§ARC=APP 4=DEC=75 20125 34044
‘ | | 34044 '

NLS Proarammers? Guide

content Analyvzer
L10 Language
Command Meta Language
NDDT

Augmentation Research Center

5 DEC 75

Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, California 94025

« SARC=APP 4=DEC+75 20325 34044
NLS Programmers’ Guide ARC 34044 Rev, & DEC 75

Sent to COM 5«DEC=75, Remgove journal directives before using as
printfile, Obsoletes 33522, NDM

page 1

, SARC=APP 4«DEC-75 20225 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers*® Gypide

page i}

&ARC=APP 4=DEC=75 20125 34044
NLS Programmers® Gpide ARC 34044 Rey, § DEC 75
Table 0f Contents

TABLE OF CONTENTS

INTRDDUCTIGNQ'QQQ!olgaq!oqnaoqqpogcoovoﬂoncqg.o'wn!oqen-o!wz
PART ONE: Content Analyzer PatternS.....q..,........,..;...B

section 13 InterUCtionptwuQltpﬂonﬁvpp'lQQOOQ’!!lﬂv999!3A
SeCtion 2; patternsloﬂbippQ!.Qnﬂ'!'!'!l!!!oOO‘QQQQQQPQOSB
Section 3: Examples of Content Analyzer Patterns,,,,.,,3C
Section 4: Using the Content ANAlYyZer,,..eeecesnrossessesdD

PART TW0Ot: 1Introduction to L10 ProgrammMinGsecescecsnsccesnsnasd

Section 1: Content Anajlvzer Proqrams....o....-,...,..,.4A
Introduction’QC'P!.Q‘.!‘IQ!'_’Qk'.lllﬁ’l.’!ﬂll!"!.‘.QQ4A1
Preram StructurebpqpQo'p’ﬁﬂ@!.%!.."'QQ.O"QQ.QQCQQ4A2
Procedure Structuregpontseg'g.-gpnaooouq-ve!!!ovpogg4A3
Example:o!latt!lo!c--apgq!sc-Qo!-waopqou‘yonutatotlﬂ4A4
Declaration Statement S, ,.rseecoonsoncesvsencassntnensIAS
BOdy Of the 9r°cedure9!’O!..QQ.!QQOQOOQOO?O!QQ.'QQQQ4A6
Programming Style: File Structure,,.eeeeessansnnsesceadA’
Using Content AnalyzZer ProOgramsS,...eccossesesonarscssIAB
prOblemleOQQ?QQOQQQOQQQQ!l""ﬂ!.p'."'g.g@!'lQQQ.Q4A9

Section 23 Content Analyzer Programs! Modifying,,..e..+4B
IntrOduCtionﬂﬂﬁQ"Ql"l'lﬁﬂ'.ﬂ'ﬁ'g.,.lQﬂ.,.ﬂ.'Q.iQ.!4Bl
String CQnstruCt10angaos!pooo-aopﬁ?!ﬂgocqqogsiqen's432
Exampleznwa!a?!!cnoooa.co!!nqaaqq-ng-9’,-0:0.0;99&.9433
More Than One Change per Statement,.,.osecsessrerssnsdBéd
controlling which Statements are Modified,,.,e.eeeq04B5

Pr°b1Qm599anqqoqn,o-oqgoqooquqaq»uoeqnq-qqngcoggcn436

PART THREE:! BﬂSic L10O prOgYaMMiﬂg;..ng.q.oaq;ooégonvnnn§915

Section 1: The User Program Environment,ssecsesvssnnseedA
INntroduUCtioN eosesenensssnrosscsscsnnsrransossasnrsannsdhnl
Th@ sequence Generatoru!yQo'-chgooo.oneotttqeqngqqquz
Content Analyzer FilterS,,.oeseneonccernenesnnarnanss Al
The portrayal Formatterﬂﬂﬂﬂ.ﬂﬂ.QQQ‘Q.ODQ'Q.QQOQQ’9915A4

SECthn 2: PrOgram StrQCtureﬂQlQchotooggooqpqg,..q;qg.sﬂ
An NLS user prodgram consists of the following,,,....5Bl
An example Of a simple L10 pProaram,,.eeeesecenensscsedB?

SectiOR 33 Daclarationsaogoq9onncQqnoque!-oglyggvuooﬁuﬁc
IntrOdUCtionpoc-onp-.v-%ooqqqqoqqnooo!QQo!@ﬂqon'!!ﬂ'sCl
variables!'!.'.QQQ..Q!yp-!"!Q.QQQIQ"!QOQQ'!Q.'!O!! Cz
Simple variables.‘l.!'!'!!'.!.CQQQ.!.l".’!'p..‘!’l!sca
CONStantS o nanerntenessastanencrsassorstascsnsanneassdCéd

Arraysn!!v.!nmwQ.q.-.vonoqnq-!QQ'O....QOqugcq.pqqcoscs

page iii

SARC=APP 4=DEC=75 20325 34044
ARC 34044 Rev, 5 DEC 78 NLS Programmers’ Guide
Table of Contents

Text Paintersunwgquc;-onqowccopoq.q-a!-ooqnqQ-;ocpasca
StringsanQOQQQOanoo-Q-nq!on-o-nng-oco!taoqoa!oocannsc?
ReferenCQd variablesu;-qcoonpcoqaoon-po’;nqouooncan'sca
Declaring Many Variables in One Statement,....,.sses5C9
DEClarlng Locals.g-ypﬂp'v!!vplqonocp-qowpopqqlprQQSCIO
SECtion 4: Snatementsopﬂnﬂaanﬂl“q,.n.oOQQUOQQQQQQQQOQQSD
IntrQGUCtion.'QQ!"Qi!pl’l'ﬂ!!’ﬁ'Q@QQ'!!.Q!‘Q!.QQ!’RsDi
ASSiqnment-uonp'uoqwouacano--oopq-.'-.-n.anunaotaqno 2
BUMP Statement!!'!!.'Ql!!!'l@"'!g.oo'accoqoqQQQQDQQ5D3
IF statewentg!atticowoo#uQn.QQ-ocuon..8!09'09'0'!09!5D4
CASE Statemeﬂt,loﬂ90.9.!9!ngluagcogo-a,nc'gnqngqqpnsnﬁ
Loop StatementgooﬂQtppr!!n’ovyQQQ.Q.OQOQp.!OQ.Q!QﬁQSDﬁ
WHILEOQDDQ Statementnio!‘!OQ‘"?Q'Q!D'QO!'C'!!C!Q’!!SD?
UNTIL,,,DG statementqnoé#s.qguc!qq-g--qo-nnqg!qocwq:sns
po,,,UNTIL/DO,, ,WHILE Statement,,,.ceceevercaoreqsnssedD?
FORQQQDG Statementg;gq.gon-aqooQQQOQ»OQQQQ!QOQQQDQQSDlo
BEGIN,, ,END Statement,,,oveeeseensosecnssosnssresseadDll
EXIT statementqgo!oﬁvqo!poa!otq?lqowpni!-qnop'atnaﬂsnlz
REPEAT Statement!WQQQQO!QQOODQP!!!‘?"Q'!Q’QQ!QQQQQSDla
DIVIDE Statement.I!9.‘9!!'0!!‘.!ﬂ!!...,Q.'Q.'!!'QDQSDI4
PROCEDURE CALL Statement,,.eeseesecescssesenssossssdD1B
RETURN StatementgqqqcvpnncnnuoonqoQQ.QOQ.»:Q!Q.Q:Qanis
GOTO Statementn’nqnn¢»p9ogqoqQuwﬁquq.oqlqaacqooncansnl7
NULL Statemant"QOOCOQ0'9!onoQnpocpnuu@qol-ntna!pQ!SDls
sectlon 5' Expressionsl“.!’ﬂ.’%,'QQDI.Q!R'.IQQIQ"Q..'SE
IntrOdUCtIOﬁ.,.,,,..,,,,...,,,.,......,....,.,,,,..,SEl
prlmitives!.l"ﬂ!!l'!ﬂ.!".q.ll,l'l.nl'..l.'.’g!#!ﬁ'sm2
Dperators!ﬁDO’D'!OQ»:Q...Q-v-!uviw---tav.QQQGQQQQQQQ E3
Ex?re551°ns!0!0'.|'l.ﬂ’li!QQC!QQ!!ol.o"..l!ﬂ""’!'saq

Section 61 String Test and Manipulation,,.c.eesceensensedF
IﬂtrOGUCtiOﬂ,..,,,,..,.,..,,.,.,,.,,..,....,,..,,,.,SFi
Current Character Position (CCPUS),eeevsraresasnnsnsedF2
FIND Statement!ﬁ!’Q"!Q'OQ’!jQOQQQP!-QQQQDQQQOQOQQQQ5F3
FIND Patterns.sﬂg'wtp!n!‘!mna’!nqqttc-»?qtqunnoQ!wQ!5F4
String Construcgionnmlmtq!n9Q0t1n009ﬂ9'000'!!!tm29a05F5
ExaMple:aoulwn-antucononpQQQQQ-no-QQCQQ!Q-QOQQQJQQ!P5F6
More Than One Change per statement,,,,,,,,,,,...,,,,5?7
Text Polnter Comparisgnsl'!""!!,"l'QQ!'!!!QQQQ!!!SFB

Section 7: Invocation of User FlltersS,.eseeseserennsssedC
Introducriont'-nt!!OO’@!Q!!QQQIQQQQOAQ'!QOQQ!!!!!!OQSGl
P:OQPams SuDSYStemlF!ﬂ!!’Qp!0QQOQ!l'ﬂ!'QOQl!Q!!Q!Q!QSGQ
Examples of Usar‘Pngrams oqoowelwoqo;OchQQQ!QQQQQQSGB

page v

SARC=APP 4~DEC+75 20825 34044
NLS Programmers’ Gyide ARC 34044 Rey, 5 DEC 75
Table of Contents

PART FOUR: interactive 110 Prcgramm1n9g.,unq-01;593-0o9§0mﬁ6

Section 13 IntrOduction,,,.,,,,,.,.,.,,,,,.,.,,.,.,,.,,SA
Section 2¢: Command Meta Landuage (CML) ,seeevrcccnennseeelB
Introaucnion"..q!q'nQQQQ"Q!QQQ!.O!!'!O."QQ!.QD0!1681
ProgramfstruCture-.....q.-.q,-.-.q...,,...,.,.,n.-.gﬁaz
Subsystemsnkyvvtongip!.t!l'gg‘OQQQ'QQ!Q'.Q.'O!Qltqa.ﬁa3

Rulesw’nqtﬂﬂgqunqu.quﬂvinynpogngcool!’u'."'.!!!!!684
DeClaraticnSQog:.pqop--gaw--oo-ooq.o-ono-'oamvoovquﬁas

CML Elementsno-'QOnptpo-:Qgo;.nowgqoooaﬁnﬂpcaﬁgvpnnqaaé
Sample CML progtamp9pa'o-oogqqo!q!:ovnatola'sﬂoao9'Q6B7
Section 3: L10 Execution PTOCEGUTQ$,,,.cqp-qoo!p-c»gnqoﬁc
Section 4: Additional IL.10 Capabilities,,ceesannvsarserabD
InterUCtionl!pQQQOOQpoQt!pdnqonoontnoﬁQOOCQQOOQQQDQ6D1
Moving Arocund Within NLS FilesS,.peusessencensernesssbD?
Calling NLS COmmands,...,-.....,---..-.-.q-e-o......593
unening ?iles'DQOQ.OQQ.!Q"'.OQQ.'.'.'Dl‘..'QQ.'DQ‘P6B4
Displaving MessaQQSQ.9.9..-o¢qqu-.o-opn-o-poqoucwcvsps
Ssetting Up for Display Refreshing, ,vceeecccsacesanssnsa®D6
Other Useful ProceduUresS,,ccescesevransssscscscasnssnebD?
Globals Qf IntereSta-ouqan-onocnoooooowc-o-QGQqsooaq6Da
Section 8: (Creating and Using Attachable Subsystems,,,,6FE

PART FIVE: Advanced Programming Topics,.,...g...,....g....i7

Sectlion 1: Error Handiina == SIGNALS,,.e00se0s00s0sepee’A
Section 232 NDDT Debquing,,.......-...,.na...........».75
Introduction.oqout.caooaaopapwcpnqppco!choinaoocoonvﬁl
Accessing NDDT..Qqooap-g-w-pnongoco-.-pououucccccn--732
NDDT Address EXpressions,..eeeeessssceracscessansesslB3
Single'ﬁord variables‘gq.qg-osunnnoooogQ.oooqcoaqnnv7g4
string Variablesgo..,.......,....-...a.....-.-.;--;.785
Records""”"'.'.'...’.'..".*'.‘l."'.'l'..!"”“?BG
Built in NDDT SYMDBOlS,,,eesceseesencaasnascsnsanaonslB7
pecial CharaCteT cammandsppno»otonQOQOv---n#l'!!"’758
Traces and Breakpaints,.....................g...q... B9
Lio Procedures.;.:n....q.......g.............o..ogo751°
$Ymb015,,,...g.,.g........,........gq,ne.o-nqu.-ang7311
Scanning for Contentgg.mquuigoomqoi-puQ.oo..'.l!!o7312
section 3: writing CML Parsefunctions,..ceeveenssacsnene’C
Section 4t Calculator Capabilities,,...eesevessreaneenssl!D
IntTOductian,p,pqg,.,.ggqgcqyonpgopgocupqoﬁggcoq'nqn701
Converting String to DoublemPrecision Floating,.,..,.7D2
Converting Floating Point to String,.ceesevccescncase’DI
Calculations with Foating Polnt, ., cecensevescresseanlDéd

page v

&ARC»APP 4~DEC=75 20:25 34044
ARC 34044 Rey, 5 DEC 75 , NLS Programmers’ Guide
: Table of Contents

Section 5: Fields and RecOrdS,seesnscassenssreseonasnrsnaselk
Section 6: ~Stacks‘and Ringsqonuvc;q-cqogqon-gpqo..,p.'g7F
Section 7: Using the Sequence GeNerator,eyecesssereness’G
Introauctiun'QQlOQQ’QR.’.P..’."!'0".'!!..'.'_'.!.&%761
COQROUtine EffeCt.QOQQQQ."Q.QOQQ.QQ!.!QODOQQQOQQ,QQ”GZ
Sequence work Area".,.’.".’.,“..........’...’.,,‘..763
Displayinq Str‘ingsl’QQ.QQ'.Q"."...0.‘].!Q"'.QQ"’7G4
llsina sequencesﬂkl.Q'!l"QOQ.!Q9!0.'.9’!'.0’,.0.‘_.0‘9765
Section B: Conditional Compiling, ,eeesacescsessconcnceceselH

ASCIT 7=B1T CHARACTER CDDES.;,.q‘pg..QQ'..O'QQOCOQQ'.,O.;.Qﬁs

page vi

&ARC=APP 4=DEC=75 20:25 34044
NLS Programmers* Gyide ARC 34044 Rev, 5 DEC 75
Introduction
INTRODUCTION 2
NLS provides a variety of commands for file manipulation and
viewina, Editing commands allow the user to insert and change the
text in a file, Viewing commands (viewspecs) allow the user to
control how the system prints or displays the file, Line
truncation and control of statement numbers are examples of these
viewing facilities, 2a
Occasionally one may need more sophisticated view controls than
those available with the viewing features of NLS, 2b
For example, one may want to see only those statements that
contain a particular word or phrase, 2bl
Or one might want to see one line 0f text that compacts the
informatjon found in several)longer statements, 2b2
One miaht also wish to perform a series of routine editing
operations without specifying each of the NLS commands over and
over again, or bulld commands for specific applications, 2¢
User=written preoarams may tailor the presentation of the
information in a file to particular needs, EXxperienced users may
write programs that edit files automatically. 24
User=-written programs currently must be coded in ARC’s
procedureworjented programming language, L10, NLS itself §is coded
in L10, L10 is a high=level language which must be compiled into
machinenreadable instructions, This document describes L10,
programs which interact with users additionally use a language
developed at ARC called command Meta Language (CML), described in _
part Four of this document, 2e
This document describes three general types of programs: 2f
~=simple filters that control what is portraved on the user’s
teletype or display (Parts One and Two), 2f1
==programs that may modify the statements as they decide
whether to print them (Parts Two and Three), 2£2
~=those that, like cOmmands, are explicitly given control of
the job and jnteract wjth the user (Part Four), 2€3

yser programs that control what material is portrayved take

paqge 1

&ARC=APP 4~DEC=75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Gulde
‘ Introduction

effect when NLS presents a seguence of statements in response
to a command like Print (or Jump in DNLS), 2fF4

In processing such a command, NLS lo0Ks at a sequence of
statements, examining each statement to see if it satisfies

the viewspecs then in force, At this point NLS may pass the
statement to a user~written prodgram to see if it satisfies

the requirements specified in that program, 1If the user

program returns a value of TRUE, the (passed) statement is

printed and the next statement In the sequence 1s tested; {if
FALSE, NLS just goes on to the next statement, 2f4a

While the program is examining the statement to decide whether

or not to print it, it may modify the contents of the

statement, SuCh a program can do anything the user can do with

NL.S commands, , 2€5

For more complex tasks, a user prodgram function as a
specjalwpurpose subsystem havind (in addjtion to the may
supervisor commands) one or more commands, (Once such a program
is loaded, it can be used just like any of the standard

subsystems, (The MESSAGE proqgram is an example,) 26
This document is divided into five parts: 29
Part One is intended for the qeneral user, 291

It is a primer on Content Analyzer patterns, allowing the

NLS user to set up simple vet powerful filters whrough which

he may view and edit files, This does not involve learning

the L10 language nor programming, This section can stand

alone, and the general (if somewhat experienced) NLS user

should find it very useful, 2g1a

Part Two is intended for the beginning programmer, 292

It presents a hasty overview of L10 programming, with enough

tools to write si{mple programs, This {s intended as an
introduction for the beginning user programmer, who we

assume is reasonably familiar with NLS (its commands,

subsystems, and capabilitles) and has some aptitude for
programming, : 2g2a

Part Three is a more complete presentation of L10, 293
It 1s intended to acquaint a potential L10 programmer with

enough of the language and NLS environment to satisfy most
requirements for automated editing programs, Many of the

page 2

SARC=APP 4~DEC=75 20:25 34044

NLS Programmers*® Guyide : ARC 34044 Rev, 5
Introduction

concepts in Part Two are repeated in Part Three so that it
may stang alone as an intermediate programmer’s refarence

guide, This is the section in which to begin looking for

answérs to specific questions,

Part Four presents more advanced L10 tools and an introduction
to CML, allowing command syntax specification,

This should give the programmer the ability to write
programs which work across files, which move tphrough files
in other than the standard sequential order, and which
interact with the yser, It allows the programmer to build
user~attachable subsystems with commands looking very much
like standard NLS facilities,

Part Five presents a number of subjects of interest to the
advanced L10 progammer,

We suggest that those who are new to L10 begin by acquiring a
thorough understanding of Part One, Then Part Two should be
studied one section at a time, pausing between sections to try
out the concepts presented by actually writing patterns or
programs that put the new ideas to experimental use, Actual
experience is of at least as much value as this tutorial,
Tutorial guidance should be requested from ARC through your
architect, If you have problems at any point, vou should get
help from ARC before proceeding to the next section,

Note: For syntactical correctness, some examples include
constructs not yet defined in the text: they will be
discussed soon thereafter,

For examples of user programs which serve a variety of needs,
examine the attachable subsystems in the <PROGRAMS> directory and
their descriptions in Help, For information about commands
mentioned, ask for the programming subsystem with the NLS Help
command,

DEC 7%

293a

294

2g4a

295

2936

2g6a

2n

page 3

i &ARC=APP 4-DEC»75 20325 34044
ARC 34044 Rev, 5 DEC 75 ‘ NLS Programmers’ Guide
Part One: Introduction

page 4

- S SARC=APP 4=DECe75 20125 34044
NLS Programmers* Guide ARC 34044 Rev, 5 DEC 75
Part One: Introduction ‘

PART ONEs Content Analvzer Patterns 3
Section 1: Introduction la

Content analysis patterns cannot affect the format in which a

statement is printed, nor can they edit a file, They can only

determine whether a statement should be printed at all, They are,

in a sense, a filter through which youy may view the file, More

complex tasks can be accomplished through programs, as described

later in this document, 3a1

The Content Analyzer filter is created by typing in (or selecting

from the text in a file) a string of a special form which

describes those statements which will pass through the filter,

This string is called the "Content Analyzer Pattern", Each

statement is checked against the pattern before it is printed:;

only statements that are described by the pattern will be printed, 3a2

Some quick ekamples of Content Analyzer Patterns: , o 3a3
*C $LD ") will shbw all statements whose first character is an
open parenthesis, then any number of letters or digits, tnen a
close parenthesis, ‘ 3Ja3a

{("blap"] will show all statements with the string "blap" L
somewhere in them, » ‘ 3al3p

SINCE (3=JUN=75 00:00) will show all statements edited Ssince
June 3, 1975 : ‘ ; ‘ - 3a3c

The next part of this section will describe the elements which

make up Content Analyzer Patterns, followed by some examples, The
final subject of this section is how to put them to use," ‘ 3a4

page 5

| | §ARC=APP 4-DEC=75 20125 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Guide
Part One; Patterns

Section 2: Patterns 3b

Elements of Content Analyzer Patterns ‘ 3b}

Content Analyzer Patterns describe certain things the system

must check before printing a statement, It may check one or a

series of things, Fach test is called an element; the many

possible elements will be described below, 3bla

The Content Ahalyzer searches a3 statement from the
beginninag, character by character, for described elements,
As it encounters each element of the pattern, the Content
Analyzer checks the statement for the occurrence of that
elements if the test fails, the whole statement is failed
(unless there was an "or" condition, as described later) and
not printed; 1if the test is passed, an imaginary marker
moves on to the next character in the statement, and the
next test in the pattern is considered,

For example, if the next element in the Content Analyzer
pattern §s "LD", the imaginary marker will move over tpe
next character and go on te test the next element of the
pattern only if the next character is a letter or a digit:;
otherwise the whole statement falls to pass the filter,
The pattern may include any sequence of the following elementss
the Content Analyzer moves the marker through the statement
checking for each element 0f the Partern in gyrn: ibib
Literal String elements 3blc
¢ == the given character (e,dg, a lower case ¢)

"string" == the given string (may include noneprinting
Characters, suCnp as spaces)

Character class elements | | | Ibid
CH == any character
L == lowercase or uppercase letter
D == digit
UL == uppercase letter

LL == lowercase letter

page 6

SARC=APP 4=DEC=75 20:25 34044
NLS Programmers® Guide ARC 34044 Rev, S DEC 7%
Part One: Patterns

ULD == uppercase letter, or diagit

LLD == lowercase letter, or digit

LD == lowercaSe or uppercase letter, or digit

NI.LD ~= not a letter nor digit

PT == any printing character (letters, digits, punctuation)

NP == any nonwprinting character (e,qg, Spaces, control
characters)

special non=printing character elements 3kile
SP == a space
TAB == tab character
CR == a carriage return
LF == line feed character
EOL == TENEX EOL (end of line) character
ALT == altmode character
Sprecial elements - 3pif

ENDCHR =» beginning and end of every NLS statement; can‘’t
scan past it; not considered a character

TRUE == is true without checking anything in statement (used
with OR constrycts, as described below)

iDn id «=» statement created by user whose jdent is given

i1D# 14 == statement not created by user whose ident is given

BEFDRE (det) == statement edited before given date and time

SINCE (d=t) == statement edited since given date and time
E.g, BEFORE (1 OCT 1974 00:00)

The date and time must both appear in the parentheses,
It accepts almost any reasonable date and time syntax,

page 7

&ARC=APP 4«DEC=75 20225 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmersf® Guide
Part One: Patterns

Exanples of valld dates:

17=APR=T4 17 APRIL 74
APR=17=74 177571974
APR 17 74 5/17/74

APRIL 17, 1974

Examples 0f valid times:

1212213 ' 1234:56
1234 1:56AM
1:56=EST 1200N00N

16330 (i,e, 4:30 PM)

12:00:00AM (i,e, midnight)
11:59:59AM=EST (i,e, late morning)
12:00301AM (i,e, early morning)

Scan direction 3big
< =~ set scan dlrecticn to the left
> == set scan direction to the rignht
The default, re~initialized for each new statement, is

scan to the right from pbefore the first character in the
statement (beginning to end),

Modifying Elements 3p2
Several operators can modify any of the elements except the
"special elements": 3b2a
NUMBER =« multiple occurrences 3b2b

A number preceding any element other than one of the
"special elements" means that the test will succeed only if
it finds exactly that many occurrences of the element, If
there aren’t that many, the statement will be rejected,
Even though there may be more, it will stop after that many
and go on to check the next element in the pattern,

3UL means three upper case letters
$§ == range of Occurrences 3b2c

A dollar sign ($) preceding any element other than the
rSpecial elements" means "any number of occurrences ofn,

page 8

&ARC=APP 4+«DEC~75 20:25 34044

NLS Programmers® Guyide ARC 34044 Rey, 5 DEC 75
Part Ones: Patterns ‘

()

-

This may include Zero occurrences, It 1ls good practice to
put the element i{tself in parentheses,

$(*=) means any number of dashes
A number in front of the dollar sign sets a lower 1limit,
3s(D) means three or more digits

A number after the dollar siagn sets an upper limit for the
search, It will stop after that number and then check for
the next element in the pattern, even if it couyld have found
more,)

$3(LD) means from zero to three letters or digits

58$7(PT) means from 5 to 7 (inclysive) printing
characters

~= floating scan 3b2d

To do other than a character by character check, you may
enclose an element or series of elements in square brackets
{1, The Content Analyzer will scan a statement until the
element(s) is found, (If the element is not in square
brackets, the whole statement fails if the very next
character or string fails the test of the next element,)
This test will reject the statement if it can’t find the
element anywhere in the statement, 1If it succeeds, It will
leave the marker for the next test just after the string
satisfying the contents of the square brackets,

"start" means check to see if the next five characters
are: s t ar ¢t,

("start") means~scan until it f£inds the string: s t a r
t

[3D] means scan until it finds three digits,

{ 3p *:] means scan until it finds three digits followed
by a colon ‘

== negation ‘3b2e

If an element is preceded by a minus sign =, the statement
will pass that test if the element does not occur,

&ARC=APP 4~DECe75 20:25 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers® Guylde
Part One: Patterns

=L.D means anything other than a letter or digit, such as
punctuation, invisibles, etc,

NOT =~ negation b2t

NOT will be TRUE if the element or group of elements
enclosed in parentheses following the NOT {s false,

NOT LD Wwill pass if the next characCter is neither a
letter nor ‘a digit,

Combining Elements 3b3

You may put together any number of any of these elements to

form a pattern, They may be combined in any order, Spaces

within the pattern are ignored (except in literal strings) so

they may be used to make reading easier for you, 3b3a

.9, 1SPT [",NLS;" 1$D] =~SP

i,e, one or more printing characters, then scan for ,NLS;
fcllowed by one or more digits, then check that the next
character 1s not a space

More sophisticated patterns can by written by using the Boolean
logical expression features 0f L10, Combinations of elements
may in turn be treated as single elements, to be modified or

combined using logical operators, 3b3b
Generally, an expression is executed left to right, The
following operations are done in the given orders
(G '
/
NOT
AND
OR 3b3c
) 3b3d
Parentheges (and square brackets for floating scans) may be
used to group elements, It 1s good practice to use
parenthesis liberally,
/ 3b3le

/ means "either or"; the bracketed element, consisting of
two or more alternatives, will be true if either (any)
element i{s true,

page 10

. &ARC~APP 4=DEC~75 20:25 34044
NLS Programmers’ Gulde | ARC 34044 Rev, 5 DEC 75
Part Onesy Patterns

14

(3D L /7 4D) means either three digits and g letter or
four digits, ‘

since the slash is executed before NOT, NOT D / *h will be
true if the next character is NEITHER a digit nor the letter
nh* It is the same as NOT (D/*h),

Sometimes you may want want the scan to pass yYour marker
over something 1f it happens to be there (an optional ,
element), "TRUE" {s true without testing the statement, If
the other tests fail, the imaginary marker is not moved,

(D / TRUE) 1looks for a digit and passes the imaginary
marker over it, If the next character is not a gigit, it
will just go on to the next test element in the pattern
without moving the marker and without failing the test,
(This test always passes,)

i,e, It is used to scan past something(s) which may or
may not be there,

Since expressions are executed from left to right, it does
no good to have TRUE as the first option, (If it is first,
the test will immediately pass without trying to scan over
any elements,)

AND ‘ _ ' 3b3f

AND means both of the two separated groups of elements must
be true for the statement to pass,

SINCE (3/6/73 00:00) AND ID#NDM means statements written
since March 6, 1973 by someone other than NpM,

OrR | 3big

OR means the test will be true if either of the separated
elements is true, It does the same thing as slash, but
after "AND" and "NOT" have been executed, allowing greater
flexipility, | ‘

D AND LLD OR UL means the same as (D AND LLD) OR UL
D AND LLD / UL means the same as D AND (LLD / UL)

wWwhile such patterns are correct and succinct, parentheses
make for much clearer patterns, FElements within

parentheses are taken as a droup; the group will be true
only if the statement passes all the requirements of the

page 11

‘ R ‘ | &ARC~APP 4=DEC»75 20325 34044
ARC 34044 Rey, 5 DEC 75 ‘ NLS Programmers* Gyide
‘ Part Onei Patterns

group, 1t is a good ldea to Use parentheses WheneVer
there might be any ambiguity,

page 12

LARC=APP 4«-DEC=75 20225 34044
NLS Programmers® Guide ARC 34044 Rey, S DEC 75
part Onet! Examples of Content Analyvzer Patterns

Section 3: Examples of Content Analyzer Patterns ic

D 2sLD ¢/ (["CA"] / ("Content Analyzer"] , 3ct

This pattern will match and pass any of three types of NLS
statements: those beginning with a numerical digit followed by

at least two characters which may be either letters or digits,

or statements with either of the strings "CA" or "Content

Analyzer® anywhere in the statement, 3cla

Note the uyse of the square brackets to permit a f£loating
scan == a search for a pattern anywhere in the statement,
Note also the use of the slash for alternatives,

BEFORE (25=JAN=72 12:00) 3¢2
This pattern will match those statements created or modified
before noon on 25 Januvary 1972, ic2a
(1D =‘HGL) OrR (ID = NDM) 3¢3
This pattern will match all statements created or modified by
users with the identifiers "HGL" or "NDM", 3cla
{C2L (SP/TRUE) / 2D) D *= 4D} 3c4

This pattern will match characters in the form of phone nymbers
anywhere in a statement, Numbers matched may have an

alphabetic exchange followed by an optional space (note the use

of the TRUE construction to accomplish this) or a numerical

exchange, 3c4a

Examples include DA 6=6200, DA6=6200, and 326=6200,
[ENDCHR] < "cba® 3cH

This will pass those statements ending with "abc", It will go

to the end of the statement, change the scan direction to left,

and check for the characters "cba", Note that since you are

scanning backwards, to find *"abc" you must look for "cba",

Since the rcba" is not enclosed in square brackets, it must be

the very last characters in the statement, 3c5a

page 13

&ARC=APP 4=DEC=75 20:25 34044
ARC 34044 Revy, 5 DEC 75 ~ NLS Programmers*® Guyide
Part One:; Using the Content Analyzer

Section 4: Using the Content AnalyzZer

content analyzer Patterns may be entered in two waystg
1) From the BASE supsystem, use the command:
set Content (pattern) To PATTERN 0K
2) From the PROGRAMS subsystem, use the command:
Compile Content (pattern) PATTERN OK

0K means "Command Accept", a control=-D or,
in TNLS (by default) a carriage return,

In either case:?
1) Patterns may be typed in from the keyboard, or
2) they may be text in a file,
In this case, the pattern will be read from the first
character addressed and continue until it finds a semicolon
(:) so you must put a semicolon at the end of the pattern
(in the file),

Vieyspec j mys¢ be on (i,e, Content Analyzer off) when engering

Entering a content Analyzer pattérn does two things?

1) compiles a small user program from the characters in the
pattern, and

2) takes that program and "institutes" {t as the current
Content Analyzer filter program, deinstituting any previous
pattern,

"Instituting" a program means selecting it as the one to
take effect when the Content Analyzer is turned on, You may
have more than one program compiled but only one instituted,
#hen a pattern is deinstituted, it still exists in your
program buffer space and may be instituted again at any time
with the command in the PROGRAMS subsystem:

Institute Program PROGRAM~NAME (as) Content (analvzer) 0K

page 14

3d

341

3dla

3dib

342
3d2a

3d2b

3d2¢
343

dd3a

3d3b

" EARC=APP 4=DEC=75 20:25 34044
NLS Programmers’ Gyide ARC 34044 Rey, & DEC 75
Part One: Using the Content Analyzer

The programs may be refered to by number instead of
name, They are numbered sequentjally, the first
entered being number 1,

All the prQQfams you have compiled and the one you have
instituted may be listed with the command in the PROGRAMS
subsystem:

show Status (of proqrams buffer) 0K

Programs may build up in your program buffer, To clear the
program buffer, use the PROGRAMS subsystem Command:?

pelete All (programs in buffer) 0K

We recommend that you do this before each new pattern,
unless yvou specifically want to preServe previous
patterns,

To invoke the Content Analyzer: | 3d4

When viewspec 1 is on, the instituted Content AnalvzZer prodgram
(1f any) wijl check every statement before it is printed (or
displayed), | 3d4a

1f a statement does not pass all of the requirements of the
Content Analyzer program, it will not be printed,

In DNLS, if no statements from the top of the screen
onward through the file pass the content Analyzer filter;
the word "Empty" will be displayed,

Note: you will not see the normal structure since one
statement may pass the Content Analyzer although its source
does not, Viewspec m (statement numbers on) will help vou
determine the position of the statement in the file,

When viewspec K is on, the instituted Content Analyzer fillter

will check until it finds one statement that passes the

requirements of the pattern, Then, the rest of the output

(branch, plex, display screen, etc,) will be printed without

checking the Content Analyzer, ‘ 3d4b

Wwhen viewspec 3 is on, no content aAnalyzer searching is done,

This is the default statejy every statement in the output

(branch, plex, display screen, etc,) will be printed, Note

that i, 3. and k are mutually exclusive, 3d4c

page 15

; SARC=APP 4«DEC-75 20:25 34044
ARC 34044 Rev, 5 DEC 75 ‘ - NLS Programmers® Guide
part One: Using the Content Analyzer

Notes on the use of Content Analyzer filters:

Some NLS commands are always affected by the current viewspecs
(including i,J, or k):

Qutput
Jump (in DNLS)
Print (in TNLS)

Most NLS commands ignore the Content AnalyZer in their editing,
The following BASE subsystem commands offer the option of
specifying viewspecs, or "rFilters", (which may turn on the
Content Analyzer) which apply only for the purpose of that one
command and affect what statements the command works on (only
those statements which pass the tilter will be copled, moved,
etc,; structure will be adjusted):

Copy

Delete

Move

Substitute
At this point, it would be wise to practice until You become
profijcient at Content Analyzer patterns, You might begin by
trying to vuse some of the patterns given in the above examples,
and then try writing a few patterns of your own, These patterns
are both a useful NLS tool and a basic component of many L10

programs, We further recommend that you contact ARC via your
architect before you begin the next part,

page 16

3d5

3d5a

3d5b

3deé

\ &ARC=APP 4=DEC=75 20:25 34044
NLS Programmers’ Gulide ' ‘ ARC 34044 Rev, S DEC 75
Part Two?! Content Analyzer Programs

PART TWOs 1Introduction to L10 Programming 4
Section 1: Content Analyzer Programs 4a
Introduction 4ail

when yvou specify a Content Analyzer Pattern, the PROGRAMS
subsystem constructs a program which looks for the pattern in
each statement and only displays the statement if the pattern
matching succeeds, You can gain more control and do more
things if you bulld the program yourself, The program will be
used just like the simple pattern program and has many of the
same limjtations, Programs are written in NLS just like any
other text file, They then can be converted to executable code
by a compiler, This code resides (or is loaded) in your
programs buffer space; it can be instituted as the current
Content Analyzer filter program like a Content Ahalyzer
Pattern, 4ata

Program Structure 4a2
1f you specify a Content Analyzer Pattern, NLS compiles a small
proaram that Jooks 1ike this (with the word "pattern" standing
for whatever you typed in); 4a2a

PROGRAM name
(name) PROCEDURE;
IF FIND pattern THEN RETURN(TRUE) ELSE RETURN(FALSE);
END,
FINISH
L10 programs must begin with a header statement, the word
PROGRAM (all caps) followed by the name of the first procedure
to be executed (all lowerw~case), This name is also the name of
the program, 1If the prodram is being compiled into a file (to
be described at the end of this section), the word FI1LE should
be substituted for the word PROGRAM, E,g, 4a2b
PROGRAM first

or
FILE deldir

page 17

| | SARCwAPP 4-DEC+75 203125 34044
ARC 34044 Revy, 5 DEC 75 NLS Programmers’ Guide
‘ ‘ Part Two: Content Analyzer Programs

(Note: the Content AnalyZer compiler makes up a program
name consisting of UP#!xxxxx, where

1is a sequential number, the first pattern being number
one, and

xxxxx 1s the first five characters of your pattern,)
E,9, UP1!sLD[P

The body of a program consists of a series of DECLARATION

statements and PROCEDURES (in any order) which are blocks of
instructions, In the above case, the program consisted of only

one small procedure and no declarations, When the program {s

loaded into your programs buffer space, the declarations

reserve space in the system to store information (variables),

when the program is used as a Content Analyzer fllter progranm,

the first procedure is called for each statement, 1t may in

turn call other procedures and access variables in the program

or in the NLS system, E,qg, 4a2c

DECLARE X, v¢ 2 ¢ (described below)
(£irst) PROCEDURE ;

TEl

The end of the program is delimited by the word "FINISH" (in
all upper case), The Compiler stops at that point, so any text
after that in the NLS source file will be ignored, 4a2d

comments may be enclosed in percent signs (%) anywhere in the
program, even in the middle of L10 statements, The L10
compiler will ignore them, 4a2e

Except within literal strings, variable names and specilal L10O
words, spaces are jgnored, It is dgood practjce to use tnem
liberally so that your program will be easy to read, Also, NLS
flle structure is ignoreds; statements will be read
sequentially, regardless of thelr level, Structure {is,
however, very valuable in making the program readable, and {t
is good practice to use it in close correlation to the
program’s legical structure, For Instance, the programmer
usuvally makes each of the elements of a program (declarations,
proceduyres, and FINISH) separate statements, below the header
statement in file structure, This point will be discussed
further later, 4a2f¢

S0 far, we have file which 100ks something like: 4a2g

page 18

| | SARC=APP 4=DEC=75 20125 34044
NLS ?rogrammers',cuide ‘ : : ARC 34044 Rev, "5 DEC 75
Part Two: Content Analyzer Programs ‘ '

PROGRAM namel
DECLARE 444 ?
DECLARE 444 3}
(namei) PROCEDURE ;
(name2) PROCEDURE j
FINISH
Procedure Structure 4a3
Each procedure must begin with its header statement, This
header statement is a name enclosed in parentheses followed by
the word PROCEDURE, and terminated by a semjcolon, E,qg, 4a3a
(name) PROCEDURE
The pody of the procedure may consist of Local declaratians,
then L10 statements, An L10 statement {s any program

instruction, terminated by a semicolon, The body must at some
point return control to the procedure that called f{t, All this

will be further discussed later, 4a3b
The procedure must end with the terminal statement: 4alc
END,

page 19

R &ARC=APP 4«DEC=75 20325 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guide
Part Two?: Content Analyzer Programs

Example (the actual 1,10 statements in this example will become

clear as you read on): 4a4
PROGRAM compare % Content analyzer, Displays statement if
first two visibles are the same, % ‘ 4ada

%reserve space for ("declare") four text pointers named
"pti" through "pt4rg
DECLARE TEXT POINTER ptl, pt2, pt3, pt4;
gsreserve 100 characters of space for each of two string
variables named "visi" and "vis2",%
DECLARE STRING visi1{100), vis2(100};
(compare) PROCEDURE
$1f find two visibles, set pointers arouynd first two
visibles (strings of printing characters)s
IF FIND sNP "ptl 1$PT “pt2 sNP "pt3 1$PT "pt4 THEN
BEGIN
sput visibles in stringss
visi . ptl pt2
#vis2¥% .. pt3 ptéd ;
gcompare contents 0f strings, return and display
the statement if identicals
IF #visl# = #vis2x THEN RETURN(TRUE)}
END:
$(otherwise, return and don’t displav%
RETURN (FALSE)
. END, '
FINISH

Declaration Statements 4a5

AS you may have guessed from the above example, Content
Analyzer programs can manipulate variables (like text pointers
and strings), while patterns cannot, 4a5a

Text Pointers o 4as5b

A text pointer points to a particular location within an NLS
statement (or into a string, as described 1ater).

The text pointer points between two characters in a
statement, By putting the pointers between characters, a
single pointeyr can he uged to mark both the end of one
string and the peginning of the string starting with the
next character,

Text pointers are declared with the following peclaration
statement:

page 20

&ARC~APP 4=DEC~75 20325 34044
NLS Programmers?® Gyide ARC 34044 Rey, 5 DEC 78
Part Two: Content Analyvzer Programs

DECLARE TEXT POINTER name 3
Strings 4as5c¢c

String varlables hold text, @When they are declared, the
maximum number of characters ls set,

To declare a string:
DECLARE STRING namelnuml]

num is the maximum number of characters allowed for the
string,

E.d,
DECLARE STRING 1stringl(100]};
declares a string named "lstring" with a maximum length
of 100 characters and a current lenath of 0 characters
(it*s empty),

you can refer to the contents of a string variable by
surrounding the name with asterisks, E,g,

#1lstring* 1is the string stored in the variable named
*1string®,

(Refering to lstring without the asterisks represents
only tnhe fjirst computer word of tne string, This is
rarely needed,)

Yyou can put the text between two text pointers in a strinq
variable with the 1,10 statement:

#lstring¥* .. ptri ptr2 3

where ptri and ptr2 are the names of previous)y dec)ared
and set text pointers, and lstring is a previously
declared string variable,

These variables will retain their value from one statement to
the next, opther types of variables and their use will be

discussed in detail in Part Three, Section 3, ‘ 4a5d
Body of the Procedure . 436
RETURN Statement 4a6a

page 21

SARC=APP 4=DEC=75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guide

pPart Two: Content Analyzer Programs

No matter what it does, every procedure must return control
to the procedure that called it, The statement which does
this is the RETURN statement, E,qg,

RETURN ¢

A RETURN statement may paSs values to the procedure that
called it, The values must be enclosed in parentheses after
the word RETURN, E,q,

RETURN (1,23,47)

A Content Analvzer program must return either a value of
TRUE or of FALSE, 1If it returns the value TRUE (1), the
statement will be printed; if it returns FALSE (0), the
statement will not pe printed, 1I,e,

RETURN (TRUE): will print the statement
RETURN (FALSE):; willl not print the statement

The RETURN statement often is at the end of a procedure, but
it need not he, For example, in the middle of the procedure
you may want to either RETURN or go on depending on the
result of a test,

Other than the requirement of a RETURN statement, the body of
the procedure is entirely a function of the purpose of the
procedure, A few of the many possible statements will be
described here; others will be introduced in Part Three of this
document,

FIND Statement

One of the most useful statements for Content Analyzer
programs is the FIND statement, The FIND statement
speclfies a content Analyzer pattern to be tested against
the statement, and text pointers to be manipulated and set,
starting from the Current Character position (that invisible
marker refered to in Section 1), 1If the test succeeds, the
character position is moved past the last character read,
If at any point the test fails, the character position {is
left at the position prior to the FIND statement, The
valyes of text pointers set in the statement prior to the
falling element will remain as set: others of course will
not be changed,

FIND pattern

page 22

4a6b

4a6¢c

LARC=APP 4=DEC-75 20:25 34044
NLS Programmers’ Guyide ARC 34044 Rey, 5 DEC 75
Part Twoi: Content AnalyZer Programs

The Current Character pPosition is initialized to BEFORE THE
FIRST CHARACTER, and the scan direction is initiajized to
left to RIGHT, FOR EACH NEwW STATEMENT passed to the Content
Analyzer program,

Any simple Content Analyzer pattern (as describe above) is
valid in a FIND statenent,

In addition, the following elements can be incorporated in
the patternt:

#stringname#
the contents of the string vyariable
*ptr

store current scan position into the text pointer
specified by ptr, the name of a declared text pointer

~NUM ptr

back Up the specified text pointer py the Specified
number (NUM) of characters, 1If NUM is not specifjed,
1 will be assumed, Backup is in the direction
epposite to the current scan direction,

ptr
set current character position to this position, ptr
is the name of a previously set text pointer,

SF(ptr)
The Current Character Position is set to the front of
the statement in which the text pointer ptr is set and
scan direction is set from left to right,

SE(ptr)

The Current Character Position is set to the end of
the statement in which the text pointer ptr is set and
scan direction is set from right to left,

page 23

IF

&ARC=APP 4=DEC=75 20325 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guide
part Two: Content Analyzer Programs

BETWEEN ptri ptr2 (pattern)

Search limited to between positions specified, optr is
a previously set text pointer; the two must be in the
same statement or string, Current Character poesition
is set to first position before the pattern is tested,
E.Q,
BETWEEN ptl pt2 (2D [,] S$NMNP)
FINDS may be Used as expressions as well as free=standing
statements, 1f used as an expression, for example in IF
statements, it has the valuve TRUE if all pattern elements
within it are true and the value FALSE 1f any one of the
elements 1s false, E,q,
IF FIND pattern THEN ,., ?
Complicated examples

IF FIND "sf gNP *(g(LD/*=) *¢) [", " xstrw] SE(sf) gNP
f, THEN RETURN(TRUE) ELSE RETURN(FALSE):;

Statement
IF causes execution of a statement if a tested expression is
TRUE, 1If it is FALSE and the optional ELSE part is present,
the statement following the ELSE is executed, Control then
passes to the statement immediately following the IF
statement,

IF testexp THEN statement ;

IF testexp THEN statementl ELSE statement2 ;
The statements within the IF statement can be any valid L10
statement, but are not followed by the usual semicolon; the

whole IF statement is one L10 statement and is followed by a
semicolon,

EeQ,

IF FIND [5D) THEN RETURN(FALSE) ELSE RETURN(TRUE) 3

Programming Style:; File Structure

The compiler which converts your NLS text to code ignores NLS
file structure, This allows you to use structure to make your

page 24

4a6d

4a7

S | &ARC=APP 4=DEC=75 202125 34044
NLS Programmers® Gylde ARC 34044 Rey, 5 DEC 75
part Two: Content Analyzer Programs .

program text easler to read and understand, Logical use of
‘structure often facjljitates the actua) programming task as

well, Some conventions have developed at ARC in this respect,
although flexibility is essential, These should seem obvious

and logical to vyou, 4ala

All declarations and PROCEDURE statements should be one
level helow the PROGRAM statement,

All local declarations (not yet described) and code should
be one level below the PROCEDURE statement,

It is good style, and makes for much easier programming, to
list what you want to 40 as comment statements (in percent
signs) at the level below the PROCEDURE statement, . Then you
can go back and £111 in the code that accomplishes the task
described in each comment statement, The code shouyld go one
level below the comment,

It is also worthwhile to put comments in individual
statements whose purpose is not obvious,

We will later desCribe how to block a series of statements
where one is required, These blocks should go a level below
the statement of which they are a part., :

File structure should follow the logical structure of the
program as closely as possible, E,g,

IF FIND [5D])
THEN RETURN(TRUE)
ELSE RETURN(FALSE):
using content Analyzer Programs . ' 4asg

Once the content Analyzer program has been written (in an NLS
file), there are two steps in using it, First, the prodgram
must be "compliled," i,e, translated into machine=readable code;
the compiled code is "loaded" into a spaCe reserved for user
programs (the user programs buffer), Secondly, the loaded
program must be *instituted" as the current Content Analyzer
program, ‘ 4a8a
There are two ways to complle and load a program: 4a8hb

1) You may compile a proaram and load it into your programs

page 25

BT e : SARCwAPP 4=DEC#75 20125 34044
ARC 34044 Rev, 5 DEC 75 ‘ - NLS Programmers* Guide
: Part Two: Content Analyzer Programs

buffer all in one operation, 1In this case, the program
header statement muyst have the word PROGRAM in it, Wwhen the
user resets his job or logs nfﬁ, the compiled code will
disappear, ; ;

First, enter the Programs subsystem with the command:
Goto Programs OK

Then you may compile the program with the command:
Compile L10 (user program at) SQURCE 0K

SOURCE 1is the NLS file address of the PROGRAM
statement,

2) you may compile a program into a TENEX code file and then
load it into your buffer in a separate operation, The
progranm can then be loaded from the file into your user
programs buffer at any time without recompiling, The header
statement must use the word FILE instead of PRDGRAM, Use
the PROGRAMS subsystem command:

Compile gile (at) SOURCE (using) L10 (to file) FILENAME
0K

The FILENAME must be the same as the program's name,

The code file is called a REL (RELocatable code) file,
Whenever you wish to load the program code into the user
programs buffer, use the PROGRAMS gubsystem command:

Load Program (flje) FILENAME OK

- once a compiled program has been loaded (by either route), it
must be instituted, This is done with the PROGRAMS subsystem
command:? : : 4a8c

institute Program PROGRAM=NAME (as) Content (analyzer
program) OK

The named program will be instituted as the current Content
Analyzer filter, and any previously instityted program will
be deinstituted (but will remain in the buffer),

Again, the programs in the buffer are numbered, the first {n

being number one, You may use the number instead of tne
program®s name .as a shorthand for PROGRAM=NAME,

page 26

, &ARC=APP 4=DEC=75 20825 34044
NLS Programmers® Guide , ARC 34044 Rev, 5 DEC 75
Part Two: Content Analyzer Programs

To invoke the Content Analyzer usina whatever program is
currently instituted, use the viewspec i, J, or k, as described
in Part One, Section 4 (344), 4a84d

Problems 4a9

Given these few constructs, You should now be able to write a
number of usefu) Content Analyzer proarams, Try programming
the following: 4a9a

1) Show those statements which have a number somewhere in
the first 20 characters,

2) Show those statements where the first visible in the
statement is repeated somewhere in the statement,

page 27

o &ARC=APP 4»DECe75 20325 34044
ARC 34044 Rev, 5 DEC 75 ‘ NLS Programmers*® Guide
part Two: Content Analyzer Programs

Sample solutions: 4a9b
Problem 1

PROGRAM number
DECLARE TEXT POINTER ptri, ptr2 :
(number) PROCEDURE
FIND “ptri $20CH *ptr2 :
IF FIND BETWEEN ptri ptr2 ([D])
THEN RETURN(TRUE)
ELSE RETURN(FALSE):
END,
FINISH

Alternate Solution to Problem 1: Content Analyzer Filter
$20CH < (D)
Problem 2

pROGRAM vis
DECLARE TEXT POINTER ptri, ptr2 ;
DECLARE STRING str(500]1
tvis) PROCEDURE
FIND SNP "ptri 1SPT “ptr2 3
#str* . ptrl ptr2 ;
IF FIND ptr2 [NP »str% NP]
THEN RETURN(TRUE)
ELSE RETURN(FALSE):;
END,
FINISH

page 28

~ &ARC=APP 4~DEC=75 20125 34044
NLS Programmers® Guide ARC 34044 Rey, 5 DEC 75
Part Two: Content Analyzer Programs: Modifving Statements

Section 2: Content Analyzer Programs: Modifving Statements 4p

Introduction ' abi

Content Analyzer programs may edit the statements as well as

"decide whether or not they are printed, They are very usefuyl

where a series of editing operations has to be done time and

time again, This section will introduce yoy to these

capabilities, All these constructs will be covered in detail

in Part Three, 4bla

A Content Analyzer program has several limitations, It can
manipulate only one file and it can look at statements only in
sequential order (as they appear in the file), It cannot back

up and ree~examine previous statements, nor can it skip ahead to

other parts of the file, It cannot interact with the user,

Part Four provides the tools to overcome these limitations, 4bib

string Construction _ 4b2

Statements and the contents of string variables may be modified
by ejther of the following two statements: 4b2a

ST ptr .. stringlist
The whole statement in which the text pointer named "ptr"
resides will be replaced by the string list (to be
described in a minute),

ST ptr ptr .. stringlist ;

The part of the statement from the first ptr to the
second ptr will be replaced by the string list,

ptr may be a previously set text pointer or SF(ptr) or
SE(ptrJ. ‘

The content of string variables maY be replaced with the string
assignment statement: 4b2b

*stringname# _ stringlist i
The string list (stringlist) may be any series of string
designators, separateq by commas, The String deSignators may

be any of the following (other possibilities to be described
later): 4b2c

page 29

§RRC=APP 4=DEC=75 20325 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Guylde
part Two: Content Analyzer Programs: Modifying Statements

a string constant, e,g, "ABC" or ‘w
ptr ptr

the text between two text pointers previously set in
either a statement or a string

#stringname#

a string name in asterisks, refering to the contents of
the string

E,g,t 4b2d
ST pl p2 .. #stringx
or. ,
ST pl .. SF(pr1) pl, *string«, p2 SE(p2);
(Note: these have exactly the same meaning,)

Examples 4b3

PROGRAM delsp 3 Content analyzer, Deletes all leading
spaces from statements, % 4pb3la

greserve space for ("declare") a text pointer named "pt"g
DECLARE TEXT POINTER pt:
(de)lsp) PROCEDURE 3
%if any leading spaces, scan past them and set pointer%
IF FIND 1$SP =pt THEN _
$replace statement with text from pointer to
statement end$s
ST pt .. pt SE(pt):;
sreturn, don’t display anythingg
~ RETURN (FALSE) 3
END,
FINISH
More Than One Change per Statement 4b4
Part of a text pointer is a character count, This count stays
the same until the text pointer is again set (to some other
position), even though the statement has been edited, 1If, for
example, you have the gtatement 4b4a
abcdefqg

and {f you have set a pointer between the "d" and the "e", it
will always point between the fourth and fifth characters in

'paqe 30

SARC=APP 4«DEC=75 20:25 34044
NLS Programmers*® Guide ‘ ARC 34044 Rev, 5 DEC 75
Part Two: Content Analyzer Programs: Modifying Statements

the statement, If you then delete the character "a", your

pointer will be between the "e" and the "f", now the fourth and

fifth characters, For this reason, you should begin a series

of edits with the last one in the statement and work bacKkwards
through the statement, 4b4b

controlling Which Statements are Modifled 4b5

In TNLS, the Content Analyzer program will pe called for

commands which construct a printout of the file (Print and

Qutput), The program will run on every statement for which it

is called (e,g, every statement in the branch during a Print

Branch command) which pass all the other viewspecs, 0Once you

have written, compiled, and instituted a program which does

some editing operation, the Print command is the easiest way to

run the program on a statement, branch, plex, or group, 4b5a

In DNLS, the system will call the Content Analyzer program
whenever the display is recreated (e,g, viewspec ¥ and the Jump
commands), and also for the Output commands, 1f the program
returns TRUE, it will only run on enough statements to fill the
screen, It is safer to have programs that edit the file return
FALSE, Then when you set viewspec i, it will run on all
statements from the top of the display on, and when it is done
it will display the word "Empty", At that point, change to
viewspec 3§ and recreate the display with viewspec F, then all
statements including the changes will be digplayed, You can
control which statements are edited with level viewspecs and
the branch only (g) or plex only (1) viewspecs, and by
positioning the top of your window, 4bSb

aAfter having run your program on a file, you may wish to Update
to permanently incorporate the changes in the file, It is wise
to Update bhefore vyou run the program so that, if the program
does something unexpected, you can Delete Modifications and

retyrn to a good file, ‘ 4b5¢
Problems 4b6
Try writing the following programs? 4bb6a

1) Remove any invisibles from the end of each statement,

2) Make the first word a statement name suyrrounded by
parentheses,

page 31

[| © &ARC=APP 4eDEC=75 20125 34044
ARC 34044 Rev, 5 DEC 75) ~~ NLS Programmers'® Guide
Part Two: Content Analyzer Prodrams: Modifying Statements

Sample solutions: 4b6b

Problem 1

PROGRAM endinv
DECLARE TEXT POINTER ptr ;
(endinv) PRQCEDURE 3
IF FIND "ptr SE(ptr) 1sNP ptr

THEN ST ptr - SF(ptr) ptr ;
RETURN (FALSE) 3
END,
FINISH

Problem 2

PROGRAM makename

DECLARE TEXT POINTER ptrt, ptr2 :
(makename) PROCEDURE

14

IF FIND $NP *ptrl 1sSLD “ptr2

THEN ST ptri - ‘(s ptri ptrz, *), ptr2 SE(ptr2);
RETURN (FALSE)
END,

FINISH

page 32

&KARC=APP 4~DEC=75 20:25 34044
NLS Programmers’ Gulde ' ARC 34044 Rev, 5 DEC 75
Part Three: The User Program Environment ‘

PART THREE:; Basic L10 Programming 5

Section 1: The User Program Environment 5a
Introduction 5a1l

User=written Content Analyzer programs are called in the

process of creating a view of an NLS file e,q,, with a Print

command in TNLS, with any of the Dutput commands; and with the

Jump command in DNLS, S5ala

The sequence generator provides statements one at a time;
the Content Analyzer may then check each one, Finally, the
formatter prints it or puts it on the screen,

Thuys 1f one had a user Content Analyzer program compiled and
instituted, one could have a printout made containing only
those statements in the file satisfying the pattern,

Attachable subsystems are independent of this portrayal
proCess, although they are welcome to make use 0f it, They
consist of commands, which may utilize all the powers of NLS, salb

The Sequence Generator ' | ‘ 5a2

In the portraYal process, the seguence generator 10o0ks at

statements one at a time, beginning at the po{nt specified by

the user, It observes viewspecs like level truncation in

determining which statements to pass on to the formatter, When

the sequence generator finds a statement that passes all the
viewspec reguirements, it sends the statement to the formatter

and waits to be called again for the next statement in the

sequence, ‘ : S5a2a

For example, the viewspecs may indicate that only the first
line of statements in the two highest levels are to be
output, The default NLS seguence generator will produce
pointers only to those statements passing the structural
filters; the formatter will then truncate the text to only
the first line before it displays or prints the statement,

Content Analyzer Filters ; 5a3
one of the viewspecs that the sequence generator pays attention

to is win == the viewgpec that indicates whether a user Content
Analyzer filter is to be applied to the statement, If this

page 33

S&ARC=APP 4«DEC=75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Guide
Part Three: The User Program Environment

viewspec is on, the sequence generator passes control to a user
Content Analyzer program, which looks at the statement and
decides whether it should be included in the sequence, If the
statement passes the Content Analyzer (i,e, the user program
returns a value of TRUE), the seguence generator sends the
statement tc the formatters otherwise, 1t processes the next
statement in the sequence and sends it to the user Content
Analyzer pregram for verification, (The particular user
program chosen as a filter is determined by what program is
Instituted as the current Content Analyzer program, as
described below,) _ 5ala

In the process of examining a statement and deciding whether
or not it should be printed, the Content Analyzer prodram
may edit the text of the statement, These edits appear in
the partial copy, just as if the user had made them himself,
This provides a powerful mechanism for automatic editing,

In DNLS, if you display any statements, the program will
stop after f£illing the screen, If you are not displaying
any statements, the program will run on either the whole
file, a plex (viewspec 1), or a branch (viewspec g), These
along with level clipping viewspecs give one precise control
over what statements in the file will be passed to the
program,

The Portraval Formatter S5a4

The formatter arranges text passed to it py the sequence

generator in the style specyfjed by other viewspecs, The

formatter observes viewspecs such as line truncation, length

and indenting; it also formats the text in accord with the ,
requirements of the output device, S5a4a

page 34

&ARC»APP 4~DEC~75 20:25 34044
NLS Programmers® Gyide ARC 34044 Rey, 5 DEC 75
Part Three: Program Structure :

Section 2: Program Structure Sh

An:Nhs user program consists of the following elements, which must
be arranged in a definite manner with strict adherence to
syntactic punctuation: : S5bi

The header = ' S5hla

a Statement consisting of the word PROGRAM, followed by the
name of a proCeduyre in the program, Program executjon will
begin with a call to the procedure with this name,

PROGRAM name

The PRUOGRAM statement may have a statement name in
parentheses; it wil)l be ignored,

The word FILE should be substituted for the word PROGRAM if
the code is to be compiled into a file to be saved,

The FILE statement may have a statement name; if so, that
name will be used as the code=g{le symbol, You must not

follow the word FILE with a name if there is a statement

name preceding FILE,

The body = : Sbib
consists of declarations and procedures in any order!

1) declaration statements which specify information
about the data to be processed by the procedures in the
program and enter the data identifiers in the program’s
symbol table, terminated by a semicolon, E,g,

DECLARE X,yr2 1
DECLARE STRING test[500) 3
REF %, 23

peclaration statements will be covered in Section 3
(5¢), o

2) procedures which specify certalin execution tasks,

Each procedure must consist of:

the procedure namé enclosed in parentheses followed by
the word PROCEDURE and optionally an argument list
contailning names of variables that are passed by the

page 35

ARC 34044

Rev,

&ARC=APP 4~DEC=75 20325 34044
5 DEC 75 NLS Programmers’ Guide
Part Three: Program Structure

calling procedure for referencing within the called
procedure, This statement must be terminated by a
semicolon, E,q,

(name) PROCEDURE 3
(name) PROCEDURE (paraml, param2) ;

You should always include a comment In the
procedure statement breifly summarizing the
function of the procedure,

the body of the procedure which may consist of LOCAL,
REF, and L10 statements,

LOCAL and REF declarations within a procedure must
precede executable code, They will be covered in

Section 3 (5c¢),

L10 statements will be covered in Sections 4 and %
(5d) (5&)'

A RETURN statement must be included at some
point, to pass control back to the calling
procedure, If it is missing, execution will run
off the end of the procedure and an ILLEGAL
INSTRUCTION will occur,

the statement that terminates the procedure (note the
final period):

END,

The program terminal statement =

FINISH

Notes
compjlation; it gqoes not mean stop eXecution, Any text
after that in the NLS source file will be ignored,

this is a signal to the compiler to stop

‘Notes on Program Writing Style

Except for within literal strings, variaple names, and special
L1410 reserved words, spaces are ignored, It is good practice to
use them liberally s¢ that vour program will be easy to read,

comments may be enclosed i{n percent signs (%) wherever spaces
are allowed, They will be ignored by the compiler, It 1is good

prage 36

5bic

5b2

Sh2a

&ARC=APP 4-~DEC=75 20325 34044
NLS Programmers’® Gulde ARC 34044 Rey, 5 DEC 75
Part Three! Program Structure

Practice to use the level pelow the procedure statement for

comments, filling in the code tnat executes the commented

function at the level below the comment, It is also wise to

add comments to any individual statements whose fynction is not
obvious, particuylarly calls on other procedures, 5b?2b

You may find it convenient to add a comment to the FILE
statement including the information needed by the Compile
File command, E,q,

FILE program & (L10,) to (directory,program,subsys,) %

Also, NLS file structure is ignored, Structure is, however,

very valuable in making the program readable, and it is good

practice to use it in close correlation to the program’s

logical structure, 5b2¢

An example of a simple L10 program is provided here, The reader
Should eagjly uvnderstand tpis prodram atter having studjed tnpis
document, : 5b3

FROGRpAM delsp % content analyzer, pDeletes all leading
spaces from statements, % , Sb3a
%reserve space for ("declare") a text pointer named "pt"%
DECLARE TEXT POINTER pt:
(delsp) PROCEDURE _
%1f any leading spaces, scan past them and set pointers
IF FIND 18SP "pt THEN |
$Teplace statement holding pt with text fronm
pointer to statement endg
ST pt ., Pt SE(pt);
$return, don’t displavs
RETURN (FALSE) ;
END,
FINISH

page 37

SARC=APP 4=DEC»~75 20125 34044
ARC 34044 Rey, 5 DEC 75 ‘ NLS Programmers® Guide
Part Threet Declarations

Section 3¢ Declarations S5¢

Introduction ' 5¢1

L10 declarations provide information to the compiler about the

data that is to be accessed; they are not executed, Every

variable uysed in the program must be declared somewhere in the

system (either in your program or in the NLS system), S5ctia

There are a number of types of varlables available, each with

its own declaration statement; the most frequently used are

discussed here, (Complete documentation is available in the

L10 Reference Guide == 7052,) 5¢ib

Variabkles 5¢2

Six types of variables are described in this document: simple,
constants, arrays, text pointers, strings, and referenced,

Each Is represented by an ildentifier, some unique lowercase

name, FEach can be declared on three levels: local, global, or
external, ‘ ‘ 5c2a

L.ocal Variables 5¢2b

A local varlaple is knhoWwn and accessiple only to the
procedure {n whjch jt appears, Loca)l varjables must appear
in a procedure argument list or be declared in a procedure’s
LOCAL declaration statements (to be explained below), Any
LOCAL declarations must precede the executable statements in
a procedure,

LLocal variables in the different procedures may have the
same name without conflict, A global variable may not be
declared as a local varlable and a procedure name may be
used as nelther, 1In such cases the name is considered to be
multiply defined and a8 compilation error results,

Globa) Variables ‘ Sc2c
Glopal Variables are defined in the program’s DECLARE
statements, Varjables specjgjed jin these declaratjons are
outside any procedure and may be used by all procedures {n
the program, '

External Variables 5¢24d

page 38

| | SARC=APP 4=DECw75 20125 34044
NLS Programmers? Gulde ‘ ARC 34044 Rev, 5 DEC 75
Part Three: Declarations -

External variables are defined in the program®s DECLARE
statements or in the NLS system program,

Variables specified in these declarations may be used by all
procedures anywhere in the system, Many externals are
defined as part of the NLS system; user programs have
complete access t0 these, Since other procedures may access
the same variable, the user programmer must be very careful
about changing their values,

Simple Varlables ‘ ' 5¢3

Simple variables represent one computer word, or 36 bits, of

memory, Each bit is either on or off, allowing binary numbers

to be stored in words, Each word can hold yp to five ASCII

1=bit characters, a single number, or may be divided into

fields and hold more than one number, 5c¢3a

Declaring a variable allocates a word in the computer to
hold the contents of the variable, The variable name refers
to the contents of that word, 0One may refer to the address
of that computer word by preceding the variable name by a
dollar sign ($),

For example, if one has declared a simple variable called
"nym", one may put the number three in that variable with
the statement:

nun . 3 3
One may add two to a variabie with the statement:

nume ., num + .2 3

One may Put the address of num into a variable called
addr with the statement:

addr .. $num i

gohe Mmay refer to predefined fields in any variable by
following the name of the varlable with a period, then the
field name, For example, the fields RH and LH are glcbally
defined to be the right and left half (18 bits) of the word
respectivelyr e,q,

num,LH -~ 2
num,RH , 3 3

page 39

‘ | &ARCwAPP 4wDECw75 20325 34044
ARC 34044 Revy, 5 DEC 75 NLS Programmers*® Guide
Part Threei Declarations

Fields may be defined by the user with RECORD statements
(described in Section 5 of part Five), Additionally, you
may refer to systemwdefined fields (e,9, RH), They divide
words into fields by numbers of bits, so they may refer to
any declared word, For example, the field "LH» refers to
the leftemost 18 bits in any 36-bit word, ’

If you assign a full word to a field of n bits within a
word, the righte-most n bits will be assigned to the field
in the degtination word; the rest of the destination word
will pe untouched,

If you assign a fleld with a word to a full word, it will
be right-justified within the destination word; the
remaining bits in the destination word (to the left of
the assigned bits) will pe set to zero,

Declaring simple Global Variables 5¢3b
DECLARE name ;
"name" is the name of the variable, 1t must be all

lower=case letters or digits, and must begin with a
letter,

E.Q,

~ DECLARE X1 3 |
Dptionally, the‘user may specify'th initia) value of the
variable being declared, 1If a simple varjable is not
initialized at the program level, for safety it should be
initialized in the first executed procedure in which it
appears,

DECLARE name = exp 3

exp ls the initial value of name, 1t may be any of the
following: ~

‘m g numeric constant'aptionally preceded by a minus
sign (=)

= a string, up to five characters, enclosed in
quotation marks

= another variable name previously defined in a SET

page 40

S§ARC=APP 4~DEC»75 20125 34044
NLS Programmers® Guide ; ARC 34044 Revy, 5 DEC 75
Part Threet! Declarations

statement (described below), causing the latter’s
value to be assjigned

Examples;
DECLARE x2=5;
$X2 contains the value 5%
DECLARE x3="OUT";
$x3 contains the word OUT%
DECLARE xx=x4}

%%X4 has previously been declared in a SET
statement%

Formal parameters (passed to a procedure) are allocated as

local simple variables, then initialized whenever the procedure

is called, within the called procedure, they should be treated

as simple variables, S5c3c

constants S5c4

You may declare a (simple) variable to be a constant value with
the statement!: 5c4a

SET namel=eXxp i

where nares and expressions are as described apove for
initialjzing sjimple variables,

Constants take no memory, They may be refered to just like
simple variables, except the name must be preceded by a dollar
sign ($), They may not be changed by the program, E,q, 5¢c4b

after the declaration:
SET var = 4 3
the assignment:
num .. Svar
will assign the value 4 to the variable num,

Arravys 5¢5
Multi-word (one=dimensional) array variables may be declared:

computer words within them may be accessed by indexing the
variable nare, The index follows the variable name, and is

page 41

&ARC=APP 4=DEC=75 20225 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guide
, Part Three: Declarations

enclosed {n sguare brackets [], The first word of the array
need not be indexed, The index of the first word is zero, so
it we have declared a ten element array named "blah"g 5c¢5a

blah 1is the first word of the array
blah[1] is the second word of the array
blan[9] is the last word of the array

beclaring Global Array Variables 5¢5b
DECLARE namelnum]
num is the number of elements in the array if the array
is not being initialized, It must, Of course, be an
integer,
E.q,
DECLARE sam[10];
declares an array named ®sam" containing 10 elements,
Optionally, the user may specify the initial value of each
element of the array, If array values are not initialized
at the program level, for safety they should be initialized
in the first executed procedure in which the array is used,
DECLARE name = (numi, num2, ,,,) }
num is the initial value of each element of the array,
The number of constants implicitly defines the number
of elements in the array, They may be any Of the
constants allowed for simple varlables,
Note: there is a onewto-one correspondence between the
first constant and the first element, the second constant
and the second element, etc,
Examples}
DECLARE numbs=(1,2,3);

declares an array named numbs cqntaining 3 elements
which are initialized such that:

numbé =1
numbs{1]
1

2
numbs {2 3

=
=

page 42

: &ARC=APP 4~DEC=75 20:25 34044
NLLS Programmers’ Guide ARC 34044 Rev, 5 DEC 75
Part Threet Declarations

DECLARE motley=(10,$blah);

declares an array named motley containing 2
elements which are initialized such that:

motley = 10

motley (1] = $blah = the address of the variable
"blah"

Text Pointers S5cé

A text pointer i{s an L10 feature used in string manipulation
constructjons, It {s a two~word entjty wnhich provides

information for pointing to0 particuylar locations within text,

whether in string variables or in NLS statements, 5c6a

The text pointer points between two characters in a
statement or string, By putting the pointers between
characters a single pointer can be uysed to mark both the end
of one SupsString and the beginning of the supstring starting
with the neXt character, thereby simplifying the string
manipulation algorithms and the way one thinks about
strings,

A text pointer consists of two words: a string identifier and a
character count, Assume you have declared a text pointer named

pt refers to the first word of the text pointer, The first
wordy called an "stid," contains three system~defined
fields:

stfile == the file number (if an NLS statement)

stasty »~ a bit indicating string, not an NS statement
stpsid =~ the psid of the statement; every statement has
a unique number (psid) attached to it,

The stid is the basic handle on a statement in L10, It
is often useq alone, Since it {s a single=word value, it
may be stored in a simple variable and passed easily
between procedures, and is used by many routines to
specify a statement or string,

If an stid is used without being properly set, the

run=time error message "fst entry nonexistant" may
result,

page 43

: &ARC=APP 4«DECe75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers*® Guide
Part Three: Declarations

ptfl1) refers to the second word of the text pointer, The
second word contains a character count, with the first
position being 1 (before the first character),
For example, one might have the following series of
assignment statements which f£il1l the three fields of the
first word and the second word with data, with pt belng the
- name of a declared text pointer:
pt,stfile .. fileno;
sfileno is a simple variable with a number in itg
pt.stastr .. FALSE;
%a statement, not a string%
pt.stpsid .. oriqin;

%all origin statements have the psid = 2; origin is a
global variable with the value 2 in 1it%

sthe word one after pt (i,e, the character count) gets
1, the beginning of the statement$

It is important that stidfs be initialized properly to avoid
errors, Text pointers may be most easily initialized by
setting them in a FINp statement (see Section 6),

Declaring Text Pointers S5¢c6¢C
DECLARE TEXT POINTER pt

The names pl, p2, p3, p4, and p5 are globally declared and
reserved for system use,

strings 8¢7
String variables are a series of words holding text, When they
are declared, the maximum number of characters ls set, The
first word contains the two globally defined fields: 5c7a

M == the maximum number of characters the string can hold
I, == the actual number of characters currently in the string

The next series of words (as many as are required by the

page 44

Part Three:

maximum string size) hold the actual characters, five per word,

&ARC~APP 4=DEC«75 20125 34044
NLS Programmers® Guide ARC 34044 Rev, 5 DEC 758

Declarations

in ASCII 7-bit code,

#str* refers to the contents of the string variable "“str",

str refers to the first word of the string variable "str";
typically this is only usefu)l in combinatjion with the two
fields "M" and "L"g

str,M refers to the maximum declared length of the
string variable "str" (an integer),

str,. refers to the current length of the string stored
in the string variable "str" (an integer),

Declaring Strings

The DECLARE STRING enables the user to declare a global
string variable by Inltializing the string and/or declaring
its maximum character length,

To declare a string:

DECLARE STRING name(num] 3

nur is the maximum number of characters allowed for
the string

Since the maximum statement length is 2000 characters,
vou should not need to declare a string greater than
2000 characters long,

E,qg,

TO

DECLARE STRING 1string(100);

declares a string named "lstring” with a maximum
length of 100 characters and a current length of 0
characters

declare and initialize a string:

DECLARE STRING name="Any string of text"

The length of the literal string defines the maximum
length of the string variable,

E.Q.

5¢7b

5¢7c

page 45

§ARC#APP 4=~DEC=75 20325 34044
ARC 34044 Revy, 5 DEC 75 NLS Programmers® Guide
: Part Three: Declarations

DECLARE STRING meSSage="RED ALERT";

declares the string message, with an actual and
maximum length of 9 characters and contains the text
"REDR ALERT"

REF; Referenced Variables ' 5c8
Reference Declarations 5c8a

After a simple variable has been declared, the REF statement
can deflne it to represent some other variable, A
referenced variable holds the address of another declared
variable of any type, Whenever the referenced variable is
mentioned, L10 will operate on the other variable instead,
as 1f it were declared in that procedure and named at that
point,

This is useful when you wish a procedure to know about a
multi=word variable, 1In procedure calls, you are only
allowed to pass singlee=word parameters, If you wish a
called procedure to use or operate on a text pointer, array.,
or string, you mMmay pass the address of that multi=word
variable, Then, in the called procedure, youy must REF the
formal parameter receiving that address. From then on in
the called procedure, when you refer to the REFed parameter,
you are actually operating on the multi-word variable
declared in some other procedure to which the local REFed
variable points, i,e, on the variable at the address
contained In the REFed parameter,

Example:
I1f the simpie variable "loc" in the current procedyre
has been pEFed and contains the address of the string
mstr" local to the calling procedure, then operations
on loc actually operate on the string in str:
rmes* ”‘*lOC*g
imes gets the string in strs
%#loc* ., "corpuscle”;
gstr gets the string "corpyScle"s

Similarly, you cannot return multieword variables from a
called procedure, 1f you wish a procedure to return a

page 46

‘ SARC=APP 4«DEC=75 20325 34044
NLS Programmers’ Guide ARC 34044 Rev, 5 DEC 75
part Threei Declarations

string, you must declare the string as a local in the
CALLING procedure, pass its address to a REFed variable 1in
the called procedure, Then the called procedure can modify
the string as if it were local (and return nothing), The
modifications will be made in the actual string variable,

Unreferencing REFed Variables ‘ | S5c¢8b
One may refer to the actual contents (an address) of a REFed
variabie ({,e, "unref® jt) by preced{ng the referenced
variaple name with an ampersand (&), If, for example, an
address was passed to a REFed variable, and you wish now to
pass that address on to another procedure, you can funref®
it, i,e, access the actual content (the address of some
variable),

E.,d, 1f X has been REFed and holds the address of y:
Z - X 3
4z gets the CONTENTS of ys
Z . &X 3
%z gets the ADDRESS of v%
This construct might be used, for example, i{f one procedure
has been passed the address of a string, operates on it,
then wishes to pass (the address of) that string on to
another procedure that it calls,

This can be a tricky concept} it may be worthwhile to review
this section carefully,

REFing Simple Variables | , 5c8c
once a simple variable has been declared (as a global,
local, or parameter), it may be REFed with the L10
declaration statement;
REF "var 3
It will be a reference from then on in that procedure, and
you must always use the ampersand to refer to jts actual
contents: the address of the variable it references,

Note that the REF statement does not allocate storage; it
just sets an attribute of an existing variable,

page 47

SARCwAPP 4=DEC=75 20325 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers*® Guide
Part Three: Declarations

If you wish to use a varlable that {s not REFed as if it
were REFed, enclose it in square brackets [], E,g, assume
the simple varlable "astr" holds the address of a string
variable but was NOT RgEFed:

slastr)#* refers to the contents of the string variable
whose address is in astr,

Note on Programming Style

You should always REF locals and parameters which hold the
address of something to be accessed (even if that varlable
is only used to pass the address on to another procedure),

Declaring Many Variables in One Statement

One may avoid putting severgl individual declarations of
varjables in a serjes by putting varjables of simjlar type,
initialized or not, in a list in one statement following a
single DECLARE, separated by commas and terminated by the usual
semicolon, Array and simple varibles may be put together in
one statement,

gxamples:

DECLARE X, yl{10), 2 = (1, 2, =»5);
DECLARE TEXT POINTER ¢p, Sf, Ptl, Pt2 ;
DECLARE STRING 1lstring{100)], message="RED ALERT" ;

Declaring Locals

Program level declarations (DECLARE and REF) and procedures may
appear in any order, However, procedure level declarations
(LOCAL and REF inside a procedure) must appear before any
executable statements in the procedure, The different types of
variables may be declared in any order, but a variable must be
declared before it can be REFed,

Whenever possible, LOCALS should be used instead of globals,
It makes for a cleaner program if you pass parameters among
procedures rather than depend on global variables to
transmit information,

With one exception, a local variable declaration statement {s
just the same as a global with the word "LOCAL" suybstituted for
the word "DECLARE", The one exception is that LOCAL
declarations can not initialize the variaples,

page 48

5¢c8d

5¢9

5c9%a

5¢10

5ci0a

5¢10b

S&ARC=APP 4»~DEC=75 203125 34044
NLS Programmers® Gulde ARC 34044 'Rev, 5 DEC 75
Part Three: Declarations '

EXxamples:

LocaL var, flag, level(12]) :
LOCAL TEXT POUINTER tp, pt, sf :
LOCAL STRING test[10Q0), out(2000] ;

When a procedure 1ls called by another procedure, the calling
procedure may pass one=word parameters, The procedure receives

these values in simple local variables declared in the

PROCEDURE statement®s parameter list, For example, two locals

will automatically be declared and set to the passed values

whenever the procedure vYprochame®" is called: 5¢10c

(procname) PROCEDURE (vari, var?2) :

vari and var? nmust not be declared again in a LOCAL
statement, They may, however, be REFed by a REF statement,
as discussed above, and used throughout the procedure,

The statement which calls procname may look likes

procname (locvar, 2) 3

var1l will be initialized to the value of the variable
wlocvar® and var2 will get the valuye 2,

Declaring Externals s5ci1

Externals are declared just like globals, with one exception,
The word DECLARE must be followed by the word EXTERNAL, E,9, S5clla

SET EXTERNAL one=1, twos2

DECLARE EXTERNAL a, b(10]), ¢=5 ; _
DECLARE EXTERNAL TEXT POINTER exptrl, exptr2 ;
DECLARE EXTERNAL STRING exstr([100] ;

REF specifications may not be external to the program, 5ciib

page 49

&ARCwAPP 4=DEC=75 20:25 34044
ARC 34044 Rev, 5 DEC 7% NLS Programmers’ Guide

Part Three: Declarations

Accessing Registers 5012

The user may access machine registers (the same length as other
words, 1,e, 36 bits) by naming them with the declaration: 5¢ci2a

REGISTER name = regnum 3}
or
REGISTER namel=regnumi, name2sregnum2 ;

The declared names will then represent the registers to which

they are attached, You may then access or assign values to

their content, On TENEX, the user programmer may use the first

seven regigsters, registers 0 through 6, (Registers 7 through

15 are reserved for system use,) E,q, 5¢c12b

REGISTER r0=0, ri=1, r2=2, r3=3, r4=4, r5s5, r6s6 ;

The names used in the aboVe eXample are used most often by
¢convention,

Registers must be used very carefully! They are typically used

when calling TENEX JSYS (see section 4), Many L10 constructs

and procedures use the registers; you should assign their

content to a variable immediately after the JSYS call if vou

wish to save it, 5c12c

page 50

\ SARC=APP 4-DEC=75 20325 34044
NLS Programmers® Guide ‘ ARC 34044 Rey, 5 DEC 75
Part Three! Statements

Seetion 4: Statements 5d

Introduction 5d1

This section will describe some of the types 0of statements with

which one can build a procedure, The term "expression" (often
abbreviated to "exp") will be used in this section, and will be
explained in detail in Section S (5e), 5dia

Assignment 5d2

In the assignment statement, the expression on the right side
0of the v v is evaluated and stored in the variable on the left
side of the statement, 5d2a

var . exp 3}

where var = any d9lobal, loca)l, referenced or unreferenced
variable,

One may make a series of assignments in one statement by
enclosing the list of variables and the list of expressions in
parentheses, The order of evaluation of the expressions is

left to right, The expressions are evaluated and pressed onto

a stack; after all are evaluated they are popped from the stack

and stored in the variables, 5d2b

(varl:s var2s see) = (€XPlr €XP2: o44) 1}

NaturallyY, the number of expressions must equaj the number
of variabhles,

Examples
(a, b) » (C+d, a=b)

The expression c+d is evajuated and stacked, the
expression a«b is evaluated and stacked, the value of awb
is peopped from the stack and stored into b, and finally,
the value of c+d is popped and stored into a, It is
equivalent to: ‘

templ ., c+d 3
terp2 - a»b ;
a . templ ;

page 51

‘ ‘ &ARC=APP 4«DECw=75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guide
Part Three: Statements

One may assign a single value to a series of variables by
stringing the assignments together: 5d2¢

varl . var2 .. var3 .. exp ;

The assignment will be made from right to ijeft, vari, var2,
‘and var3 will all be given the value of the expression,

Examples
a - b . 01
Both a and b w111 be given the vajue zero, This type of
statement c¢an be usefyl in initializing a series of
varlables at the beginning of a procedure,
BUMP Statement 543
The BUMP statement will add one to a variable: 5d3a
BUMP var
This is equivalent to:
var .. var + 1 j;
BUMP DOWN will subtract one from a variable: 5d3b
BUMP DOWN var ;
This is equivalent to:
var ., var = 1 ;
You may BUMP more than one varlabie in a single statement: 5d3c
BUMP varil, var2, var3,,,, !
BUMgrDOWN varl, var2, vard,,,, i
IF Statement ’ | 5d4
This form causes execution of a statement if a tested
expression §{s TRUE, If tpe expression i{s FALSE and tpe
optional ELSE part is present, the statement following the ELSE

is executed, Contrel then passes to the statement immediately
following the IF statement, , 5d4a

page 52

&ARC»APP 4=DEC=75 20:25 34044

NLS Programmers® Guide - ARC 34044 Rey, 5 DEC 75
Part Threet! Statements

IF testexp THEN statement 3
IF testexp THEN statementl ELSE statement2

The statements within the IF statement can bhe any statement,

but are not followed by the usual semicolon; the whole IF

statement is treated like one statement and followed by the
semjicolon, 5d4b

Eyg, | ‘ ‘ 5d4c
IF y=z THEN y.y+1 ELSE y.z ;

In some cases, complex nested IFs may be simpler if rewritten
as a CASE statement, 5d4d

CASE Statement 5d%

This form is similar to the IF statement except that it causes
one of a serjes of statements to be executed depending on the
result of a series of tests, : 5d5a

CASE testexp OF
relop exp § statement ;
relop exp ! statement ;
relop exp : statement
L]

S
ENDCASE statement ?

where relop = any relational or interval operator (>=; <."=)
IN, etc,) see Sectjon 5 (5e3c) and (5e3d),

The CASE stanement provides a means of executing one statement
out of many, The expression after the word vCASEn is evaluated
and the result left in a register, This 1s used as the ‘
leftmhand side of the binary relations at the beginning of the
various cases, FEach expression is evaluated and compared
according to the relational operator to the CASE expression,
If the relationship is TRUE, the statement is executed, If the
relationship 1s FALSE, the next expression and relational
operator will be tried, 1If none of the relatfons is satisfied,
~ the statement following the word "ENDCASE" will be executed,
Control then passes to the statement following the CASE
statement 5d5b

Note that the relop and expressions are followed by‘a colon,
and the statements are terminated with the usual senmicolon,

page 513

‘ S&ARC=APP 4~DEC=75 20225 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers’ Guide
Part Three: Statements

The word ENDCASE is not followed by a c¢olon, In ENDCASE,
the statement may be left out == this is the equjvalent of
having a NULL statement there; nothing will happen,

Example;

CASE ¢ OF ,
% ai %execuyted {f ¢ = ag
X = ¥V
> b: %executed if ¢ > b%
(X0 V) o (X+Y, X=V)3
ENDCASE %executed otherwise%
Y - X3

CASE char QF
= D: %1f char = the code for a digits
char .. ’1;
= ULt %1f char = the code for an upperwcase letter%
char .. ‘0;
ENDCASE: %otherwise nothing%

Several relations may bhe listed at the start of a single case:
they should be separated by Commas, The statement wi)l be
executed if any of the relations is satisfied, 5d5¢

CASE testexp OF
relop exp: statement
‘relop exp, relop exp: statement
relop exp, relop exp, relop exp: statement ;
L]

, .
ENDCASE statement 3
Example: ,

CASE ¢ OF
=a, <dp %executed If c=a or c<dg
X - V]
>b, =d: %executed 1f c>b or c=d%
(X2Y) = (X¥V,X=Y):
ENDCASE %executed otherwises
Y - X!

As a point of style, the conditions of the CASE statement

should be put one level below the CASE statement in the source

(text) file, The statements (if they are more than one line)

may be put one level below the condition, 5d5d

page 54

SARC=APP 4=DEC=75 20325 34044
NLS Programmers’ Guyilde ARC 34044 Rey, 5 DEC 75
Part Three; Statements '

LOOP sStatement 5d6
The statement following the word "LOOP" is repeatedly executed
until control leaves by means of some transfer instruction
within the loop, 5d6a
LOOP statement:
where statement = any eXecutable L10 statement
Example:

LOOP IF a>=b THEN EXIT LOOP ELSE a -~ a+l ;

(It is assumed that a and b have been initialized before
entering the loop,)

The EXIT construction is described below, It is extremely
important to carefully provide for exiting a loop,

WHILE,,,DO Statement 5d7
This statement causes a statement to be repeatedly executed as
long as the expression immediately following the word WHILE has
a logical value of TRUE or control has not been passed out of
the DO loop by EXIT LOOP (described below), 5d47a
WHILE exp p0 statement
eXxp 1s evalvateg ang 1f TRUE the statement following the worg
DO is execyted; exp is then reevaluated and the statement
continually executed until exp is FALSE, Then control will
pass to the next statement, 5d47b

For example, if you want to fill out a string with spaces
through the 20th character position, you could:

WHILE str,L < 20 DO #str% . #*str#, SP; %yhat’s already
there, then a space%

remember that the first word of every string variable has
two globally defined fields:

L == actual length of contents of string variable
M == maximum length of string variable

The WHILE construct is egquivalent to: 5d7¢c

page 55

&ARC=APP 4=DEC=75 20125 34044
ARC 34044 Rev, 5 DEC 758 NLS Programmers*® Guide
Part Three: Statements

LOQP
IF NOT eXp THEN EXIT LOOP
ELSE statement 3
UNTIL,,.DO Statement : 548
This statement is similar to the WHILE,,,DO statement except
that the statement following the DO jis executed until exp is
TRUE, As long as exp has a logical value of FALSE the
statement will be executed repeatedly, 5dBa
UNTIL exp DO statement 3
Example?
UNTIL a>b DD a . a+i ;
The UNTIL construct is equivalent to: 5d8b

LOOP N
IF exp THEN EXIT LODP ELSE statement

pO,,,UNTIL/DO,,,WHILE Statement 5d9
These staterents are like the preceding statements, except that
the logical test is made after the statement has been executed
rather than before, 5d9a
p0 statement UNTIL exp;
DD statement WHILE exp:
Thus the specified statement is always executed at least once
(the first time, before the test is made), For example, this
b0, ,,UNTIL: ‘ 5d9b
DO arrayfvar) .. 0 UNTIL (var = var = 1) = 0 ;
and this pO,,, WHILE: 5d9c¢
DO array[varl] - 0 WHILE (var := var = 1) » 0 ;
are poth equivalent to: 5d94d
LOOP

BEGIN
arraylvar}] = 0 3

page 56

 §ARC=APP 4#DEC=75 20325 34044
NLS Programmers’ Guide ARC 34044 Rev, 5 DEC 78
Part Three: Statements

IF (var 3= var = 1) = 0 THEN EXIT LOOP
END:

FOR,,.D0O Statement 5d10
The FOR statement causes the repeated executlon of the
statement following *po® yntil a specific terminal value is
reached, 5d10a
FOR var UP UNTIL relop exp DO statement;
(UP will be assumed 1f left out,)
FOR var DQWN UNTIL relop exp DD statement:
where
var = the variable whose value 1s incremented or
decremented each time the FOR statement is
executed
relop = any relational operator (described in Se3c)
exp = when combined with relop, determines whether
or not another iteration of the FOR statement
will be performed, It is recompuyted on each
jteration, \
E.ge FOR i UP UNTIL > 7. D0 & .. a + tpi] 5d10b

Optionally, the user may initialize the variable and may
increment it by other than the defau)lt of one, 5d10c¢c

FOR var . expl yP exp2 UNTIL relop exp3 DO statement;
FOR var .. expl DOWN exp2 UNTIL relop exp3 DO statement;

where

expl = an optional initial valuye for var. If expl is not
specified, the current value of var is used,

eXp2 = an optional value by Which var will be incremented

(if UP specjified) or decremented (if DOWN specifjed), 1If

exp?2 is not specified, a value of one will be assumed,
Note that exp?2 and expj are recomputed on each iteration,

Example?!

page 57

: SARC=APP 4~=DEC»75 20125 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guide
‘ ‘ Part Three: Statements

FOR kK .. N UP k/2 UNTIL > m#*3 DO x[K) - K;
is equivalent to

K — N3
Loop
BEGIN
IF k >m*3 THEN EXIT LOOP;
X[k} - k}
K = K + K/23
END:

BEGIN,, ,END Statement 5411

The BEGIN,..END construction enables the user to group several
statements into one syntactic statement entity, A BEGIN...END
construction of any lenath is valid where one statement 1is

required, 5di1a

REGIN statement : statement § ,,. END
Example:s

IF a »= b#*c THEN

BEGIN

a-b;

CanGt5 2

END %no sgemicolon here becayse an L10

statement here wouldn’t havVe one; see 5d4%
ELSE

BEGIN

amC }

Ded+2;

Cah®d®7 2 ,

END3; %thils semicolon terminates the entire IF
statements

Note the use of NLS file structure to clarify the logic and
separate the blocks, Blocks should always be put one level
below the statement of which they are a part,

EXIT Statement 5d12

The EXIT statement transfers control (forwarg) out of CASE or
iterative statements, A CASE statement can be left with an

EXIT CASE statement, All of the iterative statements (LOOP,

WHILE, UNTIL, DO, FOR) can be exited by the EXIT LOOP

statement, EXIT and EXIT LOOP have the same meaning, 5d12a

page 58

, &ARC=APP 4«DEC=75 20325 34044
NLS Programmers‘ Guide ARC 34044 Rev, 5 DEC 75

Part Threei Statements

EXIT LOOP num or EXIT num
EXIT CASE num

where num is an optional integer, The optional number
(num) specifies the number of lexical levels of CASE or
iterative statements regpectively that are to be exited
(e.ge if loops are nested within loops), I¢f a numper is
not given then { is assumed,

Examples?

Loop
BEGIN
[RN & N] .
IF test THEN EXIT;
$the EXIT will branch out of the LOOP%

erenenge

END:

UNTIL something DO
BEGIN

LE N E RN J

L]
WHILE testl DO
BEGIN
sesenenn
IF test?2 THEN EXIT;
$the EXIT will branch out of the WHILES
st nergy

END 3

[XEEEERX]

END

UNTIL something DO
BEGIN

PR e RN

WHILE testi DO
BEGIN
(X R RN NN N
IF test?2 THEN EXIT 2;
(the EXIT 2 will branch out of the UNTIL%

QOQQO'OQ
END ¢
LB RN N

gee
END3

page 59

s : ‘ &ARC»APP 4#DEC»75 20325 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers* Guide
Part Three; Statements

CASE exp OF
=something:
BEGIN
LE NI E N NN
IF test THEN EXIT CASE;
%the EXIT will branch out of the CASE%

LA RN EE NN

END3

I EERE &N]

REPEAT Statement ' 5413

The REPEAT statement transfers control (backward) to the front

of CASE or iterative statements, The optional number has the

same meaning as in the EXIT statement, REPEAT and REPEAT CASE

have the samre meaning, 5di3a

REPEAT LOOGP num

REPEAT CASE num (exp) or REPEAT num (exp)
If an expression is given in parentheses with the REPEAT CASE,
then it is evaluated and used in place of the expression given

at the head of the specified CASE statement, TIf the expression
is not given, then the one at the head of the CASE statement is

reevaluated, | - 5d13b
Examples: : | : ‘ 5d13c
CASg expi OF
‘Agomethings
BEGIN
Q?QQ'.

IF 'testi THEN REPEAT)
SREPEAT with a reevaluatad‘expl%

(B ERBN Y]

IF test? THEN REPEAT (exp2);
%REPLAT with epo%

2 enen

page 60

, &ARC=APP 4~DEC=75 20225 34044
NLS Programmers?’ Gyide . ARC 34044 Rev, 5 DEC 75
part Threet! Statements:

LOOP
BEGIN

(NN AR BN

IF test THEN REPEAT LOOP;)
$REPEAT LOOP will go to the top of the LODP%

IR N NN NN]
END;
DIVIDE Statement 5di4

The divide statement permits both the quotient and remainder of
an integer division to be saved, The syntax for the divide
statement 1s as followst: 5d14a

DIV expl / exp2 , quotient , remainder ;

Quotient and remainder are variable names in which the
respective values will be saved after the division, 5d14b

EQgQ
DIV a/b, arr ;

a will be set to a/b to the Qgreatest integer with r
getting the rerainder

Floating point calculations are described in Part Five, Sectlon
4, 5d14c

PROCEDURE CALL Statement 5di15

Procedure calls direct program control to the procedure

specified, A procedure call occurs when the name of the

procedure is followed by parentheses, If the procedure

requires that arguments be passed, they should be included in

the parentheses, separated by commas, ' 5d15a

procname (eXp, €XpPs 494) }
vhere procname = the nhame of a procedure
exp = any valid L10 expression (explained in Section 5),
The set of expressions separated by commas is the
argument list for the procedure,
The argument list consists of a number of expressions separated

by commas, The number of arguments should equal the number of
formal parameters for the procedure, The argument eXxpressions

page 61

SARC=APP 4=DEC»75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guyide
Part Threet!: Statements

are evValuated in order from left to right, Each eXpression
(parameter) must evaluate to a one~word value, The values wjill
be assigned to the formal parameters of the called procedure, 5disb

To pass an array, text pointer, string, or any multi=word
parameter, the programmer may pass the address of the flirst
word of the variable, then REF the receiving local in the
called procedure,

For example, one may pass an stid directly, but to pass a
text pointer, you must pass the address of the text pointer
and REF the receilving parameter, Remember that a dollar
sign (8) preceding a variable represents the address of that
varijable,

The procedure may return one or more values, The first value
is returned as the value of the procedure call, Therefore, if
only one value is returned, one might say? 5d15c¢

a = pProc (b) 3

In this context, the procedure call is an expression,
If more than one value 1Is returned by the called procedure, one
must specify a list 0f variables in which to store them, The
list of variables for multiple results is separated from the
list of argument expressions by a colon, The number of
locations for results need not equal the number of results
actually returned, 1f there are more locations than results,
then the extra locations get an undefined value, If there are
more results than locations, the extra results are simply lost,
The first RETURN value is still taken only as the value of the
procedure call, 5d15d

Var .. procname (exp, €XPs ees ! VAT, VAT, 404) }

Example;

If procedure "proc" ends with the statement
RETURN (a,bsc)
then the statement
qQ - PrOoC(ires):

results in (q,r,s) .. (a,b,C),

page 62

‘ SARC»APP 4»DECe75 20:25 34044
NLS Programmers‘ Guide ARC 34044 Rev, 5 DEC 75
Part Three: Statements

A procedure call may just exist as a statement alone without
returning a value, Not all procedures require parameters, but

the parentheses are mandatory in order to distinguish a

procedyre call from other constructs, 5dl5e

E«.g. 1lda():

1f a block of Instructions are used repeatedly, or are

duplicated in different soCtions of a program, it is often wise

to make them a separate procedure and simply call the procedure

when appropriate, 5415¢

It is considered good style to "modularize" the functions of
your program as much as possible, where each procedure
represents a function which will be performed no matter
which procedure called it, This implies very limited use of
global variables and careful definition of the procedure
interface,

Procedures should not be made to0 lond, nor have complex
nested loops, Often breaking the code into a number of
shorter procedures will make the program clearer and easier
to debug,

A procedure may recuyrsively call itself, Each call will have

lts own uynique set of local variables, This may be useful if a
procedure is bullt to handle a general case as well as a

specific case or number of cases, The general case may call

“that sarme procedure for the specific case after some

manipulations, 5d15¢

A great many procedures are part of the NLS system and are

available to your programs, A list of them is available in the

file <NLS,XPROCS,> or <NLS,SYSGD,>, SYSGD lists linksg to the

source code, S0 that You can eXamine the procedure in detail to

see just what it expects as arguments and what it returns, 5d15h

page 63

; ‘ &ARC»APP 4wDEC»75 20:25 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers® Guide
Part Three: Statements

RETURN Statement : 5d16
This statement causes a procedure to return control to the
procedure which called it, Optionally, it may pass the calling
procedure an arbitrary number of results, The order of
evaluation of results is from left to right, 5di6a
RETURN ;
RETURN (eXDys €XPy» 44e) 7}
E.Q, Sdieb

RETURN (TRUE, a+b)
RETURN (getnmf(stid)) :

GOTO Statement 5417
ANy statement may be labeled: one puts the desired label (a
string of lower case letters and digits) in parentheses and :
followed by a colon at the beginning of a statement, 5d17a
(label): statement ;
E.qg, 5d17b
(there): a . b + ¢

GOTO provides for unconditiona) transfer of contro)l to a new
location, 5d17¢

GOTO label ;

E,q, ' 5d17d
GOTO there 3

GOp0 statements make reading and debuagging your program

difficult and are not congidered good style; they can ysually
be eliminated by use of procedure calls and the iterative

statements, 5d17e
NULL Statement ' 5418
Tne‘NULL statement may be used as a convenience to the
programmer, It does nothing, 5diga
NULL

page 64

o S&ARC#APP 4~DECe75 20325 34044
NLS Programmers’ Guide ARC 34044 Rey, 5 DEC 75
Part Threet Statements

Example;

CASE exp OF
=0, =13 NULL;
ENDCASE Vel

JSYS Call and Assembly Language Statement 5d19

The use of these capabilities should be limited to system
programmers, Assembly language code makes user programs

difficult to understand and to maintain as the executive

underlying NLS changes over time, L10 procedures are avallable

to accomplish most of the tasks one might want to do with a

J5YS, System programmers should refer to the TENEX JSYS manual

for a description ¢of the available JSYS’s, 5d19a

Assembly language statements may be included in the L10 code by
preceding the statement with an exclamatione=point (!), E,q. 5d19p

IPUSH s, ifn H

A TENEX JSyYS may be invoked with a statement similar to the
procedure call statement; the name of the ,JSYS must be preceded
by an exclarationwpoint: 5d19c¢

|JSYSNAME (regl, reg2,,es) 3

The arguments in the parentheses are evaluated and loaded into

the registers before the JSYS is invoked, The first argument

will be put in register one, the second in register two, etc,

Up to eight arguments may be given, ‘ 54194

Like a procedure call, multiple results may be received, They
will be taken in order from the registers, (See <13510,3¢> for
a description of user JSIS calls, 5d19e

Some JSYS return to the assembly=language line of Code (not the
L10 statement) one beyond the normal return location, With
such JSYS, vou may use the SKIP construct to test 1f it has

done so! i 5d19¢
IF SKIP !JSYS(aral,,,,) THEN ,,. }

In vsing SKIP, you may not reCeive multiple results directly,

but must read the registers into globals (see 5¢12), 5d19g

page 65

EARC=APP 4=DEC=75 20:25 34044

ARC 34044 Rev, 5 DEC 75 NLS Programmers *

Guide

Part Three: Expressions

Section 5: Expressions

Introduction
This section will describe the composition of the expressions,
which are an integral part of many of the statements descCribed
in section 4,

Primitives
Primitives are the basic units which are used as the operands
of L10 expressions, There are many types of elements that can
be used as [10 primitives; each type returns a value which is
used in the evaluation of an expression,
Each of the following 1Is a valid primitive:

a constant (see below)

any valid variable name, refering ¢o the congents (of ghe
first word, if not indeXeq) ©of that variable

the contents of a string variable, refered to as #var#

a dollar sign ($) folloyed by a variable name, refering to
the address o¢ the variable

a procedure call which returns at least one Qalue
the first (leftmost) value returned is the value of the
procedure cally other values may be stored 1n other
variables as described in Section 4,

an assignment (see below)

classes of characeers; described in Sectich 1 of Part One

MIN (eXp, eXps ..,) the minimum of the expressions

MAX Cexp.‘eXp';.,.) the maximum of the expressions

TRUE has the value 1

FALSE has the value 0

VALUE (astring) given the address of & string containing a
decimal number. has the value of the number

page 66

Se

Sel

Sela

5e2

S5e2a
S5e2b

o | | &ARC=APP 4-DEC=75 20325 34044
NLS Programmers’ Guide o ARC 34044 Rey, 5 DEC 75
Part Three: Expressions

VALUE (astring, num) given the address of a string
containing a number and the base of that number, has the
value of the number (allows other than base=ten numbers)

READC (see below)

CCPOS (see below)

FIND
used to test‘text patterns and load text pointers for use
in string construction (see Section 6); returns the value
TRUE or FALSE depending on whether or not all the string
tests within it succeed,

POS
POS textpointerl relop textpointer?2
may be used to compare two text pointers, If the POS
construction is not used, only the first words of the
pointers (the stid’s) will be compared, If a pointer is

before another, it is considered less than the other
pointer, : ’

Ee.Q,

POS pty = pt2
POS first‘>m‘last

Constants | S Se2c
A constant may be either a numbet or a literal constant,
There are several ways in whlch numeric values may be
represented, ‘A sequence of digits alone (or followed by a
p) is interpreted as base ten, If followed by a B then it
is interpreted as base eight, A scale factor may be given
after the B for octal numbers or after a D for decimal
numbers, The scale factor is egquivalent to adding that many
zeros to the original number,

Examples:
64 = . 100B = B2

144B = 100 = 1D2

page 67

‘ &ARC=APP 4=-DECw»75 203125 34044
ARC 34044 Rev, 5 DEC 75 - NLS Programmers’ Gulde
Part Three: Expressions

Literals may be used as constants as they are represented
internally by numeric values, The following are valid
literal constants:

~any single character preceded by anh apostrophe
e,q, “a represents the code for 141B,
=the following synonyms for commeonly used characters:

ENDCHR == endcharacter as returned by READC
SP == space

ALT == Tenex’s version of altmode or eScabPe (=33B)
CR == carriage return

LF == line feed

EQL == Tenex EOL character

TAB == tab

BC == backspace character

BW == backspace word

C, == center dot

CA == COmmand Accept

CD == Command Delete

Assignments 5e2d
An assignment can be used as a value in an expression,

The form a . b has the effect of storing b into a and has
the value 0of b as the value of the assignment,

Another form of the asslignment statement is:

This will store b into a, but have the old value of a as
the valuye 0of the assiagnment when used as a primitive in
an expression,
For example,
b~ (&4 = b)
The vajue of b wi]] be put in a, 'The assignment wi)l)
get the old value of a, which Is then put in b, This
transposes the values of a and b, (The parentheses
are not really necessary,)

READC = ENDCHR ‘ 5e2e

page 68

SARC=APP 4~DEC=75 20:25 34044
NLS Programmers® Guyide ARC 34044 Rey, & DEC 175
Part Three?! - Expressions

The primitive READC is a Special construction for reading
characters from NLS statements or strings,

A character is read from the current character position
in the scan direction set by the last CCP0OS statement or
string analysis FIND statement or expression, CCPOS and
FIND are explained in detail in Section 6 of this
document,

Attempts tO read off the end 0f a string in either
direction result in a special v"endcharacter» being
returned and the character position not being moved,
This endcharacter is included in the gset of characters
for which system mneumonics are provided and may be
referenced by the identifier "ENDCHR",

For example, to seqguentially process the characters of
a string:

CCPOS #str;
UNTIL (char .. READC) = ENDCHR DO proeocess(char):

(Note: READC may also be used as a statement if it is
desired to read and simply discard a character),

CCras ‘ 5e2f

when used as a primitive, CCPOS has as its value the index
of the character to the right of the current character
position, If str = nglarp®, then after CCPOS #strx, the
value of CCP0OS is 1 and after CCprOS SE(#str#) the value of
CCP0S is 6 (one greater than the length of the string).

CCPOS is more commonly used as a statement to set the
current character positjon for use jn text pattern matChing.
This is discussed in detail in section 6,

cCcPOS may be useful as an index to sequentially process the

first n characters of a string (assumed to have at least n
characters),

page 69

\ | SARC=APP 4=DEC=75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Guide
' Part Threet Expressions

Example:
CCPOS SF(#str); ‘ ,
%$CCPOS now has the index value of one, the front of
the string%
UNTIL CCPOS > n DO process(READC):
$REApDC reads the next character and increments
CCPOS%
‘perators S5e3
Primitives may be combined with operators to form expressions,
Four types of operators will be described here: arithmetic,
relational, interval, and logical, 5e3a
Arithmetic Operators 5e3b
+ (in front of a number) == positive value
= (in front of a number) == negative valye
+ == addition
- ww gubtraction
== multiplication
/ == integer division (remainder not saved)
MOD == a MOD b gives the remainder of a / b

.V == (OR) a ,V b => bit pattern which has 1°s where either
a or b contains 1, 0 elsewhere

+% == (XOR) a ,X b => pit pattern which has 1’s where either
a holgs 1 and b contains 0, or a Contains 0 and b contains
1, 0 elsewhere

A == (AND) a ,A b %> bit pattern which has 1’s where both a
and b contain 1, 0 elsewhere '

Relational Cperators 5e3c
A relational operator is used in an expression to compare
one quantity with another, The expression is evaluated for

a logical value, Tf true, its value is 13 if false, its
value is 0,

page 70

NLS Programmers® Gylde

Part Three!

Operator

LB b A L & J

=

Expressions

Meaning

equal to

not egual to
less than
less than or
equal to
greater than

v Vv A A=
u

"

equal to

greater than or

Exagmple

- e o oo

441 = 342
648
6<8

B<=6
3>8

A>=6

NOT <othererelational=operator>

Interval Operators

6 NOT > 8

§&ARC=APP 4=DEC»75 20325

ARC 34044 Rey, 5 DEC 75

(TRUE, =1)
(TRUE, =1)
(TRUE, =1)

(FALSE, =0)
(FALSE, =0)

(TRUE, =1)
(TRUE, =1)

5e3d

The interval operators permit one to check whether the valuye
of a primitive falls in or out of 3 particular interval,

IN (primitive, primitive)

IN (primitive, primitive)

The value is tested to see yhether or not it lies yithin a

partjcular jnterval,
"open" or "closed",

Each side of the interval may be
Thus the values which determine the

boundaries may be included in the interval (by using a
square bracket) or excluded (by using parentheses),

Example:
x IN (1,100)

is8 the same as

(x >=1) AND (x < 100)

page 71

34044

&ARC=APP 4=DEC=75 20325 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers” Guyide
Part Threet Expressions

Logical Operators 5e3e

Every numeric value also has a logical valuye, A numeric
value not equal to zero has a logical value of TRUE; a
numeric value egual) to zero has a logical value of FALSE,

NDR
a ORp = TRUE. if a3 = TRUE or if b = TRUE
= FALSE if a = FALSE and if b = FALSE
AND
a AND b 5 TRUE 1f a = TRUE and if b = TRUE
= FALSE 1f a = FALSE or if b = FALSE
NOT
NOT 5§ = TRUE 4if a = FALSE
= FALSE if a3 = TRUE
Expressions 5e4

Introduction " Se4a

AD expression is any constant, variable, speclal expression
form, or combination of these joined by operators and
parentheses as necessary to denote the oOrder in which
operations are to be performed,

Examples of assigning an expression to a variablet

var .. 03

var . var + 2 ;

var .. PgS ptrl >= ptr2 3

var - (a > b) gR (a IN [c, 4]) s

Liberal use of parentheses is highly recommended,
Special L10 expressions are?

» the FIND expression which is used for string
manjpulation, and

= the conditional IF and CASE expressions which may be

used to give alternative values to expressions depending
on tests made in the expressions,

page 72

| e &ARC=APP 4=DEC=75 20325 34044
NLS Programmers’ Gyide ARC 34044 Rey, B DEC 78
Part Three: Expressions ' .

Expressions are used Where the syntax requires a value,
while certain of these forms are similar syntaectjcally to
L10 statements, when used as an expression they always have
values (see below),

Order of QOperator Execution=~ Binding Precedence 5e4b
The order of performing individual operations within an
equatjon is determined by the hierarchy of operator
execution (or binding precedence) and the use of
parentheses,

Operations Of the same helrarchy are performed from left to
right in an expression, Operations in parentheses are
performed before operations not in parentheses,

The order of execution of operators (from first to last) is
as follows:

unary =, unary +
"
VooWX
*, /, MOD
, -
relational tests (e,g.s >=, <=, >, <, =, #, IN, OUT)
NOT relational tests (e,g,, NOT >)
NOT | | |
AND
OR
Conditional Expressions 5e4c
The two‘conditional constructs (IF and CASE) Can be used as
expressions as well as statements, As expressions, they
must return a value,
IF Expressions

IF testexp THEN exptl ELSE exp?2

page 73

» SARC=APP 4=DECe75 20125
ARC 34044 Rey, 5 DEC 75 NLS Programmers’ Guide

34044

Part Three: Expressions

testexp is tested for its logical valuye, If testexp is
TRUE then expl will be evaluated, If it is FALSE, then
exp?2 is evaluated,

Therefore, the result of this entire expression is EITHER
the result of expl or exp?2,

Example?

Y o IF x INI1,3] THEN X ELSE 4;
$if x =1, 2, or 3, then v.x3 otherwise y.4%

CASE Expression

page 74

This form is similar to the above except that it causes
any one of a series of expressions to be evaluated and
used as the result of the entire expression,

CASE testexp OF
relop exp i exp
relop exp : exp
relop exp : exp

]

.
ENDCASE exp

-e

LR]

where relop = any relaﬁianal or interval operator (>=,
<, ®, IN, etc, See above (5e3c) and (5e4d)

In the above, the testexp iIs evalyated and ysed with the
operator relops and their respective exps to test for a
value of TRUE or FALSE, If TRUE in any 1nstance, the
companion expression to the right of the colon is
executed and taken to be the value of the whole
expression, A value of FALSE for all tests causes the
next relop in the CASE expression to be tested against
the testexp, 1If all relops are FALSE, the ENDCASE
expression is taken to be the value of the whole
expression, : ‘

Note that ENDCASE cannot be null; it must have a value,
As with the CASE statement, any number of cases may be

specified, and each case may {nclude more than one relop
and expression, separated by commas,

: &ARCwAPP 4~DEC=75 20325 34044
NLS Programmers‘ Guide , ‘ ARC 34044 Rev, 5 DEC 75
Part Three: Expressions ‘ ,

Example:

Y .. CASE x QF
<3: X+l
=3, =421 x+2:
=52 X2
ENDCASE x#27%

valuye of X Valye of vy

LX A X B L 8 % 2 3 X W [T L 3 L X 2 %
2 3
3 5
4 6
5 5
6 12
String Expressions S5edd

Li0 also provides several expression forms which are used
for string manfpulation and evajluation, These are discussed
in section 6 of this document, When using string
manipuylation statement forms as expressions, parentheses may
be necessary to prevent ambiguities, '

page 7%

ARC 34044

&ARC=APP 4-DECe»75 203125 34044
Rev, 5 DEC 75 ~ NLS Programmers’ Guide
Part Three: String Test and Manipulation

Section 6: string Test and Manipulation

Introduction

This section describes statements which allow complex string
analysis and construction, The three basic elements of string
manipulation discussed here are the Current Character Position
(CCPCS) and text pointers which allow the user to delimit
substrings within a string (or statement), patterns that cause
the system to search the string for specific occurrences of
text and set up pointers to various textual elements, and
actual string construction,

current character Position (cCPOS)

The Current Character Posjtion is similar to the TNLS CM
(Control Marker) in that it speCifies the location in the
string at which subsequent operations are to begin, all L10
string tests start their search from the Current Ccharacter
position, In Content Analyzer programs, it is initialized to
the BEGINNING OF EACH NEW STATEMENT, For each new statement,
the scan direction is initialized to LEFT T0 RIGHT, It 1is
moved through the statement or through strings by FIND
expressions, It may be set to a particular position in a
statement or string by the L10 statement:

CCPOS pos

pos 1Is a poesition in a statement or string that may be
expressed as any of the following:

A previously declared and set text pointer,

1f a text pointer is given after CCPOS, then the
character position is set teo that location, A text
pointer points between two characters in a string,

e,q, CCPOS ptl ;

string Front == 1left of the first character

page 76

SF(stspec)

when SF is specitied, CCpOs will be set before the first
character of the statement or string varlable specified
by stspec,

5¢f

S5f1

5fia

5£2

5f2a

5£2b

| | &ARC=APP 4«DEC=75 203125 34044
NLS Programmers’ Guide | ARC 34044 Rey, 5 DEC 75
Part Threet String Test and Manjipulation

stspec s a string specification that may be expressed as

» an stid (e,q9, the first computer word of a
previously declared text pointer), or

= a previously declared string nare enclosed in
asterisks,

Examples:

CCPOS SF(pt1l) _

ptl is a text pointers
CCPOS SF(stidqd) ;

gstid is an stidg
CCPOS SF(#str#)

gstr 1s a string%

String End == right of the last character
SE(stspecC)
when SE is specified scanning will take place from right

to left, and CCPOS will be set after the last character
of the statement or string varlable specified by stspec,

A string (#stringname%) is given after CCP0S, The position
is moved to the beginning of that string,

Indexing the stringname (by specifying (exp]) simply
specifjes a partjcular posjtion within tne string, Tnus
#str#[3) puts the Current Character Position between the
second and third characters of the string "str", 1If the
scan direction is left to right, then the third character
will be read next, If the direction is right to letft,
then the second will be read next,

E«Q,
CCPOS #strx[3)]
If no indexing is given, then the position is set to the

left of the first character in the string, This is
eguivalent to an index of 1,

Eﬂgl
CCPOS #str+

page 77

&ARC=APP 4~DECw75 20:25 34044

ARC 34044 Rev, 5 DEC 75 NLS Programnmers’

Gulde

Part Three: String Test and Manipulation

means the same as
CCPOS SKF(#strx);

Setting the current character position with the CCPOS statement
also gets the scan direction to forward (left~to=right), except
if the SE construet is used,

FIND Statement

The FIND statement specifies a string pattern to be tested
against a statement or string variable, and text pointers to be
manjpulated and set, starting from the Current Character
Position, 1If the test succeeds the character position is moved
past the last character read, If the test falils the character
position is left at the position prior to the FIND statement,
The values of text pointers set in the statement prior to the
failing elerent will remain as set; others of course will not
be changed,

FIND pattern ;
FINDs may be used as expressions as well as freewstanding
elements, If used as an expression, for example in IF
statements, it has the value TRUE if all pattern elements

within it are true and the value FALSE if any one of the
elements is false,

E,qg,
IF FIND pattern THEN ,,,
It is good practice to use FIND as an expression with the
appropriate error conditions if the FIND fails, If the FIND
falls, text pointers may not be set as expected,
FIND Patterns
A string pattern may be any valid combination of the following

logjca) operators, testing arguments, and other non=testing
parameters (note the {dentity with Content Analyzer Patterns):

page 78

5¢2¢

5€£3

5f3a

5£3b

5f3c

5f£3d

5f£4

5f4a

, &ARC=APP 4~DEC»75 20325 34044
NLS Programmers” Gulde , ; ARC 34044 Rey, 5 DEC 75
Part Three: String Test ang Manipulation

Pattern Matching Argumentse= | 5f4p
(each of these can be TRUE or FAbSE)
string constant, e,g, "ABC"
or any character, preceded by ah apostrophy

It should be noted that 1f the scan direction is set
right~to=left the string constant pattern should be
reversed, In the above example, one would have to
search for "CBAv,

Any of the system defined mnemonics, as described in
the last section (5e2c), such as "SP" or "CR", are
also valid,

character class

look for a character of a specific class; 1f found, =
TRUE, otherwise FALSF,

Character classes?

CH == any character

L == lowercase or uppercase letter
UL == yppercase letter

LL == lowercase letter

D == digit

LD == lowercase or uppercase letter or digit
NLD == not a letter or digit

ULD == uppercase letter or digit
LLD == lowercase letter or digit
PT == printing character

NP == nonprinting character

Example:
char = LD

is TRUE if the variable char contains a value
which is a letter or a digit,

(elements)

look for an occurrence o0f the pattern specified by the
elements, If found, = TRUE, otherwise FALSE, ‘
Elements may be any pattern; the parentheses serve to

page 79

' ~ LARC=APP 4=»DEC=75 20325 34044
ARC 34044 Rev, 5 DEC 75 ~ NLS Programmers’ Guide
Part Three: String Test and Manipulation

group the elements so as to be treated as a single
element in any of the following elements,

=element

TRUE only if the string constant or character class
element following the dash does not occur,

NOT element

TRUE 6nly 1f the element or group of elements
following the NOT does not occur,

{elements])

TRUE if the pattern specified by the elements can bhe
found anywhere in the remainder of the string,
elements may be any pattern; the squarebrackets also
group the elements s0 as to be treated as a single
element, It first searches from current position, 1If
the search failed, then the current position is
incremented by one and the pattern is tried again,
Incrementing and searching continues until the end of
the string, The value of the search is FALSE if the
testing string entity is not matched before the end of
the string is reached,

NUM element

find (eXxactly) the specified numper of occurrences of
the element,

E'QQQ
3(LD) means three letters or digits
NUM1 ¢ NUM2 element

Tests for a range of occurrences of the element
specified, If the element is found at least NUM1
times and at most NUM2 times, the value of the test is
TRUE,

Either numper is optional, The default value for
NUM1 is zero, The defanlt value gor NUM2 is 10000,
Thus a construction of the form "s3(CH)" would
search for any number 0f characters (including
zero) up to and including three,

page 80

Part Threet

ID
ID

FT

R | &ARC=APP 4=DEC=75 20125
NLS Programmers' Guide - ARC 34044 Rev, 5 DEC 75

string Test and Manipulation

Examples:
284(UL) =~ from two to four upper=case letters
'$10(SP) == up to ten‘spaces ‘
1$(*,) == one or more periods

= yser=ident
t user-idant

if the string being tested is the text of an NLS
statement then ident of the user who Created or last
edited the statement is tested by this construction;
1f CCPDS is in a string, you will get the error
"string treated as statement®

var

TRUE if the variable holds a value of TRUE (non=zero),

SINCE datim

if the string being tested is the text of an NLS

- statement, this test is TRUE if the statement was

created or modified after the date andg time (datim,
see below) specified

BEFORE datim

it the string being tasted is ‘the - text of an NLS

statement, this test is TRUE {f the statement was

created or modified before the date and time (datinm,

see b@low) specified

34044

page 81

&ARC=APP 4=DEC=75 20:25 34044

ARC 34044 Rev, 5 DEC 75 ' NLS Programmers¢ Guide

Part Three: String Test and Manipulation

Acceptable dates and times follow the forms permitted
by the TENEX system’s IDTIM JSYS described in detail
in the TENEX JSYS manual, It accepts "most any
reasonable date and time syntax,"

Examples of valid dates:

17=APR=70
APR=17=70

APR 17 70

17 APRIL 70
17/5/71970
5/17/70

APRIL 17, 19790

Examples of valid times (zero assumed if time left
out):

1312213

1234

1234:56

1356AM

1:56=EST

1200N0OON

16130 (4130 PM)

12:00:00AM (midnight)
11:59:59AM=EST (late morning)
12:00:01AM (early morning)

Examples:

BEFORE (MAR 19, 73 16149)
SINCE (25~JUL=73 2130:00)

These may not appear in Content Anglysis patte&ns. but are
valjd elements jin FIND statements {n any program: |

baqe 82

#stringname#
the conﬁents‘of the string variable

BETWEEN pos pos (element)
Search limited to between positiong specified, pos‘is
a previously set text pointer; the two must be in the

same statement or string, Scan character position is
set to first position before the pattern is tested

&ARC=APP 4=DEC=75 20125 34044
NLLS Programmers’ Gyide ARC 34044 Revy, 5 DEC 75

Part Three: String Test and Manipulation

(This is not an unanchored scan unless sguare brackets
are used within the parentheses,).,

EeQ,
BETWEEN pt1 pt2 (2D [,] $NP)
Logical Operators==

These combine and delimit groups of patterns, Each compound
group Is congidered to be a single pattern with the value
TRUE or FALSE, The character position will be reset to its
position before encountering the group before a new group is
tested, Any text pointers set within a test pattern before
it fails will retain thelr new values, (See examples below,)

/
AND
OR

These logical concatenators bind in the order in which
they are listed, 1I,e,

a / b AND ¢
means the same as
(a / b) AND ¢
Cther Elementsmw
These do not involve tests; rather, they involve some
executjion action, They are always TRUE for the purposes of
pattern ratching tests,

These may appear in simple Content Analysis Patterns:

<
set scan direction to the left
In this case, care should be taken to specify
patterns in reverse, that is in the order which the
computer will scan the text,
>
set scan direction to the right
TRUE

5£4c

5f4d

page 83

- §ARC=APP 4=DEC=75 20225 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers® Guide
Part Threet String Test and ganipulation'

has no effect; it is generally used at the end Of OR
when a value of TRUE is desired even if all tests
fall,

ENDCHR

Attempts to read 0ff the end of a string in either
directjon result in a special "endcharacter" being
returned and the character position 1s not moved,

This endcharacter is included in the set of characters
for which system mneuymonics are provided and may be
referenced by the identifier "ENDCHR",

These may not appear in simple Content Analysis Patterns,
but may in FIND statements:

pos

pos Is a previously set text pointer, or an SE(pos) or
SF(pos) construction, Set current character position
to this position, 1If the SE pointer is used, set scan
direction from right to left, If the SF pointer is
used, set scan direction from left to right,

E.q,

FIND x; %sets CCPOS to position of previously set
text pointer x%

store current scan position into the textpointer
specified by the identifier

A5l
b

- [NUM] ID

pack Up the specified text pointer py the specified
nurber (NUM) of characters, Defau)t vajue for NUM s
one, Backup is in the opposite direction of the
current scan direction,

FS var
FR var

FS will set the variable to TRUE (1), FR will reset
the varjable to FALSE (0),

page 84

SARC=APP 4=DEC~75 203125 34044
NLS Programmers’ Gyide ' ARC 34044 Rey., 5 DEC 75
Part Threet String Test angd Manipulation

string Construction 5¢5
One may modify an NLS statement Or a string with the statement: 5f5a
ST pos - stringlist i

The whole statement or string in which pos resides will
be replaced by the string list,

ST pos pos .. stringlist 3

The part of the stztement or string from the first pos to
the second pos will be replaceygq by the string list,

"posg" may be a previously set text pointer or the
sF(pos)/SE(pos) construction,

There are two additional ways of modifyving the contents of a
string variable: 5£5b

ST #stringname#(exp TO exp] -~ stringlist
means the same as
#stringnamex[exp TO exp] . stringlist ;
The string from the first position to the second position
will be replaced by the string list, The
square=bracketed range Is entirely optional; 1f it is
left off, the whole string will be replaced,
Note that the "ST" is optional when assigning a
stringlist to the contents of a string variable, The
statement then resembles any simple assignment statement,
1,e, |
#stringname# _ stringlist ;
The string 1ist (stringlist) may be any series of string
designators, separated by commas, The string designators may
be any of the following: ‘ 5£5¢C
| the word NULL
represents a zero length (empty) string
string constant, e,g, "ABC" or *w

part of any string or statement, denoted either by

page 85

&ARC=APP 4~DEC=75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guide
Part Three: String Test and Manipulation

two text pointers previously set in either a statement or
a string

pPos pPoOS
a string name in asterisks, refering to the whole string
#strinaname#

‘a string name in asterisks followed by an index, refering
to a character in the string

s#stringnamex[exp)
(The index of the first character is one,)

a string name in asterisks followed by two indices,
refering to a substring of the string

#stringname#[exp TO exp]
A construction of the form #strx[i TO j) refers to
the substring starting with the ith Character in
the string up and including the jth character,
Examples:

»str#[7 TO 10] is the four character substring
starting with the 7th character of str,

#str*{i TO str,L) is the string str without the
first j=1 cpharacters, (i is a declared
variable,) '
+ substring
substring capitalized
= substring
substring in lower case
exp
value of a general L10 expression taken as a character;
i,e,, the character with the ASCII code value (see chart

at end of document) equivalent to the value of the
expression

page 86

' . SARC«APP 4=DEC=75 20125 34044
NLS Programmers’ Guide :) ; ARC 34044 Rev, 5 DEC 75
Part Three: §String Test and Manlpulation

STRING (expl, exp2);

gives a string which represents the value of the
expression expl as a signed decimal number, If the
second expression is present, a number of that base is
produced instead of a decimal number,

Esd,
STRING (3#2) is the same as the string "6"
STR?&G (14,8) is the same as the string "te6e"
Examples? 5£54d

ST pl p2 .. *string#;
does the same as
ST pl .. SF(p1) pl, #strings, p2 SE(p2):

assuming pl and p2 have been set somewhere in the same
statement, The latter reads "replace the statement
holding p1 with the text from the beginning of the
statement to pl, the contents of string, then the text
from p2 to the end of the statement,"

#st¥flow TO high) _ "string";
does the same as ‘ ‘
“#stx . %ste(1 TO lowei}, "stringn, xst#(high+1 TO st,L]);

assumning low and high are declared simple variab;es;
Examples | 5£6

Let a "word" be defined as an arbitrary number of letters and

digits, The text pointer "t" is set before or after some

character in the word, The two statements in this example

delete the word which holds the text pointer "t", and i{if there

1s a space on the right of the word, it is also deleted,

Otherwise, if there is space on the left 0of the word it is

deleted, ‘ 5f6a

The text pointers ptri and ptr2 are used to delimit the left
and right respectively of the string to be deleted, S£6b

IF (FIND t < $LD “ptri > $LD (SP "ptr2 / “ptr2 ptrt < (SP "ptri

/ TRUE))) THEN
ST ptri ptr2 .. NULLj; 5£6¢C

page 87

‘ S T &ARCwAPP 4=DEC=75 20:25 34044
ARC 34044 Rev, 5 DEC 75 . 'NLS Programmers’ Guide
‘ ‘ Part Three: String Test and Manipulation

The reader should work through this example until it is clear
that it really behaves as advertised, 5£6d

More Than One change per Statement | 5£7

The second word of a text pointer, the character count, stays

the same until the text pointer is again set to some other

position (as does the first word), even though the statement

has been edited, 1If, for example, you have the statement 5f7a

abcdefq
/\

and {f Yyou have set a pointer between the "d" and the "e', {t
will always point between the fourth and fifth characters in
the statement; the second word of the text pointer holds the
number 5, If you then delete the character "a", your pointer
will be between the "e" and the "f", 5f£7b

bcdefqg
/N

For this reason, you probably want to do a serjes of edits
beginning with the last one in the statement and working

backwards, 5¢£7¢c
Text Pointer comparisons ' 5¢8
This maVy pe usad tb campare‘two text pointers, ‘ 5£8a
POS ptl = pt2;
¥
>
<
-3
<z

ptl and pt2 are text pointers,

NOT may precede any of the relational operators, If the
pointers refer to gifferent stanaments then all relations
between them are FALSE except "not egual" which is written ¢
or NOT®, If the pointers refer to the same statement, then
the truth of the relation is decided on the basis of their
location within the statement,

A pointer closer to the front of the statement is "less
than" a pointer closer to the end,

page 88

| &ARC=APP 4=DEC=75 20325 34044
NLS Programmers’ Guide ARC 34044 Rey, 5 DEC 75
Part Threet Invocation of User Fllters ‘

Section 7: Invocation of User Filters 5q

Introduction 5ag1

The Ccontent Analyzer filters described in this document may be
imposed through the NLS PROGRAMS subsystem, 5gia
Userwattachable subsystems may be written for more complex

tasks, This type of user program and NLS procedures which

may be accessed by them will be discussed in Part Four,

with such a program, however, the user will still make use

of the commands in the NLS PROGRAMS subsystem,

This section describes NLS commands which are used to compile,

institute and execute uyser programs and filters, 5glb

Compilationwe

Is the process by which a set of instructions in a
program 1s translated from the [10 language written in an

NLS source file into object code, which the computer can
use to eXecute those instructions,

Loadingmm=

is the process which copies the ¢cmp11ed 1nstru¢tions
into the userwprograms buffer,

Institutionm=

is the process by whicn a compiled aud loaded Content
Analyzer program {s desjgnated as the current Content
Analyzer filter,

This section additionally presents examples of the use of the
L10 programming language, They do not make use of any

constructions nat explained so far in this manual, 5glc

Programs Subsystem 592

Introduction 5g2a
The PROGRAMS subsystem provides several facilities for the

processing of user written programs and filters, It {s
entered by using the NLS command:?

Goto Programs OK

page 89

_ ' &ARC=APP 4#DEC»75 20225 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Guide
Part Three: 1Invocation of uUser Filters

This subsystem enables the user to compile L10 user programs
as well as Content Analyzer patterns, control how these are
arranged internally for different uses, define how programs
are used, and to see the status of user programs,
PROGRAMS subsystem commands 592b

After entering the PROUOGRAMS subsystem, You may use one of
the following commands:

show status of programs buffer

This command prints out information concerning active

user programs and filters which have been loaded and/or

instituted:
Show Status (of programs buffer) 0K

when this command is exXecuted the system wil) print:
== the names of all the programs in the user programs
buffer, including those generated for simple Content
Analysis patterns, starting with the first program
loaded,
== the remaining free space in the buffer, The buffer
contains the compiled code for all the cuyrrent
compiled programs,
=~ the current Content Analyzer Program or "None®"

== the current user Sequence Generator program or
"None" ‘

== the user Sort Key program or "None"
Compile
L10 Program
This command compjles the program specified,
Compile L10 (user program at) ADDRESS OK

ADDRESS is the address of the first statement of the
progranm, '

This command causes the program specified to be

page 90

&ARC=APP 4~DEC=75 20:25

34044

NLS Programmers*® Guide ‘ ARC 34044 Rev, S DEC 75

part Three!

Invocation of User Fllters

compiled and loaded into the user program buffer in a
single operation, The program is not instituted,

The name of the proagram Is the visible following
the word PROGRAM, ADDRESS points to the PROGRAM
statement,

The program may be instituted by the appropriate
commands,

File

The user prodgram buffer is cleared whenever the uyser
resets or logs out of the system, If you have a long
program which will be used periocdically, you may wish
to save the compfled code in a TENEX file, It can
then be retrieved with the Load Program command, The
command to compile the code into a TENEX file is:

Compile File (at) ADDRESS (using) L10 OK (to file)
FILENAME 0K

The FILENAME must be the same as the program name,
The program will then be compiled and stored in the
TENEX file of the given name (with the extension REL,
unless otherwise specified), The user may then load
it at any time,

Before doing this, the programmer must replace the
word PROGRAM at the head of the program with the worad
FILE,

Content Analyzer Pattern

This command allows the user to specify a Content

Analyzer pattern as a Content Analyzer filter,
Compile Content (analyzer filter) ADDRESS DK

The pattern must begin with the first visible after
the ADDRESS, or at that point you may type it in, It
will read the pattern up to a semicolon, so be sure to
insert a semicolon where you want it to stop,

When this command is executed, the pattern specified
is compiled into the buffer, AND it is automatically
instituted as the Content Analyzer filter,

page 91

ARC 34044

page 92

Rev, 5 DEC 75

‘&ARC#APP 4-DEC=75 20:25
: NLS Programmers® Guide
Part Three: 1Invocation of User Fillters

Procedure

This command compiles a single procedure,
Compile Procedure (at) ADDRESS OK
ADDRESS is the address of the PROCEDURE statement,

This command causes the procedure specified to be
corpiled and loaded into the user program buffer in a
single operation,

If a procedure 0f the same name has already been
loaded (in the user proqrams buffer or in the NLS
system), the old procedure will be replaced, 1I,e,
any calls to that procedure name will invoke the
newly compiled procedyre,

Error Message during Compilation

"SYNTAX ERROR" messadges include the type of error, the
location of the line of assembly code that caused
trouble, and a few characters of the NLS source code,
The last of these characters is the one which caused
the error, 1In some cases this may be misleading, when
a8 previous error (e,g9, a missing quote or percent
sign) caused trouyble later in the compilaticen,

"ext & local" =~ a symbol was used as both an
external or global and a local variable in the
file, If a variable is not declared in the
program, the compiler assumes it is a system
EXTERNAL, If it is later used as a LOCAL, an error
will result,

"field too large" == a field may not be defined as
more than 36 bits,

*sides not equal" -+ in a multiple assignment
statement, the sides must have the Same number of
values, e,g, (3,b,C) o (X,Y.2);

"not REF or POINTER" == an ampersand (&) was used
on a3 variable not RpfFed or declared as a PDINTER
(not described in this document),

"8 args max" =~ you may not pass more than eight
arguments in a JSYS call,

34044

SARC=APP 4«DECw75

NLS Programmers’ Guide ARC 34044 Revy,

Part Three?

Invocation of lUser Filters

"SYSTEM ERROR" messaqges also include the type of
errory the location of the line of assembly code tha
caused trouyble, and a few characters of the NLS sour
code,

"EQF READY == the compiler hit the end of the NLS
file before it read a FINISH statement, (This ma
happen if you don’t have viewspecs set to all
lines, all levels,)

"HASH TABLE FULL" == yoU have Used too many Symbo
in the file, Each file js limited to approximate
2000 symbols,

"RACKUP T0O FARY = a symbhol or a literal string
(text within gquotes) has too many characters in i
They are limited to 148 characters,

"SYMBOL TNO LONG" == 35 abhove, a symbol has too
many characters in it,

"INPUT TOD LONG" == as above, a literal string ha
too many characters in it,

“$,8, FULL" =~ as above, a symbol has too many
cnaracters in it,

"1/0 ERROR" == & number has too many digits in it

"LIT TABLE FULL" »= the file has too many literal
strings and numbers,

"PUSHDOWN OVERFLOW" means that one of the stacks tha
the compiler uses overflowed, Look for an L10
statement containing too many parentheses or
particularly complex constructions, You may have to
break some statements into multiple statements,.

"Boolean ag operand" == you ysed an expression as a
parameter or in a RETURN statement, This is NOT an
error, but only a warning of unusual (though in many
cases good) programming practice,
If you include the L10 statement
NOMESS

at the beginning of the file, at the same level a

20125
5 DEC

t
ce

y

ls
1y

te

s

L]

t

s

page

34044
15

93

ARC 34044 Rey, § DEC 75

SARC=APP 4=DEC=75 20125
NLS Programmers’ Guide

34044

Part Three: Invocation of User Filters

global declarations (1,e, not within a procedure),
this warning will not be printed, Errors will be
~printed as usual,

When the compilation is finished, {t will 1list the
nurber of errors and wait for a Command Accept to
continye, You should then search for the error in the
NLS source code file, correct it, and recompjile pefore
attempting to use the progranm,

Errors 1nvolvinq undefined variables will be reported
when vou attempt to load the program, Of course any
code using these variables will cause execution
errors,

If you include the L10 statement
L1ST ;

ahywhere in the code, all the undefined symbols at
that pojnt in the compjlation Wjill be printed,

the Compile Procedure command will generate
undefined variable errors legitimately i{f the
procedure refers to global variables,

If the addition of your program to the user programs
buffer requires more than the maximum space allotted
for user programs (either in nymber 0f pages or number
of symbols), you will get a "format error" upon
loading, (If you have any other programs loaded, use
the "Delete All® command prior to loading,)

NDDT (described in Part Five, Section 2) will help you
trace run=time errors to errors in the NLS source
code,

L.0ad Program

page 94

A premcompiled program existing as a REL file may be
loaded into the program buffer with the command:

Load Program FILENAME DK

‘ S &ARC=APP 4=DEC=75 20:25 34044
NLS Programmers® Guide ARC 34044 Rev, 5 DEC 75
Part Three: Invocation of User Fllters |

1f the FILENAME is specified without specifying an
extension name, this commangd will search the connected
directory, then the <PROGRAMS> directory, for the
following extensions:

REL == it will simply load the REL file

CA == it will load the program and institute it as the
current content analyzer program

SK == 1t will load the program and institute it as the
current sort key extractor program

SG == it will load the program and institute it as the
current seguence generator progran

SUBSYS == it will load the program and then look for a
file of the same name with extension CMLy 1f both are
successfully loaded, they will be treated ag a single
pregram

CML == it will load the program and then try to attach
it as a subsysten

PROC=REP == {t will load the program and then try to
replace an existinq procedure of the same name as the
TENEX code file by the first procedure in 1naded
program

Sort key extractor and sequence generator programs are
more complex and are generally limited to experienced
Lic programmers,

FILENAME Ls the name of the TENEX code flle. not the name
of the program,

1f any variables are undefined, they will be reported ‘
upon loading, The program should not be used until tnose
variables are declared somevhere,
Delete
All
This command clears all programs from the user prOgram

‘buffer, All programs are delnstituted and the buffer
is marked as empty.

page 95

ARC 34044

Ryn

Ins

page 96

&ARC=APP 4=-DEC=75 20325 34044

rRev, 5 DEC 75 NLS Programmers?’

_Guide

Part Three: Invocation of User Filters

Delete All (programs in buffer) OK

The user programs buffer shares memory with data pages
for files which the user has open, therefore
increasing the size of the user programs buffer
decreases the amount 0f space available for file data
with a possible slowdown in responge for that user,
The buffer size is increased automatically as needed,
This command also resets the buffer size to the
original 8 pages (saving system storage space),

Last

This command deletes the most recently loaded progranm
in the buffer, The program is deinstituted if
instituted and its space in the buffer marked as free,

Delete Last (program in buffer) (K
Program

This command transfers control to the specified program,
This type of program is used very little, having been
substantially replaced by user-attachable subsystems, as
described in Part Four,

Run Program PROGNAME OK
Run Program NUMBER OK

PROGNAME 1S the name of a program which had been
prevjiously compjled, That is, PROGNAME must be jin tpe
buffer when this command is executed,

Instead of PROGNAME, the user may specify the program to
be run by its nuymber, This first program loaded into the
buffer is number one, ‘ /
titute Progranm
This command enableg the user to designate a program in
the buffer as the current Content Analyzer, Saquence
Generator, or Sort Key extractor prodram,

Institute Program PROGNAME DK (as) type OK

where type is one of the following:
Content (analyzer)

‘ SARC=APP 4=DEC=75 20325 34044
NLS Programmers® Gupide " ARC 34044 Rey, 5 DEC 75
Part Three: Invocation ot User Filters

Sort (kKey extractor)
Sequence (generator)

If no type 1s specified, Content analyzer will be
assumed,

Instead of PROGNAME the user may specify the program
to be instituted by number, The first program loaded
into the buffer is number one, :

1f a program has already been iInstituted in that
capacity, it will be deinstituted (but not removed from
the buffer),

peinstitute Program

This command deactivates the indicated program, but does
not remove it from the buffer, 1t may be reinstituted at
any time,

Deinstitute type OK

where type is one of the following:
Content (analyzer)
Sort (key extractor)
Sequence (generator)

Assemple File
Files written in TreesMeta can be assembled directly from
the NLS source file with the Assemble File command, This

aspect of NLS programming will not be described in this
document,

page 97

&ARC=APP 4=DEC=75 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers’ Guide
Part Three: Invocation of User Fllters

Examples of lUser Prograns 593

The following are examples of user programs which selectively

edit statements in an NLS file on the basis of text matched

against the pattern, For examples of L10 programming problems,

you may find out how the standard NLS commands work by tracing

them through, beainning with <NLS, SYNTAX, 2>, A table of

contents to all the global NLS routines is available to the

user in <NLS, SYSGD, 1>, 5g3a

Example 1 == Content Analyzer program 5g3b

PROGRAM outname g removes the text and delimiters () of NLS
statement names in parentheses from the beginning of each

statements
DECLARE TEXT POINTER sf:
(outname)PROCEDURE}
IF FIND *(C [*)] *sf THEN %found and set pointer after
nameg
BEGIN

greplace stmnt by everything after pointers
ST sf .. sf SF(sf);
g$display statementy
RETURN(TRUE);
END ’ o
fsotherwise don”"t display statementg
ELSE RETURN(FALSE):
END,
FINISH

Example 2 =« COntent Analyzer program ’ Sg3c

PROGRAM changed $This program checks to see if a statement
was written after a certain date, If it was, the string
"(CHANGED]" will be put at the front of the statement,%
(changed) PROCEDURE
LOCAL TEXT POINTER pt
$remember, CCPOS 1s initialized to the beginning of
each new statement%
IF FIND "pt SINCE (25=JAN=72 12:00) THEN
$the substring of zero length is replaced with
Y [CHANGED] *%
ST pt pt .. "[CHANGED]";
RETURN(FALSE) 3
END,
FINISH

page 98

- S§ARC=APP 4~DEC=»75 20:25 34044
NLS Programmers’ Guylde ARC 34044 Rey, 5 DEC 75
Part Four: Introduction :

PART FOUR: Interactive L10 Programming 6
Section 1: Introduction 6a

For many programming applications, it is sufficient to accept

statements one at a time from the sequence generator and assume as

an initial character position the beginning of the statement (a

Content Analyzer progdram as described above), For more complex
applications, you may have to write programs which skip around

files, between files, and interact with the user, These are not

called by the sequence denerator but "Attachedr and then used 1like
standard NLS subsystems, holding one or more commands, All the
capabilities described above are avallable to such programs, 6al

There are two parts to every userwattachable subsystem: 6az2

1) the L10 eXecution routines which do the file manipulations,
and baza

2) the command syntax, specified in a language called Command
Meta Lahdguage (CML), describing the user interface of each
command in the user attachable subsystem, 6az2b

These two parts are two separate programs, compiled separately
into two REL fjiles, The two programs are lcaded {n unison and
together comprise the subsystem, 6a3

Like 110, source proarams for the CML compiler are free form NLS

files, comments may be used wherever a blank is permitted and the
structure of the source file is ignored by the compiler, CML

source prodrams are compiled into RE[L files with the Compile File
command in the PROGRAMS subsystem, CML i{s the compiler name for

the CML compiler, ‘ 6a4d

The REL file name of the CML code should have the extension

vemle, The REL file name of the corresponding L10 execution
procedures should have the same first name as the CML code

file, and should have the extension "subsys," 1If these

conventions are followed, the Load Program command in the

PROGRAMS subsystem will automatically load both parts of the

user subsystem and attach it, making it avajlable for use, The
user’s subsystem may then be invoked by using the Gote or

Execute commands, 6ada

The ¢ML program describes the command words, noise words,
selection requests, etc, that make up an NLS command, The CML

page 99

‘ ‘ &ARC=APP 4~DEC»75 20:25 34044
ARC 34044 Revy, 5 DEC 75 NLS Programmers’® Guide

part Four: Introduction

code interacts with the user when he enters the subsystem and as

he specifjes cormands, 1In the process of interacting with the

user, the CML code may ¢all one or a number of L10 execution

procedyres which "do the work," 6as

CML automatically provides prompting, guestionmark, and

<CTRL=S> facilities, The CML syntax speclfication applies te

both TNLS and DNLS (unless restricted by the programmer to one

or the other), and will conform to all user options with

respect to prompting and to recognition and completion moges, 6a5a

The next section will describe CML, and how to design the user
interface, Ssectjion 3 explains tnhe requjirements of tnhe L10O

procedures which CML calls, The remainder to Part Four discusses
additional L10 capablilities useful In the context of attachable
subsystems, ' 6ab

page 100

SARC=APP 4=DEC=75 20325 34044
NLS Programmers’ Gyilde ARC 34044 Rey, 5 DEC 75

Part Four: Command Meta Language (CML)

Section 2: Command Meta Language (CML)

Introduction

This section descripes the Command Meta Language (CML), CML
allows the specification of the user interface to commands,
The CML program (the grammar) may call L3100 procedyres of a
certain type (described in the next section), The programs
written in CML are similar in structure to L10 programs,
Typically, a CML and an L10 program are used in unison as a
user attachaple sunpsystem, A more technica) presentation of
CML may be found in <204138,>,

Program Structure

The basic CML program structure is much like that of Li0
programs, The program besins with a "FILE" statement (as does
an L10 program) of the form:

FILE name

where name is the name of the program code (in lowercase
letters and numbers, beginning with a letter); it must be a
unique symbol, different from the FILE name of the L10 code
file,

The program ends with the Statement (like L10):
FINISH

within the program, one may have a series (in any order) of
declarations, rules, and subsystenms,

As in 110, all Variables used in the program must be
declared somewhere in the system, 0Other values and
attributes must also be declared in CML,

Rules are defined sequences of the CML elements described
below, Rule names can be plaCed anywhere in a CML command
specification, when a rule {s called within a command, it
is almost as if the CML elements represented by that rule
were inserted at that point in the command, This allows the
definition of general interactions that may be of use in a
number of commands or points in a command,

Each program usually represents one or more subsystems, A
subsyster may include one or more commands, Each command is

6b

6b1

éb1a

6b2

6b2a

6b2b

6b2¢c

page 101}

T o SARC»APP 4=DEC=75 20125 34044
ARC 34044 Rey, 5 DEC 75 ; NLS Programmers’ Gyide
| Part Four: Command Meta Language (CML)

a Tule itself, It may optionally include rules to pe
performed upon entering or jeaving the subsystem, (One
enters a subsystem with the Goto or Execuyte commands, and
leaves with the Quit command,) A subsystem may also include
general rules defined throughout the subsystem,

Each of these parts of the CML program will be described
independently, The (ML elements which make up rules will also

be described, ‘ 6b24
Subsystems - | | ' 6b3‘
A CML program holds declarations, deneral rules which apply
throughout the program, and subsystems (usuallY only one), 6b3a
The subsystem begins with a statement of the form: 6b3b

SUBSYSTEM name KgYWORD "NAME"

where name 1s the internal name of the subsystem (primarily
for debugging purposes) and NAME is the name which the user
must specify (in a Goto or Execute command) to access
commands in the subsystem,

These two names may be the same but they must be unique,
different from the pILg names of the CML and L10 files,

A subsystem epds with the statemept: o 6b3c
END,
Within the subsystem, you may navé any number of rules, - 6b3d

A rule as described below will be known throughout the
subsystenm, but not outside the subsystem,

A rule preceded by the word ”CﬂﬁMAND" will be available as a
command in the subsystem, It should begin with a command
word element, E,g,$

COMMAND zshow = "SHOW"!L2!
ent . ("EXAMPLE®/“SAMPLE")
CONFIRM
proc (ent)

A rule preceded by the word "INITIALIZATIGN" will be

executed whenever the subsystem is entered (either with a
Goto or an Execute command from another subsystem), E,q,t

page 102

S&ARC=APP 4«DEC=75 202325 34044
NLS Programmers® Guide ARC 34044 Rev, &8 DEC 75
Part Four: Command Meta Language (CML)

INITIALIZATION example =
procl (ent)
proc2 (ent) i

A rule preceded by the word "TERMINATION" will be executed
whenever the subsystem is left (with a Goto or Quitr command
from this subsystem),

A rule preceded by the word "RENTRY" will be executed
whenever the subsystem js reentered (either with a Quit
command from another subsystem, having left this one with a
Goto, or upon completing an Execute of a command in another
subsystem from this subsystem),

Preceding a rule with the above modifiers does not prevent
calling that rule from within another rule, 6ble

Rules 6bh4

A CML rule Is a defined series of elements, each of which

represents one plece of the interaction with the user or systenm
action, The elements will be described below, The name of a

rule (defined to be the given series of CML elements) may be

used in other rules, when the name of a rule appears in

another rule, the (ML code which it represents will be executed

at that point, - 6b4da

A rule takes the form: 5 | 6b4b

‘name = element! element?2 element3 ,,, element ;

where "name" is any unique name (lowercase letters and
numbers, beginning witn a letter),

Alternative elements (where the user has a chojice) are
~indicated by a slash (/) in the expression, Parentheses
should be used to group elements, particularly when
alternative logic and nesting of alternatives is involved,
E,.q,

name = (elementl / element?2 elementl) elementd ;

Note that, by use Oof parentheses, an alternative may
include more than one element,

Elements groyped in square brackets are options, and the

user must type the option character <CTRL=uy> to access tnem.
EeQ.

page 103

: &ARC=APP 4=DEC=75 20:25 34044
ARC 34044 Rey, 5 DEC 75 _ NL:S Programmers’ Guide
Part Four: Command Meta Language (CML)

name = elementl [element2 element3] elementd ;
E,q, 6b4c

zinsert = "INSERT" ent ("WORD"/"CHARACTER") <"at">
dest..DSEL(ent) xins(dest);

A number of elements may be included in a single rule, (If you
exceed the maximum, you will get a "stack overflow" error at
run=time,) Elements are NOT separated by any delimiter

character (except by spaces or the source file structure), The
entire rule is terminated by a semicolon, 6b4d

The return value Of elements may be assigned to CMIL variables
(single=word as in L10), using a left=arrow (.) in the form: 6bde

variable ., element
the variable must have been declared, as described below,

A variable must be initialized by such an assignment before its
content is passed to any routine, It must be {nitialized in

the rule which passes it to a routine (not just in other rules

called from the agiven rule, even though other rules may

subsequently set it to another value), (If you fall to do so,

you will get the run=time error "reference to undefined

interpreter variable,") 6b4f

Names on the left side of an assignment are assumed to be
variables; other names in CML rules are assumed to be CML
rules, 6b4dg

peclarations 6b5S

peclarations are used to assOclate names with their cML
function, A number of types of names may be used in CML
programs, 6b5a

Variables 6bhSh

Whenever a Procedure is called from CML, CML creates a
teneword record, The address of the record is passed to tpe
procedure, which may put information in any of the ten
words, The procedure usually returns the address of its
record,

page 104

&ARC=APP 4+DEC=75 20125 34044
NLS Programmers’ Guide ARC 34044 Rev, 5 DEC 75
Part Four: Command Meta Language (CML;)

A CML variable is a cell which holds the address of a CML
record, By this mechanism, up to ten words of information
may be handled with a single parameter by passing the
address of the first word of the record, A varlable may be
declared with the statement?

DECLARE VARIABLE name
or
DECLARE name 3}

where "name" {s any unigue name (lowercase letters and
numbers, beginning with a letter),

You may declare any number of variables in a single
statement, i,e,:

DECLARE VARIABLE namel, name2,,.. 3
or
DECLARE namel, name2,,,, ?

Many CML variables have been declared for use anywhere in
the gystem, and may be yged freely in uyser attachable
supsysters (without peing declared pY the user programmer),
Some commonly used variable names are:

ent - namfil level param
dent dest filtre param2
sent source Vs param3
port fromwhom literal paramé
External Variables 6b5c

As in L10, external variables are variables Which are made
avajlable to any procedure anywnhere in the NLS system,
(simple variables are only known in the file in which they
are declared,) One or more may be declared with a statement
of the form?

DECLARE EXTERNAL namel, name2,,,, }
Parsefunctioens 6b5d
AR L10 function which processes input and supplies a prompt
string is called a wparsefunction,» The name of the
procedure must be declared as a parsefunction for CML to
request a prompt string whenever the procedure i{s called,

DECLARE PARSEFUNCTION namel, name2,... }

page 105

‘ ‘ LARC=APP 4~DEC=75 20325 34044
ARC 34044 Rev, 5 DEC 75 _ NLS Programmers” Guide
‘ Part Four: Command Meta Language (CML)

MOTe detailed information about the nature of parsefunctions
will be offered below,

Command words 6bse

A command word 1s a word specified as part of a command
(e,g, "Insert® or "wWord" in the Insert Word command)s it is
specified in accordance with each user’s recoanition scheme
(often recognized after the first character), A declaration
may assign a value to a command word, to he passed to an L10
procedure which needs to know which command word was chosen
by the user,

DECLARE COMMAND WORD "WORD1"=100, "WORD2"=101/s¢s0 !

The value must be a positive decimal integer, less than
511, (This limit may have to be changed to 255 in guture
versions of NLS,)

More than one command word may have the same value
(unless of course the L10 procedure must distinguish the
user*s choice between the two),

A command word that has not been declared may be included in
the syntax; it will have no value though, Only those
command words which are assigned a value and then passed to
an L10 procedure must be declared, Many command words have
peen declared for use in the NLS system, It is consldered
good practice to use command words already known to users
when possible, and to use the same values for those words as
declared In NLS, Section 5 offers a set of declarations,
including all the system defined command wordsj it can be
copied as the foundatlon for a CML program,

You may not use command words identical to the names of
the 110 or CML flles, to the name of the subsystem, nor
to any variable names,

CML; Elements | : 6bb
The cML elements described here are the building blocks of
rules, which describe interactions with the user, 6bba
Command Word Recognition 6b6b

The appearance of a command word element in a rule means
that the user must specify that (or an alternative command
word) at that point in the command specification,

page 106

&ARC#APP 4~DEC=75 20:25 34044
NLS Programmers’ Guide ARC 34044 Rev, 5 DEC 75
Part Four: Comrmand Meta Language (CML)

In the CML, description, each command word is represented
by its full text, The algorithm uysed to match a user’s
typed input against any list of alternative command words
is known as "recognition,® Each individual’s command
word recognition mode will determine what characters the
user must type to specify the command word, This is
handled automatically by the command interpreter,

As the yser specifies a command, the command words (and
noise words described below) are echoed in a line at the
top of the DNLS screen, or printed in TNLS, This is
called the "command feedback line,"

Command word elements must be uppercase words enclosed in
double=guotes (""): e,q,

"INSERT"
Command words optionally may be followed by ohe or more
qualifiers which modify the recognition process, separated
by spaces and enclosed in exclamation points, The
qualifiers are:

NOTT == not available in TNLS

NOTD ==~ not available in DNLS

L2 =~ second level (some recognition modes differentiate

first from second level command words, e,g, second level

are preceded by a space)

number == explicit value for command word; supercedes any
value assigned by a DECLARE COMMAND WORD

For example:
"SET"!L2!

"PRINT" INOTD!
"EXAMPLEWORD"!L2 104}

page 107

ARC 34044

The

&ARC=APP 4»DEC=75 20325 34044
Rev, 5 DEC 75 , NLS Programmers* Guide
Part Four: Command Meta Language (CML)

address of records holding declared command word values

may be assigned to (ML variables so that the user*s choice

can

You
typ
pre

Select

Sel
or
rou

be passed to suybsequent routines, e,qg,

ent . "CHARACTER"
or ‘
ent . ("CHARACTER" / "WORD")

then
Xxprocedure (ent)

Remember that, like all other CML assignments, the
variable receives the address of a record which holds the
information, When the content of this variable (the
address of the record) is passed to a procedure, the
procedure must REF its receiving variable to access the
contents of the record, the value,

This value will be assigned as above even if the command
word 1is tollowed by ather CML, elements: e,q,

ent . ("CHARACTER" param_ FALSE / "WORD" <"at*>
param.LSEL(#"WORD"))

ent will get the valye of the command word CHARACTER
or the value of the command word WORp, The
appropriate actions will happen after the user chooses
the command word,

may wish to pass this value without forcing the user to
e the command word, This address may be assigned by
ceding the command word by a pound=sign (#),
ent .. #"CHARACTER"

will assign the address of the declared command word
value without forecing the user to type the command word

ion Recognition
ections”are input from users pointing to places in files

typing in strings of text, The three tvPeS 0f Selection
tines available in CcML, with their respective command

prompts, areg

page 108

DSEL ==~ destination selection

B/A

6b6C

S§ARC=APP 4=DEC=75 20125 34044
NLS Programmers”’ Gyide ARC 34044 Rey, 5 DEC 75
Part Four: Command Meta hanquage (CML)

SSEL == Source selection
B/A/LT)

LSEL == literal selection
R/T/ (A}

where B = bug (not avallable in TNLS), A = Dynamic
Address Element (any serjes of NLS addressing elements),
and T = typeln from Keyboard,

Each of these predefined selection routines prompts the user
and receives the input,

The selection routines must be passed the address of a
record holding the value of a noun command word
(¢haracter, word, statement, plex, etc,), The command
word enclosed in doublesguotes and preceded by a
poundw=sign (#) Is equivalent to the address of a record
holding the declared value of that command word, e,q,?

DSEL(#"CHARACTER")

Or ygu may have assigned the address of the vélue of a
previously selected command word to a CML variable, then
pass the content of the variable, e,qg,:

ent . "CHARACTER"
DSEL(ent)

CML will prompt the user for the appropriate input, If
more than one seleﬁtian is necessary (e,d9, to specify
both ends of a group or string of text), they will prompt
for beth automatically, They will delimit the
appropriate entity automatically (e,g, both ends of a
word will be found from a single selection),

The routine will return the address of a CML record

holding two text pointers in the first four wordsy

delimiting the beginning and end of the entity selected,
for string entities within statements

words 1e2: txt ptr before first character of string
words 3m4f txt ptr after last character of string

for types "STATEMENT" and "BRANCH"
A

page 109

. LARC=APP 4=DEC=75 20125 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers”® Guide
Part Four: Command Meta Language (CML)

WOrds 1im2: txt ptr phefore first character of
statement

words 3=4: txt ptr after last character of
statement

for types "GROUP" and "PLEX"
Words 1=2: tXt ptr before first character of first
statement
words 3-4: txt ptr before first character of last
statement

for type "WINDOW®

word 13 address of display area
word 2¢: X and y screen coordinates

One usually assigns the returned address of this record

dest .. DSEL(#"STATEMENT")
Other Recggnizers 6b6d

Dther prespecified input routines are available, each
prompting for and receiving a type of input from the user:

VIEWSPECS =~ takes no argument and returns the address of
a CML record holding:

word 13 updated viewspec word 1
word 23 updated viewspec word 2 ‘
words 3«73 used for collecting characters from user

LEVADJ == takes no argqument and returns the address of a
CML, record holding:

word 13 level adjust count

(up = 41, same = 0, down = =1, up two levels = 42,
etc,) .
words 2=7% used for collecting characters from user

page 110

| &ARC=APP 4=DECw75 20125 34044
NLS Programmers® Guyide ARC 34044 Rey, 5 DEC 75 ’
Part Fouri Command Meta Langquage (CML)

CONFIRM == waits for user to type confirmation character
(a Cormand Accept, Insert, or Repeat character); {t takes
no argurent and retyrns the address of a CML record
holding the confirmation code in word 1,

These values are rarely used, since subsequent
functions are handled automatically by the command
parser, For reference, they are:

1 = Command Accept
2 = 1Insert
3 = Repeat

DUMMY == does nothing but always TRUE; may be used to
allow elements to be skiped, e,q,:

("OPTION" somprocedure() / DUMMY) CONFIRM

allows the user to speclify "nOption" before the
CONFIRM, or skip it and just tvpe a CONFIRM,

CML Constants 6bée

TRUE == holds the address of a cML record whose first word
has the value TRUg (i,e, 1)

FALSE == holds the zddress of 3 CML record whose first word
nhas tphe value FALSE (j,e, Q) '

L10 procedure Calls » 6b6 f
L10 procedures may be called at any point in the ruyle by
including the name of sgome routine followed by its parameter
list enclosed in parentheses, (The next section describes
the speclal requirements of 1,10 procedures called from CML,)
E,g. :

procedurename (paraml, paramZs,..)
Parameters may include CML variables (¥hose content is
passed), the CML elements TRUE, FALSE or NULL, or tne #
construct (see "selection rRecognition®) representing the
address of a command word value,
Helpful Procedures in building CML logict

isdnls() == returns TRUE if DNLS, else FALSE

page 111

SARC=APP 4=DEC=75 20325 34044
ARC 34044 Rey, 5 DEC 78 NLS Programmers® Gyide
part Four: Command Meta Language (CML)

istnls() == returns TRUE i{f TNLS, else FALSE
true() == returns TRUE
false() == returns FALSE

abort() == abort command as if user typed a Command
Delete ,

parsefunctions 6b6gQ

Procedures which are declared as PARSEFUNCTIONs examine the
information being typed by the user during command
specification (characters going into the input buffer), CML
places additional requirements on L10 procedures declared as
parsefunctions, as described in the next section, They may
be called from CML 1like any other L10 procedure, The
following parsefunctions are avallable as part of the
running system: they 0f course must be declared as
parsefunctions in any program which uses them as suchi

answ() == if the next character in the input buffer is a
CONFIRM, option character, or the letter "y", it reads

the character (out of the input buffer) and returns TRUE;
else 1t reads the next character and returns FALSE

answer() == reads next charactar; 1ike answ, but returns
the address 0f a CML record whose first word holds either
the value TRUE (1) or the value FALSE(0)

lookansw() == if next character is a CONFIRM, option
character, or the letter "y", returns TRUE and leaves
next character in buffer; else returns gpALSg and reads
character

mylookansw() =~ if next character is a CONFIRM, option
character, or the letter "y", returns TRUg; else returns
FALSE: leaves next character in puffer

readconfirp() =- 1f pnext character a CONFIRM character,
reads and returns TRUE; else leaves character in buffer
and returns FALSE

lookconfirm() == if next character is a CONFIRM, returns
TRUE; else returns FALSE; leaves next character in buffer

readbuyg() == {f next character a Command Accept

page 112

 §ARC=APP 4=DEC=75 20:25 34044
NLS Programmers*® Gyide ARC 34044 Rey, 5 DEC 75
Part Four: Conmrmangd Meta Language (CML)

character, reads and returns TRUE; else leaves character
in buffer and returns FALSE

lookbug() == if next character is a Command Accept,
returns TRUE; else returns FALSE; leaves next character
in buffer

notca() == if next character NOT a Command Accept
character, reads and returns TRUE; else leaves Command
Accept character in buffer and returns FALSE

reaacptiun() =» if next character an option character,
reads and returns TRUE; else leaves character in buffer
and returns FALSE

readrepeat() == if next character a repeat character,
reads and retyrns TRUE: else leaves character in buffer
and retyrns FALSE

l1ooKrpt() == if next character is a REPEAT, returns TRUE;
else returns FALSE; leaves next character in buffer

sp() == {f next character a space, reads and returns
TRUE; else leaves character in buffer and returns FALSE

lookpack() == 1f next character is a packwarrow (.),
returns TRUE; else returns FALSE; leaves next cnaracter
in buffer

looknum() == if next ¢character is a digit, returns TRUEj;
else returns FALSE; leaves next character in buffer

page 113

&ARC»APP 4=DEC=75 203225 34044
ARC 34044 Rey, 5 DEC 78 ‘ NLS Programmers’® Guide
Part Four: Command Meta Language (CML)

Parsefunctions may appear as alternatives to recognizers,
However, they must precede any non=failing recognizers in
the list of alternatives, E,g,:

(lookconfirm() / "APPEND" / "FILE") CONFIRM

== this example either will accept a CONFIRM or will
accept a specificatjon of the command word APPEND or FILE
followed by a CONFIRM,

Feedback 6b6h
Noise words between command words are very helpful to the
user learning a new command, Any string of text may be
added to the command feedback line by enclosing the text in
parentheses and within anglee~brackets in a rule, E,q,

<"Text 0f noise words">
- The last noise word string on the command feedpack line (in
DNLS) may be replaced with a new string by placing three
dots before the first double=guote, e,g,:
<,.."nevw noise words">

The last noise word string can be erased (in DNLS) with the
proceduyre call:

clearname()

The enyire command feedback line can be cleared (in DNLS)
with the CML element:

CLEAR

A few characters of the noise word will follow the command
word in the system’s response to a guestionmark 1f:

1) the noise word immediately follows the command word,
and

2) the command word is not being assiqhed to a variable
(it may however be part of a list of alternatives belng
assigned),

E,g, the noise words in the CML below will show in tne

systems response to a questionmark.
ent .. ("FILE®" <"name"> / "STATEMENT" <"at">)

page 114

S ‘ B \ | &ARC=APP 4=DEC=75 20125 34044
NLS Programmers‘® Guide 1 ARC 34044 Rev, 5 DEC 75
Part Four: Command Meta Language (CML) :

Loops - e . 6b61

A looping £a¢ility permits repetition 0f a different rule
until an exit condition is met, The rule is evaluated and
then the expression followinq the UNTIL keyword 1is
evaluated, If the expression returns TRUE, then the loop is
exited and the next element of the rule is evaluated, If
the expression returns FALSE, then the named rule is invoked
once again,

PERFORM rulename UNTIL (exp)
where Tulename is the name of the rule to‘be‘repeatedly
executed and exp is an expression of CML elements which
evaluates to TRUE or FALSE,
E.q,
PERFORM rulename UNTIL (<“Finished?"> answ())
Nested loops (loops within rules called by a PERFORM
element) are not currently allowed, Backspacing through

executed loops requires special treatment not described
here,

page 145

Rk N &AR¢~AFP 4=DEC=75 20125 34044
ARC 34044 Rev, 5 DEC 75 } 4 ~ NLS Programmers’ Guide
S ~Part Fours Cemmand Meta Language (CML)

Sample CML Program 6b7

The following Sample program $hould help illustrate the use of

the CML language for describing NLS commands, For more

exhaustive examples, look at the CML specification for the

standard NLS commands, in <NLS,SYNTAX,>, An example of a

problem treatment can often be found by thinking of an NLS

command which is similar, ‘ bb7a

FILE sampleDIOQram‘ % <CML,> to <sample,rel,> % 6b7h
DECLARE 'what, whom, where :
DECLARE COMMAND WORD
"GLUE" = 1,
"PASTE" = 2,
"CRAYONS" = 3,
"PENS" = 4,
"PENCILS" = § 3
SUBSYSTEM sample KFYNORD "SAMPLE®"
objects =
" GI‘UE n
/ "PASTE"
'/ writingthings
writingthings =
"CRAYONS™"
/ "PENS"
/ "PENCILSY!L2! 3
COMMAND Zuse = "USE"
what . writingthings
CLEAR ‘ '
<"to draw a pretty"> whom ..
("PICTURE" <"of Aunt Mary">»
/ "SKETCH" <"of your dog">
) o
CONFIRM
% call execution routine pracess the USE ¢ommand %
xuse(what, whom) ‘
COMMAND ztake = "TAKE"
what - objects
<"out of your">
where ., ("EARg"!1! / "NOSE"12! / "MOUTH"!13!)
<"PLEASEl ">

CUNFIRM
Xxtake (whata wbere) :
END,
FINISH
Given this sample CML, the user might specify the commandi 6b7¢

page 116

SARC=APP 4~DEC«75 202125 34044

NLS Programmers’ Guide ARC 34044 Rev,
part Four: Command Meta Language (CML)

"UUse Pens
(to draw pretty) Sketch (of your doq) <QK»"

Take Crayons (out of your) Mouth (PLEASE!}!) <0OK>"

The execution routines called from CMI typically have names
beginning with the letter "x",

5 DEC 75

6b7d

page 117

SARC=APP 4~DEC#75 20325 34044
ARC 34044 Rey, 5 DEC 75 . NLS Programmers’ Guide
Part Four: L10 Execution Procedures

Section 3: L10 Execution Procedures ' 6c

The CMl, program interacts with the user and gathers informationj;

it subsequently calls one or more 10 procedures, The procedure

CML calls must meet certaln .requirements, described in this

section, Recauyse of these requirements, typically the execution

routine is written as an iInterface to a number of other L10

procedures performing the actual functions, Thils way the function
routines can be written independent of which command or procedure

calls them, This section will describe the reguirements of

proceduyres called from CML, The next section offers additional

.10 capabilities in this environment, 6c1

CML can be in one of four states as it parses a command bhased on
the syntax described in your CML program (Known as the
tpnarsemode®) 6c2

1) parsing: recognition state where input text 1ls compared
with grammatical constructs in CML program 6c2a

2) backupi the user has typed a backspace, or a procedure call

has returned FALSE; CML backs up through previouysly specified
elements of the ¢ML code, calling each in backup mode, to

before the last CML alternative (not necessarily equivalent to

user input element; maybe throuagh the entire command, aborting

.the command) ' 6c2b

3) cleanyp;i ¢he yser has pypPed a Command Delete, or the

command has been completed (including any execution procedure

calls); CML backs up through all previously specified elements

of the CML code; each procedure is again called, this time in
"cleanup" mode 6c2c

4) parsehelp: (used only with parsefunctions) before calling
a parsefunction in "parsing" mode, the proceduyre is called in
"parsehelp" mode to solicit a user prompt string. 6c2d

5) parsegmark: (used only with parsefunctions) when the user
types a guestjonmark, the procedure is called in "parsegmark"
mode to solicit a questionmark string, 6c2e

when CML calls a procedure, it automatically passes two extra
implicit parameters before the parameters the programmmer
specifies: 6c3

The first parameter ls the address of a CML record reserved for
use by that procedyre, The record ig initially empty (or

page 118

&ARC=APP 4=DECw75% 20:25 34044
NLS Programmers® Guide « ARC 34044 Rev, 5 DEC 75
Part Four: L10 Execution Procedures

filled with garbage), The execution procedure may f£ill the ten
words of the record by receliving the address in a REFed
parameter variable and then indexing into the array, 6c3a

CML considers the procedure to have returned TRUE if it
returns the address of the CML record; otherwise the return
is congidered FALSE, When a procedyre returns FALSE, CML
will pack up, calling that and previous procedures in
"pbackup" mode, until another branch in the command syntax
logic is found or until the entire command has been aborted,

The second parameter is a value (not an address of a record)
representing the parse mode, Whenever CML encounters a

procedyre call in the gynyax (in any mode) it calls the

procedure, passing it the value of the parsemode, 6¢c3p

Typically, the execution routine should only perform its
primary function in the parsemode ®parsing®, 1In vbackup"
and "cleanup", it may reset any globals or state information
it may have affected while in the parsemode "parsing,® The
names of the modes (see above) are globals to which you may
compare the value received in the gecond parameter, An
execution routine typicallv consists of a large CASE
statement, e,9,

CASE parsemode OF

= parsinag:
BEGIN

L]
‘ L]
END3

= backup, = cleanup:
BEGIN

]
L
END3
ENDCASE
' Calls on procedures declared as parsefunctions pass a third
implicit parameter, the address of a string in which to put the
prompt, They are called in the parsemode "parsehelp®" for the
string before being called in the parsemode rparsing®, or in
parsemode wparsegmark® when the user types a questionmark, 6c3c

CML passes the parameters specified in the call after the two

page 119

‘ &ARC=APP 4=DEC»75 20325 34044
ARC 34044 Rey, 5 DEC 75 o NLS Programmers’ Guide
part Four: L10 Execution Procedures

or three system supplied parameters, Remember that these
parameters will alwavs be the address of a record holding the
information, so the receiving variable must be REFed, The
format of the record itself is determined by the routine that

filled it, éc3d
For example, if the CMIL procedure call looked as followss 6c4d
xbProcedure (parami, param?2) 6c4a

then the L10 execution procedure would recelve parameters as
follows: 6CcH

(xprocedure) PROCEDURE (result, parsemode, parameterl,
parameter?2) : ‘ 6c5a

All parameters except the parsemode should be REFed in the
execution procedure, 6CSb

page 120

| SARC=APP 4=DEC»75 20225 34044
NLS Programmers® Gylde “ ARC 34044 Rey, 5 DEC 75
Part Fouri Additional L10 Capabilities

Section 43 Additional L10 Capabilities 6d

Introduction 641

The attachable subsystems have access to the full capabilities

of the NLS environment, This section will describe some

capabllities not discussed In the context of Content Analyzer
programs, Further capabilities will be discussed in Part Five, 6dla

Moving Around Within NLS Files 6d2

Generally, at least one simple variable or a text pointer will

have to be declared to hold the statement ldentifier (stid) of

the current statement, (The first word of a text pointer is an
stid,) Assume the simple variable with the name ®stid" has

been declared for the puyrpose of the following digcussion, 6d2a

In the NLS file system, two basic pointers are kept with each
statement: to the substatement and to the successor, ‘ 6d2b

If there is no substatement, the substatementepointer will
point to the statement itself,

The procedure getsup returns the stid of the |
substatebMent, To do something to the substatement if
there 1s one:

IF (stid ;= getsub(stid)) # stid THEN something,,:

stid is given the value of the substatementw=pointer,
then the old value of stid is compared to the new, If
they are the same, then there is no substructure, 1If
they are different, you have the stid of the
substatement and can operate on it, .

If there is no successor (at the tail of a plex), the
successor=pointer will point to the statement UP from the
statement (l,e, the statement to which the current statement
1s a sub),

The procedure getsuc returns the stid of the successor
(or up),

To move to the successor:

stid - getsuc(stid)};

page 121

| ‘ | 2 | GARC=APP 4~DEC=75 203125 34044
ARC 34044 Rev, 5 DEC 75 ‘ ~ NLS Programmers‘’ Guide
- part Four: Additional L10 Capabilities

Given these two pasic procedures, a numpber of other procedures
have been written and are part of the NLS system, All of the
following procedures take an stid as their only parameter, and
do nothing byt return a value, usually a stid, 1If the end of
the file is encountered, these procedures return the global
value nendfilinr, 6d2¢c
getup(stid) =~ returns the stid of the up
getprd(stid) == returns stid of the predecessor
getnxt(stid) == returns stid of next statement or endfil
getbck(stid) == returns the stid of the back or endfil
gethed(stid) == returns stid of the head of the plex
getall(stid) == returns stid of the tall of the plex

getend(stid) == returns the stid of the end of the tall of
the plex ‘

getftl(stid) == returns TRUE if stid is tail of plex, else
FALSE ‘

getlevcstid) - returns levey of statepent

Once you have the stid of a statement; you may 0perate on 1t as .
in content Analyzer programs, E,g, 6d2d

FIND‘SF(ﬂtid) s$NP ﬂgtr,mo
Another common operation is to access the statement (file) in
which the CM (or bug) was at the time of the last Command
- Accept (or other command terminator), This is stored in the
system, and can be accessad with the followinq procedure call: 6d2e
‘stid leesp() 3

Then, if you wish to. set the stpsid ta the origin of that
file, you coyld say;

stid,stpsid _ origin 3 %origin is a global with the
stpsid of the origin statement in it$%

The following procedures may also assist you in moving around
filess: : | | edaf

page 122

SR ‘ SARC=APP 4-DEC=75 20125 34044
NLS Programmers® Gyide =~ “ARC 34044 Rev, 8 DEC 75
Part Four: Additional L10 Capabjilities |

caddexp(aptri,aptr2,da,startptr) -- given the addresses of
two text pointers surrounding an NLS address expression, the
address of a display area, and the address of a text pointer
representing the starting position: caddexp will evaluate
the address expression with respect to the starting
position, and update the start pointer to the new location,

This procedure will follow file returns, links, etc,,
opening files as necessary, Remember to close any open
files when you are done with them (see 6d4 below),

The procedure lda() returns the address of the display
area which held the bug at the time of the last Command
Accept; it may be used as the third parameter of caddexp,
E.q,

caddexp(sptrl, $ptr2, lda(), $sptr)

naminqrp(stidl,stidz.astring,levels) == given two stids
representing a group, the address of a string nolding tne
name, and a number representing levels of depth below the
stids’: returns stid of the statement with the given
statement name in the group specified by the stids, Only
searches through given number of levels below stid level,
(1f the stids are the same, will search the branch,)

page 123

SARC=APP 4=DEC=75 20325 34044
ARC 34044 Rev, 5 DEC 75 « ~ NLS Programmers*® Gulde
Part Four: Additional L10 Capabilities

lookup(ptr,string,type) == given the address of a text
pointer, the address of a string, and a type, will do a
variety cf searches (in the process destroys string and
changes pointer), type may be one of the following:

namétyp == non=sequential search for statement of name
given in string; returns stid and sets pointer to stid or
else returns endfil in both places

nxtnare == like name, also a nonw=sequential search, but
starts from place in file ring to which ptr points

seqname == starting with the statement following the one
refered to by the ptr, does a sequential search of the
file for the given names returns stid or endfil in
pointer

contnt == does a sequential search of the file, bedinning
with the character following the pointer, for a statement
with the content of the string; returns stid or endfil in
pointer

contls == same as contnt, but looks only in statement
holding pointer

wordtyp == same as contnt, but looks for word given in
strina

sid »= pass‘an SID instead of the address of the strings
searches for statement with that SID and returns in
peinter and as procedure valuye the stid or endfil

Calling NLS Commands ' 6d3

A program may execute any of the standard NLS commands by

cajling the same procedure that the system executjon routines

call for each command, These procedures are called the "coren
procedyres, They are listed in <NLS,XPROCS,> and in ‘
<NLSrSYSGD,>, Their names begin with the letter "c", generally
followed by three initials of each command word, e,g, INsert
Statement could be executed by calling the procedure "cinssta®, 6d3a

Usually the required arguments can be discovered py knowing the
command and by lookjing at XPROCS and/or SYSGD, For example,
the formal parameters to the procedure “"cinssta" are
(stid,rlevent,tpl,tp2), As one might guess from the command
syntax, the procedure wants & target stid, the value of level
adjustment (up = +1, same = 0, down = =1, etc), and the address

page 124

, &ARC=APP 4=DEC=75 20125 34044
NLS Programmers’ Gyide ARC 34044 Rey, 8 DEC 75
Part Four: Additional L10 Capabjilities

of two text pointers surrounding the string of text to be
inserted, 643b

Much can be learned by 100kinq at the code of the core

proceduyre, You can see what procedures it in turn calls to

discover how the command is actually performed, But most
importantly, you can find out what the proceduyre returns, The

RETURN statement for "cinssta® look like: 6d3c

RETURN(stid):

from which it can be inferred that the procedure returns the
stid of the newly created statement, 6d3d

When you are not sure what the arguments mean, a good way to

find out is to see where the command parser picks up the

information, You can follow through the parsing of a command

by beginning with <NLS,SYNTAX,>, the actual NLS CML code, 6d3e

Tracing a command from <NLS,SYNTAX,> is also valuable in

finding oyt how the system performs an operation which you

would like vour program to go, For example, if You wish to

parse a link and open the gyven fjle, vou mjght learn how to do

it by following the Jump to Link command through, 6d3f

Dpening Files 6d4

When you ask the user for an address or bug, you don’t have to

open the file; you have a handle on it with the stid the user

gives yoy, There may be times, however, when you wish your

program to open a file not specified by the user, There is a
procedure which does this: 6d4a

open (1fn, astring);

You should pass zero as the jfn, and the address of a string
containing the name of the flle to astring, This procedure

will retyrn the file number, 1If the file is not already open,

it will open it, It will also fill out the string with the

complete file name 1f you do not specify the directory or

version nunmber, ‘ 6d4b

I1f the file does not exist, open calls the procedure “"err",
which generates a signal of the value “errSEQ. Signals are
discussed in Part rive,

The usual sequence Of steps to Open a file 15 as follows: 6d4c

page 125

&ARCwAPP 4=DEC»75 20325 34044
ARC 34044 Rev, 5 DEC 75 V NLS Programmers’ Guide
Part Four: Additional L10 Capabilities

g"stid" has been declared as a simple variable or text
pointerg

stid . orgstid; %orgstid is a global with all zeros except
in the stpsid field, where it has the stpsid of the oriQ1n
statement (the same for every file)%

#ser# _ "<dirname>filename,nls"; %str i{s of couyrse a
declared string varjiable%

stid,stfile _ open (0,8str);

Note that the procedure "open" requires a TENEX file name, The
procedure "lInbfls" converts links to TENEX file namesS: 6d4d

Inbfls (linkstr, linkparseblock, filenamestr)
Pass the address o0f the string holding the link as the first
parameter, Zer0 for the seCond parameter (used 1f link
already parsed), and the address of a strinq to receive the
filename as the third parameter,
The procedure returns the host number in case the 1link
includes a site name, This value might be compared to the
following globals?
lhostn == the number of the local host
utilhost == the number of Oftice=1
archost == the number of the ARC machine (BBNTENEX=B)
For example, you might use the procedure as follows:
CASE Inbfls(&linkstr,0,$filename) OF
‘® lhostn: NULL?$
ENDCASE err(notyet)

At the end of your program, you should close any files that you
have opened, Use the procedure: 6d4e

close (filnum);

E.q, .
close (stid,stfile):

page 126

SARC=APP 4=DEC~75 20325 34044
NLS Programmers® Guide R ARC 34044 Rev, 5 DEC 75
Part Four: Additional L10 Capabilities ‘

Displaving Messages 6ds

The following procedures may be of use in displaying messages,
In all cases, the appropriate actions will occur in TNLS as
well as pNLS, although these descriptions are oriented to pNLS, 6d5a

dismes(type, astring) == teletype window
where type is one of the following:

0 == clear teletype window (no address need be passed)
1 == add text in string whose address is passed as a
ne¥ line in the teletype window

2 w= add text 1n string whose address Is passed as a
new line in the teletype window for about 3 seconds,
then clear window

n == any number >=1000 represents the number of
milliseconds the message ls to0 be displayed before the
teletype window is Ccleared,

In TNLS, type = 1, 2. and >=1000 all simply print the
string starting on a new line,

fpctl(type, astring) == literal display window
where type is one of the following:

typenulllit == begin empty literal display (replacing
file window), no string address passed

fbaddlit == add string whose address is passed to
current literal gisplay

addcalit == add "Type <CA> to continye " to current
litera) display, then wait for <CA> or <CD>, then
restore file window

typelit == start literal display with string, then
wait for user inputr, then restore file window

fbendlit == add string to current literal display,
then walt for us.r inpput, then restore file window

typecalit == start literal display with string, add
"Type <CA> to continue,", then walt for <CA> or <CD>,
then restore file window

The literal display replaces the file window on the

page 127

&ARC=APP 4=DEC~75 20:25 34044
ARC 34044 Rey, 5 DEC 75 - NLS Programmers’ Guide
Part Four: Additional L10 Capabjiljties

screens, or is simply printed in TNLS, For example, it is
used by the Show Fille Status command,

dn(astring) == name display

add string whose address 1s passed to command feedback
line, enclosed in quotes

setting Up for Display Refreshing 646

The command parser calls the procedure "cmdfinish" after
completing and cleaning up every command, If certain

parameters are set properly, "cmdfinish" will automatically

update the user’s screen (primarily of concern in DNLS), You

may als® move a different statement to the top of the window

(i,e, jump) before updating the screen, 6d6a

To refresh the screen after editing a file: 6déb
The procedure "dpSet" sets Up parameters for refreshing the
SCreen ast,r @ command, If “dpset" is properly used,; the
screen will automatically be refreshed after the command,
ODne should look fOr the most efficient way to make the
proper changes,

The procedure "dpset" must be called BEFORE any changes
are made in the file, This is so that the display
reforratter will have something with which to compare
when looking to see what has been changed,
The procedure call should look as follows?

dpset (type, stidl, stid2, stopstid) ;

‘There are a nurber of globals which may be passed for
"type?:

dsprfmt == rewrite the content of one or two
statements

stidl == the stid of the statement that has been
changed

stid2 == the stid of another statement that has
been changed, or "endfil"

stopstid == ignored, pass it "endfil"

page 128

| | o SARCAPP 4-DEC=75 20125 34044
NLS Programmers*® Guide R ARC 34044 Rey, 5 DEC 75
Part Four: Additionalyhla Capabilities

dspstrc == if flle restructuring occured beginning at
at one or two places; doesn‘t rewrite content of
statements: will add new statements in a structure

stidl ==~ the stid of the statement where a
structural change begins

stid2 == the stid of where another structural
change begins, or "endfil"

stopstid == the stid of the statement after which
it can stop changing the screen (whether change
began with stidl or stid2); the procedure "dpstp"
may be of service here; if you cannot figure out
where it should stop, pass it "endfil" (go till end
of window) ‘

dsprest == rewrites content of one Or two Statements,
then looks for structural changes thereafter

stidl -. the stid of the statement where a set of
changes begins

stid2 == the stid of where another set 0of changes
begins, or "endfil"

stopstidq == the stid of the statement after which
it can stop changing the screen (whether change
began with stidl or stid2); the procedure "dpstp"
may be of service herej; if you cannot figyre out
where it should stop, pass it "endfil" (go till end
of window) :

dspipf == jump'command in one window only, no editing
stidl == the stid of the statement to be at the top
of the screen; see below for other parameters which
- must be set
stid2 =="endfil"

stopstid == "endfil"

page 129

| | S &ARCwAPP 4=DECw75 20325 34044
ARC 34044 Rey, 5 DEC 75 ‘ NL,s Programmers’ Guyide
; ‘ Part Four: Additional L10 Capabilities

dspyes == completely refresh all windows holding one
or either of two flles specified

stidl == the stid of a statement in the file where
changes wi{ll be made

stid2 == the stid Of a statement in the file where
another set of changes will be made, or "endfil"

stopstid == "endfil"
dspno == do no display refreshing
stidl == "endfil"
stid2 == "endfil"
stopstid == mendfiln
dspallf -= refresh the entire screen
stidl == "endfil"
stid2 == rendfiln
stopstid == Y"endfil"
The pro¢edure “ﬁpstp", when passed an stid, returns the stid
of the next statement in the file at tphe same or a nigher
level, This can be used as the stopstid in "dpset® 1if
structural changes are occuring such that you don‘t know a
~priori what the last statement changed will be,
"To change the pasition of a window (jump)z ‘ 6d6c

The 9lobal "cspupdate” should pe set to the address of the
display area descriptor fOr the window you want Changed,

In TNLSe it is always the .address contained in the global
"tda",

1f you wish to change the view in the window which held
the bug at the time of tne last CGNFIRM, you may use the
staterent:

<:s4mm<;’iat:e,m lda():

This also works for TNLS.'

page 130

&ARC=APP 4~DEC»75 20:25 34044
NLS Programmers’ Guide o ARC 34044 Revy, 85 DEC 75
Part Four: Additional L10 Capabilities

Once cspupdate is set, any of the globals described below
will replace the appropriate field in the display area
descriptor upon completion of the command,

The global "curmkr" is a text pointer pointing to the
statement at the top 0f a window in DNLS, or the CM in TNLS,

The first Word of "curmkr" should be set to the stid of
the statement you want at the top of the window (in TNLS
the statement which you want to hold the CM),

The second word of “"curmkr", i,e, curmkr(il, should hold
the character position for the CM, (In DNLS it is
usually 1,)

The global "¢spvs" is a two word array %Which should hold two
viewspec words for the new view,

The global stdvsp is a two work array holding the NLS
standard viewspecs (i,e, the ones in effect when you
first enter NLS),

The current viewspec words may be gotten from the display
area descriptor, If you have RgFed a varlable called
"da", for example, you may assign the address of the
display area which held the cursor at the time of the
last command Accept with the statement:

&da - lda() ; %return address of display area
descriptors

You may then refer to fields within the display area
descriptor, '

davspec -=- holds the first viewspec word
davspc2 == holds the second viewspec word

Yoy may change individual fialds within vlewspeé words.
The fellowing fields apply to viewspec words:

vslev == Jowest level to pe displaved

vsrlev == {f set to TRUE, the level of the current
statement will be added to vslev

vslevd == {f set to TRUE and vsrlev is TRUE, the

page 131

ARC 34044 Rev,

page 132

5 DEC 75

SARC=APP 4w=DEC=75 20325 34044
- NLS Programmers*® Guide ’
Part Four: Additional L10 Capabilities

current leve)l will be subtracted from rather than
added to vslev

vstrnc == number of lines of each statement to be

displayed

vscapf == {f TRUE, content analyzer on (viewspec i);
takes precedence over vscakf

vscakf ==
statement

VSYSQt ww
(viewspec

1f TRUE, content analyzer on until one
passes (viewspec 1) '

if
0)

TRUE,

user Ssequence dgenerator on

vsbrof == {f TRUE, branch only on (viewspec g); takes
precedence over vsplxt

VSPLIRE ==
VESplKf ==

vsindf e
default)

vsrindg ==
statenment

VSNamf ww

if
if
if
1t
in

if

by default)

(viewspec

VSSLNr ==
(viewspec

vssidf m~
(viewspec

vEidtf ==
K)

VvSErzf =e

1f
m)

if
G)

it
I

if

it

TRUFR,
TRUE,

TRUE,

plex only on (viewspec 1)
blank lines on (viewSpee v)

indenting on (viewspec A; on by

TRUE, indenting relative to firsg
display (vievwspe. Q)

TRUE,
TRUE,
TRUE,
TRUE,
TRUF,,

TRUE,

vspagf == {f TRUE,
on by defauylt)

statement names on‘(viewspee C: on
Statement nymbers or SIDs on
statement numbers/SIDs put on right
SIDs replace statemént numbers
Statement signagures on (viewspec

frozen statements on (viewspec 0)

pagination on in TNLS (viewspec Eg

S&ARC=APP 4-DEC»75 20325 34044
NLS Programmers® Guide o ARC 34044 Rev, 5 DEC 75
Part Four: Additional Li10 Capabilities

vsdaft == {f TRUE, don’t defer display recreation in
DNLS (viewspec u; on by default)

If you wish, you may set the varlable "cspcacod" to the
address of a user content analyzer procedure, and/or the
variable "cspusqcod® to the address of a user sequence
generator procedure; they will be instituted before the
window is updated,

The following fields in the display area descriptor may
be usefuls

dacacode == holds address of currently instituted
Content Analyzer procedure

daysqcod == holds address of currently instituted user
Sequence Generator procedure

If you have a REFed variable called "da", will not edit the
file, and do not wish to change the vjewspecs, you might use
the following sequence of commands:

$address of last display area%
&da . cspupdate _ lda(): ,
%stid of stmnt to be put at top of windowl
curmkr . stid ;
curmkril) .. 1
$two current viewspec words$g
¢cspvs .. da,davspec:
cspvs (1] . da,davspc?;
$turn on Content Analyzer%

. csPvs,vscarf . TRUEj o
$institute the procedure "filterproc" as Content
Analyzerk

cspcacod .. $filterproc;
gset up for display recreationg N
dpset (dspjpf, curmkr, endfil, endfil);

If you have edited the file, use the type "dspyes" instead
of "dspjpf" in your call on "dpset",

Dther Useful Procedures 647

astruc(astring) == glven the address of a string, sets the
string to upper case, 6d7a

fechno(stid,astring) == given an stid, appends the statement
number string to the string variable whose address 1s passed, 647b

page 133

- SARC=APP 4~DEC+75 20125 34044
ARC 34044 Rev, 5 DEC 75 , NLS Programmers‘’ Guide
' pPart Four: Additional L10 Capabilities

getsjid(stid) ==~ given an stid, returns value of SID (don‘t
forget to add zero to front if converting to a string) ad7c

fechsig(stidsastring) == given an stid, appends the statement
signature to the string variable whose address is passed, 6d47d

getdat(astring) == given the address of a String, appends date
and time to string, 6d7e

grptst(stidli,stid2) == checks that two stid’s specify a legal
groupt returns them ordered Or else an "illegal group" signal
is generated, 6d7f

plxset(stid) == given an stid, returns the stid of the head and
of the tail of the plex of which the passed stid i{s a member;
e,q, first . plxset(stid ; last) ; 6d79

resetf(fileno) ==~ given the file number 0f and open file,
deletes all contents of the file leaving only origin statement,
resets date and ident in origin statement (leaves file locked) 6d7h

filnam(filno,as¢ring) == given the file nymber, appénds the
file name (in link format surrounded by anqlembrackets <>) to
string whose address is passed 6d71

pause(milliseconds) == waits the given number of milliseconds,
then returns | 6473

settimer(milliseconds,aproc,parami ,param2,param3,paramg) =~

calls procedure whose address 1s passed, passing up to four
parameters to that procedure, after given number of

milliseconds; other code will be executed in the mean time 647k

Globals of Interest: 648

xinitsr* =~ is the login ident of the person currently using
the progranm, 6dBa

inptrf == is incremented every time the user types a <CTRL=0>}

this can be used as a user program jnterrupt mechanism; {.,e,

you can set it to 0 at the beg?nning of the program and then

check it at the start of each loop 0of your program to see {f

the user has typed a <CTRL=0>, {,e, wishes to abort the

command, 6d48b

inpstp == is incremented every time the user types a <CTRL~s>, 6dfc

pade 134

| SARC=APP 4=DEC=75 20125 34044
NLS Programmers’ Guide ‘ ARC 34044 Reyv, 5 DEC 75
Part Four:s Creating and Using Agtachable Subsystems

section 5: Creating and Using Attachable Subsyacems 6e

In summary, the programmer must write two programs to build a user
attachable subsystem: the CMI, and the L10 support procedures,

Each of these programs is compiled separately (by their respective
compilers) intc separate REL files, The Load Program command (in

the PROGRAMS subystem) will load both at once if the extension on

the filename holding the CML c¢ode is *cml"™ and the extension on

the L10 code file is “subsys», Once loaded, the user may use

commands in the subsystem as he does commands in any of the

standard subsystems, 6e}

Yoy may find it convenient to begin writing a program by copying
the following skelton (plex) from this NLS file
<USERGUIDES,L10-GUIDE,b6e2a>, It can then be modified to fit the
needs of your program, (The comments in the FILE statements allow
you to quickly bug the information required by the Compile Flle
command, All the CMIL declarations that are used in the NLS system
are included only to contripute to consistent use of command words
and values, The CML rules have been left blank; they must be
filled in or removed, All file, procedure, subsystem, and rule
names are only exemplary, The last three parameters in the L10
procedure are only exemplary,)
6e2
FILE cname % (CML,S$SAV,) TO (cname,cml,) % 6e2a
% DECLARATIONS %
DECLARE PARSEFUNCTION

angW, % reads angwer construct %

answel, % for gquestions = returns o¢/1 %

5D, % reads next char, TRUE 1f space 3
readconfirm, & reads next char 1if ca %

readbug, % reads next char if BUG %

readoption, & TRUE if next char is optchar %
readrepeat, % TRUE 1f next char is repeat g
lookansv, %2 TRUE 1f next char is Y/CA %
lookconfirm, & TRUE if next char is CA/REPEAT/INSERT %
lookbug, $ TRUFE if next char is RUG g

locknum, % TRUE if next char is a number %
clearhame, % Clears the name area %

notcas % reads next char, TRUE if not CA char %

DECLARE COMMAND WORD
"BRANCH" = 1 ,
"GROUP" = 2 ,
WPLEX" = 3 ,
"STATEMENT" =
"CHARACTER" =
"CONTROLCHAR"

e

RN »
-

page 135

L SARC=APP 4=DEC=75 20125 34044
ARC 34044 Rev, 5 DEC 75 ‘ _ ‘ ~ NLS Programmers’ Guide
Part Four?: Creating and Using Attachable Subsystems

"INVISIBLE" = 7 ,
"LINK® = 8 ,
"DIRECTORY" = 9 ,
"PASSWORD" = 10 ,
“NUMBER" = 11 ,
"TEXT" = 12 '
"YISIBLE" = 13 ,
“WORD" = 14 ,
"FILE" = 15 ,
"NEWFILELINK® = 16 ,
"OLDFILELINK" = 17 ,
Y“NAMEY =z 18 ,
“IDENT" = 19 ,
"IDENTLIST" =
“EDGE" = 21 ,
"MARKER" = 22
"NLS" = 23 ,
“ITEM" = 24 ,
*ITEMNOVS" = 25 ,
"SUCCESSOR" = 26 ,
"PREDECESSORY = 27 ,
"yp" = 28 ,

"DOWN" = 29 ,

"HEAD" = 30,

“TAIL" = 31 ,

"ENDY = 32 ,

*"BACK" = 33 ,

"NEXT" = 34 ,
"ORIGIN" = 35 ,
"FILERETURN" ='36 .,
"RETURN" .z 37 ,
"FILENAME" = 38 ,
"FIRSTNAME" = 39 ,
"NEXTNAME" = 40 ,
"EXTNAME" = 41 ,
"FIRSTCONTENT" = 42 ,
"NEXTCONTENT" = 43 ,
"FIRSTWORD" = 44 ,
"NEXTWORD" = 45 ,
"DETACHED" = 46 ,
"TTY" 3 47 ,

"AUTO" = 48 ,
"CONTINUE® ‘= 49 ,
"ON® 3 50 ,
"RECOVER" = 51 ,
"SLINKER" = 52 ,
"UPDATE" = 53 ,
"CLEAR" = §4 ,

20 ,

’

page 136

‘ §ARC=APP 4~DECw75 20125 34044
NLS Proqrammers' Guide ARC 34044 Rev, 5 DEC 75
pPart Four: Creating and Using Attachable Subsystems

- "IDENTS" = 5% ,
"FILES" = 56 ,
"DELETE® = 37 ,
"DEFERRED" = 58 ,
"IMMEDIATE" = 59 ,
"NQTI" = 60 ,
YPREVENT" = 61 ,
"RESET" = 62 ,
"ARCHIVE" = 63 ,
"SEQUENTIAL" = 64 ,
"TWO" = 65
"JUSTIFIED" = 66 ,
"ASSEMBLER" = 67
"BOTH" = 68 ,
"UNDELETE" = 69 ,
"FORY = 70 .
"STATUS" = 71 ,
"TAPE" = 72 ,
"ACCOUNT" = 73 ,
"NO" = T4,
"VERSIQONS" = 75 ,
"EXTENSIDN" = 76 '
"DATEY = 77
"CREATION" = 78 ,
"LAST" = 79 ,
"FIRST" = 80 .,
"READ" = 81 ,
"WRITE" = .82 ,
”QUMP“ - 83 ’ .
"EVER¥THING“ = 84 ,
“LENGTH" = 85 ,
WMISCELLANEQUS" = 86 ,
"ACCESSES" = 87 ,
"PROTECT" = 88 ,
"SIZE" = 89 ,
"TIME" = 90 ,
"VERBUSE" = 91 ,
"SORT" = 92 ,
"BYTESIZE" = 93 ,
"ARCHIVED" = 94 ,
"ALL" = 95 4
"MODIFICATIONS" = 96 ,
"UPPER" = 97 , ‘
“LOWER" = 98 ,
"MCDE" = 99 ,
"sENDMAIL" = 100 ’
"BUsSY" = 101 ,
"QUICKPRINT" = 102 ,

‘page 137

. SARC»APP 4-DEC=75 20125 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Guide
- Part Four: C(Creating and Using Attachable Subsystems

"JOURNAL" = 103 ,
"PRINTER" = 104 ,
"CoM" = 105 ,
"TERMINAL" = 106 ,
"REMOTE" = 107 ,
"REST" = 108 ,
"CASE" = 109 ,
"CONTENT" = {10 ,
"TEMPORARY" = 1%t ,
"VIEWSPECS" = 112 ,
"EXTERNAL® = 113 ,
v = 114 ’

"PRIVATE" = {15 ,
"PUBLIC" = 116 ,
"TENEX" = 117 ,
"ALLOW" = 118 ,
"EXECUTE" = {19 ,

"APPEND" = 120 ,
"LIST" = 121 ,
"SET" = 122 ,
"SELF" = 123 ,
"FORBID" = 124 ,
"DISK" = 125 ,
"DEFAULT" = 126 ,
"OLD" = 127 ,
"NEW"'S 123 ¢
"COMPACT" = 129 ,
"RENAME® = 130 ,
"ADD" = 131 ,
"SUBTRACT" = 132 ,
"MULTIPLY" = 133 ,
"DIVIDE" = 134 ,
"RIGHTY = 13% ,
"LEFT" = 136 ,
"ACTION" = 137 ,
"AUTHORS" = 138 ,
"COMMENT" = 139 ,
"EXPEDITE" = 140 ,
"HARDCOPY" = 141 ,
"INFORMATION" = 142 ,
"INSERT" = 143 ,
"KEYWORDS" = 144 ,
"OBSOLETES" = 145 ,
"RFC" = 146 ,
"SUBCOLLECTIONS" = 147 ,
"TITLE" = 148 ,
"UNRECORDED" = 149 ,
"L10" = 150 ,

page 138

NLS Programmers® Guide

Part Four:

"PROCEDURE" = 151
"SEQGENERATORY = 152 ,
"BUFFER" = 153 ,

"NDDT" = 154 ,

"PARSERULE"
"CA" = 156
"CD" = 157

"RPT" = 158 ,

"BC® = 159
”BW“ = 160
"BS" = 161
"LITESC" =
WIGNORE" =
"SC" = 164
"SW" = 165

"TAB" = 166
"IMLAC" = 167 ,

llTI" - xaa

"NVI®" = 169 ,
"EXECUPORT" = 170

’
’

-

’

-

162 ,
163 ,

[4

’

"MENUY = 171 ,
"DNLS" = 172 ,
"TNLS" = 173 ,

"COMMAND" = 174 ,

"RULE" = 175 ,

"SUBSYSTEM" = 176
"DISPLAY" =

"FROZEN" =
"HLPCOMY =

"PROGRAM" =
"TERSE" = 181
"INDENTING" = 182

1
i

"UNIVERSAL"

"ENTRY" = 184 ,
"INCLUDE" = 185 ,
"BOTTOM" = 186 ,

177 ,
178 ’
79 ,
180 ,

"PAGE" = 187 ,

"OFF" = 188

"FULL" = 189 ,

WPARTIAL" = 190 ,
"ANTICIPATORY" = 191
"DEMAND" = 192 ,

"FIXED" = 193 ,

"CONTROL" =
"CURRENTCONTEXT"
"FEEDBACK" = 196 ,
"HERALD" = 197
"PRINTOPTIONS" = 198

194 ,

’

'

- -

SARC*APP 4~DEC=75 20125

ARC

34044

Creating and Usinq Attachable Subsystenms

Rev,

34044
5 DEC 75

page 139

&ARC=APP 4=DEC=75 20125 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Guide
Part Four: Creating and Using Attachable Subsystems

"PROMPTY = 199 ,
"RECOGNITION" = 200 ,
"STARTUP" = 201 ,
"LEVELADJUST" = 202 ,
"REVERSE" = 203 ,
"TEST" = 204 ,
WTASKER" = 205 ,.
"LINEPROCESSOR" = 206 .
"CENTER" = 207 ,
"CNTLG" =208
% COMMON RULES %)

% ENTITY DEFINITIONS %
editentity = textent / structure:

% TEXT ENTITY DEFINITIONS %
textent = textt / "TEXT" / “LINK";
textl = "CHARACTER" / "WORD® / wyISIBLE® / “INVISIBLE®
/ "NUMBER":

% STRUCTURE ENTITY DEFINITIONS %
structure = "STATEMENT" / notstatement;
notstatement = "GROUP" / "BRANCH" / "PLEX"

SUBSYSTEM name KEYWORD "NAME"
INITIALIZATION fnamel =

7
COMMAND f£name2 = "COMMANDWORD"

H ;
TERMINATION fnameld =
!
END,
FINISH o
FILE lname % (L10,5AV,) TO (lname,SUbsys,) % 6e2b
% globals % . .
(xname) PROCEDURE % execution procedure %
4Formal Parameterss

(result, $result records

parsemode, gparsing, backup, cleanup$s

paraml, gyour first parameter,,.%

param2, gof course you may have,,,.%

param3); 20 to 7 of your own parameterss
2Localsy ‘

REF result, paraml, param2, param3;
CASE parsemode QF
‘= parsing:
BEGIN
END)
= baCckup, = cleanup!
BEGIN
ENDg
ENDCASE;

page 140

: ‘ \ : &ARC=APP 4~DEC=75 20325 34044
NLS Programmers’ Guide U ARC 34044 Rev, 5 DEC 75
Part Fours Creating and Using Attachable Subsystems

RETURN(&Tresult);
END,

FINISH

page 141

| SARC=APP 4«DEC=75% 203125 34044
ARC 34044 Rev, 5 DEC 75 , NLS Programmers*® Guide
pPart Five: Error Handling == SIGNALS

page 142

| &ARC»APP 4«DEC=75 20:25 34044
NLS Programmers' Gyide ARC 34044 Rey, 5 DEC 75
part Five: Error Handling == SIGNALS

PART FIVE: Advanced Programming Topics | 7
Section 1: Error Handling =~ SIGNALS 7a
Introduction ' » 7ail

When an NLS system procedure fails to perfornm properly, it may
generate an error signal, Every signal has a value, When a
signal is generated, control is passed back to the last signal
trap in effect, If no explicit program control statement (e,g.
RETURN, GOTO) is given in that signal trap, a new signal will
be generated, If the error is not dealt with, the signal will
eventually bubble all the way back to the execution routine,

The execution routine should always trap a signal, 7ala

You may trap signals and regain control by setting up the

response in advance, ‘ 7alb
Trapping Signals , ‘ 7a2

To trap error signals of any error value: Ta2a

ON SIGNAL gLSE statement

E,q, - - 7a2b
ON SIGNAL ELSE
BEGIN
dismes (2, SStrinq)z
RETURN; ‘
END;

It is a good idea to set up a signal response beﬁara calllng
any NLS system procedures, : 7a2c

ponce the signal response is set, it remains in effect through

the end of the procedure or until it is changed, and will be.

execyted whenever a signal is received by that proceduyre, ANy
subsequent ON SIGNAL statements will at that point change the

signal response (i,e, only one signal response can be in effect

at any point during procedure execution), 7a2d

Only signals generated by procedures below (e,g, called by)

vour procedure will be trapped by your procedure’s sjignal trap,
1t will not trap signals generated in the same proceduyre, 7a2e .

page 143

| | GARC#APP 4=DEC=75 20125 34044
ARC 34044 Rey, 5 DEC 75 . NLS Programmers‘ Guide
Part Five: Error Handling == SIGNALs

The signal response may be any (block of) L10 statement(s)., It
will be executed, then v 7a2f

- if you have an explicit program control statement (RETURN,
GOTO, EXIT LOOP), control will be passed accordingly and the
signal will stop there, or

= {f the signal trap includes no explicit program control
statement, another signal of the same value Wwill be
generated, and control will pass upward through the stack of
procedures called until it encounters another signal trap,

A RETURN will return control to the procedure which called the
one which intercepted the signal (not the one which generated _
it), 7a29

Thus, if you ¥wish to resume control in the current procedure,
the signal trap will nave to end with & GOTD statement pointing
to an appropriately labeled statement, This is one of the few

places where a GOTO is really necessary, 7a2h

If the signal trap applies to a loop, an EXIT LOOP or REPEAT

LOOP is a valld signal program control statement, 7a2i
Trapping Signals in Execution Routines | | 7a3

If a signal bubbles up through the execution routine to the

command parser (in a command in an attachable subsystem), the

resylts may be unpredictable, Execution routines should always
include signal traps, L _ Tala

A RETURN(FALSE) will shift cML into backup mode. It will back

upP to before the lagt set of CML alternatives (not necessarlly
equivalent to the last user input element), and then shift back

into parsing mode, (This may imply backing all the way through

the command, i,e, aporting the command,) 7a3b

The procedyre ”abortsubsystem” may be useful 1n tnis context,

It will shift the command parser into backup mode and abort the
current command, Then it will execute a Quit (from the Current
subsystem) and return the user to the prevlously used

subsystem, It should be passed the address of an error string

to be displayed, E,q, ‘Taic

ON SIGNAL ELSE abortsubsystem($"Error in xprocedure,.,") ;

or
ON SIGNAL ELSE abortsubsystem(sysmsg)

page 144

, &ARC=APP 4=DEC=75 20325 34044
NLS Programmers’ Gyuide ‘ ARC 34044 Rey, S DEC 78
Part Five: Error Handling =« SIGNALS ,

(see "Specific Sianals")
Cancelling signal Traps ' 7a4

After program execution sets up a signal response, the
following statement will cancel it so that thereafter a signal
will just bubble on up: ' Ta4a

ON SIGNAL ELSE NULL
or Just
ON SIGNAL ELSE 3

It may be subsequently reset by execution of another 0N SIGNAL
statement, Tadb

Specific Sianals 7a5%

when a signal is generated, the NLS system global variable

vsysgnl® is given a specific value (the value of the signal),

Each value represents a certain type of error, Also the system
global variable "sysmsg® is given the address of a string which

holds an error message, 7aS5a

The above constructions react to any signal, no matter what its

value may be, The ON SIGNAL statement can be used much like a

CASE statement (comparing cases to the global sysgnl) if you

wish to trap specific signals: , TaSb

ON SIGNAL
=constanti statement:
=constanty statement;

L N)

ELSE statement;
E.qg, 7a5¢c

ON SIGNAL

=ofilerr: %open file error%
BEGIN)
IF sysmsg THEN dismes(2,sysmsqg);
RETURN:
END;

ELSE %anv other error signal%
BEGIN
dismes(2,$"Error");
RETURN
END;

page 145

‘ ; &ARC=APP 4=DEC»75 20325 34044
ARC 34044 Rev, 5 DEC 75 , - NLS Programmers’ Guide
‘ Part Five: Error Handling == SIGNALS

The current signal constants can be found in <NLS,BCONST,>,

The common reason for using this specific signal treatment is
when you call a procedure which you Know will generate a
certain signal value under certain conditions, 1In such a case,
you can learn the signal constant of concern from the SIGNAL

statement which generates it, 7a5d
Generating Signals 7a6
You maYy generate a SIGNAL in a procedure bY the statements Taba

SIGNAL (value, astring) :

where value is the value of the slignal (perhaps a systen

global) and astring is the address of a string holding the

error message, If the second parameter is omitted, it will be
assumred to be zZero and no message wlll be printed, The first
parameter is mandatory; every signal must have a valuye, Ta6b

Examples:

SIGNAL (ofilerr, g"couldn’t open your file,") ;
SIGNAL (2)

Anogher way to0 generate a SIGNAL is by calling the procedyre Taéc
err(errno)

It will generate a SIGNAL of the value "errsig" (a systenm
global) and will set up a message depending on the value you
pass for errno, errno may be any of the following:

= "File copy falls";

== “(pen scratch fails";
== "Cannot load program”;
"1/0 Error";

-« "Exceed capacity";

== "Bad file block":

== "Not implemented”

NV e N
k)
4

If you pass it the address of a string as the error
number, it will signal using that address for sysmsg, and
that string will be printed,

By allowling err to generate all the siagnals, you will find
it easy to freeze execution upon an error condition while
debuygging using NDDT, as described in the next section (by
setting a breakpoint at err),

page 146

&ARC=APP 4=DEC»75 20125 34044
NLS Programmers® Guide ARC 34044 Rev, 5 DEC 75
part Five: Error Handling =« SIGNALS

Be carefyl not to call err and then trap its SIGNAL in that
same procedure, You might say:

ON SIGNAL

=merrsig: NULIL:
ELSE 444

page 147

| &ARC=APP 4=DEC=75 20325 34044
ARC 34044 Rey, 5 DEC 75 ‘ NLS Programmers® Guide
part Five: NDDT Debugging

Section 23 NDDT Debugqinq Te

Introduction b1

pDebugging is the process of finding the errors in a progran,
once the problem is located, you may correct it in the source
code (NLS file) and recompile, 7bta

NLS includes a debugging tool called NDDT, for "NLS Dynamic

Debugging Technjque," NDDT allows You to examine the state of

your program during or atter running it (i,e, using the command

or filter), This section describes the capabilities of NDDT, 7bib
Accessing NppT b2

To make NDDT avaijabje from NLS, YoU must execute the command
in the PROGRAMS subsystem: Th2a

Set Nddt (control=h) 0K
This adds the program NDDT to Your user programs puffer,
Thereafter, whenever vou type a <CTRL~h>, NLS wjil)l immedjate}y
be interrupted (be it in a waiting or running state) and you
will enter NDDT, NDDT will respond with its command hearald, a
right anqlenbracket (>), indicating that NDDT is ready to
accept a command, Tb2b

NpDT commands are specified by typing the first character of
the command word,

You may continue with NLS (from the point Where it was
interrupted) with the NDDT command: 7b2¢

Continue QK

You may continue NLS from a specific instruction address with
the NDDT command: Tb2d

Goto ADDRESS OK
NDDT Address Expressions 7b3
Everything stored in the machine (instructions and variables)
has an address, its location within the computer’s memory, An
address 1s an octal (basew~elght) number, Tb3a

The name of & procedure or of a named L10 statement may be used

page 148

SARC=APP 4~DEC~75 20325 34044
NLS Programmers*® Guide ARC 34044 Rev, 5 DEC 75

Part Five: NDDT Debuggaing

instead of a number, 1t represents the ocCtal location of the
named statement or of the first instruction of the procedure,

ARddresses (symbols or numbers) may be combined, to evaluate to
some location, An expression concatenated with the following
operagtors will he evaluated from left to right (no hierarchical
ordering) to a single value:

<SpP>» same as +
-
*

/

Thus, a symbol may be followed by a space (or plus=sign) and
then an octal number, The number is added to the location
represented by the symbol,

Single=Word Variables

Dften, programmers wish to examine or modify the contents of a
single word at a given location, The NDDT Show command prints
the contents 0f the word at that address,

Show Location ADDRESS 0K

where address ls ap address expression as defiped above or
one of the following:

* == preceding entity
<LF> == next entity
Next -»= Next entity

<TAB> == entity whose address is the content of current.
location

NDDT maintains some address as your current locationg and the
Show command sets thils location to the one it examines, If you
do not specify an address in a show command, the current
location {s assumed,

NDDT can print the contents in three ways: as a Symbol followed
by a number (to be added to tpe symbol locatjon), as a sjingle
number, or as text, The default printout mode is symbollc,

The printout mode may optionally be changed in a Show command,
The new printout mode remains in effect until subsequently
changed,

Tb3b

Tb3c

Tb3d

7b4

Thé4a

Tb4b

7b4c

page 149

o i ‘ | §ARCeAPP 4=DEC=75 20325 34044
ARC 34044 Rey, 5 DEC 75 . NLS Programmers® Guide
o part Five: NDDT Debugging

show Location ADDRESS «CTRL~b> PRINTMODE 0K
where PRINTMODE is one of the following:
Numeric
Symbeolic
Text

A fast way to do the same thing is provided with the value
commands . ‘ Tb4d

Value of ADDRESS OK
or |
value of ADDRESS <CTRL=b> PRINTMODE OK

You may print and then replace the value in a word with the
Show command$ Tb4e

Show Location ADDRESS .. EXP 0K
or

Show Location ADDRESS <CTRLnb> PRINTMODE - EXP OK

where EXp 1s an expression whose value will replace the old

valuye of the given location, 1In addition to the address

expressions discussed above, you may use the form:
valuelppvaluez
where "valuel"® is a standard expression which will ba put
in the leg¢t nalf of the word, and "value2" {s an
expression which will be put in the right halef,

String Variables | o ~ 7b5

The contents of a string variable mayY be eXamined and modified ‘
as well as simple variables, using the command: 7b5a

show string ADDREss DK
Strings are always printed {n text printout mode, 7b5b

Yyou may print and then replace the string with the Show
command? , : Tbsc

'show String ADDRESS .. STR OK

where STR is a literal string which you type in,

page 150

| . GARCeAPP 4~DEC=75 20325 34044
NLS Programmers” Guide ARC 34044 Rev, 5 DEC 7%
part Five: NDDT Dabugqing

Records Thé

To work with L10 records, you must first set the NDDT record
pointer to the first word of an L10 record definition, with the
command: Tb6a

Record puinter,sét tog SYMBOL DK
where SYMBOL is the name of some L10 record, Note that it
may be necessary to use the MARK command (described below)
to make local records known to the NDDT system,
This is equivalent to the command: | o 7b6b
Show Location RP — SYMBOL 0K

You may then examine all the fields of any record with the
command? , Tbéc

Show Record ADDRESS 0K
or , |
Show Record ADDRESS <CTRL=p> PRINTMODE OK

You may exarine and optionally change a single field within a
record with the Show Location command, substituting
ADDRESS, FIELD fOf ADDRESS : ‘ 7bbd

Yoy may replace ¢a¢h field in a record with the commands Thée
Show RecCorq ADDRESS
The name of each field is then printed and a new value may
ve typed in, terminated by a Command Accept, Typing only a
command Accept wil)l advance to the next field of ghe record
without modifying the last fleld,

Bullt in NDDT symbols Lo Lo 7b7

A numper of Symbols are built in to NDDT and May be uUsed in

address expressions, Wwhen they are used, PRINTMODE will be

ignored, since the print@un mode is predefined for each of

these symbols, Tb7a

Built in Locations, Registers | Tb7b
Al == register At

A2 == register A2
A3 == register A3

page 151

&ARCwAPP 4=DECw»75 20125 134044
ARC 34044 Rev, 5 DEC 75 < NLS Programmers® Guide
part Five: NDDT Debugging

A4 ~- register A4
R1 == register R1
R2 == register R2
R3 == register R3
R4 == register R4

Built in Locations, Frame

When a procedure is called, a "frame" is added to the stack,
It inCludes a word (holding the return location of that
procedure in the right half) followed by all the paraheters,
then all the locals, sSome predefined symbols allow you
access the current or any previous frames and the
information in them,

M == contains address of current frame

MARK == contains address of previous frame

RET == return location in current frame

RP == address of record definition of last field used

S == contains address of top of stack (last LOCAL word, or
whatever) ,

SIG »= current frame signal location

Built in Records

BASE == first frame in procedure stack

FRAME == current frame description

F == gsame as FRAME

LOCALS == cuUrrent frame LOCALS

I, »=» Same as LOCALS

RECP == description of current record

R == same as RECP

PARMS == Current frame parameters

P =~ same as PARMS

TOP == description of top frame in procedure stack

Control Switches
EC == Cyrrent symbol escabpe character (;)
RNAMES == 1f FALSE suppresses printing of record field names
SF == If FALSE disables these NDDT built in symbols
Special character commands
The Special character commands are provided for commonly used
functions, All but = are essentjally subcommands of the SHOW

command and are processed éxactly as if they had been preceded
by the command word Show,

page 152

Tb7¢

Tb7d

TbTe

7b8

7b8a

| &§ARC=APP 4=DECe75 20125 34044
NLS Programmers’ Gulde ARC 34044 Rev, 5 DEC 75
Part Five:; NDDT Debugging

z == Show current location in numeric typout without
changing the current printing mode

- == ASsign a value to current location
* == Show previous location
LF == Show next location
TAB == Show location addressed by current location
Traces and Breakpoints 769
If you set a “tracen at a location, the system will print that
address every time that instruction is executed, Execution
will not be interrupted, You may set a trace with the command: 7b9%a
Trace location ADDRESS OK
1f you set a breakpoint at a lpocation, a <CTRL=h> will
automatically be executed Just before the given instruction
(caysing you to interrupt execution and enter NDDT), This
allows vou to interrupt execution of your program at a given
point and examine and change the state of the system, A
breakpoint may be set with the command: Tb9b
Breakpoint Set ADDRESS 0K
Each trace and breakpgint is assigned a number, beginning with
zero, when it is set, You may cancel a trace or breakpoint
using this number Oor using the address to which it is set: Tb9c
Breakpoint Clear NUMBER DK
or
Breakpoint Clear ADDRESS OK

You may cancel all traces and breakpoints that youy have set
with the commands Th9d

Breakpoint Clear All 0K

You May list a trace or breakpoint of a given number and the
location to which it is set with the command: v Tb9e

Breakpoint Print NUMBER 0K

You pay list all traces apd breakpoints, their pumbers, apd
their locations with the command: Tb9f

page 153

SARC=APP 4=DEC=T75 20125 = 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Guide
part Five: NDDT Debnugging

Breakpoint Print OK

A breakpoint may replace a previous trace or breakpoint (new
address, same number) with the command: 7b9g

Breakpoint Set ADDRESS <CTRL=b> ReplaceS breakpoint NUMBER
DK
A breakpoint may be set so that it only interrupts if a
comparison between location and a given constant is true, with
the following command: - 7b9%h

Breakpoint Set ADDRESS <CTRL=b> Test ADDRESS RELOP CONSTANT
0K .

where ADDRESS is the location of the word to be compared,
RELOP is one of thfe following: z= 3§ < > <= >=
CONSTANT 1s an expression with a value,
A breakpoint may be set so that it only interrupts ifwa
procedure is called and returns true, with the following
command} 7b91i
Breakpoint Set ADDRESS <CTRL~b> Call PROCEDURENAME OK
L10 Prgcedures 7b10
Yoy may call an L10 procedura from NDDT with the command: Te10a
Procedure Call PROCgDURgNAMg OK
If the procedure requires parameters, you must list them in
parentheses, separated by commas, after the name of the
procedure? 7p10b
Procedure Call PROCEDURENAME (parami, param2, ,.,) 0K

one string, enclgsed in aqugtes, may be included in the
parameter list, e,g,t

Procedure Call PROCEDURENAMg ("literal®, param2, ,,.) 0K
The return value(s) of a procedure call will be typed out, 7p10C
NDDT allows you to replace an existing proceduyre with a new

procedure, Whenever the old procedure is called anywhere in
the system, the new procedure will be called instead, The new

page 154

&ARC=APP 4=DEC=»75 20325 34044
NLS Programmers® Guide ARC 34044 Rev, 5 DEC 75
part Fivey NDDT Debugging

procedure will be passed the same parameters as were passed to
the o0ld, This replacement can be done with the command? 7104

Procedure Replace NLDNAME DK NEWNAME OK
The name of the procedure which was replaced is saved so that
it may be restored, The replacement may be cancelled with the
commands , 7bl0e
Procedyre Back up to OLDNAME 0K
Symbols 7b11
The system maintains a table of symbol names and the addresses
which they represent, When a user program is loaded, its
symbols are added te the symbol table, Thus, (in addition to
system dglobals) the table is composed of blocks, one for each
program, 7bita
Each block is refered to by the (unjque) name of the
program, (This is WhY the CML and SUBSYS parts of a user
attachable subsystem must have different names in the FILE
statement,) The list of blocks (programs) is called the
nmark stack," Locals as well as globals are recognized by
NDDT for only those user programs in the mark stack,

Yoy may list the nameg 0f the blocks currently in the mark ‘ ;
stack with the commandz - Tbiib

Mark symbol table: Print contents of stack OK

A block may be deleted from the mark stack (the symbols remain

{n the symbol table, but they are not recodnized by NDDT) with

the commands: 70i1c
Mark symbol table: clear block PROGRAMNAME OK |

A block may be reinstated to the mark stack with the command: Tb11d
Mark symbol table: Set at PROGRAMNAME OK

A new (empty) block may be added to the mark stack with the
command? 7blle

Mark symbol table: get at NEWBLOCKNAME OK

page 155

SARC=APP 4#DEC=78 20:25 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Guide
part Five: NDDT Debugging

If there is at least one bhlock in the mark stack, a new symbhol
representing some address may be created with the command: Tbllf

Define New SYMBOLNAME 0K ADDRESS 0K

Symbols defined with this command have a global scope, and
may be used to satisfy external references in L10 user
programs subseguently complled,

any symbol within a block listed in the mark stack may be
redefined to represent a different address with the command: 7biig

Define 0Ul1d SYMBOLNAME OK ADDRESS 0K

1f vou Wish to replace an existing routine by a new version of

the same routine, some method of distinquishing between new and

old occurrences of the same symbol is required, Any symbol

preceded by a semicolon (3) refers to the old occurrence of the
symbol, (The semicolon has the effect of disabling the symbol

table marking mechanism for the given symbol, causing it to be
identified in the "old" section of the symbol table,). 7bi1ih

For example, suppose an existing routine named TEST is to be
replaced by a new versjon of tphe same routine whicn You pave
just compiled (hence is in the mark stack), The NDDT
procedure Replace command can be used as followsz

Procedure Replace ;TEST 0K TeST 0K
Scanning for Content : Tb12

You may search a set of words for a specific content with the
command!? Tbi2a

Find content: CONTENT OK masked by: OK lower address
STARTADDRESS 0K ybPper addregs: ENDADDRESS OK 0K

The content of every word in the specified range will be

compared to CONTENT, CONTENT may be of the form of an address

or a PDP10 machine instruction, The address and content of

each word which matches will be printed, (Note that the

"masked by» field was ignored,) Tbi2b

1f you wish only to compare certain bits in each word to

corresponding bits in CONTENT, you may specify a mask, A mask
is a number (of the address form), Only those bit positions {n
which the mask has a one will be compared, (If the maskK is not

Page 156

o | &ARC=APP 4=DEC=75 20225 34044
NLS Programmers® Guide ARC 34044 Rey, S DEC 75
part Five: NDDT Debugging

specified, all ones will pe assumed and the entire wofd will pe
compared,) Tb12c

Find content: CONTENT OK masked by: MASK OK lower addressi
STARTADDRESS OK upper address: ENDADDRESS OK OK

MASK may also be of elther the ADDRESS form or the PDP10
instruction form,

Tb124d

page 157

Ty &ARC~APP 4-DEC=75 20325 34044
ARC 34044 Rey, 5 DEC 75 ; - NLS Programmers’ Guide
‘ ‘ Part Five: Writing CMI Parsefunctions

section 3; Writing CML parsefunctions

Parsefunctions

Functions which are declared with the PARSEFUNCTION attribute
in CML are assumed to be 110 procedures which are designed to
be parsing fynctions, They are used to examine the user’s

input, They are called in "parsehelp” mode before being called
~in nparsing® mode, #When so called, they are passed the address

of a string as a third implicit argument, The parsefuynction
routine should £111 that string with the appropriate prompt

characters which tell what the parsing function is looking for,

Wwhen the yser 1s faced with alternatives which include a
parsefunction, the parsefunction will be called in parsemode
"parseqmark" for the string to include in the questionmark
display, Tbis string must be no greater than 24 characters,

Sample Interpreter Parsefunction Routine

Assuyme that in some command we want the tvpein of a number to
appear as an alternative to some set of keywords, We can
accomplish this by defining a parsefunction (call it looknum)
which looks at the next input character and succeeds if the
next character is a digit and falls otherwise, If we write
this function as the first alternative in some command, then
control will pass from the interpreter to the parsefunction
before it passes to the keyword 1nterpreter.

Suppose our commgnd looks like:

COMMAND sample = “INSERT" v
(looknum() <"number"> ent .. #"NUMBER®
/ ent . ("TEXT"/"LINK"))
$ entity now contains an entity type (NUMBER, TEXT, or
LINK), We now uyse the LSEL function to get a selection
of this type %
source .. hSEL(ent)
CONFIRM
Xxinsert (ent. source)

page 158

1¢

Tcl

Tcla

7cib

Te2

7c2a

7¢c2b

\ &ARC=APP 4=DEC~75 20325 34044
NLS Programmers’ Guide | ARC 34044 Rev, 5 DEC 75
Part Five: writing CML Parsefunctions

The parsefunction looknum which is called by the interpreter
both when prompting the user and also during the actual parse
of the command, Tc2c¢

(looknum) PROCEDURE % looks at the next input character, 1if
it is a digit, then return TRUE, else return FALSE %
% FORMAL ARGUMENTS %
(result, % address of the result record %
parsetoders % parsing mode 0f the interpreter %
string); % address of prompting string %
REF result, string: '
CASE parsemode QOF
= -parsing: ,
CASE lookc() DOF g%value of next character in input
bufferg
IN [0, "9): NULL ;
ENDCASE RETURN(FALSE) :
= parsehelpt %supply string for prompt%
#string* _ "NyM:" 3 A _
= parsegmark? %supply string for questionmark%
#stringx _ "Number"
ENDCABE};
RETURN (&result);
END,

page 159

5ARC=APP 4=DEC=75 20325 34044
ARC 34044 Rev, 5 DEC 75 , NLS Programmers’ Guide
part Five: Calculator Capabllities

Section 4: Calculator Capahilities 74

Introduction 741
L10 arithmetic can only work with integers, The CALCULATQR
subsystem hclds a numbers of procedures which the user
Programmer may call to do douple=precision floating point
arithmetjc, Floatind point numbers are stored in two=word
arrays, which the user programmer must declare, All CALCULATOR
routines work with these two word arrays, 7dia
converting String to Doublemprecision Floating Point . 742

A number in a string variable may be converted to a floating
point array with the proceduyre: 7d2a

nfloat (astring, awordl, aword?)
where astring is the address o0f a string holding the number,
, awordl is the address of the first word of the array,
and -
aword2 is the address of the second word of the array,

The number in the string may hold a decimal point, and may be

preceded by a minys=sign (=), Other characters (e,g, a dollar

sign) may precede the first character of the number (a digit,

minus sign, or decimal); they will be ignored, 742b
Converting Floating Point to String 743

The two word array may be converted back to a string with the
procedures 7d3a

qfloutp (avar. astring, format)
where

avar is the address of the (first word of the) array
holding the floating point number, and

astring is the address of a string variable in which the
text of the number is to be placed;

the third parameter is ignored, so just pass zero,

The format of the string is dictated by the global variable

page 160

) SARC=APP 4=DEC»75 20325 34044
NLS Programmers’ Guide . ARC 34044 Rev, 5 DEC 75
part Five: Calculator Capabilities

*dfoutm," The following flelds apply to this glebal [default
values are in square brackets]: 7d3b

f1d1 == characters to the left of the decimal (10])
£1d2 == characters to the rignt of the decimal [2]
£1d3 == characters in exponent field (0]

round =~ number of significant digits to round to [12] round
must be lesS than or equal to f141 + £1d2 fld1 + £1d2 must
be less than or equal to 12

oflo == g0 to exponent notation if left=of~=decimal too big
[0

exsign == 1¢ a positive eXponent, use first character og¢
exponent field for: [0}
0 == first digit of exponent

1 == ng4n
2 == a space

exp2 == prefix on exponent: [0}
0 == no exponent
{ mw HEM®
2 == HpN
3 we MxiQen

dpt == print decimal point switch (0=0ff, 1=0n) (1)

dig == print at least one digit to left of decimal (0 if
necessary) (0=0f£f, 1=0n) (1]

just == justify number within space of three fields: [1]
0 == right justify by adding spaces to left
“you must also set the
global "calflg" to TRUE
== right justify by adding "0vs
right justify by adding wsxns
= left justify by adding spaces to right
youy must alsc set the
global wcalflg" to FALSE

W N e
E
4

sign == if a positive number, use first character of field 1
for: [0)
m»» first diagit of number

~= 3 Space
" - l|+ll

N = O

page 161

, S&ARC=APP 4=DEC=75 20325 34044
ARC 34044 Rev, 5 DEC 75 ~ NLS Programmers’ Guide
Part Five: Calculator Capabilities

Additionally, if the glopal "cacflg" is TRUE, the numper will
be formatted with commas, 7d3c

Calculations with Foating Point 744
The following procedures do floating point calculations on the
twowword arrays described above, All of the following
procedures require as parameters the address of the (first word
of the) arrays, 7d4a

gcadd(a,k) == a . a + b
gcsub(a,b) ==~ a3 ., a = b
gemult(a,b) == a . a * b
gcdiv(a,b) = a .. a / b
QCd.iVW(ﬂ(b'C) e O - a /]

acneq(a) == a .. =a

page 162

SARC=APP 4-DEC=75 20125 34044
NLS Programmers® Guide ‘ ARC 34044 Rev, 5 DEC 75
Part Five:; Fields and Records

Section S5: Fields and Records Te

Introduction , 7el

A set of bits within a word can be used without affecting the

rest of the word, (On the PDP~10, words are 36=bits long,) A
contiguous set of bits within a word is called a fleld, Fields

allow more efficient use of storage, Tela

once a field 1s defined, you may apply it to any word
(variablel), It will refer to the defined set of bits in
that word (e,g, the field "RH" refers to the rightemost 18
bits of whatever vword it modifies),

You may assign a number to or from a field by following the
Variable‘name with a perjod (,), then tne name of the field: Telb

var,field
E.,q., stid,stpsid .. origin
Many fields are defined in the NLS system, and may be used by
user programmers, Some have been mentioned in preceding
sections; others may be found in the NLS source code, Telc
Declaring Records ‘ | , 7e2
Records are always defined glpobally, Record definitions are,
like global declarations, put outside of procedures within L10
files, Te2a

A record definition defines a series of fields, with the length
(nymber of bits) spPecified for each fleld: Te2b

RECORD fieldi(lengthl, field2[lengthl, ,,, ;
The fields are allocated from right to left within the word, Te2¢
E.g, the record definition:
RECORD right(18], left[17]
would define two flelds, The field "right" refers to the
right=most 18 bits of the word, The field "left" refers to

the next 17 bits to the left of the field "right," (The
left=most bit 1s not used in this example,)

page 163

| o | L . §ARCeAPP 4=DEC=75 203125 34044
ARC 34044 Rev, 5 DEC 75 ; ~ NLS Programmers?® Guide
‘ Part Five: Fields and Records

A RECORD detfinition may specify any number of flelds, 1If a

fleld is defined to be too larde to fit in the remaining bits

of the cyrrent word, it is automatically defined t0 represent

the first field in the next word, 1l.,e, thils and subseqguent

fields are defined from the rlqht‘of the next word, This can

extend through any number of words, Te2d

E.g, the RECORD definition:

RECORD fleldll18], £ield2[10]}, field3(18), field4(36)
would define the fields as followsjy

fieldi == right half of word

field2 == right~most 10 bits in left half of word

field3d =~ right half of next word

field4 =~ entire third word (i,e, wordi2j)
0¢ course when using fields that regfer to subsequent words,
you must be sure that you are operating on arrays of the
appropriate size,

Declaring Fields | ' 7e3
Altnouqh you can declare sinqle fields as des¢r1bed here, the
practice is limited, (It is useful in manipulating byte
pointers,) User programmers ‘should use RECORD definitions
instead, o . Tela
A single field may be defined with the declaration: 7e3b

DECLARE FIELD name = [address, size : position] i
Whﬁre |

address 1ls the address of the ward to which the field
refers,

size is the number of bits in the field, and

position is the number of bits left to the right of the
fleld,

In an assignment, the address of the word referenced {is kept in

a register, named "rp," It may be used as an index by placing

it in parentheses, Thus a FIELD declaration referxng t0 the

rignt half of a word 15: . Te3lc

~page 164

‘ SARC=APP 4=DEC=75 203125 34044
NLS Programmers’ Guide ARC 34044 Rey, 5 DEC 75
Part Five: Flelds and Records

DECLARE FIELD right=[(rp), 18:0] ;

The Jeft half of the next word could be defined: 1e3d

DECLARE FIELD left=[i(rp), 18:18) 3

The address 1s held in the right half of a byte pointer, You
may declare a field with zero as the address, then assign the
fleld definition plus an address to set up a byte pointer: Tele

DECLARE FIELD right=[0, 18:0]
then ‘ ‘
bytepointer . right + gvariable
A FIELD declaration may be external as well as global: Te3f

.

DECLARE EXTERNAL FIELD name = [address, size 3 position] ;

page 165

&ARC=APP 4=DEC=75 20125 34044
ARC 34044 Rev, 5 DEC 75 NLS Programmers® Guide
part Five: Stacks and Rings

Section 6: Stacks and Rings 1f

Declaring Stacks and Rings ER
Stacks and rings are allocated series of words of storage, A
stack or ring 1s defined to hold a given number of records
each record may be a single or a defined number of words, You
may "puysh® records onto the stack or ring and then "pop" them
off, as described here, ' 7€1a

A stack may be declared (at the global level) with the L10
declaration: T£1b

DECLARE STACK stacknamelsize)
where size is the number of onew=word records in the stack,

you may work with records of more than one word with the stack
declaration: 7f1ic

DECLARE STACK stacknamelsizerrecsizel :

where recsize is the number of words‘in each record, All
records in a stack must be the same size,

Like other declarations, any number of stacks may be declared
with the same statement: , 7f£1d

DECLARE STACK stacknamelsizel, stacknamelsize,recsizels ,,.}
Stacks may be declared as extgrnal to the program; 7f1e
DECLARE EXTERNAL STACK stacxnamecsize.recsxza]y .;.z

Ring declarations are identical, with the word "RING"
substituted for "STACK," E,q9,? TE£1£

DECLARE RING ringname(size}, ringname(size,recsize), oo,
DECLARE EXTERNAL RING ringnamelsize,recsizel, ,,,:

Initiajizing Stacks and Rings | ' 7£2

pefore it is used, a stack or ring must be initialized (i,e,
ctleaned yp), with the L10 statement:! 1£2a

RESET stackname

page 166

‘ SARC=APP 4-DECe75 20:25 34044
NLS Programmers® Guide : ARC 34044 Rev, 5 DEC 75
Part Five: Stacks and Rings

or
RESET ringname 3

The storage canh then be considered empty, The RESET statement
can be ysed wheneyer yoy wish to clean yp the stack or ring, 7£2b

Using Stacks and Rinags T£3

You may add a record tc the top of the stack or ring with the
L10 statement: 7£3a

PUSH address (ON stackname

where address 1ls the address of the first word (perhaps the
single word) of the record to be added to the staﬁkg

~If you try to add more elements than the stack can hold, a
SIGNAL will be generated,

=1f You try to add more elements than the ring can hold,
records will be repjlaced, starting from the bottom (the
first record pushed on),

You may remove a record from the stack or ring, and optionally
assign it to a record variable (a simple variable or array of
the appropriate size) with the L10 statement: 7£3b

POP stackname
or
POP stackname T0 ad4dress

where address is the address of the first word (perhaps the
single word) of the record to receive the record from the
stack, -

=If you try to remove more elements than the stack currently
holds, a SIGNAL will be generated,

=]f vou try to remove more elements than the ring currently
holds, records will he reread, starting from the top, This
shoyld be avolded, 1f you did not previously £ill the ring,
this top record will hold qarbaqe-

You may read the first word of the record at the top of the
stack or ring (without affecting the stack or ring) as an
expression by enclosing the name in square=brackets: 7€3¢

[stackname]

page 167

‘ SARC=APP 4eDEC=75 20825 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers® Gulde ’
Part Five: Stacks and Rings

The second word (the one below that one the stack) may be
read as [stackname « 1), and so on,

E.q, 7£3d
var .. [stacknamel] ;3

TO use stacks and rings, one ysually must keep track of how

many records are currently on the storage, Thus, You probably

will need to maintain a count in a simple variable in parallel
to use of the stack or ring, 7f£3e

page 168§

SARC=APP 4-DEC=7S 20125 34044
NLS Programmers' Gulde ARC 34044 Rey, &5 DEC 75
part Five: Using the Sequence Generator

Section 7: Using the Sequence Generator 79

Introduction : 791

The Sequence Generator is used by a number of NLS commands

which require a series of statements from an NLS file, A

procedure may open a sequence holding a number of statements:

the Sequence Generator then passes those statements back, one

at a time, every time it is called, : Tgia

The sequence Generator considers viewspecs in choosing which
statements to return, e,g, level truncation, Tf viewspec { or

k is on, it may call a Content Analyzer program hefore

returning the statement, This allows & great deal of

flexibility in working with a serles of statements, 791k

co=Routine Effect 792

Once the Sequence Generator decides to return a statement (or
string), it calls a mechanism wnich returns control to the

procedure that called the Sequence Generator, Thus control

will return directly to that calling procedure, even from other
procedyres the Sequence Generator has called, i,e, even if the

return mechanism was called from a procedure called by the
Sequence Generator, 792a

When the Sequence Generator is called the next time, it passes
control to the instruction after the one which called the :
return mechanism, I,e, it continues right where {t left off, 792b

Thus, the Seguence Generator may call a content Analyzer

program which maY return control directly to the procedure

which called the Sequence Generator, The next time the

Sequence Generator is called, executjon will begin in the

middle of that content Analyzer prodram (which may later return
through the normal RETURN statement to the Sequence Generator),
(Thus, the seguence Generator is behaving like a co~routine to

the calling procedure,) Tg2¢

page 169

: GARC=APP 4=DEC»75 20:25 34044
"ARC 34044 Rev, 5 DEC 75 ‘ ' : NLS Programmers’ Guide
C ‘ “part Fivet Using the Sequence Generator

calling Procedure Sequence Generator Content Anhalyzer 7924
1 se
2 [.
3 seqgen(&sw) >>=> 1 ,,,
2 440

3 CA filter >d=w=e=>

ey

[C
return mechanism

e e <wn--~w-—q-w--pq-n-q-q.--w%-u((

rey

squan(&sw)))pn.--w;QQQ-w-—qnqpuu>

w b

s
LN

normal return

4 v Covwmmmannldd
5 *Te e .
T wee Cmmemrmwm~<< 6 return mechanism

Sequence Work Area 793
when a Content Analyzer proqram is called by the Sequence
Generator, one parameter is passed, the address Of an array
called the "sequence work area," This array, although ignored
by most Content Analyzer programs, holds a great deal of useful
information, 1If the Content Analyzer procedure receives this
address as a parameter, and then REFs it, it may refer to the
following fields in the sequence work area (see
<NLS,BRECORDS,seqr> for entire record declaration): Tg3a

sWwstlid == stid of current statement or string in seqguence

swestid == Stid of current real STATEMENT in Sequence (even
if swstid points to a string)

swlbstid == stid of statement heading last branch in
sequence

sWelvl == level Qt‘éurrent statement in seguence
sWslvl == level of first statement in Sequence
SWVSPEC == first word ot‘viewspecs for sequence
swvsp2 == second word of\yiewspecs for sequence

sWusqgcod == address of user Sequence Generator procedure for
sequence

swcacode == address of Content Analyzer procedure for
sequence

page 170

‘ , , .~ &ARC=APP 4~DEC=75 20225 34044
NLS Programmers’ Guide ' ARC 34044 Rey, S DEC 75
Part Five: Using the sequence Generator | »

swkflg == FALSE whén‘sequence is opened, TRUE once scmétnlnq
has been returned by sequence

Displaying Strings T34

You may call the retuérn—mechanism from Content Analvzer

programs while causing the Sequence Generator to inject a

string in the seguence, Under the normal circumstance, where

the sequence 1s being used to put up a display or print a file

or to do filtered editing, this allows you to inject a string

into the output, Thus you may receive a statement, reformat it

into a string (without editing the statement itself), and then
display the string, _ Ta4a

The following procedure injects a string in the sequence, then
returns to the procedure that called the Sequence Generators 794b

send (sw, astring) :

where sw is the address of the sequence work area, and
astring is the address of the string, (Remember, 1f you
REFed the parameter holding the address of the sequence work
area, use the ampersand (&) construct when passing it to
send,)

Note that che co~rout1ne effect will cayse execution to pick up

right where it left off when the Seguence Generator is called

for the next statement, Thus, execution will begin just after

the send, If you then RgTURN a value of TRUg, the statement

itself will ALSO be displayed, Most applications of send will
RETURN(FALSE) immedlately after the call on gend, ‘ ‘ Tqg4c

An example of a Content Analyzer program using send() to show
only the first line of each statements » T94d

(firstline) PRDCEDURE (sw) ; %content analyzer filter to
display only first lines%
LOCAL TEXT POINTER ptr ;
REF sw
3to hold address of seguence work areasg
sset pointer at end cf first linesg
CASE READC OF
;= ENDCHR: FIND “ptr ;
= EOL3 FIND "ptr ..ptr ;
ENDCASE REPEAT CASE}
sput f£irst line in global strinas
xdspstr# . SF(ptr) ptr
gsinject string into sequence%

page 171

SARC=APP 4=DEC»75 20325 34044
ARC 34044 Rrev, 5 DEC 75 NLS Programmers’ Guide
part Five: Using the Sequence Generator

send (&sw, sdspstr) .

%50 statement won't also be displayeds
RETURN (FALSE) ;

END,

Using Sequences : 795

Yoy may open and use your own sequences in attachable

subsystems, This may be ysefyl when you wish to process a

series of statements, perhaps only those passing certain

requirements (e,g, level or a Content Analyzer fllter), Ta5a

To open a seguence, you should have declared and REFed a

varfable to hold the address of the sequence work area that

will be reserved for your seguence, The procedure which opens

the seguence returns this address, 7a5b

&sW - openseqgistidi, stid2, vspecl, vspec2, seqgproc,
caprocl; ‘

where

stidl and stid2 are two stids deliniating a groyp in an
NLs file that will be the source of the statements in the
sequence, They may be the same (for a branch), The
seguence Generator ignores the branch only and plex only
viewspecs,

70 get stidZ2, the procedure "seqgend" may be uyseful,
Given stidi and the two viewspec words, it checKs the
branch=only and plex-only viewspecs and returns the
appropriate stid for stid2, E.g,!

&5¥ .. openseq (stidl, seqend(stidi,vspeecl,vspec2),
vspecl, vVspec2, seqprocC, Caproc);

vspecl and vspec?2 are two words holding the viewspecs for
the sequence, There a a number of predefined filelds
which allow you to set bits within these words, (See
part Four, Section 4,) Of particular interest to the
sequence Generator are the level truncation (not the line
truncation) and the Content Analyzer viewspecs, _

segproc is the address of the Sequence Generator routine
to be used, If yoy pass zero, the NLS standard Sequence
Generator will be used, (User Sequence Genherators are
not described here,)

pade 172

. &ARCwAPP 4=DEC=75 20325 34044
NLS Programmers*® Guide ARC. 34044 Rev, 5 DEC 75

part Five: Using the Sequence Generator

caproc 1s the address of a Content Analyzer procedure to
be used 1f needed by the sequence (as specified in the
viewspecs), If none ls needed, you May pass zero,
Passing the address of a sequence is in effect
instituting that procedure for that seguence, The
address of the currently instituted procedure may be
gotten from the display area descriptor, as described in

Part Four, Section 4,
A call on the procedure "seqggen" will increment the fields in
the sequence work area to the next statement (or string) in the
sequence; it will retyrn the first statement in the sequence
the first tiwe it is called, You must pass it the address of a
sequence work area, €,d,! 7g5¢
seqgen (&sw)

-5eqgen returns the new sSwstid field of the sedquence, Or
endfll 1¢ there are no more statements in the seqQuence,

You may then refer to the fields in the sequence work area
for information about that statement, e,g,!

sw,swstid == stid of current item in sequence
swW,swclvl == level of current item in sequence
when you are done with a Sequenée, you must close {t by ¢alling
the procedure "closeseq" with the adddress of the seguence work
area; e,g,: 7954

closeseq(asw)

page 173

| SARC=APP 4wDEC=75 20:25 34044
ARC 34044 Rev, 5 DEC 75 , “ NLS Programmers*® Guide
part Five: Using the Sequence Generator

A typical use Of the Sequence Generator might be as follOwss 795e

% set up sequence %
%2 set up viewspecs %
$9et adress of display area descriptor; da is REFed
simple variablel
&da .. lda() ;
%get current viewspecs; vspec Is LOCAL two=word arravs
vspec .. da,davspec
vspec(1]l _ da,davspc? ;
%$turn on Content Analyzer for this sequence%
vsbec,vscapf .. TRUE ;
$openseq witn‘“proc” as Content AnalYzer filter, returns
the address of sequence work area: sw is REFed simple
variable%
&sw .. openseq(sourcestid, sourcestid, vspec, vspec{l],
da,dausqced, $proc);
ON SIGNAL ELSE closeseq(&sw) 3
% loop through sequence %
sreset control=o flags
inptrf . 0 ;
LOOP '
BEGIN
IF inptrf THEN %user typed a controle=o%
BEGIN
dismes (1, s$"User terminated process")
EXIT LOOP
END}
%increment to next statement in branch You are _
processjng whjch passed fjlter "proC"; or else exits
IF seggen(&sw) = endfil THEN EXIT LOOP 4
$call some procedure to process current stid (could as
well have been any block of code)%
process(sw,swstid) i
END;
% close sequence %
ON SIGNAL ELSE ¢
closeseq (&sw)

padge 174

SARC=APP 4-DECe75 20125 34044
NLS Programmers*’ Guide L ARC 34044 Rev, 5 DEC 7%
Part Five: Conditional Compiling

Section 8: cConditional Compiling 7

You may delimit plocks 0f code within procedures that will only pe
compjled {f a constant is TRUE or FALSE, If the code is not v
compiled, of course it will not be part of the code flle and will

not be executed, 7hi

First a constant must be defined with the SET construct (at the
beginning of the file) as either zero (FALSE) Or non=zero

(TRUE), Thia
Then, code delimited by the string: 7hib
st+tnames

where name i{s the SET constant

will only be compiled if the constant is SET to a TRUE
value,

Similarly, code delimited by the string: Thie
%"name%

will only be compiled if the constant is set to zero
(FALSE),

page 175

ARC=APP 4=DECw75 203125 34044
ARC 34044 Rev, 5 DEC 75 - NLS Programmers’ Guide

pPart Five: Conditional Compiling

For eXxample, Th2

if the following statement appears at the beginning of the
programs 7h2a

SET test=0;

then g pProcedvre in the program might include code delimited by
this construct, e,qg,: 7h2b

L10 statement ; %normal code, always compiled%

"
1,10 statement ; %normal code, always compileds%
2~tests .

L10 statement ; %this statement WILL be complleds

L] .
L10 statement ; %this statement WILL be compiled%
g=testsy
2+tests

L10 statement ; %this statement will NOT be compileds

® . .
L10 statement : %this statement will NOT be compiled%

2ttestd ‘
L10 statement ; %$normal code, always compiled%

page 176

NLS Programmers‘ Guide |
ASCII 7-bit Character Codes

Char ASCII
*A 001
B 002
C 003
"D 004
"E 00%
F 006
Bell 007
BS 010
Tab 011
LF 012
VT 013
Formpeed 014
CR 015
“N 016
*n 017
P 020
*Q 021
"R 022
s 023
b o 024
*u 025
v 026
"W 027
"X 030
*Y 031
A 032
EsC 033
Sp 040

&ARC=APP 4=DEC=75 20:25 34044
ARC 34044 Rev,

ASCII 7-BIT CHARACTER CODES

Char ASCII
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100

IR I N RN TR oF B/ e o

DIV H Ao QO ADADWN = DN

1

Char ASCII

LA R X b K B 2 2 2]

101
102
103
104
105

107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

A= AN ECCHBIOVYO ZIOCOROLOHIQEERTN TP

106

N X ESCCAIANNOQTOI I RiateT QMO TH

Char ASCII
141
142
143
144
145
146
147
150
151
152
153
154
155
156
187
160
161
162
163
164
165
166
167
170
171
172

DEL 177

5 DEC 75

page 177

S§ARC=APP 4»DEC=75 20125 34044
34044

page 178

g SARC=APP 4-DEC=75 20125 34044
ARC 34044 Rey, 5 DEC 75 NLS Programmers® Guide

(J34044) 4-DEC=75 20:253::: Title: Author(s): SRI=ARC Applications
Group /&ARCeAPP; Distribution: /NDM([INFO=ONLY]) JHB([INFO=ONLY]
) LIJM([INFO«CONLY]) JCN([INFO=ONLY)) ; SubeCollections: NIC;
Obsoletes Document(s): 33522; Clerk: NDM: Origin: < USERGUIDES,
L10»GUIDE ,NLS;431, >, 4=DEC=T75 19:50C NDM 1333

pace

1 34044 pistribution
1a N, Dean Mever, James H, pair, Laura J, Metzger, James (¢, Norton,

