
< LP, MCS4.NLS;150, >, 21-MAK-75 19:04 RLB2 ;;;;
(protocol) Protocol for T~NEX (-) Line Processor interactions

Introduction
This document is a detailed description of the Line Processor
protocol. It is intended to serve as a guide to anyone wishing
to implement the Line Processor protocol, as well as, a piece of
documentation for the Line Processor.
It should be pointed out here that the Line Processor contains a
very small, slow microcomputer with little read/write memory.
For this reason the protocol is terse and error reports and/or
recovery almost non-existant. The Line Processor terminal is
treated more as a hardware device than an intelligent terminal.
There are two types of line processors - alpha and graphic.
Alpha line processors are used in configurations consisting of
the line processor alpha/numeric display, mouse, keyset, and
possibly a r1ard copy printer or a cassette drive. GraphiCS line
processors are used in the the minimum graphics configuration
consisting of a/n dlsplay, mouse, keyset, and either a Tektronix
4012 or 4014 storage tUbe display.

Conventions
Coordinates

Alpha
Coordinates designate character positions.
(1,1) is the second character on the second
the bottom.

f'or example
lIne up from

The origin is at tne lower left corner ot the screen.
As components of the protocol, coordinates are passed as
one oyte of X and one of Y and always nave 40B added to
them to get them in tne prlnting character range. This
limits the max coordinate value to 1378 which is 95
decimal.

Graphics
Tne mouse is used to track the cursor on either the aln
display or the storage tube. A switch acts as a toggle to
select wnic!) screen is to be tracl<:ed. Coordinate values
are identical to the alpha line processor when they
originate from the a/n display, although they are sent as
two bytes each of x and y. Graphics coordinates from the
storage tube are sent as 10 bit values in the range 1024 to
2047, with 1024 at the lower left of the screen.

Try Simulation
In TTY simulation, scrolling always takes place on a line feed
(LF) not a carriage return (CR). Carriage return does the
obvious thing and no more.

Special and Control Characters
Protocol strings begin wlth 33B and are followed with an
operation type character in the range 40B to 1208.
when outside a protocol string, all control characters (0 thru
37B) are ignored by the Line Processor, except:

When tne cursor 1s being tracked:
~G which rings a bell if possible
Ck and Lf whicn do the right thing

Notice that Dackspace character (~H) is not im.plemented in
TTY simulation (i.e. when the cursor is being tracked).
When tne cursor has been positioned:

~G which rings a bell if possible

AM which does a backspace cursor
rihen inside a protocol string, RUBOUT is NOT ignored. When
outside, it is ignored.

Conventions for this document
In this document, octal numbers are followed by "B".
"Unescorted" means that characters are sent as is without
wrapping them in an protocol sequence.

Line Processor to Main Computer Protocol
Communication in this direction will adhear generally to the
IMLAC protocol as outlined in (IJOURNAL,14345,).
In particular:

Keyboard characters 40B thru 1778 are unescorted.
Keyboard characters 0 thru 378 are sent as:

34B, 438, cnar+140B, coordinates
NUTE: An alternate (and preferred) way is to send these
control characters as is (unescorted) except for 28, 48 and
30B. Those are sent as above.

rv'louse t)utton changes are send as:
34B, 438, buttons+l00B, coordinates
where buttons is tne binary image of button positons (000
thru 111 binary).

Keyset stroKes 1 thru 328 are send as:
stroke+140B (e.g. 1 -> a)

keyset strokes 338 thru 378 are sent as:
338 -> 54b (,)
348 -> 568 e.)
358 -> 738 (i)
368 -> 77B (?)
378 -> 408 (space)

For alpha line processors coordinates are X + 40b, Y + 40B.
for graphics line processors coordinates are X(oits 10 ... 6
(MSB's») + 408, X(bits 5 ... 0 (LS8')) + 40B, Y(oits 10 - 6) +
406, Y(blts 5 - 0).

When not in coordinate mode the mouse buttons are ignored and
keyboard control characters (0 thru 378) are sent in unescorted
fashion.
At power-up and after the "system-reset" button is pushed, the
Line Processor signals the Main computer by sending:

(1768, 177B)
The purpose of this is to indicate to the applications
program that the Line Procesor is now in a "power-up" state
(see below).

When the Line Processor detects an error that it cannot live
With, it sends a string to the applications prorgam and dies with
an error code flashing in the lights. The user is then forced to
hit "system-reset". The string is as follo'Ws:

.1111(j;' _

(1768, 41B, Ccount', Chars)
Where Ccount' is 40B more than the number of characters
that tallow. Currently 8 characters are sent, and the
string looks like:

(1768, 41B, SOb, err', ctl', trK', rpt', sW', obUf', bl', b2'
)

Where the ' indicates that 40B has oeen added.
err: The error code, one of

lOB = output buffer to display overun (impropper
padding).

<: r. P. l'..:,c S 4. _ t\i r. s ! 1 50. > 3

ill::) = sowe other butter overun (e.g. printer butfer)
128 = strange error relating to aisplay output
buffer.
13H = protocol sequence error (e.g. bad comand)
148 = protocol value error (e.g. bad coordinate).

ctl: control state parameter (0 = not in a command)
trk: mouse tracking code:

o = pOSitioned
1 = tracking
2 = cursor in small TTY window
5: cursor at unknown position
12B = Cursor in tull screen window

rpt: repeat code, normally zero
sw: sense switch immage in order 0-1-2-3 (sw3=LSB)
obuf: display output buffer character count
b1: possibly low order 4 bits of last input char
b2: possioly nigh order 4 bits of last input Char

From Main Computer to the Line Processor
The following functions are sent by the applications program and
pertormed by the IJine Processor. All codes, except the escape
(338) should be printing characters. Padding characters should
oe~KUBD1J T s (1 7 7 b) • Ttl e baud rate t act 0 r (t) and and disPlay type
are obtained by ~ne apPlications program by sending an interogate
command.

lTAK~_

Note:
The cursor is generally used to track the mouse. Some
commands stop tne tracking and allow the cursor to be used
tor display manipulatlon. "Tracking made" refers to
whether the mouse is being tracked by the cursor or not.

Display-terminal dependent parameters:
The following table yields the timing and other factors
requlred by the protocol that depend on the type of
terminal connected to the Line Procesor. Tnat type, Dltype,
is obtained from the interrogate command (see below).

param Ditype=
1 234

Del HO 7 1 17
Ins 0 7 30 17
Clr 5 6 3 17
Xmark No Yes Yes Yes

Del is the time to delete a line.
Ins is tne time taken to insert a new line.
Clr is the time taken to clear the screen.
Xmark indicates if a marked character needs to be
re-written atter the mark is removed.
See the interrogate response commana for other display
paralneters.

Position cursor on alpha display and stop tracKing mouse.
Send(33B, 408, X', y')

X' = X coord (0 thru Xmax) + 40B
yf = i coord (0 thru Ymax) + 40B

result:
POSitions cursor to specified location. Tracking stops
until a "resume tracking" or a reset is received. Any
unescorted characters will be written on the screen and
the cursor will be advanced once after each character.

<' r. P _ MC' S 4. ~ l\i I . S ! 1 "0 _ '> d

writing beyond the end of the line is not advised as the
result depends on the terminal manufacturer and model.

Specify (small) TTY simulation window on alpha display
Send(338, 41S, top, bottom)

top = Y' for top line of window
bottom = Y' for bottom line ot window

result:

Reset

Invokes a small TTY simulation window of specified size
and location. This window will be used until a new one
is specified or a reset is received. This does not
change tne tracking mode.

Send(33b, 518)
result:

screen cleared
TTY simulation winaow set to full screen
bug selection stack reset
resume tracking (see)

padding:
Send pads as for clear screen.

Resume tracKing mouse
send(330, 4~B)
result:

The cursor is used to track the mouse. Any unescorted
characters will go into the TTY simulation window
currently in use.

Write string ot blanks
Send(33B, 43B, N')

W' = number of blanks to be written.
result:

The specified number of blanks are written starting at
the current cursor position. The cursor is left at the
character position following the last blank. Assumes the
cursor nas been positioned appropriately beforehand.
This command is a no-op if N' is not >= 41B AND <= 1778.

padding:
This command must have Nlf padding characters following
it.

Push bug selection
Send(33B, 46b, X', y'
result:

The coordinates are pushed on a stack and the character
at that location is somehow brought to the user's
attention. The stack will hold a maximum of 8
selections. This command includes a resume tracking.

padding:
This command must nave 8/f padding characters following
it.

Pop bug selection
Send(33B, 47B)
result:

The top entry on the bug selection stack is popped. The
corresponding character on the screen is no longer
marked in a special way. If the stack is empty, this
command is a no-ope This command includes a resume
tracking operation.

.TAK~ _

For some Dltypes, tne applications program must restore
the character or the marked position will be replaced by
a space.

padding:
This command must have 8/£ padding characters following
it.

Delete selected line
Send(336, 44B)
result:

The cursor position selects a line to be removed from
the screen. All following lines are moved up one line.
The contents of the last line are undefined. The X
coordinate should be zero, otherwise tne results are
undefined.

padding:
This command requires Dellf padding characters (Del is
obtained from the table).

Insert selected line
Send(338, 45B)
result:

The line which the cursor is on, and all following
lines, are moved do~n one line. The cursor is not
moved, and hence is on a blank line. Lines above the
cursor are not altered. The last line (before the
execution of this command) should be considered "lost."
The X coordinate snould be zero, otherwise the results
are undefined.

padding:
This command requires Inslf padding characters (Ins is
obtained from the table).

Clear screen
Send(330, 50~)
result:

The entire screen is cleared. The cursor position is
not generally known. The TTY simulation window location
and the bug selection stack are not altered. The
tracking mode is not changed.

padding:
This command requires Clr/f pad characters;

Interrogate line processor
Send(338, 558)
result:

A response to the interrogate command is sent as a
protocol string of this form:

348, 468, Xmax+40B, Ymax+40B, LPtype, Dtirn Rate
Where

Xmax 1s the maximum x coordinate
Ymax is the maximum y coordinate
LPtype is in (40B-1778J and designates type

the least significant four bits of LPtype
designate display terminal type (call it
Dltype)

Currently defined are:
(1) Delta Data 5200
(2) Hazeltine H2000
(3) Data Meaia Elite 2500

(4) Lear Siegler ADM-2
The most significant three bits designate Line
Processor type (call it Type)

Currently defined are:
(0) Complete alpha line processor with
COpy printer receiver for cassette drive
(2) Line Processor with Mouse, Keyset,
printer
(6) Graphics line processor with
Tektronix 4014
(7) Graphics line processor with
Tektronix 401~

Dtim is a characteristic delay time. for proper
scrolling, a line feed eLF) must be followed by
(Utim+14)/f pad characters.
Rate indicates the Line Processor receive baud
rate:

300 buad: 100B, f=32 decimal
600 baud: 608, f=16
1200 baud: SOb, f=8
2400 baua: 44b, f=4
4800 baud: 42B, t=2
9600 baud: 418, f=l
The baud rate factor, f _ Rate-40b;

Note: Any additions to LPtype should be assigned
by ARC personel for best results. See DIA or CHI
@SRI-ARC.

This command does not change the tracking mode.
Turn off coordinate mode

Sende 33B, 60B)
result:

Turns off the coordinate mode in the Line Processor.
This does not change tne tracking mace.
Mouse buttons become inactive, keyboard control
characters sent to main computer without protocol
format1ng.

Turn on coordinate mode
Send(338, 618)
result:

Turns on the coordinate mode in the Line Processor.
This does not change the tracking mode.
Mouse buttons become active, keyboard control characters
are sent in input protocol format.

Begin standout mode
Send(338, 568)
result:

All following text written on the screen will be altered
is some way from "normal" text. This unfortunately
includes characters wnich go into tne TTY simulation
window also, so don't leave the line processor in this
state lndefinitely. Does not change the tracking mode.

End standout mode
Send(33H, 57B)
result:

Subsequent text written on the screen will be in
"normal" mode. Does not change the tracking mode.

-' ") ~ r. D. M r ~ Ll. hi 1.<:::' • 1 l.; () ~ 7

JAKE.

Tt:NEX RESTARTING
The Line Processor will detect a TENEX restart, by looking
for the ten 338's it sends out at startup time. At that
time it will place itselt in a state as though the hardware
reset button had been pushed.

Open printer (alpha line processor only)
Send(338, 538)
Result:

Opens the printer for output. Protocol to the printer
must be observed: (1) open it. (2) wait for protocol
string "request" (below). (3) send strings 1n response
to requests. (4) close it.

"Request" string, sent back to the main computer:
OB NULL

Each request enables the application program to
send an additional 16 characters via the
printer string protocol below.

Note: The count indicates the Line Processor storage
allocated for the next printer string. Sending a longer
string will result in a "receive error" (error light on
panel).

Close printer (alpha line processor only)
Send(338, 548)
Result:

Closes the printer. Actual close will not take place
until all characters in the output but fer are printed.
Tnat is, the close may follow the last string of
characters immediately. It is possible (but very
un I i l< ely) t hat a II r e que 5 t 'I pro toe 0 1 5 t r in 9 may be sen t
to the main computer after the close 1s sent to the Line
Processor.

Printer string (alpha line processor only)
Send(338, 526, Dev, Count+40B, <characters>)
Result:

The Dev 1s normally 408 and is ignored by Line
Processors with one printer. The Count must not be
greater than the sum of the counts in all "request"
protocol string not already fulfilled. It may be less.
The actual character string may contain any characters.
They will be sent to the printer without translation or
special handling.

Note:
Strings may be sent to the printer without opening it 1f
timing constraints are observed carefully. In this case
the aPPlications program must know the baud rate of the
printing device a well as the Line Processor - Main
computer line. The program just issues printer strings
and no requests are sent back to the Main computer by
the Line processor. ThiS was a deliberate implementation
to allow higher speed printing over networks without
waiting for the response. Observe that if strings are
sent too fast the printer bufter in the Line Processor
will overflow: data will be lost and the Line Processor
will die. The printer buffer normally holds 47
characters ••

Open graphics display (graphics line processor only)

16-APR-75 16:47 <. T. D _ M(" .c;::. 4 1\I1..c;:.· 1 c;;. (\ , Q

Send(338, 53B)
Result:

Disables mouse tracking on the graphics disPlay.
Close graphics display (graphics line processor only)

Send(33B, 548)
Result:

Ensables mouse tracking on the graphics display.
Write graphics display (graphics line processor only)

Send(33B, 528, Dev, Count+40B, <characters>)
Result:

The Dev is normally 40B and is ignored by Line
Processors. Characters from the application program are
written directly on the graphics display. Since the
characters are not butfered, the graPhics display must
be connected at a higher baud rate than the external
processor.

Set graphics cursor resolution (graphics line processor only)
Send(338, 628, N')
Result:

N controls the mask applied to the cursor coordinates
before they are used to position the cursor on the
graphics display:

1\1 = 0 Mask = 0
:: 1 = 1 LSB is cleared (etc)
:: 2 = 3
:: 3 = "7
:: 4 = 17B
:: 5 = 378

Application notes:
Avoid writing text (or "string of blanks") beyond the end of a
line: the display may insert an unwanted line or drop the
extra characters.
Avoid positioning the cursor to any x>Xmax or y>Ymax.
Avoid doing an insert line on the last line: the disPlay may
scroll the entire screen.
Delta Data (Dltype=l) must be treated as a special case in the
following respect:

NOTE:

When writing text at (X,y) on a line which does not already
have text on it up to position x (e.g. after a clear screen
or insert line), the applications program must send xlf pad
characters after the first character written at position
(x,y). The display takes that long to move a CR symbol
into the proper display memory location. (Our thanks to
Delta Data).
we expect to stop supporting Delta Datas soon.

The Line Processor has a reset button on it (which will be
used only on rare occations). After power up or a hardware
reset, the following state prevails:

The screen is clear, the mouse tracking in operation.
The bug selection stacl< is empty.
The full screen TTY: simulation is in effect.
Coordinate mode is NOT in effect.
Printer is closed

All TTY simulation windows currently work as tollows: Text is
inserted 1n the last line and "scrolling" occurs on each line

" L ...:.. l\ 1\ 1"'1 _ .., c:: oj L • Ii .'; ,. 1 0 !I;i f'" C Ii I\i Ie. 1 "fI " a

feed (i.e. it does not start on the top line of the window as
you may prefer). A CR moves the cursor to left margin, a LF
effects a line break. Typing beyond the last character of the
line causes a line "wrap" - i.e. new text replaces the old
line, starting from the left margin. The only way to clear a
small TTY window is to send N line feeds into it, where N is
the number of lines In the window.
The usual sequence trom the applications program will be to
position the cursor and perform some function, or write text,
or both. It must end SUCh a sequence with a "resume tracking"
command. Any broadcast messages, links, etc. that come down
the line between the cursor position and the "resume tracking"
will go wherever the cursor happens to be.

Normally, oroadcast messages and the like will go into the
TTY simulation window. The difference being that they are
not preceeded by a position cursor command.

REENTER code in NLS will clear and repaint the entire screen
Mouse tracking will oe done by the Line Processor under the
following conditions:

IF the terminal has received a "resume·tracklng" command
since the last position cursor command, AND
IF there is no input from the TEN, AND
the mouse coords have changed since the last mouse tracking
operation, or the cursor has been moved since the last
mouse traCKing operation.

Tracking stops under the following conditions:
A position cursor command comes from the TEN.

Summaries
Line processor to Exernal processor

CHAR SEQUENCE:

(all line processors)
CHARAC'rER

(Ascii values 18 to 177B
4 (~D), 348 (BeESe), and

BCESC 46 MX MY TP DT SO
176 177
176 41 CCNT CCHRS

(alpha line processors)
BCESC 43 CC X Y
Chars
BCESC 43 ec X y
~X (CD)
BCESe 43 MB X Y
0 (NULL)

(graphics line processors)
8CESC 45 CC Xl X2 Yl Y2
Chars
HeESe 45 CC Xl X2 Y1 Y2
~.x (CD)
BCf~SC 45 I'tiB Xl X2 Yl Y2
Where:

All numbers are in octal

jvlEAN I N G

Normal Character
except 0 (String request),
1768 (Reset))

Interrogate Response
system Reset
Error report

2 ("'8),

Uptional Sequence For Control

Sequence For AD (CA), "'8 (COOT),

Sequence For Mouse Buttons
string request

Optional Sequence For Control

sequence For AD (CA), AS (COOT),

Sequence For Mouse Buttons

< T. D _ M('.c:.:..1 1\1 I .. c::. ! 1 r.;; () ~ 1 ()

ceNT = number of CCHRS + 40
CCHRS = CCNT-40 data bytes; each byte is offset by 40
CC = control character + 140
MB = current mo]se button state + 100
X = current x corrdinate + 40
y ~ current y corrdinate + 40
Xl = top 6 significant oits of x coordinate + 40
X2 = least significant 6 bits of x coordinate + 40
~l = top 6 significant bits of y coordinate + 40
i2 = least significant 6 bits of y coordinate + 40
MX = maximum x coordinate + 40
MY = maximum y coordinate + 40
TP = line processor type and version + 40
DT = terminal delay time characteristic + 40
BD = line processor receive baud rate + 40

Exernal processor to Line processor

CUMMAND COD~

position 338, 408, X', y'
TTY window 338, 41B, Y TOP', Y BOTTOM'
resume tracking 33B, 4iB
write blanks 338, 43b, N'
delete line 33B, 448
insert line 338, 458
push bug 338, 468, X', y'
pop bUg 338, 478
clear screen 338, 50B
reset 338, 51B
printer string 338, 52B, DEV, CNT', String
open printer port 33b, 53b
close printer port 33B, 54B
interrogate 338, 55B
standout mode on 33B, 566
standout mode off 338, 57B
coordinate mode off 338, 608
coordinate mode on 338, bIB
cursor resolution 338, 628, N'
remote resart 10 - 33B's

(mcs4) MCS-4 Assembler in TREE META
(·'ILE msc4 CHECK

META file
ERROR: -> '; Sst :end(J*;
SIZE: 5=1000 M=100 K=50 N=1000 L=10 G=IO;
DUMMY: add mt Ih neg;

PADDING

none
none
none
N/F'
DEL/F
INS/F
8/r'
8/F'
CLR/f
CLR/F
see text
see text
none
none
none
none
none
none
none
none

FIELDS: OP=l4:8] OPA=[4:4J OP8=[8:4) TYPE=(4:18J P=(4:8]
ADl=[4:8·] AD2=(4:4] AD3=[4:0) AD8=l8:0];

ATTRIBUTES: req pair;
% declarations parsing %

file = ("FILE" 1 -> "F'lLE") .10 <"-MCS-4 ASS!viBLER 12/11/73">
<"-FILE "*1> @S defned &DISCARD
[>~mcs4]

$declare sst :end()*;
end =>

> '" me sen d $ S r Iv} S (? @ de f n e a * $ I <" un de fin e d 5 Y mb 0 1: 'I * S >)
&TABLES;

C 1,0 _ Mr .<:::. £1. l\j i..r.:;. , , "n. ~ 1 1

declare :::
"SET" #<',> ((.10 I "UID) '::: .NUM :dec(2J*) 'I I
"REGISTER" #<',> (.ID '::: @S reg .NUM :dec(2l*) 'i I
"PAIR" #<',> (.10 '::: @S pair .r"Ulvl :regpair(21*) '; ;

dec [-,-) => >*1_*N2i
regpair [-,-J => >*1 _ L1SH(*N2)1;

% statements %
st ::: ["E ... D" &fAIL]

.$(.10 ': &LABEL) :label($J * instr 'I -> '; * ;
laoel [$] => $(>*$);

instr ::: opl I op2 I op3 I .UID (sym4 :simp[2] I :simp[l));
simp % simple: OP and optional address %

(-J => *Vl~OP8 \0;
[-,-J => *Vl"'OP stopa[*2] \0;

sym :::
(.ID

(?@ defned I <*1 " undefined" LOC>)
I .NUM :con[lJ) [II.LH" :lhll] I ".RB" J I
sym :negllJ ;

sym4 = sym $('+ sym :addl2]1 '. sym :neg(l) :add(2]);
stopa

l-J => + va14(*lJ~U?A;
va14

(add] := 0 + va14[*1:lJ + va14(*1:2];
% above is ugly but can't start exp with construct that
appears to be a nOde test %

[con] := *i\~1:1;

[OJ ::: 0;
(negJ :::: -va14C*1:1J ;
(lh(conlJ := *Nl:1:1 ;1 16;
[lh) :::: *Vl:1 ;1 16;
[-j :::: *Vl;

val
[-) :::> +va14[*lJ;

op1 :::
"JCN" sym4 [~,J adr :two(=l, "JCN", 2] /
"ISZ" sym4 (',] adr :twol=1, "lS2", 23 I
" F I ~1" reg p r (', J d a t a : two [= 1, " F' I tJI ", 2] ;

op2 :::
"JUN" adr ;two(=2, "JUN", =0, 1J I
"JMS" adr :twoC=2, "JMS", =0, 1] :

op3 :::
FIN" regpr :one[=3, "fIN", =0, 1) /
SRC" regpr :one[=3, "SRC", =1, 1J I
JIN" regpr :one[=3, "JIN", =1, 1) /
DATA" data :gendata(l] /
ADR" adr : genadr [1] I
PAGE" :page(] I

"ZERO" • NUlVi :zro[lJ;
regpr = .ID ?@ pair;
data:: adr / "(

JAKE.

sym4 (' sym4 :double[2J I :val[lJ) ')
con

[-J => *Nl;
double

(-,-J => + va14(*1]AAD2 + va14(*2]AAD3;

16-APR-75 16:47 < T. P _ Mr." 4 _ 1\1 L.~ ! 1 "() _ "> 1 ?

adr = .ID I .NUN :con[l);
page => &BSS MASK(lc~255)7400B-lc, ;

% instruction generation %
gendata

(.ID] => 4~TYPE *1\1; % 8 bit reloc address %
[double] => 4~TYPE *1\1;
(con] => *Nl:1~OP8 \0; % 8 bit data word %
[val) => +va14[*1:1]~OP8 \0; % data word (b bits) %

genadr
(-J => 4~TYP~ *1\1: % address • 8 bits %

one (-,-,-,-) => % one 8 bit instruction %
*Nl~TYPE % instruction type %
*V2~UP % opcode %
stopa(*4J % UPA field %
(?*N3#O 208] \0; % special opcode bit %

two [-,-,-,-] => % two words, UP OPA adr %
*NIATYPE % opcode type %
*V2~UP % opcode %
stopa(*3] \0 % OPA field ends first eyte %
*4\1 ; % address %

zro [-J => &BSS *Nl,;
END of [-1CS-"*

(pprog) Program to punch tapes tor programmer board
(punCh) FIL~ % to punch tape for MCS-4 programmer ll10,)
(punch.rel,) %
% declarations %

(oprec) RECORD ugnl[4], opa[4], op[4];
(adrec) RECORD ad3l4J, ad2(4J, acl[4], q(6), type[4J;
EXTERNAL sysovr;
DECLARE intel=lOOl, prolog=100~, lprolog=1003; % codes tor
programmer type %
DECLARE progend=1010, progcr=1011; % codes for Pro-log %
DECLARE

.T1Ulk'

110 s tk (50 J ,
ugly=777777U00001B, % add to LiO string to make TEN~X string %
lc, % location counter %
cell, % address of last cell sent to programmer %
pdevice, % punch device %
pjfn, % jfn for paper tape punch %
Ojfn, % jfn for printer listing %
ijfn, % jfn for listing input %
adr!, % first address %
adr2, % last address to program plus 1 %
string[20], % line buffer %
leadch=377B, % rubout for leader character %
one='N, % INTEL one character %
zero='p, % INTEL zero character %
direct=1, %O=paper tape, #0 = directly to programmer %
monitor, % =1 means echo programmer stuff on TTY %
progtype, % programmer type (intel or prolog) %
adrerr=O, % address errors count %
comflg=O, % comment flag, true=inside comment in ijfn text %
lastf=O, % flag, lRUE means we have buffered one char %
lastchar, % this is the buffered char %
laste, % this is the end code for confirm %
lastcell, % this is the location for the char %

I h_/I L.)D_7~ 1 h. d'l tf' r. D M (. -.;: li;\ .• r . c;:, • 1 "n ~ 1 <

tabs=34; % number of chars to tab if no binary stuff %
REGISTER

stack=9, mark=10, r1=1, r2=2;
SET llOsz=50;
SET loader=761265B, loadexit=761321B;

% symbols for T£~LDR are at 777332,,764332 %
% procedures %

(main) PROCEDURE; % main entry pOints in here %
(sysovr):

JAKE.

stack.LH _ -$llOsz; stack.RH _ SllOstk;
error(S"stack overflow");

(jump): GOTO loadereturn;
(envect): GOTO start; GOTD rstart;
(lnit): % set entry vector %

!sevec(4B5, 2B6+$envect);
!haltf:

(start): % starting location %
!reset; !clzff(4B5);
stack.LH _ -SllOsz; stack.RH _ Sl10stk:
adrerr _ 0;
($loadexitJ _ jump;
!psout($"specify REL tile - end with ALT - "+u9ly);
GO TO loader;
% NO'fleE:

loader is the reenter location of TENLDR and loadexit is
the location of the JSYS HALTF in TENLDR (just Defore
sysovr). They must be fixed up each time TENLDR is
changed !!! %

(loadereturn): % return point from loader %
LOOP BEGIN

!psout($"pUnCh tile: u+ugly);
IF NOT'SKIP !gtjfn(060003B6, 1000001018) THEN

BEGIN
jerror(rl);
REPEAT LOOP:
END;

pjfn _ rl;
pdevice _ ldvchr(pjfn); % device designator %
direct _ 0;
CASE pdevlce.LH OF

=6000128, =0: % TTY: %
BEGIN % directly to TTY port, hence to programmer
%
direct _ 1:
progtype _ 1;
IF NOT SKIP !asnd(pdevice) THEN jerror(rl);
E:ND

=6000058: % PTP: %
BEGI1'J
IF NOT SKIP !asnd(pdevice) THEN jerrorCrl);
progtype _ 1;
END;

=6000158: % NIL: %
progtype _ 0;

ENDCASE % file %
progtype _ 1;

16-APR-75 16:47 < LP. MrS4_MT.~!1"n_ '> 111

.TAKI<: •

IF progtype THEN CASE !pbin(!psout(S"prograrnmer type 1s
(L, I, or P) "+ugly)) OF'

='L, ='1: % Lineprocessor and 1200 baud prolog %
BEGIN
!psout(S"ineprocessor and 1200 baud prolog"+ugly);
CASE lpbin() O~.,

=CR, =EOL, =CA: NULL;
ENIJCASE

BEGIN
lpsout(S"? "+ugly);
REPEAT CASE 2;
E:ND;

progtype _ lprolog;
END;

='1, :'i: % Intel %
BEGIN
!psout($flntel"+ugly);
CASE !pbin() OF

=CR, =EOL, =CA: NULL;
E:NDCASE

BEGIN
!psoutCS"? "+ugly);
REPEAT CASE '2;
END;

progtype _ inteli
END;

='P, ='p: % Pro-log %
BEGIN
!psout(S"ro-log"+ugly);
CASE !pbin() OF"

=CR, =EOL, =CA: NULL;
ENDCASE

BEGIN
!psout($"? n+ugly);
HEPEAT CASE 2;
END;

progtype _ prolog;
END;

ENDCASE
BEGIN
!psout($II? "+ugly);
REPEAT CASE ;
END;

If progtype THEN
CASE !pbin(!psout(S"want to see echo from
programmer?"+ugly)) OF'

=CR, ='Y, ='y, =EOL, =CA: monitor _ 1;
ENDCASE

BEGIN
lbout(1018, EOL);
monitor _ 0;
END

ELSE monitor _ 0;
IF NOT SKIP !open£(pjfn, 10B10+385) THEN

BEGIN
jerror(rl);

REPEAT LOOP;
END;

EXIT LOOP;
END;

lpsout(S"entire file to be programmed?"+uglY)i
CASE !pbin() OF

=CA, ='Y, ='y, =EOL:
BEGIN
ijfn _

open(S"sequential listing input: "
16000386, 7810+285);

IF !dvchrCijtn).LH = 6000156 THEN
% i.e. ijfn is NIL: %
BEGIN
ijfn _ 0;
If NOT SKIP !gtjfn(400001B6, S"NIL:"+ugly) THEN

BEGIN
jerror(rlJ;
err 0 r (S If can not pro c e e d II) ;

END;
ojfn _ rl; % NIL: also %
IF NOT SKIP !openf(ojfn,7B10+IB5) THEN

bEGIN

END
ELSE

jerror(rl);
error(S"cannot proceed");
END:

ojfn _ open(S"llstlng output: " 66000386,
7810+1B5);

adrl _ $mcs4;
adr2 _ Smcsend;
END;

ENDCASE
(sstart): BEGIN % restart entry point %
adrl _ inputl(S"from: ")+Smcs4;
adr2 _ MIN(inputl(S"thru ")+Snlcs4+1, $mCsend);
(rstart): % restart entry point adrl,2 setup %
lastf _ 0;
!bout(101B, EOL);
If' NOT SKI P ! 9 t j f n (4 0 0 0 0 1 B 6, $ It NIL : "+ u 9 1 Y) THE N

BEGIN
jerror(rl);
error(S"cannot proceed");
END;

ojfn _ rl;
IF NOT SKlP !openf(ojfn,7BIO+IBS) THEN

BEGIN
jerror(rl);
error($"cannot proceed");
END;

ijfn _ 0;
END;

IF direct THEN
bEGIN
!cfibf(pjfn);

!cfobt(pjfn);
END;

stacK.LH _ -SllOsz; stack.RH _ SllOstk;
output();
findline();
!sout(ojfn, Sstring .V 18M6, 0);
IF NOT SKIP !noutCojfn, adrerr, 10) THEN jerror(r3);
!.sout(ojfn, $11 address errors"+ugly, 0);
IF NOT SKIP !closf(pjfn) THEN jerror(rl);
IF NOT SKIP !closf(ojfn) THEN jerror(rl);
If NOT SKIP !closf(ijtn) THEN jerror(rl);
IF NOT SKIP !nout(101B, adrerr, 10) THEN jerrorCr3);
!psout($" address errorstl+ugly);
!pbout(EOll);
1 p sou t (S ., sue c e 5 s f u leo m p 1 e t ion" + u 9 1 y) ;
IF direct THEN

BEGIN
!psoutes"deassign device? "+uglY);
CASE !pbin() OF

=EOL, =CR, ='Y, =~y:

IF NOT SKIP !reld(pdevlce) THEN jerror(r1);
ENDCASE NULL;

END;
!haltf;

END.
(input1) PROCEDURE % input a number from the user %

% arguments %
(s); % an optional string to be typed %

LOOP
BEGIN
IF s THEN

BEGIN
!pbout(EOL); !psout(stugly);
END;

IF NUT SKIP !n1n(1008, 0, 10) THEN jerror(r3)
ELSE EXIT END;

RETURN(r2) END.
(open) PROCEDURE % open a file %

% formals %
(5, % string %
getw, % gtjfn word %
opnw); % openf word %

LOCAL jfn;
LOOP BEGIN

Ipsout(s+ugly);
IF NOT SKIP !gtjfn(getw, 1000001018) THEN

BEGIN
jerrorCrl);
REPEAT LOOP;
END;

jfn _ rl;
IF NOT SKIP !openfejfn, opnw) THEN

BEGI.N
jerror(rl);
REPEAT LOOP;
END;

RETURN(jfn);
END;
END.

(output) PROCEDURE; % main output procedure %
LOCAL w;
Ic _ cell _ adrl; % first symbol 1n program %
leader() ;
IF lc#Smcs4 THEN % not at start of prog - checK for split
instr %

CASE tIc-iJ.type OF
=1, =2:

bEGI~ % special case - start of 2nd halt of 2 byte
instr %
w _ [lcJ-Smcs4; % relocate addr %
punchst();
punehbyte(w.ad2,O);
punehbyte(w.ad3,1);
punchend();
BUMP Ie, cell;
checKle():
END;

ENDCASE !\i ULL;
V'JHILE lc<adr2 DO

BEGIN
findline();
punctlle () ;
v; _ llcl;
punchl();
!sout(ojfn, Sstrlng .V 18Mb, 0);
IF w=O THEN % string of zeros case keep listing aligned %

WHILE [(lc_cell_lctl1]=O AND lc<adr2 DO
BEGIN
ehecklc();
punchlc () ;
punchl():
!bout(ojfn,EOL);
END

ELS~ BUMP lc,cell;
checklc();
END;

leader();
RETURN END.

(checklc) PROCEDURE; % CheCK for edge of ROM page %
IF (lc-Smcs4) .A 8M = 0 lHEN leaderl);
RETURN END.

(leader) PROCEDURE; % punch leader or setup programmer%
LOCAL ii

JAKE ..

IF direct THEN
BEGIN
If lastf THEN

confirm(lastcell, lastchar, laste);
lastf _ 0;
IF lc>=adr2 THEN RETURN;
!psout(S"type CR when PHOtvl is ready"tugly);
CASE bincnr() UF

=CR, =EOL, =CA: NULL;

16-APR-75 16:47

ENUCASE REPEAT CASE;
CASE progtype OF

=intel:
BEGIN
lbout(pjfn, 'P);
!dlsms(750);
IF Nor SKIP !nout(pjfn,(le-Smes4) .A 8M,140003B6+10)
THEN jerrorCr3);
Idlsms(750);
IF NOT SKIP !nout(pjfn,MIN((adr2~smes4 -1),
Cle-$mcs4) .V 255) .A 8M, 14000386+10) THEN
jerror(r3);
ldisms(750);
END;

=prolog:
BEGIN
lbout(pjfn,'*); eonflrm(Smcs4,t*, proger);
lbout(pjfn,'p); confirm(Smcs4,'p, prager);
i _ le-Smcs4;
!bout(pjfn,hex(1.ad2»; conflrrn(Smes4,hex(i.ad2), 0);
!bQut(pjfn,hex(i.ad3»; confirm(Srnes4,hex(i.ad3), 0);
i _ £vi IN ((ad r 2 - $ me s 4 -1), (1 C - $ in C s 4) • V 8 M) • A 8 til;
!bout(pjfn,hexli.ad2»; contirm(Smes4,hex(i.ad2), 0);
Ibout(pjfn,hex(i.ad3»;
conflrm(smcS4,' ,0)1 % ?1???????? %
END;

=lprolag:
BEGIN
IpoutCpjfn,'*); contirm($mcs4,'*, proger);
lpout(pjfn,'P); conflrmlSmcs4,'p, proger);
i _ le-$mes4;
lpoutC~jfn,hex(i.ad2); contirm(Smcs4,hex(i.ad2), 0);
Ipout(pjfn,hex(i.aa3»; contirm(Smcs4,hex(i.ad3), 0);
i _ [>1 I N (Cad r 2 S me s 4 - 1), (1 e - S me s 4) • V 8 ~l) • A 8 M ;
Ipout(pjfn,hex(i.ad2»); contirm(smcs4,hex(i.ad2), 0);
Ipout(pjfn,hex(i.ad3));
confirm($mcs4,' ,0); % 11111?1?1? %
END;

ENDCASE NULL;
END

ELSE FOR i_O UP 1 UNTIL = 75 DO !bout(pjfn,leadch);
RETURN END.

Cbinchr) PRUCEDURE; % do a pbin %
!pbin(); RETURNerl) END.

(punchlc) PROCEDURE; % put location on listing%
LOCAL I; % location %
I _ lc-Smcs4;
CASE progtype OF

=intel:
BEGIN
IF i .A 2M = 0 THEN

BEGIN
!bout (p,jfn, CR); !bout(pjfn,LF);
IF NOT SKIP !nout(pjfn,i,140004B6+10) THEN
jerror(r3);
!bout(pjfn,·);

~ T . 0 lvi(' c:: Ll i,1 T . c: • 1 "n ~

END;
E.:ND;

=prolog:
NULL;

=lprolog:
\\lULL;

ENDCASE. NULL;
IF NOT SKIP !nout(ojtn, i,14000486+10) THEN jerror(r3);
% put hex address on listing %
!boutCojfn, , 1; !bout(ojfn,'P);
IF NOT SKIP !nout(ojfn,(i.adl),140001B6+10) THEN jerrorCr3);
!bout (oj fn, ':);
!bout(ojfn,heX"(i.ad2));
!boutCojfn,hex(i.ad3);
RETURN END.

(punchl) PROCEDURE; % punch instr. (maybe two bytes) %
LOCAL

JAKE.

w, % the instruction word %
t; % flag for opcode fIM or not %

oN _ [Ic];
CASE w.type Of

=0, =3: % 8 bit instr COP OPAl %
bEGI~.;

punchst()i
punchbyte(w.op,O);
puncnbyte(w.opa,l);
punchend();
!sout(ojfn, S" "+1 .V 18M6, 0);
ENO;

=1: % 16 bit instr OP OPA + 8 cit adr %
BEGIN
pllnCl"!st();
punchbyte(w.op,O):
punchbyte(w.opa,l);
punchend();
f _ (IF w.op=2 %fIM% THEN 1 ELSE 0);
8UNP lc,cell;
cilecklc () ;
IF lc>=adr2 THEN RETURN;
w _ [lc]-Smcs4:
punchst();
punchbyte(w.ad2,O);
punchbyteCw.ad3,1);
IF \I;.adl #

(CASE (lc-$mcs4) .A 8M Of
=255: Clc-Smcs4+1)/400B;
ENDCASE (lc-Smcs4)/400B)

AND £=0 THEN punchrr()
ELSE punchend();
% adr err if adaress not within next PROM if at 255
or this PROM, but not on FIM lostr in any case %

END;
=2: % 16 bit instr UP + 12 bit adr %

BEGIN
punchst();
punchbyte(w.op,O);

16-APR-75 16:47 < L P. rl/l (' S 4. _ ;\11. S ! 1 r:; n. ~ ? ()

BUf~P Ic;
w _ [leJ-$mes4;
punchbyte(w.adl,l);
punchend();
BUMP cell; % only place Ie and cell diverge %
ehecklc();
IF lc>=adr2 THEN RETURN;
punchst()i
punchbyte(w.ad2,O);
punchbyte(w.ad3,1);
punchend();
END:

=4: % relocatable address - 8 bits %
BEGIN
w _ w-smcs4;
punchst();
punchbyte(w.ad2,O);
punchbyte(w.ad3,1);
punehend():
!sout(ojfn, $" "+1 .V 18fVl6, 0);
END:

ENDCASE
error(S"illegal instr type");

puneolC);
RETURN END.

(hex) PROCEDURE(x); % convert x to HEX character %
CASE x Or'

Ii\J lO,9]: RETURN{x+'O);
IN (10,15]: RETURN(x-10+'A);
ENDCASE error($"illegal hex value");

END.
(punchst) PROCEDURE; % punch starting char, if any %

CASE progtype OF
=intel:

BEGIN
!bout(pjtn, '8);
END;

=prolog: NULL;
=lprolog: NULL;
ENDCASI:: NULL;

lboutCojfn, ");
RETURN END.

(punchend) PROCEDURE; % punCh ending char it any %
CASE progtype Of

=intel:
BEGIN
!bout(pjfn, '1");
conflrm(cell,O,O);
END;

=prolog: NULL;
=lprolog: NULL;
ENDCASE NULL;

!bout(ojfn,');
RETURN END.

(punchrr) PROCEDURE: % like punehend, but address error displayed
%

JAKE, 16-APR-75 16:47

CASE progtype OF
=intel:

BEGIN
!bout(pjfn,"F);
confirm(cell,O,O);
END;

=prolog: NULL;
=lprolog: NULL;
ENDCASE NULL;

!bout(ojfn,'A);
BUMP adrerr;
RETURN t:::ND.

(confirm) PROCEDUR~ %confirm response from programmer %
(addr, % the address being programmed %
c, % the return character if progtype=prolog,lprolog %
x); % echo confirmation code %
LOCAL t, f, waitime;
IF direct AND !dvchr(pjfn).LH # 6000158 THEN

% i.e. pjfn is not NIL: %
BEGIN
f _ 0;
CASE progtype OF'

=intel:
BEGIN
!disms(lOOO); % at least 10 chars to send %
waitime _ 600;
END;

=prolog:
BEGIN
waitime _ 0;
!disms(

(CASE x OF
=progend: 25;
=progcr: 20
ENDCASE 0)

) ;
END;

=lprolog:
BEGIN
waitime _ 0;
!disms(

(CASE x OF
=progend: 25;
=progcr: 20
ENDCASE 0)

) ;
END;

ENDCASE NULL;
LOOP BEGIN

t _ !tlme();
WHILE SKIP lsibe(pjfn) DO

IF (ltime()-t) > waitime AND f=2 OR (!tlme()-t) >
5000 '!HEN

BEGIN
IF f=2 THEN RETURN;
IF NOT SKIP !slbe(pjtn) THEN EXIT;

f{ 1".P _ Mr'.c:::.d l\il .. '" 1 ~() ~ ')')

% give 'm one more chance %
lpsout($" no confirmation for word "+ugly);
If NOT SKIP !nout(101B, addr-Smcs4,140004B6+10)
THEN jerror(r3);
!pbout(EOL);
lpsout($" type CR, S, R, P or '! for help"+ugly);
CASE binchr() OF

=CA, =EOL, =CR: NULL;
='5, ='s:

BEGIN
!pboutlEOL);
!psout(S"hit reset on the programmer box
before proceeding "+ugly);
!pbout(EOL);
GOTO sstart;
END;

='R, ='r:
Bt;GIN
!pbout(EOL);
!psout(S"hit reset on the programmer box
before proceeding H+uglY)i
!PboutlEOL);
adr1 _ addr;
GOIO rstart;
END;

='P, ='p:
BEGIN
!pbout(EOL);
!psout($"hit reset on the programmer bOX
before proceeding "+ugly);
!pboutCEOL);
adr! _ (addr-smcs4) .A 7774008 + Smcs4;
GOTO rstart;
£ND;

='1:
BEGIN
!pbout(EOL);
!psout(S"type CR to continue"+ugly);
!pbout(EOL);
lpsout(S"S to start over (respecify start
and finisrd"+ugly); !pbout(ti:OL);
!psout(S"R to restart from tnis word"+ugly);
!pbout(EOL);
lpsoutlS"P to restart at first word of this
proml/+ugly); !poout (EOL);
REPEAT CASE;
END;

ENDCASE
BEGIN
!psout(S"type ? for help, fella"+ugly);
!pbout(EOL);
R.EPEA'I CASE;
END;

RETURN;
END;

WHILE NOT SKIP !sibe(pjfn) DO

'l'-_l\nn_"1k 1:;../1"7

BEGIN
lbin(pjfn);
r2 _ r2 .A 7M:
IF monitor THEN

IF' r2 < 408 THEN
bEGIN
%!pbout(f~);% ito get your control characters
printed%
%!pbout(r2+40B);%
!bout(lOlB);
E.ND

ELSE !bout(101B);
CASE progtype Of

=intel:
IF' r2 IN (40B, 'z] THEN

CASE f OF'
=0: IF r2='8 THEN f _ 1;
=1: IF r2='F THE~ f _ 2;
=2: IF r2='f AND done(addr)

THEN f _ 2 ELSE f _ 3;
ENDCASE NULL;

=prolog, =lprolog:
BEGIN
CASE x OF'

=progend: % demand eR, string space %
CASE f (jEt'

=0: If r2=c THEN £_1;
=1: IF r2=LF ThE~ £_4

ELSE IF r2=CR OR r2=EOL THE~ t_3;
=3: IF r2=' THEN f_2

t:.;LSE 1.£0' r2=' I AND done (addr) THEN
f_2;

ENDCASE NULL;
=progcr: % demand eR, LF %

CASE f OF'
=0: IF r2=c THEN f_1:
=1: IF r2=EOL THEN £_2;
ENDCASE NULL;

ENDCASE % demand the char %
CASE f OF

=0: IF r2=c THEN £_2;
=2: f_3;
ENDCASE NULL;

END;
ENDCASE NULL;

END;
END;

END;
RETURN END.

(done) PROCEDUR£(addr); % return true if end of PROM%
RETURN(

IF (addr+l-Smcs4) .A 8M = 0
OR addr=adr2~1 THEN 1

ELSt: 0);
END.

(punchbyte) PROCEDURE(bits,e); % punch one 4 bit byte and list it

JAKE" 16-APR-7~) 'lh!47

%
% bits=byte to punch, e=true if 2nd 4-bit byte %
LOC Al, w, i, x;
IF progtype=intel OR ijfn#O THEN

BEGIN
r1 _ bits; !LSH r1,32; x _ rl;
FOR i_O UP 1 UNTIL = 4 DO

BEGIN
r 2 _ x; r 1 _ 0; ! LSHC r 1 ,1;
w _ rl; x _ r2;
IF' 1ft THEN

bEGIN
IF progtype=intel THEN lbout(pjfn,one);
!bout(ojfn, '1);
END

ELSE
BEGIN
IF progtype=lntel THEN !bout(pjtn,zero);
lbout(oj£n, '0):
END;

END;
!bout(ojfn, •);
END;

CASE progtype OF
=intel: NULL;
=prolog:

bEGIN
IF lastf THEN confirm(lastcell, lastchar, laste);
lastchar_hex(4M-bits);
!oout(pjfn,hex(4M-bits));
lastt _ 1;
laste _ If e THEN progend ELS~ 0;
lastcell _ cell;
END;

=lprolog:
BEGIN
IF lastf tHEN confirmClastcell, lastchar, laste);
lastchar_nex(4M-bits);
Ipout(pjfn,hex(4M-bits));
lastf _ 1:
laste _ If e THEN progend ELSE 0;
lastcell _ cell;
END;

ENDCASE NULL;
RETURN END.

(puneol) PROCEDURE; % punch end of instruction stuff, if any %
CASE progtype OF

=intel:
% IF (lc-smcs4) .A 2M = 0 THEN BEGIN

!bout(pjtn, CR);
!bout(pjfn, Lf);
END;%

NULL;
=prolog: NULL;
=lproloq: NULL;
ENDCASE NULL;

~ f . D tlii r c:.:. A r-i r . c:.:. • 1 "n , '") I:;.

RETURN END.
(lpout) PROCEDURE (jfn,char);

% output a character to the copy printer port ot a
llneprocessor %
!bout(jfn,33B);
!bout(jfn,52B);
!bout(jfn,40B);
!bout(jfn,41B);
!bout(jfn,char);
RETURN;
r:ND.

(findline) PROCEDU~~: % scan ijfn text tor next iostr %
LOCAL

x, % character %
slasnflg, % true 1f llne nad '/ on it %
i; % index into string %

IF ijfn=O THEN RETUR~(string_174B9):
slashflg _ 0;
LOOP

BEGIN
!gtsts(ijfn);
IF r2 .A 189 THEN % end ot tile %

BEGIN
string _ 174b9; % EUL,O %
RETURN;
E;I~D ;

!sinCijfn, sstring .V 18Mb, 100, Lfl;
~r2 _ 0; % ensure null %
i _ Sstring .V 440788;
LOOP CASE (x_~l) OF

END
END.

='/: IF comflg=O THEN slashflg_l;
=Lf, =0: BEGIN

IF slashflg THEN RETURN;
FUR i_O UP 1 UNTIL >= tabs DO !bout(ojfn,');
lsout(ojfn, $string .V 18M6, 0);
REPEAT LOOP 2;
END;

='%: comflg _ IF comflg THEN 0 ELSE 1;
~NDCASE NULL;

(error) PROCEDURE % general error routine %
% argument %

(s); % a atring %
!pbout(EOL); !psout(S"error: "+uglY)i
!psout(s+ugly); !pboutlEOL);
!haltf;
RETURN END.

(jerror) PROCEDUR~ % jsys error writing procedure %
% argument %

Cerrorn); % error number %
!erstr(lOlB, 4Bl1+errorn, 0);
!JFCL; !JF'CI.d !pbout(EOL);
RETURN END.

FINISH
(directions) How to program a PROM

JAKE. 16-APR .. 75 16:47

To compile the program (and obtain a REL file)
Go into NLS.
Load the desired NLS file containing the program.
From the programs subsystem COMPILE FILE using (MCS4,) to the reI
file of your choice.
Quit.
You are now at TENEX EXEC (@).

Write a PROM set and/or obtain an assembly listing
The routine <LP>MCSLDR>SAV drives PHOM programmers and creates
assembly listings.
To obtain an assembly listing before programming PROMS.

Get a reI file as above.
Get a sequential tile coresponding to the source of the reI
file. (For example, OUTPUT SEQUENTIAL FILE)
From EXEC run <LP)MCSLDR.SAV

Answer questions namely:
Give your rel file followed oy <ESC>
Punch file is NIL: <CR>
Provide the name of he text file <CR>
Provide the name of a file to save the listing <CR>

When MCSLDR finishes copy the 115t1ng file tto a printer
(Paper tape and the Intel programmer are essentially obsolete)
To obtain a prom set from a PROLOG programmer connected as a
terminal to the host machine or connected to a line processor
with a copy printer receiver.

Get a reI file as above.
From ~XEC run <LP>MCSLDR.SAV

Answer questions namely:
Give your rel file followed by <ESC>
Punch file is TTY: <CR> (for a line processor)

TTYnn: (for a local terminal)
Programmer type is L tor a line processor <CR>

P for a local terminal <CR>
Either echo mode is OK
If less than the full file is to be programmed provide
tne inclusive bounds In DECIMAL!

The PROM boundaries are:
prom 0 0 - 255

1 256" 511
2 512 - 767
3 768 - 1023
4 1024 - 1279
5 1280 - 1535
6 1~36 .. 1791
"7 1792 - 2047

Provide the name at he text file <CR> or NIL: <CR>
Provide the name of a file to save the listing <CR> or
NIL; <CR>
With the PROLOG power off insert a erased PROM into the
COpy socket, turn he power, and press RESET. Enter a
<CR> to the terminal. The MCSLDR will continue to drive
the PROLOG until complete by requesting a <CR> for each
new PROM as aoove.

Create a new MCSLOR
MCSLDR is a stand alone tenex routine. The source is stored in
CLP,MCS4,PPRUG1. Obtain a rel file named punch.rel (for example)

"1 A 1('"1.'

then Goto Tenex.
<arcsubsys>TENLDR <CR>
IS <cr>
punch <cr>
<andrews>llOrun <cr>
<arcsubsys>stenex <cr>
<altmode>
(tnere will be two undefined referances)
DDT <CR>
init <ESC> 9 (initializes MCSLDR and exits ddt)
SSAVE <ESC> <ESC> <ESC> <LP>MCSLDR.SAV <CR>

OLD INTEL DOCUMENTATION
Setup to Program the PROM

setup the INTEL programming board
Connect the INTEL board to TEN tty port xx (currentlY using
26 octal).
Connect a terminal to tne grey box (if desired) and set the
grey bOX switches for INTEL <-> TEN connection.

On the TEN~X terminal, say
ASSIGN <altmode> TTYxx: <cr> (e.g. T1126: <cr>)

Run the punch program
On the TENEX terminal, type

DDT <cr>
start<altmode>G
(punch file:] TTYxx: <cr>
[entire file to oe punched? J <cr>
(sequential text input:] <prog>.Txr <cr>

or, if no listing is desired, type NIL:
[listing output: J LPT: <cr>

or, if no lIsting 1s desired, type NIL:
the program will say "type CR wnen PROM is ready"

Double check tne setup, and type CR when you are ready.
Did it work correctly?

JAKE.

Expect to see the following on the TENEX terminal (and on the.
terminal connected to the grey box, if connected)

p
000
YYY (in decimal)

where yyy is the last cell of the PROM to be programmed
then a bunch of things like BNPPNNPNPF

Where N:l, p=O, and the whole thing represents a PROM
word.
There may be either one or two of these per line.
Locations appear in the left margin. They are program
locations, not PROM locations: These are the same for
the first PROM, but program location 256 is PROM
location zero tor the second PROM, etc.

A final ifF" on. a line by itself means the PROM is done.
Look for the following on the TENEX terminal:

"Type CR when PROM is ready" when a PROM is finished means
that the program wants to do another PROM. Remove the
finished one, put in a new one, and type CR When ready. "
The message "successful completion" means you are done.
The message "file not closable" is standard when using the
TTYxx: port.

If you are unable to program a PROM word, you will see $$$?

< I.D _ Mr.'=.l1 juT,.c;.! 1 '\n. ~ ')Q

after the BNPP ••• F thing for the word that failed. The TENEX
terminal should say "can't program that cell" and quit.
Programming will fail if:

1) the PROM is not erased
2) the programming switch is set to disabled (on INTEL
board)
3) INTEL board is not setup right
4) the PROM is not seated in the socket

If 'rENEX crasned or the programming is stopp~d somehow, you
may re-program without erasing the PROM - i.e. you may
re-write the PROM if you write the same thing again.

Variations:
You may punch a paper tape by giving PTP: as the punch file
rather than TTYxx:. In that case, just type CR when the punch
program says "type CR when PROM is ready".
tou may just obtain a listing of the program by giving NIL: as
the punch file, and giving the TXT file as sequential test
file and LPT: as the listing file.
You may program only certain locations bY saying no when the
pun c h pro g ram aSk s " en t ire pro g ram to be pun c h ? It • In t ha t
case, you provide two program locations xl thru x2, and only
locations xl thru x2 will be programmed.

