
A R P A ·N£TWDRK

NIC 5 1 3 9

'NF'CAMATION CENTER

COMPUTER-AUGMENTED MANAGEMENT-SYSTEM
RESEARCH AND DEVELOPMENT;
OF AUGMENTATION FAC·ILITY

D. C. ENGELBART and

STAFF OF AUGMENTATION RESEARCH CENTER

Stanford Research Institute

Distribution of this document is unlimited. It may be released to the Clearing
house, Department of Commerce, for sale to the general public.

This research was supported by the Advanced Research Projects Agency of the
Department of Defense and was monitored by D. Stone, RADC (EMBIH), GAFB,
NY 13440 under Contract No. F30602-68-C-0286. '

When US Government drawings, specifications, or other data are used
for any purpose other than a definitely related government procure

ment operation, the government thereby incurs no responsibility nor

any obligation whatsoever; and the fact that the government may have

formulated, furnished, or in any way supplied the said drawings, speci

fications, or other data is not to be regarded, by implication or other

wise, as in any manner licensing the holder or any other person or

corporation, or conveying any rights or permission to manufacture, use,

or sell any patented invention that may in any way be related thereto.

RADC-TR-70-82
Final Report
April 1970

COMPUTER-AUGMENTED MANAGEMENT-SYSTEM
RESEARCH AND DEVELOPMENT
OF AUGMENTATION FACILITY

Contractor: Stanford Research Institute
Contract Number: F30602-68-C-0286
Effective Date of Contract: 10 April 1968
Contract Expiration Date: 10 April 1970
Amount of Contract: $1,515,222

Program Code Number: 8030

Principal Investigator:
Phone:

Project Engineer:
Phone:

Dr. D. C. Engelbart
415 326-6200 Ext 2220

D. Stone
315 330-2600

Sponsored by

ADVANCED RESEARCH PROJECTS AGENCY
ARPA Order No. 0967

Distribution of this document is unlimited. It may be released to the Clearing
house, Department of Commerce, for sale to the general public.

The views and conclusions contained in th is document are those of the authors
and should not be interpreted as necessarily representing the official policies,

either expressed or implied, of the Advanced Research Projects Agency or the
U.S. Government.

ROME AIR DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND

GRIFFISS AIR FORCE BASE, NEW YORK

ABSTRACT

This report covers two years of research in a continuing program in
the Augmentation Research Center (ARC) of the Information Sciences
~aboratory of Stanford Research Institute, supported by ARPA an~ RADC
under Contract F30602-68-C-0286.

Some of the work reported was also .upported by ARPA and NASA
unaer Contract NASl-1897.

The research reportea is aimed at the ~evelopment of on-line computer
aids for increasing tne performance Of individuals and teams enga~ed
in intellectual work, and the development of techniques for the use
of such aids, The report eovers hardware and software development,
applications in several areas relatinl to management of a community
of workers who use on-line aid. and to information management for
such a ccmmunity, participation in tne ARPA computer networK, and a
summary of plans for the continuation Of the research.

i

PHEFACE

The research described in this report represents conceptual, design,
and development work by a large number of people) the program has
been active as a coordinated team effort since 1963. The research
reported here waa a eooperative team effort involvinr tne entire ARC
staff. The fOllowing is an alphabetical listing of the current ARC
staffa

GeOffrey H. Ball, Walter L. Bass, Vernon R. Baughman, Mary G.
Caldwell, Hoberta A. Carillon, David Casseres, Mary S. ChurCh,
William s. Duvall, Douglas C. Engelbart, William K. Englisn, Ann
R. GeOffrion, Martin L. HardY, Jared M. HarriS, J. David Hooper,
Charles H. Irby, L. Stephen Leonard, John T. Melvin, N. Dean
Meyer, James C. Norton, Bruce L. ParSley, William H. Paxton, Ja~e
Ratliff, Barbara E. ROw, Martha E. Trundy, Edward K. Van de Ri~t,
John M. Yarborough.

The following former ARC staff members also contributed to the
reeearchl

Donald I. Andrews, ROler D. Bates, David A. Evans, Stepnen R.
Levine, Stephen H. Paavola, Helen H. Prince, Jane F. kulifson,
Elmer B. Shapiro, F. K. Tomlin.

PUBLICATION REVIEW

This technical report has been reviewed and is approved.

iii

TECHNICAL EVALUATION

The Augmentation Research Center (ARC) is a community of
about 28 researchers, supported by several different contracts
since 1963, in which all the research activity is aimed at
(1) exploring the possibilities for augmenting the performance
of intellectual work with the help of real-time computer aids
and (2) the experimental development of computer aids and
augmentation systems.

All the researchers within the ARC do as much of their work
as possible at display consoles (depending on console avail
ability and whether a specific task can appropriately be done
at a console). Thus they serve not only as researchers but
as the subjects for the analysis and evaluation of the augmenta
tion systems that they are developing.

Consequently, an important aspect of the augmentation work
done within the ARC is that the techniques being explored are
implemented, studied, and evaluated with the advantage of
intensive everyday usage within a coordinated working environ
ment that is compatible with the particular techniques being
studied. This strategy, called "bootstrapping," is a key con
cept in much of the ARC design philosophy.

The focus of the augmentation is on "text" manipulation,
where text is defined as strings of characters, mathematical
equations, programming statements, line drawings, columns of
figures, etc. A powerful set of commands allow instantaneous
composition, editing, copying, printing, analysis, calculation,
etc. through interaction via a TV display, binary keyset, key
board, and display pointing device.

The system is successfully used at the ARC in all phases
of daily activity including: program writin~ and debugging,
report preparation and printing, conducting meetings and demon
stration, project management, note taking, etc. At least part
of the success of the system is due to the dedication and zeal
with which the ARC personnel use and develop it.

~~''''~'-L_- _~_
DUANE L. STONE .
Technical Evaluator

v

CONTENTS

ABSTRACT •• 1
PREFACE ••• ii1
TECHNICAL EVALUATION BY SPONSOR ••••••••••••••••••••••• v
LIST OF ILLUSTRATIONS •••••••••••••••••••••••••••••••• ix

I INTRODUCTION ••••••••••••••••••••••••••••••••••••• 1
II MANAGEMENT SYST~M ••••••••••••••••••••••••••••••••• 5

A. Management-Information Operations •••••••••••••• S
1. Introduction •••••••••••••••••••••••••••••••• >
2. project Costs ••••••••••••••••••••••••••••••• >
3. Activity Planning and status ••••••••••••••• 32

B. organization StuQies ••••••••••••••••••••••••••]6
1. On-Line ComMunitY •••••••••••••••••••••••••• 3?
2. Experiments on Internal

Activity Structure ••••••••••••••••••••••••• 4l
3. Observations From stuoy

of On-Line ComMunity ••••••••••••••••••••••• ~7
C. Team AUgMentation and Dialogue Support •••••••• 50

1. Recent Efforts ••••••••••••••••••••••••••••• 50
2. Future APproaches to Team Augmentation ••••• 50

III HARDWARE SYSTEM •••••••••••••••••••••••••••••••• S?
A. Introouction •••••••••••••••••••••••••••••••••• 57
8. The Computer Facility ••••••••••••••••••••••••• 5?
C. Modifications in pro~ress ••••••••••••••••••••• 62
D. Notes on system Deli,n and ReliabilitY •••••••• 66

IV SOrTWARE SYSTEM ••••••••••••••••••••••••••••••••• 7?
A. Introduction •••••••••••••••••••••••••••••••••• ??
B. Timesharing System •••••••••••••••••••••••••••• 80
C. Compilers ••••••••••••••••••••••••••••••••••••• 82
D. Response Studies •••••••••••••••••••••••••••••• 94
E. The On-line System, NLS •••••••••••••••••••••• 109
F. ARPA Computer Network •••••••••••••••••••••••• ll9
F. NLS Utility Subsystem •••••••••••••••••••••••• 123

V rUTURE PLANS ••••••••••••••••••••••••••••••••••• 127
A. General •••••••••••••••••••••••••••••••••••••• !2?
B. Shifts in Emphasis ••••••••••••••••••••••••••• 12?
C. Transfer of Results •••••••••••••••••••••••••• 129
D. Short-Term and Long-Term Goals ••••••••••••••• 13l
E. Selected Plans Under other sponsorship ••••••• lll

GLOSSARY •• l]3
REFERENCES •• 135
BIBLIOGRAPHY •• l)7
Appendix AI USER FEATURES OF NLS AND TODAS ••••••••• 139
Appendix B: DIALOGUE SUPPORT SYSTEM (DSS) •••••••••• 157
Appendix C: REFERENCE MANUAL FOR

PERIPHERAL EQUIPMENT ••••••••••••••••••• 183
Appendix D: TECHNICAL DESCRIPTION OF

NLS/TODAS IMPLEMENTATIO~ ••••••••••••••• l99
DD Form 1473 •• 269

vii

ILLliSTRATICNS

Fig. 11-1 A. Brancn o! File HISCO t:'>

Fi«. 11-2 A Branch of File filSCO •••••••••••••••••••••••• \" ~

Fi~. 11-3 A Branch of File HISCO ••••••••••••••••••••••••• 9

riC. 11-4 A Branch of File HISCO ••••••••••••••• ~ ••• ~ ••••• 9

Fig. 11-.5 A Branch of File HISCO •••••• " ••••••••••••••••• 10

Fig. 11 .. 6 Initial View of File HISCu
Upon Entry via Link ••••••••••••••••••••••••••• 10

Fig. 11-7 A Branch of File CQSTS, ~howin~
Entries for 4 .. Weei< Accountl.ng Perioo.s ••••••••• 13

Fig. 11-8 Same &8 Fig. 11-7, but Expanded to Show
Weekly Entries •••••••••••••••••••••••••••• ~ ••• 13

Fig. lI-9 Same as Fig. II-~ but for a Different
Branch of Fl.le COSTS Showing Data for a
Different pro1ect ••••••••••••••••••••••••••••• li

Fig. 1I-10 A arancn of file CUSTS showing Combined
Data for all APC projects ••••••••••••••••••••• li

Fig. I1-1l Initial View of File COSTS
Upon Entry via Link ••••••••••••••••••••••• ~ ••• 16

Fig. 1I-12 Same as Fig. 11-11 but with IJilferent
VIEWSPECS to Show Content-Ana1yz~r
Patterns Stor~d in First ~tatement
of File ••••••••••••••••••••••••••••••••••• ; ••• 16

Fig. 11-13 View of File COSTS with Content Analyzer
in operation, Snowing Data for Only a
Single week (Thl.s is done by using tne
first pattern appearing in square brackets
in Fig. II-12.) ••••••••••••••••••••••••••••••• ld

rig. 11-14 Same as fig II-13 l but After a User Has
Inserted cumulative Totals in the ColuMns ••••• ld

Fig. 11-15 View o! a User's Fil~ Directory, ~howing
First-Level statements OnlY ••••••••••••••••••• 20

F1«. I1-16 ~ame as Fig. 11-15 but with all
Levels Displayed •••••••••••••••••••••••••••••• 20

ix

Fig. 11-17 Part of a File Containing Informa~ion
on ARC Personnel (Not all levels
are snown.) ••••••••• ' ••••••••••••••••• ' ••••••••• 21

Fig. 11-18 A View Obtained by Jumping to One of tne
Statements Shown in Fig. 11-17 and
Openlng an Additional Level ••••••••••••••••••• 21

F1«. 11-19 A Vlew Obtained bY Jumping to the Last
Statement Sh6wn ln F1g. 11-18, w1tn '
no Change in VIEWSPECs •••••••••••••••••••••••• 22

Fig. 11-20 Content-Analyzer Patterns Stored in the
Personnel-Information File (Each set of
square brackets contains one pattern~
used to search for hidaen "ta«l" in
statements ;in the file.) ••••••••••••••• ' ••••••• 22

Fig. 11-21 View Obtained by Using content Analyzer
to Select ~ntr1~s in Personnel-Information
file that Are Tagged for "Hardware" ••••••••••• 2~

F1g. 11-22 View Obtaihed by Using content Analyzer
to Select Entries in Personnel-Information
File 'that Are' Tagged for "S'oft\ti&'re 11' ••••••••••• 2 4

Fig. 11-23 Part of an On-tine Cost Estimate for Ule
in a Proposal ••••••••••••••••••••••••••••••••• 26

Fig. 11-24 Part of an on-Line Cost Estimate for Use
ina proposal ••••••••••••••••••••••• '.'.' •••••••• 26

F:i.~. 11-25 Part of an On-Line Cost Estimate for Use
in a propo~al •••••• ~ •••••••••••••••••••••••••• 27

F1I.1I-26 View of a portion of the purchase-orde
processing File, Showing Contents of
IndividualStatements •••••• ~ •••••••••••• ~ ••• ~.21

Fig. 11-27 View of a portion of the purchase-Order
Processing File, Showing oUtstanding orders
Located in a separate Sranch -- Upper Part
of Sc,reen Shows a SranchContalning
Content-An.lyzer Patterns •••••••••••• ; ••• ~ •• ~.30

Flg. II-28 A Content-Analyzer Pattern tor searching
in the Purchase-Ord.er File ••••••••••••• ,. ~ ••••• 30

Fig. 11-29 View Generated by a search on tne pa~tern
Shown in Fig. 11-28 ••••••••••••••••••••• : ••••• 31

Fig. 11-30 TaSK Milestone Chart from file UPLAN •••••••••• 35

x

Fig. 11-31 Top-Level View of file UMEET, Snowin~
Accumulation of Notes from a Series of
Meetings in a Sin~le File ••••••••••••••••••••• 3j

Fig. II-)2 V1ews of Consoles in Use
in the AHC Work Area~ ••••••••••••••••••••••••• 3j

Fig. 111-1 XUS940 Co~puter Facility •••••••••••••••••••••• Sd

Fig. I1I-2 Special ~evices Channel ••••••••••••••••••••••• 59

Fig. 111-3 Special Devices Channel with External Core •••• o4

Fi~. III-4 ~etworK Interface Construction,
Showin~ Mountin~ Systems for C1rcuit
Arrays and MUltiplex switch ••••••••••••••••••• 72

Fig. IV-l Current system: Aver.ge ana 80-~ercent
Delays for NLS Input-Feedback and
rile-Reference TasKs -- Users taually
Divided between NLS and TO~AS ••••••••••••••••• 97

Fig. IV-2 Percentage of Time Spent in Various
System Functions -- Users Equally D~vided
between NLS and T01AS ••••••••••••••••••••••••• 96

Fig. IV-) System With and Without wNL: D1stribut1on
ot Delay TiMes (in Seconds) for NLS
File-Reference Tasks -- 3 ~LS Users,
J TODAS Users, 1 OTHER User •••••••••••••••••• 100

Fig. IV-4 System W1th QNL ana New Drums: Average
and bO-percent Times for NLS Input-Fee~back
and File-Reierence TaSKS with 1 OTH£P User
and Remaining Users Evenly Divided
Between NLS and TODAS •••••••••••••••••••••••• 102

Fig. IV-5 Current System W1tn Various c~U SpeedS
Relative to current system CFU: 80-~ercent
Times for NLS File-Reference TaSKS -- Users
Equally Divided Between NLS and TODAS •••••••• 10~

Fig. IV-6 Current System With Various Core Sizes:
80-Percent Times for N1S F11e-keference
Tasks -- users Equally Divided Setween
NLS and TODAS •••••••••••••••••••••••••••••••• 10S

Fig. IV-? System With ~NL and New Drums, ~ith and
without IDS: BO-Percent Times for NLS
File-Reference TaSKS -- 1 OTHEH User,
Remainin~ Users Equally Dividea
Between NLS and TODAS •••••••••••••••••••••••• 107

xi

F~I. IV-8 s¥stem W.th QNL anO New Drums, with an~
Without IDS: SO-Percent Times tor Se~uence
of 3 Input-FeedbacK TasKs and 1
File-Reference Task -- 1 OTHER User,
Remaining Users Equally Divided
Between NLS and TO~AS •••••••••••••••••••••••• 108

Fig. IV-9 Logical organization Of NLS •••••••••••••••••• lll

xii

I INTRODUCTION

A. General

The Augmentation Research Center (ARC) is a community of about 28
researchers, supported by several ~1fferent contracts, in which
all the research activity is aime~ It (1) exploring the
possibilities for augmentlnc the performance Of intellectual work
with the help of real-time computer aids and (2) tne experimental
development of computer alds and augmentation systems.

Several different coordinated research activities nave been
developed, .ponsored bY different contracts, to pursue the various
aspects of thiS augmentation research. The aspects reporte~ here
are:

(1) The Management System ResearCh Activity. which has been
supported by RADC under this contract.

(2) The development, operatlon, and maintenance of a real-time
computer-display system, including both hardware and software
aspects and participation in the ARPA computer networK
experiment. This has been supported by ARPA and RADC under
this contract, and bY ARPA and NASA under Contract NASl-7897.
The facility i. dedicated .olely to the ARC's activities.

All the researchers within the ARC ~o as mUCh of their work as
possible at diSPlay consoles (depending on console availability
and whether a speCific task can appropriatelY be done at a
eon.ole). Thus they serve not only as researChers out as the
SUbject. for the analysis and evaluation of the augmentation
systems that they are developinl.

Consequently, an important aspect of the augmentation work done
wlthin the the ARC (for instance, ot the RADC-supported Management
Systems Research) is that the technique. being explored are
implemented, stUdied. and evaluated with the advantage of
intensive everyday usage within a coordinated working environment
that is compatible with the particular teehni~ues being studied.

This .trateIY, called "bootstrappinc," is a key concept in much of
our design philosopny.

B. On-tine Aid systems in the Augmentation Research Center

ThiS .ection very briefly describes the two ma~or augmentation
systems available to workers in the Augmentation Researcn Center.
These systems are the On-Line System (NtS) and the
Typewriter-Oriented Documentation-Aid System (rODAB).

Appendix A is a more complete description Of the user features
ot these systems; the reader WhO is not alreadY acquainted witn

1

Sec. I
INT~O~UCTION

ARO'S research will find that this ~ppendix p~OViQeB a useful
background for tne main body of tne re~ort.

In addition, APpenaix Dgives a aetailect descr1pt~on of·
NtS/TODAS implementation.

1. The on-Line System (NLS)

NtS, as currently implemented, i. e.sentiallY a hi~hlY
interactive, disPlay-oriented text-manipulation system.

NtS is intended to be used on a regular, more or ~eBS fUll-~ime
basis in a time-Sharing envi~onment, by users who are not
necessarily co~puter professionals. T~e practices and
techniques developed by users for exploiting NLS are as much a
SUbject of research interest a. the develop~ent of NLS itself.

a. structured Text

All text handled by Nt! is in "structure~·statement" form.
This special format is simply a hierarchical arrangeM~nt of
"statements," resemb11nc a conventional "out11n~" form.

A statement is simply a string of text, of any len~th;
thiS serves as tne baSic unit in the construction of the
hierarchy. Each paragraph and neadin~ in this docume~t
is an NLS statement.

b. Use of the system

The creation of new text material as content tor a file is
achieved by typing the new material on a keyooard, under any
of s~veral possible NL! commands.

The study capaOilities of NLS constitute its most powerful
and unusual features. The following is a brief, con~ense~
description of the operat1onsthat are pOlliole.

The process of moving from one point in an NLS file to
another, which corresponds to turnin« pages 1n hardcopy, is
c&lle~ "jumping." A very larce family of "jump" co~rnands
allows the user to specify. location' in the file in a number
of ways •• e.g., by speCifiCally identifying ~ statement or
bY specifying a structural relation. hip to some other
statement.

The NLS content analyzer permits automatic searching of a.
file for statements satisfying some content pattern

2

Sec. I
INTRODUCTION

specified bY the user. The pattern is written 1n a soecial
language as part of the file text.

A large repertoire of editing com~ands is provided for
moaification of the text 1n a ille.

2. The Typewriter-oriented Documentat1on-Aid SYstem (TODAS)

TODAS is a text-handling system desi~ned. a!l a "typewrlter"
counterpart to NLS. TODAS can oe oper~ted from a Teletype or
any other kind of hard-copy terminal, includin~ terninals
linked to the ARC ti~esh~ring computer facility (~n XG5 940
with special hardwar~) through acoustic couplers and ordinarv
telephone lines (as opposed to NLS, Which requires microwave
transmission to acnieve the necessary oandwidth for dlsolaYs).

3. Output Facilities

The facilities for procucing hard-copy output from NLS/T00AS
files inclUde a line printer, a paper-tape-driven typewriter,
and the Graphics-oriented Document Output System (GOD0S).

The line printer, because of its speed of operatio~, is the
routine means of producing hard COpy for use within ARC. I~
is used heavily by all NLS/TODAS researchers.

The paper-tape typewriter is used for producinK
report-quality typing, such as this report. AS it is
relativelY slOW and inconvenient, it is not normally use~
except for final output of material to be nUbl1Shed.

GODOS proQuces magnetic tape Which is then turned over to ~n
out-of-house facility Where it is run on Stromberg-Carlson
micrOfilm equipment to ~roduce frames of microfilm (or
microfiche) corresponding to pages of fUll-size hara COPY.
The adVantage of this system is tnat it can handle drawings
produced in NLS files by means of the NLS graphics
capability. GODOS is still in the experimental stag~ and
has not been U8e~ extensively,

4. This Report as an Example of NLS/TODAS Capabi14ty

The following discussion may be ta~en as a very rough
indication ot the power of NLS and TODAS as applied to a s1n,.le
specific prOblem -- namelY, the writin«, e~it1ng, and
prOduction of this report.

The above descriptions of NLS and TODAS were pro~uced bY

3

Sec. I
INTHODUCTION

modification, using NLS, of the more de~ailed descriptions in
APpendix A.

Th~ entire task of mOdification, including formatting,
insertion into the body of the report, and all other
details, required about half an hour of work by an NLS user
Who was already familiar with the contents of the
descrip~iona. It th~ job had been done hy someone who Was
not familiar with the material (but who was familiar witn
NLS) it might have taken fitteen minutes longer.

The original description ~aS written for an earlier report
and then kept available as an NLS/TODAS 'file in anticipation
of future opportunities for usin~ it.

Indeed, a considerable amount of the material in this report
was developed by modification of existing tiles, and we may
expect the new material generated tor tnisreport to con~inue
in use as a collection of NLS/TODAS files tor as long as it can
be updated to reflect current reality.

TODAS was used primarilY for the taSk of entering new
material into on-line files. ConSiderable portions of the
material were put on line bY a secretary using TODAS,
working from handwritten material and from recorded
dictation.

Finally, we may note that the writing Of thiS report, using NLS
and TOOlS throughout, was achieved under considerable time
pressure bY a team conSisting of about a dozen peOPle, all of
Whom were doinl other important worK at tne same time.

II MANAGtMENT S~STEM

our Management System Research Activity has involved three major
areas of concentration. In practice these areas overlap
considerably, so that there is an integrated research effort en m~nv
phases of management technique and theory that imoinge upon the
operation of ARC. For purposes of description, however, we discuss
each area of concentration as if it were an indeoendent effort.

The three areas are:

(1) Management-Information Ooerations -- research on tecnniques
for using management information in the ARC environment, 1ncludin~
the development of computer aidS for the storav.e and manipulation
Of such information

(2) Organization stuaies -- research on the ARC on-line com~unity
of workers and experimentation with organization structure and
Planning methods ~n the on-line community

(3) Team Augmentation anQ Dialogue support-- research on
augmenting a team or community of intellectual wor~ers bY means of
systems that support the intellectual Q1alogue Of the team.

A. Management-Information operations

1. Introauction

In accordance with our usual strategy, we h~ve pursuea our
investigation of management-~nformation operations by using NLS
and TODAS to develop and provide aids for ~anagement of tne ARC
on-line commun~ty.

There are many areas of potential applica~ion for on-line aidS;
we have chosen those Which appear to be most useful
operationally for experiments with tne developmen~ of on-line
aids.

This section gives detailed descriptions of several
aPPlications that have ~een developea, illustrated with
photograPhs of the NLS diSPlay screens to snow sequences of
information-manipulation operations. A familiarity with the
baSicS Of NLS is assumed; APpendix A is intendea to proviae tne
necessary information about NLS.

In fOllowing tne descriptions, 1t is wortn Ke~pin~ in mind that
the speed with which NLS serves its users is an important part
Of its utility, The Photographs indicate transitions that
normally take only one or two secondS. Tnis speed lenas great
power and flexibility to the relatively s1mple service
functions performed by NLS.

5

Sec. II
MANAGEMENT SYSTEM

2. project costs

The mOlt obvious area tor application of on-line ai~s ,to
management within ARC is project cost accounting. considerable
work has been done on the development ot several
cOlt-information files an~ Of techniques for their use.

a. Coat Records

The Institute'S accounting system providel ARC with rtetaileQ
COlt recordS for the various "SHI project." (i.e.,
individual contracts) being carried out in ARC.

The primary inputs to SRI's system are (1) weeKly time
car~s reporting hourly charges to various projects bY
individual statf members. an~ (2) non-labor costs char~ed
directly to projects, including actual charges to
projects and commitments (uncomplete~ orders).

For each SRI project, the accounting system computes
dollar costs based on actual salary data for each staff
member's hours charged, adds payrOll burden and overhead
amounts at current rates, combines thele costs with
non-labor totals, adds appropriate fees, and totals all
such charges each week on a cumulative basis.

Current charges are reported to ARC each week on the
project Status Report.

we need frequent and rapid access to project cost summary
data for operational use, with less reference to
lower-level details, except as the costs are first
checked for reasonableness and accuracy. Therefore we
decided to start by putting summary data on-line at ARC.
AI neede~ in the future, we can add more levels of
detail.

File RISOO

We tirst constructed a cost-history tile for 1968-1969
costs on SRI ~roject. iSU 7101 (RADC Contract
F30602-68-C-0286) and ESU 7079 (NASA Contract NAS
1-7897). This file is called HISCO.·

We decided that the elements of HISCO would include tne
fOllow1nl for each of the two projects, on the basis ot
A-week accounting periOdS (as used bY SRI's accounting
system):

6

Sec. I I
MANAGEMENT SYSTEM

(a) Salary

(b) BurClen

(c) Overhead

(d) Tota.l cost

(e) Fee

(f) Total charges.

See Figs. 11-1, II-2, and 11-3. Each of these figures
shows a dis~lay of one branch of the file, containing
the information for a specific project an~ year.

We also needed a section showing combined salary cos~s
and combined total charges for all of our projects
(see l1gs. 1I-4 and 11-5). We put these costs 1n
separate cranches of the file. The last branch shows
total costs for botn projects combined. ~e
retroactively stUdied existing records for all 1968
data and kept up tne 1969 costs every 4 weeks,
entering the new data by hand.

We ex~erimented with the ule of graPhic representations
bY entering charts in rlISCO. These Charts snowed the
cumUlative cost trends for each ~roject in a separate
branch of the file.

we established links betWeen tabular data and cnart
projections. This made it quite easy to refer to both
formats alternately.

The use of graphics in HISOO ~ave some indication of
the Usefulness Of such link1n~, but the eXisting
package ha.s limitations in the form of a few bugs and
capacity that makes its use of marginal value. Work is
currently under way to improve this capability. we
a180 need lOcal hard-COPY output to ma~e these
features Of real value.

HISCO was a testing cround for the first version of the
NLS calculator package. A. the file was updated, cost
data were entered into new statements, and the calculator
Wal used to check the coat data and to determine the
total ARC project co.ts,

7

FIGURE 11-1 A BRANCH OF FILE HISCO

FIGURE 11-2 A BRANCH OF FILE HISCO

8

FIGURE 11-3 A BRANCH OF FILE HISCO

FIGURE 11-4 A BRANCH OF FILE HISCO

9

FIGURE 11-5 A BRANCH OF FI LE HISCO

FIGURE 11-6 INITIAL VIEW OF FILE HISCO
UPON ENTRY VIA LINK

10

Sec. II
MANAGEMENT SYSTEM

Tnis employed the ADD, ~UBTKACT, MULTIPLY ~nd DIVID~
capabilities and used the four holding re~isters.

The calculator package has an 'INSERT· co~mand that
inserts tne current contents of the calculator's
accumulator into the tile text as indicatpd oy a bu~
selection. Work with HISCO indicated that a 'replace'
co~mand would be very desirable.

The usual way of accessing HISCO Was via pre-established
links from other working tiles whenever the user had a
question about recent costs. The VIEwSPECs in the link
usually caused H1SCO to be brought in witn only
high-level statements on display, snowing only tne
headings for project name, combined salary, total
charges, ana total ARC costs (see Fig. 11-6).

The user could then select the project he was
interested in (bY the command JUMP TO ITEM) open up an
additional level for viewin~, and see column head1ngs
and numerical data (Figs. 11-1, I1-2, an~ 11-3).

Tnen he could jump down through the accountin~
periOdS to the one he Was looKi~1 for.

If he WaS making a calculation (pernaps alreadY
started in the file he was working 1n before he
linked to HISCO), he could then call tne calculator
and add, SUbtract, mUltiplY or 1iviae bY any of tne
numbers in HISCO. HiS previous calCUlations While
in the crevious file would re~ain intact.

If finished ~1th HISCO, he coul~ then return to tne
previous file (bY the command JUMP TO FIL~ RETURN)
and continue with the calCUlation. having found in
HISCO the input nu~ber or numbers he was lookin~
for.

Such a sequence occurs very fast. ~xperience with
HISCO seems to prove the value of having a simple
calculator built into NLS, wnere it is instantly
aVailable when needed and can interact directly with
data 1n an NLS file.

DeSK calCUlators are available tor ~ost peoole who
need to do basic arithmetic worK, but when one is
lOOking throu~h extensive files for inputs to
calCUlations, the conventional calculator is not

11

See. II
MANAGEMENT SYSTEM

nearly as useful as ~his on-line version.

Summary: AS an arena for experimentation, HISCO prove~
very valuable. Operationally,it was useful from time to
time but revealed a nee~ for more frequent uP~ating ot
~he summary ~ata. our experience With HISCO led to the
development of a redesigned c08t~history file calle~
COSTS.

rile COSTS

This file is updated weeKly, with 4-week and cumulative
summaries.

The COSTS file is referred to fre~uentlY, because the
weekly inputs now show trends with ~onsiderable
sensitivity.

We decided that the elements most useful to us for this
year are the following:

(a) Salary costs

(b) Total personnel costs

(c) Non-labor costs

(d) Total costs

(e) Total charges with fee

(f) Balance remaining

See rigs. 11-7, II-~, and 11-9. Figures 11-7 and II-~
show ~he same branch of the file with different
VI!WSPECsJ Fig. I1-8 di8playa one more level than Fig.
11-7, and this level shows ~ne weekly data. Fi~ure
11-9 ShOWS the weekly data for another project.

We also decided to 1ncludefunding information Showing
current totalS, unfun~ed totals, and total contract
amounts in the categories cost, fee, and total.

we use separate oranches for each project and for total
ARC project costs (Fig. 11-10). The skeleton format for
the file was set up in advance for the entire year of
1970.

12

FIGURE 11-7 A BRANCH OF FI LE COSTS, SHOWING
ENTRIES FOR 4-WEEK ACCOUNTING PERIODS

FIGURE 11-8 SAME AS FIGURE 11-7, BUT EXPANDED
TO SHOW WEEKLY ENTRIES

13

FIGURE 11-9 SAME AS FIGURE 11-8, BUT FOR A
DIFFERENT BRANCH OF FILE COSTS
SHOWING DATA FOR A DIFFERENT
PROJECT

FIGURE 11-10 A BRANCH OF FILE COSTS SHOWING
COMBINED DATA FOR ALL ARC PROJECTS

14

Sec. II
MANAGEMENT SYSTEM

Our approach was to create a separate statement for
eaeh week, one level below the "total" statements for
each 4-week period. For the secon~ week of 1970
(which is in the first accounting oeriod) the
statement starts with a 2-1 and then, procee~ing
across the line, shOWS the amounts listed above in s1X
columns (Figs. 11-8 and II-~).

Before entering any actual data, the first top-level
branch (containin~ some 70 statements) was copied
within the file at the same level four or five times.
Then each blank branch simply had the project name
headings inserted for the project using that branch.
We keep one extra blank forMat branch aVailable in
case any new projects should arrive.

Like HISOO, COSTS is usually reached through a link from
some other working file, perhaps While a stUdy of
near-future costs is in progress, or from an ongoing
proposal cost estimate. Alain the file is usually
entered with only the top-level statements or proj~ct
headings showing (lee Fig. I1~11).

If a particular project 18 of interest, that branch is
selected and another level opened for view. The
second level shOWS period-by-period SUbtotals in each
cost catecory (Fig. 11-7). If weekly data are
desired, another level is opened bY changing the
VI~WSPECs (Fig. 1I-8) and a particular week is
selected bY the command JUMP TO ITEM.

The statement for each week has the week ending
date as its name. The reason for tnis is not only
so that the statement tor a particular week can be
accessed by the JUMP TO NAME commanj using the
ending date, but also so that the date may
optionally be suppressed from the display. NLS has
the capability of suppressing all statement names
from the displaY.

The normal way of looking at the file is with
names suppressed; thus the dates do not clutter
the display; however, a user WhO needs to know
the ending date for a particular week can see it
bY executing a single command.

TO access the information for another project within
COSTS, one executes JUMP TO KETURN twice to see the

15

FIGURE II-ll INITIAL VIEW OF FILE COSTS
UPON ENTRY VIA LINK

FIGURE II-12 SAME AS FIGURE II-11 BUT WITH
DIFFERENT VIEWSPECs TO SHOW CONTENT
ANALYZER PATTERNS STORED IN FIRST
STATEMENT OF FILE

16

Sec. II
MANAGEMENT SYSTEM

top-level statements again (Fig. II-ll).

one can move very quiCklY and accurately through a file
that 1s Bet up in this fashion, even without any
familiarity with the information it contains.

The primary function of COSTS is to shOW a consistent
week-by-week progression of costs for each project bY
category. The file can alao be use~ for study purposes,
through the use of content-analyzer patterns, som~ of
Which are stored in the header statement (see Fig. II-12,
wnich is the same as Fig. lI-ll but with different
VIEWSPECs). Any other patterns can be created as needed.

This allows a user to extract special categories of
information from the file very quiCKlY. For example,
a user may. easily create a display showinc all project
costs for the eighth week of 1970, for each ARC
project. It is also possible to output SUCh a
"filtered" display via a line printer, thUS obtaining
hard copy of a special-purpose extract from the total
file.

The content analyzer is helpfUl when using the calculator
on all the data for one week, project by project, to fina
total ARO charges by category.

When only one week's data are disPlayedJ one can add
items down each column ana insert the answer in the
"ARC total" space. one can tnen clear the
accumUlator, ana ada down the next column. Tnis is
done very rapidly through bug selection of input
numbers and keyset entry of command. -. ADD, ADD, ADD,
ADD, INSERT, CLEAR, ADD, ADD, ADD, ADD, INSERT, CLEAR,
and so forth.

Figure. 11-13 and 11-14 are before/after Chotos of
this process.

The COSTS file is now operationally useful to us, and we
expect it to be usefUl for future experimen~a~ion with
automatic processing ~echniques.

,b. Estimates

proposalS

Another use of the system is in creating prOPosal cost

17

FIGURE II-13 VIEW OF FILE COSTS WITH CONTENT
ANALYZER IN OPERATION, SHOWING DATA
FOR ONLY A SINGLE WEEK. This is done by
using the first pattern appearing in square
brackets in FIGURE 11-12.

FIGURE 11-14 SAME AS FIGURE II-13, BUT AFTER A
USER HAS INSERTED CUMULATIVE TOTALS
I N THE COLUMNS

18

Sec. II
MANAGEME~T SYSTEM

estimate.. ~e first estimate the amount of effort
required for the proposed work. To estimate the cost of
this effort, We make reference to various on-line files.
The estimating process typically proceeds along the
fOllowing line ••

Personnel Costs

The estimator loadS a special file, maintained by
himself, Which is a directory to all of his other
files and perhaps to a few files belongin~ to other
people. Figures 11-15 and 11-16 are two displays of a
user's file directory. In FiR. II-1S, only
first-level statements are Shown; these are used for
estaolishing cate,ories. In Fi~. 11-16, another level
1. Shown, containing the actual directory listings in
each category.

This "file directory" contains links to each of tne
files that it list.. In the present case the files
probaoly would be cost histories, personnel
listings, previous special studies of costs, and
other administrative information.

He loadS a previous cost estimate, makes a workin~
COgy Of it, changes the heading to reflect the name of
the new proposal estimate, and eliminates the amounts
from the old estimate. . .

This produces a blank cost estimate format. If any
items from the old e.timate are inappropriate, they
are easily deleted; new items are eas1ly added as
separate statements. When the format is ready, it
is output as a new file.

He can tnen load a file that lists names Of people in
the group and some prOjection Of expected additions.
Figures II-l7, 11-18, and I1-19 ShoW portions of SUCh
a file.

Using tnis personnel~lis~ing file. he Obtains
information about labor categories. A branch
containing content-analyzer pa~terns is kept in the
file. These can be easily reached by jumpin, to a
link which causes all tne patterns to be diSPlayed
(Fig. 11-20).

Each pattern will select some particular

19

FIGURE 11-15 VIEW OF A USER'S FILE DIRECTORY,
SHOWING FIRST-LEVEL STATEMENTS ONLY

FIGURE 11-16 SAME AS FIGURE 11-15, BUT WITH ALL
LEVELS DISPLAYED

20

FIGURE 11-17 PART OF A FILE CONTAINING INFORMATION
ON ARC PERSONNEL. Not all levels are shown.

FIGURE 11-18 A VIEW OBTAINED BY JUMPING TO ONE OF
THE STATEMENTS SHOWN IN FIGURE 11-17
AND OPENING AN ADDITIONAL LEVEL

21

FIGURE 11-19 A VIEW OBTAINED BY JUMPING TO THE LAST
STATEMENT SHOWN IN FIGURE 11-18, WITH
NO CHANGE IN VIEWSPECs

FIGURE 11-20 CONTENT-ANALYZER PATTERNS STORED IN
THE PERSONNEL-INFORMATION FILE. Each
set of square brackets contains one pattern, used
to search for hidden "tags" in statements in the
file.

22

See. II
MANAGEMENT SYSTEM

category of statements from the£ile. for
example, the estimator will need to know which
peOPle have the status of Senior Professional.

He selects the appropriate pattern with the
command EXEOUTE CONTENT ANALYZER, and then
jumps on a link Which turns on the content
analyzer, starting the search at the
OeCinning Of tne branch containing personnel
listin~s and restricting the search to that
branch.

This produces a display snowing only the
listing of senior prOfessionals in ~he group.
This set of statements can then be
transferred to tne new proposal cost estimate
file.

other patterns can be used to extract sets of
statementa according to otner criteria -- for
example, all the hardware or software people
in the group (Figs. 11-21 and 1I-22).

ThUS the estimator can select, by labor category,
representative people Who may be involved with the
proposal; as he selects them, he ean tranSfer their
names and the information that goes with them to the
file Where he is bUilding up his estimate.

At present we do not keep individual salary
information on line, although we could dO this if
we added some security measures. Calculations for
the average salary eategory,based on the specific
people contemPlated, are made Off-line at present.

These average salary amounts are inserted into the
on-line eost estimate, The calculator is used to
multiply numbers of man-monthS times average
Salaries per month to determine total salary costs
per labor category and overall direct labor totals.
All Of this is achieved within tne actual file that
will cecome the finiShed estimate.

The payroll bur~en anO overhead rates are checked for
currencY and inserted into the estimate, using the
calCUlator to applY them to the direct labor. At thiS
point the labor portion of the estimate is complete~.

FIGURE 11-21 VIEW OBTAINED BY USING CONTENT
ANALYZER TO SELECT ENTRIES IN
PERSONNEL-INFORMATION FILE THAT
ARE TAGGED FOR "HARDWARE"

FIGURE 11-22 VIEW OBTAINED BY USING CONTENT
ANALYZER TO SELECT ENTRIES IN
PERSONNEL-INFORMATION FILE THAT
ARE TAGGED FOR "SOFTWARE"

24

Sec. II
MANAGEMENT SYSTEM

Non-Labor Coats

A typical estimate will involve some travel costs,
some consultant costs, and some report costs. Data
supporting the cost of conSUltants may be checked ~Y
reviewing current con.ultants' costs by project and bY
consultant. These are kept in a separate file and
reached through a lin~ tor review. The data may be
COPied into the estimate if some of the information is
of use.

Reoort production costs are estimated using current
Institute schedules, Which are based primarily on the
n~mber of pages expectea in the end product. These
computations can be made usln~ the calCUlator, and the
existing cost factors from tne last proposal, checked
for current applicability.

In addition, there maY oe plans to add equipment in
the proposal. In tnis case, the estimator will use an
equipment stUdY written in another file bY the people
involved in haraware design.

The equipment cost. contained in the special study
are summarized in total and reached by a link. Tne
special stUdy can be viewed and update~ as
appropriate and can oe copied to ~o with the
propOsal as an appendix or used later for back uP.

In this fashion, Various information is gathered from
various files and transferred into the deVeloping cost
estimate. ri~ures 1I-23, II-24, and II-25 show
various portions of a completed on-line cost estimate
as actually used for a recent ARC proposal.

Work1ng Forecasts

Operational Use Of Estimates

AS the project progresses, proposal. and estiMates can
also be used as guides tor management of the project.
It is useful to forecast tne expected project costs on
either a four-week periOd or monthlY basil.

This can be done by creatinr a new file using the type
of format that the COSTS file uses. We insert total
figures from the cost estimate, using the calculator
to determine ~verage rates and specific estimated

25

FIGURE 11-23 PART OF AN ON-LINE COST ESTIMATE
FOR USE IN A PROPOSAL

FIGURE 11-24 PART OF AN ON-LINE COST ESTIMATE FOR
USE IN A PROPOSAL

26

FIGURE 11-25 PART OF AN ON-LINE COST ESTIMATE FOR
USE IN A PROPOSAL

FIGURE II-26 VIEW OF A PORTION OF THE PURCHASE
ORDER PROCESSING FILE, SHOWING
CONTENTS OF INDIVIDUAL STATEMENTS

27

Sec. II
MANAGEMENT S¥STEM

amounts, an~ insert answers into the file as it
buil~e. This month-by-month estimate can be reached
throulh a link from working cost files, from the
orilinal estimate, or any other file where the
Quest10n of monthlY estimated project costs may arise.

c. Purchase·or~er processing

in making an estimate of coste for new e~uipment being
con.tructe~ at ARC, reference to previous cost information
is very useful. We have constructed a
purchase.or~er/reQui'ition processing file which contains a
separate s~atement for each item purchased for the past two
years at ARC. Filure 11-26 shows a portion of this file.

Each statement contains the fOllowing information about
each purenasea

(1) Total price

This is entered as ~he .tatement name.

At present thi~ is not u.e~ a. an NLS name, but as a
way of e11minatinl information from the screen at
will, keeping a cone1sten~ location in columnar form
for such totals.

(2) Description of item

() Vendor

(4) Number of unit. purchased and priee per unit

(5) Purchase ReQuisition number

(6) Date requisition ~ent

(7) Purchase OrOer number When or~er il placed

(8) Date order is placed

(9) project or account cnarged

(10) Date order is received

(11) ~hen ~he order is completed, it i. marke~ with the
special co~e *comp*. ThiS can be detected bY a
content-analyzer pattern.

28

See. II
MANAGEMENT SYSTEM

All out.tan~ing orders are contained at a second level under
a .inlle branch (.ee F11. II-~7)J therefore the distinction
betWeen out.tanding and comPleted orders is easy to see just
bY reference to level. To reduce clerical error, we
con.ider an order completed when the *com~* pattern is
inserted and the statement i. moved to its alphaoetical
position on the top level.

This file can be searchedusinc the content analyzer in some
interesting way.. we can aSK for all items purChased from a
part1cular vendor on any ~a~ticu1ar project and see only
those. If we wonder about the unit price of a thermal wire
stripper, mOdel 2W-l, we can quiCklY get that information.
If we wonder What we purchased on PR A08Q27,tnat comes
simply by executing a content analyzer pattern specifying
the number. We can see all outstanding orders charged to a
particular project quiCkly. Figure 11-28 snows a
content-analyzer ~attern that has been temporarily written
into the file, for finding any entries pertaining to orders
for relays under Project 7101. Figure 11-29 shOws a view
generated by us1nr this pattern.

Thi. file is u.eful, then, from a project-administration
standpOint, from the standpoint of fOllOWing a purchase
reQuilition from the order stage throulh comPletion, and
also for providing backup information for cost estimates.

ThiS file can allo be used as a tiCKler file by inserting
a pattern in the "Outstanding requisitions" branch which
ahow. the date We feel we Should follow up on the order.
Each daY one can ask for all tho.e items that have the
current Qate a. a follow-up date.

This file i. kept up-to-date by tbe secretary of the
haraware croup. who 1. mo.t involve~ with requisitioning.
She does this updating entirely with TODAS.

~. Summary on the systematic a.e of project Cost Files

one bY one each of these file. miint be interesting. As a
com~1nation, quickly available to many u.ers, their utility
.eem. remarkable.

Aeost stUdy, as dl.cusse~ above, can rely on all
previous project costs a. recorded in the .ystem and can
draw on those files for inputs. One can draw on the
personnel roster file by labor category, work interest or
a. extended into a skills inventory.

29

FIGURE 11-27 VIEW OF A PORTION OF THE PURCHASE
ORDER PROCESSING FI LEt SHOWING
OUTSTANDING ORDERS LOCATED IN A
SEPARATE BRANCH-UPPER PART OF
SCREEN SHOWS A BRANCH CONTAINING
CONTENT~ANALYZER PATTERNS

FIGURE 11-28 A CONTENT-ANALYZER PATTERN FOR
SEARCHING IN THE PURCHASE-ORDER
FILE

30

FIGURE 11-29 VI EW GENERATED BY A SEARCH ON THE
PATTERN SHOWN IN FIGURE 11-28

31

Sec. II
MANAGEMENT SYSTEM

We can browse through the purcna.e-or~er file, reflectin~
tne current or previous COlts per item. we can link to
activity-planning files to see Which people are involved
with various ongoing tasks and to see on wnat tasks we
are contemplating certain equipment purchases. ~e can
link to proposal cost estimates for rnonth-by-month cost
projeet1ons.

These files can be accesse~ in any order, from any
direction, at any ~t1me, w1th only a few keystrokes bY the
user. They are also ~ccessible remotelY thrOUgh the Use of
TODAS, therebY giving mObility to the User with less lo~1 on
the system.

our main objective in making cost stu~ies is to arrive at
solid sets Of projections or other answers as qUiCKly and
effectively as possible. Direct on-line access to input
information is extremely helpful.

). Activity Planning and status

a. Introduction

section II-B-2 describes the experimental es~abl1shment of a
TODAS Development Activity and discusses its method of
operation. One facet of TODAS work is the extensive
experimental use of on-line files as aids in conducting
meetings and formulating Plan.. This section gives SOme
details on the construction and use of these files.

b. Pl&nning and Status Files for TODAS DeveloDment Activity

rile UPLAN

The planning file for the TODAS Develo~ment activity
contains a branch with comments on how to use the file, a
branCh for content-analyzer patterns, and a branch
containing actual taSk plans.

The task-planning branch has, as substatements, task
categories which inclUde documentation Plans, teaching
plans, desiln plans, META plans, and inactive task
plans. The levelS under these catecories contain
separate task plans, such as "TODAS REFERENCE GUIDE
DEVELOPMENT," "USER ~XPERIM~HTS RELATED TO TODAS," and
"TEXT MANIPULATION SYSTEMS BIBLIOGRAPHt."

Each task branch contains comments bY the taSk

32

Sec. II
MANAGEMENT SYSTEM

lea~er on the fOllowing:

(1) Description of the tasK, with linKs to other
workin~ files used in its development

(2) Comments on tne relationShip Of the tasK to
other ARC tasKs

(3) Estimates Of peoPle involved (~ith levels
of effort and timing)

(4) status comments

UPLAN is linKed to from anotner file called UMEET
(described below), which i8 used for on-line note-taking
~uring meetin~s of the TODAS group. Portions of UPLAN
can be temporarily copied into UMEET for use during
meetings.

VPLAN contains a blank tasK iormRt ~n a separate branch.
Whenever a new ~as~ is added, tnis oranch is copiea into
the appropriate Planning area (SUch as documentation
plans). Then the name Of the task is inserted as a
hea~inl alone with the'initials Of the task lea~er.

Certain items in thiS file are useful in content-analysis
searches. The most useful are the initials of oeople
involved in tasks, the milestones, the estimates, and tne
status. TO make content-analysis Searches more
conSistent, asterisks are Placed oefore such items.

with an appropriate pattern, one c~n tnen as~ a
question such as "~hat is the inVolvement of a
particular ~erson in this activity?" taSk bY taSK.
All oranches with estimates containin~ the specified
initialS and an asteriSK will then be Shown. The same
brancnes shOW expectea levels of effort.

Since this is tne onlY information ~isplayed on the
screen, it is relatively easy to see potential
conflicts in the allocation of a person's time between
tasks for this activity or to maKe a hard copy Of this
displayed information on the line nrinter.

The content analyzer can also return statements
commenting on the status of taSkS, so that a quic~ survey
of all such comments can be made. This is particularly
uaeful for coordination of several tasks and for

33

Sec. II
MANAGEMENT SYSTEM

preparinc for ~eetin,s ot the group.

When many people try to update the same file, serious
oroblems are created. This is a well-known situation
(discussed turther in Appendix B). It two people are
both workinc on the file, one person's work may oe
lost when someone else Who has been usin« the file
writes his copy baCK out on tne disc. Therefore we
tried to introduce a convention where peo~le place a
signal of some sort in the file When it i8 in UBe.

This procedure was no~ well used, ~robablY because
people were generally in too much of a hurry.
Therefore, some work was lost. We found that it was
easier, with the presen~ file-handling li~1tations, to
have research a5sis~ant8 dO the updatinl on the file,
gathering information from various people as needed.

Part of tne description tor a task involves the
specitication ot s1~nificant milestones~ if possible.
The task leader has to have some idea ~f important
milestones during the progress of the worK and must
Cevelop lome teeling for whether these milestones are
occurrinl within the resources expected to be allocated
to the task.

we tried an on-line task-planning cnart, showin~
lO-week periods where milestones could oe marked for
each task. Milestones were indicated oy showing an
NtS name for each milestone statement (see F1g.
II~30). Therefore, viewing this task-planning chart
on a displaY, we COUld "JUMP TO NAME", selectinl one
Of the milestone pOints on the Chart, and a
description Of the milestone and its relationShip to
the taSK would then be displayed. A "JUMP TO RETURN"
brought back the planning chart.

ThiS shows some promise of being useful in the
future, but some retinements in display techniques
an~ milestone selec~ion are necessary before it can
become operational.

Ano~her use of the content analyzer is to search for
entries made "since or before" a certain date, or tor
entries made bY certain peOPle. This makes it easy to
see who has been UPdating the file recently, and wha~
they have done to it.

34

FIGURE II-3~ TASK MILESTONE CHART FROM
FILE UPLAN

FIGURE II-31 TOP-LEVEL VIEW OF FILE UMEET,
SHOWING ACCUMULATION OF NOTES
FROM A SERIES OF MEETINGS IN A
SINGLE FI LE

35

Sec. II
MANAGEMENT SYSTEM

This is of less im~ortance for a person who is
uPdat1ng his own file, for he prObably remeMbers
the k1n~s of things he has chan~e~. When many
people work on tne same file, it is nelpful to know
WhO has been changing it an~ in what areas they
have been working.

File UMEET

We created a separate file called UM~ET for plans and
notes from the TODAS activity me~tincs.

This file is similar to the UPLAN file in forAat.
On-line note-taking bY a research assistant, as
practiced in the user system and software groups, has
proven quite useful for recordin~ important parts of
discussions durinc meetings. The on-l~ne note taker
has not been a distracting 1nfluence in meetin~8; in
fact,she has contr1cuted at times. Sh~ is aVailable
for findinl information in th~ file and for recording
special ideas -in other files upon request during the
meetings.

Meetings are conducted with har~-cOpy a~enda
distributed before each meeting. The on-line
~otetaker h~S an on~line version ot' the, same agenda in
front Of her. As tne discussion proceedS, she makes
her notes right in the on-line agenda.

Items left for discussion in following meetings, or
as speCial questions to De resolved before the next
rneetinl, can be marked by the note-taker and
retrieVed from the file for later studY.

When the meeting is completed, the notes are condensed
to a meaningfUl summary, distributed to the
participants, and diSPlayed on a bulletin board. In
other words, the agenda for & partiCUlar meetinl is
developed, during tne meeting. into minutes of the
meeting. A copy Of the unaltere~ alen~a 1s also kept.

successive meetin~ agenda and minutes are kept in one
tile (see rig. 1I-31). This ~ermits us:to searCh tor
discussions of various topiCS and to receive answers
in chronololical order.

36

Sec. II
MANAGEMENT SYSTEM

B. organization studies

our organizational studies have centerea on two topics. The first
Of these is the study of the "On-Line Community" -- our own ARC
croup seen as a unique example of a small, close community of
workers who make intensiVe use of on-line computer aidS 1n their
daily work.

The second area of concentration has been the implementation of
two experiments on organization structure and planning methOdS in
such a community.

1. On-Line Community

our studY of the On-Line ComMunity is descrioed hpre 1~ ter~s
Of the total working environment of the ~roup and tne
~tructuring of staff roles witnin the ~roup.

a. ~nvironment

we consider the total worKing environment, for purposes of
this studY. to consist of the physical environment and th~
"user environment." The latter is a general term inten~ed
to indicate the existence, availability, and performance of
the numerous on-line aidS used bY the group.

Physical Environment

We have changed the baSic work room or labor~tory
configuration from iSOlated one-man offices and a remote
Shop and computer/work room to one-man offices openin~
directly onto an open, courtyard-liKe worK area. ~e still
use a remote shop and computer room due to build1ng
layout restrictions. The ~onsoles were moved out of the
offices into this central Working area. We have put in
separate lighting cirCUits so we can turn Of! lights in
~i!ferent Parts Of the roon, re~ucin~ reflections on the
~iBpl&Ys. within the wor~ area. the consoles can easily
be regrouped to permit users to work cooperatively.

one effect of this WaS to change the personal
interaction pattern aranatically, simplY by incr~as1ng
the a~ount of interaction.

A second effect was to permlt much more effective
utiliZation of the display fa~ilitYJ tne facility is
much more "available" than it otherwise would have
been.

37

See. II
MANAGEMENT SYSTEM

within the «eneral work area, the consoles (Which are
ot le~eral Oifterent designs offer1n~ different
advantales) are set u~ in varying configurations, with
Oiffering arrangement I tor lilnting, seating,
proximity to other consoles, etc. In general, the
ln~iv~dUal conf1~urat1ons can be quickly ~nd flexibly
altered as various need. arise. As a result, an
individual who is aoout to start a workin, session at
a con.ole hal a considerable choice of ate
conditions. Figure I1-)2 Shows four views of consoles
in the work area, in actual ule for various mode~ of
work.

A further modification to the physical environment was
the addition of light movable partitions, for visual
privacy. These are low enou,h so that a person, when
Sitting, does not see other people working but can, by
standing or moving his chair two or three feet, contact 4
or S other people working at consoles. Most people
apparently prefer to partition off only the front of
their work stations. Partitions are rarely moved into
pOSitions completelY surrounding the work stations. When
seclusion is wanted, people tend to work in the Herman
Miller experimental Office, which is isolated from the
ceneral worK area by high partitions.

The ~erman Miller office has also become the place
where the system is demonstrated to visitors.
visitors haVe the feeling that they are inside the
working environment, and no one else is bothered bY
the visitors' presence.

we have adopted the practice of holding some types Of
meetings in the Herman Miller area around one or two
displays, with a research assistant taking on-line notes.

we have found that diSPlay viewing is difficult, and
multiple-participant access to the system ineffective,
with meetings of more than ~hree or four people.

on the basis of our experiences with such meetings, we
are now redesigning the conference facility (see Sec.
1I-0-2-d).

we have found that it is highly ~esirable to make use of
the system both nilht an~ day. Nilht access to our work
area is inconvenienced to lome extent bY ~he existing
.ecurity measures, particularlY When we wisn ~o work with

38

FIGURE 11-32 VIEWS OF CONSOLES IN USE IN THE ARC WORK AREA

39

Sec. I I
MANAGEMENT SYSTEM

non-SRI personnel, SUCh as consultants. A much more open
an~ accessible working env.ronment WOUld be greatl~
preterrec1.

We see creatpractical utility in having & maximallY
flexible physical environment; Each time we have
increased theflexibilit~ of the environment, work
interaction has increased w1thou~ An~ damaging
increase in social interaction.

User Environment

During these two years we have provided a useful, thougn
still evolving, on-line text editing and file
manipulation system, NLS. This system provides new tools
for personal anc1 group use. Appendix A descr1bes NLS in
considerable detail from a user's pOint of view.
Appendix D is a technical descriPtion of ~LS.

We have also developed the Typewriter-oriented
Documentation-Aid SYstem, TODAS (see APpen~ix A). This
provides some of the same teatures as NLS out can be usea
remotelY bY peoPle not physically in the facility. TODAS
will proc1uce considerablY less load on the timesharing
sy.tem than NLB. we have experi~ented with remote use of
TODAS Using portable typewriter terminals with ~coustic
couplers. The resulting mObility, -with direct access to
all of our files, shows interesting n08sibilities for
team collaboration, together or Physieally remote.

with the intrOduction of TODAS, we have provided more
opportunity for peOPle to interact with the ARC files
from their offices, although lome of the processes are
slower. There has not yet ~een widespread use of
TODAS~ but thi~ will change with improvement in
service caeacity of the system and addition ot new
features to TODAB. Availability of several
lO-character/second typewriter terminals will also
greatlY increase the value of TODAS.

b. Staff Functions and Activities Within ARO

Activities we have identified as basic inclUde the
fOllowing,

(1) Hardware

(2) Software

11.0

Sec. II
MANAGEMENT SYSTEM

(3) Management system Research

(4) User Syste~ Research

(5) ARPA Network Part1cipation

(6) Operational Management of ARC.

Staff functions for each activity involve the
specification, design, implementation, ~ocument&tion,
evaluation, and maintenance process as new system
features are added.

AS we hire hardware and software people, research
assistants, and secretaries, our policy has been tnat a
person's capab~lit1es must go beyond any narrow
specialization. A highly skilled systems programmer Must
have additional background before he can ce used effectively
1n this ~roup.

We need people Who are capable of both long- and snort
range planning, participating in goal and sUb~oal settin~,
and contributing to the the aesign, implementation, anj
other processes.

For most ARC work it is important that people be primarily
oriented tOWard deSigning and buildin~ tasks and less toward
contemplative and reflective ones. However, since cur worK
mixes both research and development modes we must oe
capable of acting in either capacity at different sta~es in
the implementation of any ~1ven task. It is also a
requlrement that ~eople have the ability to focus on
different levels of the endeavor, alternating moaes
frequently as the needs arise.

2. Experiments on Internal Activlty structure

We conducted two experiments on the use of augmented methodS
for p1annin~ work. These ~xper1Ments were conducted with a
neWly established group, the TOVAS development group, and with
a well-established, fairlY tignt-knit ~roup, tne software
group,

41

See. II
MANAGEMENT SYSTEM

a. TODAS Development Activity Planning

A part of ARC user system research involves the
specification, design, implementation, teaching, use, and
evaluation of new features being added to TODAS as related
to anticipated ARO and ARPA NetworK needs.

The TODA! planning experimen~ was initiated along these
linesl

We first developed a strategy for use as the group forMed
and for encoura~ing it to make further plans directed
toward ARC and TODAS-related goals. The stees considered
necessary for the ~roup were:

(1) Identify both internally and externally lenerated
goals

(2) Agree on structure and mOde of operation of the
TODAS group, with tne following feature$:

(a) A group representive reporting to the ARC
Manager and to external activities

(b) A team approach to talKS and planning, with
one leader for each tasK

(c) Investigation of decision techniques.

() Plan tasks for the group ana for ~he indiviuals
1n the group (inclUding tasks already in progress,
Where apPlicable). we were to do this according to
the following outline:

(a) Build an easily visible collection of task
alternatives, to be modif1ed as appropriate after
analysis and review.

(0) Identify and use the .kill. in the group,
securing other needed skills if not available in
the group.

(c) iltimate participants' level of effort and the
timing inVOlved, assessing the net effect of the
combined Plans.

(4) Meet periOdicallY to review progress, usually
every two weeks,

Sec. II
MANAGEMENT SYSTEM

Meetings were intended to be o~en to interested
staff of ARC, with use of an arree~ upon format.

special ~iscussion meetings (and other forms of
communication) for "help" when special problem
situations arose were also anticipated.

(5) Maintain a TODAS "1nforma~ion ~enter« on-line ana
off-line. The basic files were the following:

(a) File FD: File D~rectory for TODAS-oriented
linKs. This file also contains links to TODAS
group participants' personal 1ile directories and
links to the ~ollowing files:

(b) File UMEET: Meeting plans and notes

(c) File UPLAN: Task plans and status notes

(6) Communicate status of TODAS work to tne ARC
Manager and the ARC staff.

Havin~ determined this strategy, appropriate initi~l
participants were contacted and the lroup was
establisned.

The group started having meet~ngs and developed a meetin~
strategy that contained tne following elements:

(1) A "facilitator," Whose role incl~des the followin,:

(a) preparation of tne meeting plan, with inputs from
the rest of the group

(b) Guidance during the meetin~ to ensure that all
important items are discussed

(c) prOViding an orderly way tor new or unexpected
items to be discusse~ as appropriate, or deferred.

This role was rotated among the members nip of the
group from meeting to meeting, d~pending on the
expected agenda SUbJects.

(2) A »process Watcher," Whose role involves attention
to processes in operation during the ~eeting. This
includes verbal and nonverbal interactions between
people, decision proeesses, etc.

43

See~ II
MANAGEMENT SYSTtM

T~is was done to live the p.rticipants added insight
about less obvious features of the meeting.

This role was rotated amonl the membership of the
gr~up from meeting to meeting. depending on the
expected agen~a SUbjects.

(3) An on-line note taker, whose role includes the
following:

(a) Distribution Of the meeting plan and preparation
of the meeting notes outline before the meeting

(b) Careful recording of important discussions and
points made during the meetin~

(c) ~etrieval of needed information from on-line
files during the meeting

(d) summarizing the meeting notes and distr1cuting
them after the meeting

The role Of the on-line note-taker was ~illed by two
research assistants on an alternating basiS. This
provided flexibility and ensured that an experienced
note-taker was available for each meeting.
Information gained at these meeting was 'valuable to
the note-takers in their other day-to-day work.

(4) Reiular participants

(5) Invited specialists

(6) A meeting Plan and agenaa

(7) Relevant documents produced on-line by any member

Distribution of documents was arranged before each
meeting. Documents inclUded descrigtions of design
changes in TODAS, draft. of teaching documents. etc.

(8) TentatiVe Plan for ~he follOWing meetin~

(9) An evaluation of the utility of the meeting.

44

Sec. II
MANAGEMENT SYSTEM

Notes from meetin~! were kept on an evolutionary basis as
separate branches in one file, UMEET, an~ also in har~
copy tor distribution to all members ~nd to a bulletin
board.

Planning

We ma~e an easily access1ble list1n~ of tasKS in pro~r~ss
an~ un~er consideration, in a se~arate file called UPLAN
(described above in sec. II-A-3-o), wh1Ch can be ~odifie1
bY individUal ta~k leaders or by research assistants.

This file helpea increase tne extent to whicn meetings
were used to evaluate and redesign taSKS, instead of
to report inforMation that would not be changed bY
~roup interaction.

It facilitated tne exchange of reportorial
information outside tne meetings, when indivi1uals
could give their full attention to the file.

It was also availaole during meetings for
reference or modifica~ion.

Another use of the file WaS to communicatp information
to people not directlY involved in the activity, i.e.,
the AHC Manager and others 1n AHC.

Most of the planning dealt with scheduling .no patterns
for necessary interaction between taSKS aud taSK leaders.

The Short-term goals appeared firm enough that we chose
not to divert our resources to longer-term goals While
this activity was starting.

Interaction

Since this group inclUded peOPle Who were involved with
other ARO activities such as software, tne Network
Information Center, and Management science Research
(MSR), it eXPlore~ some interaction between activities.

It also provided an opportunit~ for the activity members
to be involved in a smaller group tnan the ARC as a
Whole. This changed tne group dynamics cons1derahly.

The process Of identifying internallY generated goalS
stimulated exploration of personal needS of the members

4S

Sec. II.
MANAGEMENT SYSTEM

of the croup to increase soli~arity, mutual likin~,
understan~in&, respect, and the desire to cooperate.

Although locial interaction initiated at earlY
meetings was beneficial in developing a cohesive
working croup, progrels evaluation at various times
in~icated that it could then be more effectively
continued outside of group meetin~s to allow more
focus on the primar¥ group talKS related to TODAS.

b. SoftWare Activity Planning

The software activity is airected toward the deSign and
implementation of new systeM software features.

strategy

Tnis was the second experiment, fOllowing the initial
results Of tne TODAS experiment ~escribed above. In the
two years of the contract, the software group has
progressively beco~e more integrated into the total ARC
functioning and hal double~ in size. one reSUlt i8 that
more tasks that ~epen~ upon eacn other are being
performed concurrentlY. The nee~ for each member Of the
SOftWare group to be aware of tne pro~ress and deSign
mo~ifications of the taSKS un~ertaken by every other
member Of the group has increale~ significantly as the
11ze of the group hal grown.

preplanning by the MSR an~ group management team 1nclu~ed
those features found to be mOlt useful from the TODAS
activity experiment.

It recocnize~ the exi.tence of leaderShip
responSibilities alreadY in effect, and formalized
them.

The .ame meeting format was used as for the TODAS group.
we found imme~atelY that there was more interest in task
dilcus.ion and Plan reformUlation and less interest in
locial interaction and group process than in the TODAS
group. AS a reSUlt, changes made in the planning
procedure Simplified the ~ocumentation to inclUde only
essential elements needed for communication by the Irou~
member_. We also went through the process of listing all
current and planned task' in one consi.tent format in a
file called SOFTP. This resulted in a preliminary
li.ting Of 30 critical and separate t3'kS, with truly

46

See. II
MANAGEMENT SYSTEM

distributed task leadership.

Leadership

Leadership was minimal at the ,roup level, and sufficient
because of ni~h motivation to complete tasks on schedule.
The strongest leadership was at the task level.

This experiment is still in progress. Longer-ran~e goal
and taSK planning, witn better inte~ration with other ARC
activity planning, are currently be1n~ develope~.

c. Summary comments on Planning Experiments

Active community teamworK, warm hUm~n relationships, and
good work attitudes are necessary for our organization to
function effectively. We must encoura~e and develop
feelings Of trust and common goal appreCiation so tnat our
people can work closely together over a long perioQ ot time,
with 10 much Of themselves open to view to others and with
such interrelated and challenging tasks to be undertaken.
We found that the TODAS group benefited from the initial
energy spent on interpersonal relationships, although there
was eventuallY more effort applied to these factors than we
found useful for task accomplishment. A careful balance
between application of social and work-oriented energy is a
necessity.

Although the TODAS experiment waS not successful in all
respects, it was an experlment where the partiCUlar people
involved stand a better chance of sUcceerting in a future
experiment with a reoriented eroup.

softWare meetings were jUdged by participants and outside
observers as extremelY efficient and effective in mee~ing
predetermined goals. While little attention was paid to
interpersonal variables, group morale was strengthened bY
the meeting procedure. uncertainties in task definition and
individual responSibilities were clarified. The feedbaCk
wa. reported to be useful rather than either flattering or
critical. ThiS, alain, was a cnance for the particioants to
be involved in a smaller group than ARC. This contributed
to the higher morale.

we teel that the techniques developed tor Meet1ng and taSK
planning and for on-line note-tak1n~ will be useful as they
evolve in future activity planning. we need to learn more
abOUt realizing the potential of improved interpersonal

47

Sec. II
MANAGEMENT SYSTEM

relation. hips in ARC, while expen~ing onlY a reasonable
amount of effort in doing so.

3. Observations From StUdy of On-Line community

a. Use of PUblic Files

The Use of PUblic files conta1ninc the work of many
in~ividual people seems to be well accepted bY the group.

Far more communication potential exists in this environment
tnan has yet been realized, although some ~eople have
started in some interesting ways.

our need for development of a Dialogue support System is
clear.

work habits of the on-line community staff also need
4evelopment so that they can use the power of existinl
featUres and information in the system.

Now is the time for furtner worK on methodology and
procedures tor use of tne .ystem, with the continued
parallel evolution of tne .ystem itself.

b. Sy.tem Dependence by the Group

A. we augment, we find that it seeMS less desirable to use
conventional tool. for many tasks.

Thi. 1. a problem to be resolve~ for gOOd use of resources
an4 tor the purpo'e of not oVerlooking appropriate
conventional tools Where they can still be very eftective.

The Various way. that information now geta into the system
arel

(1) Direct I

(a) on-line NLS or TODAS use by or1linator:

Entry of new material

Duplication andlor modification of existing
information

(b) On-line NLS or TODAS note-taking at discussions

h8

Sec. I I
MANAGEMENT SYSTEM

(2) In~irect:

(a) Transcription sources:

Handwritten

External documents

stenographic dictation

Recordings

Individual use Of dictating equipment

Tape recor~ings of group meetings

(b) Transcription processes:

Direct NLS use

Direct TODAS u.e

Paper tape

We are workinl toward a better assessment of which tools
are most appropriate for the various taskS to be performe~
in ARC.

c. Milcellaneous Observations

This is a work-oriented group. Most people ~orK long hours,
ulually at an intense rate; little time i8 spent not
aetually working.

There are many more vork opportunities for the ,roup and for
most 1ndivi~ual~ than there are resources -- in terms of
both time and funds.

Group and personal work management involves many
difficUlt choices of taskS to be performed, postponed, or
droppe~.

The group frequently sets loals at higoer levels than it is
likely to attain.

This 1. partly because we want the new features that w11l
make tne system more powerfulJ we are users Of our own
relultl.

49

See. II
MANAGEMENT SYSTEM

Sometimes, also, we overas.ess the potential power of the
system, forcetting that it still has limitations,
particularly in the area of eonsistently good service
levels. This ~roblem is getting a great deal of
attention, however.

The interrelatedness of the on-line community tasks maKes
planning very difficult, out Obviously more necessary.

C. Team Augmentation and Dialogue sup~ort

Our efforts in management research nave b~en centered on the
attem~t to developing a more closely interrated, participatory way
of orlanizing people, efforts, and resources toward specific goal'
than is provided by cla,sieal management theory.

Toward this goal, we are cUrrentlY focusing our attention on the
prOblem of improving the management of a working
system-development team, Using our own or~anization as the SUbject
Of experimentation. This involves two facets of aucmentation
namely, individual augmentation and team aug~~ntation.

Individual augmentation is s1mply our eontinuing effort to
provide ways of improving the working capability of individual
members of a team.

Team augmentation inVOlves the development ot improved means
tor coordinating the efforts of indiViduals and for integrating
their individual contributions into coherent team action.

1. Recent Ef~orta

A portion ot our recent MSR effort has been ~nvested 1n
formUlating a "team-augmentation" approach. The initial
emphasis iastrongl~ oriented toward the means for
communicating and collaborating effectively on issues embedded
within a eomplex and evolving prOblem domain.

An important facet of thiS approach has been a preliminary
.tudY for a "Dialogue ~up~ort sy.tem" (DSS) -- a s~ecial system
of coordinated features which could support the communication
and integration of eollaborative dialolue among team members,

APpendix B i8 a more detailed d1scussion o~ this
formUlation, as extracted from the PhD thesis ot David A.
Evans (see Ref. 1).

so

Sec. II
MANAGEMENT SYSTEM

2. Future APproaches to TeaM Augmentation

Experimentation with roles, recor~·keecing conventions,
collaboration procedures, ~ecision-Mak1ng practices,
documentation, etc. will be a rich ~omain for exploratory MSR
work.

The following discussion of fast eaiting an~ pUclication,
"super-~ocuments," an~ augmented conferencing gives a view of
some features needed for team augmentation.

a. Fast Editing and PUblication

Our already fast e~iting techniques will continue to evolve,
an~ we plan to concentrate early upon automatic production,
from our on-line files, of hard copy having a very flexiole
compo8ition of text, diagrams, tabl~s, equations, footnotes,
and indices.

The desiln of hard-copy formatting conventions must be
related directly to the way in whiCh the associated file
material can be stUdied and manipulated on-line.

b. "Super-Documents"

We have been ~oin~ research leading to the development and
production of very large, very complex documents containing
numerous sections whose details are highly interdependent.
The.e dOCUments will be SUbject to frequent updating. This
will involve further work on techniques for creating and
Using speCial indices, footnotes, reader-supportive
comments, cross-references, etc.

we currently have quite powerful techniques for ai~inl an
individual or a small report~writin~ team to produce
document. of the usual research-report size and complexity.
Part of our approach to team augmentation will be the
expansion of these techniques to allow for much greater
scope and complexity in documents ana much more fluid
interaction among the team members who create them.

A team tackling a complex system-development project ~ust
provide itself with the highe.t pOSSible visibility over its
working environment -- i.e., over the following factors:

Planning: plans, contingency alternatives, resource
commitments, status, criticisms

Sl

See. II
MANAGEMENT SYSTEM

Design: designs, design principles, constraints,
estimates, analyses, supportive data, relevant needs and
posSibilities

Operation: roles, taSk defin1tions, aasignments,
pOlicies, operational procedures and conventions.

we intend to develop and keep up to date a large, detailed,
highly cross-referenced and well-indexed "super-document"
that contains just such a oescription of our own
project-team activity. Our techniques for facilitating its
modification and repUblication will be under constant
evolutionary pressure.

c. Collaborative Use of On-Line File Systems

on-line access by collaborators to each other's files, as
prOVided by a number of todaY'. time-sharing systems, leaves
much to be deSired in supporting effective dialocue.

An effective dialogue-support system is essential to team
augmentation. Hand in hand with the "sUper-document"
facility described above must go some such ability as the
followin~1

Any team member at a display conSole c.n study swiftlY
any portion Of the super-document's structured files.
our current system is fairly gOod for this purpose, but
not yet adequate for dialogUe stUdy.

Whenever he wishes -- as though he were pencil-marking
hi. private craft with marginal comments, underlines,
encircled passages, arrows, etc. -- he can introduce
"comments" that are freely sprinkled with explicit
references to any specific item (e.g. any Character,
word, graphic entity, or expression) within anYbody's
prior entry. (Notel the term "comment" is uled nere and
in the following discussion in a very broad sense _. a
comment is any entry Which in aome WaY points to a
previous entry.)

Thi. commenting capability must be managed by the
computer 80 that it does not matter if other people
are simultaneously scanning the same material or
affix1ng comment. to the same item ••

When creating a comment entry, he needs flexible aids
and methods for arranging intersper'ed or concurrent

S2

Sec. II
MANAGEMENT SYSTEM

displaY of the referenced passages, for designating
the explicit entities he wishes to reference, and for
susoend1ng operations temporarily while he checks
related material.

Conversely, he needs a way of seein~ any comments that
reference a passage he is 1nspectin,.

Categories might be defined bY authorShip, date of
creation, t~xt content, or ~ssi~ned memberShip in
predefined categories.

He also needs a great aeal of control over this,
however; mUch of the time he will not want to see
any comments, or only comments falling into certain
categories.

He also needS considerable control over the way the
system displays the comments that he wants to see
-- in specified portions of the screen, in
full-text or condensed form, etc.

He neeQs the ability to set up "~nnunciator calls" to
Various peoPle, or sets of people, to request their
apecial attention (at some level Of priority) to a ~iven
comment.

All of the interactive-dialogue entries immediately
become part of the SUper-document, iMposing a patential~Y
very complex comment network ("network" because comments
can refer to comments in indefinite extension).

It will be hard to keep track Of the relationships
among these comments and the SUbstantive recordS about
which the dialogue is oriented.

Their relationShips need never be ambiguous, but
consider the ~roolem of trying to study such a
structure to determine where we now stand in our
developments and discussion, especially wnen it is
the record of a complex system-design process an~
the interactive dialogue a~ong very active people.

This is about the most diffiCUlt central challenge in
effectively augmenting a team -- that of ~eveloPing
computer aidS, working methodS, etc. to allow a
skilled person to be hi,hly effective in ~igesting the
content an~ implications of such a record, and to

53

Sec. II
MANAGEMENT SYSTEM

develop a sUbstantive next-stage delign or plan that
intelrate8 the Cialolue contributions.

Essentially similar techniaues are required to
aucment any individual'. central intellectual
capability for synthesizing the next stage of
development in a plan or design. To tne extent
that we are successful with this, we should be able
to offer strong guidance for capability
aucmentation over wiae ranges of individual and
team actiVities.

d. Conference Augmentation

There i. creat potential value in airect augmentation of
conferences and meetin,.. When peoPle are gathered together
to ~onsider a proposal or argument, or to collaDorate
actively on a prOblem, there are many possibilities for the
development of techniques ana facilities to make their work
more effective.

There is a wide range of possiele approaches to
conference augmentation.

At one extreme, each participant woUld be an
experienced NLS user and would have his own con.ole;
sophisticated facilities would be provide~ for
"linking" the consoles in various ways to augment
communication.

At the other extreme, there would be only a single
conlole with a Ipecial operator; special techniques
for integratin~ the NtS faCility, the operator, and
the conference participants into a working system
would be needed.

BetWeen these two extreme., a variety of intermediate
approaches is possiole.

For any of these approaches, a central prOblem is the
development of conference procedures and the organization
of on-line information; both procedures and information
structures must be developed in 8uch a way al to gain the
Ireatest pOSSible advantage from the computer facility.

This development of conference proeedures and
information structures Should be done eXperimentally,
under actual usage conditions.

Sh

Sec. II
MANAGEMENT SYSTEM

We have alreadY experimented with augmenting meetings
bY having one per.on operate NLS as an on-line
note-taker, where all participants can see the display
(see Sec. II-A-J-b).

On the ba.i. of recent experience, we plan to provide ~etter
facilities tor groups of people working to~ether at consoles
an~ for small meetings where con&ol~s .re not available for
everyone (or where not all participants are NLS users).
Thi8 will permit experimentation with intermediate
approaches lyin, between the two extremes described above.

The facility will consist of a meeting room equipped with
projection TV, several appropriately designe~ conSOles,
an~ furniture designed so that three or four people may
work at the consoles with ten or so less active
participants.

ss

III HARDWARE SYSTEM

A. Intro~uction

This section reviews the current status of the ARC computer
facility an~ ~escribes the ~ar~ware development that has been done
during the course of this contract.

The first part briefly describes the computer facility,
including both the computer as lease~ from XDS and the special
equipment that has been added by ARC.

The second Par~ discusses mOdifications and improvements to the
facility that have been planned and are now in progress.

The third Part presents some comments on features Of the system
design and discusses some of the reliability an~ main~enance
experience. ae~ause of it. unique design, th~ ~isPlay system
isemphal1zed. A summary of maintenance costs for tne
displaY-lenerator and televi.ion portions Of tne system is
~nclu4ed.

B. The Computer Facility

The configuration of the ARC computer facility has oeen relativelY
stable over the past two years. There have been some peripheral
a~~itions, in particular the ARPA Network interfAce and an
external core system; these are discus$ed below.

The current facility is shown in Figs. 111-1 and 111-2.

1. The Leased Computer

Fil~re III-1 i~ a block diagram of the facility as leased from
XDS.

A central processor with timesharing hardware operates from a
6uK memory in ~ bankS with 24-bit wordS and a cycle time of 1.8
microseconds.

on channels sharing memory access with the CPU are) ma~netic
tape drives, a paper-tape station, and communications equipment
tor 16 Teletypes.

A lecond m~mory buss provides direct access to memory for the
RADs (Ra~id Access DeVices, i.e., drums) and the non-XDS
~ortion of the faCility, designated "Special Devices Ohannel"
in Fig. 111-1.

There a·re three drums on the system, operatin~ from a common
controller and accessing memory through an XDS device called
a Direct Access commmunications Ohannel (DAOC). Each drum

57

tTl
00

I
I

16 TELETYPES
I
I
I

CONN.
EQUIPMENT

16 K
CORE

I

CONTROL: RAD

CONSOLE
TTY

CENTRAL
PROCESSOR
WITH TIME- I----....f

SHARING
HARDWARE

16 K 16 K
CORE CORE

16 K
CORE

SPECIAL
DEVICES
CHANNEL

FIGURE 111-1 XDS940 COMPUTER FACILITY

MAG. TAPE
CONTROL

PAPER
TAPE

STATION

t--.....--....f

MAG.
TAPE

MAG.
TAPE

MAG.
TAPE

TA-5919-3

To EXECUTIVE
MIC CONTROL

NETWORK
INTERFACE

INPUT
DEVICES

CONTROL

LINE
PRINTER
CONTROL

ARPA Network

LINE
PRINTER

FIGURE 111-2

o

TA-7101-3

SPECI AL DEVICES CHANNE L

Sec. III
HARDWARE SYSTEM

has a capacity of 500,000 2~·bit wor~s, a transfer rate of
120,000 woras per second, and an average latency of 17
milliseconds.

2. Special Devices Channel

Fifure I1I-2 i. a block ~iagram of the portion of the facility
that has been put together by ARC. The following sections
describe the major units.

a. Executive Control

The executive control provide a an interface to the 940
through the Memory Interface Connection (MIC). It acts &. a
mUlti~lexer that allows aaychronous access to core bY any of
the 6 devices connected to it.

The executive control decodes computer input/output
in.tructions and passe. them along as 8ilnals to the
varioua deviees. It accepts interrupts from the deVices,
synchronizel them, and passes them alonl to th~ computer.

It accepts a~dresses and requests for memory access from the
various devices, determines relative priority among them,
and synChronizes their access to 940 core.

The executive eontrol inclUdes extensive debuRg1ng and
monitor in, aidS. It allows the monitoring Of ~ata an~
addresses for any 'elected device and permits "Off-line"
operation of any of the device ••

b. Di.c File System

The disc file system consists of a 8ryant Model ~061 diSC
file and a.aociate~ controller. The system has a capacity
of 32 million wordS, an average access time Of l~S
millisecond., an~ a ~ata tran.fer rate of 43,000 wor~8 per
second. A relatively simple field mOdification will ~ouble
the present capacity.

The ~1sc controller WaS designed an~ built by BrYant to
interface with the executive control. specifications for
the controller were develope~ jointly bY Bryant, project
GENIE at UC Berkeley, an~ SRI.

c. DiSPlay System

The displaY system conSists of two identical sucsystems,

60

Seo. III
HARDWARE SYSTEM

each with a ~isplay controller, a ~isplay gener&tor, an~ 6
high-resolution S-ineh CRTs. A closed-circuit television
system carries ~isplay images from the CRTs to television
monitors in the workin~ area.

The display controllers were ~esigned and built at SRI.
They access and process "command tables" that are resi~ent
1n 940 core.

A commanQ i. roughly a8sociate~ with a user and pOints to
a "display list" in the user's core space. The display
list in turn points to bUffers containing actual display
instructions (commandS to the diSPlay generator to
produce images).

The display controller handles all core acce.sing.
including memory mapping for tne user's core space. It
passes the diSPlay instructions &lonl to the display
generator.

The displaY generators and CRTs were purchased from Tasker
Instruments to SRI'S specifications. TheY have general
character and vector ca~abilitie8.

presentations for each of tne 6 ORTS are generated
sequentially, and un blank SignalS from the display
controllers select one or more of the eRTs at a given
time.

A high-resolution (875-line) closed-circuit television
system transmit. display pictures from each CRT to a
television monitor at a corresponding work-station console.
(Filure 11-32 shows several work-station desiins.)

d. Input Device control

In addition to the television monitor, each work station hal
a keYhoard, binarY keyset, and mouse. Appendix A describes
the use of these devices.

The Itate of these input devices is read by the input device
controller at a preset 1nterval (about 30 milli.econd,) an~
written into a f1xe4 table in 940 core.

Sits are added to information trom the keyboard.,
keysets, and mouse .witche. to indicate When a new
character hal been received or when a switch has changed
.tate during the sample periOd. A new character or

61

Sec. III
HARDWARE SYSTEM

switch change causes an interrupt to be issued at the en~
of the sample period.

Mouse coor~inates are digitized by an AID converter and
formatted by the input device controller as beam-position
inatructions to the display generator. A user pro~ram
may include the mouse coordinate., as written bY the
input ~evice controller, a. part of & display list. Thi.
allows the mouse ~os1tion to be continually displaye~
without attention from tne CPU.

e. Line Printer

The line printer is a 96-character drum prin~er leased !ro~
Data Products Corporation (Model M600-llA). with ~he 96
characters, printing speed is 340 lines per minute.

The line printer controller processes print buffers of
arbitrary lencth (single line buffers are normally used)
that have been set up in core by a controllinc program.
Operation of the printer controller is described in APpendix
C.

f. Network Interface

The networK interface provides communication eetween the 9aO
and an Interface Messale Processor (IMP) on the ARPA
computer NetWOrk. The interface operates from message
buffer. in 940 core. Messages to the NetworK are read by
the interface from these buffers and transmitted to the IMP.
Si~ilarlY. messages received from the IMP are written into
buffer .pace in 940 core. In'tructions from the 940 enable
the .y.tem for receiving messages and contrOl the sending of
mesla«es. A "linked-buffer" scheme p~rmits flexible memory
allocation.

operation ot the network interface is describea in more
detail in Appendix C. The interface message processor and
it. communication. protOCOl are discussed in detail in Ref.
2.

C. Mo4it1cat1ons in procress

TWO mOdifications to the facility that will prOVide Significant
improvement in .erv1ce are now being implemented. These are an
external core system and falter drUMS. In addition, an accurate
clock aystem is being added.

62

Sec. III
HARDWARE SYSTEM

1. External Core System

The external core system has oeen completed and will be
integrated into the facility in the near future.

The primary purpose of this core system is to provide storage
for disPlay regeneration. Display buffers are presentlY in
"frozen pagel" in 940 core -- a significant factor in limiting
IYltem response, since thay take up space that could otherwise
be used for swapping. (see Sec. IV for a discussion of factors
affecting response.)

r1cure 1II-3 shows the special devices channel as it will be
reConfigured when the core system is integrated.

The inter-core controller controls tranSfer of data between
external core and 940 core. It hal two mOdes of operationl

(1) A bloCK transfer mode a.llowl the transfer ot' blocl<s
of up to 2048 words between any two locations in the two
cores.' (Note that transfer can be between two locations
in the same core.)

(2) A short transfer mo~e allow. the transfer of Ihort,
fixed.lenctn buff~rs between fixed locations in 9hO core
and external core. Th~s mode is easier to set up than
the block transfer,anQ requires fewer memory accesses
tor control. It will be u.ed for such functions as
transferring sinlle characters or other control
information between the two core systems.

The operation of the inter-core controller i. described
1n more. detail 1~ APpendix C.

The external core itself currently con.ists of a single
32,OOO-word bank with access switching to allow access by up
to eight devices. Provis1ons are inclUded in the deSign for
expansion to 16 devices and two core bankS of 64,000 wordS
each. The core cycle time is 1.S microseconds and the word
lencth i. 24 b1t8.

The interface to external core has been designed so that
it iSident1cal to the interface to 9kO core (through the
Executive Control). A device maY be s1mplY plu'led into
either core .ystem.

A. shown in Fig. 1II-3, we will initially be operatinc both
displaY systems, the network interface, and the line ~rinter

63

...-- DISC
~

DISC - Display Controller 1
CONTROL FILE

- CLOCK ~ Display Controller 2

EXECUTIVE
~

CONTROL

~
INTERCORE

~
EXTERNAL

CONTROLLER CORE
Network Interface

INPUT --- DEVICES ~ Line Printer Controller

CONTROL

TA-7101-4

FIGURE 111-3 SPECIAL DEVICES CHANNEL WITH EXTERNAL CORE

64

Sec. III
HARDWARE SYSTEM

trom external core. These are the devices tnat need
con.tant buffers for relatively lon« periods and therefore
require frozen pagel when ooerating from 940 core.

2. Faster Drum.

From the system re.~ense .tu~ies (see Sec. IV) it is apoarent
that a primary factor 1n response 1s the sWapping bandwidth.
TO improve response (and aOd more user.), we are in the process
ot replacing the XDS drUMS wlth Univac FH·~32 drum ••

These drums rotate at 7200 RPM, giving a transfer rate of
)65,000 words per second (as compared to 120,000 for the
present drums) and an averale access time of about 4
millisecond ••

In adOition, we are formattin, th~ new drums in a way that
will allow a page transfer to begin at any position on the
drum. Since a 2048-word page fills two-thirdS Of a band,
this will give an average page transfer time Of about 8
millisecond ••

The interface for the drums will be designed and built by ARO.
It will eonnect to the 940 through a seconO Memory Interface
connection (MIC), rePlacing the current RAD-DACO combination
Shown in Fig. 111-1.

3. Olock System

An accurate clock system is being added to assist us in ,ystem
measurements.

Thi. clock ,ystem provide. two type, ot time information
absolute anO relative •• that are written into fixed
locations in 9~0 eore at regular intervals.

Absolute time consists Of binary representations of year,
month, day. hour, minute, and second.

Relative time information consists ot a single 24-bit
number, incremented and written into eere every 100
microseconds.

The long-term drift on the clock will be less than 1 second
in 2S0 days.

A more complete de'cription ot tne clock sys~em is given 1n
APpendix C.

65

Sec. III
HARDWARE SYSTEM

D. Notes on System Design and Reliability

1. nisplay System

The display .y.tem in use is somewnat unusual in that it uses
central di.olay-generatinl equipment and a closed-circuit
television .ystem to distribute images to the working area.
This approach to a display system wal chosen on the basis of
celt and flexibility. A description of the system and of
con.iderations that went into it. de'i,n ia liven in an earlier
re~ort (Ref.)).

We now have considerable experience in operating this system
and are still very pleased with the baSic approach, but we have
had some prOblems with the component equipment involved.

The closed-circuit television system offers several ~istinct
advantages over other means of prOducing displays at a work
station.

The sy.tem 1. extremely flexible as to the location and
de.ign of workin, conSOles, since only a television
monitor and a video line are reQuire~ to present the
diSPlay at eacn console. This allow. freedom to
ex~eriment with different type. Of console. (Ref. 4) and
to move con.oles about without cabling prOblems.

The vi~eo sienal is inverted to provide a black-on-white
ai.play. ThiS pre.entation is usable in higher ambient
light conditions than the usual bright-on-darK
presentation, and flicker in the display imate (due to
low generation rate') is much less noticeable to the
User.

With proper adjustment of the television camera, a
'1ln1ticant storage time can be Obtained on the vidicon
,urface. This greatlY reduces the fliCker effect that i.
present in the orilinal CRT presentation. with this
.y.tem we find it POSSible to regenerate displays at
about 20 cycles per second.

Maintenance features are another significant advantage.

The displaY equipment at the actual work station is quite
Simple, consistin« of only a teleVision monitor which can
be re~laced by a spare for maintenance.

The di.plaY-lenerating equipment, whieh requires more

66

Sec. III
HARDWARE SYSTEM

complex main~enance an~ repairs, is located centrally in
~he computer room. This makes it very easy ~o maintain
an uncluttered office environment in the workin~ area.

furthermore. since there il not a f1xe~ one-to-one
relation'hip between ~isplay-gen~rating equipment and
work stations, when a portion Of the diSPlay system is
down for repairs the working consoles that remain
operative may be freely selected on the basis of current
needs.

Havin(two identical diSPlay syste~s, from displaY
controller throulh ac~ual monitors, has been a major
factor in ma1ntainini up-~ime in spite of the
unexpectedly high level of main~enance required on the
system.

The use of video to distribute ~isDlay images offers several
other pOlsibi11~ies ~hat we have not yet fUlly exploited.

For the television monitor on which the image is
presented, a wide range of acceslory equipment is
co~merciallY available. For eXample, we have used
bieh-quality projection ~elevi.ion at the Fall Joint
computer Conference in 1968 and at the ASIS Conference in
1969. It is possible to use mUltiple TV- monitors or
inter~ediate-.ize projection e~u1pment for smaller
croups. This will be a major factor in the
team-augmentation work to be carried out under tne next
contract.

The video capability Offers additional flexibility in the
imales that may be used on the sereen. For eXample, in
the conferences mentioned above, live TV pictures of the
people and equipment involved were freelY used, mixed
with the computer-generated image. Tnis, a~ain, will be
a ailnif1can~ factor in team collaboration at a distance
where pictures of the people involve~ can be use4, ei~her
m1xe4 or in.erte~ with the computer-cenerated image.

Another use Of the video that will become increasinglY
im~ortant is the viewing of microfiche documents. Many
systems are now available and more are coming on the
market for the storage, retrieVal, and viewing of
m1erofi6he on closed-circuit teleVision.

67

See. III
HARDWARE SYSTEM

2. Maintenance Experi~nce

a. General

In general the r~liability Of the facility has been very
1000; the computer up-time has been extre~ely high. The
reliability of the disc-file system has been fair. We had a
period of several month. of above-normal error rate, and 5
days down wnile clocks were rewritten; how~ver, the troubles
now seem to have been corrected.

one notable exception to tnis hal been the line printer.

We originally boulht a potter chain printer which
turned out to have marcinal print Quality and was very
unreliable. we had great difficulty in getting
maintenance from potter, and we finally replaced tne
unit with a Data products drum printer. Like the
Potter printer, this has 96 printing Characters with
upper- and lower-case alphabet. The print quality is
excellent and so far it has been very reliable.

b. Di'Play System

We have spent more effort on maintenance Of the display
system than any other ~art of the facility; since it is
someWhat unusual, we will discuss some of the proble~s
encountered and summar1z~ the maintenance costs.

on~ of the basic limitations of the system 18 the laCK of
enough total light on the Vidicon surface. This ~eans
that many deslln factors are marCinal. Th~ Tasker CRTs
run at such nigh intensity that their life is relatively
Short. This high intensity also causes diff1culti~8 in
maintaining good focus over the @ntire image. To operate
with these lOW light levelS, the vidicons Must be Quite
sensitive; since sensitivity drops off with age, they
have a relatively short useful life.

Because the writing speed Of tne Tasker display
lenerators 1. lower than expected, we still have a
flicker prOblem When all 6 screens on the 8y.tem in use
are reasonably full of text. To some extent we are able
to compensate for this bY careful adjustment of the
vidicon beam current and target, but this adjustment
needS frequent attention. We have conSidered
longer-persistance ~hosphors on the TV monitors and will
experiment with this in the near future.

68

Sec. III
HARDWARE SYSTEM

In addition to these difficultie. there are some b~sic
weaknesses in ~he design Of the Tasker system and the
television system.

(1) Tasker By.tem

Sockets for circuit cards are not of hi~h qU~lity.
This results in contact-resistance prOblems,
especially in the analol circuitry.

Deflection circuitry, with it. many adjustments, is so
hard to get at that it is left in a partially
assemCled state.

Logic circuits still do not have all pull.up prOblems
corrected, reSUlting in a narrow range on the clock.

The active deflection-sensing circuit requires
frequent adjustment.

The fOcUS vs. beam position circuits perform very
poorly.

(2) Television System

The prean~11f1er tUbes on the television cameras tend
to be very noisy. These tUbes must initiallY be
selected for low noise to get really gOOd pictures,
and their life is very short.

We are currently in the process of replacing all of
the pream~l1!ier cirCUit boards witn a new
solid-state circuit now delivered in new GE cameras
of this type. This circuit uses an FET
preamplifier with very low noise and hopefully no
prOblems in reliability.

controller power supplies are poorl~ desicned and
require too frequent replacement of parts.

c. Maintenance Oosts

The following is a summary of the costs for maintenance of
the display and television .ystem. for the past year. Both
inclUde the frequent "tuninl" necessary to maintain good
picture quality. These are the costs for maintainin« 6
operating work stations, but .ome effort has been spent on
the eQui~ment not 1n relular use. We expect this to ~o up

69

See. III
HARDWARE SYSTEM

abou~ SO percen~ When 12 st~t1ons are in operation.

TV SYI~e~
Labor
Vi~ieons
~ic~ure Tube.
Preamp Tubes
All o~her part.

Total
Tasker System

Labor
CRT'I
Miscellaneous

Total

25,665
3,)65

895
1,200
l,OaO

7,905
3,000

200

32,165

11,105

Notel The Tasker 8y.tem il maintaine~ at a
"Keep·it·going·well-enough·.o·people·can-work~ level, and
it lives with many weaknesses.

3. Hardware Design an~ Construction Techniques

a. LOlie Deslen Ai~'

The wirelilt generator ~rograM described in an earlier
r~port (Ref. 3) is still oeinc uled. The input for~at,
diagnostie aidl, and general form ot the program are
essen~iallY the same as ln the pa.~. In the past the
wirelist output was used to produce ~oeumentation that aided
a technician 'in hand wiringJ now it produces a punched tape
that in turn controls & semiautomatic wire-wrapping machine.
Thil wire-wrappinc service is obtaine~ from a local supplier
an~ results in more accurate wirine, lower Wiring cost, an~
faster turnaround in going from logic equations to finished
wiring.

Recarding accuracy, no misolaeed wire. have been found to
date, althoulh a ver~ minor number of broken wire. and
Wires Ihorted to pins have been observe~.

The wiring itself costs about a3 cents per wire. A1IO,
above the eost Of running the baSic w1relist generator
prolram, there 1s an additional COlt of 20 cents per wire
for preparinl the paper tape Used to control the
wire-wrapping machine.

Turnaround time for wire-wrapping is Short, typically
less than a week tor a design conta1ninc 400
integrated circuits. ot course, th1s il SUbject to

70

Sec. III
HARDWARE SYSTEM

con.1~er&ble variation, de~ending on the work load Of
the company ~erforminl the wire-wrap~ing.

Mo.t of the general comments in the previous report
concerning the utility ot the wirelist generator program
.till hold.

However, experience has shown the desirability of
maintain1n~ a fairly complete set of logical
schematic., complete with circuit locations and pin
numbers, in addition to the designer's sketches and
lilting. provided bY the wirelist generator.

The previous report on this contract (Ref. 3)
implied that the sketches and listing were
sufficient for equipment maintenance and
trouble-shootinl. This is true as lone as the
original designer performs the maintenance. With
the inevitable turnover of personnel that takes
~lace on a lone-term ~roject, someone other than
the de.igner eventually becomes respon.ible for
keeping a liven device operating. Under this
circum.tance, a 'chematic is an invaluable aid.

b. Construction Techniques

The construction techniques of the most recent units can be
seen in Fig. III-u. The nardware iM~lementation consists of
an arraY Of SOckets that will directlY accept a dual inline
packaled integrated circuit (commonly called a "DIP"). The
arraY' of DIPS are mounted perpendicular to the horizontal
plane on the front of the rack in which they are mounted.
The circuit arrays can be pulled out for access. Wiring
conneetions are made directly to the pins of the sockets.
Thi •• cherne has several advantages.

F1r.t, the cost is low. The previous construction
technique used printed-circuit boardS for mounting the
integrated circuit.. ThUS the cost Of mounting the
circuits on the board and the co.t of the board it.elf
were incurred.

Second, there 1. greater flexibility in tne location of ~
,iven circuit type. With 'he intecr&ted circuits mountec
on ~rinte4-circuit boarce, a com~lete board consistin, of
up ·to 12 circuit. would have to be u8ed in cases Where
Only 1 c~rcuit wae actually needed.

71

II" !

. -.--
III • •

.... -. --

...,~ .. . --.--.---

1111 1[1111
1IlIIfllf 111111

.... , .*' qAft

. 1IOS'ftADf

• IljOtfUoGSU

• • IlPPOtMI'T_WOIlD

.110$1 ... , ..

• 'lIltlllOlellOSt .. II

...... ' 0I 111I1J1051."

•• '01;1 •

• '"U'-ITOUI.1I1

' lC·"P(ltJQUlliIPllf

"·'fIOn t'OUllHf40

" "'OI()h 1l""UI." ,tI

FIGURE 1II-4 NETWORK INTERFACE CONSTRUCTION , SHOWING
MOUNTING SYSTEMS FOR CIRCUIT ARRAYS AND

MULTIPLEX SWITCH

72

Sec. III
HARDWARE SYSTEM

ThirdlY, an in~ividual DIP can b~ reMove~ and replac~d.
This is a great ai~ in the maintenance of a ~ev1ce. A
DIP with a lus~ect circuit can quiCKly b~ removed and
re~laee~ by one that is known ~o be COOd.

In a4dition to th.techniques of hardware realization of tne
basic 10lic des1cn, many other de~ailB of the hardware
4esign are important.

one feature that the hardware must provide is some means
ot acees. to both ~he integrated cireuits and tne wiring
-- this featUre is an ab.o~ute necessity during initial
eheckout and i. an aid in later maintenance and changes.

In providing acce.s to the external core, the
mUltiplex switch ~osed a particularly difficult
prOblem, .ince j~ cable. connect to it. In order to
allow easy acce.s to this unit, the mounting system
shown in FiC. 111.4 was developed.

A very flexible cable is used, with a rather elaborate
methOd Of strain relief and cable ~u1dance. Altnough
tne original mechanical delign was quite expensive,
reQuirinc about 3 months of a deSign draftsman's time,
past experience has shown the diffieulty of
maintaining equipment that did not have easy access.
TO date this design cost has been spread over several
units and its anticipated use in future units will
reduce the per-unit cost for the oesi~n. The expense
of hand-fabricating the parts tor & pull-out drawer is
estimated to be around 8300, Which is slilhtlY less
than 81 per socket.

In the recen~ equipment, lilht-emitting diodes (LEDS) have
been used instead ot incandescent lights tor panel
indicator._ The result. have been very satisfying.

The LEDs have a higher initial cost (about -3 each) than
the incandescent lig~ts previously Used. The lights,
however. have a limite~ lite While tne lifetime of the
LEDS is essentiallY infinite. This leadS to essentially
zero maintenance and replacement cost for the LEDs.

This long service life also means that the expensive
lockets required bY the incandeseen~ units, in order to
faeilitate their replaeement, can be eliminated.
In~icators were mounted simplY bY drilling holes in the
front panel and retaininl the LEDs with RTV silicone

73

Sec. III
HARDWARE SYSTEM

rUbber.

A further cost saving is etfecte~ since tnese lilhts are
~r1ven ~irectly from tne lOgic, savin~ not only th~ cost
of the drivers themselves but also th~ cost of the extra
lockets and wiring they would require.

The LEDs have a relatively narrow viewing an,le and less
intensity than the incandescent lights, but we nave founa
them ent1relY .ati.factory in use.

c. Typical Oonstruction Costs

A fairly careful study was ma~e of th~ actual cost of the
ARPA Network interface. This is tY~ical of the type of
control unit that is now ce1nc built.

Har~ware ana cen.truction .- tne figures are given on a
per-socket basil. Technician time involved in construction
1s included.

Frame, connectors, IC sockets, etc.

Mountin, hardware

Computer time
(preparing wire-wrap~ing contrOl
tape, 35 cents per wire ana an
average of 6.8 wires per socket)

Integrated circuit. (averace)

Wire-wrappinc
(2$ cent./wire and 6.8 wires/socket)

Total hardWare and construction
(per locket)

Total hardware and construction
co.t for Network interface (600
lOcket.)

S3.50

$2.00

$2.00

811.50

86900.00

The design cost is expressed in man-daYs for a design
engineer.

Initial c1esicn 10 days

74

See. III
HARDWARi SYSTEM

pre~arat1on of equation.

Drawings and Ooeumentat1on

Final assembly and debug

Total

75

10 day"

10 t1ays

20 days

50 Oays

IV SOFTWAR~ SYSTEM

A. Introduction

The central fOCUS of softwar~ activity at the AUgmentation
Research Center is tne evolutionary development of the on-Line
system (NLS), and during the contract period this worK has
continued in the spirit of bootstrapPing Which has been
consciouslY aPPlied since the project's inception. In addition to
RADe fundine, this work has received SUbstantial support from NASA
und~r Contract NASl-7897.

The original version of NLS (then called NLTS for On-Line Text
System) resided first in a CDC160A computer (R~fs. 5 and 6); it
was later transferr~d to a CDC3l00 on wnich furth~r development
took place (Ref. 7).

The experience and tOOls developed with the 160A and 3100
system8 were tnen applied to the design and construction of the
present NLS, which provid~s multi-console service from an
XDS940 computer and associated special-purpose hardware.

AS has been true throughout its aev~lopment, the On-Line System
is now being used principally as an instrument for planning and
engineering its own evolution ana as a tool for composing,
editing, and PUblishing documents (such as this report) for
distribution outside of the Center.

The operation and evolution of ~LS takes place within a rich
environment of softWare systems, many Of Which w~re created
specifically to aid in its development.

~ost baSic to the operation of NLS is the timeSharing system
(TSS) running on the XDS940.

TSS was originally developed by project GENIE at tne
Berkeley campus of the university of California, but
responsibility for maintenance of the ARC version presently
lies with the Center itself.

Each user runs NLS as a sucsystem of TSS and consequently
has access to other TSS su~system8 such al the KDF file
system, the QED text-handline system, ~nd the DDT symbolic
oebugging system.

work done on TSS ~uring the contract perioO is described in
section Iv-e.

77

Sec. IV
SOFtWARE S~STEM

Th~ evolution Of NLS has been facilitated ,reatlY throur-h the
uee of an extensive cOllection of langUages and their
respective compilers, most of which were developed by ARC
itself. These languagee and compilers are discussed in Section
IV-C.

The program coae for NLS residee in SUCh a large number of
files that cOMPiling, loading, and debu~ging the system is a
complex process. To make these operations more manageable, a
TSS .ubsystem called NLS UTILTY (not to be confused with the
internal utility routines of NLS itself) has been constructed
during the past year. A description of NLS UTILT~ will be
found in Section IV-G.

Durin, the contract periOd extensive chanres have been made to
NLS, both in user service features and in internal system
organization.

Development was begun on the Typewriter-oriented
Documentation-Aid System (TODAS), which will maKe much of the
power of NLS aVailaole to users at remote locations through
hard-copy terminals such as Teletypes. Implementation of TODAS
is one ot the major steps being taken in setting up tne NetworK
Information Center (NIC) tor the ARPA Network.

The ability to examine the contents Of NLS files has been
enhanced bY the implementation of a powerful set of JUMP
commandS, inclUding provision for jumping between files using
file linkS. (A file link is simply an occurrence Of a file
name, properlY emoedded ~1tnin the text of another file.)

Facilities have been provided to enable the NLS user to request
that each file statement displaye~ be tagged with the initials
Of the person WhO last mOdified that statement along with the
date of modification.

oonventions for handling keyset input have been changed 80 that
the)1 input characters may be interpreted in any Of four cases
(lower case, upper case, numbers and special characters, an~
VliWSP£Cs). The case is determined bY concurrent input from
the cen~er and left push buttons on the mouse (lower ca~~ is the
normal case).

Commands have been added to enable the user to set any text
entity in a variety Of type styles (upper case, lower case,
italic, boldface, flickering, underlined), and the
di.play-generation routines have been mOd1fie~ so as to dis~laY
text in the specified forms.

78

Sec. IV
SOFTWARE SYSTEM

A limited output-processor capability has been provided so that
programs maintained as Nts text files can oe compiled directly
from NLS (rather than having to be converted to ~ED files
first).

Several other new features have been added to NLS, including
the foll~wingl

(1) vector package a baslc graphics capability
permitting the User to insert sirupl~ line drawi"gs into a
file

(2) Keyword system -- a means of information retrieval
working upon special information inserted in a file, with
USer oontrol over oategories of information to be retrieved

(3) Calculator package -- a calculation capability for the
NLS user. providing four storage registers and an
accumulator, ADD. SUBTRACT, MULTIPLY, and DIVIDE operations,
and the ability to select operand numbers fro~ file t~xt and
insert results baCK into the file text

(4) SUbstitute command -- causes automatic SUbstitution of
one user-specified character string for another, throughout
some user-specified portion of the file

(5) File oleanup and compaction -- automatic
user-controlled correction of certain kindS of system-caused
errors in a file, and redUction of the storage needed for
the file bY means of special garbage-collection methOdS

(6) output of NtS files to microfilm (via an out-of-house
facility).

In addition, the overlay structure of NLS has been reorganized
to provide room for growth of the system, and numerous other
internal system changes have been made to provide improved
.ervice and reliability.

An overview of the current structure of NtS is provided in
Section IV-E, and a more detailea description will be foun~ in
A~~enQ1x D.

Descriptions of earlier work on the desi~n ana Oevelopment
of NLS for the XDS940 are contained in Refs. 7, 8, and 9.

Other SOftWare development activities covered in this report
include preparations for interfacing with the ARPA Network (see

79

Sec. IV
SOFTWARi SYSTEM

Section IV-F), and a simulation study of factors affecting the
response time ot the timesharing system when a number of NLS users
are being served (see Section IV-D).

8. The Timesharing system (TSS)

The support of new hardware and improved response to the NtS user
are the two main reasons for the ex~enditure Of effort on the
timeSharing system (TSS).

1. Dilc Su~port

The Bryant disc device was recieved in August 1968. This
device has the capability of storing 32 million 24-bit words.
with the acceptance of this deVice, a file-storage program
called KDF was implemented to provide users witn a means of
storing information. The earliest form of ~DF operated
essentially independently of tne TSS 1/0 nan~ling system. A
later version was integrated with the TSS system, and ~ade all
accesses to the disc via calls on the supervisor.

During late 1968 and the early months of 1969, the TSS system
was extensivelY mOdified to inclUde scratch disc files. These
files are handled bY the same calls on the supervisor as are
the drum files. In this way, the aisc files have the
flexibility of the drum files as well as freeing the user from
KDf's restrictions on the number and size Of files. Disc
scratch files maY be useO for all the same functions as drum
files, while KDF is used primarily for storage. The diSC file
space is pooled by all the users and thUS has tne additional
adVantage Of more economical use of this space than is possible
un~er KDF. The development of improved garbage-collection
facilities permitted the use of "permanent" scratch files on
the diSC for longer-term storage of heavily usea files.

2. Magnetic Tape support

The new TSS Oeveloped in late 1968 and early 1969 incorporated
the direet tape I/O package, which permitted more effici~nt use
of tape files. The increased speed and efficiency of the tape
files ma~e it more practical to copy information stored under
KDf to magnetie tape, thus proteeting this information from
10s8 in the event of serious diSC failure.

Further work haS been done to improve the reliability and speeQ
of access of tape files, as required bY the Archive/Journal
sYltem (see APpendix B). The malnetic tapes serve as the main
storage facility for most Of tne older or less used files, and

80

See. IV
SOFTWARE SYSTEM

thus relieve KDF of the burden of storing these files.

3. External Core

The inter-core controller (ICC) and the external core me~ory
became available in early 1970. Several supervisor calls have
been written to allow the user to access this device.

TSS allows a user to Obtain up to 16 thousand words of
external core memory, and maintains tables wnich perform a
limited relabeling function between user-provided addresses
and Physical addresses.

other calls permit tne user to make data transfers via ICC
between external core and 940 memorY and vice versa, as w~ll
al tranSfers from one area of external core memory to
another area Of external core memory, or from one area of
9~O memory to another area of 940 memory.

~. other Devices

A orogram has oeen written to permit t~e queuein~ of print
file.. ThiS program allows the user to place his file in a
print queue ana continue on to other tasks. The queueing
program informs the user of nis file'S position in the printer
queue and the approximate amount Of material to be output
before his file will be cOMpletea.

Minor additions and mOdifications to the TSS system have oeen
ma~e to support the Data products printer and several new
Teletype and typewriter-style terminalS.

5. Research on schedUling Alcorithms

The system simUlation (discussed in sec. IV-D) has indicated
that system response to the NLS user might be improved by
redesiln of the sChedulin~ algorithm. Toward tnis end, we have
experimented with several mOdifications to the SchedUling
al~oritnm, particulary with respect to the assignment of
priorities and the queue-assignment schemes.

one ,uch experiment consisted of aSSigning a special Queue for
NtS users. giving them higher priority than other 1/0 users or
users Who place heavy computational loads on the system.

This queue measurably improve~ tne response for the NLS
user. but so impaire~ the response to other users that in
some cases it was not possible to run the executive

81

Sec. IV
SOFTWARE SYSTEM

programs.

Since that earlY trial, we nave implemente~ a new scheme
that favors NtS users an~ any other users who are en~aged in
frequent but Short 1/0 processes. The improvement has not
been as noticeable as with the earlier scheme, but has not
resulte~ in such severe im~airment of service to other
users, This algorithm tendS to favor the user who is
engaged in editing text, as opDose~ to the user who is dOing
a great ~eal Of file manipulation. Another part of this
effort has snown that another queue was not serving a useful
purpose, an~ this queue has since been discarded.

6. General

Much work has been done in restructuring the TSS system to
provide SPace for accommo~atin, the storage requirements of the
ARPA Network. Several routine. have oeen rewritten and move~
to the Executive, anO others have been move~ to nOMresident
pales. In this way, several hundred core locations have been
made available for Network use.

8ecause of the greatlY reduced level of effort of project GENIE
at UC Berkeley, it has become necessary for us to further the
~evelopment of ISS essentially independentlY.

C. Compilers

1. Introduction

The development of NtS has been greatlY facilitated through the
use of a ~owerful complement of langUages and compilers, most
of which were ~esicned at ARC.

The languages use~ range in generality from the NARP
assembly language throuch a collection of special-purpose
lanluages (SPt's) unique to NLS implementation.

Havinc such a flexible set of lancuages from Which to choose
make. it ~ossible to select for each programming task the
language in which the desired operations can be expre.se~
most naturally.

a. NARP

There are a few parts of NLS that can be most conveniently
coded in assembly lanlUage (e,g., the oata page and the
diSPlay-buffer page), and for these the NARP assembly

82

Sec. IV
SOFTWARE SYSTEM

language is used.

Also, for historical reasons, the timesharing system (TSS)
and most of its sUbsystems (e.g., KDF and DDT) are coded in
NARP.

The NARP aSlembler is based on another assp-mbler, ARPAS;
both of these languages were produced bY project GENIE for
use in the development of TSS (see Refs. 10 and 11).

b. MOL940

MOL940 (or simply MOL) is a machine-oriented language for
the XDS940 and waS createa by ARC to aid in the programming
of NLS.

MOL combines the flexibility of assembly langua~e with tne
algorithmic clarity of higher-level procedure-oriented
languages. Much of NLS is coaed in MOL.

The original version of MOL940 is described in Ref. 12,
while this report contains a brief oescription Of the
current version.

During the contract period MOL has been SUbstantially
rewritten to improve its performance and provide new
programming features.

The current MOL compiler'was produced using the new
version of Tree Meta (descrioed belOW); consequently, the
MUL compiler now generates binary maChine code directlY
rather than prOdUcing assemblY-language code.

AS a result Of this change, assembly-language
instructions are now treated as bUilt-in functions,
whereaS previously they were handled usinr escape
conventions Which provided for them to be passed
directlY into the output stream without translation.

optional mechanisms have oeen added to facilitate the
writing of reentrant COde, using a softWare stack for
procedure callS and for storage of local temporaries.

The syntax for procedure callS has been modified so that
an entire NLS file link may be used in place of the
procedure name alone.

The presence Of tne file linK augments a programmer's

83

Sec. IV
SOFTWARE SYSTEM

ability to study a complex system of programs
occupYin~ several NLS files, by maKing it very easy
for nim to jump from ~ file cont~in1ng a reference to
some procedure ~nto the file containing the procedure
itself. In compiling a program onlY the name part of
the file link is used; the rest of the link is treatea
as commentary information, since it is irrelevant to
the compilation process.

Tree Meta

Tree Met~ is a compiler-compiler developed at ARC; it is
used to produce compilers for MOL and .11 the
special-purpose lan~uages (and for itself as well).

Section IV-C-2 contains a brief overview of the current
version of Tree Meta, and a more detailed description is
in preparation for release as a separate report.
(Pending pUblication of tne Tree Meta Qocument, a
description more co~plete than that contained in the
present report can be found in Ref. 8.)

During the contract periOd, tne only major change to the
Tree Meta system was a mOdification to the basic way in
Which compilers produced oy Tree Meta generate code.

Compilers prOduced bY Tree Meta used to translate a
given source language into assembly lan~uage, which
then had to be translated by tne NAkP a.sembler to
Obtain machine code.

with the new Tree Meta, the compilers generate machine
code directly, thus eliminating one step of the
translation process.

The SPL's

Many of the hie her-level operations of NLS are carried
out bY program. written in one of a set of
Ipecial-purpose lan~uages (SPL's). EaCh Of these
languages is translated into machine COde by a compiler
produced witn the Tree Meta system.

Each SPL represents an attempt to formalize a particular
function of NLS, aiming at a syntax appropriate to the
data baBe and operations required for NLS, while at the
Same time embodying the potential and peculiarities of
the XDS940 computer.

84

Sec. IV
SOFTWARE SYSTEM

The four SPL's currently in use are the input-feedback
langua~e, the structure~manipulation language, the
content-analysis language, and the string-construction
language.

Detailed description. Of the SPL's will be found in
APpendix D of this report as well as in Ref. 8.

Although extensive changes in the SPL's are planned for
the near future, no basic conceptual cnanges were made
durin~ the contract period.

2. Tree Meta: A Compiler-Writing System

A compiler-writin~ system was implemented within the A~C for
use 1n writing compilers for tne MOL940 language and the
special-purpose languages (SPLs) u~ed in implementing NLS.

The Tree Meta language allows one to conciselY specify the
sYnt~x of a la~guage, in a notation similar to BaCKUS-Naur
Form. Embedded within th~s syntax specification are rules
and directives describing exactlY now the compilation of a
program written in ,the language is to take place.

The Tree Meta compiler readS a textual program written in
the Tree Meta langUage, and directlY prOduces a binary
machine-language pro~ram Which is a compiler for tne
specified language. The new compiler is then capaole of
readin~ a textual program 1n the specified language and
prOducing a binary program accord1ng to the compilation
rUles embodied in the compiler.

Tree Meta i8 expressed in its own languag~, and is thus
selt-compiling. The current version has been produced trom
preViOUS, more limited versions bY the process Of
bootstrapping •.

Tree Meta has proven to be a partiCUlarly valuable tool in
system development at ARC, because of the experimental nature
o~ the development being done here.

perhaps the most valuable feature of Tree Meta is its ease
of use. A complete compiler descri~tion is contained in a
Single text file and is readily edited and recompiled. A
change in a compiler can ce tried in two or three minutes.
Thi. allows experimentation that otherwise would be too
time-consuming, and makes the debugging of language
specifications Quite fast. This flexibility is very

85

Sec. IV
SOFTWARE SYSTEM

important when a languaRe is being develop~d -- as opr-osed
to naving been pre specified and fixed in its definition.

The relativelY simple Tree M~ta notation describes a
lancuage preciselY, and anyone familiar with the notation
can .ee what the sYntax is. The COde for the compiler is
also the formal definition of tne language to be compiled.

Also, since the source COde for the Tree Meta compiler is
simply a description of the Tree ~eta compiler expressed in
tne Tree Meta language itself, it is POSSible to produce a
new version of Tree Meta merely by editing and recompiling
tnis description.

The Tree Meta system consists of this symbolic description, tne
Tree Meta compiler, and a library of support routines in MOL.
The support routines perform functions sucn as input/output an~
symbol-storage operations.

The Tree Meta compiler is relativelY fast. It compiles itself
in about 30 seconds from about ~ pages of text input. The
compiled program is about 12 thousan~ words of memory,
includinl tables and storage areas.

In the formalism of Tree Meta, a compiler consists of (1) parse
rules, wnich parse the input in a top-down manner and build a
tree structure, and (2) unparse rules, which then test t~e tree
.tructure and produce machine code. The tree consists of
symbOl' taken from tne input, values and flags inserted in the
tree bY the parse rules, and nonterm1nal no~es that correspond
to unparse rules.

The parse rules test the input stream to identify tne
constructs it contains.

For example, to test tne input stream for an assignment
statement, the following rule called "assicn" might be
used.

assign 8 identifier "~" expression :store{2JJ

This parle rule defines ~n "assi~n" to be an "identifier"
fOlloweO bY a left-arrow fOlloweO by an "expression,"
Where "identifier" and "expression" WOUld be defined by
other parse rules.

If the input stream is matched by this rule, a node will
be constructed in the tree and taggeo with the name

86

Sec. IV
SOFTWARE SYSTEM

"store."

This nOde will have two nodes under it, corresponding
to "identifier" and "expression," respectively.

The unparse rUles are execute~ beginning with the last node
built into the tree. The nOde names in the tree de~ermine
which rules will be invoked to compile code from that node
of the tr~e.

In the example above, the unparse rule named "store" will
test the nOde for several different forms and output code
de~ending on the form. A test might be

{identifier,add[*l,-}}

This test reads as follows: The "store" node must have two
noaes under it. The first nOde must be an identifier. The
second must be a nOde named "add," Which has two noae. under
it. rUrthermore, the first node of "add" must be exactly
the same as the first node of "store." Tnis test would be
satiSfied bY input of the form

x ~ x + (anythini)

Another test might be

{identifier,add{*l,"l")j

Which is the same but with the additional requirement that
the second nOde of "add" must be the number "1". This is
checking for input of the form

y ~ y + 1

The unparse rUle "store" might begin:

store [identifier,addi*l,"l"}} => MIN *1,

(identifier,addl*l,-)} -> lda{*2:2} ADM *1,

If the test on the first line succeeds, "store" produces a
single memory-increment instruction, MIN, operating on the
memory word addreSsed by the identifier (the first nOde of
"store"). otherwise, if the second test succeeds, an
unpar.e rule named "lda" is called with the second node of
"add," as argument in order to prOduce code to load the
A-register. Then an add-to-memory instruction 1s produced,

87

Sec. IV
SOFTWARE SYSTEM

again operating on the memory word addressed by the
i~entifier. The rule "store" would then continue by testin,
tor other forms of expressions, until all legal forms have
been taken care of.

The tree serves al an intermediate form of the program -- a
form which facilitates extensive testing by the unparle
rUles, and which usually contains no redundant information.
The compiler author determines the forms of the trees
completelY when writing the compiler. His ingenuity in
determinin~ the tree forms and compilation schemes is
generally not restricted by tne Tree Meta language.

SymbolS (Which may be of arcitrary length) are read from the
input and kept in a s~mbol-storage area where t~ey are
referenced via a haSh table. symcols may also be created
and entered into the SymbOl-storage area by the compiler.
Each symbol has a 24-bit value as well as 24 attrioute bits.
The meanings for most of tne attribute bits may be oefined
by the compiler writer, and symbol Values and attributes may
be set, reset, and tested during the runnin~ of the
compiler.

The output trom any Tree Meta generated compiler is a
relocatable binarY file, prOduced in toe proper form for DDT
(the loader and debu~ging system). ThiS binary file
inclUdes the symbols from the program, so that programs can
be debugged symbolically.

3. A Machine-Oriented Lan~uage, MOL940

In spite of the quite sophisticated unoerstandin~ Of compilers
and compiler-compilers in computer science, assembly lan,uage
is still used for the bulk of system programming.

A~O has used a maChine-oriented languave as a replacement for
assembly language in the writing of system programs. The
machine-oriented language, MOL940 (or simply "MOL") offers the
power of an assembly language While prOViding the algorithmic
clarity found only in a h1«her-level language.

A machine-oriented language is aesigned to give the
programmer a block-structured language with many of the
usual associated features. such as conditional and iterative
statements, SUbscripting. and arithmetic expressions.

At the same time, the language is designed to reflect the
idiosyncrasies of the actual machine on Which the programmer

88

See. IV
SOFTWARE SYSTEM

is writing his programs, TO this end. speci.l constructs
are incorporated in the language wnich allow the programmer
to have some control over the code which is produced and the
manner in Which the central registers are used,

The idea of a machine-oriented language is not n~w.

Erwin Book of System Development Oorporation first ~evelope~
an MOL for the Q-32 and later an MOL for the IBM 360.

Niklaus Wirth's PL-360 was an MOL used to implement a
version of ALGOL on the 360.

An MOL for the XDS940 was a early ~evelopment of ARC. and
was used in the initial implementation of NLS. A modified
version of this language. developed with Tree Meta, is th~
MOL descrioed in this section.

The general design of MOL940 is actually machine-independent.
only the inclusion af special logical forms and built-in
functions gives the langua,e a specific orientation towards a
particular machine. ThUS it may serve as a basis from which
MOLS for other machines may be derived oy suostituting other
logical forms and other built-in functions.

Among the distinguishin, factors Of any pro!rammin~ language
are the means provi1ed for referencini information and for
controlling the flow of execution.

In MOL940 tne means for referencing information a.re as complete
as in an assembly language.

The central registers of the machine are repr~sented as
basic elements in the syntax of the language. Thus ".AR"
stands for the A-register, ".AR.l" causes a 1 to be loaded
into tne A-register. and "X •• AR" causes the contents Of the
A-register to be stored 1n location X.

Assignment is made one of the binary operations th~t can
occur in an arithmetic expression.

ThiS allows the programmer to refer to the value of
sUbexpressions 1n a very straightforward manner.

for example. one can write "k.(j~n)+lOJ or "k.10+~.nJ"
instea~ of "j.n; k •• AR + 10;". While both forms would
reSUlt in the sam~ COde, the use of assignment as a
binary operator avoidS tne explicit reference to the

89

Sec. IV
SoFtwARE SYSTEM

A-register.

An apostroPhe follow~a by a single character may be u.ed
interehangeably with the num~rical code for that Character.

ThiS can be of great value in Clarifying the intent of a
test. For eXample, assume that the numerical COde for a
Question marK is 16. Then a test for a question marK may
be made by "-'1" rather than the less informative "=16".

Tne term "literal" ~ill be use~ to denote a term that can
be either a number or an apostroPhe followed by a single
character.

TWO modes of referencing information are provided to give
addressing completeness. ·These mOQes are similar to the
"left-hand value" and "right-hand value" concepts found in
CPL and 8CPL.

The modes are differentiated Oy the presence or absence of a
dollar Sign in front of the reference. The former will be
called "dollar mode." and the latter "normal mode." The
values referenced by identifiers, literals, and strin •• in
the two mOdes are as follows:

(1) Normal Mode

(a) Identifier: contents 01 the cell Whose address is
tne value of the identifier.

(b) Literal: tne numerical value of the literal

(c) String: contents of the first cell used to hold
the string

(2) Dollar Mode

(a) Identifier: the value of the identifier (i.e.,
the address Of a memory cell)

(b) Literal: contents of the cell whose address
equalS the value Of the literal

(c) strin~1 the adaress of the first cell used to
hold the string.

The term "value of an identifier" as used here 1s equivalent
to the left-hand value of an identifier in CPL.

90

Sec. IV
SOFtWARE SYSTEM

Thus if cell 400 corresponds to the identifier K or if k
has been set equal to 400, as in an EQU statement Of an
assembler, trten the value Of K is 400. It might also be
called the symbol-table value of the id~ntifier.

Notice that the normal mOde of an identifier or literal
corresponds to usa~e in prOblem-oriented lAn2uages.

Indexing and indirection are allowed where appropriate witn
the above forms.

Indexing is specified by following the reference with an
expression enclosed in square crackets, while indirection
is specified by enclosing tne entire reference in square
brackets.

The syntax disallows such dUbious constructs as indexing
with a literal or indirection with a strin~. The
fOllowing Shows in which cases indexing and/or
indirection are allowed.

(1) Normal mode

(a) Identifier: indexing and indirection

(b) Literal: neither

(c) String: indexing

(2) LJollar mode

(a) Identifier: neither

(b) Literall indexing and indirection

(c) string: neither.

The means mentioned above make an MOL at least as powerfUl as
an assembly language in referencin~ information. In specifyinc
the control of activation flow, an MOL is clearly superior.

Flow of activation is determined bY the results of logical
tests. It is in the clarity of expression Of these lo~ical
tests that an MOL is partiCUlarly valuable.

TO facilitate con«ruence oetween program construction and
the idiosyncrasies Of a given machine, the syntax of an MOL
should contain constructs that reflect the logical tests

91

Sec. IV
SOFTWARE SYSTEM

made possible bY the instruction set.

For example, the XDS94u has an instruction that skips if
the contents of the A-register and the effective address
do not have ones in any corresponding bit positions.
Thus ~OL940 hal a logical construct "Suml CB Sum2" which
is true if and only if suml has a one in a common bit
position with Sum2.

In addition to logical constructs, there must be means to
specifY the repeated execution of a given state~ent and the
choice for execution of a particular statement out of
several. ~ne main constructs for repetition in MOL940 are
the LOOP and WHILE statements.

The LOOP statement is caseO on a suggestion of Knuth. It
provides the most general pOSSible form Of control of
repetition.

The statement follo~ing the word "LOOP" is executed
repeatedly until an "EXIT" statement embedded within
the loop is executed.

Execution of an EXIT statement causes control to leave
the innermost LOOP containing it.

There may be an arbitrary number of EXI! statements
within a LOOP, placed arbitrarilY, an~ nested Within
blOCKS to an arbitrary level.

Tne WHILE statement simply serves as a convenient
alternative WaY of writing a com~onlY used form of the
LOOP statement, namely the form with a single EXIT
oceurring at the start of the LOOP.

Selective execution is provided by IF and CASE statements.

The IF statement is tne standard Algol-like IF with an
optional ~LSE part.

Since the 940 uses Skip instructions for logical
tests, it 1s POSSible to optimize tne branches
required if there is no false part and the true part
consists of a single instruction. This is done if the
user writes "DO·~INGLE" instead of "THEN".

The CASE statement correspon~s to a I~ecial form of the
If statement in which tne case is selected for ex~cution

92

Sec. IV
SOFTWARE SYSTEM

accordini to the class into which an expression falls.
The syntax is roughly

"CASE" expression "Or" sequence of cases "ENDCASE"
statement

where each case in the sequence consists of one or mor~
tests followed by a statement.

A test consists of a binary-relation symbol followed bY
the right-hand side of the binary relation. The test is
true if the oinary relation formed by using the
ex~ression at the head of the case as the left-hand side
1s satisfied.

The first case with a true test is the one executed. If
none Of the tests are true, then the statement following
"~NDCASE" is executed.

A common use of the CASE statement is in determining the
proper response to a character input from a terminal.

FinallY, MOL940 permits the use Of machine instructions as
built-in functions. The syntax Of such a built-in is
roughly

function-name address-reference actual-arguments.

The function name is SimplY the standard mnemonic operation
COde for the instruction.

The address reference i. optional; if present, it may be an
identifier, literal, or string, with optional indexing or
indirection.

The actual arguments are alSO optional; if present, they
consi.t of a sequence of expressions to be loaded into
registers, separated bY commaS and enclosed in parentheses.

such a built-in function maY be used either as a statement
bY itself or as a primary in an arithmetic expression.

It should be clear that this allOWS the programmer complete
access to the instruction set of the machine and gives the
opportunity to prOduce as efficient COde as could be done in
assembly language (where this is deemed necessary).

Experience at ARC has shown that machine-oriented langua~es are

93

&ee. IV
SOfTWARE SYSTEM

an attractive medium for systems'programm1n~. They permit
efficient cOde, unrestricted data structures, and complete use
Of the machine instruction set, living a flexibility usually
associated onlY With assemblY languages, while still providing
the algorithmic clarity of h1gher-level lan~uales.

D. Re.~onse StUdies

We condUcted a stUdY of factors affecti~g the response time of the
timesharing system on our XDS940 computer, Which serves a number
Of NLS display terminal' reouiring very rapid response to user
actions. The method of approach was a hiRhly parameterized
simulation of the timeshar1n, system, which permits experimental
evaluation of various pOSSible methOdS Of improving system
res~onse time. A summary of the approach and the reSUlts is given
here.

1. objectives of the StUdy

AlthOUgh this stUdY was conducted specifically on the
timesharing system in use at AkC, it is of general interest (1)
because of the unique methOd of approach, Which permits easY
implementation of reSUlts, and (2) because it may be expected
that systems resembling ~LS 1n some ways will be coming into
more general use in the future. The principal characteristic
of NLS that affects the behavior of the timesharing system is
its dependence on fast, highly interactive operation of display
t~rminals, and computer technology is alreadY respondin~ to a
strong deman~ for this kind of user interface.

It should be emphasized that we are dealing here with the time
required for the system to' respond to individual commands from
interactive users, and not with the system's speed in
performing larce numerical-computation tasks.

Interactive display usage for text manipulation, if it 1s to be
really effective from the user's point of view, requires much
shorter response times than have normally been conSidered
.atisfactory for timeSharing systems: in the case of NLS, the
desired response time for a typical command is a fraction of a
second •• delays of more than a second can seriously impair the
user's task performance if theY occur too frequently. By
contrast, the response of a less interactive system such as
TODAS, Which is not designed around an interactive display, is
considered satisfactory if the typical delay in executing a
simple command is no more than a few secondS.

The immediate goal of the current stUdY is to develop an

Sec. IV
SOFTWARE SYSTEM

unOerstanding of the interrelated factors affecting the
response time of ARC's timesharing system and to identify
pOSSibilities for mOdifyinr the hardware and software of the
system so as to improve the responsiveness ot this system.

2. Approach

The approach taken was to write a simulation of the timesharing
system (TSS) operating on the XDS940. The simulation
incorporates the schedulin~ and swapping al~orithms of TSS and
allows changing of parameters to represent various facility
configurations and usages.

This allOWS an evaluation of the impact of changes in the
hardware configuration, such as faster drums or larger core
memory, as well as the effect of various mixes of user
demandS on the response of the system.

In addition, the program waS written in such a way that with
minor mOdifications, the simUlation of the scheduler and
sWapper could become part of an actual timesharing system
monitor. Thus changes in the schedUling and swappin~
algorithMs can be tested by simulation and, it they prove to
be valuable, incorporated into the actual system.

). ReSUlts

Throughout this section the number of Users is assumed to be
eouallY divided between TODAS and NLS unless otnerwiae stated.
In giving the results of the study, the'avera~e and the
SO-percent delay times are used rather than the maximum.

a. Standard Parameter Values Used for Simulation

Hardware Parameters

MemOry size: 32 pages, less 7 pages for reSident monitor
and less 1 page for each NLS user (for display buffers)

Drum latencYI 17 msec

Transfer ratel 17 msec

File reference time: 30 msec

CPU spee~: XDS9kO.

95

Sec. IV
SOFTWARE SYSTEM

Software Parameters

Short quantuma 1/4 secon~

lUll long quantum: 1 second.

User Parameters

J user typesl NtS, TODAS, ana OTHER

64 tasks for NtS

32 tasks for TODAS

1 task for OTHEK

The task descriPtions for NtS and TODAS are based on
.tudies of the actual systems.

b. User Types Considered in Simulation

In the actual use of the simulation, three types of users
were considered.

TWo of the types correspond to users of tne two
SUhsyste~s NtS and TODAS.

Users of type NtS or TOUAS are assume~ to be working
steadilY and at a relatively rapid pace, but their
work is also assumed to be limited to tasks that do
not require large amounts of computation to complete.

The third type of user is called OTHER, and is assumed to
be working on tasks that consist of large amounts Of
computation. compilation is an exampl~ of tnis kind of
talk.

one of the main concerns that prompted this stUdY was to
find means to maintain fast response for users ot type
NtS, and to a lesser degree those of type TODAS, when
users of type OTHER are on the system.

c. SimUlation of current Syst~m

The facility assumea in this simulation has 64K of core
memory and swapping drums with 4.~-megabYte total capacity.

TWO views of the results Of tnis simulation are shown in

96

-tl
c
0
u
III

>-«
...J
w
0

8 r---------------r-------------~~------------~--------------~

7

6

5

4

3

2

FILE-REFERENCE
TASKS

INPUT -FEEDBACK

TASKS

AVERAGE

80%

o~~~~~========~~=:~~~====~
2 4 6

NUMBER OF USERS

8 10

TA-7101-6

FIGURE IV-l CURRENT SYSTEM: AVERAGE AND 80-PERCENT DELAYS
FOR NLS INPUT-FEEDBACK AND FI LE-REFERENCE TASKS
-USERS EQUALLY DIVIDED BETWEEN NLS AND TODAS

97

w
(!)
<{
I
Z
w
U
a:
w
Il..

90

80

70

60

50

40

30

20

10

o
2

COMPUTING

4 6 8 10

NUMBER OF USERS

TA-7101-7

FIGURE IV-2 PERCENTAGE OF TIME SPENT IN VARIOUS SYSTEM
FUNCTIONS-USERSEQUALL Y DIVIDED BETWEEN
NLS AND TODAS

98

Sec. IV
SOFTwARE SYSTEM

rigs. IV-l and IV-2. For both of these tne number of users
is assumed to be equally divided oetween types TODAS and
NLS, with no users of type OTHER.

fi,ure IV-l Shows both tne avera~e and the bO-percent
delays for NLS inrut-feedback ind file-referencing tasks.
In the current system, the dati for file referenc1n~
indicate the Kina of delay experienced by a user when he
asks the system to perform an editin~ function or to
d1spl~y a different section of ~is text. These results
are very consistent with actual experience on the system.
In actual use, sUb~ective evaluation leads us to conclude
that the system becomes virtually unusable when the
delays as shown in this figure exceed about 2 secondS.

Figure IV-2 snows how the time distribution var~es as the
number of users increases. It is interesting to note
here how quiCkly the swapping delays become the major
factor in affecting response time and now small the
delays due to comoutat10n time are. Section IV-D-3-f
below goes into more detail on the effect of computation
time.

d. Addition of the ONL Queue

The simulation waS rerun with the addition Of a special
queue (QNL) for interactive users. ThiS queue has the
effect Of assigning a higner priorty to hi~hlY interactive
functions, at the expense of other taSKS. F~,ure IV-) shows
the (approximate) distributions of delay times for NLS
file-reference tasks with and without ~NL. when the system
is serving 3 ~LS users, 3 TODAS users, and 1 OTh~R user.
The improvement reSUlting from the use of QNL is clear.

with respect to fi~. IV-]. it 1s 1nformatlve to consider
what happens to the Single program of type OTH~R in this
situation. It was expected that the use of ONL WOUld
result in slowin~ the OTHEk program; however, the actual
effect w~s a slight increase in its execution speed.

This is caused ~y a decrease in swappin, in the system
When ~NL is used. Since interactive jobS are
reactiVated more quicklY, there is a greater chance of
needed pages still being in memory, thus reducing the
swapping. The overall effect is an increase in system
efficiency.

In general, however, tne use of ONL may result in a

99

w
(!)
<!
I
Z
w
U
a:
w
Q.

10 ~----------~--------~----------~----------~----------~--------~

8

WITH QNL

6

4

2

o ~--~--~~~--------~----------~----------~----------~--~----~
o 2 3 4 5

DE LA Y - seconds

FIGURE IV-3 SYSTEM WITH AND WITHOUT QNL: DISTRIBUTION OF
DELAY TIMES (IN SECONDS) FOR NLS FILE-REFERENCE
TASKS-3 NLS USERS, 3 TODAS USERS, 1 OTHER USER

100

6

TA-7101-8

Sec. IV
SOFTwARE SYSTEM

slowing of OTHER pro~rams. During a given interval of
time, the programs tor OTriiR users take up all the system
resources that are not usea oy NLS or TODAS users. when
QNL is incluaed in the schedu11n~ al«orith~, NLS ~nd
TOOAS users are able to ~et better respons~ and thus they
worK faster, taK~ng up more of tne system's resources
during a given interval. Thus if tnere is a lar~~ number
of interactive taSKS, the pro~rams of type OTHER will
receive less time.

e. Drum Access and Bandwidth

It is apparent from Fig. IV-2 that the maJor factors
affecting response time are the delay encountered in
swappin~ ana, to a lesser extent, file input/output. The
Obvious waY of improvin~ tnis s1tuation is to proviae a
device with higner bandwidth for swappin(and file
input/output.

In this stUdY we have not attempted to present general
results relating response to th~se factors. Instead, we
have taKen as a specific example a particular drum that
COUld replace tne present drums used with the 9~O system.

Tne current drums have a rotation time of 34 mi~liseconaa
and a transfer time of about 17 milliseconds for a 2K
page of 2~-bit woras, The drums used for comparison have
a rotation time of 8.5 milliseconds and a transfer time
Of about ~.7 milliseconds per pa~e.

In addition, the new drums will allow a pa~e transfer to
beKin at any point, ThiS means that tne average time to
read or write a pace will be approximatelY equal to the
duration of a Single revolution,

The effeet of the new drums as predicteo by the simulation
is very str1king.

A lar~e part of this is due to the eonsistent completion of
interactive tasks Within a snort Quantum. With slower drums
these tasks often take several short quanta.

Figure IV-4 shows the avera~e and the 60-percent times for
NLS input-feedback and file-reference taSKS for a system
with QNL, one OTHER user, and the remaining users evenly
divided between NLS and TODAS.

Notice that tne difference between the cate~ories remains

101

2 ~------T-------~------~------~----~~----~~----~------~

I nput Feedback 80%

File Ref. Average

I 1
I nput Feedback Average

>
c{
..J
W
o

o ~------~------~------~----~~----~~----~----~~------~
12 14 16 18 . 20 22 24 26 28

NUMBER OF USERS

TA-7101-9

FIGURE IV-4 SYSTEM WITH QNL AND NEW DRUMS: AVERAGE AND SO-PERCENT
TIMES FOR NLS INPUT-FEEDBACK AND FILE-REFERENCE TASKS
WITH 1 OTHER USER AND REMAINING USERS EVENLY DIVIDED
BETWEEN NLS AND TODAS

102

Sec. IV
SOFT~AR~ SYSTEM

relatively small and constant. This is because both are
being consistentlY comoleted witnin a single activati~n, so
that the difference in elapsed time is simply the di!f~rence
in time required to dO the actual task.

AS th~ nU~ber of users increases, the delays increase
because of longer queues. Thus the limit in,. factor with the
faster ~rum8 wlll be congestion in the oueues and resultinR
delays for input-feedoacK tasks, rather tnan the delays for
file-reference tasks, as ~s tne case in the current system.

t. speed of central processor

In view of the very small percenta~e of time spent doing
computation, it is interesting to consid~r tne effect of
Varying the speed of the central processing unit (CPU).

Figure IV-S shows the BO-percent time for NLS f1le-r~ference
tasks with the current system and CPU's of various speedS.

The difference is small even with a ran~e of aOO to 1 for
CPU speedS. Clearly, improvement that will benefit a systpm
such as NLS shoUld be sought elsewnere than tne CPU.

g. Size of Core Memory

Although the XDS9hO is limitea to 64K of 2h-bit words for
core memory, it is interesting to stUdY the effect of adding
more core.

Figure IV-o shows the BO-percent times for NLS
file-reference tasks ~itn the current system and various
sizes of core memory.

These reSUlts snould be consiaered only as lower bounds,
since different schedUling al~orithms could be expected to
make better use of a larger memory.

h. Interactive Display SUbsystem (IUS)

From the above discussion. it is clear that the greatest
improvement in system responsiveness results from the use of
faster drums.

The limitations of the system with new drums are the
followin~:

(1) Long queue lengths r~sultin~ in poor r~sponse for

103

8 r---------,---------~--------~---------------------

7

6

5

I 4
>
c:(
..J
W
Q

3

2

o ~--------~----~--~--------~----------~------~
o 2 4 6 8 10

NUMBER OF USERS

TA-7101-10

FIGURE IV-5 CURRENT SYSTEM WITH VARIOUS CPU SPEEDS
RELATIVE TO CURRENT SYSTEM CPU: SO-PERCENT
TIMES FOR NLS FILE-REFERENCE TASKS-USERS
EQUALLY DIVIDED BETWEEN NLS AND TODAS

104

5 r---------~----------~~--------~----------~----------~----------~----------__ --------__

4

.t; 3
c
o
u
~

~ «
..J

I--' UJ
o Q 2
CJ1

o ~--------~----------~----------~----------~----------~----------~----------~--------~
4 6 8 10 12

NUMBER OF USERS

14 16 18

FIGURE IV-6 CURRENT SYSTEM WITH VARIOUS CORE SIZES: SO-PERCENT TIMES FOR NLS
FI LE-REFERENCE TASKS-USERS EQUALLY DIVIDED BETWEEN NLS AND TODAS

20

TA-7101-11

Sec. IV
SOFTWARE SYSTEM

input-feedback tasks

(2) Decreasing number of available pages a8 number of NLS
Users increases 1cecause of pages needed for display
buffers).

The interactive diSPlay sUbsy.tem (IDS) is proposed a8 a
possible solution to these limitations. It 18 made up of
the following:

(1) A separate core memory for display buffers so that
the nU~ber of available paces reMains constant

(2) A separate processor to perform input-feedback tasks.

A single input-feedback "miniprocessor," executing reSident
code, Should ce able to service a large number of NLS and
TOOAS users. This has the effect of ~iving virtuallY
in.tantaneous response for input feedbaCk, as well as
reducing the load on the main processor.

since input-feedback ta.ks are by definition independent of
the content. of the file currently being referenced, the
miniprocessor needs only a small description of the current
command state of the user. Feedback is the same for all
users, so a single program will suffice. This program will
be re.ident in the separate core, so swapping will not be
neces.ary.

When a user calls for the execution of a file-reference
task, the miniprocessor passe. identifying information to
the main processor.

Thi. approach Should be applicable to any timeSharing system
that is concerned with servicing a large number of users for
a small number of interactive programs.

Figure IV-7 shows the BO-percent delay for NLS
file-reterence talks in a system with QNL and new drums,
with and without IDS. There is one OTHE~ user; the
remaining u.ers are equally divided between NLS and TODAS.

The minimum total elapsed time for a simple editing
operation shOWS the value of IDS more vividly. (An
"operation" here means the sequence of actions that an NL!
user coes through to achieve some deSired effect; the
sequence typically includes several actions that require
input feedback and one that requires file reference.)

106

3 ~----------~--------~----------~-----------r----------~

-0 2
c
o
u
~

>-«
...J
w
o 1

o
20

WITH IDS

22 24 26 28 30

NUMBER OF USERS

TA-7101-12

FIGURE IV-7 SYSTEM WITH QNL AND NEW DRUMS, WITH AND WITHOUT
IDS: 80-PERCENT TIMES FOR NLS FILE-REFERENCE
TASKS-1 OTHER USER, REMAINING USERS EQUALLY
DIVIDED BETWEEN NLS AND TOOAS

107

> «
..J
w

7

6

5

o 3

2

WITH IDS

o ----------~----------~---------------------------------
20 22 24 26 28 30

NUMBER OF USE RS

TA-7101-13

FIGURE IV-8 SYSTEM WITH aNL AND NEW DRUMS, WITH AND
WITHOUT IDS: 80-PERCENT TIMES FOR SEQUENCE
OF 3 INPUT-FEEDBACK TASKS AND 1 FILE-REFERENCE
TASK-l OTHER USER, REMAINING USERS EQUALLY
DIVIDED BETWEEN NLS AND TOOAS

108

Sec. IV
SOFTWARE SYSTEM

Fi~ure IV-d snows ~he total So-percent d~18YS for a
sequence of three input-feedbaCK tasKS anct one
file-reference task, in the same systeM configurations as
shown in figure IV-?

With IDS, input-feedbacK tasks may De assume~ to be
co~pleted in a quarter of a second (for the numbers of
UBers considered). The curves of Figure IV-d show the
resulting draMatic iMprovement in service to the us~r.

E. Ine On-Line System, NLS

1. Introduction

NLS, as currentlY imple~ented, is a hi2hlY sophisticated
text-manipulation system orientea toward on-line use with
displays. Its use as an augmentat10n tool is discusseo in
Aopendix A.

The program is a SUbsystem of ~ne ti~esharing system described
above. Its size is currently about tnirty thousand machine
instructions, of which aoout nalf maKe up the most frequ~ntlY
used portions. The source ~anguages used are MOL9hO and a
collection of special-purnose languages (SPLs) for com~and
loecification, content analysis, and strinr manipulatlon.

rhis section contains an overv1ew of the or~anization of NLS. a
discussion of tne relationship of NLS to the 940 timesharin~
system, and a briei discussion of Possible future developments
in the program.

Appendix D contalns a more detailed descriPtion of the program
ana the languages.

2. Overview

a. IntroOuction

The following is a conceptu~l overview Of the internal
organization of NLS. It is conceptual in that the cverlay
structure, forced upon NLS oy the limited aOdress space ~no
fixed pa~e size of the 940, does not always correspond to
this description. Although efficiency considerations have
entered into the actual implementation Of NLS, tne following
conceptual description may still ce used. It represents the
design philosopny that guided the implementation, and that
philosOPhy WaS followed Whenever practicable.

109

Sec. IV
SOFTWARE SYSTEM

b. Logieal Organization of NLS

There are three logical levels to NLS (see Fi,. IV-9).

(1) The command specification level 1s the highest
control level. It doel commanO recognition and handles
tne specification of actual operands. This is the
interactive part of NLS _. the part with which a u.er
always communicates. This level of the system is written
in the input-feedback SPL.

(2) The second level of contrOl is the command algorithm
level. It contains the allorithms for performing the
Various commands. Large parts of this level of the
IYltem are written in the content-analysis and
strin~·construction SPLI.

(3) utility routines make up the tnird and lowest level
Of control. These are the routines that actually chance
the data base, perform 1/0, etc. Each of these routines
is uled by several routine I on the second level and
sometimes by the first level. The utility routines are
the only part of NLS that is significantly dependent on
the hardWare, operating system, or data structure. The
hilher level. are all algorithms written with little or
no consideration for the environment in which they
operate. ThiS lowest level of the system is written in
MOt.

Command Specification Level

The command speCification part of NLS takes input from
the user to determine what command is to be executed and
the actual ope~and' for the operation. It then transfers
control to the appro~riate place in the second level to
execute the command, ThUS, this is the level Where
commands and actual operands are specified, but no actual
execution of the COMmands is done.

The command Ipecification algorithm of NLS is implemented
al a large set Of nelted case statements. The code gets
an input character and tests it in a ease statement,
which results in some feedback to tne user and transfer
of contrOl to the head of another case statement to test
the next character of input.

110

COMMAND
SPECIFICATIONS

I
I I I I

STRUCTURE GRAPHICS TEXTUAL DISPLAY
EDITING EDITING EDITING CONTROL

RECOVERY I I I I CALCULATOR OUTPUT
INITIALIZE PROCESSORS

STRUCTURE VDB SOB SEQUENCE

MANIPULATION MANIPULATION MANIPULATION GENERATOR

I I 1 1
I

UTILITY
LIBRARY

TA-7101-5

FIGURE IV-9 LOGICAL ORGANIZATION OF NLS

See. IV
SOFTWARE SYSTEM

Comman~ Algorithms

The second level of control consists of the co~e that
implements the algorithms for tne various comman~s, This
level consists primarily of calls on utility routines
that access the data files, teat the data elements to
~etermine exactly What should be done, and call on the
appropriate utility routines to perform the actions
required bY the command being execute~.

The command algorithm code has been organized into
.everal divisions bale~ on the command. tney effect. The
co~e for each ~ivision of comman~s is further divided
into a part that includes the allorithms pro~er and a
part that is More related to (and thUS depen~ent on) the
10cical Qata structure.

There are eight main divisionsl

(1) Structure Editing

NLS files have a rinl structure. E~ch element in
the ring represents a statement and ita associated
character string and/or line drawing. The
character string itself is stored in a statement
data block (SDB), While the line drawing is stored
in a vector data block (VDB). Each ring element
contains pOinters to its aSSociated SDe and VDB as
well aa the information that determines its
position in the ring.

There is a fUll aet of editing commandS that
involve the manipulation of the ring structure
alone and do not alter tne contents of the
statements (e,g" the "Move statement" command).
The allorithms for these commandS are in thi.
section, They are inaependent of data structure
and USe the structure-manipulation machinery to
actually effect chance. in the tile.

The structure (ring element) manipulation section
containa the algorithms for altering ring elements
in order to effect structure editing. They are
dependent on the logical data structure, but not on
the Physical data structure (utility routines are
used to actually change the pnysical data).

112

Sec. IV
SOF~WARE SYSTEM

(2) Text £diting

Tnis section contains tne al~orith~s for doin~
ealting on the text of stateMents,' e.g., the
"Insert Word" comm~nd. These algorithms ar~
independent of data structure. They use the
COlltent-analysis macninery to determine where
Changes Should taKe place, and the
string-manipulation and SDB-manipulation machinery
to actually effect cnanges to the f~le (throu~h the
use of utility routines).

rhe content-analysis section (usea for locating
textual oat terns witn~n a string) and the
strin~-manipulat1on section are independent of
the physical and logical structures of the file.

The SDB maniPulation section, used for altering
SDB blockS, is not aependent on tne Physical
data structure but is dependent on the lo,ical
data structure.

(3) GraPhics ~diting

Th~S section contains the al~orithms for co~mands
tnat edit line drawings (e.~., tne "Insert vector"
command), and is independent of the logical and
physical structures Of tne data. This code uses
the VDB manipulation machinery to effect changes to
the file.

The VDS manipul.tion section, used tor altering
VDd blOCKS, is dependent on both tne logical
data structure and the internal representation
of vectors.

NLS has an assortment of controls that permit a
user to specify Which statement is to be diSPlayed
at the top of the screen (the "1isPlay-start
statement") and the selection processes to be use~
in determinin~ whicn statement. Of the file will
actually be displayed. '

(a) Jump and Link Machinery

The first function is implemented in the "jump"

113

See. IV
SOFTWARE SYSTEM

and "link" Machinery.

The jUMQ machinery i. useO to .elect a
~i.play-.tart statement. A ring of palt
dilplay-start statement identifiers and
aSlociated disPlaY parameters is maintained
to permit tne Nt! user to return to previous
Views of his file.

The link machinery il similar to the jump
machinery, except that the new display-start
statement may be in another file, in Which
ca.e a link stack is used instead of the jump
ring.

(b) Sequence Generator

once the CisPlaY-ltart statement has been
determined, the sequence generator is used to
select statements from the file according to
currently invoKed filtering criteria.

The sequence generator use. tne display
parameters, content analysiS, and keyword
reorlanization when appropriate. These
facilities are discu.sed below.

The sequence generator oelins at the
display-start statement and goes through the
ring structure of the file, testing each
statement against the filtering criteria and
returning those statements that pass.

For instance, the user maY have specified
that he wishes to see only the first two
level. Of the ring structure, or only
thOse statements Which meet some criterion
specified by a content-analyzer pattern
(.ee below).

(c) Dis~lay Parameters

Di.plaY parameters controllinl the selection
processes ot the sequence generator maY be .et
at any point in the specification of a command.

The User also has at his dispo'al a set of
displaY-format control parameter. (VIEWSPECI)

ll~

Sec. lV
SOFTWARE SYSTEM

for mOdifYing hi. view of the file.

(d) Content AnalYZer

A compiler is used to generate code from text
written in a special hi.h-level user l~ngua«e,
an~ this code is used to test a statement for
specified content. The content-analysis
language available to the user is a subset of
the content-analysis SPL mentioned earlier,
which is used for other content-analysis code in
the system (e.g., for delimiter identification
in ,text-editing commandS),

If content-analysis filtering is being
inVOked, the sequence generator uses the
compile~ code to test statements th~t have
passed all of the other criteria.

(e) Keyword Reorganization

A list of statement identifiers is constructed
in response to user selection and weiChting of
keywords (named statements containing lists of
other named statements). This li.t is saved
witn the file.

If keywora reordering is beini invoked, the
seQuence generator uses the list in
generating a sequence of statements.

(f) create DisplaY

The set of routines called "create display" use.
the display-start statement identifier, the
sequence generator, and the displaY parameter.
to format and con.truct a dis~lay for the user.

(5) Oalculator

The calCUlator div~sion is a group of routines that
effect arithmetic manipUlation. on numbers stored
in an NtS file, ~rov1dinl the user with on-line
numerical calCUlation capability.

(6) Processors

The processors are not part of NLS proper, but are

115

Sec. IV
SOFTWARE ~YSTEM

activated by NLS as SUbprocesses of NLS. They use
NL~ machinery·· primarily the seouenc~ generator

to provide input from NLS files.

Those currently implemented are the MOL
compiler, the SPL compiler, the ~ree Meta
compiler, and the outout proce~sor, which
formats NLS files for hardcopy output to various
devices.

(7) File 1/0

The file IIO division effects file loading and
output.

(8) Recov~ry and Initialization

Routines in this section are executed when NtS is
starteO up or continued after exiting to the
timesh~ring executive.

Utility Routines

The utility-routine level Of NLS is a collection of
sUbrout1nes (written in MOL) that actually 00 things. In
a sense the higher two levels merely decide what to do
and in what order. These levels are essentially
independent of the macnine, operating system, file
system, and physical data structure.

On the utility level, Oata files are cnangea and I/O
occurs. some of the utility routines are used by the t~o
higher levels to read tne current state of the data
files. The hi,her levels use this information to decide
what to do.

This level contains all routines that actually read or
change data files, interact with the operating system, or
dO 1/0 to tne worK stations. In thiS manner all COde
that is dependent on tne environment (hardware, 80ftware,
or onysical data structure) gets put in one place. The
adVantages when moving to a new ~achine or when the
environment changes are Obvious. Another consideration
is tne nope that a fairlY complete library of routines
will be ouilt up and tne SUbsequent implementation of a
new command should then be quite eaSY.

116

Sec. IV
SOFTWARE SYSTEM

3. Relation of NtS to the XDS940 and the Timesharing system (TSS)

The mo.t Significant features of tne XDS940 timesnaring .ystem
that affect NLS and are used bY it are programmed operators,
the file system, paling, and forks.

a. Programmed operators

programmed operators (called "POPI~) are used extensively in
NLS and the compilers.

BY means of a POP, a SUbroutine may be called just as it
it were a machine instruction.

This means that the address fiel~ of tne instruction may
be used to pass an argument to the SUbroutine, reSUlting
in higher cOOe density.

In addition, for reentrant COde, the transfer to a
IUbroutine a8 a POP can be executed significantly faster
than the transfer to a normal sUbroutine.

b. rile system

It is important that the time required to carry out an
operation on an ~LS file not increase greatlY as the file
becomes larger. This requires the ability to access random
segments of the file with a delaY independent of the
location Of the segment in'the file. The TSS random file
system makes thiS possible.

Any block of information in a random file may be referenced
bY a Iystem fUnction Which is given the file identification,
an address in the file, an address in memory, and the number
of words to be transferred as arguments.

The address space of the file il brOken up into a number of
blocks of fixed length (currently 256 words). Additional
bloCkl, not in the file's address space (and hence available
only to the system), are used to record the locations of the
tile blocks in seCondary storage. The first such index
block contains addresse. for the first l4h blOCKS of
addre.ses in the file. If hie her addre,ses are used then
additional index blocks may be used.

c. Paging Mechanism

The address space of a program on the 9iO can consilt of up

117

Sec. IV
SOfTWARE SYSTEM

to eight pages of 2048 wor~s each. This is not lar~e enough
to holO all of NLS, and necessitates a rather complex
overlay structure. Before this can be eXPlained, a brief
discussion Of the paginl mecnanism in TSS is needect.

wnile a program can have only eight pages in its address
space at anyone time, it can have up to 63 pages to choose
from. These correspon~ to the 63 possible entries in the
job's program memory table (PMT).

Pages maY oe made availaole (entered in PMT) in two ways:

(1) Wnen a program is first actiVated by the user, the
(up to 0) pages making UP tne program are PlaceO in the
PMT.

(2) Additional pages may be added to the PM! by the
~rogram itself.

To dO this, it executes a system function with a file
name as argument. The named file should contain up to
ei~ht additional pages of pro~ram.

The system enters these pages into the PM! ana returns
indices bY Which the pages may be referenced. Such an
indeX into the ~MT is called tne "relabeling byte" for
the page.

The relabeling for a prograM consists of the ei~ht
relabelin~ bytes for the pages currently making up the
program. (unused pages have tne relabe11n~ oyte set to
zero.)

A program may read and set its own relabeling oy means of
system functions. This allOWS the pro~ram to bring p~ges
from its PHI into its address space by Simply putting the
appropriate relabeling bytes into its relabelinl.

For a more cetailed discussion of these features the reader
is referred to ~ef. 13.

d. Forks

The final feature of the TSS Used bY NLS is the ability to
create indepen~ent processes (called forkS) within a single
jOb.

The particular uses of forks in NL! are discussed in

118

a.e. %V
SOFTWARE SYSTEM

k. Future Developments

The 'hort-range extentions of NL! will include both
modifications of existing features and introduction of new
on... The tOllowing is a ~artial list ot the possibilities
currently under consideration.

The eraPhics capability will have a wider variety of entities
an~ editin, operations.

The calculator will allow .everal named func~ions to be
maintained .imultaneouslY anQ will be able to produce plots.

It will be pos.ible to split the text area into .everal
windOW., allowing multiple simultaneous views Of a file. A
later .tage will allow different files in the windOWS and
cro.s-file editing.

Tables will be introduced as speCial entities consisting of
two-dimen.ional arraYs of .trine', with column. either left or
r11ht ju.tified. It will be pos.ible to display .Ublets of
row. and columns.

special teatures will be added to facilitate the u.e of NLS in
.upport of on-line dialogue. These 1nclude eXPlicit structure.
tor backlink. and comments.

The keyword .y.tem will be replaced bY a more .ophisticated
retrieVal sy.tem, includinc automatic ,eneration Of inVerted
li.t. from catalogs. The user will nave lanluaees to define,
.tore, and diSPlay sets ot catalog entries.

A general interface between NLS and proces.ors, .uch a.
compiler., will be developed.

A proce •• or will be written Which will recon.truct a file in
.uch a way that statement. that are .tructurally "clo.e" will
al.o be physically clo.e, thUS minimizing file IIO for di.play
con.truction.

It will be Pos.ible to have link. converted to page-number
reterence. in hard copy.

119

Sec. IV
SOFTWARE SYSTEM

F. The ARPA Computer Network

1. History

Two prototyoe user-program interfaces to the ARPA Network were
written, and were used in prim~ry communications betwe~n UCLA
and SRI and oetween SRI and the University of Utah. Th~ first
ot these went into oper~tion in late November 1969.

2. CUrrent Status

The permanent Network operating system is now being finished,
and will oe operat~onal in April 1910.

The Network monitor will be cnaracterized by two different
interfaces, one to be Used by persons opera tin, on the NetworK
using the ARC 940, and the other to oe used by pro~rams running
on the 9~0 and communicating with other hosts on the ~etwork.

To a person on the NetworK, the 940 will initiallY appear
(with the exception of certain procedural characteristics)
as it would were he connected to it via an ordinary Teletype
lin~age.

The 940 monitor, after dispensing with the procedural
transmissions necessary for establishing a primary link,
simply reads characters from tne Network and places them
into the Teletype input buffer of an unattached 9~O
station.

In parallel with this operation, it transmits the
contents of that station's Teletype output buffer over
the Network.

The 940 user wiShing to USe another host on the Network must
dO so either by writing a user program Which contains the
neceslary monitor calls or by calling a special Network
sUblyatem (running on the 940) which interfaces to the
monitor and makes the necessary calls for him.

The monitor calls are desiined in SUch a way that the
programmer maY consider the NetwOrk to be an input/out~ut
Oevice. ACCOrdinglY, calls are provided for the following
functional

(1) OPEN PRIMARY LINK

A primary linK is established bY calling a system

120

See. IV
SOFTWARE SYSTEM

function with paramet~rs ~esignatin, th~ desire~
de.tination host.

When an attempt is mad~ to open & primary link,
.uecesl is in~icated by a .kip return and & file
number (which may be used in successive
transaction. for i~entifYinl the link); failure i.
reflected by a non-.Kip return and an error code.

As.uming a successful return from an OPEN PRIMARY
LINK request, the u.er may immediately be~in
transmittinc information over the link, usinl the
input/output functions described b~low.

OPEN PRI~ARY LINK is a special system call which is
unrela~e~ to the other Iystem commands for opening
files,

(2) CLOSE PRIMARY LINK

CLOSE PRIMARY LINK causes the sy.tem to disconnect
a primary link (identified bY the file number
obtained from OPEN PRIMARY LI~K) after checkinl it.
validi~y. A failure in closin, the link results in
an illegal-instruction trap,

CLOSE PRIMARY LINK 1. a .pecial .ystem call Which
1s unrelated to the tne other sy.tem commandS for
closing files.

(3) INPUT/OUTPUT TO PRIMARY LINK

Input/output i. handled in the same way as the
otner tile 1/0 on tne 940,

The initial Network monitor will perform
single-character output over the Network.
provision has been made for multiple-character
output, and it is expected to be 1m~lemented
shortlY after the initial Network monitor is
operational.

3. Implementation

There are two ~as1c tasks for wnich the Network monitor must be
re.pon.iblel the provision of tne I/O driver. nece.sary tor
u'in, ~he Network, and the development ot a protocol for
ho.t-holt communication.

121

Sec. IV
SOFTWARt SYSTEM

The 1/0 drivers have such functions as the following:

(1) Initiation Of inputloutput commands to the hardware
interface

(2) Detectton of haraware interface errors and execution
of proper corrective or evasive actions

() Buffer allocation and manipulation

(4) Correct formatting Of messaces so far as the IMPs
and the Network are concerned

(5) Detection of IMP/Network errors and prooer error
action

(6) Notification of 940 status to the IMP and Network

(7) Init~alization and recovery after 940 system crashes

(8) Allocation and maintenance of links over tne
Network, includin« the handling of RFNMs

(9) Maintenance of necessary internal table!, pertaining
to the Networ~

(10) Communication between the Network and ARC 9~O work
stations.

This inclUdes tne basic system callS reqUired fer
input/output, the manipulation of Teletype 1/0 huffers
When a remote user ~s connected to the 940 as a
telephone-line tYoe user, notification Of work
stations about Network errors, notification of work
stations about illegal requests, etc.

A protocol nas been established whicn hosts must adhere to
in order to communicate effectivelY.

The monitor must be able to respond to this protOCOl 1n
order to use the Network.

Althougn the crotocol is not yet in final form, lome of
the prob.ble areas Of concern will be:

(1) Openinl and 0108inl of primary links

(2) Opening an6 cl08inl of auxill1ary (file-transfer)

122

Sec. IV
SOFTWARE SYSTEM

links

(3) Message formatting (hOlt-host)

(4) control melsage decodinc anO interpretation

(5) Oommunication Of statuI.

Since the funOamental Network drivers will be static once they
are implemented, they have been integrated into the existing
monitor as efficiently as possible.

The protocol, however, will prObablY be suoject to chan«e for
lome time; therefore, it is beinc implemented in a lesa
intecrated but more flexible manner.

Among other thingl, it is being cOded in MOL940, which will
make it easier to debug and mOdify than if it were coOeo in
assembly languace.

The general implementation approach is to a larce extent
~ictated by the apace reltrictions in the 940 monitor.

We have trieO to put as little COOe as POSSible in the
resident monitor pace" and a. much as ~ossible in a
leparate pale which may be relabele~ in and out of the
monitor's relabelinc.

ThU. the relident routines in the monitor are mainlY the
onel that are necessary for processing interrupts and
certain communications (there are eases when the Network
COde must communicate with another page whiCh runs in the
same position). The remainder of the NetworK COde, and
bUffer space, resides in the leparate page.

G. The NLS UTILTY SUbsYltem

Manipulation of the large number of files which are directlY used
in connection witn compilinc, assemblinc, loading, and debullinr
NLS i. a 'irnificant prOblem. Accord1nllY, a SUbsystem called
-NtS UTILTY" hal been written to help handle these files.

NLS UTILTY performs the functions described below for the
symbolic, binary, and core-image files ot NLS and PASS4 (the
output processor).

123

Sec. IV
SOFTWARE SYSTEM

1. Archiving

All files relating to NLS are permanently stored on the Oise
under an archiving system.

In oroer for the f1les to be accessea, they must be explicity
read from the archiv.es to te~porary storage, and any permanent
chances to a file must be recordeO bY writing the updated
version of the file from temporary storage to are hive storage.

NtS UTILTY performs these functions for the user, as well as
ensuring th~ integrity of files written into archival storage.

2. Oompilation

SubPrograms for NLS are ~ritten in tnree different pro,ramm1n~
languages.

The compilation process is Oifferent tor different languages,
and there is in some instances an interaction between one
.vmbolic file and another.

The concern that an NtS programmer nee1 have with tne details
of NLS compilation is minimized by NLS UTILTY.

with NLS UTILT~, any or all of the ~LS suoprograms may be
compiled; the compilation results are reported to the user in a
manner Which he deSignates.

3. Loadini

The loading process for NLS is somewnat complex.

The unlOaded NLS system consists of more than 50 binary files,
and they must be loaded in a certain order ~nd in a certain
r~lat1onshio to each other.

AS in compilation, NLS UTILTY makes it unnecessary for the NLS
programmer to concern himself with the peCUliarities of
loading.

The loaded system consists of 7 core-image files.

While the files are closely related, there is frequentlY value
in loading only one or another of them.

For thiS reason, NLS UTILTY allows a variety of loa~inl
o~tion., inclUding one Which lOads tne entire system, and one

124

Sec. IV
SOFTWARE SYSTEM

Which loads a specific file.

k. Listing

BecaUse of the size Of NLS, the maintenance Of up-to-date
listings is a tedious job.

Functions prOVided in NLS enable the pro~rammer to produce any
number of listings of any or all NLS symbolic files bY a simple
process.

More details on the individual functions and the operation of NLS
UT1LTY may be found in APpendix D.

125

Sec. V
rUTURE PLANS

A. General

V FUTURE PLANS

Future ~irections for work in the ARC will be 1nfluence~ bY force.
originatinl both insi~e and outside the Center.

Force. lenerate~ bY our cumulative experience in the
development of augmentation systems within the center indicate
some new ~irections for our own bootstrapped research effort.

External force. are generated by our participation in the ARPA
Network experiment an~ by an increased awareness for the need
to communicate wi~h the "outside world" -- people outside the
Center whO are enlaged in relatea worK.

The internal forces and those generated by our Network
participation combine to produce a .hitt in our internal re.earch
emphasis towards two specific activltiesl (1) team augmentation
and (2) the development of a system deslgn dlscipline. These are
discu •• ed below under "Shifts in Emphasis."

Increased awarene.s ot the need to communicate and interact with
the outside world will lead toward the develo~ment of a new area
of .pecific concern, ai'cussed below under "Transfer of Results."

The 10als associated with re.earch in team aUlmentation, with the
development of a system design discipline, and with the transfer
of re.ultl are related to one another within tne ARC loal
structure as described below in the seetion entitled "Short-Term
and Long-Term GoalS." .

In the section "Selected Plan. Under other spon.orshi~," we
discuss the System Developer Interface Activity (SYDIA), for whicn
we are seeking additional sponsor.hip. It is intended that thi.
activity will be the primary effort in the area of the tran.fer of
results.

B. Shift. 1n Emphasis

Our ~lans reflect a maturinl shift 1n emphasiS in our research
work. We Plan to shift our emphaSiS toward two baSic activitie.1
(1) team aUKmentat10n and (2) the development of a .y.tem de81gn
discipline.

127

Sec. V
FUTURE PLANS

1. Team Augmentation

Wherea. in the past we have given most Of our attention to
augmenting the individual worker, we are now focussing on the
augmentation of a team of collaborating ~orKers, each of whom
is individually augmenteo.

The high mObility an~ manipulative capability of a skilled
"augmented individual" has a unique potenti~l Which can be
realized when a number of augmented in~ividu.ls join into a
collaborative team. Not only can each individual move very
rapidly through the jOint working files to stUdy them, enter
new information, and update old material, but this power can be
amplified by speCial computer aiOs, conventions, and skills
that directly facilitate the processes of intercommunication
and coordination.

The contemplated efforts in "team augmentation" involve
several facets:

(1) The development Of conventions and procedures for
or~&nizing the working records Of our Plans, desi~ns,
oOjectives, desien principles, schedUles, etc., so as to
live effective mutual "task orientation" to the members
of a team bY ensuring optimal accessibility Of all
information related to the team's Objective.

(2) The special development of a "Dialo~ue support
System" to facilitate the rapiQ evolution of these
workin~ recordS via dialogue amo~g members of the design
team.

(J) The development Of techniques to facilitate
simUltaneous remote collaboration among people at
physically remote on-line terminals (of any sort), by
giving them direct communication with one another.
independent Of their current individual work interactions
with the computer. This inclUdes proviSion, where
feaSible, for the !ollowinc:

(a) Video and/or voice intercommunication

(b) EasY and flexible control Of means for
dU~licating, at any terminal, all or part Of the
type-out or display from anotner terminal

(c) Ready transfer of control of. one terminal's
computer interaction to another terminal" input

128

Sec. V
rUTURE PLANS

devices.

These techniques will evolve within ARC under conditions of
application to our own coordinatea .ystem-development work,
and will be applied over a wide ran~e ot collaborative
actions, from simple question-answering tacilitie. to
complex 4e.1gn work inVOlVing intense mutual participation
by the team members.

AS applicable techniques become effective within ARC, we
will explore their use and value for the tollowing.

(1) Support of Network Information center (NIC) services
SUch al teaching, question-answering, and some types of
query .ervicinl

(2) working collaboration between ARC .taft and per.onnel
at other Network .1tes

(3) Working collaboration between people at remote
Network 'itel, independent of ARC sta!t.

2. Development ot U.er- and service-Sy.tem De.ign Di'cipline

The functional featurel of tbe "user s,stem" -- the larce
collection of computer aid. available to an ARC worker .- have
evolved with some incenuity, a greal 4eal Of cut-and-try
experimentation under actual-u.ale condition., and a certain
.pecial orientation offered by our overall research tramework.
However, up to now there has been a significant lack Of
Objective, methOdical engineerin, de.ien for the overall user
sy.tem.

A u.er-system desien di'cipline 1s defini~elY needed, and we
intend to devote an increa.1nl amount of effort toward
developing such a discipline.

Like the USer .y.tem, the "service system" -- the hardware and
softWare underlyinl the features tor augmentin, u.ers -- has
evolved in an ad hoc fashion.

Here there is also a 'ignificant need for a .y.tem-desiln
discipline.

A .y,tem-design di.cipline would have a communicable,
teachable, generally applicable framework supportine a
coord1nated set of concept., terminologie., prinCiPles,
methOd', and speCial tools.

129

Sec. V
FUTURE PLANS

c. Transfer Of Results

Behind these basic aspects of our work in the ARC (team
augmentation and design d1sciP11nes) lies an essential feature of
our long-term strategy, namelY, the goal of pro~ucing results that
will be of direct value to other group. of system developers -- in
Particular, to those who will be develo~1ng augmentation systems.

This i. in contrast to being of ~irect value to cu.tomers who
will want systems for their own direct use (e.g., to aurment a
manager, a desiiner, an editor, or a researcher).

Display terminals, communication channels, an~ computer service
are de.tine~ to oecome both cheap and plentiful, an~ it is certain
that a very large number Of organizations will want to use them.
They mU8t relY upon system d~velopers wno will need to be capable
of the followin~:

(1) Analysis of system-usage environaents

(2) Design and implementation Of a smooth, powerful, and
coordinated system of user aidS, conventions, methOdS, etc.

(3) Trainin~ and "edUcation" of new users, many of whom will be
completelY unfamiliar with the potential of this new technology

(h) SUbse~uent monitoring of user performance so a. to
implement the changes necessary to track the evolution of
users' attitUdes, concepts, skills, usage habits, and wants.

AlthOUgh it is important to stimulate the eventual customers for
augmentation systems, and to make them aware Of the potential for
these systems in their work, we feel that our results should be
directed primarily toward helping system Oevelopers. over the
ldnger term, we plan to do this ~y pursuing the following goalsl

Item l: Making visible an auvanced, integra~ed system,
operating in a heavy-usage environment, that can orient system
developers to the available cost-value tradeoffs

Item 21 Developing an effective system-design ~iscipline to
aid in developing aUlmen~ation systems, Whether or not these
systems resemble ours

Item 3: Maintaining thorough, highly current, comprehensive
documentation, designed for quiCK location ot relevant material

Item 4: EstabliShing broad-band communication channel. over

130

Sec. V
FUTURE PLANS

Which _ dynamic interchange Of information can take place, so
that a maximum proportion of our knOWledge can be QuiCkly
available in u.eful form

Item SI Offering, a. a model, a complete prototype de.i,n of
an augmentation sy.tem especially de.igned for &ugmentinc
.ystem development.

Thi. system would be compatible with the .ystem-desi«n
di.ciplines described abOVe, and would include techniQues
for Planninl, analyzing, deliening, prolrammin~, debullinc,
documentinl, and teaching.

D. Short-Term and Lone-Term Goals

Our a~proach to the planned work will be as follow,.

(1) Achieve the .hort-term goals impliCit in the team
augmentation activity, in the development Of a sy,tem delien
dilcipline, and in the ta.kl i~.mizeQ under Transfer of Result.
(Section V-C above)

(2) contribute to the long-term loal of directinl our result.
for maximum benefit to future developers of aucmentation
Iy.tem ••

There i. con.iderable overlap between short-term and long-term
coalS.

For instance, in the ca.e of the transfer of results, the baSic
bootltrappinc development Of techniques within the ARC .eem. to
luarant •• a very lood balie bui14up toward Item. 1, 2, 3, and S
of Section v-o; our participation 1n the Network experi~ent
contributes directly to Item 4J and the development of the HIC
lervice will contribute toward Items 1 and 4.

E. selected Plan. Under other sponlor.hip

To pursue directlY the itemized lonl-ranle coall of section v-C,
we currently have other plans under conSideration, coordinated
with tho.e outlined 1n this proposal. These Plan. would be
carried out under other spon.orshiPI

We are formulatinl plan. for what we tentatively call the
sy.tem Developer Interface Activity (SYDIA). We expect to be
a~proachinc representative candidate. durine 1970 with
propolal. for multiple Iponlor.hip. The initial purpole of the
SYDIA will be to develop the fOllowing.

131

Sec. V
FUTURE PLANS

(1) A facility for an effective interchange of lnformation.
Skills, orientation, etc. between ARC and the existlnc and
potential community of augmentation-system ~evelopers

(2) The ability to assist other groups to transfer our
system, or parts of it. directly into another hardware
environment.

Later, with specific individual funding arran~ements, we would
expect to begin developing close interehange relationsnips wi~n
various system-development group'; hopefUlly, some groups would
then adopt our aUlmente~ techniques for system-development
work.

132

G~OSSARY

ARC: Acronym for the AUlmentat10n Hesearch Center at stantor~
Research Institute.

ARPA: Acronym tor the Advanced Research projects Agency.

AUlmentation: Used in this report to in~lcate the extension olhuman
intellectual an~ organizational capabilities by ~eans ot close
interaction with computer ai~s and bY use of special procedural an~
orcanizational technique. desilned to .upport and eXPloit this
interaction.

Center: Another term used tor the ARC.

Console: AS Used here, thiS means specifically a user's control
console tor the ARC'. On-Line Sy.tem (NLS). The console. presentlY
in use consi.t Of a displaY .creen, a keyboard, a "mou'e", an~ a
"keyset."

File: As used here, this refer. to a unified collection of
information held in computer storace for use with the On-Line System
(NLS) or with TODAS. A file may contain text (natural langua~e or
program code), numerical information, IraPhics, or any combination of
these. Conceptually, a flle corresponds rOUghly to a hard-copy
document.

GENIE: project GENIE, at the Univerlity of California at 8erkeley.
developed (under ARPA sponsorshlp) the timesharinc software for the
XDS940 computer used by the ARC.

GODOSt Acronym for GraPhic'-Oriented Document Output SYltem, a means
tor convertinc NLS/TODAS filel to microfilm. GODOS is capable of
handling the line ~r&winls produce~ with the NLS ~raphici capability.

IMP: Acronym for Interface Melsaee processor, a component used in the
ARPA Network.

Keyset:A device conaistine of five keys to be struck with the 1eft
hand in operating the On-Line Sy.tem (HLS).

MOL: See MOL9~O.

MOL9401 A machine-oriented langUace for the XDS940 computer. HOL9kO
(or limply MOL) was developed at ARC.

Houlel A device o~erated bY the right hand in uslnc tne On-Line
Sy.te~ (NL!). The mouse rQIls freelY on any ~lat surface, cau.inc a
cur.or s~ot on the ~1sPlay screen to move corre.pondinllY.

NASA: National Aeronautics and S~ace Administration.

133

GLOSSARY

Network: The Planned Advanced kesearch projects A~ency network of
research computer in.tallations.

NIC: The NetworK Information center. to be incorporated in tne ARPA
network. The NIC will operate as 'a computer-assisted library service
for information pertaining to the network, to be used b~ networ~
members, and will be operated by ARC.

NLS: See On-Line System.

On-Line System (NLS): This is the AROls prlncipal and central
development in the area of computer aids to the human intellect. As
presently constituted. it is a diSPlay-oriented, timeshared,
mUlticonsole system for the comoosition, stUdy, and mOdi!ic.tion of
files (see definition of "file"). A counterpart system, TODAS,
operates from hard-cOPY terminals SUCh as Teletypes and offers many
Of the same capabilities as NLS.

PASSal An output-processinc program used to convert NLS/TODAS files
to hard-copy format for output via one of a number of different
devices.

RADC: Acronym for Rome Air Development Center.

8PL: Acronym for SpeCial-purpose Language. Specifically, this term
i8 used for the SPL's developed at ARC for use in programmin~ NLS.

SRI: Acronym for Stanford Research Institute

statement: The basic structural unit of an NLS/TODAS file. A
.tatement conlists of an arbitrary string of text, pluS ~raphic
information. A file conSists Of a number of statements in an
explicit hierarchical structure.

TODAS: Acronym for the Typewriter-oriented Documentation-Aid SYstem.
TODAS is a counter~art of NLS designed to operate from hard-copy
terminal. such as Teletypes.

Tree Meta: A compiler-compiler system developed at ARC.

TSS: Acronym for Time-Sharing system. specificallY, the system
developed by Project GENIE for the XDS940 computer.

XDS940a The computer facility used by AHO is based upon a Xerox Data
Sy.tems (formerlY Scientific Data ~yatems or SDS) mOdel 940
timsharing computer.

940: See XDS940.

134

REFERENOES

The followinc is a 1i.t ot reterence. .peCificallv cited in th~
re~ort.

1. D. A. Evanl, "Man/Com~uter Aucmentation Sy.tem. tor Qualitative
Planning," Ph.D. TheSiS, Department ot Civil Encineering, stanford
Univer.ity, Stanford, Calitornia (December 1969).

a. "Specification. tor the Interconnection ot a Host anO an IMP,"
R.~ort Ne. 1822, Contract No. DAHC1S-6~-C·0179, ARPA Order NO. 1260,
SOlt Beranek and Newman Inc., Cambr1dee, Ma •• achusetts (May 1969).

,. D. O. Ineelbart, W. K. Ineli.h, and J. F. Rulit.on, "Development
ot a MU1~1d1'Play, Time-Shared Oomputer racility and
oomputer-Auemented Manacement-Sy.tem Research," Final Report,
Qontract AF 30(602)4103, SRI project 5919, stantord Relearcn
In.titute, Menlo Park, Calitornia (April 1968), AD 843 577.

~. D. C. Enlelbart, W. K. Eng1i.h,an~ D. A. Evans, "StUdy tor the
Deve10~ment ot Computer AUlmented Manacement Techniquel," Interim
Technical Report RADC-TR-69-98, Contract 130602-68-C-0286, SRI
Project 7101, Stanford Researcn Institute, Henl0 park, California
(March 1969), AD 8S5 579.

S. D. C. Incelbart and B. HUd~art, "Research on Computer-Augmented
Intormation Manacement,1t Technical Report E!D-TDR-6S-168, Contract
Ar 19(628)-k088, Stanfora Research In.titute, Menlo Park, California
(March 1965), AD 622 520.

6. W. K. Inlli.h, D. C. Enlelbart, and B. HUddart, "Computer-Ai~e~
Di'Play ContrOl," Final Report, Contract NASl-3988, SRI Project
5061, Stantor4 Research In.titute, Menlo Park, California (July
1965), CrSTI Order No. N66-3020k.

7. D. C. Enlelbart, W. K. Engli.h, and J. F. Rulif.on, "stu~y For
The Development of Human Intellect Aucmentation TechniqUes," Interim
PrOlre •• Report, Contract NAS1-S904, SRI Project 5690, Stanford
Releareh Institute, Menlo Park, California (March 1967).

8. D. C.lnce1bart, W. K. EnCliln, and J. F. Rulifson, "Development
of a MUlt1~iIPlay, Time-Shared Computer Facility and
Oompu~er-Auemente~ Manacement-Sy.tem Research," Final Re~ort.
oontract AF 30(602)4103, SRI project 5919, stanford Re.earch
In.t1tute, Menlo Park, Oalifornia (April 1968), AD 8k3 577.

9. D. C. Encelbart, "Human Intellect Aucmentat10n TeChniques," Final
Re~ort, Contract NAS 1-5904, SRI Project 5890, stanford Research
In.titute, Menlo Park, Qalifornia (JUly 1968), erSTI order NO.
N69-16lkO.

135

REFERENCES

10. w. W. Lichtenberger, "ARPAS: Reference Manual for Time Sharin2
Assembler for SDS 930," Document ~o. R-26, Office of Secretary of
Defense, Advanced ResearCh projects Agency, Washinlton 25, D. C.
(Revised 24 february 1967).

11. R. House, D. Aniluin, and L. P. d~ker, "Reference Manual for
NARP, an Assembler for the SDS 9hO," Document No. R-32, Office Of
Secretary of Defense, Aavanced Research projects Acency, Washington
25, u. C. (Revised 21 November 1968).

12. R. E. Hay and J. F. Rulifson, "MOL940: A Machine-Oriented
ALGOL-Like Language for the SDS 940," Technical keport 2, Contract
NAS 1-5904, SRI project >b90, Stanford Research Institute, Menlo
Park, California (April 1968).

13. R. W. Watson, "Introduction to Time-sharin~ Concegts," TeChnical
Progress Report No. 249-68, Project NO. 78140, Sh~ll ~evelopment Co.,
Emeryville, California (January 1969).

l36

BIBLIOGRAPHY

The followinl is a chronological list of documents PUbliShed bY the
AUlmentation Research Center.

D. C. Incelbart, "Special Considerations of the Individual AS a User,
Generator, and Retriever of Information," Paper presented at Annual
Meetinc Of American Documentation Institute, Berkeley, California
(23-27 octOber 1960).

D. C. Encelbart, "Auamenting Human Intellects A conceptual
Framework," Summary Report, Contract A1 49(638)-1024, SRI Project
3S78, Stanford Research Institute, Menlo Park, California (October
1962), AD 289 565.

D. C. Inlelbart, itA conceptual Framework for the Augmentation of
Man's Intellect," in Vistas in Information Handline. Volume 1, D. W.
Howerton and D. C. Weeks, eds., Spartan SOOKS, Washington, D.C.
(1963).

D. C. Engelbart, "Augmenting Human Intellectl Experiments. Conceots,
and Possibilities," Summary Report, Contract AT ~9(638)-102i, SRI
Project 3578, Stanford Research Institute, Menlo park, California
(March 1965), AD 640 969.

D. C. Engelbart and B. HUddart, "Research on Computer-Aulmented
Information Manacement," Technical Report ESD-TDR-65-l6~, contract·
AF 19(628)-4088, Stanford Research Institute, MenlO Park, California
(March 1965), AD 622 520.

w. K. IngliSh, D. C. Engelbart, an~ B. Huddart, "Computer-Aided
DiSPlay Control," Final Report, Contract NASl-3988, SRI project
5061, stanford Research Institute, Menlo Park, California (July
1965), CrSTI Order No. N66-3020k.* .

w. K. Enclish, D. O. Encelbart, and M. L. Berman, "Display-Selection
Techniques for Text Manipulation," IEiE Trans. on Human Factors in
Electronics, Vol. Hrl-8, NO. 1, ~P. 5-15 (March 1967).

D. C. Engelbart, W. K. EngliSh, an~ J. F. Ru11fson, "Stu~y For The
Development Of Human Intellect Augmentation TeChniques," Interim
procress Report, Contract NAS1-S90i, SRI Project 5890, Stanford
Re.earch Institute, Menlo Park, California (MarCh 1967).

J. D. Hopper and L. P. Deutsch, "COPEI An Assembler ana On-Line-CRT
Debugging System for the CDC 3l00,M Technical Report 1, Oontract NAS
1-5904, SRI Project 5890, Stanford Research Institute, Menlo Park.
California (March 1968).

137

BIBLIOGRAPHY

R. E. Hay and J. F. ~uli!son, "MOL9kO: A Machine-oriented ALGOL-LiKe
Language for the SDS 940," Technical Report 2, Contract NAS 1-5904,
SRI project 5890, Stanford Research Institute, Menlo Par~, California
(April 1968).

D. C. Engelbart, w. K. English, and J. F. RulifSOM, "Development of ~
MUltidisPlay, Time-Shared Co~puter Facility and Computer-Augrnente1
Management-system ResearCh," Final Report, Contract AF 30(60~)~103,
SRI project 59l9, Stanford ResearCh Institute, Menlo ?ark, California
(April 1968), AD 84J 571.

D. C. En,elbart, "Human Intellect Augmentation Techniques," Final
Report, Contract NAS 1-5904, SRI project 5d90, Stan!or~ Research
Inltitute, Menlo Park, California (JUly 1968), CFSTI order NO.
N69-1~140.*

D. C. Enlelbart, W. K. ~nglish, and D. A. Evans, "Study for the
Development of Computer-Augmented Management TeChniques," Quarterly
Progress Report 1, Contract F30602-68-C-0286, SRI Project 7101,
Stanford Research Institute, Menlo park, California (october 1968).

D. C. Engelbart and ~. K. tnglish, til ~eseareh Center for Augmenting
Human Intellect," in AFIPS Proceed~ngs, Vol. 33, ~art One, 1968 Fall
Joint Computer Conference, PP. 395-410 (Thompson BOOK Co.,
Washington, D.C., 196d).

D. C. Engelbart and Staff of the Augmented Human Intellect Research
Center, "StUdY for the Development of human Intellect Au~mentation
Techniques," Semiannual Technical Letter Report 1, contract NAS
1-7897, SRI project 7079, Stanfora ResearCh Institute, Menlo ParK,
California (February 1969).

D. C. Engelbart, W. K. EngliSh, ana D. A. Evans, "Stuay for the
Development of Computer Au~mented Management Techniques," Interiro
Technical Report RADC-TR-69-98, Contract Fj0602-68-C-0286, SRI
project 7101, Stanford ResearCh Institute, Menlo park, California
(March 1969), AD 8S5 579.

D. C. Engelbart and Staff of the Augmented Human Intellect ~esearch
Center, "StUdY for the Development of Human Intellect Augmentation
Techniques," semiannual Technical Letter Report 2, contract NAS
1-7697, SRI project 7079, Stanford Research Institute. Menlo Park,
California (August 1969).

*Note: Reports with AD numbers are available from Defense
Documentation Center, Buildin~ 5, Cameron Station, Alexandria,
Virginia 22314. Items marked with an asterisk may be Obtained from
erSTI, Sills Building, 5825 Port Royal Road, Sprinrfield, V1r~1nia
22151; cost 1).00 per copy or 65 cents for micrOfilm.

138

APpendix A
USER FEATURES OF NLS AND TODAS

I The On-Line System (NLS)

A. IntrOduction

NLS, as currentlY implemented, il essentiallY a highly
sophisticated text-manipulation .,stem oriented primarily
toward on-line use; i.e., it is not primarilY oriented toward
prOduction of nard copy, althOUgh fairly sophisticate~
hard-copy formattin~ and output are ineluded in the system.

NtS is intended to be used on a regular, more or less fUll-time
basis in a time-Iharing enVironment, bY user. who are not
necessarily eomputer prOfessionals. T~e users are, however,
assumed to be "trained" as opposed to "naive." ThUS the system
is not aesiJned for extreme Simplicity, nor for
self-exPlanatory features, nor for com~atibility with "normal"
workinc procedures.

Rather, it is assumed that the user has scent considerable
time in learninc the operation of the system; that he uses
it for a major portion of hiS worK; and that he is
consequently willing to adapt his working procedures to
exploit the pOSSibilities of full-time, interactive computer
assistance.

Thus the practice. and techniques developed bY users for
exploiting NtS are as much & SUbject of research interest a.
the development of NtS itself.

Section IV of this appendix is a glosiary of special NLS/TODAS
terminology.

B. work-Station oon8ole

The user Sits at a console Whose main elements are a displaY
screen, a typewriter keyboard, a curlor device called the
"mOU8e," and a set of five Keys operated by the left hand,
called the "KeY8et."

The screen is used for displaying text, in Various formats.
The top portion of the screen (approximately lIS of the
total area) is reserved for feedback information ot various
kina.: tne name of the U8er command mode currently in
effect, a "register" area use~ for various kindS of
feedback, an "ecno register" which ~1splays the last six
characters typed Cy the user, an~ other items which are
explained below.

The keyboard Closely re8emCles a conventiQnal typewriter

139

APpendix A
NLS/TODAS USER FEATURES

keYboard, with a few extra keys for special character~ and
control functions. It is used for typing text as content
for a file and for specifying commands, wnich are ~1ven as
two- or three-character mnemonics.

The nouse is a roughly box-shaped object, about four inches
on i~s longest side, Which is moved bY the right hand. It
is mounted on Wheels, and rOlls on any flat surface. The
wheels drive potent~ometers whicn are r~ad by an A/D
converter, and the system causes a tracking spot ("bU,") to
move on the screen in correspondence to the motion of the
mouse.

The user specifies locations in the displayed text by
pOi~ting with the mouse/bug COMbination. This e11~inates
the need for specifying a location by entering a COde of
some kina. Use of the mouse is very easily learned and
soon becomes unconscious.

on top of tne mouse are three special control buttons,
Whose uses are described below.

The keyset has one key for each fin~er Of the left hand.
The keys are struck in combinations called "chordS," and
each chord correspondS to a character or combination of
characters from the keYboard. There are 31 pOSSible chords;
beyond this, two of the buttons on the mouse maY be used to
control the "case" Of the keyset, givin~ alternative
meanings to each choral Tnere are four oossible cases, for
a total of 124 POSSible combinations.

A simple binary COde is used, and has proved remarkably
easy to learn. TWO or three hours' oractice are usually
SUfficient to learn the most comMonly used chordS and
develop reasonable speed.

The keyset Was developed to increase the user's speed and
smoothness in operating NLS. It was founa that users
normally keep the right hand on the mouse, because the
creat majority of command operations involve a pointing
action; efficient use of the keYboard, however, reQuires
the use of both handS, and Shifting the rirnt hand (and
the user's attention) to the keyboard is distracting and
annoying if it must be done for eaCh two- or three-letter
command mnemonic.

Use of the keyset permits the User to keep his right
hand on the mouse anO his left on the keyset,

llO

Appendix A
NLS/TODAS USER FEATURES

reverting to the keYboard onlY for entry of long
strines of text (typically five or more Characters).

Originally, the key set exactly Quplicated tne keyboard in
function} in the development of NLS, however, certain
control functions have been mace two-stroke operations
from the keyset where they would oe three- or four-stroke
operations from the keYboard. Nevertheless, it is still
pOlsible to operate all of the features of NLS w1thout
using the keyset; thus the beginner may defer learning
tne key set COde until he has gained some degree of
mastery over the rest of the system.

c. structured Text

"Text" is used here as a very general term. A "file" of text
(corresponding roughlY to a "document" in hard copy) may
conSist of EngliSh or some other natural language, numerical
data, computer-program statements, or anything else that can be
expressed as a structure of character strings. Simple line
drawines can also be inclUded in a file.

All text handled by NLS is in "structured-statement" form.
This special format is sim~ly a hierarcnical arrangement of
"statement~," resembling a conventional "outline" torm.

iach .tatement in a tile maY be conSidered to possess a
·.tatement number," Which shows its POsition and level in
the Itructure. Thus the first statement in a file 11
StatementlJ its first IUbstatement is lA, and its next
sUbstatement is lB; the next statement at the same level as
the first il Statement 2; and so forth. Statement nU~bers
have been suppressed in printing out most ot this dOCUment,
but are printed out for the remainder ot this section as an
example.

la)bla Every statement allo bears a "Signature" which
may be displayed on command. The signature is a line Of
text giving the initials Of the user who created the
statement (or modified it most recentlY) and the time and
date When this was done.

1a3b2 A .tatement is simply a string Of text, of any
1enethJ this serves as the balic unit in the construction ot
the hierarchy. In EngliSh text, statements are normally
equiValent to paragraphs, section and sUbsection headin~s,
or items in a list. In other types of text, statements may
be Cata items, program statements, etc.

141

Appendix A
NLS/TODAS USER FEATURES

1a)b2a EaCh paragraph ana heading in thid document is an
NLS statement. Each statement is indentea according to
its "level" in the hierarchY; this paragrapn is a
sUbstatement of the one above, which is in turn a
sUbstatement of another statement. A statement may have
any number of sUbstatements, ana the overall structure
may have any number of levels.

la3c Note that When a user creates a tile, he may let all of
his statements be first-level ones, i.e., 1, 2, 3, e~c. In
this case he will not have to cons1der a hierarchical structure
but simplY a linear list, as is founa in conventional text.

la3cl However, many of the features of NLS are oriented to
maKe use of hierarchy, and the benefits of these features
are lost if hierarchY is not exploited.

la3c2 This is an example of an NLS feature to wnich the
user must accomodatehis methods; however, the experience of
users has been that hierarchical structure very rapi~lY
becomes a completely "natural" way of or~anizin~ text. Many
automatic features of NtS make the structure easy to use:
for eXample, statement numoera are created automaticallY at
all times and the USer need not even be aware of theM. It
is SUfficient, When the User creates a statement, to specify
its level relative to the preceding statement.

D. Use of the System

Text manipUlation is considered to inVolve three basic types of
actiVity by the user: compOSition, stUdy, and modification. In
practice, the three activities are so intermingled as to be
inQistin~uishable.

1. Composition

compOsition is simply the creation Of new text materi~l as
content for a file.

In tne simplest case, the user gives the command "Insert
statement" bY tycing "is". He then points (With tne mouse)
to an exist1ng statement; tne system oisplays a new
statement number which is the logical successor, at the same
level, as the statement pointed to. The user may change the
level of this number UPward by typing a "u" or downward by
typing a "d".

NOTE: Even if no previous statement has been created,

1~2

Appendix A
NLS/TODAS USER FEATURES

the system displays a "~ummy" statement at the top of the
text-disPlay area, and the user points to this dUMMY.

The user then types the text Of the new statement trom the
keyboard. On the screen, the top part of the text-display
area is cleared and characters are displayed here as they
are typed. When the .tatement is finished, the user hits a
CA (command accept) button on the keYboard or mouse, and the
Iystem recreates the di.plaY with the new statement
following the one that was pOinted to.

New material may al.o be addea to existing .tatements by
means of commands such as Insert Word, Insert Text, and
others. properly speaking, these operations are
mOdification rather than composition, and are discussed
oelow.

Simple line drawines may be composed and added to the file
by means of the "vector packace." This is discussed in
another section of this report.

2. S~UdY

The s~UdY capabilities of NLS constitute its most powerful
and unu.ual features. The following is only a brief,
condensed description of the operations that are possible.

a. Jumping

NLS files may~ of course, contain a great deal more text
than can be di'~layed on the screen, just as a document
may contain more than one pale ot text. An NLS file il
thought of al a long "scroll." The process ot moving
from one point in the scroll to another, which
correspondS to turning pages in hard copy. is called
"jumping." There is a very laree family of Jump
Commands.

The oasic Jump command is Jump to Item. The user
Ipecifies it bY enter inc "ji", and then points to some
statement with the mous.. The selected statement is
moved to the top of the screen, as if the scroll had
been rolled forward.

MOlt of the Jump commandl reference the hierarchical
structure 01 the text. Thus Jump to Successor brin«s
to the top of the displaY the next .tatement at the
same level as the selected statement; Jump to

Appendix A
NLS/TODAS USER FEATURES

Predecessor does the reverse; Jump to Up st.rts the
display with the statement of which the selected
statement is a sUbstatement, and so forth.

The Jump to Name command uses a different way of
addressing statements. If the first word of any
statement is enclosed in parentheses, the system will
recognize it as the "name" Of the statement. Then, if
this word appears someWhere else in the text, the user
may jump to the namea statement by pointing to the
occurrence of the name, or by typing the name.

This provides a cross-referencing capahility whiCh
is very smooth and flexible; the command Jump to
Return will always restore the previous display, so
that the user may follow name references without
lOSing his place.

It is also POSsible to jump to a statement by typing
its statement number.

b. View Control

If a file is long, it may be impossible for the user to
orient himself to its content and structure or to find
specific sections bY jumping tnrough it. The principal
solution to this prOblem is provided by level control and
line truncat10~.

Level control permits the user to specifY some number of
levels; the system will then display only statements of
the specified level or higner. Thus if tnree levels are
specified, onlY first-, second-, and third-level
state~ents are displayed.

Line truncation permits specification Of hOW many lines
Of each statement are to be displayed. ThUS if one line
is speCified, only the first line of each statement will
be displayed.

common USage is to use the first two or three levels in a
file as neadings deseribing the material contained under
each heading in the form of 8ubstatements. Thus the user
may start oy looking at a display showing only tne
first-level statements in the file, one line of each.
This amounts to a table of contents.

He maY then select one of these statements and jump to

lh4

Appendix A
NLS/TODAS USER FEATURES

it, specifying one more level. H~ will then see more
details of the content of that part of the file. This
process of "exoanding the view" may be repeated until
the user has found What he is looking for, at which
point he may specify a full diSPlay of the text.

Users soon develop a habit of stru~turing files in
such a way that this process wll~ work well. AS it
happens, SUch a structure is usually a gooa, logical
arran,ement of ~he material, reflecting the
relationShips inherent in the content.

The level and truncation controls are Qesigned so that
the necessary specifications may be maOe with only one or
two strokes ot the keYboara or keyset. These controls
are only the most important of a large set of
view-control parameters called "VIEWSPECs." other
VIEWSPECs control & number of special NLS features
affecting the displaY format.

c. Content Analysis

The NLS content analyzer permits automatic searching of a
file for statements satiSfying some content pattern
specifiea bY the user. The pattern is written in a
special language as part of the file text.

content patterns m~y be Simple, specifying the occurrence
of some word, for example. They may also be highly
complex, specifying the order of occurrence of two or
more strings, the absence Of some text construct,
conditional specifications, etc. Simple patterns are
extremely easy to write; complex ones are correspondingl~
more difficult.

d. "Keyword" System

A "keyword statement" is a named statement which
references other statement. in the tile by name, in a
.pecial format. The name of the keyword statement is
then understood to be a "keyword" applying to the
statements referenced by the keywora statement.

Suppose that a file contains a list of keyword
statements. The User may stUdy this list and select
several keywordS with the Keyword Select command
(pointing to the keyworas with the mouse).

1~5

Appendix A
NLS/TODAS USE~ fEATURES

He may specifY a weiCht from 1 to 10 for each
keywora; if no weight is specified, a weight of 1
is assumed.

When the user gives the Keyword Execute command, a
!earching/scorin~ process is executed. Each of the
selected keyworo statements is scanned for the names
of statements that it references. Each referenced
statement receives a "score" equal to the weight of
the keyword. If & statement is referenceO in more
than one keyword statement, the scores adO.

When this process 1s completed, NLS constructs a
display picture Showing only the statem~nts tnat have
rece1ved nonZero scores, in order of decreasint
scores.

In other words, each keyword is the name of a statement
tnat defines some category of statements 1n the file.
When a user selects and weights Keywords, he is
expressing nis interest in certain of these categories.
NtS then displays all of tne statements in these
catecories, beginning with the "most interesting."

BecaUse the relationships usea in this system are s~t up
explicitly When a user writes keyword statements, the
system is very flexible altnOugh not hir.hlY automated.
It may be regarded as a ~eneralized ~ethod of reordering
lome of the statements in a file on the basis of
user-selected criteria chosen from a supplied list (the
keyword statements).

Note that this reordering is on the displaY, not in
the file proper. The file proper is not affected in
any waY, except that the list of selected ~eywords and
weights is saveQ in the file.

ThiS list may be displayed on command. Individual
keyworas maY be deleted from tne list or their
weights changed, or the whole list can be deleted
on command.

e. Link Jumping

A "link" is a string of text, occurring in an ordinary
file statement, which ~ndicates & cross-reference of some
kind. It may refer to another statement in the file, or
to a statement in some other file, pOSSiblY belongin~ to

1~6

Appen~ix A
NtS/TODAS USER FEATURES

another NLS user. The text of the link is ooth
human-readable and machine-readable, and ~he command Jump
to Link permits the user to point to the link with the
mouse and immediately see the material referred ~o.

An example of a link is (smith, Plans, Longrange:~btn~).

The first item in the link in~icates that the
referenced file belongs to a user named smith; the
secono is the name Of the file; the third is the name
of a statement in the file (a statement number may
also be used); and the string of characters followin~
the colon controls tne VIEWSPECs to se~ UP a
particular view of the material.

The use Of interfile links permits the construction of
large linKed structures made up of many files, and
stUdy of these files as if they were all sections of a
Single document.

3. Modification

A large repertOire Of editing commands is provided for
mOdification Of files. The b.sic functions are Insert,
Delete, Move, and copy.

These functions operate upon Various kindS Of text entities.
within statements, theY maY operate upon single characters,
words, and arbitrary strings of text defined by pOinting to
the first and last characters.

This set of commandS is not restricted to operation
within one statement at a time; for example, a word maY
be moved or copied from one statement to another.

The editing functions also operate at the structural level,
taking statements or sets of statements as operandS. A
number of special entities have been defined for this
purpose: for eXample, & "branch" consists Of some specified
statement, plUS all of its sUbstatements. plus all of their
sUbstatements, etc. A branch can be ~eleted, moved to a new
pos1tion 1n the structure, etc.

AS noted above, the modification activity tends to merge, in
practice, w1th stUdy and composition.

147

Appendix A
NLS/TODAS USER FEATURES

E. Summary

It must be noted that NLS is not a system ~esigned for ~eneral
usage, but a speciali~ed tool designed for a ~roup of people
working on the development Of computer aids to human
intellectual processes. It is for this reason, for example,
that NLS is not really a text·editin~ system or~ented toward
hard-cOPY production, but ra~ner sometting s~multaneouslY more
general and more specialized.

It i& in the process ot m~nipulating a file .- stUdying it,
making mOdific.tions. addin~ new material as an ~ntegrated
process lastin, for minutes or hours at a time and having a
continuity extending for daYS, weeKS, or even years -. that the
r~al benefit of NLS appears.

An N1S file tends to become an evolvin~ entity, SUbject to
constant mOdification, updating, and reevaluation. Its
development may have no clearly defined endpo~nt. It May
cease to exist as a file by being incorporated in another
file, or it may eventually be abandoned; however, it will
probably never be "finiShed" in the usual sense of the word.

Continuous Use ot NLS to store ioea!, stUdy them, relate
them structurally, and cross-reference them reSUlts in a
superior organization of ideas and a greater ability to
manipulate them further for special purposes, as the need
arises -- Whether the "ideaS" are eXpressed as natural
lanlUage, as data, as prograMming, or as graphic
information.

II The Typewriter-oriented Documentation-Aid system (TODAS)

TODAS is a text-handlin~ system designea as a "type~riter"
counterpart to NLS. In principle, TODAS can be operated from a
Teletype or any other sort of hard-copy terminal, including
terminals linked to the 940 through acoust~c couplers and ordinary
telephone lines (as opposed to NLS, Which requires special
transmission arrangements).

The present implementation allows for the use of Telety~e
Models 33, 35, and 37, Terminet and Execuport terminals (the
latter naving a bUilt-in acoustic coupler), and NLS display
terminals.

Each of these terminals has its own character set, no two sets
~eing eXactlY the same except Teletype Mo~els 33 and 35. AS a
result, special-character aSSignments are device-dependent. A

lu8

Appendix A
NLS/TODAS USER FEATURES

TODAS feature allows the user to redefine characters at will to
suit his immed~ate purposes.

The primary purpose of TODAS is for access, within the ARPA
computer Network, to the Network Information Center (NIC) operateu
by ARC. TODAS will give Network users access to files of
information created either with TODAS or with HLS. s~nce files
created ~1th the two systems are 1~entical in ~tructure anrt
format.

TODAS has many of the same capaoi11ties as NLS for the
manioUlation of text; it differs from NLS as required by the use
of a "typewriter" device insteaO of a a~sPlay. Tne important
differences arise from the fact that TODAS has no analog cursor
deviee to correspond to the NtS mouse.

For this reason, editin~ of text within a statement cannot b~
done by means resemblin~ those of NLS, since all of the NLS
editing operands are indicated bY the user with tne mouse.
TODAS uses two alternative methods.

one is tne TODAS "alter" command, which operates very much
like tne "mOdify" command of the ~ED line-editing system
developed by Project GENIE at UC. "Alter" creates a new
statement to replace the original one, by gOing throu~h the
original from be~inning to end; under user control,
characters are (1) copied from the old statement to the new,
(2) Skipped over, or (3) inserted into the new statement
from the keYboard.

The other is the TODAS "SUbstitute" command, wnich allows
the user to specify that a certain strin~ of characters in
the statement is to be found Oy TODAS and replaced with
another specified string.

At the structural level (Where the user wiShes to manipulate
statements ano sets of statements as units),NLS permits the
user to identifY statements by pointin~ with the mouse; TODAS
requires that .tatements be identified from the keYboard.
conSiderable flexibility is provided in this operation.

The user may identifY a statement directlY bY typing its
statement nUmber or its name; he may also identifY it
indirectly by specifYing its structural relations nip to some
other statement whose number or name he knows off-hand.

Indirect specification corresponds to the use of NLS
commanOs such as "jUMP to head," "jump to successor,"

149

Appenc11x A
NLS/TODAS USER FEATUR~S

etc., but with the added feature that relationShips maY
be concatenatect _. thUS the user may, in a single
operation, specify a complex relationRhiD such as the
successor of the first sUbstatem~nt of the predecessor of
a ~iven statement.

A special TODAS capability not yet implemented in NLS 15
"executa.ble text."

A TODAS statement may consist of the 5~ring of Characters
that a user would type from the keYboard to perform som~
complex sequence Of opera~ions. this statement may then be
executed with a special command, and the resul~ will be
exactly as if the user had actually typed these characters,
causing the sequence to be carriea out.

The sequence may, in principle, be arbitrarily complex; an
executable statement might, for eXaMple, contain tne
fOllowin~ sequence:

(1) Load a file whose name is specified elseWhere in the
current file

(2) Search this file with the content analyzer, findin(
statements with a spec1f1ed pattern of content

(3) write these statements out in a temporaY "buf!~r"
file

(4) Reload the original file

(s) copy the statements in the "bUffer" file into a
specified location in the workin~ file.

A special "switch" character may be used in the executabl~
text. When the switch character is encountered, execution
of the text is interrupte~ and control reverts to the
keyboarc1. The user then enters part of the control sequence
manUallYJ When he types the sitch character from the
keYboard, execution of the executable statement resumes at
the point where it left Off. This features affords ~reat
flexibility, since it allOWS part of the sequence to be
specified ahead of ime and part at "execution time."

Besides its primary purpose a8 a Network user's interface to the
NIC, TODAS is used within AkC as a supplemental tool to NLS.

TODAS can be used conveniently for many taSkS that do not

150

Appendix A
NLS/TODAS USER FEATURES

require the rapid disPlay response Of NLS, and has the
advantage of creating significantly less load on the overall
timesharing system. We currently have one clerical worker, wno
is not an NLS user, operating TODAS routinely for entry Of
information and for some limited retrieval work.

AdditionallY, we lind TODAS useful for remote accessing of our
sy.tem. We have made TODAS available to selected consultants,
whO use home terminals with acoustic couplers, and r~gul~r ARC
personnel occasionally dO work from their homes by the Same
means.

The prototype version of TODAS went into service in September
1969; a second Version, with greatly expanded c~paoilities, became
operational early in 1970.

III output Facility

NLS and TODAS both use the same facilit1es for prOducing formatted
hard-copy output from NLS/TODAS files.

The devices in ordinary use at ARC for hard-copy output are a line
printer that prOduces upper/lower-case print of adequate quality
for local use, and a paper-tape-driven automatic typewriter used
fo~ final output of reprOducible copy for reoorts, proposals, etc.

The output-processing program (known as "PASSk") ean be controlled
by the user to a considerable extent. This is done bY means of
"directives" embedded in the file text. The directives can oe
used to reset page parameters, control PaF-e nu~oering. and turn
Various format features "on" or "off."

For exam~le, directives can be used to suppress indentation of
statements or cnange the amount Of indentation, to create
"running hea~s" that are automatically printed at th top of
each page, suppress statement numbers, etc. one of the
directives causes all directives to be suppressed from the
output.

In addition to the line printer and the automatic typewriter,
PASS4 can output a file to magnetiC tape, appropriately formatted
to drive CRT-to-film conversion equipment for production of
microfilm.

In all cases, the user may elect to output an entire file or only
part of the file. In the latter case, he may cause output to
begin at some specified point in tne file instead of at the
beginning, and he may cause the printout to be limited by the same

lSl

Appendix A
NLS/TODAS USER FEATURES

kinds of criteria that may be used on tne display -- i.e., content
analysis, limited numoer of structural levels, etc.

IV Glossary of Special NLS/TODAS Terminology

BRANCH: A s~ecified statement, plus all of 1~s suostructure -
i.e. all of its sUbst.tements, plus all of tneir sUbstateMents,
etc.

BUG: Tne mark on the sc~een which is moved bY tne mOU!e ~nd which
i. used for selecting (pOinting to) entities on the display.

When the bug is "active," i.e. wnen a selectlon can be m~de, it
aopears as an up-arrow; when it is inactive it appears as a
plUS si~n.

CHARACTER: Any letter, digit, punctuation mark. soace. tao, or
carriage return; an indivisible entlty.

CHORD: A combination of keys on the keyset (see KEYS~T).

END: The last statement in any branch; speCified by specifying the
branch.

FILE: A complete tree structure of statements with a Single root
(the origin statement).

FILENAME: The name of a file. It appears as the first word in tne
oricin statement Of an existing file, and must be SUPPlied by the
user in creatin~ a new file.

GAP CHARACTER: Any space, tab, or carriage return.

GCHARI Abbreviation for GAP CHARACTER.

GROUP: A SUbset of a plex, conSisting of all branChes fron one
specified branch to another, inClusive.

HEAD: The first statement in & sublist.

The head is specified by pointing to any statement in the
sUblist.

INVISIBLE. Any consecutive string of gap characters, bounded bY
(but not inclUding) printing characters or the end of a statement a
see PRINTING CHARACTEH, GAP CHARACTER, STATEMENT.

specified bY pointing to any Character in the string. If a

152

Appen~ix A
NLS/TODAS USER FEATURES

single printing character lying between two invisible9 is
pointed to, both invisibles (and the printing Character) are
selected.

KEYSET: The device at the left-hand side of the console. When a
combination of keys (a chord) is depressed on the keyset, the
effect is the same as striking a key on the keVDoard.

KEYWORD: The name of a "keyword statement."

KEYWORD STATEMENT: A statement Which lista, in a special format,
the names of all .tatements in the .ame file that fall into some
arbitrary category.

The "keyword system" of NLS/TODAS commands, operating uoon
keyword statements, performs information-retrieval operations
baaed on the sets of statements defined in keyword stat~ments.

LABELl A string of text Placed in a picture oy means Of a comman~
1n the vector package.

LEVADJI The specification of level When a statement, branch, plex,
or group is newly created or movea.

LEViL' The "rank" of a statement (see STATEMENT) in the hierarchy
of the file (see fIL~).

The level is eQual to the numoer of fields of letters or di~its
1n the statement numberJ thus Statement 3 is a first-level
statement, statement halOg; is a fifth-level statement, etc.
Level is of Ireat importance in underatandin~ the hierarchical
structure of an NLS file.

MOUSEl Tne device at the right-hand side of the keyboard. When it
is rolled around on the tabletop, it causes the bug to move
correspon~ingly.

NAME. If the first wor~ of a statement is enclosed in parentheses,
it is the NAME of the statement.

The command Jump to Name can then be u.ed to Place the
statement at the top of the displaY. This is done bY entering
the name from the keYboard oi keyset, or bY finding an
occurrence of the name as text on the display and pointing to
it with the bug.

ORIGIN. The first statement in & file; it contains information
about the file, plUS any other text the u.er in.erts. It has a

15;

Appendix A
NLS/TODAS USER FEATURES

level of 0, anO hence no statement number.

PATTERN: A string of special-language text in a statement Which
may be compiled via the command Execute Content Analyzer. when
compiled, it produces a program that is ueed by the
conten~-analyzer fea~ure.

PCHAR: Abbreviation for PPINTING CHARACTER.

PLEX: Another name for a SUBSTRUCTURE, used in command
specificat~ons.

A Plex is specified bY pOinting to anyone of its highest-level
statements.

POINTER: A string of up to three ch&racters Which is attached to
some Character in the text with the pointer Fix COMmand.

PREDECESSO~: The statement preCeding a specifiea statement in a
5U6LIS1.

PRINTING CHARACTEk: Any letter, digit, or punctuation mar~.

SOUROE: The statement of Which a specifieO statement is a
!ubstatement.

SIGNATURE: Information stored With a statement (and displayed on
command) giving the initialS Of the user Who created tne statement
(or most recentlY mOdified it) and the time anO date When t~is
occurred.

STATEMENT: The basic structural unit of a file of text in NLS.
FormallY, it is a string Of text and/or pictures wnich is bounded
at the oeg1nning bY the end of the previous statement or the
beginning of the file, and counaea at the end bY the be~lnnin~ of
another statement or the end of the file.

Statements are arrangea In a tree structure or hierarcny anct
are aSSigned "statement numbers" Which indicate their positions
in the structure. Each statement has a number, made up of
alternating f1elOs of 01gits and letters; .the number of fiel~s
indicates the "leVel" Of the statement (see LEVEL).

A statement is specif1eO by pointing to any Character in the
string.

SUBLIST: The set of all sUbstatements of & spec1fieO .tatement
(not inclUding the sUbstatements of the sUbstatements).

lS4

Appendix A
NLS/TODAS USER FEATURES

SUBSTATEM~NT: A statement "X" is called & suostatement of anotner
statement "Y" if it is deeper in the structure than "~," if it
follows My," and if there is no intervening higner-order
statement. "Y" is called the source of "X." The statement number
of "X" will be the same as that of "Y" except that it will have
one more field at the end. The value of this field gives its
ordinal position in a "sublist" of the substatements of "Y."

A sUbstatement is specified oy pointin, to tne source
statement.

SUBSTRUCTUl~E: The set of all sUbstatemente of a specified
statement, ~lus all their sUbstatements, etc. until no more are
found. The set of all branches defined by statements in the
subli.t of a given statement.

SUCCESSOR I The statement following a specified statement in a
sublist.

TAIL: The last statement in a SUblist.

The tail is specified bY ~ointing to any statement in the
sublist.

TIXT: An¥ string of characters within a statement, bounded by
(and includin~) two specified characters: see CHARACTER,
STATEMENT.

TRAILI A set of statements in a file, which can be ~isplayed
sequentially by using the trail feature.

VECTOR: A line in a picture.

VISIBLEI Any consecutive string of printing characters, bounded
by (but not inCluding) gap characters or the end of a st4tement:
lee PRINTING CHARACTER, GAP CHARACTER, STATEMENT.

Specified bY pointing to any character in the string. If a
lincle gap character between two vis1bles is pointed to, then
bo~h visibles (and the gap character) are specified.

WORDI Any consecutive strin~ Of letters and/or digits. bounded by
(but not inclUding) any otner types of characters or the end of a
I~atementl see STATEM~NT.

S~eci:ied bY pointing to any character in the string. If a
Bingle character is pointed to Which is not a letter or digit
and lies between two wordS, then botn woras (and the sin«le

155

Appendix A
NLS/TODAS USER FAATURES

character) are specifieO.

156

Append~x B
THE DIALOGUE SUPPORT SYSTEM (DSS) AND THE JOURNAL

I Preface

For his dissertation study at Stanford university, Dr. David A.
Evans (then. an A~C statf member and associated with the Management
Systems Research Activity) developed the case for augmentation Of
planning teams.

HiS thesis (Ret. 1), written with NLS, is over five hundred pages
in len,tn. In it he presents for the Planning community a broad
descr1otion of ARC'S augmentation approach, aevelopments achieved
by ARC, and extrapolations relevant to the planning community.

As a speCial case stUdy, Dr. Evans integrated the conSiderations
and pOssibilities for the Dialogue 5upport System, as developed
Within the ARC over a number of y~ars and as studied speCiallY by
Evans under this contract.

Selected extracts from his theSiS, SlightlY condensed, are
included below as a gOOd source of relevant concept material aoout
the DSS. These may be considered as trlal design notes; the final
desiens for the various parts of tne DSS, and their order of
development, are yet to be developed.

II BaSic Components of the Dialogue support System (~SS)

The DSS can be considered to have two basic parts: (1) the
Journal, and (2) a set of NtS features especially deSignee to
operate on the Journal.

A. The Journal

one of the most dramatic things NtS enaole. its user to do is
o~erate on and maintain extremely "Plastic" and malleable
record. of ~is tnou~ht and work.

Th1_ ever-Chancing plasticity is the root of basic difficulties
1n extending NLS for dialogue support. When members of a team
are contributing to a plan or deSign, one of the most important
thines is that tne "tar~ets" of their contributions remain
stationary, a. if in a diary. or journal. Ironically, the
de.ign Of a "Journal" to maintain stationary-tarlet recordS of
the transactions of members of a team proved to be innovative
in the NLS enVironment, Whereas it would be "normal" if we were
dealinc with Simple pencil and paper.

The Journal is a special repository for NtS files whicn may be
"sent to the Journal" and no longer modified, or changed in any
way.

157

AppenOix a
THE DSS AND THE JOURNAL

The ~es1ln objective of the Journal is to provide the basis for
evolution of a .~iary for a team, sufficientlY rich to play the
same role as a personal diary Plays When used for record
keeping, and as the oasis for composition, reflection, and
extended memory.

B. Operations Based on Journal Entries

The second component of the DSS is a cOllection of special NLS
features, designed to maKe the Journal useful as the casis for
supporting team dialo~ue.

The Journal provides the team ~embers witn a chronicle of the1r
contrioutions to plans and desi~ns. NLS, as exten1ed for use
as part of the DSS, is a vehicle that (for example) enables
team members to annotate contributions from others, to call for
specific action, to make synopses of recorda relevant to
specific issues, and to make contributions to 'the evolution of
plans and designs that are effiCiently and appropriately
intelrated and connected to the entire record of activity.

At another level, NLS is a vehicle enab11ni team memoers to
"browse" in tne JOUrnal, to arrive quiCklY and efficiently at
an understan~ing of the status of plans and designs tnat are
being documente~, monitored, or evolved tnrough the medium of
the DSS.

Interspersed with this and the previous roles, extended NLS
featUres enable team members to retr1eve information from the
Journal, to mOdify and update this information, and to return
it to the Journal without destroying the or1~inal
contributions.

III Desiln of Arehitecture for the Journal

A. IntrOduction

The boundary between the Journal proper and ~h~ NL! features
that .up~ort it i. not clearly define~. as tnose features
necessary for serVicing the Journal also, indirectly, su~port
the speCial DSS features. However, the discuss10n can be
Simplified by means of this ~iv1.ion.

B. Stationary Targets

The ideal recor~ system tor dialocue support woulO be some
large, central, evolving record that would keep track of the
team's activity as team members eontr1bute~ mo~ifications, n~w

158

Appendix B
THE OS! AND THE JOURNAL

ideas, new designs, soeci!ications, an~ so on, over tirn~. we
have only to consider the problems raised by the basic
file-handling operations of the current NLS to appreciate the
difficulty of creating such an evolvin~ record of transactions.

In any attempt to use files for dialogue purposes, the first
prOblem encountered arises from mult1ple access to files. when
a fil~ is strictly the "property" of its author, dealing with
material for Which he alone has prime responlibili~y, the file
owner can quite easily Keep traCK of its ~evelop~ent.

However, When several individUals maKe active use of a file,
it becomes very diffiCUlt for the individuals to avoid
canceling each other's work or otherWise interfering with
each oth~r. They cannot all access the file simultaneously,
and SO copies are created; soon there are mUlt~ple copies,
each copy containing chan~es and additions made
independently bY various users. It is then impOSSible, in
the general case, to put these copies baCK tocether in such
a way that all the work done on the separate copies is
preserved.

The prOblem is much like trying to hit a moving target in the
dark, and the desired solution is to find some way to ~a~e the
target stop moving -- hence the Phrase "stationary targets."
The eXisting capabilities of NLS and the file-handling
facilities used by NLS are not adequate for achieving this.

For example, it WOUld be possible with existinR capabilities
to give all files a read-only status, so that once a file
was create~ it could never be modified. This would overcome
many of the problems of MUltiple access; however, it would
also 4estroy most of the power and usefUlness of NLS as a
tool for manipulating information.

LikeWise, it would be Qossible to give all files a PUblic
read/write .tatus, permitting any member of the team to
mOdify any tile at will. It can be seen that this would
lead to immediate chaos: a team member working on a file
and wishing to make reference to another file would have no
assurance that the referenced file still contained the same
information as when he lOOked at it last.

The concept of tne Journal is a way to create stationary
targets without the cripPling effect of a blanket read-only
policy or the anarchy of a bl~nKet PUblic read/write policy.
Files "entered in the Journal" have, in effect, read-only
status, but numerous capabilities are adde~ to compensate for

lS9

Appendix B
THE DSS AND THE JOURNAL

this; moreover, the Journal contains only selected files Which
are considered to be "ready" to ~ecome stationary targets.

C. The Journal

The Journal is a pU~lic repository for information of "concern
to the team of users. A file sent to the Journal becomes a
pUblic record. In principle, at least, it cannot in any way oe
altered, or retracted.

The autnor has "gone on record" with the statement made oy
the filets content. He may keep a copy of the file entered
in the JOUrnal, and make modifications and corrections in
that copy, but cannot replace the original file in the
Journal by over-writinR it with the revised version. Both
the original ana revised versions may be entered in the
Journal.

A baSic Journal function is to proviae users with mechanisms
and aids to recognize that "later version." in the Journal
have been entered, and to provide users with features to
ena~le them to retrieve and display the MUlt4ple versions ot
a given file.

In keeping with other (non-computerized) Journals, the only
ordering imposed on Journal entries is chronolo~ical.

In NLS, "Journal" becomes a distinct user name, with a status
similar to all other Users,

However, the Journal aads ·a second distinct domain of files to
the NL! file universe. Journal files have s~ecial features.
They are all read-only. The~ possess two parts -- the
text/gra~hies portions written by their author, and blocks of
data containing information added to tne file after SUbmission
to the Journal.

The first component is totallY frozen: once & tile is "sent
to the Journal" the "maximum" user representation for that
file may not ~e su~sequentlY altered.

But the second component, data blockS, may be changed
through the addition of new data over ti~e.

1. Journal Entries

Although we have been discussing "files" in the Journal, we
should refer to a ~odule Of intormation in tne Journal as an

160

Appen~ix B
THE DBS AND THE JOURNAL

"entry." From the viewpoint of the NLS file system, an
entry is synonymous witn a file. However, we wiSh to
emphasize the notion of collecting information from ~any
files together into one mOdUle, and sendin~ that mocule to
the Journal as an entry. For this reason, we will persist
with the terminolo~y "entry" rather than "file" when
~iscussinl the Journal frOM the point of view of a user
(contrasted to the viewpoint Of the s~stem).

D. Sending an Entry to the Journal

Because Of the existence of two file universes (re~ular NLS
files, and Journal entries) a user is not compelled ~o SUbmit
all of his files to pUblic scrutiny.

He may keep his personal collection of files containing his
notes, plan., special remin~ers, etc., separate from the
collection of files he SUbmits to the Journal.

Within this personal collection he retains tne option of
controlling read and write access by other users. He may,
for instance, have several files that contain
private/confidential information that is of no concern to
the team as a whole.

However, the decision to SUbmit one of his own files to the
Journal is not totally the prerogative of the user himself,
unless all his files have private status.

Files stored under a given user name, with other than
private status, may be entered to the Journal bY any other
user. This is similar to the procedure of having testiMony,
or a speech, or other data, read into the (Congressional)
Recor~.

However. in most eases, Journal entries are sUbmitte1 by the
user who has the file (or component files) stored under his
name, as part of the standard NtS file universe.

For one user to SUbmit another's file to the Journal, he must
first load tha~ file, make a temporary copy, and submit that
copy as a Journal entry as if it was one of his own "normal"
Nt! files.

Entering a file to the Journal involves the following
0~erat1on81

(1) A copy ot the file being SUbmitted is made.

161

Ap~endix B
THE DSS AND THE JOURNAL

(2) That copy is again copied, by the system, a~d
(automaticallY) wr1t~en as a new file un1er the user name
"Journal." It is Riven a new name, which is a unique
"Journal Entry NUMber," and set to read-only status.

(3) The user suomitting this file is given a "receipt" by
tne system, indicating that entry to tne Journal has been
successful.

The relult is that a "shapshot" of the user's file has been
recorded as a Journal entry. The user nas complete control
over the VIEWSPECS coritrolling the view and amount Of the file
submitte~ to tne Journal. For instance, if ne so chooses, the
user may SUbmit only the !irst level state~ents in the file.
Or he may SUbmit only selected statements in the file .- for
instance, only those that satiSfy a specific content pattern.
He may, of course, choose to em~loy no special VIEwSPECS, and
submit the entire file to the Journal. The VIEWSPECs used at
time of entry to the Journal determine the maximum subse~uent
view for that Journal entry.

Subsequent reaaers of the Journal entry may employ all
available VIEwSPECS to hel~ them stUdy the content of the
entry, but are conltrained to this "maximu~" view. This means,
forexam~le, if a file is submitted to the Journal with a 1-1
VIEWSPEC (i.e., only tOD level statements, and only one line of
these), SUbsequent readers can view no more information in that
entry, other tnan the 1-1 View, even if he uses a VIEWSPEC suen
as ALL-ALL (i.e., all statements, and all lines of each
statement).

Thus the result of this entry ~rocedure is the creation of a
new read-only file, a stationary target, under the user name
Journal, with a uni~ue Journal Entry Number as its name.

E. Journal Entry Linkage Systems

Once we have procedures for submitting entries to tne Journal,
the next major need concerns linking the individual stationary
tarlets -- the Journal entries -- into a fabric of
interconnected information.

Interfile links maY be useO to refer to specific locations in a
file from any arbitrary location in another file. The
~ifficUlty in this int~rfile linkage system is that there is no
waY for a user to discover that a particular entity (e.~., a
specific statement) in the file he is reading is being referred
to bY link. embedded in other files, or embeaded in other

l62

Appen~ix B
THE DSS AND THE JOURNAL

statements within the same file. This basic weakness lea~s to
indiscriminate deletion or alteration Of files.

To solve this problem 1n the DSS, Journal entries will have
"backlinks." This means that wnen a link is established in a
file (for instance, a file not in tne Journal), a special
marker will oe written automaticallY by NLS in the appropriate
location of the referent file, indicating th~t a link is
pOinting at that entity.

This marker will give subsequent readers of the referent file a
vi.ual silnal that the markea entity is the target of a link 1n
another file. A new NLS command, JUMP BACKLINK, will make it
po.sible for the user to jump from tne entity in the referent
file "back" to the statement conta1nin~ the link in tne source
file.

There are five cases of file-pair linkages tnat produce
prOblem.:

(1) tinkage between two standard NLS files, A and B, from A
to S, and file A SUbsequently becomes a Journal entry.

PrOblem: The link in A continues to refer to B, and is
unaware of ~ne formation of a Journal entry from B. If B
is deleted, the link points to a non-existent file.

Need: Additional bookkeeping to redirect links to the
appropriate Journal entry if B i8 deleted or otnerwise
mOdified to make the link inappropriate.

(2) Linkage between two standard NLS files, A and B, from A
to' B, and B SUbsequently becomes a Journal entry.

PrOblem: The backlink attached to the referent entity in
. B pOints back to A, and is unaware of the Journal entry

made from A at a later date. If A is deleted after its
copy i8 sent to t~e Journal, SUbsequent efforts to JUMP
BACKLINK on the backlink marker from A in B will yield a
"no .uch" me.sage.

~eedl Additional bookkeeping to redirect the backlink to
the appropriate Journal entry if A i. ever deleted or
otherwise modified to make the backlink inappropriate.
This leads to the concept of indirect linking.

163

Appen~ix B
THE DSS AND THE JOURNAL

(3) Linkages between two stan~ard NLS files, A and 5, frem
A to B, ano ootn A and 8 SUbsequently oecome Journal
entries.

Combination of problems ana needs of Cases 1 and 2.

(4) Linkage from a Journal entry to a stan~ard NLS file
that SUbsequently becomes a Journal entry.

Prooleml Link in tne Journal entry is unaware of the
existence of the Journal entry made from d.

Nee~: BOOKKeeping necessary to redirect tne linK, if
requested, to the appropriate Journal entry if so
requested by the user.

(5) Linkage from a standar~ NLS file to & Journal entry,
and the standard NLS file SUbsequently becomes a Journal
entry.

Same as Case 4 except we are concerned with backlinks
rather than linKS.

F. Other Basic Journal Needs

In our first-pass discussion ot Journal architecture and needs,
we Should consider two additional general needS, archiving and
cataloluing.

ArChiving is necessary because the current system has limited
storage area for files accessible to NLS. The only mass
storage devices presently available in the ARC facility are
malnetic tapes, an~ so, at first, the Journal will have a
sequential archive. All Journal entries have arcnival copies.
The archival system provi~es a back-up to the colon copy of a
Journal entry in case of disaster, and a large tertiary storare
area for those entries not frequently referenced, that do not
have to be kept continually in colon file storage on the disk.

Major arChiving prOblems arise because Of additional data
(inclu~ing bacKlinks) assoc1ate~ with an entry after it is
.ubmitte~ to the Journal.

Files are allocated a finite number of blockS on a
magnetic tape at the time they are written. Data added
after the entry is made may be written in this "slop"
area until it is tilled. ~ut from then on, these Oata
must be stored elseWhere. OnlY minor prOblems arise if

164

Appendix B
THE DSS AND THE JOURNAL

tne additional data can be stored elsewhere on the sam~
ta~e, witn a linK from the original entry to a speeial
file, elsewhere on that tape, associated with that entry,
containing ad~itional data.

However, when the tape is filled, these data nave to be
stored on a separate tape. This causes considerable
diffiCUlty when retrieving the entry and its associated data
from the archive. There is no simple solution to tnis
prOblem while magnetiC tape is the arcnival media. These
prOblems will not arise with random-access mass-storage
media.

The final baSic Journal feature is ~ catalogUe. ObviOUSly, a
Journal reader requires a gUlde to the contents of the Journal,
and this is provided by the catalogue.

The Journal Catalogue will have three principal parts:

(1) Suoject index

(2) Citation list for Journal entries

() Keyword lists.

IV Desiln for Detailed NLS Features to support DS!

A. SUbmission of an Entry to the Journal

1. Entry/Receipt Procedure

When a file is submitted to the Journal, the first
operations are concerned with creating a new Journal entry,
allocating a unique number to that entry, and giving the
sender a receipt. This receipt acknOWledges the entry has
been made sucess!ully, and supplies tne sender with
.ufficient information to enable him to locate an~ retrieve
the entry at a later date. Details of this proce~ure are
illustrated in the following scenario.

a. Scenario: Entry/Receipt proecedure

(1) Assume the user, X, has asseMbled a file (X,Xl) to De
SUbmitted to the Journal.

(2) He activates the new NLS com~and "iNTER FILE TO
JOURNAL tilena~e," enterinl the filename Xl, as the
operand tor this command.

165

Appendix e
THE DS! AND THE JOURNAL

(3) NtS ~akes a copy of the file (X.Xl) as a temporary
file, (JOURNAL.Tl), i.e., unOer the user name "Journal."

(4) Imme~iatelY after making this new file, the system
checks a special recorO, containinQ; a "Journal Entry
Number," taking note of the t1me anO date this Check is
made. Journal Entry Numbers have the form "NNNJMMY.II

"NNN" is a serial number, in the ran~e 1 to z where z
is arbitrarily large.

"J" is the literal character "J," indicating tha.t the
numoer refers to a Journal entry.

"MM" is the month the entry was sUbmitted (e.~., 11 =
November).

tty" i. the year the entry was submitted (e.g., 9 •
1969).

The serial numbers, NNN, are initialized at tne start of
eaeh month.

Example: If 4S62Jl19 1s the last ~ntry sUbmitted to
the Journal in the month of November, 1969 (indicatin~
that 4562 entries were sUbmitted in that month), the
next Journal entry would be allocated the number
lJ129.

Assume that the number in this location at the time ot
this oarticular access was 457Jl19, and the exact time of
access was 1451:30, on 11/13169. Once this numoer has
been secured, the system updates the latest Journal Entry
NUMber in this location (to 457+1 = 456).

The system now copies the file (JOUHNAL,Tl) to a new
tile .- a Journal entry with file name 4S7Jl19. It
.ets the status of this file to pUblic read-only, ana
notes the time and date of completion of making this
Journal entry: 1451:45, 11/13169.

Once thiS Journal entry has been made, the system
returns a message "FILE (X,Xl) ENTERED TO JOURNAL AS
NUMBER 457Jl19 AT 14571~S" to the sender (user X).

This message remains on user X's ai.play until a
eommand accept (CA) is entered. Entering the C4
releases tne file (X,Xl) for normal operations, and

166

APpendix B
THE DSS AND THE JOURNAL

reaisplays the file. User X is now free to continue
his normal work.

2. Data Assembly procedures at Input Time

The time an entry is su~m~tte~ to the Journal is an
opportune time to capture data associated with the entry.
The Journal entry procedure will contain additlonal
operations, in Which the system interrogates the user to
obtain ~n abstract and special descriptor tags for the
entry. The abstract will be used 1n the Journal catalogue.
Descriptor tags will be used for retrieVal of entries.

3. Collection System

Part of the Journal entry system gives the user special aidS
for assembling the entry before actUal suomission. These
are compound operations, combining several simpler ones.
These simpler operations inclUde file merging and the
"executable statement" capability,

B. tinkace.

Special linkinc teatures will be added to NtS to support the
DSS needl. one of the most important classes of these new
features concerns NtS links.

1. "Link" al an NtS Entity

In the current Nt! a linK is a simple text construct; it is
not a special entity, in the way that characters, words, and
statements (for instance) are entities.

There i8 no command DELETE LIN~ in current NLS. A link
may be deleted using tne normal DELETE TEXT command,
requiring two DUg selections, one at each of the link
parentheses,

A special Nt! entity "link" will be added to NtS. This will
be of particular importance in combination with indirect
linking and executable statement operations.

TO inlert a link, the new command INSERT LINK is used. This
command requests user input of data necessary to construct
tne link, and organizes these data in the appropriate syntax
(lee below),

167

Appendix B
THE DSS AND THE JOURNAL

2. New NLS LinK Syntax

a. Additional LinK Data

Additional data will be adaed to the current NLS link
construct. Tnese data are (a) linK type, (0) time and
date the link was first constructed, or last "stamped,"
and (c) improved resolution to identify linK referents.

Link type data are one or more descriotors, bein~ a
simple text name, or COllection Of na~es, indicating
membersnip of a clas., or classes.

Example: Possible link types would be "footnote,"
"comment," "rebuttal," "owner-evans," etc. A link
"owner" could be different from the owner of the file
in Which the link resi~ed. The definition of these
types and their respective mnemonic. would be
determined by agreement among DSS users.

A most important ad~ition to NLS links will be the added
power to refer to AN~ entity. In tne current version of
NLS, a link may point only to statement entities.

With greater resolution for link references, f~r
instance, a link may be constructed to refer
specifically to another link. This is the basis for
indirect linking, to be discussed below.

b. Possible Syntax for New NLS Link Entity

(TYPEiDATE,TIME> (USERNAME, FILENAME,
tOCENTITY:VIEWSPECS)

TYPE is any number of descriptor mnemonics defining the
type of the link. Eacn descriptor would oe delimited by
a comma.

MMDDYY HHHHISS is the date and time the link was created,
or the date and time tne link was last "stamped," in the
format <month, day, year, nour, second).

At any time, the link's owner may initialize the time
and date for the link, using a date-time "stamping"
command.

USERNAME, FILENAME, and VIEWSPEC have the same meaning as
in current NtS linKS.

168

Appen~1x S
THE DSS AND THE JOURNAL

LOCENTIT~ iaentifies a specific ~ar,et enti~y.
Detailed syntax for the LOCENTITY may be arb1tr~rilY
comPlex. Tne following exaMple indicates a simple
statement-namber syntax.

c. Example

(comm,urg,Evans;09/17/69 0014:44>
(Engelbart,plans,m-Plx1)

TYPE is "comm,urg,EVans"

DATE,TIME is "09/17/69 0014:44"

USEPNAME is "Engelbart"

FILENAME is "plans"

LOCENTITY is "rn-P" (the marker UP")

VIEWSPECS are xi, meaning d1sPlay only one line of
top-level st~tements, and switch on the content
analyzer.

This link refers to the entity with marker UP" affixed
("m-pH) 1n ~ne file ":Pl~n." owned oy user name
"Engelbart." It pOints from a comment ("comm") that is
urlent ("urg"), and should be brougnt to the attention of
user name "Evans." The link was last stamped 09/17/69 at
0014:44.

). New VIEWSPECs tor Link.

Increased link complexity demands more oowerful VIEWSPECS to
simplitydisplaying the linK construct, so links do not make
the remainder of the text illegible.

Additional VIEWSPECS will be available tor totally or
partiallY suppressing display of tne link construct. For
instance, the user could control Which fieldS in the link
were displayed at the link's location in a statement (thiS
VIEWSPEC would apply to tne entire display). If the link
was to be totally suppressed, an additional vI~WSPEC would
allow the user to control whether or not special "link
Markers" were displayed at the link's normal location.

A user would interrogate an individual link marker, to
display the particular link represented bY tnat marker,

169

Appendix S
THE DSS AND THE JOURNAL

without disPlaying all links.

4. Links Not ~mbe4ded DirectlY in Text

Because of the "stationary tar~et" conceot an~ tne freQuent
nee~ to attach linkS to existing Journal entries, it will be
necessary to have a new NLS command to enable a user to
associate an NLS link with any selected text entity, but
have that linK displayed only as an overlay to the file,
rather than an integral part of the normal text, Link
markers, similar to tnose used for backlinking, will be used
to indicate the presence of one of these linkS. New NLS
commands will be available to enable tne user to control tne
Qispl~y of the link and markers.

S. Indirect L1nkin~

once it is possible to "aim" a linK at any arbitrary entity,
such as another linK, or at a simple character in a
statement, indirect linking becomes possible. The following
example illustrates detailed operation for indirect linkin~.

Example: The following link is displayed in a statement
of the file (Evans,ddd): (comm;)(Enlelhart,~lans,m·P:).
Note that the date-time field has been suppressed by the
new link VIEwSPECS described previously. This linK is
embedded in a statement (or branCh) constituting a
comment on its DIRECT target.

In the file (Engelbart,plans) there is a marker "PH
affixed to a character just precedin~ another link. as
followsl (P)XX YYY cc (commi)(Evans,rrr,12b:w), This
link is a comment on l2b in the tile (Evans,:rrr).

Use of the new command JUMP INDIRECT LINK, with the
original link as operand, causes the statement 12b to be
OisDlayed under the control of VIEWSPEC "~" (all lines of
all statements).

6. Sacklinks

The most im~ortant adoitions to existing NLS linking
features for use in the DSS are the bacKlink operations.

Backlinking means that a special executabl~ link marker is
depOSited in the referent being pointed at bY a lin~. This
enables a user, viewing the referent entity, to "JUMP
BACKLINK" and dis~lay the entity containin~ the original

170

APpendix B
THE DSS AND THE JOURNAL

link.

The existence of an NLS linK reference to any disolayed NLS
entity will be indicated cy special backlink ~arKers.
Display of tbese markers will be under user control in a
manner similar to link markers, described previously.

A user maY interrogate a backlink marker, to nave data on
the source entity displayed. Execution of tne new co~mand
JUM~ BACKLINK with a bacKlinK marKer as operand displays the
source entity at tbe top ot the diSPlaY.

Indirect backlinKing will also be available. Indirect
backlinK jumping mean. that a user executes JUMP BACKLINK
INDIRECT, and the system displays the statement containing
the link that points at the source of the backlinK marker
entered as the operand for this command.

7. Remote Linking

The basie concept for remote linkinr is tnat of attaching
the "head" of a link to its referent entity, followed by
in'ertion of the link itself in tne source entity, remote
from the referent, at some later time.

This may be accomplished by the fOllowing steps:

(1) Assigning a tem~orary marker to yet another entity,
"link referent"

(2) Depositing that marKer at the ap~ropriate location
in the referent statement

()) Later, While inserting the basic link construct in
tne source statement, calling for tne referent entity
data to be inserted in the linK by using a special INSERT
REFERENT DATA command, entering the referent marker as
operand.

ThiS type of operation dependS upon each user havinl at
least two NLS files open simultaneoUsly. If links an~
baek11nks are considered to be completelY symmetrical, this
proce~ure may be used interchangeably with tne conventional
INSERT LINK command.

171

Appendix B
THE DSS AND THE JOURN~L

C. Copying a Journal Entry

A ~roblem arises when a Journal entry, stored as a colon file,
is copied to a new filename. All baCKlinK markers are
retained, out the links generating tnese markers continue to
refer to the original Journal entry, and dO not point at the
new file. Thus an additional type of backlinK is prOduced
one that has no forward-pointing link associated with it.

The.e asymmetrical backlinK markers make it Possible to jump
to files and entries that referred to the original entry.
They may be deleted if juaged to be inapprooriate for the
new tile.

At the time the new file is created, the system will
automatically insert a link in the file's header statement,
pointing at the header statement in tne Journal entry from
Which it has been copied, and depositing a backlink marker in
the header of tne Journal entry.

D. Ordered Sets

A let il a special new NLS entity -~ it is a collection of
other entities (e.g., Of characters, files, .tatements, linkS,
other lets, etc.). The desiin and implementation of operations
as.ociated with sets is a complex prOblem. The followin,
indicates what seem to be the most promising possibilities.

An "ordered" set nas a speCified order associated with its
member entities. Sets are given unique names for
identification. For convenience, a set will be attached to a
"parent" file, selected arbitrarily by the user. (Evans,XXX)
is the set named "XXX" owned by the user name "'vans." Set
names are similar to statement names, exceot they must he
unique over the entire universe of a user's files -- it is not
pOlsible to have a set named "XXX" associate~ with the file
Icec an~ another set "XXX" associatea with the file :d~d, if
both Ieee an~ '~~d are owned bY the same user. However,
Oifferent user, may own sets with the same name.

1. Admi.sion to a Set

other NLS entities, including other sets, way be "admitted"
to a .et, using the command "ADMIT (entity) TO SiT
(,etname)", and entering tne appro~riate operands.

"Entity" is the NLS entity selected or specified by the
User; ".etname" i8 the name of an existing set -- the set

172

Appendix B
THE DSS A~D THE JOURNAL

to which the entity is to be &amitted.

Not only entities, but specific views an~ specific sUbsets
of entitiel, may be admitted to a set.

!xamplea The first line of the first two levels of
statements in a file satisfying a ~iven content pattern,
may be admitted to a set. The remainder of that file,
unless specifically admitted on anotner occaSion, does
not belong to the set.

2. Direct and Indirect Use of Sets

There are three modes for using sets: "normal," "direct,"
and "indirect."

"Normal" mOde corresponds to normal NLS u'a,e in which the
set entity has the same status as normal NLS entities
(wordl, characters, etc.).

Tnus in normal mOde, the command DELETE SET erases the
let Whose name is given as an operand. Note that the set
1. era.e~, not the members of the set.

In "direct" mOde, operations performed on a set produce
changes 1n the actUal entities admitted to the set.

Example: A (hypothetical) command "DELETE WORD m-scec IN
SET (evans,XJ~ is entered; "spec" is an NLS marKer name.
Upon execution, in direct mode, all words so marked in
the entities that are members Of the set levans,l) will
actually be deleted. That is, they will be deleted in
the same sense as if the user diSPlayed each entity in
the set containing the marker, and manUally deleted the
marked word, followed oy the command OUTPUT FILE.

Entities changed through operations performed on sets 1n
"direct" mOde remain cnanged after the system is returned
to "normal" mode.

In "indirect" mOde, operationl performed on entities that
are member. of a set (bY Using the .et nam~ itself as the
operand) ~roduce changes in those entities ONLY while the
uler views them "through" the set.

For instance, if 1n tne previous example the same
operation was performe~ in "indirect" mode, tne mark~d
words woU10 not be deleted in the files containin~ the

l73

Appeneix B
THE DSS AND THE JOURNAL

marked entities 1n question, but would only "appear" to
be delete~ when the viewer was workin, w1tn the set
{evans,X} controlling the entities he Qould 1isplay.
This appearance would be negated as soon as the user
returned to display any merober-file in normal mode.

). Open and Closed Sets

a. Closed Sets

A closed set is one Whose memberShip il specified
eX~licitlY, i.e., there is a finite fully deterMined
memberShip list associated witn the set. For example,
statement ent1ties might be specified bY a list of NLS
linkS. There are three types of closed sets: frozen,
unfrozen, and mixed.

A frozen closed set retains the exact content and
structure of each entity, in the state in which it was
originally ad~itted to the set. Even if (say) a
member statment is oe1eted, a "copy" is retained in
the set.

An unfrozen closed set retains a finite membership,
but permits each member entity to adopt its latest
actual state. For example, a whole file, containin~
three statements admitted to an unfrozen closed set on
day 1, SUbsequentlY undergoes major modifications. If
the set is used as an operand on day 3 (after the
mo~ifications), the file's state at that time is used.

A mixed set contains entities Whose frozen/unfrozen
statuI is determined individually, In other wordS, a
set may contain some entities whose ori~inal status is
retained, and some whose status is the latest status
of the entity itself.

b. Open Sets

An open set is one whose memberShip is not fixed by
eX~lici~ identification of its member entities, but
r&~her by the specification of conditions to be met to
admit member entities.

For example, an open set's memoershiP may be ~eterm1ned
bY those statements in & given file un1v@rse that satiSfY
a liven content pattern.

174

Appendix B
THE DSS AND THE JOURNAL

On daY 1, this may yield a different membership than on
day 4, if modifications were made to files in that
universe auring this periOd.

h. Set Operations

There are two major and d1stinct classes Of ooerations
assOciated with sets _. operations on sets, and operations
within sets, The distinctions between these classes are
important.

a. Operations on Set.

Operations on lets u.e entire sets as operands.

Si~ple operations on Sets

These operations inclUde the standard NLS operands -
INSERT, DELETE, REPLACE, etc., in addition to a new
class of commands -- set-theoretic operations.

INSERT SET creates a new set.

REPLAOE SET makes it possible tor a user to make a
new let as the union of one or more ex1stin~ sets,
and to simUltaneouslY delete the original sets
(their names, not members).

DELE~E SET era.es the set (but not its members).

Set-Theoretic Operations on sets

There will be new NLS command. to enable a user to
perform set-theoretic operations on sets. The
follOWing set-theoretic commands will be available:
UNION, INTERSECTION, COMPLEMENT, and DIFFERENCE, where
each operation has its usual mathematical meanin,.

b. Operation I Within Sets

Operations within sets have entirely different meanings
trom operations on sets, and from operations on member
entities outside the influence of the set construct.

When under the control of operations within sets, the
conventional NtS commandS take on the following meaning:

MOVE: Change the ORDtR ot member entities in the se~.

175

Appendix B
THE DSS AND THE JOURNAL

DELETE: kemove the ~perand-entity from membership of
the set.

COP~: Include the operand-entity once more in the set
membership (in a different position within the set's
order).

INSERT: Admit tne operand-entity to membership in ~he
set.

REPLACE: Re~lace the member entity selected as operand
with the entity selected. The entity selected as a
replacement mayor may not oe a member of the set.

E. Executable Statenents

An executable statement will be a new text construct, using the
current NLS statement as a basiS. NLS cOMmands will be
pre-specified as a text string in an executable statement.
They will be executed by using the command EXECUTE STATEMENT,
giVing the sta~ement number of the statement as operand.

An executable 8tatement will be the means to effect compound or
concatenated operations, including set oper~tions. The
structure and mean1n~ of the executable statement features can
best be illustrated by examples.

Example: The fOllowing is an executable statement.

(XXX) (evans,sss,12:x) (Engelbart,plans,2Iw) E C CA
{"retrieve "lOR ("Retrieve") ; CA (evans,rrr,:wi) END

(1) By activating the command EXECUTE STATEMENT, and
entering the operand "XXX" (the name of the executable
statement), followed by a sin~le CA, tne first linK
will be executed as if JUMP FILE LINK was used with
that link as its operand.

(2) The user viewa the file (evans,8ss) with statement
12 at the top of the screen, diSPlaYing only the first
lines of subsequent top-level statemen~s in the file.

(3) A second CA causea the second link to be executed.

(4) The user views the file (engeloart,plans), with
statement 2 at the top of the screen, disPlayinc all
lines of all statements.

176

AppenOix a
THE DSS AND THE JOURNAL

(S) A third CA causes the content pattern ["retrieve]
OR {"Retrieve"} to be compiled# automatic~lly followed
by the execution of the last link. Note that the
VIEWSPEC "i" in the last link activates the pattern.

(6) The result is that the file (Evans#rrr) is
searChed) all statements containin~ the text construct
~retrieve" or "Retrieve" are displayed.

Example: The fOllowing executable statement illustrates
more complex operations on sets.

(YYY) [DOD/. [ARMY) UNION [~AVY} I (USA) = [DOD}
INTERSECTION [MIC) IE C CA ("weacon l

') I CA
(Nixon,lUSA),lwi) CA DISPLA~:w OUTPUT FILE ':arsenal l

DELETE SET {~ODJ AND SET {USA} END

(1) The command EXECUTE STA~EMENT i. execute~ with the
operand YYY, the name of the statement.

(2) A CA caUses a new set "DOD" to be formed as the
union of the two existing sets "army and "navy." This
set will be attached to the file containing the
executaDle statement.

() Another CA causes a second set, "USA" to oe formed
as the intersection of the two sets "DOD" anO "MIC."

(5) Another CA causes the content pattern "weapon" to
be compiled, immediately followed by execution of the
link transferring control to the first entity
containing the text con.truct "weapon" in the set
"USA" (which is owned by the user "Nixon").

(5) The system searches all entities in this set, and
displays, under VIEwSPEC contol "wit (all lines of all
statements) those statements containing the text
string "weapon".

(6) A final CA causes this collection of entities to
be output &s the new file ':arsenal.' Another CA
causes both the sets (as distinct from the set
membership) {USA} and (DOD) to be deleted.

Example: The following executable statement illustrates how
the member entities of a set may be displayed.

(ZZZ) DISPLAYcw (HEREANDNOW) END

177

Appendix B
THE DBS AND THE JOURNAL

By giving the command EXECUTE STATEMENT with ZZZ as the
operand. followed by a CA, all entities in the set
"HEREANDNOW" will be disPlayed, un~er VIEWSPEC control
"w" (all lines of all statements).

Example: The following is an example of simple "chain
generation" using an executaole statement.

(AAA) MARKEH=Al CHAIN (evans,8s,1~:2W) (evans.ss,S:~w
(Engelbart,plans,5:wn) END

By ~iving the command ~XECUTE STATEMENT with the operana
"AAA", followe~ by a CA. the diSPlay starts with an
all-all view of the brancn startin~ with statement 12 in
(Evans,:ss). Normal text operations may oe performed on
this branch. If a second marker Al is entered, the
all-all view of the branCh starting with statement 5 in
(evans.:ss) is displayed, ana BO on.

Here a marker is used as the means to advance the view
along the chain. This permits normal text operations
(requiring CAtS) to be performed at each view alon~ the
cnain.

In all examples, the maximum VIEWSPEC o~erative on any
entity is controlled by the VIEWSPEC assigned to the set
member entity itself at the time it was admitted to the set.

F. Entry ~escriptors

Descriptors will be attaChed directly to Journal entries,
either at time of entry to the Journal. or at some later date.
These descriptors will cover at least the following classesl

(1) Subject matter/type of entry

Examples. comment; message: annouuncement; injunction

(2) Urgency

~xamplesl urgent; not urgent

(3) Names of users whose attention is soulht

~xample: attention: evans, engelbart.

(4) Author/source Of entry

178

AppenOix B
THE DSS AND THE JOURNAL

~xample: author: evans;

(5) ~ate/time ot entry to Journal

Example: entered 9/26/09 1006:30

G. Interrogation

Commands will be available to enable a user to interrogate a
JoUrnal entry in order to ask the followinc types of questions:

(a) Which Journal entries or other tiles are pointin~ at the
interrogated entry?

(b) To which sets does the interrogated entry belong?

When interrogating to determine Which entries or other files
are pointing at the entry, the user will b~ able to control the
universe over wnich the searCh for these entries is to be
performed.

For instance, the user may aSK for only those entries that
point at the interrogateQ entry, or are attached oy links of a
specified type, from entries of another specified type, that
were made after a specfied date.

Example: Display Journal entries of type "comment" or
"injunction" that are attached with link types "urgent" ~ade
after 8/12/69 to Journal entry Number XXXXX.

Example: Display those members Of the set [eVans,XXX} admitt~d
to the let after 10/k/69.

H. Miscellaneous New NtS Features

Numerous new NLS features will have a major effect on the
usefulness of the DSS, although they are not designed
exelusively for DSS usage. These features include split
screens, file merging, new VIEWSPECS, and "tlle history."

1. S~lit Screen

The "split ,creen" feature generalizes the characteristics
of the "freezing" option in the current version of NLS.
With a split screen, ~he user is able to display two
different views of the same file, or two Qifferent and
independent views Of any two files, one on each si~e of the
screen. He will be able to work with the ~isplayeO

179

Appen~ix B
THE DS! AND THE JOURNAL

information in each "win~ow" as if it was a separate and
in~epen~ent file. The success of this option depends upon
havin~ more than one file open for a ~iven user at any ~iven
time. The split screen will make interfile e~itin~, and
more ~omplex file merging, easy and useful.

2. File Merling

The split screen and other new features ~ake the capability
for merging any two files to torm a third composite file a
necessity. In the current version of NLS, only the simplest
file mer~inl operation .- appending -- is possiole. More
usefUl tile merging WOUld include the facility to interleave
statements in a soecified order, and to transfer pictures
trom one tile to another.

3. File ~istory

Keeping track Of a file'S history becomes more important in
the Journal and DSS than in current NLS operations. For
thiS reason a new NL! feature will be a~ded to capture all
necessary identification information from the source file
every time a file is output or copied. This information may
be CODie~ directlY from the header statement of the source
file, an~ written into the header statement of the Object
file at the time it is created.

EXample: The fOllowing is an example ot a standard file
header.

:XVIII, 9/26169 120~130 DAE;

Here :XVIII is the filename; 9/20169 1209130 is the
date and time the file was last output to the name
:XVIII, and DAE are the initials of the file owner.

Suppose tne file :XVIII is output to tne new file name
":CHAP18".

After the operation is completed, the header of the
object file (:OHAP18) reads as follows:

:CHAPlb, 9/26/69 1211:4~ DAEj (evans,XVIII,:)
9/26/69 1211145;

The system has rewritten the source file" header data
as an NLS link fOllowing the Object file"
conventional header data. Note that as later Versions

180

Appendix B
THE DSS AND THE JOUR~AL

of CCHAP18 are made, data preced1n~ the first
semicolon changes. w1th sUbsequent copy operations,
or output file operations to new fllenames, these dat~
from the file :XVIII will be retained in the new
file's header, along with all records of subsequent
operation ••

I. Cataloguing

A catalo~ue of all entries in the Journal will oe maintained,
providing the main conventional aid for retrieval of these
files.' The catalogue will have tnree main sections: a SUbject
indeX, a keyword list, and c1tat10ns for Journal entries.

The SUbject index contains a hierarchical structure of the
SUbjects describin~ JoUrnal entries, with their respective
keywords attached. A user may sean this index and select
keywords attached to the SUbjects that meet nis needS.

The Keyword List will contain keywords (as used in the
SUbject index), followed by linkS pOinting at appropriate
Citations.

The citation for each Journal entry is stored in tne
catalogue by order of Journal Entry Number. Each citation
will constitute an NLS branch, with the Journal Entry
Number, and link to the cited Journal entry, as the
first-level statement of each branch.

Each such citation branch will contain the entry number,
the source filename, the name Of the user 'Ubmitting the
entry, the date and time when the entry was SUbmitted,
and a lilt ot descriptors for entry.

These data will be stored in a manner tnat make. them
usetul for further NLS operations. For example, the
data on source filename is stored in tne form of a
conventional NLS link referring to the source file.
Similarly, each catalogue entry contains a link to tne
Journal entry itself.

1. Retrieval System Based on the Journal Catalogue

The existing NLS keyword retrieval system will be extended
for use as the basic retrieval tool for operations on the
catalogue. The major draWback of the current system is that
lilts of citations can be assemble~ only from within a
single file.

181

Appendix B
THE OSS AND THE JOURNAL

For the DSS, this system will be modified to operate across
an arbitrary number of files. Such operations, of course,
depend upon other features discussed previously (e.g., file
merging, the capability Of having more tnan one file opp.n 4t
any instant, etc.).

The standard keyword atatement, which currently uses
statement names as keyword arguments, will be changed to use
full Nt! links as keyword arguments.

Example:

(key]) This is keyword three * (JOUHNAL,135J99,:)
(Journal,146J99,:)

The user will then have the fOllowing options:

(1) Assemble the citations derived from a selection of
keywords from one or more files (Which may themselves oe
stored in several catalogue files), as a list in o~e
f~le, and use the standard JUMP LINK command to view the
actual Journal entries cited, one by one.

(2) ASk for consecutive display of t~e actual Journal
entries citea, under the control of the VIEwSPECS in the
keywor~ referent l1nks. Consecutive entries cite~ would
be diSPlayed as if part of the same file.

This operation could be accomplished oy special new
NLS machinery, or by comb1n1ng tne capabilities of
executable statements and indirect linking.

In all cases, all current NLS keyword OPtions, includin~ the
allocation of weights to KeywordS, will be available.

182

Appendix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

I Intro~uction

This appendix is an addendum to the previous Haroware Reference
Manual, Appendix ~ of Ref. 3. It consists of a prolrammer's
reference manual for the following equipment:

A line printer (replacing the line-printer description
contained in the previous manual)

An inter-core controller for transfers between 9~O core and
external core ("Xcore")

A Network interface connecting the 940 to the ARPA Network via
the Interface Message Processor (IMP)

A preCision clock.

II Line Printer

A. General Information

The printer is a Data Products Model M600-11A with 96
characters anO a printing speed of about 340 lines per minute.
It will accomodate paper from 2-1/2 to 18-1/2 inches in Width.
Character spacing is 10 per inch and line spacing is 6 per
inch. The maximum nu~ber of characters per line is 132.

The printer is contro11ea by EOM instructions and a "unit
reference cell" (URC). The URC points to a print ouffer
resident in core that contains data and control codes. An SKS
instruction indicates "printer readY" ano an interrupt
indicates "end of operation," either normal or error. Error
conditions are detected by the controller and an error code
written in the URC.

The cells immediatelY following tne URC in core are called
"URO.l," "UHO+2," etc.

Fixed core aSSignments for the printer arel

URO
Interrupt

B. EOM and SKS Codes

The EOM codes are:

20230106
20230406

Initiate
Reset.

10
211.

Appendix C
REFERENCE MANUAL FOR PERIPHhRAL EQUIPMENT

The "initiate" EOM starts the printer with the word and
character designated by the contents of the URC at the time
the EOM is given.

The printer controller continues to process tne printer
cuffer until an illegal character or end-ol-bufter code
is read, or until a "reset" EOM is issued.

An "initiate" EOM ,iven While the printer is bUSY is
ignored.

The "reset" EOM immed1ately terminates all printing and
returns the system to a reset state.

A "reset" EO~ ~iven While the printer is d1sconnected is
ignored.

One SKS code is provided for the printer. The COde is

04030106 Skip on readY.

This SKS Skips if the printer is ready to begin operation.
If the printer is not ready, an interrupt is issued when it
is made readY.

c. Unit Reference Cell

The URC associated with the printer system has the following
format:

o 3 8 23

-----------------.-----------~-----------.------error address

Bits 6·23 contain the absolute address of the first
character of the line to ce printed (or currently being
printed).

Bits 8-a3 denote the absolute word address.

Bits 6-7 indicate the character in the word.

A 00 code is the leftmost character. The 11 COde is
not used but is interpreted as the leftmost cnaracter.

After a line has been successfully printed, the address

Appendix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

in the URC is uPdated to point to the first Character of
the next line.

Bits 0-3 are written by the controller with an error code
when errors are detected. Error conditions anQ codes are
described below.

Bits U-S are ignored by the controller.

D. Print Buffer

The print Duffer is a contiguous sequence of words in core that
is interpreted by the printer controller a8 three 8-bit
characters ~er word.

Characters in the print buffer may be either data characters or
control characters.

The control characters are:

373 (NOP) No operation
375 (EOB) End of print buffer
376 (EOL) End of line
377 (NOP) No operation
01$ Snift t.o lower case and lock
035 Shift to lower case for one character
ASS Shift to upper case and lock.

An EOL or EOB code causes the current line to be printed
with any characters already in the line left-justified.

An EOB code generates an interrUPt to the computer after
the line is printed and any spacing action has been
completeCi.

The three case-shift codes are self-explanatory. They
can appear anywhere within a line of data characters and
cause the indicated case-shift actions.

In addition to the explicit control characters, the first
character in each line is interpreted as a paper-feed code.
These codes are as follows (the word "space" here refers to
line spacing, not the "space" character).

020 Space 1 line
021 Space 1 line
022 Space 2 lines
023 Space 3 lines

18S

APpen(Six C
REFERENCE MANUAL lOR PERIPHERAL E~UIPMENT

024 Space 4 lines
025 Space 5 lines
026 Space 6 lines
027 Space 7 lines
000 Space on channel 0 of format tape
001 space on channel 1 of format tape
002 SJ)ace on channel 2 of format tape
003 Space on channel 3 of format tape
004 Space on channel 4 of format tape
005 Space on channel 5 of format tape
006 Space on channel 6 of format tape
007 Space on channel 7 of format tape.

The action ind1cate~ by the space code takes pla.ce before
tne line i. printed.

TWO succeslive spacing operations can be caused by
sending one of the above space codes fOllowed bY "end of
line" (376), then another apace code.

If no spacing is deSired, as wnen printing the top linp
on a page, a no-op co~e (377) snould be sent in the first
pOlition of that line.

Channell Of the format tape is used for "top of form."
The number of linea on a page is normally set to 60.

Except for the first character, tne print Duffer contains
onlY printing characterl (1nclu~ing space characters) and
control characters. Any otner Character codes in the print
butter are considered illegal and cause an error condition.

print buffer. may be a. large al deSired, but no relocation
mappinc is provided. If a bUffer is to extend across a page
bOUndary, the software system must ensure that the two pages
are consecutive in memory.

E. Error Conditions

On the ~eteetion of any error, an interrupt is issued and the
error COde i. written 1n the URC.

The error code. and conditions detected are:

000 NO error
lOl Illegal character code
110 printer not ready
111 Excessive time.

l86

Appendix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

Zeros in the error-code bit. ot the URC after aM interrupt
inQicate _ normal interrupt (~rinter made ready or EOB).

The 101 code indicates that an illegal cnaracter has been
detected in the print buffer.

The 110 COde indicates ~rinter off-line, paper out, or
ribbon failure.

The 111 code indicates that in a normal orint1nl operation,
excessive t1me hal been required lor printing a line.

The timer is normally set for 2.5 secondS. ThiS error
indicates printer failures not detected bY other printer
error circuits.

187

Appen01x C
REFERENCE MANUAL FOR PERIPH~RAL EQUIPMENT

F. Character OOdes

The printer character cOdes are given below. The case printed
i8 determined by the Shift-control cna.racter.

CODE UPPEH LOwER CODE UPPER LOWER

000 0 040 un<1erbar
001 1 041 J j
002 2 042

:'1

K k
00) 3 043 L 1
004 ~ 04lJ. M m.
005 S 045 N n
006 6 046 0 0
007 7 0u.7 p p
010 8 050 Q Q
011 9 051 R r
012 null 052
013 II 053 ;I
014 , U5lJ. * +
015 null 055 null
Ol6 > 056
Ol7 null 057
020 space 060 null
021 A a 061 I ~
022 B b 062 S s
023 C c 063 '1.' t
024 D d 064 U u
025 E e 065 V v
026 F ! 066 W w
027 G i 067 X x
030 H h 070 'I. y
031 I i 071 Z z
032 07';.
033 • 073 , @

034) } 074 ((
035 null 075 i
036 < .. 076 \ ,I
037 ? # 077 overbar

188

AppenC1ix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

III Inter-core Controller

A. General

The in~er-core controller controls transfer Of data between
ex~ern .. 1 core 'often referred to as "Xcore") and ~hO core. It
hal two mOdel of operation I

(1) A block transfer mode allows the transfer of bloCKS of
up to 2048 words ~etween any two locations in the two cores.
Thi. transfer can ~e between two locations in the same core.

(2) A Short transfer mode allows the transfer of Short,
fixed-length bUffers between fixed locations in 940 core and
external core.

Fixed core ass1cnments for the inter-core controller are,

URC, 940 core S3
Fixed transfer address, Xcore 100
Interrupt 215.

B. EOM In.tructions

Four EOM instruction. are used for the inter-core controller.

The EOM codes are:

202)0103
2023020)
202)0303
202)0403

Sloek transfer
Xc ore to 940 fixed transfer
940 to Xcore fixed transfer
Disconnect

The EOM actions are:

Slock Transfer -- This EOM starts a variable-length
transfer. The num~er Of words to be transferred and the
starting addresses in source core and destination core
are determined by the contents of three consecutive 940
memory cells startinl with the URC. source and
destination may be in the same core.

Xcore to 9,0 fixed transfer -- This EOM initiates a
transfer of a fixed number of words beginning at a fixed
address in Xc ore to a location ~eginning at the URC in
9kO core, starting witn the URO addres. in the 940
computer to a fixed starting address in the external
core.

Appendix C
REfERENCE MANUAL FOR PERIPHERAL EQUIPMENT

The number of words is determined b~ a card in the
controller and may be set to any number between 1 and
7. Tne number currently used is 3.

940 to Xc ore fixed transfer -- This EOM initiates a
transfer of a fixeo number of words (same number as
above) from 940 core to xcore. with the same fixed
locations in each.

Disconnect -- This EOM terminates any transfer in
progress and places tne controller in the disconnect
state.

C. Unit Reference Cell

The URe and the next two cells have the followin~ coding when
used to control a block transfer operation I

o 3 23
...... ----_._----------------------------.-----.
10 0 0 11 : :

--.. -.--~-----.--------------.-----.---... -----. ID I word count

Bit. 0-3 contain an identification code. If any other code
is detected, the controller disconnects and writes an error
code in the URC.

Bit 5 is set to 1 if an interrupt is desired at the
completion of the transfer cycle.

Bits 8-23 indicate the number of words to be transferred.

Bits 4 and 6-7 are ignorea.

The cell URC+l contains information relatinl to tne destination
of the transfer. It has the fOllowing format:

o 3 S 6 23 ---_._--.. -------------.--... _------------------
10 0 0 11 a :
----------------_.--------.---------------------

ID destination address

Bits 0-3 contain an identification code as above.

Bi~ S specities the destination core. A 1 indicate.
tran.ler to 940 core and a 0 indicates transfer to Xcore.

190

Appendix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

Bi~. 6-23 de.ignate the fir.t address in the de.tination
core.

The cell URC+2 contains information relating to the source tor
the transfer. It has the following format:

o 3 S 6 23 --------.-._--------------_.---_._._._---_._.-.-
:0 0 0 11 : Z
--------------.------_._--------_ .. _.-._---.... -
check source a~dress

Bit. 0-3 contain an identification code a. aoove.

Bit S specities the source core. A 1 indicates transfer
from the 940 core and a 0 indicates transfer from Xcore.

Bit. 6-23 designate the first address in the source core.

D. Exit Routine

At the end of any transfer, or when an error is detected, the
exit routine i. performed. This routine writes the URO and
then places the unit in it. "disconnect" state. The URO is
written with the following format:

o 2 3 7 23 _--.. ------_ .. _-------_ .. -----.-----.. -----
10 0 0 0 01 --.. -.-_.--------------------------------_.--._.

e~ror word count

Bit. 0-2 contain an error code. The error. are reported a.
follows:

Bit 0 i. set to 1 if any error 11 detected.

Bit 1 i. .et to 1 for an error in any of the URC
loeation. (incorrect ID code detected).

Bit 2 is set to 1 if the contrOller Waited more than 1
millisecond to gain access to the external core.

Sit. 3-7 are set to O.

Bits a-a) contain the contents of the Word-count regi.ter
at the end Of the transfer. For a successful t~an.fer
thi. will be O.

191

APpendix 0
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

An interrupt is issued at the end ot the exit routine if called
for by the URO, or if any error has been detected. No
interrupt is issued tor the short transfers.

IV Network Interface

A. General

The network interface provides communicatio~ between the 9~O
and an Interface Message Processor (IMP) on the ARPA Computer
Network. The interface operates from messa~e buffers in 9~O
core. A "linked-buffer» scheme permits flexible memory
allocation.

The interface contains two independent logic systems, the input
contrOller and the output Qontroller. The former receives
information trom the Network, and the latter sends information
to the Network.

As seen oy the programmer, these two units are almost
identical in all aspects except the direction of data flow.
Differences betWeen the two are noted in following sections.

The two channels are independent in action, except that they
share the same channel into memory. Thus they cannot make
simultaneous core accesses.

Fixed location. a.signed to the Network interface are:

Receive URC
Send URC
Receive interrupt
Send interrupt

B. Communication. with the IMP

70
212
213.

60

Data moving between the Host and the IMP is in the form of
lerial bit strings with a maximum length of 8096 oits and a
Maximum rate of one million bit. per second.

Details of the communications protocol between the interface
and the IMP are covered in Ref. 2.

c. EOM Instructions

EOM Cede. are:

20230104 Host up

192

Appendix C
REFERENCE MANUAL 'OR PIWIPHIRAL EQUIPMENT

20230204
20230304
202)0404

Initiate receive
In1~iate send
Rese~.

The "hOlt-Up" EOM resets the "host-uP timer." This is a
timer in the interface controlling a signal ~o the IMP
indicating that the hOlt computer il UP. If the timer is
not re.et at least once a second, indication is given to tne
IMP that the hOlt is down.

The "initiate receive" 10M ena~le. a "receive" operation.
SUbseQuent to tni. 10M, data received from the IMP will be
written in tne "receive" buffers. The EOM must be given for
each messale received. The controller May be left in the
"receive enabled" state indefinitelY, waitinl for a messaee
from the IMP.

The "initiate .end" EOM initiates a "send" operation. Data
contained in the "send" bUffers will be immediately
tran.mitted to the IMP. A "Iend" 10M must be given for each
messale to be transmitted.

The "reset" EOM cause. both the controllers to immediately
abort any operation in progress and go to the "reset" state.

D. Linked Suffer,

Linked buffers are u.ed for both ".end" and "receive" messages.
The format of the linked buffer is as follow.:

The first word of the buffer contains the byte count for the
buffer.

If the byte count is zero, the controller loes directly
to the next buffer.

A bloek Of n bytes to be tran.mitted w111 OCcupy the nl3
core addres ••• immediately followin« the byte count,
.ince there are three a-bit byte. in each 24-bit 940
word. When the la.t byte aoes not fallon a 940 word
boundary, the action depends on the ooeration:

In & "send" operation, byte. remain1nc in the la.t
word are .ilnored.

In a "receive" operation, bytes remaininc in the la.t
word are filled with 0', bY the controller.

193

APpen~ix 0
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

The last word of the bUffer conta1ns the absolute a~~ress of
the next buffer.

If the last word contains all O's in tne a~dress field,
no more buffers are processed an~ the oDeration is
terminated.

The first buffer of a "send" or "receive" message always begins
2 wordS after the "sen~" or "receive" URC, respectivelY (there
are two UROs •• see below).

The maximum message length as determined ~y the IMP is 8096
bits.

E. The unit Reference Cells

There are two ORC locations for the interface, one for "send"
and one for "receive." There are two words at each location,
followed by tht first message buffer (see above). The URCs
have the following format:

First Word:

012 s 23
.-.--_.----------.-._----._-----.---------------
• • • •
.---

E F N end Of data

Sit 0 •• Errorl This bit is set bY the controller when
an error is detected (see below).

Bit 1 .- List full, This bit indicates that the linke~
bUffers following the URC contain valid data. Its
interpretation depends on the operation.

on a "send" operation the controller expects to find
this bit a 1, indicat1nl valid data to be transmitte~.

If the controller finda this bit 0 When a "send" ie
initiated, the "need-new-list" bit will be set to 1
and a "send" interrupt issued.

When the "send" operation is com;leted tha
controller resets this bit to O.

On a "receive" operation the controller eXDects this
bit to be a 0, indicat1nl that the buffers are ready

Appendix 0
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

to receive & message.

It this bit i8 foun~ to be a 1 when a "receive"
operation is begun, the "need-neW-list bit" will be
.e~ and a "receive" interrupt issued.

This bit i8 let to 1 bY the controller at the
~ompletion ot a "receive" operation.

Bit 2 •• Need new list: Thi. bit is set by the
controller to indicate that the "list-tUll" bit was not
correct at the beginning ot an o~eration •

Bits 5-23 -. End of message: These bits are set by the
controller at the end of a ".en~" or "receive" operation.

At the end ot the "8end" operation these bit8 ~oint to
the la8t word of the la.t buffer tran8mitted. This i.
the zero pointer that terminated the transmislion.

At the end of a "receive" operation these bitl point
to the last word tilled witn oat a trom the received
me'.ale.

Bit8 3-k are. not u.ed.

second Worda The lecond word (URO+1) contain. error codes
and is delcribed below.

F. Interrupti

Two interrupts are u8ed bY the controller, one for "send" and
one for "receive."

At the normal or error termination Of either a "send" or
"receiVe" operation the respective interrupt is issued.

G~ Error.

Error. are detected by the controller for both "send" and
"receive" operation., anO error COde, are written into the
word. fol1owinl the "Ieno" and "receive" URO. respectively.
The "IMP down" error applie, to both "lend" and "receive," but
1. reported a. a ".end" error only.

195

APpen~ix C
REFERENCE MANUAL rOR PERIPHERAL EQUIPMENT

"Receive" errors are reported in \he word immediatelY
fOllowing the "receive" URO. The errors and bit locations
in the error word area

Bit 19 •• Message too longl The message has exceeded the
maximum length of 8096 oits.

Sit 20 _. IMP does not respond: Durinl the transmission
Of a mes.ale the IMP pause. for more than 100
millisecond' between bit ••

Bit 21 .- Li.t space exceeded: Space 1n the linked
bUffer. has been eXbaulted and there are more bits in the
message from the IMP.

Bit 23 .- IMP was down: Prior to this message the IMP
WI. down, aSindieated bY the "IMP·down" line.

"Send" errors are reported in the word immediately following
the "send" URC. The errors and bit positions are:

Bit 19 .- Message too longl The messale has exeeeded the
maximum length Of 8096 bits.

Bit 20 •• IMP does not respondl Durinc tne transmission
ot a message the IMP pauses for more than 100
milli.econds between bits.

Bit 22 •• IMP-ready line 1s down. Thi. error is reported
only when the controller i. active •• that is, after a
".end" or "receive" 10M hal been issued and before the
completion Of the iftdicated operation.

Bit 23 -. IMP was down: Prior to this message the IMP
wa. down as indicated by tne "IMP·down" line.

V Prec1.1on Clock

A. General Information

The ARC elock system uses a high-stability Hewlett-Packard
Model 10S8 quartz oseillator to drive two aecumulators. The
aecumulators are:

(1) An ablolute-time accumulator with an output of year,
month, day, hour, minute, and seeond, UPdated once eaeh
second

196

Appendix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

(2) A relative· time accumulator Which consists of a 24-bit
binary counter, Thi. counter is advanced once each
millisecond,

The Short-term jitter of both the absolute and relative
accumulators il 10 to 20 milliseconds. This jitter is caused
bY tne variation in the amount ot time required to access the
940 core memory.

The error caused by the oscillator ~r1ft rate is le~s than 1
second every 2S0 day ••

The initial settinc of the absolute time is accurate to witbin
1 .econd.

The pro,rammer hal no control over the operation of this unit.
Time 1. written in core Whenever the .,stem is operative.

B. Word Format.

The absolute time is written once each seeond into two wordS of
the 940 com~uter.

The format of the tir.t word ls:

o 7 8 15 23
--
.-.--.. -.--------.--.-----------------~--.--.--. month day year

Bits 0-7 contain the month code 1n strailht binary w1th &
ranee ot 1 to 12.

81t. 8-1S contain the ~ay code in straiCht binary with a
ranle ot 1 to 31.

Bit. 16-23 contain the year COde in .traight binary with
a ranee of 9 to 99.

The format of the second word 1.1

o 7 8 15 23 •.•........ _ ..•.....•.....•.... -...... __ -..
-------------------._.-._._-------------------.-

hour minute second

197

Appen~ix C
REFERENCE MANUAt FOR PERIPHERAL EQUIPMENT

Bits 0-7 contain the hour code written in straight binary
with a range of 0 to 23.

Sits 8-1S contain tne minute code written in straight
binary with a ranee of 0 to 60.

Bits 16-23 contain the second code written in straight
binary with a range of 0 to 60.

The relative t1me is written once each millisecond into a fixed
addre,.. Bits o-a3 contain tne relative time in straight
binary code with a ranle of 00000000 to 77777777 (octal).

198

APpendix D
TiCHNICAL DESCRlpTION OF NLS

Content.

I Introduction •••••••••••••••••••••••••••••••••••••• 20l
II Utility Rout1nes ••••••••••••••••••••••••••••••••• 203

A. overlay Sy.tem in NLS ••••••••••••••••••••••••• 203
1. General •••••••••••••••••••••••••••••••••••• 203
2. Implementation ••••••••••••••••••••••••••••• 203

B. NtS Random-F11e Structure and H&ndling •••••••• 20~
1. General Con.iderations ••••••••••••••••••••• 204
2. File structure ••••••••••••••••••••••••••••• 205
3. rile Handlinc •••••••••••••••••••••••••••••• 211

III command Speeification ••••••••••••••••••••••••••• 217
A. Command Specification in NLS •••••••••••••••••• 217

1. General •••••••••••••••••••••••••••••••••••• 2l7
2. Registers in the Command

Specification Language ••••••••••••••••••••• 21'7
3. Entity Character and Ent1ty String:

Command Groups ••••••••••••••••••••••••••••• 2l8
k. Command S~ate •••••••••••••••••••••••••••••• 219
S. Command Parsing •••••••••••••••••••••••••••• 220
6. Parameter Speeifieation •••••••••••••••••••• 223
7. Subroutine Calls and Parameter Pass1ng ••••• 225
8. Input Maeninery •••••••••••••••••••••••••••• 227
9. Output (Display) Maehinery ••••••••••••••••• 2)0

B. command Specification in TODAS •••••••••••••••• 233
1. Command Feedback ••••••••••••••••••••••••••• 234
2. Input Machinery •••••••••••••••••••••••••••• 234
3. Printing ••••••••••••••••••••••••••••••••••• 236
k. Parameter Speeifieation •••••••••••••••••••• 237

IV Command Al~orithms ••••••••••••••••••••••••••••••• 239
A. Editing ••••••••••••••••••••••••••••••••••••••• ~39

1. Text Editing ••••••••••••••••••••••••••••••• 239
2. structure Edit1ng •••••••••••••••••••••••••• 2k8
3. Graphics Editin~ ••••••••••••••••••••••••••• 2S0

B. View Control •••••••••••••••••••••••••••••••••• 2S2
1. Jumps and Links •••••••••••••••••••••••••••• 2S2
2. sequence Generator ••••••••••••••••••••••••• 2S3
3. Display Parameters ••••••••••••••••••••••••• 2SS
k. The User's content Analyzer •••••••••••••••• 2S6
S. Keyword Sy.tem ••••••••••••••••••••••••••••• 2S6
6. Text Display ••••••••••••••••••••••••••••••• 2S8

C. Calculator •••••••••••••••••••••••••••••••••••• 262
D. proeessor ••••••••••••••••••••••••••••••••••••• 264

1. File Cleanup ••••••••••••••••••••••••••••••• 264
2. rile compaction •••••••••••••••••••••••••••• 267
3. output Proce.sor ••••••••••••••••••••••••••• 267
k. Compilerl •••••••••••••••••••••••••••••••••• 267

199

I Intro~uction

This &Ppen~1x ,ives a technical description of Nt! and extends the
overview liven in Sec. IV-E Of the main Dody Of this report,
eoverinc the utility routines, command .pecification, and command
algorithMs used Dy NLS.

In addition, the special-purpose language. (SPLs) for command
specification, content analysis, and string eonstruction. Which
are U8e~ in large sections of NL!, are discussed in some detail.

This app~ndix assumes that the reader is familiar with Nt! from
the user's viewpoint to the level of the NL!" User's Guide.

201

II Utility Routines

The utility routines in NLS fall into two categories, dealing with
the overlay system and with file handling.

The routines in the overlay system provide mechanisms for
changing the collection of pages of code in the ad~res8 space
Of the program, the tile-handling routines provi~e mechanisms
for referencing and changing the actual dat~ base.

A. overlay System in NLS

1. General

The logical structure Of the overlays in NLS is a tree
structure, with the most widelY used code re~iding in the
overlays near the root.

An overlay is confined to a single page, in order to make
efficient use Of the paging mechanisms of the 9~O.

2, Implementation

The overlay structure is implemented through two tables and
several procedures Which use them to manipulate the
relabeling.

For a given pale ot prOCram, there is an entry in each
table. The index of the entries tor the page is the same in
both tables and is called the "overlay number" Of the page.

one table gives the relabelinl byte for the page, while the
other gives the overlay number of the parent overlay and the
position in the address space that the page should occupy.

The entries in the second table have a POP code in addition
to the other information. TO relabel in an overlay (and the
overlays above it in the tree), the instruction
corresponding to that overlay in the second table is
executed.

If a call is to be made to a procedure in another overlay
that occupies the Same logical position in the address space a. the calling routine, the call is split into two
instruction ••

These corre.pond to the execution ot two pops, the first
of Which "selects the overlay" and the second of which
lives the address to branch to in that overlay.

TWO cell. are used in the program to keep a copy of the
relabeling.

203

Appen~ix DI TECHNICAL DESCRIPTION OF NLS
See. II: Utilit~ Routines

When an oVerlay i8 selecte~. the overlay tables are
use~ to up~ate these words without changing the actual
relabeling.

This ehange is made when the second POP is executed
and after the destination aOdress has been read.

on a call such as this, the overlay number of the calling
routine, as well as the calling address, is saved on a
ataek.

This allows the overlays to be restored to their status
before the call when the calle~ routine returns.

The routine. that change the relabeling are in the overlay
at the root of the tree, and are thUS always available.

In general the root overlay contains utility routines for
basic funetions, such as chanCing relabeling and accessing
elements of the file.

B. NLS Random-File Structure and Handlin,

1. General consioerat10ns

The present format anO structure of NLS files was determined
by certain design con'iderat1ons.

It is desirable to have virtually no limit on the size ot
a file. This ~eans that it is not practical to have an
entire file in eore when viewing it or working on it.

A goal in the design was to make the time required for
most operations on a file independent of the length of
the file. That 1s, small operations on a large file
.hould take roughly the same time as on a small file. In
this waY the user and the system are not penalized for
large files.

The system nad to inclUde graphic statements, and perhapS
other forms of data, as well a. text.

AS a result of these eonsiderations, a random-file scheme
Was chosen. Each file is diVided 1nto lOlieal blocks that
may be aecessed in a random order. There are several
different types of blocks, an~ eaeh type nas its own
8tructure.

204

Appendix Dc TECHNICAL DESCRIPTION or NLS
See. II: Utility Routines

2. File Structure

An NtS f1le is made up of a header and up to a fixed number
(currently 66) of l02h-word file blocks.

a. The Header Bloek

In eaeh file, there is a heaOer bloek that eonta1ns
information about that particular file.

The header block remains in memory while the file is in
use.

The header incluae. the followin, information:

(1) General information relardinl the file, suen as
the followinga

(a) The date of creat10n Of the file

(b) The file owner" u.er number (identifies the
user Who created the file)

(e) The number of word' in the file header block

(d) The initials of the u.er WhO last wrote the
file out

(e) The date and time at the la.t writing

(f) The name-delimiter characters

(I) The averale lenlth of statement. in characters

(h) The total number of statements generated in
the life of the file.

(2) StatuI table. for the file block ••

The first and largest statu. table is the random file
block status (R1BS) table.

Each entry in the RFSS table corresponds to a
random file block, and indiCates the status of that
block. The file header is file block zero. The
number in the RFBS entry has one of the followinl
meanin,sa

205

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. II: Utility Routines

ZERO: The blOCK is not allocated, and does not
exist.

POSITIVE: The block is allocated, and ~s in
memory rather than on the seCOndary storage
device. The positive number is the actual
starting address for the block.

NEGATIVE: The block is not in core. If the
entry equals -1, then the olock is allocated,
but has not been initialized. In the ease of
text blocks, -2 indicates that the block
contains no garbage statement data Olocks, and
need not be garbale-collected, Otherwise the
number is the negative of the used-wora count.

A given file block has only one type of information,
such as structure or text. There is a separate status
table for each ty~e of file blOCk. These are called
secondary status tables,

An entry in SUch a table has one of the fOllowin~
meanings.

Z~RO: The block is not allocated.

NON-ZERO. The value is the blOCk number, that is,
the entry into the R1BS for tnat block,

There are secondary status tables for structure, text,
graPhics, and keyword types of file blocks. The
internal structure of these different types of blocks
is discussed in the following sections.

The use of separate status tables avoidS references to
absolute location. in the file and reduces the number
Of bits required to speeifY the location of a
particular piece of information.

pointers to variou. elements (structural, textual,
etc.) consist of twofielda: a secondary
status-table index and an address giving the start
Of the element relative to the start of the block.
The status table entry contains the number of the
bloCk, from Which its aC80lute address can be
computed.

Fewer bits are required, since the range of

206

APpendix DI TECHHICAL DESCRIPTION OF NLS
Sec. III Utility Routines

secondarY status-table indexes i. sMaller than the
range of possible file-block nU~bers. The greatest
gain from thiS is in the identifier for a ring
element, since a file can have only eight structure
blocks in the current configuration Of NlS.

In .pite Of thiS, the use of the s~parate status
tables is of questionable value.

Value of Avoiding Absolute Addres.esl By avoiding
absolute addresses in the file it is pOSSible to move
a block to a new location in the file simPly bY
changing a status-table entry. such a move can be
valuable if the file has become sparse and needS to oe
compacted.

If absolute addresses were used, then all
references to the block would have to be changed,
but it can be argued that sucn a process need only
be done on rare occasion. and hence its efficiency
is not crucial.

Moreover, sufficient backpointers exist so that
the process of mOdifying references would not be
difficult (although i~ might be lengthy).

Value of Fewer Sits in pointerst The economy of bits
in ~ointers is a stronger argument tor the use of
secondary status tables. However, the total savings
per ring element (with the current size limits on
files) is only .ix bit ••

Disadvantages Of secondary Status Tables. Space in
the data pale is used by the tables (Which are always
in core) for information that would not be necessary
if ab.olute addre.ses were used.

Their use places arbitrary limits on the number Of
file blocks of a partiCUlar type.

For eXample, it 1. pos.ible to exhau.t the
structure blockS When the file actually contains
room for more information. If absolute
addresses were used, then blocks Of a particular
type could be allocated as needed, with a limit
onlY on the total number of blOckS rather than a
limit on each type of block.

207

Appen~ix D: TECHNICAL DESCRIPTION Of ~LS
See. II: Utility Routines

If further consideration confirms that the secondary
statu. tables should Oe eliminated, it will not ~e a
difficul~ task because of the methods used for
accessing information in tne files.

These methods are discussed in a later section;
first the remainaer of the file structure must be
described.

b. File-Slock Format

~ach random file blOCk has an eilht-word header. This
header contains tne fOllowing:

(1) The checksum of tne bloc~

ThiS is computed before the block is written, and
verified when the bloCk is read. In addition, if
room in core is needed for a blOCk, then any block
in core that has not been chanle~ may be
overwritten without copying it to tne file, The
checksum provides an easy means of test1nK whether
the block has been changed.

(2) The used-word count (always Kreater than the
header size)

(3) The block ty~e, to indicate whether the block is
text or structure

(4) In structure block', the free-list pointer) in
text blOCKS, the garbage-collection flag, indicating
whether there are garbale SDB. (statement data blOCks)
in the block.

(5) The secondary status-table index number.

c, Structure Blocks

The internal structure of NLS files is a ring structure
reprelent1nl a tr~e structure. Each node in the ring
correspon~. to a statement, an~ eontains pointer. to the
"fir.t son" (called the .Ub) and the "first brother"
(called the successor). The last node in a list contains
a flag marking it as tne tail and points to the father as
it. successor.

The nOde. in the ring are kept in four-word ring

208

Appendix De TEOHNICAL DESCRIPTION OF NLS
Sec. II: Utility Routines

elements,

~ach structure block contains 2Sh rinr elements. There
can be up to eight structure block. in a file. but not
all need be allocated.

Each rinlelement in an allocated block either i.
as.ociated with a statement in the structure ot the file
or i. on the tree li.t for the block.

A free list consi.ts Of a chain of pointers, starting
in the block header and endin, with a zero pointer.
(A8 u.ed nere a pointer is an addre.s relative to the
.tart of the bloCk.) The pointers are in the first
word Of the four-word element, and the other three
words are zero.

A free list is entirely contained within a sinlle
block in order to minimize tile references.

A ring element associated with a statement eontain. the
followin, information a

(1) Flals indicating whether the .tatemen~

(a) has a name or not

(b) has been tested alain.t the current
content-analyzer pattern

(c) pas.ed the pattern, it it has been teated

(cO 1s the head of it. plex

(e) is the tail ot its plex

(2) A pointer to the text for the .tatement

(3) A pOinter to the picture associated with the
.tatement if there i. one

(k) A pOinter to the .ub for the .tatement (or a
pointer to the .tatement it. elf if there 1. no
IUb.tructure)

(5) A pOinter to the successor for the statement

209

APpen~ix D: TEOHNICAL DESORIPTION or NL!
Sec. II: Utility Routines

(6) The hash of the name of the statement if it hal a
name.

A ring element is pOinted to by a permanent statement
identifier (PSID).

Tni. is an ll-bit integer between 0 ana 2047.

The three h1gh-or~er bits give the structure-block
number (entry into the RSVST table), an4 the eight
low-order bits Oetermine the location within the
block.

The PSID Of a statement remains unchanged as long as
that .tatement i8 in the file. That is, the PSID il
not changed by textual or structural e4iting of the
file. When the statement il deleted, that lame PSID
may later be used to i4entify a 41fterent statement.

Every file has at least one ring element in its
structure, namely the element for the orilin statement
(root Of the ring, first statement in the file), which
always hal PSID zero.

4. Text Blocks

In ad4ition to the header, a text-type file block is made
up Of an arbitrary number of statement data blockS (SDBs)
and an area of free storage.

The tree storare area at the end of the file block is
simply a number Of words available for use in creating
new SDBs.

An SDB i8 a variable-sized block of wordS with a six-word
header.

The header contains the following information.

(1) The number of word. in the SDB.

(2) A flal indicating whether the SDB is unused
(1.e. larbale to be collected by the garbage
collector)

(3) The PSID Of the .tatement

(4) The date and the time When the SDB was ereate4

210

Appendix DI TECHNICAL DESCRIPTION OF NLS
See. II: Utility Routines

and the initials of the user who created it

(5) The number Of Characters in the statement

(~) The position Of the first character in the
statement that is not part of the name. (Set to 1
if the statement does not have a name.)

The wordS following the header contain the text of the
statement, three character. per Word. The text inclUdes
an end character (code 377~) on each end of the
statement. The lalt word is filled to a word boundary
with end characters.

The characters in & statement are explicitlY numbered,
the first end character be in, number zero.

A two-word entity consisting Of a PSID and a character
count is called a T-pointer, and indicates a particular
character within the file.

A r-string is a string of text within a single statement.

The text-editing routines make use of T-po1nters and
r-stringl.

e. Graphic. Blocks and Keyword Block

The format of the information stored in these blocks will
be described in the sections dealing with the vector
package and the keyword system.

3. File Handling

a. Oore Tables and File Input/Output

The random files are read into core by block.. Two page.
in NLS are logically divided into four l024-word .ection.
to contain the file block.. ThuI, up to four file blOCK.
may be in core at a time. When a file block is
reQue.ted, if all four are in use, one block will be
written out. Core blOCk. may be "frozen" in, however, so
that they will not be removed.

A single procedure called LODRFa control. all file
input/output (other than file copyinc), When any routine
want. a blOCk loaded, it calls this procedure with the
number ot the desired block. The block is then loaded

211

APpen~ix DI TECHNICAL DESCRIPTION OF NLS
Sec. II: Utility Routines

ano its location in memory returne~.

The proceQure makes use of several tables.

One table inaicates Which file bloc~ is in each
core block (it is calle6 RFIFCB for "ran~om file
index for core blockS"). A zero in this table
means that no file bloCK is there, while a positive
number is the random file block number (in6ex to
RF~S).

A second table indicates which of the core bloCKS
have been frozen. "frozen" indicates to the file
block loading procedure that the core OlOCK must
not be changeO. This is the case if some
operation, such as editing, is being performed on
data within the bloCk.

A value in the table of -1 means that the bloCK
is not frozen; this value is incremented by 1
for each reason Why the blOCK is frozen.

The algorithm of LODRFS is approximatelY as follows:

First, a core block is chosen. A quiCK scan of the
first table rnentione~ abov~ is ma6e to find an
unused block. If &11 are in use, then a counter is
used to find the next core block that is not
frozen. (If all are frozen tne system aborts.)

The counter provides a Simple algorithm for
determining Which block Should be removed from
core.

If the chosen core olock contains a file blOCk,
then one of the following things happens:

(1) If the file blOCK is empty, it is released
to the system and the corresponding statuI blOCK
1s set to indicate that that block is
unallocated.

(2) otherWise, the block i8 written out on the
file if the check.urn has changed, and the ran~om
tile status block is set to indicate that the
blOck is on the file and not in core.

At this point the desired file blOCK is loade6 into

212

APpendix D. TEOHNICAL DESCRIPTION OF NLS
Sec. II: Utility Routines

the core block.

If the ranOom file block has not been initialized,
the initialization is done now. Otherwise the
checksum and file type are cheeked. An error is
reported if either of these checks fails.

FinallY. the random file block status is set to
.how that the block is now in core, and the index
for core blocks (RFIICS) is set to indicate Which
random file block is in that core block.

b. File Copying

The algorithm for copying an NLS file is as follows:

First, the procedure must obtain a core block to do
the ~opYinl. RFIrCB is scanned to finQ a block that
is not Used. If there is no unused block, then the
first block that is not frozen is taken, and the file
block number in it is saved. That block is
check.ummed and written out on the output file (in the
proper file block).

Havine Obtained a bloCk, all of the allocated file
block. (except for the one already written in the
event that no core blocks were free) are copied from
one file to the other. This inclUdes the file header.

Finally, if no blocks were free, the block Which was
removed to make room for the copy is restored from the
output file.

c. Referencing Information in the rile

AS much as possible, information in the file is
referenced indirectly through utility functions. This
ensures that the file structure can be mOdified with
minimal changes in the system as a whole.

For each field in ~he ring element, there are procedure.
Which, given a PSID as argument, either read the content.
of the field or store a new value into it.

only these procedures need know the actual format of a
ring element. ThUS only these procedures need be
chanced if that format is mOdified.

213

Appen~ix DI TECHNICAL U~SCRIPTION OF NLS
See. II: Utility Routines

There are also procedures for reading and writing
ch&racters in an SDB. This serves both to ensure
flexibility in the format of the SDB and to avoid
mUltiple procedure. for performing a very common
tunction.

Because of the lack of instructions for character
manipulation on the 9AO, a rather elaborate method is
used to rea~ characters from a statement.

Before any characters are read, the procedure FECHCl
is called to initialize a work area. It is called
with the address of the work area and the direction in
which characters are to be read from the statement.

When calling FECHel, the first two cells of the
work area must contain a T-pointer for the first
character to be read. A character count of one
indicates the first character of the statement.
FECHCl will initialize the rest Of the work area,
which contains the following:

WORD 0: PSID

~ORD 1: character count

WORD 2: return address for routines reading
characters

WORD 3: instruction to branch indirectlY througn
the fourth, fifth, or .ixth cells of the work
area

WORDS 4, S, and 61 address of code to pass the
first, second, or third character respectivelY
of the current word of text

WORD 7: address of the current word of text

WORDS 8, 9, and lOa the first, second, and third
characters in the current word Of text

WORD 11: unused

WORD 12: the address of the start of the first
word of text in the SDB.

After the work area has been initialized bY calling

214

Appendix D: TECHNICAL DESCNIPTION 01 NLS
Sec. XI: Utility Routine.

FECHC1, any number of characters may be read from
the statement bY simply executing a call to the
second cell of the work area. After r~turning the
last character of the statement (or first if the
direction of readout is baCKwards), end characters
(COde 377B) will be returned from all sUbse~uent
calls,

The call to the work area places the return
location in the second cell and causes the
instruction in the third cell to be executed, This
results in a branch to a routine which returns the
next character.

when all the characters from a particular word
have been reaQ, the next word of text is
unpacked into the approrriate cells in the work
area.

Whenever a character ia read, the branch
instruction in the third cell of the work area
il modified so that the next call will result in
a branch to the appropriate routine to read the
next character.

TO change pOSition within the statement, chan~e
direction, or read from a different statment, the
work area must be reinitialized by calling FECHel
a,ain, as described above.

FinallY, statements maY be read in sequence according to
view parameters bY means of a croup of procedures
collectively called the "sequence generator." ThiS is
described in detail in Sec. IV-S-2 of this appendix,

It was mentioned above that it would be poSsible to
eliminate the secondary status tables without an undue
amount of effort.

It .hould be evident now that this is in fact the case
as a result of the use ot functions to reference
information in the file.

It woUld be possible to modify the field sizes in the
ring element by simply rewriting the routines that
access the affected fields.

In addition, a simple process could be written to take

215

APpendix Df TECHNICAL DESCRIPTION OF NLS
Sec. II: Utility Routines

files in the current NLS format an~ convert them to a
format us1n~ absolute a~~resses for pointers rather
than status tables.

216

III Command Specification

A. Command Specification in NLS

1. General

The command specification section of NLS is implemente~ in
an SPL designed to facilitate its description and
implementation.

The details of this language and its use in NLS are
explained in the following sections.

2. Registers in the Command specification Lan~uage

TWo types of registers are used by the command specification
machinery: string registers and character registers.

Some Of the registers are used internally in the
implementation Of the language, some are used as
special-purpose regi.ters for operations on certain types
of operands, and some are general-purpose operand and
storage registers.

constructs in the input-feedbacK SPL allOW manipulation
of the string and character registers.

The principal defined operations for string registers
are LOAD and DISPLA~.

The contents of a string register are normally
designated in the SPt as the name Of the re~ister
immediately followed by an asteriSK (*).

A register may be aSSigned a value by a statement
Of the form

Examples of expressions are:

(1) The name of any of the string or character
registers

(2) The deSignation Of a character, such as SP
for space

(3) The character 0, meaning to set the strin~
to null

(4) A string of text delimited by T-pointers.

For example, LIT*-O clears the literal input

217

APpendix D: TEOHNICAL DESCRIPTION 01 ~LS
Sec. III: Command Specification

register, while LIT*-(Bl B2) loa~s it with the a
text .trine.

The contents of a register maybe disp1ayeO in the
name area by the command of the forM

"DN(" register-name "*" H)".

ThUs DN(STN*) causes the contents of the statement
name register to be displayed.

The input character register is normally available to
the SPL programmer as a read-onlY register, which
always contains the last character read from the input
string.

The contents of the register may be put into a
string as described above, or displayed in the text
area by writing DT(C*).

In addition, the input character is implicitly
referenced in the case statement (described in Sec.
III-A-> of this appendix).

3. Entity Character and Entity stringJ Command Groups

The commands in Nt! are cla8s1fie~ in groups, and with each
group is aSlociated a particular entity (SUCh al character,
word, statement, or branCh).

with thil entity is associated a character called the
"entity character" and a 8tr1n~ called the "entity .tring."

The entity character is programmaticallY assiened values in
the SPL by the construct

This causes the entity character to be set to the value
ot the character, and as.ilnl the value of the string to
the entity .tring.

ThUs "E*_B,BRANCH" sets the entity character to "B" and
the entity string to "BRANaH."

The entity string and entity character are used to provide a
defaUlt option in command specification.

218

APpendix DI TECHNICAL DESCRIPTION OF NLS
See. III: Commana specification

When tne command operation (such as DELETE) has been
.pecifieO, the entity string for the ~roup of the
operation is offered a. the type of entity for the
command. The user may accept this bY typing a "command
accept" character (CA) or specify some other entity by
typing the appropriate character.

The actual SPL constructs used to express this use of the
entity string and entity character are presented in a later
example.

~. Command State

Except When a comman~ il oeing specifiea or executed. the
user is in some command state.

If the user begins parameter .pecification without first
.pecifying a new command. the command executed will be that
designated oy the current command state.

The command state is defined internallY bY a special
regi.ter called the "state register."

The state register always contains the location of the
most recentlY defined command state.

ThiS location is in the same format as a return
location placed on the stacK in a suoroutine call.

The state register additionally contains the command
group Of the command state,

The SPt ,yntax for defining a command state is

" .1 , command-group,

Which results in a call to the state defining routine to
be produced bY the compiler. The label is defined as
being equal to the address of this instruction.

From the command state, control passes directlY to a
parameter specification point in the program, which acts as
an idle or "wait for next input" point.

Control returns to the highest level of the command
parsinl code if the character read is not a legitimate
parameter specification character.

219

APpendix D: TECHNICAL DESCRIPTION OF NLS
Sec. IIII Comman~ Specification

This is one of the most silnificant features in maKin~
the comman~ language efficient and easy to use.

The contents Of the state register may he used as an operano
in aesignational expressions.

ThUS, one may programmaticallY return to the previous
command state by the SfL statement "GOTO is}".

There are several occasions where this construct is used.

At any time ~urinl the command specification, a user
may return to his previous command .tate by typing a
"comman~ delete" character (CD).

from tne above ~escription of command state, it may
be seen that the action of a command delete is to
re.et any parameters entered during the course of
the aoorted command and branCh to the location
containeO in the state register.

If a specification error occurs ~ur1ng the execution
of a command, the command i. aborted anO NLS is
automatically returned to the previous command state.

S. Command parsing

The NtS input commandS are parsed through the use of nested
case statements.

The depth in the nest of case statements corresponds to
the position of the next character to be read in the
command input string.

Thus if a command were .pecified by three characters,
the first character would be read by a first-level
case statement, the second by a second-level case
statement, and the third bY a third-level case
.tatement.

TWO features of the case statement construct in the
input-feedback 8Pt make it especiallY suited for Darsine
the command input strings.

The .election criterion for the execution of an
element of the c&se statement is equality of two
specified characters, one of Which appears a~ the
front of the element, the other of Which is im~11cit,

220

APpendix DI TECHNICAL DiSCRIPTION or NLS
Sec. IIII Command Specification

The implicit character is normally the last
character read from the input string. In addition,
it i. possible to repeat a case (using a "REPEAT"
construct) with some character other than the input
character.

In particular, tne entity character may be usea.
Thi. permit. the implementation of the command
default option mentioned above.

At the head of the ca.e statement, the entity
string is used to offer a default value of tne
command type. If the user types a command
accept,there is an element in the case
statement Which is executed and results in
repeating the case statement Using the entity
character in Place of the input character.

The net effect is the same as if the user nad
typed the entity character rather than a command
accept.

If none Of the tests suceeed. then an "ENDCASE"
statement is executed.

Whenever a case statement is executed. an entrY is
made on a stack indicating the location of that case
statement.

A con.truct in the repeat statement allOW. the
execution of a previous case statement with a
particular Character.

The word REPEAT is followed by an integer indicating
Which of the stacked ca.es is to be repeated.

ThUS REPEAT 2 cause. the second previous case
.tatement to be repeated.

The integer is in turn followed by a character
specification in parenthese ••

Thi. may be any of the following;

(1) An actual Character to be u.ed, such as SP

(2) The entity character (E*)

221

Appendix DI TEOHNICAL DESCRIPTION OF NL!
Sec. 1111 Command Specification

()) The next input character, indicated by a
J)eriod.

A brief example of code tor parsing an NLS-like command
lanluage is presented here.

It incorporates mOlt of tne SPL constructs mentioned in
this section, as well al some not mentioned.

The command language described here allows two groups of
commands, used tor text editinc and structure editing
respectively.

Four commands are specified:

Text editing: (initial entity. character)

Insert Character

Insert Word

structure editinll (initial entity. statement)

Append Statement

Append Branch

(Itart) • ease

(1) {textedit} dlp(< insert t es*) • ca.e

(c) 1*-ie,texted1t dlP(• < insert character)
e.-c,character .parmspec,prmspc -comex,exectr

(W) s •• iw,texted1t dlP(• < insert word) e.-w,word
.parmspec,prmspc -comex,exectr

(cd) goto (s)

endcase coto start

(a) (.tredit) dSP(< append' el*) • ease

(.) 1.-1c,.tredit dsp(• < append statement)
e*-s,statement .parm.pee,prmspc -eomex,exectr

222

Appen~ix D: TECHNICAL DESCRIPTION 01 NLS
Sec. III: Command Specification

(w) s •• iw,stredit dSp(~ (append word) e*-w,word
+parmspee,prmspc -comex,exectr

(ca) repeat O(e*)

(c4) loto fs}

endcase goto start

endcase repeat 0(.)

6. Parameter Specification

Parameter specification is tnat portion of NLS which is
involve~ with the selection of operands for commands.

operands maY be specified bY selecting locations and
entities in a file, by entrY of strings from the keyboard,
or by the naminl of pointers with the keyset and mouse.

specifications Of entities in the file are represented bY
one or more entries on a stack, called the specification
stack. (This is independent Of the sUbroutine argument and
return stack.)

There is one entry on the .pecification stack for each
selection made in parameter specification.

A normal entry on the specification stack (spec stack
for short) is called T-pointer (which consists Of a
PSID and a character count).

An SPL con8truc~ facilitates the placing of ar~uments
onto the spec stack. The syntax is

"SPEC(" argument H)",

where an argument can be any of the following:

aUG: Process the mOlt recent command accept a8 a
bUI selection and place the corresponding T-pointer
on the spec stacK

poS: Load the last bug selection onto the spec
stack.

strine register: The action of this command dependS
on the register specified, and tne contents of the

223

APpendix DI TECHNICAL DESC~IPTION OF NLS
See. III: Command Specification

recis~er.

If the register i. the number register, then ~he
number string in the register is converte~ to ~n
integer and pushed onto ~he spec s~ack as the
second word

If the specifie~ regis~er is ~he sta~ement
number register, it converts the string in the
register (assume~ to be a statemen~ number) into
a PSID, and pushes it onto the spec stack

In ~he case of any other register, if the first
character in the string is a digit, then the
content of the register is assumed to be a
sta~ement nUmber, otherWise, a statement name.
In either case the corresponding PSID is pUShed
onto the ataek.

Number: The integer indicated 1s pushed onto the
.pec stack

Iden~itier: The value of the i~entitier is pushed
onto the spec .tack

(no argument): ThiS causes the spec stack to be
cleared of all entries.

A textual entity may be specified (effectivelY) onlY through
bug selection(s) or with a pointer.

A .tructural entity may be specified by bug selection(s), a
pOinter, or keyboard entry of statement name(8) or
number(s).

In the ease where the bUI .election or pOinter serves as
a text selection Which indicates a string identitying the
.tatement to be specified (e.g., names, linkS), the
.elected string is moved into a .tring register and
treated as though it were entered trom the keYboard.

The allorithms for converting bug selections into T-pointers
are discussed in sec. IV-B-6-c of this appendix.

A pOinter i. simplY a r-pointer Which has been given a name
and .tored in a table.

It is .pecified bY depreSSing the right button on the

224

APpen~1x D2 TECHNICAL DESCRIPTION OF NLS
Sec. III: Comman~ Specit1cation

mouse, an~ enterinc the name of the pOinter with the
keyset.

When a pointer has been specitie~, the associated
T-pointer is simplY loaded into the internal register
containing the (processed) mouse location, making it
appear as though a bUg selection had been ma~e.

A statement may be selected from the keYboard bY typing
either the statement name or the statement number.

A statement number is converte~ into a PSID for a
T-pointer by simply running through the ring at each
level (beginning with level 1) until the specified
statement is reached, or found to be non-existent.

A statement name is converted into a T-pointer by running
through the ring, lOoking for a statemnt which has a
name, and Whose hash is the same as the haSh of the name
being searched tor.

In the case where an operand is a textual entity which is
entered trom the keyboard, there need not be an entry on the
speCification stack tor it.

Rather, it will 10 directlY into a specified register,
and be u.ed in that form for the command.

It should be noted that the selections of textual
entities in the file are processed during execution of
the command so that (when appropriate) the textual entity
is put into a regi.ter 1n the same form it woul~ be in if
it had been entered from the keyboard.

7. subroutine Calls and Parameter paSSing

The sUbroutine call mechanism in the 8FL is very similar to
that used bY ALGOL. It uses a stack for containing return
information, parameters, and local Variables.

Becauae of the overlay structure Of NL8, it is necessary
to indicate in a sUbroutine call not only the address Of
the routine being called, but additionally the name of
the overlay in Which that routine reSides,

The name of the overlay contain1nc the calling routine
1s stacked with the return location, so that the
appropria~e overlay may be relabeled 1n upon return.

225

Appendix DI TEOHNIOAL DESCRIPTION OF NLS
See. III: Command Specification

There are two types of subroutine calli, which differ in
toe return locations placed on the stack.

The return location stacked by a normal suoroutine
call is the address of the location following the
calling instruction.

The other sUbroutine call stacks the return location
of code which will return NLS to the previous command
state.

The format and operation of the stack (and suoroutine
call mechanism) are roughlY as followsl

The s~aCK is addressed ~y two pOinters, one to the
current base and one to the stacK top.

A suoroutine call instruction is always preceded bY a
"marK stack" instruction.

The "mark stack" instruction pu.hes the contents of
the base-of-stack pointer onto the top of the
stack, followed by a zero (which will be used by
the actual SUbroutine call for the return
location) •

•
The top-of-stack pointer i. incremented
aCCOrdinglY, and the base-of-stack pOinter i8 set
to point to the new top of the stack (Which will
eventuallY contain tne return location).

Formal Parameters are now lOaded onto the top of the
.taek.

If an overlay has been specified in the sUbroutine
call syntax, a cell il let to reflect the overlay
eontaining the procedure being called.

Note that the aetual program relabe11nl i. not
chanced at this time.

The sUbroutine call is now executed.

The return location 1s computed.

ThiS is a combination of the calling address and
the name of tne overlay containin~ the
SUbroutine call instruction.

226

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. III: Command Specification

This is true except in tne case of the
special SUbroutine call Which returns to the
previous command state.

In the special subroutine call, the contents
of the state variable (which 1n fact is the
return location for the ~revious state, as
computed above) are used as a return
location.

The return location i. stored in the cell
pointed to by the base-of-stack pointer.

Finally, the overlay containing the called
procedure is relabeled in if necessary, and a
branch 1s made to the address 1ndicated 1n the
SUbroutine call.

The syntax Of a sUbroutine call in the SPt is

where "I EMPTY" means the construct before the slash is
optional.

In addition, parameters may be specified by listing them 1n
square brackets after the call. Individual parameters 1n
the parameter list are separated by commas.

The "+" indicates a normal SUbroutine call. and a "-"
indicates a special sUbroutine call Which returns to the
previous command state.

If no overlay name is s~ecitied, an overlay which is either
the overlaY containing the calling procedure or an overlay
above it in the overlaY tree is alsumed. and thUS no change
is made in the relabeling.

An eXample of a sUbroutine call is

+subpat +war2,txtedt{bl,pl-4J -qdv,txteat.

8. Input MaChinery

a. Work Station Input from Keyboard. Keyset, and Moule

Characters are read from the work station by a system
routine in the following manner:

227

Appen~ix D: TECHNICAL D~SCRIPTION OF NLS
Sec. IIIe Command Speclfication

Whenever a button on the keyboar~, keyset, or mouse
changes state 6 the TSS 1/0 software considers it a
character entry, and places the followin~ information
into its input buffer.

(1) The device wnich caused input

(2) A COde Which 1s the input itself:

(a) A character in the case of ~ne keyboard

(b) A code in the case of the keyset

(c) A down/up and bu~ton indication in the case
of the mouse

()) The mou.e coordinates at the time the
character was read

(4) The time (16 millisecond resolution) when the
character was read.

A system call is tnen used bY NLS for reading trte
characters trom the system input buffer 6 which returns a
character (and related information as described above) if
there is one 6 and reports the status Of the system input
bUffer (empty, another character waiting in input bUffer,
no character read).

b. Input Fork

Because of the necessity to read characters from the
system input buffer so that it does not overflow -- and
more important, ~o provide a facility to interrupt NLS
While it is executing a long process •• a fork is
activated to run asynChronously in parallel with NLS.

This fork maY be conceptualized a8 an independent program
(called the input fork) Which reads characters from the
work stat10nand places them in a pro,rammatic input
bUffer to be read later by NLS.

Nt! always reads characters from the programmatic
input bUffer before reading them from the system, and
when it is reading a character from the system, it
checKs to ascertain that the input fork 1s not readinl
the same character.

228

APpendix D: TECHNICAL DESCRIPTION or NLS
Sec. III: Command Specification

The input fork additionally hal the capability to
interrupt NLS from the process it is currently involved
in, and it doe. so when it reaQS an interrupt character
(RUBOUT) from the keyboard.

Since NLS alwaYs reads characters passed to it from the
input fork before readlng those waitinc in the system,
and there is no restriction on where tne input fork gets
the characters it will pass to NtS, the input fork may be
used to simulate an NLS user.

A simple facility is currentlY provided along this
line, whereby the input forK can reaO characters from
a file, and (with a minimum of translation anO
interpretation) pass them on to NLS.

This feature is used mostlY tor merging and
convertin~ sequential tile! into NLS files.

c. Oharacter Translation

The Keyset and mouse input requires translation from its
raw input form to a character Which is meaningful to ~LS.

The keyset input is in the form of a number (0-31)
which reflects the keys depressed (and released) on
the Keyset.

This is combined witn the current state of the left
and middle mouse buttOn. (Which provide a case 'hift)
to produce the translated character.

The translation algorithm is roughly as fOllowsl

If both mouse buttons are down (case 3) then this
is a view specification character, so treat
speciallY.

otherwise, use the keyset character as an index
into a table of Character values.

This table of character value, has three entries
for each po.sible key.et value, one for each of
the remaining cases.

The case is then used to determine the correct
table entry as the translated character.

229

APpen~ix D: TECHNICAL DESCRIPTION OF NLS
Sec. IIII Command Specification

A~~itional translation is ~one when characters are
entere~ from the mouse without concurrent entry from the
keyboard or keyset.

This translation .imply lOOKS for combinations Of
up/~own strokes of mouse Duttons without intervening
charac~ersJ and translates them to specific
characters.

This is used for the command accept, COMmand delete,
backspace character, and baCKspace word characters.

9. output (DisplaY) Machinery

a. General

NL! communicates with the user Via a diSPlay screen
divided into six areas.

Each area is maintained separately of the others, and
contains a speCific type of information.

The organization of the relisters on the ~isPlay screen,
and the format of the reCisters themselves, are
parameterized.

There are many parameters wnich relate specificallY to
certain registers, and lome parameters Which relate to
all registers. Among the parameters relevant to all
of the relister8 are:

location on screen

character size and type used in register

display of recister on/off

Insofar as possible, these parameters are the display
control wordS used by the hardware. This minimi~es
the software required for controllin~ the screen
format.

b. View Areas

(1) Echo Register

The echo register is maintained by the system and
reflects the raw character input to NLS.

230

Appendix D: TECHNICAL DESCRIPTION or NL!
Sec. III: Oommand Specification

NLS is concerned w1th this register mainlY at
initialization, when it must be set up by a series of
system calls.

(2) VIEWSPEC Area

The view 8~ecification (VIEWSPEC) area reflects those
text area view parameters Which are not obvious from
look1ng at the text area.

The VIEWS~EC area is changed by the same routine wnicn
changes the view parameters themselves.

(3) Command Feedback Line

The command feeOback line i. the major feedbaCK
mechanism of the command specification machine.

There are two component. in the command feedback line;
words which reflect in English tne command being
specified, and an arrow which indicates the user's
state in specifYing the command (the arrow most
commonlY indicates Whether the user may specifY a new
command or parameters, or Whether he is currently
specifying an entity).

There are three pOSSible pOSitions to Which a word maY
be moved in the command feeaback line:

First position: This causes the command feedback
line to be cleared, and the deSignated word to be
displayed as the fir.t word in the line.

Next positionl This appends the des1gnated word to
the end of the command feedback line.

Last position: This replaces the last word in the
command feedbaCK line with the designated word.

The arrow may be pOinted to the beRinning of the word
in a .pecified position in ~he command feedback line,
or it may be turned off.

The SPL construct provided for the manipulation of the
command feedacK line is

"D!P(" display·parts H)",

231

Appendix D: TECHNICAL DESCRIPTION OF NLS
See. IIII CommanC Specification

where the syntax of a display-part is

woro I "ES*"· I "(" word I " ••• " word I "~H I H,H.

The DSP command rearranges the command feedback line
so that it is formatted in accordance with the
Oisplay·parts.

The meanings of the Oisplay parts are as follows:

Word: A string equal to tne text of tne the word is
place~ in the indicated pOlition in the command
feedbaCk line

"ES*": The contents of ~he entity string are
displayed in the indicated position in the command
feedback line

"(" worda The word is placed at the left of the
command feedback line

" ••• " word: Replace the last string in the current
eommanO feedback line wi~h the word

"~" : POlition the up-arrow to the front of the
command feedback line.

"T" : pOlition the up-arrow at the start of the
following string in the command feedback line.

There are three additional intrinsic functions Which
are used in relation to the command feedback line.
These are

AF Turn oft display of arrow

AN Turn on the display of the arrow

QM DisplaY question mark beside the arrow.

(4) Name Register

The name register is used for dis~laying statement
names and arbitrary string. relatin~ to parameter
specification.

An SP~ funetion i. provideo Which moves the contents
o! an arbitrary string register to the name register.

232

Appendix ni TECHNICAL DESCRIPTION 01 NLS
Sec. III: Comman~ Specification

The syntax is "ON(" register H)".

(5) Date/Time Register

The date/~ime register alway. reflects the date and
time.

It is UPdated every 10 .econds by a for~ (similar to
the input fork in its relation with NLS) whose sole
jOb is to read the ~ate and time from tne system,
Place it in a core location, and disMiss itself for 10
seconds.

(6) Text Area

The text area serves as the user's windOW into his
file.

What 1s displayed in the text area is a view of the
user's file, SUbject to certain formats and
reorganization, Which is described by & set Of
param~ter8 (called view .pecifieations or
VIEWSPEOI).

The creation Of new views is progr~mmaticallY caused
by the di.play SPt construct "DISPLAY("
optional-parameter H)".

If there is a parame~er, it is used to determine
the PSID of the starting statement for the view
creation.

The process of creating a view of the file in the text
area is diSCUssed in Sec. IV-R-6 of this appendix.

c. Literal FeeaCack

When a literal string is entered as a part of parameter
specification, it i. placed in the text area (beeinning
at the top) according to the format of the text area.

The part of the file view Which was previously in the
,pace used by the literal feedback i. temporarily
replaced bY the feedback.

B. Command Specification in TODAS

The TODAS command .pecification .ystem i8 much simpler than

233

Appen~ix D: TECHNICAL DESCRIPTION OF NLS
Sec. IIII commanQ Specification

that of NLS, insofar as it does not use the state mac nine and
no commano state i& define~ other than the null command RESET.

1. Command Feedback

The command language input string is parsed oy ease
statements in a manner .imilar to NLS.

The command feedbacK may best be described as complex
character echoing, where each command speCification
charaeter i. reflecteO bY the typing of approoriate words
anO tne state of the command specification is inOicated by
the position Of the carriage.

AS in NLS, the user haS the ability to control parameters
relating to the command feedback, including the numcer of
charaeters of each word echoed.

2. Input Machinery

Much of the NLS input maChinery is useO by TODAS.

There are, however, some differenee.:

ijecause Of the allowance which the system makes for an
interrupt Character (RUBOUT), ana trte fact that the
system teletype buffers are larger than the system work
station bUffers, an input fork is not required.

one maY still be Used, however, in special cases SUch
a8 sequential file input.

All Characters read by TODAS undergo a translation on
input.

This faCilitates the effective interfacin« of TODAS to
a number of input devices (six different types of
typewriter terminals are currently provided tor).

The character translation is accomplished bY a
table loOk-up technique (the table 1. indexe~ by
the raw character value).

The result of the lOOk-UP may be a normal text
character, or it may be a special character (which
is indicated by the high-order ~it).

In the event that it is a apecial character

234

Appendix Dt TECHNICAL DESCRIPTION OF NLS
Sec. IIII Comman~ Specification

(command accept, command delete, shitt character,
centerdot, etc.), an appropriate action is taken if
necessary. The cnaracter may be ecnoed (as .ome
previously designated character), and it may be
speciallY flaggea as a control character.

There is, in addition to straight character
tranSlation, a facility to define shift characters
Which allow devices with restricted characte~ sets
(e.,. upper case only) to work with full character
lets.

Four shift modes are currently defined in TODAS:

NUll: No Shifting taKes place

MOde 0: Upper-case alphabetic characters are
translated to lower case

MOde 1: tower-case alphabetic characters are
translatea to upper case

MOde 2: tower- an~ upper-case alphabetic
characters are translated to control case

TODAS is in one of these mOdes (as a base mode) at
all times.

The mode maY be chanled (either temporarilY or
permanently) by typini a character which has been
defined as a shift character for the new mOde.

There are currently tnree types of mOde-sh1ftini
characters:

Character shift: This caUses the toll owing
character to be translated according to the
mode for Which the shift cnaracter has been
defined, if it is a character Which woUl~
normally have been translated in either the
base mode or the sh1tt mode. If the
Character would not have been translated,
then the shift character is treated as a
normal character.

Word shiftl This causes the following word
to be translated SUbject to trte same rule as
liven above tor character 'hift _. i.e., if

235

AppenOix D: TECHNICAL DESCRIPTION OF NLS
Sec. 1111 Command Specification

3. Printin~

the next character i, translatable, the word
is traslatedi otherWise th shift character is
treated as a normal character.

Permanent Shift: This causes the base mode
to be chanced, and all sUbsequent cnaracters
are translated according to tne new moOe.

The shifting is accomplished in ~he following
manner:

If, a permanent shift character is read at any
time, the shift mOde is changeO and another
character il read normally.

If a word-shift or character-Shift character is
read, the next Character is read from the input
strine.

If the next character is a shiftable
character, then the Shifting is performed,
and the shifted character is tne result.

If the Shift character is for a word
Shift, then a glObal ~arameter indicating
the current shift state is set
accordingly, and will not be reset until a
space is read.

If the next character is not a shift
Character, it i. returned to the front of the
input string and the Shift character is
returned as a normal character.

printing of a structure in TODAS is analogous to creating a
new view for the text area in NLS, insofar as the same view
specifications are used for interpreting and formatting the
file.

Three differences are apparent:

The text area is of unlimited length, so that a whole
file maY be seen in one view. pagination is performed
When a long View is created.

Text undergoes an output translation and Shifting

236

Ap~en~ix D: TECHNICAL DESCRIPTION OF NLS
Sec. IIII Commanc specification

which i. a counter~art of the translation an~ shift1nc
~one on input.

The u.er haS a cegree of interactive control over the
view beinl create~, specifically.

The creation of a view of any ~articular statement
may be aborte~ at any time.

The creation of tne entire View may be aborte~ at
any time.

ImplementationallY, formattinl routine. ~ifferent from
those use~ by NLS are employed.

The output is formatte~ one line at a time, an~ the
printing Of an entire stateme~t must pnysically finisn
before the first line of the next statement will be
printed.

This restriction is necessary because TODAS must
know wnich statement i8 currently being typed in
or~er to respond properly to the user'. request to
abort the view of the .tatement.

The same sequence generator i8 u.ed, but the structure
being printed i8 .earche~ one branch at a tiMe (except
in the case ot trail. and Keywor~).

4. Parameter Specification

Parameter speCification differ. from NL! 1n three important
way ••

All specification must be aone via the keYboard.

A "current statement" is ~e!ined as an operand at all
times.

The execution of any command without a .pecifie~
operan~ assumes this statement as an operand.

The current statement 1. represented internallY as a
cell containing the PSID of the last statement
addre.sed in the .uccessful execution of a command.
It is UPdated each time a command i. successfully
executed.

237

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. III: Command Specification

The one exception to this 1s that during printing,
it is set by the print routines to tne PSID of tne
last statement printed.

Operands (statements) may be addressed relative to each
other in the tree structure of the file.

For example, one may specify a statement Which is the
"successor of the down of tne tail" of the current
statement _. i.e •• tne luccessor of the first
suostatement,of the last statement in the same plex at
the same level as tne current statement.

The relative addresses of operands are interpreted as
they are entered by accessing the rin« (as necessary).
Any error is reported immedlatelY, and nullifies the
entire address (except in the case of lin~s).

LinkS are parsed Whenever they are referenced in an
address field, and executed immediatelY after
selection. That is to say, wnen a link is
encountered in an adoress field, the current
statement is changed immediately to reflect the
value indicated DY the link.

238

IV Command Algorithms

A. Editing

Editing in NLS includes textual, structural, and graphical
mo~ifications to the file.

The textual and structural editing actions include insert,
move, replace, delete, and copy. These actions may be
performed on textual entities sucn as characters, words, and
vieible strings, as well as structural entities such as
statements, branches, groups, ana plexes.

The graphical editing actions include insert an~ delete for
vector labels, and insert, delete, move, transpose, and
vertical and horizontal projection for vectors.

1. Text Editing

a. General ConSiderations

The process of textual editing will be discussed first.
This process basically conSists of delimiting tne
appropriate sUbstrings, by means of the content-analysis
SPL, followed by construction of one or ~ore new
statements with the desired modifications. This latter
step il specified bY a procedure written in another SPL,
the string-construction SPL.

These content-analysis and strine-construction procedures
are written in such & WaY that in spite Of the large
number of combinations of editing actions and textual
entities, tnere is a Single content-analysis procedure to
delimit each entity and a lingle strine-construction
routine to perform each action.

This is done by standardizing the way in which a
8ubstrinc is delimited bY the content-analysis
procedures.

Four pointers are passed to the procedure as
arguments, along with one or two selections made bY
the u.er.

When the procedure returns, the appropriate sUbstring
is delimited bY the pointers in the fOllOWing manner.

The first and second pOinters mark the first and
last character. of the sUbstrin«, respectively.
The third and fourth pointers mark the characters
to the left and right ot the SUbstring,
respectively.

239

Ap~endix DI TECHNICAL DESCRIPTION OF NLS
Sec. IV: Commana Algorithms

Thus if Pl, P2, Pl, and P4 are the arguments, the
Characters from the front of the statement up to P3
precede the desired SUbstring, the characters from
Pl to P2 are the sUbstring, and those from P4 to
the end of the statement follow the substring.

A detailed description of the Word-delimiter routine is
useful to clarify this process.

There are five arguments; the first is the position of
the user's selection, the remainin~ are pOinters to oe
used to delimit the actual text of the word in toe
manner describea above. The body of the ~rocedure is
simpl~

a1 > CH $LD fa) faS ~a3 a1 < CH ILD fa2 fa4 ~a2

Which has the meaning ".tarting from the selection
(al) scan to the riiht (» past a cnaracter (CH) an~
any number of letters or digits ($LD). set a3 and as
to the resulting position (ta3 taS) then move a3 baCK
(.a3) so that it points to tne last character of the
word. Now reset the search pOinter to the selection
(al) and Ican to the left «) to set a2 and a4 (ta2
'a4 ~a2)."

once the SUbstrings have been delimited in the above
manner, new statements are constructed under the control
of procedures written in the string-construction SPL.

The syntax of a statement in the strinc-construction SPt
is as follows:

scstat • "IF" posrelation "THEN" scstat nilSEn scstat
I

"BEGIn" scstat '("J" scstat) "END" I

The pOSition and position-relation constructs are the
same as in the content-analysis SPL.

A pairlilt is a list of pairs, in this case separated by
commas.

A "pair" specifies a string ot text, usually bY givinc
two positions Which delimit the string.

240

Appen~ix D: TECHNICAL DESCRIPTION 01 NtS
Sec. IV: Command Algoritnms

In addition tne "pair" can be a constant strin~ or the
contents of So~e variable string such as the literal
in~ut register.

The meaning of "ST pos • pairlist" is "The statement
pOinted to bY pos 1s constructed from the strings
.pecified by the items 1n the pairlist."

ThUS, assuming that the pOinters have been set as
described above, "ST 51 • SF(8l) P3. P4 SE(Sl)" would
cause the text from Pl to P2 to be deleted from the
statement selected oy Bl.

The "move" procedure offers a more co~plex eXamole. The
procedure has ten ar~ument5J al and a2 are the user's
selections, a3 throulh a6 are the pointers associated
with al, and a7 through alO are the pointers for a2. The
bOdy of the move routine i.

IF SF(al) • SF(a2) THEN BEGIN
IF al < &2 THEN

ST al • SF(al) &4, a7 a8, a6 a9, alO SEtal)
ELSE

ST al • SF(&l) &9, alO a4, a7 a8, a6 SE(~l) END
ELSE SEGIN

ST al • S1(al) a4, a7 a8, a6 SEtal);
5T a2 • 5F(&2) a9, alO SE(a2) END

Tne pair &7 a8 delimits the text to be moved. Tne
positions a9 and alO will become adjacent When the text
from a7 to a6 is moved. The destination of the text
betWeen &7 and a8 is after a4 and before a6. The reader
should convince himself that the above procedure does
this in all cases.

b. Imple~ent&t1on

The code eompiled for string-construetion SPt routines
consists mainlY of calls ~o MOL procedures.

At the start of the code for a pairlist there is a call
to a procedure called sse (begin strine construction) and
at the end o! the pair list there is a call to ESC (end
string construction). For the actual items in the
pairlist, procedures are called Which append the
appropriate strings onto the statement being constructed.

The sse procedure must create a new statement data blOCK

241

Appendix D: TECHNICAL DiSCRIPTION OF ~LS
Sec. IV: Command Algorithms

(SDB) to hola the text of the statement beinr
constructed. Since the final size of the statement is
not known at the time BSC is called, the average size of
SDSs in the file is used as an estimate of the number of
words required for the new SOB.

The search for the required amount of room begins in
the file block containing the old SDB, if there was
one.

If there is not adequate room there, then the
procedure lOOKS for room in the file blOCKS, starting
with the lowest index number.

This ensures that if there is room in a bloCK
alreadY allocated, then that room will be used
rather than causin~ a new blOCK to be allocated.

The procedure ISROOM is called to deterMine whetner
there is adeqUate room in a given file block.

If the block is unallocated, then I~ROOM returns
TRUE.

If the block 18 allocated and conta~ns adequate
free storage, then such information is held in the
status table, RFbS. This avoids the possibility of
reading a file block only to find that it does not
contain adequate room.

If the block does not contain adequate free
storage, but does contain garbage SDBs (also known
from RYES), then ISROOM calls the garbage collector
to process the block.

Garbage collection involves moving nongarbage
SDBS to fill in the gaps occupied bY garbage
SDSs and UPdating pointers in the ring elements
corresponding to the moved SDBs.

If thiS prOduces enough room, then IS~OOM returns
TRUE; otherwise it returns FALSE.

After SUfficient room has been found by the above
process, the BSe procedure builds a header for tne new
SDB and then sets up a work area for the subsequent
string transfers that will take ~lace dUring the
con.truction of the statement. This work area

242

Appen~ix D2 TECHNIOAL DESCRIPTION OF NLS
Sec. IV: Command Algorithms

contains information such as the address of the SOB.
This completes the tasks of aso, and it returns.

Tne actual construction Of tne new statement consists of
appending characters onto the new SDB.

For those parts of the .tatement that remain the same,
the text is read out of the old SDB into the new. New
parts of the statement are simply characters from
other sources, such a' literal input or other SDBs.

The ObserVant reader will realize that it is possible
to run out Of room While appe~Oin~ Characters.

If this happens, the blocK is garbage-collected.
If this result. in room for at least 60 more
characters, then the SDa under construction is
simply moved in With the same file block to make
more room.

If garbage collection of the file blocK cannot
prodUce that much more room, a location in a
different file block is found that does provide the
required space. The partially constructed SOB is
then moved to thi. new location.

Wnen all the strings have been appended to the SDB, the
~roce~ure ESO is called to finish the jOb.

It first gets rid of the old SD8 for the statement,
tnen does the oookkeeping to establish tne new SOB as
the SDB for the statement. This involves updating the
SDS header, the running averace length of SDB's, the
pointer in the statement's ring element, and the name
hash tor the statement in the ring element.

In ad~ition the "content analyZer pattern tested" fla,
for the statement is turned off (see See. II-S-2-c of
this appendix).

This completes the construction Of a new statement and
our discus.ion of text editing in NLS.

c. Content-Analysis SPL

In NLS it i. often necessary to analyze tne textual
content of a statement in order to delimit certain
,ublt~1nI8.

243

Appen~ix D: TECHNICAL DESCRIPTION OF NLS
Sec. IV: Command Algorithms

For example, the user may select a word of text for
e~iting bY pOinting to any character witnin the word.
The actual sUbstring making up the wor~ is aetermined
by NLS.

A special language, the content-analysis SPL, is used for
writing auch string delimiting proce~ures.

dasicallY, the language provides constructs for
controlling the position of a search pointer in a text
string and saving various positions in order to delimit
the desire~ sUbstrincs. (In the discussion of the
content analysis SPL, position refers to a statement
identifier and character number _. in other wordS, a
T-pointer as defined elsewhere.)

The initial position of the search pOinter is often
determined by a selection made bY the user. The
positions Of aucn selections are stored in bUffers 81,
B2, etc.

pOinters Pl, P2, ••• may be used to store P081tions. The
current Position of the search pOinter can be stored in
Pn by writing tPn.

Ar~uments may be passed to a content analYSiS procedure.
Such arguments are either bug selections (i.e. Bn) or
pOinters (i.e. pn). Since the procedure must be able to
set the pointers to appropriate values, tnese oarameters
are calle~ by (simple) name rather than by value. The
formal parameters are Al, A2, etc.

The three forms, Bn, pn, and An, are the baSic ways of
referencing a position. In addition, there are two
functions taking a position as argument and yielding a
position as reSUlt. These are SF and SE, which give the
position of the statement front and statement end,
respectively, of their argument.

The position of the search pOinter can be set bY simply
writing any of the above forms to determine a position.
For example, "SF(Sl)" puts the search pointer at the
first character in the statement first selected bY the
user.

The search pointer 1. alSO moved bY tests for baSic text
elements. The basic text elements are strings, single
Characters, and character class Variables.

Appendix D: TEOHNICAL DESCRIPTION or NLS
Sec. IV: Comman~ Algorithms

A string is a sequence of characters delimited by
Quote marks (").

If the string matcnel the sequence of characters
starting at the current location of the searCh
pOinter, then the search pOinter is moved to the
next position beyond the string and a general flag
is set TRUE.

If, on the other han4, there is only a partial
match, or no match, then the search pointer is not
moved and the general flag is set FALSE.

The test for a Single character is logically
equivalent to testing for a strin~ of length one, but
is implemented in a more efficient manner. The single
character is specified bY prece4in~ it with an
apostrOPhe.

The implementation Of these tests makes use of the
programme4 operator (POP) facility Of the 940.

For tne lingle character test, tne computer
pro4uces a sincle in.truction in whiCh the address
field contains the code for the character and the
rest of the instruction specifies the POP to
perform the test.

similarlY, the strine test results in an
ins traction specifying the number of characters in
the string and the appropriate POP, followed by
wordS containine the actual string.

The basic text element. Of the third type -- the
character class Variable. -. are 1.1'0 implemented
using a programmed operator. The character cla.s
Variables allOW tests for any character in a
particular class. The cla'.es, with their associated
Variable namel, are a. followsl

LD any letter or digit

L a.ny letter

D a.ny digit

NP any nonprinting character

2lLS

APpendix D: TECHNICAL D~SCRIPTION or NLS
Sec. IV: Command Algorithms

PT any printing charac~er

SP space

TAB tab

OR carriage return

CH any character

These tests are implemented in a manner very similar
to tne single character test, except the address field
of the instruction contains a class COde rather than a
character code.

The successful completion of one of the above tests
causes the search pointer to be moved. The direction in
which it is mOVed, towards the end of the statement or
tne front, may also be controlled.

A ")" means scan (move pointer) to the right, or
tOWards the end, while "(" means Scan left.

As ment10ned abOVe, the current ~osition of the search
pOinter can be saved bY writing "t" followed by either pn
or An.

In addition the value stored in a bufter can be Modified
to point to the preceding character. according to the
current scan direction, by writing "." followed bY pn or
An.

The reason for this operation is that when an entity
has been succeSSfully found the pointer is lett
pointing to the character beyond the ent1ty. Thus to
save the position of the last character in the entity
it is necessary to write tpn~Pn.

The remainder of the language limply provides for
building more complex expressions from the basic text
elements presented above.

one of the primary means of dOing this is the
arbitrary number operat1on. The general form of this
is man followed by a text expression and has the
meaning "from m to n occurrenees of the given
expression."

246

APpendix Dc TECHNICAL DESCHIPTION or HLS
Sec. IV: OommanC Algorithms

Both the upper and lower bounds are optional, with
default values of 1000 and 0 respectivelY.

This is implemented in the following manner.

The upper and lower bounds and a count,
initially zero, are pushed on the stack. Then
the test for the expression is repeated until it
fails, with the count oein, incremented at the
completion of each successful test.

When the test for the expression does fail, the
current value of the count i. checked against
the bounds and the general fla~ .et accordin~lY.

The other operators, in order of decreasing
precedence, are as follows:

- (minus sign): indicates negation.

After the test for the text expression following
the minus '1In, the value of the ~eneral fla~ 1S
complemented.

(space): indicates concatenation.

After the test for each element in a sequence of
concatenated test., the general flag is tested.
If it 1s fal.e, then the preceding element was
not found and control branche8 to the location
fOllowing the current sequence of
concatenations. If the flag is true, then the
next test in the sequence is performed.

I (slash): indicate. alternatives.

If the expression on the left of the slash is
fo~nd, then control branches beyond the sequence
of alternatives. otherWise, the search pOinter
is reset to its pOSition prior to the test for
the previous alternative and the next
alternative in the sequence i. tested.

NOT: indicates nelation.

Equivalent to minus sicn except for lower
precedence.

2k7

Appendix D: TECHNICAL DESCRIPTION or NLS
Sec. IV: Command Algorithms

AND: indicates logical conjunction.

If the expression on the left of the AND i! not
found, then control branches beyond the
expression on the right of the AND. otnerwise,
the search pointer is reset to its pOSition
prior to test for the left expression and then
the right expression is tested.

OH: indicates logical disjunction.

LiKe AND except brancn if flag true instead of
false.

Any expression built using the above operations may ~e
enclosed in parentheses and used as a basic element in
a concatenation.

Similarly, any sueh expression may be enclosed in
square brackets and used as a basic element. The
effect of the square braCKets is to "unanchor" the
scan. In other woros, as long as the test fails, it
is repeated startinl one character farther along in
the statement until either the statement ~s exhausted
or the test succeeds.

ThUS ("abc") is Bati.fied if the remainder of the
statement contains tne string "abc".

Finally, a conditional statement is included in the
language to allow a pattern to be selected for testing
on the basis of a comparison Of positions.

It two pOsitions are in different statements, then
all relations between them are false except "not
equal." otherwise, the relationship dependS on the
character number of the position. For eXample, if
Bl and 82 are in the same atatement, Bl pointing ~o
character number 3 and B2 to character number 20,
then Bl is less than 82.

This completes the description of the content-analysis
SPL.

2. Structure Editing

Like text eaiting, structure editin~ consists of a phase in
which the entity to be edited is aelimiteO, followed by the

248

AppenOix D: TECHNICAL DiSCRIPTION or NLS
Sec. IV: CommanO Algorithms

actual eOiting action.

since the structural entities "branch" ana "plex" are simplY
special cases of the group entity, the editing routines all
deal with either a single statement or a group.

The delimiting for the move and delete commandS is ~he same.

In all cases a group, specified by two PS1D's, is the
final entity on which the editing action is performed.

For a br.nch the two PSID's for the group are set to
the PSID of the selected statement.

For a plex the PSID's are set to the head and tail of
the plex of the selected statement.

For a statement, a test is made to ensure that the
statement has no SUbstructure, after wnich it is
treated like a branch. (If the statement does have
SUbstructure the commanC is aborted.)

Finally, it the specified entity is a group, then the
two selected statements are checked to verify that
they dO in fact specify a Valid group.

once the group haS been delimited, the mOVe commands perform
the following sequence of operations.

First, the destination is checked to make sure it is not
Within the specified group. The command is aborted it it
is.

The group is then re~oved from the ring structure by the
appropriate changes in pointers and flags in ~he rin~
element of the predecessor (anti possibly the successor)
of the croup. The group is then reinserted into the rin~
in its new location through another set Of changes in
pOinters and flags. Notice that no text is moved and no
.tatement identifier. are chanled. The only changes are
in the successor and IUb.tatement fields and the head and
tail flail of four or five ring elements.

The execution of delete commands naturallY results in
greater changes. The group is first removed as in the move
operation. Then the statements making up to the group are
deleted according to the follow1ni al~orithm ex~ressed in
MOL.

2~9

APpendix D: TECHNICAL DESCRIPTION OF NLS
Sec. IV: Command Algorithms

6l.gr~lJ %start with the first statement in the group'
LOOP BEGIN

WHILE (02 • getsub(dl)) NOT~ dl DO BEGIN
~dl has sUbstructure%
stosub(dl,dl); iChanle SUb-pointer

so that dl no loncer ap~ears to have
sUb.tructurel

01 ~ d2 'more to sUb~ ENDi
%when exit the WHILE statement,

d2 equals dl and has no sUbstructure %
dl • getsuc(dl)J imove dl to the successor,

which will be baCk to the "father" statement
when all of its deseendents have been deleted~

relst(d2); % release SDB for d2%
frersv(d2); % free ring element for d2~
IF d2 c grp2 DO-SINGLE RETURN END;
ifini8hed when have deleted top statement of last
branch in group%

Note that since the successor of the last 8tateMent in a
plex is tne father of the plex, no stack is needed in the
above algorithm. Also note the manner in whiCh the
SUb-pointers are modified to ruide the traversal of the
group.

AS might be expected, copying a group is more complieated
than deleting one Since tne structure eannot be modified
dur1nK the process.

In very Simplified form, the copy group algorithm is as
follows:

Starting at the first statement in the group. if the
statement has SUbstructure, copy that first; then COpy
the statement and move to its successor until the last
statement in the group has been copied.

When the croup has been copied, it 1s inserted in the
appro~riate pOsition in the ring in the same manner as a
group being moved is reinserted into the ring.

3. Graphics Editing

BlOCk. containing picture information are virtuallY
indentical to those containing text information. The main
differ~nee is the re~lacement of statement data blockS by
vector data block. (VDB's).

250

APpen~ix D: TECHNICAL DESCRIPTION OF NLS
See. IV: Command Algorithms

A vector data block i. made up of a header and an arbitrary
number of lines and labels making up a picture.

The header contains much the .ame information as is held in
the header of an SDS. Instead of character counts, however,
the VDB header contains a count of the number of lines in
the picture.

Following the header is a sequence of two-word bUffers, each
representing a line in the picture.

The first word gives the position of one end of the line
relative to tne lower left-hand corner of the text of the
statement.

The second word gives the position of the second end Of
the line relative to the first endpoint.

Following the Quffer. for the lines, each label in the
picture i. stored as a position (in the same format as the
first woro of a line buffer) and a text string.

The current vector package was developed on a trial basis
with a relatively small programming investment. As a result
Of this, the only graphic entities aVailable are lines
(vectors) and labels. A more sophisticated graphics system
has been de.ilned but not yet imple~ented.

selection Of these entities is handled in the followin~
manner.

Line .election is done bY finding the line that minimizes
the difference between the sum of th~ squares of the
distance' from the endpoints of the line to the bug
selection and the square of the length of the line.

This is a practical algoritnm Since the number of
lines involved is small (under 100).

Label selection is done by finding the label that
minimiZe. the square Of the distance between the bug
.election and the second character of the label.

The "move vector" command will be explained a. an example of
vector editing.

This command allows the user to move one end of a line to
a new position,

251

Appendix D: TECHNICAL DESCRIPTION OF ~LS
Sec. IV: Comman~ Algorithms

When the line is selecte~, the end that is closer to the
selection is offered as the end to oe moved. The user
may request to move the other end instead by enterin~ a
backspace Character.

The next selection by the user specifies the ne~ location
for the end whieh is to be moved.

Let end-l be the end specified by the first word of the
line bUffer, and end-2 oe the end specified by the
seeond.

If end-2 is to be moved, the seeond word of the buffer ~s
replaeed by the veetor from end-l to the selectea
position.

If end-l i8 to be moved, then the secnnd word of the
buffer is replaced by the vee tor from the select~on to
end-2, and the first word is replaeed by the vector from
the lower left eorner of the text of the statement to the
seleetion.

The other vector editin~ commands are implemented similarly,

B. View Oontrol

1. Jumps and LinKS

The jump ana link maeninery is used to select statements to
be displayed at the top Of the text-viewing area Of the
screen. Generally speaking, jumps are made within a file
and links are used either within or between files. Jumps
may be made relative to the structure of the file, to
specific statements, or relative to the jump or link rin~.
LinkS are to a dynamically determined location in a
particular user's file, and can specify that display
parameters are ~o be set when the link is taken.

The jump ring represents the ehronolo~ical history of the
last five jumps made within the current file. Eaeh entry
in the ring contains tne PSID Of tne diSPlay-start
statement and a word representln~ the display parameters.

The link stack represents the last few links that ~ave
been made, and is only upaated if the linK is to a
statement in another file. The entries in this stack
contain the user's number, the file name, the PSID of the
display-start statement, and a word representing the

252

Appendix D: TECHNICAL DESCRIPTION OF ~LS
Sec. IV: Command Algorithms

~isplay parameters.

COde written in the content-analyzer SPL is used to locate
and parse l~nks. The four optional fiel~s of the link area

user na.me

file name

location within the file

~isPlay parameters.

In pa.rsing a link, those fields Which exi.t are Oelimited by
pOinters, which are SUbsequentlY used by routines to effect
the link.

2. Sequence Genera.tor

The collection Of routines known as the sequence generator
is used to generate a sequence of statements startin~ from a
given PSID a.nd governed by the current view parameters.

The 'equence genera.tor work are& 1. used ~o maintain
information controlling the sequence. This work area is
updated by tne sequence generator whenever it is called.

The work area inclUdes the following:

(1) PSI~ Of current statement

(2) Maximum a.nd minimum level numbers for statements to
be included in the sequence

(3) current statement', level

(4) Address of Statement Vector Work Area (SVWA)

(5) Address of last cell in SVWA

(6) Address of current last cell used in SVWA.

If Itatement numbers are beinl generated, the statement
vector i. generated for the .tatement in the SVWA.

The statement vector is a lilt ot wor~s, starting with
the level Of the statement and tollowe~ by entries
conta.in1nc the position Of the statement in the

253 .

Appen~ix Dr TECHNICAL DESCRIPTION OF NLS
Sec. IV: Command Algorithms

corres~onOing ~lexe8.

For example, if the statement vector contains (4,1,5,3,2)
then the statement il at level four and has statement
number le)b.

once the work area has been initializeo, the following
algorithm is used to determine a candiaate for the next
statement in the sequence.

If keyword reorganiZation is being used, tnen the next
PSID can simplY be read from a file block.

If a trail is being followed and the current statement
contains the appropriate trail marker followed bY the
name of a statement in the current file, then:

If the statement ~o1nts to itself then the sequence is
terminated by returning a -1;

otherwise the PSID of the statement pointed to by t~e
trail is returneO.

If the current statement has a BUbstatement Which is
within the current level bounds, then its PSID is
returned.

If the current statement has a successor statement which
il within the level bounds, then its PSID is returned.

otherWise, a -1 is returnea to indicate tne end of the
sequence.

After a candidate statement has been selected in the above
manner, it must be checked against the current
content-analyzer pattern if the content analyzer is in use.
If the analyzer is not being used, then the candidate is
autOMatically accepted.

flags in the ring element for the statement indicate
Whether the statement has been testeO for the current
pattern and whether it passed.

If the statement has not been te.ted, then the sequence
lenerator call. the COde comp1le~ for the pattern to make
the test, This code i8 Similar to that described for the
eontent-analysis SPL in a previous section. The general
flag is let true if the statement passes the pattern, an~

254

Appendix De TECHNICAL DESCRIPTION OF ~LS
Sec. IV: Comman~ AlgorithMs

false if it does not.

The process of selectin. candidate statements is continued
until (1) a stateMent passes the pattern or (2) the sequence
is eXhausted.

one of the primary uses of the sequence generator is in
determining statements to be displayed.

3. DiSPlay Parameters

The user hal at his disoosal two ty~es of disclay
parameters: thOle Which control the selection processes
employed bY the sequence generator, anO tnose which control
the format of the display.

The format parameters control such things as the
fOllowing:

(1) The number of line. on the screen

(2) The poeition of various viewinc areas on the
screen

(3) The sile of the characters

(4) Whether or not the name, number, or signature of
a statement is di.played

(5) The number of line. per statement which are
die played

(6) Whether or not indenting is used to indicate the
structure of the file

(7) Whether the file is displayed as text or as a
tree (SChematic).

The selection ~arameters control the fOllowing:

(1) Whether content analysis is used

(2) Whether keyword reorganization is used

(3) Whether a trail is followed

(4) Whether frozen statements are displayed

2SS

APpen~ix DI TECHNICAL DESCRIPTION OF NLS
Sec~ IV: Command Algorithms

(5) Whether the view i. limited to only one branch

(6) To what extent the dePth into the ring structure
is limited.

with the exception of the display parameters wnich control
such things as character size and location of viewing areas
on the screen, the display parame~ers may be modified at any
point in the specification Of a command.

At certain pOints in tne specification of some commands,
the user i. given the opportunity of changing tne display
parameters as part of the command. At other times the
user may change tnem by using Case-3 keyset Characters,
which are not interpreted as part of a command
specific.tion. furthermore, the availabilty Of a displaY
parameter which causes the display to be regenerate~
allows the user to treat the changing of diSPlay
parameters as a pseUdo-command. This can be done in the
midst of specifying a normal NLS command.

4. The User's Content Analyzer

The user's content analyzer i8 essentiallY a suoset of tne
programmer" content-analysis SPL, ~escribed elseWhere in
this appendix. It is composed of two parts: a compiler and
the code Which is the proQuct of the compiler.

The compiler is called bY a user command to compile
content-analysis code from a "pattern" written as text in
the u'er's file (the syntax is that of the
content-analysis SPL).

A diSPlay parameter then determines Whether or not the
sequence generator is to execute thiS code for each of
tne statements Which have passeO all o~her selection
criteria.

If executed, the COde scans tne given statement
searching for the specified content. If the search is
successfUl, the statement is displaye~J otherWise, it
is not.

S. Keywor~ Sy.tern

fhe keywor~ system provi~es a rUdimentarY form of
information retrieval in NLS. The result of a keyword
search is a list of PSID's. This list i8 8tore~ in the

256

Appenaix DI TECHNICAL DESCRIPTION OF NLS
Sec. IV: Commana Algorithms

keyword file block. The followin, special terms are used in
documenting the keyword system:

hit -. keyword that has ceen selected and hal nonzero
Weight

re.ult -- one of the PSID" generated by KEYWORD EXECUTE

a. Keyword File-Block Format

b.

The keyword data conSists of two tables:

The first contains the PSID's of hits and their
weights, with the PSID in the lower 11 bits and the
weignt in the upper 13.

The second contains the results of the most recent
search as an oraered list of PSID's.

The first few words of the block contain information
relar~ing the current status ot thesp. tables, sucn as the
following:

(1) Aac1re.s ot start of second table

(2) Ac1c1ress of item in secona table last returned by
the sequence generator to create di.play

(3) Address of last entry in second table

(4) Number Of hits.

Generation of Results

The fOllowing algorithm is used to generate a list of
re,ult., given a set of selected keywordS.

A table is built with an entry for each result. Each
entry takes two wordS, the tirst being the hash for
the name of tne statement, the second the score for
tne result (i.e., the .um ot the Weights for all hits
referencing that result). The table is generated in
the following manner.

For each hit, the statement specified by that PSID
is searched for a certain string, Which il
currentlY set to be an asterisk followed oy two
spaces. This searCh is done bY the

257

Appendix D: TECHNICAL DESCRIPTION or NLS
Sec. IV: Command Algorithms

content-analyzer POP that does unanchored scans.
If the string is not found, then the next hit is
considered.

If the string is found, the algorithm then finds
the names in the remainder of the statement. Each
name is copied out of tne text into the statement
name register (STN). The algorithm tnen ~enerates
the hash for the name. This is compared to the
previous entries to see if it already occurs in the
table. If it does, then the score is increased oy
the Weight of the current hit; otherwise, a new
entry is created with score eQual to tne weight of
tnis hit.

After the entries nave been accumulated in the
above manner, the table is sorted according to
score.

The sorted entries are used to prOduce a list of
results. The results are PSID's, so for tne hash of
each entry, the associated PSIU must be found bY
searching the ring.

Finally, the information at the front of tne file
block containing the results is UPdatea to show the
new number of results.

ThiS list Of PSID's is used bY the sequence generator
When keyword reordering is called for by tne user.

6. Text Display

a. General

The collection of routines known as CREATE DISPLAY is
used to diSPlay in the text area of the user's screen
those statements which are selected from the current file
by the sequence generator.

The statement selection process and the format Of the
diSPlaY are under the u.er's control by means of
VIEWSPECs and the "viewChange" command.

CHEATE DISPLAY is called each time the user mOdifies his
file, chancel format parameters, selects a new candidate
8~atement for the top of tne text area, chances the
statement selection parameters, or explicitlY requests

258

APpendix DI TECHNICAL DESCRIPTION OF NLS
Sec. IV: Comman~ Algorithms

b.

that the ~isplay be recreated.

A call to CREATE DISPLAY does not imply that the
entire display will be recreate~. In fact. ~s little
is done as possible in order to min1mize file I/O.

The entire display is reconstructed from the
.disPlay-start PSID only in the following cases:

(1) A change in the display-start PSID (caused by
jumps, "load file" command, etc.)

(2) Editing involving structural elements larger
than statements

(3) Ohanges in format parameters

(4) Explicit user command recreate display.

For statement-editing display changes, the display is
updated onlY for those statements whicn have changed.

The display recreation is guided by the format
parameters, such as truncation, and the output of the
sequence generator, which is called to find the first
Itatement in the sequence and for SUbsequent statements
until (1) the last in the lequence has been encountered.
or (2) the text area of the screen is full.

Implementation Details

The main data areas used by CREATE DISPLAY are the
following:

(1) The display list

(2) 'rhe dilplay list reference table (DLRT)

(3) The display buffers.

The entries in the display list are used by the display
hardware and have the form 01 a word count followed bY a
buffer address. The ~isplay hardware processes the
specified number of wordS from the buffer pointed to by
the entry.

For each line displayed in the text area, there are two
entriel in the display list.

259

APpen~1x D: TECHNIOAL DESCRIPTION OF NLS
Sec. IVa Command Algorithms

The first points to a one-wor~ bufter (that is part of
the DLRT entry for that line) that specifies the
position of the start of the line on the screen.

The second points to a buffer that contains ~ne actual
character string that makes UD the line.

For each line there 1s a four-wora entry in the DLRT,
containing information SUCh as the fOllowing:

(1) A T-pointer tor the first Character 1n the line

(2) The first and last column numbers containing text
in the line (used in ~u& selection)

(3) The position on the screen of the left end of tne
line

(4) Flags denoting such things as the following:

(a) The line is null

(0) The line contains speCial (nonprinting)
characters

(5) A copy of the second dis~laY-list entry tor the
line (used to restore the display list after
displaying an error mes.age).

For each PSID which is returned from the sequence
cenerator, a displaY butfer, DLRT entries, and
~i,plaY-list entries are created.

on the baSis ot the above 4escription. the actions of
CREATE DISPLAY should be clear tor eases where the entire
text area is being recreated.

The series ot statements determined by the sequence
generator, start1ng from the statement specified for
the disPlaY top, 1s use~ to fill the lines of the
displaY, with the appropriate informat1on being stored
in the displaY list, DLRT, and display buffers.

xn the Case of text-editing changes. the diSPlay i8 only
partiallY recreated; the process 18 as follows:

The DLRT an~ display-list entries for the statements
that were not edited are copied to auxiliary buffers.

260

Appen~ix D. TECHNICAL DESCRIPTION OF NLS
Sec. IV: Commana Algorithms

If the content-analyzer flag is off or the edited
statement passes the pattern, then a new 6isplay
bUffer, DLRT, and disPlay-list entries are constructea
for it.

When this is completed, the DLRT and display list are
replaced by the auxiliary buffers and CREATE DISPLAY
returns.

c. Bug Selection

It is appropriate to consi~er the prOblem of converting
selections made by the user to valid character and
statement specifications at this point, since bug
.election make. use of data areas constructed by CREATE
DISPLAY.

Whenever input is read from the user work station, the
coordinates of the bug are saved alon~ with it. In the
case where the input is meant as a selection by the user,
the coordinates must be used to iJentify a character on
the screen. The DLRT contains the information require~
to dO this.

The text area is "homOgeneous," in that each line
takes a fixed amount of space verticallY and each
character takes a fixed space horizontally.

ThUS the coordinates of the selection c~n be easily
converted to a character ana line position in the text
area.

This is onlY Part of the prOblem, however, since the
selection may be at a character position that do~s not
contain a character. In other words, there are null
areaS in the text area and selections in these area.
must be "rounded" to another position.

This roun~ing process is done using the information in
the DLRT.

The DLRT has a flag indicating whether a line is
nUll. These flags are Checked and the selection
moved up the screen until it i. on a non-null line.

The DLRT also specifies the first an~ last columns
in the line containing a character. on this oaSiS,
the selection is move~ to the left or rignt, if

261

A~~en~ix D: TECHNICAL DESCRIPTION OF NLS
Sec. IV: Command Algorithms

necessary, to put it on a position containing a
character.

It is often the case that bug selections must be
converted to T-pointers for operations such as
editing.

If the line does not contain any special Characters,
which take up more than one character position in the
SOB, the bug selection can be converted into a
T-pointer directly from the infor~ation in the DLRT.

There is a flaK in the DLRT which indicates Whether
the line contains any special characters, an~ a
T-pointer for the first Character in the line.

If there are no .pecial Characters, the character
count for column k i8 simply k greater than the
count for the first character and is thus
obtainable from the T-pointer in the DLRT entry.

If the line does contain special cnaracters, then the
number of special characters in the line to the left
of the selected character must be aetermined. Rather
than store this value, it is computed directlY from
the SDS for the statement. This amounts to
reformattinc the line up to the selected character.

C. Oalculator

The calculator gives the NLS user the ability to perform
arithmetic operations using numbers selectert from the text or
entered from the keybOard.

In addition, arithmetic expre8sion8 (functions) with named
Variables may be evalUated with the aid of a small compiler
built into the calculator.

The calCUlator store. numbers internally in a fixed-len~th
~ec1mal notation (currently using sixteen dicits to the left of
the decimal and seven to the right).

The arithmetic routines work with numbers that have been
"unpacked" into an "accumulator," one digit to a word.

The multiplication algorithm will be briefly outlined as an
example.

262

APpendix D. TECHNICAL DESCRIPTION or NLS
Sec. IVI Commana Algorithms

The multiplicand and the produet are in unpacked form.

Digits are read one at a time from the low-order end Of the
mUltiolier.

The multiplicand is initially "aligned" with tne low-order
end Of the douOle-length partial prOduct. During the course
of the mUltiplication, they are realigned by "moving" the
MUltiplieanQ toward the high-order end of the product.

The first step ot the algorithm is to zero the partial
product.

Then, until all the digits in the mUltiplier have been
processed, the following algorithm is repeatedlY executed:

(1) Rea~, and convert to the equivalent binary number,
up to four mUltiplier digits at a time, thUS forming a
composite mUltiplier Qig1t.

(2) For each digit in the multiplicand, mUltiply it
(using the hardware binary multiplication) bY the
compOSite multiplier digit, and add the result to the
corresponding digit in the partial product.

This takes advantage of the unpacked form to allow
"dicits" in the partial prOduct to take on very large
Values. Oarries out of the partial-product digits are
propagated only once, at the end of the algorithm.

(3) Realign the multiPlicand to the left bY the number
of digits read from the multiplier.

NOW propagate the carries in the partial prOduct to finish
the multiplication.

The calculator contains a small operator-precedence com~iler
for arithmetic expressions.

The compiler prOduces both code to be interpreted and a symbOl
table of the variables used in the expression. The symbOl
table crows tOWard higher addres.es, while the COde grows from
the other end of the aame block of memory.

When the user asks to evaluate the expression, the program aSkS
him to supply values for the variables, The user may fix a
variable to a partiCUlar value and tell the program not to
demand a new value for it. When all Variables have been given

263

Appendix DI TECHNICAL DESCRIPTION or NLS
Sec. IV: Command Algorithms

values, the coae compiled tor the expression is interpreted and
the result transferred to the "accumulator" of the calculator.

For each variable in the expreSsion, the symbol table contains
the following information:

(1) The name of the variable (as an A-string, so that it
can be displayed in the command feedback line when the user
is asked to give it a value)

(2) The current value of the variable

() Flags indicatin~ Whether the user Should be asked to
supply a Value for it When the expression is evaluated, and
if so whether it has been given a value ~uring the current
evaluation.

The code compiled for the expression is made UP of the
following instruction types:

(1) push values on the stack

(a) push identifier (specified bY the address of the
value to De puShed)

(b) push constant (the value of the constant follows the
instruction in the code)

(2) perform arithmetic operations with values on top of
stack (unary minus, add, SUbtract, mUltiply, and divide)

()) Halt

\ The interpreter for the code simply manipulates tne stack and
Calls the appropriate arithmetic routines,

D. processors

1. File Cleanup

The file cleanup program serves to verity (and perhaps even
restore, with a bit ot luck) the internal soundness of an
NLS file.

The program goes throuCh th~ following stagesl

(1) For each structure block.

264

APpenCix DI TEOHNICAL D£SCRIPTION 01 NLS
Sec. IV: Command Algorithms

Set all tne name hashes to zero.

Check the free list ana marK elements on tne free list
by .etting their ha.hes to 1.

verify the used cell count for the block.

(2) For each text block:

Check the free .pace pointer.

Check each SDB bY doing the fOllowing:

COApare the length given in the first word of the
header to the character count.

Check that the last character is really an end
cnaracter.

Check that the name character count is reasonable.

Mark SDB" that pass these tests by "OR"1ng]60000008
into first word.

If the SDB fails any Of the tests, then move the free
space pOinter up to that point and give UD on the rest
of that block.

(3) ror each graPhics block:

The process is similar to the process for text blocks.

At the end of these .tages the entire file has been
1nspected once. During this a special routine has
handled the loading of file blocks. If at any time there
is a "ba~" file olock (i.e., one that contains an error),
it tries to recover by changing the type of the block if
that is in error and recalculating the checksum if that
is in error.

File cleanup now continues with a second pass.

(4) Check the actual structure of the ring.

start from the origin and work through, not trusting
the head and tail flags. ThiS requires keeping a
stack of father PSID's and comparine each successor to
the father.

265

Appen~ix D: TECHNICAL DESCRIPTION or NLS
Sec. IV: Commano Algorithms

Mark ring elements that are u.e~ in the structure by
setting their hashes to 2 (first making sure that
their names are zero, meaning unused, and not one,
meaning on the free list).

Mark data blocks (both SDB and VD9) of ring elements
in the structure, as used, bY chan~ing the top six
bits in the first word to 34B instead of 368.

Correct errors in head and tail flags if any are
found,

Errors in structure are handl~d as followS:

If the bad statement is the head of a Plex, tnen
that plex is discarded.

otherwise the remain~er of the plex is discarded.

ThiS discardin~ is done by linkin~ together good
parts of the ring.

Thus in the first case the father of tne bad
statement simply no loncer has any SUbstructure.

In the other case the last gOOd member of the
plex becomes the tail of tne Plex.

If a statement that has Valid structure has a bad data
block associated with it, then a dummy SD6 is createa
for the statement and file cleanup continues.

(5) Look for "lost~ SDB's and ring elements.

Ring elements that still have name hasnes of 0 are
neither on the free list or in tne structure. These
are now put on the free list.

SDB's that still have 36000000B in their first word
are not pOinted to by any statement. These are now
marked as garbage.

Marks on SDB'S are now erased.

(6) The name hashes for all ring elements in the
structure are now recomputed.

This completes the cleanup of the file.

266

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. IV: Command Algorithms

2. File Compaction

The basic objective of the file compactor is to reduce tne
number ot SDa blocks in a file by combining the conten~s of
these blocks and eliminating resultant empty blocks. In
addition, empty space. in tne random file are eliminated by
packing the file into contiguous bloCks. Structure blocks
are not compacted.

SOB blockS with fewer than a fixed number of unused cells
are not processed -- thU8 compaction for files Which need
little or no compacting will be a relatively quiCk
operation.

). output Processor

The output processor i8 used to produce hard copy from NLS
files. The output Of this procesl includes formatted files
for a printer, a nura typewriter, and a Stromberg-Carlson
mierofilm machine.

The format Of the output is controlled bY means of
directives.

These are parameters for numerOU8 variables Such as pa,e
dimensions, page numbering, and "on/off switches" for a
large set Of format op~ionl. The user may control these
Parameters bY means of special strings of text (i.e.,
output-format commands) embedded in the file text. These
command strings, which are also called "directives," are
normally suppressed from the hard-co~y output.

A full set of directive default Values for each type of
device has been established; these values maY be
OVerridden bY directives imbedded in tne text of the
file.

The output Proceslor runs as a SUbprocess of NLS and has one
page -- a buffer .- in common with it. This process, like
the compilers, utilizes the statement-selection mechanisms
of NtS to obtain its input data. Thus level clipping,
content analysis, keyword reorderin~, trails, and so forth
can be used to control What is output via the output
Procelsor.

4. Compilers

The languages developed bY ARC for internal use are

267

Appendix 0: TECHNICAL DESCRIPTION OF NLS
Sec. IV: Co~~and Algorithms

discussed in the main bOdy of this report. source code for
any ot these languages may be written in an NLS file and
output directly from ~LS to the appropriate compiler.

268

UNCLASSIFIED

St-curitv Classification

DOCUMENT CONTROL DATA· R&D
(Security classification 01 title, body 01 abstract and indexinlJ annotation must be entered when tile ove,.." report is classified)

I. ORIGINATING ACTIVITY (Corpola'. author) 2a. REPORT SECURITY CLASSIFICATION

Stanford Research Institute Unclassified
333 Ravenswood Avenue 2b. GROUP

Menlo Park, California 94025 N/A
3. REPORT TI TL E

COMPUTER-AUGMENTED MANAGEMENT-SYSTEM RESEARCH AND DEVELOPMENT
OF AUGMENTATION FACILITY

4. DESC RIP TI V E NOTES (Typ. 01 leport and inclusive dates)

Final Technical Report 8 February 1968 - 8 February 1970
S· AU THOR(S) (Fir.t name, middle initial, la.t name)

Dr. D. C. Engelbart and

Staff of Augmentation Research Center

6. REPORT Oil. TE

8 April 1970
8a. CONTRACTORGRANTNO.

F30602-68-C-0286
b. PROJ EC T NO.

0967
c.

d.

10. DISTRIBUTION STATEt.4ENT

7a. TOTAL. NO. OF PAGES

284
~ •• ORIGINATOR'S REPORT NUMBER(S)

Final Report

Project 7101

SIb. OTHER REPORT NO(S) (Any other number. that may b. a.si.,ed
this report)

RADC TR-70-82

Distribution of this document is unlimited. It may be released to the Clearinghouse.
Department of Commerce, for sale to the general public.

II. SUPPLEMENTARY NOTES

Monitored by

D. Stone AC 315 330-2600
RADC (EMBIH), GAFB, NY 13440

13. ABSTRACT

12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
Washington, D.C. 20301

This report covers two years of research in a continuing program in the Augmentation

Research Center (ARC) of the Information Sciences Laboratory of Stanford Research
Institute, supported by ARPA and RADC under Contract F30602-68-C-0286. Some of the
work reported was also supported by ARPA and NASA under Contract NASl-7897.

The research reported is aimed at the development of on-line computer aids for

increasing the performance of individuals and teams engaged in intellectual work,
and the development of techniques for the use of such aids. The report covers

hardware and software development; applications in several areas relating to
management of a community of workers who use on-line aids and to information

management for such a community, partiCipation in the ARPA computer network, and
a summary of plans for the continuation of the research.

DO ,FNooR~u1473 (PAGE 1)
UNCLASSIFIED

SIN 0101.807~6801 Security Classification

UNCLASSIFIED
s °t Cl ecun y T tion aSSl lca

14.
KEY WORDS

Computer Augmentation

On-Line Interaction

Management Research

...

DD ":0·: .. 1473 (BACK)

(PAGE 2)

LINK A. LINK B LINK C

ROLE WT ROLE WT ROLE WT

UNCLASSIFIED
Security Classification

