability of the compilers to be expressed in their own
language has resulted in the proliferation of metacompiler systems,
Each one is easily bootstrapped from a more primitive version, and
complex compilers are built with little programming or debugging
effort.

The early history of metacompilers is closely tied to the history of

SIG/PLAN Working Group 1 on Syntax Driven Compilers. The group was
started in the Los Angles area primarily through the effort of loward
Metcalfe (Schmidtl).

6

5A In the fall of 1962, he designed two compiler-writing
interpreters (Metcalfl). One used a bottom-to-top analysis technique

- based on a method described by Ledley and Wilson (Ledleyl). The

other used a top-to-bottom approach based on a work by Glennie
(Glenniel) to generate random English sentences from a context-free
grammar,

5B At the same time, Val Schorre described two '"metamachines''--one
generative and one analytic., The penerative machine was implemented,
and produced random algebraic expressions. Schorre implemented Meta
I the first metacompiler, on an IBM 1401 at UCLA in January 1963
(Schorrel). His original interpreters and metamachines were written
directly in a pseudo-machine lanpuage, Meta I, however, was written
in a higher-level syntax language able to describe its own
compilation into the pseudo-machine language. Meta I is described in
an unavailable paper given at the 1963 Colorado ACM conference.

5C Lee Schmidt at Bolt, Beranek, and Newman wrote a metacompiler in
March 1963 that utilized a CRT display on the time-sharing PLP-1
(Schmidt2), This compiler produced actual machine code rather than
interpretive code and was partially bootstrapped from Meta I.

Schorre bootstrapped Meta II from Meta I during the Spring of 1963

(Schorre2). The paper on the refined metacompiler system presented at

APPENDIX D -- TREE META: Introduction

the 1964 Philadelphia ACM conference is the first paper on a
metacompiler available as a general reference. The syntax and
implementation technique of Schorre's system laid the foundation for
most of the systems that followed. Again the system was implemented on
a small 1401, and was used to implement a small ALGOL-like language.

7 Many similar systems immediately followed,

7A Roger Rutman of A, C. Sparkplug developed and implemented LOGIK,
a language for logical design simulation, on the IBM 7090 in January
1964 (Rutmanl). This compiler wused an algorithm that produced
efficient code for Boolecan expressions,

7B Another paper in the 1964 ACM proceedings describes Meta III,
developed by Schneider and Johnson at UCLA for the IBM 7090
(Schneiderl). Meta 1III represents an attempt to produce efficient
machine code for a large class of languages. It was implemented
completely in assembly language. Two compilers were written in Meta
ITI--CONOL, a compiler-writing demonstration compiler, and PUREGOL,
a dialect of ALGOL 60. (It was pure gall to call it ALGOL). The
rumored METAFORE, able to compile full ALGOL, has never been
announced,

7C Late 1in 1964, lee Schmidt bootstrapped a metacompiler from the
PDP-1 to the Beckman 420 (Schmidt3), It was a logic equation
generating language known as EQGEN,

8 Since 1964, System Development Corporation has supported a major
effort in the development of metacompilers, This effort includes
powerful metacompilers written in LISP which have extensive
tree-searching and backup capability (Bookl) (Book2).

9 An outgrowth of one of the 0-32 systems at SDC is Meta 5 (Oppenheiml)
{Schafferl), This system has been successfully released to a wide
number of users and has had many string-manipulation applications other
than compiling, The Meta 5 system incorporates backup of the input
stream and enough other facilities to parse any context-sensitive
language, It has many elaborate push-down stacks, attribute setting and
testing facilities, and output mechanisms. The fact that Meta 5
successfully translates JOVIAL programs to PL/1 programs clearly
demonstrates its power and flexibility.

10 The LOT system was developed during 1966 at Stanford Research
Institute and was modeled very closely after Meta II (Kirkleyl). It had
new special-purpose - constructs allowing it to generate a compiler which
would in turn be able to compile a subset of PL/1. This system had
extensive statistic-gathering facilities and was used to study the
characteristics of top-down analysis. It also embedded system control,
normally relegated to control cards, in the metalanguage.

APPENDIX D -« TREE META: Introduction

11 The concept of the metamachine originally put forth hy Glennie is so
simple that three hardware versions have been designed and one actually
implemented., The latter at Washington University in St, Louis. This
machine was built from macromodular components and has for instructions
the codes described by Schorre (Schorre2).

APPENDIX D -- TREE META: Basic Syntax

12 A metaprogram is a set of metalanguages rules. [Lach rule has the
form of a BNF rule, with output instructions embedded in the syntactic
description, '

12A The Tree Meta compiler converts each of the rules to a set of
instructions for the computer.

126 As the rules (acting as instructions) compile a program, they
read an input stream of characters one character at a time, Fach new
character is subjected to a series of tests until an appropriate

syntactic description -is found for that character. The next
character is then read and the rule testing moves forward through the
input, ' '

13 The following four rules illustrate the basic constructs in the
system, They will be referred to later by the reference numbers RIA
through R4A. '

R1A CEXP = TERM ("+" EXP / "-" EXP / EMPTY);
R2A TERM = FACTOR $("*" FACTOR / "/" FACTOR);
R3A FACTOR = '"-'" FACTOR / PRIM;

“RAA PRIM = ,ID / NUM / "(" EXP ")";

134 The identifier to the left of the initial equal sign names the
rule, This name is wused to refer to the rule from other rules. The
name of rule R1A is EXP,

138 The right part of the rule--everything hetween the initial equal
sign and the trailing semicolon--is the part of the rule which
effects the scanning of the input, Five basic types of entities may
occur in a right part. Fach of the entities represents some sort of
a test which results in setting a general flag to dther "true'" or
"false',

13B1 A string of characters between quotation marks (")
represents a literal string, These literal strings are tested
against the input stream as characters are read.

13B2 PRule names may also occur in a right part. If a rule is
processing input and a name is reached, the named rule is invoked,
R3A defines a FACTOR as being either a minus sign followed by a
FACTOR, or just a PRIM,

1383 The right part of the rule FACTOR has just been defined as
"a string of elements," "or" "another string of elements.," The

APPENDIX D -- TREE META: Basic Syntax

"or's" are indicated by slash marks (/) and each individual string
is called an alternative, Thus, in the above example, the minus
sign and the rule name FACTOR are two elements in R3A, These two
elements make up an alternative of the rule,

13B4 The dollar sign is the arbitrary number operator in the
metalanguage., A dollar sign must be followed by a single element,
and it indicates that this element may occur an arbitrary number
of times (including zero). Parentheses may be used to group a set
of elements into a single element as in R1A and R2A

1385 The final basic entities may be seen in rule R4A, These
represent the basic recognizers of the metacompiler system, A
‘basic recognizer is a program in Tree Meta that may be called upon
to test the input stream for an occurrence of a particular entity.
In Tree Meta the three recognizers are "identifier" as-.ID,
"number" as NUM, and "string" as .SR. There is another basic
entity tha 1is treated as a recognizer but does not look for
anything, It is ,EMPTY and it always returns a value of '"true,"

14 quppose that the input stream contains the strlng X+Y when the rule
EXP is invoked during a compilation, :

14A EXP first calls rule TERM, that calls FACTOR, that tests for a
minus sign, This test fails and FACTOR then tests for a plus sign
and fails again. Finally FACTOR calls PRIM, that tests for an
identifier. The character X is an identifier; it is recognized and
the input stream advances one character,

148 PRIM returns a value of "true'" to FACTOR, which in turn rcturns
to TERM, TERM tests for an asterisk and fails, It then tests for a
slash and fails, The dollar sign in front of the parenthesized group
in TERM, however, means that the rule has succeeded because TERM has
found a FACTOR followed by zero occurrences of "asterisk FACTOR" or
"slash FACTOR." Thus TERM returns a 'true'" value to EXP., EXP now
tests for a plus sign and finds it., The input stream advances
another character.

14C EXP now calls on itself. All necessary information is saved so
that the return may be made to the right place. In calling on itself,
it goes through the scquence just described until it recognizes the
Y.

14D Thinking of the rules in this way is confusing and tedious. It
is best to think of each rule separately. For example: one should
think of R2A as defining a TERM to be a series of FACTORs separated
by asterisks and slashes and not attempt to think of all the possible
things a FACTOR could be,

APPENDIX D -- TREE META: Basic Syntax

15 Tree Meta is different from most metacompiler systems in that it
huilds a parse tree of the input stream before producing any output,
Before we describe the syntax of node generation, let us first discuss

parse trees.,

15A A parse tree is a structural description of the input stream in
terms of the given grammar.

15A1 Using the four rules above, the input stream
X+Y*Z

has the following parse tree

LXP
TERM 2 XP
FACTOR TERM
PRIM FACTOR ACTOR

RIM RIM

i
Y

15A2 In this tree each node is either the name of a rule or one
of the primary entities recognized by the basic recognizer
routines.

| IN) S v e

15A3 . In this tree there is a great deal of subcategorization.
For example, Y is a PRIM, which is a FACTOR, which is the left
member of a TERM., This degree of subcategorization is generally
undesirable.

158 The trec produced by the metacompiler program is simpler than
the one above, yet it contains sufficient information to complete the
compilation. . :

APPENDIX D -- TREL META: Basic Syntax

15B1 The parse tree actually produced is

1582 In this tree the names of the nodes are not the rule names
of the syntactic definitions, but rather the names of rules that
will be used to generate the code from the tree,

15B3 The rules that produce the above tree are the same as the
four previous rules with new syntax additions to perform the
appropriate node generation, The complete rules are:

R1B EXP = TERM ("+" EXP :ADD/ "-" EXP :SUB) (2] .EMPTY);

R2B TERM = FACTOR $(("*" FACTOR :MULT/ "/" FACTOR :DIVD)
(2D '

 R3B FACTOR = "-" TACTOR :MINUS{1] / PRIM;

R4B PRIM = 1D / NUM / (' EXP "),

15C As these rules scan an input stream, they perform just like the

first set. As the entities are recognized, however, they are stored

on a push-down stack until the node-generation elements rcmove them

to make trees, We will step through these rules with the same sample
" input stream: '

X+Y*Z

15C1 EXP calls TERM, which calls FACTOR, which calls PRIM, which
recognizes the X The input stream moves forward and the X is put
on a stack,

15C2 PRIM returns to FACTOR, which returns to TERM, which returns
to EXP. The plus sign is recognized and EXP is again called.
Again EXP calls TERM, which calls FACTOR, which calls PRIMC which
recognizes the Y., The input stream is advanced, and Y is put on
the push-down stack. The stack now contains Y X, and the next
character on the input stream is the asterisk.

APPENDIX D -- TREE META: Basic Syntax

15C3 PRIM returns to FACTOR, which returns to TERM, The asterisk
is recognized and the input is advanced another character,

15C4 The rule TERM now calls FACTOR, which calls PRIM, which
recognizes the Z, advances the input stream, and puts the Z on the
push-down stack.

15C5 The :MULT in now processed. This names the next node to
be put in the tree, Later we will see that in a complete
metacompiler program there will be a rule named MULT which will be
processed when the time comes to produce code from the tree.
Next, the [2] in the rule TERM is processed., This tells the system
to construct a portion of a tree., The branch is to have two
nodes, and they are to be the last two entities recognized (they
are on the stack). The name of the branch is to be MIULT, since
that was the last name given. The branch is constructed and the
top two items of the stack are replaced by the new node of the
tree, ‘

15C5A The stack now contains
MULT

X

15C5B The parse tree is now

MULT

15C5C Notice that the nodes are assembled in a left-to-right
order, and that the original order of recognition is retained.

15C6 Rule TERM now returns to EXP which names the next node by
executing the :ADD -- i.,e,, names the next node for the tree.
The [2] in rule EXP is now executed, A branch of the tree is "
generated that contains the top two items of the stack and whose
name is ADD, The top two items of the stack are removed, leaving
it as it was initially, empty. The tree is now complete, as first
shown, and all the input has been passed over.

16 The unparsing rules have two functions: they produce output and they
test the tree in much the same way as the parsing rules test the input
stream. This testing of the tree alows the output to be based on the
deep structure of the input, and hence better output may be produced.

D-11

APPENDIX D -- TREE META: Basic Syntax

16A Before we discuss the node-testing features, let us first
describe the various types of output that may be produced. The -
following 1list of output-generation features in the metacompiler
system is enough for most examples.

16A1 The output is line-oriented, and the end of a line is
determined Dby a carriage return, To instruct the system to

- produce-a carriage return, one writes a backslash (upper-case L on
a Teletyvpe) as an element of an unparse rule,

16A2 To make the output more readable, there is a tab featurc,
To put a tab character into the output strcam, one writes a comma
as an element of an output rule, '

l6A3 A literal string can be inserted in the output stream by
nerely writing the literal string in the unparse rule. Notice
that in the unparse rule a literal string becomes output, while in
the parse rules it becomes an entity to be tested for in the input
stream, To output a line of code which has L as a label, ADD as
an opcration code, and SYS as an address, one would write the
following string of clements in an unparse rule:

"L" R HA“U" ’ "SYS"

16A4 As can be seen in the last cxample of a tree, a node of the
trec may be cither the name of an unparse rule, such as ADD, or
one of the basic entities recognized during the parse, such as the
identifier X,

16A4A - Suppose that the expression X+Y*Z has been parsed and
the program is in the ADD unparse rule processing the ADD node
(later we will see how this state is reached), To put the
identifier X into the output stream, one writes "*1" (meaning
"the first node below') as an element, For example, to generate
a line of code with the operation code ADA and the operand
field X, one would write:

, "ADA", *1

16A4B To generate the code for the left-hand node of the tree
one merely mentions '"*1'" as an element of the unparse rule,
Caution must be taken to ensure that no attempt is madec to
append a nonterminal node to the output stream; cach node must
be tested to be sure that it is the right type before it can be

evaluated or output.

16A5 Generated labels are handled automatically. As each unparse

D-12

APPENDIX D -- TREE META: Basic Syntax

rule is entered, a new set of labels is generated, A label is
referred to by a number sign (upper-case 3 on a Teletype) followed
by a number, Every time a label is mentioned during the execution
of a rule, the label is appended to the output stream. If another
rule is invoked in the middle of a rule, all the labels are saved
and new ones generated, When a return is made the previous labels
are restored. ‘

17 As trees are being built during the parse phase, a time comes when
it is necessary to generate code from the tree, To do this one writes
an asterisk as an element of a parse rule -- for example

R5B . PROGRAM = ", PROGRAM" $(ST *) ",END";

which generates code for each statement after it has been entirely
parsed. When the asterisk is executed, control of the program is
transferred to the rule whose name is the root (top node or last
gencrated node) of the tree, When return is finally made to the rule
which initiated the output, the entire tree is cleared and the
generation process begins anew,

17A An unparse rule is a rule name followed by a series of output
rules, Each output rule begins with a test of nodes., The series of
output rules make up a set of hipghest-level alternatives. When an
unparse rule is called, the test for the first output rule is made,
If it is satisfied, the remainder of the alternative is executed; if
it is false, the next alternative output rule test is made., This
process continues until either a successful test is made or all the
alternatives have been tried, If a test is successful, the
alternative is executed and a return is made from the unparse rule
with the general flag set '"true," If no test is successful, a return
is made with the general flag '"false,"

178 The simplest test that can be made 1is the test to ensure that
the correct number of nodes emanate from the node being processed,
The ADD rule may begin

ADD[-,-1 =)

The string within the brackets is known as an out-test. The hyphens
arc individual items of the out-test, lach item is a test for a
nod¢, All that the hyphen requires is that a node he present., The
name of a rule need not match the name of the node being processed.

17B1 If onc wishes to eliminate the test at the hcad of the
out-rule, one may write a slash instead of the bracketed string of
items. The slash, then, takes the place of the test and is always
true. Thus, a rule which begins with a slash immediately after
the rule name may have only onc out-rule. The rule

APPENDIX D -- TREE META: Basic Syntax

M/ => EMPTY;

is frequently used to flag the absence of an optional item in a
list of items, It may be tested in other unparse rules but it
itself always sets the general flag true and returns.

17B2 The nodes emanating from the node being evaluated are
referred to as *1, *2, etc., counting from left to right, To test
for equality between nodes, one merely writes *i for some i as
the desired item in an out-test. For example, to see if node 2 is
the same as node 1, one could write either [-,*1] or [*2,-]. To
see if the third node is the same as the first, one could write
[~,*2,*1]. In this case, the *2 could be replaced by a hyphen.

17B3 One may test to see if a node is an element which was

generated by one of the basic recognizers by mentioning the name

of the recognizer. Thus to see if the node is an identifier one
writes .ID; to test for a number one writes ,NUM., To test whether

the first node emanating from the ADD is an identifier and if the

second node exists, one writes [.ID,-],

17B4 To check for a literal string on a node one may write a
string as an item in an out-test. The construct [-,"1"] tests to
be sure that there are two nodes and that the second node is a 1.
The second node will have been recognized by the NUM basic
recognizer during the parse phase, '

17B5 A generated label may be inserted into the tree by using it
in a call to an unparse rule in another unparse rule. This
process will be explained later. To see if a node is a previously
generated label one writes a number sign followed by a number, 1If
the node 1is not a generated label the test fails, If it is a
generated label the test is successful and the label is associated
with the number following the number sign. To refer to the label
in- the unparse rule, one writes the number sign followed by the
number,

17B6 Finally, one may test to see if the name matches a specified
name, Suppose that one had generated a node named STORE. The left
node emanating from it is the name of a variable and on the right
is the tree for an expression. An unparse rule may begin as
follows:

STORE (= ,ADD[*1,"1" 1] => , "MIN " *1

APPENDIX D -- TREE META: Basic Syntax

The *1 as an item of the ADD refers to the left node of the
STORE. Only a tree such as '

STORE
ID ADD

1D 1

would satisfy the test, where the two identifiers must be the
same or the test fails. An expression such as X « X + 1 meets all
the requirements., The code generated {for the SDS 940) would be
the single instruction MIN X, which increments the cell X by one.

17C Lach out-rule, or highest-level alternative, in an unparse rule
is also made up of alternatives, These alternatives are separated by
slashes, as are the alternatives in the parse rules.

17C1 The alternatives of the out-rule arc called "out-exprs.'" The
out-expr may begsin with a test, or it may begin with instructions
to output characters, Tf it bepins with a test, the test is made,
If it fails the next out-expr in the out-rule 1is tried, If the
test is successful, control proceeds to the next element of the
out-expr, When the out-expr is done, a return is made from the
unparse rule,

17C2 The test in an out-expr resembles the test for the out-rule.
There are two types of these tests,

-17C2A Any nonterminal node in the tree may be transferred to
by its position in the tree rather than its name, For example,
*2 would invoke the second node from the right. This operation
not only transfers control to the specific node, but it makes
that node the one from which the next set of nodes tested
emanate. After control is returned to the position immediately
following the *2, thc general flag is tested. If it 1is '"'true"”
the out-expr proceedes to the next eclement, If it is '"false"
and the *2 is the first element of the out-expr the next
alternative of the out-expr is tried. If the flag is "false'"
and the *2 is not the first element of the out-expr, a compiler
error is indicated and the system stops.

17C25 The other type of test is made by invoking another
unparse rule by name and testing the flag on the completion of
the rule, To call another unparse rule from an out-expr, one
writes the name of the rule followed by an argument list
enclosed in brackets. The arpument list is a list of nodes in

D-15

APPENDTX D -- TREFE META: Basic Syntax

the tree. These nodes are put on the node stack, and when the
call is made the rule being called sees the argument list as
its set of nodes to analyze. For example:

ADD [MINUS [-],=] => SUB[#*2,*1:*1]

17C2B1 Only nodes and generated labels can be written as
arguments, Nodes are written as *1, *2, etc, To reach other
nodes of the tree one may write such things as *1:*2, which
means ''the second node emanating from the first node
emanating from the node being evaluated.'" Referring to the
tree for the expression X+Y*Z if ADD is being evaluated,
*2:*1 is Y,To go up the tree one may write an 'uparrow'(t)
followed by a number before the asterisk-number-colon
sequence. The uparrow means to go up that many levels
before the search is made down the tree, If MULT were being
evaluated,*1*1 would be the X,

17C2B2 If a generated label is written as an argument, it
is gencrated at that time and passed to the called unparse
rule so that that rule may use it or pass it on to other
rules, The generated label is written just as it is in an
output elcment--a number sign followed by a number,

17C3 The calls on other unparse rules may occur anywhere in an
out-expr. If they occur in a place other than the first element
they are executed in the same way, except that after the return
the flag is tested; if it is false a compiler error is indicated.
This use of extra rules helps in making the output rules morc

concise,

17C4 The rest of an out-expr is made up of output elements
appended to the output stream, as discussed above,

17D Sometimes it is necessary to set the general flag in an out-expr,
just as it is sometimes necessary in the parse rules, LEMPTY may be
used as an element in an out-expr at any place,

17E Out-exprs may be nested, using parentheses, in the same way as
the alternatives of the parse rules,

18 There are a few features of Tree Meta which are not essential but do
make programming casier for thec user.

184 If a literal string is only one character long, one may write

an apostrophe followed by the character rather than writing a
quotation mark, the character, and another quotation mark, For
example: 'S and "S" are interchangeable in either a parse rule or an

D-16

APPENDIX D -- TREE META: Basic Syntax

unparse rule.

188 As. the .parse rules proceed through the input stream they may
come to a point where they are in the middle of a parse alternative
and there is a failure., This may happen for two reasons: backup is
necessary to parse the input, or there is a syntax error in the
input. Backup will not be covered in this introductory chapter, If
a syntax error occurs the system prints out the line in error with an
arrow pointing to the character which cannot be parsed. The system
then stops. To eliminate this, one may write a question mark
followed by a number followed by a rule name after any test except
the first in the parse equations, For example:

ST = ,ID '= question 2 E EXP question 3 E ';
question 4 E :STORE[2] ;

Suppose this rule is executing and has called rule EXP, and EXP
returns with the flag false, Instead of stopping Tree Meta prints
the line in error, the arrow, and an error comment which contains the
number 3, and transfers control to the parse rule E,

18C Comments may be inserted anywhere in a metalanguage program
where blanks may occur. A comment begins and cnds with a percent
sign, and may contain any character -- except, of course, a percent
sign.

18D In addition to the three basic recognizers .ID, .NUM, and .SR,
there are two others which are occasionally very useful,

18D1 The symbol ,LET indicates a single letter, It could be
thought of as a one-character identifier.

1802 The symbol ,ClIR - indicates any character, In the parse
rules, .CHR causes the next character on the input stream to be
taken as ‘input regardless of what it is, Leading blanks are not
discarded as for .ID, .NUM, etc. The character is stored in a
special wav, and hence references to it are not exactly the same
as for the cther basic recognizers. In node testing, if one
wishes to check for the occurrence of a particular character that
was recognized by a (CHR, onc uses the single quote-character
construct. VYhen outputting a node item which 1is a character
recognized by a .CHR, one adds a :€C to the node indicator, For
example, *1:C, '

18E Occasionally some parts of a compilation are very simple and it
is cumbersome to build a parse treec and then output from it. For this
reason the ability to output directly from parse rules has been
added. '

APPENDIX I -- TREE META: Basic Syntax

18E1 The syntax for outputting from parse rules is generally the
same as for unparse rules, The output expression is written
within square brackets, however. The items from the input stream
that normally are put in the parse tree may be copied to the
output stream by referencing them in the output expression. The
most recent item recognized 1is referenced as * or. *S0, Items
recognized previous to that are *Sl, *S2, etc,, counting in
reverse order--that is, counting down from the top of the stack
they are kept in, :

182 Normally the items are removed from the stack and put into
the tree. However, if they are copied directly to the output
stream, they remain in the stack. They are removed by writing an
ampersand at the end of the parse rule (just before the
semicolon), This causes all input jtems added to the stack by that
rule to be removed. The input stack is thus the same as it was
when the rule was called.

D-18

APPENDIX D -- TREE META: Program Environment

19 When a Tree Meta program is compiled by the metacompiler, a
machine-language version of the program is generated. llowever, it is not
a complete program since- several routines are missing., All Tree Meta
programs have common functions such as reading input, generating output,
and manipulating stacks., It would be cumbersome to have the
metacompiler duplicate these routines for each program, so they are
contained in a library package for all Tree Meta programs. The library
of routines must be loaded with the machlne-language version of the Tree
Meta program to make it complete,

ISA° The environment of the Tree Meta program, as it is running, is
the library of routines plus the various data areas.

198 This section describes the environment in its three logical
parts: input, stack organization, and output,

1981 This is a description of the current working version, with
some indications of planned improvements.

20 Input Machinery

20A The input stream of text is broken into lines and put into an
input buffer. Carriage recturns in the text are used to determine the
ends of lines. Any line longer than 80 characters is broken into two
lines, This line orientation is necessary for the following:

20A1 Syntax-error reporting

20A2 A possible anchor mode (so the compiler can sense the end of
a line)

20A3 An interlinear listing option.

20A4 In the future, characters for the input buffer will be
obtained fron another input buffer of arbitrary block size, but at
present they arc obtained from the system with a (haracter 1/0.
command.

20R It is the job of routine RLINE to fill the input line buffer., If
the listing flag is on, RLINE copies the new line to the output file
(prefixed with a comment character--an asterisk for our assembler).
It also checks for an FEnd-of-File, and for a multiple. blank
character, which is a system feature built into our text files.
There 1s a buffer pointer that indicates which character is to be
read from the line buffer next, and RLINE resets that pointer to the
first character of the line,

20C Input characters for the Tree Mcta program are not obtained from
the input line buffer, but from an input window, which is actually a

APPENDIX D -- TREE META: Program Environment

character ring buffer, Such a buffer is necessary for backup. There
are three pointers into the input window, A program-character
counter (PCC) points to the next character to be rcad by the program.
This may be moved back by the program to effect backup, A
library-character counter (LCC) is never changed except by a library
routine when a new character is stored in the input window, PCC is
used to compute the third pointer, the input-window pointer (IWP).
Actually, PCC and LCC are counters, and only IWP points into the
array RING which is the character ring buffer, LCC is never backed
up and always indicates the next position in the window where a new
character . must be obtained from the input line buffer, BRackup is
registered in BACK, and is simply the difference between PCC and LCC.
BACK is always negative or zero.

20D There are several routines that deal directly with the input
window,

2001 The routine PUTIN takes the next character from the input
line buffer and stores it at the input-window position indicated
by IWP, This involves incrementing the input-buffer pointer, or
calling RLINE if the buffer is empty. PUTIN does not change IWP,

20D2 The routine INC is used to put a character into the input
window. It 1increases IWP by one by calling a routine, UPIWP,
which makes IWP wrap around the ring buffer correctly. If there is
backup (i.e., if BACK is less than 0), BACK is increased by one
and INC returns, since the next character is in the window
already. Otherwise, LCC is increased by one, and PUTIN is called
to store the new character. '

203 A routine called INCS is similar to INC except that it
deletes all hlanks or comments that may be at the current point in
the input stream. This routine implements the comment and blank
deletion for .ID, . NIM, ,SR, and other basic recognizers. INCS
first calls INC to get the next character and increment IWP, From
then on, PUTIN is called to store succeeding characters in the
input window in the same slot, As long as the current character
(at IWP) is a blank, INCS calls PUTIN to replacc it with the next
character., The nonblank character is then compared with a comment
character., INCS returns if the comparison fails, but otherwise
skips to the next comment character. Whzn the end of the comment
'is located, INCS returns to its blank-checking loop.

20p3A Note that comments do not get into the input window,
For this reason, BACK should be zero when a comment is found in
the loop described above, and this provides a good opportunity
for an error check.

2004 Before beginning any input operation, the IWP pointer must

D-20

APPENDIX D -- TREE MCTA: Program Environment

21

be reset, since the program may have set PCC back. The routine
WPREP computes the value of BACK from PCC-LCC, This value must be
between 0 and the negative of the window size, IWP is then’
computed from PCC modulo the window size.

20D5 The program-library interface for inputting items from the
input stream consists of the routines ID, NUM, SR, LET, and CHR,
The first four are quite similar, 1ID is typical of them, and
works as follows: First MFLAG is set false, WPREP is called to
set up IWP, then INCS is called to get the first character, If
the character at IWP is not a 1letter, ID returns (MFLAG is still
false); otherwise a loop to input over letter-digits is executed,
When the letter-digit test fails the flag is set true, and the
identifier is stored in the string storage area, The class of
characters is determined by an array (indexed by the character
itself) of integers indicating the class. Before returning, 1D
calls the routine GOBL which wupdates PCC to the last character
read in (which was not part of the identifier). That is, PCC is
set to LCC+BACK-1,

2006 The occurrence of a given literal string in the input stream
is tested for by calling routine TST. The character count and the

~string follow the call instruction. TST deletes leading blanks and
inputs characters, comparing them one at a time with the
characters of the literal string. If at any point the match
fails, TST returns false, Upon reaching the end of the string, TST
sets the flag true, sets PCC to LCC+BACK, and returns, In
addition to TST, there is a simple routine to test for a single
character string (TCH). It inputs one character (decleting
blanks), compares it to the given character and returns false, or
adjusts PCC and returns true,

Stacks and Internal Organization

21A Three stuacks are available to the program. A stack called
MSTACK is used to hold return locations and generated labels for the
program's recursive routines., Another stack, called KSTACK, contains
references to input items, When a basic recognizer is executed, the
refercnce to that input item is pushed into KSTACK, The third stack
is called NSTACK, and contains the actual tree., The three stacks are
declared in the Tree Meta program rather than the library: the
program determines the size of each,

21A1 The operation of MSTACK is very simple. At the beginning of
cach routine, the current generated labels and the location that
the routine was called from are put onto “STACK. The routinc is
then free to use the generated labels or call other routines. The
routine ends by restoring the generatced labels from !STACK and
returning.

APPENDIX D -~ TREE META: Program Environment

21A2 KSTACK contains single-word entries. Fach entry will
eventually be placed in NSTACK as a node in the tree. The format
of the node words is as follows: There are two kinds of nodes,
terminal and nonterminal. Terminal nodes are references to input
items. Nonterminal nodes are generated by the parse rules, and
have names which are names of output rules.

21A2A A terminal node is a 24-bit word with either a
string-storage index or a character in the address portion of
the word, and a flag in the top part of the word, The flag
indicates which of the basic recognizers (ID, NUM, SR, LET, or
CHR) is to read the item from the input stream,

APPENDIX D -- TREE META: Program Environment

21A2B A nonterminal node consists of a word with the address
of an output rule in the address portion, and a flag in the top
part which indicates that it is a nonterminal node. A node
pointer is a word with an NSTACK index in the address and a
pointer flag in the top part of the word. Fach nonterminal
node in NSTACK consists of a nonterminal node word followed by
a word containing the number of subnodes on that node, followed
by a terminal node word or node pointers for each subnode. For

example,
TREE ‘ NSTACK KSTACK
ADD
node ptr,)
SS item X
X MULT 2 I node ptr.
node ADD T“%———
SS item YA
SS item Y
2
Y Z | node MULT

21A2C KSTACK contains terminal nodes (input items) and
nonterminal node pointers that point to nodes already in
NSTACK. NSTACK contains nonterminal nodes.

21B String Storage is another stack-like area. All the items read
from the input stream by the basic recognizers (except CHR) are
stored in the string-storage area (SS). This consists of a series of
character strings prefixed by their character counts., An index into
SS consists of the address of the character count for a string,

APPENDIX D -- TREE META: Program Environment

Strings in SS are unique. A routine called STORE will search SS for
a given string, and enter it if it is not already there, returning
the SS index of that string.

21C Other routines perform housekeeping functions like packing and
unpacking strings, etc. There are three error-message writing
routines to write the three types of error messages (syntax, system,
and compiler). The syntax error routine copies the current input
line to the teletype and gives the line number. A routine called
FINISH closes the files, writes the number of cells used for each of
the four stack areas (KSTACK, MSTACK, NSTACK, and SS), and terminates
the program, .

21C1 At many points in the library routines, parameters arc
checked to see if they are within their bounds. The system error
routine is called if there 1is something wrong. This routine
writes a number ‘indicating what the error is, and terminates the
program, In the current version, the numbers correspond to the
following errors:

21C1IA (1) Class codes are illegal

21C1B (2) Backup too far

21C1C (64) Character with code greater than 63 in ring buffer
21C1h (4) Test for string longer than ring si:ze

21C1E (5) Trying to output a string longer than maximum
string length '

21C1F (6) String-storage overflow

21C16 (7) 1Illegal character code

21C1H (8) Trying to store SS element of length zero

21C11T (11) MSTACK overflow

21CL7T (12) NSTACK overflow

21C1IK (13) KSTACK overflow
210 There is a set of routines wused by Tree Meta that are not
actually part of the library, but are loaded with the library for
Tree ‘teta, They are not included in the library since they are not
necessarily required for every Tree Meta program, but more likely

only for Tree !eta, They are called '"support routines," The
routines perform short but frequently nceded operations and serve to

D-24

APPENDIX D -- TREE META: Program Environment

{291
to

increase code density in the metacompiler. Examples of the
operations are cenerating labels, saving and restoring labels and
return addresses on MSTACK, comparing flags in NSTACK, generating
nodes on NSTACK, etc.

Output Facilities

22A The output from a Trce Meta program consists of a string of
characters, In the future it might be a string of bits constituting a
binary program, but at any rate it can be thought of as a stream of
data, The output facilities available to the program consist of a set
of routines to append characters, strings, and numbers to the output

stream,

22A1 A string in SS can be written on the output stream by
calling the routine OUTS with the SS index for that string. OUTS
checks the SS index and generates a system-error message if it is
not reasonable,

22A2 A literal string of characters is written by calling the
routine LIT The literal string follows the call as for TST,

22A3 A number 1is written using routine OUTS. The binary
representation 1is given, and 1is written as a signed decimal
integer, ’

22A4 A1l of the above routines keep track of the number of
characters written on the output stream (in ClNO), Based on this
count, a routine called TAB will output enough spaces to advance
the current output line to the next tab stop. Tabs are set at
8-character intervals. The routine CRLF will output a carriage
return and a line feed and reset CIINO,

22A5 There are several routines that are convenient for
debugging. One (WRSS) will print the contents of SS. Another
(WRIW) will print the contents of the input window.

APPENDIX D -~ TREE META: Formal Description

23 This chapter is a formal description of the complete Tree Meta
language. It is designed as a reference guide,

23A For clarity, strings that would normally be delimited by
quotation marks in the metalanguage are capitalized 1nstead in this
chapter only.

23B Certain characters cannot be printed on the report-generating
output media but are on the teletypes and in the metalanguage--their

names, preceeded by periods, are used instead, They are
.exclamation, .question, .pound, .ampersand, .backslash, and
.percent,

24 Programs and Rules
24\ Syntax

24A1 program = ,META ,id (.LIST / .empty) size / .CONTINUE $rule
.END;

24A2 size = '(siz $(', siz) ') / .empty;
24A3 siz = ,chr '= .num;

24Ad4 rule = .id ('= exp (.ampersand / .empty) / '/ "=>" gypenl /
outrul) '; ;

248 Semantics

24B1 A file of symbolic Tree Meta code may be either an original
main file or a continuation file, A compiler may be composed of
any number of files but there may be only one main file,

24B1A The mandatory identifier following the string .META in a
main file names the rule at which the parse will begin,

24B1B The optional .LIST, if present, will cause the compiler
currently being generated to list input when it is compiling a
progran.,

24B1C The size construct sets the allocation paramecters for the
threce stacks and string storage used by the Tree Meta library.
The default sizes are those used by the Trce Meta compiler. M,
K, N, and S are the only valid characters; the size is
something that must be determined by experience. The maximum

nunber of cells used during each conpllatlon is printed out at

the end of the compilation.

24B2 When a file begins with L,CONTINUE, no initialization or

D-26

APPENDIX I} =~ TRELE META: Formal Description

storage-allocation code is produced,

24B3 There are three different kinds of rules in a Tree Meta
program, All three begin with the identifier that names the rule.

24B3A Parse rules are distinguished by the = following the
identifier, If all the elements that generate possible nodes
during the execution of a parse rule are not built into the
trce, they must be popped from the kstack by writing an
ampersand immediately before the semicolon,

24B3B Rules with the string / => following the identifier
may be composed only of dements hat produce output, Therc is
no testing of flags within a rule of this type,

2433C Unparse rules have a left bracket followinp the
identifier, This signals the start of a series of node tests.

25 Ixpressions

25A1 exp = 'esuback ('/ exp / .cmpty) / subexp ('/ exp / .empty);
25A2 suback = ntest (suback / .empty) / stest (suback / .empty);

25A3 subexp

(ntest / stest) (noback / .empty);

25A4 noback (ntest / stest ('.question .num (.id / '.question)
/ .empty))} (noback / .empty);

253 Semantics

25B1 The expressions in parse rules are composed cntirely of
ntest, stest, and crror-recovervy constructs. The four rules
above, which define the allowable alternation and concatention of
the test, are necessary to reduce the instructions executed when
there is no backup of the input stream.

25B2 An expression is essentially . a series of subexpressions
separated by slashes, FEach subexpression is an alternative of the
expression. The alternatives are cxecuted in a left-to-right
order until a successful one 1is found, The rest of that
alternative is then executed and the rule returns to the rule that
invoked it,

2583 The subexpressions are series of tests. Only subexpressions

that begin with a leftarrow are allowed to back up the input
stream and rescan it,

D-27

APPENDIX D -- TREE META: Formal Description

25B3A Without the - arrow at the head of a subexpression, any
test other than the first within the subexpression may be
followed by an error code. If the error code is absent and the
stest fails during compilation, the system prints an error
comment and stops. If the error code is present and the stest
fails, the system prints the number following the '.question in
the error code, and if the optional identifier is given the
system then transfers control to that rule; otherwise it stops.

25B3B If the test fails, the input stream 1is restored to the
position it had when the subexpression began to test the input
stream and the next alternative is tried. The input strecam may
never be moved back more characters than are in the ring
buffer, Normally, backup is over identifiers or words. and the
buffer is long enough,

20 Elements of Parse Rules

26A Syntax
26A1 ntest = (':.id / '[(.num '] / genp '] ('.backslash /
.empty)/ '< genp '> ('.backslash / .empty) / (LCHR / '*) / '=>"
/ comm;

26A2 genp = genpl / .empty;

26A3 genpl = genp2 (genpl / .empty);

26A4 genp2 = '* (S ,num / .empty) (L / C / N / .enpty) / genu;
26A5 comm = ,EMPTY / ',exclamation .sr;

26A6 stest = ', ,id / ,id / .sv / '(exp ') / 'Y.chr / (.num ‘'S /
'$) (.num / .empty) stest / '- (.sr / ''.chr);

26B Semantics

26B1 The ntest elements of a parsevnﬂe cannot change the value
of the oencral flag, and therefore need not be followed by
flag-checking code in the compiler.

26B1A The : .id construct names the next node to be put into
the tree., The identifier must be the name of another rule,

26B1B The [.num] constructs a node with the name used in
the last : .id construct, and puts the number of nodes
specified after the arrow on the new node in the tree,

20B1C The | genp] is used to write output into the normal

D-28

APPENDIX D -~ TREE META: Formal Description

output stream during the parse phaée of the compilation.

26B1D The < genp > is used to print output back on the user
teletype instead of the normal output stream. This is
generally used during long compilations to assure the user that
the system is still up and running correctly.

26B1E The occurrence of a .chr causes one character to be read
from the input stream into a special register which may be put
into the tree just as the terminal symbols recognized by the
other basic recognizers are,

26B1F An asterisk causes the rule currently in execution to
perform a subroutine call to the rule named by the top of the
tree,

26B1G The ''=>" ntest construct causes the input stream to be

" moved from its current position past the first occurrence of
the next stest, This may be wused to skip over comments, or to
move the input to a recognizable point such as a semicolon
after a syntax error,

26B2 The commn elements are common to both parse and unparse
rules,

26B2A The .EMPTY in any rule sets the general flag true,

26B2B The .exclamation-string construct is used to insert
patches into the compiler currently being produced. The string
following the .exclamation is immediately copied to the output
stream as a new line. This allows the insertion of any special
code at any point in a program,

26B3 Stests always test the input stream for a literal string or
basic entity. If the entity is found it is removed from the input
stream and stored in string storage. Its position in string
storage is saved on a push-down stack so that the entity may later
be added as a terminal node to the tree.

26B3A A ,id construct provides a standard machine-language
subroutine call to the identifier., Supplied with the Tree Meta
library are subroutines for .id, .num, .sr, .chr, and .let
which check for identifier, number, string, character, and
letter respectively,

26B3B An identifier by itself produces a call to the rule with
the name of the identifier,

26B3C A literal string merely tests the input stream for the

APPENDIX D -- TREE META: Formal Description

string, If it is found it is discarded. The
apostrophe-character construct functions like the literal
string, except that the test is limited to one character.

26B3D The number-$-number construct is the arbitrary-number
operation of Tree Meta. m$n preceding an element in a parse
rule means that there must be between m and n occurrences of
the next element coming up in the input, The default options
for m and n are zero and infinity respectively.

26B3E The hyphen-string and hyphen-character constructs test
in the same way as the literal string and apostrophe-character
constructs. After the test, however, the flag is complemented
and the ‘input-stream pointer is never moved forward. This
permits a test to be sure that something does not occur.

27 Unparse Rules
27A Syntax
27A1 outrul = '[outr (outrul / .empty);
27A2 outr = items '] "=>" outexp;
27A3 items = item (', items / .empty);

27A4 item = '- / ,id '[outest / nsimpl / '. .id / .sr / ''.chr /
'.pound;

27B Semantics

27B1 The unparse rules are similar to the parse rules in that
they test something and return a true or false value in the
general flag., The difference is that the parse rules test the
input stream, delete characters from the input stream, and build a

tree, while the unparse rules test the tree, collapse sections of
the tree, and write output.

27B2 There are two levels of alternation in the unparse rules.
The highest level is not written in the normal style of Tree Meta
as a series of expressions separated by slashes; rather, it is
written in a way intended to reflect the matching of nodes and
structure within the tree. Each unparse rule is a series of these
highest-level alternations. The tree-matching parts of the
alternations are tried in sequence until one is found that
successfully matches the tree. The rest of the alternation is
then executed. There may be further test within the alternation,
but not complete failure as with the parse rules.

D- 30

APPENDIX D -- TREE META: Formal Description

2783 The syntax for a tree-matching pattern is a left bracket, a
series of items separated by commas, and a right bracket, The
items are matched against the branches emanating from the current
top node. The matching is done in a left-to-right order., As soon
as a match fails the next alternation is tried.

27B4 If no alternation is successful a false value is returned,

27B5 [Lach item of an unparse alternation test may be one of five
different kinds of test. ‘

27B5A A hyphen 1is merely a test to be sure that a node is
there. This sets up appropriate flags and pointers so that the
node may be referred to later in the unparse expression if the
complete match is successful,

27B5B The name of the node may be tested by writing an
identifier that is the name of a rule. The identifer must then
be followed by a test on the subnodes.

27B5C A nonsimple construct, primarily an
asterisk-number-colon sequence, may be used to test for node
cquivalence. Note that this does not test for complete
substructure equivalence, but merely to see if the node being
tested has the same name as the node specified by the
construct,

27B5D The .id, ,num, ,chr, .let, or .sr checks to see if the
node is termiral and was put on the tree by a ,id recognizer,
.num recognizer, etc, during the parse phase, This test is
very simple, for it merely checks a flag in the upper part a
word, ’

27BSL If a node is a terminal node in the tree, and if it has
heen recognized by one of the basic recognizers in meta, it may
be tested against a literal string, This is done by writing
the string as an item, The literal string does not have to be
put into the tree with a .sr recognizer; it can be any string,
even one put in with a .let, '

27B5F 1If the node is terminal and was generated by the .chr
recognizer it may be matched against another specific character
by writing the apostrophe-character construct as an item,

27B5G Finally, the node may be tested to see if it is a
generated label, The labels may be generated in the unparse
expressions and then passed down to other unparse rules. The
test is made writing a .pound-number construct as an item, If
the node is a generated 1label, not only is this match

D-31

APPENDIX D -- TREE META: Formal Description

successful but the label is made available to the elements of
the unparse expression as the number following the .pound.

28 Unparse Expressions

28A Syntax

28B

28A1 outexp = subout ('/ outexp / .empty);

28A2 subout = outt (rest / .empty) / rest;

28A3 rest

outt (rest / .empty) / gen (rest / .empty);

28A4 outt = ,id '[arglst '] / '(outexp ') / nsimpl (': (S / L /
N/ C) / empty);

28A5 arglst = argmnt (', arglst / .empty) / .empty;
28A6 argmnt = nsimp / '.pound .num;
28A7 nsimpl = '? nsimp / nsimp;

28A8 nsimp = '* ,num (': nsimp / .empty);

28A9 genl = (out / comm) (genl / .empty);
28A10 gen = corm / genu / '/ '> ;
Semantics

2881 The rest of the unparse rules follow more closely the style
of the parse rules, FEach expression is a series of alternations
separated by slash marks.

28B2 FEach alternation is a test followed by a series of output
instructions, calls of other unparse rules, and parenthesized
expressions, Once an unparse expression has begun executing calls
on other rules, elements may not fail; if they do a compiler error
is indicated and the system stops,

2883 The first element of the expression is the test, This

element - is a call on another rule, which returns a true or false

value, The call is made by writing the name of the rule followed
by a series of nodes. The nodes are put together to appear as

part of the trec, and when the call is made the unparse rule

called views the nodes specified as the current part of the tree,

and thus the part to match against and process.

28B3A Two kinds of things may be put in as nodes for the

D-32

APPENDIX D -- TREE META: Formal Description

calls, The simplest is a generated label. This is done by
writing a .pound followed by a number., Only the numbers 1 and
2 may be used in the current system, If a label has not yet
been generated, one is made up. This label is then put into the
tree,

28B3B Any already constructed node also may be put into the
tree in this new position., The old node is not removed--rather
a copy is made., An asterisk-number construct refers to nodes in
the same way as the highest-level alternation,

28B4 This process of making new structures from the
alrcady-existing treec is a very powerful way of optimizing the
compiler and condensing the number of rules needed to handle
compilation,

2835 The rest of the unparse expression 1is made up of output
commands, and more calls on unparse rules. As noted above, if any
except the first call of an expression fails, a compilcr error is
indicated and the system stops.

2886 Just as in the parse rules, brackets may be used to send
immediate printout to the user Teletype.

28B7 The asterisk-number-colon construct 1is used frequently in
the Tree Meta system, It appears in the node-matching syntax as
well as in the form of an element in the unparse cxpressions,
Vhen it is in an expression it nust specify a node that exists in
the tree, '

28B7A If the node specified is the name of another rule, then
control is transferred to that node by the standard subroutine
linkage,

28B78 1f the node is terminal, then the terminal string
associated with the node is copied onto the output stream,

28B7C The simplest form of the construct is an asterisk
followed by a number, in which case the node is found by
counting the appropriate number of nodes from left to right,
This may be followed by a colon-number construct, which means
to go down one level in the tree after performing the
asterisk-number choice and count over the number of nodes
specified by the number following the colon, This process may
be repeated as often as desired, and one may therefore go ar
deep as onc wishes. All of this specification may be preceded
by an t-number construct which means to go up in the tree,
through parent nodes, a specified number of times before
starting down.

APPENDIX D -- TREE META: Formal Description

28B7D After the search for the node has been completed, a
number of different types of output may be specified if the
node is terminal, There is a compiler error if the node is not
terminal, ‘

28B7D1 :s puts out the literal string

28B7D2 :1 puts out the length of the string as a decimal
number

28B7D3 :n puts out the string-storage index pointer if the
node is a string-storage element; otherwise it puts out the
decimal code for the node if it is a ,.chr node.

28B704 ic puts out the character if the node was
constructed with a .chr recognizer,

29 Output
29A Syntax

29A1 genu = out / ', .,id '] ((.id / .num) / .empty) '] / '.pound
.qum (': / .empty);

29A2 out = ('.backslash / ', / .sr / 't.chr / "sw" / Yow" / " "
/ ".pound" ;

298 Semantics

29B1 The standard primitive output features include the
following:

29B1A VWrite a carriage return with a backslash
29B1B Write a tab with a comma
29B1C Write a literal string by giving the literal string

29B1h Write a single character using the apostrophe-character
construct

29B1E Write references to temporary storage by using a working
counter, Three types of action may be performed with the
counter, +W adds one to the counter and writes the current
value of the counter onto the output stream. -W subtracts onc
from the counter and does not write anything. W writes the
current value without changing it. Finally, .pound W writes the
maximum value that the counter ever reached during the
compilation,

- D-34

APPENDIX D -- TREE META; Formal Description

2982 The .id [(.num/.id)] is used to generate a call (940 BRM
instruction) with a single argument in the A register. It has
been used mostly as a debugging tool during various bootstrap
sessions with the system. For example, .CERR[5] generates a call
to the subroutine CERR with a 5 in the A register,

29B3 .pound 2 means '"define generated label 2 at this point in
the program being compiled." It writes the generated label in
the output stream followed by an EQU *, This construct is added
only to save space and writing.

D-35

APPENDIX D) -- Tree Meta: Conclusions and Future Plans

50 Since the work on Tree Meta is still in progress, there arc few
conclusions and plentiful future plans,

31 There are many research projects that could be undertaken to improve
the Tree Meta system,

31A Something that has never been done, and that we feel is very
important, is a complete study of the compiling characteristics of
top-down analysis techniques, This would include an accurate study of
where all the time goes during a compilation as well as a study of
the flow of control during both parse and unparse phases for
differcnt kinds of compilers and languages. At the same tine it
would be worthwhile to try to get similiar statistics from other
compilers, It may be possiblc to interest some people at Stanford in
cooperating on this,

31IB SPC has added an intermediate phase to their metacompiler
system, They call it a bottom-up phase, and it has the cffect of
putting various attributes and features on the nodes of the tree,
This allows one to write simpler and faster node-matching
instructions in the unparse rules, We would like to investigate this
scheme, for it appears to hold the potential for allowing the
compiler writer to conceptualize more complex tree patterns and thus
utilize the node-matching features to a fuller extent,

21C Yet another intermediate phase could be added to Tree Meta which
would do transformations on the treec before the unparsc rules produce
the final code, In attempts to write compilers in Tree Meta to
compile code for languages with complex data structures (such as
algebraic languages with matrix operations or string-oriented
languages with tree operations) and to make these compilers produce
efficient code, we have found that tree transformations similar to
those used for natural-language translation allow one to specify
easily and simply the rules for tree manipulation that permit the
unparse rules to produce efficient, dense code, Implementation of
the tree-transformation phase into the Tree Meta system would be an
extensive research project, but could add a completely new dimension
to the power of Tree lMeta.

310 There are a series of additions, some very small and some major,
that we intend to add to Tree Meta during the next year,

31D1 Other metacompiler systems have had a construct that allows
nodes to have an arbitrary number of nodes emanating from them,
This requires additions in parse rules to specify such a search,
additions in the node-matching syntax, and additions in the output
syntax to scan and output any number of branches.

3102 We have always felt that it would be nice to have the basic

D-36

APPENDIX D -- Tree Meta: Conclusions and Future Plans

0

recognizers such as '"identifier" defined in the metalanguage,
There have been systems with this feature, but the addition has
always had very bad cffects on the speed of compilation. We feel
that this new freedom can be added to Tree Meta without having
telling effects on the compilation speed.

3103 The error scheme for unparse rules is rather crude-~the
compiler just stops. We would 1like to find a reasonable way of
accommodating such errors and putting the recovery-procedure
control in the metalanguage.

31b4 Currently the unparse rules expand into 6 times as many
machine-language instructions as the parse rules, This happens
because we did not choose the most appropriate set of subroutines
-and common procedures for the unparse rules., Without changing the
syntax of Tree Meta or the way the stacks work, we fecel that we
can reduce the size of the unparse rules by a factor of 4. This
would frec a considerably larger amount of core storapge for stacks
and enlarge the size of programs that Tree 'eta could handle. It
would also make it run faster in time-sharing mode since less
would have to be swapped into corc to run it,

31D5 In doing some small tests on the speed of Tree Meta we found
that better than 80 percent of the compilation time is spent
outputting strings of characters to the system, The code that
Trec Meta now produces is the simplest form of assembly code. Tt
would be a very simple . task to make Tree Meta able to directly
produce binary code for the loader rather than - syvmbolic code for
the assembler, A similar change could also be made to output
absolute code directly into core so that Tree Meta could be uscd
as the compiler for svstems that do incremental compilation,

31 Finally, there is the following 1list of minor additions or
changes to be made to the Tree Meta systenm,

31E1 Make the library output routines do block T/0 rather than
character 1/0, This could cut compilation times by more that 70
percent,

31E2 Fix Tree Meta so that strings can be put into the tree and
passed down to other unparse rules. This would allow the unparse
rules to bec more useful as subroutines and thus cut down the
nunber of unparse rules needed in a conpiler,

31E3 Finally, we would like to add the ability to associatc a set
of attributes with each terminal entity as it is recognized, to
test these attributes later, and to add more or change them if
necessary., To Jdo this we would associate a sinple 24-bit word
with the string when it is put into strine storage and add syvntax

APPENDIX I =< Tree Meta: Conclusions and Future Plans

to the metalanguage to set, reset, and test the hits of the word.

D-38

APPENDIX D -- Tree Meta: Bibliography

1 (Bookl) Erwin Book, '"The LISP Version of the Meta Compiler,'" TECH
MEMO TM-2710/330/00, System Development Corporation, 2500 Colorado
Avenue, Santa Monica, California 90406, 2 November 1965,

2 (Book2) Erwin Book and D, V, Schorre, "A Simple Compiler Showing
Features of Extended META," SP-2822, System Development Corporation,
2500 Colorado Avenue, Santa Monica, California 90406, 11 April 1967,

3 (Glenniel) ~A. E. Glennie, "On the Syntax Machine and the
Construction of a Universal Computer," Technical Report Number 2, AD
240-512, Computation Center, Carnegie Institute of Technology, 1960,

4 (Kirkleyl) Charles R. Kirkley and Johns F. Rulifson, "The LOT System
of Syntax Directed Compiling," Stanford Research Institute Internal
Report ISR 187531-139, 1966.

5 (Ledleyl) Robert Ledley and J. B, Wilson, "Automatic Programming
Language Translation Through Syntactical Analysis," Communications of
the Association for Computing Machinery, Vol. 5, No, 3 pp. 145-155,
March 1962,

6 (Metcalfel) Howard Metcalfe, "A Parameterized Compiler Based on
Mechanical Linguistics,' Planning Rescarch Corporation R-311, March 1,
1963, also in Annual Review in Automatic Programming, Vol., 4, 125-165,

7 (Naurl) Peter Naur ct al., "Report on the Algorithmic Language ALGOL
60," Communications of the Association for Compting Machinery, Vol. 3,
Noo 5, Pp.299-384, May 1960,

S (Oppenheiml) D. Oppenheim and D. Haggerty, "META 5: A Tool to
Yanipulate Strings of Data," Proceedings of the 2Ist National
Conference of the Association for Computing Machinery, 1966,

9 (Rutmanl) Roger Rutman, "LOGIK. A Svntax Directed Compiler for
Copputer Bit-Time Simulation," Master Thesis, UCLA, August 1964,

10 (Schnidtl) L, O, Schmidt, "The Status Bit," Special Interest Group
on Programming Languages Working Group 1 News Letter, 1964,

11 (Schmidt2) PDP-1
12 (Schmidt3) EQGLEN
13 (Schniederl) F. W. Schneider and G. D, Johnson, "A Syntax-Directed
Compiler-liriting Compiler to CGenerate Efficient Code," DProceedings of
the 19th National Conference of the Association for Computine Machinery,

1964,

11 (Schorrel) b. V, Schorre, "A Syntax-pireccted SMALGOL for the 1401,"

APPENDIX D -- Tree Meta: Bibliography

Proceedings of the 18th National Conference of the Association for
Computing Machinery, Denver, Colorado, 1963.

15 (Schorre2) D. V., Schorre, "META II, A Syntax-Directed Compiler

Writing Language," Proceedings of the 19th National Conference of the
Association for Computing Machinery, 1964,

D-40

APPENDIX D -- TREE META: Detailed Examples

1 This section of the report is merely the listings of compilers for two
languages.

2 The first language, known as SAL for 'small algebraic language,'" is a
straightforward algebraic ALGOL-like language.

3 The second example resembles Schorre's META II. This is the original
metacompiler that was used to bootstrap Tree Meta. It is a one-page
compiler written in its own language (a subset of Tree Meta).

X*TREE META SMALL ALGEBRAIC LANGUAGE - 29 SEPTEMBER 1967 %
«META PROGRAM oLIST

FPROGRAM = "+«PROGRAM'™ DEC * $(DEC *) :STARTNLO) ST * $(°; ST *)
"«FINISH'" ?71E sENDNCO]J * FINISH 3

DEC = *+DECLARE" +ID $(', +ID $DOL2)) '; ¢DECNC11;

F = RESET => '3 S$(ST %) '".END" ?799E tENDNCO) * FINISH:3

ST = IFST /7 WHILEST / FOKST / GOST / 10ST 7/ BLOCK /
«ID (*s eLBLC1] ST :DOC2) 7/ °*~ EXP $STORE[2]1)3

IFST = "«IF" EXP "¢ THEN® ST ('"eELSE"™ ST :SIFTEL3] / «EMPTY :SIFTC[21);
WHILEST = "e<WHILE'"™ EXP ".DO' ST tWHLC23;
FORST = "eFOR"™ VAR '~ EXP “+BY' EXP "eTO" EXP "eDO" ST :FORLS5]1;

GOST e GO "eTO"™ oID :GOL1]5

]

"+OPEN" ("™INPUT"™ .ID 'C oID *] 3:OPNINPL2] /
"OUTPUT* «ID *C «ID *] :0PNOUTC2]) /

"+ CLOSE'"™ «ID :CLSFILC1] 7/ ‘

"<«READ" 1D ': IDLIST :BRS38(2] /

« INPUT” .ID °: IDLIST :XClOC2] /

"«WRITE"™ ID ': WLIST sOUTNUMC[2] /

"«OUTPUT" «ID ': WLIST :OUTCARLC2) 3

IDLIST = VAR (IDLIST :DOL2] / «EMPTY);

I0ST

WLIST = (eID / eNWM / «SR) (WLIST :DOC2] / «EMPTY);
BLOCK = "eBEGIN" ST $('; ST :DOC2]) *".END";

EXP = ".IF'" EXP "+THEN" EXP "eELSE"™ EXP tAIFC3] / UNION;
UNION = INTERSECTION (°\°'/ UNION :ORC2] / «EMPTY);

INTERSECTION = NEG ('& INTERSECTION‘:ANDcal / «EMPTY);
NEG = *"NOT * NEGNEG / RELATION;
NEGNEG = "NOT " NEG / RELATION :NOTL11;

RELATION = SUMCC *"<=" SUM :LE /
"e" SUM :LT /
“>=" SUM 3GE /
ws" SUM $GT /
v SUM tEQ /
'# SWM INE) (2] / «EMPTY);

D-42

SUM = TERM ((°*+ SUM :ADD/ °'= SUM :SUB)(2]/ +EMPTY);
TERM = FACTOR (('*% TERM $MULT/'/ TERM :DIVID/ 't TERM tREM)(2]/.FMPTY);
FACTOR = '~ FACTOR :MINUSL1] 7/ '+ FACTOR / PRIMARY;
PRIMARY = VARIABLE / CONSTANT /7 °*(EXP b
VARIABLE = 1D SVARC1]3
CONSTANT = «NUM :CONC11;
SIFTEL=»=5=] => LOPRI{*1,#1,#2] BRF(%1, #2] #1,"EQU %'\ *x2 SIFTE1[#2,%3];
SIFTE1(#1,-1 =>)”BRU":#E\ #1,"EQU %'\ x2 #2,"EQU *"\;
SIFTL=»=] => LOPR(*1,#1,#2] BRFL[*1, #2) #1,"EQU %"\ *2 #2,"EQU *°*\;
WHLL=»=] => #1,"EQU *"\ WHL1[*1, #2] %2 ,"BRU",#1\ #2,"EQU *'\;
WHL1[=-»#2) => LOPRL*1,#1,#2] BRF(*1,#2] #1,"EQU *'"\3
GOL=~=] => »"BRU",*1\;
FOR[(=s=s=s=5=1 => <"DO NOT USE FOR STATEMENTS">;
LBLI{=1 => *1,"EQU *'';
AlIF[(=-5=5=3 => LOPRU*1,#1,#2] BRF[*1,#2] #1,"EQU %'\ ACCUL*2] AIFI1(#2,%31;
AIF1L#1s=1 => ,"BRU", #2\ #1,"EQU %"\ ACCL*2] #2,"EQU %'\;
LOPRLOR(=s=-1s#15-1 => LOPRLC*12%1,#1,#2] BRTL*1:%1,#1)
#2,"EQU %\ LOPRL[*1:%2, #1,%*3]
LANDL=»=1s~5#1]1 => LOPRIL*1s%1,#2,#1]) BRFLC*x12%x1, #1)
#2,"EQU %'\ LOPRI*1:%2,%2, #1]

ENOTL=-1,#1,#2] => LOPRL*13%1,#2,#11]

(=s=s=1 => «EMPTY;
BRTCORL=»-1,#1]1 => BRT1L*1:%2, #11

CANDC=»-1, #1) => BRTIL*1:%2s,#1)

[NOTC-1s#11] => BRF[*1:x1,#1]

(LEC=,=1,#1] => BLE[(*1¢%ki,k%x1s%x2,#1]

[LTC=5s=),#1] => BLTC*12*k1,%x1t%2,#1]

[EQL=5=1,#1] => BEQL*1tkls*kx1:%2,#1]

[GEL=~5=1s#11 => BGE[*1:%1,%1:%2,#1]

[GTL~s=1s#1]1 => BLE[*1:%2,%k1s%k1,#11]

[NE[-»=),#11 => BNELC*1tk1,5%]1:%2,#1]
(=-»#1] => ACCL*1] ,"SKE =0"\ ,'"BRU", #1\3

BRFLORC=»~1,#11 => BRF[*13%*2,#1]
{ANDL=»-1>#1] => BRF[*x12%2,#1]
(NOTC-1,#11] => BRT[*1:*1s#1]

[LEC=»~],#1] => BLE[*1:%2,%13%1,#1]
[LTC=»~-3,#1] => BGEC*1:%1s%]1:%25#1]
(EQL=»~1-#1] => BNE[L*12*1,%1:%2,#11]
[GEC~»=Js#1]1 => BLTC*1:*x1s%k1:%2,#1]
[(GTC=»=Js#11 => BLE[*12%1,%12%2, #1]
(NEL=»=~15#1]1 => BEQU*12%1s%18%2, #1]
(-,#1] => ACCL*1] ,»'"SKA =-1'\ ,"BRU", #1\;

BLT(=,->#11 => (TOKENC*1] ACCL*2] ,"SKE', *1\, ""SKG">*1\ /
WORKC*1] ACCL*2]1 5" SKE"™» " T+" ¢ W\s "SKG™"s> "T+"e W~UW\
»"BRU *+2"\ ,"BRU"» #1\;

BLE(~>-s#1] => (TOKENC*23 ACCL*1] ,"SKG", *2\ /
TOKENL*1]1 ACCL*2] ,"SKG"s *x1\s"BRU *+2"\ /
WORKL %21 ACCL*1] »'SKG"s"T+"eW-W\)
» “"BRU", #1\;

BECL~»=»#1] => (TOKENL*2] ACCL*1] ,'"SKE", %2\ /
TOKENC*1]1 ACCC*2) ,"SKE",*1\ /
WORK(*2] ACCC*1] 5" SKE",*T+"eW=W\)
»""BRU *+2"\ ,"BkU", #1\;

BGE(=»-»#1) => (TOKENLC*1] ACCL*2] ,'"SKE'"s *1\,*"SKG"s» %I\ /
' WORKL %11 ACCL*2] »"SKE", "T+"eW\s"SKG"» "T+"e W=\
2 ""BRU"» #1\;

BNE[-»=5>#1] => (TOKENC*2] ACCL*1]1 ,"SKE", *2\ /
TOKENC*1] ACCL*21 »*"SKE*, *x1\ /
WORKC *2) ACCL*1] ,"SKE", "T+"eW=UW\)
»"BRU"s #1\3

STOREL~-2VARL*1]1] => "xITS ALREADY THERE"\
C-»ADDCVARC*1],CONLC'™1"31] => »"MIN", %1\
{=-sADDLVAKRL*11,-11] => ACCL*2:%2] ,*"ADM"» * 1\
{-»SUBLVARC*11,~1] => ACCL*2:%2] ,'"CNA; ADM "*x1\
{=s=1] => BREGL*2] ' STB"»*1\ /

ACCL*2] »"STA",»*1\;

ADDIMINUSC=1s=] => SUBL*2,%12%1]

(=»=-1 => TOKENC*2] ACCL*1] 5'ADD, %2\ /
WORK(C*11 ACCC*2] ,"ADD"»"T+"eW=-W\3;

SUB(=»=-1 => TOKEN(*2] ACCL*1] ,"SUB",*2\ /
TOKENL*1] (BREGL*2] ,'"CEBA3; CNA; ADD "*1i\ /
ACCL*21 ,»'"CNAs; ADD *x1\) /
WORKC*2) ACCL*1] 5" SUB"™,"T+"«W=-U\;

TOKENC*1] »"LDA"» %1\ 5" CNA"\ /
BREGL*11 »"CBAs; CNA*\ /
ACCL*11 » ' CNA'"™\;

MINUSC=~]

1]
\'4

DIVIDL~,=1 => TOKENC*2] (BREGL*1] ,'CBA"\ /
ACCL*11) »'RSH 235 DIV "*2\ /
WORKEL*21 (BREGL#*1] ,'"CBA"\ /
ACCL%*11) ,'"RSH 235 DIV T+"eW=t\;

BREGLMULTL=»=1] => TOKENC*13%2] ACCL*1:%1] L, MUL™,*1:%2%; RSH 1'"\ /
TOKENC*1:%1]1 ACCL*1:%2] »"MUL*",*13*1"; RSH 1'\ /
WORKC*13%1]) ACCL*1:%2] ,"MUL"»"T+"eW=W"3 RSH 1"\
{REM(=-»-11 => TOKENC*1:%2] (BREGL*1:*1) ,"CBA"\ /
ACCL*1]) ,"RSH 23; DIV "*k1:%2\ /
WORK(C*1:%2] (BREGL*1:%1] ,"CBA"\ /
ACCL*1:%1]) ,"RSH 235 DIV T+"
eW=W"3 RSH 1"\;
ACCL~-] => TOKENC*11 »"LDA',*1\ 7/
BREGC*1] »'"CBA"™\ /
*13

WORK[=1] => BREGC*1] »"STB">"T+"+W\ /
ACCL*1] »"STA", "T+"+W\;

TOKEN{VARC«IDl] => «EMPTY
CCONL.NUM]1] => «FEMPTY3

MULT 7/ => «EMPTY;

REM / => «EMPTY;

AND / => <EMPTY;

OR 7/ => «EMPTY;

NOT'/ => «EMPTY;

ENDN 7/ => "T","BSS",1W\ »"END"\;
VARC+ID] => %13

CONL +NUM] => "= *1;

LE / => «EMPTY;

LT 7/ => «EMPTY;

EC / => «EMPTY;

GE / => «EMPTY;

GT 7/ => «EMPTY}

NE / => «EMPTY:

DOC=s=1 => %1 %23

OPNINPL=,=1 => ,"CLEAR; BRS 15; BRU "*2"; BRS 163 BRU "*2"3; STA "“*1\;

OPNOUTC-,=-) => ,"CLEAR; BRS 185 BRU "#2"; LDX =3; BRS 19; BRU "
*2"; STA “ki\;

CLSFILC=] => L,"LDA "%1"3 BRS 20"'\3

BRS38[=»«1ID1 => ,"LDA "%1*; LDB =103 BRS 38; STA "*%2\
[=s=1] => BRS38L*1,%2:%1] BRS38L*1,%2:%2]1;

XCIOCL=»+ID] => L,"CIO "%1*3 STA ""%2\
(=2=~1 => XCIO[*1,%2:%1] XCIOC*1,%2:%2];5

OUTCARL=s¢ID] => ,"LDA *"%2*; CIO *x1\
Ces e NUM] => HYLDA =""%2%3 CIO "*x1\
C=» «SR1] => H,"LDA ="#1"; LDB ="%2:L*"; LDX "%1*; BRS 363 BRU "%2\
'l’"ASC LN) '*2' l\
(=s=] => QUTCARLC*1,%23%1] OUTCAR[C*1,*%2:%2]3

OUTNUM(C=s¢ID] => ,"LDA "*1"; LDA =105 BRS 385"\
C-5NUM] => ,"LDA ="%2"; CIO ""*I\
(~»«SR] => ,»"LDA ="#1"3 LDB ="%2:L"; LDX "%1"; BRS 365 BRU '"*2\
#1’"ASC e '*2' '\
[=»-1 => OUTNUMC*1,%22%1] OUTNUML*1,*%*2:%213
STARTN / => “START",™EQU","%"\;

DECNC«ID) => *1,'"BSS 1"\
[=1] => DECNC*1:3%1] DECN(*1:%2] ;

« END

D=-46

PROGRM

GEN

ouT

<

«META PROGRM %Z5%

= "eMETA"™ +ID ?21? <"META II 1.1">
L' NOLIST EXT»NUL3 $START BRM INITL"]
["SKSTKSZ EQU 13 $MSTKSZ EQU 1005 SNSTKSZ EQU 135 $SSSIZE EQU 550"
("eLIST" (»"CLA; STA LISTFG") / «EMPTY)
C»"BRM RLINE; BRM "*'; BRM FINISH"]
(*C SIZ $C*, SIZ) ') ?217E 7 «EMPTY)
$ST "+END" ?2E
C"STAR BSS 15 SSTOP DATA SS+SSSIZE-53%$SS BSS SSSIZE™)
C"$MSP DATA MSTK; $MSPT DATA MSTK+MSTKSZ=-5S; $MSTK BSS MSTKSZ'™1
L"SNSP DATA NSTK3; $SNSPT DATA NSTK+NSTKSZ=53 SNSTK BSS NSTKSZ'™)]
C*3$KSP DATA KSTK; $KSPT DATA KSTK+KSTKSZ~53 SKSTK BSS KSTKSZ*"]
{»"END") <“"DONE">3
«ID '= ?23E <"ST"> ([(*,"ZR0; LDA *-13; BRM CLL"]
EXP ?24E '3 ?25E (5,"BRU RIN"]; :
SUBEXP $('/ [,»"LDA MFLAGs SKE =03 BRU "%11]
SUBEXP)Y [*1,"EQU *"]; E
= (GEN 7 ELT (,"LDA MFLAG; SKE =13 BRU "%11)
SREST [*1,"EQU *"];
GEN 7/ ELT [»"LDA MFLAGs; SKE =03 BRU *+4*]
*? «NUM ?12E [,"LDA ="%"; BRM ERR"]
(eID [L"BRM", %1/ '? [»"BRS EXIT'1)?13E/
« EMPTY ([,"CLA3; BRM ERR; BRS EXIT™1);
. «ID ?26E [»"BRM",»%x'"3; STA STAR"] /
eID [s"BRM", %1/
«SR [»'"BRM TST; DATA "*L"3 ASC "''x*'‘*'] /
*C EXP ?27E *) ?28L 7/
** SCHE [»"LDA ="%N'"; BRM TCH"1;
L $0UT '] ?210E (,'"BRM CRLF"1 7/
'S (*1,"EQU *"3] ELT ?9E -
£»"LDA MFLAG; SKE =03 BRU "x1'; MIN MFLAG"] /
".EMPTY" (,"LDA =13 STA MFLAG"] /
“+CHR'" [»"BRM WPREP; BRM INC; LDAx IWP3; STA STAR3; MIN NCCP") /
SR ?212E *> ?213E [»"BRM LITT; DATA "*L'"; ASC "''x'*'"; BRM CRLFT“Z
"=>" [%1,"EQU %] ELT ?14E
£»'"LDA MFLAG; SKE =05 BRU *+33; MIN NCCP; BRU "%11/
'! «SR ?1SE [»%]1;
«SR {,"BRM LIT; DATA *xL'3 ASC "''x'‘'}] /
's {,»"BRM TAB'1 7/
"% (oNUM [,"LDA =47B3 CI0O FNUMO; MIN CHNO3 LDA GN"
**"; BRM GENLAB3 STA GN"%x'"; BEKM OUTN'"] /
'L [,"LDA* STAR; BRM OUTN']1 7/
'N L[s"LDA STAR; BRM OUTN"] /
'C [»"LDA STAR; CIO FNUMO3; MIN. CHNO'] /
«EMPTY (,"LDA STAR3; BRM QUTS"])/
* «CHR [+'"LDA ="%N*"; CIO FNUMO; MIN CHNO'1/
C»"BRM CRLF"3};
; (»"BRU RTN"1 $ST "eEND" 211E (,"END"] FINISH;
"K=" «NUM [("SKSTKSZ EQU "*] /
M= JNUM [*"SMSTKSZ EQU "*] /
UN=" JNUM [(“SNSTKSZ EQU *"*] /
"S=" JNUM [(*"$SSSIZE EQU *%x];
« END

D-47

+META PROGRM ZTREE 132

PROGRM = ("eMETA"™ «ID 7217 ("<LIST" SLISTCOl/ «EMPTY :MT[O]l) SIZE
¢tBEGINC 3] / ' L
"o CONTINUE"™ $MTCO]) <"TREE 13"> $SETUPL1] * $(¢ RULE *)
"o END" ?2E sENDNCLO] * <"DONE">3

SIZE = *C SIZ $(°', SIZ :DOC21) °*) ?SOE / «EMPTY tMTCOI1;
SI7 = «CHR ‘= ?54E NUM ?SSE $¢SIZSC213
RILF = «ID
(*= EXP ?3E ('& :KPOPKC1] / «EMPTY) :OUTPTC2] /
'/ *"=>" 23E GEN1 $SIMPC2] /
OUTRUL :OUTPTC21) 2SE '3 ?6E ;

EXP = '~ SUBACK ?7E ('/ EXP 78E $BALTER[2] / +EMPTY $BALTERCL13) /
SUBEXP (°'/ EXP ?9E :ALTER[21/ <EMPTY);

SUBACK = NTEST (SUBACK :D0OL2] /7 «EMPTY) /
STEST (SUBACK $CONCATC2] 7/ «EMPTY):;

SUBEXP (NTEST # STEST) (NOBACK 1CONCATC2] / «EMPTY);

NOBACK

(NTEST 7/ STEST (*2 «NUM ?10E sLOADCL1] (<ID / '? :ZROCO01) ?711E
$ERCODL 3] /7 +EMPTY :ERL11)) ’
(NOBACK :D0OC2] / <EMPTY)3

NTEST = 't «ID ?12E sNDLBL1] /
'L («NM '] ?14E :MKNODEC1] /
GENP '] ?52E (°'t/«EMPTY :OUTCRLO] :DOC2])) /
'< GENP '> ?53E ('t /+FEMPTY :OUTCRLO] :DOC2]) sTTYC1) /
("« CHR'" $GCHR /
'k $GO)Y L0 /
“=>*" STEST ?15E :SCAN(C1]) 7/
coMM; ' '

GENP = GENPl /7 EMPTY :MTLOJ};

GENP1

GENP2 (GENP1 :DOC2] 7/ «EMPTY);

GENP2 = '% ('S .NUM ?S1E :PAROUTC1] / «EMPTY :ZROCO3 s PAROUT(11)
('L tOL 7/ °C :0C / °N 3ON / «EMPTY 30S)CO0} :NOPTC21/ GENU;

coMM = '+ EMPTY®" :SETLO] /
'l «SR ?18E :IMED(1]3

STEST = '« «ID ?219E :PRIML1] /
«ID 2CALLC11/
«SR $STSTC1] 7
'¢ EXP 720E ') ?21E /
** LCHR :CTSTC11/
(eNUM 'S ?223E /'S $ZROLCO01) (eNUM /+EMPTY sMTCOJ) STEST ?24E :ARBC 31/
'« (¢SR $NSRC11 7/ '' «CHR $NCHRL11) ?26E :NTSTC11:

D-48

OUTRUL = 'C OUTR ?27E (OUTRUL $ALTERL2] / <EMPTY) :0SETC1]);
OUTR = OUTEST '"=>" ?729E OUTEXP ? 30E :CONCATCL21];

OUTEST = ¢ ('1 sMT / *=1" tONE / *=,=1" $TWO / "=,-=,-1" 3$THRE) (0] /
ITEMS *]) ¢CNTCKC1l1; '

ITEMS = ITEM (', ITEMS ?32E tITMSTRL2] / «EMPTY :LITEMC1]) 3

ITEM = '- tMTCLO]J / _
«ID *'C ?33E OUTEST ?34E sRITEM[21/
NSIMP1 sNITEMC1] 7/
‘e «ID 73SE sFITEML1] /
eSR ¢TTSTCL1] /
** «CHR $CHTSTC1] /
'# oNUM ?37E :GNITEMC133

OUTEXP = SUBOUT ('/ OUTEXP tALTERL2] / «EMPTY);
SUBOUT = OUTT (REST :CONCATC2] / «EMPTY) / REST:
REST = OUTT (REST :0ERC 21/ «EMPTY) / GEN (REST :DO(2]/ «EMPTY);

OuUTT «ID *C ?39E ARGLST "1 ?40E $:OUTCLLL2) 7/ °'C OUTEXP ') ?41E /

NSIMP1 (°: ('S 20S / °L :0L / °*N :ON/ °'C :0CC0] :NOPTLZ2) /
" «EMPTY :DOITL1133

ARGLST = ARGMNT $ARGL1) (', ARGLST :DOC2] / «EMPTY) / «EMPTY :MTLOl;
ARGMNT = NSIMP :ARGLDC 1] / °*# «NUM :GENARG(113 |
NSIMP1 = ~ 't NSIMP $UPL2] / NSIMP :LKTC113
NSIMP = *% NUM (- ': NSIMP $CHASEC(2] / «EMPTY $LCHASFL11);
GEN1 = (OUT/COMM) (GEN1 :DOC2] / «EMPTY);
GEN = COMM / GENU / °< $TTYLO) / °*> :FILCOI;
GENU = 0UT 7/ :

e «ID 742E *C 743E ((«ID / <NUM) :LOADC1] :CALLL2] /

« EMPTY $CALLC11) *'] /

'# «NUM :GNLBLC1] (': <¢DEFC1] /7 «EMPTY) 3
OUT = ('\ OUTCR / *» :0UTAB) (0] /

«SR :OUTSRL1] /

** «CHR :OUTCHC11 /

"+W'" $UPWRK[O] :0UTWRKC1] /

"-W" :DWNWRKLO] /

“"eW'" tMTCO] :0UTWRK /

'‘t'W :MAXWRKLOl1s

E = «EMPTY RESET => '; $C RULE *) ".END" ?799E FINI SH;

D-49

%ZOUT RULESZ

SETUP [=] => L,*"NOLIST NUL,EXTS;GEN OPD 101BS,1,1;BF OPD 102BS,»1,1"\
“BT OPD 103BSs 1,15 PSHN OPD 104BSs 15 13PSHK OPD 105B5s 15 1™\
“MKND OPD 106BS, 1, 13NDLBL OPD 107BSs 15 13GET OPD 110BS» 151"\
"“BPTR OPD 111BSs 1, 13BNPTR OPD 112BS»1, 15RI1 OPD 113BSs 1, 1"\
"RI2 OPD 114BS,»23FLGT OPD 115BS, 1513 BE OPD 116BS» 1, 1"\
“LAB OPD 117BS»1,13CE OPD 120BS5, 1, 15LDKA OPD 121B5, 1, 1"\

"$KSTKSZ EQU 1003 $SMSTKSZ EQU 1305 SNSTKSZ EQU 13005 $SSTKSZ EQU 1400"\
*13

BEGIN{-»s=»-] => "S$START BRM INITL; CLA; STA WRK3; STA XWRK"\ %3 *2
»"BRM RLINEs BRM "%1'"; BRM FINISH"\; :

LIST /7 => ' CLA; STA LISTFG;'';

OUTPTC=»=1 => *1:S »"ZRO; LDA *-13 BRM CLLO"\ *2 ,'BRU RTNO"\;
SIMPL=»=1 => %1 ,'"ZRO"\ *2 ,"BRR "*1\;

BALTERC-1 => »"BRM SAU"™\ #*1 ,"BRM RSTR"\
[-»=1 => ,"BRM SAU"™\ *1 »"BRM RSTR; BT "#1\ *2 #1.D(1;

D 7/ => »"EQU *"\;

ALTERC=5 SETC1] => %1 %2 :
(CONCATL=»=]s~1 =>PMTC*12%x15#1] *1:%2 »"BRU "#2\ #1.D[] *2 #2.D()
(=»=1 => %1 »"BT “#1\ *2 #1.D[1;

PMTLPRIMC=1s#1] => »'"BRM *x1:%1:S"; BF "#1"3 MRG "%x1:%1:sS"FLG; PSHK =0"\
{=s=] => %1 »"BF "#1\3

ERCALTERL~, SETC11]1 => *1
£=1 => *1 ,"BE ==-1"\;

DOC=s=1 => %1 *2;
CONCATL=-s=] => *1 »"BF "#1\ %2 #1.D(J};

LOADL«NUM] => ,"LDA ="*1:5\
C«ID] => ,"LDA "*1:S\3

CALLL-1 => »"BRM "*1\

[=»=1 => %2 ,"BRM "*1\}
MT / => «EMPTY:
CLA 7/ => “CLA";

ZRO / => *0";

FRCODL=»s»=s=]1 => %1 %2 ,"BF *"%3\3
NDLBC=] => ,'"NDLBL ="#%1\}
MKNODECL =] => ,"MKND =""%i\}
ARBLZROC1I»MTCIs=] => #1.DL] *3,"BT "#1"3 MIN MFLAG"\
CeNUMsMTC()s=-1 => ARBI(L*1] #1.DC] *3 _
»"SKR*® MSP; BT "#1"3 SKN* MSP; BRU *+3; BT "#1'"; MIN MFLAG"\
' « ARB3(]
C=seNUMs»=]) => ARBI1[(%2) #1.DL] %*3
2" SKR*x MSP3 BT "#1"3 SKN* MSP'"\ ARBZ2(*1,%*2]}
ARR1{=] => H,'"BRM SAV; LDA ="x1:S"+1; MIN MSP3 STA* MSP'"\;
ALKBOL =5 e NUM] => »"BKU *+43 CLA3 STA MFLAG3; BRU *+4; LDA%* MSP; SKG ="'%x2
"-"%1""3 MIN MFLAG"\ «ARB3[] :
[=1 => L,"BRU *+35 CLA 3 STA MFLAG"\ .ARB3(1];
ARBR3 / => ,"LDA =-1; ADM MSP; BRM RSTR"\;
GCHR /=> »"BRM WPREP; BRM INC; LDA* IWP3; MRG CHRFLGs MIN NCCP; PSHK =0"%
GO /7 => L,"BRM OUTREE; BT %+3; LDA =2; BREM CFRR"\3
SET /7 => »"LDA =1; STA MFLAG"\;

TTYC=1 => TTYL] *1 FILL)
(Y => ,"LDA =13 STA FNUMO'\ XCHCHC1];

FILL) => ,"LDA XFNUMO; STA FNUMO"\;

XCHCH/ => ,"LDA TCHNO; XMA CHNO; STA TCHNO"\;
STRINGL=1 => * DATA "*1:L"; ASC "' **1°°'\;
OSETC~) => »*"BRM BEGN"\ %13

CNTCKC=1 => %1 ,"CLB; SKE NCNT3 STB MFLAG"\;
CONE / => ,"LDA =1"\;

TVO 7/ => ,"LDA =2'\3

THRE /7 => »,"LDA =3"\;

ITMSTR C=s=1 => %1 ,"MIN CNT; EAX =-1,2"\ *2;
LITEM (=1 => *1 ,"MIN CNT; LDA CNT"\;
RITEMC(=»=1 => ,"RI1 ="%1"; BRU "#1\ *2 ,"™RI2"\ #1.D(J;

OERL=s=1 => %1, "CE =1"\ %23

D-51

OUTCLL [=-»-] => ,"LDA NSP; STA SNSP; NDLBL ="#1"; CLA; STA CNT"\

»"™LDA KT5 STA ME™\ *2

»"MKND CNT; PSHN SNSP; LDX KT; BRM* 0s23 BRM POPK"\

»"LDA* NSP; STA NSP"\;
ARGLDL~-1 => »"LDA ME"\ %13
ARG (-] => *1 ,"PSHK =05 MIN CNT"™3;
CHASE [=»=-1 => ,™GET ="#1"; BPTR #+3; LDA =3; BRM CERR™\
LCHASE [=) => ,"GET ="%1\3;
POI1 [=1 => %1 »"BNPTR "#1
"; CAX; PSHK =05 BRM* 0,25 BRM POPK; BRU *+2'\
§1.DL1 »"BRM OUTS"\3
NOPT (=»=1 => %1 ,"BNPTR %+3; LDA =43 BRM CERR;" %23
SCAN [-1] => #1eD[) *1 ,"BT *+3; MIN NCCP; BRU "#1\3
PRIM (=1 => ,"BRM "*1"3 BF #*+35 MRG "*1"FLG3 PSHK =0"\3
STST =3 => »"BRM TST3'" STRINGL*113
CTST [-1 => »"LDA ="*1:N"; BRM TCH"\;
0S 7 => "™ BRM OUTS"\}
ON 7/ => "™ ETR =77777B BRM OUTN'"\;
OL / => " CAX3; LDA 0,2; BRM OUTN'\}
0C 7/ => * ETR =377B3; CI0 FNWMO; MIN CHNO"\;
GNLBL [-] => ,"GEN GNLB"*1\;
DEF £-1 => %1 ,"BRM LIT; DATA 65 ASC '*'" EQU *"''\;
OUTCR 7/ => »"BRM CRLF"™\;
OUTAB / => »"BRM TAB"\;
OUTSK [=] => »"BRM LIT; " STRINGL #1313
OUTCH C=1 => ,"LDA ="*1:N"; CIO FNUMO; MIN CHNO'\;

ENDN / => “SSTOP DATA SS+SSTKSZ~-53$SS BSS SSTKSZ'™\

*2

13
»

"M SP
"N SP
"KSP
“WRK

SAVG [=1 =>

DATA MSTK; SMSPT DATA MSTK+MSTKSZ= 53 $SMSTK BSS MSTKSZ'\
DATA NSTK; $NSPT DATA NSTK+NSTKSZ=~ 53 SNSTK BSS NSTKSZ®*\
DATA KSTK3 $KSPT DATA KSTK+KSTKSZ~- 53 3KSTK BSS KSTKSZ'™\
BSS 13XWRK BSS 15 END"\;

»"BRM SAVGN"\ *1 ,*BRM RSTGN"\;

IMED (=] => ,*1i\;}

NITEMC=] => ,*"STX INDX; LDA KT*"\ *1
»"”CLB3 LDX INDX; SKE 0,23 STB MFLAG'"\;

FITEMC=1 => ,*"FLGT "% 13 S"FLG"\;

TTSTC=) => »"BRM SSTEST3" STRINGL*1];

CHTST&-] => ,"CLB; LDA ="*13N'"; MRG CHRFLG; SKE 0,23 STB MFLAG"\;
GNITEM(~-] => L,"FLGT GENFLG:; ETR =77777B3 STA GNLB"*]:2S\;
GENARG(=] => ,"LAB GNLB"™*1:5"; MRG GENFLG"\;

NTSTC=] => ,"LDA NCCP; STA SNCCP"\ *1 :
»"LDA =15 SKR MFLAG; BRU *+2; STA MFLAG; LDA SNCCP3 STA NCCP''\;

NCHRL=1 => ,"LDA ="%1:N"3 BHKM TCH"\;
NSRL=] => ,»*"BRM TST; ‘' STRINGC(*11];

UPL*™1",=] => ,"LDA* KSP'"\ *2
{=5-1 => ,"LDX KSP5; LDA 1-"%1:S5",2"\ *2;

LKTC{=3 => ,'"LDA KT\ *1;

UPWRK 7/ => ,"MIN WRK; LDA WRK; SKG XWRK; LDA XWRK; STA XWRK'"\3
DWNWRK / => ,"LDA ==1; ADM WRK"\;

OUTWRKL -1 => *1, "LDA WRK; BRM OUTN"\;

MAXWRK / => ,"LDA XWRK; BRM OUTN'"\;

SIZSCeCHRs=1 => *13C"STKSZ EQU "*2:S\3

KPOPK(~-1 => ,'"MIN MSP; LDA KTS STA* MSP; MIN MSP; LDA KSP; STA% MSP'™\
*1 »"LDX MSP; LDA 0,25 STA KSP; LDA =1,2; STA KT; LDA =-2; ADM MSP"\;

PAROUTCLZROL11 => »"LDA KT"\
€**0"1 => ,"LDA KT"\
=1 => »"LDKA ="%1\;

« END

	D-00
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	D-31
	D-32
	D-33
	D-34
	D-35
	D-36
	D-37
	D-38
	D-39
	D-40
	D-41
	D-42
	D-43
	D-44
	D-45
	D-46
	D-47
	D-48
	D-49
	D-50
	D-51
	D-52
	D-53

