
A TREE META FOR THE XDS 940

by

J. F. Rulifson

April 1968

Augmentation Research Center

Stanford Research Institute

Menlo Park, California

This material was contained as Appendix D in the
final Report for Rome Air Development Center on

Contract AF 30(602)-4103

APPENDIX 0 -- TREE META: Introduction

1 Terms such as "metalanguage" and "metacompiler" have a variety of
meanings. Their usage within this report, however, is well defined.

lA "Language," without the prefix "meta," means any formal computer
language. These are generally lanRuagcs like ALGOL or FORTRAN. Any
metalanRauge is also a language.

IB . A compiler is a computer program that reads a formal-language
program as input and translates that program into instructions that
may be executed by a computer. The tcrm "compiler" also means a
listing of the ins.tructions of the compiler.

Ie A language that can he used to describe other languages is a
metalanguage. English is an infonnal, general mctalanguage that can
describe any formal language. Backus-Naur Form or BNF (Nurl) is a
fonnal metalanguage used to define ALGOL. BNF is weak, for it
descrihes only the syntax of ALGOL, and says nothing about the
seJ:lantics or meaning. English J on the other hand, is powerful, yet
its informality prohihits its translation into computer programs.

In A mctacornpi ler, in the mos t general sense of the term, is a
program that reads a metalanguage program as input and translates
thatpror,ram into a set of instructions. If the input program is a
complete description of a fomal language, the translation is a
compiler for the language.

2 rn,e broad meaning. of the \'lord "metacompi ler, " the st rang, divergent
views of many people in the field, and our restricted ~e of the word
necessitate a fonnal statement of the design standards and 5cope of Tree
~1eta.

2A Tree ~~ta is built to deal with a specific set of languages and
an even more specific set of users. TIlis project, therefore, add5 to
the ever-increasing problem of the proliferation of machines and
languages, rather than attempting to reduce it. There is no attempt
to design universal languages, or machine independent languages, or
any of the other goals of many compiler-compiler SY5tems.

2B Compiler-compiler systems may he rated on two almost independent
features: the syntax they can handle and the features wi thin the
system that ease the compiler-building process.

2B1 Tree ~Ieta is i.ntended to parse context-free laguages using
limi ted hackup. There is no intent or desire on the part of the
users to deal with such problems as the FORTRAN "continue"
statement, the PL/I "enough end5 to match," or the ALGOL "i5 it
procedure or is it a variable" question. Tree Heta is only one
part of a system-bui lding technique. There is flexibi 1 i ty at all
levels of the system and the design philosophy has been to take

D-1

APPENDI X n -- TREE ~fETA: Introduction

the easy way out rather than fiRht old problems.

2B.2 Many of the features considered necessary for a
compiler-compiler system arc absent in Tree M~a. Such things as
symbOl-tables that handle ALGOL-style blocks and variable types
are not included. Neither are there features for multidimensional
subscripts or higher level macros. These features are not present
because the users have not yet needed them. None, however, would
he difficult to add.

2B3 Tree Meta translates directly from a high-level language to
machine code. This is not for the faint of heart. There is a
very . small number of users (approximately 3); all are
machine-language coders of about the same hi~h level of
proficiency. TIle nature of the special-purpose languages dcalt
with is such that general fonnal 5ystems will not work. The data
structures and operations are too diverse to produce appropriate
code with current state-of-the-art formal compiling techniques.

3 There are two classes of formal-definition compiler-writinf! schemes.

3A In terms of usage, the productive or synthetic approach to
language definition is the most common. A productive p,rammar
consists primarily of a set of rules that describe a method of
generating all the possible strings of the language.

38 TIle reductive or analytic techni'lue 5tates a set of rules that
describe a method of analyzinr. any string of characters and decidinr
whether that string is in the lanp,uage. This approach simultaneously
produces a structure for the i.nput strinp. so· that code may he
compilcd.

3C The metacompilers arc a combination of hath schcJTles. They are
neither purely productive nor purely reductive, hut merge hoth
techniques into a pm."erful \vork i.ng system.

4 The netacompiler class of cOl'lpiler-compiler systems may he
characterized by a common top-down parsinp; algorithm and a common
syntax. These· compilers are expressible in their own language, whence
the prefix "meta."

4A The following is a formal discussion of t.op-dOl."n parsing
algorithms. It relies heavily on definitions and fonnalisns which
are standard in the literature and may be skipped by the lay reader.
For a language L, Kith vocabulary V, nonterminal vocahlliary !':.
productions P, and head S, the top-down parse of a 5tring u in L
starts \vi th S and looks for a sequence of product:i ons such that S=u
(S produces u).

D-2

APPENDIX n -- TREE ~~TA: Introduction

4Al Let
V = [E, T, F, +, * (,) , X) ,
N = [E, T, FJ
p = [E .. -· .- r / T + F

T · .- F / · .- F * T
F · .- X / (E) · .-

L = (V,N,P,E)

4A2 The follo\ving inten tionaily incomplete ALGOL procedures wi II
perform a top-down analysis of strings in L.

4A2A boo lean procedure E; E: = if T then (i f issymhol (' +')
then E else true) else false; comment issymbol (arp,) is a
Boolean p.rocedure that compares the next symbol in the input
string with its argument, argo If there is a match the input
stream is advanced;

4A2R hoolcan procedure T; T .- if F then (if issymbol('*')
then T else true) else false;

4A2C boo lean procedure F; F : = if issymbol (' X') then true
else if issymbol('(') then (if E then (if issymbo1(')') then
true else false) else false) else false;

4A3 TIle· left-recursion problem can readily be seen by a slight
modification of L. Change the first production to

E ::= T / E + T
·and the procedure for E in the corresponding way to

E : = if T th en true e Is e if E ••••

4A3A Parsing the string "X+X", the procedure E will call T,
\vhich calls F, which tests for "X" and gives the result "true."
E is then true hut only the first element of the string is in
the analysis, and the parse st·ops before completion. I f the
input string is not a member of the language, T is false and E
loops infinitely.

4A3B TIle solution to the prob lem used in Tree Heta is the
arbi trary number operator. In Tree Heta the first production
could be

E :: = T$ ("+" T)
where the dollar sign and the parentheses indicate that the
quantity can he repeated any nUMb~r of times, including O.

4A3C Tree rlcta makes no check to ensure that the compi ler it
is pr~ducing lacks syntax rules containing left recursion.
This problen is one of the more common mistakes made by

D-3

APPEND! X n -- TREE ~1ETA: Introduction

inexperienced metalanguage programmers.

4B The input langua~e to the metacompiler closely resembles BNF.
The primary difference between a BNF rule

<go to> ::= ~o to <lahel>
and a metalanguage rule

GOTO = "GO" "W" .ID;
is that the metalanguage has been desi~ed to use a computer-oriented
character set and simply delimit.cd basic entities. TIle
arbi trary-number operator and parenthes is construct ion of the'
metalanguage are lacking in BNF. For example:

TERH = FACTOR $ (("." / "/" / 'm) FACTOR);
is a metalanguage rule that would replace 3 BNF rules.

4C The ability of the compilers to he expressed in their own
languagc has resulted in the proliferation of metacompiler systems.
Each one is easily bootstrapped from a more primitive version, and
complex compilers are built with little pror.;ranuning or debugging
effort.

5 The early history of metacompilers is closely tied to the history of
SIG/PLAN Working f;roup 1 on Syntax Driven Compilers. 'Ine group was
started in the. Los Angles area primarily through the effort of Howard
~fetcal fe (Schmidt 1) •

SA In the fall of 1962, he designed two compiler-writinp.
interpreters (Netcalfl). One used a bottom-to-top analysis techniClue
based on a method described by Ledley and Wi lson (Ledleyl). The
other used a top-to-hottom approach based on a ,"ork by f,lennie
(Glenniel) to generate random English sentences from a context-free
granunar.

58 At the same time, Val Schorre described two ''met amach i nes"--one
generative and one analytic. TIle ~enerative machine was implemented,
and pro~uced random al gebraic express ions. Schorre imp lemented ~teta
I the first metacompiler, on an IB~1 1401 at UCLA in ,January 1963
(Schorrel). His original interpreters and metamachines were written
directly in a pseudo-machine lanr,uage. rfeta I, however, \tIas written
in a higher-level syntax language ah Ie to describe its own
compilation into the pseudo-machine languag(". Heta I is described in
an Wlavailable paper given at the 1963 Colorado ACH conference.

SC Lee Schmidt at Bol t, Beranek, and Newman wrote a metacompi ler in
~1arch. 1963 that uti Ii z.ed a CRT display on the time-sharing PIJP-l
(Schmidt2). This compiler produced actual machine code rather than
interpret i ve code and \Vas part i ally bootstrapped from ~·1eta I.

(, Schorre bootstrapped r,teta I I from rteta I during the Sprinr. of 1963
(Schorre2). The paper on the refined metacompiler system presented at

D-4

APPENDIX 0 -- TREE ~ffiTA: Introductirin

the 1964 Philadelphia ACM conference is the first paper on a
metacompiler available as a general reference. The syntax and
implementation technique of Schorre's system laid the foundation for
most of the systems that followed. Again the system was implemented on
a small 1401, and was used to implement a small ALGOL-like language.

7 ~1any simIlar systems immediately followed.

7A Roger Rutman of A. C. Spar},plug developed and implemented LOGIK.
a language for logical desir.n simulation, on the IBH 7090 in January
1964 (Rutman!). This compiler used an algorithm that produced
efficient code for Boolean expressions.

7B Another paper in the 1964 ACM proceedings descrihes ~~ta III,
developedhy ~chneider and Johnson at UCLA for the IBH 7090
(Schneiderl). Heta III represents an attempt to produce efficient
machine code, for a large class of languages. It was implemented
completely in assembly language. Two compilers were written in Meta
III--COnOL, a compiler-wrjting demonstration compiler, and PtJREGOL,
a dialect of ALGOL 60. (It was pure gall to call it ALGOL). The
rumored ~fETAFORE, ab Ie to compi Ie full AU;OL, has never been
announced.

7C Late in 1964, Lee Schmidt bootstrapped a metacompiler from the
PDP-l to the Beckman 420 (Schmidt3) • It was a logic equation
generating language known as EQr,EN.

8 Since 1964, System Development Corporation has supported a major
effort in the development of metacompilcrs. This effort includes
powerful metacompi lers wri tten in LISP wh ich have extensi ve
tree-searching and backup capability (Bookl) (Book2).

9 An outgrowth of one of the Q-32 systems at snc is ~1eta 5 (Oppenheim!)
(Schaffer!) • Th is system has been success fully released to a wide
number of users and has had many strin~-manipulation applications other
than compil ing. The ~1eta 5 system incorporates backup of the input
stream and enough other facilities to parse any context-sensitive
language. It has many elaborate push-down stacks, attrihute setting and
testinp: facilities, and output mechanisrn..c;. The fact that ~1eta 5
success fully trans lates ~TOVIAL programs to PL/l programs clearly
demonstrates its power and flexihility.

10 The LOT system was developed during 1966 at Stanford Research
Institute and was modeled very closely after ~'eta II (Kirkleyl). It had
new special-purpose constructs allowing it to generate a compiler which
would in turn he ~ble to compile a suh~et of PL/l. This system had
extensive statistic-gatherinr facilities and was used to study the
characteristics of top-down analysis. It also embedded system control,
normally relegated to c()ntrol cards, in the. metalanguage.

D-5

APPENDIX 0 -- TnEE ~IF.TA: Introuuction

11 The' concept of the. metarnachine originally put forth hy Cllennie is so
5imple that three hardware versions have been designed and one actually
implemented. TIle latter at Nashington University in St. Louis. This
machine lias built from macromodular components and has for instructions
the codes described by Schorre (Schorre2).

D-6

APPEND! X n .. - TREE ~mTA: Basic Syntax

12 A netaprogram is a set of mctalanguages rules. Each rule has the
form of a BNF rule, with output instructions embedded in the syntactic
description.

12..\ The Tree ~teta comp~ ler converts each of the rules to a set of
instructions for the computer.

12B As the" rules (acting as instructions) compile a program, they
read an input st rerun of characters one character at a time. Each new
character is subjected to a series of tests until an appropriate
syntactic description" is found for that character. The next
character is then read and the rule testinr. moves forward throup.h the
input.

13 The following four rules illustrate the hasic "constructs in the
system. They will he referretl to later by the reference numhers RIA
through R,lA.

RIA EXP = TEJU1 C"+" EXP I "-" EXP I .EHPTY);

R2A 11:R~f = FACTOR ~C"*" FACTOR I "I" FACTOR);

R3A FACTOR = It_" FACTOR I PRIH;

'R4A PRI ~·1 = • II> I • NtJ~1 I n(" EXP ")";

13A The identifier to the left of the initial equal sir,n names the
rule. This name is used to refer to the rule from other rules. nle
name of rule RIA is EXP.

13B TIle right part of the rule- .. everythinr. hetween the initial equal
si~n and the trailing semicoIon--is the' part of the rule which
effects the scanning of the input. Five hasic types of entities may
occur in a rir;ht part. Each of the entities represents some sort of
a test which results in setting a general flag to Either "true" or
BfaIse".

13B1 A string of characters between quotation marks C")
represents a literal string. These literal strings are tested
against the input stream as characters are read. "

1332 Rule names may also occur in a right part. If a rule is
processing inTlUt and a name is reached, the named rule is invoked.
R3A defines a FACTOR as being either a minus sign followed by a
FACTOR, or just a PRI~f.

13113 The right part of the rule FACTOR has just been definelt as
"a string of elements," "or" "another strinp, of elements." nle

D-7

APPENDIX n -- TRRE ~ffiTA: Basic Syntax

"or's" are indicated'by slash marks (/l and each individual string
is called an alternative. Thus, in the above example, the minus
sign and the rule name FACmR nre two elements in R3A. These two
elements make up an alternative of the rule.

13B4 The dollar sign is the arbitrary number operato:r in the
Jnetalanguage. A dollar sign must be followed by a single element,
and it indicates that this element may occur an arbitrary number
of times (including zero). Parentheses may be used to group a set
of elements into a single element as in RIA and R2A

1385 The final basic entities may be seen in rule R4A. These
represent the basic recognizers of the metacompiler system. A

.basic recognizer is a program in Tree." ~'1eta that may be called upon
to test the input stream for an occurrence of a particular entity.
In Tree ~leta the three recognizers are "identifier" as - .ID,
"nwnher" as .NWf, and "string" as .SR. There is another hasic
entity tha is treated as a recognizer but does not look for
anything. It is .E~1PTY and it always returns a value of "true."

14 Suppose that the input stream contains the string X+Y ,,fhen the rule
rxp is invoked during a compilation.

14A UXP first calls rule TER~t, that calls FACTOR, that tests for a
minus sign. 111is test fails and FACTOR then tests for a plus sirn
and fails ar.ai n. Finally FACTOR' calls PRHl, that tests for an
identifier. The character X is an identifier; it is recognizeJ and
the input stream advances one character.

14B PRH1 returns a value of "true" to FACTOR, which in tum returns
to TERH. TERr·1 tests for an astcrisk and fails. It then tests for a
slash and fails. The dollar sign in front of the parenthesized group
in TER~1, howcver, means that the rule has succeeded because TEm·1 has
found a FACTOR followed by zero occurrences of "asterisk FACTOR" or
"slash FACTOR." Thus TERr·, returns a "true" value to EXP. EXP now
tests for a plus sign and finds it. The input stream advances
another character.

14C EXP now calls on itself. All necessary information is saved so
that the return may he made to the right place. In calling on itself,
it goes through the sequence just described until it recognizes the
Y.

14Jl Thinkin!,! of the rules in this \'1ay is confusing and tedious. It
is best to think of each rule separately. For example: one should
think of R2A as Jefining a TI:R~1 to be a series of FACTORs separated
hy asterisks and slashes and not attempt to think of all the possihle
things a FACTOH could be.

D-8

APPENDIX D -- TREE ~mTA: Rasic Syntax

IS Tree ~feta is different from most metacompiler systems in that it
huilds a parse tree of the input stream before producing any output.
Before we describe the syntax of node generation, let us first discuss
parse trees.

l?A A parse tree is a structural description of the input stream in
terms of the given grammar.

lSAl Using the four rules above, the input stream

x+y*z

has the following parse tree

lSA2 In this tree each node is either the name of a rule or one
of the primary entities recoGnized hy the basic recognizer
routines.

lSA3 In this tree there is a great deal of subcater.orization.
For example, Y is a PRI~1, which is a FACTOR, which is the left
memher of a TErt~1. 'nlis degree of subcater.orization is 'generally
undesirahle.

ISH The tree produced by the l1letacompiler program is simpler than
the one above, yet it contains sufficient information to complete the
compi 1 at ion. •

D-9

APPENDIX 0 -- TREE ~mTA: Basic Syntax

1581 The parse tree actually produced is

y z

1582 In· this tree the names of the nodes are not the rule names
of the syntactic definitions, but rather the names of rules that
will be used to generate the code from the tree_

15B3 The rules that produce the above tree are the same as the
four previous rules with new syntax additions to perfonn the
appropriate notIe p.eneration. The complete rules are:

RlB EXP = TER~1 ("+" EXP :ADD/ "_It I:XP :SlJB) [2) .E~tPTY);

R2H TER~f = FACTOR $(("*" FACTOR :~nJLT/ "I" FACTOR :DIVn)
[2]) ;

R3B FACTOR = "_" fACTOn :NINtJS·[lJ / PRI~i';

R4B PRIrt = .ID / .NUH / "(" EXP ")";

ISC As these rules scan an input stream, they perform just like the
first set. As the entities are recognized, however, they are stored
on a push-down stack until the node-~~eneration clements remove them
to make trees. We will step through these rules with the same sample
input stream:

x·y*z

15Cl EXP calls TERr.t, which calls. FACTOR, which calls PRI~1, which
recognizes the X The input stream moves forward and the X is put
on a stack.

15(2 PRH·t returns to FACTOR, which returns to TER~1, which returns
to EXP. The plus sign is recognized and EXP is again called.
Again EXP calls TER~l, which calls FACTOR, which calls PRHf< which
recognizes the Y. The input stream is advanced, and Y is put on
the push-down stack. The stack nO\\1 contains Y X, and the next
character on the input stream is the asterisk.

D-IO

APPENDIX D TREE META: Ba~ic Syntax

15C3 PRIM returns to FACTOR, which returns to TERM. The asterisk
is recognized and the input is advanced another character.

15C4 The rule TERM now calls FACTOR, which calls PRIM, which
recognizes the Z, advances the input stream, and puts the Z on thp.
push-down stack.

15(5 The :~ruLT in now processed. This names the next node to
be put in the tree. Later ''Ie will see that in a complete
metacompiler program there will be a rule named ~1ULT which will be
processed when the time comes to produce code from the tree.
Next, the [2] in the rule TERM is processed. This tells the system
to construct a portion of a tree. The branch is to have two
nodes, and they are to be the last two entities recognized (they
are on the stack). The name of the branch is to be ~1ULT, since
that \vas the last name given. The branch is constructed and the
top two items of the stack are replaced hy the new node of the
tree.

15C5A TIle stack now contains

~ruLT

x

l5C5B The parse tree is now

~
YZ

15C5'C Notice that the nodes are assemh led in a left-to-right
order, and that the original order of recognition is retained.

15C6 Rule TER~·1 now returns to EXP which names the next node hy
executing the :ADO i.e., names the next node for the tree.
TIle [2J in rule EXP is nO\" executed. A branch of· the tree is
generated that contains the top two items of the stack and whose
name is ADD. The top two items of the stack arc removed, leaving
it as it was initially, empty. The tree is now complete, as first
shO\.;n, and all the input ·has heen passcJ. over.

16 The unparsinr, rules have two functions: they produce output and they
test the tree in much the same \<Jay as the parsing rules test the input
stream. 111is testinr, of the tree a!m<Js the output to he hascd on the
deep structure of the input, and hence hetter output may be nroduced.

D-ll

:\PPENDIX n -- TREE rfETA: Rasle Syntax

16A Before we discuss the node-testing features, let us first
describe the various types of output that may be produced. The
follmlTing 1 ist of output-generation features in the metacompi ler
system is enough for most examples.

16A1 The output is line-oriented, and the end of a line is
determined by a carriage return. To instruct the system to
produce a carriage return , one writes a hacks lash (upper-case L on
a Teletype) as an clement of an unparse rule.

16A2 To J11ake the output more readab Ie, there is a t ah feature.
To put n tah character into the output strenrl J one wri tes a Comma
as an element of an output rule.

16A3 A literal strinp' can he inserted in the output strean by
r.lerely l"ritinr. the literal string in thcunparsc rule. ~oticc
that in the unparse rule a li.teral string becomes output, while in
the parse rules it hecomes an entity to he tested for in the input
st ream. To output aline of code llThich has, L as a lahc 1, ADIl as
an operation code, and SYS as an address, one would write the
folloHing strinp, of clements in an unparse rule:

"1." , "ADD" , "SYS"

16A4 As can he seen in the last example of a tree, a node of the
tree may he ei ther the name of an tmparse rule, such as Ann, or
one of the hasic enti ties recognized durinp, the parse, such as the
identi fier X.

16A4A Suppose that the expression X+y*Z has been parsed and
the program is in the AUD unparse rule processinr, the I\DO node
(1 ater \~e wi 11 see how th is state is reached) • To put the
identifier X into the output stream, one ,,,rites "*1" (meaning
"the first node below") as an element. For example, to r,encrate
a line of code with the operation code ADA and the operand
field X, one would write:

, '~nA", *1

16A4Il To generate the code for the left-hand node of the tree
one merely mentions "*1" as an element of the unparse rule.
Caution must be taken to ensure that no attempt is made to
append a nonterminal node to the output stream; each node must
be tested to be sure that it is the right type hefere it can he
evaluated or output.

16A5 r.enerated labels are handled automatically. As each unrarse

D-12

APPENDIX D -- TREE META: Basic Syntax

rule is entered, a ne\~ set of labels is generated. A label is
referred to by a ntUnber sign (upper-case 3 on a Teletype) followed
hy a number. Every time a label is mentioned during the execution
of a rule, the label is appended to the output stream. If. another
rule is invoked in the middle of a rule, all the labels are saved
and new ones generated. When a return is made the previous labels
are restored. .

17 As trees are being built during the parse
it is necessary to r.enerate code from the tree.
an asterisk as an element of a parse

phase, a time comes when
To do this one writes
rule for example

RSB PROGRA~'f = ". PROGRA~:r' $ (ST *) ". END";

which generates code for each statement after it has been entirely
parsed. When' the asterisk is executed, control of the program is
transferred to the rule whose name is the root (top node or last
p,enerated node) of the tree. When return is finally made to the rule
which initiated the output, the entire tree is cleared and the
generation process begins anew.

17A An unparse rule is a rule name followed by' a series of output
rules. Ea~h output nlle begins with a test of nodes. The series of
output rules make up a set of hi~hest-levcl alternatives. l'!hen an
unparse rule is called, the test for the first output rul e is made.
If it is satisfied, the remainder of the alternative is executed; if
it is false, the next alternative output rule test is made. This
process continues until either a successful test is made or all the
alternatives have heen tried. If a test is successful, the
alternative is executed and a return is made from the unparse rule
with the ·general flag set "true." If no test is successful, a return
is made with the general flag "false~/'

17B The simplest test that can he made is the test to ensure that
the correct number of nodes emanate from the node heinp. processed.
The ADD rul e Inay ber,i n

AnD [- ,-] = >

The string ""i thin the hrackets is known as an out-test. The hyphens
arc individual items of the out-test. r:ach item is n test for ;-l

node. All that the hyphen re'luires is that a node he present. The
name of a rule need not l:latch the name of the node heing processed.

l7Bl If one wishes to eliminate· the test at the head of the
out-rule, one may write a slash insteao of the bracketed string of
items. TIle slash, then, takes the place of the test and is always
true. Thus, a rule \.,rhich ber-ins with a slash immediately after
the rule narne may have only one out-rule. The rule

D-13

APPENOIX 0 -- TREE ~mTA: Rasic Syntax

~rr / = > • E~IPTY ;

is frequently used to flag the absence of an optional item in a
list of items. It may be tested in other unparse rules but it
itself always sets the general flag true and returns.

1732 The nodes emanating from the node heing evaluated are
referred to as *1, *2, etc., counting fTom left to rir.ht. To test
for equali ty between nodes, one merely writes *i for some i as
the desired item in an out-test. For example, to see if node 2 is
the same as node 1, one could write either [-,*1] or [*2,-]. To
see if the third node is the same as the first, one could \~rite
[-,*2,*1]. In this case, the *2 could be replaced hy n hyphen.

17B3 One may test to see if a node is an element which was
generated hy one of the hasic recognizers hy mcntioninr, the name
of the recognizer. Thus to see if the node is an identifier one
writes .IL>; to test for a numher one writes .NtJM. To test whether
the first node emanating from the ADI> is an identifier and if the
second node exists, one writes [.11>,-].

17B4 To check for a literal string on a node one may write a
string as an item in an ollt-test. The construct [- ,"1"] tests to
be sure that there are two nodes and that the second node is a 1.
The second node \"i1l have heen recognized hy the .NUH basic
recogni zer during the parse phase.

1785 A generated label may he inserted into the tree hy using it
in a call to an unparse rule in another unparse rule. This
process will he explained later. To see if a node is a previously
generated label one writes a number sign followed by a number. If
the node is not a generated label the test fails. If it is a
generated lahel the test is successful and the label is associated
with the number following the number si.gn. To refer to the label
in the unparse rule, one writes the number sign followed hy the
numher.

17B6 Finally, one may test to see if the name matches a sreei fied
name. Suppose that one had generated a node named STORE. The left
node emanating from it is the name of a variable and on the right
is the tree for an expression. An unparse rule may ber.in as
follm"s:

STORE[-,ADD[*I,"l"]] => , "~nN" *1

D-11

APPENDIX D -- TREE ~ffiTA: Basic Syntax

The * 1 as an item of the AUD refers to the left node of the
STORE. Only a tree such as

STORE

.I~AOlJ
.I~l

would satisfy the test, where the t\"O identifiers must he the
same or the test falls. An expression such as X X + 1 meets all
the requirements. The code generated (for the sns 940) would be
the single instruction ~·lIN X, which increments the cell X by one.

17C Each out-rule, or hip,hest-Ievel alternative, in an unparsc rule
is also made up of alternatives. These alternatives are separated hy
slashes, as are the alternatives in the parse rules.

17C1 The alternatives of the out-rule arc called "out-exprs." The
out-expr may her.in \oJi th a. test, or i. t may begin wi th instructions
to output characters. If it her-ins with a test, the test is made.
If it fails the next out-expr in the out-rule is tried. If the
test is successful, control proceeds to the next eler.wnt of the
out-expr. \\'hen the out-cxpr is done, a ret.urn is made from the
unparse rule.

17C2 The test in an out-expr rcsemb lcs the test for the out-rule.
There are two types of these tests •

. 17C2A Any nonterminal node in the tree nlay he trans~erred to
hy its position in the tree rather than its name. For example,
*2 \vould invoke the second node from the right. This operation
not only transfers control to the specific node, but it make~
that. node the one froT'l \<Ihi ch the next set of nodes tested
emanate. After control is returned to the position i.mmediately
fo llowi np, the * 2, the r.eneral fl a1~ is tes ted. If it is Itt rue"
the out-expr proceedcs to the next clement. If it is "fal~e"
and the *~ is the -fjrst elenent nf the nllt-expr the next
alternative oi" the out-expr is tried. If the flag is "false"
and the *2 is not the first clement of the out-expr, a campi ler
error is inuicatcd and the system stops.

17C2n TIle nth('r type of test]s made hy invoking another
unparsc rule by name ~lJld testin?, the flag on the completion of
the rule. T0 call another lmparse rule from an out-cxpr, one
\\rri tes the n~unc of thc rule follmoJc<1 hv <In arpument list
enclosed in hrackets. The ar~ument list is~ a li~t of nnlies in

D-15

APPENDTX D -- TRI:F. ~lET~: Basic Syntax

the tree. TIlese . nodes are put on the node stack, and when the
call is made the. rule heing called sees the argtlJ'lent list as
its set of nodes to analyze. For example:

ADD (HINUS [-].,-]. => SOB[*2,*I:*I]

17C2Bl Only nodes and generated labels can be written as
arguments. Nodes are written as *1, *2, etc. To reach other
nodes of the tree one may write such things as * 1 :*2, wh ich
means "the second node emanating from the first node
emanating from the node b~ing evaluated." Referring to the
tree for the expression X+Y·Z if ADD is heine evaluated,
* 2 : * 1 is Y. To go up the tree one may 'iri te an "uparrow" (t)
follmoled hy a number before the asterisk-numher-colon
sequence. The uparrow means to go up that many levels
before the search is made down the tree. If rlULT were bei nr.
evaluated,'tl*1 would be the X.

17C2B2 I f a generated labe lis written as an argument, it
is r.encratcd at that time and· passed to the call ed unparse
rule so that that rule may use. it or pass it on to other
rule~. The p,enerated label is written just as it is in an
output element--a number Sign followed by a nurnher.

17C3 The calls on other unparserulcs may occur anywhere in an
out-expr. If they occur in a place other than the first element
they are executed in the same way, except that after the return
the flag is tested; if it is false a compiler error is indicated.
This use of extra rules helps in making the output rules more
concise.

17C4 The rest of an out-expr is made up of output elements
appended to the output stream, as discussed above.

170 SOJlletiMcs j t is necessary to set the general flag in an out-expr,
just as it is sometimes necessary in the parse rules. .E~IPTY may be
uscJ as an element .in nn ont-expr at any place.

17E Out-exprs may be nested, using parentheses, in the same way as
the alternatives of the parse rules.

18 There are a few features of Tree Heta which are not essential but do
make programming casier for the user.

18A If a literal string is only one character long, one may write
an apostrophe followed by the character rather than writing a
quotation mark, the character, and another quotation mark. For
example: 'S and "S" arc interchangeab Ie in either a parse rule or an

D-16

APPENDIX D -- TREE HETA: Basic Srntax

unparse rule.

18B As. the .parse rules proceed through the inp~t stream they may
come to a point where they are in the middle of a parse alternative
and there is a failure. This may happen for two reasons: backup i5
necessary to parse the input, or there is a syntax error in the
input. Backup 'viII not he covered in this introductory chapter. If
a syntax error occurs the system prints out the line in error with an
arrow pointing to the character which cannot he parsed. The system
then stops. To eliminate this, one may write a question mark
followed by a number followed hy a rule name after any test except
the first in the parse equations. For example:

ST = .ID '= question 2 E EXP question 3 E ';

question 4 E :SmRE [2] ;

Suppose this rule is executing and has called rule EXP J and EXP
returns wi th the flag fal se. Instead of stoppipg Tree ~1eta prints
the line in error, the arrow, and an error comment which contains the
number 3, and transfers control to the parse rule E.

18C Conunents may he inserted anywhere in a rnetalanr.uage program
where blanks may occur. A comment begins and ends with a percent
sign, and may contain any character -- except, of course, a percent
sign.

180 In addition to the three basic recognizers .In, .NtJ~1, and .SR,
there are two others which are occasionally very use~ll.

l8D} The symbol .LET indicates a single letter.
thought of as a one-character identi fier.

It could he

181>2 The synhol .CIIR indicates any character. Tn the parse
rul es, • CIIR causes the next character on the input st ream to be
taken as input regardless of what it is. Leading hlanks are not
discarded as for. In, .NU~1, etc. The character is stored in a
special way, and hence references to it are not exactly the same
as for the ether basic rccognizers. In node tcstinp" if one
\·,rishes to check for the occurrence of a particular character that
was recognized hy a .CIIR, one uses the sinr.Ie quote-character
construct. \':hcn outputtine a node item which is a character
recognized hy a .C1IR, one adds a :C to the node indicator. For
examp Ie, * 1: c.

l8E Occasionally some narts of a compilation are very simple and it
is cumbersome to build a parse tree and then output from it. For this
reason the ability to output directly from parse TIlles has been
added.

D-17

APPENDIX n- ... - TREE HETA: Basic Syntax

18El TIle syntax for outputting from parse rules is generally the
same as for unparse rules. The output expression is wri tten
\oIi thin square hrackets, hO\'iever. The i terns from the input streaJll
that normally are put in the parse tree may be copied to the
output stream by referencing them in the output expression. The
most recent item recognized is referenced as * or- *SO. IteJ1ls
recognized previous to that are *51, *S2, etc., counting in
reverse order--that is, cOWlting down from the top of the stack
they are kept in.

18E2 Normally the items are removed from the stack and put into
the tree. However, if they are copied dir.ectly to the output
stream, they remain in the stack. TIley are removed hy writing an
ampersand at the end of the parse rule (just hefore thp
semico Ion). 111 is causes all input j terns added to the stack hy that
rule to he removed. The input stack is thus the same as it was
when the rule was called.

0-18

APPENDIX D -- TREE META: Program Environment

19 When a Tree r.leta program is compi led hy the met acornpi ler, a
machine-language version of the program is generated. Ilo\"ever , it is not
a complete program since' several routines are miss ing. All Tree ~1eta
programs have common functions such as reading input, generating output,
and manipulating stacks. It would be cumbersome to have the
metacompiler duplicate these routines for each program, so they are
contained in a library package for all Tree Meta progra~s. TIle library
of routines must be loaded with the machine-language version of the Tree
~Ieta program to nake it complete.

19A TIle environment of the Tree ~feta program, as it is running, is
the library of routines plus the various data areas.

1~m 111is section descrihes the environment in its three logical
parts: input, stack organization, and output.

19B1 l~is is a description of the current working version, with
some indications of planned improvements.

20 Input Hachinery

20A The input stream of text is hroken into lines and put into an
input buffer. Carriage returns in the text are used to determine the
ends of lines. Any line longer than 80 characters is hroken into two
lines. 111i5 line orientation is necessary for the follm"inr.:

20AI Syntax-error reporting

20A2 A possible anchor mode (so the compiler can sense the end of
a line)

20A3 An interlinear listing option.

20A4 In the future, characters for the input huffer wi 11 be
ohtained frofl another input Imfferof arbitrary hlock size, hut at
present they arc obtained frl1m the system with ~1 Character I/O
conunand.

20n It is the joh of routine RLINE to fill the input line huffer. If
thc listinr flag is on, RLINE copies the nc,"' line to the output file
(prefixed wi th a comment character--an asterisk for our assernh ler) •
It also checks for an End-of-File, and for a multiple hlank
character, which is a system feature huilt into our text files.
111c1'e is a huffer pointer that indicates which character is to he
read fran the line buffer next, and nLI~E resets that rointer to th~
first character of the line.

20C Input characters for the Tree ~1cta program are not ohtained from
the input 1 ine buffeT, hut from an input \vindm·J J \"hich is actually :1

D-19

/\PPENDIX n -- TREE HETA: Program Environment

character ring buffer. ~uch a buffer is neces5ary for hackup. There
arc three pointers into the input windO\~. . A program-character
counter (PCC) points to the next character to be read by the program.
This may be moved back by the program to effect backup. A
library-character counter (Lee) is never chanr.ed except by a library
rout ine \\Then a new character is stored in the input window. pee is
used to compute the third pointer, the input-window pointer (TWP).
Actually, pee and Lce are counters, and only I\vP points into the
array RING which is the character ring buffer. Lee is never hac~:ed
up and always indicates the next position in the ,,,indow where a new
character· must be ohtained from the input li.ne buffer. nackup is
registered in BACK, and is simply the difference hetween pee and 1.CC.
ll;\CK is always negative or zero.

20D There are several routines that deal direct lywith the input
,·:indow.

20n1 The routine PITfIN takes the next character from the input
1 inc huffer and stores it at ·the input-\vindow position indicated
by IWP. -ntis involves incrementing the input-buffer pointer, or
call ing RLINE if the buffer is empty. PlJTIN does not change IWP.

2002 TIle routine INC is used to put a character into the input
\vindO\~. It increases !\vP by one hy calling a routine, lJPI\vP,
\oIhich makes IWP wrap around the ring buffer correctly. If there is
backup (i.e., if BACK is less than 0), RACK is increased by one
and INC returns, since the next character is in the window
already. Otherwise, Lce is increased hy one, and PUTIN is called
to store the new character.

20D3 A routine called INCS is similar to INC except that it
deletes all hlanks or.comments that .may be at the current point in
the input stream. This routine implements the comment and hlank
deletion for .IU, • NUf\1 , .SR, and other basic recognizers. INCS
fi rst call s INC to get the next character and increment HIP. From
then on, PUTIN is called to store succeeding characters in the
input 'iindO\v in the same slot. As long as the current character
(at IWP) is a blank, INCS calls PUTIN to repl ace it wi th the next
character. The nonhlank character is then compared with a cot'1JTlent
character. INCS returns if the comparison fai Is J hut· otherwise
skips to the next comment character. When the end of the cOJ1lJT1ent
is located, INCS returns to its blank-checking loop.

20Il3A Note that comments do not get into the input window.
For this reason, BACK should be zero when a comment is found in
the loop described above, and this provides a p,ood opportunity
for an error check.

20D4 Before beginning any input operation, the IWP pointer must

D-20

APPENDIX [) -- TREE ~1ETA: Program Environment

he reset, since the program may have set pce back. The routine
WPREP computes the value of BACK from PCC-LCC. This value must be
between 0 and the negative of the window size. IWP is then·
computed from pee modulo the window size •

.20DS The program-library interface for inputting items from the
input stream consists of the routines ID, NUM, SR, LET, and CHR.
The first four are quite similar. ID is typical of them, and
works as follows: First ~tFLAG is set false. WPREP is called to
set up IWP, then INCS is called to get the first character. If
the character at IWP is not a letter, 10 returns (~1FLAG is still
false); otherwise a loop to input over letter-digits is executed.
\vhen the letter-digit test fails the flag is set true, and the
identifier is stored in the strinp.: storage area. The class of
characters is detennined by an array (indexed hy the character
itself) of inte~ers indicating the class. Refore retuminr., IP
calls the routine GOBL which updates pcr. to the last character
read in (Nhich \vas not part of the iden ti fier) • That is, Pcr. is
set to LCC+BACK-l.

20D6 The occurrence of a given literal strine in the input stream
is tested for by callinr. routine TST. The character count and the
string follow the call instruction. TST deletes leading hlanks and
inputs characters, comparing them one at a t i r.1C 'vi th the
characters of the literal string. If at any point the match
fails, TST returns false. lJpon reaching the end of the strinr, TST
sets the flag true, sets pee to LCC+BACK, and returns. In
addition to TST, there is a simple routine to test for a single
character string (Tell). It inputs one character (deleting
blanks), compares it to the given character and returns false, or
adjusts pce and returns true.

21 Stacks and Internal Organization

21A TIlree stacks arc available to the program. A stack called
\fSTACK is used to hold return locations and r,enerated lahels for the
pror,rarn's recursive routines. Another stack, called KSTACK, contains
references ~o input items. \'.11cn a basic recor,nj zcr is executed, the
reference to that input iter, is pUSh0d into KSTArK. The third stack
is called NSTACK, and contains the actual tree. The three stacks are
declared in the Tree ~teta pror.ran rather than the 1 ihrary: the
program cletcrnines the size" of each.

21Al The operation of ~ISTACK js very sinlple. At. the ber,inninr. of
each routjne, the current generated lahels and the location that
the routine \oJas called from nrc put onto ~·!STACK. TIle routine i~

then free to use the generated labels or call other routines. The
routine ends by restorinr, the generated lahels froJl1 rTSTt\CK and
returning.

D-21

APPENDIX n -- TREE r-fETA: Program Environment

21A2 KSTACK contai~s single-word entries. Each, entry will
eventually he placed in NSTACI(as a node in the tree. The format
of the node words is as follows: There are two kinds of nodes,
terminal and nonterminal. Terminal nodes are references to input
items. Nonterminal nodes are ~enerated hy the parse rules, and
have names which are names of output rules.

21A2A A terminal node is a 24-bit word with either a
string-storage index or a character in the address portion of
the word, and a flag in the top part of the word. The flag
indicates which of the basic recognizers (ID, NUM, SR, LET, or
CIIR) is to read the item from the input stream.

D-22

APPEND! X D -- TREE r,tETA: Program Environment

21A2B A nontermin~l node consists of a word with the address
of an output rule in the address portion, and a flag in the top
part which indicates that it· is a nonterminal node. A node
pointer is a word with an NSTACK index in the address and a
pointer flag in the top part of the word. Each nonterrninal
node in N5TACK consists of a nonterminal node word followed by
a word containing the numher of subnodes on that node, followed
by a tenninal node word or node pointers for each subnode. For
ex:ample,

TREE NSTACK K5TACK

ADD

node ptr. -
SS item X

X ~1lJLT 2 node ptr.

node ADD ---
55 item Z

55 item y

2

node MULT ..
2lA2C KSTACK contains terminal nodes (input
nonterminal node pointers that point to nodes
N5TACK. NSTACK contains nonterminal nodes.

I

items) and
already in

218 Strinr Storage is another stack-like area. All the ite~s read
from the input streaJ11 by the hasic recognizers (except (IIR) are
stored in the string-storage area (55). This consists of a series of
character strings prefixed by their character counts. An index into
S5 consists of the addres~ of the character count for a string.

D-23

APPENDI X D -- TREE rvtETA: Program Environment

Strings in SS are unique.
a given string, and enter
the S5 index of that string.

A routine called STOIW, will search S5 for
it if it is not already there, returninp,

2IC Other routines perform housekeeping fWlctions like packinr, and
unpacking strings, etc. There are three error-message writinr,
routines to write the three types of error messap.es (syntax, system,
and compiler). The syntax error routine copies the current input
line to the teletype and gives the line number. A routine called
FINISH closes the files, writes the number of cells used for each of
the four stack areas (KSTACK, MSTACK, NSTACK, and SS), and termjnates
the program.

21C1 At many points in the lihrary routines, parameters arc
checked to see if they are within their bounds. The system error
routine is called if there is something \vrong. This routine
\'Iri tes a number 'indicat inr, what the error is, and tenninates the
prograr.l. In the current version, the numbers correspond to thp
followin!~ errors:

21C1A (1) Class codes are illegal

21CIB (~) Backup too far

21CI(()4) Character \·,i th code ~~reater than h:) in rin{~ huFfer

~ H~l /) (Ll) Test for st rin?, longer than rin?, size

21C IE (S) Try] ng to output a st ri nr. longer th:m J1mXil~Urll

strinr: lcnr,th

2ICIF (6) String-storap,e overflow

21C1~ (7) Iller-a1 character code

21Cl11 (8) Tryin~ to store SS element of length zero

21[11 (11) HSTACK overflmv

21(1.1 (12) NSTACK overflow

21(1 K (1.')) KST ACK overflow

2IP There is a set of routines used hy Tree ~!eta that arc. not.
actnally part of the lihrary, hut arc loadcu with the lihrary for
Tree '1cta. They are not included in the lihrary since they are not
neccssarj ly required for every Tree ~feta rro~!ral1, hut nore likC'ly
onl~' for Tree r1cta. The)' are called "support routines." rnlC

routines rerform short hut freCluently needed operations and scrve to

D-24

·\PPENDI X n -- TREE ~,fETA: Program Environment

increase code density in the metacompiler. Examples of the
operations are ~enerating labels, saving and restorine labels and
return addresses on MSTACK, comparing flags in NSTACK, generating
nodes on NSTACK, etc.

22 Output Facilities

22A ll1c output from a Tree r-.teta program consists of a strinp, of
characters. In the future it might be a strine of bits constituting a
hinary program, hut at any rate it can he thought of as a stream of
uata. The output facilities available to the program consist of a set
of routines to append characters, strings, and numbers to the output
stream.

22Al A string in 5S can he written on the output stream by
callinp. the routine OUTS with the S5 index for that strinr,. OUTS
checks the SS index and generates a system-error message if it is
not reasonab1e.

22A2 A literal string of characters is written hy calling the
routine LIT The literal strine f01lO\."s the call as for TST.

22A3 A number
representation
integer.

is written usinr.
is given, and is

routine
'vritten

OUTS. The binary
as a siened decimal

22,,-\4 All of the above routines keep track of the numher of
characters written on the output stream (in CIINO). Based on this
count, a routine called TAB will output enough spaces to advance
the current output line to the next tab stop. Tabs are set at
8-character intervals. The routine CRLF will output a carriarc
return and aline feed and res et ClINO.

22A5 There are several routines that are convenient for
debugging. One (\'iRSS) will print the contents of SSt Another
0VRIW) will print the contents of the input window.

D-25

APPENDI X D -- TREE ~tETA: Formal Description

23 This
language.

chapter is a fonnal description of the complete Tree Heta
It is designed as a reference guide.

23A For clarity, strings that would normally he delimited by
quotation marks in the metalanguage are capitalized instead, in this
chapter only.

23B Certain characters cannot be printed on the report-Reneratinr,
output media hut are on the teletypes and in the metalanguage--their
names, preceeded by periods, are used instead. They are
• cxclar.tat ion, .question, • pound , • ampersand, .hackslash, and
.percent.

24 Programs and Rules

24A Syntax

24A 1 program = • ~ .. IETA • id (. LIST / .empty) size /. CONTINUE $Tul e
.END;

24A2 size = t(siz S{', siz) ') / .empty;

24A3 siz = .chr '= .nurn;

24A4 rule = • id (' = exp (. ampersand / • empty) / '/ ":; >" pen 1 /
outrul) '; ;

24B Semantics

24Bl A file of symbolic Tree ~~ta code may he either an original
main file or a continuation file. A compiler JIlay be composed of
any numuer of files hut there may be only one main file.

24R1,\ The mandatory identifier following the string .HETA in a
main file names the rule at which the parse will begin.

24B1B The optional .LIST, if present, will cause the compilel'
currently heinr. generated to list input when it is compiling a
program.

24BIC TIle size construct sets the allocation parameters for the
three stacks and string storage used by the Tree ~1eta library.
TIle default sizes arc those used by the Tree P~ta compiler. M,
K, ~, and S are the only valid characters; the size is
sorneth ing that must he detenni ned by experi ence. The J'laxirnurn
nUf.1ber of cells used durin~ each cOf.lpilation is printed out at
the end of the compilation.

24B2 h1lcn a file hegins \"ith .CONTINUE, no initialization or

D-26

APPEr\DIX J) -- TREE nETA: Ponnal Description

storage-allocation code is produced.

24R3 There are three di ffercntkinds of rules in a Tree t-.leta
program. All three begin with the identifier that names the nIle.

24R3A Parse rules are distinguished hy the = followinr, the
identifier. If all the elements that generate possible nodes
during the execution of a parse rule are not built into the
tree, they must be popped from the kstack hy writinp; an
ampersand inUTIediately hefore the semicolon.

24R3B Rules with the string I =) followinp, the identifier
may be composeJ only of dements hat prouuce output. There is
no testing of flags within a rule of this type.

24I>3(lInparse rules have a left hracket follmdn~ the
iuentifier. 'l1lis signals the start of a series of node tests.

2S Fxpressions

25/\ Syntax

251\1 exp = '~suback (tl exp I .cr~pty) I sllbexp ('I exp I .eMpty);

25A2 suback = ntest (suback I .. empty) I stest (suhack I .empty);

25,\:1 slloexp = (ntest / stest) (noback I .empty);

2SA4 noback = (ntest / stest ('.Clucstion .nun C.id / ' .. question)
/ .empty)) (nohack / .empty);

2513 Semantics

2SDl l~e expressions in parse rules are composed entirely of
ntest, stcst, and error-recovery constructs. The four rules
above, which define the allmvable alternati.on and concatention of
the test, are necessary to reduce the instructions executed ,~hen

there is no hackup of" the input st reaJll.

2SB2 An expression is essentially. n series of subexpressions
separated by slashes. Each sUhexprcssion is an alternative of the
expression. The alternatives arc executed in a left-to-right
order until a successful one is found. The rest of that
alternative is then executed and the rule returns to the rule that
invoked i~.

25B3 The subcxpressions nre series of tests. Only subexpressions
that bcnin \vith a leftarrow are allowed to hack up the input
stream and rcscan it.

D-27

t\PPENDIX n -- TREE META: Fonnal Description

25B3A Without the· arrow at the head of a suuexpression, any
test other than the first within the subexpression may he
followed by an error code. If the error code is absent and the
stest fails during compilation, the system prints an error
comment and stops. If the error code is present and the stest
fails, the system prints the number following the '.question in
the error code, and if the optional identifier is p,iven the
system then transfers control to that rule; othen~ise it stops.!

25B3B If the test fails, the input stream is restored to the
position it had when the subexpression ber,an to test the input
stream and the next alternative is tried. The input stream may
never he moved back more characters than are in the ring
huffer. ~!ormally, backup is over identifiers or words. and the
huffer is long enough.

26 Elements of Parse Rules

26A Syntax

26Al ntest = (':.icl / '[(.nurn '] / eenp 'J ('.hackslash /
.enpty). / ,< p,enp' ,> (' .hackslash / .empty) / (.CIIR / '*) I "=>"
/ comm;

26A2 genp: genpl I .empty;

26A3 gcnpl = r,cnp2 (genpl / .empty);

26A4 genp2 = '* (S .nurn / .empty) (1. / C I]'\ / .empty) / genu;

26t\5 COJ'TUll = .H1PTY / '.exclamation .sr;

26A6 stest = ' .• id I .id I .ST / '(cxp ') / ".chr / (.nurn '$ /
'$) (.num / .empty) stest / '- (.sr / ".chr);

26B Semantics

26B 1 TIle ntest elements of a parse]ule
of the !!,encral flag, and therefore
flag-checking code in the compiler.

cannot change the value
need not he followeu hy

26BIA The: .ill construct names the next node to he put into
the tree. TIle identifier must he the name of another rule.

26BIB The .num] constructs a node with the name used in
the last : .hI construct, and puts the number of nodes
specified after the arrow on the new node in the tree.

20B Ie TIle [p.cnp J is used to write output into the normal

D-28

i

APPENDIX D -- TREE META: Formal Description

output stream during the parse phase of the compilation.

26810 The < gcnp > is used to print output back on the user
teletype instead of the normal output stream. This is
generally used during iong compilations to assure the user that
the system is still up and running correctly.

26BIE The occurrence of a .chr causes one character to be read
from the- input stream into a special register which may be put
into the tree just as the terminal symbols recognized by the
other basic recognizers are.

26BIF An asterisk causes the rule currently in execution to
perform a subroutine call to the rule named by the top of the
tree.

26BIG The "=)" ntest construct causes the input stream to be
moved from its current position past the first occurrence of
the next stest. This may be used to skip over comments, or to
move the inrut to a recognizable point such as a semicolon
after a syntax error.

2682 The comm elements are common to both parse and unparse
rules.

26B2A The .EMPTY in any rule sets the general flag true.

26828 The • exclamation-string construct is used to insert
patches into the compiler currently being produced. The string
following the .exclamation is immediately copied to the output
stream as a new line. This allows the insertion of any special
code at any point in a program.

2683 Stests always test the input stream for a literal string or
basic entity. If the entity is found it is removed from the input
stream and stored in string storage. Its position in string
storage is saved on a push-down stack so that the entity may later
be added as a terminal node to the tree.

2683A A .id construct provides a standard machine-language
subroutine call to the identifier. Supplied with the Tree Heta
library are subroutines for .id, .num, .sr, .chr, and .let
which check for identifier, number, string, character, and
letter respectively.

26838 An identifier by itself produces a call to the rule with
the name of the identifier.

26B3C A literal string merely tests the input strea~ for the

D-29

APPENDIX 0 -- TREE META: Formal Description

string. If it is found it is discarded. The
apostrophe-character construct functions like the literal
string, except that the test is limited to one character.

26B3D The number-$-number construct is the arbitrary-number
operation of Tree Meta. m$n preceding an element in a parse
rule means that there must be between m and n occurrences of
the next element coming up in the input. The default options
for'm and n are zero and infinity respectively.

26B3E The hyphen-string and hyphen-character constructs test
in the same way as the literal string and apostrophe-character
constructs. After the test, however, the flag is complemented
and the 'input-stream pointer is never moved forward. This
permits a test to be sure that something docs not occur.

27 t~parse Rules

27A Syntax

27Al outrul = I[outr (outrul / .empty);

27A2 outr = items '] "=>" outexp;

27A3 items = item (' J items / .empty);

27A4 item = '- / .id '[outest / nsimpl /' .id / .sr / ".chr /
t • pound;

27B Semantics

27Bl The unparse rules are similar to the parse rules in that
they test something and return a true or false value in the
general flag. The difference is that the parse rules test the
input stream, delete characters from the input stream, and build a
tree, while the unparse rules test the tree, collapse sections of
the tree, and write output.

27B2 There are two levels of alternation in the unparse rules.
The highest level is not written in the normal style of Tree Heta
as a series of expressions separated by slashes; rather, it is
written in a way intended to reflect the matching of nodes and
structure within the tree. Each unparse rule is a series of these
highest-level alternations. The tree-matching parts of the
alternations are tried in sequence until one is found that
successfully matches the tree. The rest of the alternation is
then executed. There may be further test within the alternation,
but not complete failure as with the parse rules.

D- 30

APPENDIX D -- TREE HETA: Fornal Description

27R3 The syntax for a tree-matching pattern is a left bracket, a
series of items separated hy commas, and a right bracket. nle
items are matched against the branches emanating fro1'\ the currcnt
top node. The 'matching is done in a left-to-right order. As soon
as a match fails the next alternation is tried.

27B4 If no alternation is successful a false value is returned.

27B5 Each item of an lmparse alternation test ~ay he one of five
different kinds of test.

27BSA A hyphen is merely a test to he sure that a node is
there. 111is sets up appropriate flags and pointers so that the
node may be referred to later in the unparse expression if the
complete match is successful.

2785B The name of the node may he
identifier that is the name of a rule.
he followed hy a test on the subnodcs.

tested hy writin~ an
The ident j fer must then

27BS(A nonsimple construct, primarily an
'astcrisk-numbcr-colon sef'{uence J may he used to test for node
cf'{uivalence. Note that this does not test for cor.tplete
substructure equivalence, but merely to see if the node heinp,
tested has the same name as the node specified hy the
construct.

27B5D The .iel, .num, .chr, .let, or .sr checks to see if the
node is terminal and was put on the tree by a .id recoenizer,
.nwn recognizer, etc. during the parse phase. This test is
very simple, for i t l~erely checks a flag in the upper part a
word.

27JlSE If a node is a tenninal node in the tree, and if it has
heen recognized hy one of the hasic recognizers in Mcta, it may
he tested against a literal string. This is done hy writinr,
the string as an iteM. The literal string does not have to he
put into the tree ,."ith a .sr recognizer; it can be any strinp.,
even one put in with a .let.

278SF If the node is terminal and was generated by the .chr
recognizer it may be matched against another specific character
by writing the apostrophe-character con5truct as an item.

27BSr, Finally, the node may be tested to see if it is a.
generated labe 1. TIle I abe Is may he generated in the unparse
expressions and then passed down to other unparse rules. The
test is made writing a .pound-number construct as an item. If
the node is a ~enerated label, not only is this match

D-31

APPENDIX D -- TREE ~IETA: Fornal Description

successful hut the label is made available to the elements of
the unparse expression as the number followin~ the • pound.

28 Unparse Expressions

28A Syntax

2RB

28Al outexp = subout ('I outexp I .empty);

28A2 subout = outt (rest I .empty) I rest;

28A3 rest = outt (rest I .empty) I gen (rest I .empty);

28A4 outt = .id '[arglst '] I '(outexp ') I nsimpl (': (S / L /
N / C) / empty);

28A5 arglst = argmnt (' , arglst / • empty) I .empty;

28A6 argmnt = nsimp / ' .pound .nurn;

28A7 nsimpl = 't nsimp I nsimp;

28A8 nsimp = , * • num (, . nsimp / .empty);

28A9 p,enl = (out / comm) (genl / .empty);

28AIO gen = comm / genu / ,< I ' > ;

Semantics

28B1 The rest of the unparse rules follow more closely the style
of the parse rules. Each expression is a series of a1 ternat ions
separated hy slash marks.

28n2 Each alternation is a test follo\ied hy a series of output
instructions, calls of other unparse rules, and parenthesized
expressions. Once an unparse expression has begun executing calls
on other rules, elements may not fail; .if they do a compiler' error
is indicated. and the system stops.

28B3 TIle first
element· is a call
value. The call

hy a series of
part of the tree,
called views the
and thus the part

element of the expressinn is the test. This
on another rule, which returns a true or false
is J11ade hy wri tinr, the name of the rule fo llowed
nodes. TIle nodes are put together to appear as

and when the call is made the unparse rule
nodes specified as the current part of the tree,
to match against and process.

28R3A T,.,ro kinds of things may be put in as nodes for the

D-32

APPENDI X D -- TREE rtETA: Formal Description

calls. The simplest is a generated lahel. This is done by
wri ting a • pound follo\~ed by a number. Only the numhers 1 and
2 may be used in the current system. If a label has not yet
been generated, one is made up. This lahel is then put into the
tree.

28B3B Any already constructed node also may be put into the
tree in this new position. The old node is not removed--rather
a copy is made. An asterisk-number construct refers to nodes in
the sane way as the hir.hest-Ievel alternation.

28R4 This process of making new structures from the
already-existing tree is a very pO\ierful way of optimizinp, the
compi ler and condensing the number of Tllies needed to handle
compilation.

2RBS The rest of the unparse expression is Made up of output
corrnnanJs J and more call s on unparsc rules. 1\.$ noted ahove, if any
except the first call of an expression fails,· a compiler error is
indicated and the system stops.

28B6 Just as in the parse rules, brackets may be used to send
immediate printout to the user Teletype.

28B7 The asterisk-numher-colon construct is used frequent.ly in
the Tree !-leta system. It appears in the node-matching syntax as
\vcll as in the fom of an clement in the unparsc expressions.
l:hen it is in an expression it nust speci fy a node that exists in
the tree.

2SB7A If the noele specified is the naJlle of another rule, then
control is transferred to that node hy the standard suhroutine
linkag('.

28B7B If the noele is tenninal, then the tcminal strinr
associatcd \\"i th the node is copied onto the output stream.

28B7C The si1'1plest forn of the construct is an asterisk
followed by a numher, in \"h i ch case the node is found hy
cOlmting the appropriate number of nodes from left to ri~ht.
This Play he followed hy a colon-nuMber construct, \oJh ich means
to go clo\vn one leve 1 in the tree after performinr. the
asterisk-number choice and count over the number of nodes
specified hy the number following the colon. This process may
be repeated as often as desired, and one may therefore RO a~
deep as one \.,rishes. All of thi.s speci fi cat ion may be preceded
by an t-numher construct which means to go up in the tree,
throur,h parent nodes, a speci fi ed nUJllbcr of t iT!les he fore
startinr, dm-.'n.

D-33

APPEND I X D -- TJlliE ~fETA: Formal Description

28B 7D After the' search for the node has been completed, a
number of different types of output may he specified if the
node is tenninal. There is a compi ler error if the node is not
tenninal.

29 Output

288701 :s puts out the literal string

2837D2 : I puts out the length of the string as a decimal
number

28B7H3 :n puts out the string-storage index pointer if the
node is a string-storage element; otherwise it puts out the
decimal code for the node if it is a .chr node.

28B7D4 : c puts out the character if the node \..,as
constructed with a .chr recognizer.

29A Syntax

29A1 genu = out / ' •• id '] «(.id / .num) / .empty) '] I '.pOlUld
.num (': I .empty);

2~)A2 out = ('.backslash / " / .sr / t'.chr / U+w" / ,,_wIt I ".w"
I ".pound" ;

2913 Semantics

29111 TIle standard primitive output feature5 include the
follo\-ling:

29RlA Write a carriage return with a hacks lash

29B IB Wri te a tab 'vi th a comma

29RIC Write a literal string by giving the liter.al string

29BIJ) ~vri te a single character using the apostrophe-'character
construct

29BIE Write references to temporary storage hy using a working
counter. Three types of action may be performed with the
counter. +h' adds one to the counter and wri tes the current
value of the counter onto the output 5tream. -W subtracts one
from the counter and does not write anything. .\\' writes the
current value without changing it. Finally, .pound W writes the
maximum value that the cOWltcr ever reached during the
comp i I at i on •

D-34

APPENDIX n -- TREE ~fETA: Formal Description

29B2 The • id [(. numl • id)] is used to generate a call (940 BR~'
instruction) with a single argument in the A register. It has
been used mostly as a dehugging tool during various bootstrap
sessions with the system. For example, .CERR[S] generates a call
to the subroutine CERR with a 5 in the A register.

29B3 .pound 2 means "define generated label 2 at this point in
the program being compiled." It writes the generated lahel in
the output stream followed by an EQlJ * This construct is added
only to save space and writing.

D-35

:'\PPENDI X D -- Tree ~teta: Concl usions and Future Plans

30 Since the work on Tree Meta is still in progres~, there arc few
conclusions and plentiful future plans.

31 There are many research projects that could be undertaken to iMprove
the Tree ~~ta system.

31~ Something that has never been done, and that we feel is very
important, is a complete study of the compiling characteristics of
top-down analysis techniques. This would include an accurate study of
where all the time r,oes during a compilation as well as a study of
the flow of cont rol during hoth parse and unparse phases for
different k indsof compilers and languages. At the salllc tir.1C it
would he worthwhile to try to get .siJlli liar statistics from other
compilers. It may be possible to interest SOr.le people at Stanford in
cooperating on t.his.

31H snc has added an intemediatc phase to thei.r metacoT'lpiler
system. TIley call ita hottom-up phase, and it has the effect. of
!1utting various attributes and features on the nodes of tlH~ tree.
This allows one to writ(~ simpler and faster node-r'latchinr.
ins truct ions in the unparse rules. \\'e would like to investigate this
schene, for it appears to hold the potential for allowin~ the
conpiler writer to conceptualize more complex tree patterns and thus
ut i 1 i ze the node-match i nr, features to a fuller extent.

~ Ie Yet another intermediate phase could he added to Tree ~feta which
\-Jould do trans format ions on the tree hefore the unpar5c rul cs produce
the final code. In attempts to \\Iri te compi lers in Tree ~1eta to
compile code for languages with complex data structures (such as
algehraic languages with matrix operations or strinr.-orientec.l
languages wi th tree operations) and to make these compilers produce
efficient code, we have fotmd that tree transformations similar to
those used for natural-language translation allow one to specify
easily and simply the rules for tree manipulation that pennit the
unparse rules to produce efficient, dense code. Implementation of
the tree.-transformation phase into the Tree Meta system would he an
extensive research project, but could add a completely new dimension
to the power of Tree r.teta~

31D There arc a series of additions, some very small and some major,
that we intend to add to Tree ~~ta during the next year.

31111 Other metacornpiler systems have had a construct that allows
nodes to have an arbitrary number of nodes emanat ing from thew.
This rC<luires additions in parse rules to specify such a search,
additions in the node-matching syntax, and arldition5 in the output
syntax to scan and output any nurnher of hranches.

31n2 We have al\o1ays felt that it would be nice to have the hasic

D-36

APPENDIX D -- Tree r.1eta: Conclusions and Future Plans

recognizers such as "identifier" defined in the metalanr.uage.
TIlere have heen systems wi th th is feature, but the addi tion has
always had very had effects on the speed of compilation. \\Ie feel
that this new freedom can he added to Tree Heta without having
tellinp, effects on the compilation speed.

3103 The error scheme for unparse rules is rather crude--the
compi ler just stops. Ne would 1 ike to find a reasonah Ie way of
acconunodating such errors and puttinf! the recovery-procedure
control in the metalanguage.

31D4 Currently the unparse rules expand into 6 times as many
machine-language instructions as the parse rules. This happens
hecause we did not choose the most appropriate set of subroutines

. and common procedures for the unparse rules. Without chanr-ing the
syntax of Tree ~\teta or the way the stacks work, we feel that \ve

can reduce the size of the unparse rules by a factor of 4. This
would free a considerahly larger amount of core storap;e for stacks
and en I arp.e the size of programs that Tree ~ leta coul d handl e. It
would also make it run faster in time-sharinr, mode sincc less
would have to he swapped into core to run it.

31115 In doing some small tests on the speed of Tree ~1eta Ne found
that hetter than SO percent of the campi lation timc is spent
outputting strinp,s of characters to the system. The cock that
Tree r1cta nO\\ produces is the siPlplest fom of assembly code. It
would be a very simple task to make Tree ~'teta able to directly
produce hinary code for the loader rather than . symbol i c code for
thp assemh ler. ,\ similar change could also he Made to output
absolute code direct ly into core so that Tree ~1eta coul d be uscd
as the cOT'1piler for systeMS that do incremental conpilation.

311: Finally, there is the followinr. list of minor additions or
chanr.es to be r1ade to the Tree f-feta system.

31[1 I'lal:e the library output routines do block T/O rather than
character I/O. nlis could cut cor.lpi lation tiTlles hy more that 70
percent.

31[2 Fix Tree ~leta so that strinp,s can be put into the tree and
;1asscd <10\\'11 to other llnparse rules. This \vould allO\\' the unparsc
rule'S to he more 11seful ~lS subroutines and thus cut down tlw
ntnabcr of unparse rules needed ~.n :l compiler.

~lE3 Finally, h'e ,,,ould li}.c to ndd the ahility to associate a set
of attributes with each terminal cntit~· as it is recognized, to
test these attrjbutes later, and to add more or change them if
necessary. To do this \vC would associate a sin~~lc 2i l-bit \vord
\d th the strinJ'. h'hen it is put into strin~~ storar,e and add syntax

D-37

,\PPENnrx Il -- Tree ~1eta: Conclusions and Future Plans

to the metalanguage to set, reset, and test the hits of the word.

D-38

APPENDIX D -- Tree r>leta: Bibliography

1 (Book 1) Erwin Book, "The LISP Version of the ~1eta, Compi ler," TECI!
~lE~[) TM-2710/330/00, System Development Corporation, 2500 Colorado
Avenue, Santa r.tonica, Cal ifornia 90406, 2 November 1965.

2 (Book2) Erwin Book and D. V. Schorre, "A Simple Compiler Showing
Features of Extended i'·JETA," SP-2822, System Development Corporation,
2500 Colorado Avenue, Santa ~lonica, California 90406, 11 April 1967.

~ (Glenniel)' A. E. Glennie, "On the Syntax ~!achine and the
Construction of a Universal Computer," Technical Report Numher 2, AU
240-512, Computation Center, Carnegie Insti tute of Technology, 1960.

4 (Kirkleyl) Charles R. Kirkley and Johns F. Rulifson, "TIle LOT System
of Syntax Directed Compiling," Stanford Research Institute Internal
J·~erort ISR 187531-13~), 1966.

S (Ledleyl) Rohert Ledley and.J. B. Wilson, "Automatic Progranuninr,
Language Translation 'nlrough Syntactical Analysis," Communications of
the Association for Computinr, r-.tachinery, Vol. 5, No.3 pp. 145-155,
'larch 1962.

b (Metcalfe1) lIoward r.tetcalfe, "A Parameterized Compiler Based on
~lechanical Linguistics," Planning Research Corporation R-311, ~.farch 1,
19b.3, also in Annual Review in Automatic Programming, Vol. 4, 125-165.

7 C~aurl) Peter Naur e t al., "J~cport on the Al gori thmi c Languar.e ALGOL
(,0," COnU1mnications of thc Association fOT Comptinr, \1achinery, \'01. ~,
~~o. s, pre 29~l-384, ~'la)' 1~)6().

~ (Oppenhcim1) n. Oppenheim and D. Ilar-gerty, "rv1ETA 5: A Tool to
~~anipulate Strings of lJata," Procectiinrs of the 21st ~at i onal
Conference of the Association for COf.lputinr. ~'achinery, 1~)(:'6.

9 (l~utmanl) Ro~~er Rutman, "LOGIK. l\ Svntax flirectcd Comriler for
('of'puter Bit-Time Sililttlation," ~laster Thesis, UCLA, August 1~l64.

10 (Schl.liJt 1) L. O. Schmidt, "TIle Status Ri t ,tt Special Interest Group
on Programming Languages Working Group 1 News Letter, 1964.

11 (Schmidt2) PDP~l

12 (Schmiut3) EQGl!'J

13 (Schnicllcrl) F. \V. Schneider and (;. D •• Johnson, "A Syntax-Pirected
COI1piler-\vritinp, Compiler to Ccnerate Efficient Code," Proceeuinr,s of
the l~)th ~;ational C()nfcrcncc of the A~sociation for Computjnr. ~lachinery,
1 (}(,·l •

1·\ (Schorre1) Il.V. Schorrc, "A Syntax-llirectc,l S~1J\I.C()L for the 14()1,"

D-39

APPENDI X D -- Tree ~·1cta: Bib liography

Proceedings of the 18th National Conference of the Association for
comput in~ ~1achinery. Denver, Colorado, 1963.

IS (Schorre2) D. V. Schorre, "~1ETA II, A Syntax-Directed Compiler
\'iri tinr, Language J" Proceedin~s of the 19th National Conference of the
Association for Computing ~tachinerYJ 1964.

D-40

APPENDIX D -- TREE f'.fETA: Detailed Examples

1 This section of the report is merely the listings of compilers for two
languages.

2 The first language, known as SAL for "small alf.!ebraic language," is a
straightfoT\\,ard algebraic ALr{)L-like language.

3 The second example resemhles Schorre's ~ffiTA II. This is the orir,inal
metacompiler that was used to bootstrap Tree Meta. It is a one-page
compiler written in its own language (a subset of Tree Meta).

D-41

%TREE META SMALL ALGEBRAIC LANGUAGE - 29 SEPTElo1BER 1967 S

.META PROGRAM .LIST

PROGRAM = ".PROGRAM" DEC * $(DEC *> :STARTNCOl ST * $('; ST *)

". FINI SH" ? IE I ENDNt 0] * FINI SH J

DEC ~ ".DECLARE" .ID $(', .ID 100[2]) 'J :DECNC1]';

F = RES FT = > '; $ (S T *) ". EN D" ? 99 E a EN DN [0 1 * FIN I SH,;

S T = I F S T / WH I L EST / FOH S T / GO S1' / 10 5T / BLO CK /
.ID ('I :LBLCIJ 5T lDO£2J / ' .. EXP :STOREI:21);

IF 5T = ". IF" EXP I •• THEN" ST (II. EL SE" S1' 1 51 FTE(3] / • EMPTY : S I FT[2]);

\-iHILEST = ft. WHILE" EXP tI.OO" S1' : 'WHLt 2J;

FORST = ".FOR tI VAR ' .. £XP ".BY" EXP ".TO" EXP ".00" 5T :FORt 5J;

GO S T = ". GO" " • TO" • I D : GO I: 1 J ;

lOST = ".OPEN" ("INPUT" • ID '[.ID 'J :OPNINPI:21 /
"OUTPUT" .ID IC .ID '] :OPNOUT[2J) /

". CLO SE" • I D : CLSFIL[IJ /
".READ" .ID ': IDLIST 18R538[2] /
·'.INPUT" .ID ': IDLIST rXCIO[21 /
". WR I T E" • I D ': WL 1ST 1 0 UTN UM [2] /
fl. OUTPUT" • I D ': WLI ST r OUTCAR(2J ,;

IDLIST = VAR (IDLIST :DO[21 / .EMPTY);

~LIST = (.ID / .NOM / .SR) (WLIST :DO(2J / .EMPTY);

BLOCK = ".BEGIN" ST $('; ST :00[2J> ".END";

EXP = ft. IF" EXP ".THEN" EXP ".aSE" EXP :AIF[3] / UNION;

UNION = INTERSECTION (',' / UNION :ORC 2] / • EMPTY);

INTERSECTION = NEG C'& INTERSECTION IAND[2] / .EMPTY),;

NEG = "NOT .. NEGNEG / RELATION;

NEGN EG = "NO T II NEG / REl..ATION : NOT[I]';

RELATION = SUM (("<= " SUM aLE I
"<" SUM :LT /

">=" St.M :GE /

">" SUM : GT I
"=" SUM : EQ /

" SlM :NE) (2] / • EMPTY);

n-42

SUM = TERM CC'+ SUM sADD.I ,- SUM sSUB)[2l.l .EMPTY);

TERM = FACTOR « I * TERM : MULT.I '/ TERM s DIV I D/ I t TERM I REl'J) C 23.1. EMPTY)':

FACTOR = I. FACTOR :MINUSCll / ,+ FACTOR / PRIMARY;

PRIMARY = VARIABLE / CONSTANT / 'e EXP ');

VARIABLE = .ID :VARCt].:

CONSTANT = .NUM :eONCl];

SIFTC-,,-l=> LOPR[*1"ll,,12] BRF[*1"I2l Il,,"EQU *"\ *2 12,,"EQU *"\;

GO [-] = > " "BHU"" * 1 \.:

FOR[- .. - .. -,,-,,-J => <"00 NOT USE FOR STATEMENTS">;

LELC -] => * I" ·'EQU *".:

AlFl[#1 .. -J => ,,"BRU I2\ 11,,"EQU *'" ACCC*21 12,"EQU *",;

LOPR[OR[-,-J"ll,,-J => LOPRC*1:*1111,121 BRTC*1:*I,ll1
12" "EQU *"\ LOPRC * 1: *21 # 11 *31

CAND(-,,-],,-,,11J => LOPRC*ls*11#2,IIl BRFC*1:*1,Ill
121 "EQU *'" LOPRC * l: *2, *2, '11

CNOT[-]"II"I2J => LOPR[*I:*1,,'2 .. Ill
(- " - " -] = > • ~ PTY .:

BRTCOR[-,-)"Ill => BRl'(*1:*21111
(AND[-"-],, III => BRTC*t:*2 .. ll)
[NOTC-JI'I] => BRFC*l:*1111J
(LEC-,,-l,,#1] => BLE[*1:*1,,*1:*2111]
[LTC-I-J,,'1] => BLTC*1:*11*1:*211l]
(EQC-"-],,llJ => BEQC*la*1 .. *1:*2 .. Ill
(GEC-,,-),,'l] => BGEC*1:*l,,*1:*2,'lJ
[GT[-,,-] .. 'I] => BLEC*t:*2,,*l:*1,,#ll
(NEC-I-]111J => BNEC*l:*1..*1:*2,,#IJ
(-,,#IJ => ACCC*lJ SKE =0'" ERU·· .. 11';

BRFCOR(- .. -J .. IIJ
[AN DC - I -]" , 1 J
C NO T[-] .. 11 J

=> BRFC*1:*2 .. 11J
=> BRF[*1r*2,,11J
= > BRT[* I: * 1 .. II J

D-43

[L E[- , - 1 , # 1 J
(LTC-,-J,II]
[EQ[-, .. J, 11 J
(GEC -, -), II J
(GT[-, - J , 111 J
(N E[-, - J , I t J
(- .. Ill

= > BL E (* 1 t * 2, * 1 : * 1, , 1 J
=> BGE(*1:*1,*t:*2,IIJ
=> BNE(*lt*l,*I:*2,'IJ
=> BLT[*I:*l,.1:*2,IIJ
=> BLEC * 1: * I, * 1 t *2, II J
=> BEQ(*lt*t,*1:*2, 'I]
=> ACC(* 1) , "SKA =- 1 "\ , "BRU", 111\;

BLT(- .. -,ll1 => (TOKEN(*l] ACC(*2] , .. SKE *I\,"SKG .. ,*I\ /
WORKC * 1] ACC(*2] , .. SKE "1'+". W\ .. II SKG", tlT+". W-W\)

,"BRU *+2"\ ,"BRU",'l\;

BL E (- .. - , I l) = > (TO K FN [* 2] Ace r * 1 J SK G * 2\ /
TOKEN(* 1) Accr*2J , "SKG"" * 1\, "BRU *+2"\ /
'WORK(*2] ACC[* 1] ""SKG",, "1'+". W-W\)

, "BRU"" IJ 1 \;

BEQ(- .. -, # 1] => (TOKEN[*2] ACC[* 1] , "SKE", *2\ /
TOKEN[* 1) ACe(*2] , II SKE", * 1\ /
YJORK(*2) Acce * t] ," SKE" .. "T+". w- W\)

, "BRU *+2"\ , "SkU", 111 \;

BGE(-,-,#!] => (TOKEN[*l] ACC[*2J , .. SKE *l\ SKG",*t\ /
wORK[* 1] ACC[*2J .. tt SKE"" "T+ fl. W\., "SKG", "T+". W-,\IJ')

, "BRU",'I\;

BNE[- .. -,II] => (TOKENC*2J ACC(*1] ,"SKE",,*2' /
TOKEN[* tJ AceE *2] , .. SKE"" * l' /
\eJOHKC*2J ACC(*1], "SKE" .. "T+".W-W\)

, "BR U", 11';

:-~TOhE[-,VAH[* 1]] => "*ITS ALREADY THERE'"
[-, ADDE VAR(* 1]" CONE" 1")]] => , .. MIN * l'
[-,ADD[VAh'[*1J .. -JJ => ACCC*2:*2J AIl-1 *1'
(-,SUB(VARC*lJ,-]] => ACC[*2:*2] ,"CNA; AIM "*1\
[-,-] => BREG[*2J ,"S1'B",*I\ /

ACC[*2J ,"STA",*I\,;
ADDCMINUS[-],-J => 5UB[*2,*1:*I]

(- .. -] => TOKENE *2] ACC(*!] , "ADD", *2\ /
\a.lORKE*11 ACC(*2] .. "ADD","T+".W-W';

SUB (- , -] =:> TO KEN (* 2 J A C C (* 1] SUB" , * 2\ /
TOKEN(*1] (BREG[*2] ,"CBA; CNA,; ADD "*1' /

ACe[*2J , "CNA; ADD "* 1 \) I
WORKC*2] ACCC*lJ ,"SUB","T+".W-W\;

M INUS[-] => TOKEN[* 1] , "LDA", * l' , "CNA'" /
BREG[* 1] , .. CBA; CNA'" /
ACC[*1] ,"CNA"'J

DIVID[-,-] => TOKEN[*2J (BREG[*l] ,"CBA'" I
ACC[*l]) ,"RSH 23,; DIV "*2' I

WORK[*2] (BREG[*1] ,"CBA'" /
ACC(*l) ,"RSH 23; DIV T+".W-\-J\;

BREGCMULT(-.-l] => TOKENC*1a*2] ACC[*1:*1] " .. MUL·· .. *1:*2··; RSH 1"\ /
TOKENC*l:*ll ACC[*I:*2] ."MUL",*la*t"; RSH 1"\ /
WOHKC*la*l] ACC[*t:*2J ,·'MUI... ... ··T+ ... W-W"; RSH 1"\

[REMC-,,-]] => TOKENC*t:*2] (BREGC*la*1] ,"CBA"\ /
ACCC* 1]) ,,"RSH 23; DIV ".1:*2' I

WORK(* I: *2] (BREG[. 11*1] , "CBA'" /
ACC[.1:.1]) ,,"RSH 23; DIV T+"

ACC(-J => TOKDlC*1J ,,"LDA",,*l' I
BREG[*1] ,,"CBA"' I

* 1;

lAlORK[-] => BREG[* 1] , "STB"" ·'T+"+W\ I
ACC[* 1] ""STA",, u1'+"+\I1\;

TOKEN[VAR[. I D]] => • EMPTY
[CONC. NLM]] => • EMPTYJ

MOLT / => • EMPTY,;

REM / => • EMPTY.:

AND I => • EMPTY;

OR I => • EMPTY;

NOT I => • EMPTY;

ENDN / => "T"""BSS",,tW\ ,,"END"\';

VAR(.ID] => *11

CON[.NUMJ => ':: * 1;

LE I => • EMPTY;

L T I = > • EM P1'Y;

EQ / => • EMPTY;

GE I => • EMPTY;

GT I => • EMPTY;

NE I => • EMPTY':

00 [-, - J = > * 1 * 2':

• W-W"; RSH 1 I.,;

OPNINP[-,-] => ,,"CLEAR': BHS 15; BHU "*2"'; BRS 16': SRU "*2"; STA "*1\;

OPNOUT(-, -J => ,"CLEAR; BRS 18; BHU "*2"; LDX = 3; BRS 19; BRU II

2"'; STA" 1 \,;

D-45

CLSFIL[-J => ,,"LDA "* I"; BRS 20"'\;

BRS3BC-".IDJ => ,,"LDA "*1"; LDB =10'; BRS 38; STA "*2\
C-~-J => BRS38[*I,,*2:*IJ BRS38C*I,,*2:*2];

XCIOC-".IDJ => ,,"CIO "*1"'; STA "*2\
(-,,-] => XCIO[*1~*2:*lJ XCIO[*1~*2:*21';

OUTCAR[-~.ID] => ~"LD.A "*2"; CIO "*1\
[-~ .NLMJ => I"LDA ="*2"'; CIO .t* 1\
[-~ • SRJ => ~ "LDA =""1 pi; LDB ="*2: Lit,; LDX "* 1"'; BRS 36; BRU "*2\

'1~ "ASC ... '*2' '\
[-1-] => OUTCARC*11*2:*11 OUTCARC*11*2:*2];

OUTNUM(-~.ID1 => ~"LDA "*1"'; LDA =10; BRS 38,;'"
C-" .NUMJ => "uLDA ="*2"; CIO "*1\
C-".SR1 => ,,"LDA ="'1"; LDB ="*2:L"; LDX "*1"'; BRS 36,; BRU "*2\

11,,"ASC ""*2"\
[-1-1 => OUTNtJM[*1,,*2z*11 OUTNUMC*I,,*2:*21;

STARTN / => "START"" "EQU"I ".",;

DECN[.I DJ
[-J

• e."'ND

=> * 1" "BSS I'"
=> DECNC*1:*11 DECN[*I:*2J ,;

D-46

.META PROGRM %5%

PHOGRM = ".META~' • I D ? 11 <"META I I 1. 1">
(" NOLI5T EXT., NUL; $5TART BRM INI TLU]
("$KSTKSZ EQU 1; $MSTKSZ EQU 100; $NSTKSZ EQU 1; $SSSIZE 'EQU 550"]
(".LI ST" c. "CLA.; STA LI S1FU"] / • EMPTY)
(.,"BRM RLINEJ BRM "*":; BRM FINISH"]
(• (SI Z $('. 51 Z) .) 1 17E / • EMPTY)

$S1' ". END" ? 2E
("STAR BSS I;SSTOP DATA SS+SSSIZE-S';$SS ass SSSIZE"]
("$MSP DATA MS1K;$MSPT DATA MSTK+MSTKSZ-S': $MSTK ass MSTKSZ"]
("$NSP DATA NSTK; $NSPT DATA NSTK+NSTKSZ- 51 $NSTK BSS NSTKSZ"]
["$KSP DATA KS11<; $KSPT DATA KSTK+KSTKSZ- 5J $KSTK BSS KSTKSZ"l
[., "END"] <"DONE">;

5T = • I D '= ? 3E <It ST"> [*., "ZROJ LDA *- 1': BRM CLL"l
EXP ? 4E '; ? 5E 1:., "BRU R1N"];

EXP = SUBEXP $('/ (.,"LDA MFLAG; SKE =0; SHU "*11
SUBEXP) I: * 1. "EGU *"];

SUEEXP = (GEN / EL T 1:., "LDA' MFLAG; SKE = 1; BRU ,t* 1])
$REST (* 1 .. "EQU *"]':

REST = GEN / El.. T [., "LDA MFLAG; SKE = 0; BHU *+ 4·']
('1 .NUM 112E [., "LDA ="*"; BRM ERR"]

(.lD [.. "BRM" .. *J/ '1 [.. "ERS EXIT"])1 13E/
• EMPTY (.. "CLA; BRM ERR; BRS EX IT")).:

ELT = ' •• ID 16E ["' .. BRM *,.; STA STAR"] /
• I D (.. "BRM" 1 *] /
• SR (I "BRM TST; DATA "*L"j ASC ... '*"] /
'(EXP 17 E ')? BE. /
" .CHR [","LDA ="*N"; BRM TCH"J;

GEN = '[$OUT '] 110E C .. "ERM CRLF"J I
'$ (*I .. "EQU *t'J ELT 19:£

[I "LDA MFLAG; SKE =0; BHU "* 1"; MIN MFLAG"J /
tI. EMPTY" [I "LDA = 1; STA MFLAG"J /
n.CHR" (.... BRM WPREP; BRM INC; LDA* IWP; STA STAR; MIN NCCP"] /

'< • SR ? 12E '> 113E [.... BRM LITT; DATA tt*L"; ASC tt' '*' '"; BRM CRLFT"l'
"=>'" (* 1 .. "EQU *"] EL T ? 14E

OUT =

=> E =
SIZ :::

(I"LDA MFLAG; SKE =0; SHU *+3; MIN NCCP; BHU "* t]/
'! • SR ? 1 SE C", *] ;

.SR (.,"BRM LIT; DATA "*L"; ASC ""*"] /
'.. [.. "ERM TAB"] /
'* (.NUM (., "LDA =i17B; CIO FNl..,O; MIN CHNOJ LDA GN"

"; BRM GENLABJ STA GN""'; BkM OUTN"J /
'L ['" "LDA* STAR.; BRM OUTN"] I
'N [.... LDA STAR.; BRM OUTN"l /
'e [.... LDA STAR; cIa FNUMO; MIN CliNO"] /
• EMPTY [.. "LDA STAR; BRM OUTS")/

" .CHR [I"LDA ="*N"': CIO FNUVlO'; MIN CHNO"]/
': [., "BRM CRLF"l':
, ,; [.. "ERU RTNtt] $ST ". END" ? liE [.... END"J FINI SH;
"K=" .NOM ["$KSTKSZ EQU .. *] /

"M=" .NOM ["$M STKSZ EQU "*J /
"N=" .NUM C"$NSTKSZ EQU "*] /
"S=" .NUM ("$SSSIZE EQU n*];

• END

D-47

·META PHOGRM ITREE 1.31

PROGRM = (".META" .ID 111 (".LIST" ILISTC01/ .EMPTY :MT(01) SIZE
: BEG INC 31 I
".CONTINUE" :MTC01) <"TREE 1.3"> :SETUP(I) * $(RULE *)
ft. END" 12E : ENOO(0] * <"OONE">;

SIZE = I(SIZ $(1., SIZ :OOC2]) ') 150E / .EMPTY .MT[Ol;

517 = • CHR 1= 154E .NlI1 ? 55E : SIZSC 21';

RULF = .ID
(,= EXP 13E CI& :KPOPKC11 I .EMPTY) :OUTPTC2J /
1/ "=>" 13E GENI aSIMP[2J /
OUTRln. : OUTPTC 21) ? 5E 'J ? 6E J

FXP = I .. SUBACK 17E ('/ EXP 18E :BALtER(21 / .EMPTY :BALTER[11) /
SUBEXP C'/ EXP 19E :ALTERC21/ .EMPTY);

Sl~ACK = NTEST CSUBACK :DO[2J / .EMPTY) /
STEST (SUBACK :CONCATC21 / .EMPTY);

SUBEXP = (NTEST I STEST) CNOBACK :CONCATC2J / .EMPTY),;

NOBACK = (NTEST / STEST ('1 .NUM ? 10E :LOAD(11 (.ID / '1 :ZHOCO]) ? liE
: ERCOD(3J / • EMPTY : ERr IJ))
(NOBACK : DOC 21 / • EMP1'Y) J

NTEST = ' •• ID 112E :NDLB(IJ /
I[(.NUM 'J 114E :MKNODE[11 /

GENP '] 152E ('t/.EMPTY :OUTCHCO] :DO(21)) /
'< GFNP '> 153E C', I.EMPTY .OUTCRCO] :00[2J) :TTYCl] /
C".CHR" :GCHR /
'* : GO) (OJ /
U=>" STEST ? 15E : SCANt 1] /
COMM;

GENP = GENP 1 I • EMPTY : MT[0] J

GENP 1 = GENP2 (GENP 1 : DOC 2] I • EMPTY)';

GENP2 = 1* ('5 .NOM ? 51E :PAROUTC IJ / .EMPTY :ZROCOJ ,PAROUT[11)
('L IOL / 'e I DC I 'N ION / • EMPTY ,lOS) [OJ :NOPT[2J/ GENU;

COMM = If. EMPTY" : SETC OJ I
I I • SH ? 18 E : 1M ED(1 J J

STEST = ' •• ID ?19E :PRIMC1] /
• I D : CALL (1] /

.SR :STST[IJ /
'e EXP 120E .) 121E I
" .CHR :CTSTC1]/

(.NLM '$? 23E I' $: ZRO[OJ) (.NUM /. EMPTY :MTC 0]) STEST 12L:1E : ARB[3J I
'- (.SR INSRCl1 / , •• CHR :NCHBCll) 126E :NTST(1),;

D-48

OUTRUL = 'c OUTR ?27E COUTRUL IALTER[2J I .EMPTY) aOSETC1];

OUTH = OUTEST u=>"? 29E OUTEXP ? 30E : CONCAT[2J';

OUTEST = (C'J :MT / "-lit sONE I "-.-l" :TWO I '·-.-.-l" :THRE) [0] I
ITEMS ']) :CNTCK[III

ITEMS = ITEM C' .• ITEMS ?32E :ITMSTFU21 I .EMPTY sLITEMCtl) .:

ITE~ = 1- :MTCO] I
.ID IC 133E OUTEST 134E sRITEMC2]1
NSIMPI .NITEMC IJ I
I •• ID 135E sFITDlCIJ I
• SR : TTSTC 1] I
".CHR .CHTST[IJ I
'I .NUM ?37E :GNITEMC 1];

OUTEXP = SUBOUT C'I OUTEXP tALTERC2J I .EMPTY)':

SUBOUT = OUTT (REST : CONCAT[2] I • EMPTY) I REST':

REST = OUTT (REST :OER[2JI .EMPTY) I GEN CREST :OOC2]1 .EMPTY>':

OUTT = .ID '[?39E ARGLST '] 140E :OUTCLLC2J I '(OUTEXP ') 141E I
NSIMPI ('. ('S lOS I 'L sOL I 'N :ONI 'e :OC)COJ aNOPTC2J I

• EMPTY : DO 1 TC IJ);

ARGLST = ARGMNT : ARG[IJ ('. ARGLST : DOC 2J I • EMPTY) I • EMPTY :MT[OJ.:

ARGMNT = NSIMP :ARGLD[lJ I 'I .NOM :GENARGCtlJ

NSIMPI = .. 't NSIMP :UPC2J I NSIMP sLKTCIJ1·

NSIMP = ' •• NOM (.. ': NSIMP :CHASEC2J I .EMPTY .LCHASF.[ll);

GENt = (OUT/COMM) (GENt IDO[21 I .mPTY);

GEN = COMM I GENU I '< :TTYCOl I '> :FILeOl;

GENU = OUT I
'. • I D ? 42 E ' C ? 43E «. I D I • N UM) : LO AD[1 J : CALL C 2 J I

.EMPTY :CALLC1l) '1 I
'I .NUM :GNLBLC11 (I: :DEFC1J I .EMPTY) .:

OUT = C" aOUTCR I '. :OUTAB) CO] I
• SR : 0 UT SR C 11 I
, •• CHR :OUTCHC1] I
"+W" t UPVJRKC OJ : OUTWRK(1 J I
"- W" : DWNlVRKC 0] I
".W lt tMT[Ol :OUTWRK I
'f'W :MAXWRKC01J

E = • EMP1'Y RESET => '; $(RULE *) , .• END"?99E FINI SH;

D-49

%OU1' RULESI

SETUP (-] => ~"NOLIST NUl.~EXT;·GEN OPD lOlBS,l .. lJBF OPD I02B5 .. 1~ 1"\
"8T OPD 103B5~ 1~ 1; PSHN OPD 104BS~ 1~ 1J PSHK OPD 105BS,; I .. 1"\
"MKND OPD 10685 .. 1, IJNDLBL OPD l07BS~ I .. 1; GET OPD 110BS~ I .. 1"\
"8PTR OPD 11185 .. t~ l;BNPTR OPD 112BS~ I .. IJRI 1 OPD 113B5, I .. 1"\
"1112 OPD 114BS,2JFLGT OPD 115B5~ I, 1.18E OPD 1 16B5, 1~ I'"
"LAB OPD 1 t 785, I .. 1; CE OPD 120B5~ 1 .. 1; LDKA OPD121BS~ 1, t "\

U$KSTKSZ EQU tOO;$MSTKSZ EQU 130;$NStKSZ EQU t300;$SSTKSZ EQU 1400"\
* 1;

BEGIN(-~-~-] => "$START BRM INI11.; CLA; STA WRKJ STA XWRK"\ *3 *2
.. "BRM RL I NEJ BRM "* 1"; BRM FIN I SH"\ J

LI51' / => .. CLJU STA LI STFGJ u;

OUTPT(-~-J => *1:5 ,"ZRO; LDA *-1; BRM eLLO", *2 ~"BRU RTNO",;

SIMP[-~ -] => * I ~ "ZRO'" *2 IIt'BRR ".1\;

BAL TER[-] => I "BRM SAV"\ * 1 , "BRM RSTR"\
(-,-] => ~"BRM SAV'" *1 ,"BRM RSTR; BT "'1' *2 Il.DC);

D / => , "EQU *,'\;

ALTER[-~SETC]] => *1 *2
[CONCAT[-,-],-] =>Rt1TC*I:*I,Il] *11*2 .. "BRU "12' II.nC] *2 12.D[]
(- , -] = > * 1 ~ "B T "# 1 \ * 2 11 • DC] .:

PMT[PRIMC-],#IJ => ,"BRM "*I:*I:S"; BF "'1"; MRG ".I:*I:S"F1..G; PSHK =0"\
(- , -] = > * 1 , "SF "111';

E:R[ALTERC-, SET[]] 1 => *1'
(-l => *1 ,"BE =-1"';

DOC -~-] => * 1 *2;

CONCAT[-,-] => *1 .. "BF "'I' *2 II.DC];

LOAD[.NUMJ => .. "LDA ="*1:5'
[• I D J = > 1# "L DA "* 1 : S\ J

CALL[-] => • "8RM "* 1 \
[-.-1 => *2 ."BRM "*I\J

MT / => • EMPTY;

CLA I => "CLA";

ZRO I => "0";

D-50

Fl\COD[- ... -,-l => *1 *2 ,"BF: "*3\J

N DLBC -] => , "NDLBL =".1 \J

MKNODEC-l => ,"MKND :::"*1\;

AH13CZROC],M1'Cl ... -] => II.DC] *3,"BT "'I"J MIN MFLAG'"
(.Nt~,MT[] ... -] a> ARB1[*11 Il.D[] *3

... " SK R* M SP J B T " , 1" J SKN. M SP' B R U * + 3 ; ET '" 1 " : MIN M FL AG'"
• ARB3[]

[- , • N lJM, -] = > Aft B 1 [* 2] '1 • DC 1 * 3
..... SKR* MSPJ BT "'l"J SKN* MSP"\ ARB2[*1,,*21J

A},Bl[-] => ... "BRM SAV; LDA ="*lIS"+IJ MIN MSP; STA* MSP"\;

Ah13~(-, .N~] => , "BHU .+41 CLA1 STA MFLAGJ BRU *+Ll; LDA* MSPJ SKG ="*2
"- "* I" J MIN MFLAG"\ • ARB3[1

[-] => , "BRU *+ 31 CLA'; STA" MFLAG"\ • ARR3[];

ARB3 1 => , "LDA =-1; A~ MSP1 BRM RSTR"\;

GCHR 1=> ,"ERM \t}PREP; BRM INC; LDA* IWP; MAG CHRFLG,; MIN NCCP'; PSHK =0""

GO 1 = > ,,"BRM OUTREE,; BT *+ 3; LDA = 2; BRM CF:RR"\ J

SET 1 => , "LDA = 1; STA MFLAG"\J

TTY[-) => TTY[] *1 FIL[]
(1 = > , "LDA :: lJ STA FNUMO", XCHCH[] j

FI L(] => , "LDA XFNllMO; STA FNlI'fO",;

XCHCH/ => , "LDA TCHNO; XMA CHNO; StA TCHNO",,;

.s T h I N G C -] = > " DA TA .. * 1 : L " ,; AS C ... '* 1 ' '\,;

o SETC - J => , "BRM BEGN"\ * IJ

CNTCK(-J => * 1 ... "eLB,; SKE NCNTJ STB MFLAG"';

ONE 1 => , "LDA = 1 "\,;

T\"O 1 => , "LDA =2"\;

1HPE 1 => ,"LDA =3"\,;

I1MSTR (-,-] => *1 MIN CNTJ EAX -1,2"\ *2;

L I TEl-! (- J => * 1 , "M IN eN,.; LDA CNT",;

RITEM(-,-] => .. "RIt ="*1"; BHU "'1\ *2 ,"RI2", It.DC].i

OEl-.(-,,-J => *t, "CE =1'" *2;

D-51

OUTCLL (- .. -] => "uLDA NSP; STA SNSP; NDLBL ::::··*1"'; CLA; STA CN,.",
,,"LDA KT; STA ME'" *2

.. "MKND CNTJ PSHN SNSP; LDX KTJ BRM* 0" 2,; BRM POPK",
,,"L DA* NSP'; STA NSP",;

ARG (-] => * 1 .. "PSHK = 0; MIN CNT"\;

001'1 (-] => * 1 .. "BNPTR "III
n; C.AX; PStiK =0; BRM. 0" 2; BRM POPK; BHU *+2'"
i 1. PC 1 ,,"BRM OUTS",;

NOPT (-" -] => * 1 ,,"BNPTR *+3; LDA = 4; BRM CERR;" *2;

SCAN (-] => It.Dr] *1 "ltET *+3; MIN Necp; BHU "'1\;

PHI~ [-] => .. "BRM . n* 1 n; BF *+3; MRS ".l"FLGJ PSHK· =0"\;

5TST (-] => .. "BRM TST,;" STRING[* t],;
C1'~~T (-] => " ''LDA ="*l:N"; BRM TCH"\J

as / => " ERM OUTS",;

ON / => .. ETR =777778,; BRM OUTN"';

OL / = > " CAX; LDA 0 .. 2,; SRM 0 UTN",:;

OC / => .. ETH =3778; CIO FNLMOJ MIN CHNO"\;

GNLBL [-] => ,,"GEN GNLB"* I';

DFF [-] => *1 .. "BRM LIT; DATA 6; ASC '" , .. EQU *",. '\;

o liTeR / = > II "BRM CRLF",;

OlJTAB / => ,,"BRM TAB",;

OtJTSR (-1 => ,,"BRM LIT.: .. STRING[*ll;

OUTCH (-] => ,,"LDA ="*l:N"; CIO FNUMO'; MIN CHNO"\; ,

FNDN / => "SSTOP DATA S5+ SSTKS~- 5': $SS BSS SSTKSZ",
"MSP DATA MSTKJ $MSPT DATA MSTK+MSTKSZ- 5J $MSTK 8SS MSTKSZ'"
"NSP DATA NSTKJ $NSPT DATA NSTK+NSTKSZ- 51 $NSTK BSS NS1KSZ'"
"KSP DATA KS1KJ $KSPT DATA KSTK+KSTKSZ- 5': $KSTK BSS KSTKSZ'"
"WRK BSS 1J X\4JR}(BSS 1; END",.;

SAVG [- J => ,,"BHM SAVGN'" * 1 ~ "BHM RSTGN"\J

D-52

I M ED [- 1 8: > , * 1'';

NITE-MC-l => ,"STX INDX; LDA KT'" *1
, "CLBJ LDX INDX; SKE 0,2J STB MFLAG"'J

FI TEM[-] => , "FLGT ".11 StIFLe",;

TTST[-] => , "BRM SSTESTJ" STRING[. 1] J

CHTSTC-] => , "CLB; LDA =". laN"; MRG CHRFLG; SKE 0,2J STB MFLAG",;

GNITEMC-l => ,"FLGT GENFLG. ETH =777778; STA GNLB"*laS';

GENARG[- J ::&> , "LAB GNLB"* 1: SIt; MRG GENFLG",.:

NTST(-) => , "LDA NCCP. STA SNCCP", * 1
, "LDA = 1; SKR MFLAG; BHU *+2. STA MFLAG; LDA SNCCP; STA NCCP",.

NCHH(-) => ,"LDA =M.ltN"; B11M TCH",;

NSR(-] => ,·'BRM TST; "STRING(*I];

UP(.. 1", -] = > , "L DA* K SpIt, * 2
(-,-] => , "LDX KSP; LDA 1-"* 1: SIt, 2'" *2;

LKT(-] => , "LDA KT'" * 1;

UPYJRK / => , "MIN WRK; LDA WRK; SKG XWRK; LDA XWRK; STA XWRK"';
DY.iN\\iRK / => , "LDA =- 1; ADM l"IRK tI

,;

OUT\tJRK[-] => *1, "LDA WRK; BRM oum",;
MAXWRK I => , "LOA X\lJRK; BRM DUTN",;
SIZSC.CHR,-] => *l:C"STKSZ EQU "*2:5';

KPOPK(-] => ,"MIN MSP. LDA KT; STA* M5PJ MIN M5P; LDA KSPJ STA* MSP",
*1. ,"LOX MSP; LDA 0,2; STA KSP; LDA -1.2; STA KT. LOA =-2; AIltt MSP"'J

FAHOUTE ZRO[J] => , "LDA KT'"
C"O"] => , "LDA KT'"
C-] => , "LDKA =".1';

• ENO

D-53

	D-00
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	D-31
	D-32
	D-33
	D-34
	D-35
	D-36
	D-37
	D-38
	D-39
	D-40
	D-41
	D-42
	D-43
	D-44
	D-45
	D-46
	D-47
	D-48
	D-49
	D-50
	D-51
	D-52
	D-53

