
A GUIDE TO THE COMMAND META LANGUAGE AND
THE COMMAND LANGUAGE INTERPRETER

Donald I. Aridrews
Beverly R. Boli

Andrew A. Poggio

January 5, 1977

ARC Catalogue Number 28744

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

TABLE OF CONTENTS

PREFACE
OVERVIEW OF THE CML ..
PROGRAMMER'S GUIDE TO CML

Program Structure ..
Using CML Elements to· Construct a Grammar

CML Examples ..
GRAMMAR COMPILATION AND COMPACTION

Using a Grammar
Compiling a CML File ·
Compacting a CML File

Using Grammars on the PDP-ll

CLI OPERATION .. - .. .
The CML Grammar

CML Grammar Interpretation
CLI User Prompts ...
CLI Recognition Modes
CLI Character Translation

HOW TOOLS INTERFACE TO THE CLI

·
·

Interprocess Communications Mechanisms

Data Representation

Message Format

THE USER PROFILE TOOL

·
·
· '

THE HELP TOOL ..

1

2

3

3

8

20

23

23

23

23

24

25

25

25

25

26

26

27

27

28

28

30

31

Augmentation Research Center page i

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

APPENDIX 1: Frontend Message-Oriented Communication
Format •..............•...........•............... 32

APPENDIX 2: The Stand Alone Frontend .~ .•.••••••••••••••••••• 41

APPENDIX 3: Frontend Data Representations for Message
Communicat ion ••••••• -••••• ~ •• 44

APPENDIX 4: Externally Callable Procedures in the-
Frontend •.••••••••••••••.•.•••••••••••••.••.•••• 53

APPENDIX 5: Parse Functions •••••••••• ~ ••••••••••••••••.••••• 74

APPENDIX 6: CML Syntax .••••••••••••.•••••••••.••••• '......... 90

APPENDIX 7: HELPCODE and HELP Rule s •...••••••••••••••••••••• 96

APPENDIX 8: Standard Control Characters for Standard
Fun c t ion s:0..................... 1 9 1

APPENDIX 9: User Profile Users' Guide ••••••..•••••••••••.•• 103

APPENDIX 19: How to Write a Help Description File •..••••••• 110

RE.FERENCES .• • . • • • • • • • • • • • • . • • • . • . • • • • • . • . • • • • . . • • . • • . . • • • • • .. 125

Augmentation Research Center page ii

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

PREFACE

This Guide is designed for tool builders and tool installers who
wish to use the Command Meta Language (CML) and Command Language
Interpreter (CLI) to develop and implement a Frontend interfage
for their tools. Included is a complete guide to programming in
CML, an explanation of grammar compilation and compaction, a
discussion of eLI operation, a description of the CLI-tool
interface, and guidelines for setting up User Profile and Help
systems. Appendices at the end of the Guide provide detailed
information on these topics.

Before using this Guide we suggest you familiarize yourself with
AN INTRODOCTION TO THE FRONTEND [1].

Augmentation Research Center page 1

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

OVERVIEW OF THE CML

The Command Meta Language (CML), a high level, formal language,
is designed especially for implementing user command languages
for interactive systems. Its flexible and straight-forward
conventions allow the programmer to create a consistent and
coherent user interface across applications programs or "tools".

CML provides the means to easily create, change, and experiment
with the user interface to an interactive tool. Commands
available to the user and the interaction methodology and
techniques used to specify commands are manipulated
independently. Changes in command words, command word structure,
prompts, and noise words are simply made, usually requiring
little more than trivial edits to the CML program.

A CML program is compiled to produce an object code, called a
grammar, which is interpreted by the Command Language Interpreter
(CLI). The CLI provides the user with well-formed commands and
consistent language features for all tools or programs. It is a
command-at-a-time system, in which the tool or program does not
directly interact with the terminal, but rather receives fully
specified commands from the Frontend. Independent of the tool or
program used, the methods are the same for specifying commands
and their arguments. Prompting and error and status conditions
are also presented to the user in the same way, as are the user
aid facilities and methods of requesting help.

The eLI also provides a terminal independent interface to tools.
Because the CLI handles all terminal interaction, it will present
to the tool a small number of virtual terminal classes. Thus
once a tool is developed, little attention need be given to the
type or particular characteristics of the terminal the end user
may choose to employ. For tools that are designed to make
extensive use of display terminals, the CLI presents primitives
for allocating windows on the display and allows the tool to
write, delete,. or move items displayed within the windows.

A CML program describes the command words, noise words, selection
requests, etc. that make up a command. The CLI code interacts
with the user when he enters the subsystem and as he specifies
commands. In the process of interacting with the user, the CML
code may call one or a number of execution procedures which "do
the work." The CLI automatically provides prompting,
questionmark, and <CTRL-S> facilities.

Augmentation Research Center page 2

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

PROGRAMMER'S GUIDE TO. CML"

This section provides a prose description" of CML illustrated with
examples from CML grammars. A formal definition of the CML
syntax is presented in Appendix 6.

Program Structure

The following is a model of a CML program, showing the
relationship of its parts and major conventions. Use this as a
reference as you read through the programmer's guide.

FILE program-identifier
DECLARE VARIABLE

variable, .•• ;
DECLARE GLOBAL

globalvariable, ••. ;
DECLARE CONSTANT

name = 1, ..• ;

% comments %

DECLARE COMMAND WORD
"COMMANDWORD" = 1,
"CW2 n = 5 SELECTOR
= built-in selection
type;

POINT = point parse function TYPEIN
type ADDRESS = built-in selection

DECLARE FUNCTION
execution function, .•. ;

DECLARE PARSEFONCTION
parse function, •.. ;

SUBSYSTEM internal-name KEYWORD "HERALD"
INITIALIZATION

initrule = ••• i
TERMINATION

termrule = ... i
REENTRY

reentrule = .•• j

HELP
helprule = ••• i

command word COMMAND =
"COMMANDWORD"

END.
FINISH

cml el emen ts ••.
xroutin~ (parameter, .•.);
function%
rule = •.• ;

Augmentation Research Center

%call to execution

page 3

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

A CML program begins with a "FILE" statement of the form:

FILE name

where "name" is the identifier (or name) of the program code.
It must be written in lower case letters and numbers, beginning
with a lower case letter. The same identifier must not be used
in the same program for another purpose.

The program ends with the statement:

FINISH

Within the program, there should be a series of declarations
followed by a single subsystem.

All variables used in the program must be declared. Other
values and attributes must also be declared in CML.

Each program represents a subsystem. A subsystem may include
one or more commands and optionally may include rules to be
performed upon entering, reentering, or leaving the
subsystem. A subsystem may also include general rules
defined throughout the subsystem.

Rules are sequences of CML elements that specify the
interaction between the user and the system, call various
kinds of functions, and so on. Rules may be referenced from
within rules or commands. When such a reference is made, it
is as if the CML elements represented by that .rule were
inserted at that point in the rule or command. This allows
the definition of general interactions that may be of use in
a'number of commands or points in a command.

Each of these parts of the CML program will be described
independently. The CML elements that make up rules will also
be described.

Comments may be enclosed in percent signs (%) and inserted
anywhere, in the program that a space is legal. The compiler
will ignore them.

Declarations

Declarations associate attributes and values with identifier
names used in CML programs. Many types of names may be used
in CML programs: variables, parse functions, command words,
Backend functions, and constants.

Augmentation Research Center page 4

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

Subsystems

There is only one subsystem in each CML program (or grammar) •
The subsystem construct brackets a set of rules or commands
(generally a set of related commands that the tool
implementer wants to cluster together). Rules containing the
reserved word COMMAND are linked together by the compiler to
form a command language sybsystem or tool. The subsystem
begins with a statement of the form:

SUBSYSTEM name KEYWORD "NAME"

where name is the internal name of the subsystem (primarily
for debugging purposes) and NAME is the name the user must
specify to access commands in the subsystem as well as the
name that will appear as the subsystem herald. These two
names may be the same, but they must otherwise be unique
identifiers within the subsystem.

A subsystem ends with the statement:

END.

Within the subsystem you may have any number of rules. A
rule, as described below, will be known throughout the
subsystem, but not outside the subsystem.

A rule preceded by the word "COMMAND" will be available as
a command in the subsystem. Commands may not be called as
rules. A sample "COMMAND" rule follows:

COMMAND replace = "REPLACE"
type editentity
<"at") dest DSEL(type)
<"by") source LSEL(type)
CONFIRM -
xreplace (dest, source, FALSE, FALSE);

(The first line may also be written: replace COMMAND =
"REPLACE" .)

This command allows the user to replace items specified
in the rule "editentity" at a point he specifies (using
the DESTINATION SELECTION (DSEL) routine and storing the
value in the variable "dest"), by something he types in
(using the LITERAL SELECTION (LSEL) routine and storing
the value in "source"). After the user confirms his
command, an execution routine named "xreplace" (in the
tool Backend) is called.

Augmentation Research Center page 5

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

A rule preceded by the word "INITIALIZATION" is' executed
whenever the sUbsystem is' entered, for. example,

INITIALIZA~ION example =
procl () ~

A rule precede~ by the word "TERMINATION" is executed
whenever the subsystem is left. A HELP'· rule is executed
when an execution function needs Help from the Frontend to
complete its task. A rule preceded by the word "REENTRY"
is executed whenever the subsystem is reentered. Only one
INITIALIZATION, TERMINATION, HELP, or REENTRY rule is
permitted per sUbsystem (i.e., only one of each kind).
Each of these rules may be called from within another rule.

Rules

A CML rule is a series of elements, each of which represents
one piece of the system action or interaction with the user.
The elements will be described below. Except when preceded
by the word COMMAND, the name of a rule (defined to be the
given series of CML elements) may be used in other rules •.
When the name of a rule appears in another rule, the CML code
which it represents will be executed at that point.

A rule takes the form:

name = elementl element2 element3 ••• elementN ~

where "name·' is any unique name (lowercase letters and
numbers, beginning with a letter).

Three examples of rules follow. The first two rules are used
to define clusters of command words:

editentity = textent / structure~

textent = textl / "TEXT" / "LINK" / "NUMBER":

In the first example the rule named "editentity" is
defined to include either the rule "textent" or
"structure". The second rule defines "text~nt", first by
naming another rule, followed by alternative command
words.

bckrng = var _ xhelpring(param):

In the rule "bckrng" the execution function "xhelpring"
is called and the argument "param" is passed to it. The
value it returns is stored in the variable "var".

Augmentation Research Center page 6

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

Elements are NOT separated by any delimiter character (except
by spaces or the source file structure). The entire rule is
terminated by a semicolon.

Alternative groups of elements are separated by a slash (I)
in the expression. Alternatives typically provide the user a
choice, or provide more than one "path" through a grammar.
Parentheses should be used to group elements, particularly
when alternative logic and nesting of alternatives is
involved, for example:

name = (elementl I element2 element3) element4 ;

This rule may be read as "either element 1 and element 4,
or elements 2, 3, and 4 11

• Note that, by use of
parentheses, an alternative may include more than one
element.

Elements grouped in square brackets are optional. When
command words are placed in square brackets, the user has a
choice of typing the expression(s) within the square
brackets, or the one following it. If the command words in
square brackets are chosen, the user will still have to
confirm the command afterwards. Here is an example:

output COMMAND =
II OUTPUT " <"to">

namefil NULL
type "PRINTER"
[II APPEND" < II to File" >
namfil LSEL (t"OLDFILENAME")
param2 - TRUE]
CONFIRM-
xoutput (type, namfil, WINDOW, param, param2);

In this command the user first specifies "Output Printer";
at that point he has the option to choose either the
command word "Append" (and type in the name of a file), or
to simply confirm the command as it has thus far been
specified. (The remainder of the rule calls the execution
function "xoutput" and passes CML values to it.)

Most CML elements have a value. This value may be assigned
to a CML variable using a left-arrow (_) in the form:

variable element

Augmentation Research Center page 7

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

Names on the left side of an assignment are assumed to be
variables. The variable must have been declared, as .
described below.

Using CML Elements to Construct a Grammar

Writing a CML grammar is simply a process of building up
different kinds of CML elements. User interaction is defined
by the order of the CML elements in a subsystem grammar. This
section presents a complete list of those elements in an order
resembling that in which the grammar writer would be likely to
use them.

Variables

All variables declared in a grammar will be initialized to
NULL when the grammar is entered. There are three variable
domains in CML--local, global, and built-in.

Local Variable

Local variables must be declared in the grammar and are
only meaningful in that grammar. Local variables are
reset to NULL at the end of every command. A local
variable may be declared with the statement:

DECLARE VARIABLE var ;
or

DECLARE var ;

You may declare any number of variables in a single
statement, i.e.:

DECLARE VARIABLE varl, var2, ...
or

DECLARE var 1, var 2, • •. ;

where "var" is any unique name (lowercase letters and
numbers, beginning with a letter). All variables
declared in a grammar will be initialized to NULL when
the grammar is entered.

Global Var iable

Global variables must be declared in the grammar and are
meaningful only for that grammar. They retain their
value until reassigned (i.e., they are not set to NULL at

Augmentation Research Center page 8

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

the end of the command). A global variable is declared
with the following statement:

DECLARE GLOBAL glovarl, glovar2, .
• • • I

where "glovarl" is any unique name (lower case letters
and numbers, beginning with.a letter).

Built-in Variable

Built-in variables exist in the eLI and can be used by
any grammar. They retain their value until reassigned.
They should not be declared. Here is a list of CML
built-in variables and their functions:

DISPLAY--True if the user is at a display terminal.

HALFDUPLEX--True if the user is at a half duplex
terminal.

LINEATATIME--True if the user is at a line-at-a-time
terminal.

TYPEWRITER--True if the user is at a typewriter
terminal.

WINDOW--For a display terminal, holds the location of
the window in which the cursor was placed at the time
of the last Command Accept.

TERMCHAR--Bolds the value of the last character that
terminated the last TYPEIN or the last CONFIRM.

HELPCODE--This variable is given a numerical value by
the externally callable FE function HELP. (See
Appendix 7 for more detailed informaton.)

TERMINATORS--This value is supplied by the grammar.
Any character or characters assigned to this variable
will act as the Command Accept character.

RESOLTl through RESOLT8~-Hold the values of the
corresponding results of the last execution function
called. They retain their value until the command ends
or another execution function is called.

Variable Types

Variables are also classified by types. Any variable type

Augmentation Research Center page 9

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

is legal in any variable domain. The most frequently used
types are described below:

str ing--A str ing of char acter s (or .. text n) •

integer--A number or list of numbers.

null--An empty variable.

Boolean--Allows two variables, true or false.

command word--A'CML command word. (See "Command Words"
below.)

list--Allows a list of values. See below for more
explanation.

For a complete listing of all variable types and a
discussion of their uses, see FRONTEND SYSTEM DOCUMENTATION
[2] •

List Variable

The assignment operator: may be used to append a new
value to a variable instead of the operator which
replaces the current value with a new value. If a variable
previously contained a single value, then a :_ assignment
replaces it by a list containing the old value with the new
value appended to it. If the variable previously contained
a NULL (the value to which all variables are initialized
when the grammar is entered), the list will contain only
the new value appended to the variable. (Any NULL other
than that initially assigned to the variable list will be
added to the list when appended to it.)

Subsequent: assignments to that variable would append the
new value to the list. Likewise, if a variable previously
contained a list, a assignment will append the new value
to the list. Here is an example.

par am : _ par am2 param :_ param3

If the value being appended to the list is itself a list
then the operation is one of concatenating the lists rather
than appending a single list element that is itself a list.
(Additional syntax will be added to allow for this latter
case also.) To reset the list, the variable is assigned a
NULL.

Augmentation Research Center page 10

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

Constants

Declared Constants

Constants hold one value throughout a grammar. A
declared constant must always be an integer value,
assigned in the constant declaration as follows:

DECLARE CONSTANT

name = 1, ... ;

where name may be lower case letters and digits,
beginning with a letter.

Built-in Constants

TRUE, FALSE, NULL, and integers (1, 2, 3, •••) are all
built-in constants. NULL is especially useful for
clearing the value from a variable. TRUE and FALSE are
frequently used as arguments passed to execution
functions. The following uses are typical for built-in
constants.

param _ NULL

xopen(-namfil, TRUE, FALSE, WINDOW

Command Words

A command word is a word specified as part of a command
(e.g., -Insert" or "Word" in the Insert Word command). The
appearance of a command word element in a rule means that the
user must specify that (or an alternative) command word at
that point in the command specification. A declaration may
assign a numeric value to a command word, to be passed to an
execution procedure that needs to know which command word was
chosen by the user.

Declaring Command Words

A command word declaration precedes a list of command word
str ings and indicates that the named command words a·re to
have the specified integer tokens (numeric values) i
optionally they may also be used to collect arguments from
the user. The syntax is as follows:

DECLARE COMMAND WORD "WORDl"=100, "WORD2"=101i

Augmentation Research Center page 11

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

All command words should be declared. You may not use
command words identical to the names of the Backeod
execution or CML files, to the name of the subsystem, nor
to any variable names.

Integer tokens are optional; they may be left out for very
simple uses of command words. The value must be a positive
decimal integer, less than or equal to 127. More than one
command word may have the same value (unless of. course the
Backend procedure must distinguish the user's choice
between the two).

Declaring command words as SELECTORS is described below
under "Selection Routines".

Command Word Recognition

In the CML description, each command word is represented by
its full text. The algorithm used to match a user's typed
input against any list of alternative command words is
known as "recognition." Each individual's command word
recognition mode will determine what characters the user
must type to specify the command word. This is handled
automatically by the CLI.

Command word elements must be upper case words enclosed' in
double-quotes (lflf), for example:

"SUBSTITUTE"

Command words optionally may be followed by one or more
qualifiers that modify the recognition process, separated
by spaces, and enclosed in exclamation points. The
qualifiers are:

L2--second level (when two command words begin with the
same letter, some recognition modes differentiate first
from second level command words, e.g., second level are
preceded by a space. In a grammar a second level command
looks like this:

create COMMAND =
"CREATE"!L2! "FILE"

number--explicit value for the commandword: supercedes
any value assigned by a DECLARE COMMAND WORD:

change COMMAND =
"CHANGE" ! 146! .••

Augmentation Research Center page 12

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

Assigning Command Word Values

Command words have values that may be assigned to CML
variables, enabling the user's choice to be passed to
subsequent routines (e.g., ent ·CHARACTER"). An example
of a rule containing a command word assignment follows:

so r t COMMAND =
.n SORT" ! L2!

type ("BRANCa" / "GROUP" / "PLEX")
dest - OSEL (type)
CONFIRM
xsort (dest, WINOOW) ;

Remember that the variable gets the value of the command
words (i. e., II type" is assigned the val ue of "BRANCa",
"GROUP", or "PLEX"). This value will be assigned as above
even if the command word is followed by other CML elements,
e.g. :

en t (II CHARACTER" par am FALSE
/ "WORD" <"at"> param _ LSEL(i"WORO It

)

'ent' will get the value of the command word CHARACTER or
the value of the command word WORD. The appropriate
actions will happen after the user chooses the command
word.

You may wish to p~ss this value without forcing the user to
type the command word. This value may be assigned by
preceding the command word by a pound-sign (J):

ent _.i"CHARACTER"

The value of "CHARACTER" will be assigned to 'ent' without
forcing the user to type CHARACTER.

Variables as Command Words

A variable whose value is a string or a list of strings may
be used as a command word. The syntax, as it appears in a
rule, is

CW: var

as illustrated in the following example:

tool name (CW
LSEL{t"TEXT"))

tools / OPTION <"tool name:">

Augmentation Research Center page 13

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

If the value is a list, each string in the list acts as an
alternative command word. Thus, in the above example, if

tools ("EDITOR", "COMPILER", "MANAGER")

the command words EDITOR, COMPILER, and MANAGER would be
available as alternatives to the user at the pOint in the
rule in which the variable 'tools' appears.

Feedback

Noise Words

Noise words appear in a command (enclosed in parentheses)
to help users understand the purpose of a command or what
input is expected of them at some point. Any string of
text may be adde.l to the command feedback line by enclosing
the quoted text with angle brackets in a rule:

<"text of noise words")

SHOW () and CLEAR

Used in a rule, SHOW will display the value of a variable
to the user. The variable is placed in parentheses
following SHOW. (See "Presenting Exedution Function
Information to the User", below, for more information on
when to use SHOW.)

The entire command feedback area (in display mode) can be
erased with the CML element CLEAR. The CLEAR function
initializes the command feedback mechanisms and clears the
command-feedback area.

An example of the use of both elements follows.

substl =
CLEAR <"new") SHOW(type) param2 _ LSEL(type)
CLEAR <"for old"> SHOW(type) param3 _ LSEL(type) •••

Control Structures

LOOP

This feature has been included to facilitate grammars where
it is desirable to implement commands that never terminate
(except when the user types the COMMAND DELETE key). The
LOOP construct does not use recursion and therefore does
not allow the user to backup across iteration boundaries.

Augmentation Research Center page 14

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

An EXIT appearing within the expression being iterated will
cause the iteration to terminate and the CML following the
LOOP to be evaluated. The user may, of course, type an
abort key and cause the iteration to be terminated along
with the rest of the command.

Conditionals

Parameters may be tested for TRUEness, FALSEness, NULLness,
or for a binarary relationship with some variable or
integer with the conditionals NIP" and "IF NOT".

One may write "IF NOT var" and "IF var" to test whether or
not a variable is FALSE (or NULL or contains the integer
zero) or TRUE (or contains a non-zero integer or a more
complex data structure) :

(IF param3 / IF NOT param3 substl)

You should use this construction with some care. To use
both constructions to test a variable you must include a
slash between them; otherwise only one test will occur and
anything following that point will not be done. For
example, the following will never display the last set of
noise words, "this is not a di~play", nor will it ever call
xroutine:

disrule =
IF DISPLAY <"this is a display"> IF NOT DISPLAY <"this
is not a display"> xroutine(arg);

If DISPLAY is TRUE the first noise words, "this is a
display", will be displayed and then the IF NOT DISPLAY
will fail causing the rest of the rule to be ignored. If
DISPLAY is FALSE, the IF DISPLAY will fail, and nothing
more will be done. Here is the proper way to write the
rule:

disrule =
(IF DISPLAY <"this is a display"» / (IF NOT DISPLAY
<"this is not a display"» xroutine{arg) i

The assignments var _ FALSE and var _ TRUE are useful here.
Note that a global or built-in variable maintains its
current value until it is replaced by a new assignment.

Selection Routines

Selections are text or addresses pointed out by users on a
display terminal or typed from a keyboard. Three kinds of
selection routines are built into CML. They are Literal

Augmentation Research Center page 15

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

Selection (LSEL), Destination Selection (OSEL), and Source
Selection (SSEL).

Built-in Selections

The Literal Selection accepts a literal typein from the
user as well as text pointed out on a display. It further
allows an address if the user types an OPTION character
fir st.

A Destination Selection allows the user to select one of
several items the tool has presented to him. The user may
select by indicating theitem with a pointing device at a
display terminal, or by typing characters that the tool
will interpret as an address. Take, for example, a tool
designed to manipulate textual or graphical representations
of data stored in a file. A delete command in the tool
would use a DSEL to allow the user to specify which line in
the drawing or which word in the text to delete. Thus,
when the tool puts the display image on the screen, it
would do so using primitives in the Frontend that supply
identifiers for elements of the display. When the user
pOints to an object on the screen the identifier for that
object would return to the tool.

A Source Selection is similar to a Destination Selection
but also allows the user to supply the argument as a
literal typein after typing the OPTION character.

Each of these predefined selection routines prompts the
user and receives the input. The selection routine must be
passed a command word as its argument (character, word,
statement, etc.). The selection routine, together with the
command word argument, enables the eLI to prompt the user
for the appropriate input and pass it to the proper CLI
functions.

If more than one selection is necessary (e.g., to specify
both ends of a string of text), the eLI will prompt for
both automatically. User input will be interpreted
correctly according to the command word passed as the
argument. (For instance, if a single address or location
on a display is input from the user, and the command word
passed is "word", both ends of the word will be found from
the single selection.)

The command word argument is enclosed in double-quotes and
preceded by a pound-sign (#), and is equivalent to the
address of the declared value of that command word:

Augmentation Research Center page 16

DIA SEV ANDY 3-FEB-77 14:32 .28744

A Guide to the CML and CLI

OSEL (' "CHARACTER")

Preceding the command word with a pound sign means that the
user does not have to specify the command word.

Or you may assign the address of the value of a previously
selected command word to a CML variable, then pass the
content of the variable, e.g.:

ent "CHARACTER"
DSEL(ent}

Selection Declarations

The COMMAND WORD declaration allows the specification of
some command words as arguments to LSEL, DSEL, and SSEL.
Three methods of selection are possible: TYPEIN, POINT,
and ADDRESS. For each selection method, the syntax of the
declaration allows the grammar writer to indicate whether
the selection will be performed as one of the built-in
selection types or a selection parse function will be used
to collect it from the user. (Selection parse functions
are described in Appendix 5.)

The built-in selection types are TEXT, CHARACTER, WORD,
VISIBLE, STRING, FILENAME, INTEGER, PASSWORD, NEWFILENAME,
OLDFILENAME, and INVISIBLE.

If the grammar writer wants one built-in selection (and no
selection parse functions) to be performed for each
selecton type, he only needs to specify the built-in as the
SELECTOR. The syntax is of the form:

DECLARE COMMAND WORD
"SLAP" = 5 SELECTOR = BUILT-IN;

where BUILT-IN represents any built-in selection type
(listed above).

If the grammar writer wishes to specify each selection type
independently, the declaration may look like the folowing: -

DECLARE COMMAND WORD

"TEXT" = 27 SELECTOR

POINT = pnttext TYPEIN = TEXT ADDRESS = getaddr;

When TEXT is passed as an argument to a selection

Augmentation Research Center page 17

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

routine, three things can happen depending on the user
input. If the user tries to point to text, the
selection parse function pnttext will be called to
process it. If the user types in the selection, it
will be treated as free text. If he types the address
of some text then the par se :function getaddr will be
called to process it. (If the declaration had
specified that ADDRESS = TEXT then free text would be
collected as the address and it would be marked as an
address string of type 27.)

Execution Functions

Execution functions are arbitrary remote processing functions
in a tool Backend, usually invoked to carry out all or part
of the execution of a command. An execution function may be
called at any point by writing the name of some function,
followed by a list of zero or more CML parameters in
parentheses. For example, notice the last line in the
command rule cited earlier: .

replace COMMAND = "REPLACE"
type editentity
<"at") dest DSEL(type)
<"by"> source LSEL(type)
CONFIRM -
xreplace (dest, source, FALSE, FALSE);

Only eight arguments can be passed from the CML to an
execution function in the tool Backend, and only eight
results can be returned from an execution function. Any
returned results may be stored in CML variables with a ->.
They may be shown to the user, tested, or passed as arguments
to other parse or execution functions. Bere is an example.

xcreate(namfil, WINDOW -> shwrtn, shwstr);

The result returned from the execution routine xcreate will
be stored in variable shwrtn. If two results are returned,
the second return will be stored in shwstr.

All execution functions must be declared. An illustration of
a declaration follows:

DECLARE FUNCTION

xinsert, xreplace, xoutproc;

Presenting Execution Function Information to the User

Augmentation Research Center page 18

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

The built-in routine SHOW may be used to display the
results of an execution function to the user. On a display
terminal, the results are displayed in the command feedback
window. They will remain on the screen only until a new
command is specified. SHOW may be used in several ways,
including SHOW(var) or SHOW(x(args) or SHOW(var
x(args»). The function x in this case returns the results,
the first of which is displayed to the user. The execution
function need not concern itself with how this information
is presented to the user.

SBOWCONFIRM may also be used to indicate that the user must
confirm the fact that he has seen the message before
parsing m~y continue.

The Frontend also makes available an externally callable
function to present status, warning, and error messages to
the user. This may be invoked by using SHOWSTATUS. On a
display terminal the message is displ ayed in the
tty-window, where it will remain even though a new command
may be specified.

An error message resembling that presented by SHOWSTATUS
may be provided by the Backend. When an execution function
issues an ABORT return, it may supply a string that will be
presented to the user as an error message. On a display
terminal the message is presented in the tty-window.

IN LINE/OUT OF LINE Execution Functions

When a remote call is made, a qualifier in square brackets
[] may be used to indicate the name of a rule or to modify
the declared IN LINE/OOT OF LINE attribute of the
procedure. If a rule is named for an IN LINE call it is
assumed to be a HELP rule and will be processed if the
called procedure requests it. If the call .is OUT OF LINE,
however, the specified rule is processed immediately after
issuing the call. See Appendix 7 for a discussion of HELP,
rules.

Results from the called procedure can be assigned to
variables through the use of the "->" construct. Such
results are always stored in RESULTI through RESULT8.
However, these built-in variables are set to NULL at the
end of each command and after issuing each remote call.

Augmentation Research Center page 19

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

Calls to OUT OF LINE Execution Functions

If a function has been declared OUT OF LINE, the~ one may
write a call to x as x[IN LINE] (args) and force the call
to be done IN LINE. Likewise a call to a normally IN
LIN~ function can be made OUT OF LINE by calling y[OUT OF
LINE] (args). This is coveted more fully in Appendix 7.

Parse Functions

Parse functions (PFs) are routines written in a high-level
language that may be invoked from a CML grammar. to perform
user interface operations not supported by CML. They may be
given arguments and return a result that may be referenced in
the grammar, e.g., by assigning it to a CML variable. All
parse functions must be declared as follows.

DECLARE PARSEFUNCTION namel, name2, ••• ;

A parse function acting as a selection function does not have
to be declared as a parse function.

Input Recognizers

CONFIRM

The process of command confirmation is represented in CML
by a built-in function, CONFIRM. It waits for the user to
type a confirmation character. CONFIRM succeeds if COMMAND
ACCEPT or REPEAT is typed.

OPTION

When OPTION precedes one or more elements in a rule, the
user must type the OPTION character to access them, for
example,

name = elementl OPTION element2

ANSWER

ANSWER allows the user to respond yes or no to a question.
It succeeds if the answer is affirmative and fails if it is
not.

Augmentation Research Center page 20

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

CML Examples

Example I

create COMMAND = %creates a new file%
"CREATE"!L2! "FILE"

namfil LSEL(t"NEWFILENAME") CONFIRM
xcreateT namfil, WINDOW -> shwstr);

Example II

load COMMAND =
"LOAD" % loads a new file %

("FILE"
namfil LSEL(1;"OLDFILENAME") CONFIRM
xopen{ namfil, TRUE, FALSE, WINDOW)/

"PROGRAM" % loads a new program %
namfil LSEL(t"OLDFILENAME") CONFIRM
xload(namfil, WINDOW));

Example III

FILE nswlanguage
DECLARE VARIABLE

param2, param3, type, dtype, dest;
DECLARE GLOBAL

vs, param;
DECLARE COMMAND WORD

"SUBSTITUTE" = 123,
"STATEMENT" = 29 SELECTOR = STRING,
"BRANCH" = 26 SELECTOR

POINT = pbranch TYPEIN = TEXT ADDRESS = TEXT,
"PLEX" = 28 SELECTOR

POINT = pplex TYPEIN = TEXT ADDRESS = TEXT,
"GROUP" = 27 SELECTOR

POINT = pgroup TYPEIN = TEXT ADDRESS = TEXT;
DECLARE FUNCTION

xinit, xfterm, xsubstitutei
DECLARE PARSEFUNCTION

festoptelnet, viewspecsi
% COMMON RULES %

textent = textl / TEXT" / "LINK" / "NUMBER";
textl = "CHARACTER" / "WORD" / "LINK" / "NUMBER";
structure = "STATEMENT" / notstatement;
notstatement = "GROUP" / "BRANCH t

• / "PLEX";
SUBSYSTEM base KEYWORD "BASE"

INITIALIZATION
initrule =

Augmentation Research Center page 21

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

IF NOT xinit{) festoptelnet():
TERMINATION

termrule =
xfterm () i

substitute COMMAND =
"SUBSTITUTE" % replaces entities defined in textent ,-

END.
FINISH

vs _ NULL param NULL
type textent
<"in")

[OPTION <"Filtered:"> vs _ viewspecs() 1
dtype structure

<"at"> dest DSEL(dtype)
, collect paIrs of entities of ~ype type %

substl
CONFIRM
xsubstitute{ dest, param, vs);
substl =

CLEAR <"new") SHOW{type) param2 LSEL{type)
CLEAR <"for old"> SHOW (type) param3 _ LsEL(type)
par am: par am2 par am : _ par am3
<"Finished?N) param3 ANSWER
(IF param3 I IF NOT param3 substl);

Augmentation Research Center page 22

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

GRAMMAR COMPILATION AND COMPACTION

Using a Gr aromar

Once a CML grammar is written, it mus.t be compiled and
compacted to transform it into a form that may be used by the
CLI. The process is similar for uSing grammars on both the
PDP~10 and PDP-ll, with differences noted below in "Using
grammars on the PDP-ll " • The following two sections apply
specifically to the PDP-10.

Compiling a CML File

The CML compiler is a TENEX program. To use it, run file
<arcsubsys>cgcml.sav, specifying input and output file names
when requested by the command. The input file should be a text
file and the output will b~ a relocatable binary file. The
output file should have the extension ".cml".

The same compiler may be used from NLS to compile an NLS file.
Compile the CML source file with the Programs subsystem command
Compile File, using <arcsubsys,cgcml,> for the compiler and
specifying ".cml" as the extension of the object file. For
example, an appropriate FILE statement might look as follows:

FILE exec %<arcsubsys,cgcml,> to <mydir,exec.cml,>%

compacting a CML File

The compiled grammar must then be compacted. Before running
the compacter, the parse function data and code files, if
either is needed, must be written and compiled into files with
extensions ".pfd" and ".pfc", respectively. These files are
optional. However, if either one exists and is changed, or if
the grammar is changed, the grammar must be compacted again.
If the grammar is changed, it must be recompiled before it is
recompacted.

To run the compacter from the TENEX EXEC, run file
<arcsusys>cgram.sav. The compacter will ask you for the name
of the grammar to be compacted; you should type it in with no
extension. For the example above, you would type "exec<CR>".
The compacter will look for the grammar file with extension
" . cml n, a par se function data file wi th extension ". pfd n, and a
parse function code file with extension ".pfc" in the connected
direct~ry. Assuming you are connected to directory mydir, the

Augmentation Research Center page 23

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

compacter would look for <mydir>exec.pfd, <mydir>exec.pfc, and
<mydir>exec.cml.

If either parse function file is missing, the compacter will
issue a warning and continue. If the grammar file is missing,
the compacter will issue an error and stop. In general,
warnings issued by the compacter will not affect the compaction
process and may be ignored while errors will stop the compacter
and must be attended to.

If the compaction is successful, the compacter will issue a
"SUCCESSFUL COMPACTION" message. It will then attempt to make
a compacted grammar file with extension ".cgr". If this is
successful, the compacter will issue a "COMPACTED GRAMMAR
FILED" message and stop.

Using Grammars on the PDP-II

The process for transforming the grammar into a form for the
PDP-II is analogous to that for the PDP-I~. The compilation
process is identical. For compaction, <arcsubsys>cgramll
should be used; it expects parse function data and code files
with extensions ".pfdll" and ".pfcll", respectively. If the
compaction is successful, the compacter will produce a file
with the extension ".cgrll".

Augmentation Research Center page 24

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

CLI OPERATION

The CML Gr ammar

A CML grammar is a series of instructions and associated tables
generated by compiling a CML source file with the CML compiler
and compacting the compiler output. -Examples of instructions
are "recognize a command word", "collect a selection", and
"call an execution function". The tables contain command word
strings, execution function names, and the like. The
instructions form a program which the CLI interprets; it is
this process of grammar interpretation that produces the high
quality user interaction for which the CLI is so well known.

CML Grammar Interpretation

CLI grammar interpretation begins at the top level command in
the grammar and is directed by user input and results obtained
from processing instructions. Most typically, the user
specifie~ a command word that directs the CLI to interpret a
particular command out of all those available in the grammar.
The process of grammar interpretation continues until the end
of a command is reached. At this point, the CLI cleans up
after the command and then repeats the interpretation,
beginning again at the top level commands.

CLI User Prompts

User prompts are symbols printed by the CLI at various points
during grammar interpretation. They indicate what the input
the CLI expects from the user. These prompts are currently
used:

C--command word

B--BUG (pointing to something)

T--TYPEIN

A--ADDRESS

OK--COMMAND ACCEPT character <CTRL-D)

OPT--OPTION character <CTRL-U)

Y/N--ANSWER (y = yes/n = no).

Augmentation Research Center page 25

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to "the CML and CLI

Slashes (/) between prompts indicate alternatives. ,or
example, "C/OK" indicates that the user may either type in a
command word or type the COMMAND ACCEPT character.

Other prompts may be generated by parse functions written by
grammar writers.

CLI Recognition Modes

The CLI supports several modes for recogn~z~ng command words
typed by the user. These are described fully in Appendix 9
"User Profile User's Guide" in the section describing the
"Recognition Mode" command.

CLI Character Translation

The CLI allows users to specify that certain characters on her
keyboard be used for certain generic functions. For example,
the default character for the function COMMAND ACCEPT is
<CNTL-D> but a user with no convenient means of typing <CNTL-D>
could specify that some other character serve the same
function. ~his character translation feature is described in
Appendix 9.

Augmentation Research Center page 26

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

HOW TOOLS INTERFACE TO THE CLI

As discussed in AN INTRODUCTION TO THE FRONTEND, the Frontend
uses several interprocess communicaton mechanisms in two modes of
communication. Exactly how the tool interfaces to the Frontend
depends on these factors.

A tool that uses character oriented communication will obtain a
Server Telnet connection by executing a Foreman primitive. (This
may not be necessary in some Foreman implementations.) The tool
can usually treat this connection exactly as a terminal, and in
fact may not be able to tell the difference.

If the tool is run with a transparent grammar it may be written
exactly as if the I/O to the Frontend were I/O to a terminal. A
more sophisticated grammar mayor may not dictate changes in the
tool, depending on how the connection is used (determined by the
grammar-writer/tool-builder). The grammar may be written
enabling it to determine exactly what is sent from the Frontend
to the tool, but it is limited to 7-bit characters. Although the
information coming from the tool to the Frontend is usually
treated as output text to be displayed, the provision is made for
the grammar to capture it and deal with it programatically.

In any event, the tool need not concern itself with the
communication mechanism, but only with Foreman primitives [3J.

The character oriented interface is only intended for pre-NSW
tools that do terminal I/O (unsplit tools). Other tools should
interface to the Frontend in a message oriented mode.

Tools using message oriented communication (unsplit tools) can
make more efficient use of the Frontend'- The grammar collects
complete commands from the user and invokes procedures in the
tool to carry out the commands. Likewise, the tool can invoke
procedures in the Frontend to show results or manipulate the
display. The communication is characterized by "invoke" and
"reply" messages containing structured arguments or result data.

Interprocess Communications Mechanisms

Each communicatons mechanism imposes a data structure and
format on the message contents. The current NSW interprocess
communication mechanism is MSG-3. Other mechanisms are also
described here.

MSG-3. Each MSG-3 to tool interface is host dependent. The
message contents are 8-bit bytes following the message format

Augmentation Research Center page 27

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

and data structure (NSWB8) defined in Appendices 1 and 3. The
tool writer should consult the MSG-3 document for his host.

MSG-l. MSG-l is an early NSW facility that is no longer
supported. A detailed description of its use will not be
presented here.

DPS.' The Distributed Programming System (DPS) is complete in
the sense that it defines the message format and data
representation, as well as the tool to DPS interface and DPS
primitives available to the tool [4].

Stand Alone (TENEX Subsystem). This mechanism allows the
Frontend and the tool to becoma a single fork TENEX subsystem.
The interface is a programming language interface (L10), but
does not require that the tool be programmed in any particular
language. The interface consists basically of a push-jump
(PUSHJ) on register 17 with proper arguments on the stack. The
exact calling sequence and data representation is defined in
Appendix 2.

Data Representation

In all message or iented commun·ication a structured data
representation is assumed. It takes the form of several types
of data elements and lists of those data elements or lists.
The data structure may be arbitrarily deep. The exact bit
configuration is different for different communication
mechanisms, but the types are the same:

INTEGER: a twos complement integer.

INDEX: a non-negative number (smaller than integer, allows
data compression, enforces a range) •

BOOLEAN: TRUE or FALSE value.

BITSTR: a bit string with associated length.

EMPTY: a null data element.

CHARSTR: a character string with associated length.

LIST: a number of these elements with associated length.

See Appendix 3 for detailed definitions of each data
representation.

Augmentation Research Center page 28

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

Message Format

Each message communication has the same basic format, a LIST of
four elements. Those elements identify the purpose of the
message, the transaction identifier (so that replies may
indicate which message they are addressing), and a data element
to contain the data structure being passed. The exact
definition of this list is in Appendix 1.

Tool procedures are invoked from the grammar by making an
execution function call in the grammar. The tool procedures are
developed by the grammar-writer/tool-builder. Typically, a
procedure is designed for each kind of operation the tool
performs for the user. Each invocation from the grammar will
provide arguments that supply parameters and perhaps modifiers
for those operations.

The tool may invoke procedures in the Frontend by sending an
"invoke" message to the Frontend. A complete list of available
procedures, and their arguments and results, is contained in
Appendix 4. These procedures allow the tool to obtain
information about the terminal, show results to the user in a
terminal independent fashion, and if the terminal is an
alphanumeric display terminal, manipulate the display. The
display primitives allow the tool to define windows on the
display and manipulate text within the windows, independent of
the terminal brand.

Augmentation Research Center page 29

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

THE USER PROFILE TOOL

The User Profile tool manipulates a data structure (called the
User Profile) that controls the behavior of the system as the
user sees it. Through commands in the tool the user may adjust
the behaviour of the system to suit his individual preferences.
Note that the User Profile influences only tool independent
attributes and applies therefore to all tools and subsystems. A
complete ·User Profile Osers~ Guide" is available in Appendix 9.

The User Profile can be divided into two major parts: the first
allows the user to tell what tools and subsystems he wants made
available to him; the second allows him to control how he wants
those tools and subsystems to appear. The first category
includes names of programs and tools that he may have made
available to him and some instructions on how he wants to start
his session with the computer. in the "system appearance"
category fall control characters, feedback settings, heralds,
prompts, and recognition modes. (Appendix 8 provides a list of
the default control characters.)

Augmentation Research Center page 30

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

THE HELP TOOL

Help is implemented as a special tool rather than a Frontend
function. When Help is invoked, information about the command
being used is passed to the Help tool; it then takes the user to
~n initial point in the Help description file that describes the
command. If the user is not in the middle of specifying a
~command the tool takes him to appropriate information about the
system he is using, or else he may type in a term {or command
.syntax} and the correct description will be furnished.

:A Help description file contains prose definitions of the tool
commands, explanations of any special characters of the tool, and
a description- of how to use the tool. The tool implementers
write the file based on the grammar syntax, following a set of
conventions listed in Appendix 10.

Augmentation Research Center page 31

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

APPENDIX 1: Frontend Message-Oriented Communication Format

The Frontend message-oriented communication is'based on the
following message formats, depending on the interprocess
communication facility used. The data representation encoding is
specified and defined for each in Appendix 3 "Data
Representations for Message Communication".

MSG-3 Interface (NSW Transaction Protocol)

The content of MSG messages conform to the following structural
outline.

LIST (type , tid, parameter, args)

type: INDEX.

Value of one means invoke an operation.

value of two means that this message is a reply.

value of three means that this message is a response to
an alarm.

Other values may be defined as needed.

tid: INDEX.

This is a transaction identifier.

INDEX to indicate, acknowledgement required if type=l,
or to indicate which invocation request it is
acknowledging if type=2.

If type=l (invoke message) :

tid=0 means no acknowledgement required.

tid NOT=0, acknowledgement requested.

If type=2 (acknowledgement message) :

tid is the tid of the invocation request.

If type=3 (alarm response) :

tid contains the alarm code.

Augmentation Research Center page 32

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

That is, when an operation is invoked the tid specifies
whether a acknowledgement is required or not. If
required, the same tid must be present in the reply.

For response to an alarm, type=3, this is the alarm code
transmitted as an INDEX.

parameter:

if type=l (invoke request):

CHARSTR which is the name of the operation or pr6cedure
to be performed. This string will be interpreted in a
upper/lower case independent manner.

if type=2 (acknowledgement) or type=! (response to
alarm) :

LIST() (i.e. zero length list), to indicate success, or

LIST(errclass, errnumber, errstring) to indicate an
error.

errclass: INDEX.

=1: partial results returned.

This error class is used when several steps are
performed by one operation and some of them fail.

=2: failure, resources unavailable.

=3: failure, user error.

=4: failure, NSW error. Kecoverable.

=5: failure, NSW error. Fatal.

This indicates that the instance of the NSW component
in question is out of business.

errnumber: INDEX.

This is a code for the particular error that ocurred.
When possible, these codes should be uniform across
different implementations of the same NSW component.

Augmentation Research Center page 33

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

errstring: CRARSTR.

This is a human readable character string describing the
error.

args: LIST.

If type=l (invoke operation)

This is a LIST of arguments.

If type=2 (acknowledgement) or type=3 (response to al.arm)

This is a list of results.

The first byte of the message will be the first byte of the
above LIST.

Another way to view these format conventions is shown here:

Request Message

LIST(

type: INDEX [= 1],

transaction-id: INDEX
required %

operation-name: CHARSTR,
performed %

arguments: LIST{ •••)
)

Reply Message

LIST (

type: INDEX r =2 or 3],

transaction-id: INDEX,

% zero if no feply is

% operation to be

errorcode: LIST(errclass, errnumber, errstring) or
LIST ()

results: LIST(•••)

Augmentation Research Center page 34

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

MSG Process Names

MSG process names are transmitted as one unit of type BITSTR.
The MSG documentation specifies that a process name is
composed of several fields (host, incarnation, •••), but this
internal structure is not identified at the NSWB8 protocol
level.

NSW Procedure Names

DPS

In the NSW all externally callable procedures shall be named
such that the first two letters of the procedure name
identify the NSW component of which that procedure is a part.

The two letter codes are:

FE Frontend
FM Foreman
FP File Package
WM Works Manager
WO Works Manager Operator

The format is determined by DPS. See the DPS-10 VERSION 2.5
PROGRAMMR ' S GU IDE [5].

Stand-Alone Frontend (SAFE) Interface

Type of Interface

SAFE interfaces to the Backend through procedure calls.
These calls are dispatched through one of two mechanisms:
SAFE dispatching or Backend dispatching. The choice of
mechanism is up to the Backend writer. (See Appendix 2, "The
Stand Alone Frontend (SAFE)".)

SAFE Dispatching

The simpler of the two mechanisms is SAFE dispatching. With
it, Backend procedures are called directly with the arguments
specified in the grammar and one additional argument. This
additional argument is the address of an Ll0 list that may be
used to return results to the Frontend.

Augmentation Research Center page 35

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

Example

CML function call in grammar:

fun (cmlvarl, cmlvar2)

Corresponding Ll~ procedure call made by SAFE to Backend:

fun(varl, var2, resultlist REF) :

where varl and var2 are copies of the cmlvarl and cmlvar2
and resultlist is empty.

Backend Dispatching

A Backend may need to perform some function each time one of
its procedures is called from SAFE, for example, do argument
conversion or address resolution. SAFE provides for this by
allowing_the Backend to do its o~n procedure calling.

The Backend must supply a dispatcher for this purpose. The·
dispatcher will be called by SAFE whenever the grammar
specifies that a Backend procedure call should be made. Its
arguments will be the address of an L10 string containing the
name of the procedure to be called, the address of an Ll~
list of arguments for the procedure, and the address of an
L10 list in which to place results. The dispatcher is
expected to call the procedure before returning to SAFE.

Example

CML function call in grammar:

fun (var 1, var 2)

Corresponding Ll0 procedure ~all made by SAFE to Backend:

dispatcher ($"fun", $arglist, $resultlist}:

where arglist contains the values of varl and var2 and
resultlist is empty.

Success/Failure Indication and Returnipg Results

SAFE expects the Backend procedure it calls to return as its
primary result TRUE if the call was successful or FALSE if it
was not. This is the case regardless of whether SAFE calls
the specific Backend procedure or it calls a Backend

Augmentation Research Center page 36

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

dispatcher, that is, regardless of whether SAFE dispatching
or Backend dispatching is being used.

If .the Backend call was successful, then results (up to 8)
put into 'resultlist' by the Backend will be assigned to the
corresponding CML built-in variables RESULTI through RESULT8.
If 'resultlist' is empty, then RESULTI through RESULTS are
set to NULL.

If the Backend call was not successful, SAFE expects to find
in 'resultlist' an error number and user-readable string as
the first and second elements, respectively. These will be
shown to the user by SAFE and then the command will be
aborted.

Calling Procedures in SAFE

SAFE provides numerous procedures, including display
procedures, which are callable from the Backend. There are
two mechanisms for calling these procedures. (See Appendix
2, MThe Stand Alone Frontend" for information on how the
Backend obtains the addresses of the relevant SAFE
procedures.)

The simplest mechanism, analogous to SAFE dispatching, is to
make a direct procedure calIon the SAFE. Two procedures are
accessible in this manner (as well as in 'fprocall'):

fshow(

string REF, %string to show user%

boolean %TRUE means confirmation required%)

Returns one result

TRUE if successful call

fshowerror(

string REF, %error string%

boolean %TRUE means confitmation required%)

Returns one result

TROE if successful call

Augmentation Research Center page 37

OIA BEV ANDY 3-FEB-77 14:32 287-44

A Guide to the CML and CLI

The more powerful mechanism allows abitrary results to be
returned by the SAFE procedure. This method requires that
the Backend put all the necessary arguments into one Ll0 list
and provid~ another LIe list for any results that may be
generated. The SAFE procedure is called as follows:

fproccall(

string, %addr of Ll0 string containing proc name%

list,%addr of LIB list of args or 0 if no args%

list) %addr of LIB list to get results%

Returns one result

TRUE if successful call/FALSE otherwise

(the result list will contain the results if any)

Examples

To tell the user that SAFE is a wonderful thing:

fshow($"SAFE is a wonderful thing", FALSE);

To tell the user that the Backend has given up:

fshowerror($"Backend has given up", TRUE);

The second arg TRUE indicates that the user must type
CONFIRM before continuing. This is appropriate only
for critical messages.

To call the SAFE routine that clears a window:

fproccall($"clear-window", $arglist, $resultlist);

where arglist is an Ll0 list containing the arguments
for the clear window procedure, i.e. a window
identifier, and resultlist is an empty Ll0 list.

Provision for Termination

SAFE provides a built-in parse function called 'feterminate'.
When a grammar calls this parse function, SAFE will process
the CML TERMINATION rule fo.r the grammar and then do a HALTF.

Augmentation Research Center page 38

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

Type Conversion.

Before passing arguments to an execution function, SAFE
converts the CML variable values to appropriate LIe values.
In addition, Lla results returned by execution functions are
conversely converted. The following table indicates the
correspondence between CML values and L10.

CML

string

integer

true

false

list

null

command

point

address

word

Lla

address of the string

value of the integer

TRUE

FALSE

address of the LIe list

value of zero

string if integer token is a, else
list(integer token, string)

address of Lla list

address of Lla list

Conventions for Languages Other Than Lla

The following LIe conventions for the PDP-10 are necessary
for anyone NOT using the LIe language when building a stand
alone tool.

LIe Calling Sequence

To call procedure "name" with arguments argl, arg2, •.•
argn:

PUSH· S, argn

PUSH S,arg2

PUSH S,argl

Augmentation Research Center page 39

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

PUSBJ S,name

[subtract n from both halves of 5, or POP n times]

The stack pointer, 5, is register 17. Register 12
contains the first result, registers 1, 2, and 3 contain
results 2, 3, and 4. Success return is indicated by
non-zero register 6, failure by zero in register 6.
Registers 16 and 17 MUST be preserved by routine "name".

To call an LIe procedure, follow this sequence. When
writing a routine to be called by an L10 procedure, it
may be desirable to perform operations such as:

name:

PUSH S,16

MOVE 16,S

% now reference argument n as -n-1 indexed by
register 16 %

% to return %

MOVE 5,16

pop 5,16

POPJ S

Augmenta~ion Research Center page 40

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

APPENDIX 2: The Stand Alone Frontend

Introduction

The purpose of the Stand Alone Frontend (SAFE) is to provide
the Lla programmer (or, with modifications, programmers of
other languages) with a powerful, low-overhead user interface
that resides in the same fork as the execution (Backend)
procedures. This appendix only discusses the LIe version of
SAFE; all references to procedure calls, returns, etc. are
assumed to obey LIe conventions. -

Function of Safe

Execution functions are provided with arguments and called by
the Frontend according to· instructions it reads in the tool
grammar. They may do arbitrary processing and must return a
result indicating success or failure. Other results may be
returned as well.

SAFE also provides procedures callable by the Backend to show
information or error strings to the user, obtain information
from him, etc.

Making a Stand Alone Tool (SAT)

Backend Programming Conven-tions

The Backend must contain a procedure that- this document will
refer to as 'bestart'. In the process of combining SAFE and
the Backend, this routine will be called by SAFE with the
addresses of the externally callable SAFE routines:

'bestart'($fproccall, $fshow, $fshowerror)

'Bestart' must return the address of the Backend's procedure
selector array. Here is the format of the procedure selector
array:

The first element is a count.

The remainder of the array is a series of count pairs.
Each pair consists of the address of a lower case string
containing the name of a procedure as used in the grammar
and the address of the procedure itself. Here is an
example.

Augmen~ation Research Center page 41

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

DECLARE procsel = (3, $"xsearch", $xsearch, $"xsort",
$xsort, $"xinsert" ,. $xinsert) ;

IF the Backend writer chooses to do Backend dispatching,
the array must have a count of one (1) and a single pair
made-up of the address of the string "dispatcher" (a fixed
name) and the address of the dispatcher:

DECLARE procsel = (1, $"dispatcher", $xdispatch);

Otherwise, SAFE will do its own dispatching using the
Backend provided dispatch table.

Making the Backend Save File

SAFE provides a version of TENLDR, SAFELDR, that has the L10
runtime environment preloaded and the address at which the
Backend may start loading (179000B). The programmer runs
this version of SAFELDR and starts loading at or above
(numerically greater than) 170000B. The programmer should
then set the entry vector location to the address of
'bestart'. In a file named BE.SAV he may save whatever
portion of the address space between l70000B and 600000B
(inclusive) he wishes. (Note that using SAFELDR rather than
TENLDR allows the Backend and SAFE to use the same instance
of the L10 runtime environment.)

Combining SAFE and the Backend

To combine SAFE and the BE.SAV file previously made using
SAFELDR, SAFE must be executed. When SAFE is executed (by
typing SAFE.SAV to the EXEC), it will first initialize the
L10 environment and itself; then it will load the appropriate
grammar (BE.CGR in the connected directory), any parse
function data (BE.PFD in the connected directory), and any
parse function code (BE.PFC in the connected directory). All
three of these will be loaded below SAFE-END, i.e., inside of
SAFE.

Next, SAFE will GET BE.SAV (from the connected directory into
its own address space) and do an LIe procedure call to the
entry vector location, i.e., to 'bestart'. 'Bestart' will be
called by SAFE and is expected to follow the conventions
described above.

Upon return from 'bestart', SAFE will do whatever processing
it desires, then set its entry vector location and do a
HALTF. The Backend programmer should then save the entire
address space on whatever file is desired. The entry vector

Augmentation Research Center page 42

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

will be set so that when the file is started, execution will
begin with SAFE processing the CML INITIALIZATION rule for
the tool.

Augmentation Research Center page 43

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

APPENDIX 3: Frontend Data Representations for Message.
Communication

NSWB8 Data Representation (previously PCPB8)

Data Structure Types and Encoding

This is an eight (8) bit byte encoding of a set of basic data
types for use in computer communications protocols. The
first byte of a data structure is a type code: the following
bytes depend on the type code. Type code zero is reserved.
Type code 8 is reserved for possible REPEAT (compression) use
in the future. Type code 1a is reserved for use of EBCDIC
strings, although such strings are not currently transmitted
between hosts. .

EMPTY

TYPE (1 byte) = 1

VALUE (none) empty

BOOLEAN

TYPE (1 byte) = 2

VALUE (1 byte) boolean

FALSE = 0

TRUE = 1

INDEX

TYPE (1 byte) = 3

VALUE (2 byte~) index

The value represents a positive integer in the range 0
through 2**15 - 1 (** denotes exponentiation) .

The most significant byte is first.

Augmentation Research Center page 44

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CMLand CLI

INTEGER

TYPE (1 byte) = 4

VALUE (4 bytes) two's complement integer

The most significant byte is first.

BITSTR

TYPE (1 byte) = 5

COUNT (2 bytes)

VALUE (count bits) left adjus~ed in «count+7)/8) bytes)

CHARSTR

TYPE (1 byte) = 6

COUNT (2 bytes)

VALUE (count bytes) ascii text

LIST

TYPE (1 byte) = 7

COUNT (2 bytes) .

Count Data Structures

PAD

TYPE (1 byte) = 9

VALUE (none)

Any PAD elements should be completely ignored. They
to be counted (for example, as elements of a LIST).
concept of a PAD element has been useful in forming
structures, especially when the structure cannot be
sequen tially.

Data Structure Format

element

Augmentation Research Center

are not
The

data
built

page 45

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

empty * 1 *

1

boolean * 2 * 0 or 1 * 0 for FALSE or 1 for TRUE
* _---* _-_ ... _ *

1 1

._.-_--*--_ ... -_.---*
index * 3 * index * small positive integer

1 2

integer * 4 * integer * two's complement integer
-~~-~-~-----~-*

1 4

bitstr * 5 * count * bits *
------------*------*

1 2 count «(count+7)/8 bytes)

----- -.------* ------*
charstr * 6 * count * text * Network ASCII

------------*------*
1 2 count

------------*------------------* list * 7 * count * count-structures *
------------*--------~---------*

1 2

Examples

Empty

* 1 *

Boolean "TRUE"

----------*
* 2 * 1 *
----------*

Augmentation Research Center page 46

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

Index "7"

• 3 • 0 * 7 *

Integer "-3"-

----------*-----*-----*-----* * 4 * 2SS * 2SS * 2SS * 253 *

Bit string "la0S1ll1l0l9ll"

* 5 * 0 * 14 * 143 * 172 *
---........... ~~ _ ... _----* --------* --~--*

Character string "ABCDE"

----------*-----*-----*-----*-----*-----*-----* * 6 * 0 * 5 * A * B * C * D * E *
----------*-----*-----*-----*-----*-----*-----*

List of a character string "ABC" and a Boolean "FALSE"

* 7 * 0 * 2 * 6 * 9 * 3
----------*-----*-----*-----*----

-*-----*-----*-----*-----*-----*
* A * B * C * 2 * S *

-*-----*-----*-----*-----*-----*
PCPB36 Data Representation

Data Structure Encoding and Format

The data structure consists of 36 bit words. The first word
or two of each data element contains fields that determine
the element type and in some cases, length and/or value.

bits 0-13: unused (zero)

bits 14-17: type

bits 18-20: unused (zero)

Augmentation Research Center page 47

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

bits 21-35: value or COUNT

EMPTY

type = 1

value unused (zero)

element size: 1 word.

BOOLEAN

type = 2

value (bits 21-34 zero)

FALSE=0 bit 35

TRUE =1 bit 35

element-size: 1 word

INDEX

type = 3

value index in bits 21-35

The value represents a positive integer in the range 1
through 2**15 - 1

element size: 1 word

INTEGER

type = 4

value integer in next word, 36 bits

element size: 2 words

BITSTR

type = 5

COUNT in bits' 21-35

value (count bits) left adjusted in ((count+35)/36) words)

Augmentation Research Center page 48

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

element size: 1+«count+35)/36) words

CHARS'l'R

type = 6

COUNT in bits 21-35

value (count 7-bit bytes) ascii text

in next ((count+4)/5) words, 5 bytes per word

element size: 1+ ({count+4)/5) words

LIST'

type = 7

COUNT in bits 21-35

Count Data Structures in following words

element size: 1 + count data structures

PAD

type = 9

value unused (zero)

Any PAD elements should be completely ignored. They are
not to be counted (for example, as elements of a LIST).
The concept of a PAD element has been useful to us in
forming data structures, especially when the structure
cannot be built sequentially. However, we do not expect
the FE to send messages with PADs in them.

L10 Data Representation

Data Structure Encoding and Format

L10 data representation is comparable to PCPB36 but is an
in-memory data structure with memory addresses in it, and it
is not sequential. Typically, the address of a data
structure is passed to a procedure, and that data structure
is an L10 LIST. LIB LIST format is described below. Each
word in the LIST represents a data element, with fields used
as follows:

Augmentation Research Center page 49

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

bits 0-7: maintained by L13 runtime, zero if storage
maintained by program.

bit 7: maintained by L10 runtime, zero if storage maintained
by program.

bit 8: immediate.

bits 9-17: type.

bits 18-35: value.

EMPTY

type = fa

IMMEDIATE = 0

value = 3

INDEX

type = 9

IMMEDIATE = 1

value = index in bits 18-35.

INTEGER

type = 1

IMMEDIATE = 0

value = 36 bit word at address in bits 18-35.

BOOLEAN

type = 17

IMMEDIATE = 1

value in bits 18-35

TRUE = one

FALSE = zero

Augmentation Research Center page 50

CBARSTR

type = 2

IMMEDIATE = S

value = L10 string

BITSTR

type = 4

IMMEDIATE = 0

value = LIB bitstr

LIST

type = 3

IMMEDIATE = 0

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CM~ and CL~

at address in bits 18-35. (See below.)

at address in bits 18-35. (See below.)

value = LIB LIST at address in bits 18-35. (See below.)

LIS Data Element Formats

Ll0 LIST

indirect (normally zero, see below) .

list: max" len icurrent and max number of elements.

[len words, one element per word formatted as above].

[A list of length 1 contains one element at address
list+ll.

Note:

'indirect' is the word at address list-I. Non-zero
here indicates that the list elements do not reside at
list+l etc., but at indirect+l etc. 'indirect' is
actually the address of another Ll0 LIST. The length
at list must be the same ~s the length at indirect.

LIS STRING

string: max"len icurrent and max number of characters.

Augmentation Research Center page 51

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

f(len+4)/5 words with containing len characters,S per
word, 7 bits per character1.

fA string of length 1 contains one character, the most
significant 7 bits at address string+l].

L10 BITSTR

bitstr: len ;bit count in one full word.

[(len+35)/36 words with bits left justified].

(A bitstr of lenth 1 contains one bit, the most
significant bit at address bitstr+l] •

Augmentation Research Center page 52

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

APPENDIX 4: Externally Callable Pro·cedures in the Frontend

. Introduction

This is a description of the externally callable procedures in
the Frontend. Each description includes the argument and·
result da:ta structures, and the function to be performed.
These procedures allow the tool to obtain information from the
Frontend, display information to the user, and otherwise
manipulate the user's terminal.

While procedure names are written in lower case letters in the
appendix, the actual character string containing the procedure
name in the invoke message may be in upper or lower case
characters.

Notation

The procedure name, arguments, and results are presented as

<procedure-name> (<arguments> -> <results>)

where the arguments and results are structured data elements.
Elements enclosed in square brackets [] are optional. The
exact data representation depends on the communication medium
being used--either PCPB36, PCPB8, or Ll0 structure.

The data elements for each procedure are then given a symbolic
name and defined; the data type is also provided:

<element-name>: <type>

<explanation>.

The data types are INTEGER, INDEX, BOOLEAN, CHARSTR, BITSTR,
EMPTY, and LIST. CHARSTR, BITSTR, and LIST have lengths
asociated with them. LIST elements may each be any of these
data elements.

Packages

The procedures are grouped into "packages" or categories as
follows:

tool-package

show, show-error, help.

Augmentation Research Center page 53

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

new-node-profile, new-profile, show, show-error, help.

up-package

new-profile.

dpy-package

get-windows, batch-display-commands, create-window,
delete-window, clear-window, scroll-window,
set-window-attribute, write-st~ing, write-line-segment,
replace-string, delete-string, reposition-st~ing,
set-string-attribute, reposition-line-segment,
delete-line-segment, set-line-segment-attributes,
write-literal. :

Presenting Information to the User: (Normally Done Through CML
Statemen ts)

show (message, confirmflag [, format])

The message is presented to the user. If confirmflag is
TRUE, the user may not continue until he confirms that he saw
the message. In this case, the SHOW procedure does not
return to the caller until the user has confirmed the
message. On display terminals, the message will appear in
the command feedback window.

message: CHARSTR

This may contain formatting characters such as carriage
return <CR> or linefeed <LF>.

confirmflag: BOOLEAN

If TRUE, the user must confirm that he saw the message
before he may continue.

Augmentation Research Center page 54

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

fo rmat : INDEX

This optional argument provides format control as follows:

=1: <CR), <LF) after message.

=2: <CR), <LF) before message.

=3: <CR), <LF) before and after message.

show-status (message, confirmflag)

This procedure is used to present error or warning messages
to the user. Confirmflag is used as in SHOW. On display
terminals, the message will be displayed in the TTY window.

Getting Help from the User

help (helptype, abortmessage, helpmessage [, argl, ••. arg8] -)
helpresul t)

HELP is called by an execution function that needs
information from a user. (For example, the execution
function may have received a mistyped argument from the
user.) The helpmessage is typed to the user. Depending on
helptype, the information goes through several mechanisms.
If the user aborts the help by typing COMMAND DELETE, the
abort message will be presented to the user. If help is
obtained, it will be returned as the result of the call. See

.Appendix 7 for a discussion of HELP rules.

helptype = 1 is for bad argument helVe

The number of the argument is argl, which in this case
must be an INTEGER. If the third argument received by
the execution function is bad, then argl should be 3.
Arg2 through arg8 are not used. The CLI determines where
the argument was collected and collects a replacement,
returning it as helpresult.

helptype = 2 is for executive grammar help.

The executive grammar (the one the user interacts with
when the CLI starts) may have associated with it another
grammar, called a help grammar. In this case, the value
of argl, an INTEGER, is given to the built-in CML
variable HELPCODE. The help grammar determines what kind
of help to get from the user based on HELPCODE and asks

Augmentation Research Center page 55

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

the us~r for it. The HELP obtained, if any, is returned
as helpresult.

helptype = 3 is for tool grammar help.

Each tool grammar may have in it a single rule to be used
as a HELP rule anywhere.within ,the grammar. Argl is used
to set up BELPCODE, as is done with executive grammar
help, and the HELP rule may use it arbitrarily. The HELP
rule must do a RESUME(var} if it obtained help and the
value of var will be returnad as helpresult.

helptype > lae is for execution function-call help.

Each time an execution function is called in a grammar,
the grammar writer may specify that a specific rule is to
be invoked if HELP is called with helptype greater than
190. In this case, BELPCODE is given the value of
helptype and argl through argS, if present, are put into
CML built-ins RESULTI through RESULTS. The HELP rule
should do a RESUME, as in the tool grammar help above,
and the value of the variable will be the result of the
call.

helptype: INDEX

abortmessage, helpmessage: CHARSTR or EMPTY

argl-argS: depends on helptype

helpresult: any type

Getting Terminal Characteristics

get-windows (-> characteristics)

This procedure allows the tool to find out general
information about the terminal class and configuration. The
Frontend knows the terminal brand; the tool need only concern
itself with the general capabilities of the terminal.

characteristics: LIST (terminal-class, default-text-window,
primary-window, mode-window, other-windows)

terminal-class: INDEX

If the terminal-class is less than 3, the display
manipulation procedures may not be used.

Augmentation Research Center page 56

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

=1: line-at-a-time and/or half duplex terminal.

=2: full duplex typewriter terminal.

=3: full duplex display terminal with or without
pointing device.

default-text-window: window-info

This is the simulation-TTY window, which receives all
show-error messages, linking text, and local host
terminal output (if any).

primary-window: window-info

At tool startup time, this is the only existing window
for that tool. All windows that tool wishes to create
must reside within this window. The tool cannot delete
this window.

mode-window: window-info

The mode-window is a small, sequential window of two
lines, with eight characters each. window the tool may
write in to. It is used to show the user information,
most typically various tool operating modes. The tool
may write in the window and clear it, but may not
manipulate it in any other way. There is one such window
for all tools.

other-windows: window-info, window-info •••

'These are windows that have been created by the tool. If
terminal-class is less than 3, or the tool has not
created any windows, these will not be present.

window-info: LIST (owning-window-id, window-id, type,
diag-coords, window-att)

With respect to the coordinate system of the owning
window, diag-coords are upper-left and lower-right. In
the case of the graphics and default text windows, the
coordinates are with respect to the virtual coordinate
system of the terminal (or combination of physical
terminals). In any type of window, the coordinates (0,0)
represent the lowest left-most corner of the window.

See definitions below under "create-window".

Augmentation Research Center page 57

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

owning-window-id: window-id or EMPTY

An owning-window-id of EMPTY means that there is no
owning window. That is the case for printer and graphics
windows, and for the full-screen window used during
teletype simulation.

window-id: INDEX

This index is a designator for the display window in
question.

Manipulating Display Terminals

Introductory Notes

Class three terminals (full duplex displays) are either Data
Media Elite 2500 alphanumeric terminals (expansion to other
brands on request) or Line Processor terminals [6, 7]. Line
Processor terminals have a pointing device (mouse) and may
have a Tektronix storage tube device attached in parallel to
the alphanumeric display. The "graphics·' operations
described here currently function only on Line Processor
terminals with Tektronix storage terminals attached.

The Frontend will allow certain of the display primitives to
be used for graphics display manipulation. This is detected
on the basis of the window-id used in the call. Output to
printers that are part of the terminal configuration (used in
conjuction with Line Processors) is also detected on the
basis of the window-ide For the graphics terminal, the
Frontend can mark selections made by the user on the graphics
display by drawing a dot at the specified location. Any
other marking must be done by the tool using the
write-literal procedure.

Display screens are divided into windows, which are
rectangular screen areas. There are several types of
windows, the most common of which are random and sequential.
In random windows text can be ~ritten, moved, deleted, o~
changed. Sequential windows simulate the operation of a
typewriter. In sequential windows text can only be appended.

Random windows contain strings--collections of line segments.
Each line segment is an unbroken text string with its own
origin (i.e., character position on the screen, identified by
horizontal and vertical screen coordinates). Thus, line
segments within a string need riot be adjacent, nor must they

Augmentation Research Center page 58

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

be grouped visually (al though they usually are). If aline
segment will not fit in the specifi~d area, it will be
truncated at the right margin of the (random) window.

The Frontend keeps a data base describing the window
contents. When a tool manipulates the display, it is
manipula.t.ing that data base through procedure calls.
Elements of the data base are referenced by window, string,
or line segment identifiers defined by the Frontend and
returned to the tool when the window, string, or line segment
is created. It is the responsibility of the Frontend to see
that the display screen corresponds to the data base.

Each type of element (window, string, line segment) has
attribute bits associated with it that determine how it will
be displayed. These bits control the following display
attributes: visible (l)/invisible (0): normal-lighting
(l)/highlighting (0); and non-printing-invisible
{l)/non-printing-visible (0). In each case a zero represents
a normal mode and a one represents an exceptional mode. When
a line segment is written, its attribute bits and those for
its window and string are combined with a logical OR
operation. Hence to make an entire window display in an
exceptional mode, the tool turns that attribute on in the
window only, not each line segment. Tnis allows any line
segments or strings that are displayed in an exceptional way
to remain as they are when the window is returned to normal.

Two additional attributes apply to windows only. The
attribute autostop applied to a sequential window causes the
Frontend to wait for the user to type a 'confirmation
character before contents of the window scroll out of view,
in a manner similar to the TENEX terminal type scope command.
The attribute wordbreak applied to a sequential window causes
lines to be broken on word boundaries when the text between
carriage returns will not fit on a single line.

Many Changes to the Screen at Once

batch-display-commands (display-commands -> ids);

This routine is used to effect many changes to the screen
at once. The display-commands argument is an encoded data
structure that results in calls on the display primitives
described below.

Augmentation Research Center page 59

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

display-commands: LIST(LIST (opcode, params), •••)

Any number of pairs of procedure opcodes and parameters
may be specified. The procedures will be called in the
order they appear in the above list.

Keep in mind that the tool is manipulating the display
data base. The operations must be performed in
meaningful order. For example, writing a line segment
and then scrolling is not the same as scrolling and then
writing a line segment, if the line segment is in the
scrolled area.

For best results, put as many operations into a single
batch-commands call as possible. Always put any
clear-window calls as the first operation(s) in the
batch-commands list.

opcode:

INDEX (designates procedure--see table below)

EMPTY (default to last procedure index used)

params: as appropriate for given procedure

procedure names:

1: get-windows

2: batch-display-commands (batch nesting not
recommended)

3: create-window

4: delete-window

5: clear-window

6: scroll-window

7: set-window-attributes

8: write-string

9: write-line-segment

l~l: replace-string

Augmentation Research Center page 60

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

11: delete-string

12: reposition-string

13: set-string-attributes

14: reposition-line-segment

15: replace-1ine-segment

16: de1ete-line-segment

17: set-line-segment-attributes

18: write-literal

19: track

ids: LIST (results

The batch-commands results are exactly the results of
each procedure incorporated into a list. Procedures that
produce no results do not produce an element in the
batch-commands result list.

Window Manipulation

create-window (old-window-id, type, diag-coords,
new-window-att -> window-id)

This procedure creates a new window with respect to an old
window. The coordinate system is expressed in terms of
coordinate units relative to the old window. For
alphanumeric display screens, coordinate units-correspond
one to one to character positions.

new-window-att: EMPTY or window-att

If EMPTY, old window values are used.

window-att: LIST (window-priority, string-att)

Window priority and attributes control how the text in
the window appears to the user.

The coordinate pair in string-att is ignored.

window-priority: INDEX

Augmentation Research Center page 61

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

Window priority is an integer from 1 to 7 (1 having the
highest priority). Whenever two windows overlap, the
text of the higher priority window will dominate. (Note
that this may only effect the overlapped area, not
necessarily the whole window.) The CLI's command
feedback window is always higher priority than tool
windows. The window that is created by the CLI when it
starts a new tool will have priority 1 for that tool.
The tool may change this if desired.

old-window-id, window-id: INDEX

diag-coords: LIST (upper-left-x, upper-left-y,
lower-right-x, lower-right-y)

upper-Ieft-x, upper-left-y, lower-right-x, lower-right-y:
INTEGER or EMPTY

These are coordinates defining wiridow size and location
in terms of old-window relative coordinates. All
coordinates must b~ positive. EMPTY defaults to the
corresponding coordinate for the old-window.

type: INDEX

1= random (allows arbitrary text manipulation)

2= sequential (use write-literal, clear, delete wndow)

3= graphics (ar?itrary writes, clear, delete window)

4= printer (use write-literal, delete window)

There are limitations, as follows:

The new window must lie ~ithin the old window, unless it
is a graphics or printer window.

Create-window for printer or graphics windows will FAIL
if hardware is in use already. Only one tool may have
graphics windows or the printer window at a time.

delete-window (window-id)

This deletes the specified window. The window-id will no
longer be valid, nor, of course, will any string-ids or
line-s~gment-ids that belonged in that window. Any image
of the window on the user's terminal is cleared. If a
window nownsn other windows, they are deleted also.

Augmentation Research Center page 62

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

Tools can only delete windows that they created. Windows
created for the tool at run-tool time (primary window) do
not belong to the process and thus cannot be deleted. They
can be manipulated in other ways, however. The default-tty
window cannot be deleted.

clear-window (window-id)

This procedure deletes the contents of the window, frees
all string-ids and line-seg-ids, and removes the image from
the user's display. It may be used for graphics or printer
windows.

scroll-window (window-id, change, ycord-top, ycord-bottom)

The two lines indicated define a sub-window within the
window specified by window-ide This command affects only
lines within that sub-window. Those lines are scrolled
"change" lines. Line segments that would fallout of the
sub-window after the scroll are deleted. If all line
segments of a string are -deleted, the string will be
deleted also.

Vacated lines are blank after the scroll. For example, if
"change" were +2 there would be two blank lines at the
bottom of the sub-window when the command was completed. A
sub-window may be cleared by giving "change" the value of
plus or minus the number of lines in the sub-window.

change: INTEGER

A positive integer indicates scroll UP change lines, a
negative integer indicates scroll DOWN change lines.

ycord-top, ycord-bottom: INTEGER

These top and bottom window-relative y coordinates define
a sub-window to be scrolled. Line ycord-top through and
including ycord-bottom are changed; the rest of the
window is unchanged. EMPTY ycord-top'or EMPTY
ycord-bottom default to the window top line or bottom
line respectively.

set-window-attributes (window-id, type, diag-coords,
window-att)

This sets the specified attributes for the window. If the
size is changed, the window must still reside within the
owning window. The type may only be changed from random to

Augmentation Research Center page 63

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the C~L and C~I

sequential or sequential to random, in which case a
clear-window is implied. The diag-coords for the primary
window may not be changed.

String Manipulation (Random and Graphics Windows Only)

write-string (window-id, string-att, string -> string-id,
LIST (line-segment-id, •••))

This writes the specified string at the specified location
with the specified attributes. The string consists of
individually attributed and positioned line segments (which
do not cross line boundaries). Identifiers for the string
as a whole and for the individual line segments are
returned.

string-att: line-seg-att or EMPTY

If EMPTY, write-string will use window values as string
defaul ts.

This MUST supply coordinates for the origin of the
string.

string: LIST(linesegment, •..) or string-addr

This designates the new string to be written (or copied).

linesegment: LIST { line-seg-att, linesegment-text }

Each line segment may have attributes specified for it.
The coordinates here are relative to the window origin.

linsegment-text: CHARSTR or line-seg-addr

The acutal text may be given, or existing text may be
copied.

line-seg-att: EMPTY or LIST (cords, att-bits, selcode [,
char-size, horiz-space])

Attributes include position, view mode (att-bits), and
selector code, and are associates with every window,
string, and line segment.

If EMPTY the proper defaults are applied.

The optional char-size and horiz-space are REQUIRED for·
windows of type graphics, and must NOT be present for

Augmentation Research Center page 64

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

window type random. They determine the character size
and horizontal inter-character spacing for the string.

char-size: INDEX or EMPTY

The graphics character size may be an integer of value
one through four. The standard horizontal spacing for
size (1, 2, 3, 4) is (14, 13, 9, 8).

horiz-space: INDEX or EMPTY

The horizontal spacing is in device raster units.

selcode: INDEX or EMPTY

Every line segment has a selector code associated with
it. The code determines when and how that line segment
may be selected by pointing to the screen. This allows
line segments to be selectable in some contexts and not
in others.

Low numbered selector codes are defined as follows:

=1: The line segment is only selectable for a literal
selection (LSEL), not for source or destination
selection (SSEL or DSEL). This implies that the text
is not part of the tool-controlled data base, but the
text may by pointed to in lieu of typing it in.

=2: The line segment may be selected for source and
destination (SSEL or DSEL) but NOT for literal
selections (LSEL). This implies that the text on the
screen is in the tool-controlled data base but that the
tool does not want the Frontend to copy characters,
text, or words directly from the Frontend~s display
data base.

This is the case if an editor writes N<CTRL-L>N
instead of a real <CTRL-L>. If the user made a
selection of type LSEL on one of the characters of
that string and the selcode were 1, the user would
get N<N for example, not a <CTRL-L>. If the selcode
were 2, the LSEL would not be resolved--the teal
would get an address (window, string, linsegment ids)
and the tool could resolve it to a <CTRL-L>.

In the case where the user is making a cross-tool
literal selection, the literal is resolved by the
Frontend in spite of the selcode.

Augmentation Research Center page 65

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

=3: This is the n.ormal case for tool-controlled text.
All kinds of selections are allowed.

> 3: The grammar may specify an exceptional kind of
selector code (greater than 3) and only line segments
with matching selector code may be selected. The
current upper bound for the selector code is 255.

att-bi ts: INDEX or EM-PrY

This is a positive integer with bits meaning as follows:

bit 0 (rightmost bit) = 1 (ALWAYS)

bit 1 (highlight)

highlight TRUE: Make this line segment stand out
from the rest of the text on the display (in a manner
that is appropriate for the device). This may make
the text bright or blinking.

highlight FALSE: display normally.

bit 2 (invisible)

invisible TRUE: do not display this line segment,
string, or window.

invisible FALSE: display normally.

bit 3 (non-printing-visible)

non-printing-visible TRUE: Any non-printing
characters in the line segment, string, or wiridow
will be displayed as a highlight printing character.
Thus characters that do not normally have a visible
representation on the display can be made visible. A
single visible character will be displayed in place
of the non-printing character. Currently <TAB>,
<CR>, <LF>, <RUB> and <SP> are displayed as >, *,
vertical bar, i, and tilda. The other non-printing
characters are displayed as a capital letter, such as
A for <CTRL-A>.

bit 4 (autostop)

has meaning only for sequential windows. If TRUE,
the Frontend will stop appending to the sequential

Augmentation Research Center page 66

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

window when information in it may be scrolled out of
the user's view: otherwise this will not ~ake place.

bit 5 (word-break)

has meaning only for sequential windows. If TRUE,
when appended text reaches the right margin of the
window before a carriage return is encountered, the
line will be broken on a word boundary if possible.
Otherwise, every position on the line will be filled
and the remaining text will be written on the next
line.

cords: LIST (xcord, ycord) or EMPTY

xcord, ycord: INTEGER or EMPTY

For alphanumeric display, coordinates are in character,
line positions. For graphics display coordiantes are in
hardware raster units.

Coordinates are relative to window origin. Hence 0,0 is
the lower left corner of a window.

EMPTY defaults to appropriate values.

string-addr: string-id / LIST(window-id, string-id)

This designates either a string in the same window or
another window to be copied.

string-id: lin-seqment-id: INDEX

line-seg-addr: LIST (window-id, string-id, line-seg-id) /
LIST (string-id, line-seg~id)

This designates an existing line segment to be copied.

replace-string (window-id, string-id, string-att, string ->
LIST {line-segment-id, ••.))

This replaces the specified string with a new string or
with a copy of a string already. in a window belongiing to
this process. Note that the old string-id now applies -to
the new string. Note also that the string's position
within the window can be changed during the replace.

All line-segment-ids in the old string are freed and a new
list of line-segment-ids is returned.

Augmentation Research Center page 67

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

Any EMPTY values defa~lt to the string-id values.

move-string (window-id, string-att, string-addr -> string-id,
LIST (line-segment-id, •••))

NOT IMPLEMENTED AT THIS TIME.

Set-string-attributes can be used to change the position of
a string within a window. Move-string can be used to move
a string from one window to another. It is equivalent to
using write-string to copy a string and then delete-string
to delete the old copy.

delete-string (window-id, string-id)

This deletes the specified string and frees the string-ide
All line-segments that are part of the string are deleted
also, of course.

set-string-attribute (window-id, string-id, string-att)

This sets the specified attributes for the specified
string. Note that the position of the string within the
window can be changed with this primitive. Default values
will be taken from the old string.

reposition-string (window-id, string-id, cords)

This is just a special case of set-string-attributes, but
the frequency with which it is done warrents a separate,
more efficient call.

Line Segment Manipulation (Only in Random and Graphics Windows)

write-line-segement { window-id, string-id, linsegment ->
line-segment-id }

This append a new line segment to the specified string.
The identifier for the new line segment is returned.
Default values will be taken from the string. Note that
this serves the copy function also.

replace-line-segment (window-id, string-id, line-seg-id,
linesegment)

This is used to replace a specified line segment with a new
or a copy of an old line segment. Note that attributes of
the line segment can. be changed during the replace.

Augmentation Research Center page 68

DIA BEV ANDY 3-FEB-77 14:32 "28744

A Guide to the CML and eLI

Default values will be taken from the old line segment.
The line-segment-id remains the same.

delete-line-segment (window-id, string-id, line-segment-id)

This deletes the specified line segment and frees the line
segment ide

move-line-segment (window-id, string-id, linesegment ->
lin-seg-id)

NOT IMPLEMENTED AT THIS TIME.

This 1.S equivalent to using write-line-segment to copy a
line segment and then"delete-line-segment to delete the old
copy.

set-line-segment-attributes (window-id, string-id,
line-seg-id, line-seg-att)

This sets the specified attributes for the specified line
segment.

reposition-line-segment (window-id, string-id, line-seg-id,
cords)

This is just a special case of set-line-segment-attributes,
but its frequency warrents a special, more efficient call.

Secondary Device Manipulation

write-literal (window-id, literal-string)

literal-string: CHARSTR

This is treated in a window dependent manner. The type of
window-id will tell the FE how to get the literal string to
the correct place.

graphics window:

This primitive is used to mainpulate the graphics device
(other than to write strings and clear the window). The
literal string will be passed to the device unchanged.

printer window:

The literal string will be scanned for TENEX line printer

Augmentation Research Center page 69

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

con"trol qharacters and a "best effort" will be made to
produce a hardcopy, formatted "as though sent to a line
printer.

sequential window:

The literal string will be written into the sequential
window. <CR> and <LF> will cause a simulated carriage
return and line feed in the window. No padding is
necessary.

A sequential window can be scrolled by sending line feeds
into it via this primitive, or by using the scroll-window
primitive.

tr ack (swi tch)

switch: BOOLEAN

FALSE: Causes the Frontend to stop tracking the pointing
device associated with the graphics device.

TRUE: Causes the Frontend to resume tracking the pointing
device.

This procedure is used by the tool to control tracking in
the graphics windows, to allow the tool to position the
graphics cursor (via write-literal) and assure that the
Frontend will not change the cursor position between
procedure calls to manipulate the graphics windows.

The tool must be sure to call track (TRUE) when it is
finished manipulating the graphics device, or the user will
not be able to point to graphic entities.

Getting Direct Connections

Introductory Notes

Under some conditions it is possible and desirable to get
direct network connections to the Frontend. These procedures
control opening and closing of these connections. Currently,
they may only be called if the communication facility is
MSG-3 and they are used to establish a Telnet connection for
an unsplit tool, or an a-bit binary send/receive connection
for a split tool.

Augmentation Research Center page 7a

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

feopenconn (type, processname, connid ->)

This may be used to open a connection of kind and purpose
designated by type, to process processname. An
acknowledgement is not required. The Frontend will obtain
the specified connectin to the specified process from MSG-3.

type: INDEX

This determines the type and semantics of the connection as
follows:

=1: Telnet connection for typewriter-oriented tools.

=2: a-bit binary send/receive connection pair for split
tool message-oriented communication. This is an interim
communication mechanism to be used until MSG-3 process
introduction is implemented.

Other values may be defined as needed.

processname: BITSTR or EMPTY

This is the MSG-3 process name to which the connection will
be directed. The EMPTY defaults to the caller process
name.

connid: INDEX

This is the connection identifier that will be used in the
OPENCONN primitive used by the Frontend, to establish the
connection. This identifier is also used to when the
connection is closed.

fecloseterm (termtool, processname, connid ->)

This procedure is called to close the specified connection
and possibly terminate the tool.

termtool: BOOLEAN

If TRUE, termtool closes the connection AND presumes that
the tool has terminated. If FALSE, it simply closes the
connection. For connections obtained by calling feopenconn
with type equal to 1 or 2, it is expected that termtool
will be TRUE.

processname: same as for fe9penconn.

Augmentation Research Center page 71

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

connid: same as for feopenconn.

fedonetool (processname, [showstring] ->)

This procedure is called by the Works Manager to inform the
Frontend that the indicated tool is no longer being used and
has been stopped. -

processname: BITSTR

This is the process name for the Forem'an control I ing the
tool in question.

showstring: CHARSTR

This optional item is simply a string that is shown to the
user. It normally contains computer charge information.

Profile Updating Procedures

new-profile (user-id, profile

NOT YET IMPLEMENTED

This allows the USER OPTIONS tool to update the user's
interaction profile in the FE when the user runs this tool to
adapt the FE interface. The profile is assumed to be a
simple bitstr that is already properly set up for use by the
FE. The exact meaning of the bitstr is defined elsewhere.

user-id: INTEGER

profile: BITSTR

new-toollist (user-id, toollist

NOT YET IMPLEMENTED

This allows the WM to update the list of tools this user is
allowed to run whenever conditions warrent. This list is
used to give help and tool name recognition to the user. It
in no way grants the user actual access to the tool.

toollist: LIST (toolnamelist, entry tool)

entry tool: INTEGER or EMPTY

The integer is an index into tool list.

Augmentation Research Center page 72

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

toolname1ist: LIST (utoo1name, wmtoolname, .••)

This list contains associates user's tool names and Works
Manager's tool names. Any number of pairs may be present.

utoolname: CHARSTR

wmtoolname: .CHARSTR

Augmentation Research Center page 73

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

APPENDIX 5: Par se Func tion"s

Introduction

CML provides facilities that satisfy most user interface system
requirements. Those requirements that remain unsatisfied are
typically not of general utility. For example, a graphics
system may need to collect a coordinate from the user and
immediately check that it falls within a certain interval. CML
provides for the implementation of such special purpose
operations by allowing functions written in a high-level
programming language to be called from arbitrary points within
the grammar. These functions are referred to as parse
functions (PFs) because they may affect the parsing of user
input by the grammar.

The following discussion assumes that the reader is familiar
with the CML and L10 languages in general and LIB coroutines in
particular.

Parse Function Description and Operation

Overview

Parse functions are written as Ll0 coroutines that conform to
certain conventions imposed by the CLI. They may do
arbitrary processing, including reading characters from the
user. They must determine whether the CLI is to continue
proceSSing the grammar past the point where the PF was
invoked.

Arguments

Parse functions may be invoked in a CML grammar with from 0
to 8 arguments. The CLI puts pointers to these CML arguments
into a block. When the CLI OPENPORTs the PF, a pointer to
this block is stored as the fifth OPENPORT argument (called
'arguments' in the model below). The following illustrates
the first statement of a PF OPENPORTed by the CLI, and a
description of all the OPENPORT arguments for any parse
function.

(parsefun) COROUTINE (reason, instruction, accumulator
REF, argcount, arguments REF, saveword);

'reason'. The reason the PF is being invoked. It may
assume any of the following values, which are declared as
external constants in the Frontend.

Augmentation Research Center page 74

DXA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

'parsing'--the eLI has reached a point in ~he grammar
where this PF should be invoked. It will be PCALLed
again to do its processing.

'terminate'--the CLI had previously invoked this PF with
reason 'parsing', the PF has completed, and the end of
the command has now been reached. The PF -is expected to
do any cleanup necessary, such as freeing space it had
allocated. It must do this cleanup in its PORT ENTRY
EXIT block because it will not be PCALLed again.

'abortcmd'--the CLI had previously invoked this PF with
reason 'parsing', the PF has completed, and the command
was subsequently aborted. The parse function is expected
to clean up to restore the context that existed previous
to this command (e.g., by resetting global variables to
their previous value and freeing allocated space.) It
must do this in its PORT ENTRY EXIT block.

'backup'--the CLI had previously invoked this PF with
reason 'parsing' and the user subsequently backed up the
command. The 'PF is expected to take action similar to
'abortcmd'. It must do this in its PORT ENTRY EXIT

·block.

'instruction'. Byte pointer to the first byte of this CLI
instruction in the grammar.

'accumulator'. Address of the CLI accumulator.

, argcount' • The number of CML arguments the PF was called
with, listed in the grammar.

'arguments'. Address of a block containing pointers to the
CML arguments for the PF, as listed in the grammar. Take,
for example, a parse function referenced in the grammar as:

parsef{ snip, snap, snur)

It will be called OPENPORTed, with the six arguments listed
here. 'argcount' will have value 3 (the three CML
arguments) and 'arguments' will point to the block
containing pointers to the values of CML variables snip,
snap, and snur, respectively.

'saveword'. When the PF is invoked with reason 'parsing',
'saveword' is 0. When the PF is invoked for any other
reason, 'saveword' is the value the PF asked to have saved

Augmentation Research Center page 75

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

when it was originally invoked with reason 'parsing'. This
is explained fully in the "Operation" section, below.

Results

Parse functions may produce a result which is accessible to
the grammar, e.g., by assigning the result to a CML variable.
The result must be a valid CML variable value; it is returned
by putting a pointer to it in the accumulator argument.

Suppose a parse function 'numberpf' was to produce some
number which would subsequently be shown to the user. The
CML might be

cmlvar _ numberpf() SHOW (cmlvar

or more concisely,

SHOW (numberpf ()

The PF could be as follows:

(numberpf) COROUTINE (reason, instruction, accumulator
REF, argcount, arguments REF, saveword REF);

LOCAL number, cmlvalue REF;

number
user %

ackerman (la); % generate a number to show to

&cmlvalue getblk(3, $freespace); % get a block from
freespace to put CML value into %

cmlvalue.vtype _ integer; % set up type of CML value %

cmlvalue.vlength 2; % and length %

cmlval ue [l]
%

number; % put the number into the CML value

accumulator &cmlvaluej % put a pointer to the value
into accumulator %

END.

Augmentation Research Center page 76

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

Operation

A PF often interacts with the CLI during the specification of
a command in which it is invoked. It is first OPENPORTed
with reason 'parsing'. It may then get characters from the
user through the eLI, ask the CLI to resolve whether or not
it is on the correct path through the grammar, and tell the
CLI that it has finished processing. When the command is
completed or aborted, it may be OPENPORTed again to do some
cleanup, including freeing storage it has allocated.

After a PF has been OPEN PORTed with reason 'parsing', it
interacts with the CLI by PCALLing to its caller, with the
first argument indicating the reason for the call, and by
being PCALLed back. The possible values for the first PCALL

. argument are:

'nextchar'. The PF requests a character from the user.
The second PCALL argument is interpreted by the CLI to be
the address of a prompt string for the user. No prompt is
indicated by a a second argument. The PF will be PCALLed
back with first result 'nextchar: and second result the
requested character.

'itsme'. The PF has determined that it may be on the
correct path through the grammar and is asking the CLI to
decide if there are other potentially correct paths. If
the CLI decides the PF is on tne only correct path, it will
PCALL back with first result 'itsme'i otherwise it will
PCALL back with first result 'nextchar' and second result a
character from the user.

'notme'. The PF has
correct path through
not be PCALLED back.
through the grammar,
PCALLED again.

determined that it is not on the
the grammar. Typically, the PF will

However, if there are no other paths
or the user backs up, it will be

'dosuc'. The PF has determined that it is on the correct
path through the grammar, has completed any processing it
needs to do, and is asking the CLI to do its successor in
the grammar. After PCALLing with first argument 'dosuc',
this invocation of the PF will disappear. The second PCALL
argument is interpreted by the eLI as follows. If it is
nonzero, it is saved by the CLI and will be put in OPENPORT
argument 'saveword' when the PF is OPENPORTed for reasons
'terminate', 'abortcmd', or 'backup'. If the second PCALL
argument is 0, the PF will not OPENPORTed for reasons

Augmentation Research Center page 77

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML· and CLI

'terminate', 'abortcmd', or 'backupr~ it will only be
OPENPORTed for reason 'parsing'.

'backup'. The PF wants to back up the command. This could
occur when the user types the backspace character numerous
times.

'abortcmd'.' The PF wants to abort the command.

A simple example is useful. The following PF sets a global
to be TRUE. After completing its processing it PCALLs back
with 'dosuc' and 0, meaning that it is done and that it does
not need to be invoked for reasons 'terminate', 'abortcmd',
or 'bac kup' •

(simplepf) COROUTINE (reason, instruction, accumulator
REF, argcount, arguments REF, saveword) ~

PORT ENTRY EXIT PCALL;

needconfirm TRUE;

PCALL(dosuc, 0);

END.

A more complex example is provided by the PF that generates a
number to show to the user. Because it allocates storage, it
must free it when the command is terminated, aborted or
backed up.

(numberpf) COROUTINE (reason, instruction, accumulator
REF, argcount, arguments REF, saveword REF);

LOCAL number, cmlvalue REF;

PORT ENTRY

CASE reason OF

= terminate, = abortcmd, = backup:

freeblk(&saveword, $freespace); % free the block
that the cml value was put into %

ENDCASE;

EXIT PCALLi

Augmentation Research Center page 78

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

% generate a number to show to user %

number ackerman (10);

% get a block from freespace to put CML value into %

&cmlvalue getblk(3, $freespace);

% set up type of CML value %

cmlvalue.vtype _ integer;

% and length %

cmlvalue.vlength 2;

% put the number into the CML value %

eml v a1 ue [l] number;

% -put a pointer to the val ue into the CLI accumulator so
that it can be accessed by the grammar %

accumulator &cmlvalue;

% save the address of the block so that it can be freed
upon terminate, abortcmd, backup %

PCALL{ dosuc, &cmlvalue);

END.

During the specification of the command in which it is
referenced, 'numberpf' will first be OPENPORTed with reason
'parsing'. The CASE statement in the PORT ENTRY block will
do nothing because reason is 'parsing'. When 'numberpf' is
PCALLed back, it will generate the number, create a valid CML
value, put a pointer to it into accumulator, and PCALL that
it is done and that the pointer to the CML value be saved.
This invocation of 'numberpf' will then disappear. When the
command is finished, 'numberpf' will be OPENPORTed again with
reason ' terminate' and ' save.word' will have as its val ue the
pointer to the CML value. If the command is aborted or
backed up 'numberpf' will be OPENPORTed with reason
'abortcmd' or 'backup'. The CASE statement in the PORT ENTRY
block will free the block. This invocation of 'numberpf'
will then vanish.

Augmentation Research Center page 79

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

A final example illustrates a PF processing user input. The
PF ' spchpf', below, is invoked from the grammar with a single
argument, a string. If the user types one of the characters
in the string, 'spchpf' will tell the CLI to continue
processing down this path of the grammar tree. Otherwise,
'spchpf' will tell the CLI that this is the wrong path. If
the path through 'spchpf' is the only path at this point in
the grammar and the user mistypes, 'spchpf' will read another

'character and again check if it is in its argument string.
Spchpf will give the user a prompt of "SPCa" and will respond
to ? with "Type a Special Character".

,(spchpf) % Let the user type one of any of the characters
in- the CML argument string%
COROUTINE (reason, instruction, accumulator REF, argcount,
arguments REF, saveword REF);

LOCAL

cmlarg REF, % the argument passed in the grammar %

spchstr REF I % the str ing of special characters %

i , % loop index %

char, % character the user typed %

prompt REF; % the prompt string %

PORT ENTRY EXIT PCALL; % do not care about reasons
terminate, abortcmd or backup %

% get the string of special chars %

&cmlarg arguments; % cmlarg points to CML value
passed from grammar %

&spchstr cmlarg[2J; % spchstr points to 'string from
CML value-%

&prompt _ S"SPCH"; % set up prompt string %

reason nextchar; % want to get char from user %

LOOP % getting characters from CLI %

CASE reason _ PCALL(reason, &prompt := 0 char) OF

Augmentation Research Center page 80

END.

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

= nextehar : % process the next character checking to
see ~f it is in spchstr %

CASE char OF

= '?: % user wants a more verbose prompt %

&prompt _ $"Type a Special Character";

ENOCASE % check to see if char is in spchstr %

BEGIN

FOR i _ 1 UP UNTIL> spchstr.L DO

IF char = *spchstr*[i] THEN % char in spchstr
- tell CLI this right path through grammar %

PCALL(dosue, 0);

reason notme; % wrong path through the
grammar-%

ENDi

ENDCASEi

Let us assume that 'spchpf' is to be used to determine
whether or not the user has typed a digit. An appropriate
reference to it in the CML grammar is

•.• spchpf(i"0l23456789") ••.

Up.on reaching this point in the grammar, 'spchpf' would be
OPENPORTed and it would PCALL back to the CLI with reason
'extchar' and supplying user prompt "SPCH". 'Spchpf' sets
prompt to 0 so that the user will only be prompted once in
the event that it reads more than one character. The user
would see "SPCH:" and might type a "2". The CLI would then
PCALL to 'spchpf' with reason 'nextchar' and character "2".
'Spchpf' would find the 2 in 'spchstr' and PCALL back to the
CLI with reason 'dosuc' and second argument 0 meaning that it
should not be OPENPORTEO for reasons 'terminate,' 'abortcmd'
or 'backup'.

If the user typed a "?" as her first character, spchpf would
return the more verbose prompt "Type a Special Character" and

Augmentation Research Center· page 81

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to th~ CML and CLI

return it with reason nextchar. If the user then typed a
digit, spchpf would proceed as before.

If the user typed "x" as her first character after the
nSPCH: n prompt, the CLI would return it to 'spchpf' as
before. 'Spchpf' would not find it in 'spchstr' and would
PCALL back to the CLI with reason 'notme' indicating that it
is not on the correct path. In the CML example we are using,
the path through 'spchpf' is the only path through the
grammar at this point. As a result, the CLI will inform the
user that an inappropriate character was typed, collect
another character, and PCALL back to 'spchpf' with reason
'nextchar' and the typed character. This process will
continue as long as the user types bad characters, ending
only when the user types a digit or aborts the command.

A more complex example is the use of 'spchpf' in parallel
with other CML elements. Consider the following CML:

spchpf(t"0l23456789 1t
) <"digit"> / "WORD" <"letter">

Upon reaching this point in the grammar, the user would see a
prompt of "SPCH/C:" because prompts are provided by both
spchpf and the command word. If the user specifies the
command word by typing "W", 'spchpf' will PCALL back with
reason 'notme', the command word will succeed, and the user
will next see the noiseword "letter". If instead the user
types a digit, 'spchpf' will PCALL back with 'dosuc' and the
user will next see the noiseword "digit".

Writing Parse Functions

Parse function writers should adhere to the following template,
which delineates the general parse function form. Code is
included in the template to meet contingencies encountered in
the most complex parse functions. Simpler parse functions such
as the PF 'simplepf', shown above, may omit much of this code.

(pfname) % CL: ; one-line-description %
COROUTINE (reason, instruction, accumulator REF, argcount,
arguments REF, saveword % => result %);

% Parsefunction description

FUNCTION

none

Augmentation Research Center page 82

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

ARGUMENTS

none

RESULT

none

NON-STANDARD CONTROL

none

GLOBALS

none

%

% Declarations %

LOCAL char, prompt REF;

PORT ENTRY

CASE reason OF

= parsing: % being invoked for first-time during command
%

= terminate: % command is done, cleanup %

= abortcmd: % command was aborted, cleanup and restore
state %

= backup: % command was backed up %

ENDCASEi

EXIT PCALL;

reason nextchar;

&prompt _ % prompt string for user or 0 %i

LOOP

CASE reason PCALL(reason, &prompt := 0 : char) OF

= nextchar: % examine at character from user %

Augmentation Research Center page 83

END.

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

BEGIN

CASE char OF

= '1: % user wants more verbose prompt %

BEGIN

&prompt % the verbose prompt %;

REPEAT LOOP;

ENDCASE;

% decide whether PFis on the correct path through the
grammar %

IF % on the right path % THEN reason itsme

ELSE % not on right path % reason notme;

END;

= itsme: % eLI agrees that this is correct path through
the grammar %

BEGIN

% do processing %

saveword % word of context to be saved or 0 %;

PCALL(dosue, saveword);

END;

ENDCASE;

Selection Parse Functions

Selection parse functions (SPFs) are used to generate selection
entities not supported by the CLI because they are not of
general use. These may be generated for example by collecting

Augmentation Research Center page 84

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

user characters and interpreting them in a certain way. As a
result of this special function, SPFs interact with the CLI
slightly differently than do other PFs.

SPFs are associated with a command word that is declared to be
a SELECTOR in the grammar. For example, if a grammar contains
the declaration

DECLARE COMMAND "ENTITY" SELECTOR TYPEIN = typentity:

then- 'typentity' is an SPF and need not be otherwise declared
as a PF. An SPF is OPENPORTed when the command word· with which
it is associated is given as an argument to DSEL, SSEL, or
LSEL. Thus, when the CLI executes the CML

var _ "ENTITY" LSEL(var

'typentity' is OPENPORTed.

The OPENPORT arguments to an SPF are:

'type'. The type of the selection. It may assume the
following values, which are declared as external constants in
the FE.

'typein'--The SPF is being OPENPORTed because it was
declared as the TYPEIN part of the SELECTOR.

'typeaddr'--The SPF is being OPENPORTed because it was
declared as the ADDRESS part of the SELECTOR.

'pointsel'--the SPF is being OPENPORTed because it was
declared as the POINT part of the SELECTOR.

instruction'. Byte pointer to CML instruction in grammar.

accumulator REF'. Address of the CLI accumulator. The
accumulator will contain·a CML value which is the command
word at OPENPORT time. SPFs should save the contents of the
CLI accumulator at OPENPORT time as it may change before the
CLI PCALLs back.

If the declaration for "ENTITY" ~s

DECLARE COMMAND "ENTITY" SELECTOR TYPEIN = typentity ADDRESS
= typentitYi

then upon executing the above CML, 'typentity' would

Augmentation Research Center page 85

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

immediately be OPENPORTed two times--once with type 'typein'
and once with type 'typeaddr'.

Clearly the eLI may OPENPORT up to three SPFs for a selection,
one for each of POINT, TYPEIN, and ADDRESS. The CLI then
determines which of the three to further interact with by
getting a character from the user and examining it. For
example, let us declare "THING" to be

DECLARE COMMAND "THING" SELECTOR POINT = pointpf TYPEIN =
typepf ADDRESS = addrpf;

and use it as

LSEL('"THING"

The user would see as a prompt "B/T/[A}:" meaning that she
could bug a THING, type in a THING, or give the address of a
THING by first typing the OPTION character to distinguish it
from typing in a THING. Note that the CLI, not the SPF,
supplies the prompt, which is based on whether LSEL, DSEL, or
SSEL is being used and the SELECTOR declaration. If THING had
been declared--

DECLARE COMMAND "THING" SELECTOR TYFEIN = typepf ADDRESS =
addrpfi

--the prompt would have been nT/[A]:".

Assuming again the first declaration of THING, the CLI
determines with which SPF to interact. If the first character
the user types is a COMMAND ACCEPT at a display terminal, the
CLI will interact with 'pointpf'. If the first character is
OPTION, the CLI will interact with 'addrpf'. Otherwise, the
CLI will interact with 'typepf'.

Because a SPF does not supply a prompt, it is PCALLed back
immediately with reason 'nextchar' and the user character. It
then interacts with the eLI by PCALLing for various reasons,
such as a PF.

SPFs must put a valid CML value in accumulator and PCALL with
the first argument 'dosuc' and no second argument. Unlike PFs,
an SPF should not free storage that it allocated for the CML
value that it returns in accumulator. This storage will be
freed by the CLI at the proper time.

Augmentation Research Center page 86

DIA BEV ANDY 3-FEB-77 14: 32· 28744

A Guide to the CML and CLI

An example of a typical SPF is shown below. It calls the FE
routine 'gettext' to actually make the CML value for it and put
it in accumulator.

(typicalspf) % a typical SPF %
COROUTINE (type, inst, accumulator REF);

"LOCAL

saveaccum = accumulator, % save the value of the
accumulator to restore later %

char, % the user characters %

reason;

PORT ENTRY EXIT reason PCALL(: char);

accumulator saveaccumi % restore the value of the
accumulator i

gettext(type, inst, &accumulator, FALSE, PORT, temp,
reason, FALSE);

PCALL (dosue);

END.

Built-in Parse Functions

The CLI contains several built-in PFs that may be accessed from
a grammar in the same way as other PFs. These built-in PFs
must be declared.

The following built-in PFs are described with their CML
arguments and results.

NSW Parse Functions

fesetuser(userid, nodeprofile, userprofil, project, node =>
)

This PF sets up the builtin CML variables, user profile and
node profile for a particular NSW user.

Augmentation Research Center page 87

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

feclruset: (=>)

This PF removes all information about the current NSW user
from the FE.

fegenusename (tool name => usename)

This PF generates a unique usename for a tool given the
tool name.

fenewtool
)

toolname, usename, processhandle, grammarname =>

This PF sets up the FE to run a new NSW tool. It gets the
grammar for the tool and sets up a connection to the tool
if necessary.

fersmtool (usename =>)

This PF allows a tool to be resumed whose use had been
suspended by the user.

fedotermrule (usename =>)

This causes the termination rule of a tool grammar to be
executed by the CLI. It is normally invoked just before
feendtool.

feendtool (usename =>)

This PF removes a tool instance use from the FE. It also
causes any connection between the FE and the tool to be
broken.

Subsystem Parse Functions

fenewsubsys (subsystemname, grammarname =>)

This PF sets up the FE to run a new subsystem.

feendsubsys (=>)

This PF is invoked inside a subsystem to end it.

Miscellaneous Parse Functions

feforceupper (cmlstring => cmlstring2)

Augmentation Research Center page 88

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

This PF returns as its result a copy of its argument in all
upper case letters.

feterminate (=>)

This PF terminates the FE. It may only be called from the
executive grammar (the first grammar the FE uses when it is
started) •

festwtp (windowtype =>)

This PF sets the type of the current window. Its single
argument must be an integer that indicates a valid window
type. For more information, see "The Virtual Terminal
Controller", in FRONTEND SYSTEM DOCUMENTATION.

festtp .(terminal type =>)

This PF sets the type of the user's terminal. Its single
argument must be an integer that indicates a valid festtp
type. See "The Virtual Terminal Controller", in FRONTEND
SYSTEM DOCUMENTATION.

fecup (type, value, value2"=>)

This PF is used to change user profile parameters in the
FE. The first argument indicates which parameter is to be
changed, the second is its new value, and the third is a
secondary value depending on the first two.

Augmentation Research Center page 89

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

APPENDIX 6: CML Syntax

Syntax Notes

This appendix offers a formal description of CML syntax,
described through the Tree Meta principles of alte~nation
(indicated by the symbol /) and succession (denoted by
juxtaposing elements). The syntax closely resembles CML itself,
with the addition of the following symbols •

• ID An identifier .

• SR A quoted string.

/ Denotes alternatives. A/B means A or B.

% Brackets comments.

() Osed for grouping to control precedence.

[] Denotes optional elements.

Precedes literal characters.

" Encloses Ii te·ral strings.

IX At least one occurrence of whatever X is.

t<Y)X At least one· occurrence of whatever X is,
separated by whatever y is.

$X Zero or more occurrences of whatever X is.

$<Y>X Zero or more occurrences of whatever X is,
separated by whatever Y is •

• NUMBER A string of digits representing a non-negative
(decimal or octal) integer.

Formal CML Syntax

% PARSING RULES %
% file definition %

file = "FILE" .ID
$condcornp Sdcls Srule
declarations %

Augmentation Research Center

% can have global rules or

pag.e 90

D1A BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

t(subsys) % must have at least one subsystem def %
"FINIS";

%-~-------

% DCL definitions %

condcomp = 'conditional compilation switches%
"SET"
t< ' I> (• OlD ' =

("TRUE" / It FALSE")) . . , ,

dcls =
"DECLARE"

("COMMAND" "WORD"
i <' I > (• S R [, = • NUM l [sIc t r]

/ [dclattr] i<',> .IO ;
/ dclfunattr t<',> dclitem i
/ "CONSTANT" t<',> (.10 '= .NOM
) ;

slctr =
"SELECTOR"

('= biselectors
/ $ (

"POINT" '= (.ID / (biselectors))

. ,

/ "TYPEIN" '= (.1D / (biselectors)

;

/ "ADDRESS" '= (.ID / "TEXT'· / '·CHARACTER")
)

) ;

biselectors = (
"CHARACTER" I
"WORD" /
"VISIBLE" I
"INVISIBLE ,. I
"TEXT" /
"INTEGER" /
"NUMBER" /
"STRING" /
"OLDFILENAME" /
"NEWFILENAME" /
"FILENAME" /

- "PASSWORD" /
"CHARPOS" ["ITION"]);

dclattr = % declaration attributes % { I. VARIAB LE "
/ "PARSEFUNCTION"

Augmentation Research Center page 91

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

1 "GLOBAL" "VARIABLE"]);

dclfunattr = % declaration function attribute %
"FUNCTION"

["PROCESS" '= .SR [, "PACKAGE" '= .SR] ,];

dclitem = .ID
["OUT" "OF" "LINE" /
"PSEUDONYM" '= .ID ["OUT" "OF" "LINE"
] i

% SUBSYSTEM definition %
subsys = "SUBSYSTEM" .ID "KEYWORD" .SR

i(command 1 rule)
"END.";

% command definitions %

corom-and =
(("COMMAND" .ID 1 .ID "COMMAND") = exp
/ "INITIALIZATION" rule
/ "TERMINATION" rule
/ "HELP" rule I

/ "REENTRY" rule
)

rule = .ID '= exp i

% expression definition %

exp = .t<'I> subexPi
subexp = tfactor i
factor =

'(exp ')
/ ' [exp ']
/ term;

% terminal nodes for compiler %

term =
(subname/ confirm/ answerl optchar/ feedbackl
recognition/ variablecw/ loopl conditional/ showuser/
abortcmd/ helpresume / tparam)i

conditional =
"IF" ["NOT"] param

[%binary relation%
('=
/ ")="

Augmentation Research Center page 92

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

1

/ "(a"

/ "("
/ "> ")
(idornum / "NULL")

idornum =
.ID
/ .NUM
/ bivar1
/ bivar2~

showuser =
II SHOW" ["CONFIRM"] , (par am ') ~

sub name =-
(• ID / bivar 1)

[
('($<' ,>pfparam ')) % parse function invocation %
/ ([inlinopt] , ($<' ,>param [funresults] '» %
function invocation %
/ (' param) % assignment statement %
/ (': '_ param) %append statement %
] ;

inlinopt =
'[["IN" "LINE" / "OUT" "OF" "LINE"] [.ID] '] ~

funresul ts =
" - >" i < ' , > (. ID / b i v ar 1) ;

recognition == keyword / builtinrec;

keyword = .SR ['1 tqualifier '1];

builtinrec =
(("SSEL"

/ ""OSEL"
/ "LSEL")

, (par am '));

variablecw =
"ew" ':

(• ID
I bivarl
I bivar 2
)

Augmentation Research Center page 93

oIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

feedback =
'< ["] .SR '>
/ "CLEAR";

confirm = "CONFIRM" ; % call routine to terminate cmd %

answer = "ANSWER"; % call routine to process yes/no
answer %

abortcmd = "ABORT" ['(param ') li

helpresume = "RESUME" , (par am ')];

optchar = "OPTION" i

loop = "PERFORM" .ID "UNTIL" '{ exp '};

qualifier = ("L2" / .NUM); .

param = tparam / factor;

p£param = param / addrparami

addrparam = %pass grammar variable address to parse
function%

'$ (.ID / bivarl / bivar2)

tparam = "TERMINATORS";
't .SR
/ .NUM
/ "NULL"
/ "TRUE"
/ "FALSE"
/ (bivarl / bivar2) i

bivarl = "TERMINATORS": % assignable builtin vars %

bivar2 = % non-assignable builtin vars %
("TERMCHAR"
/ "USERID"
/ "PROJECT"
/ "NODE"
/ "DISPLAY"
/ "TYPEWRITER"
/ "LINEATATIME"
/ "WINDOW"
/ "HELPCODE"
/ "HALFDUPLEX"

Augmentation Research Center page 94

/ "CURRENTTOOL"
/ "BREAKPOINT"
/ "RESULTl"
/ "RESULT2"
/ "RESUL.T3 11

/ "RESULT4 11

/ "RESULTS"
. / " RESULT6 "

/ "RESULT7"
/ "RESULT8"
/ "ACTlVETOOLS"
/ "TOOLS"
) :

Augmentation Research Center

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

page 95

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

APPENDIX 7: HELPCODE and HELP Rules

This appendix describes the use of the built-in variable HELPCODE
and the other HELP rule facilities of CML. It complements the
section on the FE externally callable 'help' procedure and the
three possible kinds of HELP rules, described in Appendix 4
"Externally Callable Procedures in the Frontend". The reader
should be familiar with the CML syntax for specifying HELP rules
described in the GUIDE TO THE CML AND CLI.

A CML HELP rule is invoked when a Backend execution function
calls the FE externally callable 'help' procedure. The
particular HELP rule invoked depends on the value of 'helptype',
the fir st argument in that procedure. The mechanism i.s discussed
in detail in Appendix 4.

Writing CML HELP Rules

CML HELP rules are similar in structure to other CML rules. A
HELP rule will typically do three things:

Give the user some information. This may supplement
information supplied through the 'help message' argument of
the 'help' procedure (see Appendix 4). For example, noise
words in the HELP rule may specify a question to the user.

Solicit some information from the user. This may be done by
having the user specify some command words or input a
selection. The rule may use the CML built-in HELPCODE to
decide what type of information to get from the user. The
value of HELPCOOE is set by the 'value of the argument
'helptype' •

Return the collected information. This is with a
RESUME (var) , where var is a CML variable containing the
information. The contents of this variable is returned to
the externally callable 'help' procedure, which returns it to
the Backend execution function.

The HELP rule for a grammar may be specified by the syntax:

HELP rulenamel = ••• i

where " ••• " indicates the normal syntax for a CML rule. The
rule will be executed whenever the FE 'help' procedure is
called with a first argument value of 3.

Augmentation Research Center page 96

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

A specific rule may be defined for particular execution
function calls in the grammar by the following syntax:

••• xroutine [rulename2] (argl ist •••) •••

Sere rulename2· specifies a CML rule defined elsewhere in the
grammar. It will be executed if a call is made from the
Backend on the FE 'help' procedure with a first argument value
greater than laS during the processing of the particular
instance of xroutine.

Examples

Examples of the use of the FE Help facilities are presented
below. The first example is from the grammar for the NSW Works
Manager. It is interesting because its Backend is not written
in L10. The rule for the delete command calls the execution
function 'wmdelete', with an explicit HELP rule name ('switch')
indicated in square brackets. If, in the Backend, a cal~ is

. made on the FE procedure 'help' with a first argument greater
than 100, the rule 'switch' will be executed to collect new
parameters as specified by the value of the first argument.
The value of that argument will be assigned to HELPCODE, which
is examined in the 'switch' rule. At the end of the rule, a
'RESUME' is executed.

CONSTANT %result codes%
gettext = 101 ,
getnewfn = 106 ,
getoldfn = 107 ,
getinteger = lS8 ,
getpasswd = 110 ,
getlist = III ,

.

note = 113 ,
yesorno = 114 ,
getofnorn = 115 ,
getproj = 126
getnode = 127 ;

delete COMMAND =
"DELETE" <"File named:"> ofn LSEL(inFILESPEC") CONFIRM
wmdelete [switch] (USERID, ofn, TRUE) CLEAR
; % END delete %

Augmentation Research Center page 97

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

switch =
(IF HELPCODE = gettext resp LSELCi"TEXT")
/ IF BELPCODE = getnewfn resp- LSEL(i"ENTRYNAME")
/ IF HELPCODE = getoldfn resp - LSEL(t"FILESPEC")
/ IF BELPCODE = getinteger resp LSEL (i " INTEGER")
/ IF BELPCODE = .getlis·t resp NULL intlist
/ IF BELPCODE = note resp NULL
/ IF HELPCODE = yesorno resp _ ANSWER
/ IF aELPCODE = getofnorn

(resp LSEL(t"INTEGER") / OPTION resp
LSEL(t"iILESPEC"))

I IF BELPCODE = getproj
resp LSEL(t"NSWPROJECTNAME") proj _ resp

/ IF HELPCODE = getnode
resp LSEL(i"NODENAME") node resp

/ IF HELPCODE = getpasswd resp - LSEL(i"PASSWORD")
) CLEAR
RESUME (resp)

% END switch.%

The second example is taken from the ARC debugger, DAD. This
illustrates a typical LI~ Backend call that results in a call
on the Frontend 'help' procedure. As is also the case in the
NLS Backend, procedure calls on the Frontend are made through a
calIon a procedure in a "middle-end", which is responsible for
packaging arguments to the target procedure, dispatching to the
procedure, and receiving and decoding any returned values.

The grammar for the DAD debugging tool has a HELP rule that
will be called if the first argument to the 'help' procedure is
of type 3. Note that it is essentially a null rule and simply
returns TRUE. More interesting code is executed if the type
specified by the first argument is greater than laa. As in the
first example, the calIon the execution functions must
indicate the rule to be executed. If the DAD Backend calls the
FE 'help' procedure with a first argument of 2, the help
grammar associated with the executive would be entered. (DAD
does not use this feature.)

% The def~ult DAD HELP rule: %
HELP dghelp =

IF HELPCODE = ghlpcode
newevent TRUE
RESUME (TRUE) .

Augmentation Research Center page 98

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

% Note that the move command rule calls Backend execution
functions and specifies that the rule "nvlrul" will be called
if the argument to the FE "help" procedure is greater than
100. %

movrul
FALSE

(IF
/ IF
/ IF

/ IF
) ;

COMMAND = IF nvl trm nvtemp _ nvltrm

i" If = nvtemp
i"t" = nvtemp
tit

" =. nvtemp
i" = nvtemp

% TAB % xdtab[nvlrul] ()
xdpound[nvlrul] ()

xdlnfd [nvlrul] ()
xd upar [nvlr ul] ()

nvltrm

% In the Backend, a calIon the frontend "help" procedure is
made in the procedure "pasnstr" %

% Set up arguments for the FE help procedure. The value of
cmlnwvalue, a DAD global, will specify the type of help.
In DAD it is always greater than la0, so the appropriate
HELP rule specified in the execution function call would be
executed. %

locstr

ialisti

astr, " " . ,
cmlnwvalue, *tstr*, *locstr*;

IF extcall(smbox, $"HELP", 2, $alist, $rlist) THEN
BEGIN
intype ELEM irlistt[l]:
instype- ELEM irlisti[2];
IF ELEM Jrlisti[3] THEN *nstr* *[ELEM irlisti[3]]*
ELSE nvalp FALSE;
END -

% nvlrul was specified as the HELP rule for all the
execution function calls in the move command rule exhibited
above. It will be executed if the first argument to the
frontend help procedure is greater than 100. The value of
that argument will be assigned to the built-in HELPCODE. %

Augmentation Research Center page 99

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

nvlrul =
IF HELPCOOE = newvalue

intype FALSE ins type FALSE
nvllst - NULL nval FALSE

nvltrm FALSE

(CONFIRM
/

[OPTION <"input mode"> inptyp <"new value">
nval tSEL (i"NVALUE")

)
nvllst: intype nvllst:_ instype
RESUME(nvllst);

Augmentation Research Center

nvllst nval

page 100

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

APPENDIX 8: Standard Control Characters for S~andard Functions

The following control characters perform special functions for
the user and are interpreted by the CLI.

<CTRL-A): Backspace character or parse state (also represented
by <CTRL-B».

<CTRL-B>: Repeat character. When used to confirm a command or
terminate a literal typein, it causes the current
command to be repeated with new arguments. .
Represented in CML by REPEAT.

<CTRL-C>: Not used (used by TENEX) •

<CTRL-D>: Command Accept. Used to confirm commands or terminate
literals. Represented in CML by CONFIRM.

<CTRL-E): ~ot used.

<CTRL-F>: Not used.

<CTRL-G>: Not used (might become the <CTRL-Z> function defined
below) •

<CTRL-H>: Backspace character or parse state (also represented
by <CTRL-H».

<CTRL-I): Tab ..

<CTRL-J): Linefeed.

<CTRL-K): Not used (used by MSG debugger) •

<CTRL-L): Invokes the NSW debugger.

<CTRL-M): Carriage return.

<CTRL-N): Not used.

<CTRL-O): Aborts an unwanted typeout or command execution in the
Backend.

<CTRL-P): Backspace typein. Used to delete the entire typein of
an argument to a command.

<CTRL-Q>: Invokes semantic help.

<CTRL-R>: Retypes literal typein.

Augmentation Research Center page 101

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

<CTRL-S>: Invokes syntax printout of part of a command or all
commands in a tool or the EXEC.

<CTRL-T>: Not used (used by TENEX).

<CTRL-U>: Option. Used to access infrequently used or dangerous
parts of commands. Represented in CML by OPTION.

<CTRL-V>: Literal escape. Allows entry of control characters in
literal typein. The character following the <CTRL-V>
is accepted as normal input.

<CTRL-W>: Backspace word or parse state.

<CTRL-X>: Abort current command specification.

<CTRL-Y): Not used.

<CTRL-Z>: Escape to NSW EXEC. Also aborts current command
specification.

1:

SPACE:

ESC~

Causes the CLI to type current alternatives, except
when? is encountered in the middle of literal typein.

In some'Terse command recognition mode, this is used
to specify second level command words. Can also be
used to terminate command words in DEMAND recognition
mode.

May be used in DEMAND recognition mode to complete
commandwords.

Augmentation Research Center page 102

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

APPENDIX 9: User Profile Users' Guide

Introduction

tou can alter how you interact with the system you are using to
fit your own equipment, use :patterns, and style by specifying
the parameters contro.lled by the User Profile tool.

The User Profile tool manipulates a data structure (called the
User Profile) that controls the behavior of the system as the
user sees it. Through commands in the tool you may adjust the
behavior of the system to suit your individual preferences.
Note that the User Profile influences only tool independent
attributes and applies ther~fore to all tools and subsystems.

The User Profile can be divided into two major parts: the
first allows you to tell what tools and subsystems you want
made available to you; the second allows you to control how you
want those tools and subsys~ems to appear. The first category
includes names of programs and tools that you may have made
available to you and some instructions on how you want. to start
your session with the computer. In the "system appearance N

category fall control characters, feedback settings, heralds,
prompts, and recognition modes.

The complete syntax of each command and a description of what
it does is provided below. The following syntax conventions
are used:

Command words are capitalized.

Noise words are in parentheses.

Alternatives and/or parameters to be collected from the user
are in all caps, with an explanation following the command
syntax.

CONTENT indicates that the system expects the user to type in
something at that point.

OK means command con.firmation (COMMAND ACCEPT or <CTRL-D».

Commands in the User Profile tool

Control (characters for terminal) DEVICENAME OK
(function) FUNCTION (character(s» CONTENT (echo as) CONTENT OK

Augmentation Research Center page 103

DEVICENAME=
Execuport
Imlac
Lineprocessor
Nvt
Tasker
Ti
Tty

FUNCTlor~=
BC
BW
BS
CA
CD
IGNORE
LITESC
OPTION
RPT
SC
SW
TAB

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

The User Profile "Control" command enables you to assign new
characters (visible or invisible) for control characters and
a new echo to serve a specific function on a specific
terminal device. Note that this command always replaces the
old entry with the new one. These control characters may
differ for different devices. The user may specify more than
one character for a specific function (in which case each of
the characters will serve the same function) and may also
assign an echo string to be typed out when a control
character key is hit.

Default Control Characters

The table below describes all the control functions and
the characters assigned to them by default. The default
echo is always NULL.

FUNCTION CHARACTER DESCRIPTION

BC AH Backspace Character

BW w Backsp~ce Word

BS p

CA D OK, COMMAND ACCEPT

Augmentation Research Center page 104

CD X

IGNORE (-)

LITESC V

OPTION U

RP'l' B

SC (-)

sw (-)

TAB 1

Feedback Mode FBKMOD

FBKMOD = Verbose /

OK

Terse

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

COMMAND DELETE

Ignore from input stream

Literal escape character

OPTION character

REPEAT

Shift character

Shift word

TAB character

The User Profile "Feedback Mode" command controls the
expansion of command and noise words. Two modes are
available: Verbose and Terse. Terse mode suppresses all
noise words; Verbose, the system default, types out
everything.

Feedback Length CONTENT OK

The User Profile "Feedback Length" command allows you to
limit the length of command and noise word echoes when your
Feedback mode is Terse. For CONTENT type in a number from
1-255.

Feedback Indenting (to be) CONTENT OK

The User Profile "Feedback Indenting" command allows you to
control the indentation preceding the command line. For
CONTENT type in a number from 1-15.

Herald Mode HRLDMOD OK

HRLDMOD = Verbose or Terse

The User Profile "Herald Mode" command allows you to control
the way heralds are displayed. Two modes are available:
Verbose and Terse. In the Terse mode no herald is typed (the
user assumes he knows where he is); in the Verbose mode
heralds are typed.

Augmentation Research Center page 105

DIA aEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

Herald Le~gth CONTENT OK'
.

The User Profile "Herald Length" command allows you to
control the number of herald characters typed by the system.
For CONTENT type in a number from l-3a.

Prompt PROMPTMODE OK

PROMPTMODE = Ful~, Off, or Partial

The User Profile "Prompt" command allows you to control the
way you will be prompted. You may set prompts to one of
three modes: Full (the system default) shows all prompting;
Partial eliminates prompting for options; Off turns off all
prompting.

Recogni tion (mode) RMODE OK

MODE
or
or
or

RMODE2

= Anticipatory
Demand
Fixed
Terse (secondary mode) RMODE2

= Anticipatory, Demand, Fixed, or Terse

The User Profile command "Recognition" allows you to change
your recognition mode. Your choices for RMODE are Fixed,
Anticipatory, Demand, and Terse. With Terse mode you can
make a further choice for your secondary mode of recognition.
The Reset Recognition command will set your mode to Terse,
Terse. '

Recognition Modes Description

You can adjust the number of characters you must type to
have the system recognize the command you are specifying.
Four recognition modes (RMODE, above) are available:

Fixed

All command words will be recognized after you type the
first three letters. You may NOT type more letters,
because they will go into the next field.

Anticipatory

Each command word will be completed after you type
enough letters to uniquely define it. You may NOT type
more than the minimum number of letters, since the
command word will have been recognized and the extra

Augmentation Research Center page 106

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

characters will go into the next field. For example,
"S~· is enough to recognize the command Set. If you
type "Set,· the "t" would be read as the next part of
the command. In NLS, the command would be interpreted
as ·Set Tenex".

Demand

Each command word will be recognized after you've typed
enough characters to define the command word uniquely.
If you are set .for Demand recogni tion, you force a
word's recognition by typing either <ESC> (Escape
character or Alt Mode) or a space <SP>. It won't take
off into the next field until you do this.

Terse

One command word is recognized for each single
character. To recognize other commands beginning with
the same character, you must first type a space to make
these commands available in a secondary mode. Four
secondary recognition modes are available in Terse
after the space. These secondary modes work like they
do when they are primary modes.

Secondary Modes

Terse Secondary mode (Terse Terse) works like Terse
~nticipatory except that you can only specify second
level command words--i.e., those preceded by a space.
With the rest of the secondary modes, after you type
the space you have the choice of all words beginning
with that letter.

Include (program/tool) CONTENT OK

The User Profile "Include" command allows you to name a tool,
program, or subsystem you wish to have included with your
system. The default does not supply any tools. For CONTENT
type in any legal program or tool name. Note: The
Userprofile tool will not make any attempt to verify the
existence of a tool or program named by the user, nor will it
check the access rights of the user to the named tools.

Entry (program/tool) CONTENT OK

The User Profile "Entry" command allows you to specify a
program or tool to be invqked as soon as you log into the
EXEC. The system default is no entry program. Note: The

Augmentation Research Center page l~7

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

User Profile tool will not make any attempt to verify the
existence of a tool or program named by the user nor will it
check the access rights of the user to the named tools.

Exclude (program/tool) CONTENT OK

The User Profile "Exclude" command allows you to exclude any
program or tool previously included in the default list.
Exclusion of the entry program or tool will leave the entry
specification empty (system default> •

Reset All OK
Reset Control (characters for terminal)
FUNCTION OK
Reset Control (characters for terminal)
FUNCTION All OK
Reset Control (characters for terminal)
Reset RESETPARAM OK

RESETPARAM=
Default (tools and programs)
Entry (tool)
Feedback

Mode
Length
Indenting

Herald
Mode
Length

Prompt (mode)
Recogni tion (mode)
Startup {commands branch address}

DEVICENAME (function)

DEVICENAME (function)

All OK

The User Profile NReset" command will reset the specified
property to the system default. (The choices for DEVICENAME
and FUNCTION are listed above, under the "Control" command.)
The following commands are special cases:

When using "Reset Control (control characters for
terminal)" to reset the control characters definition, the
user must specify the terminal device name or "All" for all
devices. A single control function for a specific device
cannot be reset. (The user may, however, replace the
specific entry with a default entry using the "Control
Character" command).

"Reset Entry" will define an empty entry tool but will
leave the previous entry tool included in the default
program/tool list.

Augmentation Research Center page 108

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

"Reset All" resets ,everything but the control characters.

Show A1.1 OK
Show Control (characters for device) DEVICENAME OK
Show SHOWPARAM OK

SHOWPARAM =
Default (tools and programs)
Entry (tool)
Feedback (mode)
Hetald (mod e)
Prompt (mode)
Recognition (mode)
Startup (commands branch address) OK

The User Profile "Show" command displays the current content
for the requested parameter. (The choices for DEVICENAME are
listed above, under the "Control" command.)

Augmentation Research Center page 109

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

APPENDIX 10: How to Write a Help Description File

Background--Help and Other Frontend User Aids

Typing the Help button or using the Help command available for
all tools provides the user with a description from the current
tool's Help description file and places him in a repeating H~lp
command. Questionmark and <CTRL-S> are technically not part of
the Help function but rather a function of the Frontend command
parser. This section contains background on Frontend Help
services.

Questionmark: (?). If the user types a questionmark at any
point in a command, the Frontend will type the command
alternatives available to him at that point. After the list
has printed he is left at the point where he typed
questionmar k.

<CTRL-S>: Show Command Syntax. Typing <CTRL-S> will provide
the command syntax for the command currently being specified.

<CTRL-Q>: HELP Button. Typing the Help button or <CTRL-Q> at
any point in a command provides a description about what the
user is doing and places him in the Help command, where he can
also ask for the meaning of other terms.

Help TYPEIN/OK. The Help command provides the most complete
online information about the tool being used. By typing in any
term followed by a confirmation, the user. will see a
description of the term, or information pointing out different
uses of the term which will lead him to the description he is
seeking. The Help command will then be ready for another term,
the number of a "menu" item followed by a confirmation, < , or
A (see below). (Capitalization does not matter.) Command
Delete <CD> or <CTRL-X> will terminate the Help command.

A menu is a numbered list of related subjects that may follow
a description in the Help command. Typing a number followed
by confirmation will show the explanation named.

Once in the Help command users can move around in the
"structure" of the Help data base. Any time after the first
description prints, the user can type < (left anglebracket)
followed by y (for yes) to see the previous view indicated or
n (for no) to choose a view before that. If the user types A

instead of < , he will go "up" instead of "back". Going "up"
lets him move up a level in the Help data base file
structure. This means that the user will probably see a more
general term and its description.

Augmentation Research Center page ll~

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

Finding a Description

The words typed by the user in the Help command or descriptions
of the command states sought by use of the Help button (or
<CTRL-Q» are matched to description names (statement names) in
the Help description file. The various description file
hierarchies are searched in a prescribed order until all
possibilities have been exhausted.

Named and Unamed Descriptions

The name of a description in a eelp file is the first word
(with no preceding characters) of the description. A "named"
description may be addressed directly by the user by typing
the word in the Help command. If any non-alphabetic
character precedes the first word of a description (including
invisible characters such as space) then it is "unnamed".
When you want to "unnameD a description place a space in
front of the first word.

Search Algorithm

kfter a term (one or more words) has been specified by the
user, it is matched to description names in a prescribed
order. The "first" search, described below, applies both to
the first word in a multiple word term and to a single word
term. When the first word is found, the search continues for
the second term, or, in the case of a single word term, the
description for that word is displayed.

The First Search for a Term

If the user is already in the Help command when he types in
a term, the branch where he is currently located is
searched for an occurrence of the description name matching
the first word typed. If it is not found and there is a
link in the current statement, the branch defined by that
link is searched. (This may be across files.) If it is
still not found the current file is searched from the
beginning to the end. If the user is just entering Help
the file for the tool currently being used is searched
first.

Index Files

Tool builders may want to have more than one data base,
with connections (links) between them. For example, you
may want to write a general data base containing

Augmentation Research Center page III

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

information pertinent to a number of tools, with links
from this file to the files for each tool. This general
data base is called an index file. If, during a search,
the first word is not found in a tool data base, the
message "searching index" is typed to the user indicating
that the index file is being searched.

The index file is specified in statement I (preceded by a
percent sign) of the tool file in the exact form of "%
index in <link to file>" (wi thout quotes) (The" i II in
"index" may be upper or lower case.)

Previous Files

If the term was not found in the index file, any files
previously viewed by the user in the current Help session
are then searched.

Searching for Succeeding Words in a Term

After the first name has been found, searches for any
succee1ing names specified in a multiple word term are
limited to the branch designated by the preceding word. If
the next name is not found, and there is a legal help link
in the statement addressed by the first word then the
branch addressed by that link is searched. If the next
name is not found there, a view of the description defining
the preceding name is displayed and the succeeding word is
typed followed by a questionmark indicating that it was not
found.

Searching for Duplicate Names

If the user re-specifies the same word twice in a row, it
is assumed that he was not satisfied with the description
at the current location and wants a higer-level

. description. Therefore the next higher search from the
last search is attempted. For example, if the current
description was found by searching a tool or subsystem
description file, when the user ra-specifies the same word
in the very next round, the index file is searched.
Descriptions at higher levels are more general and usually
point down to descriptions with the same name at lower
levels. The user can usually go directly to a specific
level description by specifying the tool name in front of
the term he wishes to see.

Augmentation Research Center page 112

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

Stopping a Search

The user can type <CTRL-O> at any point to stop a search
and receive the message "search stopped on" followed by the
word currently being searched indicating the search was
stopped before the name was found.

How to Write a Description File

This section describes the contents of a Help description file
and lists conventions to follow in creating and maintaining a
Help file. Some of the conventions are required by the
software, others are useful for maintenance. The descriptions
assume you understand NLS terminology.

Structure and Contents of a Description File

A description file for a tool or subsystem contains
descriptions of the commands available in that tool or
subsystem and the definitions of any special terms needed to
use the commands. It may also describe procedures for using
the commands, or provide scenarios for using commands to
perform specific tasKS.

The name of the description file will be the same as the name
handed to the Frontend along with the tool grammar.

The typical high level organization of a tool or subsystem
description file is as follows: the "top" level description
which briefly defines the tool/subsystem and describes what
the user can do with its commands; the link to its index
file; a "First Searches" branch for duplicate names and
spelling variations (may, be in statement one with the index
file link); an (optional) "how to" branch that defines
special terms and tells how to use the commands; and last, a
"commands" branch that lists and describes all of the
commands in the tool. In most cases you will want to follow
this organization, but it is not mandatory.

In a file, this organization looks like the following:
o Name of tool/subsystem

(brief description)
1 % First Searches Branch (Index in <FILENAME,»
2 how to use the .•. tool
3 commands in the •.• tool

Augmentation Research Center page 113

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

"Top" Description at the Head of the File

The "origin" or first statement of the description should
contain a brief description or "functional definition" of
the tool or subsystem. The first word of this statement
(with no preceding characters) must be the name of the
tool. This statement and the first line of each
un-commented statement one level below it are what the user
sees when he hits the HELP button before typing any
commands or if he confirms the Help command without
entering any term. It may also appear if he hits the Help
button while in a command state with no other valid Help
description.

First Searches Branch

The "first searches" branch contains descriptions that 1)
have no logical place in the structure of the description
file, 2) act as an index to two or more occurrences of the
same name or description, 3) are ambiguous, and 4) are
alternate spellings or synonyms. Placed at the beginning
of the description file, this branch is preceded by a % to
prevent it from being a visible menu item under the tool
description statement (see comment). It should have the
statement name "First Searches". Keep the branch in
aphabetical order to prev~nt duplication.

"How to" Descriptions

"How to" descriptions define special terminology, explain
confusing or cryptic commands, and/or tell how to do
specific tasks that can be accomplished with the tool in
language easy for the user to understand. They may also
provide specific scenarios for the user to follow. If your
file is to contain how to information, name a branch "how
to ••• n and insert the information in substatements below
it. The first line of each description should give a clear
idea about what that statement explains and make sense to
the user as a menu item. In most files the "how to" branch
precedes the commands branch, both of them one level below
the "top" description.

Commands Description Branches

The commands branch is the last branch one level below the
"top" description (i.e. tail of the plex whose source is
the top description). Insert a statement named "commands
in the •.• " followed by a general description of the
functions of the commands in that tool. In statements

Augmentation Research Center page 114

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and eLI

below this place command descriptions for every command
that appears when you type? in that tool. The commands
should be in alphabetical order by the first command word.
The first statement describing any command should have as
its first word (with no preceding characters) the command
word fo.r the particular command for which it is a
description (see below). Each command word always has only
its initial letter capitalized to indicate that it is a
command word.

Syntax: the First Line

The top line of each command description contains the
syntax for that command or command' part. This is
terminated by a carriage return. The exception to' this
occurs when the syntax will not fit in the first few
lines. In that case you may break up the command syntax
in the most logical places with carriage returns, or make
it a menu item named syntax. If you are writing about
families of commands--e.g., commands with the same

. command verb, but different nominals--the statement name
will not always be the same as the first word of the
command syntax. The example below is typical. When the
statement name is not the first word of the syntax
description, the syntax follows two spaces from the colon
following the statement name.

Show •••
Directory: Show Directory (of) CONTENT/OK
[(opt:)DIROPT] OK
Disk: Show Disk (space status) OK
Return: Show Return {ring> OK
File: Show File •••

Default: Show File Default
(directory for links) OK
Modifications: Show File Modifications (status) OK
Return: Show File- Return (ring) OK

Function Description

Immediately following the carriage return which
terminates the command syntax in the first line is the
function description. The first line of the function
description is indented two spaces. The first wor·ds of
each command description contain the name of the tool (or
subsystem) followed by the name of the command, thus:

Insert STRUCTURE (to follow) .••
The Base command "Insert STRUCTURE" ..•

Augmentation Research Center page 115

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

The tool or subsystem name should be mentioned because
the user may not know to what tool/subsystem a command
description applies.

Multiple Command Words

Some commands may contain multiple command words to
specify a tr"ee of alternatives (i.e. a single command
verb followed by several possible nominals). These
alternatives stemmming from the same initial command
word(s) are described in substatements below the initial
command. This is illustrated in the example above under
syntax.

Other Command Description Substructure

You may also wish to include statements beneath your
command descriptions containing the following
information:
example
syntax
effects
spec ial terms
parse-functions
They should be placed at the end of the branch so as not
to be confused with choices in the command.

Parse Function Descriptions

In general, there are a few built-in selections, rules
or, parse functions which occur in many commands. These
are given names always represented in all upper-case and
described in only one place. For example the built-in
selections LSEL, DSEL, and SSEL are called CONTENT,
DESTINATION, and SOURCE and are defined along with other
parse functions under a general description named
VARIABLES in a "top-level" (index) description file that
is common to all tools or subsystems using these
functions. Thus each subsystem description file is
augmented by the top-level file containg commonly used
terms.

Substructure Rules

The basic rule for" structuring description files is to
follow some logical order of classification. Look at your
file from several views; examine the relationship of
statements to those around it; and check the flow of the

Augmentation Research Center page 116

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

file from top to bottom. Although the presentation of the
information may be choppy, the ideas should follow in
logical progression.

Menu Items

The substructure of any description (menued items) should
contain only items classified by the name of that
description. The items menued below a description should
be in some logical order or in an order suggested by the
description itself. Do not place (under statement n)
menu items containing links to items which in turn have
menu items which point to statement n. This is
unsettling to users who think of the menu items as
logical substructure classified under the branch node.

The first line of a description cannot be more than 64
characters long and should be terminated by a carriage
return if there is a second line. It should make sense
to the reader when seen as a menu item.

Because long menus are time-consuming for the user, it is
generally a good idea to avoid using them for simple
links to terms that already appear in the description
they follow. For example, you would not menu a link to a
single word term in the same file that clearly stands out
in the description. You would, however, menu a link to a
multiple word term located in another file that the user
would not recognize as a possible typein. Using "See"
rather than substructure also saves space and time.

Predecessors and Successors

Links to predecessors and successors to a description
statement should not be included in the substructure of
the description: instead, place them in a "See" list
along with other terms of reference for that description
and terms not logically classified by that node. In this
way, only items properly classified by a branch node will
be in its substructure and yet the surrounding items can
be referenced.

Referencing: Links, "See" and "See also", and Compare

Links

If descriptions are written properly, you can avoid much
redundancy by linking from one concept to another. Links
may point to concepts in the same file or to concepts in

Augmentation Research Center page 117

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to. the CML .and CLI

other files, particularly index files. This is crucial
to effectively update the Help descriptions when changes
are made in the system. Description files containing
links take on the qualities of a network.

Words in links are always all lower case to facilitate
substitutions. Link delimiters everywhere must be ti<
for the left and >t# for the right. Only one link is
taken. If you link to a statement that contains a link
to another statement, the second statement you link to
will not appear. The second link will not be taken--it
will look to the user as if nothing is there.

There are several possible fields within a link though
usually only a description name is used surrounded by
delimiters. Internal fields are seperated by a space as
follows:

tt[QSPECS]<filename, namel !name2 !name3>##

Some examples of links are: ##<editing>tt tt<insert
!string>tt ii[Cl<publication, directive !blank 19yes>##

QSPECS: (query viewspecs). QSPECS are special
viewspecs enclosed in square brackets and located
between the left double pound sign and the left link
delimiter of a'link. These are seldom used. They are
mentioned here for completeness:

N = only menu "number" items, then ask "more?".

C = Columnate the names of the menued items: text
associated with the menu items is not displayed until
the menu item is chosen.

File name. File names are included only in links to a
different file. If you are linking to a directory·
other than the default directory for links, the file
name must be preceded by the directory name.

Name field. For single word terms only one name is
required. For multiple word terms the first name
defines the branch to be searched for the remaining
name(s). Second name elements in a link must be
preceded by an exclamation point. This will not cause
the link to work like the second name searches in the
Help command, but it will limit the search to the
branch defined by the first name. You can include more

Augmentation Research Center page 118

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

than three name elements after the search field, but
this is not likely to be necessary.

Illustration of Link Searching

For the link tt<filename, namel lname2 !name3>tt the
following search is made:

< FILENAME >
namel

name2
name3 *this statement will be displayed*

Statements Containing Links

Statements that are to be menued but contain only a
link (and brief text to tell the user what he will
find) should have preceding text on the first line and
the link on the second line thus:

Insert STRING command
ii<insert !string>tt

This causes an unfortunate wasted blank line. but
without following this convention the user would have
to wait for the link to be searched and the first line
of the addressed node displayed before he could see the
rest of the menu.

"See" and "See also:"

Use "See" or "See also:" (no quotes) to any reference
term that a) is not logically classified by the name of
the description, b) disturbs the order of the menued
items, or c) is not clearly mentioned in the description
such that the user would recognize it for a term he could
type in. If See" is used to point to primary concepts,
"See also:" to secondary concepts.

conventions for See and See also:

These references are usually located at the end of the
node. They are treated as complete sentences with the
understood subject If You": capitalize the first letter
of the sentence, terminate with a period. A colon
follows "also" but not "See". The terms being
referenced should have their normal capitalization and
be separated by commas. When you want to specify what
information the reference points to and your sentence

Augmentation Research Center page 119

DIA BEV ANDY 3-FEB~77 14:32 28744

A Guide to the CML and CLI

does not begin with "See", adapt conventional
capitalization and punctuation.

Compare

In some cases you may wish to have the user compare the
term you are describing with another term. To do so, use
·Compare" in the same way that "See" is used to refer the
reader to the term.

Backlinks

References (links and terms following "See" and "See
also R) should be manually Rbacklinked". This is done by
going to the location referenced by the "See" or link and
inserting a statement as the tail of the substructure,
unless a backlink s.tatement already exists. The backlink
statement should follow this convention:

% backlinks: < ••• >, < ••• > etc.
where the text within the delimiters points to the
statement containing the link or "See". Backlinks for
references to locations in different files have first
priority.

Pointing to an Unnamed Statement in a Backlink

If the place of reference you wish to point to is in an
unnamed statement, use viewspecs or infileaddress
elements in your backlink to point to it. For example,
if the reference is an unnamed statement containing a
link, you could show it by pointing to the statement
above it and turning on viewspecs "ebt", or by using
the address element ".d". If you are sure the original
SIDs will never be renumbered, you can link to the SID.
When the place of reference is difficult to find, you
might want to include a comment following your backlink
to help locate it.

Duplicate Names

Descriptions with duplicate names can exist in the same
description file, except when the duplicate name is the
same as the first word of a command description. (In this
case you cannot duplicate, because the Help button will not
find the command's description.) To reach a duplicate
name, you must know which comes first and the name of a
unique branch in which the duplicate statement is located.
Duplicate names should be avoided whenever possible because
the user must type in two or more words to reach the term

Augmentation Research Center page 120

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

in the Help command, and as a description writer you must
remember if it needs two (or more) words when you want to
point to it. If it is unique, one word is all that is
required.

Choices for Handling Duplicate Names

If you canno't get around using a duplicate name, you have
a choice among one of the fol.lowing:

First Searches branch. Place the duplicated name in the
First Searches branch. Below the name insert statements
describing the different uses of the term with links to
its different locations. Although this is the easiest
choice for the description file maintainer, it cannot be
used for names that are the same as tools. In index
files the first tool or subsystem name must link directly
to the file containing the tool/subsystem if the user is
to be able to get a command description by typing the
tool/subsystem name followed by the command name.

Combine descriptions. If the two descriptions are not
conceptually much different they should be merged. The
description branch should be placed in the location where
it will most often be read, and links to it should be
placed in the other location{s). This not only solves
the duplicate name problem, but is useful in general to
avoid duplication.

Reference second description. In the description of the
first name of a duplicate name in a file, provide a
reference (link or RSee •.• R) to the second description
with the same name. Remember to use the right series of
words when specifying the term.

Renaming. The only reason for using these methods is
that the duplicated name is necessary for a good
intuitive name. Otherwise, the second concept should go
unnamed or be renamed, thereby eliminating any
duplication. This can be done by hyphenating two words
or adding a new term. Care should be taken when adding a
new term that the description it names will be meaningful
to the user who might type that term out of the blue. If
there are other meanings- for the new term, you are back
to the original duplicate name problem.

Augmentation Research Center page 121

DIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

When to Duplicate

Whenever a new statement name is created, its description
must be examined from the point of view of a new user who
happened to type the term hoping to get an understanding
of its meaning. If the new statement name is being used
in a very special case, another describing the more
general case must be added in the appropriate branch.

Every statement name that has a possible ambiguous
meaning to a naive or experienced use~ should provide a
choice for or otherwise explain the ambiguous meaning.
This is usually done by adding it to the First Searches
branch and linking off to where the name normally occurs.

Duplicate Names Across Files

Some names will be duplicated across description files
rather than in the same file. If your term means
different things in different files, you may wish to
place the duplicated name in the index file with links
off to its definitions in each file.

Update Compact

The Help command is assured of finding the proper
occurrence of a duplicate statement name in the
description file only if one of the "choices" mentioned
above was followed and the Base "Update File Compact"
command is used after additional names have been added.

Comment Statements

There is a facility for making comments either visible or
invisible to the user. Preceding a statement with a right
square-bracket] means do not menu (number) this
statement-- instead show all of its lines to the user of
the Help command. Substructure under such a statement
cannot normally be seen by the user. It is seen only if
the substatement is named and the user happens to type the
name.

Preceding a statement with a percent sign % means don't
show this statement to the user when he is using the Help
command. This is useful for making comments to yourself or
other description file builders. You can see the statement
when you are not using the Help command. You can also
place under an invisible comment named statements that the
user can find only if he types the name. These are placed

Augmentation Research Center page 122

OIA BEV ANDY 3-FEB-77 14.: 32 28744

A Guide to the CML and CLI

in a statement whose source is a statement beginning with a
percent sign.

Style

Point of View and Audience

Use second person slngular present tense. This familiar
form provides directness and eliminates the gender problems
and space consuming gymnastics necessary for third person.
write the description as if you are standing over the
shoulder of the user and answering a question. Try to make
all descriptions clear and straight-forward, avoiding
jargon as much as possible. For basic terms and concepts
gear your description to the naive user. For more advanced
descriptions, you may want to assume more knowledge on the
user's part.

Each description must make sense from five directions:
1) in menued sequence with its surrounding statements
2) typing its name out of the blue to get a definition

of the term
3) typing its name as referenced from a "See"
3) from all the possible places that link to it
5) from the point of view of the person who just pushed

the HELP button.
Description file builders tend to favor number 1 when in
fact" because of the limitations of the Help accessing
system, it is the least used. This is by far the most
difficult, and least understood, area of description file
development.

Definition

In general, the descriptions of every term should start
with a glossary-type definition using as little jargon
terminology as possible. Only in such cases where the
definition is an incomplete sentence may the first word of
the second line of a description be lower-case.

Augmentation Research Center page 123

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

Runon Words

In many cases two words will be run together as one or
hyphenated to maintain uniqueness, or because statement
names may not contain spaces. For runon words that are
statement names, place the more conventional spelling of
the word(s) in the First Searches branch using a statement
and substatement, linking to the description of the
term--e.g.:

lA run
lAl on: runon words

ii<runon>ii
(This may not be practical if it creates a duplicate name.)

Capital ization

There are three kinds of capitalization: capitalized
(initial upper), all caps, and all lowercase. Command
words and names of things such as director ies. ·should be
capitalized. All caps, as the only highlighting facility
available online, should be used sparingly. It is reserved
for acronyms, initials (such as prompts), and global
variables or parse functions as specified in syntax
notation. Words, phrases, or sentences beginning a
description should be capitalized according to normal
grammatical rules: only capitalize sentences. If in
doubt, use lowercase. (Note that this file does not
necessarily follow these rules since it is written for both
online and offline use.)

Augmentation Research Center page 124

OIA BEV ANDY 3-FEB-77 14:32 28744

A Guide to the CML and CLI

REFERENCES

1. Andrews, Donald I., Beverly R. Boli, and Andrew A. Poggio.
An Introduction to the Frontend. Augmentation Research Center,
Stanford Research Institute, Menlo Park, California. February 3,
1977. (28743,).

2. Andrews, Donald I., Lawrence L. Garlick, and Andrew A.
Poqqio. Frontend System Documentation. Augmentation Research
Center, Stanford Research Institute, Menlo Park, California.
February 3, 1977. (28745,).

3 •. Shantz, R. E., and R. E. Milstein. The Foreman: Providing
the Program Executi~n Environment for the National Software Works
(preliminary). Bolt, Beranek, and Newman, Boston, Mass. and
Massachusetts Computer Associates, Wakefield, Mass. March 31,
1975.

4. White, James E. A High Level Framework for Network-Based
Resource Sharing. Augmentation Research Center, Stanford
Research Institute, Menlo Park, California. December 23, 1975.
(27197,)

5. White, James E. DPS-l~ Version 2.5 Programmer's Guide.
Augmentation Research Center, Stanford Research Institute, Menlo
Par k, Cal if 0 r n i a • De c emb e r 23, 197 5 • (26271 ,)

6. Andrews, Donald I. Line Processor: A Device for
Amplification of Display Terminal Capabilities for Text
KAnipulation. AFIPS Proceedings, National Computer Conference.
June 1974. pp. 257-265. (2~184,)

7. Hardy, Martin E. Micro Processor Technology in the Design of
Terminal Systems. Proceedings of the IEEE COMPeON, 1974.
(20185,)

Auqmentation Research Center paqe 125

