§ARC=APP 4=DEC=75 20125 34044
‘ | | 34044 '

NLS Proarammers? Guide

content Analyvzer
L10 Language
Command Meta Language
NDDT

Augmentation Research Center

5 DEC 75

Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, California 94025

« SARC=APP 4=DEC+75 20325 34044
NLS Programmers’ Guide ARC 34044 Rev, & DEC 75

Sent to COM 5«DEC=75, Remgove journal directives before using as
printfile, Obsoletes 33522, NDM

page 1

, SARC=APP 4«DEC-75 20225 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers*® Gypide

page i}

&ARC=APP 4=DEC=75 20125 34044
NLS Programmers® Gpide ARC 34044 Rey, § DEC 75
Table 0f Contents

TABLE OF CONTENTS

INTRDDUCTIGNQ'QQQ!olgaq!oqnaoqqpogcoovoﬂoncqg.o'wn!oqen-o!wz
PART ONE: Content Analyzer PatternS.....q..,........,..;...B

section 13 InterUCtionptwuQltpﬂonﬁvpp'lQQOOQ’!!lﬂv999!3A
SeCtion 2; patternsloﬂbippQ!.Qnﬂ'!'!'!l!!!oOO‘QQQQQQPQOSB
Section 3: Examples of Content Analyzer Patterns,,,,.,,3C
Section 4: Using the Content ANAlYyZer,,..eeecesnrossessesdD

PART TW0Ot: 1Introduction to L10 ProgrammMinGsecescecsnsccesnsnasd

Section 1: Content Anajlvzer Proqrams....o....-,...,..,.4A
Introduction’QC'P!.Q‘.!‘IQ!'_’Qk'.lllﬁ’l.’!ﬂll!"!.‘.QQ4A1
Preram StructurebpqpQo'p’ﬁﬂ@!.%!.."'QQ.O"QQ.QQCQQ4A2
Procedure Structuregpontseg'g.-gpnaooouq-ve!!!ovpogg4A3
Example:o!latt!lo!c--apgq!sc-Qo!-waopqou‘yonutatotlﬂ4A4
Declaration Statement S, ,.rseecoonsoncesvsencassntnensIAS
BOdy Of the 9r°cedure9!’O!..QQ.!QQOQOOQOO?O!QQ.'QQQQ4A6
Programming Style: File Structure,,.eeeeessansnnsesceadA’
Using Content AnalyzZer ProOgramsS,...eccossesesonarscssIAB
prOblemleOQQ?QQOQQQOQQQQ!l""ﬂ!.p'."'g.g@!'lQQQ.Q4A9

Section 23 Content Analyzer Programs! Modifying,,..e..+4B
IntrOduCtionﬂﬂﬁQ"Ql"l'lﬁﬂ'.ﬂ'ﬁ'g.,.lQﬂ.,.ﬂ.'Q.iQ.!4Bl
String CQnstruCt10angaos!pooo-aopﬁ?!ﬂgocqqogsiqen's432
Exampleznwa!a?!!cnoooa.co!!nqaaqq-ng-9’,-0:0.0;99&.9433
More Than One Change per Statement,.,.osecsessrerssnsdBéd
controlling which Statements are Modified,,.,e.eeeq04B5

Pr°b1Qm599anqqoqn,o-oqgoqooquqaq»uoeqnq-qqngcoggcn436

PART THREE:! BﬂSic L10O prOgYaMMiﬂg;..ng.q.oaq;ooégonvnnn§915

Section 1: The User Program Environment,ssecsesvssnnseedA
INntroduUCtioN eosesenensssnrosscsscsnnsrransossasnrsannsdhnl
Th@ sequence Generatoru!yQo'-chgooo.oneotttqeqngqqquz
Content Analyzer FilterS,,.oeseneonccernenesnnarnanss Al
The portrayal Formatterﬂﬂﬂﬂ.ﬂﬂ.QQQ‘Q.ODQ'Q.QQOQQ’9915A4

SECthn 2: PrOgram StrQCtureﬂQlQchotooggooqpqg,..q;qg.sﬂ
An NLS user prodgram consists of the following,,,....5Bl
An example Of a simple L10 pProaram,,.eeeesecenensscsedB?

SectiOR 33 Daclarationsaogoq9onncQqnoque!-oglyggvuooﬁuﬁc
IntrOdUCtionpoc-onp-.v-%ooqqqqoqqnooo!QQo!@ﬂqon'!!ﬂ'sCl
variables!'!.'.QQQ..Q!yp-!"!Q.QQQIQ"!QOQQ'!Q.'!O!! Cz
Simple variables.‘l.!'!'!!'.!.CQQQ.!.l".’!'p..‘!’l!sca
CONStantS o nanerntenessastanencrsassorstascsnsanneassdCéd

Arraysn!!v.!nmwQ.q.-.vonoqnq-!QQ'O....QOqugcq.pqqcoscs

page iii

SARC=APP 4=DEC=75 20325 34044
ARC 34044 Rev, 5 DEC 78 NLS Programmers’ Guide
Table of Contents

Text Paintersunwgquc;-onqowccopoq.q-a!-ooqnqQ-;ocpasca
StringsanQOQQQOanoo-Q-nq!on-o-nng-oco!taoqoa!oocannsc?
ReferenCQd variablesu;-qcoonpcoqaoon-po’;nqouooncan'sca
Declaring Many Variables in One Statement,....,.sses5C9
DEClarlng Locals.g-ypﬂp'v!!vplqonocp-qowpopqqlprQQSCIO
SECtion 4: Snatementsopﬂnﬂaanﬂl“q,.n.oOQQUOQQQQQQQQOQQSD
IntrQGUCtion.'QQ!"Qi!pl’l'ﬂ!!’ﬁ'Q@QQ'!!.Q!‘Q!.QQ!’RsDi
ASSiqnment-uonp'uoqwouacano--oopq-.'-.-n.anunaotaqno 2
BUMP Statement!!'!!.'Ql!!!'l@"'!g.oo'accoqoqQQQQDQQ5D3
IF statewentg!atticowoo#uQn.QQ-ocuon..8!09'09'0'!09!5D4
CASE Statemeﬂt,loﬂ90.9.!9!ngluagcogo-a,nc'gnqngqqpnsnﬁ
Loop StatementgooﬂQtppr!!n’ovyQQQ.Q.OQOQp.!OQ.Q!QﬁQSDﬁ
WHILEOQDDQ Statementnio!‘!OQ‘"?Q'Q!D'QO!'C'!!C!Q’!!SD?
UNTIL,,,DG statementqnoé#s.qguc!qq-g--qo-nnqg!qocwq:sns
po,,,UNTIL/DO,, ,WHILE Statement,,,.ceceevercaoreqsnssedD?
FORQQQDG Statementg;gq.gon-aqooQQQOQ»OQQQQ!QOQQQDQQSDlo
BEGIN,, ,END Statement,,,oveeeseensosecnssosnssresseadDll
EXIT statementqgo!oﬁvqo!poa!otq?lqowpni!-qnop'atnaﬂsnlz
REPEAT Statement!WQQQQO!QQOODQP!!!‘?"Q'!Q’QQ!QQQQQSDla
DIVIDE Statement.I!9.‘9!!'0!!‘.!ﬂ!!...,Q.'Q.'!!'QDQSDI4
PROCEDURE CALL Statement,,.eeseesecescssesenssossssdD1B
RETURN StatementgqqqcvpnncnnuoonqoQQ.QOQ.»:Q!Q.Q:Qanis
GOTO Statementn’nqnn¢»p9ogqoqQuwﬁquq.oqlqaacqooncansnl7
NULL Statemant"QOOCOQ0'9!onoQnpocpnuu@qol-ntna!pQ!SDls
sectlon 5' Expressionsl“.!’ﬂ.’%,'QQDI.Q!R'.IQQIQ"Q..'SE
IntrOdUCtIOﬁ.,.,,,..,,,,...,,,.,......,....,.,,,,..,SEl
prlmitives!.l"ﬂ!!l'!ﬂ.!".q.ll,l'l.nl'..l.'.’g!#!ﬁ'sm2
Dperators!ﬁDO’D'!OQ»:Q...Q-v-!uviw---tav.QQQGQQQQQQQ E3
Ex?re551°ns!0!0'.|'l.ﬂ’li!QQC!QQ!!ol.o"..l!ﬂ""’!'saq

Section 61 String Test and Manipulation,,.c.eesceensensedF
IﬂtrOGUCtiOﬂ,..,,,,..,.,..,,.,.,,.,,..,....,,..,,,.,SFi
Current Character Position (CCPUS),eeevsraresasnnsnsedF2
FIND Statement!ﬁ!’Q"!Q'OQ’!jQOQQQP!-QQQQDQQQOQOQQQQ5F3
FIND Patterns.sﬂg'wtp!n!‘!mna’!nqqttc-»?qtqunnoQ!wQ!5F4
String Construcgionnmlmtq!n9Q0t1n009ﬂ9'000'!!!tm29a05F5
ExaMple:aoulwn-antucononpQQQQQ-no-QQCQQ!Q-QOQQQJQQ!P5F6
More Than One Change per statement,,,,,,,,,,,...,,,,5?7
Text Polnter Comparisgnsl'!""!!,"l'QQ!'!!!QQQQ!!!SFB

Section 7: Invocation of User FlltersS,.eseeseserennsssedC
Introducriont'-nt!!OO’@!Q!!QQQIQQQQOAQ'!QOQQ!!!!!!OQSGl
P:OQPams SuDSYStemlF!ﬂ!!’Qp!0QQOQ!l'ﬂ!'QOQl!Q!!Q!Q!QSGQ
Examples of Usar‘Pngrams oqoowelwoqo;OchQQQ!QQQQQQSGB

page v

SARC=APP 4~DEC+75 20825 34044
NLS Programmers’ Gyide ARC 34044 Rey, 5 DEC 75
Table of Contents

PART FOUR: interactive 110 Prcgramm1n9g.,unq-01;593-0o9§0mﬁ6

Section 13 IntrOduction,,,.,,,,,.,.,.,,,,,.,.,,.,.,,.,,SA
Section 2¢: Command Meta Landuage (CML) ,seeevrcccnennseeelB
Introaucnion"..q!q'nQQQQ"Q!QQQ!.O!!'!O."QQ!.QD0!1681
ProgramfstruCture-.....q.-.q,-.-.q...,,...,.,.,n.-.gﬁaz
Subsystemsnkyvvtongip!.t!l'gg‘OQQQ'QQ!Q'.Q.'O!Qltqa.ﬁa3

Rulesw’nqtﬂﬂgqunqu.quﬂvinynpogngcool!’u'."'.!!!!!684
DeClaraticnSQog:.pqop--gaw--oo-ooq.o-ono-'oamvoovquﬁas

CML Elementsno-'QOnptpo-:Qgo;.nowgqoooaﬁnﬂpcaﬁgvpnnqaaé
Sample CML progtamp9pa'o-oogqqo!q!:ovnatola'sﬂoao9'Q6B7
Section 3: L10 Execution PTOCEGUTQ$,,,.cqp-qoo!p-c»gnqoﬁc
Section 4: Additional IL.10 Capabilities,,ceesannvsarserabD
InterUCtionl!pQQQOOQpoQt!pdnqonoontnoﬁQOOCQQOOQQQDQ6D1
Moving Arocund Within NLS FilesS,.peusessencensernesssbD?
Calling NLS COmmands,...,-.....,---..-.-.q-e-o......593
unening ?iles'DQOQ.OQQ.!Q"'.OQQ.'.'.'Dl‘..'QQ.'DQ‘P6B4
Displaving MessaQQSQ.9.9..-o¢qqu-.o-opn-o-poqoucwcvsps
Ssetting Up for Display Refreshing, ,vceeecccsacesanssnsa®D6
Other Useful ProceduUresS,,ccescesevransssscscscasnssnebD?
Globals Qf IntereSta-ouqan-onocnoooooowc-o-QGQqsooaq6Da
Section 8: (Creating and Using Attachable Subsystems,,,,6FE

PART FIVE: Advanced Programming Topics,.,...g...,....g....i7

Sectlion 1: Error Handiina == SIGNALS,,.e00se0s00s0sepee’A
Section 232 NDDT Debquing,,.......-...,.na...........».75
Introduction.oqout.caooaaopapwcpnqppco!choinaoocoonvﬁl
Accessing NDDT..Qqooap-g-w-pnongoco-.-pououucccccn--732
NDDT Address EXpressions,..eeeeessssceracscessansesslB3
Single'ﬁord variables‘gq.qg-osunnnoooogQ.oooqcoaqnnv7g4
string Variablesgo..,.......,....-...a.....-.-.;--;.785
Records""”"'.'.'...’.'..".*'.‘l."'.'l'..!"”“?BG
Built in NDDT SYMDBOlS,,,eesceseesencaasnascsnsanaonslB7
pecial CharaCteT cammandsppno»otonQOQOv---n#l'!!"’758
Traces and Breakpaints,.....................g...q... B9
Lio Procedures.;.:n....q.......g.............o..ogo751°
$Ymb015,,,...g.,.g........,........gq,ne.o-nqu.-ang7311
Scanning for Contentgg.mquuigoomqoi-puQ.oo..'.l!!o7312
section 3: writing CML Parsefunctions,..ceeveenssacsnene’C
Section 4t Calculator Capabilities,,...eesevessreaneenssl!D
IntTOductian,p,pqg,.,.ggqgcqyonpgopgocupqoﬁggcoq'nqn701
Converting String to DoublemPrecision Floating,.,..,.7D2
Converting Floating Point to String,.ceesevccescncase’DI
Calculations with Foating Polnt, ., cecensevescresseanlDéd

page v

&ARC»APP 4~DEC=75 20:25 34044
ARC 34044 Rey, 5 DEC 75 , NLS Programmers’ Guide
: Table of Contents

Section 5: Fields and RecOrdS,seesnscassenssreseonasnrsnaselk
Section 6: ~Stacks‘and Ringsqonuvc;q-cqogqon-gpqo..,p.'g7F
Section 7: Using the Sequence GeNerator,eyecesssereness’G
Introauctiun'QQlOQQ’QR.’.P..’."!'0".'!!..'.'_'.!.&%761
COQROUtine EffeCt.QOQQQQ."Q.QOQQ.QQ!.!QODOQQQOQQ,QQ”GZ
Sequence work Area".,.’.".’.,“..........’...’.,,‘..763
Displayinq Str‘ingsl’QQ.QQ'.Q"."...0.‘].!Q"'.QQ"’7G4
llsina sequencesﬂkl.Q'!l"QOQ.!Q9!0.'.9’!'.0’,.0.‘_.0‘9765
Section B: Conditional Compiling, ,eeesacescsessconcnceceselH

ASCIT 7=B1T CHARACTER CDDES.;,.q‘pg..QQ'..O'QQOCOQQ'.,O.;.Qﬁs

page vi

&ARC=APP 4=DEC=75 20:25 34044
NLS Programmers* Gyide ARC 34044 Rev, 5 DEC 75
Introduction
INTRODUCTION 2
NLS provides a variety of commands for file manipulation and
viewina, Editing commands allow the user to insert and change the
text in a file, Viewing commands (viewspecs) allow the user to
control how the system prints or displays the file, Line
truncation and control of statement numbers are examples of these
viewing facilities, 2a
Occasionally one may need more sophisticated view controls than
those available with the viewing features of NLS, 2b
For example, one may want to see only those statements that
contain a particular word or phrase, 2bl
Or one might want to see one line 0f text that compacts the
informatjon found in several)longer statements, 2b2
One miaht also wish to perform a series of routine editing
operations without specifying each of the NLS commands over and
over again, or bulld commands for specific applications, 2¢
User=written preoarams may tailor the presentation of the
information in a file to particular needs, EXxperienced users may
write programs that edit files automatically. 24
User=-written programs currently must be coded in ARC’s
procedureworjented programming language, L10, NLS itself §is coded
in L10, L10 is a high=level language which must be compiled into
machinenreadable instructions, This document describes L10,
programs which interact with users additionally use a language
developed at ARC called command Meta Language (CML), described in _
part Four of this document, 2e
This document describes three general types of programs: 2f
~=simple filters that control what is portraved on the user’s
teletype or display (Parts One and Two), 2f1
==programs that may modify the statements as they decide
whether to print them (Parts Two and Three), 2£2
~=those that, like cOmmands, are explicitly given control of
the job and jnteract wjth the user (Part Four), 2€3

yser programs that control what material is portrayved take

paqge 1

&ARC=APP 4~DEC=75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Gulde
‘ Introduction

effect when NLS presents a seguence of statements in response
to a command like Print (or Jump in DNLS), 2fF4

In processing such a command, NLS lo0Ks at a sequence of
statements, examining each statement to see if it satisfies

the viewspecs then in force, At this point NLS may pass the
statement to a user~written prodgram to see if it satisfies

the requirements specified in that program, 1If the user

program returns a value of TRUE, the (passed) statement is

printed and the next statement In the sequence 1s tested; {if
FALSE, NLS just goes on to the next statement, 2f4a

While the program is examining the statement to decide whether

or not to print it, it may modify the contents of the

statement, SuCh a program can do anything the user can do with

NL.S commands, , 2€5

For more complex tasks, a user prodgram function as a
specjalwpurpose subsystem havind (in addjtion to the may
supervisor commands) one or more commands, (Once such a program
is loaded, it can be used just like any of the standard

subsystems, (The MESSAGE proqgram is an example,) 26
This document is divided into five parts: 29
Part One is intended for the qeneral user, 291

It is a primer on Content Analyzer patterns, allowing the

NLS user to set up simple vet powerful filters whrough which

he may view and edit files, This does not involve learning

the L10 language nor programming, This section can stand

alone, and the general (if somewhat experienced) NLS user

should find it very useful, 2g1a

Part Two is intended for the beginning programmer, 292

It presents a hasty overview of L10 programming, with enough

tools to write si{mple programs, This {s intended as an
introduction for the beginning user programmer, who we

assume is reasonably familiar with NLS (its commands,

subsystems, and capabilitles) and has some aptitude for
programming, : 2g2a

Part Three is a more complete presentation of L10, 293
It 1s intended to acquaint a potential L10 programmer with

enough of the language and NLS environment to satisfy most
requirements for automated editing programs, Many of the

page 2

SARC=APP 4~DEC=75 20:25 34044

NLS Programmers*® Guyide : ARC 34044 Rev, 5
Introduction

concepts in Part Two are repeated in Part Three so that it
may stang alone as an intermediate programmer’s refarence

guide, This is the section in which to begin looking for

answérs to specific questions,

Part Four presents more advanced L10 tools and an introduction
to CML, allowing command syntax specification,

This should give the programmer the ability to write
programs which work across files, which move tphrough files
in other than the standard sequential order, and which
interact with the yser, It allows the programmer to build
user~attachable subsystems with commands looking very much
like standard NLS facilities,

Part Five presents a number of subjects of interest to the
advanced L10 progammer,

We suggest that those who are new to L10 begin by acquiring a
thorough understanding of Part One, Then Part Two should be
studied one section at a time, pausing between sections to try
out the concepts presented by actually writing patterns or
programs that put the new ideas to experimental use, Actual
experience is of at least as much value as this tutorial,
Tutorial guidance should be requested from ARC through your
architect, If you have problems at any point, vou should get
help from ARC before proceeding to the next section,

Note: For syntactical correctness, some examples include
constructs not yet defined in the text: they will be
discussed soon thereafter,

For examples of user programs which serve a variety of needs,
examine the attachable subsystems in the <PROGRAMS> directory and
their descriptions in Help, For information about commands
mentioned, ask for the programming subsystem with the NLS Help
command,

DEC 7%

293a

294

2g4a

295

2936

2g6a

2n

page 3

i &ARC=APP 4-DEC»75 20325 34044
ARC 34044 Rev, 5 DEC 75 ‘ NLS Programmers’ Guide
Part One: Introduction

page 4

- S SARC=APP 4=DECe75 20125 34044
NLS Programmers* Guide ARC 34044 Rev, 5 DEC 75
Part One: Introduction ‘

PART ONEs Content Analvzer Patterns 3
Section 1: Introduction la

Content analysis patterns cannot affect the format in which a

statement is printed, nor can they edit a file, They can only

determine whether a statement should be printed at all, They are,

in a sense, a filter through which youy may view the file, More

complex tasks can be accomplished through programs, as described

later in this document, 3a1

The Content Analyzer filter is created by typing in (or selecting

from the text in a file) a string of a special form which

describes those statements which will pass through the filter,

This string is called the "Content Analyzer Pattern", Each

statement is checked against the pattern before it is printed:;

only statements that are described by the pattern will be printed, 3a2

Some quick ekamples of Content Analyzer Patterns: , o 3a3
*C $LD ") will shbw all statements whose first character is an
open parenthesis, then any number of letters or digits, tnen a
close parenthesis, ‘ 3Ja3a

{("blap"] will show all statements with the string "blap" L
somewhere in them, » ‘ 3al3p

SINCE (3=JUN=75 00:00) will show all statements edited Ssince
June 3, 1975 : ‘ ; ‘ - 3a3c

The next part of this section will describe the elements which

make up Content Analyzer Patterns, followed by some examples, The
final subject of this section is how to put them to use," ‘ 3a4

page 5

| | §ARC=APP 4-DEC=75 20125 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Guide
Part One; Patterns

Section 2: Patterns 3b

Elements of Content Analyzer Patterns ‘ 3b}

Content Analyzer Patterns describe certain things the system

must check before printing a statement, It may check one or a

series of things, Fach test is called an element; the many

possible elements will be described below, 3bla

The Content Ahalyzer searches a3 statement from the
beginninag, character by character, for described elements,
As it encounters each element of the pattern, the Content
Analyzer checks the statement for the occurrence of that
elements if the test fails, the whole statement is failed
(unless there was an "or" condition, as described later) and
not printed; 1if the test is passed, an imaginary marker
moves on to the next character in the statement, and the
next test in the pattern is considered,

For example, if the next element in the Content Analyzer
pattern §s "LD", the imaginary marker will move over tpe
next character and go on te test the next element of the
pattern only if the next character is a letter or a digit:;
otherwise the whole statement falls to pass the filter,
The pattern may include any sequence of the following elementss
the Content Analyzer moves the marker through the statement
checking for each element 0f the Partern in gyrn: ibib
Literal String elements 3blc
¢ == the given character (e,dg, a lower case ¢)

"string" == the given string (may include noneprinting
Characters, suCnp as spaces)

Character class elements | | | Ibid
CH == any character
L == lowercase or uppercase letter
D == digit
UL == uppercase letter

LL == lowercase letter

page 6

SARC=APP 4=DEC=75 20:25 34044
NLS Programmers® Guide ARC 34044 Rev, S DEC 7%
Part One: Patterns

ULD == uppercase letter, or diagit

LLD == lowercase letter, or digit

LD == lowercaSe or uppercase letter, or digit

NI.LD ~= not a letter nor digit

PT == any printing character (letters, digits, punctuation)

NP == any nonwprinting character (e,qg, Spaces, control
characters)

special non=printing character elements 3kile
SP == a space
TAB == tab character
CR == a carriage return
LF == line feed character
EOL == TENEX EOL (end of line) character
ALT == altmode character
Sprecial elements - 3pif

ENDCHR =» beginning and end of every NLS statement; can‘’t
scan past it; not considered a character

TRUE == is true without checking anything in statement (used
with OR constrycts, as described below)

iDn id «=» statement created by user whose jdent is given

i1D# 14 == statement not created by user whose ident is given

BEFDRE (det) == statement edited before given date and time

SINCE (d=t) == statement edited since given date and time
E.g, BEFORE (1 OCT 1974 00:00)

The date and time must both appear in the parentheses,
It accepts almost any reasonable date and time syntax,

page 7

&ARC=APP 4«DEC=75 20225 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmersf® Guide
Part One: Patterns

Exanples of valld dates:

17=APR=T4 17 APRIL 74
APR=17=74 177571974
APR 17 74 5/17/74

APRIL 17, 1974

Examples 0f valid times:

1212213 ' 1234:56
1234 1:56AM
1:56=EST 1200N00N

16330 (i,e, 4:30 PM)

12:00:00AM (i,e, midnight)
11:59:59AM=EST (i,e, late morning)
12:00301AM (i,e, early morning)

Scan direction 3big
< =~ set scan dlrecticn to the left
> == set scan direction to the rignht
The default, re~initialized for each new statement, is

scan to the right from pbefore the first character in the
statement (beginning to end),

Modifying Elements 3p2
Several operators can modify any of the elements except the
"special elements": 3b2a
NUMBER =« multiple occurrences 3b2b

A number preceding any element other than one of the
"special elements" means that the test will succeed only if
it finds exactly that many occurrences of the element, If
there aren’t that many, the statement will be rejected,
Even though there may be more, it will stop after that many
and go on to check the next element in the pattern,

3UL means three upper case letters
$§ == range of Occurrences 3b2c

A dollar sign ($) preceding any element other than the
rSpecial elements" means "any number of occurrences ofn,

page 8

&ARC=APP 4+«DEC~75 20:25 34044

NLS Programmers® Guyide ARC 34044 Rey, 5 DEC 75
Part Ones: Patterns ‘

()

-

This may include Zero occurrences, It 1ls good practice to
put the element i{tself in parentheses,

$(*=) means any number of dashes
A number in front of the dollar sign sets a lower 1limit,
3s(D) means three or more digits

A number after the dollar siagn sets an upper limit for the
search, It will stop after that number and then check for
the next element in the pattern, even if it couyld have found
more,)

$3(LD) means from zero to three letters or digits

58$7(PT) means from 5 to 7 (inclysive) printing
characters

~= floating scan 3b2d

To do other than a character by character check, you may
enclose an element or series of elements in square brackets
{1, The Content Analyzer will scan a statement until the
element(s) is found, (If the element is not in square
brackets, the whole statement fails if the very next
character or string fails the test of the next element,)
This test will reject the statement if it can’t find the
element anywhere in the statement, 1If it succeeds, It will
leave the marker for the next test just after the string
satisfying the contents of the square brackets,

"start" means check to see if the next five characters
are: s t ar ¢t,

("start") means~scan until it f£inds the string: s t a r
t

[3D] means scan until it finds three digits,

{ 3p *:] means scan until it finds three digits followed
by a colon ‘

== negation ‘3b2e

If an element is preceded by a minus sign =, the statement
will pass that test if the element does not occur,

&ARC=APP 4~DECe75 20:25 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers® Guylde
Part One: Patterns

=L.D means anything other than a letter or digit, such as
punctuation, invisibles, etc,

NOT =~ negation b2t

NOT will be TRUE if the element or group of elements
enclosed in parentheses following the NOT {s false,

NOT LD Wwill pass if the next characCter is neither a
letter nor ‘a digit,

Combining Elements 3b3

You may put together any number of any of these elements to

form a pattern, They may be combined in any order, Spaces

within the pattern are ignored (except in literal strings) so

they may be used to make reading easier for you, 3b3a

.9, 1SPT [",NLS;" 1$D] =~SP

i,e, one or more printing characters, then scan for ,NLS;
fcllowed by one or more digits, then check that the next
character 1s not a space

More sophisticated patterns can by written by using the Boolean
logical expression features 0f L10, Combinations of elements
may in turn be treated as single elements, to be modified or

combined using logical operators, 3b3b
Generally, an expression is executed left to right, The
following operations are done in the given orders
(G '
/
NOT
AND
OR 3b3c
) 3b3d
Parentheges (and square brackets for floating scans) may be
used to group elements, It 1s good practice to use
parenthesis liberally,
/ 3b3le

/ means "either or"; the bracketed element, consisting of
two or more alternatives, will be true if either (any)
element i{s true,

page 10

. &ARC~APP 4=DEC~75 20:25 34044
NLS Programmers’ Gulde | ARC 34044 Rev, 5 DEC 75
Part Onesy Patterns

14

(3D L /7 4D) means either three digits and g letter or
four digits, ‘

since the slash is executed before NOT, NOT D / *h will be
true if the next character is NEITHER a digit nor the letter
nh* It is the same as NOT (D/*h),

Sometimes you may want want the scan to pass yYour marker
over something 1f it happens to be there (an optional ,
element), "TRUE" {s true without testing the statement, If
the other tests fail, the imaginary marker is not moved,

(D / TRUE) 1looks for a digit and passes the imaginary
marker over it, If the next character is not a gigit, it
will just go on to the next test element in the pattern
without moving the marker and without failing the test,
(This test always passes,)

i,e, It is used to scan past something(s) which may or
may not be there,

Since expressions are executed from left to right, it does
no good to have TRUE as the first option, (If it is first,
the test will immediately pass without trying to scan over
any elements,)

AND ‘ _ ' 3b3f

AND means both of the two separated groups of elements must
be true for the statement to pass,

SINCE (3/6/73 00:00) AND ID#NDM means statements written
since March 6, 1973 by someone other than NpM,

OrR | 3big

OR means the test will be true if either of the separated
elements is true, It does the same thing as slash, but
after "AND" and "NOT" have been executed, allowing greater
flexipility, | ‘

D AND LLD OR UL means the same as (D AND LLD) OR UL
D AND LLD / UL means the same as D AND (LLD / UL)

wWwhile such patterns are correct and succinct, parentheses
make for much clearer patterns, FElements within

parentheses are taken as a droup; the group will be true
only if the statement passes all the requirements of the

page 11

‘ R ‘ | &ARC~APP 4=DEC»75 20325 34044
ARC 34044 Rey, 5 DEC 75 ‘ NLS Programmers* Gyide
‘ Part Onei Patterns

group, 1t is a good ldea to Use parentheses WheneVer
there might be any ambiguity,

page 12

LARC=APP 4«-DEC=75 20225 34044
NLS Programmers® Guide ARC 34044 Rey, S DEC 75
part Onet! Examples of Content Analyvzer Patterns

Section 3: Examples of Content Analyzer Patterns ic

D 2sLD ¢/ (["CA"] / ("Content Analyzer"] , 3ct

This pattern will match and pass any of three types of NLS
statements: those beginning with a numerical digit followed by

at least two characters which may be either letters or digits,

or statements with either of the strings "CA" or "Content

Analyzer® anywhere in the statement, 3cla

Note the uyse of the square brackets to permit a f£loating
scan == a search for a pattern anywhere in the statement,
Note also the use of the slash for alternatives,

BEFORE (25=JAN=72 12:00) 3¢2
This pattern will match those statements created or modified
before noon on 25 Januvary 1972, ic2a
(1D =‘HGL) OrR (ID = NDM) 3¢3
This pattern will match all statements created or modified by
users with the identifiers "HGL" or "NDM", 3cla
{C2L (SP/TRUE) / 2D) D *= 4D} 3c4

This pattern will match characters in the form of phone nymbers
anywhere in a statement, Numbers matched may have an

alphabetic exchange followed by an optional space (note the use

of the TRUE construction to accomplish this) or a numerical

exchange, 3c4a

Examples include DA 6=6200, DA6=6200, and 326=6200,
[ENDCHR] < "cba® 3cH

This will pass those statements ending with "abc", It will go

to the end of the statement, change the scan direction to left,

and check for the characters "cba", Note that since you are

scanning backwards, to find *"abc" you must look for "cba",

Since the rcba" is not enclosed in square brackets, it must be

the very last characters in the statement, 3c5a

page 13

&ARC=APP 4=DEC=75 20:25 34044
ARC 34044 Revy, 5 DEC 75 ~ NLS Programmers*® Guyide
Part One:; Using the Content Analyzer

Section 4: Using the Content AnalyzZer

content analyzer Patterns may be entered in two waystg
1) From the BASE supsystem, use the command:
set Content (pattern) To PATTERN 0K
2) From the PROGRAMS subsystem, use the command:
Compile Content (pattern) PATTERN OK

0K means "Command Accept", a control=-D or,
in TNLS (by default) a carriage return,

In either case:?
1) Patterns may be typed in from the keyboard, or
2) they may be text in a file,
In this case, the pattern will be read from the first
character addressed and continue until it finds a semicolon
(:) so you must put a semicolon at the end of the pattern
(in the file),

Vieyspec j mys¢ be on (i,e, Content Analyzer off) when engering

Entering a content Analyzer pattérn does two things?

1) compiles a small user program from the characters in the
pattern, and

2) takes that program and "institutes" {t as the current
Content Analyzer filter program, deinstituting any previous
pattern,

"Instituting" a program means selecting it as the one to
take effect when the Content Analyzer is turned on, You may
have more than one program compiled but only one instituted,
#hen a pattern is deinstituted, it still exists in your
program buffer space and may be instituted again at any time
with the command in the PROGRAMS subsystem:

Institute Program PROGRAM~NAME (as) Content (analvzer) 0K

page 14

3d

341

3dla

3dib

342
3d2a

3d2b

3d2¢
343

dd3a

3d3b

" EARC=APP 4=DEC=75 20:25 34044
NLS Programmers’ Gyide ARC 34044 Rey, & DEC 75
Part One: Using the Content Analyzer

The programs may be refered to by number instead of
name, They are numbered sequentjally, the first
entered being number 1,

All the prQQfams you have compiled and the one you have
instituted may be listed with the command in the PROGRAMS
subsystem:

show Status (of proqrams buffer) 0K

Programs may build up in your program buffer, To clear the
program buffer, use the PROGRAMS subsystem Command:?

pelete All (programs in buffer) 0K

We recommend that you do this before each new pattern,
unless yvou specifically want to preServe previous
patterns,

To invoke the Content Analyzer: | 3d4

When viewspec 1 is on, the instituted Content AnalvzZer prodgram
(1f any) wijl check every statement before it is printed (or
displayed), | 3d4a

1f a statement does not pass all of the requirements of the
Content Analyzer program, it will not be printed,

In DNLS, if no statements from the top of the screen
onward through the file pass the content Analyzer filter;
the word "Empty" will be displayed,

Note: you will not see the normal structure since one
statement may pass the Content Analyzer although its source
does not, Viewspec m (statement numbers on) will help vou
determine the position of the statement in the file,

When viewspec K is on, the instituted Content Analyzer fillter

will check until it finds one statement that passes the

requirements of the pattern, Then, the rest of the output

(branch, plex, display screen, etc,) will be printed without

checking the Content Analyzer, ‘ 3d4b

Wwhen viewspec 3 is on, no content aAnalyzer searching is done,

This is the default statejy every statement in the output

(branch, plex, display screen, etc,) will be printed, Note

that i, 3. and k are mutually exclusive, 3d4c

page 15

; SARC=APP 4«DEC-75 20:25 34044
ARC 34044 Rev, 5 DEC 75 ‘ - NLS Programmers® Guide
part One: Using the Content Analyzer

Notes on the use of Content Analyzer filters:

Some NLS commands are always affected by the current viewspecs
(including i,J, or k):

Qutput
Jump (in DNLS)
Print (in TNLS)

Most NLS commands ignore the Content AnalyZer in their editing,
The following BASE subsystem commands offer the option of
specifying viewspecs, or "rFilters", (which may turn on the
Content Analyzer) which apply only for the purpose of that one
command and affect what statements the command works on (only
those statements which pass the tilter will be copled, moved,
etc,; structure will be adjusted):

Copy

Delete

Move

Substitute
At this point, it would be wise to practice until You become
profijcient at Content Analyzer patterns, You might begin by
trying to vuse some of the patterns given in the above examples,
and then try writing a few patterns of your own, These patterns
are both a useful NLS tool and a basic component of many L10

programs, We further recommend that you contact ARC via your
architect before you begin the next part,

page 16

3d5

3d5a

3d5b

3deé

\ &ARC=APP 4=DEC=75 20:25 34044
NLS Programmers’ Gulide ' ‘ ARC 34044 Rev, S DEC 75
Part Two?! Content Analyzer Programs

PART TWOs 1Introduction to L10 Programming 4
Section 1: Content Analyzer Programs 4a
Introduction 4ail

when yvou specify a Content Analyzer Pattern, the PROGRAMS
subsystem constructs a program which looks for the pattern in
each statement and only displays the statement if the pattern
matching succeeds, You can gain more control and do more
things if you bulld the program yourself, The program will be
used just like the simple pattern program and has many of the
same limjtations, Programs are written in NLS just like any
other text file, They then can be converted to executable code
by a compiler, This code resides (or is loaded) in your
programs buffer space; it can be instituted as the current
Content Analyzer filter program like a Content Ahalyzer
Pattern, 4ata

Program Structure 4a2
1f you specify a Content Analyzer Pattern, NLS compiles a small
proaram that Jooks 1ike this (with the word "pattern" standing
for whatever you typed in); 4a2a

PROGRAM name
(name) PROCEDURE;
IF FIND pattern THEN RETURN(TRUE) ELSE RETURN(FALSE);
END,
FINISH
L10 programs must begin with a header statement, the word
PROGRAM (all caps) followed by the name of the first procedure
to be executed (all lowerw~case), This name is also the name of
the program, 1If the prodram is being compiled into a file (to
be described at the end of this section), the word FI1LE should
be substituted for the word PROGRAM, E,g, 4a2b
PROGRAM first

or
FILE deldir

page 17

| | SARCwAPP 4-DEC+75 203125 34044
ARC 34044 Revy, 5 DEC 75 NLS Programmers’ Guide
‘ ‘ Part Two: Content Analyzer Programs

(Note: the Content AnalyZer compiler makes up a program
name consisting of UP#!xxxxx, where

1is a sequential number, the first pattern being number
one, and

xxxxx 1s the first five characters of your pattern,)
E,9, UP1!sLD[P

The body of a program consists of a series of DECLARATION

statements and PROCEDURES (in any order) which are blocks of
instructions, In the above case, the program consisted of only

one small procedure and no declarations, When the program {s

loaded into your programs buffer space, the declarations

reserve space in the system to store information (variables),

when the program is used as a Content Analyzer fllter progranm,

the first procedure is called for each statement, 1t may in

turn call other procedures and access variables in the program

or in the NLS system, E,qg, 4a2c

DECLARE X, v¢ 2 ¢ (described below)
(£irst) PROCEDURE ;

TEl

The end of the program is delimited by the word "FINISH" (in
all upper case), The Compiler stops at that point, so any text
after that in the NLS source file will be ignored, 4a2d

comments may be enclosed in percent signs (%) anywhere in the
program, even in the middle of L10 statements, The L10
compiler will ignore them, 4a2e

Except within literal strings, variable names and specilal L10O
words, spaces are jgnored, It is dgood practjce to use tnem
liberally so that your program will be easy to read, Also, NLS
flle structure is ignoreds; statements will be read
sequentially, regardless of thelr level, Structure {is,
however, very valuable in making the program readable, and {t
is good practice to use it in close correlation to the
program’s legical structure, For Instance, the programmer
usuvally makes each of the elements of a program (declarations,
proceduyres, and FINISH) separate statements, below the header
statement in file structure, This point will be discussed
further later, 4a2f¢

S0 far, we have file which 100ks something like: 4a2g

page 18

| | SARC=APP 4=DEC=75 20125 34044
NLS ?rogrammers',cuide ‘ : : ARC 34044 Rev, "5 DEC 75
Part Two: Content Analyzer Programs ‘ '

PROGRAM namel
DECLARE 444 ?
DECLARE 444 3}
(namei) PROCEDURE ;
(name2) PROCEDURE j
FINISH
Procedure Structure 4a3
Each procedure must begin with its header statement, This
header statement is a name enclosed in parentheses followed by
the word PROCEDURE, and terminated by a semjcolon, E,qg, 4a3a
(name) PROCEDURE
The pody of the procedure may consist of Local declaratians,
then L10 statements, An L10 statement {s any program

instruction, terminated by a semicolon, The body must at some
point return control to the procedure that called f{t, All this

will be further discussed later, 4a3b
The procedure must end with the terminal statement: 4alc
END,

page 19

R &ARC=APP 4«DEC=75 20325 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guide
Part Two?: Content Analyzer Programs

Example (the actual 1,10 statements in this example will become

clear as you read on): 4a4
PROGRAM compare % Content analyzer, Displays statement if
first two visibles are the same, % ‘ 4ada

%reserve space for ("declare") four text pointers named
"pti" through "pt4rg
DECLARE TEXT POINTER ptl, pt2, pt3, pt4;
gsreserve 100 characters of space for each of two string
variables named "visi" and "vis2",%
DECLARE STRING visi1{100), vis2(100};
(compare) PROCEDURE
$1f find two visibles, set pointers arouynd first two
visibles (strings of printing characters)s
IF FIND sNP "ptl 1$PT “pt2 sNP "pt3 1$PT "pt4 THEN
BEGIN
sput visibles in stringss
visi . ptl pt2
#vis2¥% .. pt3 ptéd ;
gcompare contents 0f strings, return and display
the statement if identicals
IF #visl# = #vis2x THEN RETURN(TRUE)}
END:
$(otherwise, return and don’t displav%
RETURN (FALSE)
. END, '
FINISH

Declaration Statements 4a5

AS you may have guessed from the above example, Content
Analyzer programs can manipulate variables (like text pointers
and strings), while patterns cannot, 4a5a

Text Pointers o 4as5b

A text pointer points to a particular location within an NLS
statement (or into a string, as described 1ater).

The text pointer points between two characters in a
statement, By putting the pointers between characters, a
single pointeyr can he uged to mark both the end of one
string and the peginning of the string starting with the
next character,

Text pointers are declared with the following peclaration
statement:

page 20

&ARC~APP 4=DEC~75 20325 34044
NLS Programmers?® Gyide ARC 34044 Rey, 5 DEC 78
Part Two: Content Analyvzer Programs

DECLARE TEXT POINTER name 3
Strings 4as5c¢c

String varlables hold text, @When they are declared, the
maximum number of characters ls set,

To declare a string:
DECLARE STRING namelnuml]

num is the maximum number of characters allowed for the
string,

E.d,
DECLARE STRING 1stringl(100]};
declares a string named "lstring" with a maximum length
of 100 characters and a current lenath of 0 characters
(it*s empty),

you can refer to the contents of a string variable by
surrounding the name with asterisks, E,g,

#1lstring* 1is the string stored in the variable named
*1string®,

(Refering to lstring without the asterisks represents
only tnhe fjirst computer word of tne string, This is
rarely needed,)

Yyou can put the text between two text pointers in a strinq
variable with the 1,10 statement:

#lstring¥* .. ptri ptr2 3

where ptri and ptr2 are the names of previous)y dec)ared
and set text pointers, and lstring is a previously
declared string variable,

These variables will retain their value from one statement to
the next, opther types of variables and their use will be

discussed in detail in Part Three, Section 3, ‘ 4a5d
Body of the Procedure . 436
RETURN Statement 4a6a

page 21

SARC=APP 4=DEC=75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guide

pPart Two: Content Analyzer Programs

No matter what it does, every procedure must return control
to the procedure that called it, The statement which does
this is the RETURN statement, E,qg,

RETURN ¢

A RETURN statement may paSs values to the procedure that
called it, The values must be enclosed in parentheses after
the word RETURN, E,q,

RETURN (1,23,47)

A Content Analvzer program must return either a value of
TRUE or of FALSE, 1If it returns the value TRUE (1), the
statement will be printed; if it returns FALSE (0), the
statement will not pe printed, 1I,e,

RETURN (TRUE): will print the statement
RETURN (FALSE):; willl not print the statement

The RETURN statement often is at the end of a procedure, but
it need not he, For example, in the middle of the procedure
you may want to either RETURN or go on depending on the
result of a test,

Other than the requirement of a RETURN statement, the body of
the procedure is entirely a function of the purpose of the
procedure, A few of the many possible statements will be
described here; others will be introduced in Part Three of this
document,

FIND Statement

One of the most useful statements for Content Analyzer
programs is the FIND statement, The FIND statement
speclfies a content Analyzer pattern to be tested against
the statement, and text pointers to be manipulated and set,
starting from the Current Character position (that invisible
marker refered to in Section 1), 1If the test succeeds, the
character position is moved past the last character read,
If at any point the test fails, the character position {is
left at the position prior to the FIND statement, The
valyes of text pointers set in the statement prior to the
falling element will remain as set: others of course will
not be changed,

FIND pattern

page 22

4a6b

4a6¢c

LARC=APP 4=DEC-75 20:25 34044
NLS Programmers’ Guyide ARC 34044 Rey, 5 DEC 75
Part Twoi: Content AnalyZer Programs

The Current Character pPosition is initialized to BEFORE THE
FIRST CHARACTER, and the scan direction is initiajized to
left to RIGHT, FOR EACH NEwW STATEMENT passed to the Content
Analyzer program,

Any simple Content Analyzer pattern (as describe above) is
valid in a FIND statenent,

In addition, the following elements can be incorporated in
the patternt:

#stringname#
the contents of the string vyariable
*ptr

store current scan position into the text pointer
specified by ptr, the name of a declared text pointer

~NUM ptr

back Up the specified text pointer py the Specified
number (NUM) of characters, 1If NUM is not specifjed,
1 will be assumed, Backup is in the direction
epposite to the current scan direction,

ptr
set current character position to this position, ptr
is the name of a previously set text pointer,

SF(ptr)
The Current Character Position is set to the front of
the statement in which the text pointer ptr is set and
scan direction is set from left to right,

SE(ptr)

The Current Character Position is set to the end of
the statement in which the text pointer ptr is set and
scan direction is set from right to left,

page 23

IF

&ARC=APP 4=DEC=75 20325 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guide
part Two: Content Analyzer Programs

BETWEEN ptri ptr2 (pattern)

Search limited to between positions specified, optr is
a previously set text pointer; the two must be in the
same statement or string, Current Character poesition
is set to first position before the pattern is tested,
E.Q,
BETWEEN ptl pt2 (2D [,] S$NMNP)
FINDS may be Used as expressions as well as free=standing
statements, 1f used as an expression, for example in IF
statements, it has the valuve TRUE if all pattern elements
within it are true and the value FALSE 1f any one of the
elements 1s false, E,q,
IF FIND pattern THEN ,., ?
Complicated examples

IF FIND "sf gNP *(g(LD/*=) *¢) [", " xstrw] SE(sf) gNP
f, THEN RETURN(TRUE) ELSE RETURN(FALSE):;

Statement
IF causes execution of a statement if a tested expression is
TRUE, 1If it is FALSE and the optional ELSE part is present,
the statement following the ELSE is executed, Control then
passes to the statement immediately following the IF
statement,

IF testexp THEN statement ;

IF testexp THEN statementl ELSE statement2 ;
The statements within the IF statement can be any valid L10
statement, but are not followed by the usual semicolon; the

whole IF statement is one L10 statement and is followed by a
semicolon,

EeQ,

IF FIND [5D) THEN RETURN(FALSE) ELSE RETURN(TRUE) 3

Programming Style:; File Structure

The compiler which converts your NLS text to code ignores NLS
file structure, This allows you to use structure to make your

page 24

4a6d

4a7

S | &ARC=APP 4=DEC=75 202125 34044
NLS Programmers® Gylde ARC 34044 Rey, 5 DEC 75
part Two: Content Analyzer Programs .

program text easler to read and understand, Logical use of
‘structure often facjljitates the actua) programming task as

well, Some conventions have developed at ARC in this respect,
although flexibility is essential, These should seem obvious

and logical to vyou, 4ala

All declarations and PROCEDURE statements should be one
level helow the PROGRAM statement,

All local declarations (not yet described) and code should
be one level below the PROCEDURE statement,

It is good style, and makes for much easier programming, to
list what you want to 40 as comment statements (in percent
signs) at the level below the PROCEDURE statement, . Then you
can go back and £111 in the code that accomplishes the task
described in each comment statement, The code shouyld go one
level below the comment,

It is also worthwhile to put comments in individual
statements whose purpose is not obvious,

We will later desCribe how to block a series of statements
where one is required, These blocks should go a level below
the statement of which they are a part., :

File structure should follow the logical structure of the
program as closely as possible, E,g,

IF FIND [5D])
THEN RETURN(TRUE)
ELSE RETURN(FALSE):
using content Analyzer Programs . ' 4asg

Once the content Analyzer program has been written (in an NLS
file), there are two steps in using it, First, the prodgram
must be "compliled," i,e, translated into machine=readable code;
the compiled code is "loaded" into a spaCe reserved for user
programs (the user programs buffer), Secondly, the loaded
program must be *instituted" as the current Content Analyzer
program, ‘ 4a8a
There are two ways to complle and load a program: 4a8hb

1) You may compile a proaram and load it into your programs

page 25

BT e : SARCwAPP 4=DEC#75 20125 34044
ARC 34044 Rev, 5 DEC 75 ‘ - NLS Programmers* Guide
: Part Two: Content Analyzer Programs

buffer all in one operation, 1In this case, the program
header statement muyst have the word PROGRAM in it, Wwhen the
user resets his job or logs nfﬁ, the compiled code will
disappear, ; ;

First, enter the Programs subsystem with the command:
Goto Programs OK

Then you may compile the program with the command:
Compile L10 (user program at) SQURCE 0K

SOURCE 1is the NLS file address of the PROGRAM
statement,

2) you may compile a program into a TENEX code file and then
load it into your buffer in a separate operation, The
progranm can then be loaded from the file into your user
programs buffer at any time without recompiling, The header
statement must use the word FILE instead of PRDGRAM, Use
the PROGRAMS subsystem command:

Compile gile (at) SOURCE (using) L10 (to file) FILENAME
0K

The FILENAME must be the same as the program's name,

The code file is called a REL (RELocatable code) file,
Whenever you wish to load the program code into the user
programs buffer, use the PROGRAMS gubsystem command:

Load Program (flje) FILENAME OK

- once a compiled program has been loaded (by either route), it
must be instituted, This is done with the PROGRAMS subsystem
command:? : : 4a8c

institute Program PROGRAM=NAME (as) Content (analyzer
program) OK

The named program will be instituted as the current Content
Analyzer filter, and any previously instityted program will
be deinstituted (but will remain in the buffer),

Again, the programs in the buffer are numbered, the first {n

being number one, You may use the number instead of tne
program®s name .as a shorthand for PROGRAM=NAME,

page 26

, &ARC=APP 4=DEC=75 20825 34044
NLS Programmers® Guide , ARC 34044 Rev, 5 DEC 75
Part Two: Content Analyzer Programs

To invoke the Content Analyzer usina whatever program is
currently instituted, use the viewspec i, J, or k, as described
in Part One, Section 4 (344), 4a84d

Problems 4a9

Given these few constructs, You should now be able to write a
number of usefu) Content Analyzer proarams, Try programming
the following: 4a9a

1) Show those statements which have a number somewhere in
the first 20 characters,

2) Show those statements where the first visible in the
statement is repeated somewhere in the statement,

page 27

o &ARC=APP 4»DECe75 20325 34044
ARC 34044 Rev, 5 DEC 75 ‘ NLS Programmers*® Guide
part Two: Content Analyzer Programs

Sample solutions: 4a9b
Problem 1

PROGRAM number
DECLARE TEXT POINTER ptri, ptr2 :
(number) PROCEDURE
FIND “ptri $20CH *ptr2 :
IF FIND BETWEEN ptri ptr2 ([D])
THEN RETURN(TRUE)
ELSE RETURN(FALSE):
END,
FINISH

Alternate Solution to Problem 1: Content Analyzer Filter
$20CH < (D)
Problem 2

pROGRAM vis
DECLARE TEXT POINTER ptri, ptr2 ;
DECLARE STRING str(500]1
tvis) PROCEDURE
FIND SNP "ptri 1SPT “ptr2 3
#str* . ptrl ptr2 ;
IF FIND ptr2 [NP »str% NP]
THEN RETURN(TRUE)
ELSE RETURN(FALSE):;
END,
FINISH

page 28

~ &ARC=APP 4~DEC=75 20125 34044
NLS Programmers® Guide ARC 34044 Rey, 5 DEC 75
Part Two: Content Analyzer Programs: Modifving Statements

Section 2: Content Analyzer Programs: Modifving Statements 4p

Introduction ' abi

Content Analyzer programs may edit the statements as well as

"decide whether or not they are printed, They are very usefuyl

where a series of editing operations has to be done time and

time again, This section will introduce yoy to these

capabilities, All these constructs will be covered in detail

in Part Three, 4bla

A Content Analyzer program has several limitations, It can
manipulate only one file and it can look at statements only in
sequential order (as they appear in the file), It cannot back

up and ree~examine previous statements, nor can it skip ahead to

other parts of the file, It cannot interact with the user,

Part Four provides the tools to overcome these limitations, 4bib

string Construction _ 4b2

Statements and the contents of string variables may be modified
by ejther of the following two statements: 4b2a

ST ptr .. stringlist
The whole statement in which the text pointer named "ptr"
resides will be replaced by the string list (to be
described in a minute),

ST ptr ptr .. stringlist ;

The part of the statement from the first ptr to the
second ptr will be replaced by the string list,

ptr may be a previously set text pointer or SF(ptr) or
SE(ptrJ. ‘

The content of string variables maY be replaced with the string
assignment statement: 4b2b

*stringname# _ stringlist i
The string list (stringlist) may be any series of string
designators, separateq by commas, The String deSignators may

be any of the following (other possibilities to be described
later): 4b2c

page 29

§RRC=APP 4=DEC=75 20325 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Guylde
part Two: Content Analyzer Programs: Modifying Statements

a string constant, e,g, "ABC" or ‘w
ptr ptr

the text between two text pointers previously set in
either a statement or a string

#stringname#

a string name in asterisks, refering to the contents of
the string

E,g,t 4b2d
ST pl p2 .. #stringx
or. ,
ST pl .. SF(pr1) pl, *string«, p2 SE(p2);
(Note: these have exactly the same meaning,)

Examples 4b3

PROGRAM delsp 3 Content analyzer, Deletes all leading
spaces from statements, % 4pb3la

greserve space for ("declare") a text pointer named "pt"g
DECLARE TEXT POINTER pt:
(de)lsp) PROCEDURE 3
%if any leading spaces, scan past them and set pointer%
IF FIND 1$SP =pt THEN _
$replace statement with text from pointer to
statement end$s
ST pt .. pt SE(pt):;
sreturn, don’t display anythingg
~ RETURN (FALSE) 3
END,
FINISH
More Than One Change per Statement 4b4
Part of a text pointer is a character count, This count stays
the same until the text pointer is again set (to some other
position), even though the statement has been edited, 1If, for
example, you have the gtatement 4b4a
abcdefqg

and {f you have set a pointer between the "d" and the "e", it
will always point between the fourth and fifth characters in

'paqe 30

SARC=APP 4«DEC=75 20:25 34044
NLS Programmers*® Guide ‘ ARC 34044 Rev, 5 DEC 75
Part Two: Content Analyzer Programs: Modifying Statements

the statement, If you then delete the character "a", your

pointer will be between the "e" and the "f", now the fourth and

fifth characters, For this reason, you should begin a series

of edits with the last one in the statement and work bacKkwards
through the statement, 4b4b

controlling Which Statements are Modifled 4b5

In TNLS, the Content Analyzer program will pe called for

commands which construct a printout of the file (Print and

Qutput), The program will run on every statement for which it

is called (e,g, every statement in the branch during a Print

Branch command) which pass all the other viewspecs, 0Once you

have written, compiled, and instituted a program which does

some editing operation, the Print command is the easiest way to

run the program on a statement, branch, plex, or group, 4b5a

In DNLS, the system will call the Content Analyzer program
whenever the display is recreated (e,g, viewspec ¥ and the Jump
commands), and also for the Output commands, 1f the program
returns TRUE, it will only run on enough statements to fill the
screen, It is safer to have programs that edit the file return
FALSE, Then when you set viewspec i, it will run on all
statements from the top of the display on, and when it is done
it will display the word "Empty", At that point, change to
viewspec 3§ and recreate the display with viewspec F, then all
statements including the changes will be digplayed, You can
control which statements are edited with level viewspecs and
the branch only (g) or plex only (1) viewspecs, and by
positioning the top of your window, 4bSb

aAfter having run your program on a file, you may wish to Update
to permanently incorporate the changes in the file, It is wise
to Update bhefore vyou run the program so that, if the program
does something unexpected, you can Delete Modifications and

retyrn to a good file, ‘ 4b5¢
Problems 4b6
Try writing the following programs? 4bb6a

1) Remove any invisibles from the end of each statement,

2) Make the first word a statement name suyrrounded by
parentheses,

page 31

[| © &ARC=APP 4eDEC=75 20125 34044
ARC 34044 Rev, 5 DEC 75) ~~ NLS Programmers'® Guide
Part Two: Content Analyzer Prodrams: Modifying Statements

Sample solutions: 4b6b

Problem 1

PROGRAM endinv
DECLARE TEXT POINTER ptr ;
(endinv) PRQCEDURE 3
IF FIND "ptr SE(ptr) 1sNP ptr

THEN ST ptr - SF(ptr) ptr ;
RETURN (FALSE) 3
END,
FINISH

Problem 2

PROGRAM makename

DECLARE TEXT POINTER ptrt, ptr2 :
(makename) PROCEDURE

14

IF FIND $NP *ptrl 1sSLD “ptr2

THEN ST ptri - ‘(s ptri ptrz, *), ptr2 SE(ptr2);
RETURN (FALSE)
END,

FINISH

page 32

&KARC=APP 4~DEC=75 20:25 34044
NLS Programmers’ Gulde ' ARC 34044 Rev, 5 DEC 75
Part Three: The User Program Environment ‘

PART THREE:; Basic L10 Programming 5

Section 1: The User Program Environment 5a
Introduction 5a1l

User=written Content Analyzer programs are called in the

process of creating a view of an NLS file e,q,, with a Print

command in TNLS, with any of the Dutput commands; and with the

Jump command in DNLS, S5ala

The sequence generator provides statements one at a time;
the Content Analyzer may then check each one, Finally, the
formatter prints it or puts it on the screen,

Thuys 1f one had a user Content Analyzer program compiled and
instituted, one could have a printout made containing only
those statements in the file satisfying the pattern,

Attachable subsystems are independent of this portrayal
proCess, although they are welcome to make use 0f it, They
consist of commands, which may utilize all the powers of NLS, salb

The Sequence Generator ' | ‘ 5a2

In the portraYal process, the seguence generator 10o0ks at

statements one at a time, beginning at the po{nt specified by

the user, It observes viewspecs like level truncation in

determining which statements to pass on to the formatter, When

the sequence generator finds a statement that passes all the
viewspec reguirements, it sends the statement to the formatter

and waits to be called again for the next statement in the

sequence, ‘ : S5a2a

For example, the viewspecs may indicate that only the first
line of statements in the two highest levels are to be
output, The default NLS seguence generator will produce
pointers only to those statements passing the structural
filters; the formatter will then truncate the text to only
the first line before it displays or prints the statement,

Content Analyzer Filters ; 5a3
one of the viewspecs that the sequence generator pays attention

to is win == the viewgpec that indicates whether a user Content
Analyzer filter is to be applied to the statement, If this

page 33

S&ARC=APP 4«DEC=75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Guide
Part Three: The User Program Environment

viewspec is on, the sequence generator passes control to a user
Content Analyzer program, which looks at the statement and
decides whether it should be included in the sequence, If the
statement passes the Content Analyzer (i,e, the user program
returns a value of TRUE), the seguence generator sends the
statement tc the formatters otherwise, 1t processes the next
statement in the sequence and sends it to the user Content
Analyzer pregram for verification, (The particular user
program chosen as a filter is determined by what program is
Instituted as the current Content Analyzer program, as
described below,) _ 5ala

In the process of examining a statement and deciding whether
or not it should be printed, the Content Analyzer prodram
may edit the text of the statement, These edits appear in
the partial copy, just as if the user had made them himself,
This provides a powerful mechanism for automatic editing,

In DNLS, if you display any statements, the program will
stop after f£illing the screen, If you are not displaying
any statements, the program will run on either the whole
file, a plex (viewspec 1), or a branch (viewspec g), These
along with level clipping viewspecs give one precise control
over what statements in the file will be passed to the
program,

The Portraval Formatter S5a4

The formatter arranges text passed to it py the sequence

generator in the style specyfjed by other viewspecs, The

formatter observes viewspecs such as line truncation, length

and indenting; it also formats the text in accord with the ,
requirements of the output device, S5a4a

page 34

&ARC»APP 4~DEC~75 20:25 34044
NLS Programmers® Gyide ARC 34044 Rey, 5 DEC 75
Part Three: Program Structure :

Section 2: Program Structure Sh

An:Nhs user program consists of the following elements, which must
be arranged in a definite manner with strict adherence to
syntactic punctuation: : S5bi

The header = ' S5hla

a Statement consisting of the word PROGRAM, followed by the
name of a proCeduyre in the program, Program executjon will
begin with a call to the procedure with this name,

PROGRAM name

The PRUOGRAM statement may have a statement name in
parentheses; it wil)l be ignored,

The word FILE should be substituted for the word PROGRAM if
the code is to be compiled into a file to be saved,

The FILE statement may have a statement name; if so, that
name will be used as the code=g{le symbol, You must not

follow the word FILE with a name if there is a statement

name preceding FILE,

The body = : Sbib
consists of declarations and procedures in any order!

1) declaration statements which specify information
about the data to be processed by the procedures in the
program and enter the data identifiers in the program’s
symbol table, terminated by a semicolon, E,g,

DECLARE X,yr2 1
DECLARE STRING test[500) 3
REF %, 23

peclaration statements will be covered in Section 3
(5¢), o

2) procedures which specify certalin execution tasks,

Each procedure must consist of:

the procedure namé enclosed in parentheses followed by
the word PROCEDURE and optionally an argument list
contailning names of variables that are passed by the

page 35

ARC 34044

Rev,

&ARC=APP 4~DEC=75 20325 34044
5 DEC 75 NLS Programmers’ Guide
Part Three: Program Structure

calling procedure for referencing within the called
procedure, This statement must be terminated by a
semicolon, E,q,

(name) PROCEDURE 3
(name) PROCEDURE (paraml, param2) ;

You should always include a comment In the
procedure statement breifly summarizing the
function of the procedure,

the body of the procedure which may consist of LOCAL,
REF, and L10 statements,

LOCAL and REF declarations within a procedure must
precede executable code, They will be covered in

Section 3 (5c¢),

L10 statements will be covered in Sections 4 and %
(5d) (5&)'

A RETURN statement must be included at some
point, to pass control back to the calling
procedure, If it is missing, execution will run
off the end of the procedure and an ILLEGAL
INSTRUCTION will occur,

the statement that terminates the procedure (note the
final period):

END,

The program terminal statement =

FINISH

Notes
compjlation; it gqoes not mean stop eXecution, Any text
after that in the NLS source file will be ignored,

this is a signal to the compiler to stop

‘Notes on Program Writing Style

Except for within literal strings, variaple names, and special
L1410 reserved words, spaces are ignored, It is good practice to
use them liberally s¢ that vour program will be easy to read,

comments may be enclosed i{n percent signs (%) wherever spaces
are allowed, They will be ignored by the compiler, It 1is good

prage 36

5bic

5b2

Sh2a

&ARC=APP 4-~DEC=75 20325 34044
NLS Programmers’® Gulde ARC 34044 Rey, 5 DEC 75
Part Three! Program Structure

Practice to use the level pelow the procedure statement for

comments, filling in the code tnat executes the commented

function at the level below the comment, It is also wise to

add comments to any individual statements whose fynction is not
obvious, particuylarly calls on other procedures, 5b?2b

You may find it convenient to add a comment to the FILE
statement including the information needed by the Compile
File command, E,q,

FILE program & (L10,) to (directory,program,subsys,) %

Also, NLS file structure is ignored, Structure is, however,

very valuable in making the program readable, and it is good

practice to use it in close correlation to the program’s

logical structure, 5b2¢

An example of a simple L10 program is provided here, The reader
Should eagjly uvnderstand tpis prodram atter having studjed tnpis
document, : 5b3

FROGRpAM delsp % content analyzer, pDeletes all leading
spaces from statements, % , Sb3a
%reserve space for ("declare") a text pointer named "pt"%
DECLARE TEXT POINTER pt:
(delsp) PROCEDURE _
%1f any leading spaces, scan past them and set pointers
IF FIND 18SP "pt THEN |
$Teplace statement holding pt with text fronm
pointer to statement endg
ST pt ., Pt SE(pt);
$return, don’t displavs
RETURN (FALSE) ;
END,
FINISH

page 37

SARC=APP 4=DEC»~75 20125 34044
ARC 34044 Rey, 5 DEC 75 ‘ NLS Programmers® Guide
Part Threet Declarations

Section 3¢ Declarations S5¢

Introduction ' 5¢1

L10 declarations provide information to the compiler about the

data that is to be accessed; they are not executed, Every

variable uysed in the program must be declared somewhere in the

system (either in your program or in the NLS system), S5ctia

There are a number of types of varlables available, each with

its own declaration statement; the most frequently used are

discussed here, (Complete documentation is available in the

L10 Reference Guide == 7052,) 5¢ib

Variabkles 5¢2

Six types of variables are described in this document: simple,
constants, arrays, text pointers, strings, and referenced,

Each Is represented by an ildentifier, some unique lowercase

name, FEach can be declared on three levels: local, global, or
external, ‘ ‘ 5c2a

L.ocal Variables 5¢2b

A local varlaple is knhoWwn and accessiple only to the
procedure {n whjch jt appears, Loca)l varjables must appear
in a procedure argument list or be declared in a procedure’s
LOCAL declaration statements (to be explained below), Any
LOCAL declarations must precede the executable statements in
a procedure,

LLocal variables in the different procedures may have the
same name without conflict, A global variable may not be
declared as a local varlable and a procedure name may be
used as nelther, 1In such cases the name is considered to be
multiply defined and a8 compilation error results,

Globa) Variables ‘ Sc2c
Glopal Variables are defined in the program’s DECLARE
statements, Varjables specjgjed jin these declaratjons are
outside any procedure and may be used by all procedures {n
the program, '

External Variables 5¢24d

page 38

| | SARC=APP 4=DECw75 20125 34044
NLS Programmers? Gulde ‘ ARC 34044 Rev, 5 DEC 75
Part Three: Declarations -

External variables are defined in the program®s DECLARE
statements or in the NLS system program,

Variables specified in these declarations may be used by all
procedures anywhere in the system, Many externals are
defined as part of the NLS system; user programs have
complete access t0 these, Since other procedures may access
the same variable, the user programmer must be very careful
about changing their values,

Simple Varlables ‘ ' 5¢3

Simple variables represent one computer word, or 36 bits, of

memory, Each bit is either on or off, allowing binary numbers

to be stored in words, Each word can hold yp to five ASCII

1=bit characters, a single number, or may be divided into

fields and hold more than one number, 5c¢3a

Declaring a variable allocates a word in the computer to
hold the contents of the variable, The variable name refers
to the contents of that word, 0One may refer to the address
of that computer word by preceding the variable name by a
dollar sign ($),

For example, if one has declared a simple variable called
"nym", one may put the number three in that variable with
the statement:

nun . 3 3
One may add two to a variabie with the statement:

nume ., num + .2 3

One may Put the address of num into a variable called
addr with the statement:

addr .. $num i

gohe Mmay refer to predefined fields in any variable by
following the name of the varlable with a period, then the
field name, For example, the fields RH and LH are glcbally
defined to be the right and left half (18 bits) of the word
respectivelyr e,q,

num,LH -~ 2
num,RH , 3 3

page 39

‘ | &ARCwAPP 4wDECw75 20325 34044
ARC 34044 Revy, 5 DEC 75 NLS Programmers*® Guide
Part Threei Declarations

Fields may be defined by the user with RECORD statements
(described in Section 5 of part Five), Additionally, you
may refer to systemwdefined fields (e,9, RH), They divide
words into fields by numbers of bits, so they may refer to
any declared word, For example, the field "LH» refers to
the leftemost 18 bits in any 36-bit word, ’

If you assign a full word to a field of n bits within a
word, the righte-most n bits will be assigned to the field
in the degtination word; the rest of the destination word
will pe untouched,

If you assign a fleld with a word to a full word, it will
be right-justified within the destination word; the
remaining bits in the destination word (to the left of
the assigned bits) will pe set to zero,

Declaring simple Global Variables 5¢3b
DECLARE name ;
"name" is the name of the variable, 1t must be all

lower=case letters or digits, and must begin with a
letter,

E.Q,

~ DECLARE X1 3 |
Dptionally, the‘user may specify'th initia) value of the
variable being declared, 1If a simple varjable is not
initialized at the program level, for safety it should be
initialized in the first executed procedure in which it
appears,

DECLARE name = exp 3

exp ls the initial value of name, 1t may be any of the
following: ~

‘m g numeric constant'aptionally preceded by a minus
sign (=)

= a string, up to five characters, enclosed in
quotation marks

= another variable name previously defined in a SET

page 40

S§ARC=APP 4~DEC»75 20125 34044
NLS Programmers® Guide ; ARC 34044 Revy, 5 DEC 75
Part Threet! Declarations

statement (described below), causing the latter’s
value to be assjigned

Examples;
DECLARE x2=5;
$X2 contains the value 5%
DECLARE x3="OUT";
$x3 contains the word OUT%
DECLARE xx=x4}

%%X4 has previously been declared in a SET
statement%

Formal parameters (passed to a procedure) are allocated as

local simple variables, then initialized whenever the procedure

is called, within the called procedure, they should be treated

as simple variables, S5c3c

constants S5c4

You may declare a (simple) variable to be a constant value with
the statement!: 5c4a

SET namel=eXxp i

where nares and expressions are as described apove for
initialjzing sjimple variables,

Constants take no memory, They may be refered to just like
simple variables, except the name must be preceded by a dollar
sign ($), They may not be changed by the program, E,q, 5¢c4b

after the declaration:
SET var = 4 3
the assignment:
num .. Svar
will assign the value 4 to the variable num,

Arravys 5¢5
Multi-word (one=dimensional) array variables may be declared:

computer words within them may be accessed by indexing the
variable nare, The index follows the variable name, and is

page 41

&ARC=APP 4=DEC=75 20225 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guide
, Part Three: Declarations

enclosed {n sguare brackets [], The first word of the array
need not be indexed, The index of the first word is zero, so
it we have declared a ten element array named "blah"g 5c¢5a

blah 1is the first word of the array
blah[1] is the second word of the array
blan[9] is the last word of the array

beclaring Global Array Variables 5¢5b
DECLARE namelnum]
num is the number of elements in the array if the array
is not being initialized, It must, Of course, be an
integer,
E.q,
DECLARE sam[10];
declares an array named ®sam" containing 10 elements,
Optionally, the user may specify the initial value of each
element of the array, If array values are not initialized
at the program level, for safety they should be initialized
in the first executed procedure in which the array is used,
DECLARE name = (numi, num2, ,,,) }
num is the initial value of each element of the array,
The number of constants implicitly defines the number
of elements in the array, They may be any Of the
constants allowed for simple varlables,
Note: there is a onewto-one correspondence between the
first constant and the first element, the second constant
and the second element, etc,
Examples}
DECLARE numbs=(1,2,3);

declares an array named numbs cqntaining 3 elements
which are initialized such that:

numbé =1
numbs{1]
1

2
numbs {2 3

=
=

page 42

: &ARC=APP 4~DEC=75 20:25 34044
NLLS Programmers’ Guide ARC 34044 Rev, 5 DEC 75
Part Threet Declarations

DECLARE motley=(10,$blah);

declares an array named motley containing 2
elements which are initialized such that:

motley = 10

motley (1] = $blah = the address of the variable
"blah"

Text Pointers S5cé

A text pointer i{s an L10 feature used in string manipulation
constructjons, It {s a two~word entjty wnhich provides

information for pointing to0 particuylar locations within text,

whether in string variables or in NLS statements, 5c6a

The text pointer points between two characters in a
statement or string, By putting the pointers between
characters a single pointer can be uysed to mark both the end
of one SupsString and the beginning of the supstring starting
with the neXt character, thereby simplifying the string
manipulation algorithms and the way one thinks about
strings,

A text pointer consists of two words: a string identifier and a
character count, Assume you have declared a text pointer named

pt refers to the first word of the text pointer, The first
wordy called an "stid," contains three system~defined
fields:

stfile == the file number (if an NLS statement)

stasty »~ a bit indicating string, not an NS statement
stpsid =~ the psid of the statement; every statement has
a unique number (psid) attached to it,

The stid is the basic handle on a statement in L10, It
is often useq alone, Since it {s a single=word value, it
may be stored in a simple variable and passed easily
between procedures, and is used by many routines to
specify a statement or string,

If an stid is used without being properly set, the

run=time error message "fst entry nonexistant" may
result,

page 43

: &ARC=APP 4«DECe75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers*® Guide
Part Three: Declarations

ptfl1) refers to the second word of the text pointer, The
second word contains a character count, with the first
position being 1 (before the first character),
For example, one might have the following series of
assignment statements which f£il1l the three fields of the
first word and the second word with data, with pt belng the
- name of a declared text pointer:
pt,stfile .. fileno;
sfileno is a simple variable with a number in itg
pt.stastr .. FALSE;
%a statement, not a string%
pt.stpsid .. oriqin;

%all origin statements have the psid = 2; origin is a
global variable with the value 2 in 1it%

sthe word one after pt (i,e, the character count) gets
1, the beginning of the statement$

It is important that stidfs be initialized properly to avoid
errors, Text pointers may be most easily initialized by
setting them in a FINp statement (see Section 6),

Declaring Text Pointers S5¢c6¢C
DECLARE TEXT POINTER pt

The names pl, p2, p3, p4, and p5 are globally declared and
reserved for system use,

strings 8¢7
String variables are a series of words holding text, When they
are declared, the maximum number of characters ls set, The
first word contains the two globally defined fields: 5c7a

M == the maximum number of characters the string can hold
I, == the actual number of characters currently in the string

The next series of words (as many as are required by the

page 44

Part Three:

maximum string size) hold the actual characters, five per word,

&ARC~APP 4=DEC«75 20125 34044
NLS Programmers® Guide ARC 34044 Rev, 5 DEC 758

Declarations

in ASCII 7-bit code,

#str* refers to the contents of the string variable "“str",

str refers to the first word of the string variable "str";
typically this is only usefu)l in combinatjion with the two
fields "M" and "L"g

str,M refers to the maximum declared length of the
string variable "str" (an integer),

str,. refers to the current length of the string stored
in the string variable "str" (an integer),

Declaring Strings

The DECLARE STRING enables the user to declare a global
string variable by Inltializing the string and/or declaring
its maximum character length,

To declare a string:

DECLARE STRING name(num] 3

nur is the maximum number of characters allowed for
the string

Since the maximum statement length is 2000 characters,
vou should not need to declare a string greater than
2000 characters long,

E,qg,

TO

DECLARE STRING 1string(100);

declares a string named "lstring” with a maximum
length of 100 characters and a current length of 0
characters

declare and initialize a string:

DECLARE STRING name="Any string of text"

The length of the literal string defines the maximum
length of the string variable,

E.Q.

5¢7b

5¢7c

page 45

§ARC#APP 4=~DEC=75 20325 34044
ARC 34044 Revy, 5 DEC 75 NLS Programmers® Guide
: Part Three: Declarations

DECLARE STRING meSSage="RED ALERT";

declares the string message, with an actual and
maximum length of 9 characters and contains the text
"REDR ALERT"

REF; Referenced Variables ' 5c8
Reference Declarations 5c8a

After a simple variable has been declared, the REF statement
can deflne it to represent some other variable, A
referenced variable holds the address of another declared
variable of any type, Whenever the referenced variable is
mentioned, L10 will operate on the other variable instead,
as 1f it were declared in that procedure and named at that
point,

This is useful when you wish a procedure to know about a
multi=word variable, 1In procedure calls, you are only
allowed to pass singlee=word parameters, If you wish a
called procedure to use or operate on a text pointer, array.,
or string, you mMmay pass the address of that multi=word
variable, Then, in the called procedure, youy must REF the
formal parameter receiving that address. From then on in
the called procedure, when you refer to the REFed parameter,
you are actually operating on the multi-word variable
declared in some other procedure to which the local REFed
variable points, i,e, on the variable at the address
contained In the REFed parameter,

Example:
I1f the simpie variable "loc" in the current procedyre
has been pEFed and contains the address of the string
mstr" local to the calling procedure, then operations
on loc actually operate on the string in str:
rmes* ”‘*lOC*g
imes gets the string in strs
%#loc* ., "corpuscle”;
gstr gets the string "corpyScle"s

Similarly, you cannot return multieword variables from a
called procedure, 1f you wish a procedure to return a

page 46

‘ SARC=APP 4«DEC=75 20325 34044
NLS Programmers’ Guide ARC 34044 Rev, 5 DEC 75
part Threei Declarations

string, you must declare the string as a local in the
CALLING procedure, pass its address to a REFed variable 1in
the called procedure, Then the called procedure can modify
the string as if it were local (and return nothing), The
modifications will be made in the actual string variable,

Unreferencing REFed Variables ‘ | S5c¢8b
One may refer to the actual contents (an address) of a REFed
variabie ({,e, "unref® jt) by preced{ng the referenced
variaple name with an ampersand (&), If, for example, an
address was passed to a REFed variable, and you wish now to
pass that address on to another procedure, you can funref®
it, i,e, access the actual content (the address of some
variable),

E.,d, 1f X has been REFed and holds the address of y:
Z - X 3
4z gets the CONTENTS of ys
Z . &X 3
%z gets the ADDRESS of v%
This construct might be used, for example, i{f one procedure
has been passed the address of a string, operates on it,
then wishes to pass (the address of) that string on to
another procedure that it calls,

This can be a tricky concept} it may be worthwhile to review
this section carefully,

REFing Simple Variables | , 5c8c
once a simple variable has been declared (as a global,
local, or parameter), it may be REFed with the L10
declaration statement;
REF "var 3
It will be a reference from then on in that procedure, and
you must always use the ampersand to refer to jts actual
contents: the address of the variable it references,

Note that the REF statement does not allocate storage; it
just sets an attribute of an existing variable,

page 47

SARCwAPP 4=DEC=75 20325 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers*® Guide
Part Three: Declarations

If you wish to use a varlable that {s not REFed as if it
were REFed, enclose it in square brackets [], E,g, assume
the simple varlable "astr" holds the address of a string
variable but was NOT RgEFed:

slastr)#* refers to the contents of the string variable
whose address is in astr,

Note on Programming Style

You should always REF locals and parameters which hold the
address of something to be accessed (even if that varlable
is only used to pass the address on to another procedure),

Declaring Many Variables in One Statement

One may avoid putting severgl individual declarations of
varjables in a serjes by putting varjables of simjlar type,
initialized or not, in a list in one statement following a
single DECLARE, separated by commas and terminated by the usual
semicolon, Array and simple varibles may be put together in
one statement,

gxamples:

DECLARE X, yl{10), 2 = (1, 2, =»5);
DECLARE TEXT POINTER ¢p, Sf, Ptl, Pt2 ;
DECLARE STRING 1lstring{100)], message="RED ALERT" ;

Declaring Locals

Program level declarations (DECLARE and REF) and procedures may
appear in any order, However, procedure level declarations
(LOCAL and REF inside a procedure) must appear before any
executable statements in the procedure, The different types of
variables may be declared in any order, but a variable must be
declared before it can be REFed,

Whenever possible, LOCALS should be used instead of globals,
It makes for a cleaner program if you pass parameters among
procedures rather than depend on global variables to
transmit information,

With one exception, a local variable declaration statement {s
just the same as a global with the word "LOCAL" suybstituted for
the word "DECLARE", The one exception is that LOCAL
declarations can not initialize the variaples,

page 48

5¢c8d

5¢9

5c9%a

5¢10

5ci0a

5¢10b

S&ARC=APP 4»~DEC=75 203125 34044
NLS Programmers® Gulde ARC 34044 'Rev, 5 DEC 75
Part Three: Declarations '

EXxamples:

LocaL var, flag, level(12]) :
LOCAL TEXT POUINTER tp, pt, sf :
LOCAL STRING test[10Q0), out(2000] ;

When a procedure 1ls called by another procedure, the calling
procedure may pass one=word parameters, The procedure receives

these values in simple local variables declared in the

PROCEDURE statement®s parameter list, For example, two locals

will automatically be declared and set to the passed values

whenever the procedure vYprochame®" is called: 5¢10c

(procname) PROCEDURE (vari, var?2) :

vari and var? nmust not be declared again in a LOCAL
statement, They may, however, be REFed by a REF statement,
as discussed above, and used throughout the procedure,

The statement which calls procname may look likes

procname (locvar, 2) 3

var1l will be initialized to the value of the variable
wlocvar® and var2 will get the valuye 2,

Declaring Externals s5ci1

Externals are declared just like globals, with one exception,
The word DECLARE must be followed by the word EXTERNAL, E,9, S5clla

SET EXTERNAL one=1, twos2

DECLARE EXTERNAL a, b(10]), ¢=5 ; _
DECLARE EXTERNAL TEXT POINTER exptrl, exptr2 ;
DECLARE EXTERNAL STRING exstr([100] ;

REF specifications may not be external to the program, 5ciib

page 49

&ARCwAPP 4=DEC=75 20:25 34044
ARC 34044 Rev, 5 DEC 7% NLS Programmers’ Guide

Part Three: Declarations

Accessing Registers 5012

The user may access machine registers (the same length as other
words, 1,e, 36 bits) by naming them with the declaration: 5¢ci2a

REGISTER name = regnum 3}
or
REGISTER namel=regnumi, name2sregnum2 ;

The declared names will then represent the registers to which

they are attached, You may then access or assign values to

their content, On TENEX, the user programmer may use the first

seven regigsters, registers 0 through 6, (Registers 7 through

15 are reserved for system use,) E,q, 5¢c12b

REGISTER r0=0, ri=1, r2=2, r3=3, r4=4, r5s5, r6s6 ;

The names used in the aboVe eXample are used most often by
¢convention,

Registers must be used very carefully! They are typically used

when calling TENEX JSYS (see section 4), Many L10 constructs

and procedures use the registers; you should assign their

content to a variable immediately after the JSYS call if vou

wish to save it, 5c12c

page 50

\ SARC=APP 4-DEC=75 20325 34044
NLS Programmers® Guide ‘ ARC 34044 Rey, 5 DEC 75
Part Three! Statements

Seetion 4: Statements 5d

Introduction 5d1

This section will describe some of the types 0of statements with

which one can build a procedure, The term "expression" (often
abbreviated to "exp") will be used in this section, and will be
explained in detail in Section S (5e), 5dia

Assignment 5d2

In the assignment statement, the expression on the right side
0of the v v is evaluated and stored in the variable on the left
side of the statement, 5d2a

var . exp 3}

where var = any d9lobal, loca)l, referenced or unreferenced
variable,

One may make a series of assignments in one statement by
enclosing the list of variables and the list of expressions in
parentheses, The order of evaluation of the expressions is

left to right, The expressions are evaluated and pressed onto

a stack; after all are evaluated they are popped from the stack

and stored in the variables, 5d2b

(varl:s var2s see) = (€XPlr €XP2: o44) 1}

NaturallyY, the number of expressions must equaj the number
of variabhles,

Examples
(a, b) » (C+d, a=b)

The expression c+d is evajuated and stacked, the
expression a«b is evaluated and stacked, the value of awb
is peopped from the stack and stored into b, and finally,
the value of c+d is popped and stored into a, It is
equivalent to: ‘

templ ., c+d 3
terp2 - a»b ;
a . templ ;

page 51

‘ ‘ &ARC=APP 4«DECw=75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guide
Part Three: Statements

One may assign a single value to a series of variables by
stringing the assignments together: 5d2¢

varl . var2 .. var3 .. exp ;

The assignment will be made from right to ijeft, vari, var2,
‘and var3 will all be given the value of the expression,

Examples
a - b . 01
Both a and b w111 be given the vajue zero, This type of
statement c¢an be usefyl in initializing a series of
varlables at the beginning of a procedure,
BUMP Statement 543
The BUMP statement will add one to a variable: 5d3a
BUMP var
This is equivalent to:
var .. var + 1 j;
BUMP DOWN will subtract one from a variable: 5d3b
BUMP DOWN var ;
This is equivalent to:
var ., var = 1 ;
You may BUMP more than one varlabie in a single statement: 5d3c
BUMP varil, var2, var3,,,, !
BUMgrDOWN varl, var2, vard,,,, i
IF Statement ’ | 5d4
This form causes execution of a statement if a tested
expression §{s TRUE, If tpe expression i{s FALSE and tpe
optional ELSE part is present, the statement following the ELSE

is executed, Contrel then passes to the statement immediately
following the IF statement, , 5d4a

page 52

&ARC»APP 4=DEC=75 20:25 34044

NLS Programmers® Guide - ARC 34044 Rey, 5 DEC 75
Part Threet! Statements

IF testexp THEN statement 3
IF testexp THEN statementl ELSE statement2

The statements within the IF statement can bhe any statement,

but are not followed by the usual semicolon; the whole IF

statement is treated like one statement and followed by the
semjicolon, 5d4b

Eyg, | ‘ ‘ 5d4c
IF y=z THEN y.y+1 ELSE y.z ;

In some cases, complex nested IFs may be simpler if rewritten
as a CASE statement, 5d4d

CASE Statement 5d%

This form is similar to the IF statement except that it causes
one of a serjes of statements to be executed depending on the
result of a series of tests, : 5d5a

CASE testexp OF
relop exp § statement ;
relop exp ! statement ;
relop exp : statement
L]

S
ENDCASE statement ?

where relop = any relational or interval operator (>=; <."=)
IN, etc,) see Sectjon 5 (5e3c) and (5e3d),

The CASE stanement provides a means of executing one statement
out of many, The expression after the word vCASEn is evaluated
and the result left in a register, This 1s used as the ‘
leftmhand side of the binary relations at the beginning of the
various cases, FEach expression is evaluated and compared
according to the relational operator to the CASE expression,
If the relationship is TRUE, the statement is executed, If the
relationship 1s FALSE, the next expression and relational
operator will be tried, 1If none of the relatfons is satisfied,
~ the statement following the word "ENDCASE" will be executed,
Control then passes to the statement following the CASE
statement 5d5b

Note that the relop and expressions are followed by‘a colon,
and the statements are terminated with the usual senmicolon,

page 513

‘ S&ARC=APP 4~DEC=75 20225 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers’ Guide
Part Three: Statements

The word ENDCASE is not followed by a c¢olon, In ENDCASE,
the statement may be left out == this is the equjvalent of
having a NULL statement there; nothing will happen,

Example;

CASE ¢ OF ,
% ai %execuyted {f ¢ = ag
X = ¥V
> b: %executed if ¢ > b%
(X0 V) o (X+Y, X=V)3
ENDCASE %executed otherwise%
Y - X3

CASE char QF
= D: %1f char = the code for a digits
char .. ’1;
= ULt %1f char = the code for an upperwcase letter%
char .. ‘0;
ENDCASE: %otherwise nothing%

Several relations may bhe listed at the start of a single case:
they should be separated by Commas, The statement wi)l be
executed if any of the relations is satisfied, 5d5¢

CASE testexp OF
relop exp: statement
‘relop exp, relop exp: statement
relop exp, relop exp, relop exp: statement ;
L]

, .
ENDCASE statement 3
Example: ,

CASE ¢ OF
=a, <dp %executed If c=a or c<dg
X - V]
>b, =d: %executed 1f c>b or c=d%
(X2Y) = (X¥V,X=Y):
ENDCASE %executed otherwises
Y - X!

As a point of style, the conditions of the CASE statement

should be put one level below the CASE statement in the source

(text) file, The statements (if they are more than one line)

may be put one level below the condition, 5d5d

page 54

SARC=APP 4=DEC=75 20325 34044
NLS Programmers’ Guyilde ARC 34044 Rey, 5 DEC 75
Part Three; Statements '

LOOP sStatement 5d6
The statement following the word "LOOP" is repeatedly executed
until control leaves by means of some transfer instruction
within the loop, 5d6a
LOOP statement:
where statement = any eXecutable L10 statement
Example:

LOOP IF a>=b THEN EXIT LOOP ELSE a -~ a+l ;

(It is assumed that a and b have been initialized before
entering the loop,)

The EXIT construction is described below, It is extremely
important to carefully provide for exiting a loop,

WHILE,,,DO Statement 5d7
This statement causes a statement to be repeatedly executed as
long as the expression immediately following the word WHILE has
a logical value of TRUE or control has not been passed out of
the DO loop by EXIT LOOP (described below), 5d47a
WHILE exp p0 statement
eXxp 1s evalvateg ang 1f TRUE the statement following the worg
DO is execyted; exp is then reevaluated and the statement
continually executed until exp is FALSE, Then control will
pass to the next statement, 5d47b

For example, if you want to fill out a string with spaces
through the 20th character position, you could:

WHILE str,L < 20 DO #str% . #*str#, SP; %yhat’s already
there, then a space%

remember that the first word of every string variable has
two globally defined fields:

L == actual length of contents of string variable
M == maximum length of string variable

The WHILE construct is egquivalent to: 5d7¢c

page 55

&ARC=APP 4=DEC=75 20125 34044
ARC 34044 Rev, 5 DEC 758 NLS Programmers*® Guide
Part Three: Statements

LOQP
IF NOT eXp THEN EXIT LOOP
ELSE statement 3
UNTIL,,.DO Statement : 548
This statement is similar to the WHILE,,,DO statement except
that the statement following the DO jis executed until exp is
TRUE, As long as exp has a logical value of FALSE the
statement will be executed repeatedly, 5dBa
UNTIL exp DO statement 3
Example?
UNTIL a>b DD a . a+i ;
The UNTIL construct is equivalent to: 5d8b

LOOP N
IF exp THEN EXIT LODP ELSE statement

pO,,,UNTIL/DO,,,WHILE Statement 5d9
These staterents are like the preceding statements, except that
the logical test is made after the statement has been executed
rather than before, 5d9a
p0 statement UNTIL exp;
DD statement WHILE exp:
Thus the specified statement is always executed at least once
(the first time, before the test is made), For example, this
b0, ,,UNTIL: ‘ 5d9b
DO arrayfvar) .. 0 UNTIL (var = var = 1) = 0 ;
and this pO,,, WHILE: 5d9c¢
DO array[varl] - 0 WHILE (var := var = 1) » 0 ;
are poth equivalent to: 5d94d
LOOP

BEGIN
arraylvar}] = 0 3

page 56

 §ARC=APP 4#DEC=75 20325 34044
NLS Programmers’ Guide ARC 34044 Rev, 5 DEC 78
Part Three: Statements

IF (var 3= var = 1) = 0 THEN EXIT LOOP
END:

FOR,,.D0O Statement 5d10
The FOR statement causes the repeated executlon of the
statement following *po® yntil a specific terminal value is
reached, 5d10a
FOR var UP UNTIL relop exp DO statement;
(UP will be assumed 1f left out,)
FOR var DQWN UNTIL relop exp DD statement:
where
var = the variable whose value 1s incremented or
decremented each time the FOR statement is
executed
relop = any relational operator (described in Se3c)
exp = when combined with relop, determines whether
or not another iteration of the FOR statement
will be performed, It is recompuyted on each
jteration, \
E.ge FOR i UP UNTIL > 7. D0 & .. a + tpi] 5d10b

Optionally, the user may initialize the variable and may
increment it by other than the defau)lt of one, 5d10c¢c

FOR var . expl yP exp2 UNTIL relop exp3 DO statement;
FOR var .. expl DOWN exp2 UNTIL relop exp3 DO statement;

where

expl = an optional initial valuye for var. If expl is not
specified, the current value of var is used,

eXp2 = an optional value by Which var will be incremented

(if UP specjified) or decremented (if DOWN specifjed), 1If

exp?2 is not specified, a value of one will be assumed,
Note that exp?2 and expj are recomputed on each iteration,

Example?!

page 57

: SARC=APP 4~=DEC»75 20125 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guide
‘ ‘ Part Three: Statements

FOR kK .. N UP k/2 UNTIL > m#*3 DO x[K) - K;
is equivalent to

K — N3
Loop
BEGIN
IF k >m*3 THEN EXIT LOOP;
X[k} - k}
K = K + K/23
END:

BEGIN,, ,END Statement 5411

The BEGIN,..END construction enables the user to group several
statements into one syntactic statement entity, A BEGIN...END
construction of any lenath is valid where one statement 1is

required, 5di1a

REGIN statement : statement § ,,. END
Example:s

IF a »= b#*c THEN

BEGIN

a-b;

CanGt5 2

END %no sgemicolon here becayse an L10

statement here wouldn’t havVe one; see 5d4%
ELSE

BEGIN

amC }

Ded+2;

Cah®d®7 2 ,

END3; %thils semicolon terminates the entire IF
statements

Note the use of NLS file structure to clarify the logic and
separate the blocks, Blocks should always be put one level
below the statement of which they are a part,

EXIT Statement 5d12

The EXIT statement transfers control (forwarg) out of CASE or
iterative statements, A CASE statement can be left with an

EXIT CASE statement, All of the iterative statements (LOOP,

WHILE, UNTIL, DO, FOR) can be exited by the EXIT LOOP

statement, EXIT and EXIT LOOP have the same meaning, 5d12a

page 58

, &ARC=APP 4«DEC=75 20325 34044
NLS Programmers‘ Guide ARC 34044 Rev, 5 DEC 75

Part Threei Statements

EXIT LOOP num or EXIT num
EXIT CASE num

where num is an optional integer, The optional number
(num) specifies the number of lexical levels of CASE or
iterative statements regpectively that are to be exited
(e.ge if loops are nested within loops), I¢f a numper is
not given then { is assumed,

Examples?

Loop
BEGIN
[RN & N] .
IF test THEN EXIT;
$the EXIT will branch out of the LOOP%

erenenge

END:

UNTIL something DO
BEGIN

LE N E RN J

L]
WHILE testl DO
BEGIN
sesenenn
IF test?2 THEN EXIT;
$the EXIT will branch out of the WHILES
st nergy

END 3

[XEEEERX]

END

UNTIL something DO
BEGIN

PR e RN

WHILE testi DO
BEGIN
(X R RN NN N
IF test?2 THEN EXIT 2;
(the EXIT 2 will branch out of the UNTIL%

QOQQO'OQ
END ¢
LB RN N

gee
END3

page 59

s : ‘ &ARC»APP 4#DEC»75 20325 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers* Guide
Part Three; Statements

CASE exp OF
=something:
BEGIN
LE NI E N NN
IF test THEN EXIT CASE;
%the EXIT will branch out of the CASE%

LA RN EE NN

END3

I EERE &N]

REPEAT Statement ' 5413

The REPEAT statement transfers control (backward) to the front

of CASE or iterative statements, The optional number has the

same meaning as in the EXIT statement, REPEAT and REPEAT CASE

have the samre meaning, 5di3a

REPEAT LOOGP num

REPEAT CASE num (exp) or REPEAT num (exp)
If an expression is given in parentheses with the REPEAT CASE,
then it is evaluated and used in place of the expression given

at the head of the specified CASE statement, TIf the expression
is not given, then the one at the head of the CASE statement is

reevaluated, | - 5d13b
Examples: : | : ‘ 5d13c
CASg expi OF
‘Agomethings
BEGIN
Q?QQ'.

IF 'testi THEN REPEAT)
SREPEAT with a reevaluatad‘expl%

(B ERBN Y]

IF test? THEN REPEAT (exp2);
%REPLAT with epo%

2 enen

page 60

, &ARC=APP 4~DEC=75 20225 34044
NLS Programmers?’ Gyide . ARC 34044 Rev, 5 DEC 75
part Threet! Statements:

LOOP
BEGIN

(NN AR BN

IF test THEN REPEAT LOOP;)
$REPEAT LOOP will go to the top of the LODP%

IR N NN NN]
END;
DIVIDE Statement 5di4

The divide statement permits both the quotient and remainder of
an integer division to be saved, The syntax for the divide
statement 1s as followst: 5d14a

DIV expl / exp2 , quotient , remainder ;

Quotient and remainder are variable names in which the
respective values will be saved after the division, 5d14b

EQgQ
DIV a/b, arr ;

a will be set to a/b to the Qgreatest integer with r
getting the rerainder

Floating point calculations are described in Part Five, Sectlon
4, 5d14c

PROCEDURE CALL Statement 5di15

Procedure calls direct program control to the procedure

specified, A procedure call occurs when the name of the

procedure is followed by parentheses, If the procedure

requires that arguments be passed, they should be included in

the parentheses, separated by commas, ' 5d15a

procname (eXp, €XpPs 494) }
vhere procname = the nhame of a procedure
exp = any valid L10 expression (explained in Section 5),
The set of expressions separated by commas is the
argument list for the procedure,
The argument list consists of a number of expressions separated

by commas, The number of arguments should equal the number of
formal parameters for the procedure, The argument eXxpressions

page 61

SARC=APP 4=DEC»75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guyide
Part Threet!: Statements

are evValuated in order from left to right, Each eXpression
(parameter) must evaluate to a one~word value, The values wjill
be assigned to the formal parameters of the called procedure, 5disb

To pass an array, text pointer, string, or any multi=word
parameter, the programmer may pass the address of the flirst
word of the variable, then REF the receiving local in the
called procedure,

For example, one may pass an stid directly, but to pass a
text pointer, you must pass the address of the text pointer
and REF the receilving parameter, Remember that a dollar
sign (8) preceding a variable represents the address of that
varijable,

The procedure may return one or more values, The first value
is returned as the value of the procedure call, Therefore, if
only one value is returned, one might say? 5d15c¢

a = pProc (b) 3

In this context, the procedure call is an expression,
If more than one value 1Is returned by the called procedure, one
must specify a list 0f variables in which to store them, The
list of variables for multiple results is separated from the
list of argument expressions by a colon, The number of
locations for results need not equal the number of results
actually returned, 1f there are more locations than results,
then the extra locations get an undefined value, If there are
more results than locations, the extra results are simply lost,
The first RETURN value is still taken only as the value of the
procedure call, 5d15d

Var .. procname (exp, €XPs ees ! VAT, VAT, 404) }

Example;

If procedure "proc" ends with the statement
RETURN (a,bsc)
then the statement
qQ - PrOoC(ires):

results in (q,r,s) .. (a,b,C),

page 62

‘ SARC»APP 4»DECe75 20:25 34044
NLS Programmers‘ Guide ARC 34044 Rev, 5 DEC 75
Part Three: Statements

A procedure call may just exist as a statement alone without
returning a value, Not all procedures require parameters, but

the parentheses are mandatory in order to distinguish a

procedyre call from other constructs, 5dl5e

E«.g. 1lda():

1f a block of Instructions are used repeatedly, or are

duplicated in different soCtions of a program, it is often wise

to make them a separate procedure and simply call the procedure

when appropriate, 5415¢

It is considered good style to "modularize" the functions of
your program as much as possible, where each procedure
represents a function which will be performed no matter
which procedure called it, This implies very limited use of
global variables and careful definition of the procedure
interface,

Procedures should not be made to0 lond, nor have complex
nested loops, Often breaking the code into a number of
shorter procedures will make the program clearer and easier
to debug,

A procedure may recuyrsively call itself, Each call will have

lts own uynique set of local variables, This may be useful if a
procedure is bullt to handle a general case as well as a

specific case or number of cases, The general case may call

“that sarme procedure for the specific case after some

manipulations, 5d15¢

A great many procedures are part of the NLS system and are

available to your programs, A list of them is available in the

file <NLS,XPROCS,> or <NLS,SYSGD,>, SYSGD lists linksg to the

source code, S0 that You can eXamine the procedure in detail to

see just what it expects as arguments and what it returns, 5d15h

page 63

; ‘ &ARC»APP 4wDEC»75 20:25 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers® Guide
Part Three: Statements

RETURN Statement : 5d16
This statement causes a procedure to return control to the
procedure which called it, Optionally, it may pass the calling
procedure an arbitrary number of results, The order of
evaluation of results is from left to right, 5di6a
RETURN ;
RETURN (eXDys €XPy» 44e) 7}
E.Q, Sdieb

RETURN (TRUE, a+b)
RETURN (getnmf(stid)) :

GOTO Statement 5417
ANy statement may be labeled: one puts the desired label (a
string of lower case letters and digits) in parentheses and :
followed by a colon at the beginning of a statement, 5d17a
(label): statement ;
E.qg, 5d17b
(there): a . b + ¢

GOTO provides for unconditiona) transfer of contro)l to a new
location, 5d17¢

GOTO label ;

E,q, ' 5d17d
GOTO there 3

GOp0 statements make reading and debuagging your program

difficult and are not congidered good style; they can ysually
be eliminated by use of procedure calls and the iterative

statements, 5d17e
NULL Statement ' 5418
Tne‘NULL statement may be used as a convenience to the
programmer, It does nothing, 5diga
NULL

page 64

o S&ARC#APP 4~DECe75 20325 34044
NLS Programmers’ Guide ARC 34044 Rey, 5 DEC 75
Part Threet Statements

Example;

CASE exp OF
=0, =13 NULL;
ENDCASE Vel

JSYS Call and Assembly Language Statement 5d19

The use of these capabilities should be limited to system
programmers, Assembly language code makes user programs

difficult to understand and to maintain as the executive

underlying NLS changes over time, L10 procedures are avallable

to accomplish most of the tasks one might want to do with a

J5YS, System programmers should refer to the TENEX JSYS manual

for a description ¢of the available JSYS’s, 5d19a

Assembly language statements may be included in the L10 code by
preceding the statement with an exclamatione=point (!), E,q. 5d19p

IPUSH s, ifn H

A TENEX JSyYS may be invoked with a statement similar to the
procedure call statement; the name of the ,JSYS must be preceded
by an exclarationwpoint: 5d19c¢

|JSYSNAME (regl, reg2,,es) 3

The arguments in the parentheses are evaluated and loaded into

the registers before the JSYS is invoked, The first argument

will be put in register one, the second in register two, etc,

Up to eight arguments may be given, ‘ 54194

Like a procedure call, multiple results may be received, They
will be taken in order from the registers, (See <13510,3¢> for
a description of user JSIS calls, 5d19e

Some JSYS return to the assembly=language line of Code (not the
L10 statement) one beyond the normal return location, With
such JSYS, vou may use the SKIP construct to test 1f it has

done so! i 5d19¢
IF SKIP !JSYS(aral,,,,) THEN ,,. }

In vsing SKIP, you may not reCeive multiple results directly,

but must read the registers into globals (see 5¢12), 5d19g

page 65

EARC=APP 4=DEC=75 20:25 34044

ARC 34044 Rev, 5 DEC 75 NLS Programmers *

Guide

Part Three: Expressions

Section 5: Expressions

Introduction
This section will describe the composition of the expressions,
which are an integral part of many of the statements descCribed
in section 4,

Primitives
Primitives are the basic units which are used as the operands
of L10 expressions, There are many types of elements that can
be used as [10 primitives; each type returns a value which is
used in the evaluation of an expression,
Each of the following 1Is a valid primitive:

a constant (see below)

any valid variable name, refering ¢o the congents (of ghe
first word, if not indeXeq) ©of that variable

the contents of a string variable, refered to as #var#

a dollar sign ($) folloyed by a variable name, refering to
the address o¢ the variable

a procedure call which returns at least one Qalue
the first (leftmost) value returned is the value of the
procedure cally other values may be stored 1n other
variables as described in Section 4,

an assignment (see below)

classes of characeers; described in Sectich 1 of Part One

MIN (eXp, eXps ..,) the minimum of the expressions

MAX Cexp.‘eXp';.,.) the maximum of the expressions

TRUE has the value 1

FALSE has the value 0

VALUE (astring) given the address of & string containing a
decimal number. has the value of the number

page 66

Se

Sel

Sela

5e2

S5e2a
S5e2b

o | | &ARC=APP 4-DEC=75 20325 34044
NLS Programmers’ Guide o ARC 34044 Rey, 5 DEC 75
Part Three: Expressions

VALUE (astring, num) given the address of a string
containing a number and the base of that number, has the
value of the number (allows other than base=ten numbers)

READC (see below)

CCPOS (see below)

FIND
used to test‘text patterns and load text pointers for use
in string construction (see Section 6); returns the value
TRUE or FALSE depending on whether or not all the string
tests within it succeed,

POS
POS textpointerl relop textpointer?2
may be used to compare two text pointers, If the POS
construction is not used, only the first words of the
pointers (the stid’s) will be compared, If a pointer is

before another, it is considered less than the other
pointer, : ’

Ee.Q,

POS pty = pt2
POS first‘>m‘last

Constants | S Se2c
A constant may be either a numbet or a literal constant,
There are several ways in whlch numeric values may be
represented, ‘A sequence of digits alone (or followed by a
p) is interpreted as base ten, If followed by a B then it
is interpreted as base eight, A scale factor may be given
after the B for octal numbers or after a D for decimal
numbers, The scale factor is egquivalent to adding that many
zeros to the original number,

Examples:
64 = . 100B = B2

144B = 100 = 1D2

page 67

‘ &ARC=APP 4=-DECw»75 203125 34044
ARC 34044 Rev, 5 DEC 75 - NLS Programmers’ Gulde
Part Three: Expressions

Literals may be used as constants as they are represented
internally by numeric values, The following are valid
literal constants:

~any single character preceded by anh apostrophe
e,q, “a represents the code for 141B,
=the following synonyms for commeonly used characters:

ENDCHR == endcharacter as returned by READC
SP == space

ALT == Tenex’s version of altmode or eScabPe (=33B)
CR == carriage return

LF == line feed

EQL == Tenex EOL character

TAB == tab

BC == backspace character

BW == backspace word

C, == center dot

CA == COmmand Accept

CD == Command Delete

Assignments 5e2d
An assignment can be used as a value in an expression,

The form a . b has the effect of storing b into a and has
the value 0of b as the value of the assignment,

Another form of the asslignment statement is:

This will store b into a, but have the old value of a as
the valuye 0of the assiagnment when used as a primitive in
an expression,
For example,
b~ (&4 = b)
The vajue of b wi]] be put in a, 'The assignment wi)l)
get the old value of a, which Is then put in b, This
transposes the values of a and b, (The parentheses
are not really necessary,)

READC = ENDCHR ‘ 5e2e

page 68

SARC=APP 4~DEC=75 20:25 34044
NLS Programmers® Guyide ARC 34044 Rey, & DEC 175
Part Three?! - Expressions

The primitive READC is a Special construction for reading
characters from NLS statements or strings,

A character is read from the current character position
in the scan direction set by the last CCP0OS statement or
string analysis FIND statement or expression, CCPOS and
FIND are explained in detail in Section 6 of this
document,

Attempts tO read off the end 0f a string in either
direction result in a special v"endcharacter» being
returned and the character position not being moved,
This endcharacter is included in the gset of characters
for which system mneumonics are provided and may be
referenced by the identifier "ENDCHR",

For example, to seqguentially process the characters of
a string:

CCPOS #str;
UNTIL (char .. READC) = ENDCHR DO proeocess(char):

(Note: READC may also be used as a statement if it is
desired to read and simply discard a character),

CCras ‘ 5e2f

when used as a primitive, CCPOS has as its value the index
of the character to the right of the current character
position, If str = nglarp®, then after CCPOS #strx, the
value of CCP0OS is 1 and after CCprOS SE(#str#) the value of
CCP0S is 6 (one greater than the length of the string).

CCPOS is more commonly used as a statement to set the
current character positjon for use jn text pattern matChing.
This is discussed in detail in section 6,

cCcPOS may be useful as an index to sequentially process the

first n characters of a string (assumed to have at least n
characters),

page 69

\ | SARC=APP 4=DEC=75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Guide
' Part Threet Expressions

Example:
CCPOS SF(#str); ‘ ,
%$CCPOS now has the index value of one, the front of
the string%
UNTIL CCPOS > n DO process(READC):
$REApDC reads the next character and increments
CCPOS%
‘perators S5e3
Primitives may be combined with operators to form expressions,
Four types of operators will be described here: arithmetic,
relational, interval, and logical, 5e3a
Arithmetic Operators 5e3b
+ (in front of a number) == positive value
= (in front of a number) == negative valye
+ == addition
- ww gubtraction
== multiplication
/ == integer division (remainder not saved)
MOD == a MOD b gives the remainder of a / b

.V == (OR) a ,V b => bit pattern which has 1°s where either
a or b contains 1, 0 elsewhere

+% == (XOR) a ,X b => pit pattern which has 1’s where either
a holgs 1 and b contains 0, or a Contains 0 and b contains
1, 0 elsewhere

A == (AND) a ,A b %> bit pattern which has 1’s where both a
and b contain 1, 0 elsewhere '

Relational Cperators 5e3c
A relational operator is used in an expression to compare
one quantity with another, The expression is evaluated for

a logical value, Tf true, its value is 13 if false, its
value is 0,

page 70

NLS Programmers® Gylde

Part Three!

Operator

LB b A L & J

=

Expressions

Meaning

equal to

not egual to
less than
less than or
equal to
greater than

v Vv A A=
u

"

equal to

greater than or

Exagmple

- e o oo

441 = 342
648
6<8

B<=6
3>8

A>=6

NOT <othererelational=operator>

Interval Operators

6 NOT > 8

§&ARC=APP 4=DEC»75 20325

ARC 34044 Rey, 5 DEC 75

(TRUE, =1)
(TRUE, =1)
(TRUE, =1)

(FALSE, =0)
(FALSE, =0)

(TRUE, =1)
(TRUE, =1)

5e3d

The interval operators permit one to check whether the valuye
of a primitive falls in or out of 3 particular interval,

IN (primitive, primitive)

IN (primitive, primitive)

The value is tested to see yhether or not it lies yithin a

partjcular jnterval,
"open" or "closed",

Each side of the interval may be
Thus the values which determine the

boundaries may be included in the interval (by using a
square bracket) or excluded (by using parentheses),

Example:
x IN (1,100)

is8 the same as

(x >=1) AND (x < 100)

page 71

34044

&ARC=APP 4=DEC=75 20325 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers” Guyide
Part Threet Expressions

Logical Operators 5e3e

Every numeric value also has a logical valuye, A numeric
value not equal to zero has a logical value of TRUE; a
numeric value egual) to zero has a logical value of FALSE,

NDR
a ORp = TRUE. if a3 = TRUE or if b = TRUE
= FALSE if a = FALSE and if b = FALSE
AND
a AND b 5 TRUE 1f a = TRUE and if b = TRUE
= FALSE 1f a = FALSE or if b = FALSE
NOT
NOT 5§ = TRUE 4if a = FALSE
= FALSE if a3 = TRUE
Expressions 5e4

Introduction " Se4a

AD expression is any constant, variable, speclal expression
form, or combination of these joined by operators and
parentheses as necessary to denote the oOrder in which
operations are to be performed,

Examples of assigning an expression to a variablet

var .. 03

var . var + 2 ;

var .. PgS ptrl >= ptr2 3

var - (a > b) gR (a IN [c, 4]) s

Liberal use of parentheses is highly recommended,
Special L10 expressions are?

» the FIND expression which is used for string
manjpulation, and

= the conditional IF and CASE expressions which may be

used to give alternative values to expressions depending
on tests made in the expressions,

page 72

| e &ARC=APP 4=DEC=75 20325 34044
NLS Programmers’ Gyide ARC 34044 Rey, B DEC 78
Part Three: Expressions ' .

Expressions are used Where the syntax requires a value,
while certain of these forms are similar syntaectjcally to
L10 statements, when used as an expression they always have
values (see below),

Order of QOperator Execution=~ Binding Precedence 5e4b
The order of performing individual operations within an
equatjon is determined by the hierarchy of operator
execution (or binding precedence) and the use of
parentheses,

Operations Of the same helrarchy are performed from left to
right in an expression, Operations in parentheses are
performed before operations not in parentheses,

The order of execution of operators (from first to last) is
as follows:

unary =, unary +
"
VooWX
*, /, MOD
, -
relational tests (e,g.s >=, <=, >, <, =, #, IN, OUT)
NOT relational tests (e,g,, NOT >)
NOT | | |
AND
OR
Conditional Expressions 5e4c
The two‘conditional constructs (IF and CASE) Can be used as
expressions as well as statements, As expressions, they
must return a value,
IF Expressions

IF testexp THEN exptl ELSE exp?2

page 73

» SARC=APP 4=DECe75 20125
ARC 34044 Rey, 5 DEC 75 NLS Programmers’ Guide

34044

Part Three: Expressions

testexp is tested for its logical valuye, If testexp is
TRUE then expl will be evaluated, If it is FALSE, then
exp?2 is evaluated,

Therefore, the result of this entire expression is EITHER
the result of expl or exp?2,

Example?

Y o IF x INI1,3] THEN X ELSE 4;
$if x =1, 2, or 3, then v.x3 otherwise y.4%

CASE Expression

page 74

This form is similar to the above except that it causes
any one of a series of expressions to be evaluated and
used as the result of the entire expression,

CASE testexp OF
relop exp i exp
relop exp : exp
relop exp : exp

]

.
ENDCASE exp

-e

LR]

where relop = any relaﬁianal or interval operator (>=,
<, ®, IN, etc, See above (5e3c) and (5e4d)

In the above, the testexp iIs evalyated and ysed with the
operator relops and their respective exps to test for a
value of TRUE or FALSE, If TRUE in any 1nstance, the
companion expression to the right of the colon is
executed and taken to be the value of the whole
expression, A value of FALSE for all tests causes the
next relop in the CASE expression to be tested against
the testexp, 1If all relops are FALSE, the ENDCASE
expression is taken to be the value of the whole
expression, : ‘

Note that ENDCASE cannot be null; it must have a value,
As with the CASE statement, any number of cases may be

specified, and each case may {nclude more than one relop
and expression, separated by commas,

: &ARCwAPP 4~DEC=75 20325 34044
NLS Programmers‘ Guide , ‘ ARC 34044 Rev, 5 DEC 75
Part Three: Expressions ‘ ,

Example:

Y .. CASE x QF
<3: X+l
=3, =421 x+2:
=52 X2
ENDCASE x#27%

valuye of X Valye of vy

LX A X B L 8 % 2 3 X W [T L 3 L X 2 %
2 3
3 5
4 6
5 5
6 12
String Expressions S5edd

Li0 also provides several expression forms which are used
for string manfpulation and evajluation, These are discussed
in section 6 of this document, When using string
manipuylation statement forms as expressions, parentheses may
be necessary to prevent ambiguities, '

page 7%

ARC 34044

&ARC=APP 4-DECe»75 203125 34044
Rev, 5 DEC 75 ~ NLS Programmers’ Guide
Part Three: String Test and Manipulation

Section 6: string Test and Manipulation

Introduction

This section describes statements which allow complex string
analysis and construction, The three basic elements of string
manipulation discussed here are the Current Character Position
(CCPCS) and text pointers which allow the user to delimit
substrings within a string (or statement), patterns that cause
the system to search the string for specific occurrences of
text and set up pointers to various textual elements, and
actual string construction,

current character Position (cCPOS)

The Current Character Posjtion is similar to the TNLS CM
(Control Marker) in that it speCifies the location in the
string at which subsequent operations are to begin, all L10
string tests start their search from the Current Ccharacter
position, In Content Analyzer programs, it is initialized to
the BEGINNING OF EACH NEW STATEMENT, For each new statement,
the scan direction is initialized to LEFT T0 RIGHT, It 1is
moved through the statement or through strings by FIND
expressions, It may be set to a particular position in a
statement or string by the L10 statement:

CCPOS pos

pos 1Is a poesition in a statement or string that may be
expressed as any of the following:

A previously declared and set text pointer,

1f a text pointer is given after CCPOS, then the
character position is set teo that location, A text
pointer points between two characters in a string,

e,q, CCPOS ptl ;

string Front == 1left of the first character

page 76

SF(stspec)

when SF is specitied, CCpOs will be set before the first
character of the statement or string varlable specified
by stspec,

5¢f

S5f1

5fia

5£2

5f2a

5£2b

| | &ARC=APP 4«DEC=75 203125 34044
NLS Programmers’ Guide | ARC 34044 Rey, 5 DEC 75
Part Threet String Test and Manjipulation

stspec s a string specification that may be expressed as

» an stid (e,q9, the first computer word of a
previously declared text pointer), or

= a previously declared string nare enclosed in
asterisks,

Examples:

CCPOS SF(pt1l) _

ptl is a text pointers
CCPOS SF(stidqd) ;

gstid is an stidg
CCPOS SF(#str#)

gstr 1s a string%

String End == right of the last character
SE(stspecC)
when SE is specified scanning will take place from right

to left, and CCPOS will be set after the last character
of the statement or string varlable specified by stspec,

A string (#stringname%) is given after CCP0S, The position
is moved to the beginning of that string,

Indexing the stringname (by specifying (exp]) simply
specifjes a partjcular posjtion within tne string, Tnus
#str#[3) puts the Current Character Position between the
second and third characters of the string "str", 1If the
scan direction is left to right, then the third character
will be read next, If the direction is right to letft,
then the second will be read next,

E«Q,
CCPOS #strx[3)]
If no indexing is given, then the position is set to the

left of the first character in the string, This is
eguivalent to an index of 1,

Eﬂgl
CCPOS #str+

page 77

&ARC=APP 4~DECw75 20:25 34044

ARC 34044 Rev, 5 DEC 75 NLS Programnmers’

Gulde

Part Three: String Test and Manipulation

means the same as
CCPOS SKF(#strx);

Setting the current character position with the CCPOS statement
also gets the scan direction to forward (left~to=right), except
if the SE construet is used,

FIND Statement

The FIND statement specifies a string pattern to be tested
against a statement or string variable, and text pointers to be
manjpulated and set, starting from the Current Character
Position, 1If the test succeeds the character position is moved
past the last character read, If the test falils the character
position is left at the position prior to the FIND statement,
The values of text pointers set in the statement prior to the
failing elerent will remain as set; others of course will not
be changed,

FIND pattern ;
FINDs may be used as expressions as well as freewstanding
elements, If used as an expression, for example in IF
statements, it has the value TRUE if all pattern elements

within it are true and the value FALSE if any one of the
elements is false,

E,qg,
IF FIND pattern THEN ,,,
It is good practice to use FIND as an expression with the
appropriate error conditions if the FIND fails, If the FIND
falls, text pointers may not be set as expected,
FIND Patterns
A string pattern may be any valid combination of the following

logjca) operators, testing arguments, and other non=testing
parameters (note the {dentity with Content Analyzer Patterns):

page 78

5¢2¢

5€£3

5f3a

5£3b

5f3c

5f£3d

5f£4

5f4a

, &ARC=APP 4~DEC»75 20325 34044
NLS Programmers” Gulde , ; ARC 34044 Rey, 5 DEC 75
Part Three: String Test ang Manipulation

Pattern Matching Argumentse= | 5f4p
(each of these can be TRUE or FAbSE)
string constant, e,g, "ABC"
or any character, preceded by ah apostrophy

It should be noted that 1f the scan direction is set
right~to=left the string constant pattern should be
reversed, In the above example, one would have to
search for "CBAv,

Any of the system defined mnemonics, as described in
the last section (5e2c), such as "SP" or "CR", are
also valid,

character class

look for a character of a specific class; 1f found, =
TRUE, otherwise FALSF,

Character classes?

CH == any character

L == lowercase or uppercase letter
UL == yppercase letter

LL == lowercase letter

D == digit

LD == lowercase or uppercase letter or digit
NLD == not a letter or digit

ULD == uppercase letter or digit
LLD == lowercase letter or digit
PT == printing character

NP == nonprinting character

Example:
char = LD

is TRUE if the variable char contains a value
which is a letter or a digit,

(elements)

look for an occurrence o0f the pattern specified by the
elements, If found, = TRUE, otherwise FALSE, ‘
Elements may be any pattern; the parentheses serve to

page 79

' ~ LARC=APP 4=»DEC=75 20325 34044
ARC 34044 Rev, 5 DEC 75 ~ NLS Programmers’ Guide
Part Three: String Test and Manipulation

group the elements so as to be treated as a single
element in any of the following elements,

=element

TRUE only if the string constant or character class
element following the dash does not occur,

NOT element

TRUE 6nly 1f the element or group of elements
following the NOT does not occur,

{elements])

TRUE if the pattern specified by the elements can bhe
found anywhere in the remainder of the string,
elements may be any pattern; the squarebrackets also
group the elements s0 as to be treated as a single
element, It first searches from current position, 1If
the search failed, then the current position is
incremented by one and the pattern is tried again,
Incrementing and searching continues until the end of
the string, The value of the search is FALSE if the
testing string entity is not matched before the end of
the string is reached,

NUM element

find (eXxactly) the specified numper of occurrences of
the element,

E'QQQ
3(LD) means three letters or digits
NUM1 ¢ NUM2 element

Tests for a range of occurrences of the element
specified, If the element is found at least NUM1
times and at most NUM2 times, the value of the test is
TRUE,

Either numper is optional, The default value for
NUM1 is zero, The defanlt value gor NUM2 is 10000,
Thus a construction of the form "s3(CH)" would
search for any number 0f characters (including
zero) up to and including three,

page 80

Part Threet

ID
ID

FT

R | &ARC=APP 4=DEC=75 20125
NLS Programmers' Guide - ARC 34044 Rev, 5 DEC 75

string Test and Manipulation

Examples:
284(UL) =~ from two to four upper=case letters
'$10(SP) == up to ten‘spaces ‘
1$(*,) == one or more periods

= yser=ident
t user-idant

if the string being tested is the text of an NLS
statement then ident of the user who Created or last
edited the statement is tested by this construction;
1f CCPDS is in a string, you will get the error
"string treated as statement®

var

TRUE if the variable holds a value of TRUE (non=zero),

SINCE datim

if the string being tested is the text of an NLS

- statement, this test is TRUE if the statement was

created or modified after the date andg time (datim,
see below) specified

BEFORE datim

it the string being tasted is ‘the - text of an NLS

statement, this test is TRUE {f the statement was

created or modified before the date and time (datinm,

see b@low) specified

34044

page 81

&ARC=APP 4=DEC=75 20:25 34044

ARC 34044 Rev, 5 DEC 75 ' NLS Programmers¢ Guide

Part Three: String Test and Manipulation

Acceptable dates and times follow the forms permitted
by the TENEX system’s IDTIM JSYS described in detail
in the TENEX JSYS manual, It accepts "most any
reasonable date and time syntax,"

Examples of valid dates:

17=APR=70
APR=17=70

APR 17 70

17 APRIL 70
17/5/71970
5/17/70

APRIL 17, 19790

Examples of valid times (zero assumed if time left
out):

1312213

1234

1234:56

1356AM

1:56=EST

1200N0OON

16130 (4130 PM)

12:00:00AM (midnight)
11:59:59AM=EST (late morning)
12:00:01AM (early morning)

Examples:

BEFORE (MAR 19, 73 16149)
SINCE (25~JUL=73 2130:00)

These may not appear in Content Anglysis patte&ns. but are
valjd elements jin FIND statements {n any program: |

baqe 82

#stringname#
the conﬁents‘of the string variable

BETWEEN pos pos (element)
Search limited to between positiong specified, pos‘is
a previously set text pointer; the two must be in the

same statement or string, Scan character position is
set to first position before the pattern is tested

&ARC=APP 4=DEC=75 20125 34044
NLLS Programmers’ Gyide ARC 34044 Revy, 5 DEC 75

Part Three: String Test and Manipulation

(This is not an unanchored scan unless sguare brackets
are used within the parentheses,).,

EeQ,
BETWEEN pt1 pt2 (2D [,] $NP)
Logical Operators==

These combine and delimit groups of patterns, Each compound
group Is congidered to be a single pattern with the value
TRUE or FALSE, The character position will be reset to its
position before encountering the group before a new group is
tested, Any text pointers set within a test pattern before
it fails will retain thelr new values, (See examples below,)

/
AND
OR

These logical concatenators bind in the order in which
they are listed, 1I,e,

a / b AND ¢
means the same as
(a / b) AND ¢
Cther Elementsmw
These do not involve tests; rather, they involve some
executjion action, They are always TRUE for the purposes of
pattern ratching tests,

These may appear in simple Content Analysis Patterns:

<
set scan direction to the left
In this case, care should be taken to specify
patterns in reverse, that is in the order which the
computer will scan the text,
>
set scan direction to the right
TRUE

5£4c

5f4d

page 83

- §ARC=APP 4=DEC=75 20225 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers® Guide
Part Threet String Test and ganipulation'

has no effect; it is generally used at the end Of OR
when a value of TRUE is desired even if all tests
fall,

ENDCHR

Attempts to read 0ff the end of a string in either
directjon result in a special "endcharacter" being
returned and the character position 1s not moved,

This endcharacter is included in the set of characters
for which system mneuymonics are provided and may be
referenced by the identifier "ENDCHR",

These may not appear in simple Content Analysis Patterns,
but may in FIND statements:

pos

pos Is a previously set text pointer, or an SE(pos) or
SF(pos) construction, Set current character position
to this position, 1If the SE pointer is used, set scan
direction from right to left, If the SF pointer is
used, set scan direction from left to right,

E.q,

FIND x; %sets CCPOS to position of previously set
text pointer x%

store current scan position into the textpointer
specified by the identifier

A5l
b

- [NUM] ID

pack Up the specified text pointer py the specified
nurber (NUM) of characters, Defau)t vajue for NUM s
one, Backup is in the opposite direction of the
current scan direction,

FS var
FR var

FS will set the variable to TRUE (1), FR will reset
the varjable to FALSE (0),

page 84

SARC=APP 4=DEC~75 203125 34044
NLS Programmers’ Gyide ' ARC 34044 Rey., 5 DEC 75
Part Threet String Test angd Manipulation

string Construction 5¢5
One may modify an NLS statement Or a string with the statement: 5f5a
ST pos - stringlist i

The whole statement or string in which pos resides will
be replaced by the string list,

ST pos pos .. stringlist 3

The part of the stztement or string from the first pos to
the second pos will be replaceygq by the string list,

"posg" may be a previously set text pointer or the
sF(pos)/SE(pos) construction,

There are two additional ways of modifyving the contents of a
string variable: 5£5b

ST #stringname#(exp TO exp] -~ stringlist
means the same as
#stringnamex[exp TO exp] . stringlist ;
The string from the first position to the second position
will be replaced by the string list, The
square=bracketed range Is entirely optional; 1f it is
left off, the whole string will be replaced,
Note that the "ST" is optional when assigning a
stringlist to the contents of a string variable, The
statement then resembles any simple assignment statement,
1,e, |
#stringname# _ stringlist ;
The string 1ist (stringlist) may be any series of string
designators, separated by commas, The string designators may
be any of the following: ‘ 5£5¢C
| the word NULL
represents a zero length (empty) string
string constant, e,g, "ABC" or *w

part of any string or statement, denoted either by

page 85

&ARC=APP 4~DEC=75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guide
Part Three: String Test and Manipulation

two text pointers previously set in either a statement or
a string

pPos pPoOS
a string name in asterisks, refering to the whole string
#strinaname#

‘a string name in asterisks followed by an index, refering
to a character in the string

s#stringnamex[exp)
(The index of the first character is one,)

a string name in asterisks followed by two indices,
refering to a substring of the string

#stringname#[exp TO exp]
A construction of the form #strx[i TO j) refers to
the substring starting with the ith Character in
the string up and including the jth character,
Examples:

»str#[7 TO 10] is the four character substring
starting with the 7th character of str,

#str*{i TO str,L) is the string str without the
first j=1 cpharacters, (i is a declared
variable,) '
+ substring
substring capitalized
= substring
substring in lower case
exp
value of a general L10 expression taken as a character;
i,e,, the character with the ASCII code value (see chart

at end of document) equivalent to the value of the
expression

page 86

' . SARC«APP 4=DEC=75 20125 34044
NLS Programmers’ Guide :) ; ARC 34044 Rev, 5 DEC 75
Part Three: §String Test and Manlpulation

STRING (expl, exp2);

gives a string which represents the value of the
expression expl as a signed decimal number, If the
second expression is present, a number of that base is
produced instead of a decimal number,

Esd,
STRING (3#2) is the same as the string "6"
STR?&G (14,8) is the same as the string "te6e"
Examples? 5£54d

ST pl p2 .. *string#;
does the same as
ST pl .. SF(p1) pl, #strings, p2 SE(p2):

assuming pl and p2 have been set somewhere in the same
statement, The latter reads "replace the statement
holding p1 with the text from the beginning of the
statement to pl, the contents of string, then the text
from p2 to the end of the statement,"

#st¥flow TO high) _ "string";
does the same as ‘ ‘
“#stx . %ste(1 TO lowei}, "stringn, xst#(high+1 TO st,L]);

assumning low and high are declared simple variab;es;
Examples | 5£6

Let a "word" be defined as an arbitrary number of letters and

digits, The text pointer "t" is set before or after some

character in the word, The two statements in this example

delete the word which holds the text pointer "t", and i{if there

1s a space on the right of the word, it is also deleted,

Otherwise, if there is space on the left 0of the word it is

deleted, ‘ 5f6a

The text pointers ptri and ptr2 are used to delimit the left
and right respectively of the string to be deleted, S£6b

IF (FIND t < $LD “ptri > $LD (SP "ptr2 / “ptr2 ptrt < (SP "ptri

/ TRUE))) THEN
ST ptri ptr2 .. NULLj; 5£6¢C

page 87

‘ S T &ARCwAPP 4=DEC=75 20:25 34044
ARC 34044 Rev, 5 DEC 75 . 'NLS Programmers’ Guide
‘ ‘ Part Three: String Test and Manipulation

The reader should work through this example until it is clear
that it really behaves as advertised, 5£6d

More Than One change per Statement | 5£7

The second word of a text pointer, the character count, stays

the same until the text pointer is again set to some other

position (as does the first word), even though the statement

has been edited, 1If, for example, you have the statement 5f7a

abcdefq
/\

and {f Yyou have set a pointer between the "d" and the "e', {t
will always point between the fourth and fifth characters in
the statement; the second word of the text pointer holds the
number 5, If you then delete the character "a", your pointer
will be between the "e" and the "f", 5f£7b

bcdefqg
/N

For this reason, you probably want to do a serjes of edits
beginning with the last one in the statement and working

backwards, 5¢£7¢c
Text Pointer comparisons ' 5¢8
This maVy pe usad tb campare‘two text pointers, ‘ 5£8a
POS ptl = pt2;
¥
>
<
-3
<z

ptl and pt2 are text pointers,

NOT may precede any of the relational operators, If the
pointers refer to gifferent stanaments then all relations
between them are FALSE except "not egual" which is written ¢
or NOT®, If the pointers refer to the same statement, then
the truth of the relation is decided on the basis of their
location within the statement,

A pointer closer to the front of the statement is "less
than" a pointer closer to the end,

page 88

| &ARC=APP 4=DEC=75 20325 34044
NLS Programmers’ Guide ARC 34044 Rey, 5 DEC 75
Part Threet Invocation of User Fllters ‘

Section 7: Invocation of User Filters 5q

Introduction 5ag1

The Ccontent Analyzer filters described in this document may be
imposed through the NLS PROGRAMS subsystem, 5gia
Userwattachable subsystems may be written for more complex

tasks, This type of user program and NLS procedures which

may be accessed by them will be discussed in Part Four,

with such a program, however, the user will still make use

of the commands in the NLS PROGRAMS subsystem,

This section describes NLS commands which are used to compile,

institute and execute uyser programs and filters, 5glb

Compilationwe

Is the process by which a set of instructions in a
program 1s translated from the [10 language written in an

NLS source file into object code, which the computer can
use to eXecute those instructions,

Loadingmm=

is the process which copies the ¢cmp11ed 1nstru¢tions
into the userwprograms buffer,

Institutionm=

is the process by whicn a compiled aud loaded Content
Analyzer program {s desjgnated as the current Content
Analyzer filter,

This section additionally presents examples of the use of the
L10 programming language, They do not make use of any

constructions nat explained so far in this manual, 5glc

Programs Subsystem 592

Introduction 5g2a
The PROGRAMS subsystem provides several facilities for the

processing of user written programs and filters, It {s
entered by using the NLS command:?

Goto Programs OK

page 89

_ ' &ARC=APP 4#DEC»75 20225 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Guide
Part Three: 1Invocation of uUser Filters

This subsystem enables the user to compile L10 user programs
as well as Content Analyzer patterns, control how these are
arranged internally for different uses, define how programs
are used, and to see the status of user programs,
PROGRAMS subsystem commands 592b

After entering the PROUOGRAMS subsystem, You may use one of
the following commands:

show status of programs buffer

This command prints out information concerning active

user programs and filters which have been loaded and/or

instituted:
Show Status (of programs buffer) 0K

when this command is exXecuted the system wil) print:
== the names of all the programs in the user programs
buffer, including those generated for simple Content
Analysis patterns, starting with the first program
loaded,
== the remaining free space in the buffer, The buffer
contains the compiled code for all the cuyrrent
compiled programs,
=~ the current Content Analyzer Program or "None®"

== the current user Sequence Generator program or
"None" ‘

== the user Sort Key program or "None"
Compile
L10 Program
This command compjles the program specified,
Compile L10 (user program at) ADDRESS OK

ADDRESS is the address of the first statement of the
progranm, '

This command causes the program specified to be

page 90

&ARC=APP 4~DEC=75 20:25

34044

NLS Programmers*® Guide ‘ ARC 34044 Rev, S DEC 75

part Three!

Invocation of User Fllters

compiled and loaded into the user program buffer in a
single operation, The program is not instituted,

The name of the proagram Is the visible following
the word PROGRAM, ADDRESS points to the PROGRAM
statement,

The program may be instituted by the appropriate
commands,

File

The user prodgram buffer is cleared whenever the uyser
resets or logs out of the system, If you have a long
program which will be used periocdically, you may wish
to save the compfled code in a TENEX file, It can
then be retrieved with the Load Program command, The
command to compile the code into a TENEX file is:

Compile File (at) ADDRESS (using) L10 OK (to file)
FILENAME 0K

The FILENAME must be the same as the program name,
The program will then be compiled and stored in the
TENEX file of the given name (with the extension REL,
unless otherwise specified), The user may then load
it at any time,

Before doing this, the programmer must replace the
word PROGRAM at the head of the program with the worad
FILE,

Content Analyzer Pattern

This command allows the user to specify a Content

Analyzer pattern as a Content Analyzer filter,
Compile Content (analyzer filter) ADDRESS DK

The pattern must begin with the first visible after
the ADDRESS, or at that point you may type it in, It
will read the pattern up to a semicolon, so be sure to
insert a semicolon where you want it to stop,

When this command is executed, the pattern specified
is compiled into the buffer, AND it is automatically
instituted as the Content Analyzer filter,

page 91

ARC 34044

page 92

Rev, 5 DEC 75

‘&ARC#APP 4-DEC=75 20:25
: NLS Programmers® Guide
Part Three: 1Invocation of User Fillters

Procedure

This command compiles a single procedure,
Compile Procedure (at) ADDRESS OK
ADDRESS is the address of the PROCEDURE statement,

This command causes the procedure specified to be
corpiled and loaded into the user program buffer in a
single operation,

If a procedure 0f the same name has already been
loaded (in the user proqrams buffer or in the NLS
system), the old procedure will be replaced, 1I,e,
any calls to that procedure name will invoke the
newly compiled procedyre,

Error Message during Compilation

"SYNTAX ERROR" messadges include the type of error, the
location of the line of assembly code that caused
trouble, and a few characters of the NLS source code,
The last of these characters is the one which caused
the error, 1In some cases this may be misleading, when
a8 previous error (e,g9, a missing quote or percent
sign) caused trouyble later in the compilaticen,

"ext & local" =~ a symbol was used as both an
external or global and a local variable in the
file, If a variable is not declared in the
program, the compiler assumes it is a system
EXTERNAL, If it is later used as a LOCAL, an error
will result,

"field too large" == a field may not be defined as
more than 36 bits,

*sides not equal" -+ in a multiple assignment
statement, the sides must have the Same number of
values, e,g, (3,b,C) o (X,Y.2);

"not REF or POINTER" == an ampersand (&) was used
on a3 variable not RpfFed or declared as a PDINTER
(not described in this document),

"8 args max" =~ you may not pass more than eight
arguments in a JSYS call,

34044

SARC=APP 4«DECw75

NLS Programmers’ Guide ARC 34044 Revy,

Part Three?

Invocation of lUser Filters

"SYSTEM ERROR" messaqges also include the type of
errory the location of the line of assembly code tha
caused trouyble, and a few characters of the NLS sour
code,

"EQF READY == the compiler hit the end of the NLS
file before it read a FINISH statement, (This ma
happen if you don’t have viewspecs set to all
lines, all levels,)

"HASH TABLE FULL" == yoU have Used too many Symbo
in the file, Each file js limited to approximate
2000 symbols,

"RACKUP T0O FARY = a symbhol or a literal string
(text within gquotes) has too many characters in i
They are limited to 148 characters,

"SYMBOL TNO LONG" == 35 abhove, a symbol has too
many characters in it,

"INPUT TOD LONG" == as above, a literal string ha
too many characters in it,

“$,8, FULL" =~ as above, a symbol has too many
cnaracters in it,

"1/0 ERROR" == & number has too many digits in it

"LIT TABLE FULL" »= the file has too many liter