
Price $3.00

INTRODUCTION TO THE AUGMENT TEXTBOOK SERIES

Copyright Tymshare Inc., May 1980
20705 Valley Green Drive
Cupertino, California 95014

This document was prepared and composed for
printing with AUGMENT by the Office
Automation Division of Tymshare, Inc.

AUGMENT Journal Number 48743
Tymshare Document Number 1820

CONTENTS

Introduction

The Structure of a Lesson 3

Notation for Special Characters: < > 4

Format of Examples 4

Format of the List of Commands 5

INTRODUCTION
The AUGMENT Textbook Series describes Tymshare's AUGMENT system. It tells
what you can do with AUGMENT and how to do it. We also hope that it will
help you develop a new style of working. By using AUGMENT's special tools
and techniques rather than typewriters, pencils, and paper, you will be better
able to organize your thoughts and written information and communicate
them to others. AUGMENT is a versatile system that can help with many
different kinds of work; which aspects of it you use will depend on your
particular job.

The textbook was written for a very wide range of AUGMENT users. Some are
highly technical people, with a great deal of computer experience, who look
forward to learning a new system with confidence and pleasure. Others are
people who have never seen a computer or a terminal before; they will be
using AUGMENT for the kind of work that they have always done without the
aid of a computer.

Just as the backgrounds of our users vary greatly, so do their requirements
for AUGMENT documentation. People who are trained by Tymshare staff need
a manual they can use for review or reference, while others want to learn
AUGMENT on their own by reading some kind of user guide from beginning to
end. Most people need to learn only certain skills beyond the basic ones and
do not want to have to wade through a lot of documentation that is not
relevant to their work. Still other people want a document that will give
them only a general idea of AUGMENT's capabilities; they may not necessarily
want to use the system or ever sit down at an AUGMENT work station.

In planning the AUGMENT textbook, we have tried to accommodate as many of
these people as possible. The textbook consists of a series of individually­
bound lessons. There is an "Introduction to AUGMENT", which gives a
general idea of what it is like to learn and use the system. There are basic
lessons that teach skills everyone needs to know, starting with "Beginning
Use of AUGMENT". There are also more advanced lessons and lessons on
specialized topics; often these build upon more basic knowledge taught in
other lessons. You do not have to read the lessons that are irrelevant to
your work situation or that cover information you already know. The
AUGMENT service people who train and advise you will recommend the set of
lessons you need. We will continue to add new lessons to the series.

The language in the textbook is simple, nontechnical, and informal. We use
a detailed and thorough approach, building carefully upon the basics in
sequences we have tested through many hours of training users in AUGMENT.
We define, explain, illustrate, and summarize the functions and concepts we
present. We include a great many examples that you can follow as exercises,
and often suggest further exercises at the end of a lesson. Such thorough
treatment may be more than some readers need, but it helps ensure that
others will not be confused by too little exposition. The more advanced or
specialized a lesson, the less thoroughly we guide the user through the
information.

Introduction to the AUGMENT Textbook Series 1

Introduction

The textbook is useful not only as a learning guide but also for reference.
Though it is by no means a complete reference manual, it does include most
of what users need to know to do their work in AUGMENT. The organIzation
and layout of each lesson are designed to help readers skim and skip around,
both when they first read the lesson and when they refer back to it in search
of a specific fact. For example, AUGMENT terms and commands are often
noted in the margin beside the paragraphs that discuss them, and the
"Vocabulary n section at the end of a lesson lists terms and commands in
alphabetical order, describes them briefly, and indicates where they are
discussed in the lesson.

The textbook is written primarily for people who do or will have access to a
standard AUGMENT display terminal. The features of this terminal include
specially marked keys and a pointing device called a "mouse". We have
adapted AUGMENT to some display units other than the standard AUGMENT
display. Of course, keys and pointing features available on such equipment
will be different. You will need to supplement the textbook lessons with our
documentation on how to use AUGMENT at that particular terminal.
Furthermore, AUGMENT can be used at a typewriter-like terminal; users of
AUGMENT at these terminals should be sure to read the special n typewriter
mode n lessons.

Because learning AUGMENT is similar to learning a language, the lessons in
the textbook are organized like lessons in a foreign language textbook. The
following section describes in detail the organization of a typical lesson so you
can understand how the various sections relate to each other and can tell
which sections will be the most helpful to you.

2 Introduction to the AUGMENT Textbook Series

The Structure of a Lesson

THE STRUCTURE OF A LESSON
Each lesson begins with a very brief description of the topics it covers,
perhaps suggesting the type of work you can do with what you will learn.
You are also told what you should already know before starting the lesson,
and possibly the name of a lesson in which you can find it. Following a
table of contents, the remainder of each lesson has the structure shown
below.

Introduction. This section presents the new concepts and background
information you need to know in order to understand the lesson.

The body of the lesson. The body of a lesson may consist of any number
of sections, each under an appropriate heading. These sections contain the
primary discussion of the subject of the lesson. Main headings also appear as
running headers at the top of the pages to aid you in flipping back through
the material. Illustrations referred to in the lesson may be interspersed with
text or may follow on a separate sheet.

Exercises. This section contains exercises to test what you have learned.
Solutions are provided at the end of the lesson.

Suggested Projects. Some lessons include this section to suggest ways that
you can gain experience in using what you have learned.

Summary. This section briefly summarizes the lesson, emphasizing
particularly important concepts. It may refer you to other lessons or
documents that might be helpful.

List of Commands. The AUGMENT commands discussed in the lesson are
listed in this section. You are shown all the steps in each command,
including both what you type and the words AUGMENT displays to help you
fill out the command. You may want to read through this list to review the
steps in the commands you have just learned or refer to it later if you have
forgotten how to give a command. More information on how the commands
are shown appears later in this introduction.

Vocabulary. Here you will find an alphabetical list and short definitions of
terms and commands encountered in the lesson. It includes all new terms
and commands introduced in the lesson and possibly also some important
terms that you should have known before starting the lesson but may have
forgotten. You should refer to this section when you are reading the lesson
if you encounter an unfamiliar term. You may want to read through it after
the body of the lesson to review what you have just learned, or refer to it
later if you have forgotten the meaning of a term or the function of a
command. For terms and commands that are discussed in the lesson, we
include page numbers directing you to the discussions.

Solutions to Exercises. You may check your responses to the exercises.

,

Introduction to the AUGMENT Textbook Series 3

Notation for Special Characters: < >

NOTATION FOR SPECIAL CHARACTERS: < >
The characters you type when you use AUGMENT include not only letters,
numbers, and punctuation, but also some characters that you cannot see, such
as spaces and characters having a special control function. Where an
AUGMENT textbook lesson shows what you type, you can usually tell where to
type a space, such as between words in a paragraph. In some cases, however,
it may not be clear that you type a space. In these cases, and wherever you
are to type any other special character, the textbook uses a special notation:
an uppercase word or abbreviation enclosed in angle brackets, such as <OK>.

Since there is sometimes more than one way you can type a special
character, and since the key labels may differ on different models of
terminals, the textbook uses a standard notation for each special character.
It uses only this notation; except for occasional references to buttons on the
mouse, it does not tell you exactly what to press. To learn what keys or
mouse buttons to press at the standard AUGMENT display terminal, see the
table in Figure l.

NOTE: This table also includes some key labels that appear on older models
of the standard AUGMENT display terminal. If you will be working at a
nonstandard display terminal, see the corresponding table in the document on
how to use that particular terminal, and if you will be working at a
typewriter-like terminal, see the lessons written about using AUGMENT in
typewriter mode.

The first column of the table in Figure 1 shows the notation we use. The
second column lists the keys or mouse buttons you would press to produce
the character represented by the notation or describes what you would do.
Where applicable, the third column shows another special character that
normally will have the same effect as pressing the indicated keys or buttons;
note, however, that in some cases it is possible to change the equivalent
character from the one shown here.

Refer to Figure 1 when you encounter unfamiliar notation in a lesson. You
do not have to understand the functions of the special characters or how to
use the mouse at this point; you will learn about these in detail later.

Also for convenient reference, the table in Figure 2 shows the buttons on the
mouse and the functions and notation for the characters you get when you
press those buttons. The circles represent the three buttons; filled -in circles
represent buttons pressed. You will learn how to use these functions later.

FORMAT OF EXAMPLES
Most examples of doing work in AUGMENT are shown in two columns, the
first indicating what you type and the second showing what you would then
see in the command window. The command window is one of the areas of
the screen on the display terminal; when you give a command, the command
is displayed in this window along with feedback from AUGMENT, such as
prompts telling you what you can do next.

4 Introduction to the AUGMENT Textbook Series

NOTATION KEYS OR BUTTONS EQUIVALENT

<BC> BACK SPACE CHAR, BACK SPACE, or left mouse button <CTRL-A> or
<CTRL-H>

<MARK> Point with mouse and press right mouse button or OK key

<BW> BACK SPACE WORD or left and middle mouse buttons <CTRL-W>

<CD> CMD DELETE or middle mouse button <CTRL-X>

<CTRL-x> Hold down CTRL while typing the letter x in either lowercase
or uppercase (where x may be any letter)

<ESC> ESC or left and right mouse buttons

<HELP> HELP <CTRL-Q>

<INS> INSERT or INSRT <CTRL-E>

<LF> LF or LINE FEED <CTRL-J>

<LIT> LITERAL <CTRL-V>

<LOCAL- LOCAL RESET
RESET>

<NULL> NULL <CTRL-N>

<OK> OK or right mouse button <CTRL-D>

<OPT> OPT'N or OPTION <CTRL-U>

<RC> REPEAT CMD or middle and right mouse buttons <CTRL-B>

<RET> RETURN <CTRL-M>

<SP> Space bar

<TAB> TAB <CTRL-I>

FIGURE 1: SPECIAL CHARACTERS ON THE STANDARD AUGMENT DISPLAY TERMINAL

BUTTONS FUNCTION NOTATION

0.0 Command Delete (CD)

.00 Backspace Character (BC)

00. OK (OK)

•• 0 Backspace Word (BW)

0 •• Repeat Command (RC)

.0. Escape (ESC)

FIGURE 2: MOUSE BUTTONS

In either column of an example, when what you type or see cannot fit on
one line, all lines beyond the first are indented slightly to show that they are
continuation lines. The line length in the example depends on the width of
the column and may not be the same as what you actually observe at the
terminal.

Sometimes the command window shows first one thing and then another,
before you type again. In this case, both appear in the second column of the
example, one after the other. Note, however, that when you give the
command you may hardly notice what is shown first, because what follows it
may appear immediately thereafter.

The examples show what you see if you are getting standard command
feedback from AUGMENT. You may ask to receive a different type of
feedback, more suited to your needs; in this case, you may see in your
command window something slightly different from what is shown in the
examples.

The examples often show that you type lowercase letters where you may
actually type either lowercase or uppercase or any combination of the two.
Where it matters which case you use, this will be noted in the discussion
surrounding the example or will be clear from the context. For instance,
when you type some text that you want to save, AUGMENT accepts the text
exactly as you type it, but when you type a letter of a word in a command,
case is ignored.

Occasionally, when the details of the interaction are not important to the
current discussion, examples are shown in a more concise way. The
information that would otherwise appear in two columns is combined into
one, showing the words in the command, some of the feedback you get, and
the responses you type, in the order you would see them.

FORMAT OF THE LIST OF COMMANDS
Every AUGMENT command discussed in a lesson is listed in the .. List of
Commands" section. Similar commands are grouped together. For each
command, we show all the steps or choices of steps you have learned in the
lesson, in the order of their occurrence in the command, and we may also list
some easy extensions to what was discussed. The following paragraphs
describe how we represent the steps in these commands. This description is
included here for your reference when reading the .. List of Commands"
sections; it contains some special terms that you will learn later.

A step in a command may be something you type or something AUGMENT
displays. Some simple steps and the way we show them are as follows:

A "command word", which you begin and AUGMENT recognizes and
finishes, is represented by a word with only its initial letter capitalized,
such as: Delete

"Noise words", which AUGMENT displays in parentheses to help you
along, appear in parentheses, such as: (to be named)

Format of Examples

Introduction to the AUGMENT Textbook Series 5

Format of the List of Commands

Special characters that you type are represented by their standard
notation, within angle brackets, such as: <OK> (See Figure 1.)

At some points in commands, we use uppercase words to represent what you
can do and then define or describe those words in a table at the end of the
commands list. Often the word represents choices you have at that point in
the command; it is like a "variable" for which you may select any of the
choices listed for it. In the table defining these special words, we use some
of the same representations as discussed above. For example:

LOCATION Prompted by "MI A: "
For M you may <MARK>.
For A you may type an address, ending with <OK>.

STRUCTURE Statement or Branch or Group or Plex

The word "or" indicates that you may choose one or the other. Slash (/)
also means "or". As shown in the example above, the prompt you get for
LOCATION tells you that. you have a choice; our definition describes what to do
in either case and includes some special characters (which you can look up in
Figure 1). The choices listed for STRUCTURE are command words; that is, you
may choose one of those command words where STRUCTURE appears as a step
in a command.

Square brackets enclose steps in a command that you may skip completely or
may choose by first typing the special character <OPT>. For example:

Force (case) [Upper (for)] STRUCTURE (at) LOCATION <OK>

means that you can either omit the bracketed option, as in:

Force (case) STRUCTURE (at) LOCATION <OK>

or include it as follows:

Force (case) <OPT> Upper (for) STRUCTURE (at) LOCATION <OK>

6 Introduction to the AUGMENT Textbook Series

Price $3.00

INTRODUCTION TO AUGMENT

Copyright Tymshare Inc., May 1980
20705 Valley Green Drive
Cupertino, California 95014

This document was prepared and composed for
printing with AUGMENT by the Office
Automation Division of Tymshare, Inc.

AUGMENT Journal Number 48746
Tymshare Document Number 1838

This introduction is for people who will be learning AUGMENT, to
give them an overview so they will have a general idea of what
their experience will be like. It also describes a number of the
tools AUGMENT offers, so that prospective users will know the
many ways AUGMENT can help them in their work. People who
will not themselves use AUGMENT, but who will be working with
people who do, may also benefit from reading this introductory
information.

The introduction must serve several types of readers. Some are
readers who know very little about computers; they will find
helpful general information in the BACKGROUND section. Readers
who know more about using computers may want to skip that
section. Note that this introduction does not provide technical
details about computer operation or programming.

CONTENTS

Background 1

What is it Like to Use AUGMENT? 3

Viewing Information 3

Saving, Finding, and Sharing Information 3

What is Learning AUGMENT Like? 4

How is Writing Different? 5

Communicating and Distributing through Electronic Mail 5

Changing How You Work 6

Changing How You Use AUGMENT 7

The AUGMENT System 7

Work Stations 7

Commands 9

File Structure 11

SUbsystems 11

An Example of Applying AUGMENT 14

Documentation 15

Services from Tymshare's Office Automation Division Staff 16

Summary 19

BACKGROUND
A computer is an electronic device that can accept information from a
user, work with the information, and provide results. Computers
provide us with an amazing range of tools. Whether you want to solve
a math problem, reserve a seat on an airplane, or write a memo, the
computer offers a tool that helps you do what you want done.
AUGMENT is a set of tools that enables people who work with textual
information to use the power of computers. In the case of AUGMENT, it
is most important that computers can store text the way filing cabinets
or books do and then help you freely copy or change it and deliver it
to others. AUGMENT services include access to a computer, equipment
that displays information and what you do with it, and the introduction
of new skills and working methods to help users take advantage of
these tools.

It is worth stopping for a moment to consider what it means to say
that computers offer tools. People have been using tools since the days
of stone axes; with tools we have been able to build beyond the
strength of our bodies, understand things we cannot observe, and create
systems that free us from menial tasks.

Some inventions have opened up the possibility of a wide range of
related tools. For example; we speak of the invention of the wheel, but
when man began to harness rotation, we were able to have not only
wheels, but engines to turn them, mills, drills, watches, and so on.
Like rotation, computing is now the basis of many tools.

Some very complex tools have been made to feel simple and familiar to
the person using them. A car is a complex system with thousands of
parts and a very subtle design, yet we can use a car with one steering
wheel, some pedals and knobs, and a few weeks training. Moreover, the
car is really only part of a more complex system, including roads, gas
stations, street signs, and so on, that we employ casually.

People have learned how to apply a computer's power in many ways
that have changed the world, but they have only begun to understand
how to make a computer simple to use. At Tymshare's Office
Automation Division, we have been. working for many years to make
computers simple to use. We have succeeded enough to put in your
hands more power for many kinds of work than you can get any other
way.

Although computers have the potential for many uses, people often
adapt them for a narrow purpose, such as producing a certain kind of
billing or taking certain kinds of reservations. At the Office
Automation Division, we harness computers for the large number of jobs
related to working with text. AUGMENT was not designed to solve a
specific problem, but rather to help you effectively accomplish many
everyday tasks, such as planning and writing documents, exchanging
memos and ideas with co-workers, and organizing thoughts and
information. In this sense AUGMENT is not one tool itself, but a

Computers help
you mold and
move information.

Many tools from
one source

Familiar control of
complex systems

AUGMENT, a
versatile system of
tools

Introduction to AUGMENT

Background

Commands for
different tasks
work the same
way.

"system" of coordinated tools like the system that makes highway
transportation possible.

Of course, 11 everyday 11 tasks vary from one project to the next, as well
as for individual employees, departments, and organizations. Often, you
may not even know in advance what kind of help you will need when
you are thinking, writing, or trying to find information. AUGMENT is
built to accommodate diverse and unexpected needs. This diversity is
the main reason it is not possible to describe AUGMENT in a single
document or for you to learn it in a single training session; you must
read appropriate documents or receive additional training as you apply
AUGMENT to new tasks.

Computers can only respond as they have been designed to respond. In
order to get the most from AUGMENT, you must learn what the
computer can and cannot do for you, and you must learn the
instructions or tI commands 11 to give the computer to make it do what
you want. We have designed simple commands to control what the
computer does, and there are many such commands to correspond to
the many different functions that you need for your everyday work.
However, we have carefully designed the different commands to work in
the same way as much as possible so that someone who knows how to
use AUGMENT for one job can easily learn what it takes to do another.
Once you learn the basics, extending your use of AUGMENT will become
like using any of the other familiar tools you employ for your daily
work.

2 Introduction to AUGMENT

What is it Like to Use AUGMENT?

WHAT IS IT LIKE TO USE AUGMENT?

Viewing Information
For the most part, users of AUGMENT do their work on a television -like
screen. Although you can get your information in printed form, the
main way you see what you are doing is by looking at the screen.

AUGMENT enables you to rapidly change how you see information, giving
you a repertoire of special views which take the place of thumbing
through a book and which expand your power to skim information. For
example, most AUGMENT files are arranged with headings and
subheadings in an outline format, and you may display outline numbers
on your screen or not, at the touch of a key; this is a change of view.
With equal ease you may display only the major headings, for example,
the chapter headings of a book you are scanning on your screen; this is
another change of view. Or you may show only paragraphs that
contain certain words.

These view changes, aimed at making up for the small window you
have into your large world of information, supplement and extend your
power to skim and pick. They not only help you with reading and
searching for information, but also make it easier to do other common
types of work with files, such as writing, editing, and updating. The
ability to change views is an important difference between AUGMENT

and other text - handling systems.

Saving, Finding, and Sharing Information
Whenever you add or copy information in AUGMENT, the information
goes into a "file", a work area in the computer like a file folder in a
filing cabinet. There are no odd bits of paper (or diskettes or cassettes)
to keep track of. You may put the information in an existing file or
name a new one. These files are safe, easy to find, and easy to share.

When they first begin to work with a system like AUGMENT, most
people tend to print paper copies of their work because the version in
the computer seems unreal and unreliable. But while paper can be lost
or damaged, the file system is always orderly, and your files are safe
even though a system problem may occasionally keep you away from
your work. Furthermore, the files are regularly copied to magnetic
tape, so you know they have been duplicated in storage separate from
the computer. Soon most people begin to feel that the electronic record
is more reliable. For example, having made notes at a meeting, they
want to hurry and get the notes on the computer where they will be
safe; then they can throw the paper away.

At any time, you can see on the screen a list of the names of files you
have made, files that belong to others (if they permit it), or files
created for public reading. This list may be alphabetic, reverse
alphabetic, in order of writing or reading, or one of several other orders
you may choose. You can learn the last time you looked at a file, the

Seeing less to see
more

Safe

Accessible

Introduction to AUGMENT 3

What is it Like to Use AUGMENT?

Easy to share

Learning
step-by-step

size of the file, and other information to help you keep your files
organized. You may draw one or more files by name onto your screen
and then do the equivalent of thumbing through them by using the
viewing tools discussed above.

Information you are working with resides on a computer that you share
with other members of your organization. This means that, if the
person who controls the information allows it, you can look at someone
else's file as easily as your own, regardless of where in the world he or
she happens to be. (See Figure 1.) Different organizations use sharing
in different ways. Organizations often collect files into special
" directories", which can be thought of as the computer's equivalent of
filing cabinets, for sharing purposes. The power of the system to
oversee and select a wide range of information gives you a very special
feeling of being in touch with what you need to know to do your work.

FIGURE 1: SHARING FILES

What is Learning AUGMENT Like?
For most people, learning to use a powerful computer system like
AUGMENT is like learning tennis or learning to drive a car. You
flounder in the first hour; some hours of practice are necessary before
you begin to feel comfortable with it; and you can continue to learn
refinements for a long time. For people familiar with word-processing
systems, the learning time in AUGMENT is about the same as the
learning time in a typical word -processing system for the same function.

4 Introduction to AUGMENT

What is it Like to Use AUGMENT?

Of course since AUGMENT has more functions, people who employ those
functions go on learning. Once you have mastered some basic set of
AUGMENT skills, learning new functions goes faster because the general
form of the command is always the same.

Some of our users apply AUGMENT in very particular ways, for example,
bulk typing, keeping up a calendar, or sending messages. Most people
can become proficient at such applications in a few hours.

How is Writing Different?
All systems based on electronic memories make it easier to write, in the
sense of producing a lot of pages, because they make it easy to copy.
Typical word - processing systems make it easy to copy pages from a
modest - sized collection of previously written work, whereas a system
like AUGMENT, based on a large, flexible file system, makes it easy to
copy selectively from years of past work.

The number of times a finger presses a key in proportion to each
character finally printed is a measure of efficiency in the publications
business. Four keystrokes per character is common where typewriters
are used, for example, once when originally typed, once when the draft
is cleaned up, once in response to the boss's suggestions, and once for
camera - ready copy. A good word - processing system, where only
revisions are retyped and camera - ready copy is automatic, commonly
reduces this figure to two keystrokes or slightly less.

For many routine reports, memos, or proposals, the figure in AUGMENT

is less than one keystroke per character since more material is copied
than revised. As you become experienced at writing in AUGMENT, you
will learn to effectively use your searching tools (catalogs and viewing
tools as well as automatic searches for content) and to make revisions
carefully to ensure that copied words make sense in the new context.

As discussed in connection with viewing, AUGMENT files make it easy to
write in outline format. Much business or technical documentation
lends itself to working "from the top down", that is, jotting down the
major headings, then jotting down the subheadings, and then filling in
the contents under them. AUGMENT supports such writing very
effectively. Often you jot down a heading and discover you can copy in
the body of the text.

In general, AUGMENT makes it easier to experiment, not only with
words and phrases, but with organization. It is easy to change a word
or a paragraph or the overall organization of a document, see how it
looks, and then change it back if you wish.

Communicating and Distributing through Electronic Mail
Electronic mail as a part of AUGMENT takes the place of some telephone
calls, allows you in effect to leave notes on the desk of people scattered
all over the country, simplifies distribution of notes, memos, reports, and

Copying from past
work

Less than one
keystroke per
character

Working from the
top down

Freedom to
experiment

Introduction to AUGMENT 5

What is it Like to Use AUGMENT?

Comparison with
telephone

Easy distribution

Automatic filing

Changing the
shape of your
work

Changing how you
use paper

book -length documents to people on the system, and, if you wish, stores
and retrieves these documents as a librarian would.

The telephone calls AUGMENT replaces are those that do not require you
to talk back and forth much. AUGMENT mail has several advantages
over telephone calls: You never fail to reach the other party, you do
not interrupt anyone's work, and you may file a written record
automatically.

The size of an item makes no difference to the system, up to several
hundred pages. It is possible to transmit copies of a long document as
easily as a brief note, to one person or to a list of people, with just a
few keystrokes.

Unless you mark it "private", the system will file and index each item
by words in the title, the author, and other filing keys. Thus an
individual and an organization build up a body of past information. At
any time you can look in catalogs and locate (usually within a day for
old items) all the documents relating to a topic, written by a particular
person, or prepared on a certain day. The result of this automatic
cataloging is that individuals depend less on private files (because the
system is their filing cabinet) and spend less time keeping them up.
The organization has a better chance to pool knowledge and make it
available to new people.

Changing How You Work
How you adjust to working with a computer depends a great deal on
your job, your work habits, your personal style, and the style of your
organization. In general, however, it replaces pencil, typewriter, file
drawer, desk calculator, and most of the tools associated with an office
desk and filing system, plus mail and some of the functions of the
telephone and the library. All of these are replaced with something
that is swifter and smoother.

Like other people who have used computers to help them do their
regular work, we have found that computers usually enable us to finish
faster, and they also change what we do to something larger and more
valuable. Often, as people become experienced in AUGMENT, they find
something they can do which improves their function but which they
did not think was appropriate before. Secretaries may find they can
schedule meetings that only their principals could schedule before,
managers may find they can skim reports that were totally unread
before, and engineers may find they can communicate with associates
through electronic mail where they previously worked in a vacuum.

Just as AUGMENT users will in general learn to do their work in
different ways, they will use paper in new ways. Most users who work
on a screen can produce paper copies of their work with adequate
printing quality quite easily, through either printers attached to their
work stations or fast 'central printers. Most people who can easily print
make clean drafts frequently, for review by themselves or by others. It

6 Introduction to AUGMENT

What is it Like to Use AUGMENT?

is possible to scan and edit a cleanly printed draft in a way that is not
possible either with an old, marked - up draft or with a display screen.
Tools exist for setting up simple formats, as for a letter, or complex
formats for more formal publications, such as a finished book.
AUGMENT tends to turn users from people who make notes and revisions
on paper into people who use paper for clean drafts and for distribution
to those who do not use AUGMENT.

Changing How You Use AUGMENT

Normally people begin using AUGMENT for one function or only a few
functions. For example, managers might use it solely to survey
information, exchange messages, and watch their calendars; specialized
clerical people, to type smoothly a certain type of information; others to
edit and produce some document in one format; and others to search
old files and compile new documents based on old. Many people
continue in that way, while others, through need or interest, expand
their knowledge. The learning process is like acquiring more support
systems, in that it often involves expanding your job as well as helping
you do it.

Doing more of your work in AUGMENT, or developing new work in
AUGMENT, may change how you perceive the system. For example,
when you begin editing, you may feel that AUGMENT has many extra
commands. As your skill grows, you will eventually use these other
commands.

THE AUGMENT SYSTEM
AUGMENT was designed so that you can use the computer comfortably as
well as effectively. The instructions that you give to control the system
and the responses from the computer have been carefully planned to
provide you with as much information as possible without wasting your
or the computer's time.

Work Stations
You give your commands to the computer at a "work station".
Generally speaking, you use AUGMENT by typing on a keyboard, pointing
by moving a mark across a screen with a controlling device, and
watching the results on the screen. These pieces of equipment are all
part of your work station. A work station may also include a small
printer to make paper copies.

The "display ,\ is the television -like device on which you can see the
commands that you give to the computer and the computer's responses
to your commands, and where you can read documents and information
stored in the computer.

Expanding your
capabilities

Display

Introduction to AUGMENT 7

The AUGMENT System

The AUGMENT display screen is carefully arranged into different areas,
each with a special purpose and each able to change independently of
the others. As shown in Figure 2, an area near the top of the screen
shows the command you are giving and the response you get from the
computer, while a large area below that shows the information you are
working with. You can further divide the lower area into several parts
so that you can look at a number of different files or at different parts
of the same file.

Here you see the command
All All
hjuCP you are giving. ~

Here you see the information ~
you are working with. ~

BASE Delete Character (at) BI A:

AUGMENT is a commputer system designed to help
people work. with information.

Keyboard

Pointing with the
mouse

FIGURE 2: THE AUGMENT DISPLAY SCREEN

You type text or enter commands with the keyboard. In the standard
AUGMENT work station, the keyboard is detached from the display for
convenience. In general, it resembles a typewriter keyboard; it has the
standard alphabet, numbers, and punctuation found on a typewriter as
well as special AUGMENT function keys.

Standard AUGMENT work stations include a "mouse", a hand - sized
device with three buttons on the top. When you are working in
AUGMENT, you can use your right hand to roll the mouse on the table,
moving the "cursor" (the traveling mark) on the display screen
correspondingly. The mouse enables you to point directly to what you
want to do something to, rather than d~scribe its location. For
example, if you want to give a command to remove a particular comma
displayed on the screen, you can use the mouse to point to the exact
comma. You can also point to words, sections of text, paragraphs or
headings, and groups of paragraphs or headings. The buttons on top of
the mouse can be used alone or in combination with the keyboard or
the keyset (described below) to enter commands and information in
AUGMENT.

8 Introduction to AUGMENT

NOTE: We have adapted AUGMENT to some display units other than the
standard AUGMENT display so that you can employ the cursor control
normal to that unit. For example, instead of pointing with the mouse,
you might point by pressing keys on the keyboard, such as special
"cursor keys" with arrowheads indicating the direction in which the
cursor will move.

Standard AUGMENT work stations offer a device with five piano - like
keys, called a "keyset", which you can use as a supplement to the
keyboard if you wish. The keyset enables you to type commands
quickly with your left hand only, while using the mouse with your right
hand.

Another common type of work station consists of a device like a
typewriter for entering and viewing commands and information. You do
not see the results as fast and flexibly as on a display screen; however,
you may prefer to use a typewriter work station at times because the
equipment is portable and inexpensive and will give you a written
record of what you have done. You can use AUGMENT in typewriter
mode much the same way as in display mode. The two modes are as
similar as possible, to make it easy to switch from one to the other; for
example, the commands in typewriter mode are worded the same as in
display mode.

Commands
AUGMENT is an "interactive" computer system, which means that you
and the computer work together. You give a command, the computer
follows the instruction, and you see the result. The computer is then
ready for you to give another command; the next command you give
may depend on the result of your previous command.

AUGMENT commands use simple English words, and their basic,
consistent form makes it easy for you to figure out what to do next.
Most commands begin with a verb that names the action, such as
Delete or Insert, followed by a noun that names what to do the action
to, such as Character, Word, or Text. We have designed the commands
this way so that they are like simple English sentences telling someone
to "Do this" or "Put that there".

The AUGMENT System

Other kinds of
cursor control

Keyset

Typewriter work
stations

Simple English
verbs and nouns

Introduction to AUGMENT 9

The AUGMENT System

Commanding the
computer

Helpful prompting

You don't have to
know how to type.

Questioning a
command

You enter a command word usually by typing only the first letter of
the word, for example, "d" for " Delete" and "c" for "Character".
(See Figure 3.) Occasionally you have to type two or three letters, but
you never have to type the full word. The command words always
appear in full on your screen, so you can easily check to see whether
you have typed the desired command.

Delete

Character

FIGURE 3: LETTERS FOR COMMAND WORDS

When you enter a command, AUGMENT helps you fill it out by giving
you prompting that helps you understand the command and indicates
what you can do next. For example, after you type "dc", you see
"Delete Character (at) MIA:". The "(at)" tells you that in the next
part of the command you will specify where the character is that you
want to delete. The "MIA:" means that you can either use the mouse
to point to the character and "mark" it or give an "address"
describing the location of the character.

The last step in any command is to type a confirming or "OK"

character; this tells AUGMENT to go ahead and carry out the command.
If you change your mind any time before you give the final "OK", you
can easily cancel the command and start over again.

Many AUGMENT users type more slowly and less accurately than the
average typist. The system forgives typing errors and allows you to
backtrack in commands, and the editing, copying, and spelling checking
features help you to be productive without being a good typist.

AUGMENT was specially designed so that you can learn about commands
as you work. The simplest way to do this is by using question mark
(?). Any time you are working with AUGMENT (except in the middle of
typing text), you can type a question mark to see a list of all the
choices you have at that point, such as all the command words you can
enter.

10 Introduction to AUGMENT

File Structure
All the information in AUGMENT files is structured into an outline f<>rm.
The basic units of information in a file are normally headings or
paragraphs, although the user is free to choose how to employ the
outline structure. As it normally appears on the screen, indenting
shows the structure, and with one of the view changes discussed above
you can ask to see outline numbers.

The structure of AUGMENT files helps you organize your thoughts and
your documents, and also enables you to locate precisely what you need
from a large storehouse of information. The storage area of your
computer contains thousands of books worth of information; this
information is divided into directories that belong to people or
organizations by name, and into files named by the users. The files are
further divided into outline form. This strict organization allows you,
for example, to copy any paragraph from any other file to your file
with a few keystrokes if you have proper access. It also allows control
of which users are allowed to read or write on which files. Provisions
exist for reaching information stored on other computers.

People who are familiar with word - processing systems, or with systems
based on central computers that address their files by lines, should
understand that lines are not a fixed unit in AUGMENT files. The lines
you see are arranged to fit the screen or printed page as the
information is on its way from storage to your display or printing
device. No AUGMENT file is formatted into pages until it is printed.
The fact that lines and pages are not fixed allows a great deal of
flexibility when it comes to displaying files or to printing the same files
on different devices.

Subsystems
AUGMENT is divided into subsystems, which are sets of commands
related to particular activities. Normally, the subsystem that is
automatically available when you enter AUGMENT is the Base subsystem.
It contains the most common commands for doing your everyday work,
such as reading, writing, editing, printing, and organizing your files.
You can switch to other subsystems to do other common types of work
with the same files.

The AUGMENT System

The power of
structure

No fixed lines or
pages

Introduction to AUGMENT 11

The AUGMENT System

AUGMENT includes an electronic mail sUbsystem which you can use to
send messages and documents to a list of people known to AUGMENT
and have them cataloged and stored in the AUGMENT Journal. (See
Figure 4.) In a file they see whenever they enter AUGMENT, the
recipients will receive a notice of what was sent and a way to get to it
immediately, or the item itself if it is short. Mail items can easily be
obtained in printed form.

FIGURE 4: ELECTRONIC MAIL

Here are some of the other commonly used sUbsystems:

Graphics. The Graphics sUbsystem enables you to create, display,
modify, and print line drawings that are stored in AUGMENT files with
text. To use Graphics, you need a Graphics work station, consisting of
an AUGMENT work station and a Tektronix storage tube display or the
equivalent. You can create Graphics diagrams separately or in their
appropriate place in a document. They can be printed on a
photocomposition device or on a special printer attached to the Graphics
work station.

Proof. The Proof sUbsystem presents pages as closely as possible to
how they would appear when printed via a photocomposer (for example,
with proportionally spaced letters), to allow preliminary proofing of
formats that require graphic arts production (such as a change of type
faces or integral illustrations). The Proof subsystem will display the

12 Introduction to AUGMENT

layout of the page correctly but the type font only approximately, and
it will work only on suitable high - resolution display work stations.

Publish. The Publish subsystem provides a number of commands that
support document production, such as commands for automating simple
punctuation, counting words, establishing the reading grade level, and
doing limited indexing.

Spell. Spell is a subsystem that checks AUGMENT files for doubtful
spellings. When it finds a word it does not recognize, you can correct
the word or accept the word as it is. Whenever possible, Spell will
suggest one or more correctly spelled "guesses". Spell keeps track of
the words you have corrected, and subsequent occurrences of identical
errors will be automatically corrected. When your file contains
correctly spelled words that Spell does not recognize, you have the
option of inserting them into a dictionary that Spell will use to check
the rest of your file. You can build that dictionary into a personal or
organizational jargon dictionary.

Table. The Table subsystem allows you to set up tables, edit them in
a tabular manner, and do simple arithmetic where extensive
computation is not required. You can define a screen - sized part of
your file as a table with headings, columns, rows, subheadings, and so
on, and then enter information into it without using tabs or typing a
lot of spaces. You can edit rows and columns (for example, insert a
new row or replace one column with another) and perform simple
arithmetic on parts of tables (such as automatic totalling of a row or
column, or multiplying columns and storing the results).

Retrieve. The Retrieve subsystem takes advantage of AUGMENT file
structure to find and copy information in sophisticated ways. You use
it, for example, if you want to get copies of all the paragraphs under
certain headings (but not the headings) or if you want all the headings
that precede certain information (but not the information).

Conference. The Conference subsystem allows two or more users of
any of Tymshare's AUGMENT service computers to display the same
information on their screens. They can each point to items separately,
and a protocol exists to allow orderly control of commands in making
changes.

Encrypt. The Encrypt subsystem allows you to specify a key and then
transform your file into a coded image that looks like nonsense
characters. Only someone who knows the key can read the file from
then on.

Programs. The Programs subsystem contains commands for adding to
AUGMENT anything from a simple program, such as one to modify
statements containing particular forms of text, to a new subsystem.
You can write the program or subsystem in Base and then compile it in
Programs. The Programs subsystem also provides access to a powerful
debugging tool, and there are several commands for handling special

The AUGMENT System

Introduction to AUGMENT 13

The AUGMENT System

programming needs. Additional subsystems exist for other programming
functions, such as library maintenance of source and compiled code.

New subsystems are constantly being created, some for wide use, others
for specific purposes. Subsystems can be created to give AUGMENT users
access to programs on other computers.

An Example of Applying AUGMENT

All these capabilities and subsystems are like an assortment of tool
boxes that can be used together on some large project, as building a
house may require carpentry tools, plumbing tools, electrical kits, and so
on. With some office work, too, no one single-purpose computer system
can help much; the broad usefulness of AUGMENT can be put to work in
these cases.

Let us take, for example, the case of a team of people using AUGMENT
to both gather information and present it in final printed reports.
Every tool they need to produce camera - ready copy of the reports is
available through AUGMENT. Each person may research information
stored and cataloged in the computer, use the system to keep notes and
organize material, and communicate with co - workers through the
computer (for example, by sending memos that are permanently
recorded and cataloged, sharing files, and even " talking" to others by
means of the keyboard).

All drafts of the team's reports are easily written and edited in
AUGMENT. Any portion of text can be moved or copied within or
between files (automating the traditional cut and paste technique) and
tables and graphic illustrations can be incorporated into the document.
The writers can combine their separate contributions into one file and
then use the same file. Several tools enable them to control the
document; for example, they can learn the name of the person who
made the last change to any paragraph and the date and time the
change was made.

A draft at any stage can be permanently recorded in separate storage
and cataloged. When the final draft is ready (or at any other time in
the life of the document), a writer may experiment with formats for a
printer or phototypesetter and may proof photocomposed pages with
approximate fonts and type sizes on a graphics display terminal. When
the team is satisfied, the document can be sent from the computer to a
phototypesetter. The report in its machine form can also be
transmitted to or shared by people in other locations having a computer
connection to the computer on which it is stored.

14 Introduction to AUGMENT

DOCUMENTATION
We offer four types of documentation to give you the information you
need to do your work and to learn more about what you can do with
AUGMENT: the AUGMENT Textbook Series, online help, quick reference
cards, and special- purpose documentation.

The AUGMENT Textbook Series consists of individual II lessons II which
are modeled after foreign language textbook lessons. They address a
wide range of users, from people who know little about computers to
people who have a great deal of computer experience. The lessons in
the Textbook Series give not only the bare bones information, but also a
feel for how users can be more effective in their jobs with these tools.
Besides the basic skills for all applications of AUGMENT, most lessons
teach specific functions, such as editing, printing, setting up tables, and
formatting. We believe that the lessons provide a sound basis for
learning and cover most of what people need to know to avoid pitfalls
and confusion, but they do not include all the details of AUGMENT or
seldom - used commands.

Help while you are working on the computer (.. online II help) comes in
the form of the Help command. This command, available in every
AUGMENT subsystem, provides the most complete and up - to - date
information about all aspects of AUGMENT. Typing II h II for II Help" and
then any AUGMENT term (followed by the usual II OK II character)
produces a description of the term, or information pointing out different
uses of the term which will lead to a full description of it and to other,
related subjects. Users have occasionally learned the system through
the use of Help alone.

We make every effort to keep the Help information complete and
current. It corresponds to the lengthy and hard - to - read reference
manual that goes with many computer systems. We have chosen to
maintain the complete reference documentation about AUGMENT on the
computer rather than in printed form because it is more quickly
accessible by users and easier to keep current. For every new release
of AUGMENT that contains changes visible to the users, we update the
Help information.

We also provide II quick reference cards II showing commonly used groups
of commands and features. They are concise and give you a handy way
of reminding yourself about how commands work that you have already
learned.

Finally, we have various other documents on specific tools or functions,
such as: instructions on how to use AUGMENT with certain equipment;
a manual describing the .. Output Processor II formatting codes for
making formatted documents; and guides to help you with particular
applications of AUGMENT.

Documentation

The AUGMENT
Textbook Series

Help as you work

Quick reference
cards

Specific topics

Introduction to AUGMENT 15

Services from Tymshare's Office Automation Division Staff

Training

Consulting

SERVICES FROM TYMSHARE'S OFFICE AUTOMATION
DIVISION STAFF
Part of what you get with your AUGMENT service can be help from
people. There are many experienced, interested, friendly people at our
headquarters and field offices who enjoy helping you to learn AUGMENT
and use it better.

Tymshare's Office Automation Division has a staff of trainers, analysts,
and programmers experienced in AUGMENT and issues of office
automation to give you further help if needed .

. If you are reading this, you may be taking a training class shortly. To
accommodate the needs of different users and of users at different
stages of development, Tymshare offers several types of training given
separately to different homogeneous groups. For example,
administrative support staff can get a training package that is suited to
their particular tasks, uses of the system, and familiarity with the
.system environment.

Tymshare's training program is designed to raise the user"'s level of
expertise in several stages. Our initial training program is designed for
proficiency in fundamental system knowledge and skills, related to some
small useful applications. It includes actual classroom instruction, both
with and without hands - on experience, directed practice on material
presented in class and tutorially, and individual coaching and assistance.
The second level of· the training program covers advanced topics and
skills and is oriented to the applications of specific user groups. You
will find that continuing training in the actual details of performing the
application tasks, and in further application capabilities, is very
important to ensure that users can fully use the power of the system
and make it effective in their organization.

Analysts are able to study your work and make suggestions about how
you might use AUGMENT more efficiently, or to discover applications well
suited to AUGMENT. They can also help you organize and implement
the people, policies, and procedures that make up the planned
application activity, in these ways: by recommending which people
should be trained in which function, what equipment should be
installed, and where to install it; by specifying the steps in the
procedures needed; by helping individuals get started; and by advising
on the timing of a staged transition or expansion.

16 Introduction to AUGMENT

Services from Tymshare's Office Automation Division Staff

Tymshare provides programming to support the special needs of
organizations. For example, although AUGMENT is not appropriate for
voluminous computation, it is often convenient to have commands
modeled on an organization's financial procedures, because with
AUGMENT the results are easy to integrate into documents. The
differences between business and accounting methods in different
organizations usually mean that the commands good for one group are
inappropriate for another. Building a special sUbsystem upon basic
AUGMENT procedures, we can easily suit commands and high -level
functions to a given organization. (See Figure 5.)

C:URRENT SCHEDULE/BUDGET
~:ep Oct Nov Dec ,.Jan Feb

7':' 81 86 ';:'1 90 77

44 71:.. 87 105 115 120

FIGURE 5: SPECIAL- PURPOSE SUBSYSTEM

We also offer a way to get expert help personally through the system.
Anyone using one of Tymshare's AUGMENT service computers may report
bugs, questions, their difficulties with the system, and suggestions about
improvements on the system to the Feedback mechanism by using our
electronic mail capabilities to send a message to the name FEEDBACK.
They may also ask Feedback about AUGMENT status, current plans, and
the decision status of other users' suggestions. All messages are
normally answered within one working day. If a problem cannot be
fixed immediately, an acknowledgement is sent indicating that a
specialist will handle it as soon as the necessary resources are available,
and any further developments are reported back. All other inquiries
that need to be studied, such as suggestions, are promptly acknowledged.

Special
programming

Sending messages
to Feedback

Introduction to AUGMENT 17

Services from Tymshare's Office Automation Division Staff

Operations Control
Center

The experienced staff of the AUGMENT Operations Control Center
manage Tymshare's AUGMENT service computers. At the Control Center,
computer system experts constantly monitor all aspects of the system
for correct performance. Users can address their needs and questions to
the Control Center through Feedback.

18 Introduction to AUGMENT

SUMMARY
Most people who read this lesson will be learning to use AUGMENT in
their work. Different people will have different expectations. The
expectations may range from eager anticipation to a feeling that it is
foolish to suggest changing a way of working which has been learned
well to a new method which introduces new complications. We are
keenly aware that once an organization begins using AUGMENT, the most
important factor in its success or failure is the attitude of the users:
how you feel about it.

This introduction has attempted to give you some familiarity and
confidence before you begin learning and working in AUGMENT. We
have pointed out that AUGMENT is the fruit of years of effort to make
the power of computers available to ordinary people in a way flexible
enough to accommodate a range of needs in an organization and to
permit growth and learning for individual users. We have indicated
that the work station and command language are designed to give you
easy access to a large amount of information, with commands that are
like English sentences and that keep the same form for various
functions. We have tried to put across what it feels like to use
AUGMENT in your work and to describe some of what you will encounter
later on. Remember that behind this powerful system are a group of
experienced people at Tymsbare's Office Automation Division who want
to help you grow in productivity and enjoyment of your work.

Summary

Introduction to AUGMENT 19

Price $3.00

BEGINNING USE OF AUGMENT

Copyright Tymshare Inc., May 1980
20705 Valley Green Drive
Cupertino, California 95014

This document was prepared and composed for
printing with AUGMENT by the Office
Automation Division of Tymshare, Inc.

AUGMENT Journal Number 48747
Tymshare Document Number 1823

This lesson discusses basic concepts and commands you need to
write and edit in AUGMENT, that is, to enter information and
make changes to it. Learning these concepts and commands is a
vital step towards using the other tools in AUGMENT. You
should already know how to log in and enter AUGMENT, as
described in the lesson "Starting and Ending an AUGMENT Work
Session" .

CONTENTS

In trod uction

Windows on the Display Screen 2

Commands 3

Prompts and Noise Words 3

Marking with the Mouse 4

Confirming Commands with <OK> 5

Canceling a Command 5

Making a New Work Area: The Create File Command 5

Writing: The Insert Statement Command 6

Editing with Delete, Move, Replace, and Insert 8

Return Characters in Statements 12

Updating a File: The Update Command 13

Getting to a File: The Jump (to) Link Command 14

Exercises 15

Summary 16

List of Commands 17

Vocabulary 18

Solutions to Exercises 21

INTRODUCTION
AUGMENT is a computer system designed to help people work with
information. It includes a wide range of tools, from a simple set of
commands for reading, writing, and editing documents to sophisticated
methods for retrieving and printing information.

Using AUGMENT to write and edit has many advantages over working
with paper, pencils, and typewriters. With AUGMENT it is easier to
organize your thoughts as well as your documents and to make changes
to what you write. Special tools help you collaborate with other people,
send messages, prepare correspondence, and so on. Some unique
concepts, which you will soon learn, are the basis of new and effective
methods of working.

You will begin learning AUGMENT by learning the basic writing and
editing commands. Although this is only a small part of what
AUGMENT offers, you will be able to see some obvious advantages right
away. For example, with a simple command, you can change a
document by putting in a comma, taking out a phrase, or adding a
paragraph, and AUGMENT will automatically adjust the text so that the
document will look as if it had been typed perfectly.

Why use the display terminal and the mouse? When you try to talk to
someone about a particular word on a piece of paper, you use either
the simple method of pointing to it or the complex method of saying it
is seven lines from the top and five words from the left. When you are
working in AUGMENT at a standard display terminal, you can use the
mouse to point to what you are talking about. If, for example, you
want to take out a particular comma on the screen, you can simply
give a command and use the mouse to point to the comma you want
removed. You can also use the mouse to point to words, pieces of text,
paragraphs or headings, and sections of a document.

AUGMENT is divided into subsystems, which are sets of commands
related to particular activities. Normally, the subsystem that is
automatically available when you enter AUGMENT is the Base subsystem.
It includes the most common commands for doing your everyday work,
such as reading, writing, editing, printing, and filing information.

In AUGMENT, you will always work with material in a "file", a work
space on the computer much like a file folder in a filing cabinet. This
lesson will teach you how to use Base subsystem commands to write
and edit a simple file containing a business letter.

Why use
AUGMENT?

Display and mouse

The Base
subsystem

Working with files

Beginning Use of AUGMENT

Windows on the Display Screen

WINDOWS ON THE DISPLAY SCREEN
You start an AUGMENT session by logging in and entering AUGMENT.

When you enter AUGMENT, you will see information displayed on your
screen. The screen is actually divided into four areas called
"windows", as illustrated in Figure 1. The information displayed in
each window has a separate function.

status window: This window displays messages from AUGMENT or
the Executive.

viewspec window: This small window displays characters that tell
you what kind of view you have of the file being displayed. For
basic information about viewing, see the lesson "Writing and
Reading an Organized File".

command window: As you give a command, it is displayed in this
window along with information to prompt you and help you figure
out what to do next. This window also shows the name of the
subsystem you are working in.

file window: This window displays files or parts of files.

FIGURE 1: WINDOWS ON THE DISPLAY SCREEN

2 Beginning Use of AUGMENT

COMMANDS
This section gives you some important general information about
AUGMENT commands. It describes features that you will tryout later
when you begin using the commands introduced in this lesson. While
reading this section, it would be helpful for you to follow along in
Figure 2, which illustrates much of what is discussed.

AUGMENT commands use simple English words and were carefully
designed to make it easy for you to figure out what you can do next.
They all have a similar form, like sentences telling someone to "Do
this" or "Put that there". Every command you will learn in this
lesson begins with a verb followed by a noun; the verb tells AUGMENT

what action to take, and the noun tells it what to act on. For
example, the command verb "Delete" will be followed by one of three
nouns, Character, Text, or Word. Understanding the basic form of
AUGMENT commands will make it much easier for you to learn new
commands and new subsystems.

In addition to having a standard form, AUGMENT commands are entered
in a standard way. To give AUGMENT a word in a command, you
usually need to type only the first letter of the word; AUGMENT will
recognize the word after the first letter and will display the en tire word
in the command window. We call a word that AUGMENT recognizes as
part of a command a "command word". For example, the letter "d"
stands for the command word "Delete", and when you type "d", you
see "Delete" in the command window. As you learn AUGMENT, it will
help you to pay careful attention to your command window, so you can
be sure you are giving the right command.

NOTE: Where AUGMENT will recognize more than one command word
beginning with the same letter, you may have to type a space and then
one or more letters of the word you want to give. AUGMENT commands
are designed, however, so that the most common words do not require
you to type a space.

Prompts and Noise Words
Before you give a command or after you have given part of some
commands, you will see "c:" in the command window. "c:" is a
"prompt". In general, a prompt is one or more uppercase letters,
followed by a colon, that tell you what you can do next. "c" in a
prompt stands for "command word" and means that AUGMENT is
waiting for you to enter a command word. For example, after
"BASE C:", you may type "d" for "Delete". AUGMENT will recognize
the command word after one letter, display the entire word in the
command window, and give you a new prompt, "c/OPr:", when it is
ready for you to do something else.

A slash (/) between the letters in a prompt means that you have a
choice. For example, the "c/OPI':" prompt you see after "Delete"
means you can either enter another command word, thus responding to
the " C " in the prompt, or type the special "option" character,

Commands

Simple English
verbs and nouns

Command
recognition

Space before
command words

Prompts

/ in a prompt

Beginning Use of AUGMENT 3

Commands

Noise words

When to mark

How to mark

! when you type
<OK>

The marked
character is
highlighted.

Erasing a <MARK>

with <Be>

responding to the " OPT II • (The option character is discussed in another
lesson.) The meanings of the letters in AUGMENT prompts will be
explained to you as you learn the commands.

If you type II c" for II Character II in response to the II C/OPT:" prompt
following "Delete", you see in your command window .. Delete
Character (at) MIA:". The" at" in parentheses is what we call a
"noise word". Noise words provide additional information to help you
understand a command. In this case, the .. (at)" means you have to
think about the location of the character you want to delete.

Marking with the Mouse
To use the basic writing and editing commands in AUGMENT, you must
learn how to point and .. mark" with the mouse. Marking is a way of
telling AUGMENT exactly what you want a command to act on. You can
mark in an AUGMENT command whenever you see "M II in a prompt.
For example, when. you see the II MIA:" prompt 8.fter typing "dc" for
"Delete Character", you can mark the exact character that you want
deleted.

Hold the mouse firmly but not tightly with your wrist on the table so
you can touch the buttons on top of the mouse with your fingers. Roll
the mouse across the table and watch the cursor move correspondingly
on the screen. When it is appropriate to mark in a command, move
the cursor under the character you want to mark and type <OK> by
pressing the right mouse button. We show this process as <MARK> in
examples. Remember that you must type <OK> after positioning the
cursor; moving the cursor without typing <OK> has no effect.

NOTE: Whenever you type <OK>, AUGMENT displays an exclamation
point (D in the command window to let you know it has received the
<OK>.

The character you mark will be highlighted. When you mark a
character that is invisible, and thus cannot be highlighted, AUGMENT
will instead show a special highlighted character. For example, when
you mark a space, you see a highlighted tilde (tV). If you accidentally
try to mark a position where there is no character, AUGMENT will mark
a nearby character for you. It is a good practice to look at your screen
when you mark so that you can be sure you have marked the right
character.

If you mark the wrong character, you can type <BC> to "backspace a
character" and erase the <MARK>, by pressing the left mouse button.
You can then mark the correct character.

4 Beginning Use of AUGMENT

hjuCP

AUGMENT is a commputer system that helps people
work with information.

hjuCP

BASE Delete Character (at) MI A:

AUGMENT is a commputer system that helps people
work with information.

hjuCP

BASE Delete Character (at) ! !

AUGMENT is a comMputer system that helps people
work with information.

hjuCP

BASE Delete C/OPT:

AUGMENT is a commputer system that helps people
work with information.

hjuCP

BASE Delete character (at) ! OK:

AUGMENT is a com.puter system that helps people
work with information.

hjuCP

AUGMENT is a computer system that helps people work
with information.

FIGURE 2: DELETING A CHARACTER

Confirming Commands with <OK>

In AUGMENT commands, you type <OK> not only to mark but also to
complete other parts of a command and to indicate the end of the
command. For example, when you type text in a command, you
indicate that you are finished by typing <OK>. If there are no more
steps in the command, this <OK> also tells AUGMENT that you are
finished with the command. If you mark something as the last step,
AUGMENT will prompt you to type a final <OK> with an II OK: II prompt,
so you can erase the <MARK> if you wish before ending the command.

You can type <OK> by pressing either the right mouse button, as
recommended for marking, or the key for <OK> on the keyboard.

After the final <OK>, AUGMENT will carry out the command as entered,
erase it from the command window, and prompt you with "c:" to begin
another command.

Figure 2 illustrates the complete process of giving a Delete Character
command, from the prompt for the first command word, through
marking the character and confirming the command, to the actual
deletion of the character.

Canceling a Command
After you begin a command, you may change your mind or realize you
have made a typing error and started a command you do not want. To
cancel a command you have started, type the special "command delete"
character, <CD>. When you type <CD>, the command you were giving
will disappear and the command window will display only the subsystem
name and the first prompt, II C: ", telling you that AUGMENT is again
ready for you to begin a command. For example, this is· how you
would cancel the Delete Character command:

You type:

d
c
<CO>

Command window shows:

BASE Delete C/OPT:

BASE Delete Character (at) MIA:

BASE C:

If you want to erase not the entire command but only the last step in
the command, use <BC>.

MAKING A NEW WORK AREA: THE CREATE FILE COMMAND
To enter new information in AUGMENT and keep it separate from other
information, you need to make a new file. The command· you use to do
this is the Create File command. In this command, you give the file a
name that identifies the information you will store in it and that will
be easy to remember when you want to look at the file in the future.

Commands

Two ways to type
<OK>

<CD>

Erasing the last
step with <BC>

Beginning Use of AUGMENT 5

Making a New Work Area: The Create File Command

The origin
statement

AUGMENT
statements

. Because more than one command in the Base subsystem begins with
"c", you have to type "<SP>cr" for AUGMENT to recognize "Create";
then type "f" for "File". You will see "Create File (to be named)"
followed by the prompt "M/TI [A]:"; AUGMENT is waiting for the name
of your new file. The "T" in this prompt means that you can give the
name by typing it. Type the name and end with <OK>. AUGMENT will
then carry out the command and create a file with the name you have
indicated. For example, this is how you would create a file named
LETTER:

You type:

<SP>cr
f '
letter<OK>

Command window shows:

BASE Create c:
BASE Create File (to be named) MITI [A]:

BASE Create File (to be named) letter!
BASE C:

When you create a file, AUGMENT assumes you want to work in it and
automatically displays it. At the top of the file window, you will see a
file that is empty except for a heading. This heading is the origin
statement of the file, and every file has one. It contains the name of
the· file and other information such as the identity of the person who
created or last updated the file.

WRITING: THE INSERT STATEMENT COMMAND
When you want to put information into a new AUGMENT file, you add it
in the form of statements following the origin statement. The
statement is the basic unit of information in AUGMENT and can be
anything you feel is a logical unit. For example, if you were using
AUGMENT to make a list, you might want to make each item in the list
a separate statement. Or if you were writing a letter in AUGMENT, the
various parts of the letter -- the salutation, each paragraph in the
body, and the closing -- would all be different statements. To enter
statements into a file, you can use the Insert Statement command.

After making a file named LETTER with the Create File command, you
could practice using the Insert Statement command by w~iting the letter
below.

Dear Ms. Jones:

I would like to take this opportunity to thank you for your
presentation last week. The people present were impressed with
your demonstration, and you certainly indeed presented us with
some interesting alternatives. I am currently planning to evaluate
several products. Our staff will later this week be meeting to
discuss a purchase. I will be in touch with you Tuesday of next
week to work out the involved details.

Sincerely Yours

Elinore Botoh

6 Beginning Use of AUGMENT

Writing: The Insert Statement Command

Each section of this letter should be entered as a separate statement.
Begin the Insert Statement command by typing "is". In the command
window, you will see "Insert Statement (to follow statement at) MIA:".
You must then indicate which statement you want your new statement
to follow; mark any character in the origin statement to show that your
first new statement should follow it. Your next prompt will be
IIL/TI [A]:II. When you see this prompt, respond to the "T" choice by
typing the salutation, "Dear Ms. Jones:", and ending it with <OK>.

Entering your first statement would look like this:

You type:

s
<MARK>
Dear Ms.

Jones:<OK>

Command window shows:

BASE Insert c:
BASE Insert Statement (to

BASE Insert Statement (to

BASE Insert Statement (to

Ms. Jones:!

BASE C:

follow statement at) MIA:

follow statement at) L/T/[A]:

follow statement at) ! Dear

When you type the <OK> at the end of the command, the statement
you have been typing in the command window will be inserted in place
in the file. After you enter the first statement, you will see it in your
file window following the origin statement.

For the second statement, type "is" for "Insert Statement" and mark
one of the characters in the statement you just added, so the body of
the letter will follow the salutation. When typing this long paragraph,
you do not have to type a return to indicate the end of a line. Simply
type the words, spacing, and punctuation that you want. As you type,
AUGMENT will automatically adjust the text, starting a new line when it
cannot fit any more text on the current line (because it has reached the
right edge of the command window). When breaking the text into lines,
AUGMENT breaks between words. The text is always adjusted in this
way, both when you are typing it in the command window and later
when it is shown in the file window.

When you enter a lot of text, it may seem that what you are typing is
writing over the top lines of your file. What is actually happening is
that, in order to display the text you are typing, the command window
is expanding into the file window. When you end the command and
the text is inserted, the command window will return to its former size
and your file will reappear.

Try to type the paragraph exactly as it is shown; later in this lesson
you will learn how to correct it with editing commands. If you make
mistakes while typing, you can use <BC> to erase the last character you
typed and <BW>, the "backspace word" character, to erase the last
word pI us any spaces or punctuation that immediately follow it. If you
type <BC> or <BW> several times, the last several characters or words
you typed will be erased. Type <OK> when you have finished the
paragraph.

Entering the first
statement

You don't need
carriage returns.

The command
window expands.

Correcting with
<BC> and <BW>
while you type

Beginning Use of AUGMENT 7

Writing: The Insert Statement Command

Delete

Move

Replace

You type:

<MARK>

I would ...

details.<OK>

Command window shows:

BASE Insert c:
BASE fnsert Statement (to follow 'statement at) MIA:

BASE Insert Statement (to follow statement at) ! LIT I [A] :

BASE Insert Statement (to follow statement at) ! I would

like to take this opportunity to thank you for your

presentation last week. The people present were impressed

with your demonstration, and you certainly indeed presented

us with some interesting alternatives. I am currently

planning to evaluate several products. Our staff will later

this week be meeting to discuss a purchase. I will be in

touch with you Tuesday of next week to work out the

involved details.!

BASE C:

Complete the letter by adding the last two statements (the closing and
the name). For each one, use the Insert Statement command and mark
the statement that you want the new statement to follow. If you
accidentally type the wrong command, use <CD> to cancel the command,
and then start over.

EDITING WITH DELETE, MOVE, REPLACE, AND INSERT
After you enter information in an AUGMENT file, you may want to
correct errors or make changes. Three important command verbs for
editing text are Delete, Move, and Replace. In addition, the Insert
verb, which you have learned to use to add statements to a file, also
lets you add text within statements.

"Delete" enables you to remove information from a file. For
example, if you deleted the second "r" in "perrfect", the word
would be " perfect" .

"Move" allows you to reorder information in a file by taking it
from one place and putting it in another place. For example, if
you moved the word "that" in "a phrase makes that sense" to
follow the word "phrase", you would have "a phrase that makes
sense" .

"Replace" lets you remove information and put other information
in its place; that is, it combines Delete and Insert into one verb.
The new information may be shorter or longer than what it
replaces. For example, if you replaced the word "good" with the
word "terrific" in the phrase "a good sentence", you would have
"a terrific sentence".

After you edit with any of these verbs, AUGMENT adjusts the text to
reflect the change. For example, when you delete information in a
statement showing on your screen, AUGMENT shows the statement as if
the information had never been there, possibly breaking the text into
lines differently than before.

8 Beginning Use of AUGMENT

Editing with Delete, Move, Replace, and Insert

Once you know the command verbs, you need to know the nouns that
go with them, to tell AUGMENT what you want to delete, move, replace,
or insert. Three of the most important nouns are Character, Text, and
Word.

A "Character" is a single letter, number, punctuation mark, space,
return character, or special control character. Characters you can
see on your screen are called "visible" characters; those you cannot
see are "invisible". Invisible characters can be marked and edited
just like any other characters in AUGMENT statements. A space, for
example, is an actual character that separates one word from
another and can be deleted, moved, replaced, or inserted; it is not
emptiness.

"Text" is any series of characters within a statement. It may
begin or end within a word and may include punctuation, spaces,
and any other visible or invisible characters. Text can be only one
character or it can be all the characters in a statement. You point
to text by marking the beginning character and the ending
character.

A "Word" is a series of letters and/or numbers surrounded by
spaces, punctuation marks, or any other characters that are not
letters or numbers. (It does not have to be spelled correctly or
mean something in English or any other language!) AUGMENT does
not consider the surrounding characters as part of the word. You
point to a word by marking any character within it. Whenever
you delete, move, replace, or insert a word, you do not need to
worry about the spacing around the word; AUGMENT knows words
commonly have spaces around them and will provide and remove
them as necessary.

Figure 3 illustrates Character, Text, and Word. To help you practice
using Delete, Move, Replace, and Insert with these nouns, we have
provided a list of corrections to be made to the LETTER file and have
suggested a way of making each correction. For the first five
corrections, we show the details of what you type and what you see on
your screen. After making the first five corrections, you should be
familiar enough with the form of the commands to finish the rest of
the corrections without seeing the details.

1. Remove the comma following "your demonstration" by using the
Delete Character command and marking the comma. AUGMENT will
leave the space between "demonstration" and "and".

You type: Command window shows:

d BASE Delete C/OPT:

c BASE Delete Character (at) MIA:

<MARK> BASE Delete Character (at) OK:

<OK> BASE Delete Character (at)

BASE C:

Character

Text

Word

Delete Character

Beginning Use of AUGMENT 9

Editing with Delete, Move, Replace, and Insert

Delete Word

Delete Text

Move Character

Move Text

2. Remove the word "indeed" between "certainly" and "presented".
Use the Delete Word command and mark any character in "indeed".
Notice how the text is adjusted when the word is deleted.

You type: Command window shows:

d BASE Delete C/OPT:

w BASE Delete Word (at) MIA:

<MARK> BASE Delete Word (at) OK:

<OK> BASE Delete Word (at) ! !
BASE C:

3. Change the word "presented" to "present" by deleting the "ed".
Use the Delete Text command. Mark the "e" as the first character of
the text -and the "d" as the last character.

You type: Command window shows:

d BASE Delete C/OPT:

BASE Delete Text (at) MIA:

<MARK> BASE Delete Text (at) (through) MIA:

<MARK> BASE Delete Text (at) (through) OK:

<OK> BASE Delete Text (at) (through)

BASE C:

4. Change " Botoh" to " Booth" by moving the " t" to follow the second
"0". Use the Move Character command. Mark the "t" as the
character to be moved and mark the "0" as the character it should
follow.

You type: Command window shows:

m BASE Move C/OPT:

c BASE Move Character (from) MIAI [T]:

<MARK> BASE Move Character (from) (to follow character at) MIA:

<MARK> BASE Move Character (from) (to follow character at) OK:

<OK> BASE Move Character (from) (to follow character at)

BASE c:

5. Change the, phrase "Our staff will later this week be meeting" to
"Our staff will be meeting later this week". Use the Move Text
command. For the text that you want to move, mark the space before
" later" as the first character of the text and the " k" in "week" as
the last character of the text. For the character you want the text you
are moving to follow, mark the "g" in "meeting".

10 Beginning Use of AUGMENT

CHARACTER

WORD

TEXT

STATEMENT

The Iffice Automation Division of Tymshare provides generallpurpose, computer-based

services for controllinglreshaping, andidisseminating informationlThese services fill a

variety of organizational needs, such as office autolation, document production, and

software engineerinl.

The Office 1111111 Division of Tymshare provides computer -based

services for controlling, reshaping, and disseminating information. These services filii

variety of organizational needs, such as office automation, document production, and

software

The Office Automatio.n Division of Tymshare provid

services for conlling, reshaping, and disseminating information. These services fill a

variety of organizational as office automation, document prod

FIGURE 3: CHARACTER, WORD, TEXT, AND STATEMENT

Editing with Delete, Move, Replace, and Insert

You type: Command window shows:

m BASE Move C/OPT:

BASE Move Text (from) MIAI [T]:

<MARK> BASE Move Text (from) (through) MIA:

<MARK> BASE Move Text (from) (through) (to follow character at)

MIA:

<MARK> BASE Move Text (from) (through) (to follow character at)

! OK:
<OK> BASE Move Text (from) (through) (to follow character at)

! !
BASE C:

6. Change the phrase "the involved details" to "the details involved".
Use the Move Word command to move "involved" to follow "details"
by marking any character in "involved" and then any character in
"details" .

7. Use the Replace Character command to replace the "Y" in "Yours"
with "y" by marking the "Y" and then typing "y" followed by <OK>
or marking any "y". Notice that if you mark a "y" to indicate what
the character you want inserted, the "y" you mark will not be
changed.

8. Change the phrase "planning to evaluate" to "evaluating". Use the
Replace Text command. Mark the "p" in "planning" as the first
character of the text you want to replace and then the "e" in
"evaluate" as the last character of the text. Type the new text
" evaluating" and then <OK>.

9. Use the Replace Word command to replace "present" with
" attending" by marking any character in "present" and typing
"attending" followed by <OK>.

10. Add a comma after "Sincerely yours" to make "Sincerely yours,".
Use the Insert Character command and mark the "s" as the character
the new character should follow; then type a comma followed by <OK>
or mark a comma.

11. Add a new sentence "I hope this will be convenient." to follow the
last sentence in the body of the letter. Use the Insert Text command
and mark the period at the end of the last sentence. Then type "<sp>
<sp>I hope this will be convenient." and end with <OK>. You need to
type the two spaces so there will be two spaces between the old
sentence and the new one.

12. Change the phrase "a purchase" to "a possible purchase". Use the
Insert Word command and mark the" a" as the word you want the
new word to follow; then type the new word "possible" and end with
<OK>.

Move Word

Replace Character

Replace Text

Replace Word

Insert Character

Insert Text

Insert Word

Beginning Use of AUGMENT 11

Editing with Delete, Move, Replace, and Insert

Marking between
words

Spaces at line
breaks

If you see any other typing errors, use the editing commands you have
just learned to correct them.

Remember that "Text" can be a single character. To replace one
character with text showing on your screen, you can use the Replace
Text command, mark the character as both the beginning and ending
character of the text to be replaced, and then mark the text you want
to replace it with.

Marking words in AUGMENT has an additional feature. When you work
with words, you may also mark the space between two words; AUGMENT
will consider the two words as one. Or you can mark a hyphenated
word by marking the hyphen between the words comprising it.
Marking between words is often very useful in editing, and can
significantly reduce the number of commands you have to give. For
example, you could revise the phrase "I will be in touch with you
Tuesday of next week" to read "I will be in touch with you next
week", by giving the Delete Word command and marking the space
between "Tuesday" and "of".

Why does this work? As an editing convenience, AUGMENT has been
designed so that whenever you tell it you want to work with a word, it
assumes that what you mark is a character in a word, without actually
examining the character. This means that when you mark a space or
hyphen between two words, AUGMENT assumes it is a character in the
middle of a word and treats the two words as one. Similarly, you can
move or insert a word to follow a punctuation mark immediately
following a word, such as a comma, simply by marking the punctuation;
AUGMENT assumes the punctuation is the last character in a word,
places your new word after it, and inserts a space, as usual, before your
new word.

There may be times when you want to move or insert a word to follow
a punctuation mark that immediately precedes a word, such as a left
parenthesis. When you mark the parenthesis, AUGMENT again thinks
you have marked a character in a word (in this case, the first
character) and inserts your new word after what it believes is the whole
word. Thus your new word comes not only after the parenthesis but
also after the word immediately following it.

NOTE: Line breaks do not affect what you can mark; spaces that fall at
the ends of lines can be marked just as when they are within lines.

RETURN CHARACTERS IN STATEMENTS
Although you do not need return characters to end lines when you type
text in AUGMENT, there may be places where you will want them. One
example of such a place is in an address; you might want it all to be
one statement, but you would not want to let AUGMENT decide where to
break it into lines. Instead you might want a name on the first line,
the street address on the second, and the city, state, and zip code on
the last. You would achieve this, just as you would on a typewriter, by

12 Beginning Use of AUGMENT

Return Characters in Statements

typing a return at the end of each of the first two lines. Return
characters, which we indicate as <RET>, force AUGMENT to begin a new
line.

Thus, if you wanted to add an address at the top of the letter written
as described in this lesson, you could use the Insert Statement
command, mark the origin statement to indicate that the address should
follow it, and then enter the address, typing <RET> each time you
wanted a new line and ending the entire address with <OK>. For
example:

You type:

s
<MARK>

Growers Inc.<RET>

45 B Street<RET>

Rome NY 14703<OK>

Command window shows:

BASE Insert c:
BASE Insert Statement (to follow statement at) MIA:

BASE Insert Statement (to follow statement at)

LITI [AJ:

BASE Insert Statement (to follow statement at)

Growers Inc.

45 B Street

Rome NY 14703!

BASE C:

When you are entering text and you type <RET>, the information
showing in the top line of your file window will disappear; AUGMENT
knows you want a new line and has simply expanded the command
window into the file window in order to accommodate it.

It is important to understand that return characters are like spaces in
that although they are invisible they can be marked and edited just
like any other characters. You can insert a return character with the
Insert Character command, or delete a series of characters that includes
a return character with the Delete Text command, and so on. If, in
the address entered in the above example, you replaced the return
character after the street address with a space, the last two lines of the
address would become one line (with "Street" and "Rome" separated
by a space). When you mark a return character, AUGMENT will show a
highlighted left angle bracket «).

UPDATING A FILE: THE UPDATE COMMAND
The changes you make to a file are automatically saved by AUGMENT;
however, although you see the changes along with the file, they are
actually saved separately from it. Only when you "update" your file
are the changes completely integrated into it. Any time you have
significantly changed a file or do not plan to work on it in the near
future, you should update the file as follows:

Editing return
characters

Consolidating
changes

Beginning Use of AUGMENT 13

Updating a File: The Update Command

You type: Command window shows:

u BASE Update (file) OK/C:

<OK> BASE Update (file) OK:

<OK> BASE Update (file) ! !

BASE C:

This command makes a new version of the file that incorporates all the
changes you have made since you created or last updated it. The
information in the origin statement of the file changes to show that you
are working with a new version. You could then do more editing,
making a new set of changes, and could go back to the old version if
you wished.

GETTING TO A FILE: THE JUMP (TO) LINK COMMAND
Suppose you leave AUGMENT after writing and editing a file as described
in this lesson, and you later want to see the file again. Whenever you
enter AUGMENT, your initial file is displayed; if you want to see a
different file, you need to use a command to get to it. To reach any
one of your files, use the Jump (to) Link command. Simply type "jl"
and then type the name of the file, a comma, and <OK>. For example,
this is how you could get to the file named LETTER after logging in and
entering AUGMENT:

You type:

letter,<OK>

14 Beginning Use of AUGMENT

Command window shows:

BASE Jump (to) M/C:

BASE Jump (to) link M/TI [A]:

BASE Jump (to) link letter,!

BASE C:

EXERCISES
1. Write the following answer to Ms. Booth's letter and keep it separate
from the information in your other files:

Monday I will be giving a demonstration to your marketing
division. So we'll see at last what they think!

<your name>

Now add the statement "Dear Ms. Booth:" before the first statement
you added above.

2. Use a single command to make each of the following changes to the
letter you wrote in Exercise 1:

(a) Change "Monday" to "Next Monday".

(b) Change "So we'll see at last what they think" to "So at last
we'll see what they think", without using the command word
"Text" . N ow use the same command to change it back again.

(c) Change the single space between the two sentences to two
spaces, without typing a space or moving the cursor more than
once.

(d) After your name, add the name of your organization on a
separate line without adding another statement.

Exercises

Beginning Use of AUGMENT 15

Summary

SUMMARY
Several basic AUGMENT concepts were introduced in this lesson: using
the verb-noun pattern to combine various command words; typing only
enough characters in a command word for AUGMENT to recognize the
word; understanding and responding to prompts; marking with the
mouse; and ending commands or parts of commands with <OK>. You
have also learned how to cancel all or part of a command with <CD> or
<Be>. These features are consistent throughout all of AUGMENT.
Learning these elements will make it easy for you to learn the rest of
AUGMENT.

This lesson has also taught you some basic commands for writing and
editing in AUGMENT. You should now know how to create a file and
add statements to it, how to use <Be> and <BW> to make corrections
while you are typing text, and how to edit a statement in a file such as
by removing or adding characters, words, or text. You have also
learned how to update a file you have worked on and how to get to it
again the next time you enter AUGMENT. We recommend that you now
read the lesson "Writing and Reading an Organized File".

16 Beginning Use of AUGMENT

LIST OF COMMANDS
Create File (to be named) TYPE IN

Insert Statement (to follow statement at) LOCATION TYPEIN

Insert Character (to follow character at) LOCATION CONTENT <OK>
Insert Text (to follow character at) LOCATION CONTENT <OK>
Insert Word (to follow word at) LOCATION CONTENT <OK>

Delete Character (at) LOCATION <OK>
Delete Text (at) LOCATION (through) LOCATION <OK>
Delete Word (at) LOCATION <OK>

Move Character (from) LOCATION (to follow character at) LOCATION <OK>
Move Text (from) LOCATION (through) LOCATION (to follow character at)

LOCATION <OK>
Move Word (from) LOCATION (to follow word at) LOCATION <OK>

Replace Character (at) LOCATION (by) CONTENT <OK>
Replace Text (at) LOCATION (through) LOCATION (by) CONTENT <OK>

Replace Word (at) LOCATION (by) CONTENT <OK>

Update (file) <OK> <OK>

Jump (to) Link TYPEIN

Definitions:

LOCATION

CONTENT

TYPEIN

Prompted by "MIA:"

For M you may <MARK>.

Prompted by "M/TI [A]:"

For M you may <MARK>.
For T you may type a series of characters, ending with
<OK> (if another <OK> follows, a second one is not
needed).

Type a series of characters, ending with <OK>.

List of Commands

Beginning Use of AUGMENT 17

Vocabulary

VOCABULARY
The page numbers indicate where the vocabulary item is discussed in
this lesson.

Base subsystem: A basic set of AUGMENT commands for reading,
writing, editing, printing, and filing information. Page 1

<BC>: " BC " stands for "backspace character". Typing <BC> erases the
last character you typed. You can also use <BC> to erase the last step
in a command. Pages 4, 5, 7

<BW>: " BW" stands for "backspace word". Typing <BW> deletes the
last word you typed (plus any spaces, punctuation, or other characters
following the word). Page 7

<CD>: "CD" stands for "command delete". Typing <CD> cancels any
command you have not finished (that is, before you have given the final
<OK». You may then begin a new command. Page 5

character: A single letter, number, punctuation mark, space, return
character, or special control character. You type characters when
giving commands and you store characters in files. Page 9

command: An instruction you give to the computer to perform an
action. When you give AUGMENT a command, AUGMENT will perform
the action after you complete the command with the final <OK>.
Page 3

command window: As you give AUGMENT a command, it is displayed
in this window along with prompts and noise words. You also see the
name of the subsystem you are working in. Page 2

command word: A word that AUGMENT knows is part of a command,
for example, the verb and noun that usually begin a command. Page 3

Create File command: A Base subsystem command that makes a new
file, giving it the name you specify. Page 5

Delete command: A Base subsystem command you can use to remove
information, such as a character, a word, or some text. Page 8

exclamation point: Each time you type <OK> when giving an
AUGMENT command, you will see an exclamation point (!) in the
command window. The exclamation point simply lets you know that
the <OK> was received by AUGMENT. Page 4

file: A work space on the computer, like a file folder in a filing
cabinet, that you can fill with information. Page 1

file window: This window displays files or parts of files. Page 2

18 Beginning Use of AUGMENT

Insert command: A Base subsystem command that lets you add new
information to a file, such as a character, a word, some text, or a
statement. Pages 6, 8

invisible character: A character you cannot see on your screen, such
as a space or a return character. Page 9

Jump (to) Link command: An AUGMENT command you can use to
move from one file to another. Page 14

mark: To mark means to indicate a character on the screen by using
the mouse to point to it and then typing <OK>. Page 4

<MARK>: This notation means that you are to mark a character on the
screen. Page 4

Move command: A Base subsystem command to reorder information
in a file; for example, you can move one character to follow another.
Page 8

noise words: When you give a command word, AUGMENT may respond
with a word or phrase in parentheses. These are called "noise words";
they help you understand the purpose of the command or what you
need to do to complete it. Page 4

<OK>: Typing <OK> tells AUGMENT that you have finished giving a
command or part of a command. When you type <OK>, you see an
exclamation point CD. Pages 4, 5

origin statement: The first statement in every file. It contains
information such as the name of the file and the identity of the person
who created or last updated the file. Page 6

prompt: A series of characters that appears in the command window
to tell you what you can do next. Prompts are always one or more
uppercase letters followed by a colon (:). Page 3

Replace command: A Base subsystem command to remove
information, such as a character, a word, or some text, and put new
information in its place. Page 8

<RET>: This represents a return character, the character that forces
AUGMENT to begin a new line. Return characters can be marked and
edited just like any other characters. Page 12

<sp>: This represents a space, that is, what you type with the space
bar on the keyboard. In AUGMENT, a space is an actual character that
separates one word from another and can be deleted, moved, replaced,
or inserted; it is not emptiness. Page 9

statement: The basic unit of information in an AUGMENT file. A
statement may be a single character, a word, a title, a heading, an
address, a paragraph, or any logical unit. Every character in an
AUGMENT file is in a statement. Page 6

Vocabulary

Beginning Use of AUGMENT 19

Vocabulary

status window: This window displays messages from AUGMENT or the
Executive. Page 2

subsystem: AUGMENT is divided into subsystems, which are sets of
commands related to particular activities. Page 1

text: Any series of characters within a statement. It may begin or
end within a word and may include punctuation, spaces, and any other
visible or invisible characters. Page 9

Update command: A Base subsystem command to consolidate recent
changes into your file. You can make a new version incorporating the
changes, do more editing, and return to the old version if you wish.
Page 13

viewspec window: This small window displays characters that tell you
what kind of view you have of the file being displayed. Page 2

visible character: A character you can see on your screen, such as a
letter, number, or punctuation mark. Page 9

windows: When you use AUGMENT, the display screen is divided into
four areas, called "windows". Page 2

word: A series of letters and/or numbers surrounded by spaces,
punctuation marks, or any other characters that are not letters or
numbers. Page 9

20 Beginning Use of AUGMENT

SOLUTIONS TO EXERCISES
1. Use the Create File command and give the file a name different
from the names of your other files. Using the Insert Statement
command and marking the origin statement of the new file, type in the
statement that begins with "Monday", ending with <OK>. Then use
the Insert Statement command again, marking the statement you just
added and typing in the statement consisting of your name. To add a
statement before the first statement, do exactly what you did to enter
the first statement: Give the Insert Statement command,mark the
origin statement, and type "Dear Ms. Booth:" followed by <OK>.

2. (a) You can do this with the Replace Character command, replacing
the "M" with "Next M", or with the Replace Word command,
replacing "Monday" with "Next Monday".

(b) Use the Move Word command. Type "mw", mark the space
between "at" and "last" to indicate the word to be moved, and mark
any character in "So" to indicate the word it should follow. To change
it back again, type "mw", mark the space between "at" and "last"
and then mark any character in "see". Note that if you mark the
space between "we'll" and " see", you will be referring to "II see",
because the word ends at the punctuation mark.

(c) Use the Insert Character command and ma.rk the space following the
first sentence as both the character to insert and the character it
should follow.

(d) Give the Insert Text command and mark the last character of your
name as the character the text should follow; then type a return
character and the name of your organization followed by <OK>.

Solutions to Exercises

Beginning Use of AUGMENT 21

Price $3.00

STARTING AND ENDING AN AUGMENT WORK SESSION:
FOR USERS OF ARPANET

Copyright Tymshare Inc., May 1980
20705 Valley Green Drive
Cupertino, California 95014

This document was prepared and composed for
printing with AUGMENT by the Office
Automation Division of Tymshare, Inc.

AUGMENT Journal Number 48744
Tymshare Document Number 1839

This lesson teaches you how to start a work session by
identifying yourself to the computer (log in), how to enter
AUGMENT, and how to end your work session (log out). It is
written for users who reach the AUGMENT computer through
ARPANET and who use an AUGMENT 1200 display terminal. It
also introduces you to the equipment you will be using.

Illustrations of the normal, simple procedures for logging in,
entering AUGMENT, and logging out appear on the inside covers.
This lesson gives you helpful background information, elaborates
on the procedures, and teaches you how to deal with unusual
situations such as interruptions in service.

You should learn from your AUGMENT architect the telephone
number you must dial or other procedure you must follow to
make the initial connection to the computer, as well as the
specific identifying numbers, names, or passwords you will have
to provide.

CO"NTENTS

Introduction

Preparing Your Equipment 4

Connecting to the Network 5

Connecting to the Host Computer 5

Logging into the Host Computer 6

Entering AUGMENT 8

Ending Your Work Session: Logging Out 8

Review of Logging In and Logging Out 10

Checking the Status of Your Job: <CTRL-T> 10

Attaching Back to a Detached Job 11

Summary 13

List of Commands 14

Vocabulary 15

INTRODUCTION
To work in AUGMENT, you first establish a connection to the computer
and "log in" by identifying yourself. You then enter AUGMENT and do
your work. When you want to stop working, you It log out" and break
your connection to the computer. With practice, the procedures of
logging in and logging out will become almost automatic.

You will be working at a terminal that may be thousands of miles from
the computer that supports AUGMENT. The distant computer is called a
"host computer It • A collection of small computers, called a "network",
connects your terminal to the AUGMENT host computer. The computers
in the network are dispersed geographically; users can connect to the
nearest one to communicate with a host computer, wherever its location.

When you press a key on a manual typewriter, you activate a series of
levers and springs that ends up with the key striking the ribbon and
printing a character; when you press a key on an electric typewriter, an
arrangement of electric wires, motors, and magnets performs the same
function. When you press a key on your AUGMENT terminal, an
arrangement of digital electronics in the terminal and the network
similarly transmits a character and, in addition, brings you the response
of the host computer.

Computer networks are designed to be as invisible and reliable as
possible. Normally as you work you will be no more aware of them
than you are of the levers or wires in a typewriter. When you begin
your work, however, it is necessary to identify to the network the host
computer you want. The network also affects other procedures you may
occasionally need to use. For these reasons, we believe you will have
more confidence in your work if you have some background information
on the network.

The network consists of a number of small computers, each of which is
connected to several others. These small computers are called "nodes It •

When you type at your terminal, signals from your keystroke go to the
node you are connected to, and from that node to another node, and so
on through the network to the host computer of your choice. The host
computer carries out work for you and sends back characters to your
display by the same method. Along the way, the various nodes store
your characters for safekeeping until the host computer has responded,
check for transmission errors, and perform other communications
services. Figure 1 shows the path of communication through the
network between your terminal and the host computer.

This lesson is written for users who reach AUGMENT through ARPANET, a
United States Department of Defense network. You need to learn from
within your own organization which network serves you.

Using a host
computer through
a network

What the network
is

ARPANET

Starting and Ending an AUGMENT Work Session: ARPANET

Introduction

Overview of the
steps to reach
AUGMENT

Operating system
and the Executive

TIP and ANTS

Multiplexers

Format of
examples

Figure 2 briefly indicates the steps most users take to reach AUGMENT
through ARPANET. After preparing your equipment, you can connect the
terminal to the network through a telephone line. . You then need to
connect to the host computer by instructing the network to open the
connection. Your last step before entering AUGMENT is to log into the
host computer.

The first system you communicate with on the host computer is its
"operating system", a set of programs that supervises the operation of
other programs and performs general support functions. The operating
system on the host computer you will be using is TENEX. The
instructions that you give to the computer are called "commands"; you
interact with the operating system through a set of commands that is
collectively called "the Executive".

The Executive includes commands for logging into the host computer,
entering AUGMENT, and logging out of the host computer. Along with
these commands, you will learn two AUGMENT commands: one for
logging out, and one for returning to the Executive in case you want to
log out from there. This lesson will also teach you how to attach back
to the host computer if your connection breaks due to network or
terminal malfunction.

Most ARPANET users communicate with the network through a node
called a "TIP", which stands for "Terminal Interface Processor". Some
users, however, reach ARPANET through an "ANTS"; if you are one of
these users, ask your AUGMENT architect for special instructions
regarding connecting to and disconnecting from the network.

At some sites, devices called " multiplexers" are employed to
communicate between your terminal and the network. Multiplexers are
important to logging in because they may make it easier or more
difficult, depending on the equipment involved. Some multiplexers
make logging in easier by automatically logging in the user; others
require the user to log into the multiplexer as a separate, first step.
Because of the differences, this lesson cannot instruct you in how to
deal with multiplexers. Please ask your AUGMENT architect for the
additional, special instructions you need.

This lesson includes examples of doing work outside of AUGMENT, that
is, of interacting with the operating system. The format of these
examples differs somewhat from that of AUGMENT examples (explained
in the "Introduction to the AUGMENT Textbook Series"), because of
differences in the way information is displayed and in the type of
interaction that occurs between the user and the computer. The format
is similar enough, however, that you should have no problem following
the non - AUGMENT examples. They are shown in two columns. As in
all examples, the first column indicates what you type and uses
indenting to show continuation; you type a space only where one
appears between words or is specially indicated by the notation "<SP>".

The second column simply shows everything that appears on the display
screen.

2 Starting and Ending an AUGMENT Work Session: ARPANET

KEYSET

KEYBOARD

00000000000 ••
00000000000.

•• 00000000000 ••
•• 0000000000 ••• • •
AUGMENT 1200 DISPLAY TERMINAL

NODES

NETWORK

r------------------T

KEYSET

DISPLAY

KEYBOARD

o
o
o

.0ClClOOOO_OOOOO.
00000000000000 ••
_000000000000.
•• 000000000000 ••
•• 0000000000 ••• • • MOUSE

I
I
I
I
I

I
I
I
I
I

NODES

NETWORK

3. Connect to the host computer.

AUGMENT 1200 DISPLAY TERMINAL

I
I
I 1. Prepare your equipment.

2. Connect to the network.

-1
FIGURE 1(Upper): THE PATH OF COMMUNICATION THROUGH THE NETWORK

FIGURE 2(Lower): THE STEPS TO REACH AUGMENT

I
I
I
I

_-L

HOST COMPUTE R

-- -- ----,

OPERATING
SYSTEM

AND
THE EXECUTIVE

AUGMENT

I
I
I
I
I
I
I
I
I
I
I

HOST COMPUTER

4. Log into the host computer. I
5. Enter AUGMENT. I

I
I

______ .J

NOTE: Except where indicated otherwise, the numbers, names, and
passwords shown in examples are hypothetical. The actual information
that you will supply and receive depends on your situation.

Introduction

Starting and Ending an AUGMENT Work Session: ARPANET 3

Preparing Your Equipment

Modem

Switches on the
display

Adjusting the
screen

Checking the
mouse

PREPARING YOUR EQUIPMENT
When you are ready to use your AUGMENT work station for the first
time, you should start by identifying the various pieces of equipment.
Your AUGMENT 1200 display terminal consists of the following:

display: A television -like device that shows information stored in
the computer and your interaction with it.

keyboard: An arrangement of keys as on a typewriter,plus keys
that have special uses. You can type text and enter commands
with the keyboard.

mouse: A hand - sized device, with three buttons on the top, that
rolls freely over a flat surface and correspondingly moves the
cursor (traveling mark) on the display screen.

keyset: A device with five piano -like keys for entering characters
into AUGMENT at a display terminal; an alternative to the keyboard.

With· the keyset and the buttons on the mouse, you can enter
commands and characters quickly while moving the cursor with the
mouse. The keyset is a convenience, to be learned as time permits.

Unless your connection uses a multiplexer instead of a telephone line or
your terminal is wired directly to a TIP, your work station will also
include a "modem", which is a device that translates information
between computer devices and telephone lines.

This equipment should be set on a table large enough to hold your
papers and at an appropriate height to permit comfortable use of the
keyboard. Your work station may also include a printing device.

When you are ready to begin working, look on the left side of your
display for the power ON/OFF switch. After turning it on, you will hear
the sound- of a fan. If you have a modem, turn it on as well. On the
lower right front of the display you will see several push - switches.
Make sure that the switch marked "EIA" is pushed in. Generally, the
other switches should remain out. An explanation of these switches
and other information about your terminal appears in the "AUGMENT
1200 Display Terminal Users' Guide", available through the Office
Automation Division at Tymshare.

Look on the right side of your display for two knobs, one marked "B"
(for "brightness") and the other marked "C" (for "contrast"). As with
a television set, if the brightness or contrast is too low, you will see
nothing. Adjust the screen so that you can clearly and comfortably see
the cursor on it. Later, when information appears on the display, you
may want to make further adjustments.

The next step is to check your mouse by moving it across the table to
see that the cursor moves across the screen correspondingly.

4 Starting and Ending an AUGMENT Work Session: ARPANET

Once you have completed these preparatory steps, you are ready to
connect your terminal to the network.

CONNECTING TO THE NETWORK
To connect to the network, most users dial a special telephone number
(which answers with a high - pitched sound) and then follow the
instructions for the modem being used. Some ARPANET users have
terminals that are wired directly to a TIP and therefore do not have to
use the telephone. If you do not know the procedure for connecting
your terminal to the network, ask your AUGMENT architect for
assistance.

Upon connecting to the network, ARPANET users normally see some
coded information about the connection, such as:

AMES TIP 112 #: 66

If you do not see something like this, you may have to type "e" or
"E" to get the attention of the TIP.

You type: Display shows:

e AMES TIP 112 #: 66

CONNECTING TO THE HOST COMPUTER
Your next step is to connect to the host computer. You do this by
giving a command to open the connection and specifying the number of
the host computer. For example, to open the ARPANET connection to
host computer number 43, you would do this:

You type:

@i<sp>25<RET>
<CTRL - Y>O<SP>

43<RET>

Display shows:

@i 25
o 43

Open
Trying ...

Welcome to AUGMENT Service from Office-1
@

If you do not know the number of the host computer you want to use,
ask your AUGMENT architect. Note that "@i<sP>25<RET>" is a special
instruction that you must give to be able to use AUGMENT in display
mode.

If you see the word "BAD" when you are trying to open the ARPANET
connection, it means that you made a typing error and should start
over again from the "@" as shown above. If you see the word
"CAN'T",or "Open" followed by a message from a host computer other
than the one you wanted, you should first close the connection (as
described later in this lesson) and then start over again from the " @ " .

Connecting to the Network

Errors in opening
the connection

Starting and Ending an AUGMENT Work Session: ARPANET 5

Connecting to the Host Computer

Host not
responding

Operating system
message

@from the
Executive

Occasionally you may not succeed in connecting to the host computer
because it is "down", that is, not operating. In this case, you will see
a message such as "Host not responding" and should turn off your
equipment and start over again. Try starting over again in two
minutes; if the computer is still down, try again in about twenty
minutes. If you still cannot connect to the host computer and would
like more information, call the Office Automation Division at Tymshare.

NOTE: To prevent unauthorized access, ARPANET will break your
connection to the network if you do not connect to the host computer
within a certain amount of time. The exact amount of time depends on
the network and the connection.

When you connect to the host computer, you see a message from its
operating system. The information given in the message depends on the
operating system; normally it includes the- name of the host computer.

Following the message from the operating system~ you see an at sign
("@ "). This character indicates that you can give an Executive
command. The host computer is waiting for you to identify yourself so
that you can work in AUGMENT.

LOGGING INTO THE HOST COMPUTER
Your last step before entering AUGMENT is to log into the host
computer. You must identify yourself to the computer by supplying a
name called a "directory name" (sometimes called a "user name") and
a password. Some users may also have to specify an account; in most
cases, however, the computer -will automatically charge the appropriate
account according to the directory name. If you do not know the
specific identifying information you must supply, ask your AUGMENT
architect for assistance.

You log into the AUGMENT host computer by giving an Executive
command that begins with "login" (or the abbreviation "log"). The
following example shows how you could log in if your directory name
were TWAIN and your password were "clemens".

You type:

log twain<RET>
clemens<RET>

<RET>

Display shows:

@Iog twain
(password)
(Account)

Job 23 on TTv64 8 - Feb - 79 13:22
Previous login: 8 - Feb - 79 08: 1 0

@

For security reasons, the password does not appear on the display
screen when you type it.

6 Starting and Ending an AUGMENT Work Session: ARPANET

Logging into the Host Computer

Notice that after entering the password, you see "(Account)". If, like
most users, you do not specify the account, your reply is simply a
return character; otherwise, type the account designation followed by a
return character.

You can also use the following quicker method of logging into the host
computer:

You type:

log twain<SP>
clemens<SP>
<RET>

Display shows:

@Iog twain
Job 23 on TTy64 8 - Feb -79 13:22
Previous login: 8 - Feb - 79 08: 1 0

@

Users who specify the account may do so after the space following the
password.

If you see only a question mark (?) and another "@" after trying to
log into the host computer, you have not succeeded in logging in. You
can then simply repeat the command.

Some host computers restrict the number of people who may log in. If
you see a message telling you that you may not log in for this reason,
contact your AUGMENT architect.

Upon logging into the host computer, you see an operating system
message that tells you the job number and terminal number for this
work session, the current date and time, and possibly other information.
For example, the message in the example above tells you the job
number is 23, the terminal number is 64, the date and time are
8 - Feb -79 and 1:22 p.m., and you last logged in at 8:10 that morning.
The exact content of the message depends on the operating system.
Note that all messages reflect the time zone of the host computer.

Other messages may follow this operating system message. Their
meanings will become clear as you become more familiar with the
system. You may, for example, see the message" [You have new
mail] "; another lesson will describe how to read the mail this message
refers to.

Finally, after all messages, you again see the "@" indicating that you
can give an Executive command.

Account

? after trying to
log in

Job number

Starting and Ending an AUGMENT Work Session: ARPANET 7

Entering AUGMENT

Ident and sharing
directories

Command window

Initial file

Logout Job
command

ENTERING AUGMENT
After logging into the AUGMENT host computer, you are ready to enter
AUGMENT.

You type: Display shows:

augment<RET> @augment

Sometimes several people use the same directory name when they log
in. In this case, each individual user must give further identification
upon entering AUGMENT, by supplying his or her "ident". An "ident"
is a short series of characters that identifies an individual to AUGMENT.
After the step shown above, the screen will go blank and then display a
request for the ident. For example, if you were sharing a directory and
your idemt were MTN, the second step of entering AUGMENT would be as
follows:

You type: Display shows:

mtn<RET> Ident = MTN

When you enter AUGMENT, the screen will go blank briefly and then
show you information in a special way. In AUGMENT, the screen is
divided into areas called "windows"; the information displayed in each
window has a separate function and can change independently. When
you give a command in AUGMENT, one of these windows, the "command
window", will show the command you are giving and the feedback you
get from AUGMENT, such as prompts telling you what you can do next.
Most users see "BASE c:" in the command window upon entering
AUGMENT.

In another window, just below the command window, you will see the
beginning of your "initial file". A "file" is a work space on the
computer, like a folder in a filing cabinet, that you can fill with
information. Your initial file is a special file, with the same name as
your ident, that automatically appears when you enter AUGMENT. As
you learn more about AUGMENT, you will learn more about the windows
on your screen and about working with files.

ENDING YOUR WORK SESSION: LOGGING OUT
When you want to end your AUGMENT work session, you can give the
Logout Job command in AUGMENT.

You type: Command window shows:

BASE c:
BASE logout c:
BASE logout Job OK/T I [M] :

<OK> BASE logout Job !

8 Starting and Ending an AUGMENT Work Session: ARPANET

Ending Your Work Session: Logging Out

Your screen will then go blank except for the word "Bye".

You may instead want to return to the Executive before logging out (for
example, if you are familiar with Executive commands and want to do
some work there). To return to the Executive, give the Quit command
in AUGMENT, as follows:

You type:

q
<OK>

Command window shows:

BASE c:
BASE Quit OK:
BASE Quit!

You will then see the Executive 1t@1t again, possibly preceded by a
message from the operating system, and can give any Executive
command. When you want to log out, you can give a Logout command,
by typing "logout It (or the abbreviation "logo") followed by a return
character.

You type:

logout<RET>

Display shows:

@Iogout
logout Job 23, User TWAIN, Acct ARCOVH, TTY 64, at
2/08/79 1430

Used 0:8:7 in 1 :8: 12

The message you see when you log out this way depends on the
operating system.

NOTE: At any time after logging into the host computer, if you do not
do any work in a certain amount of time, you will be automatically
logged out. The exact amount of time preceding "autologout" depends
on the host computer; it is usually about twenty minutes.

After logging out of a host computer that you reached through
ARPANET, you should explicitly break or "close" the connection to the
host computer, as follows:

You type: Display shows:

<CTRL - Y>C<RET> c
Closed

If you do not do this, ARPANET will eventually close the connection.

Finally, you may disconnect from ARPANET by turning off your
equipment. If you do not do so, the network will break the connection
after a certain amount of time.

Quit command

Executive Logout
command

Autologout

Disconnecting
from the host
computer

Disconnecting
from the network

Starting and Ending an AUGMENT Work Session: ARPANET 9

Review of Logging In and Logging Out

REVIEW OF LOGGING IN AND LOGGING OUT
The following examples will help you review much of what you have
learned so far in this lesson.

Reaching AUGMENT through ARPANET:

You type:

@i<sp>25<RET>

<CTRl - Y>O<SP>

43<RET>

log twain<RET>

clemens<RET>

<RET>

augment<RET>

Logging out:

You type:

<OK>

Display shows:

AMES TIP 112 #: 66
@i 25

o 43

Trying ••.

Open

Welcome to AUGMENT Service from Office - 1

@Iog twain

(password)

(Account)

Job 23 on TTy64 8 - Feb - 79 13:22

Previous login: 8 - Feb - 79 08: 1 0

@augment

Command window shows:

BASE C:

BASE Logout C:
BASE Logout Job OK/T / [M] :

BASE Logout Job

Closing the ARPANET connection:

You type: Display shows:

<CTRl - Y>c<RET> c
Closed

CHECKING THE STATUS OF YOUR JOB: <CTRL-T>
At any time while you are working in AUGMENT, you can get
information about the status of your job by typing <CTRL - T>. The
information appears in your status window without disturbing what you
are doing, even if you are in the middle of a command. You will see
"Waiting" if AUGMENT is waiting for you to do something, and
"Running" if you are waiting for it.

1 0 Starting and Ending an AUGMENT Work Session: ARPANET

Attaching Back to a Detached Job

ATTACHING BACK TO A DETACHED JOB
Network or terminal malfunction may break the connection between
your terminal and the AUGMENT host computer, leaving you with what
is called a "detached job" . You might notice, for example, that
nothing happens when you give a command, or that you get no
response when you type <GrRL-T>. In either of these cases, you may
have a detached job. If you have a detached job, you can resume from
where you left off by attaching back to the job.

When you think you have a detached job, you should start over again,
connecting to the host computer in the usual way; however, instead of
logging into the host computer, your next step should be to give the
Where command, which will tell you what jobs are currently logged in
under your directory name and whether they are detached. You would
do the following, for example, if your directory name were TWAIN:

You type:

where twain<RET>

Display shows:

@where twain

Detached, Job 23, AUGMEN
@

As shown in this example, " Detached" indicates that a job is detached;
for a job that is still connected to a terminal, the command would
instead show the terminal number.

If you see that there is one detached job under your directory name,
you can attach back to the job by giving a command that begins with
" attach" (or the abbreviation "att"). This command resembles the
command you give to log into the host computer. For example:

You type:

att twain<RET>

clemenS<RET>

<RET>

Display shows:

@att twain

(password)

(Tenex Job #)

If you were working in AUGMENT when your job was detached, you
should then type <LOCAL-RESET>. You will return directly to your job
and can resume from where you left off. If the information on your
screen appears garbled, type <LOCAL - RESET> again.

There may be more than one detached job under your directory name;
this can happen, for example, if other people use the same directory
name as you when they log in. To attach back to one of the jobs, you
must specify the number of that job. For this reason, it would be wise
for a user who shares a directory to copy down the job number when
first logging into the AUGMENT host computer. This is how such a user
might attach back if the job number were 23:

Signs of a
detached job

Locating your job

One detached job

<LOCAL-RESET>

More than one
detached job

Starting and Ending an AUGMENT Work Session: ARPANET 11

Attaching Back to-a-Detached Job

Job is not
detached

Not logged in

Review of
attaching

You type:

att twain<RET>

clemenS<RET>

23<RET>

Display shows:

@att twain

(password)

(Tenex Job #) 23

You can also use a quicker method of attaching, analogous to the
quicker method of logging in described earlier in this lesson.

If you see that your job is not detached (for example, if you see "TI'Y64,
Job 23, AUGMEN"), then you will need to type another return character
at the end of the process of attaching, as follows:

You type:

att twain<RET>

clemens<RET>

23<RET>

<RET>

Display shows:

@att twain

(password)

(Tenex Job #) 23

[attached to TTY 64]

If you learn that you are not logged in anywhere, it means that your
job was terminated rather than detached. In this case, you can start a
new job by logging into the host computer again as usual.

If you log into the host computer while there is still a detached job
under your directory name, you will see a message telling you that you
have a detached job. To terminate the new job and attach back to the
detached job, simply log out and start over again, taking the steps
described in the preceding paragraphs.

NOTE: A job that no one has attached to after a certain amount of
time will be automatically logged out. The exact amount of time
depends on the host computer; it is usually about an hour.

The following example reviews the procedure for attaching back to a
detached job.

You type:

@i<sp>25<RET>

<CTRL - Y>o<SP>

43<RET>

where twain

<RET>
att twain<RET>

clemens<RET>

<RET>

<LOCAL - RESET>

Display shows:

AMES TIP 112 #: 66
@i 25

o 43

Trying ...

Open

Welcome to AUGMENT Service from Office - 1

@where twain

Detached, Job 23, AUGMENT
@att twain

(password)

(T enex Job #)

12 Starting and Ending an AUGMENT Work Session: ARPANET

SUMMARY
Logging in and logging out enable you to reach the computer and then
AUGMENT, and to leave AUGMENT and the computer. This lesson has
taught you the background and the vocabulary that you need to
understand logging in and logging out. You have learned that the
computer that has AUGMENT on it is called the "host computer ", and
that you reach it through a II network" of other computers. You now
know how to check your work station and get your terminal turned on
and ready to go, how to connect to the network and then the host
computer, and how to log into the host computer and enter AUGMENT.
Once you have completed your work, you can end your session by
following one of the simple logout procedures presented in this lesson.

It is possible for your job to be detached from the host computer due to
network or terminal malfunction. You have learned how to recognize
and verify ,that this has happened, and how to attach yourself back and
continue to do your work.

If you are now ready to start learning how to use AUGMENT, we
recommend that you read the lesson "Beginning Use of AUGMENT".

Summary

Starting and Ending an AUGMENT Work Session: ARPANET' 13

List of Commands

LIST OF COMMANDS
The foilowing AUGMENT commands were discussed in this lesson.

Logout Job <OK>

Quit <OK>

14 Starting and Ending an AUGMENT Work Session: ARPANET

VOCABULARY
The page numbers indicate where the vocabulary item is discussed in
this lesson.

ARPANET: A United States Department of Defense computer network.
Page 1

attach: You can reestablish the connection between your terminal and
a detached job by "attaching" to the job. Page 11

command: An instruction you give to the computer to perform an
action.

command window: The area on your display screen where you see
the command you are giving AUGMENT. Page 8

CTRL: This stands for "control". When followed by a dash and a
letter and enclosed in angle brackets «», it represents the control
character you type by holding down the CTRL key while typing the
letter in either lowercase or uppercase.

<CTRL - T>: The character you type to ask the host computer to give
you information about the status of your job. Page 10

cursor: The mark that moves on your display screen as you move the
mouse. Page 4

detached job: A job that remains on the host computer but is no
longer connected to a terminal (possibly due to network or terminal
malfunction). Page 11

directory name: The name you type when you log into an AUGMENT

host computer. Page 6

display: A television -like device that shows information stored in the
computer and your interaction with it. Page 4

display terminal: A terminal that consists of a display, a keyboard, a
mouse, and a keyset. Page 4

Executive: A set of commands that lets you interact with the
operating system that supports AUGMENT. Page 2

file: A work space on the computer, like a file folder in a filing
cabinet, that you can fill with information. Page 8

host computer: A computer you reach through a network to perform
your work (for example, the computer that has AUGMENT on it). Page 1

ident: A short series of characters that identifies an individual to
AUGMENT. Your initial file uses your ident as its name. Page 8

Vocabulary

Starting and Ending an AUGMENT Work Session: ARPANET lS

Vocabulary

initial file: The file, with the same name as your ident, that
automatically appears when you enter AUGMENT. Page 8

job: Your work session on a host computer.

keyboard: An arrangement of keys as on a typewriter, plus keys that
have special uses. You can type text and enter commands with the
keyboard. Page 4

keyset: A device with five piano -like keys for entering characters into
AUGMENT at a display terminal; an alternative to the keyboard. Page 4

log in: To log in means to start a work session on a computer by
supplying the necessary identifying information. Page 6

log out: To log out means to end your work session on a host
computer. Page 8

Logout command: A command you can give in the Executive to log
out of the host computer. Page 9

Logout Job command: A command you can give in AUGMENT to log
out of the host computer. Page 8

modem: A device that translates information between computer devices
and telephone lines. Page 4

mouse: A hand - sized device, with three buttons on the top, that rolls
freely over a flat surface and correspondingly moves the cursor
(traveling mark) on the display screen. Page 4

network: A number. of interconnected, geographically dispersed
computers that systematically allow users to reach one or more host
computers. Page 1

node: One of the network's small computers through which
information travels from your terminal to a host computer. Page 1

<OK>: This notation means that you are to press either the key for
<OK> on the keyboard or the right mouse button, to tell AUGMENT that
you have finished giving a command or part of a command. When you
type <OK>, you see an exclamation point (!).

operating system: A set of computer programs permanently stored in
the host computer to supervise the operation of other programs and
perform general support functions. TENEX is an example of an
operating system. Page 2

password: A series of characters that you type along with the name
you supply when you log into an AUGMENT host computer. This is a
private word and will not appear on the display screen when typed.
Page 6

16 Starting and Ending an AUGMENT Work Session: ARPANET

Quit command: The AUGMENT command you use to return to the
Executive. Page 9

<RET>: This notation represents a return character, the character you
type to indicate that you are finished giving a command or part of a
command in the Executive.

<sP>: This notation represents a space, that is, what you type with the
space bar on the keyboard. We use this notation where it may not be
clear that you type a space.

terminal: A device at which a computer user may enter, retrieve,
view, print, or manipulate information in the computer.

TIP: Most ARPANET users communicate with the network through a
node called a "TIP", which stands for "Terminal Interface Processor".
Page 2

Where command: A command you can give in the Executive to learn
what jobs are currently logged in under your directory name and
whether they are detached. Page 11

work station: Your AUGMENT work area, including the display
terminal, modem (optional), and table. It may also include a printing
device. Page 4

Vocabulary

Starting and Ending an AUGMENT Work Session: ARPANET 17

Price $3.00

WRITING AND READING AN ORGANIZED FILE

Copyright Tymshare Inc., May 1980
20705 Valley Green Drive
Cupertino, California 95014

This document was prepared and composed for
printing with AUGMENT by the Office
Automation Division of Tymshare, Inc.

AUGMENT Journal Number 48749
Tymshare Document Number 1822

This lesson teaches you how to use the Base subsystem to write
and read an organized file in AUGMENT. You should already
know how to write simple AUGMENT files, as described in the
lesson "Beginning Use of AUGMENT".

CONTENTS

Introduction

Organized Files: Hierarchical Structure 2

Inserting Statements at Different Levels 4

Inserting a Series of Statements Using Insert Mode 7

Inserting Individual Statements Anywhere 9

Reading: The Jump Command 10

Jumping with Structure: Next, Back, Successor, and Predecessor 11

Changing Views: Viewspecs 12

Viewing Blank Lines between Statements 13

Viewing Statement Numbers 14

Level and Line Clipping Viewspecs 15

Level Clipping Viewspecs 15

Line Clipping Viewspecs 17

Combining Level and Line Clipping Viewspecs 18

Changing Views as You Read: Jumping with Viewspecs 21

Restoring your Initial Viewspecs 21

Review of Viewspecs 22

Exercises 23

Suggested Project 23

Summary 24

List of Commands 25

Vocabulary 26

Solutions to Exercises 28

INTRODUCTION
Writing in AUGMENT means adding text to a file, either by typing at
your keyboard or by copying text already stored online. When you add
to an AUGMENT file, you can organize the paragraphs and headings into
an outline form that reflects the relationships between the statements.
For example, you can enter a document in which the first chapter title
will be at position 1, the first subheading in that chapter at position la,
the first paragraph under that subheading at position 1a1, and so on.
This outline form is called "hierarchical structure". This lesson will
teach you about hierarchical structure and tell you how to write a file
that is organized in this way . You will see how hierarchical structure
helps you organize both your thoughts and your writing.

You will also learn how hierarchical structure makes it possible for you
to look at an online document from many different points of view.
Reading in AUGMENT is much more flexible than reading text printed in
a book. When reading a book you are limited by the fact that the
content of each page is fixed; you have only two choices, to read
sections straight through, from beginning to end, or to scan, picking out
sentences here and there. In AUGMENT you can read the paragraphs on
your screen, one after the other, as if they were on the pages of a
book, but you can also look at a document in many other useful ways.
Since you control how you see a file on the screen, you can take
advantage of the structure of AUGMENT files by looking at only
headings, for example, or only headings and the first line of every
paragraph; the other text is still in the file, but you look at only what
you need to see.

Writing in
AUGMENT

Reading in
AUGMENT

Writing and Reading an Organized File

Organized Files: Hierarchical Structure

Hierarchies show
relationships.

ORGANIZED FILES: HIERARCHICAL STRUCTURE
Human beings tend to classify the things they see around them. One
way of classifying things is in hierarchies. (Another way would be in
groups of similar objects, for example, all chairs, or all land masses.)
Classifying in hierarchies is an important kind of classification because
hierarchies allow you not only to talk about groups of things but also
to show the relationships between things. For example, it is common to
think of the world itself in terms of a hierarchy, as follows: The world
is divided into continents, the continents are divided into countries,
countries are divided into states, states into counties, and so on.

Because hierarchical arrangement is such an important tool, AUGMENT

files are structured so that you can organize statements into an outline
form that shows the relationships between the statements. Here is an
example showing how you would express the hierarchical organization of
the world with AUGMENT structure.

World
Africa

Ethiopia
Kenya
Zambia

Antarctica
Asia

India
Japan
Thailand

Australia
Australia
New Zealand

Europe
Austria
Ireland
Spain

North America
Canada
Cuba
Mexico

South America
Argentina
Brazil
Chile

Each item in this outline is a separate statement. Note that although
each statement shown here consists of one or two words, a statement in
a hierarchy can have any content: a character, a number, a word, a
line, a sentence, or a paragraph. What is important in setting up the
structure is the relationships between the statements. AUGMENT shows
these relationships with indenting. Each statement that is indented
three character positions from the preceding statement is subordinate to
that statement.

2 Writing and Reading an Organized File

Organized Files: Hierarchical Structure

The hierarchy in the above outline has three "levels"; the World
statement is at level 1, the continents are one level below it, at level 2,
and the countries are at level 3. We could fill in this outline by
including more information at level 3 (for example, adding the rest of
the countries under each continent), or we could add more levels (by
adding states under countries, counties under states, and so on, until we
reached streets or even individual buildings).

To describe the relationships between statements at different levels, we
use the words "up" and "down". Statements at level 1 (also called
"first-level statements") are one level "up" from statements at level 2
("second-level statements"). Second-level statements are one level
"down" from first-level statements and one level up from third-level
statements. Likewise, third-level statements are one level down from
second-level statements, two levels down from first-level statements,
one level up from fourth-level statements, and so on.

Two more AUGMENT terms used to describe the relationships between
statements are "substatement" and "upstatement". A statement's
"substatements" are the statements that are subordinate to it and one
level down from it. In the preceding example, Africa has the
substatements Ethiopia, Kenya, and Zambia, and Antarctica has no
substatements. "Upstatement" is the reverse of substatement; a
statement's upstatement is the statement it is subordinate to and one
level down from. Thus the up statement for Ethiopia, Kenya, or Zambia
is Africa, and Antartica's upstatement is World.

We also refer to the "substructure" of any AUGMENT statement that
has substatements. A statement's substructure is all the statements
subordinate to it, regardless of how many levels they are down from it.
In other words, the substructure of a statement is all of its
substatements, plus all of their substatements, plus their substatements
and so on. For example, the substructure of the World statement is
the entire rest of the outline, including all the continents and the
countries under each continent. The substructure of the continent
Australia consists of the countries Australia and New Zealand. Not
every statement has substructure. Since Antartica has no countries
under it, it has no substructure, and since none of the individual
countries have statements under them, none of them have substructure.

This lesson will show you how to write a structured AUGMENT file
containing a table of contents, a familiar example of hierarchical
structure. A sample table of contents appears on the following page.
(The page is detachable for easy reference while you read the lesson.)
When you know how to insert this table of contents, you will know
everything necessary to write any structured file you wish.

NOTE: We have chosen an example that consists of only headings, for
brevity; of course, the files you write will normally include information
under headings.

Levels

Up and down

Substatement and
upstatement

Substructure

Writing and Reading an Organized File 3

Organized Files: Hierarchical Structure

Starting the file

The " LIT I [A] : "
prompt

How to adjust the
level

To create a file named BENEFITS that is to contain this table of
contents, you would give the Create File command and type "benefits"
as the name of the file. When you do this, AUGMENT automatically
makes and displays an origin statement containing information about
the file. You would then be ready to insert the table of contents.

INSERTING STATEMENTS AT DIFFERENT LEVELS
To insert statements at different levels, as you would need to do to
enter the sample table of contents, you can use the Insert Statement
command. After creating the BENEFITS file that is to contain the table
of contents, you could begin by inserting the first statement to follow
the origin statement of the file. You would do this by giving the Insert
Statement command and marking the origin statement as the statement
your new statement should follow.

You type:

s
<MARK>

Contents<OK>

Command window shows:

BASE Insert c:
BASE Insert Statement (to follow statement at) MIA:

BASE Insert Statement (to follow statement at) LIT / [AJ :

BASE Insert Statement (to follow statement at) ! Contents!

BASE C:

As shown in this example, when you insert a statement you see the
prompt "L/TI [AJ:" and can respond to the "T" in this prompt by
typing your new statement and ending with <OK>. However, you have
another choice. Before entering the new statement, you can indicate
that you want to put it on a different level than the previous one. The
"L" in "LIT I [A J :" means that you can specify the level of the new
statement relative to the level of the statement it is to follow; we call
this "adjusting the level" of the new statement. This ability to put
statements at different levels as you enter them allows you to arrange
the statements in your file into a hierarchy as you type.

In response to the "L" in "L/T/[AJ:", you can specify that your new
statement should be down from, up from, or at the same level as the
statement it is to follow. To indicate that your new statement should
be down a level (and therefore a substatement of the statement it is to
follow), type "d<OK>" . To put your new statement up a level, type
"U<OK>"; it will be inserted at the next highest level (that is, the same
level as the upstatement of the statement it is to follow). If you want
the statement to be up more than one level, type another "u" for each
additional level. For example, "uuu<OK>" will put your new statement
three levels higher than the one you insert it to follow. If you want
your new statement to be at the same level, you can type <OK> in
response to the "L" or, as you have already learned, you may respond
to the "T" by simply typing the new statement.

4 Writing and Reading an Organized File

Contents

Part I. Holidays

Section I. Legal days off. List of legal holidays, including
national, local, and company-specific days.

Section II. Absence from work. Rules governing permissible
days off with and without pay.

Part II. Recreational Activities

Section I. Noon time. Location for classes and dressing rooms
and regulations concerning their use.

Section II. Scheduled activities. List of available classes and
location for each calendar year.

Section III. Company-sponsored classes. Off-site classes and
registration information.

Part III. Education

Notes

Section I. Qualification. Information regarding hours and
requirements for work-related classes.

Section II. Costs. Regulations regarding reimbursement for
registration and tuition fees.

Section III. Advanced degrees. Applications, requirements, and
program development.

Addendum

The BENEFITS Table of Contents

Inserting Statements at Different Levels

NOTE: You cannot insert a statement to be down more than one level
from the one it is to follow.

There is one place where you do not need to indicate a level change at
the "LIT I [A] :" prompt, even though the statement you insert will be at
a different level than the one it follows: You do not need to specify a
level change when you are inserting to follow the origin statement.
The origin statement is the upstatement of all the first-level statements
you add to a file; in other words, the origin statement is at level 0 and
all the other statements in the file are the substructure of the origin
statement. AUGMENT knows this and thus automatically puts at level 1
any statement you insert to follow the origin statement. When
inserting the first statement as shown in the previous example, you
took advantage of this when you responded to the "L/TI [A] :" prompt
by simply typing your new statement. Although you did not tell
AUGMENT to change the level of the new statement, AUGMENT made it a
first-level statement, one level lower than the origin statement.

Inserting to follow the origin statement is the only place AUGMENT will
automatically adjust the level of your new statement. When entering
the second statement of the table of contents, for example, you will
have to adjust the level yourself. To do this, give the Insert Statement
command again and mark the first statement you inserted, "Contents",
as the statement your new statement is to follow. At the "L/TI [A]:"
prompt, type "d<OK>" to indicate that your new statement should be
down a level from "Contents" . You will see a new prompt,
"M/TI [A]:". AUGMENT is waiting for your new statement; type "Part I.
Holidays" and end with <OK>. The process of entering the second
statement looks like this:

You type:

s
<MARK>
d<OK>
Part I.

Holidays<OK>

Command window shows:

BASE Insert c:
BASE Insert Statement (to follow statement at)

BASE Insert Statement (to follow statement at)

BASE Insert Statement (to follow statement at)

BASE Insert Statement (to follow statement at)

Holidays!

BASE C:

MIA:

LIT I [A]:

d! MITI [A]:

d! Part I.

After the final <OK>, AUGMENT will display the statement at the place
and level you have indicated. The new statement will follow the
previous one immediately, with no blank line between them. (Later in
this lesson you will learn how to see the file with blank lines between
the statements.)

You are now ready to enter Sections I and II of Part I. Because these
are logically subsections of Part I, you would want to take advantage of
AUGMENT's hierarchical structure and make them substatements of Part
I. You could mark Part I as the statement you want your new
statement to follow and insert Section I down a level from it, as
follows:

Inserting to follow
the origin
statement

Example of
inserting down a
level·

Writing and Reading an Organized File 5

Inserting Statements at Different Levels

Example of
inserting at the
same level

<SP> when
adjusting levels

Statements
beginning with
<SP>, d<sp>, U<SP>,
and so on

You type:

s
<MARK>
d<OK>
Section I.

... <OK>

Command window shows:

BASE Insert c:
BASE Insert Statement (to follow statement at) MIA:

BASE Insert Statement (to follow statement at) LITI [A]:

BASE Insert Statement (to follow statement at) ! d! MITI [A]:

BASE Insert Statement (to follow statement at) ! d! Section I.
Legal days off. List of legal holidays, including national,

local, and company-specific days.!

BASE C:

You could then mark Section I as the statement your next new
statement should follow and insert Section II. Since Section II is to be
at the .same level as Section I, you do not have to adjust the level.
Thus at the "L/TI [A]:" prompt you could just respond to the "T" by
typing your new statement and ending it with <OK>.

You type:

s
<MARK>
Section II.

... <OK>

Command window shows:

BASE Insert C:

BASE Insert Statement (to follow statement at) MIA:

BASE Insert Statement (to follow statement at) ! LITI [A]:

BASE Insert Statement (to follow statement at) ! Section II.

Absence from work. Rules governing permissible days off

with and without pay.!

BASE C:

Or you could respond to the "L" by indicating "same level" with <OK>,
and then go on to type Section II at the "M/TI [A]:" prompt.

You type:

s
<MARK>
<OK>
Section II.

... <OK>

Command window shows:

BASE Insert C:

BASE Insert Statement (to follow statement at) MIA:

BASE Insert Statement (to follow statement at) LITI [A]:

BASE Insert Statement (to follow statement at) ! ! MITI [A]:

BASE Insert Statement (to follow statement at) ! ! Section II.

Absence from work. Rules governing permissible days off

with and without pay.!

BASE C:

If you find it more convenient or easier to type, you can use <SP>
instead of <OK> when you adjust the level of your new statement. For
example, "u<sp>" would put your new statement up one level and <sp>
would put it at the same level.

You have learned that if you want to insert a statement at the same
level as the statement it is to follow, you can respond to the ilL" in the
"L/TI [A]:" prompt by typing <OK> or <SP>, or you can respond to the
"T" in this prompt by typing the statement. However, if your new
statement begins with a space or one or more d's or u's followed by a
space, or if it consists entirely of one or more d's or u's, you cannot
just type the statement. In this case, you must first respond to the ilL"

in the prompt by typing <OK> or <SP>; only then can you type the

6 Writing and Reading an Organized File

Inserting Statements at Different Levels

statement. If you do not do this, AUGMENT will take the first character
or characters you type as adjusting the level of your statement and the
rest of what you type as the statement itself.

Once you have finished entering the Sections under Part I, you can
begin entering Part II. Since the Part II statement is logically on the
same level as the Part I statement, one level higher than the Sections
under Part I, you can insert it to follow Section II of Part I up a level.

You type:

s
<MARK>

u<OK>
Part II.

... <OK>

Command window shows:

BASE Insert c:
BASE Insert Statement (to

BASE Insert Statement (to

BASE Insert Statement (to

BASE Insert Statement (to

Recreational Activities!

BASE C:

follow statement at) MIA:

follow statement at) LITI [A]:

follow statement at) u! M/T/[A]:

follow statement at) u! Part II.

At this point you could continue giving Insert Statement commands,
marking the statement your new statement should follow, adjusting the
level when necessary, typing the statement, and ending with <OK>, until
you have entered the entire table of contents. But a faster way to do
this would be to use "insert mode", as described below.

INSERTING A SERIES OF STATEMENTS USING INSERT MODE
Whenever you want to insert a series of statements where each new
statement directly follows the previous one, you can, of course, give a
separate Insert Statement command for each statement; however, it
saves time to use "insert mode". In insert mode you do not have to
give the Insert Statement command over and over; instead you just type
your statements one after another, adjusting the level when necessary,
and the statements are inserted into your file in the order you type
them.

To get into insert mode, you type <INS>. The following paragraphs tell
where you can do this. To leave insert mode, you type <CD>, as you
would to cancel a command.

You can type <INS> at "BASE C:" after you have given an Insert
Statement command; AUGMENT will assume that you want to begin
inserting right after the statement you just entered. When you type
<INS>, you see an "L/TI [A]:" prompt. This is the same prompt as in
the Insert Statement command, and you should respond to it in the
same way: Adjust the level of your new statement if necessary, type
the statement, and end with <OK>. AUGMENT will insert the statement
into your file and prompt you again with " LIT I [A] : " . You can then
enter your next statement to follow the one just inserted, adjusting the
level if necessary, follow this with the next statement, and so on, until
you have entered all the statements. When you are finished, type <CD>
at the "L/TI [A]:" prompt.

Example of
inserting up a
level

Entering and
leaving insert
mode

<INS> at "BASE C:"

after Insert
Statement

Writing and Reading an Organized File 7

Inserting a Series of Statements Using Insert Mode

Inserting outside
the file window

<INS> at any
"BASE C:"

Continuing with the example of inserting the BENEFITS table of contents,
suppose you have just entered the Part II statement with the Insert
Statement command and you want to use insert mode to enter the
remaining statements.

You type:

<INS>

d<OK>
Section I.
... <OK>

Section II.

... <OK>

Section III.
... <OK>

u<OK>
Part III.
... <OK>

Command window shows:

BASE C:

LIT I [AJ:

d! M/T/[AJ:

d! Section I. Noon time. location for classes and
dressing rooms and regulations concerning their use.!

LITI [AJ:

Section II. Scheduled activities. list of available
classes and location for each calendar year.!

LITI [AJ:

Section III. Company-sponsored classes. Off-site
classes and registration information.!

LIT! [AJ:

u! MITI [AJ:

u! Part III. Education!
LIT! [AJ:

Notice that just as when you use the Insert Statement command, you
can respond to the "L/TI [AJ :" prompt either by adjusting the level of
your new statement (as when entering the Section I and Part III
statements above) or, if the new statement is at the same level as the
one it follows, by typing the statement (as when entering Sections II
and III).

You could continue in this way to enter the entire table of contents;
however, you would not see all of it in your file window. At some
point the file window would be too small to display all the statements
in your file. Later in this lesson you will learn how to see the rest of
your file; right now it is important to realize that as long as you type
each statement and end it with <OK>, it will be added to your file even
though you cannot see it being added. Of course, the command window
will always show the statement you are currently typing.

When entering the "Notes" statement, be sure to type "uu<OK>" after
the "L/TI [AJ :" prompt, since this statement is two levels up from the
statement it follows (Section III of Part III). Remember that to leave
insert mode you must type <CD> after the "L/TI [AJ:" prompt.

While it is perhaps safest to enter insert mode after giving an Insert
Statement command, you can, in fact, type <INS> any time you are
prompted with "BASE c:". When you type <INS>, AUGMENT will assume
you want to begin inserting after your current statement, that is, the
last statement you inserted, edited, or jumped to. If you are inserting
into a newly created file, or just beginning to work, the origin
statement will be your current statement and the first statement you
insert will follow the origin statement. Because it may be difficult at
times to determine just what your current statement is, it is a good

8 Writing and Reading an Organized File

Inserting a Series of Statements Using Insert Mode

practice to begin inserting with the Insert Statement command. After
the Insert Statement command, when you know where you are, you can
safely enter insert mode.

You can also type <INS> in place of the final <OK> in an Insert
Statement command. Because you are replacing <OK> with <INS>, you
will not see the exclamation point (!) that lets you know AUGMENT has
received an <OK>. AUGMENT will carry out the Insert Statement
command as usual and then give you an "L/TI [A]:" prompt just as if
you had typed <INS> at "BASE c:". Type <OK> at the end of each
statement you insert, and type <CD> after the "L/TI [A]:" prompt when
you are done.

INSERTING INDIVIDUAL STATEMENTS ANYWHERE
After entering a series of statements into a file, you may find that you
want to add statements to what you entered. To add statements
anywhere in a file, use the Insert Statement command, mark the
statement you want the new statement or statements to follow, and
proceed as usual. If you are adding one statement, end the Insert
Statement command with <OK>; if you are adding a series of
statements, you may want to enter insert mode by typing <INS> either
in place of the final <OK> or at "BASE C:" after the Insert Statement
command. For example, to add an "Introduction" before Part I in the
BENEFITS table of contents, you could use the Insert Statement
command, mark the Conte~ts statement, and add the Introduction
statement to follow it, down one level.

When you insert a statement to follow another at the same level and
the statement it is to follow has substructure, AUGMENT will put the
new statement after the substructure. If, for example, you added a
Part IV statement to the table of contents and indicated that it should
follow Part III at the same level, AUGMENT would put your new Part IV
at the same level as Part III, but after Section III of Part III. (You
will be able to check this later in this lesson, after you learn about
reading and moving around in a file.)

Note that there is often more than one way to add a statement at a
particular position in a hierarchically structured file. For example, if
you inserted a Part IV statement to follow Section III of Part III and
indicated that it should be up one level, the result would be the same
as if you inserted it to follow Part III at the same level. In fact, the
same thing would happen if you inserted a statement to follow Section I
or II of Part III up one level.

In general we can say that when you insert a statement, AUGMENT puts
your new statement in the next available place at the level you specify,
without disturbing the substructure of the preceding statement at that
level. Thus inserting a statement to follow a third-level statement up
one level puts the new statement in the next available place at level 2,
inserting it up two levels puts it in the next available place at level 1,

<INS> at the end
of Insert
Statement

The new statement
follows the
substructure.

More than one
way to add a
statement

Writing and Reading an Organized File 9

Reading: The Jump Command

The "M/C:"
prompt

Jump (to) <MARK>

Jump (to) Origin

and inserting it up three levels puts it immediately after the origin
statement.

READING: THE JUMP COMMAND
If you have added statements to a file at a place that is not displayed
on your screen, you will probably want to look at what you added. To
read statements that are not displayed on your screen, you can use one
of the many forms of the Jump command. This command is called
"Jump" because it lets you jump from one statement to another
without reading through all the statements between them. When you
jump to a certain statement, AUGMENT displays that statement at the
top of the file window and shows as much of what follows as will fit on
the screen. AUGMENT offers many ways of jumping around in a file
and helping you find a particular statement. In this lesson you will
learn several basic kinds of Jump commands; later you will learn
others.

After you type "j" for "Jump", your command window will show
"Jump (to)" followed by the prompt "M/C:". AUGMENT is asking you to
specify where you want to jump. You can respond to the "M" in this
prompt by marking the statement you want to jump to or to the "C" in
this prompt by giving a command word describing where you want to
jump.

The simplest way to indicate which statement you want to jump to is to
mark it. After marking the statement, you will see a "v:" prompt.
This prompt means that you may change viewspecs (as described later
in this lesson). To keep the same type of view, simply type <OK>. The
statement you marked will then move to the top of the file window and
you will see the series of statements that follow it. For example, after
inserting the table of contents into the BENEFITS file, you could read
beyond what shows on your screen by using Jump and marking any
character in the last statement in your file window.

You type:

<MARK>
<OK>-

Command window shows:

BASE Jump (to) M/C:

BASE Jump (to) ! V:

BASE Jump (to) ! !
BASE C:

Notice that no matter what character you mark in a statement, the
Jump command always moves the beginning of that statement to the
top of the file window.

After reading the entire table of contents, you could return to the
beginning of the file by using the Jump (to) Origin command. When
you see the "M/C:" prompt after typing "j" for "Jump", respond to
the "C" by typing "0" for the command word "Origin", indicating the
origin statement of the ·file. Then mark any character in the file and
end with an <OK> after the "v:" prompt. AUGMENT will display the
origin statement of your file at the top of the file window.

10 Writing and Reading an Organized File

Reading: The Jump Command

You type:

o
<MARK>
<OK>

Command window shows:

BASE Jump (to) M/C:

BASE Jump (to) Origin (of file) MIA:
BASE Jump (to) Origin (of file) ! v:
BASE Jump (to) Origin (of file) ! !
BASE C:

NOTE: The Jump command verb is II universal" within AUGMENT, that
is, it is available in every 'subsystem of AUGMENT (except sUbsystems
that have been designed. for special, limited applications).

JUMPING WITH STRUCTURE: NEXT, BACK, SUCCESSOR, AND
PREDECESSOR
Four important command words you can use with the verb "Jump" to
get to a statement not displayed in the file window are Next, Back,
Successor, and Predecessor. Like "substatement" and "upstatement",
these terms describe structural relationships between statements in an
AUGMENT file. They are illustrated in Figure 1 using our original
example, the World outline. When you use these command words, you
must indicate a statement to serve as a reference point so that
AUGMENT will know which statement the one you want is next from,
back from, and so on.

The "next" statement from the statement you indicate is the statement
immediately following it, and the statement "back" from the statement
you indicate is the statement immediately preceding it, regardless of
level. For example, to jump to the statement following the last
statement in your file window, you can give the Jump (to) Next
command and mark this last statement. Since there is another
command word that can follow Jump and begins with "n", you must
type .. <SP>n" for .. Next" .

You type:

<SP>n
<MARK>
<OK>

Command window shows:

BASE Jump (to) M/C:

BASE Jump (to) Next (from) MIA:
BASE Jump (to) Next (from) ! v:
BASE Jump (to) Next (from) ! !
BASE C:

If you then give the Jump (to) Back command and mark the statement
at the top of your file window, the immediately preceding statement
will appear at the top of the window.

You type:

i
b
<MARK>
<OK>

Command window shows:

BASE Jump. (to) M/C:

BASE Jump (to) Back (from) MIA:
BASE Jump (to) Back (from) ! v:
BASE Jump (to) Back (from) ! !
BASE C:

Jump is universal.

You give a
reference point.

Next and back

Writing and Reading an Organized File 11

Jumping with Structure: Next, Back, Successor, and Predecessor

Successor and
predecessor

Your view
changes, not your
file.

Every statement except the last statement in a file has a "next"
statement, and every statement except the origin statement has a
statement that is "back" from it.

The "successor" of a statement is the next statement that is at the
same level and has the same upstatement. Not every statement has a
successor. If a statement is the last or only substatement under a
particular upstatement, it has no successor. The" predecessor" of a
statement is the preceding statement that is at the same level and has
the same upstatement. Just as not every statement has a successor,
not every statement has a predecessor. If a sttttement is the first or
the only substatement under a particular upstatement, it has no
predecessor.

Jumping to the successors and predecessors of statements will let you
quickly view the various sections of a document that are at the same
level. If, for example, the Notes statement of the BENEFITS table of
contents were showing on your screen, and you gave the Jump (to)
Predecessor command and marked that statement, you would see
"Contents" at the top of the file window.

You type:

i
P
<MARK>

<OK>

Command· window shows:

BASE Jump (to) M/C:

BASE Jump (to) Predecessor (of) MIA:

BASE Jump (to) Predecessor (of) ! v:

BASE Jump (to) Predecessor (of) ! !
BASE C:

If you then jumped to the successor of "Contents", you would see
"Notes" at the top of the file window.

If you try to jump to Next, Back, Successor, or Predecessor when there
is none relative to the statement you indicate, the statement you
indicate will appear at the top of the file window. For example, since
"Addendum" is the last first-level statement in the BENEFITS file, you
could not jump to its successor; if you tried to, AUGMENT would display
" Addendum" itself at the top of the file window.

CHANGING VIEWS: VIEWSPECS
AUGMENT enables you to control not only what part of your file you see
but also how you see it. Just as you can jump around in a file using
the various Jump commands to look at only the information you need,
you can also control the way information is displayed on your screen.
You can, for example, display your file with blank lines between the
statements. When you view your file with blank lines, it does not
mean AUGMENT has put spaces into your file; AUGMENT merely displays
your file in a different way, leaving its contents just as you entered
them.

12 Writing and Reading an Organized File

Australia
Australia
New Zealand

Austria
Ireland
Spain

North America
Canada
Cuba
Mexico

Australia
Australia
New Zealand

,---- Europe
I..-----I.~ ~~i~:;,\' .. ,

Ireland
Spain

North America
Canada
Cuba
Mexico

Australia
Australia

.-----I.~ ' •. ti.wV:.l;eal;clPo
1..--__ Europe

Austria
Ireland
Spain

North America
Canada
Cuba
Mexico

Australia
Australia
New Zealand

[

Eur;~:tria
Ireland
Spain

No~~ .. ~fri'iea,.
Canada
Cuba
Mexico

C:EE:lan'd
Austria
Ireland
Spain

North America
Canada
Cuba
Mexico

Europe is a statement.

Austria is the 'next' statement from Europe.

New Zealand is the statement 'back' from Europe .

North America is the 'successor' of Europe.

Australia is the 'predecessor' of Europe.

FIGURE 1: NEXT, BACK, SUCCESSOR, AND PREDECESSOR

Changing Views: Viewspecs

The way you tell AUGMENT how you want to see the information in
your file window is by setting II viewspecs II • A II viewspec II is a single
letter that specifies the kind of view you want of your file. Some of
the viewspecs that are currently controlling your view are displayed in
the viewspec window (the upper right corner of your screen). When you
enter AUGMENT, certain viewspecs are automatically in effect, such as
those that let you see all lines of all statements in your file. To
change your view, you can use the Set Viewspecs command, which
begins as follows:

You type: Command window shows:

<SP>se BASE Set c:
v BASE Set Viewspecs V:

The II v: II prompt means that you can type one or more viewspecs
followed by <OK>. Uppercase viewspecs produce different results than
lowercase viewspecs, so be sure to type the proper case.

Viewspecs are an important tool in working with your files. By using
viewspecs effectively you can make working and reading, as well as
searching your files, much easier. The rest of this lesson will introduce
you to some basic viewspecs.

VIEWING BLANK LINES BETWEEN STATEMENTS
Viewspecs y and z allow you to control whether AUGMENT displays
blank lines between statements.

Viewspec:

y
z

Means:

Blank lines between statements on
Blank lines between statements off

Thus, to see your file with blank lines between the statements, you
would set viewspec y.

You type: Command window shows:

<SP>se BASE Set c:
v BASE Set Viewspecs V:

y<OK> BASE Set Viewspecs y!
BASE c:

Many people find reading files much easier with viewspec y. You can
change your view in other ways, by setting other viewspecs, while
keeping the blank lines between statements on. To see the file again
without blank lines, just set viewspec z as you s~t viewspec y above.

Set Viewspecs

Viewspecs y and z

Writing and Reading an Organized File 13

Viewing Statement Numbers

Statement
numbers

Viewspec m

Statement
numbers change.

VIEWING STATEMENT NUMBERS
Viewspecs enable you to display helpful information about the
statements in your file. For example, you can set a viewspec to display
your file with statement numbers. A statement number is a series of
alternating numbers and letters that indicates the exact position of a
statement within the hierarchical structure of a file. The statement
number of the origin statement is always o. The first statement after
the origin statement is statement 1, the first substatement after
statement 1 is statement lA, the successor of statement 1 is statement
2, and so on. By viewing your file with statement numbers, you can
easily determine the level and place of any statement.

Viewspec: Means:

m
n

Statement numbers on
Statement numbers off

To see the statement numbers for your file, set viewspec m.

You type: Command window shows:

<SP>se BASE Set c:
v BASE Set Viewspecs V:

m<OK> BASE Set Viewspecs m!
BASE C:

For example, the statement numbers for the original BENEFITS table of
contents would appear as follows:

1 Contents
lA Part I. ..

lAl Section 1...
lA2 Section 11. ..

lB Part II ...
IBI Section I. ..
IB3 Section II ...
IB3 Section III...

lC Part III ...
ICI Section I. ..
I C2 Section II...
IC3 Section III ...

2 Notes
3 Addendum

Since statement numbers indicate exactly where statements lie within
the hierarchical structure, they will change if you change the structure
of your file, such as by adding statements. If, for example, you inserted
an "Introduction" to follow "Contents" down a level, the Introduction
would become statement lA, Part I would become statement IB, Section
I of Part I would become lBl, and all the remaining statement
numbers would similarly change.

14 Writing and Reading an Organized File

Viewing Statement Numbers

NOTE: Like the blank lines between statements that you .can get with
viewspec y, the statements numbers you get with viewspec m are not
part of the text of your· file. They are simply a convenience provided
by AUGMENT. You do not enter them and you cannot mark them the
way you can mark text within a statement.

To see your file again without the statement numbers, use the Set
Viewspecs command to set viewspec n.

LEVEL AND LINE CLIPPING VIEWSPECS
To get an overall picture of a book, a reader often looks at a list of the
chapter titles in the table of contents. In AUGMENT, you can easily
display only the headings in a document by using viewspecs to show
only the statements at level 1. You can also show only the statements
at levels 1 and 2, or only those at levels 1 through 3, and so on. This
is called "level clipping". In a similar way you can control the
number of lines displayed for each statement. This is called "line
clipping". Since line clipping viewspecs let you fit more statements on
the screen, they are useful in scanning the overall structure of a file.
You will find level and line clipping viewspecs very helpful in both
writing and reading.

As you learn to use viewspecs to change the way you see your file, it
will help you to look at the viewspec window. The top line of this
window tells you how many levels and lines are being displayed. The
number on the left indicates the number of levels displayed and the
number on the right indicates the number of lines displayed. When
you enter AUGMENT, the viewspec window shows "ALL ALL", meaning
that you will see statements at all levels and all the lines of every
statement.

Level Clipping Viewspecs
You can use level clipping viewspecs to display statements at the first
level of your file, the first two levels, the first three levels, or any
number of levels up to 63. When you first try using level clipping
viewspecs, you may find it helpful to have viewspec m set so you can
see your file with statement numbers; the statement numbers will
enable you to easily determine the level of each statement. These are
the level clipping viewspecs:

Viewspec:

a
b
c
d

Means:

Show one level less
Show one level more
Show all levels
Show first level only

For a view of your file that shows only first-level statements, you
would use the Set Viewspecs command with viewspec d to "show first
level only". If you set viewspec d and have not set any line clipping

Statement
numbers are not
text.

Viewspec n

The first line of
the viewspec
window

Views pee d

Writing and Reading an Organized File 15

Level and Line Clipping Viewspecs

Viewspec b

Viewspec a

More or less than
what?

When the top
statement is at a
clipped level

Viewspec c

viewspecs, you will see "1 ALL II in the viewspec window, meaning
that one level and all lines are being displayed.

After setting viewspec d, you can set viewspec b, which means II show
one level more "; you will then see statements at levels 1 and 2 in the
file window and II 2 ALL II in the viewspec window. Figure 2 shows
how the World outline would look with viewspec d and viewspec b set.
You could obtain the same type of view of your BENEFITS file by doing
the following:

You type:

<SP>se
v

db<oK>

Command window shows:

BASE Set c:
BASE Set Viewspecs V:

BASE Set Viewspecs db!
BASE C:

If you looked at the BENEFITS file after setting viewspecs d and b, you
would see the statements at levels 1 and 2, and you would not see the
Section statements (which are at level 3). To display three levels of
statements, you could add another viewspec b to "show one level
more". Similarly, to display four levels, you would add still another
viewspec b, and so on. Each b will add a level to what you had before.

Viewspec a means "show one level less ". If statements at three levels
were being displayed and you wanted to see only the statements at
levels 1 and 2, you -could set viewspec a.

It is important to understand that level clipping viewspecs display a
number of levels more or less than the number in effect from previous
viewspecs, not necessarily a number of levels more or less than what
you see on your screen. For example, ALL levels is 63 levels. Thus, if
you set viewspec a when you have ALL levels showing, you will have 62
levels; this will change your view only if the part of the file you are
looking at contains a statement at level 63.

NOTE: Whenever you clip levels and the statement at the top of the
file window is at a lower level than what you want to see, AUGMENT
will continue to show that statement and any statements immediately
following it at the same level; depending on the structure of your file,
other statements at clipped levels may also appear before the first
statement that is at the level you limited your view to. For example, if
you set viewspec d to "show first level onlytl when there are two
second-level statements at the top of your file window, you will see
these second -level statements and then only first-level statements after
them.

To return to a view showing statements at all levels in your file, you
can use viewspec c. This viewspec is in effect when you enter
AUGMENT. If, after looking at your BENEFITS file with the levels
clipped, you again wanted to II show all levels ", you could set viewspec
c as follows:

16 Writing and Reading an Organized File

BASE C:

World

Africa

Antarctica

Asia
Australia
Europe

North America

South America

Ethiopia

Kenya

Zambia

India

Japan

Thailand

Australia

New Zealand

Austria

Ireland

Spain

Canada

Cuba

Mexico

Argentina

Brazil

Chile

This is the outline as it is displayed with
viewspecs d and b.

Thjs is the entire outline. The shaded
statements are the ones displayed above.

FIGURE 2: WORLD OUTLINE WITH VIEWSPECS d AND b

Level and Line Clipping Viewspecs

You type: Command window shows:

<SP>se BASE Set c:
v BASE Set Viewspecs V:
c<OK> BASE Set Viewspecs c!

BASE c:

Line Clipping Viewspecs
You can use line clipping viewspecs to see the first line of the
statements displayed, the first and second lines, the first three lines,
and so on, up to all lines of each statement displayed. These are the
line clipping viewspecs:

Viewspec:

q
r
s
t

Means:

Show one line less
Show one line more
Show all lines
Show first lines only

As you can see from this table, line clipping viewspecs work much like
level clipping viewspecs, although of course they control different things.
Level clipping viewspecs control which statements you see, but do not
affect the number of lines you see of each statement. With line
clipping viewspecs, on the other hand, you can control how many lines
you see of each statement, but you cannot control which statements are
displayed. The actual statements displayed will be those at the levels
you have selected with your level clipping viewspecs.

To see the only the first line of each statement displayed, use viewspec
t.

You type:

<SP>se
v

t<OK>

Command window shows:

BASE Set c:
BASE Set Viewspecs V:

BASE Set Viewspecs t!
BASE C:

If you set viewspec t when statements at all levels are being displayed,
your viewspec window will show "ALL 1 ", meaning "all levels and
one line". This view will allow you to fit more statements on the
screen and is useful when you want an overview of the organization of
a file or need to see the exact position and context of individual
statements or parts of a document.

After setting viewspec t, you can set viewspec r to "show one line
more"; you will then see the first two lines of every statement
displayed. Or you could see three lines by using "r" twice after
setting views pee t, and so on, adding an "r" for each additional line
you wanted to see. For example, after looking at only the first lines,
you might want to see the same statements with three lines showing,
and you could do this:

Comparison with
level clipping
viewspecs

Viewspec t

Viewspec r

Writing and Reading an Organized File 17

Level and Line Clipping Viewspecs

Viewspec q

Viewspec s

1 level and 1 line

2 levels and 1 line

You type: Command window shows:

<SP>se BASE Set c:
v BASE Set Viewspees V:

rr<OK> BASE Set Views pees rr!
BASE c:

To II show one line less ", use viewspec q. For example, if you have
three lines showing and you set viewspec q, the last line will disappear
and you will see only the first two lines of each statement displayed.

Like level clipping viewspecs that show one level more or one level less,
line clipping views pees that show one line more or one line less add to
or subtract from the number in effect from previous viewspecs, not
necessarily from what you see on your screen. The maximum number
(shown as II ALL II in the viewspec window) is 63.

When you want to return to a full view of every statement displayed,
you can use viewspec s to II show all lines II • This views pee is in effect
when you enter AUGMENT.

Combining Level and Line Clipping Viewspecs
Level and line clipping viewspecs are very handy when used separately,
but they can be even more effective when used together. Suppose, for
example, you are working with a large file, and you decide to set
viewspec d so you can scan the statements at level 1. If you show
every line, you may not be able to see all the first-level statements at
once, because they may not fit on the screen. To see as many of the
statements as possible, you could add a line clipping viewspec; in
addition to viewspec d, you could set viewspec t. Your viewspec window
would then show II 1 1 ", meaning "one level and one line II • You
would see only the first lines of the first-level statements in your file,
so more of your file would fit on the screen.

You type: Command window shows:

<SP>se BASE Set c:
v BASE Set Viewspees V:
dt<oK> BASE Set Viewspees dt!

BASE c:

If, after looking at your file with viewspecs d and t, you wanted to add
another level to your view, you would set viewspec b. You would then
see the first lines of the statements at levels 1 and 2 in your file and
your viewspec window would show "2 1 ", for "two levels and one
line" . This type of view is useful when you are writing or reading a
document and you want to see only the major headings (at level 1) and
the subheadings under them (at level 2). For example, this is how the
original BENEFITS table of contents would look with this view:

18 Writing and Reading an Organized File

Level and Line Clipping Viewspecs

Contents
Part I. Holidays
Part II. Recreational Activities
Part III. Education

Notes
Addendum

Once you have seen your file with viewspecs d, b, and t, you might
want to display the first lines of all the statements in the file so that
you can scan its structure. You would do this by setting viewspec c to
"show all levels"; AUGMENT would continue to show only one line of
each statement displayed, and you would see "ALL I" in the viewspec
window. Continuing from the previous example, this is what the table
of contents would look like if you then set viewspec c:

Contents
Part I. Holidays

Section I. Legal days off. List of legal holidays, including
Section II. Absence from work. Rules governing permissible

Part II. Recreational Activities
Section I. Noon time. Location for classes and dressing rooms
Section II. Scheduled activities. List of available classes and
Section III. Company-sponsored classes. Off-site classes and

Part III. Education
Section I. Qualification. Information regarding hours and
Section II. Costs. Regulations regarding reimbursement for
Section III. Advanced degrees. Applications, requirements, and

Notes
Addendum

NOTE: The line length shown here may differ from what you see on
your terminal.

If you then wanted to add a second line to the statements being
displayed, you would set viewspec r. AUGMENT would show one more
line of each statement, and you would see "ALL 2" in the viewspec
window. An additional views pee r would change the above view to this:

Contents
Part I. Holidays

Section I. Legal days off. List of legal holidays, including
national, local, and company-specific days.
Section II. Absence from work. Rules governing permissible
days off with and without pay.

Part II. Recreational Activities
Section I. Noon time. Location for classes and dressing rooms
and regulations concerning their use.
Section II. Scheduled activities. List of available classes and
location for each calendar year.
Section III. Company-sponsored classes. Off-site classes and
registration information.

Part III. Education

ALL levels and 1
line

ALL levels and 2
lines

Writing and Reading an Organized File 19

Level and Line Clipping Viewspecs

Views pee x

Views pee w

Section 1. Qualification. Information regarding hours and
requirements for work-related classes.
Section II. Costs. Regulations regarding reimbursement for
registration and tuition fees.
Section III. Advanced degrees. Applications, requirements, and
program development.

Notes
Addendum

Since no statement consists of more than two lines, this view shows you
the full table of contents. (As when you first entered the statements
into the file, you would not be able to see all of them at once on your
screen.) Note that if you then inserted a statement of more than two
lines into this file, only the first two lines of it would appear in the file
window.

Once you had this view, you could take away the third-level statements
using viewspec a, or subtract a line using viewspec q, and so on,
continuing to combine the level and line clipping viewspecs as desired.
Because the combination of level and line clipping is so helpful and so
frequently used, AUGMENT offers the following pair of viewspecs:

Viewspec:

w
x

Means:

Show all levels and all lines
Show one level and one line only

Viewspec x combines viewspecs d and t. Setting viewspec x will display
the first lines of the first-level statements in your file and will cause
your viewspec window to show "1 1 " . Viewspec x not only combines
level and line clipping, but can itself be conveniently used in
combination with other level and line clipping viewspecs. For example,
to show the first lines of the statements at levels 1 and 2 in your file,
you could set viewspecs x and b, as follows:

You type:

<SP>se

v

xb<OK>

Command window shows:

BASE Set c:
BASE Set Viewspees Y:

BASE Set Views pees xb!

BASE C:

This will have the same effect as setting viewspecs d, b, and t.
Likewise, if you want to see the first two lines of the statements at
level 1, you can set viewspecs x and r, which would have the same
effect as setting viewspecs d, t, and r.

Just as viewspec x is a combination of viewspecs d and t, viewspec w is
a combination of viewspec c, which shows all levels, and viewspec s,
which shows all lines. Setting viewspec w is an easy way of
counteracting any level and line clipping you may have done and
restoring the "all levels and all lines" view you had when you entered
AUGMENT. When you set viewspec w, you will again see "ALL ALL" in
your viewspec window.

20 Writing and Reading an Organized File

Changing Views as You Read: Jumping with Viewspecs

CHANGING VIEWS AS YOU READ: JUMPING WITH
VIEWSPECS
When you give any of the Jump commands you have learned in this
lesson (for example, if you type "j" for "Jump" and then mark the
statement you want to jump to), AUGMENT prompts you with "v:".
Just as when you see this prompt in the Set Viewspecs command, you
can respond by typing any viewspecs followed by <OK>. When AUGMENT
displays the statement you have jumped to, it will observe the viewspecs
you specified. Thus you can change viewspecs while you jump, all in
one command.

Changing viewspecs while you jump is a good way to look for something
in a structured file. You could first show only one line of the
statements at level 1, then jump to the heading that interests you and
give a views pee that adds another level, check the subheadings and
jump to one with a viewspec that adds another level, and so on, until
you find the statement you want to read. You could then jump to that
statement with a viewspec that shows all lines and all levels so that
you could read the entire paragraph and whatever follows it.

Suppose, for example, that you were unfamiliar with the BENEFITS file
and needed to locate the section dealing with advanced degrees. You
could begin by viewing the file with viewspec x. You would then see
that the three main parts of the file are Contents, Notes, and
Addendum, and you would want to look further under Contents. You
could then jump to "Contents" and at the same time set viewspec b to
see another level of statements, that is, the "Part" statements. After
noting that Part III deals with education, you could then jump to that
statement, setting viewspec b again to add yet another level. The
"Section" statements would be displayed under Part III and you would
see that Section III of Part III was the section you wanted. Finally you
could jump there, setting viewspec w to show all lines and all levels;
AUGMENT would display the entire statement, and you would be able to
read or modify it as you wished.

RESTORING YOUR INITIAL VIEWSPECS
Whenever you have changed any of your viewspecs and want to go back
to the view you had when you entered AUGMENT, you could, of course,
use the Set Viewspecs command and specify individually all the
viewspecs necessary to get back to this view; however, it is probably
more convenient to use the Reset Viewspecs command.

You type:

<SP>res
v

<OK>

Command window shows:

BASE Reset c:
BASE Reset Views pees (to defaults) OK:

BASE Reset Viewspees (to defaults) !
BASE C:

Searching by
jumping and
changing views

Searching
BENEFITS

Reset Viewspecs

Writing and Reading an Organized File 21

Review of Viewspecs

Viewspecs modify
or counteract each
other.

REVIEW OF VIEWSPECS
You have now learned many of the most frequently used and
convenient of the viewspecs AUGMENT offers. The following table is
intended as a review of the viewspecs presented in this lesson and as a
quick reference table. To set these viewspecs, use the Set Viewspecs
command; to return to the viewspecs in effect when you entered
AUGMENT, use the Reset Viewspecs command. For a complete
explanation of these commands and of the individual viewspecs, see the
sections introducing them.

Viewspec:

y
z

m
n

a
b
c
d

q
r
s
t

w
x

Means:

Blank lines between statements on
Blank lines between statements off

Statement numbers on
Statement numbers off

Show one level less
Show one level more
Show all levels
Show first level only

Show one line less
Show one line more
Show all lines
Show first lines only

Show· all levels and all lines
Show one level and one line only

Whenever you set viewspecs, they either modify or counteract the
viewspecs already in effect. For example, viewspec n counteracts
viewspec m and vice versa; viewspec b modifies the view you get with
viewspec d (by adding a level); and you can use viewspecs band r to
modify the effect of viewspec x (by adding a level and a line).

If you use a single Set Viewspecs command to set several viewspecs, the
result will be the same as if you had set each viewspec with a separate
command. If the viewspecs you set modify each other, AUGMENT will
interpret the viewspecs in the order that you type them, modifying each
viewspec by what follows it. For example, if you type "xbr" and then,
before ending with <OK>, you realize that you do not actually want to
set viewspec b, you can type "a" at that point; viewspec a will take
away the additional level added by viewspec b, and you will see two
lines of only statements at level 1. Likewise, if you specify two
viewspecs that contradict each other, such as viewspec d to show the
first level only and viewspec c to show all levels, the last viewspec you
type will take effect. So if you set viewspecs "dc", viewspec c will
take effect and viewspec d will be ignored.

22 Writing and Reading an Organized File

EXERCISES
1. What is the upstatement of the Section II of Part III in the BENEFITS
table of contents? What is the upstatement of "Addendum "?

2. What is the statement "next" from Section I of Part III? What is
the one "back" from it?

3. What is the successor of the Part I statement? What is the
predecessor of Section I of Part I? What would happen if you gave the
Jump (to) Predecessor commmand and marked Section I of Part I?

4. If you inserted a statement to follow Section II of Part II, one level
up from Section II, where would you expect to see the statement
displayed? Why?

5. Name three ways that you could add a statement before the "Notes"
statement and on the same level as "Notes".

6. What is the statement number of "Contents"? What is the
statement number of its upstatement? If you added a statement
following "Contents" and one level down from it, what would be the
statement number of this new statement? If you added a statement
before "Contents", what would be the statement number of "Contents"
and the statement you added below "Contents "?

7. How many levels of statements and lines of each statement must you
see to read through all the text in a file? How many levels and lines
give you an overview of as many statements as will fit on the screen at
once?

8. What command would you give to see only one line of the first-level
statements in your file? What would you then do to see two more lines
of each first-level statement and, after that, to see one more level of
statements? After doing all these operations, what would you see in
the first line of your viewspec window?

SUGGESTED PROJECT
To gain more experience in writing and reading structured files, make a
new file and type in the management structure of your department or
organization, that is, enter the hierarchy of managers and
non-managers. Use level clipping viewspecs to see only personnel at
the top level of the hierarchy, then only those at the top two levels,
and so on.

Exercises

Writing and Reading an Organized File 23

Summary

SUMMARY
The ability to arrange the information in your AUGMENT file into a
hierarchical structure provides several important advantages for writing
and reading. Working with structured files not only gives you new
tools to help you write, it often changes the way you write. When
composing a document in AUGMENT, you are encouraged to plan the
overall structure of the document, and this often means that a
document written in AUGMENT is more carefully organized than one
written by hand or on a typewriter. Further, you can use level and
line clipping viewspecs to see the organization of your document at a
glance.

This lesson has taught you the commands you need to write a
hierarchically structured file. You have learned how to enter
statements in insert mode and how to adjust their levels at the
"L/TI [A]:" prompt. In addition, you have learned some of the basic
viewspecs that make working with and reading structured files much
easier.

When you learn to use editing commands to change a structured file,
you will see that it is very easy to reorganize a well-structured
document; with one command you can move a chapter from the
beginning to the end of a document or delete a section of unnecessary
or redundant information, without disturbing the rest of the text. The
intermediate lesson on editing will teach you how to do this. You will
also find that a document with a consistent structure is much easier to
format for printing.

24 Writing and Reading an Organized File

LIST OF COMMANDS
Insert Statement (to follow statement at) LOCATION TYPEIN
Insert Statement (to follow statement at) LOCATION LEVADJ CONTENT

<OK>

<INS> TYPEIN TYPEIN ... <CD>
<INS> LEVADJ CONTENT LEVADJ CONTENT '" <CD>
<INS> TYPEIN LEV ADJ CONTENT '" <CD>
<INS> LEV ADJ CONTENT TYPEIN '" <CD>

Jump (to) <MARK> VIEWSPECS
Jump (to) Origin (of file) LOCATION VIEWSPECS
Jump (to) Next (from) LOCATION VIEWSPECS
Jump (to) Back (from) LOCATION VIEW SPECS
Jump (to) Successor (of) LOCATION VIEWSPECS
Jump (to) Predecessor (of) LOCATION VIEWSPECS

Set Viewspecs VIEWSPECS

Reset Viewspecs (to defaults) <OK>

Definitions:

LOCATION Prompted by "MIA:"

For M you may <MARK>.

TYPEIN Type a series of characters, ending with <OK>.
In the Insert Statement command, you may end with
<INS> and proceed as shown for <INS> above.

LEVADJ Type any number of level-adjustment characters (u for
up, d for down), ending with <OK> or <SP>, or just type
<OK> or <SP> for same level.

CONTENT Prompted by "M/TI [A]:"
For M you may <MARK>.
For T you may type a series of characters, ending with
<OK> (if another <OK> follows, a second one is not
needed).
In the Insert Statement command, you may type <INS>
in place of the final <OK> and proceed as shown for
<INS> above.

VIEWSPECS Type any viewspec characters, ending with <OK>, or just
<OK> for no view change.

List of Commands

Writing and Reading an Organized File 25

Vocabulary

VOCABULARY
back: In the context of the Jump command, the statement "back"
from a statement you indicate is the statement immediately preceding
it, regardless of level. Page 11

current statement: The last statement you inserted, edited, or jumped
to in a file. Page 8

down: A term used to describe the relationships between statements at
different levels: Statements at level 2 are "down" one level from
statements at level 1, statements at level 3 are down one level from
statements at level 2, and so on. Page 3

hierarchical structure: The structure of AUGMENT files; an outline
form that shows the relationships between the statements. Page 1

<INS>: "INS" stands for "insert". Typing <INS> puts you in insert
mode. Page 7

insert mode: You enter this mode when you type <INS>, either at
"BASE C:" or in place of the final <OK> at the end of the Insert
Statement command. In insert mode, you can continually add
statements, each one following the last, until you type <CD>. Page 7

Insert Statement command: A Base subsystem command that lets you
add statements to a file. Pages 4, 9

Jump command: An AUGMENT command to move from one point in a
file to another, or from one file to another. The statement you jump to
is displayed at the top of the file window. Page 10

level: A number that indicates how far down a statement is in the
hierarchical structure of a file. The greater the number, the further
down the statement is in the hierarchy. Pages 3, 5

level clipping: Using viewspecs to show statements at a limited
number of levels. Page 15

line clipping: Using viewspecs to show a limited number .of lines of
each statement displayed. Page 17

mark: To mark means to indicate a character on the screen by
pointing to it and then typing <OK>.

next: In the context of the Jump command, the "next" statement
from a statement you indicate is the statement immediately following it,
regardless of level. Page 11

predecessor: The predecessor of a statement is the preceding
statement that is at the same level and has the same upstatement.
Page 12

26 Writing and Reading an Organized File

Reset Viewspecs command: A Base subsystem command that restores
your viewspecs to what they were when you entered AUGMENT. Page
21

Set Viewspecs command: A Base subsystem command that lets you
change how you view the statements in your file by specifying
viewspecs. Page 13

statement number: A series of alternating numbers and letters that
indicates the exact position of a statement within the hierarchical
structure of a file. Page 14

structure: The arrangement of statements in a file. AUGMENT files
have a hierarchical structure. Page 1

substatement: The substatements of a particular statement are all the
statements that are subordinate to it and one level down from it. Page
3

substructure: A statement's "substructure" is all the statements
subordinate to it, regardless of how many levels they are down from it.
Page 3

successor: The successor of a statement is the next statement that is
at the same level and has the same upstatement. Page 12

universal: A" universal" AUGMENT command is one that is available
in every subsystem of AUGMENT (except subsystems that have been
designed for special, limited applications). Page 11

up: A term used to describe the relationships between statements at
different levels: Statements at level 1 are "up" one level from
statements at level 2, statements at level 2 are up one level from
statements at level 3, and so on. Page 3

upstatement: The upstatement of a statement is the statement it is
subordinate to and one level down from. Page 3

viewspecs: Single-letter specifications of how you see your file. For
example, with one viewspec you will see blank lines between statements,
and with another you will see the statements without blank lines
between them. Page 12

Vocabulary

Writing and Reading an Organized File 27

Solutions to Exercises

SOLUTIONS TO EXERCISES
1. The upstatement of the Section II statement is Part III. Since
"Addendum" is a first-level statement, its upstatement is the origin
statement.

2. Section II of Part III is " next" from Section I of Part III. The Part
III statement is "back" from it.

3. The successor of the Part I statement is the Part II statement.
Section I of Part I does not have a predecessor. If you tried to jump to
its predecessor, Section I itself would appear at the top of the file
window.

4. You would expect to see the statement after all the substructure of
Part II and up one level, that is, right before the Part III statement
and on the same level as Part III. The new statement would appear
here because this is the next available place AUGMENT could put a
second-level statement.

5. You could insert the new' statement to follow "Contents" at the'
same level, to follow the Part III statement up one level, or to follow
Section III of Part III up two levels. In fact, the statement would fall
in the right place if you inserted it to follow the Part I or Part II
statements up one level, or Section I or II of Part III up two levels; in
all cases, the new statement would fall after the substructure of
"Contents If •

6. The statement number of "Contents" is 1; its upstatement is the
origin statement, which always has the statement number o. If you
added a statement following "Contents" and one level down from it, its
statement number would be 1A. To add a statement before
"Contents", you would insert it to follow the origin statement; the new
statement would then have the statement number 1, "Contents" would
have the statement number 2, and the statement you added below
"Contents" would have the statement number 2A.

7. To read all the text in a file, you must see all levels and all lines,
as when you first enter AUGMENT. For an overview of as many
statements as will fit on the screen at once, you would want to see all
levels and one line.

8. To see only the first line of each first-level statement in your file,
you could give the Set Viewspecs command and either combine
viewspecs d, for "show first level only", and t, for "show first lines
only", or use viewspec x for "show one line and one level only". To
see two additional lines for each first-level statement, you would set
viewspecs "rr". To add second-level statements to your view, you
would set viewspec b. Your viewspec window would then show "2
3 ", meaning that you were seeing statements at two levels and three
lines of each of these statements.

28 Writing and Reading an Organized File

Price $3.00

WORKING WITH TABLES: A BEGINNING LESSON

Copyright Tymshare, Inc., May 1981
20705 Valley Green Drive
Cupertino, California 95014

This document was prepared and composed for
printing with AUGMENT by the Office
Automation Division of Tymshare, Inc.

AUGMENT Journal Number 75631
Tymshare Document Number 218(6/81)O.5M6156

This lesson describes how to use Table, an AUGMENT subsystem
that helps you enter information into a file in rows and columns
and easily perform editing or arithmetic operations on that
information. You will learn the basic commands for creating
and editing tables and for totaling rows and columns. Before
reading this lesson, you should be familiar with the editing and
viewing concepts and commands of AUGMENT up to the
intermediate level.

CONTENTS

Introduction

Entering and Leaving the Table Subsystem 2

Lines in Tables 3

Starting a Table 4

Entering Column Headings 6

Entering Rows of Information 7

Entering Columns of Information 10

Marking in Table 11

Aligning Table Entries: Justification 12

Editing Individual Entries 14

Editing Rows and Columns 16

Adding New Columns 17

Changing Column Boundaries 18

Totaling Rows and Columns 20

Adding Lines 22

Creating Multiple-Line Entries 24

Fixing Up Tables 25

Printing Tables 26

Exercises 28

Summary 30

List of Commands 32

Vocabulary 34

Solutions to Exercises 39

TABLE C:

Expense Summary

ALL ALL
hjuCP

~JI.II_~1;~~~tll~~i~~t~~~\~4fij!!tiIf.i~~~~'\~i
Finance 9,000 8,500 9,300
Research 4,000 3,500 4,100

l.'_~~I'~t&1g~~i~III.~\~tl'tl'.ji
Development 12,400 13,500 11,900

TABLE C:

Expense Summary
Department·

Finance
Research
Marketing
Development

TABLE C:

Expense Summary

2nd
8,500
3,500

15,300
13,500

Department :~~~{l.!;i~tJ: 2nd
Finance 9,000 8,500
Research 4,000 i1'~,+~!~U;
Marketing 15,400 #.A'» 1~5,300

ALL ALL
hjuCP

Development 12,400 13,500 ~~'~~lfAa

TABLE
A table is a plex of statements in
which information is arranged into
horizontal rows and vertical columns.
To mark a table, mark any character
in the table plex.

ROW
A row is a statement. Successive
rows form the table plex. To mark a
row, mark any character in the row.
The top row of the table is called
the "table header". Colons in the
table header indicate where
column boundaries will be when
rows are added.

COLUMN
A column is a vertical section of a
table plex. To mark a column, mark
any character between column
boundaries. Many commands that
operate on columns do not affect
entries in the table header.

ENTRY
An entry includes all characters
between column boundaries,
including spaces. To mark an entry,
mark any character between column
boundaries.

FIGURE 1: A TABLE IN AUGMENT

INTRODUCTION
Descriptive and illustrative tables are an important part of many
technical, educational, and financial documents. AUGMENT offers a
subsystem, called the Table subsystem, which is designed to make easy
the task of creating and editing information in a table format. In
Table, textual and numeric entries are quickly and automatically
arranged into horizontal rows and vertical columns, eliminating the
tedious process of arranging information in this way with Base
subsystem commands. Table is an invaluable tool for creating
clean -looking, well-formatted tables for printing or online viewing.

In the Table subsystem, you can create a table consisting of any
number of rows and columns. Each row of a table is a single
statement and all rows are at the same level, thus forming a plex.
Each column is a vertical section of the plex of rows. Figure 1
illustrates what Table recognizes as a table, row, column, and table
entry, and summarizes other basic concepts you will learn as you read
this lesson.

With Table commands, you can arrange information into a table format
without using tabs or typing a lot of spaces, and you can easily perform
editing or· arithmetic operations on the table entries. Just as you can
use command nouns such as Word and Statement to refer to parts of a
file when you are editing with Base subsystem commands, you can use
the nouns Entry, Row, and Column to refer to parts of a table in Table
commands.

Textual applications for Table might include tables of personnel data or
tables of comparison among product suppliers. Common numeric
applications include tables of expenditure and projections of expenditure
in project management. Commands that total rows or columns make it
easy to analyze changes to financial data.

This lesson discusses the Table commands you can use to create a table
and perform editing and totaling operations on the table contents. The
Table subsystem also includes all the "universal" commands, such as
Jump and Help, as well as the Update and Delete Modifications
commands, which work as they do in the Base subsystem.

Rows and columns

Table commands

Applications of
Table

Working with Tables: A Beginning Lesson

Entering and Leaving the Table Subsystem

Goto

Programs buffer
full

Returning to Base:
Quit

Returning to
Table

Execute

ENTERING AND LEAVING THE TABLE SUBSYSTEM
You enter Table by using the Goto command. For example, you would
go to Table from the Base subsystem as follows:

You type:

g

<OPT>
table<OK>

Command window shows:

BASE Goto (subsystem) C/OPT:

BASE Goto (subsystem) (subsystem name) MITI [A]:

BASE Goto (subsystem) (subsystem name) table!

TABLE C:

When Table is ready for a command, you will see "TABLE c:" in the
command window. If AUGMENT cannot give you access to Table because
of insufficient room in the working space allocated to you, the message
"Programs Buffer Full" will appear in your status window. In this
case, you must do the following to obtain space for Table:

You type:

e
p

d
a
<OK>

Command window shows:

BASE Execute (command in) C/OPT:

BASE Execute (command in) Programs

PROGR C:

PROGR Delete C:

PROGR Delete All (programs in buffer) OK:

PROGR Delete All (programs in buffer) !

BASE C:

You can then give the Goto c~mmand again to enter Table.

To reenter the Base subsystem after working in Table, use the Quit
command.

You type:

q
<OK>

Command window shows:

TABLE Quit OK:

TABLE Quit!

BASE C:

To return to Table from Base, simply type .. g" for .. Goto" and .. t" for
the command word "Table". End with <OK>. Typing <OPT> followed
by "table<OK>" is necessary only the first time you enter Table during
a work session.

You can also use the Execute command in either the Base or the Table
subsystem to give a single command in the other subsystem. For
example, you could give the Base Delete Branch command from Table
as follows:

2 Working with Tables: A Beginning Lesson

Entering and Leaving the Table Subsystem

You type: Command window shows:

e T ABLE Execute (command in) C/OPT:

b TABLE Execute (command in) Base

BASE C:

d BASE Delete OPTIC:

b BASE Delete Branch (at) MIA:

<MARK> BASE Delete Branch (at) ! (really?) OK:

<OK> BASE Delete Branch (at) ! (really?)

TABLE C:

After the command is executed, you are automatically returned to the
subsystem from which you gave the Execute command.

It is common to move frequently between the Table and Base
subsystems when working with a file that contains tables. It is a good
practice to check your command window when you give a command to
make sure you are in the Base subsystem when you give a Base
command and in the Table subsystem when you give a Table command.
Note that although Table and Base have some command words in
common, you do not necessarily type the same character or characters
to get the same command word.

LINES IN TABLES
So that you will know what kinds of tables you can work with in. the
Table subsystem, there are a few important things you should know
about lines in tables.

You may want to avoid making a table row so long that it is
automatically continued onto a second . line. As usual when a statement
is too long to fit on one line, AUGMENT will break between words and
continue with the rest of the row (the "overflow") on a new line. This
will affect the appearance of the table in an undesirable way, by
showing the overflow text beneath the first column in every row. Note
that since your printing device may allow longer lines than your display
screen, you may be able to print the table satisfactorily. The overflow
lines do not interfere with your use of Table commands; they only
affect your view of the table while you are working with it.

To avoid overflow, you can increase the amount of horizontal space
available for displaying a table by setting viewspec B to suppress level
indenting. The standard AUGMENT display terminal also offers a "wide
screen" option that increases the display width from 80 to 160
characters, which is useful for viewing tables that are otherwise too
wide to fit on your display screen. To learn how to use the wide
screen option, give the Jump (to) Locator command and look under the
heading ONLINE DOCUMENTATION FOR AUGMENT.

Check your
command window.

Overflow lines

Displaying longer
lines

Working with Tables: A Beginning Lesson 3

Lines in Tables

Return characters

Sizing a table

The statement
above the table

Insert Header

A return character in a table row, like a return character in any
statement, will cause AUGMENT to start a new line. In general,
however, you should plan the body of your table to consist of
single-line statements only, since Table offers limited handling of
information in lines beyond the first. When return characters are
present, many Table commands will work only on the first line of the
row. Later in this lesson, some ways of setting up multiple-line entries
are suggested.

STARTING A TABLE
There are three steps in starting a table:

1. "Size" the table by determining the number and widths of
columns you want it to have.

2. In the Base SUbsystem, insert a statement under which the table
will go.

3. Go to the Table subsystem and begin building the table with the
Insert Header command.

Sizing the table depends on how it will be used, and involves deciding
how many columns it will contain and how wide each column will be.
In general, consider the width of the device on which you are editing
the table and, if you are going to print the table, the width of the
printing device you will use. Be sure to allow for one character
position between each pair of columns.

When determining the widths of columns containing numeric data,
remember that decimal points, commas, and minus signs take extra
characters. Using a format with no commas, or showing large numbers
in large units such as thousands, may help if the table becomes too
wide. Note that when an arithmetic operation is performed on a
numeric entry, AUGMENT imposes a restriction of twelve digits on the
result. When sizing a table that will contain textual entries, plan
carefully the amount of space you will need; abbreviations are useful at
times.

Once you have sized your table, you can use the Insert Statement
command in Base to insert the statement under which the table will go.
This statement can be the title of the table or a paragraph that
introduces or describes it. For example, you could insert a statement
such as the following to serve as a title for a table:

Expense Sununary

After inserting such a statement, you can go to the Table SUbsystem
and begin building the table with the Insert Header command. This
command inserts the first statement in the table plex, called the "table
header" . This statement is essential in structuring the table because it
tells Table the number and widths of columns. When giving the Insert
Header command, you must indicate the following:

4 Working with Tables: A Beginning Lesson

The statement below which you want the table to be inserted. The
table will be a plex one level down from this statement.

The number of columns in the table.

The width of each column. Type the number of characters wide you
want each column to be, separating the numbers with semicolons.

For example:

You type:

h
<MARK>

4<OK>

12;8;8;8<OK>

Command window shows:

TABLE Insert c:
TABLE Insert Header (below) MIA:

TABLE Insert Header (below) ! (with number of columns)
MITI [A]:

TABLE Insert Header (below) ! (with number of columns)

4! (of widths) MIT I [A] :

TABLE Insert Header (below) ! (with number of columns)

4! (of widths) 12;8;8;8!
TABLE C:

This command tells Table to insert below the marked statement a table
header for a table with four columns. The first column will be twelve
characters wide, and the remaining three will each be eight characters
wide. You can instead type just II 12;8<OK> ", and Table will assume
the last width typed, 8, for the remaining columns.

If the marked statement were the title shown previously, Table would
respond to the above Insert Header command by inserting the table
header a level below the title, as follows:

Expense Summary

In this table header, there are twelve spaces before the first colon and
eight spaces before each of the remaining colons; the statement ends at
the last colon. The colons in the table header are called "column
delimiters" . When rows are added to the table, spaces will appear in
each row where column delimiters appear in the table header. These
column delimiters and spaces serve to separate one column from the
next, and thus form the "column boundaries II for the table.

The table header itself is a row, though one that Table sometimes
treats differently because of its special function. The blank areas
between column delimiters in the table header are not empty; they are
fuled with spaces and should be thought of as blank entries. There are
no empty entries in a table, even though they may appear blank. In
the table header, spaces (or any other characters that are not column
delimiters) indicate the positions in which the table entries will appear
in each row. Note that a table header should not contain <TAB>
characters.

Starting a Table

Column delimiters
and boundaries

Blank entries

Working with Tables: A Beginning Lesson 5

Starting a Table

Other column
delimiters

Replace Row

Table also recognizes the' characters vertical bar (I) and exclamation
point (!) as column delimiters. Furthermore, the right boundary of the
last column may be indicated by a return character or simply by the
end of the header.

NOTE: On some terminals and printers, vertical bar is broken in the
middle (:).

ENTERING COLUMN HEADINGS
Once the table header has been inserted, you can replace its blank
entries with textual or numeric column headings by using the Replace
Row command. When using Replace Row to enter column headings,
you mark the table header and type the column headings separated by
semicolons. These headings are the entries that will replace the blank
entries created by the Insert Header command. The Replace Row
command also asks for the II justification n, or alignment of the entries
relative to the column boundaries. There are many types of
justification, as described later in this lesson. The example below
illustrates Center justification, which centers entries between column

. boundaries. Continuing from the previous example:

You type:

rr

<MARK>
Department; 1 st;

2nd;3rd<OK>

c<OK>

Command window shows:

TABLE Replace Row (at) MIA:

TABLE Replace Row (at) ! (by) MITI [A]:

TABLE Replace Row (at) ! (by) Department; 1 st;

2nd;3rd! (justified) OK/C:

TABLE Replace Row (at) ! (by) Department; 1st;

2nd;3rd! (justified) Center !

TABLE C:

Notice that in this example and the remaining examples in this lesson,
some steps of typing the command are combined for brevity. After the
command shown above, the table would look like this:

Expense Summary
Department: 1st 2nd 3rd

Later, after rows of information are entered into the table, Replace Row
can be used to replace any row.

6 Working with Tables: A Beginning Lesson

Entering Rows of Information

ENTERING ROWS OF INFORMATION
After entering the column headings in the table header, you are ready
to enter information into the body of the table. To do this a row at a
time, you can use the Insert Row command. In this command, you
must indicate the following:

The statement (table header or other row) that you want the new
row to follow.

The justification of the entries in the row. You may type "1" for
Left justification, "r " for Right justification, or " c " for Center
justification. Typing <OK> will give you a "default" justification,
normally Left. Later in this lesson, you will learn about other types
of justification and how to change this default justification.

The entries in the row. You can type them, separated by semicolons
or <TAB> characters (called "semicolon format" for short), or you can
mark an existing row, from which the entries will be copied.

The following example shows how you could enter the first row into the
Expense Summary table.

You type:

ir

<MARK>

Finance;9,000;

8,500;9,300<OK>

r<OK>

Command window shows:

TABLE Insert Row (after) MIA:

TABLE Insert Row (after) ! (with) MIT I [AJ :

TABLE Insert Row (after) ! (with) Finance;9,000;

8,500;9,300! (justified) OK/C:

TABLE Insert Row (after) ! (with) Finance;9,000;

8,500;9,300! (justified) Right !

TABLE C:

You would mark the table header. The table with its first row inserted
would look like this:

Expense Summary
Department :

Finance
1st

9,000
2nd

8,500
3rd

9,300

If you supply fewer entries than the number of columns, Table enters
spaces into the remaining columns. Often it is useful to have a blank
entry to leave space for results of Table arithmetic operations. You can
leave middle columns blank by typing successive semicolons or <TAB>

characters. For example, to leave the third entry blank in the example
above, you would type "Finance;9,OOO;;9,300". If you supply more
entries than the number of columns, the additional ones are ignored.

If you type an entry that is longer than the width of the column in
which it must fit, Table truncates the entry by cutting off the textual
or numeric information that will not fit. When this happens, a message
informing you of the truncation is displayed in your status window.
Whether truncation occurs on the left or right depends on the type of
justification, as explained later in this lesson.

Insert Row

Semicolon format

Leaving entries
blank

Truncation

Working with Tables: A Beginning Lesson 7

Entering Rows of Information

Copying from
existing rows

Repeat mode

Create Row

Create Group (of
rows)

With Insert Row you can also add rows to a table by marking an
existing row, either in the table where you are working or in a
different table. From the table header for the row you mark, Table
will determine what the individual entries are and then insert them as
though you had typed them in semicolon format.

You can give the Insert Row command repeatedly by typing <RC> in
place of the final <OK>. This puts you in repeat mode and
automatically starts the next Insert Row command for you. To leave
repeat mode, type <CD>.

Another Table command that lets you enter a row is Create Row. With
Create Row, you can mark a statement that contains the entries in
semicolon format, and those entries will be inserted into the table as a
new row. You would use the Base Insert Statement command to insert
the statement containing the entries and then, in Table, give the Create
Row command. For example, you could mark this as the statement
containing the entries:

Finance;9,OOO;8,500;9,300

Thus, you can first use Base subsystem commands to create and edit
statements containing rows of entries in semicolon format, and then use
Create Row in Table to enter each one into the table. To simplify this
procedure, Table offers the Create Group (of rows) command, in which
you can mark a plex of statements containing table entries in semicolon
format. The entries in each statement of the plex are entered as a row
in the table, as though with successive Create Row commands.

Using Create Group (of rows) is the fastest and easiest way to build a
large table. The steps for using this command are:

1. From Table, go to Base and use the Insert Statement command to
create a plex of statements, all at the same level, containing the
entries in semicolon format. A convenient way of isolating this from
other information in your file is to create a branch consisting of any
statement, such as "entries", with the plex inserted a level below it.
Remember that typing <INS> to enter insert mode lets you
continually add statements, each one following the last, until you
type <CD>.

2. Go to Table and use Create Group (of rows) to enter the new rows
into the table. You will be asked to mark the statement the new
rows are to follow and then the plex containing the entries. Finally,
you will be asked for the justification.

3. Give a Delete command in the Base subsystem to delete the
structure containing the entries in semicolon format.

8 Working with Tables: A Beginning Lesson

Entering Rows of· Information

For example, to add three rows to the Expense Summary table, you
could first use the Insert Statement command in Base to create the
following:

entries
Research;4,OOO;3,500;4,lOO
Marketing;15,400;15,300;15,900
Development; 12,400;13,500

Note that the last row contains only three entries. This will leave a
blank entry in the fourth column, to be replaced later. To insert the
three rows into the Expense Summary table, you would go to Table and
use the Create Group (of rows) command.

You type: Command window shows:

<SP>crg

<MARK>

<MARK>

TABLE Create Group (of rows after) MIA:

. TABLE Create Group (of rows after) ! (from plex at) MIA:

TABLE Create Group (of rows after) ! (from plex at) !
(justified) OK/C:

r<OK> TABLE Create Group (of rows after) ! (from plex at) !
(justified) Right !

TABLE C:

You would first mark the previously inserted table row and then mark
the plex below the II entries II statement. The new rows would be
entered, and the table would look like this:

Expense Summary
Department :

Finance
Research

Marketing
Development

1st
9,000
4,000

15,400
12,400

2nd
8,500
3,500

15,300
13,500

3rd
9,300
4,100

15,900

You could then use Execute (command in) Base and give a Delete
Branch command to remove the "entries II branch.

Other statements, such as comments or even subtables, can be entered
into the table plex, but these must be entered one level down from the
row they follow so they will not be considered part of the table
contents. If you add statements to the table at the same level as the
rows, Table will consider them to be part of the table regardless of
their content.

Example of Create
Group (of rows)

Inserting
substatements

Working with Tables: A Beginning Lesson 9

Entering Columns of Information

Why a group of
blank rows?

Insert Blank
Group (of rows)

Replace Column

ENTERING COLUMNS OF INFORMATION
You may have information that is more easily entered into a table by
columns instead of by rows. The combined use of the commands Insert
Blank Group (of rows) and Replace Column allows you to enter
information a column at a time. Insert Blank Group (of rows) inserts a
group of blank rows; the blank entries in these rows are then replaced
with Replace Column.

A group of blank rows must be present for you to enter columns of
information because of the basic difference between columns and rows
in Table: A row is a statement, but a column is not, so a column
cannot be entered in a table the way a row can. The length of a
column is determined by the number of rows already present in a table,
so before columns of information can be entered into a table, an
appropriate number of rows must already exist.

One way to create an appropriate number of rows is with the Insert
Blank Group (of rows) command. This command inserts rows of blank
entries after the row that you indicate. For example, suppose you
wanted to enter information into the Expense Summary table column by
column instead of row by row. After inserting the table header and
entering the column headings, you could proceed as follows, marking
the table header:

You type:

ibg

<MARK>

4<OK>

Command window shows:

TABLE Insert Blank Group (of rows after) MIA:

TABLE Insert Blank Group (of rows after)

(number of rows) M/T/[A]:

TABLE Insert Blank Group (of rows after)

(number of rows) 4!

TABLE C:

You could then replace the blank entries with textual or numeric
information by using the Replace Column command. With Replace
Column, you can replace all the entries in a column with entries you
type in semicolon format or with entries in another column that you
mark. The following example shows how you could enter the first
column of the Expense Summary table.

You type:

rc

<MARK>
Finance;Research;

Marketing;

Development<OK>

r<OK>

Command window shows:

TABLE Replace Column (at) MIA:

TABLE Replace Column (at) ! (by) M/TI [A]:

TABLE Replace Column (at) ! (by) Finance;Research;

Marketing;Development! (justified) OK/C:

TABLE Replace Column (at) ! (by) FinanceiResearchi

Marketing;Development! (justified) Right !
TABLE C:

10 Working with Tables: A Beginning Lesson

MARKING IN TABLE
Before learning any more about specific Table commands, you should
review the following information about marking entries, rows, columns,
and entire tables in the Table subsystem.

A table entry consists of all the characters between column boundaries,
including spaces. To mark an entry, you can mark any of these
characters. You can mark entries in the table header or in a
subsequent row. If a row contains return characters, you can mark
entries in any part of the row, not just in the first line.

You can mark a row by marking any character in the row. Remember
that if the statement contains a return character, many Table
commands will work only on the entries in the first line of the row,
even if you mark a character in a subsequent line.

To mark a column, mark any character in the column between the
column boundaries in either the table header or in a subsequent row.
Caution is required, however, if any rows in the table contain return
characters, because unpredictable results will occur if you mark a
character in any line beyond the first.

NOTE: Except where indicated otherwise, commands that operate on
rows affect only the first line of the row, and commands that operate
on columns do not affect entries in the table header. Table commands
that operate on columns never affect entries in lines beyond the first.

If you mark a column boundary, Table will proceed as though you
marked the character to the left of the boundary.

The entry, row, or column you mark may be in any table; a single
Table command may refer to parts of different tables, such as a column
in one and an entry in another.

To mark a table, you can simply mark any character in the table plex.

After an "MIA:" prompt, you can type an address instead of marking.
This alternative is most useful when you are indicating a row or a
table, that is, when you do not have to refer to a specific character
position. Similarly, when you can type something after an "M/TI [A]:"

prompt, you have the alternative of marking. Usually you can mark
text consisting of what you would otherwise type; sometimes, Table may
expect you to mark a number or a word. To find out exactly what
your choices are after any prompt, type a question mark (?).

Marking in Table

Marking an entry

Marking a row

Marking a column

You can mark in
any table.

Marking a table

Other choices

Working with Tables: A Beginning Lesson 11

Aligning Table Entries: Justification

Text default
justification

Numeric default
justification

Justify

ALIGNING TABLE ENTRIES: JUSTIFICATION
In Table commands, you can select the II justification" of entries, that
is, their alignment relative to the column boundaries defined in the
table header. When you see "(justified) OK/C:" in your command
window, you can select Left, Right, Center, or any of the other available
justification types, many of which are described later.

If you type <OK> in response to "(justified) OK/C:", the current "text
default justification II is used. This is initially Left, but you can change
it to any other type of justification with the Set Text (default
justification) command.

Later you will learn about Table commands that perform arithmetic
operations on table entries and do not ask you for the justification.
These commands use the current "numeric default justification", which
is initially Right and can be changed with the Set Numeric (default
justification) command.

You can change the justification of any entry, row, column, or table
with the Justify command. For example, Right justification was used
when the Expense Summary table was built because it was appropriate
for most of the entries, but suppose you wanted to change the entries
in the first column to Left justification.

You type: Command window shows:

<SP>jc
<MARK>
<OK>

TABLE Justify Column (at) MIA:

TABLE Justify Column (at) ! (justified) OK/C:

TABLE Justify Column (at) ! (justified)

TABLE C:

You could mark any entry in the first column. Since the text default
justification is Left, typing "<OK>" after "(justified) OK/C:" suffices. If,
however, you had previously changed the default justification, you would
have to type "I" to specify Left justification. In either case, the table
would now look like this:

Expense Summary
Department

Finance
Research
Marketing
Development

1st
9,000
4,000

15,400
12,400

2nd
8,500
3,500

15,300
13,500

3rd
9,300
4,100

15,900

Notice that Justify Column did not affect the entry in the table header.
The Justify Table command also excludes entries in the table header.

12 Working with Tables: A Beginning Lesson

Aligning Table Entries: Justification

The following paragraphs describe several common types of justification.
Except where indicated otherwise, Table discards any spaces at the
beginning or end of an entry before justifying it.

Left justification aligns the entry with the left column boundary,
adding spaces on the right if the entry is shorter than the width of
the column. If the entry is longer than the column width, it is
truncated on the right.

Right justification aligns the entry with the right column boundary,
adding spaces on the left if necessary. If the entry is longer than
the width of the column, it is truncated on the left.

Center justification centers the entry between the left and right
column boundaries, adding spaces before and/or after the entry if
necessary. If the entry is longer than the width of the column, it is
truncated on the right. If an entry cannot be exactly centered, the
extra space is added on the right.

Same justification aligns the entry with the left column boundary, as
does Left justification, but Without discarding spaces at the beginning
of the entry. This type of justification is especially useful when you
mark existing entries and want to keep the same number of leading
spaces, or when you are typing something and you want it indented
exactly the number of spaces you type.

The effect of the following types of justification depends on whether the
entry is numeric. A numeric entry is one that contains digits (0
through 9) and may also contain, in the appropriate places, a plus sign
(+), a minus sign (-), a dollar sign ($), a decimal point (.), and commas
(,). For example, -16,120.50 is a numeric entry, but 150-35 and 14E5
are not.

Mixed justification uses the text or numeric default justification,
depending on the entry: If the entry is numeric, the numeric
default justification is used; otherwise, the text default justification is
used. For example, this justification would have been convenient to
use when the Expense Summary table was built.

Integer justification rounds the entry to an integer and right justifies
the result. If the entry contains commas, the commas are removed.
An entry that contains no integer digits is replaced entirely by
spaces, and an entry that is not numeric is simply right justified.

Comma justification adds commas to the integer part of the entry,
one after every three digits starting from the rightmost digit of the
integer part, and right justifies the result. For example, the entry

Justification types

Left

Right

Center

Same

Numeric entry

Mixed

Integer

Comma

Working with Tables: A Beginning Lesson 13

Aligning Table Entries: Justification

Icomma

Places, One, and
Two

Point

Replacing an
entry

Replace Entry

1536.82 becomes 1,536.82. If the entry is not numeric, it is right
justified.

Icomma justification rounds the entry to an integer (as does Integer
justification), adds commas (as does Comma justification), and right
justifies the result. For example, the entry 1536.82 becomes 1,537
right justified.

Places justification rounds or expands the entry to a number of
decimal places that you specifY and right justifies the result. If the
entry contains commas, the commas are removed. One and Two are
shorter ways of specifYing one and two decimal places. For example,
One justification changes the entries 7.899 and 5 to 7.9 and 5.0, right
justified. If the entry is not numeric, it is right justified.

Point justification aligns the decimal point in the entry with the
decimal point in the first entry in the column (in the row that
immediately follows the table header), rounding the decimal part if
necessary. If there is no decimal point in the entry determining the
alignment, Right justification occurs instead. If there is no decimal
point in the entry being justified, it is aligned as though it ended in
a decimal point.

EDITING INDIVIDUAL ENTRIES
With Table commands, you can change individual table entries by
replacing one entry by another, replacing a character within an entry,
clearing an entry, or transposing two entries. Remember that you fill
in a blank entry by replacing it by another entry, and you mark an
entry by marking any character between column boundaries in the table
header or in a subsequent row.

To replace one entry by another, you can use the Replace command
verb with Entry, Wentry, or Item. You must always indicate the entry
to be replaced, the entry to replace it by, and the justification.

The Replace Entry command lets you replace an entry you mark by
another entry that you type or mark. For example, you could fill in
the blank entry in the Expense Summary table as follows:

You type:

re

<MARK>
11,900<OK>
r<OK>

Command window shows:

TABLE Replace Entry (at) MIA:
TABLE Replace Entry (at) ! (by) MITI [A]:

TABLE Replace Entry (at) ! (by) 11,900! (justified) OK/C:

TABLE Replace Entry (at) ! (by) 11,900! (justified) Right !
TABLE C:

The marked character could be any of the spaces in the blank entry;
the entry would be replaced by 11,900, right justified.

14 Working with Tables: A Beginning Lesson

So that you can easily replace entries by information that is not in a
table, the Replace Wentry command allows you to replace a table entry
by any word you indicate. ("Wentry" is short for "word entry".) The
word may be, but not need be, a table entry.

In certain applications the Replace Item command may be useful. In
this command, you type the "coordinates" of the entry to be replaced
instead of marking it; then you type or mark the replacement entry.
You indicate coordinates as follows:

row,column

row,column,line

The first value is the row number and the second is the column
number. Row number 0 refers to the table header; column number 0 is
not allowed. The optional third value is the line number. If no line
number is given, line 1 is assumed. For example, to specify that the
entry to be replaced is in the first line of the second row after the
table header, and in the first column, you would type "2,1", ending as
usual with <OK>.

Before typing the coordinates, you must tell Table which table they
refer to. When you see "(at table) MIA:" in the command window,
reply by indicating any character in the table plex. For example, your
reply could be to type the statement number or SID of any row in the
table.

Besides replacing entire table entries, you can replace a character
within an entry by any text with the Replace Character command in
Table. You first mark the character to be replaced and then type or
mark the replacement text. A character can be replaced either by a
single character or by any text that fits within the column boundaries.
When a character is replaced by more than one other character, spaces
are removed from within the column boundaries to accommodate the
replacement, and the replaced entry is justified according to the text
default justification. The alignment of all other entries in the row is
maintained. Note that Replace Character in Table is not restricted to
use within an entry; it can be used to replace any character in the
table by any other character.

As a simple way of replacing a table entry by an entry consisting
entirely of spaces, Table also offers the Clear Entry command.

Finally, when entries in a table need rearranging, you can use the
Transpose Entry command. This command transposes any two table
entries that you mark. If the widths of the entries are the same, the
content and justification of the entries are not changed; however, if the
widths are different, the transposition may change the justification or
cause truncation to occur.

Editing Individual Entries

Replace Wentry

Replace Item

Replace Character

Clear Entry

Transpose Entry

Working with Tables: A Beginning Lesson 15

Editing Rows and Columns

Clear Row,
Column, or Table

Delete Row or
Column

Move Row or
Column

Copy Column

Transpose Column

Replace And
(change) Row or
Column

Replace Table

Rows or columns
of different
lengths

EDITING ROWS AND COLUMNS
Just as editing commands in Table can be used on individual entries,
they can also be used on entire rows, columns, or tables. You have
already learned about Replace Rowand Replace Column, which replace
all the entries in a row or column by entries you type in semicolon
format or by a row or column you mark. Other editing commands that
affect entire rows or columns are discussed in this section.

The Clear Rowand Clear Column commands replace the entries in a
specified row or column by entries consisting of spaces. Likewise, the
Clear Table command replaces the entries in all rows and columns of
the table by spaces (except for the entries in the table header).

The Delete Rowand Delete Column commands remove the indicated
row or column. Delete Row is like Delete Statement in Base; it deletes
the entire row from the table plex. Delete Column deletes the entire
column, including the entry in the table header, as well as the right
column boundary.

The Move Row command moves an entire row (including any extra
lines) to follow another row that you mark. The Move Column
command moves an entire column, along with the entry in the table
header and the right column boundary, to follow another column that
you mark.

The Copy Column command copies a column to follow another one that
you mark, creating a new column containing the same width, content,
and justification as the copied column.

The Transpose Column command transposes two columns that you
mark, including the entries in the table header. The content and
justification of the entries in the columns are unchanged.

The Replace And (change) Row or Column command changes a row into
a column or a column into a row. It is similar to Replace Row or
Column except that it gets the replacement entries from a column you
mark if you are changing a row, or from a row if you are changing a
column.

You can also use the Replace command verb to replace an entire table.
The Replace Table command replaces all the entries in a table by the
entries in another table that you indicate (excluding the entries in the
table headers). If you want every column of a table to have the same
entries, you can use Replace Table and type the entries in semicolon
format.

In the Replace Table command and the other editing commands that
may operate on rows or columns in different tables, the rows or
columns need not have the same length. Extra entries are simply
ignored, and blank entries are inserted to fill out longer rows or
columns. For example, if you copy a column from a table with four
rows to follow a column in a table with six rows, the last two entries
in the new column will be blank.

16 Working with Tables: A Beginning Lesson

ADDING NEW COLUMNS
You· may want to edit a table by adding new information to it.
Inserting new rows of information is straightforward; you can use any
of the commands for building a table a row at a time, such as Insert
Row or Create Group (of rows). Adding a new column, however, is a
two-step process, much like the process of initially entering information
into a table a column at a time. First you use Insert Blank Column to
make space for the new entries, and then you use Replace Column to
replace the entries in the blank column.

The Insert Blank Column command inserts a column of blank entries to
follow the column you mark. For example, you could add a blank
column having a width of eight characters to the Expense Summary
table as follows:

You type: Command window shows:

ibc
<MARK>

8<OK>

TABLE Insert Blank Column (to follow) OPT/MI [A]:

TABLE Insert Blank Column (to follow) ! (with width) M/TI [A]:

TABLE Insert Blank Column (to follow) ! (with width) 8!

TABLE C:

If you marked any character in the last column, or even its right
boundary, the blank column would become the new last column. You
could then use Replace Column to replace the blank entries in that
column. Remember that Replace Column does not affect entries in the
table header, so you would have to use Replace Entry to· replace the
blank entry in the table header. If you replaced the column with the
entries "9,500;4,250;16,000;13,100", right justified, and replaced the
entry in the table header with the centered heading "4th", the table
would look like this:

Expense Summary
Department 1st 2nd 3rd 4th

Finance 9,000 8,500 9,300 9,500
Research 4,000 3,500 4,100 4,250
Marketing 15,400 15,300 15,900 16,000
Development 12,400 13,500 11,900 13,100

You can, of course, replace only individual entries in the blank column,
or leave all of them blank if you wish. The important thing to
remember is that, in any case, adding a new column means first
inserting a blank column.

By typing <OPT> after " (to follow) OPT IMI [A] :" in the Insert Blank
Column command, you can insert the blank column before the first
column in the table. When you type <OPT>, this will appear in your
command window:

(in front of first column in table at) MIA:

Adding New Columns

Insert Blank
Column

Replacing the
blank entries

Inserting a column
in front of a table

Working with Tables: A Beginning Lesson 17

Adding New Columns

What a field is

Insert Field

Delete Field

Reply by marking any character in the table plex and, when prompted,
typing the width of the column.

CHANGING COLUMN BOUNDARIES
After setting up a table, you may find that you need to widen or
narrow a column; the Insert Field and Delete Field commands will help
you do this. You may also want to change the characters that form
the column boundary. Remember that the column boundary is initially
made up of the column delimiter in the table header and the space
under it in each successive row of the table. To change this boundary
so that it consists of a single character that you specify, you can use
the Replace Boundary command. Refer to Figure 2 for illustrations of
the parts of a table that are discussed in this section.

A .. field" is a series of characters from one character position through
another in every row of a table. By inserting a field of spaces, you can
increase the width of a column. By deleting a field, you can decrease
the width of a column, remove information from certain positions in
every entry in a column, or even remove several columns. A field may
extend from any character position in a ·row through any other,
regardless of column boundaries or table contents.

You can make a column wider with the Insert Field command. This
command inserts a field of spaces after the character position you
indicate, adding as many spaces in each row as the number you supply
for the field width. You can indicate the position by marking it, either
in the table header or in a subsequent row. The following example
shows how you could widen the first column of the Expense Summary
table by one character position.

You type:

if
<MARK>

l<OK>

Command window shows:

TABLE Insert Field (of spaces after) MIA:

TABLE Insert Field (of spaces after) ! (of width) MITI [A]:

TABLE Insert Field. (of spaces after) ! (of width) 1!
TABLE C:

It woulcroebest -in~thiS-case- to-mar]{--tne-space-inthe-1aStcharactei----- ~

position of any entry in the first column. Marking the first space after
any of the shorter entries in that column would not work, because the
inserted field would then split the longer entries. Note that to widen
any of the remaining columns, you could add a field of spaces at the
beginning of the column by marking the column's left boundary.

Columns can be made narrower with the Delete Field command. This
command deletes a field of characters between and including any two
positions that you indicate, regardless of column boundaries. Thus, an
individual column can be made narrower, by the removal of spaces or
other text within every row, or entire columns can be deleted. To
decrease the width of a column by one character, you can mark the
same position twice. In general, however, the two positions you mark
do not have to be in the same row.

18 Working with Tables: A Beginning Lesson

Changing Column Boundaries

NOTE: The Insert Field and Delete Field commands take into account
which line the positions you mark are in; if you mark positions in the
first line of a row, only first lines will be affected.

TABLE C:

Expense Summary
Department l~t,
Finance'll'
Research il;
Marketi ng ~,.
Development ~.;

1st ::~!\2nd :
9,000 i~Jl 8,500
4 000 to\il 3 500 , ~fbH'

15,400 ~{i~15,300
12 ,400 :%l;ii~13, 500

FIELD
A field is a series of char­
acters from any character
position through any other
in every row of a table. To
mark a field, mark the
beginning and ending
character positions.

BOUNDARY
A boundary consists of the
column delimiter in the
table header and the
character under it in each
successive row of the table.
To mark a boundary, mark
any of these characters.

FIGURE 2: FIELD AND BOUNDARY

With the Replace Boundary command, you can replace the characters
comprising a column boundary with a character that you specify. You
can replace either the entire boundary, including the column delimiter
in the table header, or only the spaces under it in successive rows,
omitting the column delimiter. If you include the column delimiter,
remember that only colon (:), vertical bar (I), and exclamation point (0
are valid delimiters.

For example, you could replace the entire right boundary of the first
column of the Expense Summary table with vertical bars as follows:

You type:

rb
<MARK>

I <OK>
i<OK>

Command window shows:

T ABLE Replace Boundary (at) MIA:

TABLE Replace Boundary (at) ! (with the character) M/TI [A]:

TABLE Replace Boundary (at) ! (with the character) I ! OK/C:

TABLE Replace Boundary (at) ! (with the character) I ! Include

(header row) !
TABLE C:

You could mark either the column delimiter in the table header or the
space under it in any subsequent row. The following shows the effect
of this command on the appearance of the table, as well as the effect of
the Insert Field example given previously.

Replace Boundary

Including the
table header

Working with Tables: A Beginning Lesson 19

Changing Column Boundaries

Omitting the table
header

Insert Blank Row

Total Row or
Column

Expense Summary
Department 1st 2nd 3rd 4th

Finance 9,000 8,500 9,300 9,500
Research 4,000 3,500 4,100 4,250
Marketing 15,400 15,300 15,900 16,000
Development 12,400 13,500 11,900 13,100

Typing "<OK>" in response to the "OK/C:" prompt at the end of the
Replace Boundary command would replace the boundary in all rows
except the table header.

You should be sure, when using any of the commands for changing
column boundaries, that you mark the exact character position you
intend, or the command will not work as expected.

TOTALING ROWS AND COLUMNS
Table subsystem commands can be used to add up numeric entries in
rows and columns. You can have the total for a row or column
entered in your table, inserted anywhere as text, or just displayed in
your status window. When you want to include totals in your table,
you of course need to have space for them. You can make space with
the Insert Blank Row or Insert Blank Column command. To add up
the entries, you can use the Total Row or Total Column command, or
one of the other Total commands described below. Whenever Table
enters the result of a Total command in your table, it uses the numeric
default justification, which is initially Right and can be changed with
the Set Numeric (default justification) command.

The Insert Blank Row command inserts a row of blank entries after a
row that you indicate. For example, you could use Insert Blank Row
on the Expense Summary table, marking the last row, to make space
for column totals at the bottom of the table.

You type:

ibr

<MARK><OK>

Command window shows:

TABLE Insert Blank Row (after) MIA:

TABLE Insert Blank Row (after) ! !
TABLE C:

Similarly, the Insert Blank Column command could be used to provide
space for row totals.

To add up the numeric entries in a specified row or column, you can
give the Total Row or Total Column command. The following example
shows how you could use this command to total any column in the
Expense summary table and enter the result in the blank row you
inserted at the bottom of the table.

20 Working with Tables: A Beginning Lesson

Totaling Rows and Columns

You type:

tc
<MARK>

e

<MARK><OK>

Command window shows:

TABLE Total Column (of numbers at) MIA:

TABLE Total Column (of numbers at) ! (enter result as) c:
TABLE Total Column (of numbers at) ! (enter result as) Entry

(at) MIA:

TABLE Total Column (of numbers at) ! (enter result as) Entry
(at) ! !

TABLE C:

You would mark the column to be totaled and, as the place to enter
the result, the blank entry at the bottom of that column. In general,
the entry you mark can be any entry in the table; if it already contains
a number and is in the row or column you are totaling, the number
will not be included in the result. This means that when you are
retotaling, you can mark the old total and it will not be added in.

The total, the number of entries added, and their average are displayed
in your status window. If the row or column contains no numeric
entries, Table does nothing more than display a message to this effect.

Instead of typing "e" for .. Entry" after .. (enter result as) c:", you can
type "v" for "Visible" to indicate any visible that you want the total
to follow, or "s" for "Status (window)" to have the total displayed in
your status window only.

To total all rows or columns and put the results in the table, you can
use the single command Total All Rows or Total All Columns. In the
Total All Rows command, you indicate the table containing the rows to
be totaled and the column where the results will go. For each row,
Table adds up the numeric entries and puts the result in that row in
the specified column, as though you were giving a Total Row command
and replacing that entry by the result. As when you use Total Row,
any entries in the column you indicate are not included in the total.
Similarly, the Total All Columns command adds up the numeric entries
in each column and puts the results in a specified row, excluding the
entries in that row from the total. For example, a single Total All
Columns command could be used to total the last four columns of the
Expense Summary table; the first column would not be totaled because
it contains no numeric entries.

You type:

tac
<MARK>

<MARK><OK>

Command window shows:

TABLE Total All Columns (in table at) MIA:

TABLE Total All Columns (in table at) ! (put results in row at)

MIA:

TABLE Total All Columns (in table at) ! (put results in row at)

! !
TABLE C:

Total as an entry

Messages in the
status window

Total as a visible
or only in the
status window

Total All Rows or
Columns

Working with Tables: A Beginning Lesson 21

Totaling Rows and Columns

Total Table

Insert Blank Line

A blank line is
not a row.

If you marked the Expense Summary table and then its last row, the
totals would be placed in that row, using the numeric default
justification. To justify the totals so they would appear the same as the
other numbers in the table, you could give the JustifY Row command,
marking the totals row and specifYing Comma justification. The table
would then look like this:

Expense Summary
Department 1st 2nd 3rd 4th

Finance 9,000 8,500 9,300 9,500
Research 4,000 3,500 4,100 4,250
Marketing .15,400 15,300 15,900 16,000
Development 12,400 13,500 11,900 13,100

40,800 40,800 41,200 42,850

You can, in fact, total all rows and all columns in a table with a single
command, Total Table. Row totals are inserted in the column you
specifY, as with Total All Rows, and column totals are inserted in the
row you specify, as with Total All Columns. Remember that entries in
columns or rows that receive totals are excluded from the totals.

ADDING LINES
You can enhance the appearance of a table by using Table commands
to add a line of spaces, equal signs, or other characters to a row.
Table inserts a return character followed by as many occurrences of the

. appropriate character as necessary to match the length of the row (or
the length of the first line of the row, if it already contains extra
lines). You tell Table where to insert the line by marking a character
in the row. The line is inserted at the end of the row (or, if there are
already extra lines, at the end of the line you mark). Figure 3
illustrates the type of lines you will learn how to add in this section,
along with another use of extra lines that you will learn later.

To add a line of spaces to a row, use the Insert Blank Line command.
You could, for example, set off the totals row of the Expense Summary
table by adding a blank line to the row preceding it (the
"Development" row), using the following command and marking any
character in that row.

You type:

ibl

<MARK><OK>

Command window shows:

TABLE Insert Blank Line (to follow) MIA:

TABLE Insert Blank Line (to follow) ! !
TABLE C:

It is important to remember that a blank line is not a separate row,
but rather part of the row you indicate. Although you can mark
individual entries in lines beyond the first, you cannot refer to any line
other than the first as a row. For example, you could not put the
results of a Total All Columns command in the second line of a row.

22 Working with Tables: A Beginning Lesson

ALL ALL
hjuCP

MULTIPLE-LINE
ENTRY

Adding Lines

TABLE C:

Expense Summary
Department I 1 st : 2nd 3rd

IQuarter Quarter Quarter

A multiple-line entry
actually consists of more
than one entry in succes­
sive lines or rows.

=.,_=.==_.==,='==-=====_lI_ •• _~ ___ •• <===r.:' --.I-----BORDER
Finance 9,000 8,500 9,300 9,500
Research 4,000 3,500 4,100 4,250 A border is a line, consisting
Marketing 15,400 15,300 15,900 16,000 of a specified character,
Development I 12,400 13,500 11,900 13,100 attached to a row by a
:I'dl¥;;!50f;Y;i\3\fWtj~:ffiit;q;f;i'0;';;t{ji';;~6i~~B{b;r .;i~~:~~~~i;fl;~1f~R;~85;:;l?:fi;'\~~:~~15;;! re t urn c h a ra c te r.

BLANK LINE
A blank line is a line of
spaces attached to a row
by a return character.

Most Table commands do not affect
entries in lines beyond the first.

FIGURE 3: MULTIPLE-LINE ENTRY, BORDER, AND BLANK LINE

Besides adding a line of spaces to a row, you can add a line consisting
of a specified character, such as equal sign (=), with the Insert Border
command. For example, you could insert a border of equal signs at the
end of the table header in the Expense Summary table as follows:

You type:

i<sp>b
e
<MARK><OK>

Command window shows:

TABLE Insert Border (of characters) c:
TABLE Insert Border (of characters) Equals (to follow) MIA:

TABLE Insert Border (of characters) Equals (to follow) ! !
TABLE C:

In this case you would mark any character in the table header, and the
border would be inserted as a line underneath the header. Besides
Equals, you can specify any of the following command words for border
characters: Asterisks (*), Backarrows (-), Colons (:), Dashes (-),
Exclamations (n, Periods (.), and Uparrows (D. Note that on most
terminals and printers, back arrow appears as an underline (-) and up
arrow appears as a circumflex (/\).

Insert Border

Working with Tables: A Beginning Lesson 23

Adding Lines

Many Table
commands do not
affect second lines.

Insert Blank Line
and Replace Entry

After the Insert Blank Line and Insert Border commands shown in the
examples above, the Expense Summary table would look like this:

Expense Summary
Department

Finance
Research
Marketing
Development

1st

9,000
4,000

15,400
12,40'0

40,800

2nd

8,500
3,500

15,300
13,500

40,800

CREATING MULTIPLE-LINE ENTRIES

3rd

9,300
4,100

15,900
11,900

41,200

4th

9,500
4,250

16,000
13, lob

42,850

You can arrange your table so that it appears to contain "multiple-line
entries", which in fact would consist of a number of entries in
successive lines or rows. Such entries are handled in only a limited
way in the Table subsystem. When a row contains more than one line,
information in lines beyond the first is often not treated as part of the
row. Nevertheless, there may be some applications in which
multiple-line entries are useful. You may, for example, want the
column headings in the table header to be more than one line long.

There is no single Table command for creating multiple-line entries,
but there are methods that use combinations of commands to achieve
the desired effect. One method is to use Insert Blank Line and then
replace the blank entries in the line with Replace Entry. (Y ou cannot
use Replace Row to replace the blank entries because that command
works on only the first line of a row.) For example, you could use this
method to create multiple-line column headings in the table header of
the Expense Summary table. Suppose you wanted to make the table
look like this:

Expense Summary
Department

Finance
Research
Marketing
Development

I 1st
I Quarter

9,000
4,000

15,400
12,400

40,800

2nd
Quarter

8,500
3,500

15,300
13,500

40,800

3rd
Quarter

9,300
4,100

15,900
11,900

41,200

4th
Quarter

9,500
4,250

16,000
13,100

42,850

You could first insert a blank line at the end of the' table header and
then replace each of the last four entries in that line with "Quarter",
specifying Center justification. There would then be a space under the
first vertical bar in the right boundary of the first column; you could
replace this space with the Replace Character command.

24 Working with Tables: A Beginning Lesson

Creating Multiple-Line Entries

Because Table does not understand the relationship between the first
and second lines of a row, there is no automatic carry-over of long text
from the first line to the second line, so you must arrange the text in
the blank line (or lines) yourself.

Another method is to insert a row containing entries that form the
second part of the multiple-line entries. If you do this, remember that
these "logical" rows containing the multiple-line entries are actually
composed of two "physical" rows. Note, for example, that if you
wanted to print the table with blank lines between the logical rows, you
would have to take into account that you would not want blank lines
between the physical rows comprising the multiple-line entries.

Refer to Figure 3 for a quick review of multiple-line entries and extra
lines in tables.

FIXING UP TABLES
Careless editing of a table with Base subsystem commands may cause
undesirable results when you try to work with the table again in the
Table sUbsystem. So when editing a table that you plan to work with
again in Table, you should consider the effects your changes may have
on what Table sees as the table format and contents.

If there is something wrong with your table, some Table commands will
not work properly or at all. You may see an error message, such as
"Entry beyond row", in your status window. There are a number of
things you should check for if you are having trouble. Be sure you
have not deleted the table header or replaced any of the column
delimiters in it with an invalid delimiter character. Check that the
table header is in fact the first statement of the table plex, and that all
statements in the top level of the plex are actually meant to be rows of
the table.

If after making these checks, you still don't see what is wrong with the
table, it may be that one of the rows is not as long as it should be
according to the table header. This is often difficult to detect because
you cannot see the spaces at the end of a row. To help you detect and
solve this problem, Table offers the commands Fillout Rowand Fillout
Table. Fillout Row fills out a specified row with spaces if it is shorter
than it should be according to the table header; Fillout Table fills out
all rows that are too short.

You type:

ft
<MARK><OK>

Command window shows:

TABLE Fillout Table (at) MIA:

TABLE Fillout Table (at) !
TABLE C:

You arrange the
text.

Using multiple
rows

Entry beyond row

Fillout Row or
Table

Working with Tables: A Beginning Lesson 25

Printing Tables

Output Processor
directives

Blank lines

Keeping the table
together

Spaces in place of
column delimiters

Printing longer
lines

Reducing or
suppressing
indenting

PRINTING TABLES
Tables included in a printed document often require a different format
than the rest of the document. When you give a Print command to
print an AUGMENT file and you do not specify Quickformat, a program
called the "Output Processor" makes it ready for printing. The Output
Processor uses an initial printing format, but you can modify this
format by using Output Processor "directives".

The initial printing format does not include blank lines between
statements. A common practice is to put the directive" .Ybs=l;" at the
end of the origin statement so that all statements will be separated by
blank lines. If you do this but do not want blank lines between the
rows of a table in your file, you can use the following directives:

.Ybs=O; Inserting this directive at the end of table header prevents
blank lines from appearing between rows .

. Ybs=l; This directive, inserted at the end of the last row of a
table, resumes placing blank lines between statements in the rest of
the document.

A very useful directive for controlling the output of a table is
" .Grab=NUMBER; ", where NUMBER is the total number of lines from the
statement above the table to the last line of the table, including any
blank lines. Placing this directive at the end of the statement above
the table prevents the table from being broken between the end of one
page and the start of another. For example, the Expense Summary
table as it appears in the last example above would have the directive
" . Grab= 10; " at the end of the "Expense Summary" statement.

You can also use a directive that will cause the column delimiters in
the table header to be replaced by spaces in the printed output. For
example, the directive ".Code [':] =' ;" at the end of the table header
would cause a space to be printed in place of every colon in the header.
Thus, you would not see the colons in the printed table, but they would
be there when you wanted to work with the table again in the Table
SUbsystem. To resume the printing of colons as colons, you would use
the directive ".Code [':] =':;" in a later statement.

An important use of Output Processor directives when printing wide
tables is to adjust the margins in effect for your printed output. Note
that the maximum length of a printed line is a separate measurement
from the maximum for a displayed line. The directive ".Rm=80;" in
the origin statement would extend the right margin for a printed line
from the initial 72 characters to 80 characters.

You can also use directives to indent wide tables in your printed output
less than they would be indented by the usual automatic level
indenting. For example, you can use the Pxi and Pxishow directives to
indent your table only slightly under the statement preceding it, or you
can use ".Ilev=O;" to align the table with the left margin (suppressing
indenting entirely). In either case, you must insert the directive at the

26 Working with Tables: A Beginning Lesson

end of the statement above the table and place directives in the last
row of the table to restore normal indenting if desired.

To insert directives into a statement, you can give either the Insert
Text command or the Insert Directive command in Base. If you use
Insert Text, be sure to type the period and semicolon and to capitalize
the first letter, exactly as shown in the examples above. It is easier to
use Insert Directive because directive delimiters are inserted without
your typing them, and the first letter is capitalized automatically. Be
sure not to insert extra spaces around your directives; the Output
Processor does not print any of the characters between and including
the period and the semicolon, but it does print all other characters.
Also be sure to insert the directives at the very end of the statements
in the table plex, so that they do not interfere with table manipulation.

The Output Processor Users' Guide gives more information about the
directives discussed here and other directives that may be useful in
printing tables. The advanced lesson on working with tables will
discuss the printing of tables in greater detail.

Printing Tables

Inserting
directives

Working with Tables: A Beginning Lesson 27

Exercises

EXERCISES
1. After creating the branch

entries
55;67;95.3
34;55;76.1
77;53;86.2

and a statement consisting of the word "Budget", with what five
commands could you build the following table and delete the "entries"
branch? (Note that the table is indented three spaces under the
"Budget" statement.)

Budget
FY79 : FY80 :

55 67
34 55
77 53

FY8l
95.3
76.1
86.2

2. How could you add a column,·as shown below, to the table created in
Exercise 1?

Budget
FY79 : FY80 : FY8l

Travel 55 67 95.3
Supplies 34 55 76.1
Misc. 77 53 86.2

3. If the "entries" branch in Exercise 1 had contained entries for all
four of the columns shown in the table in Exercise 2, could you have
created the latter table with only five commands? Explain.

4. How could you remove the decimal part of each numeric entry in the
last. column of the table shown in Exercise 2 and, as shown below,
make that column the same width as the second and third columns?

Budget
FY79 : FY80 : FY8l :

Travel 55 67 95
Supplies 34 55 76
Misc. 77 53 86

5. How could you have created the Expense Summary table used in the
examples in this lesson without typing commas in the numbers? If you
later changed your mind and decided you didn't want commas in the
numbers, how could you most easily remove them?

28 Working with Tables: A Beginning Lesson

6. With what three Table commands could you total all columns and
rows in the table in Example 4 and store the results in the table as
shown below?

Budget
FY79 : FY80 : FY8l :

Travel 55 67 95 217
Supplies 34 55 76 165
Misc. 77 53 86 216

166 175 257 598

7. What Table commands could you use to make the table in Exercise 6
look like the table shown below, without adding any more statements to
the table plex?

Budget
: FY79 : FY80 : FY8l : Item :

totals

Travel
Supplies
Misc.

55
34
77

166

67
55
53

175

95
76
86

257

217
165
216

598

8. In the table below, could you use Total Row or Total Column to add
up the numeric entries in any row or column? Why or why not? If
not, what changes would you make so that you could add them up?

Budget
I 1 2 3

1979
1980
1981

I 1,300
I 1,250
I 1,500

2,500
1,375
1,950

3,400
1,400
1,400

Exercises

Working with Tables: A Beginning Lesson 29

Summary

SUMMARY
The Table subsystem makes it easy for you to arrange information in
an AUGMENT file into a table format. A table is a one-level plex in
which the first statement is the table header, which defines the column
boundaries and may contain column headings, and the subsequent
statements are the rows containing the information. You start a table
by inserting a statement under which the table will go, then entering
the Table subsystem and telling Table where and how to insert the
table header. You then give commands that enter the information into
columns defmed by column delimiters in the table header. The steps
commonly taken to create a table are summarized on the facing page.

With Table commands, you can easily change the content or alignment
of table entries, change the column boundaries, insert blank lines and
borders, and manipulate table entries in other ways. Various types of
editing and totaling operations can be performed on individual entries
or on all the entries in a particular row, column, or table. You can
work with your table in other subsystems and return to Table when
you again want to take advantage of its many useful commands.

The advanced lesson on working with tables will discuss additional,
useful Table commands. For complete information about any Table
command, use the universal Help command in the Table subsystem.

30 Working with Tables: A Beginning Lesson

1. Size the table by deciding on the number of columns and their
widths.

Consider the width of the device on which you will be displaying or
printing the table.

2. Use the Insert Statement command in Base to insert a statement
under which the table will go.

This statement can serve as a title or introduction for the table.

3. Go to the Table subsystem and begin the table by giving the Insert
Header command.

This command inserts the top row of the table, the "table header".

4. Give the Replace Row command to enter column headings.

Type the entries in semicolon format (separated by semicolons or
<TAB> characters).

5. To enter information by rows, use the Create Group command.

First use Insert Statement in Base to create a plex of statements
containing the entries in semicolon format. After giving the Create
Group (of rows) command, use Delete in Base to delete the structure
containing the entries.

Or, to enter information by columns, give the commands Insert Blank
Group (of rows) and Replace Column.

Use Replace Column repeatedly to replace each column.

Leave the Table subsystem with the Quit command.

SUMMARY OF COMMON STEPS FOR CREATING A TABLE

Summary

Working with Tables: A Beginning Lesson 31

List of Commands

LIST OF COMMANDS
Goto (subsystem) <OPT> (subsystem name) table<OK>
Goto (subsystem) Table <OK>
Execute (command in) Programs Delete All (programs in buffer) <OK>
Execute (command in) Base BASECOMMAND
Quit <OK>

Insert Header (below) LOCATION (with number of columns) CONTENT (of
widths) CONTENT

Replace Row (at) LOCATION (by) CONTENT Gustified) OK/JUST

Insert Row (after) LOCATION (with) CONTENT Gustified) OK/JUST
Create Row (after) LOCATION (from) CONTENT Gustified) OK/JUST
Create Group (of rows after) LOCATION (from plex at) LOCATION Gustified)
OK/JUST

Insert Blank Group (of rows after) LOCATION (number of rows) CONTENT
Replace Column (at) LOCATION (by) CONTENT Gustified) OK/JUST

Set Numeric/Text (default justification to) Gustified) OK/JUST
Justify Entry/Row/Column/Table (at) LOCATION Gustified) OK/JUST

Replace Entry/Wentry (at) LOCATION (by) CONTENT Gustified) OK/JUST
Replace Item (at table) LOCATION (Row,Col,Line) CONTENT (by) CONTENT
Gustified) OK/JUST

Replace Character (at) LOCATION (within the entry) (by) CONTENT
Clear Entry/Row/Column/Table (at) LOCATION
Transpose Entry/Column (at) LOCATION (and at) LOCATION
Delete Row/Column (at) LOCATION
Move Row/Column (from) LOCATION (to follow column at) LOCATION
Copy Column (from) LOCATION (to follow column at) LOCATION
Replace And (change) Row (at) LOCATION (from Column at) LOCATION
Gustified) OK/JUST

Replace And (change) Column (at) LOCATION (from Row at) LOCATION
Gustified) OK/JUST

Replace Table (at) LOCATION (by) CONTENT Gustified) OK/JUST

Insert Blank Column (to follow) LOCATION (with width) CONTENT
Insert Blank Column (to follow) <OPT> (in front of first column in table
at) LOCATION (with width) CONTENT

Insert Field (of spaces after) LOCATION (of width) CONTENT
Delete Field (from) LOCATION (through) LOCATION
Replace Boundary (at) LOCATION (with the character) CONTENT Include
(header row) <OK>

Replace Boundary (at) LOCATION (with the character) CONTENT

32 Working with Tables: A Beginning Lesson

Insert Blank Row (after) LOCATION

Total Row/Column (of numbers at) LOCATION (enter result as) RESULT

Total All Rows (in table at) LOCATION (put results in column at)
LOCATION

Total All Columns (in table at) LOCATION (put results in row at)
LOCATION

Total Table (at) LOCATION (putting row totals in column at) LOCATION
(putting column totals in row at) LOCATION

Insert Blank Line (to follow) LOCATION

Insert Border (of characters) CHARTYPE (to follow) LOCATION

Fillout Row/Table (at) LOCATION

Definitions:

BASECOMMAND Give any Base subsystem command.

LOCATION

CONTENT

JUST

RESULT

CHARTYPE

Prompted by "MIA:"

For M you may <MARK>. (If at the end of a
command, <MARK> must be followed by <OK>.)

For A you may type an address, ending with <OK>.

Prompted by "M/TI [A]:"

For M you may <MARK>. (If at the end of a
command, <MARK> must be followed by <OK>.)

For T you may type a series of characters, ending
with <OK>.

Select one of the following command words and then
type <OK>: Left, Right, Center, Same, Mixed,
Integer, Comma, Icomma, Places, One, Two, and
Point.

Select one of the following alternatives:
Entry (at) LOCATION

Visible (after visible at) LOCATION

Status (window) <OK>

Select one of the command words Asterisks,
Backarrows, Colons, Dashes, Equals, Exclamations,
Periods, and U parrows.

List of Commands

Working with Tables: A Beginning Lesson 33

Vocabulary

VOCABULARY
The page numbers indicate where the vocabulary item is discussed in
this lesson.

blank: A blank entry is one that consists entirely of spaces. A blank
row or column consists entirely of blank entries. Page 5

branch: A statement plus all of its substructure.

Clear command: In the Table SUbsystem, a command that replaces an
individual entry or each entry in a row, column, or table by spaces.
Pages 15, 16

column: The vertical unit of a table. Most Table commands that work
on columns exclude entries in the table header, and all exclude entries
in lines beyond the first. Pages 1, 11

column boundary: The character between columns in every row of a
table. Pages 5, 18

column delimiters: In a table header, the characters indicating the
column boundaries. These may be any of the characters colon (:),
vertical bar (I), and exclamation point CD. Page 5

column headings: You can put column headings for your table in the
table header. Pages 6, 24

coordinates: The row number, column number, and optionally the line
number of an entry in a table; one way of specifying an entry to be
replaced. Page 15

Copy Column command: A Table subsystem command that copies a
column to follow another column that you indicate. Page 16

Create Group (of rows) command: A Table subsystem command that
enters rows of information into a table from a plex of statements
containing the entries in semicolon format. Page 8

Create Row command: A Table subsystem command that enters a
row of information into a table from a statement containing the entries
in semicolon format. Page 8

Delete Column command: In the Table subsystem, a command that
removes a column that you indicate. Page 16

Delete Field command: A Table SUbsystem command that deletes a
field between and including two character positions that you indicate.
Page 18

Delete Row co~and: In the Table subsystem, a command that
removes a row that you indicate. Page 16

34 Working with Tables: A Beginning Lesson

directives: Instructions imbedded in the text of a file that modify the
format when you use the Output Processor to print the file. Page 26

entry: In a row of a table, all the characters between (but not
including) the column boundaries defined by a pair of column delimiters
in the table header. It also refers to text before it is entered into a
table (as when you type an entry). Page 11

Execute command: An AUGMENT command that allows you to enter
another subsystem only to give a single command in that subsystem.
Page 2

field: In the Table subsystem, a series of characters from one
character position through another in every row of a table. Page 18

Fillout command: A Table sUbsystem command that fills out a
specified row, or each row of a specified table, with spaces if the row is
too short. Page 25

Goto command: The AUGMENT command you use to enter the Table
subsystem (or any other subsystem) to gain access to its commands.
Page 2

header: See table header.

Insert Blank Column command: A Table subsystem command that
inserts a column of blank entries following a column that you mark.
Page 17

Insert Blank Group (of rows) command: A Table subsystem
command that inserts a specified number of blank rows following a row
that you indicate. Page 10

Insert Blank Line command: A Table subsystem command that adds
a line of spaces to a row that you indicate. Page 22

Insert Blank Row command: A Table subsystem command that
inserts a row of blank entries following a row that you indicate.
Page 20

Insert Border command: A Table subsystem command that adds a
line of equal signs (=) or other characters to a row that you indicate.
Page 23

Insert Field command: A Table sUbsystem command that inserts a
field of spaces after a character position that you mark. Page 18

Insert Header command: A Table subsystem command that inserts a
table header below a statement that you indicate. Page 4

Insert Row command: A Table subsystem command that enters a row
of information into a table. You can type the entries in semicolon
format or mark an existing row. Page 7

Vocabulary

Working with Tables: A Beginning Lesson 35

Vocabulary

justification: The alignment of a table entry relative to the column
boundaries defined in the table header. Page 12

Justify command: A Table subsystem command that justifies an
individual table entry or each entry in a specified row, column, or table.
Page 12

Move command: A Table subsystem command that moves a row or
column to follow another one that you indicate. Page 16

numeric default justification: The justification used by Table
commands that perform arithmetic operations without asking for the
justification. Page 12

numeric entry: An entry that contains digits (0 through 9) and may
also contain, in the appropriate places, a plus sign (+), a minus sign (-),
a dollar sign ($), a decimal point (.), and commas (,). Page 13

Output Processor: When you give a Print command to print an
AUGMENT file and you do not specify Quickformat, the Output Processor
makes the file ready for printing. Page 26

plex: A branch plus all the other branches having the same
upstatement. "One-level plex" means a statement plus all the other
statements having the same upstatement.

Quit command: The AUGMENT command you use to leave the Table
subsystem and return to the subsystem you were last working in.
Page 2

repeat mode: When you type <RC> in place of the final <OK> at the
end of a command, you enter repeat mode, causing the command to
repeat until you type <CD>. Page 8

Replace And (change) command: A Table subsystem command that
changes a row into a column or a column into a row. Page 16

Replace Boundary command: A Table subsystem command that
replaces the characters comprising a column boundary with a character
that you specify. Page 19

Replace Character command: In the Table subsystem, a command
that replaces a character within a table entry by text that you type or
mark. Page 15

Replace Column command: A Table subsystem command that
replaces a column by entries you type in semicolon format or by a
column you mark. Page 10

Replace Entry command: A Table SUbsystem command that replaces
a table entry you mark by another entry that you type or mark.
Page 14

36 Working with Tables: A Beginning Lesson

Replace Item command: A Table subsystem command that replaces a
table entry whose coordinates you type by another entry that you type
or mark. Page 15

Replace Row command: A Table subsystem command that replaces a
row by entries you type in' semicolon format or by a row you mark.
Page 6

Replace Table command: A Table sUbsystem command you can use
to replace all the entries in a table by entries in another table that you
indicate. Page 16

Replace Wentry command: A Table subsystem command that replaces
a table entry you mark by an entry you type or by a word you mark.
Page 15

row: The horizontal unit of a table; a statement in the table plex.
Pages 1, 11

semicolon format: In a Table command, separating entries with
semicolons or <TAB> characters. Page 7

Set Numeric (default justification) command: A Table subsystem
command that changes the numeric default justification. Page 12

Set Text (default justification) command: A Table subsystem
command that changes the text default justification. Page 12

subsystem: AUGMENT is divided into subsystems, which are sets of
commands related to particular activities.

table: A plex of statements at one level where information is arranged
into horizontal rows and vertical columns. Page 1

table header: The top row of a table. It contains the column
delimiters that define column boundaries for Table commands. Page 4

table plex: The plex formed by the statements comprising the rows of
a table, excluding any substatements inserted beneath a row.
Pages 1, 5

Table subsystem: A subsystem that helps you enter information into
an AUGMENT flle in a table format and perform editing or arithmetic
operations on the table contents. Page 1

text default justification: The justification used by Table when you
type <OK> in response to "Gustified) OK/C:". Page 12

Total command: In the Table subsystem, a command that adds up the
numeric entries in a single row or column, in all rows or columns, or
in an entire table. Page 20

Vocabulary

Working with Tables: A Beginning Lesson 37

Vocabulary

Transpose command: In the Table subsystem, a command that
transposes two entries or columns. Pages 15, 16

visible: A series of printing characters, bounded by " invisible"
characters such as spaces and return characters.

38 Working with Tables: A Beginning Lesson

SOLUTIONS TO EXERCISES
1. After creating the "entries" branch and the "Budget" statement,
you could build the table and then delete the "entries" branch with
the following five commands:

a. The Goto command, typing "<OPT>table<OK>" or, if you have
already entered Table during this AUGMENT session, just "t" followed
by <OK>.

b. The Insert Header command, marking the "Budget" statement
and specifying three columns and the widths "6;6;8".

c. The Replace Row command, marking the table header and
specifying the entries "FY79;FY80;FY81" with Center justification.

d. The Create Group (of rows) command, marking first the table
header and then any character in the plex within the "entries"
branch, and specifying Right justification.

e. The Execute command, specifying the Base subsystem and, at the
"BASE C:" prompt, Delete Branch to delete the "entries" branch.

2. You could add the column by first using the Insert Blank Column
command, typing <OPT> after "(to follow) OPT IMI [A] : ", marking any
character in the table, and specifying the width 9; this would insert a
blank column in front of the table. You would then use the Replace
Column command, marking the blank column and specifying the entries
"Travel;Supplies;Misc." with Left justification (or <OK> for the text
default justification, if it has not been changed from Left).

3. Yes, you could have used only five commands to create the table
shown in Exercise 2 from an "entries" branch containing entries for all
four columns. You would follow the same basic steps as for the table
in Exercise 1, allowing for the extra column, except that you would
specify Mixed justification in the Create Group (of rows) command.
Unless you have changed either of the default justifications, the Mixed
justification type would left justify text entries and right justify numeric
entries.

4. You could remove the decimal part and narrow the last column by
using the Delete Field command and marking the two-character field
extending from the decimal point to the last position in the column.
Or you could first remove the decimal part by using Justify Column,
specifying Integer justification, and then narrow the column by using
Delete Field and marking the two-character field of spaces at the
beginning of the column. In either case, you must then use the Justify
Entry command to justify the "FY81" column heading, specifying
Center justification.

Solutions to Exercises

Working with Tables: A Beginning Lesson 39

Solutions to Exercises

5. You could have specified Comma justification instead of Right
justification when you entered the rows (or columns) containing numeric
information. The commas would have been inserted into each numeric
entry for you, and all entries would have been right justified. If you
later decided you didn't want the commas after all, you could remove
them by giving the JustifY Table command and specifYing Integer
justification; however, since this would right justify the entries in the
first column, you would then have to use Justify Column to restore Left
justification to that column.

6. You would first use Insert Blank Row to insert a row of blank
entries after the last row in the table, then Insert Blank Column to
insert a blank column with a width of six characters after the last
column in the table. You could then use the single command Total
Table to add up all the columns and rows in the table, marking the
blank column as the place to put row totals and the blank row as the
place to put column totals.

7. You could use the following commands: Insert Blank Line, to insert
a blank line below the table header; Replace Entry, specifYing Center
justification, to replace the blank entries in the table header by " Item"
and "totals n; and Insert Border, specifying dashes, to insert a border
first after of the last line of the table header and then after the
n Misc." row.

8. Using Total Row on any row in the table provides an undesirable
result because Table considers the entries "1979", "1980", and "1981"
to be numeric entries, so they would be included in the row totals. To
avoid this, you could replace the first column with nonnumeric entries,
such as "FY79 " , "FY80", and "FY81". Total Column, however, could
be used to add up the entries in any column of this table because, like
many Table commands that operate on columns, it does not include the
entry in the table header.

40 Working with Tables: A Beginning Lesson

Price $3.00

GETTING HELP

Copyright Tymshare, Inc., November 1980
20705 Valley Green Drive
Cupertino, California 95014

This document was prepared and composed for
printing with AUGMENT by the Office
Automation Division of Tymshare, Inc.

AUGMENT Journal Number 75262
Tymshare Document Number 258(11/80)O.5m7010

This lesson teaches you how to learn about AUGMENT by asking
qu~tions of the system and how to use special AUGMENT
facilities to request assistance and services from Tymshare's
Office Automation Division. To understand this lesson, you
should know how to log in and enter AUGMENT and should have
some working experience with elementary AUGMENT commands,
such as those described in the lesson "Beginning Use of
AUGMENT".

CONTENTS

Introduction 1

Learning What You Can Do Next: Question Mark 2

Getting Complete Information about AUGMENT: Help 4

Looking Up Information in Help. 5

Reading and Using Help Descriptions 8

Getting Around in Help with < and t 11

Reaching Help From Within a Command: <HELP> 13

Finding Documentation Online: LOCATOR 14

Communicating with People: Feedback 15

Exercises 17

Summary 18

List of Commands 19

Vocabulary 20

Solutions to Exercises 22

INTRODUCTION
AUGMENT was specially designed to be easy to learn as you work.
AUGMENT commands use simple English words and have a basic,
consistent form. Almost all commands begin with a verb followed by a
noun. AUGMENT commands also contain prompts and noise words to
give you general information about what you can do next. However,
there will be times when you need more information. For example,
when you see a "C:" prompt, you know you should type a command
word -- but what command word? Perhaps you know there is a Force
command, but you are not sure what it does, or you think there is a
command to help you with capitalization, but you don't know what it is
or exactly how it works. In cases like these, you can fmd the answers
to your questions by asking AUGMENT itself.

This lesson will teach you about AUGMENT's online aids by showing how
you would use them to learn a new editing command. When you fmish
this lesson, you should be able to follow the procedures taught here to
learn any new commands that seem interesting or useful. You also can
use these methods to investigate other aspects of AUGMENT, to learn
about AUGMENT terms and procedures, or to learn about whole new
subsystems and capabilities.

What if you want to read documents about AUGMENT'? How do you find
out what is available, where it is, and how to get it? AUGMENT
provides a complete guide to all available documentation and reference
literature. In this lesson you will learn to use this guide to locate the
documentation you need.

Of course, there will inevitably be a time when you need some kind of
help you cannot get from AUGMENT, and what you really need is help
from a person. The Feedback service, described in this lesson, provides
an easy, effective method for getting help or advice. You can also use
Feedback to register a complaint, a suggestion, or a compliment.

Online aids

Online
documentation

Help from people

Getting Help 1

Learning What You Can Do Next: Question Mark

How ? can help
you

When and how to
use?

? at "BASE c:"

2 Getting Help

LEARNING WHAT YOU CAN DO NEXT: QUESTION MARK
The simplest way to learn about AUGMENT while you work is by using
question mark (?). Without interrupting the command you are giving,
you can type a question mark to see a list of everything you can do
next. This list will help you remember commands you have forgotten,
work your way through unfamiliar commands, discover new ways to use
familiar command verbs, and even learn whole new commands.

You can type a question mark after any prompt in an AUGMENT
command. For example, typing a question mark after any II c: II prompt
will tell you all the command words you can use at that point. As
AUGMENT lists your alternatives, your command window will expand into
the file window and you will be temporarily unable to see the
information at the top of the file window. The information in your file,
however, will not be affected. At the end of the list, AUGMENT will
again display the prompt you questioned and wait for you to study the
alternatives, make a choice, and give the next part of the command.
When you do, your command window will return to its previous size,
AUGMENT will display the command (including the part you have just
given), and you can continue as if you had not used question mark.

Suppose you are working in the Base subsystem and you notice an
entire statement entered in lowercase that should be all uppercase. If
you were reluctant to retype the whole statement, you might decide to
see whether AUGMENT has a command that could help. This would be
a good time to use question mark.

You could begin by typing a question mark at "BASE c:". This will
show you a list of all the command words that begin Base subsystem
commands, as shown below. Note that since commands and features
are added or changed in AUGMENT from time to time, the list of
alternatives which actually appears on your screen may differ slightly
from what you see in the examples.

You type: Command window shows:

BASE C:

BASE C: ?
Current alternatives are

APPEND BREAK <>CHECK <>CLEAR <>COMMENT
<>CONNECT COpy <>CREATE DELETE <>ENLARGE

EXECUTE <>EXPUNGE FORCE <>FREEZE GOTO
HELP INSERT JUMP LOGOUT MOVE

<>POINT PRINT <>PROCESS QUIT <>RENAME
REPLACE <>RESET <>REVERSE <>SET SHOW

<>SORT <>START <>STOP <>THAW TRANSPOSE

<>TRIM <>TYPE <>UNDELETE UPDATE

I \ t
c:

Learning What You Can Do Next: Question Mark

Notice that "<>" precedes some command words. This means that to
give that command word, you must type a space and then the first
character or characters before AUGMENT will recognize the word.

After reading this list, you might recall that "Force II is the command
that changes capitalization. If you decided to try this command, you
would begin it by typing " fIt at the II c: II prompt following the list.
Your file window would then return to the view you had before typing
the question mark, and your command window would display the
beginning of the Force command.

You type: Command window shows:

C:

f BASE Force (case of) OPTIC:

Here again you might want to know your alternatives. You could type
a question mark again to see a list of the responses you could give to
the new prompt, II OPTIC: II. Among them you would discover the word
"STATEMENT" . Since this is what you want to edit, you would then
type "Sll as the next step in the command. The entire process would
look like this:

You type:

s

Command window shows:

BASE Force (case of) OPTIC:

BASE Force (case of) ?
Current alternatives are

BRANCH CHARACTER
LINK
TEXT

OPTIC:

NUMBER
VISIBLE

DIRECTIVE
<>PHRASE

WORD

BASE Force (case of) Statement (at) MIA:

GROUP
PLEX
<OPT>

INVISIBLE
STATEMENT

Notice that in the example above, question mark not only listed
everything you can II force" with the Force command but also indicated
that you can type <OPT>, as you can tell from the IIOPT/C: II prompt.
"OPT" in a prompt means that at this point in the command you have
not only the standard choices listed when you use question mark, but
also some additional options. To ask for these options, type <OPT>.

You will then see another prompt and can respond accordingly, or you
can once again use question mark to list your alternatives.

At some steps in commands, AUGMENT does not expect a command word
but instead waits for you to mark something on the screen, to give the
location of something, or to type some text. In these cases, rather than
a prompt containing a "C ll

, you will see some other prompt. Question
mark here will again show you what AUGMENT expects by listing your
choices. If you queried the next step in the Force command, for
example, you would see the following:

<> before a
command word

Selecting an
alternative

? at an II OPI'/e: II

prompt

<OPI'> as an
alternative

? at prompts not
involving
command words

Getting Help 3

Learning What You Can Do Next: Question Mark

Removing the list

<LIT> for typing ?
as text

What you can
learn from Help

4 Getting Help

You type: Command window shows:

BASE Force (case of) Statement (at) MIA:

BASE Force (case of) Statement (at) MIA: ~

Current alternatives are

Mark the STATEMENT Type the address of the STATEMENT

MIA:

If, after listing your alternatives with question mark, you need to
remove the list before continuing (as when you need to mark something
covered by the list), type any character that is not allowed as a
response to the prompt you questioned. AUGMENT will then return you
to where you were before you used question mark. To remove the list
after a prompt that you can respond to by typing an address or some
text, type <BC>, because AUGMENT will accept any other character as
the first character of the address or text. Typing <BC> will not only
get rid of the list but also backspace over the previous step in the
command; that is, it will erase the command word you gave before you
got the prompt you questioned. Thus you will have to give that
command word over again.

There may be times when you need to type text beginning with a
question mark (if, for example, you are using the Insert Character
command to insert "?" at the end of a question). But how do you type
a question mark right after a prompt without causing AUGMENT to list
your current alternatives? To type text beginning with a "?", you
must first type <LIT>. <LIT> tells AUGMENT that the following character
is literally text, not an instruction to do something. Of course, typing a
question mark after other characters is not a problem, because the
question mark does not immediately follow a prompt.

You have now learned how you can use question mark, along with the
information you get from noise words and prompts, to go through an
unfamiliar command step by step. You could continue this process until
you either figured out how to use the Force command or realized it was
not the command you needed and typed <CD> to cancel it. If, however,
you felt a need for more complete information about the Force
command or about how capitalization works in AUGMENT, you might
want to take advantage of another AUGMENT online aid, Help.

GETTING COMPLETE INFORMATION ABOUT AUGMENT: HELP
Help is designed to provide the most detailed and up-to-date
information available on AUGMENT. Help will give you the definition of
any AUGMENT command or term, descriptions of AUGMENT procedures, or
advice on how to accomplish a particular task. You can use Help to
answer specific questions you may have, or just to browse through a
general subject. It will help you not only to imd the particular
information you need but to explore all of AUGMENT.

Getting Complete Information about AUGMENT: Help

Many people fmd that working with Help is awkward at first, because
they are used to turning to a familiar-reference manual or a person
when they need assistance. Using Help is different from thumbing
through a reference manual and, of course, Help is in no way as
flexible as a person. However, it is worthwhile to work with Help.
With practice, using Help becomes easy and comfortable and gives you
access to a great wealth of information without having to leave the
terminal. Furthermore, Help is always there; if you are using
AUGMENT, you can be sure of getting Help. You will fmd that the
ability to use Help will make you a more self-sufficient AUGMENT user.
You will be able to answer your own questions and take on new tasks
with more confidence.

Help is based on information arranged in large files that are much like
any other AUGMENT flies. Every subsystem that is supported in
AUGMENT has a Help file which contains the information you need to
use that subsystem and references to other topics you may find
interesting. In addition to the flies associated with particular
subsystems, there are also general flies that deal with commands
available in all subsystems and information applicable to all of
AUGMENT. The Help files represent a great deal of knowledge about
AUGMENT, but to take advantage of them you do not need to know the
names of these flies or even how they are organized. Instead you can
use the AUGMENT Help command, or simply type <HELP> after any
prompt in an AUGMENT command. The following sections discuss
getting information about AUGMENT by using Help -- how to fmd the
information you need and how to read the information you find.

Looking Up Information in Help
To look up information in Help, you can use the Help command, a
command available in every AUGMENT subsystem. To begin the Help
command, type "h" for " Help", at "BASE C:" in the Base subsystem
or, if you are in some other subsystem, when you are prompted for a
command in that subsystem.

You type: Command window shows:

h BASE Help (type a term and then <OK>, or just <OK» OK/T:

When you see the "OK/T:" prompt, if you don't have a specific problem
you need help with, simply type <OK>. Help will then give you a
general discussion of the subsystem you are using and follow it with a
list of topics for further reading.

To look up a specific term or command, type it after the "OK/T:"
prompt and end it with <OK>. Help terms must begin with a letter,
can be uppercase or lowercase, and may be one word or a number of
words separated by spaces or dashes (-). They may contain numbers
but not punctuation and not any other symbols except dash. If you
want to use Help to look up something that normally includes angle
brackets «» or parentheses, simply omit these characters when typing

Why use Help?

What Help is

The Help
command

Type <OK> to
learn about the
subsystem.

Typing terms for
Help to look up

Getting Help 5

Getting Complete Information about AUGMENT: Help

Searching index

Help recreates
your display in a
special way.

the term. Thus, if you want help with the term "<OK>", type "OK".
If you want information about a command, do not include the noise
words; for example, type "Force Statement", not "Force (case of)
Statement" .

While Help looks for the information you requested, your screen, except
for your viewspec window, will go temporarily blank. If your term
cannot be found in the Help file for the subsystem you are using, Help
checks other files. If this is necessary, you will see the message
"searching index" in your status window.

When Help finds the information you requested, your command window
will show the prompt "CIT:" and your file window will display the Help
information. Help will temporarily alter your viewspecs, so do not be
disturbed by changes in your viewspec window. Once you have entered
Help, you may remain there and ask for further information for as long
as you wish. Figure 1 shows how your screen looks while you are in
Help.

Message r-
from Help ____

t"-searching index ALL ALL__..- Help
gjuCO

Help prompt CIT:
viewspecs

I

Help t
Information <

I

t ,

Leaving Help

6 Getting Help

question mark: (?)

Typing a question mark at any prompt in an AUGMENT command will

show you the command alternatives available at that pOint. After the list

of alternatives has been displayed, you can select one and continue the

command as if you had not typed question mark. Type <CTRL-O> to

stop printing the list. See also: CTRL-Q, help.
1. typing a question mark as text

FIGURE 1: THE SCREEN ONCE YOU HAVE ENTERED HELP

To return to your work in progress after using Help, simply cancel the
Help command by typing the "command delete" character, <CD>.
When you leave Help, the view that was displayed in your file window
when you began the Help command will be restored, and your
viewspecs will also be the same as before you started.

The following example shows how you could use Help to begin learning
about capitalization in AUGMENT by investigating the term II uppercase" .
Note that since the information in Help changes to reflect changes in
AUGMENT, what you read in this and later examples may not be exactly
what you see when you use Help.

Getting Complete Information about AUGMENT: Help

You type: Command window shows:

h BASE Help (type a term and then <OK>, or just <OK»
OK/T:

uppercase<OK> BASE Help (type a term and then <OK>, or just <OK»

uppercase!

Your display would then be recreated to show the prompt "CIT:" and
the Help information as follows:

CIT:

uppercase

case

The word II case II is used in AUGMENT to describe whether letters are

capitalized (uppercase) or not capitalized (lowercase). AUGMENT commands will

allow you to control and change case in online text and in printing.

1. to change the case of a STRING or STRUCTURE: the Force command

2. CASEMODE: to set the case for the Force command

3. to change the default CASEMODE

4. to reset CASEMODE to the default

5. to control case in printing

As shown in this example, the term that Help defines may not always
be exactly the same one that you typed and, in fact, the information
Help offers may not be precisely what you expected. When you ask
about a general term, such as II uppercase", Help begins by searching to
see if the term you typed is identical to a Help term. If it is, Help
then displays the information about that term. If your term is not
identical to a Help term, Help displays information about a similar or
equivalent term. In the example, Help determined that the term
"uppercase" was covered by the definition of "case".

If the term you type is not like any term defined in Help, or you make
a typing error and Help cannot recognize the term, Help will display
the term in your status window followed by a question mark. Below
this will be the "CIT:" prompt. You can then retype the term if you
made a typing error or, if you typed correctly but Help does not know
the term, you can try a similar term or a different one altogether.

NOTE: Because some terms that are normally typed as two words can
also be spelled as one word, or as two words separated by a dash, Help
occasionally has trouble with two-word terms. If you are looking up a
two-word term and Help fails to fmd it or gives you a definition
applying only to the first word of the term, try typing the term as one
w<?rd or as a hyphenated word. For instance, try typing .. online" or
" on -line" instead of "on line".

AUGMENT's Help must serve many different kinds of users from varying
backgrounds; some know a lot about computers, whereas many are using
them for the first time. Thus some users may look up different terms
or want different information than others. We have tried to ensure
that Help will be useful to everyone, but we may not have always

Help may not
define precisely
what you expect.

When Help can't
find a term

When Help can't
find a two-word
term

Making
suggestions and
reporting problems

Getting Help 7

Getting Complete Information about AUGMENT: Help

Menu

Long menus

8 Getting Help

succeeded. If you have suggestions or problems, please send them to
Feedback as described later in this lesson.

Reading and Using Help Descriptions
The descriptions that Help provides are one or two paragraphs, short
enough to fit on your display screen. The paragraphs are written in
simple, nontechnical language. They cover the basic information
necessary to understand the subject or command you have asked about
and indicate related subjects and commands for you to look up.

Every Help description that has related topics will have a list below it,
called a "menu". For example, the explanation of the term ,. case" on
page 7 has a menu with five items. Each menu item consists of a
single line that refers you to a detailed discussion of the topic it
mentions. To read about a subject presented in a menu item, type its
number followed by <OK>. If you accidentally type a number not on
the menu, the number followed by a question mark will be displayed in
your status window and you will again see the Help prompt. Enter the
correct number. If, after reading about case, you wanted to read more
about the Force command, you could ask for menu item 1 like this:

You type:

l<OK>

Command window shows:

CIT:

l!
CIT:

In your file window you would see:

to change the case of a STRING or STRUCTURE: the Force command

Force (case of)

The Base Force command allows you to control the capitalization of text in

the situations listed below. For example, you can change a STRING, such as a
word or a phrase, from all lowercase to only the first letter of each word in

uppercase, or you can change a STRUCTURE, such as an entire statement, from all
uppercase to all lowercase. .See Set Force, Reset Force.

1. STRING: Force (case of) [CASEMODE (for)] STRING (at) LOCATION CASEMODE

2. STRUCTURE: Force (case of) [CASEMODE (for)] STRUCTURE (at) LOCATION

NOTE: Because the line length shown here may differ from what you
see on your terminal, the menu items may not look exactly the same.

Sometimes, when a menu is particularly long, you will see only part of
the menu and the message "(do you want to see the rest of the menu~)
YIN:". If you wish to read the rest of the menu, type "y" or <OK> for
" yes"; otherwise, type "n" for " no". As you read the menu, it is a
good practice to note the numbers of any menu items you will want to
read. You can ask to see any item on a menu, regardless of whether
that item is displayed, so you can look over the whole menu and then
go through the topics that interest you. If, after you have fmished

Getting Complete Information about AUGMENT: Help

reading the menu, you want to redisplay it from the beginning, type
<OK> at "CIT:".

Most descriptions in Help have a form like the description of Force in
the previous example. At the top you will see the term or menu item
to be explained. Below this will usually be a paragraph describing the
term, and then a menu, which may contain several kinds of items.
Some menu items may refer you to related topics, some may point to
explanations of the different meanings of a term, and, if you are
reading a general description of a command, some may lead you to a
precise definition of a way of using the command. The example shows
this last kind of menu item. The menu guides you to definitions of
using the Force command on two types of entities: STRING and
STRUCTURE.

The precise command defmitions always include the "syntax" for the
command they describe; that is, they show the sequence of steps in the
command so you will know exactly how to use it. Do not be surprised
if the command syntax shown in the menu item appears to be
incomplete. Because menu items are restricted to one line, there may
be times when the entire command syntax cannot be shown in the
menu. Once you ask for a menu item, however, you will see the
complete syntax.

Continuing from the previous example, if you were studying the Force
command and wanted to find out more about using Force on a STRING,
you would take menu item 1 as follows:

You type:

1 <OK>

Command window shows:

CIT:

11
CIT:

Your file window would then display the command definition for the
Force STRING command. It would include the complete command
syntax, a paragraph describing exactly how to use the command, and
menu items referring you to various related topics. This definition is
abbreviated here:

STRING: Force (case of) [CASEMODE (for)] STRING (at) LOCATION CASEMODE OK

The Base II Force (case of) STRING" command changes the capitalization of
letters in a STRING to the case you specify. ... If you want to change the
case of statements, see the Force STRUCTURE command. See repeat command,
OPT.

1. CASEMODE = Upper, Lower, First (letter upper), or Sentence (case)
2. STRING = Character, Text, Word, Visible, Invisible, Number, Phrase,

The uppercase words shown in command syntax represent what you can
do at different steps in a command. Sometimes they represent special
characters. For example, OK in command syntax means that you type
<OK>. Often an uppercase word represents choices you have at that
point in the command; it is like a "variable" for which you may select

The general form
of a Help
description

Command syntax

Command
definition

Uppercase words
represent choices.

Getting Help 9

Getting Complete Information about AUGMENT: Help

[] indicate
options.

See and See also

You can type any
term.

10 Getting Help

any of the choices listed for it. For example, when you see the word
STRING, it means that at this point in the command you should select
the command word you want from among Character, Text, Word, and so
on. Although this notation may seem a bit confusing at first, it is
valuable. Without it, Help descriptions would be too long and
repetitive. If you are studying a command in Help and want to learn
what an uppercase word represents, you might find an explanation in
the description itself or a menu item that mentions it. In the example
above, for instance, to further investigate the choices for STRING, you
would look at menu item 2.

You will notice that some steps shown in command syntax are enclosed
in square brackets. These are optional steps that you may skip
completely or may choose by first typing <OPT>.

Besides including menus of subtopics, many Help descriptions contain
suggestions of related concepts and commands, with "See II and "See
also" followed by a list of terms. The terms are separated by commas;
when two or more words are separated only by spaces, they should be
considered a single term. To learn more about any of these terms,
simply type it at the "CIT:" prompt, ending with <OK>; do not type the
comma following a term. In the previous example, the Force STRING
description suggested that you see OPT. The following is what would
happen if you decided to do this.

You type:

opt<OK>

Command window shows:

CIT:

Opt!
CIT:

Your file window would then show a description of OPT, as follows:

OPT stands for

OPTION

Many AUGMENT commands have optional parts or optional ways of responding

to prompts that are available only if you ask for them. AUGMENT will show the

presence of these options either with "OPT" or with a letter enclosed in square

brackets ([]), such as [A]. To ask for these options, type <OPT> (OPTION key

or <CTRL -U». You can then type "?" to see your alternatives. See also:

question mark.

1. options vs alternatives

The user of Help is not limited to looking up what Help suggests in
menu items or "See" and "See also". Many of the terms in Help
descriptions are defined elsewhere in Help. If you do not understand a
term in a description or are interested in a concept suggested there, try
looking it up by typing it at the "CIT:" prompt. From the previous
example, for instance, you could proceed in one of several directions:
You could follow the menu item; you could look at the topic suggested
in "See also"; you could type another term from the description, such

Getting Complete Information about AUGMENT: Help

as "prompt" or "CTRL-U"; or, if nothing in this definition caught your
fancy, you could type any other AUGMENT term or command.

NOTE: If you are interested in a term covered by a current menu item,
you should investigate it by giving the menu item number. If you take
the menu item and want more information, you can then try typing the
term itself at the "CIT:" prompt.

If after typing a term and reaching an explanation of it, you want more
information about the same term, try typing it again at the "CIT:"
prompt. Help will look elsewhere for more information and will display
it, if there is any. Often it will find a more general discussion of the
term.

If you type a term for Help to look up and then decide you are not
interested in the term, you can stop the search by typing <CTRL-O>.
After the search stops, you will again see the Help prompt, "CIT:".

Getting Around in Help with < and t
In addition to typing terms or menu item numbers for Help to look up,
you can also use Help without looking up specific topics. You can
respond to the "c" in "CIT:" with left angle bracket «) or up arrow
ct). With left angle bracket you can return to previous views of Help
information, and with up arrow you can move from specific definitions
up to more general topics in the Help files. As you begin to use Help
to explore AUGMENT, you will find many uses for "<" and" t ".

You can use left angle bracket «) to find and redisplay a previous
Help description. When you type "<", AUGMENT begins to retrace your
steps through Help, and displays in your status window the first few
words of the description you saw before your current one. To look at
that description again, type "y" or <OK> for "yes"; otherwise, type
" n" for "no". If you type "n", AUGMENT will back up another step
and display the first few words of the description two before your
current one. If you want that description, type "y" or <OK>; otherwise,
reject it with "n". This process can continue, with AUGMENT proposing
descriptions and you rejecting them, until you reach and accept the
description you want. If you reject all the previous descriptions, you
will receive the message "Cannot back up farther" and will again see
the prompt "CIT:".

Once you find and accept the description you want, AUGMENT will clear
your status window and display the description and another "CIT:"
prompt. At this point you can type a term for Help to look up, give a
menu item number, or type "<" or "t". Of course, if you do type
" < " here, the first screenful of information you will have a chance to
review will be the one at which you gave your previous "<".

The following example shows how you would use "<" to go back from
the information in the previous example to the description two steps
before it. Notice that you first reject the description headed "STRING:
Force (case of)" which you saw on page 9 and then, continuing back,

Getting more
information about
a term

Stopping a Help
search

< for going back

Moving on from <

Example of using
<

Getting Help 11

Getting Complete Information about AUGMENT: Help

t for going up

Using t

12 Getting Help

accept the description beginning "to change the case", shown on
page 8.

You type:

<
n

y

Command window shows:

CIT:

< (go back) YIN:

< (go back) no

< (go back) no YIN:

< (go back) no yes

CIT:

You would again see this in your file window:

Status window shows:

STRING: Force (cas ...

to change the case .•.

to change the case of a STRING or STRUCTURE: the Force command

Force (case of)
The Base Force command allows you to change the capitalization of text in

the situations listed below. For example, you can change a STRING, such as a

word or a phrase, from all lowercase to only the first letter of each word in
uppercase, or you can change a STRUCTURE, such as an entire statement, from all

uppercase to all lowercase. See Set Force, Reset Force.
1. STRING: Force (case of) [CASEMODE (for)] STRING (at) LOCATION CASEMODE

2. STRUCTURE: Force (case of) [CASEMODE (for)] STRUCTURE (at) LOCATION

As you learn to use Help, you will find that "<" is very useful for
studying. You can compare definitions, look again at old descriptions to
check and make sure you understand them, or just find out how you
got where you are.

You can use "t" to go up one level in the structure of the Help files.
This will allow you to find the context of Help descriptions, to discover
new and related areas, or just to explore the Help files. Of course,
typing "t" may bring you somewhere you have been before. If you
arrived at the current Help description by passing from a general
discussion to a specific topic, "t" may just return you to your starting
point.

You type "t" at the "CIT: II prompt. Help will then look for the
information requested and display it. If there is no higher-level
information in the Help file for the subsystem you are using, Help will
display general information about AUGMENT subsystems. If you again go
up from there, Help will give you an overview of AUGMENT. If you
again try to go up, Help will tell you it cannot go up farther. The
example below shows how you could go up from the explanation of the
Force command you reached in the previous example.

You type:

t

Command window shows:

CIT:

t (go up)
CIT:

Getting Complete Information about AUGMENT: Help

You would see in your file window the general discussion of the
AUGMENT term "case" that you first saw when you asked for help on
n uppercase" .

NOTE: If you make a mistake and type the wrong character when you
want to type n<" or n tn, you can get back to the Help prompt and
start over by typing <BC> twice. The first <BC> will erase the character
and the second will get you back to the prompt, where you can type
the character you wanted.

Reaching Help From Within a Command: <HELP>

There may be times when you need specific information about a
command you are in the process of giving but do not want to retype
command words into Help or try to fmd your way through Help to the
particular information that you need. Instead of using the Help
command in this situation, you can simply type the special character
<HELP>. On some terminals there is a HELP key; if your terminal does
not have such a key, see the list of special characters for your type of
terminal to find the equivalent character.

You can type <HELP> after any prompt in a command. When you type
it, you will see n (searching Help information)" in your command
window, and your file window will clear to display the information Help
has on the command as far as you have given it.

Typing <HELP> puts you in Help, just as if you had given the Help
command. You can interact with Help as previously described as long
as you wish. To leave, simply type <CD>, and you will be back where
you were before you gave the command you needed help with.

The following example shows how you would use <HELP> if you were in
the middle of the Force Statement command and wanted to find out
more about the command.

You type: Command window shows:

Force (case of) Statement (at) MIA:

<HELP> Force (case of) Statement (at) (searching Help information)
CIT:

The file window would show a detailed explanation of the Force
Statement command, abbreviated below. Note that you would get the
same information if you used the Help command and typed the term
"Force Statement".

When you mistype
< or t

When to type
<HELP>

Typing <HELP>
puts you in Help.

Getting Help 13

Finding Documentation Online: LOCATOR

LOCATOR, a guide
to AUGMENT
documentation

Jump (to) Locator

Jump (to) Link
<MARK>

14 Getting Help

Force (case of) Statement is a special case of Force

STRUCTURE: Force (case of) [CASEMODE (for)] STRUCTURE (at) LOCATION

CASEMODE OK

The Base "Force (case of) STRUCTURE" command changes the capitalization of

letters in a STRUCTURE to the case you specify. If you want to change the

case of parts of statements, see the Force STRING command. See repeat

command, OPT.

1. CASEMODE = Upper, Lower, First (letter upper), or Sentence (case)

2. STRUCTURE = Statement, Branch, Plex, or Group

FINDING DOCUMENTATION ONLINE: LOCATOR
In addition to Help information, there are documents written about
AUGMENT. Stored online for AUGMENT users to read are copies of most
of AUGMENT's printed documentation and other documents that have not
been printed. A file named LOCATOR serves as a guide to this online
documentation and also to printed documents, brochures, and reference
literature. You can use LOCATOR to discover what documentation is
available, to fmd online documents you want to read, and to learn how
to order printed documentation from Tymshare.

You can reach LOCATOR with the Jump (to) Locator command, which is
available in all subsystems.

You type: Command window shows:

i BASE Jump (to) M/C:

<sp>1 BASE Jump (to) Locator OK:

<OK> BASE Jump (to) Locator!

BASE C:

When you arrive at LOCATOR, you will see headings covering the major
categories of documentation listed in LOCATOR. Preceding these headings
will be headings leading to instructions on how to use LOCATOR. The
first time you use LOCATOR, you will want to read these instructions.
To do this, use the Jump (to) Link command and mark the instruction
statement.

You type:

<MARK>

<OK>

Command window shows:

BASE Jump (to) M/C:

BASE Jump (to) Link M/TI [A]:

BASE Jump (to) Link OK:

BASE Jump (to) Link ! !

BASE C:

At this point you will be led through a complete explanation of how to
use LOCATOR to find the documentation you need. Rather than
duplicate this explanation, the following paragraphs will summarize
what you would learn and illustrate the general method presented
there. If you are at a terminal and want to read the explanation in
LOCATOR, simply give the commands described above.

Finding Documentation Online: LOCATOR

LOCATOR has an outline structure that organizes the names and
descriptions of available AUGMENT documentation under appropriate
headings. To fmd a particular document, you use the Jump (to) Link
command and mark statements, making your way though the outline
until fmally you arrive at the document you want. The statements you
mark may be headings or descriptive paragraphs. Here, for example,
are the first few steps you would take after reaching LOCATOR if you
decided to look for online copies of the AUGMENT Textbook lessons:

1. Since you want to read online, you would Jump (to) Link and
mark the heading "ONUNE DOCUMENTATION FOR AUGMENT".

2. Here you would see some general information about the online
documentation; to see specifically what is available, you would Jump
(to) Link and mark this.

3. You would now see a list of names or subcategories of different
online documents. Included would be the heading "Lessons in the
AUGMENT Textbook Series"; Jump (to) Link and mark this statement.

You could continue in this way, using the Jump (to) Link command and
marking the statement describing what you want, until you reached the
name and then the description of the Textbook lesson that interested
you. After using Jump (to) Link and marking this description, you
would be in a different file, the file containing the actual leSson. You
would no longer be in LOCATOR.

When you arrive in the file containing the documentation, you see a
clipped view that shows only the origin statement and all the major
headings in the file. To see the whole fue (that is, every line of every
statement), you can use the Set Viewspecs command and set viewspec
w. You can remain in this file as long as you wish, using different
viewspecs and the various Jump commands to read as much or as little
as you want.

To return to LOCATOR and look for other documents, simply give the
Jump (to) Locator command again. You will be taken back to LOCATOR,

where you will once more see the different categories of documentation
and can explore further.

COMMUNICATING WITH PEOPLE: FEEDBACK
There may be times when you have a problem or need some kind of
special service that you simply cannot take care of yourself. To fill this
need, the organization that supports AUGMENT, the Office Automation
Division (OAD), maintains a service called "Feedback". You can send a
message to Feedback at any time to ask a question, request assistance,
or offer suggestions, complaints, or compliments. Feedback accepts all
messages and returns an answer within 24 hours during the work week.

Getting around in
LOCATOR

The documents
are not stored in
LOCATOR.

You see a "table
of contents" view.

Returning to
LOCATOR

Getting Help 15

Communicating with People: Feedback

What Feedback
does

Sending and
receiving
Feedback mail

16 Getting Help

When you send Feedback a request for services or assistance, an OAD
staff member performs the service and informs you of the outcome, or
explains any delay. If you send Feedback a report of something that.
appears to be wrong with the system or a suggestion for an
improvement or change, Feedback will forward your message to the
appropriate person and report back to you on what is being done.

To send a message to Feedback, use AUGMENT's electronic mail
capabilities. The Feedback service has its own special user name and
"ident", FEEDBACK. Use this name when you send the message. To
find out how to send a message to Feedback, use Help and ask about
Feedback or about sending mail. To learn what documents are
available on sending and reading mail, you could use LOCATOR as
described in this lesson. If for some reason you cannot log in, then you
can reach the Feedback service by calling the Office Auto~ation
Division at Tymshare.

EXERCISES
1. How can you f'md out what you can delete?

2. What does "OPT" mean in a prompt? How could you find out what
you can do after typing <OPT> in a particular command?

3. What is special about changing a sentence into a question by
replacing the period with a question mark?

4. Suppose you gave the command word "Force", used question mark to
f'md out what you could "force", and saw the word "VISIBLE" as one of
your choices. How could you then f'md out what a "visible" is?

5. If you asked Help about "Force" and then wanted general
information about editing commands like Force, how could you find it?

6. If you are in Help and you notice an unfamiliar uppercase word in
the command syntax, what does this represent in general, and how can
you find out exactly what it means?

7. What would you do if you were using Help, had gone through
several Help descriptions, and then wanted to reread the first
description you saw?

8. If you were using Help to learn about the Force Visible command
and then wanted to try the command, what would you do?

9. If in the middle of giving the Force Visible command you became
worried about what was going to happen, what could you do?

10. What would you do if you wanted to read this lesson online?

Exercises

Getting Help 17

Summary

18 Getting Help

SUMMARY
There are several ways to get information or assistance when you are
using AUGMENT. At any point in a command, you may type a question
mark; AUGMENT will list your alternatives and you can then choose
among them or delete the command. For more complete information
about a command you are in the middle of giving, you can type <HELP>
to read the Help information about that command. You can also use
the Help command to ask Help about commands, terms, or procedures
and to find all sorts of information about AUGMENT. To find out about
printed and online documentation and to read what is available online,
you can use LOCATOR, the guide to AUGMENT documentation. If you
have questions, problems, or suggestions, or need a special service, you
may send a message to Feedback.

AUGMENT is a large system that includes many powerful tools and
techniques. We encourage you to use question mark, the Help
information, the documents pointed to in LOCATOR, and the Feedback
service to learn about AUGMENT as you work and to become a
self-sufficient and creative user. Even when you know enough to get
your work done, you can always learn new commands, expand your
knowledge of old ones, and discover more effective and more interesting
methods of working.

LIST OF COMMANDS
?

Help (type a term and then <OK>, or just <OK» OK/TERM ("HELPINFO")
<CD>

Help (type a term and then <OK>, or just <OK» OK/TERM ("HELPINFO")
TERM/MENU ("HELPINFO") ... <CD>

Help (type a term and then <OK>, or just <OK» OK/TERM ("HELPINFO")
TERM/MENU ("HELPINFO") < (go back) ("FLASHBACK") ANSWER ... <CD>

Help (type a term and then <OK>, or just <OK» OK/TERM ("HELPINFO")
t (go up) ("HELPINFO") ... <CD>

<HELP> (searching Help information) ("HELPINFO") <CD>
<HELP> (searching Help information) ("HELPINFO") TERM/MENU

("HELPINFO") ... <CD>
<HELP> (searching Help information) ("HELPINFO") TERM/MENU

("HELPINFO") < (go back) ("FLASHBACK") ANSWER ; .. <CD>
<HELP> (searching Help information) ("HELPINFO") t (go up) ("HELPINFO")

... <CD>

Jump (to) Locator <OK>
Jump (to) Link <MARK> <OK>

Definitions:

TERM Type a word or several words separated by spaces
or dashes, ending with <OK>.

MENU Type a menu item number, ending with <OK>.

ANSWER Type .. y" or <OK> for .. yes", or .. n" for "no".

("HELPINFO") This stands for the Help information you will see
in your file window.

(" FLASHBACK ") This stands for the first few words of the old Help
information, displayed in your status window.

List of Commands

Getting Help 19

Vocabulary

20 Getting Help

VOCABULARY
The page numbers indicate where the vocabulary item is discussed in
this lesson.

<CTRL-O>: Type <CTRL-O> to stop Help from searching for a term you
have asked about. Page 11

electronic mail: This term refers to using AUGMENT to send and
receive messages. Page 16

Feedback: A service provided by the Office Automation Division of
Tymshare, Inc., that enables users to request assistance and register
complaints, suggestions, or compliments. Page 15

FEEDBACK: The name and .. ident" used to address Feedback through
AUGMENT electronic mail. Page 16

Help: A vast source of information about AUGMENT commands, terms,
and procedures, available through the Help command and <HELP>.
Page 5

<HELP>: You can type <HELP> after any prompt in an AUGMENT
command to get a Help description of the command as far as you have
given it. Page 13

Help command: An AUGMENT command to get information about
commands, terms, and procedures. Page 5

Jump (to) Link command: An AUGMENT command you can use to
move between files and to move around within files. You use this
command to get around in LOCATOR and to move from LOCATOR to other
files for online reading. Page 14

Jump (to) Locator command: The AUGMENT command used to reach
LOCATOR, the guide to available AUGMENT documentation. Page 14

left angle bracket: While using the Help command, you can type a
left angle bracket «) to review previous descriptions displayed by Help.
Page 11

<LIT>: Typing <LIT> tells AUGMENT that the following character should
be taken literally as text, not as an instruction to do something.
Page 4

LOCATOR: A file pointing to AUGMENT documentation, which you reach
with the Jump (to) Locator command. LOCATOR will tell you what
documentation is available, guide you to copies for online reading, and
tell you how to order printed copies. Page 14

menu item: A subtopic, to guide you to related information, listed
under a Help description. Page 8

OAD: The Office Automation Division of Tymshare, Inc. OAD supports
AUGMENT.

<OPT>: You type <OPT> to request an optional step in a command, in
response to either "OPT" in a prompt or any part of a prompt that is
enclosed in square brackets. Page 3

prompt: A series of characters that appears in the command window
to tell you what you can do next. Prompts are always one or more
uppercase letters followed by a colon (:).

question mark: When typed after any prompt, question mark (?) will
list what you can do next. Page 2

syntax: The word "syntax" means "how things are put together".
Thus the syntax of a command shows the sequence of steps in the
command. Page 9

term: A term is one or more words, separated by spaces or dashes and
ending with <OK>, that you type for Help to look up. Page 5

up arrow: While using the Help command, you can type up arrow (t)
to go "up" in the structure of Help information. This is useful for a
general overview of a particular subject, or to see the context of
something you are studying. Page 12

variable: A variable is used to represent a number of alternatives.
Often uppercase words in Help are like variables in that they represent
the choices you have at a step in a command. Page 9

Vocabulary

Getting Help 21

Solutions to Exercises

22 Getting Help

SOLUTIONS TO EXERCISES
1. There are many ways to find out what you can delete. The simplest
and briefest information is available through question mark (?). To use
question mark, you would begin a Delete command by typing "d" for
II Delete II at II BASE C: II and then type "? II • You would see a list of all
the things that can be deleted. For more complete information, you
could type <HELP> instead of "?". You would then be given the Help
definition of the Delete command, which includes information about
what you can delete. You could also use the Help command to find out
about deleting and what can be deleted. Simply give the Help
command by typing "h II for " Help" and type "delete" as the term
you want to look up. If you try both typing <HELP> and using the
Help command, you will find that they give you the same information.

2. "OPT II as part of a prompt means that at this point in the command
you can type <OPT> to request additional choices in the command.
After you type <OPT>, you will get a new prompt; at this point you can
learn what your additional alternatives are by typing "? II •

3. To replace any character with "?", you can give the Replace
Character command and specify a question mark as your new character.
But to do this you would have to type the question mark at a prompt,
which normally lists your alternatives at that point in the command.
To have the question mark taken as text rather than as a request for
information, you must precede it with <LIT>.

4. After typing II fll for II Force" and "? " to find out what you can
II force ", you can learn what a "visible II is by typing <CD> to terminate
the Force command, "h" to begin the Help command, and "visible" as
the term for Help to look up.

5. After asking Help about "Force", you could get more general
information about editing commands like Force by typing "t" at the
"CIT:" prompt. This would take you to higher-level information in the
Help files and provide you with a context for what you have just read.
You could continue to do this until you could not go any higher in the
files.

6. Uppercase words in Help'S command syntax and command definitions
represent choices you have at that point in the command. To continue
the command you can select anyone of the choices. If you want to
find out what a particular uppercase word stands for and it is not
explained in the current Help description, take the menu item that
mentions it; if there is no menu item that mentions it, type it at the
" CIT: iii prompt.

7. When you are using Help, you can use "<" to go backward through
Help information you have already seen and find a view that you want
to see again. When you type "< ", you will see the first few words of
the previous Help description in your status window. If this is what
you want, type "y" or <OK>; otherwise, type "n". Continue back until
you reach the information you want.

8. Since Help itself is a command, when you are using Help and want
to give another command, you must first type <CD> to' cancel the Help
command. After doing this and arriving once again at "BASE C:", you
can then type "f" for "Force", followed by "v" for " Visible", to give
the Force Visible command.

9. If you were in the middle of giving the Force Visible command and
you became worried about what was going to happen, you could type
<HELP> after any prompt to get a dermition of the command as far as
you had given it. Or you could cancel the Force Visible command and
give the Help command, typing "force visible" as the term for Help to
look up. Remember that if you wanted to give the Force Visible
command again, you would first have to leave Help by typing <CD>.

10. To find and read this lesson online, you would use LOCATOR. You
can reach LOCATOR by giving the Jump (to) Locator command; it will
instruct you in how to proceed from there.

Solutions to Exercises

Getting Help 23

