

PROCESSOR ORGANIZATION AND

MICROPROGRAMMING

PROCESSOR ORGANIZATION AND

MICROPROGRAMMING

A PROJECT CASE STUDY

Daniel J. Nesin
California State Polytechnic University, Pomona

SCIENCE RESEARCH ASSOCIATES, INC.
Chicago, Henley-on-Thames. Sydney, Toronto

A Subsidiary of IBM

Acquisition Editor
Project Editor
Copy Editor
Production Director
Text Design, Cover Design,
and Composition

Al Lowe
Geof Garvey
Dan Kirklin
Arthur Kuntz
Baskerville Book

Library of Congress Cataloging in Publication Data

Nesin, Daniel J., 1924-
Processor organization and microprogramming.

1. Computer architecture. 2. Microprocessors. 3. Microprogram­
ming. I. Title.
QA76.9.A73N46 1985 001.64'2 84-23560
ISBN 0-574-21770-3

Copyright © Science Research Associates, Inc., 1985
All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of Science Research Associates,
Inc.

Printed in the United States of America

10 9 8 7 6 5 4 3 2

CONTENTS

PREFACE vii

1 OVERVIEW OF PROCESSOR ARCHITECTURE 1

The Evolution of Computers l
Architectural Types and the Cycle of Computation IO
Forms and Uniformity among Processors 17
Processor Fabrication Technologies and Personal Impacts 25
Bibliography 29
Problems 29

2 FEATURES AND DEVICES OF PROCESSORS 33

Buses. Data Paths, Gates, and Buffers 34
Bus Hardware, Calculations. and Data Catalogs 48
Multiplexing (MPX) and Demultiplexing (DMPX) ";9
Memory Cells 67
Bibliography 73
Problems 74

3 ASSEMBLING AN ARCHITECTURE 77

Registers, Arrays, and Stacks 77
Organizing an Architecture 84
User/Executive Modes 87
The Arithmetic/Logic Unit: Operations and Flags 87
Effects of Architectural Variations on Operations: Putting It all Together 100
Clock Characteristics and System-Clock Periods 106
General Edge-Triggered Clocking Characteristics 111
Bibliography 116
Problems 116

4 SEQUENTIAL-MACHINE (SM) FUNDAMENTALS 121

Microprogramming's Basis in State Machine Theory 121
Sequential-Machine Representation 122
Sequential-Machine Visualization 129
SM Design Procedures 132
Logical Properties of Flip-Flops 137
Bibliography 151
Problems 151

VI CONTENTS

5 STUPIDD V-A MICROPROCESSOR ANALYSIS AND CONSTRUCTION PROJECT 155

Common IC's in a Systems Context
Commonality of Features of All Processors
Device Control and Nomenclature
The External World
CPU Construction Project and Checkout
Microprogramming Formats: The Control Word
Microcoding the EX Major State
Problems

6 THE CONTROL SYSTEM

Control System Overview
Control-System Device Details and Memory Maps
Control Store IC Details
Microcoding and the Control System
Microcoding Examples
PROM Programming the Control System
Bibliography
Problems

READY REFERENCE OF KEY TOPICS

155
156
160
168
182
213
228
238

241

241
249
259
266
270
283
304
304

307

PREFACE

The material of this text arose out of a series of student projects in dig­
ital design initiated over a decade ago with electrical engineering stu­
dents. The projects answered two observed needs of students to
enhance their comprehension of digital processor systems: (1) to expe­
rience a complete processor-as opposed to partial amorphous archi­
tectural representations-in order to gain a comprehension of the
nature of processing systems; (2) to work with real (rather than hypo­
thetical) architectural constructs-thus demonstrating their mastery of
an actual archetypical processor, which proved a particular satisfaction
to them.

The associated Central Processor Unit construction project was
designed to be built and operated at home, to encourage an apprecia­
tion of the development of the· hardware and microprogramming.

In 198 l the author began instructing software-oriented computer
science students who had very little, if any, prior exposure to hard­
ware. It was felt that removing the mystery and hardware fright of
these students should significantly improve their future careers, as the
distinction between hardware and software knowledge becomes
increasingly obsolete. These computer science students' comprehen­
sion of the material formalized into this text appeared to be no differ­
ent from that of electrical engineers: 25 percent culture shock, 50
percent varying degrees of comprehension, and 25 percent enthusiasm
accompanied by innovative suggestions and activities. A significant
number of these software-emphasis students actually found that the
material helped open up new career opportunities, such as software
development for microprocessor-controlled instrumentation systems.

Chapter 1 presents a historical perspective on computers and
introduces the major fundamental systems architectures. It is shown
that a computer system is composed of a number of processors, which
possess unified underlying systems principles coordinated by the Cen­
tral Processing Unit (CPU) and the systems software developed for it.
The notion of the cycle of computation is introduced, with its two
major states: Instruction Fetch and Instruction Execute. The role of
the Program Counter in von Neumann architectures is explained, as is
its effect on memory-usage maps. The increasing need for systems
insight into the hardware/software relationship is stressed, with its
current trends and impacts on people.

Chapters 2, 3, and 4 are included in this text in response to the
many questions posed by the software-oriented student with little
hardware exposure. It is presented as a broad survey or review of
device and architecture fundamentals that an electrical engineering
student may or may not already have been exposed to. The goal of
these chapters is to create a working understanding and intuitive
mental image of fundamental logic devices and how they are incorpo­
rated into architectural structures. The manner in which many of these
devices of a digital system function can often be readily understood in
terms of logically equivalent analogs. For example, the transistor's
behavior, in the systems context, can be perceived as that of a simple
switch. The functioning of logic and tri-state gates, buses, memory,

viii

A NOTE OF APPRECIATION

PREFACE

Arithmetic/Logic Unit (ALU) devices, and system-clock coordination
are presented.

These structures are then incorporated into the larger architec­
tural block-diagram structures of a processor system. The ALU is
emphasized as the device that both transforms information and
originates the system signals that control the conditional flow of soft­
ware and state paths of the system. Chapter 4 reviews sequential
machine theory and implementation, stressing the State Table form of
representation and its relationship to microprogramming. The time
spent on these chapters will depend on the students' prior exposure to
hardware. It does not exceed four to five weeks with the author's stu­
dents.

Chapters 5 and 6 present the actual processor construction and
microprogramming projects. The CPU is presented as the archetypical
microprogrammable processor. Construction guidelines and a debug­
ging overview are presented. It should be emphasized that the Central
Processor Unit project has been constructed at home by computer sci­
ence students and therefore requires no school laboratory facilities. A
very simple wire-wrap tool and an inexpensive volt/ohmeter are all the
student requires. The power-supply can be a 6-volt camping lantern
battery and some silicon diodes. Several drilled holes and no more
than five soldered connections are needed.

The wire-wrap form of construction is recommended as best for
students who have little experience with hardware. Student feedback
has made it clear that the hours spent handling each integrated circuit
and consulting the data catalogs provide an extra dimension of
"hands-on" experience. This exposure is especially helpful when the
students are later required to work with the data catalogs of the
programmable peripheral microcomputer devices, such as communica­
tions, disk, and Direct Memory Access (DMA) controllers. This good
basic training has proved to be worth the time and expense of the proj­
ect.

The author's computer science students have built the CPU por­
tion of the project and demonstrated the switch-controlled operation
of microcode, in a one-quarter course. The control system can be-and
actually has been-constructed on an elective follow-up basis. It can,
however, also be incorporated into a full-semester course. Very little
extra construction is required for the control system. The advanced
microprogramming activities of this phase of the projects require of the
student great creativity, total systems understanding, and the drive to
be innovative. These advanced activities require access to a PROM
programmer. The last section of Chapter 6 covers the use of an IBM
PC, with an aftermarket PROM programmer, for automating the
development and demonstration of microprograms. (Aftermarket
refers to components supplied by a secondary vendor.) Most flexible
personal computer systems these days support the programming of
PROM's (Programmable Read Only Memories). Advanced microcom­
puter hobbyists often already have such equipment.

The drive to dominate the machine, as opposed to the reverse, grew
out of actual hardware-innovation experiences with students, which
the author would like to acknowledge here. In 1972 Xerox Corporation

Preface ix

donated a 930 computer system on an "as-is" basis. This was a gift of
considerable value. The author and dedicated students revived the sys­
tem. They created a real-time operating system for it, with memory
mapping and instructional traps, implemented interacti:ve graphics,
computer-aided drafting, etc. Their innovative hands-on hardware
experiences had significant effects on industry. Companies were
formed, jobs were created, and products most readers would be famil­
iar with were marketed. It is impossible to name all these movers and
shakers. They know who they are, and the author certainly remembers
them. The author does, however, wish to acknowledge the many con­
tributions from the students of the old Extracurricular Student Com­
puter Lab-we all grew from our experiences with hardware and
software basket cases. The author is appreciative because, after seven­
teen years in industry, another seventeen years in teaching could only
offer the satisfaction of positively affecting the world we live in. These
students provided that satisfaction-and then some.

CHAPTER 1
OVERVIEW OF PROCESSOR ARCHITECTURE

THE EVOLUTION OF COMPUTERS

EARLY CALCULATORS

The rapid pace of recent events, particularly in microprocessors,
appears to make computing a completely new phenomenon to some.
But computing is not new, nor has it always been electronic and digital
in nature. For a better perspective, let us briefly review the historical
background of computing.

There can be no doubt that the ability to predict seasonal varia­
tions was important to early man. Using data to predict is one form of
computation. Cro-Magnon bone carvings, 300 centuries old, record the
lunar cycles and seasonal changes noted by members of a hunting soci­
ety, in relation to the flora and fauna of interest to them. While anthro­
pologists may dispute some interpretations of these records, they
definitely constitute an early· form of data base-most likely used to.
predict seasons, migrations, and so on. Later agricultural societies were
very dependent on the computation of the seasons and resulting har­
vest yields. Accurate astronomical observations, the development of
some numbering systems, and their use in predicting seasons and
accounting for harvests are, again, indications of data gathering for
computational use. The likelihood that a few unscientific spirits were
invoked to ensure the success of these processes only serves to indicate
that ancient programmers may have shared something with a few mod­
ern ones. Thus we see our own natural propensities for computation
applied to data collection, prediction, simulation, control, and the exe­
cution of events. These are the basis for the mechanization of applied
computation. Efficient computatioh requires the application of
advanced technologies.

The early development of modern computation was extremely slow by
today's standards. Much of the mathematics we use evolved before the
existence of calculating machines, if we ignore our fingers and toes.
The abacus was an early calculating instrument first used about the
fourth century B.C. While useful for rapid addition of numbers, its
chief advantage lay in its ability to "remember" partial results, thus
enabling nimble fingers and unsure minds to perform tedious calcula­
tions. During the 1600s Schickhardt (1624), Pascal (1642), and Leibniz
(1673) first developed the mechanical calculators that were widely
applied in the 1800s, when the manufacturing technology was avail­
able. As technology evolved, these calculators were replaced by ones
using solid-state devices. The industrial revolution is a reflection of our
evolving ability to develop mechanisms for computational uses. The
problem with these early calculators was that none of them had the
ability to store a program. Each step had to be dictated by the human

2

EARLY COMPUTER DEVELOPMENTS

THE EVOLUTION OF COMPUTERS

operator-thus delineating the difference between these early calcula­
tors and the computers that followed them.

Babbage's difference and analytical engines show that mechanical
technology alone could not produce an effective computer. In the
1820s, Charles Babbage, an Englishman and a founder of the Royal
Astronomical Society, became interested .in devel9ping a mechanical
computer for the solution of mathematical equations. He was assisted
in these efforts by Ada Augusta, Countess of Lovelace, after whom the
programming language Ada is named. She is often referred to as the
first programmer, but she was far more than that, for she understood
the hardware, the software, and theoretical basis of the computer. They
applied a good deal of thought and ingenuity to the task of designing a
computer. The many original concepts developed foreshadowed the
development of the modern computer. It is sad that, in the end, their
valid concepts could not be incorporated into a useful machine
because of the inability to hold to the required mechanical tolerances
in its manufacture. These manufacturing obstacles were eventually sur­
mounted by Scheutz, but the resulting machine's accuracy, speed, and
cost would be unacceptable today. This is not to take away credit from
these pioneers. New technologies and new concepts were necessary for
further progress. Figure 1-1 displays some of these early calculators.

Some of the new concepts were provided by George Boole, who
in 1854 developed an algebra of logic. This algebra was primarily of
interest to mathematicians and philosophers until Claude Shannon
published "A Symbolic Analysis of Relay and Switching Circuits" in
1938. Shannon dealt with relay logic, the technology of that day, as a
result of his research in developing telephone switching circuits. Shan­
non made the first application of Boolean algebra to switching circuits,
paving the way for it to become the important tool that it is today.
Meanwhile, the need for an effective form of a stored-program digital
computer was growing. We have to go back a bit in time to see how it
evolved.

Babbage began work on his analytical engine in 1833. On a pre­
vious visit to France, he had seen the Jacquard looms in action, weav­
ing fabrics. Jacquard developed this system· of controlling looms by
pasteboard cards with holes "punched" in them, in 1805. (See Figure
1-2.) Babbage was inspired by the Jacquard loom to formulate the
design of his new engine, which was to use two sets of these punched
cards. One set was the operation set of cards; the other, the variable set.
Thus, the concept for the first computer was born. We now call the
operation cards the program and the variable cards the data. Babbage
was frustrated by the lack of an adequate implementation technology,
but the machine he conceived became the basis for the Harvard-IBM
Mark I computer, produced a century later. Jacquard's pierced paste­
boards also provided the inspiration for Herman Hollerith's develop­
ment of punched-card tabulation, used for the United States census of
1890. Hollerith, seeking a way to tabulate census data mechanically
rather than manually, was advised to look at the Jacquard looms. In
1906 he founded the company that evolved into the International Busi­
ness Machines Corporation. Tabulating systems had thus arrived, as
well as their associated printer-listers, and they became common office

01•en-iew of Processor Archi1ec1ure

Figure 1-1
Earh· Calculators

a. Ahacus

c. Babbage's Difference Engine

(Courtesy I BM Corporation)

h. Pascal's Machine

!C1111rte.1T I BM Corporarion)

3

4

HARVARD MACHINES

I
VON NEUMANN MACHINE

THE EVOLUTION OF COMPUTERS

equipment. This business office equipment was in turn used in the
implementation of Babbage's concepts in the development of the Har­
vard-IBM Mark I computer (1939-44).

The Harvard Mark I used relay logic; as an electromechanical rather
than just mechanical device, it represents the beginning of the era of
modern computers. The Mark I could multiply 23-digit numbers in
about six seconds-not impressive by today's standards, but remarka­
ble a relatively short time ago. One of its important tasks was the cal­
culation and analysis of ballistics equations, a vital contribution to the
nation's efforts in World War II. The success of the Harvard machines,
the Mark I, II, III, and IV, spurred researchers to find even better tech­
nological answers to the problems of implementing computation.

The Harvard machines had two storage areas: one for the pro­
gram and the other for data and results. The two storage areas were
isolated from each other and were typically of different word size.
These machines were termed automatic-sequence calculators and did
not have the capability of modifying their own programs. They were
dedicated special-purpose machines, whose principles are still used in
many small microprocessors today. They are most advantageous in
applications where the program is not expected to be modified during
operation, such as in vending machines or toys. They also offer a hypo­
thetical two-to-one speed advantage over the von Neumann-type
machine, discussed next. This important advantage is based on the fact
that the separate memories can be accessed simultaneously. Most 4"bit
and some early 8-bit microprocessors are Harvard-type machines,
huge numbers of which are still in use. Special-purpose high-speed
dedicated processors, often called controllers, can use the Harvard
(really, Babbage) approach to good advantage in their design. Today,
the trend is to use the Harvard architecture in custom-designed inte­
grated-circuit controllers (processors), where an inherent speed advan­
tage can be an important consideration.

The shortcomings of the Harvard architecture were perceived in the
mid- l 940s by von Neumann, who recommended that a computer have
only a single storage area for both programs and data. This gave rise to
the prevalant form of digital computer extant today in business and
scientific applications. Von Neumann's recommendations appear in a
summary article (Burks, Goldstine, and von Neumann 1946) and are
worthy of the reader's time. The essence of his idea is that, if a com­
puter can operate on data, it can also operate on its own program, thus
obtaining the ability to alter its course conditionally, without operator
intervention, This was the beginning of the stored-program digital-com­
puter concept, as distinct from the Harvard concept, discussed earlier.

Overview of Processor Architecture

Figure 1-2
The Jacquard Loom
Photography by Jan Forman
Philadelphia College of
Textiles and Science

MICROPROGRAMMING CONCEPT

5

The very idea of letting a program operate on itself is repugnant to
modern structured programmers. but it was a milestone in computer
development and remains a powerful concept.

The late forties and the fifties produced many ideas on how to
improve, design, and build computers. It was a decade of realization of
what was practical in computation. Three-state logic devices (+. 0. -)
were considered, for example. but these lost out because of the greater
feasability of the two-state (on-oft) transistor devices used today.
Among the ferment of· ideas produced in this era was Wilkes's (1951)
concept of microprogramming. This important modification of the von
Neumann concept was too powerful to lose out permanently in the
feasibility contest. Rather, once a suitable modern implementation
technology had evolved. Wilkes's concept became the rational basis for
designing a computer's control system. Today, it is the internal organi­
zational foundation around which we structure most processors. com­
puters, and-what amounts to the same thing-microprocessors that
the reader is likely to encounter. An applied understanding of
microprogramming is a major goal of this text.

COMPUTER IMPLEMENTATION TECHNOLOGIES

Implementation technologies were rapidly improving. ENIAC. a Har­
vard-architecture program calculator. became operational in 1945. It

6

Bus ORGANIZATION

SEMICONDUCTOR TECHNOLOGY

THE EVOLUTION OF COMPUTERS

was the first all-electronic computer, using vacuum-tube technoiogy.
EDSAC and EDVAC, von Neumann-type stored-program computers,
became operational in 1949 and 1950. Subsequent development was
extremely rapid; although interesting, the full details are beyond the
scope of this book. By now, the major ways of organizing an architec­
ture were well established. Let us then refocus on the development of
implementation technologies. Digital computers were becoming better
because we were finding better ways to implement them with emergent
semiconductor teehnolpgies. The basic conceptual groundwork for the
organization of the.types of processor we are most likely to encounter
had already been developed.

Tube-type computers are referred to as the "first generation."
One could argue the point, if we consider the Harvard relay machines,
but in fact they formed the first generation of stored-program digital
computers, from I 950 to the early I 960s. In the early 1960s "second­
generation" computers-based on transistor technology-came on the
market The "third generation" -based around small- and medium­
scale integrated circui.ts (MSl)-began to appear in the late 1960s. The
emphasis in that decade was primarily on how to build computers. for
a .lot was known about architecture, but there was little economical
implementation technology available. Some very significant variations
on von Neumarin-type architecture were being developed, though.
Noteworthy were Barton's concepts for stack architecture (1961),
actual implementations of microprogrammed architectures, virtual
memory, and interactive real-time computing. Each new "generation"
of computers involved a reduction in size and power consumption by
an order of magnitude. The need for air conditioning, for example, was
once a major consideration. Figure 1-3 illustrates the relative sizes of
these "generations" of computers. We shall not discuss here the evolu­
tion of programming and operating systems, except to note that they
developed along with the increasingly available hardware.

By 1970 part of the new hardware expertise developed concerned bus
organization and tri-state logic. A bus is simply a data path for com­
puter signals, consisting of one or more physical conductors of infor­
mation. Bus organization includes the study of methods for time­
sharing the use of a single bus, thus reducing the total number of buses
required in a given computer. Tri-stating is a means of interfacing sep­
arate entities to a time-shared bus. We shall study this important
implementation technology subsequently. The combination of the
ideas for bus organization and tri-state logic was widely applied in the
1970s. They became an important step in making microprocessors fea­
sible. Bus organization is still a vital topic, involving federal standards,
networking, multiprocessing, and many ot~er aspects of computing.

Integrated Circuit (IC) manufacturing technologies continue to
develop at an unabated pace. MSI combines the equivalent of several
hundred transistor logic gates in a single design. Large Scale Integra­
tion (LSI) can put on the order of 10,000 transistor equivalents into a

Overl'iew of Processor A rchi1ec1ure

a. Rel ay Machine:
The Harva rd-IBM Mark I
(Courresy IB M Corpora/ion)

b. Tube-Type Machine:
IBM 704
(Cour/esy IBM Corpora1ion)

c. Integrated-Circuit Machine:
IBM System 360 Model 85
(Courresy IBM Corpora1ion)

7

d . VLSI:
GRiD Compass Computer
(Cour/esy GRiD Sys1ems Corpora1ion)

e. Modern IC Layout:
Motorola MC38000 Microprocessor
(Courresy Molorola, Inc.)

Figure 1-3
Processor Development

8

PROCESSOR SYSTEMS

THE EVOLUTION OF COMPUTERS

single monolithic structure. In the mid-1960s attempts to apply MSI
and LSI technologies to commercial desk calculators were not fruitful,
but these efforts led to the monolithic microprocessor in the early
1970s. As in the past. if we can calculate. why can we not compute?
Thus. in 1971, Intel Corporation marketed the first microprocessor­
the Intel 4004. It was a Harvard machine with a 4-bit data bus. and it
contained the equivalent of 2.450 transistors on a "real estate" silicon
chip 0.117 x 0.159 inches in size. This led to the flood of microproces­
sors that continues to this qay, as Very Large Scale Integrated (VLSI)
circuits, approaching 500,000 transistor equivalents on a single mono­
lithic IC, are produced.

LSI and VLSI technology spawned another breed of processors
besides the computer itself. These belong to the very important class of
processor-support peripheral IC's. We have not only the computer in
an IC today, but all the memory, communication channels, ftoating­
point arithmetic processors, disk and display controllers, and so on, as
well. Three important facts should be made apparent:

First, a computer is now a system, consisting of a collection of
IC's ruled by the software and "firmware" created for it. The
firmware is a program permanently recorded in a Read Only
Memory (ROM).

Second, many of these IC's in the system are processors.

Third. by studying the organization and function of an archetyp­
ical microprogrammable processor, we can obtain an apprecia­
tion of all the others.

All these processors, combined into the system we call a computer, can
be and in fact now are organized around a common set of micro­
programmed design principles. An understanding of these principles is
another of our main objectives in this text. Therefore, there is a com­
mon point of view through which we can gain an understanding of the
design, funetion, and operation of all the processor-type IC's used in
the modern computer. This insight is as essential to the programmer as
it is to the hardware designer. It is not easy to write efficient code for
the software that drives a synchronous communications IC, a disk con­
troller, etc., without a secure grasp of the intrinsic nature of these
devices.

Thus, with our technological advances in computing, we find that
the distinction between hardware and software types is rapidly break­
ing down. This artificial distinction never existed for the creators,
Charles Babbage and Ada Lovelace, who truly understood the nature
of what they wrote programs for. They would have had no difficulty in
recognizing that the modern computer is a system composed of a
microprocessor and a collection of peripheral support IC's, all having
many functionalfeatures in common. At this writing, one major pro­
ducer is shipping 100,000 personal computers a month-each one hav-

Overview of Processor Architecture

PERSONAL IMPACTS

9

ing as much computing power as early mainframes and many
minicomputers still in use. The microprocessor is not a "different"
thing or a break with the past. It is a result of modern industry's ability
to capitalize on past technological breakthroughs, now occurring at a
bewildering pace. The development of the microprocessor has been so
impressive that it leads to speculation about potential future applica­
tions. The microprocessor is becoming the mainframe computer of
today. True 32-bit microprocessors are on the market now, with their
full potential yet to be realized.

And that is probably why you are reading this text. The utility of
microprocessors (really, computers or just processors) is having a
profound effect on our lives. Can any of us, whether software or hard­
ware types, afford not to understand philosophically the tools by which
we earn our livelihood? We .all need insight into the intrinsic nature of
these devices if we are to stay current in our respective fields and
understand the world we live in. Perhaps our individual emphasis may
not be on the computations of seasonal migrations, crops, ballistics, or
astronomical calculations. These topics are still of interest to many.
Our interests, on the other hand, might be on the business, scientific,
educational, sociological, or even amusement aspects of applied com­
putation. We are still interested in planning, controlling, simulating,
and executing-except. that highly sophisticated technology is now
available to us for these purposes, on a mass basis, that would simply
amaze the early pioneers-let alone Cro-Magnon man.

(Those of us with a strange philosophical bent may ponder what
might have happened if Cro-Magnon man had· turned his caves into
video arcades, if he had had the microprocessor. This might have
deprived · us of some of our most moving works of art. The
antitechnologist might presume that they would have planned anti­
Neanderthal games with the computer.)

We have always been interested in computation, for better or
worse. We can see the continuing evolution of the technologies used
for applied computation all around us and, it seems, the evolution of
our fascination with it. Table 1-1 summarizes this brief introduction
into the history of computing. We hope that it also conveys a feeling
for the rapidly accelerating pace of innovation that we are all caught
up in. Some essential concepts, however, change only slowly. It is the
innovative use of these concepts that avoids individual obsolescence.
Our goal will be to gain an understanding of the fundamental concepts
of microprogrammable processor organization. We will deal with the
topic not hypothetically but rather in the very real terms of analyzing,
implementing, and microprogramming an instructional 4-bit proces­
sor. In doing this, we can easily penetrate the mystique that still sur­
rounds the computer CPU and other processors-to eliminate the
"hardware fright" that accompanies a lack of understanding of these
systems.

10 ARCHITECTURAL TYPES AND THE CYCLE OF COMPUTATION

Table 1-1
Historical Computing Perspective: Selected Key Benchmarks

Year
30,000 B.C.

400 B.C.

1600--1700 A.O.

1805
1820
1833

1854
1890

1938

1939-1944

1945
1946

1949

1952

1950s
1960s

Late 1960s

l 960s- l 970s

1968
1971

1970s

1980s

Event in the Evolution of Computers
Bone carvings show evidence of calculation of lunar
and seasonal cycles by Cro-Magnon man.
Abacus first used.
Schickhardt, Pascal, and Liebniz develop mechanical
calculators.
Jacquard loom uses "punched" pasteboards.
Babbage conceives idea of difference engine.
Babbage conceives idea of analytical engine. Device
never built due to mechanical complexities. First true
computer concept, using punched pasteboards for
program storage.
Boole developes an algebra of logic.
Hollerith uses punched cards for 1890 census tabula­
tion; later founds IBM Corporation.
Shannon publishes "A Symbolic Analysis of Relay
Switching Circuits." Applied logic design flowers as a
result.
Harvard-IBM Mark I-IV computers-relay logic imple­
mentations of Babbage's concepts.
ENIAC-Harvard-type tube computer.
Von Neumann concept of stored-program computer
architecture published.
EDSAC-first von Neumann-type computer becomes
operational, using vacuum-tube technology.
Wilkes proposes microprogramming as rational
approach to computer control-system design.
Tube computers-first generation.
Transistor computers-second generation.
MSI technology employed: 1,000 transistor equivalents
on a monolithic IC.
LSI technology employed. I0,000 transistor equivalents
on a monolithic IC.
Calculator IC's produced.
First microprocessor produced (Intel 4004). Harvard­
type 4-bit machine.
Personal computers. Processor-design methods applied
to peripheral-support IC's.
VLSI in production. 500,000 transistor equivalents on
an IC. Microprocessors perform mainframe functions.
16-bit and 32-bit machines produced on a single IC.
Wall Street Journal reports on personal computers
almost daily.

ARCHITECTURAL TYPES AND THE CYCLE OF COMPUTATION

In sketching the evolution of computers, we have referred to three
major types: the Harvard architecture, the von Neumann approach,
and its modification-the Wilkes's concept of a microprogrammed
architecture. As noted, all three methods of organizing a processor's
architecture are currently used. This categorization by major type

Overview of Processor Architecture

Figure 1-4
Harvard Machine: Basic
Architecture

INPUT/OUTPUT
(110)

PROGRAM

PROGRAM
MEMORY

CONTROL
UNIT

DATA
MEMORY

ARITHMETIC
LOGIC UNIT

(ALU)

ll

(Harvard vs. von Neumann) is apparent to a user who observes opera­
tional behavior. The recent VLSI processors are internally constructed
on the basis of microprogramming principles, due to their complexity
and this design method's simplicity. A review of the basic architectural
features of these types, with comments on behaviorial characteristics,
is in order. In the end, we shall study the microprogrammed type in
depth.

These architectural types may be reduced to their fundamental
architectures. Figure 1-4 presents the essential block diagram for the
Harvard architecture. Note that the control section communicates with
all other blocks. It issues the command signals that dictate perform­
ance, The arrows of the diagram are important because, in this case,
they indicate that the completely separate program memory communi­
cates only with the control unit and not with any of the other structural
blocks. There is another, also separate, memory for storage of data.
These two typically possess different word sizes. They are not expected
to communicate with each other, in normal operation. Of particular
significance, in this Harvard approach, is the fact that the ALU does
not interact with the program memory at all: no path exists for the
ALU to operate on program information. The Input/Output block
(110) transfers information between the data memory and the "outside
world." The ALU performs all transformations on data. That is, all
arithmetic and logical manipulations take place in this block. It con­
tains only combinational logic and no storage. It receives data from
and returns it to the data. memory. These are the basic blocks of the
Harvard machine.

Already, the features of the Harvard machine that could affect
our selection of a processor begin to emerge. First, its program is
fixed in the program memory. The program is not dynamically alter­
able during operation, because only the ALU contains the power to
alter information, and no path exists between it and the program
store. We can expect this architecture to lend itself best to the less

12

Figure 1-5
Von Neumann Machine: Basic
Architecture

INPUT/OUTPUT
(1/0)

ARCHITECTURAL TYPES AND THE CYCLE OF COMPUTATION

CONTROL
UNIT

MEMORY
ARITHMETIC
LOGIC UNIT

(ALU)

complex, unchanging types of applications-as noted, toys, termi­
nals, microwave ovens, etc. Somewhat less obvious is the fact that
both memories may be active simultaneously. That is, the data mem­
ory may be used to fetch the current instruction's data at the same
instant that the next instruction in the program store is also being
fetched. While this inherent two-to-one speed advantage is not fully
realized in practice, the fact remains that-for the same implementa­
tion technology and clock rate-Harvard machines can be faster than
von Neumann machines.

Figure 1-5 presents the von Neumann concept's fundamental
block architecture, which contains the broad applicability features of
the stored-program digital computer. In this case, we have only one
memory system. Both data and instructions reside in this single mem­
ory. In their formats, both use the same-sized unit of addressing to
communicate with memory. The first important ramification of this is
that, if we look at a random location in memory, we cannot be sure
whether the bit configuration is an instruction or merely data that hap­
pens to look like an instruction. This implies that we need a tool to
separate instructions from data. This is provided by reserving one of
the memory locations for use only as a Program Counter (PC), the
function of which is to keep track of where the next program step
resides in the rest of the memory. The second ramification is that, since
the instructions reside in the same memory as the data, they can also
be transformed by the ALU. Now the machine can dynamically alter
its own program. The other essential blocks perform the same func­
tions as in the Harvard architecture.

A disadvantage of the early von Neumann machines was that
they were constructed on a hard-wired basis. That is, the instruction set
was a fixed, wired entity. Obtaining a large and modifiable set of
instructions requires resorting to microprogrammable-design method­
ology. Even though Wilkes's concepts on microprogramming, as a
rational approach to the design of a computer's control system, were
well known by 1952, they did not achieve widespread use until semi­
conductor Read Only Memory (ROM) technology became very eco­
nomical. Actual implementation of computer concepts has often
depended on the availability of suitable fabrication technologies. The
microprogrammed architecture is the last one we shall consider at this
point, but we shall work with it in the remainder of the text. This is not
a separate architecture from the von Neumann approach, only a better
way to implement it.

Oven'iew of Processor Architecture 13

SEQUENTIAL MACHINE STATE TABLE

ROM READ ONLY CONTROL
ADDRESS MEMORY (ROM)

(PRESENT STATE> NEXT STATE PRESENT OUTPUT

ADDRESSING
AND BRANCH

CONTROL LOGIC

CONTROL STORE

CONTROL REGISTER FIELDS

}
MACRO-STEP
(COMPLETE
INSTRUCTIONS)

CONTROL SYSTEM SIDE

t
PROCESSOR SIDE

~ BUS-ORGANIZED MAIN r.::l
~~ CPU REGISTERS,. MEMORY ~_,.......___.,_ L ,_, C_O_N_T-RO_L.....,,

USER ACCESSIBLE MEMORY / • '~ ~~~~~
NOTE: THIS BLOCK NOT ESSENTIAL TO

CONCEPT; SHOWN ONLY TO EMPHASIZE USE
OF BUS ORGANIZATION.

WHEN SIMPLIFIED. THE
MICROPROGRAMMED
MACHINE IS STRUCTURALLY
A VON NEUMANN MACHINE.

Figure 1-6
Microprogrammable Machine:

Figure 1-6 portrays the organization of the Wilkes's
microprogrammed architecture, stressing its State Table organizational
features. Many simple things appear complex because they are sophis­
ticated. This figure contains more detail than is comprehensible right
away. Since it is the system we really aim to explore, let us introduce
some of this detail in an overview. A ROM is the key feature of its con­
trol system. Again, we have a processor with two separate memory sys­
tems. The main memory contains both the data and the program's
instructions that are to be executed during operation. The ROM mem­
ory is referred to as the Control Store. It, too, contains instructions, but
of an entirely different class. These instructions are the sequence of
marching orders that control the step-by-step operation of the system.
Each discrete control order is properly termed a microstep. A collection
of these microsteps, sequentially issued, forms a macro (or algorithm)
that the machine performs. These macros contain the processor's
sequence of orders for the execution of an instruction that has been
fetched from main memory.

Basic Architecture

The collection of macros that reside in the control store makes
up the stored algorithms for the step-by-step execution of each instruc­
tion of a program. This collection of macros makes up the instruction
set of the system. It is of utmost importance to realize, at the very out­
set, that the contents of the control store ROM must have the form of
a state table for a sequential machine. After all, a processor is a
sequential machine that can be described (and controlled) by its state
table. Each instruction step in your program is sequentially presented
to the control store. The control store, figuratively, says "Aha! so that's
what you want me to do. O.K., I will look up the steps for performing

14

Figure 1-7
The Basic Cycle of
Computation

CYCLE OF COMPUTATION

PROGRAM
ENTRY

PRO<JRAM
EXECUTION

PROGRAM
EXIT

ARCHITECTURAL TYPES AND THE CYCLE OF COMPUTATiON

EVENTS IN THE CYCLE OF
COMPUTATION

INSTRUCTION FETCH OF!

ADDRESS MEMORY.

INCREMENT PROGRAM
COUNTER.

FETCH INSTRUCTION;
PLACE IN IR.

GO TO EX MAJOR STATE.

INSTRUCTION EXECUTE <EX!

DECODE INSTRUCTION.

FOR MEMORY REFERENCE
INSTRUCTIONS:

ADDRESS MEMORY.

FETCH OPERAND

EXECUTE REQUESTED
OPERATION.

GO TO.IF MAJOR STATE.

your program's instruction in my State Table, and I will sequentially
issue them to the hardware of the Centrai Processing Unit (CPU)."
Therefore, your instructions in the program lead to the selection of the
sequence of steps, found in the state table of the control store, that
actually get executed. This addressing of control store's ROM and the
subsequent receipt of a word (a command) are stressed in the figure.

If we analyze Figure 1-6 closely, we find that we can reduce it to
the essential blocks of the von Neumann architecture, as shown. It
only looks complex, now, because we have prematurely enlarged upon
the details associated with the control system, to introduce its funda­
mental block structure and state-table organization.

Because architectural types are capable of affecting the computer's
· sequence and timing of the events in a cycle of computation, we must

define this cycle. We shall do this for the architecture of interest in this
text, the von Neumann architecture. A processor is a sequential
machine. That is, it is a machine that can be in a finite, albeit large,
number of states or conditions. Each "next state" of the system must
be predictable from a knowledge of the "present state" and the "exter­
nal inputs'' applied to it in this state. For every input, the system must
possess a defined state path. This information is contained in its con­
trol store. While we discuss these points in more detail later, the over­
all behavior of the computer can be reduced in complexity by
considering its two major states- Instruction Fetch (IF) and EXecute
(EX). All other states are minor states within these two. This is instruc­
tive because we can simply display the principal occurrences in a single
cycle of computation in relation to these two major states.

The cycle of computation is portrayed in Figure 1-7. How is the
cycle initiated? Let us assume a simple case, in which the operator has
loaded the program to be run into the computer's main memory and
has given the PC an initial value, which is the program's entry point.

Overview of ProC'essor Architecture 15

The front-panel controls are assumed to have these capabilities, as in
the old-time computers that required an operator.· By way of initializ­
ing the PC. the operator could set the console switches to order the sys­
tem to perform a BRanch Unconditional (BRU) to some starting
address. At this point, the operator hits the Run switch and stands
back. The cycle of computation's sequences commences with the oper­
ator's BRU command. The BRU execution consists of placing the
branch address of this initial instruction, forced by the operator, into
the PC. Thereafter the machine behaves as shown in the figure until a
HALT instruction, say. is encountered.

After the execution of the forced BRU, the machine automati­
cally enters the IF major state. The system PC is now pointing to the
memory location of the next instruction to be fetched. The essential
events of the IF sequence are shown in Figure I-7. The first event is to
address memory by transferring the contents of the PC to the Memory
Address Register (MAR). MAR is another portion of the system's
memory reserved for a special purpose. This register only selects a loca­
tion to be communicated with in main memory. It does not handle
data. Since this address came from the PC, the contents of this memory
location had better be a valid instruction. Let us assume, as in early
computers, that each word in main memory contained the complete
instruction format. The second event performed in the IF state is to
readjust the PC so that it will point to the next instruction in main
memory. This is done by incrementing its contents. Now, the PC is
looking ahead again. As we use the PC, we also increment it. MAR still
contains the original contents of the PC or the address of the instruc­
tion we wish to fetch. In another event, we read the contents of this
location and transfer it into the Instruction Register (IR). The IR, like
the PC. is yet another example of a dedicated specialized use of the
system's generalized memory. In the final event, the system ends the IF
phase by issuing the command to proceed on to the Execute (EX)
phase of operation. We stress the point that a small portion of the sys­
tem's total generalized memory .is dedicated to these special usages.

These four events of the IF phase of operation occur on every
von Neumann-type machine. Some of them may be performed in par­
allel, sq it is not always true that a particular machine requires four
separate clock pulses to complete the sequence. The control system

. records the fact that the EX state has been entered. In the EX state, it
looks at the contents of IR and figuratively says "You want me to do
that!" and so on. From decoding the contents of IR, it now can find
the macro in its control-store state table for the sequential execution of
"that." The OPeration portion (or field) of IR is, in reality, the
encoded address of a macro's starting location in the control store. The
last step of every macro contains an END order, to return the system
to the IF phase. The system continuously cycles through this cycle of
computation-IF to EX, and back again. Each time the machine
returns to the IF state, the PC must already be conveniently pointing
to the address of the next instruction. The microprogrammer that cre­
ates an instruction (macro) is responsible for properly advancing the
PC; we shall practice this later.

In the EX major state, the processor may have to use memory
again. This is important to recognize, since about 85 percent of all
instructions are memory-reference instructions. That is, the instruction
word itself contains a field that provides the address of an operand. In
this case, the address field of the instruction is transferred to MAR

16

Figure 1-8
Memory Map of a Program's
Blocks

ARCHITECTURAL TYPES AND THE CYCLE OF COMPUTATION

C:~
BRU.X

ENTRY POINT:--i------j

HALT

Z:

LOCO

PRIMARY MEMORY

during the EX phase. The object, a piece of data, is brought in from
memory to be operated on in the course of executing the instruction.
Memory, then, is typically accessed twice within the full cycle of com­
putation. The first time, during IF, was for the purpose of fetching the
instruction (which usually contains an operand address). The second
time memory is accessed, if the instruction mandates this during the
EX state, the data to be operated on is fetched. Therefore, two memory
accesses in a single cycle of operation are usual. This is natural, since
both data and instructions reside in main memory.

The novice should carefully study the events in the cycle of com­
putation, until they are fully understood. This cycle is the basic
description of the operation of the von Neumann-type computer, the
type of architecture used in most personal or business computers. It
also illustrates when and why memory is accessed-usually twice dur­
ing the cycle of computation. An understanding of these events is
essential to the microprogrammer's proper control of the PC. It also
leads to an appreciation of how a given system actually executes a par­
ticular instruction.

The von Neumann architecture's cycle of computation also tells
us something about the way memory space is utilized by this type of
machine. We can now see how a program is mapped into total main­
memory address space, shown in Figure 1-8. Since the PC carries the
information of where the instructions are in memory-and since the PC
is incremented only during the cycle of computation-one instruction
must follow another in memory, except for branches. That is, instruc­
tions reside in contiguous locations in main memory. These contiguous
locations of instructions may be formed into blocks of memory. For a
given program, these blocks are linked by the address fields of the
branch (or jump) type of instruction. Recall, the execution of a branch
instruction simply amounts to a reloading of the PC. The rest of mem­
ory that is not occupied with blocks of instructions may now contain
the data these instructions access or the results they store.

The cycle of computation simplifies the computer into a machine
with two major states. This state diagram may be slightly expanded to

Ol·en·iew of Processor Architecture

Figure 1-9
Expanded IF-EX Major State
Diagram

• • • • •
MACROS THAT MAKE UP

USER SET OF INSTRUCTIONS
(EX MAJOR STATES)

17

better represent the actual case, as is shown in Figure 1-9. In this illus­
tration, we have only one IF major state. After all, IF is IF, and we
need only one copy of it in the control store's state table. However, the
other macros in the user's instruction set are not used in every cycle of
computation. Therefore, we require a separate state-table segment, in
conlrol store, for each macro of the EX major state. The actual cycle
proceeds, in IF, to the fetch and subsequent decoding of the instruc­
tion word. This decoding process, during the EX major state, selects
the particular macro specified in the instruction word. That is, the sys­
tem executes only one user macro at a time and then returns to IF to
fetch another. IF therefore is not categorized as a user macro. It is
transparent to the user. Nevertheless •. it is a macro-automatically
invoked and performed by the system in the course of executing our
programs. In a microprogrammable system. anything that the machine
is capable of performing must be a macro residing in the state table of
control store. We shall refer to the above cycle of computation as a
basic frame of reference many, many times.

FORMS AND UNIFORMITY AMONG PROCESSORS

Having reviewed the major basic architectural types among computers
which, as we have said, are one form of processor, we may now con­
sider the question-what is a processor? We propose to answer this
question in detail in this text by examining the internal organization,
microprogramming, and functioning of an instructional archetypical
Central Processor Unit. The essential structure of this CPU's architec­
ture will be shown to be closely related to that of the Intel 8080 micro­
processor, the DEC PDP-11 minicomputer, the AMO 2901 bit-slice
IC, etc. Therefore, we are stressing the universality of the principles
behind the organization of a processor. Here, we must be careful to
distinguish between the organization of a computer's CPU and that of
the total computer system. Briefly put, the organization of a computer
system largely consists of the CPU and a number of other processors; a
means of intercommunication, the so-called busing structure; and the
system software that is executed by the CPU to coordinate the whole.
Our emphasis is on the concept of the generalized processor and its
essential characteristics.

To be more explicit, let us examine the block diagram of a com­
puter system, Figure 1-10. This figure displays channelized computer­
system organization, in the form most commonly seen in microcom­
puter systems. Variations of this structure are applied to large, so-

18 FORMS AND UNIFORMITY AMONG PROCESSORS

DEVICE(S)

DEVICE(S)
E.G., DISK(S)

(SECONDARY
E.G., PRINTER, MEMORY)

COMMUNICATION

DATA BUS

l ~ ~
,..

~ ~

PERIPHERAL PERIPHERAL
CPU PRIMARY .. PERIPHERAL

~
OMA DEVICE

p MEMORY CONTROLLER CONTROLLER ~ CONTROLLER I+
SYSTEM P' P" P"'

.. ~ ~

~

J --- ,..
ADDRESS BUS

~ '
,

CONTROL BUS

NOTE: P ... P"' ARE ALL PROCESSORS.

Figure 1-10
Channelized Computer
Svstems Organization

called mainframe computer systems, as well as to small systems. It is a
universally used form of organization and could be the starting point
for a discussion on operating systems and their environment. What we
wish to highlight now, however, is the large number of processors pre­
sent within the system. The term CPU itself implies that a computer
system consists of a central processor and a number of other ones.
These other processors are the peripheral controllers whose coordina­
tion is orchestrated by the CPU. As shown, these processors peripheral
to the CPU are of two types-Direct Memory Access (OMA) and those
with indirect access to memory. By access we mean access to the sys­
tem's primary memory-as opposed to access to mass-storage devices
or to secondary memory, such as disks.

The indirect-access processors exchange data with primary mem­
ory via the CPU. The direct-access processors can assume direct con­
trol of primary memory for a transfer of information between it and
another entity that does not involve the CPU.

Our point is, then, that a computer system consists of a number
of processors, coordinated by the system's software. The peripheral
processors are the Arithmetic Processor Units, the OMA controllers,
communications controllers, disk (secondary-memory) controllers,
graphics controllers, and others. These days, they are most often
sophisticated programmable devices housed in a single IC. Any one of
them can be as complex as the CPU. An 80-bit floating-point arithme­
tic processor peripheral is as complex ·as most CPU's. So far, we have
said that these processors are all sequential machines. We will study
the organization of the microprogrammable form of the CPU to learn
what a processor really is-and we do mean what it really is. If we
understand this one, we will have gained an intuitive feel for all the
other forms of processors, for they all reduce essentially to sequential
automata. In developing microprograms for an instructional CPU, we
have to display an inti.mate knowledge of sequential machine behavior.
Hwe gain an appreciation of the essential common features of proces-

Overview of Processor Architecture 19

sor organization, then we should be better prepared to understand,
work with, and program the other processors of the total computer sys­
tem. This information is also a background for t~e synthesis and
implementation of processors.

Thus we consciously used the term processor-as opposed to com­
puter, microprocessor, dedicated processor; arithmetic processor, DMA

, channel, etc.-to stress the unity of their fundamental design and func­
tion. They are all sequential machines. Chapter 4 reviews sequential­
machine principles, because the fundamentals of sequential automata
are the foundation for our understanding of processors. Micropro­
gramming is a generalized approach to their design that, with today's
emphasis, can have a strong software component. We wish eventually
to explicitly illustrate how a microprogrammable type of architecture
is implemented. Its basic nature is no different from all the other types
of processors, regarded as sequential machines. Av internal or even a
user-accessible microprogrammed memory, used as the core of the
sequential machine's control system, is an integral part of most present
large-scale systems organizations. Via the techniques of microprogram­
ming, we can view the rationalization of control-system design for
processors as one of the technological advances that has made VLSI
fabrication feasible.

Let us briefly look at the external physical details of a processor,
as represented by some microprocessors. They are usually classified as
members of one of the three previously mentioned architectural types.
That is not to say that other important architectures do not exist. The
array processor, for example, has a distinctly different systems organi­
zation, yet its individual functional blocks likely behave as a member
of one of our major categories. Do microprocessors differ from what
we mean by computers? Not really-the differences are only of degree,
not kind. They still are computer-system processor units, implemented
today through VLSI technology. The differences are variations in
physical size, word size, instruction formats, program throughput, and
the complexity of the instruction set. A microprocessor's instruction
set now may be as sophisticated as any of t.he older mainframe com­
puters. Even its bus and word size have entered the 32-bit region, for­
merly the domain of the mainframe. The speed and corresponding
productivity of the microprocessor can be much better, due to the
physically small, monolithic nature of its IC. The fact is that micro­
processors are beginning to replace mainframes, in many applications.
The mainframe will still be around in the future, but it will be a main­
frame.

Some physical statistics for a few IC processors are of interest.
They indicate advances in fabrication techniques-rather than the
essential nature-of processors. The first production microprocessor,
the Intel 4004, came in a 16-pin Dual In-line Package (DIP), whose
external measurements were 0.30 x 0.78 inches. The silicon surface
area (the amount of silicon "real estate") used for the fabrication of the
actual IC measured 0.117 x 0.159 inches. The number of active
devices contained within this area, in several layers, is referred to as
the number of transistor equivalents. The 4004 contained on the order
of 2,500 transistor equivalents. Its word. size was four bits: that is, the
data bus handled and it internally operated on four bits of information
at a time. It was followed by the 4040 microprocessor, packaged in a
24-pin DIP, externally measuring 0.6 x 1.25 inches. The microproces­
sor surface area size measured only 0.118 X 0.163 inches. The Motor-

20 FORMS AND UNIFORMITY AMONG PROCESSORS

ola 6800 8-bit microprocessor was packaged in a 40-pin DIP
measuring 0.6 X 2.0 inches, as was the Intel 8080 and most other 8-bit
microprocessors. The Intel 8086, a 16-bit machine, was also packaged
in the same size 40-pin DIP. Many of the peripheral support proces­
sors are also packaged in the 40-pin DIP. For a time, 40 pins was the
practical limit to package size. Current packages are larger, with
approximately 60 interface pin connections. As manufacturing tech­
nologies have improved, more and more logic h.as been designed into
the monolithic IC. The 8086 contains on the order of 80,000 transistor
equivalents. The Intel 80286 16-bit processor contains approximately
130,000 transistor equivalents. The current frontier is about 500,000
transistor equivalents in a single monolithic IC.

Because of the growing sophistication of microprocessors and the
limitations on package size, extensive time sharing of the interface pins
was resorted to. Time sharing of an interface pin, also called. Time
Division Multiplexing (TOM), is frequently employed to reduce the
number of required interface connections. Generally, manufacturing
and reliability problems increase with the number of interface connec­
tions. TDM typically allows a particular interface pin to function, say,
as an address-bus line in one clock period-yet serve as a data-bus line
in another. TDM is common practice, often confusing to the beginner.
It may help to imagine that an interface pin can be switch-connected
to an internal address bus in one time frame, then to an internal data
bus line in another. Thus, a single interface connection performs
entirely different functions at different times.

All the preceding indicates two things. First, today's micropro­
cessor is becoming the previous decade's smaller mainframe, because
of the amount of logic a monolithic IC may now contain and because
of improving design methodologies. Second, the typical processor of
today is housed in a monolithic IC-from peripheral controllers to the
CPU's of microprocessors and mainframes. What we hope will become
apparent in the course of this text is the role of the techniques of
microprogramming in the creative shaping of the functions these
processors can perform; equally important is the fact that we can be in
control of the specification of these functions.

We now also raise the rhetorical question: How does one learn
about these production processors? The answer is that, after the intro­
ductory orientation of a text, we read manufacturers' data manuals.
Much of the material of many good texts is obviously derived or even
taken straight from the data catalogs of these I C's," unadulterated. We
must stress the importance of learning how to go-independently-

. straight to the source, thus gaining self sufficiency.
Mention should be made of a special group of processor IC's, the

bit-sliced-based dedicated controllers, CPU's, and computer emula­
tors. They have played an essential role in the technology of computa­
tion, with less publicity than the mainframes and microprocessors.
These processors have been organized around the use of hit-sliced
architectures. The bit-slice is a basic bus-organized central processor
unit, containing only an Arithmetic/Logic Unit, a register array, and a
general-purpose load and shift register, with associated bus paths and
combinational logic. It does not have a control system built into it. The
user supplies this, via microprogrammed design. In creating a com­
puter or dedicated processor with these bit slices, we simply employ as
many of the slices (in parallel) as we need to achieve the desired
machine size. Typically, we now add to this a microprogrammable

Overviell' of Processor Architecture 21

control store, to form the processor's control system. The resulting
machines have been used to create dedicated controllers, such as high­
speed disk controllers. They have also been used to create fast emula­
tors of existing older mainframes and to form specialized computers,
such as those employed in avionics applications.

A popular bit slice has been the Advanced Micro Devices
Am2901 and Am2903 4-bit slices, housed in the same 40-pin DIP as
many of the other microprocessors and peripheral controllers. There is
a family of other related IC's that support the creation of the total bit­
sliced processing system. This means that the designer forms a process­
ing system, using several different types of IC's. In this do-it-yourself
approach, the processor is not a single IC but consists of several coor­
dinated IC's from the family. The control system that we shall study
and implement here reflects the function and nature of these other IC's
in the family. The 4-bit processor we shall study, construct, and
microprogram is a simplified model of a bit-sliced IC. As we shall see,
our own archetypical processor project will be a bus-organized CPU
containing a Register Array. an ALU. and a few dedicated registers­
much like the bit slice. To this we will add a microprogrammable con­
trol store for sequential behavior control and an external memory sys­
tem. These major structural features form the basis for the type of
processing system we call the computer. It is a hands-on, nonhypothet­
ical approach to the subject matter.

At the present writing, a new trend has emerged-due to the
availability of advanced VLSI IC-development technologies. It is now
possible for any of us to specify and design custom processor IC's.
This, too, is a do-it-yourself approach to the design and implementa­
tion of custom IC's, which relies on the very same system structural­
block approach we shall consider here. Many applications-communi­
cations, disk and instrument controllers, for example-have sufficiently
high production volumes to justify the development of custom proces­
sors in the form of the monolithic IC. We can apply the same organiza­
tional principles of microprogrammable systems to this task, too. This
important phenomenon is one indication of the spread of processor
design and implementation knowledgeability to the mass production,
low-cost stage that each of us can participate or lead in. It is now real­
istic for us to anticipate our own involvement in any of the design,
microprogramming, and software-development phases of processor­
controlled products-provided that we understand the systems 6rgani­
zation of the archetypical processor.

From the discussion so far. we see that processors may be any­
thing from a simple dedicated controller to a microprocessor to a com­
puter mainframe. To understand this myriad of devices, we need a
common center of reference. This we provide by examining the
sequential machine organization and microprogramming of a 4-bit
CPU. The applied microprogramming-systems principles that we shall
study are exactly what a processor is organized around-this is the uni­
fying factor, which encompasses both hardware and software. These
processors may be used for many different purposes, but their funda­
mental sequential-machine organization is the same. Our view, then, is
that processors consist of the systems application of a set of principles
for the sequential-machine organization of computation and control.
Differences are largely due to scale and end-function adaptations,
rather than to their essential features.

22

Figure 1-11
Mainframe Instruction Word:
Typical Fields (Single
Address)

INSTRUCTION-WORD FORMATS

FORMS AND UNIFORMITY AMONG PROCESSORS

OP MOD OA

OPERATION ADDRESS OPERAND ADDRESS

CODE MODIFIER OR
LITERAL VALUE

31 ._BITS- 0

Let us now proceed on to an important examination of the apparent
difference of form between the instruction word formats among those
processors we refer to as computers. A computer is a processor that
contains a large, flexible, instruction set suitable for multipurpose
adaptation, via user programming, to a variety of applications. These
range from the 4-bit microprocessor to the 64-bit or larger mainframe.
Common word sizes in microprocessors are 4, 8, 16, and now 32 bits.
Minicomputers typically have 12- to 18-bit word sizes: mainframes are
considered to have 24-bit and larger word sizes. An early number­
crunching machine even had 128-bit words.

It is totally incorrect to say that microprocessors are slower than
mainframes. The frequency of the driving clock for a microcomputer is
often greater than that of a mainframe system. Execution times, say,
for addition, are often comparable-even better. The real differences in
performance, for a given clock rate, depend on the number of bits
operated on at a single time in the process of executing a command.
An 8-bit micro adds two 8-bit quantities in one clock period, while a
mainframe may handle two 48-bit values in one period. By using
repeated addition (with carries), the microprocessor can add two large
48-bit numbers just as well as a mainframe. Since this also requires a
good deal of thrashing about between 1/0, memory, register
exchanges, etc., many extra operations are performed by the small­
word machine to obtain .the same resulting precision. If the small
machine is not superfast, then its throughput suffers in comparison with
the large machine.

Throughput is a key criterion of application performance. In
measuring throughput, we refer to the techniques for evaluating how
long it takes to process a set of problems relative to some proposed
application. Two machines of the same word size may perform in sig­
nificantly different ways in a given situation, often due to differences in
their instruction sets. This important aspect of processor evaluation is
called benchmark testing. A number of firms specialize in providing
benchmark tests for competing processors for given applications. In
practicing microprogramming, we shall implement an instruction set.
This will create an acute awareness of the effects of architectural
design and of the choice of instruction sets on the speed of operation,
which affects a system's throughput.

The monolithic-IC computer often utilizes a clock frequency sig­
nificantly higher than that of distributed mainframes. Associated with
it is a smaller word size. It has to hustle to obtain the same throughput.
Therefore, the distinctions between word sizes, instruction formats,
instruction words. and the addressable unit of memory deserve to be
discussed here. We will constantly be dealing with these concepts later.

Overview of Processor Architecture

FIELDS

SINGLE BYTE

7 BITS

TWO
OP MOD BYTES

THREE
BYTES OP MOD

Figure 1-12
Eight-Bit Microprocessor
Instruction Formats: Typical
Fields

0

I
I

23

IMMEDIATE AND
NONMEMORY-REFERENCE
INSTRUCTION TYPES

I DATA

MEMORY-

I LOW ADDRESS I I HIGH ADDREssj
REFERENCE
INSTRUCTION
TYPES

Further. these concepts begin to make it clear that apparent differences
are not fundamental ones.

In the early computers, instruction formats were straightfor­
ward. The complete instruction word was stored in a single word in
memory and could be held in a single register within the CPU. The
format of this instruction word, however, is invariant for most
machines of interest to us. That is, they all are divided into the same
sets of fields. This is presented in Figure 1-11. The typical complete
single-address instruction word consists of three subfields, as shown.
These fundamental fields are the OP code, MODifier, and Operand
Address (OA) fields. Two- or three-address machines simply make
repeated use of one of these field types-the OA field. The OP field
contains the binary code naming the operation to be executed. The
OA field contains either the address of an operand or some value
specified in the program. Whether this field contains an address or a
value depends on the nature of the instruction specified in the OP
field, that is, on whether the instruction is ADD or SHIFT. If the OA
field is in fact an operand address, then the 'MOD field is used to
specify how the final Effective Address (EA) is to be calculated. The
MOD field specifies the addressing modes we can select for our pro­
grams.

The modes of addressing supported by a computer are important
factors in how effective its throughput is. The usual ones, which we
shall later microprogram, are the register, immediate, direct, indirect,
indexed, and the autoincrement/ decrement modes.

The early single-address machines stored all three fields in one
memory word. The sizes of the instruction word, memory word
(addressable unit of memory), and the register were the same. Min­
icomputers and microprocessors have word sizes in the 4-18-bit range.
This requires that we distinguish between the complete instruction
word and the size of the addressable unit in memory (the memory
word). Currently, memory is often addressed using the byte (eight bits)
as the unit for numbering its addressable locations. Certainly, this is
true for the 8-bit machine. How does this affect the typical single­
address instruction format? The answer is-not at all. What it does
affect is its distribution in memory in the addressable units of memory
required to contain it.

A comparison of the instruction word format of a typical 8-bit
microprocessor with the early mainframe type above should clarify

24 FORMS AND UNIFORMITY AMONG PROCESSORS

this. This format for the 8-bit machine is presented in Figure 1-12. The
8-bit machine customarily uses the byte as the addressable unit of
memory, as do many larger processors today. It is also customary for
the first memory word addressed in the process of fetching the com­
plete instruction word to contain the OP and MOD fields of the entire
instruction. If the instruction can b;: completely specified in this one
byte, e.g., a shift operation, then there is no need to use any more
addressable units of memory to form the complete instruction. There­
fore we can find single-byte complete instruction words on these small
register-size machines.

There is another type of instruction, which we shall later imple­
ment, that moves the byte following the OP and MOD fields of the
first byte of the complete instruction word into a register. This
instruction word is completed in two bytes (words) of memory, as is
also illustrated in Figure 1-12. Thus we have one-byte and two-byte
instruction formats, consistent with the formats of the early main­
frames. Memory space not needed is not simply wasted. Finally,
another type of instruction-let us use addition as an example-speci­
fies the operand's address in primary memory in the complete
instruction word. Again, the customary practice in 8-bit machines is
to provide an address-bus size of two bytes' (sixteen bits') worth of
memory-address space. An instruction that specifies a complete
address in memory requires three bytes to form the complete instruc­
tion word. Its format is, again, the same as the one for the main­
frame-with all fields of the format required and present. Note, then,
that complete instruction words on small machines can contain 24 or
more bits-the same as mainframes.

Thus we see that machines with small word sizes have the same
instruction formats as the very large-sized ones. Insofar as instruction
formats are concerned, we are looking only at apparent differences­
not real ones. Because they do not waste the space for fields not used
in a specific instruction, the complete instruction word may consist of
one or more physical words (addressable units) in memory. The small­
register-size machines simply use a variable amount of memory space
to contain a complete instruction, for reasons of economy-a privilege
not available to the early mainframe. From this we can see that there
need be no fundamental differences among microprocessors, minicom­
puters, and mainframes, regarding the function and formatting of their
instruction words.

Practice varies. The Signetics 2650 8-bit microprocessor extended
the OP and MOD fields to nine bits. The ninth bit, the most significant
bit of the second byte of the instruction word, was used to specify indi­
rect addressing. This reduced the memory-address space to fifteen bits.
It truly had a minicomputerlike instruction set, which was extremely
satisfying to use, at the expense of the amount of memory it could
directly support. The PDP-11 16-bit minicomputer uses variable-word­
length instruction formats, too. In addition, many of its instructions
support two-operand addresses. The first word (two bytes) of an
instruction in memory defines the OP, MOD, and OA fields, in a man­
ner analogous to those previously discussed. The PDP-11 can define
two MOD and OA fields-one for the source, the other for the destina­
tion-for its two operands. Yet, the fundamental fields employed in its
sophisticated instruction word formats are the same as those named in
Figure 1-12.

Overview of Processor Architecture 25

In summary, then, a processor is any of a myriad of sequential
machine devices, which may have many apparent differences of form.
They are all, however. programmable sequential machines. They may
be comprehended, in their essence, by examining the broad fundamen­
tal organizational principles of a simple microprogrammable system. If'
we take advantage of the hands-on approach presented later in the
text, by constructing and microprogramming the instructional system
out of readily available IC's. we shall face the real and creative chal­
lenges of conquering the system. This is a far better alternative than
remaining its victims.

PROCESSOR FABRICATION TECHNOLOGIES AND PERSONAL IMPACTS

IncJuded in this introductory view of processors are the programmable
microprocessor-support IC's. This is precisely why the software-ori­
ented person must comprehend processor organization to do systems
software development with confidence. The Direct Memory Access
(OMA) controller, the floating-point Numeric Data Processor unit, the
graphics or CRT controllers, the Floppy Disk Controller, and the
Communications interface IC's are all examples of programmable
devices-just the sort of devices we need to understand if we are to
dominate the computer system, instead of the reverse. They, too, have
instruction sets. Their instruction sets are the set of activation com­
mands issued by the so-called central processor under its programmer's
software control. To program these devices via the central processor, it
helps to understand their intrinsic nature, which is almost universally
uniform. The manufacturers of microprocessor-controlled systems
require ever more software support in such projects as electronics
instruments, hospital-patient monitors, and the production of applica­
tions software for personal computers; it will help if we demystify
what this very large range of processors is about. That is our major
goal in constructing, microprogramming, and operating a processor.

Previously we introduced the concept of the existence of genera­
tions of processors. These generations were roughly based on the
fabrication technologies employed in their construction. Broadly, the
mainstream of computer development proceeded from mechanical
devices to relays to tubes to semiconductors. It has been asserted that
the widely used concepts on how to organize these processors, that is,
their architectures, have been few but persistently employed. Therefore
it is primarily in fabrication development that the dynamics of proces­
sor construction resides. As noted, we are most likely in practice to
encounter the Harvard, the von Neumann, and its variant-the Wilkes
microprogrammable concept-system architectures. There are impor­
tant organizational exceptions, such as array processors, but these are
special-purpose machines. Generally, they are design responses to spe­
cialized, important, but limited types of computational needs.

The interesting fact is that a computer system can contain many
processors. The peripheral LSI and VLSI processors mentioned out­
number the CPU's. Their organization as sequential machines, describ­
able in terms of microprogrammed-design methodology, implies their
fundamental unity. There are many of these· mass-produced processors
in current computer systems. In fact, they are just as much the basis
for the current widespread use of computers as is the CPU itself. They
are fabricated as monolithic IC's, too. Thus we see that advances in the

26

Figure 1-13
Summary of Some Current
Microprocessor Fabrication
Technologies

PROCESSOR FABRICATION TECHNOLOGIES AND PERSONAL IMPACTS

MATERIAL
OF
SUBSTRATE

TYPE OF
DEVICE

FORMS OF
TYPICAL
CIRCUITS

BIPOLAR

T'L

T2'LS

l'L

ECL

SILICON

SEMICONDUCTOR
FABRICATION
TECHNOLOGIES

METAL-OXIDE
SEMICONDUCTOR
(MOS)

PMOS

NMOS

CMOS

HMOS

SILICON
ON
SAPPHIRE
(SOS)

MOS

CMOS

art of building the processor IC's of a computer have helped make IC's
such a common feature of our lives and that there exists a common
basis for understanding them. The personal impacts of advancements
in fabrication technologies of processors are widespread. A short dis­
cussion of recent trends in the evolution of computers shows why this
is occurring and how it affects all of us.

Semiconductor-fabrication technology commenced with the ger­
manium bipolar transistor and diode as its basis. This was soon
replaced with the silicon bipolar discrete-device technology. Then
came the metal oxide semiconductors, which were progressively incor­
porated into the monolithic structures of the small-, medium-. and
large-scale monolithic logic IC's. The emphasis on developing better
fabrication techniques has been such that an entire tree-structured
spectrum of these technologies exists, with important application­
dependant choices to be made. Figure 1-13 introduces this perspective.
This figure presents just some of the more widely used semiconductor­
fabrication technologies. Experimentation is constantly proceeding,
for example, with gallium arsenide semiconductors, in the attempt to
improve speed, reduce power, and achieve economic viability. The
technology at the forefront of development efforts changes almost
yearly. In the late 1970s, UL transistor arrays attracted much atten­
tion. Currently, CMOS processor and memory IC implementations are
emphasized.

Speed and power are important parameters in the selection of a
fabrication technology that addresses the application needs of the
end user. The early electronic machines were slow and consumed tre­
mendous amounts of power to remove the heat they produced.
Roughly the same amount of air-conditioning power is required as
the machine employs in its operation. Office automation with proces­
sors simply is not feasible if the cooling system cannot handle the
load. The inherent speed capability of a particular ·semiconductor

Overview of Processor Architecture 27

technology affects the throughput that it can achieve for a given
architecture. Early microprocessors used PMOS technology and the
Harvard architecture. This choice of architecture also masked the
slower speed of PMOS, as compared to NMOS or HMOS
fabrication. The Harvard architecture continues to be considered for
specific applications, to further enhance the inherent speed/power
properties of a given technology.

Table 1-2 presents relative factors of merit for some of the
microprocessor-fabrication technologies. As noted, architectural
choices can use inherent speed and power properties as a platform
for further improvement of performance. All this is subject to the
economics of the costs and yields obtainable with a particular tech­
nology, but the development process continues unabated. The
result is that several successful implementation technologies are
readily available for the rapid implementation of new processing
systems. These new IC's meet the speed, power, and production
criteria required for mass marketing. A good example of this is the
portable personal computer.

Table 1-2
Relative Factors of Merit in Micro~rocessor Fabrication TechnolQgies

Technologies MOS sos Bipolar
Factors PMOS NMOS CMOS CMOS 'PLS l'L ECL
Speed 1 2 4 5 6 3 7

= Slowest

Power Req. 4 5 7 7 2 6
I = Most

Packaging Density 5 6 3 5 2 5
I = Least

Process Complex- 7 6 4 3 3 2
ity

I = Most
Experience Factor 7 7 4 7 2 3

I = Least

As semiconductor-fabrication technologies improved, modular IC
building-block components were introduced. The availability of these
components and their subsequent inclusion in large-scale fabrication
designs have had a great impact. These formed the basis for regular­
izing organizational approaches to the implementation of sequential
machines. The first of these popular devices to achieve wide usage was
the Programmable Read Only Memory (PROM). This is a form of
user-programmable permanent memory, which we shall discuss again,
that retains its contents even when the power is turned off. Anyone
who has had to bootstrap load an early machine with paper tape, on
powering it up, heaves a sigh of relief when turning power on to a per­
sonal computer, then relaxing while the boot program in PROM brings
in the disk operating system. The availability of the PROM solved the
problem of how to have a fixed program permanently available on
power-up. It also solved the problem of having an immediately avail­
able state table in control store for the control of a processor. The
PROM, with added registers, is employed in the construction of
microprogrammable-control systems.

In the 1970s, the Programmable Logic Array (PLA) came on the
market. It was followed by a variant, the PAL, in the early 1980s.

28 PROCESSOR FABRICATION TECHNOLOGIES AND PERSONAL IMPACTS

Here, user programmable gate logic permitted incorporation of large
amounts of combinational logic into a single IC. The PLA, in conjunc­
tion with registers, is also used extensively in control systems. This
construct is called a Programmable Logic Sequencer (PLS). A pattern
is beginning to emerge here. As modular components gained wide­
spread use, they were also incorporated into the design and construc­
tion of the processor IC. This continues to this day. The discrete IC's
that we shall work with in our analysis, construction, and
microprogramming all have their functional equivalents incorporated
into the design of a monolithic processor IC.

Gate arrays are semiconductor IC's containing a large number of
gates. The end user specifies how they are to be connected. From the
basic gate, we may construct an entire processor. The logic gate may
be perceived as a fundamental building block. Most of these modular
do-it-yourself structures are regular in nature, and they are therefore
easily incorporated into a custom IC. The craft of VLSI design has
evolved to the point where it is no longer necessary to work with fixed
arrays. Individual gates can be specified in Computer Aided Design
procedures to tailor their speed and power properties to the needs of
the application. Further, libraries of previously developed modules are
available for immediate incorporation into proposed processing sys­
tems.

The pattern that emerges here is that processors are constructed
by using fundamental constructs that were originally available in sepa­
rate IC form. These constructs are currently available in library form,
which the designer merely names (with associated parameters), making
it instantly available for incorporation into a custom IC's system. New,
programmable processor IC's are reaching mass markets at a rapidly
accelerating rate. Therefore the personal impact here is on our level of
understanding of processing systems, so that we may knowledgeably
work with them. This applies equally to hardware and software types.
The computer we work with or own contains not one but several
programmable processors. In the end, it is the system software that
rules the roost. To design, use, and program these processors effec­
tively, we require insight into them. An understanding of both hard­
ware and software is essential to current computer-systems
development. Operating-systems development, graphics, communica­
tions, video games, and business software all interact with a wide vari­
ety of programmable processors.

To illustrate some effects of these last statements, the author sat
with a former student who demonstrated the use of a Computer Aided
Design system to specify a PAL, by naming it and providing the sys­
tem with the number of inputs and outputs. This person was less than
four years out of college. In a few seconds, the design features were
displayed on the monitor screen for future integration into a larger and
complete custom processor IC. Also demonstrated was the design of a
gate with specifically enhanced performance properties. The final
processor design that used these building blocks was developed in five
months, contains over 9,000 transistor equivalents in a single IC-and
it worked from the very start. This feat was performed by a capable
individual who does not specialize in IC design, in response to a corpo­
rate need for a processor IC in a product. The age of rapid response to
both hardware and software computational needs is here-and it
affects us all.

Overview of Processor Architecture

BIBLIOGRAPHY

PROBLEMS

29

The construction project we shall study in this text follows the
pattern expressed above. We shall incorporate separate building-block
IC's into a total processor-system design, to gain an understanding of
processor-system principles. These principles, using functional .mod­
ules, are exactly what is employed in the system-concept development
of a custom IC. This, then, is the frontier fabrication technologies has
brought us to. System developers may now rapidly construct their own
processors, using VLSI custom IC-design technology. Users, designers,
and programmers must respond to this imperative if they wish to par­
ticipate in the implemetation aspects of computer systems applica­
tions-as opposed to being restricted to being an end user of a system.
That is all the more reason for us to understand these universal proces­
sor-system principles, to enhance our abilities to either program or
design these devices.

Bell, C.G., and Newell, A. Computer Structures, Readings and
Examples. New York: McGraw-Hill, 1971.

Burks, A.W., Goldstine, H.H., and von Neumann, J. "Prelimi­
nary Discussion of the Logical Design of an Electronic Comput­
ing Instrument." 28 June 1946. Reprinted in Datamation,
September and October 1962.

Goldstine, H.H. The Computer. Princeton, New Jersey: Princeton
University Press, 1972.

Marshack, A. "Exploring the Mind of Ice Age Man." National
Geographic, pp. 65-89, January 1975.

Mead, C., and Conway, L. An Introduction to VLSI $ystems.
Reading, Massachusetts: Addison-Wesley, 1980.

Shannon, C.E. "A Symbolic Analysis of Relay and Switching
Circuits." A/EE 51, 713-23 (1928).

Spencer, D.D., An Introduction to Computers. Westerville, Ohio:
Charles E. Merrill, 1983. ·

Wilkes, M.V. "The Best Way to Design an Automatic Calculat­
ing Machine." Paper read at Manchester University Computer
Inaugural Conference, July 1951.

Wilkes, M.V., and Stringer, J.B. "Microprogramming and the
Design of the Control Circuits in an Electronic Digital Com­
puter." Proc. Cambridge Phil. Soc., Pt. 2, Vol. 49, pp. 230-38,
April 1953.

1. Count the number of microprocessor controlled products in your
home or in your car.

2. What ate the essential differences between the Harvard and von
Neumann architectures, from the standpoint of a computer's
organization?

30 PROBLEMS

3. Draw a simple timing diagram that illustrates and explains why
the Harvard architecture has an inherent speed advantage over
the von Neumann approach.

4. Define the meaning and original intent behind the term
microprogramming.

5. What form of tabular representation is microprogrammed archi­
tecture organized around?

6. Define the terms micro and macro, with respect to microprogram­
ming;

7. For a microprogrammed computer system, what is the relation­
ship between a user's instruction in the instruction set and a
macro in the system's control store?

8. Describe the cycle of computation and the principal events that
occur in each of its phases.

9. What is the role of the Program Counter in the von Neumann
architecture?

JO. How does the von Neumann architecture affect the manner of
space allocation in the primary memory of a computer system?
Draw a memory map that illustrates your comments.

11. How many programmable processors are there in the following
popular personal computer systems? Investigate at least one, and
list your findings. Do you understand the organizational basis for
these processors?

a. IBM PC or XT

b. Apple Ile

c. Apple Macintosh

d. Hewlett-Packard 150

e. DEC Rainbow

12. Describe the channelized computer system pattern of organiza­
tion and its relationships to programmable processor IC's.

13. What are the typical fields of a complete instruction word, and
what are the functions that each serves?

14. What is the difference between a complete instruction word and
addressable units of memory?

15. If you plan to participate in systems programming and develop­
ment of computers and processors, che(;k off all the following
areas for which you feel adequately prepared, at the entry level:

a. The logical nature (not semiconductor physics) of semicon­
ductors and digital IC's

b. Fundamental bus organizational and operational concepts

c. The logical nature and elementary physical principles
behind memory devices

d. Fundamental clock and timing relationships of a synchro­
nous digital system

e. The actual functioning of an ALU and how data is altered
in a CPU

Overview of Processor Architecture 31

f. How the ALU influences conditional instructions and the
flow of software

g. Basic sequential machine organization, implementation,
and operating principles

h. Data flow and transformation within the context of a bus­
oriented system, including the block diagram of a com­
puter's architecture

1. How logic IC's-and systems that incorporate their fea-
tures-actually function

j. Freedom from "hardware fright"

k. Participation in microprogramming activities

I. How an instruction in the instruction set of a processor is
actually executed

m. Implementing a digital processor system

n. How the various addressing modes of a computer function
and are executed

o. The fundamental organization behind the typical program­
mable peripheral processor, such as CPU's, disk control­
lers, graphics and CRT controllers, communications IC's,
numeric data processors, etc. An elementary background
for reading their data manuals and for using and program­
ming these devices

If you checked none of the items above, there are two choices:
either change your major, or carry on. Remember: This is only
the beginning.

CHAPTER 2
FEATURES AND ARCHITECTURE OF
PROCESSORS

Large-scale computers, minicomputers, microprocessors, and dedi­
cated programmable processors are all derived from the same common
heritage of basic features. The differences are more likely to be in the
scale on which each machine is constructed or in how the same fea­
tures are used, rather than in the varieties of features employed in their
architectures. For this reason, we shall refer to all of the foregoing as
processors in the future, to indicate that certain unified concepts
regarding structural features apply to all.

There are many levels at which one can study the nature of
processors. These range from the component level (resistors, transis­
tors, etc.) at one extreme to the use of abstract computer-description
languages that detail the register and state transactions of a machine.
At the entry level, however, it is beneficial to obtain some insight into
the major basic working features of processors-and to understand
their mechanisms. As we review the basic logical devices employed in a
processor's design and examine the fundamental concepts associated
with their use, observe that a limited number of devices and concepts
are used repeatedly. These form the "blocks" of logic employed in
describing and constructing an architecture; these are herein referred
to as "features" of an architecture. As we proceed, the fundamental
features that are now somewhat briefly introduced, in an overview of
their properties, will eventually be interconnected to form the mean­
ingful groups collectively referred to as a computer's architecture.

There is a subtle relationship between architecture and software.
The instruction-set capability is embedded in the architectural fea­
tures-a fact that places a limit on software performance. This is
important nowadays, when software and application objectives are
considered before prescribing the requisite architectural arrangement
of the features. The hardware design of the VAX family of computers,
for example, was designed with certain software-performance objec­
tives in mind. Since we have to start somewhere, we shall introduce the
applicable basic terminology, devices, and features to arrive at the
architectural structures common to computers, microprocessors, and
dedicated processors and controllers. From this base, one should gain
some understanding of the analysis and implementation of a given
processor's architecture discussed in the subsequent chapters.

It should be noted that the greatest cost associated with comput­
ing is that of software development and maintenance-the pain never
goes away. Thus, a "good" architecture supplies the vehicle for the
development of useful and enduring software. Plentiful software is the
reason some older systems (poor ones included) refuse to fade away.
Software and operating-systems development is expensive. Microproc­
essors have affected this situation in a strange way. The manufacturer
frequently markets devices, not software systems. The end user is
tempted to use the microprocessor chip for which the most software is
available-whatever the source. Thus, we see that, in gaining an under-

34 BUSES, DATA PATHS, GATES, AND BUFFERS

standing of the architectural features of processors, we become better
prepared to cope with the interrelated hardware and software
problems. This chapter, Chapter 3, and Chapter 4 are primarily for the
benefit of the more software-oriented student. The final goal is to dis­
pel the mystique that unfortunately still surrounds the internal struc­
ture and functioning of processors. By this means, we can bring both
hardware and software interests closer.

Finally, some comments on our approach in this chapter are in
order. While some exposure to and knowledge of logic devices is pre­
sumed, it is not always assumed in this text that one actually possesses
hardware experience. This is not intended as a first course in logic
design. The basic nature of fundamental logic elements is described
here in a manner intended to help one visualize their function and, in
so doing, to become comfortable with them. The reader should possess
a TTL 7400 series logic family data catalog from the very outset. This
is essential. As noted, the basic devices and building blocks described
in the TTL data catalogs will be combined to produce the more sophis­
ticated logic structures of which an architecture consists. The emphasis
is on the logical behavior of these computing structures, as opposed to
the electronics-design details of a particular device or system. It is nec­
essary, though. to explain logical computing structures in terms of the
familiar and commercially available small- and medium-scale TTL and
MOS logic devices available to you at any electronics parts store.

One soon learns that the features associated with the basic com­
mercial logic devices described in the manufacturer's data catalogs, are­
logically speaking-the same features utilized in a microprocessor's
design. It can be demonstrated that the microprocessor evolved out of
the ability to incorporate more and more of these basic features into a
monolithic circuit. Thus, from a study of these readily available devices,
one can gain an intuitive understanding of how Very Large Scale Inte­
grated (VLSI) processor systems are organized and how they function.
This is also good basic preparation for gaining an understanding of the
data sheets on microprocessors and programmable support logic, such
as communications, disk, printer, and input/output controllers. They
too are processors. Thus there is a big picture out there, consisting of an
understanding of the shared features of programmable processors and
the reader's willingness to consult their data sheets.

An important point is that the task of gaining an understanding of
hardware is not hard. However, you must be willing to study the infonna­
tion in data catalogs on your own. From a study of these basic logic
devices, you gain the ability to understand both function and perfonnance
in processor systems, such as microprocessors, communications devices,
etc. By taking the time to really understand the functioning of about ten
readily available /C's and the way they are used in a systems context at the
end of this text, you can gain a strong hardware understanding of what
computer architecture is about. The 4-bit microprocessor we shall build
and work with is capable of demonstrating the operation of most instruc­
tion types, as well as several addressing modes, if you are willing to
microprogram it. First, we must learn to understand it.

BUSES, DATA PATHS, GATES, AND BUFFERS

We shall start by forming a visual image of a total busing structure,
followed by a overview of the operating principles of typical devices

Features and Architecture of Processors 35

BUS SIGNAL PATH
~~~..-~--1'--~~~~~~~~~~~~~~~~~~.--~~~TO 

n 

n 

DRIVER BUFFER 
GATES (OPTIONAL) 

SOURCE SELECTION 
(MULTIPLEXING) 

METHOD p 

n 

(PASSIVE CONDUCTORS) OTHER 

CONTROL 
SYSTEM 

SIGNALS 

il 
I I 

') LOAD 
ENABLE 
SIGNALS 

q 

n 

n 

RECEIVER BUFFER 
GATES (OPTIONA-L) 

TAPS 

SINK DISTRIBUTION 
(DEMULTIPLEXING) 

METHOD (OPTIONALLY, 
COMBINATIONAL 

LOGIC 

SOURCE • • • SOURCE 
REQUIRED 

SINK • • • I 

Figure 2-1 
Bus System Block Diagram 

Bus CONTROL 

0 M 

SYSTEM MASTER CLOCK SIGNAL 

used at bus interfaces. A bus may be defined as a data path containing 
one or more transmission lines over which information is transmitted 
in a coordinated manner. UsuaUy, a bus is time-shared by several 
sources of information and will have one or more recipients, or sinks, 
of the information it handles. A general block diagram of a bus's struc­
ture is presented in Figure 2-1. More than one data-source selection 
block. like the one shown in the figure, may interface with the bus at its 
taps. This characterizes only the path from any one source to any of 
the chosen sinks. Where a single tap contains both sources and sinks, 
we say that it has bidirectional properties. 

Associated with the bus are control signals emanating from the proces­
sor's control system. These control signals coordinate the activity on 
the bus. We are discussing clock-driven (synchronous) systems. The 
control-system signals decide which single potential source to the bus 
becomes the master of the bus during the current clock period. When 
the selected source or its data selector (also called a multiplexer) does 
not have the necessary power to drive the bus lines, a power-amplify­
ing driver called a buffer may be used to speed up signal-level transi­
tions. In some systems, receiver-buffer gates are optionally used to 
detect the driven signal. The use of combinational-logic data dis­
tributers (called demultiplexers) to sort out which sink will receive the 
bus information is seldom employed in large-scale current practice. 
What is commonly used are a set of signals, as noted in the figure. One 
of these is the control system master clock signal, which is distributed 
over a common line to the clock input of each sink register. The other 
elements of this set of signals are the separate control system load­
enable signals, one for each sink. The control system may enable none 
or several sinks to receive information in any one time frame. This sep­
arate enable and common clocking is typical practice. If not enabled, a 



36 

LOGIC GATE CHARACTERIZATIONS 

BUSES, DATA PATIIS, GATES, AND BUFFERS 

particular sink ignores the clock. If enabled, it stores the current 
period's bus information. 

A bus system, then, is simply an associated passive bundle of 
wires, traces on a printed circuit board, or deposited sets of conductors 
within an integrated circuit. Associated with it are control-system­
driven source- and sink-selection signals. When driven by a selected 
source, each line of the bus presents its information to all the sinks 
simultaneously. Note that there can be only one source aeting as 
master of the bus at a particular moment; in principle, there are no 
limitations to the number of sinks that may receive information from 
the bus. The load-enable signals from the control system dictate which 
sink(s) shall respond to the clock in the current period and thus store 
the information at their inputs. For clarity, the slash (/) and an associ­
ated number are used in the figures when the bus contains more than a 
single line. Thus -/-, indicates an eight-line bus. 

Above we have characterized a bus system. This is a simple but 
effective picture of what a bus is. Henceforth, when we speak of a bus, 
this image should be recalled. Two basic but important tools (charac­
terization and visualization) for understanding digital systems architec­
ture have thus been introduced in this bus-organization example. By 
characterization, we mean the understanding of the basic functional 
and behavioral nature of the things we are talking about, perhaps in an 
analogy. It is not at all necessary to understand semiconductor-design 
details completely in order to understand computers. However, we 
must be able to adequately characterize and visualize the system's com­
ponents in our own minds. Putting these characterized components 
together visually as a meaningful system is the essence of computer­
systems comprehension-and of what follows here. Some students may 
be new to this way of thinking, so remember that characterization and 
visualization are two major keys to understanding processor systems 
behavior. Computers should always be approached from a systems 
point of view. 

A brief aside: Microprogramming was originally defined by 
M.V. Wilkes as "a rational approach to the design of a computer's 
control system." We shall discuss microprogrammed system-design 
principles later in detail. It enters the scene here, since the bus-con­
trol signals mentioned above often come from a microprogrammed 
controller. Sometimes the microprogrammer is responsible for 
enforcing the single-source rule. The microprogrammer is always 
responsible ·for the selection of the sinks that receive information at 
the end of the current period. Bus control is an important aspect of 
microprogramming, and the microprogrammer must always have an 
image of the system in mind. The preceding presented one way to 
visualize a bus. Let us now look at the principles, characterizations, 
and terminology behind the design details of the physical devices 
within a busing structure. 

A fundamental appreciation of the nature of these devices substan­
tially reduces hardware fright. The logic gate is the basic building 
block of interest. The major structural features of a logic gate are 
shown in Figure 2-2. These consist of a control section (receiving both 
external data and-in some cases-control inputs), followed by an 



Features and Architecture of Processors 37 

LOGIC { 
(DATA) 
INPUT(S) 

CONTROL{ 
INPUT(S) 

Figure 2-2 
Logic Gate-Typical 
Organization 

POWER 
SUPPLY 

NOTE: CURRENT CONTIWLLED - TYPICALLY BJT 

VOLTAGE CONTROLLED - TYPICALLY MOS 

CONTROL 
SECTION 

(CURRENT..._ __ 

DIRECTION OF MAJOR 
CURRENT FLOW FAN-OUT 

TO 
DRIVEN 
LOADS 

OR 
VOLTAGE 

TYPE) 

A. 
CURRENT SOURCE LOGIC 

B. 
CURRENT SINK LOGIC 

amplifier. This amplifier may be either an inverting or noninverting 
one-the choice is design-dependent. The control section is either cur­
rent- or voltage-controlled. Current-controlling inputs are typical of 
the Bipolar Junction Transistor (BJT) logic families, such as Transis­
tor-Transistor Logic (TIL) and Emitter Coupled Logic (ECL). Volt­
age-controlling inputs are typical of the Metal Oxide Semiconductor 
(MOS) transistor families, such as PMOS, NMOS, and CMOS. What­
ever the type of input control, the output must have the necessary 
power t.o source or sink current on the driven line, to obtain the 
desired speed of response at the output. All logic modules can both 
source (feed onto a line) and sink (drain from a line) current. As noted, 
though, current-source logic primarily drives current down the line; 
current-sink logic primarily drains it from the line. 

Briefly, look ahead at the components in the basic 7400 TIL 
NANO gate, Figure 2-4. It is composed of resistors, transistors, and 
diodes. The diodes are disguised as an intrinsic part of the multiple­
emitter input transistor. This structure simply means that the input 
transistor is being used as a diode-logic gate. We need to characterize 
the nature of these components to understand their computer system's 
behaviorial characteristics. We start with the resistor, symbolically 
shown in Figure 2-3a. By analogy, the resistor restricts the flow of elec­
tricity-as a restriction in a pipe limits the flow of water. The resistor is 
often used to limit the flow of current to avoid damage from improper 
short circuits. The resistor is thus characterized, for our purposes, as a 
restrictor or current limiter. It has other uses, but these need not con­
cern us now. 

How does one characterize a diode? Its electrical and analog 
symbols are shown in Figure 2-3b, In semiconductor terms, it is a junc­
tion of p and n-type silicon materials. More important to our under­
standing of its nature, the diode's behavior is analogous to that of a 
check or one-way valve in a pipe. Water (electricity) flows in one direc­
tion if the pressure (electrical potential or voltage) is high enough to 
open the valve. High pressure on the opposite side only causes the 



38 

DEVICE 

A. RESISTOR 

B. DIODE 

ELECTRIC' AL 
SYMBOL 

OR 

BUSES, DATA PATHS, GATES, AND BUFFERS 

ANALOG EQUIVALENTS 

~ RESTRICTOR 
~(ORVALVE) 

-\ CHECK VALVE 

C'. BJT TRANSISTOR COLLECTOR 

\~) 
BASE CONTROLLED 

I,. CURRENT E 

BAC'K-TO-BAC'K 
DIODES 

INPUTCONTR 
CURRENT . 

EMITTER OR OR 
(E) 

NOTE: THE COLLECTOR 
CAN SERVE AS A SWITCH 

(ACTUATED BY 
CURRE:NT FROM 

CONTROLLER) 

DIODE IN SOME 
APPUCATIONS 

Figure 2-3 
Characterizations of Basic 
Electrical Devices 

SWITCH 
(ACTUATED BY 
VOLT AGE FROM 
CONTROLLER) 

valve to seat, thus sealing off all fluid flow. The diode, for our pur­
poses, is characterized as an electrical one-way check valve. The flow 
of conventional current takes place in the direction of the arrow in the 
symbol when the voltage at the base of the arrow is great enough to 
"open tlie valve." (This is usually about 0.7 volts for silicon diodes.) 
When this is done, we say that the diode is forward-biased. A high volt­
age difference of the opposite polarity does not cause current to flow-



Features and Architecture of Processors 39 

within reason: let's not destroy the device! Under these conditions, we 
refer to the diode as being back-biased. 

The BJT is often characterized as two diodes, back to back. As 
shown in Figure 2-3c, the usual symbol for this device uses the arrow 
to indicate the diode we refer to as the emitter. In fact, the collector is 
simply another diode that shares a common junction with the emitter­
which is the so-called base of the transistor. If the base is at a relatively 
high voltage, in the type illustrated, current flows through whichever 
diode has the lower potential-be it the emitter or collector. This is not 
what is referred to as transistor action, but it does illustrate the fact 
that transistors are often used as diodes in an I C's design. As such, they 
often serve as diode-based logic gates at a device's inputs. 

When transistor action prevails in the BJT, the structure behaves 
as a current-controlled current amplifier. The amount of input (base) 
current determines which of the three operating regions the transistor 
is in. In the active region, the transistor acts as a linear amplifier, which 
is not relevant to a description of the output's interface behavior in a 
logic gate. In digital circuits, the output transistors of the amplifier are 
driven either into the full "on" (saturated) region or into the full "off' 
(cutoff) region. This brings us to yet another way in which we may 
characterize the transistor. That is as a current-controlled switch in the 
BJT family of transistors and as a voltage-controlled switch in the 
MOS family. This means that the physics and electronics of transistors 
are often reducible to the analog of the current- or voltage-controlled 
switch when we are examining the resultant behavior of the output circuits 
of digital systems. 

The Metal Oxide Semiconductor (MOS) transistor is character­
ized in Figure 2-3d. (It will soon be discussed in detail.) For now, let us 
state that we can visualize it as a voltage-controlled switch, for the uni­
directional control of current flow, as the BJT is. For our switching 
purposes, the valve is either fully open or fully closed. Thus its action 
is the same as that of a switch that supports bidirectional current flow. 
A second use of MOS transistors is as voltage-controlled bidirectional 
gate valves that manage current flow. In this case, the direction of flow 
is determined solely by which side of the valve is at the higher "pres­
sure" (voltage), as illustrated. 

To illustrate the preceding, let us first look at the equivalent cir­
cuit of a basic TTL NANO gate, Figure 2-4. Transistor Ql of Figure 2-
4a is used not as a transistor but as multiple-emitter diodes placed 
back to back with a single collector diode. This structure forms a diode 
AND gate (if the high voltage level is interpreted as the "true" condi­
tion). Only if all the logic inputs are at the relatively high voltage level, 
H, does current flow through the collector diode of Q 1 to drive the 
base of Q2, switching it on. The voltage at the top of resistor R3 is 
driven up by the flow of current, causing some current to be fed to the 
base of Q3, switching it on, in turn. Note that, in addition, Q2 is also 
diverting current away from the base of Q4. Thus, Q3 is now in satura­
tion while Q4 is cut off. Q3 is sinking current from the gate's output to 
ground and may be thought of as a low impedance path to ground. 
This path handles the current supplied to the output by the equivalent 
of resistor Rl contained in other devices driven by this one, and any 
charge stored in the parasitic capacitances of the driven line. 

Conversely, if any one of the input diodes is held at the relatively 
low voltage, L, current is diverted away from the base of Q2. The result 
is that Q3 is no·.v cut off, and Q4 is driven on. The analysis of this situ-



40 

A 

B 

BUSES, DATA PATHS, GATES, AND BUlj'F~s _ 

DIODE 
LOGIC 
GATE 
(QI) 

SUPPLY 
Vee 

GROUND 

b. Characterized Circuit 
a. Equivalent Circuit 

Figure 2-4 
Basie rn Logic Gate: NANO 

ation requires circuit expertise beyond our current scope. Resistor R2 
is chosen as a compromise between the conflicting desires to protect 
against short circuits and yet provide as low an impedance path as pos­
sible between the supply voltage, Vee, and the driven line. The current 
sourced to the line from a single input is much lower than the total 
sink-current capaeity of Q3, due to the high impedance resistor, RI, in 
the driven multiple-emitter input circuit. Nothing, however, protects 
Q3 of the output except the common sense of the user in limiting the 
total sink current arriving from all external sources. In summary, we 
note that this NANO gate really consists of a diode AND gate fol­
lowed by an inverting amplifier. Thus, the NAND gate is treated as an 
AND-NOT gate, but only when the high voltage level is designated as 
the "true" level. 

Observe that the output consists of one transistor atop another, 
both acting as switches. This important structure, referred to as a totem 
pole, is found very frequently in digital-logic devices. When serving as 
a logic gate, the two transistors of the totem pole are always mutually 
exclusive. That is, if one is on, then the other is off, and vice versa. The 
characterized model of Figure 2-4b summarizes all this. In characteriz­
ing these computer components, we are particularly concerned with 
the nature of the input and output interfaces. Everything that lies 
between these often can be referred to simply as the "guts" of the 
device in question. That is, we must understand a device's overall func­
tion; but what electronics lies between the input and output requires 
only an intuitive understanding for systems-application purposes. It is 
important to visualize the output as a tap that sits between the two 
switches of a totem pole, which also contains a current-limiting resistor 
at the top. 

ACTIVITY LEVELS VERSUS ELECTRICAL LEVELS 

Either of the two voltage levels, Hor L, can be designated as the true 
logic level. This choice is made by the user. The important connota­
tions of this fact are often confusing to beginners. Let us try to clear 
this up by adopting the following conventions: In this text, the true 
level is always referred to as a logic l, and it may be either the high 
or the low voltage. Once the true level is selected, the other voltage 



Features and Architecture of Prpcessors 

DEVICE'S INVARIANT 
ELECTRICAL CHARACTERISTICS 

INPUTS OUTPUT 
A B f 

L L H 

L H H 

H L H 

H H L 

a. ELECTRICAL LEVEL 
CHARACTERISTICS TABLE, 
TTL NAND GATE 
(SEE FIG. 2-4) 

A 

RESULTING LOGICAL BEHAVIOR 
VS. 

ADOPTED LOGICAL ACTIVITY LEVEL 

B 
f, 

B A 

b. GATE SYMBOL FOR 
POSITIVE LOGIC 
APPLICATION 

(ACTIVE HIGH) 

c. GATE SYMBOL FOR 
NEGATIVE LOGIC 
APPLICATION 

(ACTIVE LOW) 

41 

f, 

H ... HIGH LOGIC VOLTAGE LEVEL 
L =LOW LOGIC VOLTAGE LEVEL 

Figure 2-5 
Dual Logical Behavior of TIL 
NANO Gate 

level becomes· the false, or logic-0 level. Much confusion can be over­
come by relating 1 and 0 only to true and false, respectively. When 
the H level is selected as I, we have what is termed a positive, or 
active-high, logic system. If the L level is designated as 1, we have a 
negative, or active-low, logic system. There are far more negative logic 
signals at a processor's interface than the beginner suspects. We shall 
work with active-low logic signals later. There is no avoiding them in 
practice. · 

The consequences of the choice of the activity level to be applied 
in a logic device can be substantial. It may come as a surprise to the 
reader to learn that there is, in reality, no such a thing as a NANO 
gate. There is only a NAND function, performed by a physical device 
for one c.hosen activity level. If we think about the device of Figure 2-4 
again, we see that it can be truly and consistently characterized by its 
electrical behavior only as a device whose output must be high when 
any of its inputs are low. Figure 2-5 presents a characteristics table for 
this device's electrical levels of L and H. In the context of a positive­
logic system, this produces the NANO function. In a negative-logic 
system, it yields the NOR function. This electrical-level form of table 
is often used in data manuals, as it is the only consistent way to 
describe a device's physical behavior. Logical behavior depends on 
whether the active-high or the active-low logic convention has been 
chosen. 

Conversion of the H's and L's to the ls and Os of a selected activ­
ity-level convention of this and other logic gates is an important exer­
cise in the problem set, to let the reader discover what functions the ls 
and Os produce for each chosen logical activity level. First, though, one 
must determine the electrical-level characteristics of a device in terms 
of H's and L's-since that is its real physical characteristic. This is done 
in the laboratory by applying all possible input combinations to the 
device, while recording the associated output response in terms of H's 
and L's. The logic function performed is a consequence of the logical 
activity level we later choose when we employ the device. 



42 

Figure 2-6 
NMOS Transistor Structure 
and Biasing 

ISOLATING 
DIELECTRIC 

(SiO,) v 
Tl 

CONDUCTOR~ 

T3 T2 

Tl __ _ 

+ 

BUSES, DATA PATHS, GATES, AND BUFFERS 

___ T2 -DIRECTION OF CURRENT 
FLOW DEPENDS ON 
RELATIVE VOLT AGE 
BETWEEN Tl AND T2. 

b. Biasing for Channel Enhance­
ment (May Be Used as a 
Transmission Gate) 

DRAIN 
(Tl OR T2) 

~SUBSTRATE 
GATE 
(T3) 

s 
SOURCE 

(Tl OR T2) 

a. Simplified Device Structure 
Cross-Section 

c. NMOS Transistor Gate Sym­
bol with Enhancement Mode 
Biasing 

MOS LOGIC CHARACTERIZATIONS 

Further, by consistently treating logic I and 0 as true and false, 
respectively, we can correctly perform arithmetic computations in 
either positive or negative logic systems. In the arithmetic problems in 
this text, the binary digits 0 and I are always associated with logic-0 
and logic- I truth levels, respectively. In summary, the H and L tables 
consistently characterize device physical behavior, regardless of the 
selected logical-activity level used. On the other hand, ls and Os char­
acterize only truth-value behavior for a selected and known logical­
activity level. We consistently maintain these distinctions in this text. 

The MOS family of transistors generally consists of low-power devices, 
often requiring auxiliary buffers. Most processor-type IC's employ 
MOS technology, including MOS bus interfaces. An understanding of 
their fundamental means of operation is useful. They may be imple­
mented in a variety of ways. One basic manner widely used in logic 
devices is illustrated in Figure 2-6. The voltage-controlled device in 
this figure is an n-channel enhancement-mode Metal Oxide Semiconduc­
tor Field Effect Transistor (MOSFET). It was created by starting with a 
piece of p-type silicon, into which two n-type silicon pockets were dif­
fused. Then and the prefer to the type of majority charge carriers pre­
sent in this region, negative electrons or positive "holes," respectively. 
An insulating metal-oxide layer is then deposited over the top surface, 
except for the conducting pads Tl and T2. A third conducting pad, T3, 
is applied over the insulating dielectric to form the gate of the device. 
The gate and the substrate, separated by the insulator, form a "capaci­
tor." 



Features and Architecture of Processors 43 

Note: 
Yee 

ASA 
RESISTOR t QI USED 

Yee 

a. Simple MOS Logic Gate 

Figure 2-7 
MOS Logic Gate: Simplified 
Enhancement Mode Operation 

A B f 

L L H 

L H L 

H L L 

H H L 

b. Electrical Level Characteristics 
Table 

INPUTS 
"GUTS" 
VOLTAGE 
CON­
TROLLED 

f 

c. Characterized MOS Logic Qate 

Whatever polarity of voltage is applied between Tl and T2 
(assuming T3 is open), no current flows because of the back-to-back 
diode behavior of the n-p-n path between Tl and T2. One of these 
diodes is always back-biased. The gate is capable of affecting the chan­
nel region between the two n-type regions, making the device conduc­
tive. If a positive voltage is applied to the· gate, electrons (n-type 
minority charge carriers always exist in a p-type region) are attracted 
to the channel area, which is the other plate of the capacitor. This is 
called the enhancement, or formation, of the channel. In enhancing the 
channel, we have converted the former n-p-n structure to an n-n-n 
structure. Thus, the diode behavior no longer applies, and there is a 
current-conducting path between Tl and T2, as shown in Figure 2-6b. 

An important result is that the direction of current flow depends 
only on the polarity of the voltage between Tl and T2. We have thus 
created the transmission gate, which supports bidirectional current 
flow. When this same device is refined in manufacture to handle pri­
marily one direction of current flow, one end (Tl or T2) is optimized to 
become the source of charge carriers; this end is referred to as the 
source. The carrier-receiving end is called the drain. This modified form 
of construction is common when the device is to be used as an MOS 
transistor. Let us now connect both the substrate terminal (Figure 2-
6c) and the source to the negative pole of a battery. The battery's posi­
tive pole drives the gate. Since the gate dielectric has extremely high 
resistance-on the order of 1018 ohms-no appreciable current flows 
between the gate and the channel. Still, the channel is enhanced and 
therefore is capable of conduction. Thus, an input gate voltage con­
trols the flow of channel current. This basic structure serves in two 
ways: first, as a bilateral-current-flow transmission gate and, second, as 
a unilateral-current-flow MOS transistor. The difference lies solely in 
the manner of use. For digital circuits, both may be characterized as 
behaving like a switch. Where current flow is regulated in both direc­
tions. as in analog gates, the structure can be compared to a voltage­
controlled valve. 

Several of these devices can be used to form a logic gate, Figure 
2-7a. Simplified MOS-transistor symbols are used in the illustration. 
Transistor QI is the MOS-technology equivalent of a current-limiting 
resistor. Since the gate is always connected to the source and the power 
supply, the channel of this transistor is always enhanced. The current 



44 

TRI-STA TE CHARACTERIZATIONS 

BUSES, DATA PATHS, GATES, AND BUFFERS 

flow is limited by the intrinsic resistance of the channel, which is 
designed to limit current flow sufficiently to avoid harm. Current flow 
at the output of this gate is always a possibility. If either input A or B 
is pulled high, the current of QI is diverted from the output, f, and 
shunted to ground. The result is a low output voltage, used to control 
other gates or devices. When this gate is used within a positive-logic 
system, it produces the NOR function. The electrical-level-characteris­
tics table of Figure 2-7b characterizes the device's physical behavior in 
actual practice. The logic function actually performed depends on the 
logical-activity-level convention adopted. Again, we see that the charac­
terization of logic devices starts with their observed electrical behavior, 
expressed in terms of electrical levels. Boolean logic functions, where 
relevant, are derived from this. 

This has been a functional explanation of just one of the many 
FET technology families, which are similar in nature: all share the 
advantages of simplicity, low cost, high packaging density, low power 
consumption, and ease of fabrication. Coupled with reasonable speed 
of response, these factors have contributed to the wide use of MOS­
FET's in the manufacture of LSI and VLSI processors and memory 
systems. We have seen the MOS transistor used as a transmission gate, 
as a logic gate, and as a resistor. AU these forms are frequently used. In 
looking at the structure of MOS interfaces to the outside world, we 
shall also find the ubiquitous totem pole formed with MOS devices. It 
is apparent from Figure 2-7c that the patterns we are learning to visu­
alize contain a good deal of repetition. Here, a MOS logic gate (shown 
with totem-pole outputs, as most commercial IC gates are) has almost 
the same characterization as that of the BJT logic gate. The "guts" now 
manage voltage-controlled switches, and the current-limiting resistor 
of the output is, in reality, a disguised MOS transistor whose source 
and gate are connected. 

As the use of bus structures evolved, it became necessary to 
develop new techniques of interfacing logic gates to them. One impor­
tant technique was the development of methods for time-sharing a bus 
among several sources. Let us look at the modifications to the inverting 
gate that make it useful as a time-sharing structure. It is referred to as 
the tri-state (or 3-state) gate. The third state is not a logical level but, 
as we shall see, a state of electrical isolation. 

If the inputs of the previously discussed NANO gate are tied together, 
the result is the simple inverter. Looking at the output structure of the 
gate, we notice that it consists of the totem-pole structure. Let us focus 
on the BJT NANO gate, to demonstrate its transformation into the tri­
state interface. As presented so far, transistors Q3 and Q4 of Figure 2-
4 occupy mutually exclusive states. That is, if one is on, the other is off. 
If both could be turned off simultaneously, then the gate's output pin 
would be electrically isolated from both power and ground by the very 
high impedance of both off transistors. As far as the driven line is con­
cerned, it is as if the gate is nonexistent, because of the high impedance 
of its output. Figure 2-8 illustrates the conversion of a TTL inverting 
gate into a tri-state buffer. An extra level of inversion would produce a 
noninverting buffer. 



Features and Architecture of Processors 

D 

E 

ENABLE 
(TRI-ST ATE CONTROL) 

GROUND 

45 

LOGIC DISABLE OUTPUT 
INPUT CONTR0_1j 

L 

H 

L 

H 

L H 

L L 

H HI-Z 

H HI-Z 

b. Electrical Level 
Characteristics Tahle 

a. Schematic 

ENABLE 
(ACTIVE LOW) 

c. Logic Symbol 

Figure 2-8 
Elementary Tri-State Logic 
Gate (TTL) 

D 
DATA 

TRI-STATE 
CONTROL 

"GUTS" 

d. Disabled Tri-State Gate 

OUTPUT 

EXTERNAL 
BUS 
LINE 

This gate was created by adding Q5 and Q6 to the circuitry of 
Figure 2-4 and feeding one of the former inputs back to the collector of 
Q6. What we have now gained is a buffer gate with one data input and 
one tri-state control input. This last input is often referred to as an 
enable input. This term relates to the enabling (or disabling) of the 
gate's capacity to pass data through to the output. When the enable 
line of Figure 2-8a is low, Q6 is deprived of its base current and in con­
sequence is cut off. In this state, one emitter of QI is internally held 
high, while the other is driven by input data. As the truth table shows, 
the output is the complement of the input logic state for this inverter. 
Making this line high saturates Q6, thereby pulling both the internally 
connected emitter and the base of Q4 low at the same time. This action 
deprives both Q3 and Q4 of their base-current drives. The net result is 
that both of these transistors are cut off, and the output is electrically 
isolated from both power and ground. The data-input line can no 
longer influence the output. The gate is now in the Hi-Z, or high impe-



46 BUSES, DATA PATHS, GATES, AND BUFFERS 

dance state. This is the state of electrical isolation, as shown in the 
table of Figure 2-8b. The logic symbol used to represent the tri-state 
buffer gate is presented in Figure 2-8c. 

Figure 2-8d shows our simple switch-analog picture for the Hi-Z 
state of the totem pole. Note that both switches are open, thus electri­
cally isolating the gate from its driven line. This is an important visual 
image, since bus int~rfacing and multiplexing often employs this con­
struct. Time-sharing of a bus line is accomplished by enabling only one 
tri-state gate per line at any one time. The same tri-stating principles 
are applied to all the many semiconductor fabrication technologies 
that support controlled-switch behavior. 

A comment on drawing notation may help prevent confusion. 
The small circle at the control input, E, tells us that it is an active-low 
input. Its absence would be indicative of an active-high input. The real 
purpose of the small circles on logic diagrams is to indicate active-low 
inputs and outputs. Previously, we referred to the NANO gate as an 
AND-NOT gate. The small circle at the output of the AND symbol 
merely indicates that the preceding function (the AND) was actuated 
whenever there is a low output on that line. This has the same effect as 
inversion. The small circle means only that the logic function associ­
ated with it is actuated when the logic line connected to it is low. This 
criterion applies to both inputs and outputs. Unfortunately. to cor.Juse 
the situation, somewhat larger circles are often shown on data-sheet 
logic diagrams. They merely represent actual output pins and have no 
logical significance. 

These are the principles underlying tri-state operation. They 
work equally well with BJT, MOS. and other technologies. The tech­
nique is ubiquitous at the interfaces of LSI and VLSI integrated cir­
cuits, particularly where bus interfaces are concerned. When devices 
are not capable of delivering power, tri-state buffers (usually BJT 
devices) are used both to amplify power and to permit selective ena­
bling of the outputs of the source devices onto a bus. 

Tri-stating is widely used to time-share access to a bus. This tech­
nique is referred to as Time Division Multiplexing (TOM). The basic 
mechanism is illustrated in Figure 2-9. Here, two selection input lines 
and an output enable line drive a one-of-four decoder (also called a 
demultiplexer) with active-low outputs. An example of just such a 
device is the 74LS139 IC. When enabled, only one of the selector's out­
put lines is low at any time-corresponding to the present state of the 
device's addressing inputs. Each of the output lines in turn controls the 
enabling inputs of one tri-state gate. At a given instant, therefore, only 
one of these gates can be active-low enabled, to pass its data on 
through to the single bus line illustrated. With this system, we are 
assured that only one gate can be master of the bus at any time. If the 
decoder is not enabled (E is high in this case), no source is placed on 
the bus at all. That is, the bus can be totally isolated from all sources, 
when desired. 

Naturally, a bus with more lines would require sets of tri-state 
gates, each arranged as in Figure 2-9. There will be one set of gates 
per driven bus line. the number of tri-state gates being equal to the 
number of sources to the line. The corresponding source enable-con­
trol lines of each .gate would be tied to the related common output 
from a decoder. In our example, the data inputs to the tri-state gates 
come from four different. sources. The control system of a processor 
can now determine which one of the four sources shall present its 



Features and Architecture of Processors 47 

(I) 

1-0F-4 
DECODER 

CONTROLLER) 

INPUT 
SELECTION 

AND CONTROL 

TRI-STATE CONTROL LINES 

(2) (3) (4) 
(4)----i~---+-----t---

DATA (3)----+----t---. 
SOURCES. (2)-----. 

(I-OF- LINES(!) 
FROM EACH 
SOURCE) 

Figure 2-9 

DATA BUS LINE 
(TYP .• 1-0F-n) 

a. Logic Diagram 

E 

L 

L 

L 

L 

H 

TRI-STATE 
INPUTS. CONTROL LINES 

A B I 2 3 

L L L H H 

L H H L H 

H L H H L 

H H H H H 

x x H H H 

b. Electrical Characteristics 

NOTE: WHEN E IS HIGH, NO 
BUS SOURCE IS SELECTED. 

4 

H 

H 

H 

L 

H 

Tri-State Application Example 
data to the bus line, by both enabling the selector and forcing its two 
addressing inputs to one of their four possible states. Thus three of 
the tri-state control lines are always high, isolating their correspond­
ing outputs from the bus line. The control input of one tri-state set of 
buffers is low, thus permitting it to present its selected input data to 
the bus line(s). This approach to time-sharing a data bus with many 
sources is very flexible. Since TTL logic modules and data are likely 
to be most readily available to the reader, it is used here most often, 
to enable the reader to experiment with implementation examples. 
Where a processor-system design is fabricated with a number of 
MOS, CMOS, TTL, and other components, some details change-but 
few principles do. 

The ability to select no source at all is inherent in tri-state opera­
tion. Where no source is selected, it is usually best to be sure that the 
driven bus assumes a known quiescent state. Noise-immunity and 
power-conservation considerations lead to the selection of the electri­
cally high level for the bus in these cases. Figure 2-10 presents one 
method of implementing this type of bus structure. Notice that the 
individual bus lines are forced high when all connected tri-state drivers 
are in the Hi-Z state, by the typical "pull-up" resistors used on each 
line. Similar methodologies apply to the internal workings of IC's, but 
this figure illustrates a typical problem to be resolved in interfacing an 
IC to other IC's. Eight separate sources are shown; the A's and B's 
indicate the possibility that they belong to different classes of devices. 
Each distinct source, however, has an associated set of tri-state gates, 
through which it gains access to the bus, subject to some control 
scheme. The size of each set of tri-state gates for a source must relate 
to the number of lines of the bus that are accessed. The design of the 
system must guarantee that it does not attempt to source more lines 
than the bus can handle at a given instant. 



48 

CONTROL 
SYSTEM 
SIGNALS 

Bus HARDWARE, CALCULATIONS, AND DATA CATALOOS 

OTHER 

SOURCE/SINK -----------------------. 
CONTROL BUS 

SOURCE 
CONTROL 

E 

. BUS _.4 -'--_,_3 --1'"'4 
SELECTOR/ 
DECODER 

ADDRESS"'----...--""" 

TRI-STATE DECODED 
ENABLE CONTROLS 

8 

3 

B2 

Bl 

...,TIP., 
EACH LINE 

AO Al A2 A3 BO 

INFOR­
iMATION 

SINK 
OR 

SOURCE 

Figure 2-10 
Tri-State Bus-Sourcing 
Control Block Diagram 

TRl·STATABLE_J 
SOURCES 

8 DATA BUS 

Thus far, this chapter has been a general review of the characteri­
zation and visualization of some of the functional blocks and compo­
nents of a computer busing structure. We have also examined how to 
visualize the application of these blocks and components in forming a 
bus system. In a following section, we shall look at the specifications 
for a few typical devices used in bus interfaces. These are available at 
your local electronics-parts shop and may be used for experimentation. 
The following section briefly discusses the bus calculations required 
for proper application of IC devices. These calculations begin to dis­
close the considerations involved in interfacing, say, MOS microproc­
essors with external buses . 

. Bus HARDWARE, CALCULATIONS, AND DATA CATALOGS 

We shall now examine some typical examples of commercial hardware 
available to us for use in a data-path construct. The electrically high 
state of the quiescent bus is maintained by "pull-up" resistors to the 
power supply. These resistors are supplied in easy-to-use packages, 
such as the Dual In-line Packages (DIP) used for other IC's, as shown 
in the schematic of Figure 2-11. Typically, there can be fifteen resistors 
in a 16-pin DIP, where the last pin is a common connecter to the 
power supply. In other modules, each resistor is treated as a separate 
unit, with pin connections at both ends. 

The following IC data sheets contain a great deal of useful and 
practical information; the sheets should be studied in detail as we pro­
ceed. Figure 2-12 presents the manufacturer's data on a typical 
decoder/selector logic module that could be used to enable the tri-state 
line drivers of a bus. The 74LS 138 is a low-power Schottky TTL 
decoder. The properties that enhance its usefulness are lower than 
standard TTL power dissipation, which improves reliability by reduc­
ing heat failures, and low input-drive requirements. The low input 
drive is especially interesting. Having a large number of devices con­
nected to a bus can severely tax the driving element's ability to handle 
the current load. Many sources, such as MOS !C's, have very limited 



Features and Architecture of Processors 

Figure 2-11 
Fifteen-Resistor Array DIP 
Schematic: 16-Pin DIP 
Package 

Note: Pin 16 is common to all 
resistors. 

FAN-OUT 

49 

16 15 14 13 12 II JO 9 

R R R R R R R 

R R R R R R R R 

2 3 4 5 6 7 8 

drive (current sink when driving ITL) capability and can handle an 
adequate number of devices only when they have low input-drive 
requirements. An example of a tri-state driver that has low input/high 
output-drive characteristics is the 8T97 buffer shown in Figure 2-13. 

The manner in which the preceding modules may be employed is 
further detailed in Figure 2-14, a schematic of a single selected source 
being fed onto a data bus. Pins 1, 2, and 3 (the address inputs) of the 
74138 decoder select which of its outputs is low, provided that it is 
enabled. Pins 4, 5, and 6 are the enabling inputs. Should pin 6 be low, 
all outputs are high, and no source is selected. Pins 4 and 5 are addi­
tional enabling inputs, but they are active only when low. This iarge 
number of enabling inputs is useful in decoding selection addresses 
aimed at the chip, as well as in expanding the number of outputs by 
adding more chips. To select a device with multiple enable inputs, all 
enables must be active, whether they are active high or low. Output pin 
7, as illustrated, is used as a typical tri-state buffer-control line for a 
single set of gates. It drives the gate enables on pins 1 and 15 of the 
8T97 modules, which control access to an eight-line bus. 

There is an important difference In the enabling of a tri-statable 
interface, such as the 8T97, and that of a module such as the 138. The 
74138 does not have a tri-state front-end interface. It possesses the 
conventional totem-pole output structure. In this case, when it is dis­
abled, all outputs are forced to the electrically high state, not the Hi-Z 
tri-stated state. This way, all driven tri-state active-low control lines 
are actively held high when the 138 is disabled. The driven tri-state 
gates of this example are in the Hi-Z state under these conditions. 
Therefore, we should be aware that some disabled IC's can be actively 
driving their outputs, as opposed to disabled tri-statable ones. 

The current-handling capacity of a logic module has been referred to a 
number of times, already. It is important to be aware of and check this 
parameter in the use of logic modules, particularly since common prac- · 
tice often intermixes logic families. For example, it is common to see 
MOS and one of the ITL families interfaced to each other. In techni­
cal terms, the important parameters are referred to as fan-out (FO) and 
fan-in (Fl). Fan-in is defined as the number of inputs a gate can sup­
port and still operate properly. A two-input NAND gate has an FI of 
two. Thus we see that this parameter has already been accounted for 
by the circuit designer, and we need not concern ourselves with it, 



50 

Figure 2-12 

Bus HARDWARE, CALCULATIONS, AND DATA CATALOGS 

TTL 
MSI 

TYPES SN54LS138, SN54LS139, SN54S138, SNS4S139, 
SN74LS138, SN74LS139. SN74S138, SN74S139 

DECODERS/DEMULTIN.EXERS 
BULLETIN NO. DL·S 7611804, DECEMBER 1972-REVISED OCTOBER 1976 

• Designed Specifically for High-Speed: 
Memory Decoders 
Data Transmission Systems 

• 'S138 and 'LS138 3-to-8-Line Decoders 
Incorporate 3 Enable Inputs to Simplify 
Cascading and/or Data Reception 

• 'S139 and 'LS139 Contain Two Fully 
Independent 2-to·4·Line Decoders/ 
Demultiplexers 

• Schottky Clamped for High Performance 

TYPICAL 

TYPE PROPAGATION OELAY 

(3 LEVELS OF LOGIC) 

TYPICAL 

POWER DISSIPATION 

'LS138 22 ns 32mW 

'S138 B ns 245mW 

'LS139 22 ns 34mW 

'5139 7.5 ns 300mW 

description 

These Schottky-clamped TTL MSI circuits are 
designed to be used in high-performance memory· 
decoding or data-routing applications requiring very 
short propagation delay times. In high-performance 
memory systems these decoders can be used to 
minimize the effects of system decoding. When 
employed with high-speed memories utilizing a fast· 
enable circuit the delay times of these decoders and 
the enable time of the memory are usually less than 
the typical access time of the memory. This means 
that the effective system delay introduced by the 
Schottky-clamped system decoder is negligible. 

The 'LS138 and 'S138 decode one-of-eight lines 
dependent on the conditions at the three binary 
select inputs and the three enable inputs. Two 
active-low and one active-high enable inputs reduce 
the need for external gates or inverters when 
expanding. A 24-line decoder can be implemented 
without external inverters and a 32-line decoder 
requires only one inverter. An enable input can be 
used as a data input for demultiplexing applications. 

SN54LS138, SN54S138 ••• J OR W PACKAGE 
SN74LS138, SN74S138 •.• JORN PACKAGE 

ITOPVIEWl 

DATA OUTPUTS 
,..-~~~~~A~~~~~~ 

~~ou~:uTGND 
SELECT ENABLE 

positive logic: see function table 

SN54LS139, SN54S139 ••• J OR W PACKAGE 
SN74LS139, SN74S139 • , • J DR N PACKAGE 

(TOPVIEWl 

SELECT DATA OUTPUTS 

VccEN~glE~~ 

1G 1A 18 1V0 1V1 1V2 1'1'3 
ENABLE~~ 

SELECT DATA OUTPUTS 

positive logic: see function table 

The 'LS139 and 'S139 comprise two individual two-line-to-four-line decoders in a single package. The active-low enable 
input can be used as a data line in demultiplexing applications. 

All of these decoders/demultiplexers feature fully buffered inputs each of which represents only one normalized Series 
54LS/74LS load ('LS138, 'LS139) or one normalized Series 54S/74S load ('S138, 'S139) to its driving circuit. All 
inputs are clamped with high-performance Schottky diodes to suppress line-ringing and simplify system design. Series 
54LS and 54S devices are characterized for operation over the full military temperature range of -55°C to 125°C; 
Series 74LS and 74S devices are characterized for 0°C to 70°C industrial systems. 

TEXAS INSTRUMENTS 
INCORPORATED 

POST OFFICE BOX !1012 • DALLA&. TEXAS 11222 

74LS138 and 74LS139 Data 
Sheets 
For educational purposes only. 
Data may be old and obsolete. 
Courte.<.y of Texas Instruments, 
Inc. © 1984, Texas 
!nstrurnents Inc. 



Features and Architecture of Processors 51 

TYPES SN54LS138. SN54S138, SN54LS139, SN54S139 
SN74LS138, SN74S138, Sft74LS139, SN74S139 

DECODERS/DEMULTIPLEXERS 

functional block diagrams and logic 

'LS138, '5138 

ENABLE 

INPUTS 

'LS138. 'S138 
FUNCTION TABLE 

SELECT 
OUTPUTS 

01 02• c B A YO Y1 Y2 Y3 Y4 VS Y& Y7 

'LS139, 'S139 

DATA 
OUTPUTS 

DATA 
OUTPUTS 

x H x x x H H H H H H 

L x x x x H H H H H H 

H L L L L L H H H H H 

H L L L H H L H H H H 

H L L H L H H L H H H 

H L L H H H H H L H H 

H L H L L H H H H L H 

H L H L H H H H H H L 

H L H H L H H H H H H 

H L H H H H H H H H H 

*G2"' G2A t G28 

H " high level. L = tow level, X = irrelevant 

'LS139, 'S139 
(EACH DECODER/DEMULTIPLEXER) 

FUNCTION TABLE 

INPUTS 

ENABLE SELECT 
OUTPUTS 

0 B A YO Y1 Y2 Y3 

H x x H H H H 

L L L L H H H 

L L H H L H H 

L H L H H L H 

L H H H H H L 

H = high level, L"" low level, X = irrelevant 

H 

H 

H 

H 

H 

H 

H 

H 

L 

H 

schematics of inputs and outputs 

EQUIVALENT OF EACH 
INPUT OF 'L5138, 'L5139 

Vee-----

Figure 2-12 
74LS138 and 74LS139 Data 
Sheets 
For educational purposes only. 
Data may be old and obsolete. 
Courtesy of Texas Instruments, 
Inc. © 1984, Texas 
Instruments Inc. 

20 k!1 NOM 

EQUIVALENT OF EACH 
INPUT OF '5138, '5.139 

Vee15--2.s k!1 NOM 

INPUT --

TYPICAL OF OUTPUTS 
OF 'LS138, 'LS139 ---....... --Vee 

TEXAS INSTRUMENTS 
INCORPORATED 

POST OFFICE BOX 5012 • DALLAS, TEXAS 75222 

TYPICAL OF OUTPUTS 
OF '5138, '5139 

H 

H 

H 

H 

H 

H 

H 

H 

H 

L 



52 Bus HARDWARE, CALCULATIONS, AND DATA CATALOGS 

LOGIC PRODUCTS 

HEX BUFFERS/INVERTERS 8T95, 96, 97, 98 

High Spet(.I Htx 3-State Buffers 
DESCRIPTION High Speed Hex 3·State Inverters 

TYPE TYPICAL. PROPAGATION TYPICAL SUPPLY CURRENT 
DELAY (Total) 

N8T95 Sns 86mA 

N8T96 a.sns 59mA 

N8T97 ans 66mA 

N8T98 6.5ns 59mA 

Each of tile 3.atate bus Interface elements 
described herein has low current PNP 
Inputs and Is designed with Schottky TTL 
technology for ultra high . speed. The 
devices are used to convert TTUDTL or 
MOS/CMOS to 3-state TTL bus levels. For 
maximum systems flaxlblllty, the 8T95 
and 81117 do so without logic inversion, 
whereas the 8198 and 81118 provide the 
toglcat complement of the Input. The 8T95 ORDERING CODE 
and 8198 feature a common control line 
for all six devices, whereas the 8T97 and 
8T98 have control lines for four devices 
from one Input and two from another 
Input. 

FUNCTION TABLE-8T95 

INPUTS 

DIS1 DIS2 

L L 
L L 
x H 
H x 

L • LOW voltage level 
H • HIGH voltage level 
X • Don't care 

I 

L 
H 
x 
x 

(Z) =HIGH Impedance (off) atate 

OUTPUT 

y 

L 
H 
(Z) 
(Z) 

FUNCTION TABLE-8T96 

INPUTS 

DIS1 DIS2 I 

L L L 
L L H 
x H x 
H x x 

PIN CONFIGURATION 

81115 

Figure 2-13 
Tri-State Line Drivers Data 
Sheet 
(Courtesy of Signetics 
Corporation© 1984 Signetics 
Corporation.) 

OUTPUT 

Y. 

H 
L 

(Z) 
(Z) 

PACKAGES 
COMMERCIAL RANGES MILITARY RANGES 

Ycc•IV :i:5%;TA•O"Clo +ro•c Vcc•5V :I: 10%;TA• -11•c10 +121•c 

Plastic DIP NBT95N • N8T96N 
N8T97N • N8T98N 

Plastic SO N8T97D . N8T98D 

Ceramic DIP 
S8T96F . S8T98F 

S8T97F 

INPUT AND OUTPUT LOADING AND FAN·OUT TABLE 

PINS DESCRIPTION 8T 

DIS Input 1Sul 

I Input 1Sul 

y Output 24Sul 

NOTE 
A unit load (Sul) Is 50,.A l1H and - 2.0mA l1L· 

FUNCTION TABLE-8T97 FUNCTION TABLE-8T98 

INPUTS OUTPUT INPUTS OUTPUT 

DIS I y DIS I y 

L L L L L H 
L H H L H L 
H x (Z) H x (Z) 

8T98 8T97 8T98 



Features and Architecture of Processors 

SELECT { 
2 

3 

74LSl38 

ENABLE 6 

4 

s 

8 

SOURCE 
(TYPICAL) 

8T97 
MODULE 

/'., 8T97 
MODULE 

Figure 2-14 
Typical Source Feed onto a 
Data Bus 

53 

IS 

14 

13 
CONTROL 

12 OUTPUTS 

11 1-0F-8 ACTIVE 
OR 

10 NONE ACTIVE 

9 

7 

+S 
*'R 

TYPICAL. 

2 EACH LINE 

8 
DATA BUS 

4 

*NOTE: R ESTABLISHES A 
KNOWN ELCTRICAL 

6 (LOGIC) STATE FOR A 
NONSELECTED OR QUI-
ESCENT BUS .. 

JO 

12 

IS 

14 

12 

15 

14 13 

beyond an understanding of the terminology. Fan-out is another mat­
ter altogether. We must learn to check this parameter carefully, a pro­
cess that also gives us an appreciation of why such a large number of 
buffers and other interface IC's are required in many systems. It 
should be noted that VLSI relieves the user of many of these problems 
by resolving them for us within the IC. Another modern trend, that of 
having custom IC's produced, eliminates many of the user's interfacing 
problems as well. In spite of these trends, we still have to handle 
interfacing considerations-be it on our home computers or in evaluat­
ing what we see in some commercial computer product. 

Let us look at the calculations involved in checking drive capac­
ity at an interface. FO refers to the situation that exists while a module 
is driving the inputs of other modules. Any logic module can both 
source and sink current, but a module usually is designed to have good 
rrent capacity in only one of these modes. Standard TTL, in fact, sinks 
16 milliamps and is rated to source only 0.8 milliamps. These IC 
parameters, found in a data catalog, tell us how many other modules 



54 

Table 2-1 
FO Current Drive Parameters 

FO Ca/cu- MOS 
lat ion 

Parameter CMOS NMOS µ. 
Gate Processor 

Interface 

I/H 1* ± 10* 

111. 1* ± 10* 

loH 2.8 -0.4 
2.8 2.0 

Notes: 1. *Leakage 

Bus HARDWARE, CALCULATIONS, AND DATA CATALOGS 

the module can drive. Fan-out restrictions are often easy to violate in 
use, and the results would be comic if they were not so sad. Quantita­
tively, FO is defined as the ratio: 

Current Capacity of Driver Output 
FO = -..-..-..-..-..-..-..-..-..-..-..-..-..~_;..__,.~ 

Total Current Requirements of Driven Inputs 

This factor should be checked whenever logic modules are interfaced. 
Above, we refer to driver (output) anq driven (input) pins, which are 
not necessarily members of the same family of logic devices. In prac­
tice, it comes down to ascertaining whether the driver can handle the 
total current requirements of the several types of driven elements it 
may be interfaced with, e.g., MOS. TTL. LSTTL. among others. 

Table 2-1 summarizes these para111eters for a number of devices 
of different families, as an indication of the spread of values that are 
encountered in practice. Several logic families are included for com­
parison of their relative drive capacities. Values from this table are 
used to illustrate the following examples. Since these values vary some­
what by manufacturer. by temperature, and between different devices 
of the same family, one should consult a data catalog or a manufac­
turer's representative for precise data. These are only guidelines. 

TTL 

74LS 74 74S 

20 40 50 
-0.36 -1.6 -2.0 
-0.4 -0.4 -1.0 

8 16 20 

Typical 
Interface !C's 

74LS240 8T97 

20 40 
-0.2 -0.4 
-15 -5.2 
24 40 

Units 

µ.A 

mA 
mA 
mA 

2. Caution! These parameters vary with temperature, manufacturer, and device. The values given here are only 
relative guides. 

Two types of fan-out must be calculated: that for the electrically 
high and that for the electrically low state. In industrial terminology, 
the high-state parameter is FO 1 and the low state parameter is FOO. 
Since we already know that 0 and 1 are truth not electrical values, we 
can use the terms FOH and FOL instead in what follows. Below are 
the calculations for the 74LS, driving 74 TTL modules: 

loH 400 µA 
FOH =-= =IO 

lrn 40 µA 

FOL = loL = 8 mA 
In 1.6 mA 

5 

What are the terms I0 H, I0 L, Irn. and In? I refers to current, 0 to output, 
and 1 to input. The Land Hare of course the electrical-state levels. Almost 
any good logicfamily data catalog contains a glossary of terms such as 
these. 

The need for the student to have a data catalog for each family of 
interest cannot be emphasized enough. A good deal of software is writ-



Features and Architecture of Processors 

BI-DIRECTIONAL Bus DRIVERS 

55 

ten for specific devices. One must start early by learni.ng the basic data­
catalog terminology, to comprehend the data sheets that describe the 
functioning of floppy-disk controller or arithmetic processor IC's and 
how to program them. As a matter of fact, much of the information in 
these texts is taken verbatim from the data catalog. Why not go 
straight to the source? The advanced microprocessor and peripheral­
support IC data sheets start with this type of information and proceed 
to the higher levels of systems application and programming. There­
fore, we are being exposed to basic training on how to read a data cata­
log as we proceed. 

We can see that the 74LS family will adequately sink current 
from five 74-series standard TTL inputs. This is the lower of the two 
values calculated and must be used as the limit to the number of mod­
ules that can be interfaced safely. In comparison, each 74LS138 output 
must handle eight 8T97 inputs in the interface scheme presented in 
Figure 2-14. Since the ST-series module features low current sourcing 
inputs, this may be possible. The calculatiorts that follow decide this. 

IoH 400 µA 
FOH =-= = 10 

I/H 40 µA 

loL 8 mA 
FOL=-= 20 

In 0.4 mA 

In this case, the 74LSl38's fan-out of ten In the FOH state is the limit­
ing factor, assuring us that we can drive the eight inputs of the sche­
matic and satisfying the fan-out criterion. 

Notice, however, that the last calculation showed FOH to be the 
limiting factor, not FOL, as in the first example. All this illustrates that 
interfacing considerations are a large part of the work associated with 
the implementation of processors and bus systems. Again, our best 
allies are the data manuals of each family being used. Here, we are 
examining the nature of the bus and its associated logic modules. The 
terminology learned now-and the interpretive skills gained in the pro­
cess-will carry forward into the reading of microprocessor and periph­
eral-support IC data catalogs. 

An important example of another bus-module interface construct, 
either internal or external to an IC, is the bidirectional bus driver. We 
will illustrate the features involved with the application of an 8T26 
bidirectional bus transceiver module. There are many related buffers, 
such as the more modern 74LS240 through 74LS245 IC modules. The 
8T26 is very flexible and instructive, because it can be externally con­
nected in several different ways, where some of the possible connec­
tions of most other modules are internally committed. It offers a high 
current capacity to the driven bus tap and a moderate drive capability 
to the side designated as the receiver, since this side does not usually 
interface to the "outside world." Its manufacturer's specifications are 
presented in Figure 2-15. 

The essential characteristics of how this bidirectional driver 
may be utilized are presented in the schematic and applications of 
Figure 2-16, a bus relationship between a CPU and its external mem­
ory. The control lines are used to avoid confusion as to which is 



56 

LOGIC PRODUCTS 

BUS TRANSCEIVERS 

• High apMCI Schottky 
quad tranacetvera · 

• 48mA LOW·atate drive 
• 200µA bua loadlng 
• Ideal for: 

HaJf.duplex dlta 
tranamlaalon 

Memory Interface 
buffers 

Data routing In bus 
oriented systems 

High c"rrent drivers 
MOS/CMOS-to-TTL 
Interface 

DESCRIPTION 
The 8T28A/28 consists of lour pairs of 
3-state logic elements configured as quad 
bus drivers/receivers, along with separate 
buffered receiver enable and driver enable 
lines. This single IC quad transceiver d• 
sign. distinguishes the 8T28A/28 from con· 
ventlonal multl·IC hnplementatloni. In 
addition, the 8T26128's ultra high speed 
while driving l)eavy bua capacitance 
(300pF) makes these devices. particularly 

PIN CONFIGU.,ATION 

Figure 2-15a 
Tri-State Quad Bus 
Transceiver Data Sheet 
(Courtesy of Signetics 
Corporation© 1984 Signetics 
Corporation.) 

Bus HARDWARE, CALCULATIONS, AND DATA CATALOGS 

8T26A, 28 

3-State Quad Bus Transceiver 

TYPE TYPICAL PROPAGATION TYPICAL SUPPLY CURRENT 
DELAY {Total) 

N8T28A 7ns 48mA 

N8T28 10ns 87mA 

ORDERING CODE 
COMMERCIAL RANGES MILITARY RANGES 

PACKAGES 
Ycc•IV :1:l%;TA•O•Cto +7o•c Ycc•IV :i:t0%;TA• -u•cto +121•c 

Plastic DIP N8T28AN • N8T28N 

Ceramic DIP S8T28AF • S8T28F 

INPUT AND OUTPUT LOADING AND FAN·OUT TABLE 
PINS DESCRIPTION 

IN Input 

DIE, RIE Inputs 

Dour Output 

Flour Output 

NOTE 
A unit'* (Sul) Is 50µ.A ''"and ·2.0mA 'IL· 

suitable for memory aystems and bldlrec· 
tlonal data .buses. 

Both the driver and receiver gates have 
3-State outputa and low-current PNP In· 

LOGIC SYMBOL 

$VleHCS 

NIT S8T 

0.5Sl.il 0.5Sul 

0.5Sul O.Ssul 

24Sul 16Sul 

10Sul. 8Sul 

puts. 3-State outputs provide the high 
switching speeds of totem-pole TTL cir· 
cults while offering the bus capability of 
open collector gates. PNP inputs reduce 
Input loading to 200,.A maximum. 

LOGIC SYMBOL (IEEE/IEC) 

8THA 

8T28 



Features and Architecture of Processors 57 

TYPICAL APPLICATION 

BIDIRECTIONAL DATA BUS 

r------------, 
I I 

r----·--------1 
I 

REC. I I 
D---ilr--0 ~~~· OUT 

~ucT o-~-a JD--t---<--<J REC 
OUT 

Figure 2-15b 
Tri-State Quad Bus 
Transceiver Data Sheet 
(Courtesy of Signetics 
Corporation © 1984 Signetics 
Corporation.) 

BUS 
IN 0-..L.-.-i--t 

BUS 
t--..--.--u IN 

Control !1nes may be tied together, such !hat 
1og1ca1 .. , .. transmil. 1og1ca1 "O" receive 

Logical "O" = acttve Logical "1" =active 
Logical ··11·· = H1·Z Log•cal ··o·· = H1-z 

Signetics 

master of the bus. They must be properly coordinated by the micro­
processor's CPU control signals in the application. The CPU pos­
sesses the ability to tell the external bus driver whether it wants to 
read or write memory, either directly or through decoding logic. 
These signals manage the tri-state bus driver's bidirectional behavior. 
In this example, each end of the bus is connected in a different man­
ner. Note that the CPU's bus interface is connected both to the 
receiver output and to the driver input and that proper tri-stating 
prevents electrical confusion. This is termed single-port, or common, 
l/O. Some memory systems have dual-port 110. That is, some mod­
ules have separate inputs and outputs, as opposed to the common 
l/O of the CPU. In this case, the 8T26 has the flexibility to be used 
in both cases, as illustrated at the memory interface. Follow the 
direction-control logic action to observe how conflicts are avoided on 
a typical line of a bidirectional bus system. 

We will not go into the details of noise immunity, voltage mar­
gins, and other design criteria in this text, important as they are, 
because this book is aimed at a general readership, not only designers, 
for the purpose of providing an understanding of how a processor 
functions internally for microprogramming purposes. The goal is to 
enable one to recognize that hardware organization and software oper­
ation are really one unified subject. Fan-out is discussed because that 
is one design criterion that even the home hobbyist must handle, and 
as an insight into design specifics in hardware organization. If the fan­
out criteria are observed, other considerations are generally not vio­
lated. 



58 MULTIPLEXING AND DEMULTIPLEXING 

RECEIVER GATES ENABLE (;\CTIVE LOW) 

Figure 2-16 

TO OTHER 
GATES 

INIC 

DRIVER 
OUTPUT 

--- TO OTHER 
GATES IN IC 

DRIVER 
GATES ENABLE 
(ACTIVE HIGH) 

LOGIC SCHEMATIC 
(SINGLE TRANSCEIVER) 

SEPARATE 
110 ............... 

DIRECTION 
CONTROL 

COMMON 
110 

W/R 1 I 
I 2, 4 

f.L P D BUS 
LINE 

CPU (TYP) 
..._ ____________ ..... ,5 3 

DRIVER 
CONTROL 

MEMORY 

DATA BUS 

SAMPLE APPLICATION (ONE BUS LINE) 

NOTE: RECEIVER/DRIVER CONTROL IS MANAGED 
BY CPU SYSTEM, TYPICALLY WITH A SINGLE 
WRITE/READ (W /R) CONTROL SIGNAL. 

Bus Transceiver: Schematic 
and Application Example 

The advanced hardware considerations have been kept to the 
minimum that still enables us to practice computer "architecture" (vs. 
design) as we proceed. The reading of data manuals has been empha­
sized as essential to practicing modern computer architecture, 
microprogramming, and systems organization. It is also essential in the 
development of systems software. Knowledge obtained from manufac­
turer's data manuals, which often include software examples for the 
programmable devices, gradually creates an awareness of the many 
other factors that cannot be adequately treated here, lest we bury our 
main points in extraneous detail. The TTL data catalog is basic train­
ing for these future purposes. 

In summation, we have seen that the organization of sources 
and sinks around a data path that employs gates, tri-state drivers, 
selection modules, load enable signals, and a system clock are basi­
cally what a bus system is composed of. Some additional elements 
are introduced as we proceed, but fundamentally, we have already 
seen a busing system. The visual image of a bus system as a commu­
nication network is important. The bus has been referred to as the 
"skeleton" of a computer system, around which the system itself is 
constructed. Certainly, it is the communication structure through 
which the computer system operates, by relating to its elements in 
the structured manner managed by the control system. The concept 
of the skeletal functioning of buses in systems structure even extends 
to distributed processing systems via their networks. The topic is of 
such importance that the federal government issues standards on 
busing systems organization. The Anderson and Jensen article listed 
in the References, on the taxonomy and characteristics of computer 
interconnection structures (buses), offers an excellent perspective on 
systems-interconnection methodology. 



Features and Architecture of Processors 59 

MULTIPLEXING AND DEMULTIPLEXING 

We have already referred to the use of multiplexing (MPX) as a 
method for time-sharing a communications channel. The main exam­
ple given so far was the tri-stating of buses, as detailed in the previous 
section. Multiplexing can be implemented in several ways. In commu­
nications, Frequency Division Multiplexing (FDM) is often performed. 
Here, separate sources share a communications medium simultane­
ously, each channel separated from the others only by the bandwidths 
assigned to each of the sources. This method finds frequent use with 
digital systems in the simultaneous transmission of several encoded 
data packets. Time Division Multiplexing (TOM), previously men­
tioned, occurs when a single channel, such as a bus, is shared by sev­
eral sources, each using the path in a separate time slot. The time slots 
are often derived from the system's coordinated control and clock sig­
nals. Our interest at present is to pursue TOM methodologies further. 

We will also look further into the opposite of multiplexing, 
called-as you might guess-demultiplexing (DMPX). Demultiplexing, 
when employed as the counterpart of TOM, is the technique of placing 
information from a single time-shared channel onto the appropriate 
separate channels, to reach the desired sink. It is a means of distribut­
ing data. These methods of data selection and distribution may be 
based on the use of combinational logic, tri-stating, open collector, and 
other techniques. While tri-stating has some superior properties for 
larger external interfaces, it is not the only important technique. Com­
binational-logic function and open-collector multiplexers are fre­
quently used, too. The major drawback of the combinational-logic 
approach is the large number of gates or I C's required, as compared to 
the others, where there are many bus lines to interface to. 

Multiplexing, then, means selecting one of several sources of 
information and placing it on a single data path. Demultiplexing, on 
the other hand, takes information from a single input source and selec­
tively distributes it to one of several outputs. Let us examine some data 
sheets and the principles of logic related to these techniques. 

Many IC's are available to accomplish demultiplexing. Actually, 
the three-line-to-eight-line 74LS138 decoder of Figure 2-12, which we 
have already seen in the previous section, can also serve as a demul­
tiplexer. For example, with reference to this figure, suppose that, for a 
given state of the three select (address) inputs A, B, and C, a corre­
sponding sink is to accept information from the output of the 138 
when this IC is enabled. One way to achieve this is to bring G2A and 
G2n low. This only partially enables the 138. We must yet account for 
the role of G 1 in this scheme. 

If the last enable input, G1, of the 138 demultiplexer is controlled 
by the incoming data, the complement of the data appears at its 
selected output. Unselected outputs are always high, as are all outputs 
of the device when it is not enabled by G1• All separate sink inputs are 
connected to their corresponding outputs of the 138. The appropriate 
sink, as managed by the control system, can clock in the comple­
mented data arriving at its input from the addressed output of the 138 
via G,. When G, is high, the IC is enabled and the selected output is 
low. When G, is low, the IC is disabled and all outputs are low. The 
chip-enable lines have thus been partitioned into two parts-the actual 
enabling of the IC and a data input. How does this differ from tri-stat-



60 

INPUTS 

SELECT 
CONTROL 
(ADDRESS) 

a. BASIC MULTIPLEXER 
LOGIC CIRCUIT 

Figure Z-17 
MPX and DMPX with 
Combinational Logic 

MPX AND DMPX LOGIC 

OUTPUT 

MULTIPLEXING AND DEMULTIPLEXING 

OUTPUTS 

SELECT 
CONTROL 

SELECTED OUTPUT FOL­
LOWS INPUT 

NONSELECTED OUTPUT 
CLAMPED HIGH 

0, 

b. BASIC DEMULTIPLEXER 
LOGIC CIRCUIT 

ing? How would you alter these arrangements if you did not want to 
handle complemented data? 

The fundamental circuit concepts behind combinational-logic mul­
tiplexers and demultiplexers are shown in Figure 2-17. In Figure 2-17 a, 
which illustrates the multiplexer, the control-input line and its inver­
sion force one of the two input NAND gates to have its output high. 
Recall that the NAND function for active-high conventions is per-

. formed by a device whose output is high when any single input goes 
low. If one of the two input-stage gates receives a low control signal, 
then the other input of this gate, the data input, has no effect on this 
gate's output, since it is clamped high. Data levels will not propagate 
further. For the other, the control-enabled gate, the complement of the 
data appears at its output, and the output changes with the input data. 
The final stage, also a NAND gate, always has one input held high and 
the other active. Again, a NAND function was produced by a device 
whose output is low only when both inputs are high. This results in the 
recomplementation of the selected data at the final output. These prin­
ciples are simply extended to select more than the two inputs illus­
trated, in commercial IC's. The functional explanation of the basic 
combinational-logic circuitry behind demultiplexing is left as an exer­
cise. 
An example of an IC that performs multiplexing through combina­
tional logic is the 74LS25 l IC module in Figure 2-18. Its three select 
inputs, S2 •• S0 , determine which selected input appears at the output 
when the chip is enabled. In addition, this IC offers tri-stated true and 
complement outputs of the selected input. This tri-state capability is 
interesting, in that the output can now also be TD Med onto a bus line, 
along with several other outputs from other 25ls. Figure 2-19 presents 
a generalized block diagram of several multiplexers that time-share an 
n-bit-wide bus between p different sources, also assumed to be n lines 
wide. Each separate multiplexer is a p: 1 data selector. As shown, each 
individual MPX IC is responsible for picking up the same bit from 
each separate source and placing it onto the corresponding bit line of 
the driven bus that its output is connected to. That is, the ith bit of 



Features and Architecture of Processors 

OPEN-COLLECTOR INTERFACES 

61 

each source is multiplexed into ith multiplexer and placed on the ith 
line of the driven bus, when selected. Thus, if a source address is pre­
sented to all of the multiplexers in common, the parallel data of the 
source is reconstructed on the data bus. The source selection control 
bus consists of m lines, such that 2m ~ p, these m lines being con­
nected to all MPX's in common, as address inputs. The tri-state con­
trol line is generally connected to all modules in common, too. 

Some of these types of devices have open-collector outputs, which use 
external pull-up resistors on the driven bus line. An open collector 
driver contains only one transistor, instead of a totem pole, at its out­
put interface. This structure is shown in Figure 2-20. If this device is 
disabled, the output(s) behave as an open switch. In this state, the line 
is pulled high by the external pull-up resistor. If the device is enabled 
and its data input(s) close the output switch, that line is pulled low. 
This type of connection scheme is often referred to as wire-ANDing or 
wire-ORing, because the drivers actually perform a logic function in 
driving a common bus line. Tri-stating is not the principle used here. 
True, disabling opens the output switch, but the driven line is always 
pulled to the high (quiescent) level, when disabled, by a pull-up resis­
tor. No Hi-Z state is involved in these actions. Before tri-stating was 
developed, open-collector operation was very popular for interfacing 
to a bus. It has the advantage of requiring fewer gates than other meth­
ods, particularly for MPX applications. Since open-collector methods 
make sparing use of gates, they are used in the internal design of IC's. 

Open-collector operation is often used with IC's intended for 
modular use, where a logical form of voting is required. The 74181 
ALU, which we will soon study, has an open-collector interface at its 
comparison output pin. If several of these AL Us are operated in paral­
lel, to form a larger ALU, their open-collector outputs are wired 
together along with a single common pull-up resistor. The comparison 
output can be high only when each individual ALU submodule in the 
chain agrees (i.e., has voted) that equality is detected. (The vote con­
sists of all open-collector interfaces asserting a high-the wired AND.) 

Figure 2-21, an illustration of TOM applied to a bus, shows that 
the use of tri-stating can be very simple. Many sources (registers, etc.) 
now come equipped with built-in tri-statable outputs and associated 
control-enable input(s). A good example is the 74LS173 4-bit register, 
which we shall make extensive use of later. Therefore, all the separate 
source-output interfaces can be directly connected to the appropriate 
driven bus lines. In these cases, one only has to enable the output of 
one source at a time with tri-state control lines, as shown. The source 
selection is often performed through the use of a 1-of-p decoder. Tri­
stating is widely used, but, as noted, combinational-logic multiplexers 
may be more feasible where small amounts of data are handled. 

Usually, in multiplexing, each source feeding an n-line bus con­
tains the same number of bits as the data bus it is fed onto. In some 
important cases, two different sources of, say, x and y bits may be con­
catenated and then multiplexed onto a bus in parallel. In these 
instances, x + y :=:;; n. An example is the formation of 16-bit results 



62 

LOGIC PRODUCTS 

MULTIPLEXERS 

• High speed 8·to·1. 
multiplexing 

• True and complement 
outputs 

• Both outputs are 3·State 
for. further multiplexer 
41txpanslon 

• 3·State outputs are buffer 
type with 12mA/24mA 
o~tputs for Miiitary/ 
Commercial applications 

DESCRIPTION 

The '251 Is a logical implementation of a 
single-pole, 8-position switch with the 
state of three Select inputs (S0 , S1, S2) 
controlling the switch position. Assertion 
(Y) and Negation (Y) outputs are both pro­
vided. The Output Enable input (OE) Is ac· 
tive LOW. The logic function provided at 
the output, when activated, Is:' 

Y= OE•(l_g•S0·S1·S2 + l1•So·SJ•S2 
+ 12·S0•S1•S2 + 13·S0•S1·S2 
+ l4•So•S1•S2+ 15·S0•S1•S2 
+ 1a•So•S1•S2+ l7'So•S1•S2l. 

MULTIPLEXING AND DEMULTIPLEXING 

54/74LS251A, 5251 

&·Input Multiplexer (3·State) 

TYPE 
TYPICAL PROPAGATION DELAY TYPICAL SUPPLY CURRENT 

(Diii lo V) (Tolll) 

74LS251A 18ris 9mA 

745251 ans 55mA 

ORDERING CODE 

PACKAGES 
COMMERCIAL RANGES MILITARY RANGES 

Yee = SY ± 5'1.; TA = o·c to + "IO'C Vee = SY ± 1~; TA = -ss•c to + 121•c 

Plastic DIP N74S251N • N74LS251AN 

Ceramic DIP S54S251F • S54LS251AF 

FlatpacK S54S251W • S54LS251AW 

LLCC S54LS251G 

INPUT AND OUTPUT LOADING AND FAN·OUT TABLE 

PINS DESCRl!»TION 54174$ 54174LS 

All Inputs 1Sul 1LSul 

All Outputs 10Sul 30LSul 

NOTE 
A 541745 unit load (Sul) is so.A l1H and - 2.0mA l1L and a 54174LS unit load iLSul) la 2o,.A l1H and - 0.4mA l1L· 

Both outputs are in the HIGH impedance together. All but one device must be in the devices are tied together. Design of the 
(HIGH Z) state when the output enable Is HIGH impedance state to avoid high cur· output enable signals must ensure there 
HIGH, allowing multiplexer expansion by rents that would exceed the maximum Is no overlap In the active LOW portion of 
tying the outputs of up to 128 devices ratings, when the outputs of the 3·State the enable voltages. 

Figure 2-18 
Tri-State Line Drivers Data 
Sheet 
(Courtesy of Signetics 
Corporation© 1984 Signetics 
C orporati()f1.) 

7 4 

OE lo 
11 llo 

10 s, 

Sz 

Yee •Pin 11 
OND•Pln 8 

3 2 , II 14 13 12 
MUX 

EN 
•1 •2 13 •• ,, '• 17 D}o! 

2 7 

v 
v 

5 
6 

Sigletics 



Features and Architecture of Processors 

LOGIC DIAGRAM 

Ill 

(10) 

(111 

(7) 

c •Pin 11 Ye 
GN D•Plne 

.... 

...... 
_,..._ 

...... 

.... 

...... 
...... 
-....-

I I •Plnnu....,. 

FUNCTION TABLE 

~ Sa 
H x 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
L H 
L H 
L H 
L H 
L H 
L H 
L H 
L H 

H •HIGH voltage level 
L • LOW voltage level 
X ~ Oon't care 

S1 

x 
L 
L 
L 
L 
H 
H 
H 
H 
L 
L 
L 
L 
H 
H 
H 
H 

IZI • HIGH Impedance (Offl state 

Figure 2-18 

...... 
1 -.... 

...... 
1 ...... 

_...., 
1 ,.... 

So 
x 
L 
L 
H 
H 
L 
L 
H 
H 
L 
L 
H 
H 
L 
L 
H 
H 

Tri-State Line Drivers Data 
Sheet 
(Courtesy of Signetics 
Corporation© 1984 Signetics 
Corporation.) 

((I 

~ 

1 

lo 11 

x x 
L x 
H x 
x L 
x l:i 
x x 
x x 
x x 
x x 
x x 
x x 
x x 
x x 
x x 
x x 
x x 
x x 

63 

. , •• •• .. 
(Ill (Ill (11 (111 (14) (11) (1111 

I 
lL 

~ ~ l_;:/ 
~~· 

} r r 
~ 

\ 

~ 

'"'"" 
(II Ill 

y 

INPUTS OUTPUTS 

la 13 1. 1, 1, l7 y y 

x x x x x x (Z) (Z) 
x x x x x x H L 
x x x x x x L H 
x x x x x x H L 
x x x x x x L H 
L x x x x x H L 
H x x x x x L H 
x L x x x x H L 
x H x x x x L H 
x x L x x x H L 
x x H x x x L H 
x x x L x x H L 
x x x H x x L H 
x x x x L x H L 
x x x x H x L H 
x x x x x L H L 
x x x x x 1-1 L H 



64 MULTIPLEXING AND DEMULTIPLEXING 

SOURCE 0 SOURCE I SOURCE 2 SOURCE p-1 
BITS .!llli 

0 I n 0 I 

T 1 T 
......., 

ll 
OUT PUT ENABLE 

--,.. MPX 0 

E CONTROL TO BUS, SOU RC 
COMMO 
MODU 

NTOALLMPX 
LES OF THIS SET 

n 
L 

BITS -----
0 I n 

l f 
j_ .1. 
I I 

I 
I I 

l 11 l l 
MPX I MPX n - I 

BITS 
0 I n 

l 

SHAR ED SELECT 
RESS ~ADD 

m(COM MON TO 
ALL) 

DB 0 
I DB 

-----------------~ ----

Figure 2-19 
Multiplexing p Sources onto n 
Bus Lines 

Figure 2-20 
Open-Collector Operating 
Principle 

INPUT(S) 

ENABLE 

IF DISABLED, 
OUTPUT IS OFF. 

"GUTS" 

DB n - I 

IV cc 

PULL-UP 
GATE RESISTOR 

OUTPUT _r n.-,v.N LiN.---

NOTE: IF PULL-UP RESISTOR NOT USED, DRIVEN 
LINE CONDITION IS NOT DEFINED AND DRIVEN 
INPUTS WILL BE SUBJECTED TO NOISE PULSES. 

from two 8-bit concatenated registers, with their subsequent multiplex­
ing onto a bus. This method is often used to concatenate separate 
internal subregisters, within a processor, thus forming a larger entity 
for either internal or external reference. A convenient method, then, 
that we may use to control the reconfiguration of separate sources 
being fed onto a bus is through the addressing and enabling of the tri-



Features and Architecture of Processors 

... ~ f. (OPTIONAL) 
INPUTS 

SRC p- I SRC p- 2 • • • • • 
OE p, OE P-

SOURCE SELECT 
(TRI-STATE ENABLE) 

LINES 

, 
...._ 

DRIVEN BUS 

Figure 2-21 
MPX via Tri-Stated Sources 

TERMINAL 
n 

SEND LINE (TYP) 

T. l RECEIVERS 

~~ R. L. 11 
..._ ___ _, n : I L+g+ 

.L 
MPX 

f. 
SRC0 

OE P, 

, 
.L 
7 n 

~ ~ DATABUS 

CONTROL 
SYSTEM 
SIGNALS 

E ADDR .. 

~ 

" m 

..0.. _,., 
0 ~ 

• I 
• • 
• • 
• • ~ p-2 
~ p- I '1 

DECODE R 
(1-0F-p) 

_., 

MEMORY 

~m 

to------------------- PROCESSOR 
T. 

CONTROL BUS 

TERMINAL n • ~ 

,__ __ i _ __,[i. l ______ ....,.---1 ...... --·-~ _L 
DMPX 

I '8 

r1o ~-TERMINAL~T~·-------' 
0 R, J TRANSMIITERS 

RECEIVE LINE (TYP) 

Figure 2-22 
MPX and DMPX in Digital 
Data Transmission 

65 



66 MULTIPLEXING AND DEMULTIPLEXING 

state interface lines of the different sources, or through functionally 
equivalent methods. Therefore, we see that MPX and DMPX schemes 
can be quite flexible. 

LARGE SYSTEM MPX AND DMPX EXAMPLE 

An overall systems example of the use of various means of MPX and 
DMPX is illustrated in Figure 2-22, showing how frequently we may 
unknowingly interact with these concepts in familiar situations. This 
example is a simplified block structure of a system that interfaces a 
number of user terminals to a remote processor, a common occurrence 
in interactive time-shared systems. This figure displays the role of bus­
ing, MPX, and DMPX within a large-scale system block diagram. 
Each user terminal has separate transmit (Tx) and receive (Rx) lines. 
Information is placed on these lines one bit at a time by the user's ter­
minal; this is serial data communication. At the other end of the sys­
tem, each of these lines is interfaced to receivers/transmitters, one for 
each terminal. The widely used programmable Universal Asynchro­
nous Receive/Transmit (UART) communications IC module can pro­
vide these functions. 

This figure displays varied forms of systems uses of MPX and 
DMPX. The UART receivers are basically serial-to-parallel data con­
verters. The transmitters-are parallel-to-serial data converters. Both are 
usually contained in one IC. The receiver portion, for example, takes 
incoming seri.al data from a terminal and shifts it into a parallel regis­
ter. When a character is thus assembled, the processor is so notified 
over the control bus. The transmitter section performs the reverse pro­
cedure. At this stage, both MPX and DMPX come into play. The 
processor manages the task, using an 8-bit or larger data bus and an m­
bit control bus that manages and coordinates the data transfers. Each 
receiver's assembled characters is MPXed onto the host computer's 
data bus, one at a time, using TOM. Ultimately, the character from a 
terminal winds up residing in its appropriate place in memory. Outgo­
ing characters are DMPXed into the appropriate transmitter for each 
user, over the data bus. 

Thus we can see how an understanding of the functioning of 
common IC's--combined with the concepts of busing-begins to pro­
duce an overall picture of what transpires when we sit down at our ter­
minal to use a remote computer. Busing, along with its related 
selection and distribution techniques, certainly is a large part of any 
processing system. To really appreciate the behavior of programmable 
UARTs and related communications devices, the reader should obtain 
and read a data sheet or application note from a vendor or manufac­
turer. 

The principles for MPXing and DMPXing that we have just 
reviewed are applied within a processor in many places. While we 
may not know, in a particular case, exactly which method was 
used, it is helpful to appreciate in a general way what is being done 
within an architecture to move information about. Our major goal 
is to penetrate the mystique of processors and remove the fear fac­
tor. These topics resurface again soon, as we start to look at the 
internal systems structure of the CPU we shall construct and 
microprogram. Extensive use of MPX and DMPX will be made in 
this project. 



Features and Architecture of Processors 

MEMORY CELLS 

STATIC MEMORY FUNDAMENTALS 

67 

When we study the processor example of this text and its 
microprogramming, we encounter several types of memory. Included 
among these are flip-flops, registers, semiconductor memory, and read­
only memory. To work comfortably with all these memory devices, we 
should have an understanding of their fundamental principles of oper­
ation. Let us start with the inverting logic gate's role in the formation 
of a "static" memory cell. Static memory cells are characterized by 
their ability to retain information as long as the power is applied. The 
inverting logic gate should be viewed as a basic building block of digi­
tal systems architecture. Many larger features, such as static memory 
cells and registers, are formed out of these gates. The memory cell of 
this type we examine here is formed by cross-coupling two inverting 
gates (both NAND or both NOR). This type of cell, called a latch, is 
illustrated in Figure 2-23a. 

The logical properties of this latch cell are discussed in Chapter 4. 
Here we shall review the basic mechanisms of its operation. It is widely 
used as the fundamental part of flip-flops and registers. If not modi­
fied, the bare cross-coupled NAND-gate latch has some shortcomings 
for general usage. These design modifications, which are beyond the 
scope of this book, lead to the very common JK or D types of edge­
triggered flip-flops. Cross-coupled gates, or their functional equivalent, 
are always found at the output end of these memory cells. They pro­
vide the feedback that gives rise to the memory-retention properties of 
these cells while under power. It is therefore instructive to survey their 
fundamental operating principles. 

As the latch characteristics table in Figure 2-23b shows, latch­
output behavior for input state I" 111 = 00 is undefined. This is 
because, in general, we cannot say in advance which of the two NAND 
gates is faster and therefore controls the output behavior when both 
inputs "simultaneously" go from low to high. For this type of input 
transition, the next state of the outputs is indeterminate. The root of 
the problem is that, when both inputs are low, both outputs are simul­
taneously high. To be useful in many applications, this memory cell 
must always have both its outputs in opposite, mutually exclusive logic 
states. In fact, the difference between a latch and a JK flip-flop is that 
the latter always meets this criterion through modification of the for­
mer. Still, the front end remains the basic latch, as in all static memory 
cells. One way to force the latch to meet the criterion of mutually 
exclusive outputs under all input conditions is to resort to pulse-mode 
operation. A short review of pulsed operation provides insight into 
why propagation delay is the underlying fundamental form of memory 
for this class of devices. This is explained below. 

In the NANO-based latch in the figure, the memory-retention 
state occurs when both inputs, I, and 12, are high. Recall that a NAND 
gate is in reality a device whose output is high when any of its inputs is 
low. (Contrast this with the behavior of the so-called NOR gate.) Also, 
we recognize that an input change that affects the output state requires 
some time to propagate to the output. This time is referred to as the 
gate's propagation delay and is basic to the operating principles behind 



68 

I, 

I, 

a. BASIC STATIC MEMORY CELL 

Figure 2-23 
Basic Static Memory Cell 

( I 

MEMORY CELLS 

INPUTS OUTPUTS 

TI~E TIME 
t + ~t OUTPUT BEHAVIOR 

I, I, Q Q 

0 0 I I NOT DEFINED 

0 I l 0 QISTRUE 

I 0 0 I Q IS FALSE 

I I o .. Q, MEMORY-RETENTION STATE 

Note: Positive logic conventions used. 

b. LATCH-CHARACTERISTICS TABLE 
(A SIMPLIFIED TRUTH TABLE) 

( / t. 

I, I, 

Q 

v "' ... - , 
IQ 

POSSIBL 
DISTi 

E TRANSIENT 
URBAN CE 
I 

c. PULSE-MODE OPERATION TIMING DIAGRAM 

static memory. The following analysis of pulsed-latch behavior starts 
with the assumption that both the inputs are tied together and have 
been high for a time greater than the propagation delay. (A timing dia­
gram of pulsed operation is given in Figure 2-23c.) Therefore the out­
puts will have stabilized and become mutually exclusive. 

This must occur when the inputs are both high, because a low at 
the output of, say, 0, is fed back to the input of, say, 0 2 • This low cre­
ates a high output on 0 2 , which, when fed back to 0,, helps to main­
tain its low. The condition of having all inputs high forces 0, low. The 
feedback paths maintain this static situation. For the NAND latch, the 
memory-retention state occurs when both inputs are high. Assume 
static conditions with both inputs and a high Q output. The IQ output 
is low (IQ is read "NOT-Q"): 

time frame tO: 

A low pulse is simultaneously applied. Both inputs are tied 
together and driven low for this purpose. After a propagation 
delay, IQ is forced to change from its initial low value, due to its 
current low-input condition (any low input forces a NAND gate 
high). The Q output remains high for now, since it is not yet 
affected by these changes. After the propagation time, IQ 
a.ssumes the high state and is fed back to 0,. 



Features and Architecture of Processors 

time frame t l : 

The common low pulse is removed. At this point, both external 
inputs are high, and a low starts to propagate through G 1• Notice 
now that both G,'s inputs temporarily remain high. That is, its 
external input is held high and the /Q feedback from Gl is still 
high. Remember that a low now is being forced to propagate to 
the output of G,. For pulse-mode operation, the input-pulse 
width is critical. It must be of sufficient duration (impart enough 
energy) to initiate a change of state but short enough to avoid 
indeterminate action. 

time frame t2: 

G, goes low. After its propagation delay, the output of G, is now 
low. The internally fed-back input to gate G$, from the output of 
G,, is now low. This forces G 2 to remain high. This high feeds 
back to G,, which, combined with the now-high external input, 
keeps its output low. The system is now stable, but the outputs have 
reversed their respective mutually exclusive states. This is determi­
nate action that is now being exhibited. 

The above very approximate illustration of pulse-mode behavior 
points to one way the indeterminate input state of the latch may be 
converted to the toggle (complementing) mode of a JK type of flip­
flop, where all input states lead to determinate behavior. Note that 
propagation delay has a fundamental role in the performance of a 
static memory cell. In essence, the propagation delay is the basic mem­
ory of the cell-it maintains a momentary history of past events that 
are essential to its correct operation. Another way to obtain completely 
determinate behavior of the edge-triggered JK flip-flop is to use the cir­
cuit's internal gates to form a level mode sequential circuit. Their 
aggregate external behavior is both sensitive to clock transitions (edge­
sensitive) and determinate. Remember that the output stage of all flip­
flops and static memory cells consists of the basic latch just discussed 
and that propagation delay plays its essential role in all of them. The 
types of static memory cells we are interested in are clock-driven. We 
shall discuss the characteristics and terminology of clock signals later. 
These same methods of forming static memory cells are also used with 
MOS and other technologies. 

DYNAMIC MEMORY FUNDAMENTALS 

MOS logic, though, has properties that also make it feasible for the 
formation of "dynamic" memory cells. These properties are extremely 
high gate-to-channel and off-state resistances and, most important, 
gate-to-source parasitic capacitance. The last, which in fact is normally 
a nuisance factor, is put to advantageous use here. Let us see what all 
of this means. The organization of one type of basic dynamic memory 
cell is given in Figure 2-24. This particular type of cell was at the heart 
of the 1103-type of 1024-bit dynamic random access memory (RAM) 
that appeared on the market in 1970. Its success led to the present-day 
large-scale use of dynamic RAM IC's, in which 256K bits of storage in 
a single IC are common. Even larger storage capacities are under 
development at this writing. The trend is such that semiconductor 
memory systems now predominate as the main (random access) mem-



70 

INPUT 

DATA 
DRIVER 

Figure 2-24 
Three-Transistor MOS 
Dynamic Memory Cell 

ACTS AS 
PULL-UP 

;./ RESISTOR 

DAT A/SENSE LINE 

WRITE 
CLOCK 

READ 
CLOCK 

MEMORY CELLS 

SENSE 
AMPLIFIER 

OUTPUT 

ory for most computers. The storage principles illustrated here proba­
bly apply to your personal computer. 

In Figure 2-24, Q3 is utilized as a transmission gate. This means 
that, when the voltage on the write line enhances the channel of Q3, a 
current flows through the channel in the direction dictated by which 
side has the higher potential. Recall that the MOS transistor-when 
used as a .transmission gate-has bilateral current-flow properties. The 
data driver is shown as being, in effect, enabled by the write clock sig­
nal, too. If the driven data/ sense line has a higher potential than the 
storage capacitor, then the capacitor receives charge via Q3; if the 
potential is IOwer, then the capacitor loses charge. Actually, the capaci­
tor consists of the purposefully increased gate-to-substrate parasitic 
capacitance, which "remembers" the last transmitted information in 
the form of an electrical charge. Once it is charged or discharged, Q3 
attempts to isolate this charge when it is turned off. Nothing, such as 
practical matters, can ruin a good scheme. 

While the gate of QI has extremely high input impedance, the 
rest of the circuit is less perfect. Thus the state of the charge in C is 
subject to slow leakage between itself, Q3, and the substrate. While the 
state of a fresh charge can be remembered through millions of com­
puter clock periods, "ainnesia" eventually sets in. The net result is that 
the state of the charge on C must be refreshed to prevent the loss of 
stored information. This is done on the order of every two millisec­
onds. This explains why refresh is required in a dynamic memory sys~ 
tern. The refresh consists of restoring the state of the charge on C. 
Although refresh techniques are beyond our present scope, we will 
remark that refresh is usually automatically accomplished during use 
whenever a given number of address lines are all addressed in a given 
time period. In this type of memory, then, the physical basis for infor­
mation retention is the amount of charge temporarily stored in a para­
sitic capacitor. 

In this dynamic memory system, reads and writes occupy disjoint 
time slots. When it is desired to read the information stored in C, Q3 



Features and Architecture of Processors 71 

COLUMN 

(
ACTS AS) 
PULL-UP 

Q3 RESISTOR SENSE 
ft---[:> AMPLIFIER 

SELECT o------tl• 
DRIVE 

~---FU SELi KE BEHAVIOR (IN PROMS) 

Figure 2-25 

ROW 
SELECT 
DRIVE 

OTHER 
BIT CELLS 
IN COLUMN 

MOS Read-Only Memory 
Cell Structure 

r---
1 
I 
I 

1:--- 1-----i'----ROM BITCELL(TYP.) 

~--+-----_J 
I I I 
I I 
r--t-----~ 
I I I 

will be off (the write clock line is in the inactive state), and the input 
data driver is disabled. Under these conditiOns, the data/sense line is 
pulled high through an internal resistive path and is also connected to 
the input of a sense-amplifier. At the moment a read operation is in 
effect, the read clock line enhances the channel of Q2, so that it acts as 
a closed switch. The output stage of the sense amplifer is also enabled 
by this line, where the memory system has tri-state outputs. The pul!­
up high voltage of the sense line is now subject to the state of QI. If 
there is a charge in C, QI' s channel is enhanced. It therefore becomes 
conductive, and the sense line is pulled low becau"se Q 1 is behaving as ~ 
closed switch. If C has no appreciable charge, QI is off and the sense 
amplifier input senses the high created by the MOS transistor equiva­
lent of a pull-up resistor. The behavior of Ql inverts the sense of the 
information-a small matter taken care of by another inverter, like an 
inverting sense amplifier. 

There are many other types of MOS dynamic memory cells, even 
single-transistor ones. This cell, though, illustrates the main features 
common to most: MOS transistor transmission gate and switch behav· 
ior, purposefully used parasitic capacitance, the need to refresh, and 
the use of the MOS transistor as an inverting buffer gate and as a pull­
up resistor-previously discussed fundamentals are all at work here. 
The memory cells described thus far are also called volatile. That is, 
information is maintained only while power is on. Turn off the power, 
and all information is lost-be the cell static or dynamic. 

NONVOLATILE (ROM) FUNDAMENTALS 

Certain applications require permanent, nonvolatile storage. Nonvola­
tile cells retairi their information regardless of whether the power sup· 
ply is on. The control system of a processor is a case in point. It is 
convenient to have the system defined the instant it comes up, without 
the bother of loading its control memory. Permanent application pro­
grams are another case in point. We do not expect to reprogram a 
processor-controlled vending machine to obtain a cup of coffee after a 
power interrupt. 



72 MEMORY CELLS 

Nonvolatility can be achieved through the use of read only mem­
ory (ROM) cells, such as the MOS version shown in Figure 2-25. If a 
memory system contains 256 words of eight bits each, we can imagine 
the system as consisting of eight of the columns illustrated. The 
number of memory words would then be equal to the number of ROM 
cells in each column (only one is illustrated by the dashed box). Where 
a high level is to be permanently stored in a particular cell, the source­
to-substrate connection of QI is deleted in the production mask or by 
burning out its fuse equivalent, shown in Figure 2-25. Thus, when this 
column and row are selected, the cell is not pulling the column low. 
The result is a high maintained at the sense-amplifier input when this 
row is selected. Had the cell remained intact, the row select's going 
high would turn on the transmission gate, which in turn would pull the 
sense line low (that is, ground it). 

A popular variation is to make the ROM user-programmable. 
This is called a Programmable Read Only Memory, or PROM. In this 
case, a fusible link is inserted into the ROM cell in line with transistor 
QI. This device is user-programmed by "burning" or "blowing" the 
fuse. When it is being programmed, a momentary very high voltage 
applied to any column destroys the fuse of the cell selected by its trans­
mission gate. Yet another variation in MOS static memory cell types is 
the Electrically Programmable Read Only Memory, or EPROM. These 
are widely used in the experimental stages of developing software that 
is to be permanently resident in a system. The most widely used of 
these are erased by ultraviolet light and then electrically programmed 
by the user. Since this can be done many times, they are very conve­
nient for development work. The microprograms we shall create for 
the control sytem of our example processor will be stored in 
EPROM's. 

Thus, some of the concepts behind nonvolatile MOS memory are 
illustrated. ROM memory is used extensively in processor control and 
operating systems, as we shall see, because we want it to be ready when 
the power comes up. When used for the permanent storage of operat­
ing system, control system, and other applications software, these per­
manently enshrined types of software in a ROM are called firmware. 
The last variation in nonvolatility deserving of mention now is bubble 
memory. Bubble memories are serially accessed read/write memory 
systems, which also retain their contents when the power is off. This, 
though, is transient-though sometimes long-term-storage. Since users 
have access to it, this memory normally does not remain the same for 
the life of the system, as is expected of ROM. 

We have only touched the broad subject of memory systems to 
create an intuitive feel for a few of the most widely used underlying 
principles. An overall view of the world of memory (Figure 2-26) will 
show how these techniques fit into a tree-structured perspective of 
memory systems. In general, we can expect to find incorporated-even 
within a single processing system-many of the types of memory tech­
nologies discussed. At the root of the tree structure is memory per se. 
At the next level down, the permanence of memory retention may 
depend on the applied power. This separates memory into two broad 
categories: volatile and nonvolatile. As noted, volatile memory systems 
lose their contents when power is removed. One more level down, 
directionality is shown as an attribute of memory systems. Some mem­
ories transfer information both into and out of their cells. Others are of 
the type that may only be read. The next level below this deals with 



Features and Architecture of Processors 73 

LEVEL A TIRIBUTES MEMORY 

I 
I I POWER 

DEPENDENCE NON-VOLATILE VOLATILE 

DIRECTIONALITY READ 

PHYSICAL 
PRINCIPLE 

ONLY 

SEMICONDUCTOR 

ACCESS 
METHOD 

RAM 
DIODE 
PROM 

TECHNOLOGY UV ERASABLE 
USED EPROM 

Figure 2-26 
The World of Memory: Tree 
Diagram 

BIBLIOGRAPHY 

I 
I 

READ/WRITE 

~ 
SAM RAM 

BUBBLE CORE 
DISK 
TAPE 

I 
READ/WRITE 

I 
STATIC 

I 
CROSS COUPLED 

INVERTING GATES 

I 
RAM 
BJT 
MOS 
FL 
ETC. 

I 
I 

DYNAMIC 
I 

CAPACITIVE 
CHARGE STORAGE 

I 
RAM 
MOS 

access methods. Access can be to any location we choose at random 
(RAM), or it can be constrained to a serial march through all locations 
to get to the desired location. This is Serial Access Memory (SAM). 
Finally, typical fabrication technologies are indicated. As we work with 
an actual example of a processor, we shall gain first-hand familiarity 
with seve;al of these types of memory. 

Anderson, G.A., and Jensen, E.D. "C,omputer Interconnection 
Structures: Taxonomy Characteristics and Examples." ACM 
Computing Surveys, Vol. 7, No. 4, December 1975, pp. 197-214. 

Bowen, B.A., and Buhr, R.J.A. The Logical Design of Multiple 
Microprocessor Systems. Englewood Cliffs, New Jersey: Prentice­
Hall, 1980. 

Boylestad, R., and Nashelsky, L. Electronic Devices and Circuit 
Theory. Englewood Cliffs, New Jersey: Prentice-Hall, 1982. 

80185 Family User's Manual. Santa Clara, California: Intel Cor­
poration, 1983. 

Fletcher, W.I. An Engineering Approach to Digital Design. Engle­
wood Cliffs, New Jersey: Prentice-Hall, 1980. 

Siewiorek, D.P., Bell, C.G., and Newell, A. Computer Structures, 
Principles and Examples. New York: McGraw-Hill, 1982. 

TTL Data Book, The. Dallas, Texas: Texas Instruments, Inc., 
1976. 

TTL Data Manual. Sunnyvale, California: Signetics Corporation, 
1984. 

VAX Architecture Handbook. Manard, Massachusetts: Digital 
Equipment Corporation, 1983. 



74 

PROBLEMS 

PROBLEMS 

I. a. Explain why the multiplexing of sources onto a bus is use-
ful common practice. 

b. Explain the functions of the load-enable and clock signals 
in controlling the transfer of information to one or more 
sinks connected to a bus system. 

c. Describe two methods of multiplexing. 

2. Using simple analogies, explain the essential characteristics and 
function~ of the following: 

a. Diode 

b. Transistor 

c. Multiple-emitter TTL input 

d. Totem-pole output structure 

e. Tri-state operation 

3. Explain why Q3 of the logic gate of Figure 2-4 is off when any of 
the inputs (A, B) is tied low. 

4. Convert the logic table of Figure 2-5 into a truth table, using Os 
and Is, for: 

a. Active-high logic convention 

b. Active-low logic convention 

5. Derive the logic table, in terms of L and H, for the two-input 
logic gate of Figure 2-7a. Via a truth table, verify the logical 
functions that this structure performs for both active-high and 
active-low logic conventions. 

6. Sketch a cross-sectional view of a MOS p-channel transistor. 
Refer to Figure 2-6 for guidance. Using the MOS transistor sym­
bol for this construct, show the biasing that results in channel 
enhancement. 

7. Sketch the switch-equivalent circuit of the totem-pole output 
structure used in logic gates. 

a. What is the function of the resistor? 

b. When the totem pole is used in a simple NOR or NANO 
gate, how do the switches behave? 

c. Describe why the totem pole is capable of isolating its out­
put pin from the data-input behavior in a tri-state gate. 

8. Draw the totem-pole-switch equivalent of two tri-state outputs 
connected to the same line of a bus. Explain, with respect to the 
drawing, the following: 

a. How the EN able inputs can be used to enforce the rule that 
only one source is to be master of the bus at a time. 

b. How the third state of electrical isolation, the hi-Z state, is 
achieved at the output. 



Features and Architecture of Processors 75 

9. Draw the logic diagram of the 74LS138 decoder/demultiplexer 
as it would appear when used as a data demultiplexer. 

a. Explain how the selected output-logic level can be made to 
carry either the input data or its complement. Hint: Con­
sider how best to utilize the enable inputs for this purpose. 

b. What is the quiescent electrical level of an unselected out­
put pin? 

I 0. a. Define fan-out. 

b. Using the above definition, calculate the number of low­
power Schottky TTL gates that can be driven by a standard 
TTL gate. 

11. a. Locate an 8080 microprocessor data sheet or catalog. Com-
pare the current drive capacity of the 8080 microprocessor 
with that of the 74LS240 tri-state buffer. Calculate the 
drive-current multiplication factor that can be achieved 
when the buffer is used as a front-end interface to the 
processor. 

b. Typically, where would one expect to find the application 
of unidirectional rather than bidirectional tri-state buffers 
at the interface to a microprocessor? Under what condi­
tions and for which types of signals are these buffers most 
applicable? 

12. Discuss the differences between common and separate 170 inter­
faces, using bidirectional tri-state buffers. 

13. Draw the logic diagrams of the following circuits, using NANO 
gates: 

a. A four-line into a one-line multiplexer. 

b. A one-line into a four-line demultiplexer. 

14. Refer to Figure 2-19 for guidance. 

a. Draw a diagram of four sources, each containing four bits 
of information, connected to a four-bit bus via combina­
tional-logic multiplexers. Explain the system's operation. 

b. Select components from the TTL data catalog you would 
use to build the circuit. Draw a logic diagram of the actual 
circuit using these components. 

15. Refer to Figure 2-20. Draw two open collector gates, each with 
one data input, interfaced to a bus line with a pull-up resistor. 
Derive the electrical-level truth table for the bus line as a func­
tion of the two inputs. What logic functions are performed for 
active-low and active-high conventions? 

16. If NOR gates are used to form a basic memory cell or latch: 

a. Draw the characteristic table for this latch. 

b. What input conditions produce undefined output behavior? 

c. What input conditions cause the latch to "remember" its 
last state? 



76 PROBLEMS 

17. For the dynamic memory cell of Figure 2-24: 

a. Which transistor serves as a bilateral transmission gate? 

b. Describe the physical mechanism for information storage 
in this cell. 

c. Why is it necessary to refresh this cell periodically? 

18. Why are ROM cells useful in initiating a computer's operation 
on power-up? 

19. Find three types of memory not now shown in Figure 2-26 and 
place them in their proper place on this chart. 



CHAPTER 3 
ASSEMBLING AN ARCHITECTURE 

REGISTERS, ARRAYS, AND STACKS 

REGISTER FEATURES 

From the inverting logic gate to the memory cell of Chapter 2, we shall 
proceed to their use in building the next-higher orders of processor 
organization-registers, arrays, and stacks. Registers are simply a coor­
dinated group of some type of basic memory cells. They are coordi­
nated by signals emitted by the control system; we shall gradually 
become acquainted with the terminology of this system. For example, 
when a computer receives an instruction, it is placed-in parallel-into 
a grouping of memory cells called the Instruction Register (IR). Typi­
cally, this consists of 8, 16, or 32 bits of memory, depending on the size 
of the processor, each bit of information residing in one cell. An IR's 
input comes from the selected instruction in external memory and goes 
to its parallel inputs over the data bus clocked in during the Instruc­
tion Fetch phase of operation. The parallel outputs of the IR inform 
the control system of the current instruction to be performed, during 
the EXecute phase of operation. The arrival of information, the simul­
taneous loading or clocking of these memory cells, and other activity 
are all controlled by signals from the control system. 

In some microprocessors, these cells of a register are even 
refreshable dynamic cells, thus saving on the amount of silicon "real 
estate" needed to implement this feature. In any case, the user treats 
this structure as a logical entity having the storage properties associ­
ated with the term register-which is, generally, a parallel array of 
coordinated memory cells. A CPU contains a number of these discrete 
registers, some of which hold information only temporarily during a 
cycle of operation. These important "temporary" registers are often 
transparent to the programmer, and their presence is often unsus­
pected. They are critical, however, to the functioning of an architec­
ture. We start to illustrate their use and placement in this chapter. 

In addition to parallel-loading registers, there are other varieties, 
. such as shift registers and counters. We shall encounter all these types 
in more detail later,too. The basic registers will be incorporated into 
larger constructs called arrays and stacks. Once we add the Arithmetic 
Logic Unit (ALU) to this assemblage of processor features, we will be 
able to discuss some basic architectural arrangements for CPU's. As 
we shall note later, the architectural features of a CPU most promi­
nently displayed are its buses, registers, arrays, and ALU. 

The terminology, including control signals, associated with general 
shift and load registers is presented in Figure 3-1 a. This figure displays 
the common data and control-signal names for many other registers as 
well. Naturally, the names of control-system signals are similar. Shift 



78 

ARRAY CHARACTERISTICS 

REGISTERS, ARRAYS, AND STACKS 

registers contain internal multiplexers used to select the proper bits of 
data for the shift-right and shift-left operations. That is not apparent 
from this form of logic diagram, but, since we previously discussed the 
logic of data selection, there should no mystery about the basic mech­
anisms involved. Counter registers are generally of the parallel-load­
ing, parallel-output type, whose memory cells are based around the 
combinational logic associated with a counter. They may be quite flexi­
ble in that they can count up or down and emit a control signal when 
some Terminal Count (TC) is reached. The term TC often appears in 
operations affecting the programming of timers. One example of a 
counter register from the TTL catalogs is the 74LS161 4-bit binary 
counter. Thus we see that the memory cells of a register are often pro­
vided with a considerable amount of associated combinational logic, 
consisting of data selection, enabling, and other control functions, 
such as that presented in Chapter 2. 

The Clock Enable (CE) and Output Enable (OE) controls shown 
in Figure 3- l are of special interest to us. CE affects the loading of data 
at inputs of a register, and OE affects the tri-state enabling of stored 
data onto a bus at the outputs. An understanding of the coordinated 
use of the CLK and CE signals is important to grasp, since similar sys­
tem signals, whose behavior we wish to understand, control the selec­
tive loading of a processor's registers. The output enabling of a register 
is frequently done via the tri-state techniques explained in Chapter 2. 
The simple but important type of circuitry employed in clock enabling 
is shown in Figure 3-1 b. A control system utilizes this type of logic to 
control when a clock pulse is transmitted to the cells of a register. Let 
us examine its operation. 

The clock and its enabling inputs are fed into separate inverting 
buffers. The buffer outputs are then fed into a NANO gate. The output 
of this NANO gate is distributed to each and every flip-flop's clock 
input of the cells of the register. As the timing diagram indicates, each 
cell of a register "sees" a clock pulse only when CE is active (low, in 
this case). The external system clock, CLK, runs continuously, but the 
individual cells of a specific register receive the signal CLK2 only when 
enabled by the control system to store information. The control system 
maintains the proper phasing of the CE signal with the system clock. 

Registers are a major feature in the structure of processor systems. 
Actually, there is no conceptual difference between an on-board regis­
ter and. an external memory location. Both ser\re the purposes associ­
ated with data movement. and storage. In most architectures, it is 
desirable to maintain a coordinated group of registers within the CPU, 
both to facilitate quick access and to simplify construction. One conve­
nient means of achieving this is to arrange the registers into a highly 
organized structure called an array, as shown in Figure 3-2. In an inte­
grated circuit, the array structure is regular and therefore easy to pro­
duce. Moreover, it reduces complexity by sharing the bus-interfacing 
circuitry insofar as possible. Registers are selected in an array through 
the use of decoders, and communication is accomplished with mul­
tiplexers and demultiplexers over internally supplied buses. MPX and 
OMPX can be implemented through combinational logic, tri-state 
interfaces, or open collector interfaces-as discussed previously. 



Assembling an Architecture 

CLK 

MR 

Figure 3-1 
Register Features 

DATA IN 

n 

D 

REGISTER 

Q 

n 

DATA OUT 

SDO 

CTRL--­
? 

LI 
CLK >--+-_. 

CE >--<~-1 

TIMING 
RELATIONS 

SDI 
SDO 
CE 
OE 
MR 
CLK 
D 

SERIAL DAT A IN 
SERIAL DAT A OUT 
CLOCK ENABLE 
OUTPUT (TRI-STATE) ENABLE 
MASTER RESET 
CLOCK INPUT 
DAT A INPUT(S) 
DAT A OUTPUT(S) 

79 

Q 
CTRL CONTROL, I.E., SHIFT(R/L), COUNT (U/D), ETC. 

a. Terminology: 
Shift and Load Type 

FFn 

CLK 

CE LJ 
CLK* 

LJ 
b. Clock-Enabling Logic and 
Timing 

FF0 

• 

• 

The decoders-one for writes, the other for reads-select the reg­
isters to be read or written into. The decoders are in fact an integral 
part of the MPX and DMPX logic. With separate decoding, the simul­
taneous reading of one register while writing into another is common. 
Apparently "simultaneous" reads and writes of the same register of the 
transparent type of latch is more complex. The transparent latch is 
characterized by its ability to also serve as a buffer gate would. Since 
they are of simple construction, they are widely used in IC arrays. This 
important special situation is dealt with in detail, both in our discus­
sion of the clock signal later in this chapter and in Chapter 5. We fre­
quently find transparent latch registers used in IC designs. The edge­
triggered memory cells, such as the JK flip-flop, can always undergo 
true simultaneous reads and writes of the same cell. Signals from the 
control system manage the action of loading or outputting the contents 
of a register within an array, coordinated by the system clock. These 
same signals are often called WRite (WR) and ReaD (RD) pulses and 
are functionally equivalent to the foregoing CE and OE signals. As 



80 REGISTERS, ARRAYS, AND STACKS 

INTERNAL DATA BUS .... .L ...... .....-
'8 

REGISTER0 

REGISTER l 

...... DMPX • MPX 
~ LOGIC • LOGIC 

l 
SYSTEM 
CONTROL 
SIGNALS 

~ REGISTER n ~ PART OF 

\ 
f 

WRITE 
REGISTER 
SELECT 
SYSTEM 
CLOCK 
LOAD 
ENABLE 

\ 

OUTPUT 
ENABLE 

Figure 3-2 

c 
I 
\. r 

PARTOF ~ 
DMPX 

L i-OF-8. 
'3 DECODER 

Register-Array Organization 

STACK CHARACTERISTICS 

~ . .. ~ 

~ L 

'8 

~. MPX 

l-OF-8 
DECODER 

RE 
REGIST 

AD 
ER 
CT ..._ §_ELE 

--13 

FOR SEPARATE 
R/W 

shown in Figure 3-2, the register-selection inputs come from the con­
trol system. If separate registers are to undergo a simultaneous read 
and write operation, then the second decoder requires its own separate 
set of register-select signals from the control system. In this manner, 
we can move data from one register into another within an array (or 
from one register into itself), over internal data buses, by output ena­
bling one while input enabling another (or the same one). This is the 
usual form 9f the register:to-register MOVE operation. 

A register array structured along the general principles above has 
many uses. One often finds register arrays organized into separate 
groups or banks. That is, the processor can contain more than one 
array. For example, in a technique called bank switching, the control 
system uses only one of several register arrays available to it at a given 
time. Bank switching between arrays is an extremely fast way of saving 
the status of one process while rapidly turning to serve another. This 
saves the time otherwise required to tuck the current states of registers 
safely away into external memory when attempting to respond rapidly 
to, say, an interrupt request. The PDP 11170 minicomputer employs 
bank switching to implement its executive mode. Bank switching 
among register arrays may be accomplished under either program or 
hardware control, as when responding to interrupts. The unused bank 
simply holds its state constant until control returns to it. In effect, a 
bank is just a segmented register array. 

There are other ways register arrays are put to work besides ban\(s, 
such as general accumulator registers, memory pointers, and stacks. 
Let us first examine stacks. There are two types of stacks, both operat­
ing on the same set of principles. The difference is that one is a distinct 
single entity, organized around a register array, often called an on-



Assembling an Architecture 

COUNT 
ENABLE-

CLOCK 
INCREMENT/ " 
DECRENI;NT 

STACK 
POINTER 

z i::i::: 
~ ~ 
8 z 
' 

::i 
Cl. 0 
::i u 

p 

D 

M 
p 

x 

INTERNAL DATA BUS 

STACK 
REGISTER 

ARRAY 

M 

p 

x 

1 
MPX/DMPX 

GENERAL 
PURPOSE 
REGISTER 

ARRAY 

81 

----- t t 
CONTROL 
SIGNALS 

Figure 3-3 
Microprocessor On-Board 
Stack Features: Block 
Diagram 

LOAD 
CONTROL 

TRI-STATE 
BUS ACCESS 

CONTROL 

ON-BOARD STACK 

hoard (or hardware) stack. The other form of stack is actually the same, 
but distributed throughout a computer's total system. Both are widely 
used. Those who program in high-level languages are more likely to 
encounter the distributed form of the stack; microprogrammers often 
encounter the on-board type. To promote a larger systems perspective, 
the structural features of the on-board stack are portrayed in Figure 3-
3, along with some other central-processor features. In general, stacks 
are used to store both addresses and data. The on-board variety, how­
ever, lends itself to the address-stack type of application, important in 
the handling of subroutine calls and interrupts. In these applications, 
the stack is an array of program counters, only one register of which 
may serve as the current PC at any moment. The size of the array (the 
number of registers) is usually very limited. Early microprocessors, 
such as the Intel 8008 and the Signetics 2650, contained an on-board 
stack of eight registers in the CPU. They were implemented so as to 
facilitate the handling of subroutine calls, interrupts, and the returns 
from these. 

NOTES ON CALLS, INTERRUPTS, AND RETURNS 

These events are of such conceptual importance to us that it is helpful 
to explain at this point what physically occurs when they are invoked. 
Later, we shall have to microprogram calls and returns. Starting with 
the basics, both subroutines and Interrupt Service Routines (ISR) are 
bodies of code likely to be used many times, either by the operating 
system or by the programs they support. As an example, take the code 
that defines how the operating system inputs a character each time a 
key is struck. Let us call it CIN, for Character INput. This is an exam­
ple of a body of code that could be invoked by an interrupt-driven 
mechanism or by a procedure call. A viable operating system should 
support only one copy of each such system code, for all users. A 
programmer, on the other hand, has no particular desire to write iden-



82 REGISTERS, ARRAYS, AND STACKS 

tical bodies of code repeatedly every time they are needed. Their 
repeated use may be invoked through the medium of the subroutine 
call. Therefore, we need to look at the common related mechanisms 
behind calls and interrupts-particularly with regard to how the hard­
ware supports a safe return to the program in operation before inter­
rupts or calls occur. 

The program flow in a call or interrupt is graphically shown in 
Figure 3-4. Here, the main program proceeds along on its path (the 
upper level) until the occurrence of an interrupt or subroutine call, 
such as the line of assembly language code: 

CALL CIN 

The call machine instruction evokes a branch to a new routine. How­
ever, that is not all the hardware does: the machine must "remember" 
the value of the program counter in the present calling program's 
instruction stream. If this were not done, it would be impossible to 
return to the calling program later. CIN is the symbolic name of the 
address where the called subroutine starts. When jumping to this new 
routine, we must save the current value of the PC. 

Note that the on-board stack of Figure 3-3 now has a new feature 
added to its register array, an up/down counter, called the stack 
pointer. It drives a 1-of-n decoder that selects the register that is to 
serve as the current PC. Processors that have an external stack operate 
similarly to the following explanation of the embedded type. When the 
call instruction is encountered or an interrupt occurs, the processor 
must always save at least the current PC before branching to the rou­
tine CIN. The current PC, as discussed in Chapter I, contains the 
address of the next instruction during the execution phase, at the cur­
rent program level. More sophisticated processors authomatically save 
more of the current state of the machine, such as the system flags, the 
contents of the other registers, or both. In the case of interrupts, 
acknowledgment of further interrupts is usually disabled automatically 
until changed by an instruction. Where it is necessary to save the con­
tents of the flag and other registers, too, this must be programmed into 
the start of each ISR or subroutine. 

In this on-board example, the contents of the current PC are 
saved simply by leaving the PC alone. Instead of affecting the PC. the 
stack pointer counter is decremented by one, and the actual value of 
CIN (the new address of the first instruction in the new routine) is 
deposited in this freshly designated PC register, which is one level 
down from the old and now inactive PC. The next instruction is 
fetched, using the new PC with its just-loaded address. Since the old 
PC is one level away in the stack, we say that we have "pushed" it onto 
the stack. In reality, we have merely counted down the stack pointer 
and reloaded the new PC register, so that it now points to the address 
at which we wish to start fetching instructions. The essential difference 
between interrupts and subroutines is that interrupts are often initi­
ated by a hardware-generated signal and subroutine calls are initiated 
by a line of program code. Also, the interrupt hardware must supply 
the means of determining the starting address of the interrupt service 
routine. This can be accomplished either by arranging for the system 
to "vector" to a fixed predetermined location or by requiring the inter­
rupting device to place an address onto the data bus to be used in 
reloading the PC. 



Assemh/i11g a11 Architecture 

1 

MAIN 
PROGRAM 

MACHINE OPERATIONS 
INTERRUPTS 
SAVES OLD PC. 
LOADS NEW PC. 
DISABLED AFTER 
AN INTERRUPT. 

CALLS OR INTERRUPTS 
PUSHING 

THE 
STACK 

( A CALL OR) 
ZOT! INTERRUPT 

RETURNS 
POPPING 

THE 
STACK 

83 

l 
.._ ____ ~(MACHINE RESTORES OLD PC.)* 

ZAM! (RETURN) 
*NOTE: INTERRUPTS MUST BE ENABLED 
EITHER BY SOFTWARE OR BY HARDWARE 
BEFORE OR DURING AN INTERRUPT RETURNS. 

Figure 3-4 
Program Levels and Hardware 
Actions for Calls, Interrupts, 
and Returns 

With the reloading of the PC. the processor completes the call 
instruction (or response to an interrupt) by entering the next Instruc­
tion Fetch (IF) cycle. All instructions at the current level are succes­
sively fetched by first using the contents of the present PC as a pointer 
to where the instruction resides in memory and then by incrementing 
the PC to "look ahead" for the address of the next instruction-which 
is normal PC behavior. In the course of executing a subroutine or ISR, 
it may become necessary to respond to yet another subroutine or inter­
rupt. The stack pointer is decremented yet again, and the newly desig­
nated PC is again loaded with the new routine's starting address. Two 
old PC's are now saved on the stack. The processor again enters the IF 
phase of its operation for this new level. Obviously, this can go on until 
the counter goes through a complete cycle and starts overwriting old 
PC's to which a return has not yet been made. Small size is the very 
serious limitation of on-board program stacks. Even so, they are used 
in bit-sliced types of microprocessor architectures because, being on 
board, the stack is capable of very fast operation. 

How does one return to a higher level after an interrupt or a call? 
The last instruction in a proper ISR or called subroutine is a Return. 
The return is always generated by a line of software code. Its execution 
evokes a physical transfer back to the next-higher level of the currently 
used set of program steps. The on-board stack simply increments the 
stack pointer (referred to as "popping" the stack) and then enters the 
IF state again. The incrementation of the stack pointer of the on-board 
stack reselects an old PC, the one left behind after the last call or inter­
rupt. Since it was pointing to the next desired instruction before the 
call or interrupt, the previous level is rejoined at exactly the correct 
point. Returns are made until control is back to the original main pro­
gram. At this point we too return to examine some more of the details 
of Figure 3-3. 



84 ORGANIZING AN ARCHITECTURE 

ORGANIZING AN ARCHITECTURE 

DISTRIBUTED STACKS 

As a preliminary means of introducing larger system-organi~ational 
relationships among its structural blocks, Figure 3-3 contains more 
than just an on-board stack. It has two register arrays, one organized 
as a stack, the other serving as a bank of general registers. An ALU 
and associated temporary registers are also shown. The ALU will be 
examined in the next section. The temporary registers are "tempo­
rary" only in the sense that they are used to hold intermediate results 
for a short time. The reader may wonder how the current program 
counter of the stack can be incremented when only a parallel-loading 
register in the stack serves as the PC. In this organizational structure, 
which is far from optimum. the current PC register in the stack 
(selected by the counter-pointer) can be placed onto the data bus, 
passed through the ALU, where it is incremented. and stored in tem­
porary register I. The next clock cycle restores this incremented 
value to the current PC. This structure requires data and address 
words of the same size. In most cases. however, they are of different 
sizes. Better solutions are to equip the stack with its own incre­
menter / decrementer or to make the address word, say, twice as large 
as the data word. This last solution is not a good one since it req1,1ires 
that the PC be incremented in steps. 

The severe size limitations of on-board stacks has Jed to the current 
widespread use of distributed types of stack organizations, along with 
the introduction of dual-sized register arrays. discussed below. The 
architectural features of the distributed stack are presented in Figure 
3-5. which represents a hypothetical dual 8/16-bit microprocessor. In 
this case. one or more 16-bit stack pointer (SP) registers, as well as the 
single 16-bit PC. are kept on board with the CPU. The SP registers ful­
fill the role of the counter-pointer of the on-board stack just discussed. 
In this case, both the PC and SP now serve as counters and as pointers 
to memory locations. The PC points to the location from which the 
next instruction will be fetched. The SP points to the current Top of 
the Stack (TOS). where old PC's and data are to be saved. The com­
puter's register array. which contains the stack pointer(s), is now a 
more complex structure. utilizing a number of subarrays. As shown 
here, a dual-bank 8-bit Register Pair (RP) array is combined and coor­
dinated with a 16-bit register array and its associated busing system, 
all forming a single complex structure. Note the system's large number 
of bus paths and its great flexibility to move or alter information. All 
the previously discussed architectural features of bus organization, 
data selection, and distribution, as well as sink selection, are fully uti­
lized here. 

DUAL-REGISTER-SIZED PROCESSORS 

Modern processors often employ dual 8/ 16 or dual 16/32-bit architec­
tures. These provide the typical environment within which the distrib­
uted stack operates. Since they profoundly affect the manner in which 
stack operations are performed, they are illustrated now. The nature of 



Assembling an Architecture 85 

INSTRUCTION 
REGISTER 

8 

8 EXTERNAL DATA BUS 

BUFFER/LATCH 

INTERNAL DATA BUS 

oc 
--~·-D_M_P_X __ __.INTERFACE 

---+-----iH 
8 8 

9----tL 

CONTROL--... 
ce: }8-BIT RP 
~gi-----t----i ARRAY 

EXTERNAL 
MEMORY 

--...-­
GENERAL 
·PURPOSE 

ALU 

Figure 3-5 

SYSTEM 

Internal Control Features of 
External Stack for a 
Hypothetical 8/16-Bit 
Microprocessor 

G ti:J i----'-----tt ~vi 16-BIT 
ARRAY 

8 
DATA LATCH 

INCR/DCR 
SIMPLE ALU) 

L M 
---H-----~p 

ADDRESS LATCH 
AND BUFFER 

16 
EXTERNAL 
ADDRESS 

BUS 

x 

this arrangement is also shown in Figure 3-5. The logical arrangement 
of the two 8-bit register arrays permits pairs of corresponding registers 
to behave as a single 16-bit register. This is accomplished by interfac­
ing them to a single 16-bit ALU. This ALU's performance is usually 
limited to simply incrementing, decrementing, or just passing along, 
unchanged, the data presented to it. These few operations are far less 
than is expected of the often smaller general-purpose ALU of the sys­
tem. Note that the 16-bit incrementer/decrementer ALU shown and 
the data paths available to it can conveniently handle 16-bit PC, SP, 
and RP simple arithmetic operations and information transmittal 
without resort to the system's smaller 8-bit general-purpose ALU. One 
of the registers of the 16-bit array is designated as the PC. One or 
maybe more registers of this array serve as the SP's. 

The stack proper now resides in external memory, where it can 
be made as large as memory management allows. This space is con­
trolled by operating-system considerations, but it is far larger than 
before. The severe size limitations of on-board stacks are now greatly 
improved upon. Further, more than one stack can be maintained. 
These can be used for data storage as well as for the type of system­
stack usage associated with calls, interrupts, and returns. Let us differ­
entiate between the use of the PC and the use of the SP. PC alone 
points to the instruction stream in memory; SP does not. SP points to 
old PC's, process-status information, and data that is saved on a stack 
for subsequent retrieval. Now the PC and SP registers serve as both 
counters and pointers to locations in memory. They can now be incre­
mented/ decremented (INCR/DCR) in one or two clock pulses for fast 



86 

DISTRIBUTED STACK OPERATION 

ORGANIZING AN ARCHITECTURE 

operation, as can the RP's. Note that the processor now also has dual­
word-size operational capabilities. 

These principles of operation may be configured in many differ­
ent ways. Thus, we have introduced multiple-sized operations along 
with the array, as well as multiple ALU and stack constructs, in our 
architectural considerations. Note that these new structures, as illus­
trated here, permit the placement of any 8-bit register or half of a 16-
bit one onto the 8-bit internal bus. The contents ofl6-bit registers can 
now be latched and used as memory-address drivers. Displaying all the 
required open collector or tri-state interfaces would only clutter up the 
figures. The reader should intuitively recognize where they may be 
needed, by now, as well as the types of logic used for implementations. 
In Chapters 5 and 6, we will put these organizational concepts to work 
in the very real sense of creating the microcode that controls stack 
operation. 

The INCR/DCR logic provided in the simple 16-bit ALU of 
Figure 3-5 can, as noted, only add I to'. subtract I from, or transfer 
through unchanged its sourced data. This ALU has associated with it 
the indicated buses, data, and address latches that are transparent. Not 
only does this flexible group serve to increment the PC, SP's, and RP's, 
it is used to decrement SP's and RPs as well. The output of a register 
pair may be simply passed through the data latch or latched into it. 
From here it feeds the simple ALU. Alternatively, its output can be fed 
through the ALU to the address latch/buffer, where it is held to drive 
the address bus as long as this address is needed. Any half of a RP may 
be MPXed onto the internal data bus at a time, using the system's 
feed-through ability. The difference in data and address word sizes is 
accommodated by the fact that one is a multiple of the other. This 
means that addresses may be conveniently stored in memory in multi­
ple steps (two, in this case) via the MPX logic. The data-flow paths 
support this. Further, any 8-bit data register (or half of a 16-bit one) 
can carry on exchanges with any single half of the registers in the 16-
bit array. This type of architecture is common to many microproces­
sors. The register-select logic also controls the loading of any RP, or 
the selected half of one. 

Let us make an introductory examination of the steps involved in the 
operation of such a total system structure. Storing the PC on the stack 
in external memory after a call or interrupt is the case in point. Refer­
ring back to Figure 3-5, this may be carried out as follows: 

l. The stack pointer register is stored in the data latch. 

2. The ALU decrements the stored image of SP. The decremented 
result is stored in both the SP and the address latch. 

3. The program counter is transferred through the transparent data 
latch and the ALU. Program Counter Low (PCL) is MPXed onto 
the internal data bus and presented to external memory for stor­
age on the stack at the location specified by SP. The image of 
SP's contents in the address latch now drives the address bus. 

4. Step one is repeated. 



Assembling an Architecture 

USER/ EXECUTIVE MODES 

87 

5. Step two is repeated. Note that the initial value of SP has now 
been decremented twice. 

6. The PC is again transferred through the data latch and ALU. 
Now, Program Counter High (PCH) is MPXed onto the internal 
data bus to external memory, where it is stored on the stack. 

Depending on architectural variations, some of the above steps may be 
performed in parallel, so the process need not be as lengthy as it seems. 
The point is that, while we have discussed two types of stacks, not all 
stacks are the same. Obviously, there are some important choices to be 
made in selecting a system stack architecture, such as the desired 
amount of direct memory-address space desired, so even more com­
plex addressing schemes, based on these principles, are often found in 
16-bit and larger microprocessors. The use of segmented addressing 
methods is a case in point. Here, the program counter forms the low­
order part of the total address. A special segment register extends the 
addressable memory space by supplying the bits that are beyond the 
range of PC or SP. 

As noted, data as well as PC and status information can now be placed 
on a stack. This has led to the maintenance of more than one stack and 
the use of several stack pointers. Newer microprocessors possess a user 
data SP as well as the EXECutive or SYStem SP. The system SP is 
used by the operating system to keep track of where the machine is 
when a subroutine call or an interrupt is serviced. System stacks may 
store, in addition to old PC, saved system-status information, such as 
the flags and other vital statistics. Older architectures use only one SP 
for both purposes but, as a result, are not as suitable for multiprogram­
ming operations. The more advanced systems contain both USER and 
EXEC (or SYS) SP's and operate in true user and executive modes. In 
this case, only the operating system may manipulate the executive 
stack; as a consequence, the users are protected from each other. In 
USER mode, the user can perform stack operations on data, but not 
with the system's stack. 

Thanks to R.S. Barton's invention of stack computing, stack 
operations have become a solidly entrenched feature of modern archi­
tectures-though true stack machines are rare. His stack-machine ideas 
were first implemented on the Burroughs B5500 mainframe computer 
in 1963. The author, then employed as a mecQ.anical engineer, was 
privileged both to observe and to participate as this machine became a 
reality-and he became motivated toward a new career by this involve­
ment in its creation. 

THE ARITHMETIC/LOGIC UNIT: OPERATIONS AND FLAGS 

The structural features of a processor's architecture has been likened to 
functional building blocks. Familiarity with these blocks helps us' both 
understand and create microprograms and processors. One or more 
ALU's are an integral part of every computer. In fact, the ALU and its 
associated buses are the essential part of a CPU. Most registers could 
reside in external memory. The number of ALU's used within a design 



88 

ALU's INTERFACE 

THE ARITHMETIC/LOGIC UNIT: OPERATIONS AND FLAGS 

can have a profound effect on how parallel the machine is-that is, how 
many compatible operations can be transacted in the same time frame. 
The ex.pression "compatible operations" alludes to the important ques­
tion of how much can be accomplished in one clock period of a proces­
sor. Within these considerations lie many answers to such problems as 
the required number of clock pulses per cycle, the instruction-set 
power and sophistication, and the complexity of the design. In study­
ing the ALU's detailed behavior, we begin to appreciate the nature of 
many of the types of operations that can be part of a compatible set. 
The ALU itself, being a purely combinational-logic circuit, never 
receives a clock pulse. It operates within an environment of clocked 
devices and interconnecting buses. The total set of these operations 
must remain mutually compatible. 

It is presumed that the reader has already been exposed to the 
design of the combinational-logic full adder. In Chapters 2 and 3, we 
stressed the functional nature of logical blocks (not their design) to 
review fundamental principles of operation and to promote an under­
standing of how they are used, as well as their effect on system behav­
ior. Now may be the time for the less hardware-oriented to review a 
basic text on Boolean logic design. A common form of the ALU IC 
contains four full adders in one IC, operating in parallel. Associated 
with these adders of the ALU are data selection, complementation, 
and combinational logic. Relatively simple though the ALU may be, 
knowledge of its behavior is central to an understanding of a proces­
sor. The ALU not only transforms information but also originates the 
signals that control the flow of machine states and programs. In particu­
lar, all the conditional instructions have their origins in information 
produced by the ALU. Let us now explore its detailed behavior. 

The major interface features associated with an ALU are shown in Fig­
ure 3-6. The ALU contains three main data ports. The two ports called 
A and B in the figure handle n lines of parallel-input data, usually from 
separate sources. The F, or Function, port also handles n lines_, but 
these are called a data-output port of the ALU. What appears on these 
lines is the combinational result of the arithmetic/logic operations the 
ALU is capable of performing. It is important to realize that the ALU 
is solely a combinational-logic device. It is fed data information as well 
as a control word at the start of a clock period. It then combinationally 
operates on the two sets of input data and-after the required settling 
time-produces a stable result at the F port. The propagation and set­
tling time involved in these operations is an important design parame­
ter that limits the clock frequency at which a given system may be 
driven. 

Shown here are k + 2 control lines. The electrical level of the 
mode control line establishes whether the combinational operation to 
be performed is arithmetical or logical in nature. The Carry-In line, 
referred to either as C/ or Cn, is ignored during logic operations but is 
an essential part of arithmetic operations. For this reason, it is treated 
here as a control input. The k lines of the function-control subset select 
exactly which operation is to be performed within an established 
mode. All these above-mentioned lines interface to the control system, 
which of course controls the operations. The present instruction and 



Assembling an Architecture 89 

B PORT A PORT 

n n 

AUXILIARY ..... --1'-~--~ 

BIDIRECTIONAL 
TRI-STATE 

INTERFACE 
INPUTS/OUTPU $ ----

CONTROL CARRY IN ALU 
FLAGS 

REGISTER { 
~g~fROL 

BUS FUNCTION---+-~°' 
CONTROL 

Figure 3-6 

TRI-STATE 
CONTROL 
(OPTIONAL) 

ALU Features (Interface 
Diagram) 

GENERATION OF SYSTEM FLAGS 

k 
n F PORT 

TRI-STATE 
INTERFACE 

n 

FUNCTION BUS, F 

the present point in the cycle of computation are interpreted by the 
control system, which establishes the desired levels on these control 
lines at the start of the current clock period. The data results are stored 
in some sink at the end of the current period. The tri-state interfacing 
of the F port is necessary only when more than one entity needs to 
share the F bus with the ALU. 

The signals of the auxiliary inputs/outputs include the carry 
look-ahead, the carry generate, and the propagate signals used to speed 
up ALU operations when several are joined in parallel. These func­
tions yield significant speed gains, but they are beyond our current 
scope. The reader should consult a good TTL data catalog, which will 
give the important application details. If a typical ALU based on a 4-
bit module of full adders is used in the construction of a 16-bit or 
larger CPU, speed gains on the order of thirty percent may be realized 
by using these auxiliary lines and the available logic IC's associated 
with them-namely, the fast carry look-ahead generators. 

An extremely important function of a computer system's main ALU is 
its relationship to the associated Flag Register. Any time an ALU 
operation occurs, information is also generated by the ALU, regarding 
the nature of the results. This auxiliary information is stored in a flag 
register when it is critical to subsequent operations. These flags 
become the programmer's decision-making mechanism. The impor­
tance of this stored flag information lies in their subsequent use in 
selecting the future path of computation, based upon their contents. 
The programmer may later (after the flags are loaded) specify condi­
tional instructions, which reference the stored flag values, to establish 
the direction the program is to take for subsequent operations. For 
example, conditional branches and multiple-precision arithmetic 
instructions are based upon the use of flags. The basic idea is that cur­
rent information about an ALU operation is recorded for future use. 
Among other things, the stored flag results of an ALU operation can 
indicate that the results of a previous operation were 



90 

74181 ALU INTERFACE 

THE ARITHMETIC/LOGIC UNIT: OPERATIONS AND FLAGS 

Even (Odd) 

Negative (Positive) 

Zero 

Carry (Borrow) generated 

Interdigit Carry generated 

Overflow (Underflow) occurred 

Parity Even (Odd) 

A port data Greater (Less than or Equal) than B 

A commonly used minimal set of ALU flags (also called condition 
codes) is Zero, Negative, Carry, and Overflow. The logical inequalities 
may be deduced from this information. The list above includes condi­
tion-code terms that may be derived from a basic set of flags. 

A bidirectional interface between the flag register and a system's 
data bus is necessary for saving the present status of the flags on a 
stack when servicing calls or interrupts and for setting them to some 
desired initial value. The flags are a part of the total state,of a program 
that has been subjected to a call or interrupt. They must be preserved 
when it is put to rest, to correctly recall it again in the future. The 
programmer, however, may wish to use the flags for, say, multiple-pre­
cision (multiple-word) addition. In this case, the first addition is speci­
fied as addition without a carry-in. Subsequent additio.ns employ 
machine instructions that perform an add with carry-in to obtain mul­
tiple-precision results. The carry-in is the carry-out resulting from the 
previous addition, which was stored in a carry-flag cell. Thus the preci­
sion of an arithmetic operation can be extended from one word to as 
many as desired. From these examples we see the necessity for 
exchanges between the flag register and the rest of the system, as well 
as for the existence of instructions that affect the flags. 

At this point, let us clarify the meaning of the terms flags or condi­
tion codes, sense cells, and status words. We have just discussed flags and 
status information as they are involved in the bperation of an ALU. In 
general, a flag is a memory cell (flip-flop) whose state is affected by the 
occurrence of an event under conditions established by the control sys­
tem. There are two contexts in which the term flag is used-one external 
and the other internal. Some processors have flag flip-flops that present 
their state to the outside world for the use of other devices. These are gen­
erally set or reset under program control. A sense line generally refers to 
an internal flag cell set by the external devices for the internal use of a 
processor. This combination of the internally generated and externally 
derived flags is of critical importance to the operation of an advanced sys­
tem, and the flags are often referred to collectively as the status word A 
status word or status register can contain some combination of condition 
codes (internal flags), interrupt status, priority status, external flags, etc. It 
is probably helpful to think of all flags. sense bits, or status bits simply as 
generalized status information. They play a critical role in both program 
and system operation. 

Among the ALU's that can be used for experimentation are the 
74LS181 and the pin-compatible 74181. There are also CMOS versions 



Assembling an Architecture 91 

LOGIC PRODUCTS 

ARITHMETIC LOGIC UNITS 54/74181, LS181, 5181 

• Provides 16 arithmetic 
operations: ADD, 
SUBTRACT, COMPARE, 
DOUBLE, plus 12 other 
arithmetic operations 

• Provides all 16 loglc 
operations of two 
variables: Excluslv•OR, 
Compare, AND, NANO, 
NOR, OR, plus 10 other 
loglc operations 

• Full lookahead carry for 
high-speed arithmetic 
operation on long words 

DESCRIPTION 
The '181 is a 4-blt high-speed parallel 
Arithme\ic Logic Unit (ALU). Controlled by 
the four Function Select inputs (S0-S3) 
and the Mode Control input (M), It can per­
form all the 16 possible logic operations or 
16 different arithmetic oparations on ac­
tive HIGH or active LOW operands. The 
Function Table lists these operations. 

4·Blt Arithmetic Logic Unit 

TYPE 
TYPICAL PROPAGATION TYPICAL SUPPLY CURRENT 

DELAY (Total) 

74181 22ns 91mA 

74LS181 22ns 21mA 

74S181 11ns 120mA 

ORDERING CODE 

PACKAGES 
COMMERCIAL RANGES MILITARY RANGES 

Vcc•SV :1:5%;T,..o•cto+7o•c Vcc•SV :1:10%:T1o• -55°Cto + tzs•c 

Plastic DIP N74181N • N74LS181N 
N74S181N 

Ceramic DIP 
S54181F • S54LS181F 

S54S181F 

Flatpack S54LS181W 

INPUT AND OUTPUT LOADING AND FAN·OUT TABLE 
PINS DESCRIPTION 54174 541748 54174LS 

Mode Input 1ul 1Sul 1LSul 

A or I! Inputs 3ul 3Sul 3LSul 

s Inputs 4ul 4Sul 4LSul 

Carry Input Sul 5Sul 5LSul 

F0-F3, A= B, Cn+ 4 Outputs 10ul 10Sul 10LSul 

~ Output 10ul 10Sul 40LSul 

j5 Output 10ul 10Sul 20LSul 
When the Mode Control input (M) is HIGH, NOTE 

all internal carries are inhibited and the Where a 54174 unit load (ull la understood to be"°"" 11H and-UmA '•L• a 54174S unit load (Sul) 1150,IA11H and 
device performs logic operatJonS on the -2.0mA Ill• and a 54174LS unit load (LSul) la 20,oA l1H and-0.4mA l1L· 
Individual bits as listed. When the Mode 
Control Input is LOW, the carries are en-
abled and the device performs arithmetic ahead and provides for either ripple carry using the signals P (Carry Propagate) and 
operations on the two 4-bit words. The de- between devices using the Cn+ 4 output, or G (Carry Generate). P and ~ are not af­
vlce Incorporates full Internal carry look- for carry lookahead between packages fected by carry in. When speed require-

PIN CONFIGURATION 

Figure 3-7 
Four-Bit ALU Data Sheet 
(Courtesy of Signetics 
Corporation © 1984 Signetics 
Corporation.) 

LOGIC SYMBOL 

z 1 2312 2120 1118 

Aolo A181 A2B2 A31l3 
Cn 

vcc=P1n2• 
GND=Pln 12 

., 

10 

•z 

11 

Sigletics 

Cn+4 ... 
•• 
13 

LOGIC SYMBOL (IEEE/IEC) 

16 

14 

17 

15 



92 THE ARITHMETIC/LOGIC UNIT: OPERATIONS AND FLAGS 

LOGIC PRODUCTS 

ARITHMETIC LO~IC UNITS 54174181,LS181,S181 

ments are not stringent, It can be 'used in a 
simple ripple carry mode by connecting 
the Carry output (Cn+4) Signal to the Carry 
Input (C0 ) of the next unit. For hlgh·speed 
operation the device is used in conjunc· 
lion with the '182 carry lookahead circuit. 
One carry lookahead package Is required 
for each group of four '181 devices. Carry 
lookahead can be provided at various 
levels arid offers high·spead capability 
over extremely long word lengths. 

The A= B output from the device goes 
HIGH when all four F outputs are HIGH 
and can be used t,o indicate logic equiva· 

LOGIC DIAGRAM 

Cn M Ao 
(7) Cll (21 

Figure 3-7 

io 
C11 

Vcc•Pln24 
QND•Pln 12 
( ) • Pin Numbert 

Four-Bit ALU Data Sheet 
(Courtesy of Signetics 
Corporation© 1984 Signetics 
(prp_oration_.) 

lence over 4 bits when the unit is in the 
subtract mode. The A= B output is open 
collector and can be wtred·ANO with other 
A= B outputs to give a comparison for 
more than 4 bits. The A= B signal cari also 
be used with the Cn+• signal to indicate 
A>BandA<B. 

The Function Table llsta the arithmetic 
operations that are performed without a 
carry in. An incoming carry adds a one to 
each operation. Thus, select code LHHL 
generates A minus B minus 1 (2s compl• 
ment notation) without a carry In and gen· 
erates A minus B when a carry is applied. 

i, iz 
(22) C20l 

A•B 'F2 

Signetics 

Because subtraction is actually performed 
by complementary addition (1 a compl• 
ment), a carry out means, borrow; thua, a 
carry la generated when there la no under· 
flow and no carry is generated when there 
Is underflow. 

Aa Indicated, this device can be used with 
either active LOW Inputs producing ectlve 
LOW outputs or with active HIGH lnputa 
producing active HIGH output1. For either 
case the table ll1t1 the operation• that are 
performed to the operands labeled 1n11de 
the logic 1ymbol. 

C151 (111 

ji Cn+4 

So•1 •2•3 
1115) ... ,, 

(17) 

li 



Assembling an Architecture 

LOGIC PRODUCTS 

ARITHMETIC LOGIC UNITS 

MODE SELECT-FUNCTION TABLE 

MODE SELECT INPUTS 
ACTIVE HIGH INPUTS 

I OUTPUTS 

s, S2 S1 So 
LOGIC ARITHMETIC** 
(M•H) (M•L)(C0 •H) 

L L L L A A 
L L L H A+B A+B 
L L H L AB A+B 
L L H H Logical o minus 1 
L H L L Al A plus AB 
L H L H a (A+ Bl plus AB 
L H H L AeB A minus B minus 1 
L H H H A! AB minus 1 
H L L L A+B A plus AB 
H L L H AeB A plus B 
H L H L B (A+ Ii) plus AB 
H L H H AB AB minus 1 
H H L L Logical 1 A plus A• 
H H L H A+B (A+ BJ plus A 
H H H L A+B (A+ B) plus A 
H H H H A A minus 1 

ACTIVE HIGH OPERANDS 

' ' 23 u 21 20 ,, 11 

*Olo .t.111 A21J A;y.13 
Co Cn+• •• 
M ... " 
So " •• 15 •• 
$3 Fo . , " " 

10 " " 

93 

54174181, LS181, 5181 

MODE SELECT INPUTS 
ACTIVE LOW INPUTS 

l OUTPUTS 

s, S2 S1 So 
LOGIC ARITHMETtc•• 
(M•H) (M•L)(C0 •L) 

L L L L A A minus 1 
L L L H Al AB minus 1 
L L H L A+B A!J minus 1 
L L H H Logical 1 minus 1 
L H L L A+! A plus (A+ 8) 
L H L H 8 AB plus (A+ !h 
L H H L Ai'! A minus B minus 1 
L H H H A+I! A+8 
H L L L AB A plus (A+B) 
H L L H AeB A plus B 
H L H L B Al plus (A + B) 
H L H H A+B A+B 
H H L L L~glcal O A plus A• 
H H L H AB AB plus A 
H H H L AB AB plus A 
H H H H A A 

L = LOW lr'Olt1g1 

H .::i HIGH voltage level 
•Each bit is srufted to the next more significant position. 

•·Arithmetic operauon1 expressed in 21 complemenl notation. 

ACTIVE LOW OPERANDS 

'' 23 22 21 20 ,, 18 

•o•o •1•1 •2 •2 A3 83 
c. Cn+4 •• ... " 
So " 

15 .. ., F3 

10 " 13 

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.) 

PARAMETER 

Vee Supply voltage 

V1N Input voltage 

l1N Input current 

Vour 
Voltage applied to output in HIGH 
output state 

TA Operating free-air temperature range 

Figure 3-7 
Four-Bit ALU Data Sheet 
(Courtesy of Signetics 
Corporation© 1984 Signetics 
Corporation.) 

54 54LS 54S 

7.0 7.0 7.0 

-0.5 to -0.5 to -0.5 to 
+ 5.5 +5.5 +5.5, 

-30 to -30 to -30 to 
+5 +1 +5 

-0.5 to -0.5 to -0.5 to 
+Vee +Vee +Vee 

-55to+125 

Signetics 

74 74LS 74S UNIT 

7.0 7.0 7.0 v 
-0.5 to -0.5 to -0.5 to v 

+5.5 +5.5 +5.5 

-30 to -30 to -30 to 
mA 

+5 +1 +5 

- 0.5 tq. -0.5 to -0.5 to v 
+Vee +Vee +Vee 

o to 70 ·c 



94 

ALU RELATIVE MAGNITUDES 

THE ARITHMETIC/LOGIC UNIT: OPERATIONS AND FLAGS 

of the same device. This particular IC was fundamental in the develop­
ment of many minicomputers and controllers during the 1960s and 
1970s. The manufacturer's specification for this device, which comes in 
a 24-pin dual in-line package (DIP), are presented in Figure 3-7. The 
first step in using it is to adopt a convention for treating the data either 
as active high or as active low. Active-low data problems are presented 
in the exercises. The use of active-low data conventions in ALU imple­
mentations and interfacing is widespread in practice. Some manufac­
turers' data-sheet explanations emphasize only active-low data-that is, 
the low level is the logically true level on the data lines. This is a reflec­
tion of the frequent use of active-low conventions. In this text, as in 
most, we use active-high data as the usual convention. Even so, we 
cannot avoid dealing with active-low conditions. The reader may 
encounter difficulties later, unless the ALU problems that use active­
low conventions are mastered now. 

The ALU interface contains both active-high and active-low 
interface pins. The carry-in and carry-out pins (7 and 16, respectively) 
are always of the opposite activity level-from the data ports. For exam­
ple, in the case where active-high data is the selected convention, the 
carries are active low. That is, a carry-in will be asserted by a low level 
on pin 7 when the data is treated as active high. Had we chosen to con­
sider the data pins of this ALU as being active low, then these two 
carry lines would have been treated as active high. Under these last 
conditions, a high on either pin 7 or 16 implies the existence of a carry­
in or a carry-out, respectively. The confusion is caused by the improper 
use of the overbar symbol on all the 111anufacturers' data sheets: the 
overbar symbol is correctly used for complementation, but it is incor­
rectly used when it also represents the active-low condition. Later in 
the text, we shall use the symbol @ to indicate that a named signal is 
active low. For now, the remedy is to think of the pin names of the 
ALU just in terms of their functional names: data and carry pins. If 
the data ports are designated to you as active high, then the carries are 
all active low, and vice versa. 

An output of this ALU, pin 14, is termed the A = B output. It too has 
special characteristics. This pin is used to ascertain whether bit-for-bit 
equality exists between the two sets of input-data lines. This equality 
detection is performed when the ALU is in the subtract mode, while 
the carry-in is high. Pin 14 is an open-collector output and therefore 
requires a pull-up resistor between itself and the power supply, Yee. to 
be useful. As the data-sheet specifications indicate, the combination of 
carry-out (C.. 4) and A = B may be used to establish the logical rela­
tionships between the A and B ports. C. is also utilized to control these 
relative"magnitude operations. Table 3-1 summarizes the pin relation­
ships for these relative magnitude operations. As discussed, the control 
over the flow of software originates in the ALU. These are the signal 
types that, when stored as flags, enable conditional instructions to 
make decisions. From the equivalent logic diagram, note that the A = 
B function is produced when all the inputs to an AND gate are high. 
Therefore the A = B output is always active high, regardless of the 
data activity-level convention used. Further, A = B has the character-



Assembling an Architecture 95 

Table 3-1 
Relative Magnitude Tests 

C. Input Active-Low Data Active- C •• 4 Output 
High 
Data 

H A :::::: B A::; B H 
H A<B A>B L 
L A>B A<B H 
L A::; B A:::::: B L 

Notes: M = L 

S, .. S0 = L H H L 

istic that it is high whenever all F lines are high-a useful fact that has 
some innovative applications. 

The ALU has a central role in both the organization and the 
operation of any processor that transforms data. There is an ALU at 
the heart of every computer, though it is not necessarily the 74181. A 
study of the equivalent logic diagram of the ALU confirms that it con­
tains four combinational-logic full adders arranged in parallel, fed by 
data selection and combination circuitry. A close scrutiny of this chip's 
logic (!C's are also often referred to as chips) is well worth the time. 

To specify arithmetic/logic operations, refer to the mode-select 
function table in Figure 3-7. When the mode line is high, this ALU is in 
the logic mode. In this mode, the four S lines (S~ .. S0 ) specify the gen­
eration of all I 6 functions of two variables. When binary logical opera­
tions are selected, these are performed on the basis of matched pairs of 
data. Carries never enter into the logic-function formation process. 
That is, A0 and B0 are logically operated on, independently of other bit 
positions or carries, to form F0, and so forth. When the mode bit is 
low, the arithmetic operations specified by S,1 •• S0 depend on the state 
of the carry-in, Cn. Not all of these arithmetic operations yield useful 
results, but there are some valuable operations, too. For example, 
when selecting the function F = A (in the arithmetic mode) the Cn line 
can be used to produce either this or F = A plus 1, rlepending on the 
value of the carry. This provides a means of either passing the contents 
of A port through the ALU intact or incrementing it by one, before 
handing it over to the F bus. Therefore, the carry-in affects which arith­
metic function is actually being performed, by adding one to the func­
tion produced when there is no carry. Some data sheets display two 
arithmetic function columns. The second, missing here, is simply the 
function shown here plus one. Note that the data sheets use the word 
plus to indicate addition and use the symbol + only to indicate the 
logical OR operation. 

In the logic mode, we can also produce an F = A and an F = B 
function. These are most useful when we simply wish to transfer the 
contents of one input bus or the other to the output, or F bus. ALU's 
are frequently used for bus-transfer operations. Since carries cannot 
influence the results, this is a less mistake-prone method of effecting 
data transfers from one bus to another when specifying microcode. 
Also note that, when the ALU is in the arithmetic mode and perform­
ing F = A plus A, the quantity is being doubled. In binary, this is tan­
tamount to shifting left one place. Thus this ALU shifts left, too. In 
practice, however, shifting is usually accomplished with the aid of aux­
iliary registers and multiplexers. The power that can be packed into 



96 

ALU WORKSHEET 

THE ARITHMETIC/LOGIC UNIT: OPERATIONS AND FLAGS 

this relatively simple device is impressive. The ALUs used in a mono­
lithic processor design do not require all 16 logic functions or the use­
less arithmetic ones. They are therefore streamlined versions of this 
ALU, tailored to meet the specific needs of a particular computer's 
design. 

Figure 3-8 presents a work sheet for solving 74181 ALU problems. The 
Data Activity Level column information must be given to work a prob­
lem. An AH in this column implies that the electrically high level is to 
be considered as the logically true, or 1, level for that row. An AL 
implies that the electrically low level is to be treated as the logical true 
or I level for the current problem. Regardless of the given or chosen 
activity level, all arithmetic computations are to be performed in 
binary, using two's-complement arithmetic conventions. If active-low 
data is being used, an L in a given bit position signifies that an arith­
metic or logic 1 applies to that data bit. Keep in mind that the c. and 
C. • 4 pins of the ALU have an activity level opposite that of the data. 
This is a frequent source of errors. For a given truth value (1 or 0), the 
electrical level (H or L) of the carries that is either applied or pro­
duced, respectively, is the reverse of the level of a data line for that 
same truth value. 

In the exercise problems, the ALU Function Performed column 
either is given or must be derived from a specified control word, with 
the aid of the data sheets of Figure 3-7. The control word may be 
specified in the next six columns, or it must be derived from the 
given function named through the use of the tables. One must be 
given, the other derived. The M or mode bit controls whether the 
operation to be performed is arithmetical or logical in nature. The 
device data-sheets format species this, too. Referring to them again 
shows that, when the M bit is high, this ALU is always in the logic­
operations mode, regardless of the data-activity level chosen. If the 
M bit is low, then an arithmetic operation is specified. In either 
mode, the four S lines select the exact function to be performed. 
Remember that, in the logic mode, both the carry-in and carry-out 
bits are treated as irrelevant. This irrelevance is signified by an X in 
the appropriate place(s) on the work sheet. 

As noted, in. the arithmetic mode, the C. bit controls the function 
to be performed, in a simple way. If the carry-in is a logical 0, that is, 
no carry-in, then the arithmetic operation is as specified in the arith­
metic column of the data sheet. If the carry-in is active (true), then the 
operation is this same operation plus one. The 16 functions of the 
arithmetic mode are not all sensible or useful. Still, incrementation or 
decrementation of the A port (A3 •• A0) data, one's- and two's-comple­
ment addition of A and B port data, and subtraction are all quite use­
ful. Even shifting of the A-port data, which in practice is performed 
outside the ALU by other hardware, may be demonstrated. This ALU 
shifts only to the left. The results of all data operations appear at the 
F, or function, port pins. The auxiliary information is also output on 
the c .. 4, A = B and f 3 pins for possible storage as flags. The most 
significant bit of the output is the sign bit in arithmetic operations. 
That is F3 in this case. It, too, may be stored as a status flag. The flags 



Assembling an Architecture 

:zo 
<~...l 0 u:J u:J 
~ - u:J :i - ~ 0 
< 2: > ...ibo 0 
ot;::l < :z "" ~ 

:i 1¥ < ""~ M 

8) 

C) 

D) 

E) 

F) 

G) 

H) 

Figure 3-8 
74181 ALU Worksheet 

97 

e;INCTION A BUS B BUS F BUS ~ 

S3 

SELECT 2: DATA DATA DATA 
LINES c..i LINES LINES LINES 

S2 SI so c"' A3 A2 Al AO B3 B2 Bl BO F3 F2 Fl 

METHOD: FILL IN BLANKS WITH APPROPRIATE H 
OR L AFTER CONSULTING ALU TABLES. FILL IN 
MISSING ALU FUNCTIONS. SHOW CALCULATIONS 
BELOW. 

:i 
0 
c..i 

FO c., .• , 

we will use that originate in this ALU are the carry, equal, and sign 
flags. 

Two's COMPLEMENT ALU PROBLEMS 

A sample problem set and their solutions are given in Figures 3-9a and 
3-9b. In the first problem, the data activity level is given as AL, and the 
function required is A plus I. Consulting the active-low data table for 
the 74181, we find that, since this is an arithmetic operation, the mode 
line must be low. For active low, the four select lines for the function f 
= A are specified as S~ .. S0 = HHHH. Note that this is f = A in the 
arithmetic mode. Cn is specified as an L. We can rationalize this as fol­
lows: If the data is active low, the carries are active high, implying that 
C. must be low to.be inactive. The function we desire, however, is f = 
A plus 1. To add l in the arithmetic mode, we specify Cn as active, or 
H. The A data is given as - 2, decimal equivalent. In two's-comple-



98 

ZQ 
> < f- ..J 

ow w 
-~ Q f--w ::::> t =: <:::> 0 

Q f- w ~ z 5:: ~ u ..J ::::> =: < LI. w M Q., 

A) AL A pl I 

B) AH H 

C) AL Ami B 

D) AH L 

E) 

F) 

G) 

H) 

Figure 3-9a 
74181 ALU Worksheet: 
Example Problem 

THE ARITHMETIC/LOGIC UNIT: OPERATIONS AND FLAGS 

FUNCTION 
A BUS BBUS F BUS f-

S3 

L 

H 

::::> 
SELECT ~ DATA DATA DATA 0 
LINES v LINES LINES LINES v 

S2 

L 

H 

SI so C., A3 ..\2 Al AO B3 B2 81 BO F3 F2 Fl FO c" . ., 

L 

L 

- 2 + 5 

L L 
L H L H L L H H 

- 3 - 4 

L L 
L L H L H L H L 

METHOD: FILL IN BLANKS WITH APPROPRIATE H 
OR L AFTER CONSULTING ALU TABLES. 

ment (TC) arithmetic, negative numbers are represented by their TC 
form, which is arrived at by the following simple procedure: 

I. Write the binary equivalent of the absolute magnitude of the 
number: For example, the absolute magnitude of - 2 in binary 
notation is 0010. We are using a 4-bit ALU size, the most signifi­
cant bit being the sign bit. If the ,sign bit is a 0, the number is 
positive. If the sign bit is a 1, the number is negative, and the bal­
ance of its bits (the magnitude bits) are in TC form. 

2. Starting with the least significant binary digit, copy down all dig­
its, as they are, up to and including the first 1. That is, in the 
example, copy the digits 10. 

3. Now write down the complement of all the remaining digits. 
That is, the lefthand Os become ls, and vice versa. In the example 
here, change the leftmost 00 to 11. 

4. This result, 1110, is the TC form of the original number. Taking 
the TC form of this number reproduces the original number 
again. 



Assembling an Architecture 

A) 

B) 

C) 

D) 

ZQ 
< {:: ..J of.Ll 

I- - f.Ll ::::>-~ <::: > ..Jt>~ 
ct;~ <ZJ.1. 

=>= < J.I.~ 

AL A plus I 

AH F•A 

AL Amin B 

AH 
A pl I 

pl I 

A) 0010 
11 IO 
+1 

f.Ll 
Q 
0 
~ 

M 

·L 

H 

L 

L 

(0)1111 = -I 

FUNCTION A BUS B BUS F BUS 

S3 

H 

L 

L 

H 

z DATA SELECT - DATA DATA 
LINES u LINES LINES LINES 

S2 SI so CN A3 ..\2 Al AO 83 B2 Bl BO F3 F2 Fl FO 

I l 1 lf 0 1 0 1 l I I I 

H H 
- 2 + 5 H H 

H i. x 1 L L L H H L L L L 

x 
L L L L 

L ~ L H L L H H H L H L 

I I 1 I I I 0 0 0 0 0 1 - - 4 H H L H 
L L H L L L H H H H .H L 

H L L L 
L L H L H L H L L ,H L H 

METHOD: FILL IN BLANKS WITH APPROPRIATE HOR L 
AFTER CONSULTING ALU TABLES. 

C) 0011 
I IOI 
0100 

(I) 0001 

0100 
1100 = -4 
0100 

99 

I-
::::> 
0 
u 

c., .• , 
lJ 

L 

x-

1 

H 

H 

B) FROM DATA SHEETS 
D) A= LLHL 0010 

(0)0100 F =A LHLH 
HLHL 

Figure 3-9b 
74181 ALU Worksheet: 
Completed Problem 

SHLA = (H) LHLL 
+I H 

H 
.±..Ll 
(0)0101 

The B data in the first problem is irrelevant because it is not involved 
in the specified function. To complete the operation, we add I to the A 
data, as follows: 

1110 -2 

~ 
(0)1111 = -1 

The logical carry-out is enclosed in parentheses. To convert this result 
to the F-port electrical levels, convert all the true data bits to L's, to 
denote that, in this result, they are all active. The carry-out (for active­
low data) is active high. Since the carry-out of 0 means this line is not 
to be active, we specify an L for C. + 4. 



100 EFFECTS OF ARCHITECTURAL VARIATIONS ON OPERATIONS: PUTTING IT ALL TOGETHER 

The third problem of the set.illustrates the fact that the ALU does 
not actually perform a physical subtraction-it contains only an adder. In 
TC arithmetic, subtraction is accomplished within the ALU by adding the 
subtrahend;s TC to the minuend. The A data (- 3) is 1101. The B data 
(-4)is 1100. To.subtract -4, we first find its TC form, and then add it 
to the minuend. The arithmetic appears as follows: 

-3 

min -4 

? 

(-3) = 1101 

TC of (-4) = plus 0100 

(1)0001 

Note that the carry-out is now active and that Cn + 4 is therefore an H. 
The F-port data is now HHHL, in electrical-level terminology. The 
advantage of the electrical-level symbology is that it expresses the 
behavior of components without ambiguity. 

We have spelled out terms in the arithmetic operation above, to 
avoic;l confusing the two's-complement ~rithmetic operation with the 
sign of the value to be operated on. The data sheets reflect this prac­
tice, too. Differentiating between ALU operations and the signs of the 
data values avoids a great deal of confusion. 

The neat thing about TC arithmetic is that the results of all arith­
metic addition and subtraction operations are correct in both sign and 
magnitude and that the carry-out is used only in the detection of over­
flow or underflow. Since we are not discussing these special overflow 
situations here, we should mention that any TC arithmetic problem 
formulation that causes an overflow or underflow to occur produces 
erroneous results. It may come .as a surprise to see that ordinary 
processors have only the capability to add. Operations such as multi­
plication are performed by an algorithm involving successive addi­
tions. We will microprogram one of these later, using this ALU. The 
high-performance microprocessors speed up multiplication and addi­
tion by providing special logic for these purposes. Since we make 
extensive use of this ALU in microcoding instruction sets for a proces­
sor, the practice problems provide an opportunity to gain proficiency 
in using this ALU. 

EFFECTS OF ARCHITECTURAL VARIATIONS ON 0P.ERATIONS: 
PUTTING IT ALL TOGETHER 

Let us now examine several basic systems architectures containing 
the major constructs we have studied so far-buses, registers, arrays, 
and ALU's. As noted, the arrays and many registers, being memory, 
need not be part of a CPU. To obtain speed, they generally are 
included in the CPU. The ALU and associated buses are essential to 
the formation of a CPU architecture. There are several CPU's that 
employ external memory for registers and arrays. Here, we put all 
these major structural elements of the traditional CPU together in a 
system, examining several architectural variations of bus-organized 
systems. Specifically, we shall observe how the ALU and BUS organ­
ization impacts on their register transfers, as well as on the number of 
clock periods required to accomplish a selected task. The number of 
steps required to effect a transfer, along with the architectural sophis-



Assembling an Architecture 

ARCHITECTURAL COMPARISONS 

Problem Statement 

Definition (ADD) 

EXAMPLE 1: 
THE SINGLE-Bus SYSTEM 

ARCHITECTURE 

PERFORMANCE 

101 

tication of the system, is an important subject in establishing an 
architecture for a system. As so often happens, the considerations of 
cost versus speed of a system are also involved. Because this subject 
is at the heart of how we perceive and understand computer opera­
tions, a little experimentation with architectural variations should go 
a long way toward providing insight into why a particular machine is 
constructed or behaves in a given manner. In Chapters 5 and 6, we 
will study a specific implementation of a basic 4-bit CPU, where this 
type of perceptual background is applied to the microprogramming 
of instruction sets. 

To compare the effects of architecture on operation, we use the follow­
ing generalized situation for three selected architectural examples: 

The overall problem consists of adding the contents of a register R in 
an array to that of a memory location M. All arithmetic/logic opera­
tions are to be performed with the use of an Accumulator (ACC) regis­
ter. 

Next, we define the operation of addition, as follows: 

The operation of addition is defined as the summing of the present 
contents of an ACC register with itself, or with the contents of another 
register, or with the contents of a memory location. The results of the 
operation are to be stored in the ACC register, generally changing its 
contents. Source operands, other than the ACC, are to remain 
unchanged. Note that tha ACC register always serves as a source of 
one operand. 

Figure 3-10 displays a single-bus system, defined as '.;uch because the 
ALU's inputs and outputs interface to the same internal data bus as 
the register array. In this example, the register array is to be used only 
for data retrieval and storage, not as an arithmetic/logic accumulator. 
The results of all arithmetic/logic operations are to be deposited in the 
special accumulator provided. In practice, this restriction is often 
applied where an architecture lacks parallelism. Coincidentally, similar 
constructs were utilized in the design of some very successful 8-bit 
microprocessors, such as the 8080. For comparison purposes, we shall 
examine the execution of an overall operation that includes the step of 
addition, as presented in the problem statement. 

In Figure 3-10, two registers feed the ALU. These are the ACC 
and TEMP registers. The ACC is shown as a single register, presumed 
to have edge-triggered JK-type clocking, for simplicity. Actually, two 
transparent latches are often used here. In the next section, we shall 
start to clear up these unexplained references to this widely applied 
type of latch and its clock characteristics. The overall addition opera­
tion involves a register, say RI, of the array in the total transaction. 
One of the numbers to be added comes from RI. The other number 
comes from memory. The steps to add these numbers and store the 
results in RI follow. In this process, RI is treated as the destination 



102 

ACC 

Fi~re 3-10 
Sirigle-Bus System (Partial) 

EFFECI'S OF ARCHITECTURAL VARIATIONS ON OPERATIONS: PuTTING IT ALL TOGETHER 

EXTERNAL DATA BUS 

MPX/DMPX 

REG· ARRAY 

ADR LATCH 

~NOTE: 
ALL INTERFACES 

TO DBUS ARE TRI-STATABLE 
OR OPEN-COLLECTOR TYPES. 

ADDRESS BUS 
(EXTERNAL) 

MEM 

storage area for the final results. The special ACC register is the sole 
recipient of the results of all arithmetic/logic steps in the total opera­
tion. It would be nice if we could treat any register as a generalized 
accumulator; this will come later. For now, the sequence of steps 
required to add under these conditions is given below-each step is 
synonymous with a single clock period: 

1. Transfer the contents of RI into ACC over the internal DBUS. 

2. Bring in the contents of the desired memory location, assumed to 
be present at DBUF, and store them in TEMP. These two steps 
are preliminary to the actual operation of addition, next. 

3. Place the ALU in the ADD state, and transfer its output to ACC 
over DBUS. The ALU is fed by the ACC and TEMP registers. 
Coincidentally, the FLAG register would be loaded at this point. It 
would record only status information about this operation, such as 
the state of the sign and carry bits, not the results of the addition. 

4. Place the ALU in the transfer state, such that the previously 
summed contents stored in ACC are placed onto the DBUS. At 
the same time, have RI capture these contents at the end of this 
current clock period. 

This entire procedure cannot be performed in fewer than these four 
steps, given the constraints of this architecture. One cannot drive the 
DBUS simultaneously from two different sources-a case of operations 
that would be incompatible. Therefore we see that the sin~le-bus sys­
tem requires a rather large number of steps to perform the given task. 
This design approach is economical in its use of components, but, due 
to a lack of parallelism, the trade-off penalty is the time required to 
achieve the end result. 



Assembling an Architecture 

DBUS 

MPX 

ARRAY 

DMPX 

BBUS 

Figure 3-11 
Two-Bus System (Partial) 

EXAMPLE 2: 
THE TWO-BUS SYSTEM 

ARCHITECTURE 

PERFORMANCE 

A 
L 
u 

103 

MEM. 

Let us now compare the case above to the more sophisticated two-bus 
architecture of Figure 3-11. In this new hypothetical case, which still 
uses a single special ACC register, the following steps are necessary to 
accomplish the same task: 

1. Place the contents of RI, in the array, onto the DBUS, and 
deposit it into the ACC. 

2. Place the contents of the desired memory location onto the 
DBUS. With the ALU in the ADD state during this time frame, 
the ACC captures the sum of the operands. All these operations 
are compatible, since no data clashes occur on the buses. 

3. Place the contents of ACC onto the BBUS and store the result in RI. 

At the expense of an additional bus and interfaces (tri-state or func­
tional equivalents), it is now possible to perform this computation in 
three steps. This is a more parallel architecture. Can you invent a bet­
ter architecture by slightly rearranging this one? Some of the embel­
lishments added in this example are: 

a. The ACC is now interfaced to the DBUS via an appropri­
ate interface, which is seldom shown explicitly. 

b. The contents of any register in the array may be directly 
presented to the ALU over the BBUS. 

c. The contents of 'memory can directly reach the ALU over 
ihe DBUS. 

There are limitations on the designer in the selection of architectures, of 
course. These include cost, state of the fabrication art, and optimization 
of an entire instruction set, as opposed to a single operation, as we are 
doing. Yet buildlng blocks are meant for building with, so let's carry on. 



104 

EXAMPLE 3: 
THE THREE-BUS SYSTEM 

ARCHITECTURE 

PERFORMANCE 

EFFECTS OF ARCHITECTURAL VARIATIONS ON OPERATIONS: PuTriNG IT ALL TOGETHER 

Our last hypothetical example is the three-bus architecture, displayed 
in Figure 3-12. In this example, we loosen the original constraints and 
dispense with an explicit accumulator. The accumulator can be any of 
the 8-bit registers in the dual-bank array. Notice, too, that we are now 
definitely mixing dual-sized architectures together-a common prac­
tice. Now, all that is required to perform the given overall task is to: 

I. Simultaneously place the contents of RI, which may exist in any 
one of the two 8-bit arrays, via the MPX/DMPX logic, onto the 
BBUS. The contents of memory are also placed onto the DBUS 
in this same time frame. No conflicts here. In the current time 
frame, the control system also orders the ALU to ADD. The 
combinational result of the addition appears on the FBUS before 
the end of this clock period. It can be stored in any general regis­
ter of the 8-bit array desired-we assume even RI. Thus, with this 
architecture, the general registers in the arrays can serve as accu­
mulators. These registers in the array are called general registers, 
as most of the PDP-11 registers are, to differentiate them from 
some special registers-such as a possible SP or PC within the 
array (not the case here). 

The assumption that R l can support true simultaneous reads and 
writes is not always carried out in practice but could be in principle. 
Chapter 5 more fully explains these practical concerns about the 
proper use of the widely applied transparent latch. If we assume the 
straightforward use of edge-triggering for now, no principles are vio­
lated. We are careful to point out that actual usage may vary. 

Depending on our choice of architectures and the parallelism of 
their organization, we see that the number of steps to transform infor­
mation vary greatly. Maximizing the set of operations that can be per­
formed simultaneously is very advantageous. We apply this topic again 
.in the subsequent chapters that develop microprogramming skills. One 
sobering thought is that architectural design is not an end in itself. 
What really counts is the set of instructions that·are available to to the 
programmer for the development of sophisticated software. In the final 
analysis, good architectural design can only serve the best interests of 
software sophistication-that Is, it does not exist in a vacuum. When 
we get around to practicing microprogramming for a limited architec­
ture, we can observe the frustrations attached to hardware/ software 
trade-off considerations. First, though, we need to grasp the system 
coordination of ihe hardware. That involves a deeper understanding of 
these architectural constructs, presented here in an introductory way 
to provide motivation and orientation. 

A few more remark.s on the sophisticated .three-bus approach of 
Example 3 are relevant. Besides the mixing of 8-bit and 16-bit architec­
tures, notice the second autonomous simple ALU, which is an integral 
part of the Address Bus (ABUS) structure of the system. This enhances 
the concept of compatibility, in that even more can be performed in 
one time frame than before. These ideas can be extrapolated to the 
simultaneous overlapping of the Instruction Fetch and Instruction 
Execute operations, using segmented memories. This has been done in 
practice. As it is, the inclusion of the program counter and one or more 
stack pointers, as well as an operand address register, in the 16-bit 
array-along with their own basic ALU-significantly increases the 



Assembling an Architecture 105 

MEMORY ADDRESSING UNIT 
16 BIT REG. ARRAY 

ABUS !.'-. ,.._,,__--1$ 
16 < 

ADDRESS 
(TOM) 

Figure 3-12 

16 

INCR/ 
DCR 

Three-Bus System (Partial) 

8 

MPX/DMPX 
DUAL BANK 

8 BIT 
REG. ARRAY 

DMPX 

FBUS 

FLAG 

8 

speed and power of the system. From the previous constructs, we have 
actually created a separate, larger scale functional block, which is 
applied to VLSI designs. In terms of block structure, some modern 
CPU systems are described as consisting of an Instruction Prefetch 
unit and an Instruction Execute unit. Carried even further, we can 
begin to visualize multiple ALUs, register arrays, and sophisticated 
busing schemes, leading to the array processor form of architecture. 
Few if any new functional blocks are required. 

The point of the above is that we have already seen most of the 
functional blocks of which an architecture consists, and we have stud­
ied some of their organizational usage within a system. We have delved 
into circuit-design details only enough to gain an appreciation for 
functioning of blocks of logic. It is the innovative use of these blocks 
that is involved in systems organization. These have been only partial 
views of the anatomy of the architecture of a processor-micro or oth­
erwise. It is an important topic. 'The relationships between the ALU's, 
registers, and the external environment are critical to the success of a 
system. Most important, as noted, these features must promote the 
expeditious performance of the software algorithms, for which the 
machine is designed in the first place. 

An important point to note in following the examples was our 
need to visualize the data paths available to us at any step in solving a 
data flow and transformation problem. Development of this ability of 
visualizing highly parallel and compatible data flow, from sources to 
sinks, is vital to our mastery of the operation and microprogramming 
of a given architecture. 

In conclusion, note that we started with a very elementary con­
struct-the logic gate-and demonstrated that it could be used as part 
of a building-block organizational scheme, to arrive at a basic under­
standing of the structure of bus-organized processors. The final results 
of this section began to stress the functional relationships between 
these blocks of interface gates, buses, memory elements, register 
arrays, ALU's, and MPX/DMPX schemes. From an understanding of 
these systems organizations, we may start to visualize possible success­
ful patterns for data flow witliin a processor. All of these will be 



106 CLOCK CHARACTERISTICS AND SYSTEM-CLOCK PERIODS 

explored in specific detail in Chapters 5 and 6, where we will find that 
a working instructional CPU can be organized (and constructed, too) 
using only approximately ten types of IC's. In learning about these few 
IC's, we will see most of the features and functions of present architec­
tures at work. It is to be emphasized that we are beginning to view the 
processor as a system that utilizes the basic concepts discussed here. 
We may also begin to understand the innovative nature of the tasks 
available to us, using relatively few concepts, which can yield signifi­
cant computing power. 

CLOCK CHARACTERISTICS AND SYSTEM-CLOCK PERIODS 

CLOCK PHASES 

In this section, we expand on the clock as a basic feature of a state 
machine's system architecture. The system clock is the timing element 
that causes the processor to proceed from one state to another and 
provides the coordinating signal that causes those memory devices, 
enabled by the control system, to accept information. It causes the 
microcoded control signals to take effect system wide. Experience has 
shown that the beginner often has difficulty in distinguishing between 
the nature of the control signals that exist during a clock period and 
events that are initiated at the end of it. It is necessary to perceive the 
differences between control signals, which exist in this clock period, 
and the state of the information, which is available in the next clock 
period, to grasp the significance of system timing. Information is cap­
tured in memory devices, many of which respond differently to the 
same clock signal. 

There are several types of sequential machines, but we deal only 
with the synchronous (clock-controlled) machine-the category into 
which almost all processors fall. In this section, we introduce the fun­
damental concepts and terminology associated with system clocks, to 
underpin what follows. The clock is the feature that paces the events 
within a system. The relationship of these preliminary clock details to 
the system's total behavior-and the clock is an essential part of it-are 
important. 

There are single-phased as well as multiphased clocking systems. Inter­
nally, most MOS devices require more than a single clock signal to 

, proceed through a basic cycle of operation. This becomes apparent if 
we review Figure 2-24, which illustrates a dynamic memory cell. The 
relationships between the transmission gate Q3 and the inverting gate 
Q 1 are such that Q3 must first have established useful information in 
the form of a charge on C before Q 1 can pass on valid information. 
This multistep approach to first gating and then passing on informa­
tion gives rise to the use of multiphased clocks in MOS devices. The 
tendency now is to have a TTL voltage-compatible single-phase clock 
drive a system and then to derive multiphased signals from it inter­
nally, if required .. Let us look at a single-phase clock signal first. This is 
the type of clock signal that we shall use later. We shall also indicate 
how multiphased clocks may be derived from it. 



1.6 nF 11.5 nF p1r1llel with 0.1 nF) c •• , Re.1tt c •• , Reat 
Vee v •• 

c 
220 c .. , c .. , c,., c,., 

Rext * 121< "'••t R .. , 

Q Q 
c, •.. 120 pf 

Vee 

0 Q 
OUTPUT 

CLR CLR 
(Standard 7400 Inverters) 

N741231lll N741231lll 

RC Clock Generator 

.-------------------------. RC Clock Generator with Monostable Cin:uit N74123 

LC Clock Generator 

82 

CLOCK OUTPUT 
f • 1 MHz 

C2 
3nFI '::" 2. 7 nF parallel with 0.27 nF 

220 

17404 Inverters) 

%N7474 

1.025 MHz Crystal --a-
820 820 

Clock Generator Using a Non-TV Standard Crystal 

'4N7U4 

Low Cost Color TV Crystal Clock Generator 

STABILITY 

CIRCUIT (4. 75V to 5.25V) (0°C to 70°C) 

TYPE 
0°C 25°C 70°C 4.75V 5.0V 

RC +0.12% +0.52% +0.2% +1.51% +1.91% 
-0.42% -0.98% -1.1% -2.96% -3.24% 

RC MONO· +0.00% +0.276% +0.826% +1.62% +2.01% 
STABLE -0.014% -0.373% -0.833% -0.53% -0.98% 

LC +0.05% +0.07% +0.03% +0.92% +0.95% 
-0.08% -0.07% -0.04% -1.31% -1.26% 

CRYSTAL +0.0003% -0.0001% +0.0002% +0.001% ±0.0001% 
'• 

Figure 3-13 
Typical Clock Circuits and Relative Stabilities 
(For example only. Data may be old and obsolete. © 1976 Signetics Corporation.) 

5.25V 

+2.48% 
-3.35% 

+2.29% 
-1.53% 

+0.94% 
-1.24% 

+0.0004% 



i08 CLOCK CHARACTERISTICS AND SYSTEM-CLOCK PERIODS 

Vars 

+ 

..,._---TcH -----iM ------TcL ____ '"" 

1 .... ---.f---------Tcp--------------.-i 
TERMS 

V8s SUBSTRATE VOLTAGE 

V cc SUPPLY VOLTAGE 

V CL MAXIMUMrCLOCK LOW 
VOLTAGE 

v CH MINIMUM CLOCK HIGH 
VOLTAGE 

Vose VOLTAGE OSCILLATION 
RANGE 

Figure 3-14 
Single-Phase Clock Waveform 
and Terminology 

SINGLE-PHASE CLOCKS 

v OPS VOLTAGE OFFSET 
FROM Vee 

T8 RISE TIME 

T,. FALL TIME 

T CH CLOCK HIGH TIME 

TcL CLOCK LOW TIME 

TCP CLOCK PERIOD 

Single-phase clocks are often made from cross-coupled inverters, act­
ing within a Resistor/Capacitor oscillator circuit. If the capacitance in 
the circuit is supplied by a crystal, then excellent voltage, temperature, 
and time stability are achieved. Figure 3-13a shows some typical clock 
circuits, and Figure 3-13b summarizes their stability characteristics. 
Note that the stability of the crystal-controlled oscillator is far superior 
than the others; it is the most widely applied type for this reason. 
These characteristics are particularly important where the system clock 
not only drives the processor, but provides timing-reference signals for 
communication devices and CRT-display systems as well. Where this 
is done, the high system-clock frequency is divided down through the 
use of counters (sometimes called baud-rate dividers) to produce the 
desired reference-frequency from the primary source. 

A typical periodic waveform for a single-phase clock is presented 
in Figure 3-14, along with some of the associated terminology. This fig­
ure is a guide to clock terminology and clock features that a designer 
might most be concerned with. Semiconductor fabrication technolo­
gies may be critically sensitive to different aspects of the basic clock 
features. For example, V 0 8c, the voltage oscillation range of the clock, 
can cause spurious internal clocking in processors, if not kept within 



Assembling an Architecture 

01 

0, 

Figure 3-15 

t,)/ 

t,T = CLOCK PERIOD 
tu, = 01 PULSE WIDTH 

t0 , = 02 PULSE WIDTH 

t/I, = DELAY-OJ TO 02 

lo, 

t,,, = DELA Y-02 to 01 

t,,, = DELAY -OJ to 02 LEAD­
ING EDGES 

109 

Two-Phase Clock Waveform 
tight limits. In the field of microprocessors, the tendency now is to pro­
vide on-board oscillators, letting the consumer provide only the crystal 
and resistor to modify the frequency of operation. This is the result of 
many expensive and painful experiences in the search for a clean clock 
signal. Another (expensive) alternative is to use commercial, proven, 
oscillators where on-board oscillators are not provided. Figure 3-14 
does not present industry standards, just some commonly used termi­
nology for describing clock wave forms. For instance, a specific manu­
facturer may measure the clock period T er from corresponding V cH to 
VcH over the waveform, instead of as shown. Becoming familiar with 
this terminology may induce culture shock among the nonhardware­
oriented. Still, it helps to acquire a practical awarenes:; and vocabulary 
in the age of personal computing-in which we are all involved in both 
hardware and software. 

Two-PHASE CLOCKS 

An idealized waveform for a two-phase clock is shown in Figure 3-15. 
This illustration indicates that some older systems must be supplied 
with two separate but coordinated, nonoverlapping clock signals. The 
8080 microprocessor utilizes a clock of this type. The pain of working 
with multiphased clocks has led to the predominant use of single-phase 
clocks and internal generation of multiphased signals from them. Most 
important, though, is to realize that the effective transfer of data can 
occur only if it is timed properly with respect to this basic system 
waveform-the clock. The complex timing waveforms presented in 
microprocessor data manuals for a variety of system operations are 
based upon this signal, which drives the entire system. When our sys­
tem is in trouble-and usually as a last resort-we refer to the timing 
diagrams to begin to grasp how the system cycles. At that point, we 
will observe if any of the timing relationships are incorrect. 



110 

Figure 3-16 
Counter-Phase Generation 

Q 

0, 

O, 

CLOCK CHARACTERISTICS AND SYSTEM-CLOCK PERIODS 

·o Q 

r,N FF+ 2 

_____ n ____ n~-
COUNTER-DECODER CLOCK PHASE GENERATION 

How are MOS devices multiphased internally when the system clock is 
single-phased? The internal generation of multiple phases can be 
achieved through shift-register counters and decoding or through edge 
detection. An example of a counter-decoder is presented in Figure 3-
16. The input frequency is some multiple of the system-clock frequency 
in this case, and it is used to define the basic system period, which 
includes more than one phase. If we follow the signals of the timing 
diagram in the figure, we observe that the flip-flop alternately enables 
first one gate and then the other. Recall that the NOR gate is a device 
whose output is clamped low whenever any of its inputs is high. When 
one of the gates is enabled by the flip-flop, its output still depends on 
the level of the input frequency signal. The net result is a multiphased 
clock, where each phase pulse is separated in time from those of the 
other phase. This is referred to in the industry as nonoverlapping 
phases. 

EDGE-DETECTION CLOCK PHASE GENERATION 

The generation of multiphased clock signals by edge detection is inter­
esting because the method has other applications, as in data-communi­
cations circuits, and also displays a basic property of real gates-the 
memory property associated with propagation delay. Figure 3-17 illus­
trates the generation of a pulse from an input-signal level change. Edge 
detection is a case where a "glitch" due to propagation delay can be an 
ally. 

Normally the NANO gate of Figure 3-17, if analyzed ideally, 
would always have one input low. If this were actually true, then its 



Assembling an Architecture 

Figure 3-17 
Positive-Edge-Detecting Pulse 
Generator 

A 

02 

B 

Tc coPTIONAL> 

t,.,,OFGI 
(AND C) 

111 

H 

output would always be high. Instead, the input and stray capacitances 
(or one deliberately provided) of the inverting gate G l creates a time 
delay between the level changes occurring at the A and B inputs to the 
NANO gate G2, as illustrated in the waveforms. In this case, note that, 
when the external input to the A line goes high, the B line will remain 
high for a finite time related to the propagation delay and capacitances 
associated with gate GI. Momentarily, G2 finds both inputs high and, 
as a result, goes momentarily low. A pulse is emitted for each rising 
edge detected. If an EXCLUSIVE-OR gate were used, both rising and 
falling edges would be detected. In this case, two internal pulses would 
be emitted for each input clock cycle-a simple derivation of internal 
two-phase pulses from a single-phase clock or a frequency doubler. 
These effects, based on propagation delay, can be used to create mul­
tiphased clocks from an external single-phased one. For communica­
tions circuits, encoded data may be decoded through the use of such 
edge-detection circuitry. 

GENERAL EDGE-TRIGGERED CLOCKING CHARACTERISTICS 

Many of a system's memory elements may be so-called edge-triggered 
flip-flops. These types of memory element capture and subsequently 
display at their outputs the information present at an input only when 
the clock signal it "sees" goes from one given level to another. Output 
information remains static outside the zone associated with these clocking 
edges: Depending on the gating used, we say that a memory element 
captures information on the low-to-high clock transition (positive 
edge-triggered) or on the high-to-low one (negative edge-triggered). We 
shall now learn about the phenomena related to the "edge" of a clock. 
This has an important bearing on how and when and control signals are 
set up and on when information is captured within a system. 

The terminology associated with the clocking of memory ele­
ments is always extremely important to us. Figure 3-18 presents the 



112 GENERAL EDGE-TRIGGERED CLOCKING CHARACTERISTICS 

rTIME 
--------- T('1· --------• INFORMATION 

CAPTURED IN THE < VICINITY OF THIS 

CLOCK PERIOD 

CLOCK HIGH 
/ EDGE 

TRAILING 
(FALLING) 

EDGE 

LEADING 
~(RISING) 

EDGE 

CLOCK LO~ t,: I' 
I lu 

t 11 L_ INPUT STABILIZATION I 
,- ...... TIME I 

PREVIOUS t11 ;I ,..._ ___ _ 

Figure 3-18 
Clock Characteristics for 
74LS74 Flip-Flop 

Clock Setup and Hold Times 

Definition (Ts) 

Definition (T11) 

Definition (Stable Time) 

INPUTS MUST BE STABLE 
IN THIS INTERVAL. 

idealized waveform of the clock as it applies to the 74LS74 D-type 
edge-triggered flip-flop. Its specifications, found in the data catalog, 
provide insight into how a proces1tor moves from one state to another. 
Use of the TIL data catalogs helps the software-oriented reader begin 
to understand the nature of computing machinery. Data catalogs are 
as important as any text-including this one. Eventually, one graduates 
from the text, which provides the initial basic systems insight, to 
becoming literate in the concepts found only in the advanced data cat­
alogs. In these, a computer system's processor and programmable sup­
port IC's are described in industrial terminology. Both hardware and 
software details, essential to the effective use and development of pro­
cessing systems, are presented. 

One way to begin is by looking at the clock features of the 74LS74, as 
derived from the very basic TIL data sheets. The waveform shown in 
Figure 3-1-8 introduces additional terminology associated with clock­
ing. We now define some new parameters, including the set-up (Ts) 
and hold (T ") times: 

The set-up time is defined as the amount of time before a referenced 
clock edge, by which time the input data must have become stable. It is 
to remain stable until the end of the T" period, next. These times and 
the associated clock transition (edges) are specified in the data catalog 
for a particular flip-flop. 

The hold (sometimes referred to as release) time is defined as the 
amount of time after a referenced clock edge by which the input data 
(being held stable) may now be released. 

This definition does not appear in the data catalogs, but it is in effect. 
The input data must be held stable from the beginning of the set-up to 
the end of the hold timeo 



Assembling an Architecture 

Definition (End of Current 
Clock Period) 

113 

Again, this definition is not given in the date catalogs but must be 
understood. The end of the current clock period for a given device is 
identified by the clock edge that TH is referenced to in the data catalog. 

The waveform of Figure 3-18 is based on the 74LS74 flip-flop. 
The input set-up time Ts for this flip-flop is specified in the data cata­
logs with respect to the rising edge of the clock. It is the time by which 
the input data must have become stable before the clock signal goes 
high, to be reliably entered (stored) into this memory element. Note 
that, for this flip-flop, this time period is defined with respect to the ris­
ing edge of the clock. The story is complete only when the hold time 
Tu is accounted for. In this case, TH is specified as the time the input 
data must continue to be held stable after the clock goes high-if the 
data is to be reliably recorded. Data-input changes that take place 
outside of the region defined by the total Ts - TH time period and the 
edges they are referenced to do not affect the integrity of recorded data. 
Signals can safely vary in this time zone without destroying the desired 
sequential behavior of the system. Note that Ts and TH need not be 
referenced to the same clock edge, as in this case. The input data, of 
course, had better be both stable and correct at the point Ts is reached. 
The data catalogs often display either an up or down arrow to signify 
whether a referenced clock edge is the high- or low-going one. 

EDGE-TRIGGERED CLOCK CHARACTERISTICS 

There are a number of variations on this theme. In the exercises, the 
reader is asked to sketch the basic clock waveforms for a variety of 
flip-flops. It is necessary to understand this phenomenon, in all of its 
varieties, to understand clocked synchronous sequential behavior of a 
system containing elements displaying different clock behaviors. What 
happens in the operation of a sequential circuit is this: The control sys­
tem's data-path and register-clock-enabling signals, as well as the data 
to be recorded, all generate inputs to a system's memory elements. The 
input data must stabilize in the time period beyond previous TH but 
before the Ts of the current period is reached. At this point, they are 
properly· entered into those memory elements that the control system 
has enabled to receive the system clock pulse. In the case of the 7474, 
this takes place with respect to the rising edge of the clock. The input 
data signals must also be held stable for the duration of the total Ts -
T 11 time interval. Keep in mind that the clock edge to which TH is refer­
enced also defines the end of the current clock period. The newly entered 
information becomes available for observation, at a clock-enabled 
memory element's outputs, only in the next clock period. There it, too, 
must stabilize before the next Ts zone is reached. 

This, then, is a two-step process: 

1. Control (enabling) and data signals are stabilized in the time 
interval between the past period's TH and the current period's Ts 

2. The memory elements will properly record data and system-state 
transition information held stable during the Ts - TH time inter­
val beginning at the end of the current period. Note that this 
stored information may be viewed at the outputs of these flip­
flops (or other type of memory storage) only in the next period. 



114 

STATE A 

DATA AND CONTROL 

DATA THAT 
IS STABLE 

I. AT THIS POINT 

STATE B 

GENERAL EDGE-TRIGGERED CLOCKING CHARACTERISTICS 

r;-- ts CAPTURED HERE 

• I AND APPEARS AT 

THE OUTPUTS INI 
THIS INTERVAL. 

SJ ATE C ETC. 

SIGNALS STABILIZE IN THESE INTERVALS: 
EDGE-TRIGGERING 
INTERVALS IN WHICH 
ALL DATA AND CONTROL 
SIGNALS MUST REMAIN 
STABLE 

CAPTURED DATA AND STATE CHANGES ARE 
APPARENT AT THE OUTPUTS OF FLIP- FLOPS 
IN THE NEXT PERIOD (STATE). . 

Figure 3-19 
Data and Clock-Period Timing 
Relationships 

Ts and TH are not the only signals referenced to a clock edge. Timing 
diagrams of processors, including the programmable peripheral sup­
port IC's, contain many such types of relationships that must be 
maintained for proper operation to occur. This has been just a bare 
introduction to the essentials of timing diagrams. 

This is the manner in which sequential devices record state tran­
sitions and information that is entered into memory devices, as orches­
trated by the control system's logic. The dual concept of, first, a period 
for input-data and control-signal stabilization, which is coupled to a 
memory-element-recording interval, into, second, the next period. 
where stored results are used again is what makes the system perform. 
For some reason, there is a tendency to fight accepting the concept 
that data or desired next states being entered as inputs in this time 
frame will be available at the outputs of memory elements only in the 
next period. We are dealing with an input-output relationship. It is to 
be hoped that we will never be confused again with respect to this 
important timing concept of sequential behavior. This pattern is illus­
trated again in Figure 3-19 for changing data being entered into a sin­
gle 7474 D-type of flip-flop over several clock periods. Note that 
changes of data outside of the Ts - TH stable interval have no effect 
on the output of this device. 

LEVEL AND EDGE CLOCK CHARACTERISTICS 

However, some other major vanatlons in memory element clock 
behavior require mention. The first is that some devices are designed to 
capture information when the clock goes from high to low. The 7476 
flip-flop is a case in point. An inversion of the system clock used 
before, driving this device, would cause it to change state at the same 
time as a 7474 would change state if driven by the noninverted clock. 
Not all versions of the 7476 have the same Ts - TH ~pecifications. The 



Assembling an Architecture 

CLOCK 
SIGNAL 

INPUT 
DATA 

OUTPUT 
BEHAVIOR 

Figure 3-20 

ts--tH INTERVAL 

lJ 

Clock-Data-Output 
Relationships (Transparent 
Latch) 

1-1 

U1J 

115 

t--1 

? 

OUTPUT 
INDETERMINATE 
IF DATA CHANGES 
IN trtH ZONE 

74LS76 is a strictly edge-triggered device. That is, both Ts and TH are 
measured with respect to the same (falling) clock edge. The 7476 and 
74H76 devices require that the input data be stable while the clock is 
high. Consulting the data sheets shows that this is the same Ts - TH 
stability criterion we described earlier-except that Ts and TH are now 
separately measured with reference to two different clock edges, the 
rising and falling clock edges, respectively. In these cases, the informa­
tion must be stable during the entire interval that the clock is at one 
level, as defined by the Ts-TH time interval. This is not strict edge-trig­
gered behavior, but rather both level and edge behavior. 

TRANSPARENT CLOCK CHARACTERISTICS 

Yet another important vanat10n in clock behavior is the type of 
clocked memory element referred to as the transparent latch. MOS 
memory, internal microprocessor registers, and the 74LS670 register 
array all exhibit this type of behavior. We discuss and use both the 670 
and MOS memory later. The behavior of these devices with respect to 
the clock signal is summarized in Figure 3-20, which is representative 
of the 74LS670. Here, when the clock is high (inactive in this case), the 

. memory element remains stable regardless of the data-input variations. 
When the clock is low (active in this case), the output follows input 
changes, separated in time only by the propagation delay of the device. 
This gave rise to the name transparent latch. In this case T8 and TH 
apply to the same edge. For the 74LS670, this is the low-to-high clock 
transition. Data is reliably captured so long as it does not change dur­
ing the Ts - TH interval associated with the rising clock edge. This 
type of device is simpler to build in the silicon IC, which accounts for 
its frequent use. The transparent behavior, when the clock signal is at 
the 'active level, creates problems in applying these devices to synchro­
nous systems. We shall complete our look at these problems in Chap­
ter 5, where the behavioral characteristics of the transparent latch will 
finally be resolved in a systems context. 



116 

BIBLIOGRAPHY 

PROBLEMS 

PROBLEMS 

The three major variations in clocked behavior of memory ele­
ments that we have studied are true edge-triggering, level and edge-trig­
gering, and the level and edge-capture behavior of the transparent latch. 
All three variations of these clocked behaviors may be observed in 
practice, even within one system. The data sheets and problems pro­
vide insight for our future study of the operation of a CPU. More 
abstract topics, such as pipe-lined operation, require an understanding 
of the effects of the clock-signal behaviors briefly described here. In all 
cases, the relation between the enabling and input-data signals of the 
current period and the subsequent availability at the outputs in the 
next period (after the TH edge of reference) is the essence· of synchro­
nous sequential performance. 

Barton, R.S. "A New Approach to the Functional Design of a 
Computer." Proc. WJCC, 1961, pp. 393-96. 

Cleary. J.C. "Process Handling on the 86500." Proceedings of the 
Fourth Australian Computer Conference, Adelaide, South Aus­
tralia, 1969, pp. 231-39. 

80185 Family User's Manual. Santa Clara, California: Intel Cor­
poration, 1983. 

TTL Data Book, The. DaUas, Texas: Texas Instruments, Inc., 
1976. 

TTL Data Manual. Sunnyvale, California: Signetics Corporation, 
1984. 

l. Refer to the register array of Figure 3-2. Assume that the 
DMPX function employs the clock-enable technique for selec­
tively writing into a register and that the MPX function is per­
formed using tri-state interfacing. Draw a logic diagram of a 
four-register array with four bits per register, using IC's from 
the TTL data catalog. 

2. Make a list of the different types of registers found in a TTL 
data catalog. List the names of any new interface signals not 
already presented in Figure 3-1 a. State the function of each 
such signal. 

3. Draw the circuit of a NOR-gate-based clock-enabling circuit 
that has, as inputs, the system clock wav~form and an active­
Iow clock-enabling signal. The resulting enabled clock pulse is 
to have the same waveform as the system clock of Figure 3-
18. 

4. List both the similarities and the differences in machine opera­
tion between a CALL and an INTerrupt. Assume the machine 
uses a stack pointer. 

5. Describe how the program counter is saved on a stack in memory 
during a CALL instruction. 



Assembling an Architecture 117 

6. Verify the operation of the CALL instruction by consulting a 
processor's hardware manual. such as the Intel 80185 User's 
J,fanual or the DEC PDP-I/ Architecture Handbook. The PDP-
11 computer uses the Assembly-language notation JSR PC, SUB 
for the form of the CALL instruction discussed here. 

7. Describe why bank switching capabilities can be useful in the 
development of instructions and software for subroutine calls. 

8. Complete the problems shown on the ALU work sheet of Figure 
3-21. Do any of these problems produce incorrect results because 
of overflow? 

9. Define both the control words for the 74181 ALU and the result­
ing output signals that would be used in establishing the exis­
tence of the following inequalities. Do this for both active-low 
and active-high data conventions: 

a. A$; B 

b. A= B 

c. A> B 

10. The introductory architectural examples in this chapter display a 
limited number of functional blocks. out of which an architec­
tural block diagram of a computer is drawn. Make a list of these 
functional blocks. 

l l. Suppose that the special ACC register were eliminated from the 
architecture of Figure 3-1 l. How would this affect the manner in 
which the register array must be used? How many clock periods 
would now be required to perform the problem in the third sec­
tion of this chapter? 

12. Modify the data-flow paths (bus directionality and connections) 
of Figure 3-11. for the purpose of improving the performance 
shown in Example 2 of the third section in this chapter. Can the 
problem be performed in fewer steps? 

13. In the architectural examples of the second and third sections in 
this chapter. data-selection interfaces are not explicitly described. 
They seldom are. Identify which functional components of Fig­
ure 3-5 should have tri-state or open-collector type of multiplexer 
interfaces. Discuss the reasons for your choices. 

14. The architecture of Figure 3-12 contains an Operand Address 
(OA) register, with auxiliary simple ALU, in the memory­
addressing unit. The OA register contains the address of the 
operand during the execute phase of operation. Describe how 
this could be advantageously used for the transfer of blocks of 
data. Would you wish to enhance the simple ALU's performance 
to create an instruction for block moves? Discuss. 

15. The memory-addressing unit of Figure 3-12 is a simple exam­
ple of the current trend toward the formation of separate 
semiautomatic functional units within a CPU's architecture. 
Cite examples of this practice found in modern 16/32-bit 
architectures. 



118 

zO >- o.u .u < f- ..J -~ f-- .u :J !- ~ 0 
<::: > .JU 0 0 
or- .u < z ""' ~ u ..J ::i ~ < ""' .u M i:i... 

A) AH L 

B) AL H 

A pl 
AH Apl I C) 

D) AL A·B 

E) 

F) 

G) 

H) 

Figure 3-21 

FUNCTION 
A BUS B BUS F BUS 

z SELECT DATA DATA DATA -
LINES u LINES LINES LINES 

S3 S2 SJ so c., A3 A2 Al AO B3 B2 Bl BO F3 F2 Fl 

L 

L 

- I - 3 
H H L L 

0 I I 0 I I 0 0 
H H L H 

- 5 + 4 

I 0 I I I I 0 I 

. 

METHOD: FILL IN BLANKS WITH APPROPRIATE HOR L 
AFTER CONSULTING ALU TABLES. FILL IN MISSING ALU 
FUNCTIONS. SHOW WORK METHOD BELOW. 

PROBLEMS 

f-
:J 
0 
(..; 

FO c,.,, 

74181 ALU Worksheet (Filled 
In) 

16. Assume a clock frequeny of l MHz for a system clock. This clock 
has a 50-percent duty cycle (high 50 percent of the time). From 
the data shown in your TTL data catalog, calculate the stabiliza­
tion times for a 7473 flip-flop and for a 7474 flip-flop. Take into 
account the effects of the set-up and hold or release times given 
there. Which of the two flip-flops is capable of the greater speed 
of operation? 

17. Using the TTL data catalogs, determine the greatest speed of 
operation allowed for the 7476 and 74LS76A flip-flops. This 
requires that you account for all the timing parameters related to 
a clock cycle for each of these devices. 

18. In the TTL data catalog, find and list three IC's that exhibit 
transparent-latch behavior. 

19. Given the dock and input signai behavior shown in Figure 3-22, 
determine the output response of a hypothetical transparent 
latch whose clock is active when high. 

20. A major theme of chapters 2 and 3 has been that the func­
tional blocks of an architecture are derived from simpler 
basic components. Starting with an inverting logic gate, list 



Assemhling an Architecture 

CLOCK l 

DATA 

OUTPUT 

119 

the successively higher level components that can be created 
with its use, to arrive at the functional structure called a gen­
eral-register array. 

l l 1 

ITT_n~ ....._____.n __ _ 

NOTE: ASSUME CLOCK IS ACTIVE WHEN 
HIGH FOR THIS TRANSPARENT LATCH. 

Figure 3-22 
Clock-Data Timing Waveforms 





( 

CHAPTER 4 
SEQUENTIAL-MACHINE FUNDAMENTALS 

MICROPROGRAMMING'S BASIS IN STATE-MACHINE THEORY 

In chapters 2 and 3, we reviewed many of the hardware-related funda­
mentals required to understand the functional behavior of the devices 
that make up a computer architecture. System organization was 
stressed, but primarily from the viewpoint of how actual hardware ele­
ments are combined in a structured, rational way to form a system. 
Part of the understanding of a processor, it was pointed out, strictly 
depends on a growing familiarity with the functional behavior of a 
very few integrated circuits-and how they are used together when we 
form a CPU system. Here, we begin a review of the fundamental con­
cepts that control the behavior of the CPU-that is, the state machine 
that forms the control system of a processor. 

PROCESSOR = CPU + CONTROL STORE 

Actually, the conceptual behavior of processors is often presented as if 
there are two entities. The first is the CPU, and the second is its con­
trol system, or Control Store (CSTR). Taken together, they really form 
the single entity we call the processor, or computer. The CPU half 
relates to how the hardware registers that the programmer can explic­
itly affect actually function and how information is physically moved 
and altered within the CPU. This half of the system generally forms 
the user's perspective of what a particular machine consists of. The sci­
ence of computing requires that we also understand the control-system 
portion of the total machine and, further, how the software capabilities 
relate to the instruction set that the CSTR implements. This is the area 
dealt with when a machine is microprogrammed. Our knowledge of the 
CSTR and instruction set's potential capabilities depends in turn on 
our understanding of the first principles of sequential machine behav­
ior. The term microprogramming is often used to imply the means by 
which modern computers are controlled or (equally) how instruction 
sets are implemented. Let us therefore state at the very outset that a 
microprogram is nothing more or less than a state table for a sequential 
machine. 

STATE-MACHINE ASPECTS OF MICROPROGRAMMING 

The goals of this chapter, then, are to provide an understanding of 
what a state table is and to discuss the implementation of a simple 
state machine. We will examine the physical details of both a CPU and 
its control system in the following chapters, covering how to construct 
them and how to create (microprogram) the instruction set of a proces­
sor. In this chapter, we review the theoretical system principles neces-



122 

Figure 4-1 
Concept of State and Switch 
Settings 

SI S2 

STATE A 
BOTH CLOSED 

SEQUENTIAL-MACHINE REPRESENTATION 

SI 

OPEN CLOSED 

a. Two Set States of a Single Switch 

SI S2 SI S2 SI S2 

~ ~ ~ ~ 
STATE B STATE C STATED 
S2 OPEN SI OPEN BOTH OPEN 

b. Four Set States of Two Switches 

sary to an understanding of processor control-system behavior. 
Automata theory is the theory of state machines. It is fundamental to 
both computer hardware and software sequential-machine structures. 
For example, both compiler and processor design utilize its tools to 
implement state systems rationally. We shall examine a small, hard­
wired, sequential circuit in this chapter. Its state-machine principles of 
representation and operation are the same as for the model computer 
we shall study in chapters 5 and 6. The methods of implementation 
differ, but these underlying principles form a unifying picture for the 
organization of control systems. These principles are also the basis of 
microprogramming. 

SEQUENTIAL-MACHINE REPRESENTATION 

CONCEPT OF STATE 

Sequential-machine (SM) representation requires a good deal of 
abstract visualization of the concept of state. We know and feel the 
state of our emotions or health. Each of us knows from experience that 
a single entity (oneself) can experience more than one state of being. 
While a simple switch does not have emotional states (unless it is bro­
ken or unstable-and the emotions are our own), it does possess two 
states, shown in Figure 4-la. A switch is either open or closed. Given 
two switches, we can produce four unique states of the total system of 
switches, as indicated in Figure 4-1 b: both are closed; both are open; 
switch A is closed, and switch B is open; and vice versa. 

\Ve noted in Chapter 2 that, logically speaking, &. transistor, as 
used in a logic gate, behaves as a switch. It has two states, on and off. It 
was also shown that, by cross-coupling two inverting transistor gates, 
we could produce a cell, the latch or flip-flop, that had the ability to 
"remember" (record) its past state or to change its current one, 
depending on the external inputs. This we termed a memory element. 
We saw too that there are many types of memory elements. A register 



Sequential-Machine Fundamentals 

STATE-SEQUENCING REGISTER 

123 

is simply a linear array of some type of read/write memory elements. 
Each cell in the array is a binary device, with the memory-retention 
property, under external control, of being able both to accept and to 
retain information in the form of its own state. The primary output, 
often labelled Q, has only two states. Q is either electrically high (H) or 
electrically low (L), depending on whether the transistor switches asso­
ciated with it are on or off Within a sequential machine there is always a 
special set of these memory elements whose outputs define its current 
state. These are called its State-Sequencing Register (SSR). 

At the heart of every SM are two classes of hardware: Combinational 
Logic (CL) and the memory element(s) of its SSR. Combinational logic 
has the property that its outputs are always an immediate consequence 
of its present inputs. Further, for a given input, the output response is 
always the same. This does not mean that an inpµt change always pro­
duces an output change. It means that, if the logic design is such that, 
for a change in input state, the output state is to change, then it does so 
immediately. The basic elementary latch behaves in this manner, too, 
since it is not clock-controlled. This form of sequential behavior is 
often termed level-mode, or asynchronous, operation. Yet it is different 
from .CL, in that it has an input state that causes it to retain its last 
output state and, in particular, in that the same external input combi­
nations do not always produce the same next state. The pulsed-mode 
complementation of the latch illustrated this. In the latch, this memory 
property arose out of the propagation delay of its internal gates and 
their manner of use. Thus, we observe that level-mode sequential cir­
cuits, while different from CL, can also change state as an immediate 
consequence of input changes. This is not a convenient mode of opera­
tion for sequential machines. 

NEED FOR SYNCHRONOUS OPERATION 

Level-mode operation, while it is the internal basis for the operation of 
every flip-flop, is very difficult to work with in practical machines. To 
avoid the problems encountered in level-mode operation, the clocked, 
or synchronous, flip-flop was developed. Clocked. or synchronous oper­
ation means that, if a flip-flop (memory element) is to change state-as 
dictated by its present inputs-it does so only in coordination with the 
clock waveform. The term synchronous does not imply that the clock 
signal consists only of a waveform with regular intervals. It means only 
that, if a flip-flop is to change state, it does so only when the clock sig­
nal triggers it-which could be aperiodic or periodic in nature. That is, 
changes in state are synchronized to changes in the clock-signal level 
and not to changes in inputs. External inputs influence the choice of 
the next state, but not when they occur. In synchronous operation, the 
clock signal establishes when a state change is to occur. 

Because synchronous memory elements are simpler to control 
and far more reliable in practice, they are widely used in computers. 
As noted previously, for reliable operation the rate of state changes · 
controlled by the clock must be slow enough to permit the input sig­
nals to a flip-flop to stabilize completely. This is why we studied the 



124 SEQUENTIAL-MACHINE REPRESENTATION 

clock characteristics of T., Th and the associated required stabilization 
time in the previous chapter. Also, recall that any input coridition that 
causes a change is observed at the output of a flip-flop only after the 
clock has triggered it, or in the next period. For practical reasons, then, 
we will deal with synchronous sequential circuit behavior in the follow­
ing material. Fortunately, except for details, the same principles are 
found in all SM, both synchronous and asynchronous. These behav­
ioral cryaracteristics of synchronous systems form the foundations for 
an understanding of microprogramming operations. 

In our discussion here, the SSR of a sequential machine consists 
of one or more synchronous flip-fl.ops. Each flip-fl.op possesses two 
states. Therefore the total number of states that an SSR can possess 
(some may not be used) is called the state set of the machine. It is often 
symbolized by the letter Q; it is dependent on-but not to be confused 
with-the Q output of an individual flip-fl.op. The maximum number of 
individual states m in a state set is 

m = 2"; where n = number of cells in the SSR 

PHYSICAL SIGNIFICANCE OF STATES 

While we have been dealing with a mechanistic approach to the 
concept of state in an SM, showing that a particular state is related 
both to the number of memory elements (switches) in the SSR and 
to their current setting, it is extremely important to realize that, for 
a given problem, these switch settings have physical significance. 
That is, the current switch settings (state) are a reflection of the 
real events that have occurred in the past. We will emphasize this 
important point again soon. The goal will be to focus on the mean­
ing of a current state. 

SEQUENTIAL-MACHINE REPRESENT A TI ON 

Five-tuple SM Representation 

First, let us look at some classical models for SM's. The most general 
model for an SM is the Mealy model, shown in Figure 4-2. The pres­
ence of a clock signal in our illustration indicates that we are interested 
in synchronous operation. Any SM is completely described by five 
characteristics, or 5-tuple, of an SM. That is, we say 

SM = <I. Q, Z, n, p>. 

These characteristics may be associated with the features of Figure 4-2. 
They are 

1. A fi11itt: sei. i of tx.itrnal ii1pui sy111bols. 

2. A set Q of internal states. Finite sets are considered here. 

3. A finite set Z of output symbols. 

4. A mapping n of l x Q into Q called the next state function. 

5. A mappingp of I x Q onto Z called the present output function. 

t 
[ 
!. 
'i 
~· 

f. 



Sequential-Machine Fundamentals 

Figure 4-2 
Mealy Model of an SM 

Cartesian Product 

Mea(v Machine 

Q,E Q 

CLOCK 

COMBINATION AL 
LOGIC 

CL 

MEMORY 

125 

n, E Q 

Note: I x Q is called the Cartesian product of the sets I and Q. The 
state tables we shall work with are displayed in Cartesian-product 
form. It is defined in the following way. Let Sand T be any two sub­
sets of a universe U. The set 

S x T = {(s,t) I s E S, t E T} 

is the Cartesian product. The order of the elements is impor­
tant, and the resulting product operations are therefore not 
commutative, but they are associative. This product operation 
can generate sets that are not in U. It is useful because it pro­
vides a way to generate new sets. Our concern here is to gener­
ate both the set of next states in Q and the new set of present 
outputs in Z for an SM, from the elements of I and Q. Formali­
ties aside. we eventually want to produce these sets, using the 
tabular method of representation natural to Cartesian product 
representation. 

The 5-tuple above completely describes a machine's behavior when 
all the characteristics in it are fully specified. The set I of inputs in 
the figure is the set of all possible inputs. The set Q is the set of all 
possible states the machine possesses. The number of cells in the 
SSR determines the maximum size of this set, though not all ele­
ments need be used. The finite set Z is the set of output symbols the 
machine is capable of generating. One mapping, I x Q onto Q. pro­
duces n, the next state table. Its symbols are next state prediction 
that will excite (or steer) the cells of the SSR along the path of 
desired behavior when we are specifying its state behavior. The 
results of this mapping are always an element of Q that is realized in 
the next period (after the excitations of the current clock period have 
taken effect). The second mapping, I x Q onto Z, produces the pre­
sent output, an element of Z. This output is utilized by the SM that 
is the control system of a processor to manage the behavior of the 
slave CPU. Through this mapping we may specify what we want the 
CPU to do now, in the current period. 

The structure of the Mealy-type machine of Figure 4-2 reveals that an 
SM can be reduced to a block of combinational logic CL, interacting 



126 

I' 

Q, 

Figure 4-3 

SEQUENTIAL-MACHINE REPRESENTATION 

CLI n, 

CLOCK.- SSR r----, 
I CL2 I 

------------(OPTIONAL)~ p = Z; 

I I 
L.., ___ _J 

Moore Model of an SM 
with a block of memory cells, the SSR. From this we see that the 
present output, an element of Z, say Z;, is a combinational func­
tion of the present input, an element I; in I, and the present state, 
an element Qk in Q. An interesting and sometimes troublesome 
facet of this organization is that, should the external input change 
while its internal state remains constant, it is possible for the out­
put to change. This is a result of the fact that the machine's out­
puts are produced by a block of combinational logic, whose output 
is always an immediate consequence of the present inputs. The 
present state behaves differently, since we are dealing with syn­
chronous clock-controlled machines. It changes its value only when 
ordered to do so by the clock. This means that, if an input changes, 
the next state excitation presented to the SSR's inputs may change. 
This change, however, is not entered into the flip-flops until the 
clock waveform authorizes it. The predicted next state becomes a 
real present state only in the next period. In clocked-state 
machines, the clock affects only the SSR of the state machine, not 
its combinational logic. Since the present state consists of the out­
puts of the SSR, the clock controls when these state changes occur. 

Moore Model The fact that the present output of a Mealy machine may react to 
input changes as they occur can be avoided. A modification of the 
Mealy model, called the Moore model, is often used so that both 
changes in state and in output are synchronized with the clock 
waveform. This pattern of organization is shown in Figure 4-3. The 
change that this organization produces is that the present output 
can only be some function of the present state. There may be com­
binational logic present in the present output path (CL2, if it 
exists), but it acts only as an encoder of the SSR's present-state 
value. Since the change in present state is clock-controlled, this 
pattern of organization results in clock time-coordinated changes 
to both the present output, p, and the SSR. This is a desirable and 
often used pattern of organization. Here, only the next state is con­
trolled by the block of combinational logic (CLI) that has elements 
of I ang Q as its inputs. Now the present output can only be a 
function of the present state. The net result of this is that there can 
be only one output symbol per machine state, regardless of input 
changes that may occur while within the state. 



Sequential-Machine Fundamentals 127 

~ I, .. I; .. I, (~ I, . . .. I,, 

Q, Q, 

. • . . 
Q, ni} Qi p,, 

. . . . 
QI/I Q,,, 

NEXT-STATE nTABLE PRESENT-OUTPUT pT ABLE 

~ 
Q, 

. . 
Q, 

. . 
Qm 

Figure 4-4 
Mealy Model: State-Table 
Format 

Swte-Tah/e Representation 

I, .. 

a. Next-State Function and Pre­
sent-Output Function Table For­
mats (Mealy Models) 

I, .. 1. I, .. I, 

n,1 P11 

. . I,, 

NEXT-STATE n PRESENT-OUTPUT p 

b. Combined State-Table Format 
(Mealy Model) 

The cross product mathematical model and the Mealy/Moore archi­
tectural models of the state machine naturally lead us to the state-table 
form of representation for sequential machines, Figure 4-4a and b. In 
·Figure 4-4a, the next-state and present-output tables are shown as 
independent entities. Since both of these function tables are derived 
from cross product operations on elements in the same sets, Ii x Qk, 
Figure 4-4b seemingly combines them into a single table. This form of 
combined representation is most common and is referred to as the 
state tahle, which consists of two tables: the next-state (n) function 
table and the present-output function (p) table. Any box inn or p rep­
resents the cross product of a particular element Ii in I with a particu­
lar element of Qk in Q. The entries in these boxes are the specific 
functional values that specify the next state in Q (for n) or the present 
output symbol in Z (for p). 

When all the boxes in the combined state table are specified, 
we say that the state table describes a completely specified SM. 
While there are procedures for analyzing incompletely described 
machines, the end result of any design process must be a state table 



128 

Figure 4-5 
Moore Model: State-Table 
Format 

SEQUENTIAL-MACHINE REPRESENTATION 

~ I, .. I, .. I, p(Q) 

Q, -1 = p(Q,) 

. . . . 
QI n1j =1 = p(Qj) 

. . . . 
Q,,, '-m = p(Q,,.) 

NEXT-STATE n PRESENT-
OUTPUT p 

for a completely described machine. The form of the state table of 
a Mealy machine was presented in Figure 4-4. The Moore model is 
more representative of the type of table to be found in a com­
puter's control system, because the generated final value of the sin­
gle present-output symbol produced each clock period is not 
affected by input-signal changes (or noise) while within the state. 
These signals are reacted to only after they have settled down, at 
the end of the current period. The required settling time required 
for this output symbol to stabilize after a change in state is what 
limits the speed of a computer system. The specificity of this form 
of design is easier to follow. For a given state, the present-output 
symbol tells the slave CPU portion of the machine what it is to do 
now; the next-state symbol specifies what state its SSR will be dur­
ing the next period. An example of the Moore form of the state 
table is presented in Figure 4-5. 

The Moore form of the state table representation of a sequential 
machine in Figure 4-5, then, is very important to us for a number of 
reasons: 

First: it is capable of completely describing a sequential machine. 

Second: A computer's control system is a sequential machine. 

Third: The accepted definition of microprogramming is "a 
rational approach to the design of a computer's control system" 
(Wilkes). 

Last: A microprogram is nothing more or less than a state table 
for a sequential machine. It most often has the form of represen­
tation of a Moore state table. 

Later we will develop the instruction set of a simple computer and 
implement it as a state machine. When we learn how to do this (and it 
is not hard), we will have mastered the elements of microprogramming. 
It will be seen that the essence of the form of a microprogram is the 
form of the Moore state-table representation for a sequential machine. 
At the end of this chapter, we will design a simple actual Moore cir­
cuit. This simple circuit should be constructed and operated as an aid 
to developing a practical intuitive feel for the operation of a sequential 
machine (or computer). 



Sequential-Machine Fundamentals 129 

SEQUENTIAL-MACHINE VISUALIZATION 

STATE DIAGRAM 

In practice, the need to visualize a sequential machine (SM) usually 
must be satisfied before we can represent it in the form of its state 
table. The state diagram is a useful tool to assist us in visualizing the 
desired behavior of an SM. Once the behavioral pattern of an SM is 
fixed-in the form of a state diagram-then we are able to proceed on 
to its state-table representation and actual implementation. Before we 
can begin the process, a word specification for the machine must be 
either supplied or invented. This is the necessary human link in the 
chain, for sequential machines-such as computers-simply are not 
(yet) capable of creativity. A convenient simple problem of practical 
importance is the binary sequence recognizer problem, below. In a 
classroom, someone usually points out that this particular problem can 
be more conveniently implemented using a shift register. True, but we 
use the full SM design approach, with separate flip-flops, to illustrate 
the general case while keeping the presentation simple. 

DEFINITION OF REMOTE COMMUNICATION SYNCHRONIZATION SM PROBLEMS 

Suppose we want to receive digital-communication signals from an 
experiment located on the moon. When the moon probe has collected 
sufficient data to be transmitted to earth, it transmits this information 
in the form of a "packet" of radio-frequency-encoded digital informa­
tion. Transmissions occur at random, so that the receiver on earth 
must always be in operation, while waiting for the radio transmission 
of the encoded binary data to commence. The usual practice is to send 
out a string of bits (say, all ls) to give the receiver a chance to synchro­
nize itself with this incoming transmission. The purpose of this synch 
field in the packet is to allow the receiving station time to lock on to 
the signal and start to separate the encoded clock and data bits. When 
a sufficient number of synch bits have been transmitted, the moon 
probe then-without pause-sends the following bit sequence, bit T0 

being the first to arrive: 

time period: T, T 1 To 

transmitted data: 0 l 0 

Further, this sequence is to be recognized every time it occurs after syn­
chronization by an SM you are to design. "Every time occurs" is a crit­
ical portion of the system specification. Whenever this critical 
sequence is detected, it is used to cause recorders to store the bits fol­
lowing this string separately, as the "information" part of the packet 
for a number of different experiments. In other words, this bit string is 
to act as an information-field separator or start-of-message (SOM) 
field. Since the earth station must always recognize this bit string, we 
specify that the SM is to recognize it whenever it occurs in the incom­
ing stream of bits. The overall system block diagram is shown in Fig­
ure 4-6a, and the format of a packet is shown in Figure 4-6b. This type 
of problem frequently occurs in networking and floppy-disk communi­
cations and is selected for the valuable insight it can begin to offer. 



130 

MOON 
PROBE 

DATA/CLOCK 

SEQUENTIAL-MACHINE VI SU ALIZA TION 

DIGITAL 
BIT STREAM 

PRESENT 
STATE 

DISPLAY 

RADIO 
RECEIVER 

RF-TO­
DIGITAL 

DECODER 
t-----1~ ~~~--~~--

SOM 
DETECTOR 

(SM!) 

SIGNAL DETECTED 

ETC. SOM INFO 
FIELD 2 

Figure 4-6 
Remote Data Collection 

FORMAL STATEMENT OF PROBLEM 

SEPARATOR 

CLOCK 

a. Block Diagram 

SOM 

INFORMATION FIELD 
RECORDER 

INFO 
SOM 

FIELD I 

b. Digital Data Packet 

ti, 
RECORD 
ENABLE 

SYNCH [> 

Design a synchronous Moore-type SM for the detection of the 
serial bit string 010 whenever it occurs in a stream of digital data. 
You will receive each data bit and its associated clock pulse . 
together. Arriving input bits are not reacted to until clocked in. 
The output of this SM is to indicate the current state of the 
machine and whether or not an SOM sequence has just been 
clocked in. 

To solve the problem, we use a Moore-type state diagram. 
Each state of our SM is visually represented by a circle, as in Fig­
ure 4-7. Remember that this circle must always be associated 
with two other concepts: 

a. Each circle (state) in the total state diagram must be associ­
ated with an event of physical significance that is to be 
"remembered" by the SM. 



Sequential-Machine Fundamentals 131 

Figure 4-7 

A PRESENT INPUT 
SYMBOL (1-0F-n) TRANSITION 

'°:> . /_ / ARROW 

~I,~ 

a. STATE-DIAGRAM NOTA­
TION WHEN CLOCKED PRE­
SENT INPUT WILL CAUSE A 
TRANSITION TO SOME 
OTHER STATE 

PRESENT-STATE 
SYMBOL 

PRESENT-OUTPUT 
SYMBOL 

b. STATE-DIAGRAM NOTA­
TION WHEN CLOCKED PRE­
SENT INPUT WILL CAUSE A 
TRANSITION TO THE SAME 
STATE 

c. THE TOT AL NUMBER OF 
ARROWS n LEA YING A 
STATES; MUST EQUAL 2m, m 
BEING THE NUMBER OF 
INPUTS. ANY NUMBER OF 
ARROWS CAN ENTER A 
STATE. 

Moore SM: State 
Visualization Symbology 

b. Each circle (state) in the total state diagram will eventually 
be associated with a unique setting of the memory elements 
in an SM's SSR. This means that there must be a one-to­
one correspondence between circles (used states) and spe­
cific settings of the SSR. As noted, the number of circles 
(required states) determines the required size of the SSR. 

The circles in Figure 4-7 are divided by a line. Above the line, we 
record the name of a state, say S1• Below the line, we record the present 
output symbol of the SM, say Z1, where Z; is some function of the 
present state, S1• Also associated with each circle are arrows represent­
ing transitions to the same or to another state. These are separately 
shown in the figure. At the base of each arrow is the associated exter­
nal input symbol 11, i = 1, 2, ... , n; where n is the total number of 
input symbols. That is, the total number of transition arrows leaving 
each state must be equal to the number of input symbols before the 
actual design can proceed. Put another way, we must have completely 
specified all state-diagram transitions for each state, before it becomes 
realizable. Therefore, the number of departing arrows required to com­
pletely specify each state has been related to the number of different 
inpµt lines within the machine, say m. That is, n above is determined 
by 



132 

x---+---m 
(INPUT) 

MASTER 

SMI 
? 

SM DESIGN PROCEDURES 

PRESENT STATE 
INDICATORS 

Z,, SOM SIGNAL VALID FOR 
ONE CLOCK PERIOD 

RESET ---+----__, 
CLOCK----+---------' 

Figure 4-8 
Block Diagram .of SMl 

SM DESIGN PROCEDURES 

STATE DIAGRAM CREATION 

for each synchronous SM. 
In recognition of the foregoing, we start each problem solution 

with a block diagram that represents the basic machine configuration, 
shown in Figure 4-8. The clock input is not a data input and therefore 
does not figure in establishing m. In fact; the clock input is not explic­
itly referred to in the design process, but its use as the signal that syn­
chronizes state and output changes must not be forgotten. Neither is 
the master reset signal a data input. Its use is to initialize the system to 
some known state. Since our machine, which we will call SMI, has 
only one data input line, X, which may be in one of two states, then 
each state (circle) must have two associated transition arrows depart­
ing from it to be completely specified. Any number of arrows may 
enter a given state, but the number leaving is rigidly controlled by the 
number of inputs. If there were two inputs, four departing arrows 
would be required, etc. 

The number of outputs of SMI is fully specified when we decide 
how many states are required to solve the problem and how we want to 
represent the present state. In this example, some of the outputs will be 
used to display the present state, which is instructive but not necessary. 
One required output, though, is to be used to signify whether a com­
plete start-of-message (SOM) sequence has just been clocked in. It is 
valid only for that one clock period. Let us call this particular output 
Zl. 

A convenient way to start the analysis of a problem is to recognize that 
some initial state should exist. Typically, this state is entered into after 
a reset signal on power-up or other initialization procedures. For 
example, a loss of detected signal could be used to reset SM I. Reset 
causes all the flip-flops of SSR to be set to, say, low. A master clear 
input achieves this result and is also shown in the block diagram of 
Figure 4-8. Realize that the physical significance of this state is that it 
represent.s the state in which none of the bits in the SOM sequence have 
been clocked in. Thus, we have introduced an example of physical sig­
nificance. We begin the solution in Figure 4-9, our first pass at forming 
a state diagram for SM I, by naming the first circle state A and by rec-

I 
I 
,j ,, 



Sequential-Machine Fundamentals 

Figure 4-9 
Partially Specified State 
Diagram of SMt 

SUCCESSFUL STRING 

SUCCESSFUL STRING 
STATES AND TRANSITIONS 

133 

ognizing that it is our home state. Its physical significance is estab­
lished. 

State A's associated outputs will be fully dealt with soon. For now, lei 
us recognize that output Zl must be 0, since we cannot have clocked in 
any bits in the SOM sequence (by definition) after reset or whenever 
we are in the initial home state. Now, how do we proceed? The answer 
is simply to recognize that the events of physical significance our 
machine should remember are the clocking in of each proper succes­
sive bit in the SOM sequence. Let us refer to this as the successful 
string, which in the present case is our SOM sequence. As each bit 
along the successful input string is clocked in, SM I will proceed to 
another state to physically record this progress. 

This is shown in Figure 4-9, too. State B has the physical signifi­
cance of recording the fact that the first bit in our successful string has 
been clocked in; state C, the second; and State D, the complete suc­
cessful string SOM. Each data bit of SOM that creates a state transi­
tion after it is clocked in appears at the base of the transition arrows 
that have so far been associated with the state progress of the success­
ful string. For each state, the present input bit appli'ed to that state 
causes the indicated transition when it is clocked in. Remember, this is 
a synchronous Circuit. Therefore we can say that a 0 applied to SM I in 
state A, if clocked in, will cause it to transition to state B, that a 1 
clocked in while in state B will cause SM 1 to proceed to state C, etc. 

What of the inputs not along a successful string? They too must 
be specified if SMI is to be completely specified. This portion of the 
problem solution can be difficult to produce if the worded statement of 
the problem is not dear. Our specific problem was to recognize the 
SOM sequence whenever it appeared in an incoming stream of bits. 
This precise enunciation of what is to be performed is added to the 
fully specified state diagram of Figure 4-10, the defined state paths of 
SM 1. We notice that, in state A, the docking in of a 1 input results in a 
transition into the same state. The reasoning for this transition is that 
the SOM string must start with the docking in of a 0. We must there­
fore, for now, remain in the state that asserts that no bits along the suc­
cessful sequence have been recorded. State A, having two departing 
arrows, is now completely specified. 

In state B, we have specified that a 0 input, when clocked in, 
causes SM 1 to remain in B. The reasoning applied here is that we wish 
to recognize SOM whenever it occurs. Take, for example, the string 
below, applied after a reset. Note that the first applied input is at the 
far right end of the sequence. Embedded in it is the successful string: 



134 

Figure 4·10 
Completely Specified State 
Diagram of SMl 

COMPLETELY SPECIFIED SM 

SM DESIGN PROCEDURES 

Period Tn Tn - , Tn , T, T, 
Present ? 0 1 all Os 0 0 
Input: 
Present State: D c B .. B .. B A 
Present Out- 0 0 .. 0 .. 0 0 
put Zl: 

The first clocked 0 in this particular string put SM 1 into state Bin time 
period T2, recording the fact that the first bit on the successful string 
was noted. Any of the succeeding 0 inputs could also have been the 
first 0 on a successful string. As noted above, any number of Os could 
be received but, if they are then followed by a 1 and then a 0, the 
machine still records the fact that SOM has been fully clocked in, by 
reaching state D. It indicates this by outputting a Z 1 = 1 whenever 
SOM has occurred. 

Readers should satisfy themselves that all other state tqmsitions in the 
state diagram conform to the rule that an embedded successful string 
is recognized any time it occurs. The procedure of forming a state dia­
gram ends when: 

a. All successful strings specified are realized in a state dia­
gram representation that reflects the physical significance 
of all such strings (there can be more than one), and when 

b. Every state has as many transition arrows leaving it as 
there are input symbols. This means that the effects of all 
input symbols not in the successful strings must be 
accounted for, too. 

Once all the states are visualized in this manner and each state is com­
pletely specified, as in Figure 4-10, we are prepared to represent SMl 
in the form of its state table. Two small items must be clarified first: 
How to represent the present state of SMl at its outputs arid how to 
encode its state names. Notice that the completed state diagram con­
tains four states. These four states can be encoded with two extra out­
puts, which we shall call Z3 and Z2. This particular assignment is not a 



Sequential-Machine Fundamentals 

STATE TABLE 

Encoding State Assignments 

135 

necessary one. It is chosen both to display the state sequence of the 
successful string in straight binary order and to enlarge the size of the 
present output. The present' output-word size is purposefully enlarged 
to resemble the appearance of a microcoded control system more 
closely. Zl remains the output bit, signifying when SOM has just been 
clocked in. In Table 4-1, we arbitrarily assign the representation signif­
icance to bits Z3 and Z2 of the output: 

Table 4-1 
Binary Assignments of Present Output Symbols for SMl 

State Z3 Z2 Zl 
A 0 0 0 
B 0 I 0 
c 0 0 
D 

Thus we have established the nature of our three present output 
lines. Notice that the output symbol set {Z3, Z2, Zl} has eight 
symbols available, only four of which are actually used here. This 
means that only two output symbols are really required to encode 
all the desired outputs of this problem. For illustrative purposes, 
we are separately indicating both the present state and the signal 
that SOM has been received as the present output's fields of SM I. 
The present output now explicitly contains these two fields in its 
structure. The present-output portion of a line of microcode is sim­
ilarly divided into explicit fields. So our state table crudely approx­
imates a line of microcode. 

We still need to assign binary values to the names of the states of SM l. 
Our four states imply that there are two memory elements in the SSR 
of SM l. Let us call these memory cells Q l and QO. Q l and QO are our 
state variables. At the possible expense of some added gate require­
ments, we straightforwardly assign binary values to the state names in 
the encoding sequence of the Karnaugh logic map's (K-map's) 
reflected Grey Code order shown in Table 4-2 below. In conveniently 
using the K-map order for these state assignments, we reduce the 
amount of work later required to derive and simplify the state 
machine's logic equations. No attempt is made here to optimize either 
the binary state or the binary output assignments. The techniques for 
doing this are beyond our scope. 

Table 4.,2 
Binary Assignments of State Variables for SM 1 

Binary Assignments 
State QI QO 
Name 

A 
B 
c 
D 

0 
0 

0 

0 



136 

Figure 4~11 
Binary-Encoded State Table: 
SMl 

Completion of SMl 

State Path Analysis 

State Table/ Microprogram 
Relationship 

SM DESIGN PROCEDURES 

STATE 

~ 
DIAGRAM 

z 

STATE x = 0 x=I 

SYMBOL ::, --.1 
_, 

A. 0 0 0 I 00 0 0 0 

B 0 I 0 I I I 0 I 0 

c I I I 0 00 I 0 0 

D I 0 0 I I I I I I 

PRESENT NEXT-STATE PRESENT 
STATE PREDICTION n OUTPUT p 

With the above output and state-variable binary assignments, we can 
now complete the state table for SMI, presented in Figure 4-11. The 
method of completing the next-state portion of the state table is to 
note in its state diagram-for a given state and a given input-what the 
next state name is. This information is then entered into the appropri­
ate box of the state table of the figure in its binary-encoded form, as 
assigned in Table 4-2. For example, consider state C of the state dia­
gram. When the input X is equal to 0, then SMl 's next state is to be 
state D. In state C, we also see that, when the clock is applied to the 
input X = 1, the next state is to be state A. 

Now go to the row of the state table named state C. Here, under 
the X = 0 column, we entered the binary code for state D, which is 10. 
Likewise, under the column headed X = 1, note that 00 was entered in 
the row for state C, which is the binary encoding of state A. In this 
manner, by transferring the information from the state diagram to the 
state table, in binary encoded form, we have completely specified, in 
the state table, the desired state path behavior of the state diagram for 
SM!. 

This defined state path(s) concept is an important way to visualize 
what possible sequences an SM follows. For the software-oriented, the 
next-state entries can be compared to a linked-list structure containing 
one or more linkage paths. The entire structure, however, is closed. 
This implies that state-machine behavior may be simulated with the 
use of linked list data structures. 

Again, we want to emphasize that this state table contains the same 
underlying form as that of a microprogram. This fact will be amply 
illustrated subsequently. At this point, this should be no surprise, since 
microprogram has been defined previously as "a rational approach to 
the design of a computer's control system," which we now uriderstand 
to be itself an SM. The elements we see here in the 5-tuple SMl = <I. 
Q, Z, n, p> that characterizes this machine also are present in a 
microprogram. Let us next investigate the implementation of SM 1, as 
an aid in developing a clearer appreciation of the clocked sequential 
nature of SMs and microprograms. 



Sequential-Machine Fundamentals 137 

LOGICAL PROPERTIES OF FLIP-FLOPS (FF's) 

POPULAR FLIP-FLOP TYPES 

SC Latch 

J Kand D Flip-Flops 

Before we can implement a sequential circuit from a state table, 
using flip-flops, we must first derive the logical properties of these 
elements. We shall also refer to a flip-flop as an FF in the following 
discussions. When the implementation of the SM we are discussing 
is completed, it is a hard-wired machine. Prior to the 1970s, most 
computers fell into this category. Microprogrammed design tech­
niques are the alternative to the hard-wired approach. Since the 
latter evolved from the former and both are currently in use, it is 
instructive to complete the design of a hard-wired circuit that uses 
flip-flops and combinational-logic elements in its control system. 
The timing relationships to be observed will also help enlarge our 
appreciation of a computer's operations. To reach this implementa­
tion goal with understanding, we must briefly review the derivation 
of the design tools required in the logical application of flip-flops. 
This step is necessary because not all flip-flops of a given type have 
the same logical properties. 

The most frequently used types of latches and flip-fl.ops are referred to 
as the Set-Clear (SC), the JK, and the Delay (D) varieties. The SC (also 
called the Set-Reset or SR) latch was discussed in Chapter 2, where it 
was shown to be fundamentally composed of cross-coupied inverting­
logic gates. This structure is used as the output stage for all other types 
of flip-fl.ops. It was shown to possess the basic memory-retention prop­
erty of static semiconductor memory cells. In practice, the SC is diffi­
cult to use as a flip-flop, for two reasons. First, it does not have a clock 
input to synchronize changes in state and, as a result, it is difficult to 
achieve precise coordination in large systems. Second, for one input 
state, both the Q and the /Q outputs can be in the same state, a situa­
tion we cannot allow in practice, due to the resulting indeterminate 
behavior of the memory element. An example of an SC latch package 
(included in Figure 4-12) is the 74LS279 Quad Latch IC, which 
presents to the external world only the Q output of its four internal 
latches. Notice that its operation is undefined for one input state. A JK 
flip-flop, on the other hand, is designed always to have mutually exclu­
sive Q and /Q outputs and no undefined states of operation for all 
input conditions. 

The JK flip-flop comes with only one guarantee: all input combina­
tions lead to logically useful results and therefore are allowed. The 
commercial varieties are clocked, making them a good basis for syn­
chronous SM designs. Examples of the JK flip-flops are the 74LS76 
and the 74LS109 IC's, also part of Figure 4-12. The 74LS109 is inter­
esting, in that it can be converted to the last of the popular types, the 
D flip-flop, by using a single input line, tied to both the J and K 
inputs. The delay characteristic means that the present input appears 
at the Q output after the clock has taken effect after the current 
period. That is, present inputs appear as outputs delayed by one 
clock period. An example of a purely D-type IC is the 74LS74, also 



138 

DUAL J.K FLIP-FLOPS Wlllt CLEAR 

73 

CLEAR 

L 

H 

H 

H 

H 

73, 'H73, 'L73 
FUNCTION TABLE 

IN'UTS QU'WUTS 

CLOCK J K Q Q 
x x x L H 

J"\. L L Oo Oo 
.n. H L H L 

.n. L H L H 

I\.. H H TOGGLE 

SM pe111 Ml, IMi0, 11-114, incl 6-&6 

CLEAR 

L 

H 

H 

H 

H 

·H 

LOGICAL PROPERTIES OF FLIP-FLOPS (FF's) 

'LS73A 
FUNCTION TABLE 

Jllll!'UTS OUTPUTS 
CLOCK J K Q ii 

x x x L H 

I L L Oo Oo 
I H L H L 

I L H L H 

I H H TOGGLE 
H x x Oo Oo 

SN6473 {J, WI SN7473 {J, NI 
SN64H73 {J, WI SN74H73 {J, NI 
SN64L73 (J, Tl SN74L73 IJ, NI 
SN64LS73A {J, WI SN74LS73A {J, N 

DUAL D-TVPE POSITIVE·EDGE·TRIGGERED FLIP·FLOPS WITH PRESET AND CLEAR 

74 
FUNCTION TABLE 

INPUTS OUTPUTS 

PRESET CLEAR CLOCK D Q ii 
L H x x H L 

H L x x L H 

L L x x H" H* 

H H t H H L 

H H f L L H 

H H L x Clo Oo 

SM - 64, IMiO, 11-114, ind 6-66 

4-BIT BISTABLE LATCHES 

75 

FUNCTION TABLE 

(Each Latchl 

INPUTS OUTPUTS 

D G Q ii 
L H L H 

H H H L 

x L Clo Co 
H •high level, L = tow level, X - Irrelevant 
a 0 = the level of Q before the high-to-low translation of G 

SN6474 IJI SN7474 (J, NI 
SN64H74 IJI SN74H74 (J, Nl 
SN64L74 {J) SN74L74 {J, NI 

SN6474 (W) 
SN54H74{WI 
SN64L74 ITI 

SN64LS74A {J, W) SN74LS74A (J, N) 
SN64S74 {J, WI SN74S74 IJ, NI 

SN54715 IJ, W) SN7475 IJ, NI 
SN54L 75 {JI SN74L7& {J, N) 
SN54LS75 {J, WI SN74LS75 IJ, NI 

Figure 4-12 Flip-Flop and Latch Characteristics Data Sheet (For educational purposes only. Data may be 
old and obsolete. Courtesy of Texas Instruments, Inc. © 1984, Texas Instruments, Inc.) 

illustrated in Figure 4-12. The TTL data sheets on all these types 
should be studied. 

DERIVATION OF LOGICAL PROPERTIES OF FF'S 

Manufacturers' Characteristics 
Table of FF's 

The wording above on the guarantees for flip-flops is a simple warning 
that type names do not imply the logical properties of a given flip-flop. 
The user must derive these logical properties, for they depend on activ­
ity level, design, and logic-gate type, i.e., NANO or NOR. The starting 
point for establishing logical properties is the manufacturer's table of 
characteristics of a chosen flip-flop. Figure 4-12: presents this informa­
tion for the latches and flip•flops we shall discuss here. The first thing 
to note is that the left side of the table contains the names of the two 

t 

I 
l 



Sequential-Machine Fundamentals 139 

OUAL J-K FLIP·FLOPS WITH PRESET ANO CLEAR 

71 
'71, 'H78 

FUNCTION TABLE 
INPUTS I OUTPUTS 

'LS78A 
FUNCTION TABLE 

IN Ut~TP 

PRERT CLEAR CLOCK ' K Q C5 PRESET CLEAR CLOCK ol K Q C5 
L H x x x H L L H x x x H L 

H L x x x L H H ·L x x x L H 

L L x x x H' H' L L x x x H' H' 

H H Jl. L L Clo Co H H l L L Clo Co 
H H Jl. H L H L H H l H L H L SNll471 (J, WI SN7478 (J, NI 
H H Jl. L H L H H H l L H L H SN54H78 (J, WI SN74H71 (J, NI 
H H Jl. H H TOGGLE H H l H H TOGGLE SNll4LS71A (J, WI 8N74&.878A (J, NI 

H H H x x Oo Oo 
.............. IMI0.-8-88 

DUAL J.K POSITIVE-IOGE·TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR 

109 FUNCTION TABl.E 
INPUTS OUTPUTS 

PREaT CLEAR CLOCK J R'. Q Q 

L H )( )( )( H L 
H L )( )( )( L H 

L L )( )( )( H• H• 

H H I L L L H 

H H ' H L TOGGLE 
H H ' L H Clo Cio 
H H ' H H H L 
H H L )( )( Clo Oo 

SNll4109 (J, WI SN74109 (J, NI 
SN14LS109A (J, WI SN74LS109A (J, NI 

...................... 
FuNcTION TA8LE 

QUAD ii LATCHU INPUTS OUTPUT 

279 OIODl.CLAMPED INPUTS 
TOTEM.POLE OUTPUTS 

H • hlth .... , 
L •low 1..,.1 

I' 
H 
L 
H 
L 

I( Q 

H Clo 
H H 
L L 
L H' 

Qo • ttle 1 ... 1 of Q before the lndlcouct Input conditions wore 11tobll1hld, 
•This outpvt lev1l l1 PMUdo stable; thlt 11, It may not p1nltt when th• 
!f- " Inputs retum to thllr lnoctl•• (hllhl .... I. 
'"°'I- with doubl• !flnputs: 

........ NO H • both !f Inputs hl9h 
L • one or both I Inputs low 

SNl4279 (J, WI SN74279 (J, NI 
SN14Ul279 (J, WI SN74L1178 IJ, NI 

Figure 4-12 (cont.) Flip-Flop and Latch Characteristics Data Sheet (For educational purposes only. Data 
may be old and obsolete. Courtesy qf Texas Instruments, Inc.© 1984, Texas instruments, Inc.) 

present inputs and, beneath these, their applied voltage-level combina­
tions. The righthand column is the output condition of Q after the 
applied input-voltage levels have taken their effect. Notice that the 
right column uses symbols other than H or L. This is merely a com­
pressed form of data representation. 

The symbol Q0 in the right side column means that the Q output 
is the same as it was before the input excitation of that row was 
applied. This is the memory-retention state. If Q was low (L), it 
remains L. If it was high (H), it remains H. The next two input excita­
tions force Q to an H and then to an L, if applied in that order,1regard­
less of the prior state. These external input combinations cause the 
indicated results whenever applied. The last input combination shown 
(LL) leads to an indeterminate result when removed. It is symbolized 
here as the H* entry in the righthand column, which implies that this 
output condition is valid only while the present inputs are applied and 
that the next state is indeterminate. This input excitation forces both 
gates of the internal latch high, whenever applied. To use this latch as a' 
flip-flop, we must guarantee that the LL input combination will not 



140 

Characteristic Equation (CE) 

Auxiliary Equation 

LOGICAL PROPERTIES OF FLIP-FLOPS (FF's) 

occur. The reason that this particular excitation leads to indeterminate 
results is that we do not know in advance which of the two logic gates 
is faster and therefore how the circuit will recover if the next input 
excitation is HH. 

The manufacturer's characteristics table, in fact, is an encoded truth 
table. Due to the feedback of the Q output to one of the inputs, the 
circuit really contains two external inputs and a single internal one, Q. 
Since IQ is always the complement of Q wht;n flip-flop action is 
enforced, its state does not convey information not already provided 
by Q. A three-input K-map must therefore be used to characterize this 
device's logical behavior. To do this, the data from the manuflcturer's 
characteristics table is entered-first decoded if necessary-into the K­
map. The equation derived from such a K-map is called the character­
istic equation (CE) of the mapped flip-flop. If active-high logic conven­
tions are applied, the CE of the 74279 latch of Figure 4-12 is obtained, 
as presented in Figure 4-13a. Double logic inversions, applied to the 
terms of Figure 4-l3a, rnay be conflising to the reader. Figure 4-13b 
provides clarification of the CE and Auxiliary Equation (AE) deriva­
tions by adding inverting gates to the inputs of the basic latch. While 
the industrial choice of terminology for naming the inputs is unfortu­
nate, we simply have to learn to live with it. Calling the inputs I, and Ii 
or names that imply neither their function nor their supposed activity 
level is far less confusing to the beginner, when all we want to do is 
derive their logical behavior. We shall do so in the next example. For 
now, let us use the manufacturer's input signal names as used above in 
deriving the CE of the 74279. 

, The CE is the only feature that logically characterizes a flip-fl.op. 
In Figure 4- l 3a, the use of the subscript t implies a present input or 
output condition. The subscript t+ implies the next state, the time 
period after the present, when all present-input conditions have taken 
effect. The column headed by the ISJC, = 00 external excitation will 
not be allowed to occur in practice and therefore can be used for the 
"don't-care" entries, which are marked X. Consulting the manufac­
turer's characteristics table for the 74LS279, we see our OJ column con­
tains only 1 entries, because the manufacturer's table declared 
unequivocal high output behavior for that particular excitation. In the 
11 column, we find that the entries correspond to the state of Q before 
this excitation was applied. This is the memory-retention state of this 
flip-flop. This state means that, if the output state was 0, then it is to 
remain 0, and, if 1, it is to remain 1 after the input 11 is applied. 
Finally, the application of the excitation 10 enforces the 0 results 
shown in that column. The CE derived from the K-map plat of the 
manufacturer's characteristics for a chosen logic activity level is the 
expression for the next state (Q 1 .) of a flip-flop, in terms of both its 
present external inputs (say, in general, 111 and I21 ) and its present 
internally fed-back input (Q1). Thus, it truly characterizes the device's 
logical behavior. 

The equation that, if enforced in usage, prevents the 00 excitation from 
being applied is called the Auxiliary Equation (AE). It too is shown in 
Figure 4-13a. Obviously, if the condition specified in the AE (that 
IS,+ IC, = I) is observed during usage, then they cannot both be 0 at 
the same time. This assures us that the latch can be used as a flip-fl.op if 
we observe the conditions of the AE while applying the CE. We will 



Sequential-Machine Fundamentals 

Figure 4-13 
Derivation of CE and AE for 
74279 

CE Derivation of J K Type 

s 

c 

IO 

0 

0 

CE: Q,. = /(IS,) + IC,· Q, 
= S, +IC,. Q, 

AE: IS, + IC, == I 
OR. S, . C, == 0 

a. Derivation of the Characteris­
tic and Auxiliary Equations of 
the 74279 SC Latch, Using 
Active-High Logic Conventions 
from Manufacturer's Table in 
Figure 4-12a 

b. Clarification of Logic Inver­
sions in CE and AE 

141 

not pursue the SC-type of flip-flop further, here, since it is beyond our 
scope to do so. The text by Phister listed in the References, though old, 
contains one of the better explanatjons of the derivation of logical 
properties of flip-flops. We need the ability to derive CEs, so let us 
look at a JK flip-flop we will use. The advantage in practice of the JK 
class of flip-flops, besides their being clocked, is that all external exci­
tations lead to determinate output behavior. The net result is that the 
AE is not applicable to this class and was acknowledged here essen­
tially as a rounded-out foundation for the following. 

Figure 4-14 presents the derivation of the characteristic equation of the 
7476 group of JK flip-flops from the information contained in its man­
ufacturer's table in Figure 4-12. Our interest in this CE-derivation pro­
cedure is more than casual, since we will use the 7476 in the logical 
design example to follow. The tables of Figure 4-12 often contain 
more information than needed for the CE derivation. The upper 
halves of the manufacturer's characteristics tables in Figure 4-12 
relate to the overriding effects of the Set and Clear inputs. This 
behavior is due to the existence of an SC latch at the front end of 
this device. The lower halves of these tables contain the manufac­
turer's specified clocked input/ output transformations needed in 
the derivation of the CE. Also note that there is a reason for the 
existence of two 7476 tables, a side point of interest. The 7476 
group contains flip-flops with two types of clocking characteristics 
(see Chapter 3, for explanations of T. and Th)· The 74LS76 is 
strictly trailing-edge-sensitive, while the others of this group are 
both level- and falling- (i.e., trailing-) edge-sensitive. This does not 



142 

Figure 4-14 
CE Derivation for 7476 Flip· 
Flop (Active-High Logic) 

EXCITATION TABLE DERIVATION 

l /1 • 1,, 

Q, 00 

0 0 

}) 

LoGICAL PROPERTIES OF FLIP-FLOPS (FF'S) 

0 I I I I 0 

0 r } 
0 0 ~ 

CE: Q,. = I,,· !Q1 + II,, · Q, 
= J, ·IQ, + IK, · Q, 

Note: 

J, = '" 
K, = I,, 

affect their logical properties, since all share the same manufac­
turer's characteristics. It only affects the duration of time input sig­
nals must remain stable. If any changes in state do occur, they will 
be apparent to the user oniy after the clock goes low, in any case. 

In Figure 4-14, we have generalized the input names to J, = 
l, 1 and Kt = Iu, as an indication of a better use of names in work­
ing out a probiem. The final substitution of the manufacturer's 
terms for the generalized input symbol names avoids the confusion 
when multiple inversions an~ ·encountered in the process. It also 
focuses our attention on the i~nate effects of the inputs without the 
risk of forming misconceptions about names that can imply func­
tion. These names can lose their meaning, if we apply to the device 
an activity level other than the one used in selecting the functional 
name in the first place. 

As noted, the JK-type of flip-flop does not need an AE. Inter­
nal modifications of the design. have converted the not-allowed input 
state into a toggle mode. The toggle mode occurs when the external 
inputs will simply cause a flip-flop to change to the other output 
state when clocked. The pulsed-mode example of the latch, in Chap­
ter 2, demonstrated one form of this type of action. Notice that the 
11 external inpuHtate column of Figure 4-14 indicates that, if the 
present output is Q, = 0, tben it 1will become Ot+ = 1, and_ v~ce 
versa. In the outputs column of ttte manufacturer's charactenst1cs 
table, Figure 4-12, the encoded behavior of Ot+ is described by call­
ing it Q and /Q (we have used Q; the other is redundant), from 
which the foregoing Q1 + is derived. Further, the inputs take effect 
under the T, and Th specified conditions, for proper clock-driven 
operation to occur. Consideration of the effects of T, and Th has led 
the manufacturer to use the two different symbols in the clock col­
umn of the characteristics tables for each flip-flop. The 74LS76 uses 
an arrow in the table to indicate that its clock response is strictly 
edge-sensitive. The hat-shaped symbol used with the 7476 flip-flop, 
_n_, or its inversion denotes both level and edge-clocking character­
istics apply. If a change is to occur, it will be noticed only within the 
next clock period. As we noted in Chapter 3, output changes are syn­
chronized to the clock edge associated with Th, which, by our defini­
tion, establishes the end of each clock period. 

The CE (and AE, where applicable) thus obtained for any flip-flop is 
used to derive an excitation table. This is the sought-after design tool 
that is required to implement a hard-wired SM. Figure 4-15 illus-

/ ,\ 
. ~ 



Sequential-Machine Fundamentals 

Figure 4-15 
Derivation of 7476 Excitation 
Table (Active-High Logic) 

Excitation Table For 7476 FF 

143 

Q,-+ Q,. J, K, Q,. = J,. Q, + /K,. Q, 

0-+0 0 x 0 == J, · 1 + IK, · 0 

0-+ I I x 1 = J, · 1 + !K, · 0 

I -tO x I 0 = J, · 0 + IK, · 1 

I-+ I x 0 1 = J, · 0 + IK, · 1 

DESIRED REQUIRED 
STATE INPUT CE CALCULATIONS 

CHANGE 'EXCITATION 

7476 EXCITATION TABLE-
DISCARD WHEN DONE ACTIVE HIGH 

trates how the excitation table is derived. It is divided into three 
major columns. The lefthand column contains all possible desired 
transitions of the two variables from Q, to Q, •. If, for a given state, 
one can control the desired transition of an SM to some next state, 
then the implementation of a machine's finite state path is realizable. 
The control of the state path of an SM, as expressed by its SSR, is 
the essence of its state behavioral design. The second major column 
grouping contains these state controlling external inputs to the flip­
flop. The logic levels applied to the present inputs (J, and K,, in this 
case) "excite" the device, to produce the desired transition of the 
leftmost column. They can only be specified after we have substi­
tuted the desired transition states into the CE, as is performed in the 
rightmost column. 

The rightmost major column of Figure 4-15 is headed by the 
CE of the flip-flop. Since the CE expresses the future state in terms 
of its present inputs and present state (both external and the inter­
nal feedback inputs), it contains all the information required to 
generate the entries of the center group-the present-input columns 
that excite the desired transitions of the leftmost column. In the 
first row, the desired transition specified is that Q, = 0 is to 
become Q,. = 0 (remain 0). If these values are substituted in the 
equation that characterizes this flip-flop's behavior, we get the 
result shown under the CE major column for this 0 _. 0 transition 
row. Now, both sides of a Boolean equation must always agree, if 
the expressed characteristics are going to be observed. Since the 
right side of this CE, with the present transition values for Q, and 
IQ, substituted in it, must also agree with the desired left-side 
transition value of 0 for Q, •• then the Boolean expression on the 
right side must also reduce to 0. 

Notice that IK,·O will not affect the balance between the right and left 
sides of the CE in this row. Regardless of the logical state of IK,. its 
ANDing with 0 always produces 0. The net result is that we do not 
care what K, is, and so an advantageous "don't-care" X entry is made 
in this row for K,. J, presents an entirely different situation, because 
this part of the Boolean expression is J 1 • J. If J 1 were allowed to be 1, 
then the rule that both sides of the equation must agree would be vio­
lated. The solution is simple-enter 0 in the J, box for this row. We 



144 LOGICAL PROPERTIES OF FLIP-FLOPS (FF'S) 

have now specified the required input excitation for the desired 0-to-O 
transition of the 7476 series of flip-flops, using active-high logic con­
ventions. We have also gained don't-care entries in the process. This is 
an i'mportant result, in that it leads to very simplified circuit imple­
mentation. 

In the last row of Figure 4-15, notice that the J 1 ·o portion of 
the substituted CE can pever satisfy the I on the left side of this 
equation. For this row, J 1 is a don't-care entry. Therefore /K 1·J = 
I is the only condition that can properly balance the equation. 
Therefore I K1 must equal I. If that is the case, then the K 1 entry 
must equal 0, since it is the complement of I K1• In this manner, the 
entire excitation table is completed, after which we can discard the 
CE calculations portion. The excitation table proper (the two left­
hand portions) is our sought-after valuable design tool. The great 
advantage of this process is that it provides us with the ability to 
logically apply any flip-flop with any chosen logic activity level to 
the solution of implementation problems-with the greatest possi­
ble number of don't-care entries. 

To complete the general methodology for deriving an excita­
tion table. we ask: "What would one do if there were an AE associ­
ated with a particular flip-flop?" Fortunately, a simple general 
answer is incorporated into the derivation of the excitation table. 
In the presence of an AE, we make sure that we do not violate the 
rule of the AE each time we select external input excitations for a 
desired transition of the output. That is, if the AE requires that 
both I It and I2t not simultaneously assume a particular total state, 
then our choices for the logic values these external excitations can 
assume are restricted to those that meet this condition. Fewer 
don't-care conditions occur in excitation tables with AEs, due to 
the application of the AE rule. As an exercise, derive the excitation 
table of the 74279 latch. It will contain only two-instead of four­
don't-care entries when the CE calculations on each row also factor 
in the restriction of the AE rule. 

Remember-an excitation table is applicable only to the particu­
lar flip-flop for which it was derived. It is also dependent on the logic 
activity level used in its derivation. The type names, such as JK, SC, 
etc., convey no significant information about the logical properties of 
flip-flops. These must be derived from the manufacturer's characteris­
tics and a chosen activity level, as illustrated here. 

SEQUENTIAL-MACHINE IMPLEMENTATION 

Due to its synchronous clocking characteristics, the JK type of flip-flop 
is most advantageous in SM design problems using discrete compo­
nents. This is attested to by their abundant availability in manufactur­
ers' data catalogs and electronics parts stores. Integrated 
semiconductor IC designers may not wish to restrict themselves to the 
sole use of JK types to reduce the required transistor-equivalent count 
of the IC or to reduce propagation delay-time. They have their own set 
of specialized problems to face. Whatever the choice of FF type, the 
basic design approach does not change. Except for minor detail, what 
we have to say for the JK applies to other types when used in SM 
design. 



Sequential-Machine Fundamentals 

Application Equations 

145 

The JK has two external inputs, J and K. With two inputs, one gains 
flexible control over the next state of the FF. It can be excited to out­
put an unconditional value of either 0 or I, to toggle (change its pre­
sent value), or to retain its present contents. This means that we need 
to develop a logic equation to excite each input of every memory ele­
ment in an SSR. These logic equations for each input are called the 
application equations. This is the logic we apply to each input to 
"steer" it along a desired state path. The net result of this is that we 
require two K-maps for obtaining the application equations of each 
FF in an SSR. Each FF represents a single state variable in the state 
table of an SM. The role of the application equations, then, is to 
enforce strict observance of the state paths defined in the state table 
by applying the logic levels to the flip-flop inputs that will steer them 
along these paths. 

The specific implementation example we pursue here is the 
synchronous code sequence recognizer (SMI) problem earlier in 
this chapter. We also require an excitation table for the specific 
flip-flop to be used in the design. This shall be the 7476 type, dis­
cussed in the previous section. For convenience, the excitation 
table of the 7476 and the state table of the code sequence recog­
nizer, SMl, are repeated here in Figure 4-16a and b. Figure 4-16c 
shall serve as our logic-design worksheet for SMI. In the design 
process, we must scan parts a and b together. In addition, we must 
draw up a set of K-maps, one for the J input and one for the K 
input, for each state variable. The forms of these application equa­
tion K-maps are also presented in Figure 4-16c. Each state variable 
is represented by a single FF that requires two separate application 
equations. When these K-maps are complete, the design of the 
SSR's control (excitation) logic is complete. Note that the state 
variables of SMl are named Q, and Q0 and that the present input 
is called X. (Do not confuse this with the don't-care symbol X.) 

The task before us is simply this: For a given state, a given state 
variable in that state, and a given input symbol, establish the next state 
of that variable. To do this: 

I. Select a present state in the present-state column of the state 
table of an SM. This establishes the row of the state table that we 
will reference in the following steps. 

2. Note the present value of only one of the state variables at one 
time within the present state. 

3. For a given input symbol, note its corresponding desired future 
value in the next-state portion of the state table. This is located 
under the column heading of a selected input symbol, in the cor­
responding box (beneath it) of the row we are working in. Be cer­
tain that corresponding variables are compared within both 
present-state and next-state entries. This establishes the required 
transition of that state variable, if it is to follow the state path 
defined in the state table. This is tantamount to to saying that, 
for a given input and given state, this state variable is to go from 
its assigned present value to the desired new value after the clock 
takes effect. 

4. In the excitation table, note the required values for J and K that 
enforce the required transition. 



146 

Q,-Q,. J, K, 

o-o 0 x 

0 -1 I x 

I - 0 x I 

I - I x 0 

a. 7476 Excitation Table 

Q,Qo X=O 

0 0 

0 I 

I I 

I 0 

JQ. = 

Q,. Oo x ... 0 

0 0 

0 I 

I I 

1 0 

JQ, = 

Figure 4-16 
SMI Logic Design Worksheet 
(Blank) 

LOGICAL PROPERTIES OF FLIP-FWPS (FF's) 

~ z 
x-o x-1 Z3,Z2.ZI 

0 0 01 ()() 0 0 0 

0 I 01 II 0 1 0 

I 1 IO 00 l 0 0 

I 0 01 II I I I 

PRESENT NEXT PRESENT 
STATE STATE OUTPUT 

b. SM I State Table 

X=l Q,. Oo X=O X=I 

0 0 

0 I 

I 1 

I 0 

KQ. = 

X=I Q,. Qo X=O x-1 
0 0 

0 1 

1 1 

1 0 

KQ, = 

<.:. Applil.:ation Equation K-Maps 

5. Enter these values into the application equation K-maps for J 
and K of that state variable. These entries are to be made in the 
boxes of the K-maps that agree with the present state and input 

• symbols used in each determination above. 

6. Repeat the above until the K-maps of all the application equa­
tions are completely filled in. 



Sequential-Machine Fundamentals 

Figure 4-17 
Some Application-Equation K­
Map Entries for Oa 

Desif{n Application 

147 

x= x = 

Q,Q., 0 I Q,Qo 0 I 

0 0 I 0 0 0 x x 

0 

I 

I 

I 0 I 

I x I I I 

0 I 0 

JQ., = KQ.,= 

7. Extract the simplified logic equations from the application 
equation K-maps for each input of each state variable. When 
this is done, the SSR design portion of the design of an SM is 
complete. 

Let us apply the above procedure by filling in the empty K-maps of 
Figure 4- l 6c. A copy of these blank forms may be used as a worksheet 
in following the discussion. An example of the procedure is presented 
in Figure 4-17, which displays partially filled-in K-maps for JQ0 and 
KQ0 • Let us start with state Q1Q0 = 11 of the state table. The state 
variable Q0 has the present value of I in this state. If SM I is to clock in 
an external input of X = 0, then the box of the next state portion of 
the state table that forms the intersection of the Q1Q0 = 11 row with 
the column headed by X = 0 contains the next state prediction that 
Q,Q0 = 10. By comparing the corresponding state variable in each of 
these pairs, we observe that Q0 is to transition from I to 0 after the 
clock "strikes." Note, too, that Q, is to undergo a different state transi­
tion. What is it? Returning to Q0 , we have established that the desired 
transition is I to 0 for this present-state and present-input combina­
tion. 

The 7476 excitation table informs us that, to obtain 1-to-O transi­
tion, J 1 may be the don't-care symbol X, but K 1 must be 1. Figure 4-17 
shows that X has been entered in the box of the present-state and pre­
sent-input intersection above in the K-map for JQ0 , but that I was 
entered into the corresponding intersection of the K-map for KQ0 • We 
have thus "steered" the J and K inputs of the FF representing state 
variable Q0 for a specific present-state and present-input combination. 
The process is repeated until the entry combinations are exhaustively 
entered into the application-equation K-maps. 

Let us now consider the present state Q 1Q0 = 00. For the input 
X = 0, Q0 is to undergo a O-to-1 transition. The excitation table tells 
us that J 1 must be 1, but K 1 can be X. When the input is X = 1, a O-to-
0 transition is specified. For this case, J 1 must be 0, but K 1 may be X. 
Check these entries in Figure 4-17 for JQ0 and KQ0• The other state 
variable, Q,, is processed in the same manner. 

The completed worksheet is presented in Figure 4-18. Here, 
the completed K-maps are simplified to obtain the set of applica­
tion equations for SM I. Note again that the application-equation 
K-maps, as well as the state table, are organized around the same 



148 LOGICAL PROPERTIES OF FLIP-FLOPS (FF's) 

z 
Q,-Q,. J, K, Q,~ x = 0 X= 1 Z3 Z2 ZI 

o- 0 0 x 0 0 01 00 0 0 0 

0 - I 1 x 0 I 01 11 0 I 0 

1 - 0 x 1 I I 10 00 I 0 0 

1 - I x 0 I 0 01 11 I I 1 

PRESENT NEXT PRESENT 

a. 7476 Excitation Table STATE STATE OUTPUT 

h. SM! State Tahle 

O,. Ou X=O X= I O,. Oo X=O x ;= I 

0 0 JZ1\ 0 0 0 x x 

0 1 x x 0 I 0 0 - -...... 

1 1 l7x x\ 1 1 v I I "' 
1 0 ~1) IL 

~ 

1 0 
~ 

x x .L 
JQ,, =IX+ Q, KQ,, = Q, 

O,. Ou X=O 

0 0 0 

0 I 0 

1 1 x 

1 0 x 

JQ, = x ·Ou 

Figure 4-18 
SMI Logic Design Worksheet 
(Filled In) 

Derivation of Present Output 

x = I 

0 
~ 

7 \ 
I l 

T 
~xj_ -x 

I 

O,. Oo X=O X= 

0 

0 

1 

1 

0 ~xL x 

1 x x 

1 0 I 

0 /1~ 0 

KQ, = X · Q0 + IX · IQ. 
= l(X $ Q.) 

c. Application Equation K-Maps 

I 

K-map format. This greatly reduces unnecessary work. The con­
trol-logic design phase for the SSR of SM 1 is now complete. Before 
implementing the design, Jet us first consider the design of the pre­
sent-output logic. 

The present-output equation can be extracted directly from the 
state table. It is given there as a combinational-logic function of 
two variables (0, and 0 0 in K-map order) that has three output 
functions, Z3, Z2, and Zl. By observation and simplification, we 
find that: 



Sequential-Machine Fundamentals 

Implemented Design ofSMJ 

Latch Bounce-Eliminator 
Clock 

Z3 =QI 

Z2 = /(Ql)•(QO) + (Ql)•/(QO.) 

ZI = (Ql)•/(QO) 

149 

How is one to handle output equation problems that are more complex 
than this? Since the outputs of a Moore machine are a function only of 
the present state, K-maps based on the state variables can be drawn 
up. Then the output vector for each Z can be entered into its own map 
for simplification and implementation. We just performed this proce­
dure by visual inspection for our simple problem. The expression for 
Z2 above can also be expressed as the eXclusive OR (XOR) of Q1 and 
~ ' 

The astute reader may note that a different order of the 
binary encoding of the names of the states in the state diagram 
and/ or a rearrangement of the choices for output symbols could 
result in even simpler logic equations than we have attained here. 
There are special techniques for state and output assignments that 
can minimize the logic of these equations. An easy observation is 
that the only output symbol we required was ZI, as noted. The pre­
sent outputs that display the current state could just as well have 
come directly from the outputs of the SSR. This was deliberately 
avoided so that our final result would more closely resemble the 
large output fields of the state-table format for a microprogram. It 
also explicitly displays all the combinational-logic blocks of the 
classic Moore model shown in Figure 4-3. This simplification is left 
as a project for the reader. 

Finally, the implemented design is presented in Figure 4-19. For 
simplicity, mixed logic-gate types are used. The block of logic 
labeled CL2 translates the present-state into the present-output 
function. The bafance of the combinational logic (except for the 
switch-bounce eliminator) is CLl of the Moore-machine block dia­
gram of Figure 4-3. Its inputs are the present state and the present 
input, and it produces the next-state excitations that are-in real­
ity-the next-state function. The FFs Q1 and Q0 are of course the 
SSR of SM I. Every SM has an SSR whose size establishes the max­
imum number of states available for possible use in its state set. 
When people say that a computer can have a number of states that 
approaches the number of stars in the universe, they are exaggerat­
ing greatly. The fundamental states of a computer are those of its 
SSR, and this is of very tractable size. Some might wish to add to 
this figure the state of every FF in the data registers and that of 
every transistor in the entire system, but this is not a useful 
approach for comprehending a system. It is the SSR alone that 
defines the basic sequential behavior of a computer. 

The switch-bounce eliminator circuit and the reset line are shown 
in Figure 4-19 to provide the necessary information for 
breadboarding a circuit. The 74LS279 IC provides four such cir­
cuits in one IC. The pull-up resistors shown provide better noise 
immunity and are a must in commercial practice. Typical values 
are I K~ for standard TTL and about SK~ for the LS varieties of 
TTL. All the components, including IC-prototyping boards or kits, 
are readily available at electronic hobbyist shops. The home-brew 
approach is strongly recommended to those who wish to really 



150 

Figure 4-19 
SMl Circuit Implementation 

x 
s 

J 

QI 

K 
c 

CLK 

SW2 

s 
Q J Q 

Q 

BIBLIOGRAPHY 

r----.., 
I I il3 

Dt-~2 
I 
I 

-ii 

S~ _____________ R_E_SE_T __ ...._ __ ..,_ __________________ ~ 

understand what a computer is. After all, your livelihood may 
depend on one, so why not philosophically master an understand­
ing of its hardware? The construction details of the next chapter 
present more i~formation on home breadboarding. For example, a 
6-volt camping lantern and two or three silicon diodes make a per­
fectly adequate power supply for these projects. 

A final word in summary: We have reviewed here some of the 
major principles behind the physical implementation of a circuit for a 
state machine. It is one of the pieces in the mosaic of state-machine 
theory. Computers are state machines, and the programs. they imple­
ment are state machines. The theory of compiler~ hnd their impl!!men­
tation often resorts to state-machine tactics to reach its go;:tls. 
Operating systems are state machines. Finite-state automata theory 
and its applications to finite-state machines are very pervasive. T}iey 
are among the fundamental tools in computing. If we have dispelled 
the mystique surrounding basic details of their circuit implementation, 
so much the better. We shall return to this topic when we implement a 
microprogram-a state machine by another name. There, we.shall find 
that it indeed has the same forll"!!lt and fundamental behavior as exhtb-
ited here. 



Sequential-Machine Fundamentals 

BIBLIOGRAPHY 

PROBLEMS 

151 

Bartee, T.C., Lebow, I.L., and Reed, I.S. Theory and Design of 
Digital Machines. New York: McGraw-Hill, 1962. 

Booth, T.L. Sequential Machine and Automata Theory. New 
York: John Wiley & Sons, 1967. 

Caldwell, S.H. Switching Circuits and Logical Design. New York: 
John Wiley & Sons, 1959. 

Denning, P.J.; Dennis, J.B.; and Qualitz, J.E. Machines, Lan­
guages and Computation. Englewood Cliffs, New Jersey: Prentice­
Hall, 1978. 

Mealy, G. H. "A Method of Synthesizing Sequential Circuits." 
Bell System Technical Journal 34, No. 5 (~iember 1955), pp. 
1045. . 

Moore, E. F. "Gedanken Experiments on Sequential Machines." 
Automata Studies, Annals of Mathematical Studies No. 34, 
129-53, Princeton: Princeton University Press, 1956. 

Phister, M., Jr. Logical Design of Digital Computers. New York: 
John Wiley & Sons, 1959. 

Unger, S.H. Asynchronous Sequential Switching Circuits. New 
York: John Wiley & Sons, 1969. 

l. A synchronous sequential-code recognizer, called SM2, is to rec­
ogniz~ the string "110." The least significant bit arrives first. If an 
error is made in the proper sequence, then the machine is to 
return to the initial (home) state and start looking for the full 
sequence again. The output is to be l only in the clock period fol­
lowing the clocking ip of the successful string. 

a. Draw the Moore-type state diagram of SM2. 

b. From this state diagram, construct the state table of SM2. 
Assign binary codes to the names of the states in K-map 
Grey Code order, such that the states visited along the suc­
cessful string follow the sequence of the reflected Grey 
Code used in K-maps. 

2. Derive the application equations for Problem l above, simplify 
them, and draw the circuit. Use the excitation table of the 7476 
flip-flop derived in the text. 

3. Derive the characteristic equation and the excitation table of the 
74109 Flip-Flop from a manufacturer's TTL data manual. Use 
active-high logic conventions. In deriving the CE, it may help to 
re.name the J and /K inputs II and 12 temporarily, until the last 
step. 



152 

Figure 4-20 
NOR-Gate-Based SC Latch 

PROBLEMS 

4. Derive the characteristic and auxiliary equations of the SC-type 
latch shown in Figure 4-20. Use active-high logic conventions. 
Why do its logical properties differ from those of the 74279? 
Hint: First ascertain the not allowed input state. Why must this 
input combination be prevented? 

5. Derive the characteristic equation of the 74279 SC latch, using 
active-low logic conventions. Is it the same as the CE derived in 
the text, using active-high logic conventions? Compare this result 
with the CE result of Problem 4. 

6. Simplify the design of SM! by eliminating outputs Z3 and Z2. 
Instead, we can directly use the outputs of its SSR to indicate the 
state path. Output Zl is to be decoded from the states of the 
SSR. 

a. Derive the logic circuit design. 

b. Implement it as breadboard experiment. 

7. Show that SM! follows the prescribed path for its successful 
string by demonstrating that its excitation logic design "steers" 
Q, and Q0 correctly. Use a table of the form shown in Figure 4-21 
and consult the manufacturer's 7476 characteristics table as nec­
essary, to determine the next states from the present excitations 
derived in the current state. The initial state is the home state 
Q,Q0 = 00. 

8. Outline the automation of a state-machine design procedure for 
finding the application-equation K-maps as described in this 
chapter. Do this by drawing the flowchart of a procedure for 
systematically scanning a given state t~ble to detect state tran­
sitions of each state variable as a function of Q and I. Then find 
the prescribed values of inputs I, and I2 from a given excitation 
table, and finally post these values in a set of application-equa­
tion K-maps. Include the steps required to print out the K­
maps. 

9. Write a computer program to implement the flowchart of Prob­
lem 8 above, using as your data base the state table for SM I and1 

the 7476 excitation table given in the text. 

IO. Implement the machine SM2 described in Problem I above, 
using 74109 flip-flops. 



Sequential-Machine Fundamentals 

Figure 4-21 
SM Excitation Logic­
Verification Table 

153 

lo l I t, t,, t, 

Q, = 0 

Q. = 0 

JQ, = 

KQ, = 

JQ. = 

KQ.= 

l l. A sequential-code recognizer called SM3 is to recognize the 
bit stream "O I IO" whenever it occurs, Its output, Z, is to be I 
only in the period following the clocking in of the successful 
string. 

a. Find the application equations of SM3. The corresponding 
next-state and present-output entries of unused states may 
be treated as don't-care conditions_ Base the design on the 
7476 flip-flop. 

b. Check the correctness of your design by using an SM exci­
tation logic verification table similar to that in Problem 7 to 
determine whether SM3 correctly steps through the states 
of its successful string. 





CHAPTER 5 
STUPIDD V-
A MICROPROCESSOR 
ANALYSIS AND CONSTRUCTION PROJECT 

COMMON IC'S IN A SYSTEMS CONTEXT 

In this chapter, we analyze the design of the CPU portion of a 
microprogrammable processor and then explore its functional behav­
ior. At this stage, we will develop microprograms to control the CPU, 
which may then be manually demonstrated using the associated con­
struction project. Computer-description language notation is intro­
duced for use in the microprogramming activities. We are about to 
study the fundamental use of actual, commercially available IC's in the 
creation of a functional processor systems context. Understanding and 
being at ease with the overall systems aspects of a digital processor 
design is a necessary prelude both to the use of modern programmable 
peripheral processor IC's and to creating the logical systems design of 
one. This has become mandatory of late, due to the economic availa­
bility of sophisticated controller and processor IC's to be programmed 
or otherwise utilized in design projects. It should not come as a sur­
prise at this point that tl:te key concept here is the application of chips, 
or IC's, in a systems context. We have stressed in this text that a limited 
number of IC's exhibit the functional patterns of behavior found 
within any processor. Forming a processor-system from IC's, analyz­
ing and operating it, teaches one a good deal about all the others-for 
the features used in their organization are common to all. 

Analyzing a given design can be a valuable learning experience for 
the beginner. While we have studied related material on logic design and 
devices, we have yet to see how they are integrated into a processing sys­
tem. This task is actually an easy one. Far more creative is the task of 
inventing instructions for demonstration on the construction project 
associated with the text. Microprogramming is also the art of creating 
instruction-set algorithms that we use in programs. To specify the opera­
tions we want to implement on the processor, we shall resort to the use 
of symbolic notation of a design language. This material is introduced in 
the microprogramming section of this chapter. At this stage, the symbol­
ogy is used as a form of register-transfer notation. Computer-hardware 
and instruction-set reference manuals use this type of notation to 
describe concisely exactly what an instruction does during its execution. 
We will be analyzing a design and creating its instruction sets. In the 
context of a design language, the notation can be used to specify a 
processor's design. It is possible to use this background in the synthesis 
of processors, but that requires another text. 

The material in this chapter was the result of a number of pro­
jects designed to explain, through lecture and laboratory activities, the 
inner workings of a microprogrammed computer architecture at the 



156 COMMONALITY OF FFATURES OF ALL PROCESSORS 

actual hardware level. These projects were referred to as Student Pro­
jects In Digital Design-the acronym STUPJDD appealed to the stu­
dents, and the name stuck. The concept presented here was the fifth in 
an evolving series, resulting in the title STUPIDD V. It was kept sim­
ple-stupid, if you wish-to provide the reader with a project that can 
be constructed with readily available IC's. STUPIDD permits one to 
explore-on paper as well as by Construction-the system control and 
execution of most types of instruction found in current computers. We 
will learn how to implement new instructions and practice the art of 
microprogramming in this process. Even though short demonstration 
programs may be executed, STUPIDD was never intended to be used 
as a microprocessor-only as a learning tool. The chip count acceler­
ates rapidly when one wants to turn it into a complete system-the 
added increment of learning about basic computer operation is small 
compared to the effort involved. This time would be better spent on, 
say, studying the application of microprocessors or bit-sliced machines 
using the 2901 type of IC's. 

COMMONALITY OF FEATURES OF ALL PROCESSORS 

RATIONALE 

STUPIDD's CPU is archetypical of von Neumann types of architec­
ture. Most modern minicomputers and microprocessors that we 
encounter in normal practice fall into this category. The block diagram 
of STUPIDD's CPU is presented in Figure 5-1. Compare this with the 
block diagrams of the commercially available Intel 8080 and the AMO 
2901 bit-slice processors, shown in Figures 5-2a and 5-2b. Note that all 
three, like any CPU, have certain features in common-a register array 
(R), an arithmetic logic unit (ALU), one or more general-purpose reg­
isters (T) for temporary storage, and, last, interconnecting bus paths. 
These four features, outlined or self-evident in the figures, are the com­
mon core of most modern von Neumann architectures. STUPIDD also 
typifies the architecture used in the basic PDP-11 minicomputer, with 
a similar organization of the same features, as shown in Figure 5-2c. 
For the beginner, the hope is that an appreciation of STUPIDD 
demystifies the intrinsic nature of the majority of the more sophisti­
cated real-world processor systems likely to be encountered. In fact, 
there is a particularly close correspondence between the features of 
STUPIDD's CPU and the essentials of the 2901 4-bit-slice processor, 
from which many minicomputers and mainframe emulators were con­
structed. 

One could directly use the 2901 4-bit-slice IC to replace all of 
STUPIDD. That would be the right thing to do if one already comfort­
ably understood the concepts we are about to study, all of which are 
contained in the 2901. Computer science students, who generally were 
lacking in previous hardware exposure, have stated that the wire-wrap 
project to build the system provided a true appreciation for IC behav­
ior they would not otherwise have gotten. Experience has shown that it 
is more effective to start on the path to understanding the overall sys­
tems behavior of these processors by first considering the separate 
embodiment of many of their internal functions, which are already 



STUPIDD V- A Microprocessor Analysis and Construction Project 157 

CONTROL SYSTEM 
DIP SW 

EXTERNAL 

CONTROL SIGNALS 

UIS 
HEX 

DISPLAY 
TIL 311 

U6 
FL 

U7 
us 

74 Sl73 INTERNAL 
..._....., ...... ......,,_, CONTROL ,__.;,,..;.;:;;:;..:..:..:;;..._, 

DECO 
(ABUS) 
74LS139 

r--~ 
DBUS IBFOI 

Ull 
OUT 

74LSl73 

BBUS 

Ul 
R 

LS670 

SIGNALS 

B A 
U2 

ALU 
74LSlSl 

F 

4 

U3 
CSL 
74LS 
153 

U4 
T 

74LSl73 

I I 
I I ...__, 

us 

U9 

M 
2114 

4 

IN 
DIPSW 

INPUT SWITCHES 

MAR ABUS 
--~~~~~-F~B·u-s~~~~~~~~~~.iLSl73-------4~~--------~~ .... 

Figure 5-1 
CPU Block Diagram: 
STUPIDDV 

CPU 
~---' 

EXTERNAL 
ENVIRONMENT 

observable, in readily available IC's. Next comes an understanding of 
the system coordination of these functions. Finally we arrive at the 
means of specifying the control system of a microprogrammed proces­
sor. At that point, we should be reasonably familiar with the inner 
workings of commercial programmable chips and therefore ready to 
work with them. In fact, the Very Large Scale Integrated (VLSI) circuit 
microprocessor construction know-how evolved out of the ability to 
incorporate more and more of the smaller IC's, such as those we shall 
explore, into a single LSI or VLSI design. The techniques used here, 
however, were selected to display systems operation principles, as sim­
ply and clearly as possible, rather than to show the most effective way 
they are actually implemented by industry. 

PROCESSOR INTERFACE SIGNAL CATEGORIZATION 

The 4-bit slice, such as the 2901, contains only the minimal features of a 
CPU: i.e., R, ALU, T, and bus paths. The complete microprocessor 
CPU's have a few other embellishments, which are also included in Fig­
ure 5-1. Three catt:gories of signals are to be found at their interfaces to 
the external environment. First is the data bus, DBUS, buffered by a 
bidirectional buffer, such as a 74LS242, represented here by the dashed 
block, BFO. This chip is not necessary for the current design, so it is not 
used-its symbolic presence is a reminder of the existence of the bidirec­
tional interface buffers at this place in the architecture of commercial 
processing systems, such as microprocessors. Second is the address bus, 
ABUS, buffered by the memory-address register, MAR. The third cate­
gory of interface signals is the control system's external interface-control 
signals. The control system itself will be dealt with in the next chapter. 
These three categories of signals are what is commonly found at a 
processor's interface, which may be confirmed by categorizing the 8080's 



158 COMMONALITY OF FEATURES OF ALL PROCESSORS 

Figure 5-2 Common Essential Features of Typical CPU's 

ALU 

POWEA1- +12V 
SUPPLIES - .. SV 

- -5\f 

- GNO 

!881T1 
INTERNAL DA TA BUS 

INSTRUCTION 
DECODER 

AND 
MACHIP\IE 

CYCLE 
ENCODING 

TIMING 
AND 

CONTROL 

81·DIRECTIONAL 
DATA BUS 

WJi: OBIN INTE INT HOLD HOLD WAIT SYNC · 1 ·2 RESET 
ACK READY 

A. 8080 CPU 

!8BIT! 
INTERNAL DATA BUS 

MUL TtPLEXER 

w "' z 
TEMP REG TEMP REG 

B 
REG 

0 
REG 

H 
REG 

c 
REG 

'" E 
REG 

(~ L 
REG. 

A,s Ao 
ADDRESS BUS 

(Reprinted by permission of Intel Corporation.© 1983, 
Intel Corporation.) 

MICROPROCESSOR SLICE BLOCK DIAGRAM 

R..-
"A IAEAOI 
ADDRESS 

'8' 
IREAO'WR!TEI 

ADDRESS 

DIRECT 
DATA IN 

OUTPUT 
ENABLE --

B. AMO 2901 

OUTPUT DATA SEL.fCTOR 

DATA OUT 

CNH 

F3 (SIGN) 

OVERFLOW 

F "0-000 

(Copyright© 1979, Advanced Micro Devices, Inc. Reprinted 
with the permission of the copyright owner. All rights 
reserved) 

'" 

REGISTER 
ARRAY 

' R 



STUP/DD V-A Microprocessor Analysis and Construction Project 159 

Figure 5-lc 
Common Essential Features of 
Typical CPU's 

IR 

BA 

CONSTANTS 

(Reprinted with permission 
from Computer Engineering: 
A DEC View of Hardware 
Systems Design, by Bell 
Mudge McNamara. Copyright 
© Digital Press/ Digital 
Equipment. Corporation 
<Bedford, Mass.), 1978.) 

BUS ADDRESS 

BUS DATA 
BUS ATA 

NOTE: ALL DATA PATHS ARE 16 BITS WIDE UNLESS 
OTHERWISE NOTED. 

signals, displayed in Figure 5-2. These classifications of the interface sig­
nals will also become evident in the tripartite presentation of a processor 
that we are about to pursue. The total system consists of a CPU, a con­
trol system, and an.external environment (memory, input/output, and a 
display). The interfaces of the system .are analyzed in terms of data, 
address, and control-bus signals. 

SPECIALIZED REGISTER AND LOGIC USAGE 

Internally, there are additional blocks in the typical CPU, besides the 
aforementioned ALU, r~gister array, T register, and bus paths team. 
An instruction register, IR, holds and presents the instruction word to 
the control system during the execution phase of the computer's cycle. 
Properly considered, it is a part of the control system that is generally 
inaccessible to the user, but it is customarily displayed in the CPU 
block diagram. An internal flag register, FL, is also shown. This regis­
ter stores status information supplied by the ALU, such as the present 
sign or carry status, when directed to do so by the control system at 
critical points of operation. The final internal block we shall deal with 
in this bare-bones system is the carry select logic, CSL. As we shall see, 
the carry input to the ALU can come from one of several sources, 
which the control system selects via CSL. 

Externally, our system contains a random access memory, M, a 
set of input switches, IN, and an output register, OUT. The output reg­
ister shown can drive a hexadecimal light-emitting diode (LED) dis­
play. Additional display logic is provided as a convenience to the user, 
providing for the visual display of the current state of the buses and 
registers of interest in the hex LED IC. The input-switch connections 
to the DBUS are buffered by half of the 74LS240 IC, denoted as BF2. 
The IN and OUT facilities represent only the most fundamental of 
1/0 communications with external devices. 



160 DEVICE CONTROL AND NOMENCLATURE 

We are now ready to study the detailed operation of micropro­
cessor features, through the use of common IC devices. What is so 
intriguing about STUPIDD V is that most of the mysteries of CPU 
behavior can be revealed by using approximately ten types of logic 
IC's, in a systems context. It is simple enough for the reader to con­
struct and verify the operational principles. To this end, construction 
details are presented at the end of th~ chapter. While paper and pencil 
exercises alone may provide sufficient intellectual insight into com­
puter operation, those with insufficient hardware experience will find 
that conquering a construction project provides an added measure of 
satisfaction. For others, seeing is believing. Building the project is sim­
ple, because all the pertinent details are given. Microprogramming it 
requires creativity based on a knowledge of the hardware details and 
function. 

DEVICE CONTROL AND NOMENCLATURE 

STUDY OF INTERFACE SIGNALS FOR CONTROL AND COORDINATION OF IC's 

R, THE REGISTER ARRAY (U l) 

Transparent Latch 
Simultaneous Read and Write 

Our study of the characteristics, behavior, and control of processors 
begins in earnest with a survey of the nature and control of the IC's 
utilized in STUPIDD's design. The system is built upon their charac­
teristics. A 1TL data manual, of course, must be referred to while 
reading this material, to gain a true appreciation of the logical and 
electrical characteristics of these devices. The major goals of this sec­
tion are to help you become familiar with the interface signals of the 
logical devices we shall use and to provide understanding of the meth­
ods used for their control and coordination. Figure 5-1, the block dia­
gram of STUPIDD, presented the relationships of these IC's to each 
other within the system. The U-numbered designations of the IC's are 
simply short names by which each may be conveniently recognized. 
We begin ·our survey of these devices and their manner of application 
in STUPIDD with the register array, R (Ul), as typified by a 74LS670 
IC. 

The 670 is a 4 x 4 register array, possessing separate read arid write 
enables. While, .to keep things simple, we will not take advantage of 
this property here, virtually (i.e., not actually) concurrent reads and 
writes of an array of transparent latches are fully utilized in the 2901 
bit slice. The transparent latch was introduced in Chapter 3. An 
important constraint of a transparent latch is that one cannot simulta­
neously read and write the same register. Simultaneous read and write 
operations on the 670 are restricted to separate addresses on the read 
and write address lines, respectively. The fundamental reason for this 
constraint lies in the nature of the transparent-latching characteristic 
of this IC. When write enable (WE) is active-low in this case-the 
behavior of the transparent latch is such that the data output will fol­
low the input. 



STUPIDD V- A Microprocessor Analysis and Construction Project 161 

R 

a. Purely Combinational Loop 
(Oscillates) 

Figure 5-3 

ALU 
(ADD I) 

Simultaneous Read, Write of 
Transparent Array 

READR, 
WRITET 

CLOCK 

R 

LATCHT 

READT, 
WRITER 

ALU 
(ADD I) 

T 
(LATCH) 

LATCH R 

b. Interposing Transparent Latch 
(2901 Latch Is at Output of R.) 

There are two aspects to the problem presented by this character­
istic of transparent latches. First, the early modification of the output 
permitted by the active level of the clock signal (as opposed to edge­
triggered) can cause incorrect data to be clocked in elsewhere, where 
the unmodified register contents are expected to be held available at 
least until the start of the next clock period. Fortunately, this situation 
can be avoided entirely with proper system design. The more impor­
tant second case occurs when transparent latches are used within 
closed loops of combinational logic. Under these conditions, oscilla­
tory changes of data may occur. Fixes for this condition use a pair of 
separately clocked latches. For example, the 2901 4-bit slice IC utilizes 
an internal latch, separate from its register array, which captures read 
information before writes commence. That is, reads are latched into an 
auxiliary register on the clock edge in the middle of a system period, 
while writes are recaptured by the original source in the transparent 
register array on the clock edge at the period's end. Using this interme­
diate register prevents data oscillation. 

Let us further clarify the second point above, since the use of 
transparent registers in processors is widespread and this common sit­
uation must be avoided in practice. Figure 5-3 shows two partial archi­
tectures, each performing a simultaneous read, modify, and write into 
the same register. Let us presume that the ALU in each loop is adding 
l to the output of the register array. Further, the T register and the 
array are of the transparent-latch type. In Figure 5-3a, the incremented 
output of the ALU is fed directly back to the inputs of the transparent 
latch. While both the read and write clocks of the same register are 
simultaneously active, information coming out of the selected register 
is fed to the ALU, modified, and then fed right back into the same reg­
ister. Naturally, it passes through the same combinational loop again 
and again, resulting in continuous oscillatory modification of the data 
until the read and write clocks cease their simultaneous active mode. 
Where it stops, no one knows. 

The architecture shown in Figure 5-3b is somewhat analogous 
to the 290 l situation, as well as the pair of registers that form the 



162 

Figure 5-4 
Register Array R Logic 
Diagram 

W@R 

/CKJl 

RS0------1 

RSI ----.---1 

DEVICE CONTROL AND NOMENCLATURE 

accumulator in the 8080. Data from a transparent-latch type of 
source, which may be modified in passing through an ALU, is first 
locked into the separate T latch on, say, the falling edge of the clock. 
The transparent read is now terminated, and the transparent write 
into the originally read register commences. Figure 5-2a explicitly 
displays this relationship for the 8080's accumulator. Consider .how 
you would increment this accumulator by one. The write data could 
come from anywhere, but the simple closed path in Figure 5-3 illus­
trates how potential oscillations are blocked by this technique. This 
solution uses time separation (an application for t-.vo-phase clocking) 
of the active levels of the read and write clocks applied around the 
data loop. It only appears to be simultaneous to the outsider, 
because it all takes place within one system clock period. 
STUPIDD's simplified architecture avoids all these problems, but it. 
is Jess flexible as a result. 

·CONTROL SIGNALS OF R REG. 

Let us examine the control signals for the register array, R. Figure 5-4 
is the logic diagram of the 670, as we shall employ it. The read enable 
(RE) input to this IC is an active-low control line corning from the 
control system. The write enable (WE) input is also active low. To 
avoid simultaneous reads and writes, we make the level of these two 
signals mutually exclusive by employing the NANO gate at pin 12, 



STUPIDD V- A Microprocessor Analysis and Construction Project 163 

WRITE/ READ CONTROL 

REGISTER SELECT CONTROL 

@WE. (The @ symbol means the logic name following it is active 
low.) The signal from the control system driving these now mutually 
exclusive inputs is called W@R in the figure. When it is low, we are 
reading the addressed cell of the array. When it is high, we are writing 
under clock control, as provided for by the complemented system­
clock input to the NANO gate. The R register array's tri-statable data­
output interface is controlled by @RE. When RE is low, the addressed 
register is enabled onto the BBUS. 

Reading is "safe," in that it cannot modify a register's contents. 
Writing can be hazardous to data if spurious transitions of the con­
trol signals occur during state changes of the system. The potential 
hazard of accidental writes is overcome by the filtering action of 
the NANO gate driving @WE. Noise spikes on the control signals 
during state transitions settle down by midperiod. With the use of 
the NANO gate, the system clock's complement, /CK, now coordi­
nates the production of an active-low WE signal only during the last 
half of the present period. It masks possible noise during the first 
half. When /CK is .low, @WE is clamped high. Only when /CK is 
high (in the last half of the system-clock period) AND W@R is 
also high can @WE go low. 

The register-select control lines, RSO and RSI, also come from the con­
trol system. They simultaneously control the corresponding read 
(RAO, RA I) and write (W AO, WA I) register selection address lines of 
this IC. Concurrent reads and writes are precluded in this application 
by the mutual exclusivity of @WE and @RE, described above. 'There­
fore we have no need to be concerned with the fact that these read and 
write addresses are always the same. 

Three bits coming from the control system are required to 
manage the 670 register array R properly, namely: W@R, RSI, 
and RSO. We may manipulate these signals, via microprogram­
ming, to make the 670 register array perform the tasks we choose 
for it. The four internal four-bit registers may be used in any gen­
eral way we prescribe when we invent instruction-set algorithms, or 
macros, for the control store. One register of the four, let us say R3, 
shall be reserved for use only as the program counter, the PC. All 
future references to the PC shall therefore imply R3. The remaining 
registers of R are used in different ways to illustrate register-usage 
variations that occur in practice. The 2901 contains an array of 16 
registers similar to those in this IC; commercial microprocessors 
vary widely in the number of their registers. Often, they exhibit 
transparent-latch behavior. 



164 

FLAGS 

Figure 5-5 

BBUS 
B3 .. BO 

(18, 20, 22, 1) 

co 

S = F3 

ALU and CSL Logic 
Diagrams 

MD. S3 .. SO 
(8, 3, 4, 5, 6) 

5 

ALU 

74LSl81 

U2 
F 

A 

DBUS 
03 .. DO 

(19, 21, 23, 2) 
4 

7 

17 15 (13, 11, 10,9) 

NC 

4 

F3 .. FO 
FBUS 

7 

DEVICE CONTROL AND NOMENCLATURE 

CS! CSO 

2 14 
CS! CSO 

U312A 
CF (FLAG) 

Y .• 
11 .. CO (U2-16) 

EA 
IOA 

l/2-74LS153 

CONTROL BITS: M, S3, S2, SI, SO, CS!, CSO 

THE ALU (U2) AND CSL (U3), CARRY SELECT 

ALU Control Signals 

Carry In I Out Activity Level 

Open-Collector Nature of A = B 

The Schottky version of the 74181 ALU was the device that drove 
much of the early minicomputer industry. We shall use the low-power 
Schottky version, to reduce power, in the manner shown in Figure 5-5. 
This chip contains carry-generate and propagate pins that can increase 
the speed of arithmetic operations on the order of 30 percent when 
four or more ALU's are used in parallel. These pins are not relevant in 
the current application, but they merit independent study, along with 
the 74182 fast-carry look-ahead IC. The 181 was discussed earlier, so 
its features will be only briefly reviewed now. 

Six signals control its behavior: mode (MD), carry-in (CI), and the 
four select lines (S3 .. SO). The MD line chooses between the logic 
(MD = H) and the arithmetic (MD = L) modes. In the logic mode, 
the device ignores the carry-in line. Logic operations are performed bit 
by corresponding bit, and the carries are irrelevant under these condi­
tions. 

For arithmetic operations, the carry-in is relevant, and CI is presented 
to the ALU by the carry select (CSL) IC. An aspect of this ALU's 
carry lines, both CI and CO (carry-out), is that they always possess the 
opposite activity level ascribed to the data ports-that is, when data is 
treated as active high, carries must be treated as active low, and vice 
versa. 

The A = B equality-detection output is of the open-collector type, to 
facilitate wire-ANDing of these outputs when several ALU's are used 
in parallel. Naturally, it requires the use of a pull-up resistor to func-



STU Pl DD V- A Microprocessor Analysis and Construction Project 165 

Carry-In Selection Control 

ALU Shift Operation 

ALU Flag Generations 

T, THE TEMPORARY REGISTER (U4) 

Need for a Load/Shift T Reg­
ister 

tion correctly. This output can also be used, in conjU}lction with the 
CO line, for the detection of inequalities. The sign flag is the most sig­
nificant output bit of an array of ALU's. Since we are using only one 
ALU, this is F3 in our case. 

As noted in Figure 5-5, the signals we use to control the ALU are 
MD, S3, S2, S 1, SO, CS 1 and CSO. The last two indirectly affect the 
ALU during arithmetic operations, by controlling the selection of the 
signal level to be applied to CI and therefore the ALU behavior in 
the arithmetic mode. CSL is a 74LS153 dual 4-line-to-1-line data 
selector, fully described in your TTL data catalog. As employed here, 
its selection-control (address) lines may choose one of the four fol­
lowing items for presentation at its output: An unconditional logic 
high, an unconditional logic low, the conditional value of carry-out, 
or the conditional value of the previously stored carry flag. The one 
of these four actually selected by the control system is presented to 
the ALU's carry-in line, CI. This repertoire permits both the abso­
lute control of the value of CI, as well as its conditional control, as 
shown in Table 5-1. This CI selection process plays a major role in 
the creation of instruction sets. 

Table 5-1 
Carry In (Cl) Selection Control Signals 

CSJ 
L 
L 
H 
H 

cso 
L 
H 
L 
H 

Source of CI 
Low logic level 
CO of the ALU 

CF bit of Flag register 
High logic level 

Left-shift operations, either circular or through the previous carry, may 
be demonstrated. While far from the flexibility of a full-blown micro­
processor, these operations provide sufficient illustrations of real prac­
tice to be educationally useful. Shift operations are not generally 
performed with the ALU in practice. We shall discuss shift operations 
further when we come to the T register. 

While we are able to derive several important flags with the simplified 
design used here, the overflow flag is omitted to reduce the IC count. 
In two's-complement (TC) notation, an overflow may be detected if 
the carry into and the carry out of the sign bit are different. An Exclu­
sive-OR gate can detect this difference nicely, but we simply do not 
need another IC here for tutorial purposes. The flag signals generated 
by the ALU are the Carry Out, the Sign, and the A = B flag signals. 
These are stored in the Flag register. 

A 74LS 173 is selected as the T register because its built-in controls for 
tri-stating the output and for clock-enabling register loads simplify our 
tasks. Actually, a generalized load and shift register, such as the 
74LS194, would better illustrate the type of capabilities utilized at this 
location. The 290J's Q register is comparable to the 194, which unfor­
tunately does not possess output and clock-enabling controls. In con-



166 

T Register Control 

DEVICE CONTROL AND NOMENCLATURE 

junction with an internal multiplexing scheme, generalized shift 
operations are thus effected, external to the 290l's ALU. These genera­
lized shift and load features are found in the 194. Exercises at the end 
of this chapter deal with this more generalized case, implementation of 
which would increase STUPIDD's chip count too much. 

Figure 5-6a shows the 173. Its two clock-enable lines are tied to the sig­
nal from the control system. @LT (Load T). The output-enable inputs, 
OE, are tied to the control line, @ET (Enable T). The outputs Q3 .. 
QO are thus fed onto the time-shared internal portion of the DBUS, 
under system control. Input data is presented by the FBUS to T, which 
will be parallel loaded when it is clock-enabled. 

MAR, THE MEMORY ADDRESS REGISTER (U5) 

MAR Register Control 

D MA -like Operational Aspects 
of MAR 

FL. THE FLAG REGISTER (U6) 

Flag Storage 

Figure 5-6b presents the logic diagram of the memory-address register, 
MAR. MAR's function is only to select the location (address) in pri­
mary memory the system wishes to communicate with. It does not 
handle any data. This, too, is a 173 parallel-load register, with the 
clock-enabling line, @LMAR, coming from the control system. The 
restrictions we have placed on STU PI DD are particularly evident here. 
Four address lines provide an address space of only sixteen memory 
locations-barely adequate to illustrate the execution of basic instruc­
tions and programs of a microprocessor. Yet, if we can generate these, 
there will be very little that we don't understand about the operation of 
a commercial processor. 

An interesting side point is that the tri-state control of MAR is ena­
bled by the @EMD signal during normal operation. In a production 
model, this line will be controlled by the control system. This feature is 
useful in direct memory access, or DMA, operations. The DMA proce­
dure lets a processor electrically isolate its own data, address, and 
appropriate memory-control lines from the interface buses, thus per­
mitting another external device to utilize the memory system. The 
external device must now provide data, address, and control signals to 
the memory. Thus, here we see fundamental operational features of a 
processor system that supports DMA operations are present in this 
system. If the control system is also built, MAR can be disabled by 
@EMD for down-loading demonstration programs into the memory 
system. This is not normal operation, but it will reveal some important 
aspects of actual DMA operation. 

The stored status flags used in STUPIDD are the carry, sign, and equal 
flags, referred to as CF, SF and EF, respectively. During some ALU 
operations, it is important to save the status of the present value of 
these flags in the flag register, FL. These stored values may subse­
quently be tested and used to control the flow of either an instruction 
or a program; this important aspect of systems operation will be illus­
trated later. 



STUPIDD V- A Microprocessor Analysis and Construction Project 167 

CK 

'"ti. 

DBUS 

6 5 4 3 
Qs • Q, Qo E2 

T El 

@LMAR 

6 

5 

@LF 

TO CONTROL 
SYSTEM 

CP 74LS173 
7 MR U4 OE2n---

15 D; D D, oOEI 

11 

12 

13 

14 

D, 
D, US 

Q, }ADR 
Q, 4 BUS 

11 12 13 14 

FBUS 

a. T Register 

@LIR 

E2 
El 

4 

FBUS 
CK 

o. Q. 
74LS173 
CP MR 

1u 15 

b. MAR Register 

TO 
CONTROL 
SYSTEM 

NC 

6 

Q, Q, Q, 

IR 
74LS173 

3 

c. FL Register 

3 

Qo OE2 
OEI 

CK --1> 7 U7 
CP MR MR 

MOD 

Figure 5-6 
Register Logic Diagrams 

Program-Status Words 

Minimal Sets of Flags 

Need for Flag-Bus Inteifaces 

D., 0, D, Do 

II 12 13 14 
D, D, D, o. 

DBUS 

d. IR Register 
CONTROL BITS: LIR 

This is not an optimal selection of flagged conditions (flags are some­
times referred to as condition codes or are part of the so-.called pro­
gram-status word), but it is adequate to illustrate the operational use of 
flags. 

An often-used minimal set of flags consists of the 290 l's sign, carry, 
zero, and overflow flags. FL is implemented with yet another 173 IC. 
The control system provides the clock-enabling signal @LF to cause 
the flag information to be stored, as illustrated in Figure 5-6c. 

In a marketable system, the FL register would be interfaced to the data 
bus. The reason for this is that, after a call or interrupt, these flags may 
have to be saved on the stack in memory as part of the vital statistics 
of the currently running process. The ways to accomplish this are the 
same as in saving the PC, already discussed in Chapter 3. While we do 



168 DEVICE CONTROL AND NOMENCLATURE 

not do this here, it is important to recognize the real need for these 
additional capabilities. 

IR, THE INSTRUCTION REGISTER (U7) 

Function of the Instruction 
Register 

IR Register Control 

LI R Signal and Major 
Changes of State 

THE EXTERNAL WORLD 

Memory-Mapped versus 
Hardware I I 0 

The instruction register, IR, captures the current instruction from the 
program stream in memory at the end of the instruction-fetch phase of 
the cycle of computation. During the entire execution phase of the 
complete cycle, the information in IR provides thef control system with 
its current instructions. IR, it was noted, is actually a part of the con­
trol systertl but is generally portrayed as belonging to the CPU. 
Another 173 is utilized to implement the OP code portion of IR, whose 
logic-connection diagram is presented in Figure 5-6d. The data inputs 
to IR are the internal DBUS, bits D3, D2, DI, and DO. 

The IR does not use bit D3; this bit really goes to the MOD flip-flop in 
the control system, to be discussed later. This MOD bit, though, is the 
part of the instruction word that controls operand address modifica­
tion (i.e., the indirect or indexed addressing modes) whose systems 
operation will be demystified later. The control-system signal that 
affects IR is @LIR. This signal enables the instruction word from 
memory, which sits on the DBUS, to be clocked into the IR register 
during the IF phase. 

An important aspect of how STUPIDD is organized (mentioned now 
to avoid misunperstanding later) is that @LIR is also used to enable 
the loading of the IF flip-flop in the control system, at the same time as 
IR, only to reduce the required amount of hardware. Therefore, 
switching be.tween the IF and EX phases of operation is compatible 
with-and occurs simultaneously with-the loading of IR in this sys­
tem. It should be emphasized now that the OP and MOD fields of IR 
are ignored by the control system during the IF phase of operation. 
Therefore the loading of garbage into the IR at the end of the EX 
phase has no effect on our system's operation during IF. 

These devices constitute the minimal set o.f registers and an 
ALU found in most portrayals of _a CPU's block diagram (Figure 
5-2). Their coordinated system behavior is typical of what occurs in 
any CPU, yet this information can be studied using only these 
seven IC's as a foundation. Our challenge, then, is to gain an 
understanding of how the typical CPU behaves by learning the sys­
tems behavior of only seven IC's. With the help of the TTL data 
catalog, we can do this. 

The next few devices represent a minimal external 1/0 interface to 
a CPU. Expanded descriptions of actual interfaces are given in the 
material that follows, as appropriate. External devices fall into two 
categories: the memory system and the peripheral devices (other 
external physical devices). Some architectures, notably those of the 
PDP-11 and .the 68000 class of CPU's, treat all the external envi­
ronment as memory addresses. That is, an external device responds 



STUPIDD V- A Microprocessor Analysis and Construction Project 169 

to the same signals as main memory, when addressed. This method 
of handling I/ 0 is referred to as memory-mapped I I 0. The second 
approach, called hardware I I 0 organization, supports separate I/ 0 
addresses and operations for memory and peripheral devices. This 
is the method used here. It requires the control system to provide 
the control signals that distinguish between memory and peripheral 
operations. Further, the instruction set must now contain specific 
110 instructions for peripheral communications, not just memory 
reads and writes. 

In what follows, our input port, IN, can be thought of as 
information coming from a keyboard, from a floppy disk, or what­
ever. The single output, OUT, represents information being trans­
ferred to a CRT display, to a printer, or to a disk system. A 
production CPU would have far more sophisticated addressing, 
test, handshake, and control signals to support data trarlsfers. At 
this point, however, our purpose is to show, in the simplest manner 
possible, how a CPU handles the flow of information. Therefore, 
we mention again that buffer BFO (shown in phantom in Figure 5-
1) is omitted. BFO would be a bidirectional bus-driver interface, 
implemented with circuitry such as that in the 8T26/28 IC, studied 
in Chapter 2, or in the more modern 74LS243 IC. Consult your 
TTL data book for further details on this IC. The following IC's 
are external to the CPU but represent the type of environment that 
it interfaces to. 

OUT, THE OUTPUT REGISTER (Ul I) 

0 UT Register Bus Interfaces 

OUT Register Control 

The output register, OUT, consists of another 74LSI 73 4-bit register. 
Its inputs are attached to the portion of the DBUS that is external to 
the CPU. Its outputs, which are tri-statable, feed the display bus, DIS­
BUS, as shown in Figure 5-7a. 

The clock-enabling control signal, @LO, governs the clocking of data. 
The tri-state output is controlled by the signal @DSOUT, which ema­
nates from the one-of-eight display-select decoder in Figure 5-7b. 
Here, OUT implements a simple output operation Whose results may 
be presented to an LED display. This display (U 18) is also used to 
observe the status of many other key areas within STUPIDD. The 
complete display circuitry is presented in Figure 5-7b. 

IN, THE INPUT INTERFACE (UlO, Ul2) 

IN Switch Control The input consists of a set of switches (U 12) buffered by half of a 
74LS244 tri-state buffer (UIO), with the signal, @El, provided by the 
control system (via a decoder) to grant it access to the external 
data bus, DBUS. It too is a device external to the CPU. The DIP 
switches used are fed through a resistor pull-up package from the 
power supply. These DIP switches are single-pole, single-throw 
(SPST) devices that either present the supply voltage to the buffer 
or shunt it to ground, using the current-limiting resistors in the 
typical manner illustrated in Figure 5-7a. Note that the other half 
of the 244 is used to present the signals of the DBUS to the DIS-



170 

DBUS 

4 

12. 14. 16, 18 

DEVICE CONTROL AND NOMENCLATURE 

I I. 13. 15. 17 

TO EXTENDED 
DlSBUS 

SEE 
DISPLAY 

LOGIC 
11, 12, 13, 14 

110 3: 0 '----<n OE 

,--~~~~U~l~O~~~---. 

74LS244 9· 7· 5· 3 
v,.,. 4 EM 

M 
U9 

2114 

ADR BUS 
4 4, 7, 6, 5 

A9: 4 GD 
15, 16, 17, 1. 2, 3 

Figure 5-7a 
Logic Diagrams: External 
World 

9 

M, THE MEMORY SYSTEM (U9) 

Memory Control 

18 

20 INBUF DBUF OE o--19"-------<@DSDBUS 
GD U 16--15 

4. 7 '----ii------;:;,;;'----' - 10 Kr! 8. 6. 4, 2 

SW/4POS 
JN 
U12 

TYP. 

l a. External Interface 

BUS for display. This action is controlled by the signal DSDBUS. 
U 12 is an eight-position DIP switch, half of which is used by an 
operator to set inputs that can be stored either in memory or in the 
CPU's registers. Thus, in this basic CPU, program loading and reg­
ister initializations are established by the operator, by hand opera­
tion of these switches. If the control system is constructed, 
demonstration programs conveniently stored in PROM may be 
downloaded automatically with far greater ease. 

Main memory is embodied in an Intel 2114 4 x 1024 static-memory­
array IC, with a common input/output port, as shown in Figure 5-
7a. Why use a 1024-word memory in a system with 16 words of 
address space? First, to save money-this IC is readily available and 
economical, too. Second, this permits expanding the address space as 
a project. 

The load-enable line @LM, which controls the @WEM memory-input 
pin, is clock-qualified by the US decoder IC, soon to be discussed. The 
reasons for this arrangement previously presented in the case of the 
register array R apply here as well-to prevent accidental noise­
inspired writes that may occur during system state transitions, when 
critical control lines may not be stable. As shown in the figure, mem­
ory chip select (CSM) of this IC is controlled by either @EM or the 
clock-qualified @LM with the use of the NANO gates. If CSM is not 
active, the device does not respond to any of the other control signals. 
The memory system also uses @LM and @EM to control the writing 
and reading of memory and to control tri-state access to the DBUS. 



STUPIDD V- A Microprocessor Analysis and Construction Project •, 171 

FROM ouT+-0,0,0,o. 
DISBUS 

TO DBUS 

20 

Figure 5-7b 

13 
2 
3 

9 7 s 3 

N.C. 

TO OEOF DBUS 
NC-,9 141 12 11 TO OE OF OUT 

--------, j_~;Lli _Q_i ill 
REF I ~ DSLCT 
U23. ~ ~ ~ ~ I 74LS138 8 

4o-- "';. ..,.. ,.. : u 16 ~ 
-+-~-1--1--' 

2 1 2 3 6ysv4 

J; 

b. Extended Display Logic 

SWITCH 
POSITION 

0 
I 
2 
3 
4 
5 
6 
7 

Ul7 
WHAT IS 

DISPLAYED 
OUTPUT REG. 
NC 
INSTRUCTION REG. 
FLAG.REG. 
ADDRESS BUS 
FBUS 
BBUS 
DBUS 

Logic Diagrams: External 
World 

Note particularly, in studying the data sheets for this IC presented in 
Figure 5-11, that this IC tri-states its own internal outputs during 
writes and when the chip is not selected. This is what makes the com­
mon 110 port of this IC so practical. A careftil study of the specifica­
tions for this IC is in order. It is typical of a basic semiconductor static 
RAM. Its simple timing diagrams serve as stepping-stones to learning 
about the timing relationships of the more complex and larger 
dynamic RAMs. 

EXTENDED DISPLAY LOGIC (Ul3 THROUGH Ul8) 

Di.1p/ay Bus Interfaces 

Displav Selection 

The previously mentioned display control logic is presented in Fig­
ure 5-7b. U 13 .. U 15 are 74LS244 tri-state buffers, consisting of two 
separate sets of four buffers each. Two separate tri-state enables pro­
vide independent output control for each set of four. These display 
enables come from the 74LS138 one-of-eight decoder (Ul6) that is 
driven in turn by a user-operated binary coded decimal (BCD) 
switch (Ul7). 

The user selects the particular set of displayable signals that are 
desired. The observable sets of signals are the aforementioned DBUS 



172 DEVICE CONTROL AND NOMENCLATURE 

FROM 8 GD 
CTRL SYS E,. 
@EMD >--, ---ui 

I 
(TIETOGND !fT 
IF CTRL SYS 
NOT CONSTRUCTED) 

N.C. 
(~) 

El ~ 

3 2 
Al,. Al/J,. 

DECl/J 
DBUS AC.CESS 

74LS139 
U8 

@ET 

LI u 

Vee 
13 14 

Als A-s 16 

DEC I 15 
LOAD ENABLE E8 

CK 

.8 
12 

N.C. 
(~) @1.M 

@El----' @EM @LFL 

Figure 5-8 
DBUS Access and Load­
Enable Decoders 

TIL 311 LED Display 

@LO 

and OUT register, as well as the BBUS, the FBUS, the outputs of 
MAR, the FL register and IR register. The IR register consists of the 
MOD and OP code fields. 

The MOD field is not displayed unless the control system is built. All 
of these may be examined, one at a time, in the TIL 311 hex display, 
Ul8. The Texas Instruments TIL 311 is a latch, decoder, driver, and 
hexadecimal LED display in a single package, as shown in the data 
sheets of Figure 5-10. Here, its clock is made permanently active, so 
that whatever is on the DISBUS is passed through its transparent latch 
and is immediately observable on the display. Ul3 has a spare set of 
inputs and an enable line, which are used only if the control system is 
constructed in the downloading of demonstration programs stored in 
PROM. 

DECO AND DECI: DBUS SOURCE AND CLOCK-ENABLE CONTROLS (U8) 

Register Enable Controls 

DBUS Source Control 

U8 is a dual 2-line-to-4-line decoder with separate enables for each 
half. It is required to decode the two DBUS-access signals (El, EO) and 
the two load-enable controls (LO, LI) that strobe (clock) the memory, 
the flag, and the out registers. These encoded signals originate in the 
control system. Notice that, in DECO, the DBUS access half, register 
T, the input buffer of the IN switches, and the memory IC all interface 
to the DBUS. The use of the U8 decoder, which has active-low out­
puts, is illustrated in Figure 5-8. 

Note that the DECO half enforces mutually exclusive access to the 
DBUS. This device is a part of a control system, shown here so that the 
CPU and its external-environment control signals can be defined and 
used in their final form. Two signals (El and EO) from the control sys­
tem select which single device will be master of the DBUS. The use _of 
this device is not mandatory, but it avoids any possibility of a bus­
access conflict, due to its one-of-four active nature. Equally important, 
it shortens the required control-word size coming from the control sys-



STUPIDD V~ A Microprocessor Analysis and Construe/ion Project 173 

DMA Aspects of DEUS Con­
trol 

CPU SYSTEM SUMMARY 

System Schematics 

tern's ROM. This reduces the word size needed for the control store 
memory. Its use illustrates the difference between horizontal and verti­
cal microprogramming. 

In vertical microprogramming, the memory size of the control 
word is shortened and encoded, as here. Subsequent decoders restore 
the separate control signals required. These important considerations 
will be enlarged upon later. Table 5-2 summarizes the decoded signal 
names of DECO: 

Table 5-2 
DBUS Source Control Decoding 

El 
L 
L 
H 
H 

£0 
L 
H 
L 
H 

Signal and Source Names 
@ET, enable T register 
@EM, enable Memory 

@El, enable Input 
N.C., enable nothing 

The "not connected" (N.C.) condition implies that nothing is being 
sourced to the DBUS by the CPU. When nothing is enabled onto the 
DBUS by the CPU, OMA devices may be given control of the data 
bus by the CPU, using the N.C. line as an external OMA grant signal. 
This illustrates how a CPU can relinquish use of its data bus by tri­
state control for a OMA operation when DECO's inputs are HH. We 
previously noted how MAR can be made to relinquish use of the 
address bus. Thus, the stuff that OMA consists of is slowly becoming 
apparent as we proceed. 

Table 5-3 displays the decoding of the original control-system 
signals LO and LI for the vertical control of selected sinks. 

Table 5-3 
Load-Enable Decoding 

Li 
L 
L 
H 
H 

LO 
L 
H 
L 
H 

Signal and Sink Names 
@LM, Load Memory 
@LFL, Load Flags 
@LO, Load Output 
N.C., load nothing 

We have now discussed the basic nature of the IC's and the associated 
control signals, to be employed in fashioning STUPIDD's CPU and 
external environment. The latter consists of a memory system, an 
input port, an output port, and a display system. A complete sche­
matic of the entire CPU system is shown in the CPU schematic pro­
vided with this book. In this schematic, all the CPU control signals 
emanate from DIP switch packages containing eight switches e~ch. 
These switches will be replaced by the signals from the control system 
itself later, when we investigate it. That is, in our first phase of control­
ling STUPID D's behavior, we concern ourselves only with the control­
store signals, as simulated by our own setting of the switches. We can 
then observe their effect on the CPU and on the external environment. 
The control system (shown in the schematic) is not complex; we shall 



174 

4.7KO 
TYP. 

CK 9-JSV 

+ 

DEVICE CONTROL AND NOMENCLATURE 

NOTE: 
USE HEAT SINK 

7805 

c 

+SY, Yee 
o----....i~ 

a. CLOCK PULSE CIRCUIT b. THREE-TERMINAL REGULATOR 

SPST 
N.O. 

l 

I TO 3 Si DIODES, 
I AMP RATING 

~ Y, .• (5Y ± 112 Y) 

J•~----GND 

c. MASTER RESET 
d. USE OF 6Y 

LANTERN BATTERY 

Figure 5-9 
Clock, Reset, and V cc Details 

Manual Clock Circuit 

study its construction and work with it in the next phase of our prog­
ress. In the meantime, we are the control system, learning how to under­
stand its behavior. 

Once the control signals are established either by ·hand selection of 
switches or by control system operation, the system can be caused to 



STUPIDD V- A Microprocessor Ana(rsis and Construction Project 175 

POWER SUPPLY 

respond by manually issuing a clock pulse. The circuitry for accom­
plishing this, shown in Figure 5-9a, is included in the design and wire 
lists that follow. The clock is a manually operated single-pole, double­
throw (SPDT) momentary-contact push-button switch, interfaced to 
the basic latch formed with two NAND gates and used as a bounce 
eliminator. The output of this circuit, also shown in the full schematic, 
gives us the clock signals CK and /CK. 

The simplest power supply for operating STUPIDD, shown in Figure 
5-9d, consists of a 6V camping-lantern battery in series with about two 
silicon diodes of I amp current rating. Be sure ta use the right number 
of diodes to produce a voltage at the applied output between 4112 and 
5112 volts under load; the output vqlt&ge of these batteries varies with 
age; up to three diodes may be necessary. This economical arrange­
ment does not drain the battery soon and has worked very well for 
home-brew experimenting. Figure 5-Qb contains a suggestion for a 
power-supply schematic consisting of a 9~volt transistor or a car bat­
tery and a three-terminal regulator. fhe current drain on a 9V transis­
tor battery depletes it in short order, but it has worked for quick 
demonstrations of the CPU, such as at job interviews. The three-termi­
nal regulator requires at least a 9V source-preferably 11 or 12 volts­
to operate well. In any event, expensive power supplies are not 
required. 

For those with little or no hardware experience, the greatest 
amount of learning is derived from the wire-wrap construction project 
described next. Handling each IC, consulting the d~ta catalog, and the 
sense of achievement that comes from making a significant hardware 
system work all add up to a significant educational experience. Those 
with a good deal of hardware-construction background, of course, may 
wish to use the printed circuit (PC) board approach: 



176 

Figure 5-10 

DEVICE CONTROL AND NOMENCLATURE 

TYPE TIL311 
HEXADECIMAL DISPLAY WITH LOGIC 

BULLETIN NO. OL S 7611653, MARCH 1972-REVISEO MARCH 1976 

SOLID-STATE VISIBLE HEXADECIMAL DISPLAY WITH 
INTEGRAL Tn CIRCUIT TO ACCEPT, 

STORE, AND DISPLAY 4:BIT BINARY DATA 

• 0.300-lnch-High Character • Wide Viewing Angle 

• High Brightness • Internal TTL MSI Chip with Latch, Decoder, and Driver 

• Left-and-Right-Hand Decimals • Operates from 5-Volt Supply 

• Separate LED and Logic Power • Constant-Current Drive for Hexadecimal Characters 
Supplies May Be Used 

• Easy System Interface 

mechanical data 
The display chips and TTL MSI chip are mounted on a header and this assembly is then cast within a red, electrically 
nonconductive, transparent plastic compound. Multiple displays may be mounted on 0.450-inch centers. 

<i Of PIN 1---T· 

(1!)1!,·j-

Cl-'00 

1 

·;.~;~c .. - l- ·-cJ J 

OOlt.MAI<. 

l_~ ~-
r-r­
t--+ e,. 

tlUll!:iMAX I 
~" ,,.,, 

OOj/O 

~,, 

~ .. 

4 ;. 
0085MAX 

0300 
0010 

0 100 TP 
12PLACES 
!S-NuteAf 

R -. 0 149 
iiTil 

·:t~~~G-r i :::__t 

'TJ I 
PIN 1 LEO SUPPLY VOLTAGE 
PIN 2 LATCH DATA INPUT B 
PIN 3 LATCH DATA INPUT A 
PIN 4 LEFT DECIMAL POINT CATHODE 
PIN 5 LATCH STROBE INPUT 

-"""f1'4- 0 010 0 00:? Al.l PINS 
!S.eNote8) 

PIN 6 OMITTED 
PIN 7 COMMON GROUND 
PIN 8 BLANKING INPUT 
PIN 9 OMITTED 
PIN 10 RIGHT DECIMAL POINT CATHODE 
PIN 11 OMITTED 
PIN 12 LATCH DATA INPUT D 
PIN 13 LATCH DATA INPUT C 
PIN 14 LOGIC SUPPL y VOLTAGE, Vee 

NOTES: A. The true-position pin spacing is 0.100 between centerlines. Each pin centerline is located 

within ±0.010 of its true longitudinal position relative to pins 1 and 14. 

B. Lead dimensions are not controlled above the seating plane. 

C. Dimensions associated with position of LED's are between centerlines and are nominal. 

0. All dimensions are in inches unless otherwise specified. 

TEXAS INSTRUMENTS 
INCORPORATED 

POST OFFICE BOX SOU • DALLAS, TIXAS 79222 

TIL311 Hexadecimal Display Data Sheet 
(For educational purposes only. Data may be old and obsolete. Courtesy of Texas Instruments, Inc. © 1976, 
Texas Instruments, Inc.) 



STU Pl DD V- A Microprocessor Analysis and Construction Project 177 

Figure 5-10 

TYPE TIL311 
HEXADECIMAL DISPLAY WITH LOGIC 

description 

This hexadecimal display contains a four-bit latch, decoder, driver, and 4 X 7 light-emitting-diode (LED) character with 
two externally-driven decimal points in a 14-pin package. A description of the functions of the inputs of this device 
follows. 

FUNCTION 

LATCH STROBE INPUT 

BLANKING INPUT 

LATCH DATA INPUTS 
(A, B,C,D) 

DECIMAL POINT 
CATHODES 

LED SUPPLY 

LOGIC SUPPL y (Vee) 

COMMON GROUND 

PINNO. 

5 

8 

3.2. 13, 12 

4, 10 

14 

7 

DESCRIPTION 

When low, the data in the latches follow the data on the latch data inputs. 
When high, the data in the latches will not change. If the display is blanked 
and then restored while the enable input is high, the previous character 
will again be displayed. 

When ·high, the display is blanked regardless of the levels of the other 
inputs. When low, a character is displayed as determined by the data in the 
latches. The blanking input may be pulsed for intensity modulation. 

Data on these inputs are entered into the latches when the enable input is 
low. The binary weights of these inputs are A= 1, B = 2, C = 4, D = 8. 

These LEDs are not connected to the logic chip. If a decimal point is used, 
an external resistor or other current-limiting mechanism must be connect· 
ed in series with it. 

This connection permits the user to save on regulated Vee current by 
using a separate LED supply, or it may be externally connected to the 
logic supply (Vccl. 

Separate Vee connection for the logic chip. 

This is the negative terminal for all logic and LED currents except for the 
decimal points. 

The LED driver outputs are designed to maintain a relatively constant on-level current of approximately five 
milliamperes through each of the LED's forming the hexadecimal character. This current is virtually independent of the 
LED supply voltage within the recommended operating conditions. Drive current varies slightly with changes in logic 
supply voltage resulting in a change in luminous intensity as shown in Figure 2. This change will not be noticeable to 
the eye. The decimal point anodes are connected to the LED supply; the cathodes are connected to external pins. Since 
there is no current limiting built into the decimal point circuits, this must be provided externally if the decimal points 
are used. 

The resultant displays for the values of the binary data in the latches are as shown below. 

•• • ••• ••• • •••• • • •••• •• •• •• ••• • •• ••• • ••• • ••• • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • •• •• • ••• ••• • •• • •• ••• • ••• • •• . • • • •• ••• • • • • • • • • • • • • • • • • • • • • • • • . • . • • • • . • . • . • . • • • • • • • •• • • ••• ••• • ••• •• • •• .. • • ••• • •• • •• •••• • 
0 2 3 4 5 6 7 B 9 10 11 12 13 14 15 

TEXAS INSTRUMENTS 
INCORPORATED 

POST OFFICE •ox $012 • DAio.LAS, TEXAS 75112 

TIL311 Hexadecimal Display Data Sheet 
(For educational purposes only. Data may be old and obsolete. Courtesy of Texas Instruments, Inc. © 1976, 
Texas Instruments, Inc.) 



178 DEVICE CONTROL AND NOMENCLATURE 

TYPE Tll311 
HEXADECIMAL DISPLAY WITH LOGIC 

functional block diagram 

{

A 

LATCH B 
DATA 

INPUTS : 

4-BIT 
LATCH 

LATCH 
STROBE 
INPUT 

LOGIC 
SUPPLY 

DECODER 

LEFT 
DECIMAL 

POINT 
CATHODE 

LEO 
SUPPLY 

RIGHT 
DECIMAL 

POINT 
CATHODE 

absolute maximum ratings over operating case temperature range (unless otherwise noted) 

Logic Supply Voltage, Vee (See Note 1) 7V 
7V 

5.5 v 
20mA 

0°e to 85°C 
-25°C to 85°C 

LED Supply Voltage (See Note 1) 
Input Voltage (Pins 2, 3, 5, 8, 12, 13; See Note 1) 

Decimal Point Current 
Operating Case Temperature Range (See Note 2) 
Storage Temperature Range . . . . . . . 

NOTES: 1. Voltage values are with respect to common ground terminal. 
2. Case temperature is the surface temperature of the plastic encapsulant measured directly over•the integrated circuit. Forced-air 

cooling may be required to maintain this temperature. 

recommended operating conditions 

Logic Supply Voltage, Vee . 
LED Supply Voltage, VLED 
Decimal Point Current, IF(DP) 
Latch Strobe Pulse Width, tw 
Setup Time, tsetup (See Note 3) 
Hold Time, thold (See Note 4) 

MIN NOM MAX UNIT 
4.5 5 5.5 v 

4 5 5.5 v 

40 
50 
40 

5 mA 
ns 
ns 
ns 

NOTES: 3. Minimum setup time is the interval immediately preceding the positive-going transition of the latch strobe input during which 
interval the data to be displayed must be maintained at the latch data inputs to ensure its recognition. 

4. Minimum hold time is the interval immediately following the positive-going transition of the latch strobe input during which 
interval the data to be displayed must be maintained at the latch data Inputs to Gnsure its continued recognition. 

TEXAS INSTRUMENTS 
, INCORPORATED 

POST OFFICE BOX 5012 • DALLAS, TEXA8 79222 

Figure 5-10 
TIL311 Hexadecimal Display Data Sheet 
(For educational purposes only. Data may be old and obsolete. Courtesy of Texas Instruments, Inc. © 1976, 
Texas Instruments, Inc.) 



STUPIDD V- A Microprocessor Analysis and Construction Project 179 

[ 
[ 

inter 2114A 
1024 X 4 BIT STATIC RAM 

2114AL·1 2114AL·2 2114AL·3 2114AL·4 2114A·4 2114A·S 

Mix. AcceH Time (n•> 100 120 150 200 200 250 
Mix. Current (mA) 40 40 40 40 70 70 

• HMOS Technology • Directly TTL Compa11ble: All Inputs 

• Low Power, High Speed and Outputs 

• ldentlc.1 Cycle and Acceu Times • Common Data Input and Output Using 

• Slngle +SY Supply ±100/o Three-State Outputs 

• High Density 18 Pin Package 
Available in EXPRESS • • Completely Static Memory • No Clock - Standard Temperature Range 

or Timing Strobe Required - Extended Temperature Range 

The Intel• 2114" is a 4096-bit static Random ACC811 Memory organized as 1024 words by 4-bits using HMOS, a high per­
formance MOS technology. It UHi fully DC stable (static) circuitry throughout, In both the array and the decoding, therefore it 
requi1'91 no clocks or ref1'91hing to operate. Data aCC811 is particularly simple since address setup times are not required. The 
data la reed out nondestructively and hu the ume polarity u the input data. Common input/output pins are provided. 

The 2114A Is designed for memory applications where the high performance and high reliability of HMOS, low cost, large bit 
storage, and simple interfacing are important design objectives. The 2114A is placed in an 18-pin package for the highest 
possible density. 

It la directly TTL compatible in all respects: inputs, outputs, and a single +5V supply. A separate Chip Select (CS) lead allows 
euy selection of an individual package when outputs are or-tied. 

PIN CONFIGURATION LOGIC SYMBOL BLOCK DIAGRAM 

~Vee ... Yee ... ~GNO ... .. , .. . 110, ... MEMORY ARRAY ... ... MROWS 

... MCOLUMNS 

"'• ... ''°' ... llO, 
.. . 
... ... 

''°' ... 110, 

... 
'"°' 

.. , 
•.io. ... 110, 

ONO ... 
WE cs 

PIN NAMES 

~~ ADDRESS INPUTS "c.t_ POWER ( +!M 0 • PIN NUMllEAS 

WE WRITE ENABLE GNDGROUND 
l!I CHIP SELECT 
110,-110. DATA INPUT/OUTPUT 

INTEL COAPOftATIOll ASSUMES NO RESPONSIBILITY FOR THE USE OF ANY CIRCUITAYOTHEATHANCIRCUITRV EMBOOIED IN AN INTEL PffOOUCT NO OTHER CIRCUIT PATENT LICENSES ARE IMPLIED 
ofNTELCOAPllflATIOll. t9n. 1979 DECEMBER 1979 

Figure 5-11 
2114A (1024 x 4-Bit) Static RAM Data Sheet 
(Reprinted by permission of Intel Corporation. © 1983, Intel Corporation.) 



180 DEVICE CONTROL AND NOMENCLATURE 

2114A FAMILY 

ABSOLUTE MAXlt.fUM RATINGS* 
Temperature Under a1u .................. -1o•c to ao•c 
Storage T4ft1perature •••...•............. ..fS"C to 1so•c 
Voltage on any Pin 

With Respect to Ground •....•.....•..•... -3.SV to +7V 
Power Dillipatlon . . .. .. . . . . . . .. .. . . . . . . . . . . . . .. .. . 1.ow 
D.C. Output c;:urrent ................... , ............ SmA 

•coMMENT: $tresaes abova tl!Osa listed under "Abaoluta 
Maitimum R1tings" may c1use parmafllnt d1m1q• to thadavicl. 
Thia Is a atrNS rating only and functional operation ofthaMicl 
at than or any othar conditions abo~ thoH indicatfld in tha 
oparatlonal nction1t of this spac/fic1tlon /8 not impl/ad. Ex· 
p(Jsura Is not Implied. E1tpo1ura to abllolula maitimum rating 
conditions for altlanded pariods may a~I de'llic• reliability. 

O.C. AND OPERATING CHARACTERISTICS 
TA = o•c to 1o•c. Vee = sv ± 10lllt. unless otherwise noted. 

2114AL·1/L·2/L·3/L·4 
SYMBOL PARAMETER Min. 

I ILi I Input Load Current 
(All Input Pins) 

111,.ol 110 Leakage Current 

Ice Power Supply Current 

V11.. Input Low Voltage -3.0 

V1H Input High Voltage 2.0 

101.. Output Low Current 4.0 

loH Output High Current -2.0 

105121 Output Short Circuit 
Current 

NOTE: 1. Typical values are for fA;o:2f>°C and Vee ... 5 OV. 
2. Duration not to exceed 1 second. 

CAPACITANCE 
TA= 25°-C, f = 1.0 MHz 

SYMBOL TEST 

C110 Input/Output Capacitance 

C1N Input Capacitance 

Typ.111 Max. 

.01 1 

.1 10 

25 40 

0.8 

6.0 

9.0 

·2.5 

40 

MAX 

5 

5 

-- -- ----------- --- .---
2114A·41·5 

Min. Typ.111 Max. Ul\llT COlllDITIOlllS 
---~------

1 µA V1111, 0 to 5.SV 

10 µA B=VoH 
V110=0to5.5 

50 70 mA Vee= max, 1110 = 0 mA, 
TA= 0°C 

-3.0 0.8 v 
2.0 6.0 v 
4.0 9.0 mA VoL' 0.4V 

-· 2.0 ·2.5 mA VoH = 2.4V 

40 mA Vour=GND 

LOAD FOR ToTD AND ToTW 

+ SV 

-~----~ 
UNIT COlllDITIOlllS . 

1.BK 

, pF i V 110 = OV 
~---------

pF V1111=0V ___ ,_,_ ______ 
100pF 

·NOTE: This par•me"' is periodically •mpled and not 100% tested. 

Figure 1. 

+SV 

A.C. CONDITIONS OF TEST 
UK 

Input Pulee Level• .................................................... 0.8 Volt to 2.0 Volt 
Dour 

Input Alee and Fall Tlmea ...................................................... 10 nsec 1K SpF 

Input and Output Timing Levels ............................ _ ......... o 8 Volts to 2.0 Volts 

";' 

Figure 2. 
Output Load ............................................... 1 TIL G1te and c~ = 100 pF 

Figure 5-11 
2114A (1024 x 4-Bit) Static RAM Data Sheet 
(Reprinted by permission of Intel Corporation. © 1983, Intel Corporation.) 



STUPJDD V- A Microprocessor Analysis and Construction Project 181 

2114A FAMILY 

A.C. CHARACTERISTICS TA= o•c to 1o•c, Vee = 5V ± 10'MI, unlesa otherwise noted. 

READ CYCLE 111 

2114AL·1 2114AL·2 2114AL·3 2114A·4/L-4 2114A·S 

SYMBOL PARAMETER Min. Max. Min. Max. Min. Max. Min. Max. Min. Mex. UNIT 

l11e Read Cycle Time 100 120 150 200 250 ns 

1. Access Time 100 120 150 200 250 ns 

tco · Chip Selection to Output Valid 70 70 'To 70 85 ns 

lcx 131 Chip Selection to Output Active 10 10 10 10 10 ns 

1010131 Output 3-state from Oeselection 30 35 40 50 60 ns 

tOHA 
Output Hold from 
Address Change 

15 15 15 15 15 ns 

WRITE CYCLE 121 

2114AL,1 ll114AL·2 2114AL·3 2114A·41L·4 ll114A·S 

SYMBOL PARAMETER Min. Max. Min. M ... Min. Max. Min. Max. Min. Max. UNIT 

twc Write Cycle Time 100 120 150 200 250 ns 

tw Write Time 75 75 90 120 135 ns 

lwR Write Release Time 0 0 0 0 0 ns 

lotw 13' Output 3-state from Write 30 35 40 50 60 ns 

tow Data to Write Time Overlap 70 70 90 120 135 ns 

IDH Data Hold from Write Time 0 0 0 0 0 ns 

NOTES: 
1. A Read occurs during the overlap of a low Cs and a high WE. 
2. A Write occurs during the overlap of a low Cs and a low WE. tw is messured from the latter of Cs or We going low to the ea~ier of Cs or We going high. 

Figure 5-11 

3. Messured at ± 500 mV with 1 TIL Gate and C, • 500 pF. 

WAVEFORMS 
READ CYCLE@ 

------••e------i -----··-----
AOORl• ------------+--'I'---

NOTES: 

3. °Wr ia lligll lor a Read Cycle. 
4. If the el low lraneition occurs simultaneously with the WE low 

tr1n1ition, the Output buffers remain in a high impedance state. 
s. wr must be high during all add•- transitions. 

2114A (1024 x 4-Bit) Static RAM Data Sheet 

WRITE CYCLE 

ADDRESS 

® 
B ~ ..... "'-'II"-------""""'"""',-...""""'""""""'"" 

(Reprinted br permission of Intel Corporation. © 1983, Intel Corporation.) 



182 CPU CONSTRUCTION PROJECT AND CHECKOUT 

CPU CONSTRUCTION PROJECT AND CHECKOUT 

RATIONALE FOR CONSTRUCTING STUPIDD 

This section contains the details of the materials, wiring lists, and pro­
cedures to construct and check out the CPU portion of the Student 
Project In Digital Design (STUPIDD). The control-system construc­
tion details are also, for the convenience of constructing the entire 
project at once, presented at the end of this section. The control system 
will be formally studied after we have had a chance to observe the 
operating principles required to control the CPU's behavior. This 
material was first developed for electronic engineering students and 
was then extended so that computer science students could participate, 
too. Computer science students with no hardware experience have con­
structed the CPU at the California State Polytechnic University, 
Pomona, during a ten-week quarter. This was done as a home assign­
ment, with only the check-out and demonstration of created microcode 
taking place in a classroom or laboratory. Although, as mentioned 
before, those with hardware experience may prefer the PC board 
approach, actual construction is pedagogically the better way for most. 
The main problem of those with only a software background has been 
"culture shock" -indeed, this is exactly what provided the motivation 
for establishing STUPIDD as a project. Besides the components, a 
hand wire-wrap tool, an inexpensive volt-ohmmeter (VOM), a 6V 
camping-lantern battery, and a kitchen table are all that is required. 

Some students who were new to hardware became inspired, mak­
ing innovative suggestions for the use and improvement of STUPIDD. 
They became hardware hackers (in a few cases, specialists) who had 
software expertise. For example, one student greatly simplified the 
design by constructing it on a prototype board for insertion into a slot 
in a personal computer. Thus, no display circuitry was required. The 
state of the registers was displayed on the CRT monitor by trace-like 
procedures after each step. Another software-oriented student inde­
pendently developed the concept for downloading a program from 
PROM into primary memory, so that the system could be brought up 
and run immediately in an automatic mode. These innovators were 
computer science students with no hardware experience. The majority 
of students came away with a thorough understanding of the machine 
they planned to base their livelihood on. In acquiring this insight, they 
also deepened their understanding of the basis of microprogramming. 
This could only enhance their job skills. 

Students, particularly those who feel out of their element work­
ing with hardware, should perform the actual construction of 
STUPIDD, not despite but because of the labor that leads to mastery 
of the wire-wrap technique. The world is changing rapidly, and the 
sweeping success of microprocessors and their programmable periph­
eral-support IC's in applications for the control of machines, instru­
ments, cars, the medical field, avionics, operating-systems 
implementation, etc., means that job qualifications should include 
some appropriate mixture of both hardware and software knowledge 
from all of us. The cost of the components can be minimized by order­
ing from a mail-order house that advertises in computer and electron­
ics hobbyist magazines. Is the project worth the cost? The answer 



STUPIDD V- A Microprocessor Analysis and Construction Project 183 

~ I N~oo~o 1 .... _o_~-~-~ Y_... ~ TIL311 

rn c 
9 

Ull Ul3 
OUT BUF2 
173 244 

Ul4 UIS 
BUF3 BUF4 
244 244 

~~ 
~EJ 

QJ UIO 
BUFI 

244 
Ul6 

DSLCT 
138 

CLOCK 
SWITCH 

SPOT 
PB 

U21 ~ Ul2 
~s_w __ -8_P_o_s~~ ~s_w __ -8_P_o_s:-----------------------------" 

Figure 5-12 
STUPIDD V CPU Wire-Wrap 
Layout and Module 
Designations 

CPU PARTS LIST 

CONSTRUCTION PROCEDURES 

depends on what touching the essence of a computer and of practicing 
real microprogramming is worth to each individual. We will also find 
that one wire-wrap project is enough. 

Figure 5-15 presents the parts list for the CPU portion of the 
STUPIDD project. All these parts are available at any electronics 
parts store. The first thing to acquire is the wire-wrap prototyping 
board specified or its equivalent. This is simply a sturdy, plain (no cop­
per) fiberglass PC board, with a rectangular array of small holes on 
0.1-inch centers. The pin spacing of IC's·and sockets are also based on 
this 0.1-inch measurement. 

The board will accept the sockets wherever we choose to place them. 
Next, drill and mount the six stand-off legs that will protect the wire­
wrap pins of the sockets from damage as we proceed. Drill holes large 
enough to accept the stand-offs. Now the single-pole, double-throw 
(SPOT) switch (item 16) can be mounted, after the PC board is drilled 
out. The SPOT switch should be placed close to one of the stand-off 
legs, to minimize sagging whenever we press the clock button. (The 
photographs of Figure 5-14, showing two different construction. pro­
jects, can serve as a frame of reference here.) 

The wire-wrap board is now ready to receive the sockets. A sug­
gested general layout is presented by Figure 5-12, although this may be 



184 

Figure 5-13 
Pin Identification and 
Numbering Conventions 

2 

3 

0 

IC 
TOP 

CPU CONSTRUCTION PROJECT AND CHECKOUT 

2 

3 

! 

SOCKET 
TOP 

D 
D 
D 

~-

modified to taste. The major consideration is whether one plans to 
construct the control system later. If so, then acquire at this· time all 
the sockets you plan to use eventually, and place them in the board 
now, to make sure of their relative spacing. The CPU project alone 
permits all CPU operations to be performed, but only manually. Com­
pleting the control system later is both informative and convenient. 
Witn the control system, STUPIDD can be operated automatically 
and its behavior observed on an oscilloscope. Relatively few sockets 
are required for the control system; their approximate layout is sug­
gested by Figure 5-40, the control-system block diagram, and by Fig­
ure 5-14a as well. The control-system parts and wire lists appear as 
Figures 5-41 to 5-51 at the end of this section. 

SOCKET ORIENTATION AND LAYOUT 

All IC's and most sockets make it easy to identify Pin 1 for the pur­
poses of wiring and insertion. Figure 5-13 illustrates this. Look at the 
IC from above, that is, with the pins down. All I C's have either a dot in 
the upper lefthand corner or a semicircular depression at the top 
center; some have both. In this position, the upper lefthand pin is Pin 
1. Pin numbering proceeds counterclockwise from this pin, as illus­
trated in the figure. Sockets are not always so uniformly identified. 
Generally, there is a chamfer at the upper lefthand corner of the socket 
to identify the Pin 1 position. Some sockets have a semicircular notch 
at top center. •f your sockets have none of these identifying marks, 
mark them with model paint or nail polish, using a toothpick so that 
the paint or polish is not carelessly placed in the contacts, to identify 
tbe upper lefihand comer (looking down, from the IC-insertion side). 
Any paint· or polish in the contacts of the sockets will cause a lot of 
grief,· so take care. 

With the sockets in place, carefully turn the board upside down. 
Tape may be used to prevent the sockets from dropping out. Place fl 
small piece ~f pressure-sensitive label material between the pins of 
each socket that has a U-number on the wire lists, or you may devise 
some other method of marking the U-numbers. This will help easily 
identify the sockets as the wiring proceeds. Now place a drop of nail 



STUPIDD V- A Microprocessor Analysis and Construction Project 185 

WIRE-WRAPPING PROCEDURE 

Wire- Wrapping Vrr and Gnd 

polish on the board near the V cc pin of each socket. Another color of 
nail polish can be used to identify all the ground pins of each socket. 
Again, use a toothpick rather than a brush. Remember that, since you 
are looking at the pins from the bottom, you are now looking at the 
mirror image of the pin diagram. For example, in Figure 5-13, Pin I is 
at the upper lefthand corner (seen from the top); seen from the bot­
tom, Pin I is at the upper righthand corner of the socket. The number­
ing of the pins is now clockwise. The photographs in Figure 5-14 
should also aid in visualizing the project. 

Figure 5-14a is a top view of the author's completed project­
both CPU and control system. Figures 5-14b and care top and bottom 
views of a former computer science student's CPU-only project, the 
first hardware project attempted by the student. Note the neat work­
manship, particularly the wire wrap. (The author's wire wrap is pur­
posely not shown, but it works.) The student's project uses 9V 
transistor batteries and a 3-terminal 5V regulator. It is portable and 
has been to a few successful job interviews. 

Practice wire-wrapping a few pins of a socket. The wire comes in colors 
and in prestripped form in various lengths. The prestripped wire has 
approximately one inch of insulation conveniently removed for you at 
each end of the wire. The hand wire-wrap tool, available at your local 
electronics parts shop, has a bit for wrapping at one end and another 
bit for unwrapping at the other end. Some even come with an easy-lo­
use wire-stripping device built into the center. In this case, wire in 
spools is more economical. Ask for a demonstration. Battery-powered 
wire-wrap guns are also available at reasonable cost to the hobbyist, in 
case you have some long-range plans to build wire-wrap boards for use 
with your personal computer. In wrapping a pin, be sure that all the 
bare wire is wrapped on the pin. Loose bare wire can cause electrical 
shorts. A turn or so of insulation wrapped onto the pin will not hurt, 
so err in this direction. 

With your wire-wrap skills in place, wrap all the V cc pins in one con­
tinuous chain, following the colored dots. Be sure to place the first 
wrap on a pin as close to the board as possible, to prevent the socket 
from being too loose. You may use red insulation wire to identify the 
V re line. When this is done, wrap on an extra piece of red wire, leaving 
one end loose. This should be done at the V cc pin closest to where you 
want to connect power later. The metal stand-offs can be used for 
power connections, as can alligator clips, etc. Repeat the above proce­
dure for the ground (God) chain, but use green wire. If these wraps 
have been made reasonably close to the board, the sockets are now 
secure and not too loose. The more wraps, the more secure the socket 
becomes. At this point, however, you should be able to hold the board 
in any position without fear of losing a socket. Use other colors for the 
rest of the project. If it helps, use specific colors for identifying such 
entities as the DBUS. 

Checking your wiring as you proceed is a good idea. (Wire-wrap 
lists appear as Figures 5-16 to 5-51 at the end of this section.) At this 
point, you can connect the V cc and Gnd leads to a battery and use a 
low-cost voltmeter to probe these pins at the top of the sockets, to be 



186 

.. .. ~ '.. . ,. ,,., . . . ... 
;--., , ., .. ' ~·:~ :,: ~ -_, 

h. Student-built CPU­
only Project, with Bat­
teries for Short-term 
Portable Use 

CPU CONSTRUCTION PROJECT AND CHECKOUT 

a. Complete Project with 
Con trol System 

c. Reverse Side of Fig­
ure 5-14b, Displaying 
Neat Wire-wrap Con­
struction Work 

Figure 5-14 
STUPIDD V Construction 
Project Photos 
( Phowgraphs courre.\T of rhe 
u11rhor) 



STUPIDD V-A Microprocessor Analysis and Construction Project 187 

IC Insertion and Power Appli­
cation 

sure the connections carry the voltage. Defective sockets occasionally 
occur. 

Wire-wrap the rest of the board, following the from-to directions 
of the wire lists. As you proceed, it is suggested you use a yellow 
marker to mark out each line of the wire list after it is wrapped. A See 
reference on the lists means that a connection to this point has already 
been specified on another sheet of the lists. You must wire all non-See­
referenced connections. You should ·use the ohmmeter of your VOM to 
verify electrical continuity as you proceed with each step; do not wait 
until later. We want to avoid troubleshooting problems. The push but­
ton used for the clock requires that the wires that connect to it be 
soldered to the NO (normally open), NC (normally closed), and Com­
mon terminals (each) while the other ends are wire-wrapped as usual. 
See the U20 wire list (Figure 5-35) and the CPU schematic. The NO 
terminal is detected by an open circuit between it and Common-use 
the ohmmeter to test. this. 

Now we are ready to insert the IC's, being sure to follow the Pin 1 con­
vention established above. Nothing excites an IC like placing it in the 
socket backwards. Confirm IC orientation before insertion. U-17, the 
BCD switch, has only six pins but is inserted into an eight-pin socket. 
Be sure that Pin I of the switch matches Pin I on the socket. Now 
apply power-a 6V lantern battery and several series I-amp silicon 
diodes will do. The V cc voltage should be between 4112 and 5112 volts 
under load. Touch the IC's to see if any are getting hot. Some, like the 
ALU, do get warm, but this is normal. With care, a project can work 
correctly from the very start. At this point, start to play the role of the 
control system by executing the microcode for the IF and other macros 
of the next section. For convenience, label the DIP switches with the 
names of the control-word signals. 

Take care in the wiring, and good luck! 

GENERAL PROCEDURES FOR SYSTEM CHECKOUT 

Troubleshooting Philosophy Based on what we have just studied, a general philosophy of the 
troubleshooting of digital logic and computers may now be presented. 
The essence is that all IC's and all systems composed of them should 
be viewed as a block of logic with an interface. The block simply trans­
forms an input excitation into an output condition, according to a set 
of known transformation rules. That is all there is to it. In the case of 
combinational logic, the output state to be checked is assumed to be an 
immediate consequence of the applied input. In the case of synchro­
nous memory elements, such as registers, the output transformation 
can be checked only after the clock has been applied. This is the sys­
tems approach. It relies on our understanding of the functional per­
formance of a block, which can consist either of an. IC or of an 
isolatable collection of IC's, whose group functioning we understand. 

With the above systems perspective in mind, let us develop an 
overview for bringing up a new computer. Essentially, we are on our 
own, and courage is required. Many computer engineers and scientists 
actually fear the systems their livelihoods depend upon. Understand­
ing the system through methodical ways of probing a machine's behav-



188 

Mechanical Checks 

Electrical Checks of IC 
Performance 

CPU CONSTRUCTION PROJECT AND CHECKOUT 

ior can dispel this insecurity. The following is very brief, since 
troubleshooting is qot our main subject-just one we cannot avoid. 

Do not insert the IC's into their sockets until you are sure that all 
potentially harmfUl wiring errors have been fixed. IC's can take a fair 
amount of abuse and still work. The worst thing you can do is reverse 
V cc and Gnd, which can heat things up in a hurry. The next to worst 
thing is to connect the output of an I C's transistor directly to V cc with­
out an intermediate pull-up resistor. This will definitely bum out the 
transistor. Defective IC's or sockets are occasionally found. Therefore, 
all voltage and resistance checks should be probed at the IC-insertion 
side of the socket, not just the easier to reach pins. Follow these steps 
to check the mechanical integrity of the wiring: 

1. After wiring V cc and Gnd, connect any battery across the power 
leads. With a voltmeter, check for the correct voltage between 
V cc and Gnd at the outputs of each socket. This confirms both 
continuity and the absence of shorts or opens for this circuit. 

2. Remove the battery, and switch your meter to the ohms position. 
If the battery were left in, your ohmmeter circuit might be dam­
aged. The meter has a built-in battery for the ohms measurement 
section. Where the wire lists indicate that there is a string of con­
nections, such as with the data bus, we can check for continuity. 
Continuity means zero ohms. For example, there should exist 
essentially zero ohms between the AO pin of the ALU socket and 
the QO pin of the T register socket. Leaving one lead of your 
ohmmeter on the AO pin of the ALU, we can now run this check 
·for the rest of the string. 

3. Keep in mind that a missing string connection can show up as a 
high or infinite impedance. In this manner, check your wired 
strings and pull-up resistor connections with the ohmmeter for 
continuity, shorts, and opens (missing wires). 

The following collection of tables, which appear at various points in 
the text, will be useful for the electrical check procedures that follow. 
These tables contain the signal names and switch settings for control­
ling and investigating much of the system. They serve as handy refer­
ences for operating, programming, and debugging the processor. 

Now insert the IC's into their sockets. Take care with their orientation, 
so that V cc and Gnd are not reversed. Apply power between V cc and 
Gnd. Look for "smok.e" -shut it down if something gets very hot or if 
the LED display does not light up. Whether there is a problem or not, 
this is the time for a little reflection. Perform the following checks: 

1. Does the LED display work? Rotate the display bus-selector 
switch, Ul7, and observe whether the display's response appears 
normal. Test the voltage levels at the four IN and other switches 
to see if they work and to make sure which position produces an 
H or L. Orient the switches in their sockets so that the position 
nearest the operator produces, say, a high. If this is not the case, 
turn the switch around. (For simplicity, all switches should have 
the same operational behavior and orientation.) 



STUPIDD V-A Microprocessor Analysis and Construction Project 

Table 5-4 
Summary of Useful Tables 

Carry In (Cl) Selection Control Signals 
CSJ CSO 
L 
L 
H 
H 

L 
H 
L 
H 

DBUS Source Control Decoding 
El EO 
L L 
L H 
H 
H 

L 
H 

Load Enable Decoding 
LI LO 
L 
L 
H 
H 

L 
H 
L 
H 

Source of CJ 
Low logic level 
CO of the ALU 

CF bit of FL register 
High logic level 

Signal and Source Names 
@ET, enable T register 
@EM, enable memory 

@El, enable IN 
N.C .• enable nothing 

Signal and Sink Names 
@LM, Load Memory 
@LFL, Load Flags 
@LO, Load Output 
N.C .. load nothing 

189 

2. Set U 17 to display the DBUS. Table 5-4 summarizes signal levels 
and switch settings. Set control-system simulation switches El 
and EO to enable the IN switches onto the DBUS. Does the dis­
play follow your switch settings as you change them? If not, then 
it is time for some more reflection. Check the high-low operation 
of the switch again. Is the IN buffer half of UIO enabled? (Pin 
UI0-1-it should now be low.) Does its output follow input 
changes? Is the output display of the DBUS enabled? (Pin UI0-
19, DISBUS, should now be low.) Follow this trail right up to th.e 
LED display. Simply ask yourself what each device is supposed 
to do, then test its performance. If we understand the functional 
behavior of each device, then we can test it. If no problems 
appear, carry on. 

3. Press the clock push button. With a voltmeter, check to see if the 
clock signal CK goes low and I CK goes high while the clock is 
pressed. If not, the push-button leads may be reversed. 

4. Set the control-system simulation switches to load MAR and any 
register in R with some selected input value from IN. You are 
now microprogramming in a very real sense. You may have to 
read ahead in this text to understand fully how to set these 
switches. Memory is addressed by MAR, and both it and a regis­
ter are about to be loaded with input dat~. 

5. Apply the clock pulse by pressing its push button. Now read and 
display MAR in the LED hex display. Does the memory address 
just written correspond to the IN switch settings? Display R, and 
check that it too was properly written into. If problems occur, is 



190 

TABLE 1 

CPU CONSTRUCTION PROJECT AND CHECKOUT 

Branch Control (BC) Flag Selection Codes 
BCJ BCO Flag Selected by MPX 

L L Low level 
L H CF (Carry Flag) 
H L SF (Sign Flag) 
H H EF (Equal Flag 

LED Display Selection 
Switch Ul7 

0 
1 

2 
3 
4 
5 
6 

7 

Displayed Item 
Output Register 

N.C. 
Instruction Register (IR) 

Flag Register (FL) 
Address Bus 

F Bus 
B Bus 
D Bus 

TABLE 2 

SELECTION 
ACTIVE-LOW DATA ACTIVE·HIGH DATA 

M•H M • L; ARITHMETIC OPERATIONS SELECTION 
M•H M • L; ARITHMETIC oPERATIONS 

LOGIC C,, • L Cn •H 
S3 S2 SI SO 

FUNCTIONS tnoarrvl lwidl ....,, 
LOGIC "Cn •H fn • L 

S3 S2 S1 SO 
FUNCTIONS lno cwryl lwidlcor.!I'.! 

L L L L F•I': F•AMINUS 1 F•A L L L L F•A F •A F .. A PLUS 1 
L L L H F•Ai fmABMINUS1 F •AB L L L H F,.A'+i F = A+ B F = (A+ 8) PLUS 1 
L L H L F • 1'+ B F•AIMINUS 1 F •Al! L L H L F •lie F=A+I F =(A+!) PLUS 1 
L L H H F • 1 F "'MINUS 1 l2's COMPt F,. ZERO L L H H F•D F •MINUS 1 {2's COMPL) F • ZERfJ 
L H L L F • A+li F•APLUS(A+I) F .. A PLUS (A+ 'D) PLUS 1 L H L L F •XI! F =A PLUS Al F=APLUSAIPLUS1 
L H L H F•I! F"'ABPLUS(A+il F •AB PLUS (A+ II PLUS 1 

L H H L F • A""Gfi F •A MINUS 8 MINUS 1 F•AMINUSB 
L H L H F •"D F • 1A + 81 PLUS Afi: F .. (A• B) PLUS A!° PLUS 1 

L H H L F•A@ 8 F =A MINUS B MINUS l F =A MINUSB 
L H H H F•A+f F •A+ 'IJ F"' (A+!) PLUS 1 L H H H F• Alf F =Ai Ml NUS 1 F. AB 

H L L L F •lie f .. APLUS(A+BI F •A PLUS IA+ B) PLUS 1 H L L L F•A+e F•APLUSAB F .. A PLUS AB PLUS 1 

H L L H F•A@ B F•APLUSB F • APLUSB PLUS 1 H L L H F=A@ B F=APLUSB F=APLUSBPLUS1 

H L H L F•e F•AfPLUSIA+BI F .. Ai PLUS IA+' Bl PLUS 1 H L H L F • e F"' (A• II PLUS AB F"' IA+ iJ PLUS AB PLUS 1 

H L H H F•A+B F•(A+BI F .. {A+ Bl PLUS 1 H L H H F •AB F •AB MINUS 1 F =AB 

H H L L F•D F•APLUSA• F •APLUSAPLUS 1 H H L L F o1 F =A PLUS A* F•APLUSAPLUS1 

H H L H F •Al! F •ABPLUSA F • AB PLUS A PLUS 1 H H L H F•A+B f•(A+BIPLUSA F = (A+ 8) PLUS A PLUS 1 

H H H L F•AB F•Al!PLUSA F • Af"PLUS A PLUS 1 H H H L F•A+B F •IA+ II PLUS A F .. (A+ 8) PLUS A PLUS 1 

H H H H F •A F•A F•APLUS1 H H H H F •A F "'A MINUS 1 F •A 

•Each bit is shifted to the next more significant position. 

Table 5-4 
(For educational purposes only. 
Data may be old and obsolete. 
Courtesy of Texas Instruments, 
Inc. © 1984, Texas 
Instruments, Inc.) 

the clock to the register changing state properly when pressed? Is 
the correct data present at the inputs? Are outputs enabled? 
Etc. 

6. Display the memory and then some register in R by enabling 
them onto the DBUS in turn. Make sure that they are in the read 
mode. Observe their contents in the LED display. Now set IN to 
some other value than those just observed. Enable the writing of 
both M and R. This confirms the integrity of the two data paths 
to M and R from the input switches. Check the settings once 
more, and then push the clock button. The moment of truth is 
upon us. 



STUPIDD V- A Microprocessor Analysis and Construction Project 191 

In Case of Trouble 

7. Display the memory by enabling it onto the DBUS, making sure 
that it is in the read mode. Observe its .contents in the LED dis­
play. These just-written contents should agree with the IN setting 
before the clock was applied and should be different from the 
original contents of this location. Also confirm that R is follow­
ing orders properly, too. We now know that we can read and 
write memory and registers. 

8. Continue this type of read-write check for all of the other dis­
playable registers: T, FL, MAR, and IR. 

l. We are on our own. 

2. We have studied IC interface descriptions and internal function­
ing. Now, we must apply this insight. 

3. The general rule: 

a. Stimulate (or just note) the logic levels of the input pins of 
the system. 

b. Is the output what is expected from observation of the sys­
tem's functioning? 

c. If not: 

Wiring error? 

Bad IC? This happens on very rare occasions. 

Time for reflection? STUPIDD does work. 

4. The most important rule of all: You can win. You are smarter 
than the machine: 

This has been our introduction to applied digital systems philosophy 
and microprogramming. Success is sweet if one has the will to win. Do 
not hesitate to practice wire-wrapping before you start-or hesitate to 
tear it all out and start again if it is not a neat job. As noted, students 
have used some of the neater projects to good advantage in job inter­
views, as a vehicle for demonstrating their knowledge of computers 
and microprogramming. For the beginner, though, one good wire-wrap 
project may last a lifetime. 



192 CPU WIRE LISTS 

Item No. Part No. Description and Source Quant. 

1 74LS00 Quad NAND DIP 2 
2 74LS138 Decoder, 1 of 8 1 
3 74LS139 Decoder, 1 of 4 1 
4 74LS153 Multiplexor, 4-to-l 1 
5 74LS173 R~gister, 4-bit, D type 5 
6 74LS181 ALU 1 
7 74LS244 Buffer, tri-state 4 
8 Volt-ohm meter (low-cost) 1 
9 74LS670 Register array, 4 x 4 1 

Ul 2114 Memory, lK x 4 bit 1 
11 TIL311 Hex display, DEC-drive; Texas Instruments, Inc. 1 
12 15-resistot array, 4.7 Kn, DIP 2 
13 30 gauge Prestripped wire, assorted colors 
14 DIP SW, SPST, 8 3 
15 230002G DIP SW, DEC, BCD; EECO 1 
16 SW, SPDT, push-button 1 
17 Socket, wire wrap, 3 high, 8 pin 1 
18 Socke~. wire wrap, 3 high, 14 pin 3 
19 Socket, wire wrap, 3 high, 16 pin 14 
20 Socket, wi:i:e wrap, 3 high, 18 pin I 
21 Socket, wire wrap, 3 high, 20 pin 4 
22 Socket, wire wrap, 3 high, 24 pin I 
23 1450D Stand-offs, 3/4" x 4-40 6 
24 Wire wrap tool, hand I 
25 79P44ELBDP PC ~D., 0.1 CTRS, 4~ x 6; Vector 1 

FiK!!!e 5-15 STUPIDD V CPU Parts List 

Part No. 74LS670 Register array Ul 
and name 

FROM TO 
pin no. u pin SIGNAL NAME REMARKS 

no. no. 

I U2 10 Fl 
2 U2 .11 F2 
3 U2 13 F3 
4 Ul 13 RSI Register select I 
5 UI 14 RS0 Register select 0 
6 U2 18 B3 
7 U2 20 B2 
8 GND 
9 U2 22 Bl 

10 U2 1 B0 
11 Ul9 1 W@R Write/read enable 
12 Ul9 3 @WE 
13 See Ul 4 RSI 
14 See Ul 5 RS0 
15 U2 9 F0 
16 Vee 

FiK!!!e 5-16 Reg!ster-Arral'. Wire-WraR List {CPU: Ul} 



STUPJDD V- A Microprocessor Analysis and Construction Project 193 

Part No. 74LS181 ALU U2 and name 

FROM TO 
pin no. u pin SIGNAL NAME REMARKS 

no. no. 

1 See Ul 10 B0 
2 U7 14 A0 Same as D0 of DBUS 
3 U21 14 S3 ALU select line 
4 U21 13 S2 
5 U21 12 Sl 
6 U21 11 S0 
7 U3 7 CI Carry in, ALU 
8 U21 15 MD ALU mode line 
9 See Ul 15 F0 ALU function output 

10 See Ul 1 Fl 
11 See Ul 2 F2 
12 GND 
13 See Ul 3 F3 
14 U6 14 EQ A=B, pull-up 
15 NC p Not used 
16 U6 13 co Carry out, ALU 
17 NC G Not used 
18 See Ul 6 B3 
19 U7 11 A3 Same, as D3 of DBUS 
20 See Ul 7 B2 
21 U7 12 A2 Same as D2 of DBUS 
22 See Ul 9 Bl 
23 U7 13 Al Same as Dl of DBUS 
24 Vee 

Figure 5-17 ALU Wire-Wrap List List (CPU: U2) 

Part No. 74LS153 CSL U3 
and name 

FROM TO 
pin no. u pin SIGNAL NAME REMARKS 

no. no. 

1 U3 6 L to GND 
2 U21 10 CSl 
3 U23 12 H Pull-up for CI 
4 U6 4 CF Carry flag 
5 U2 16 co ALU carry-out 
6 U3 8 L to GND 
7 See U2 7 CI ALU carry-in 
8 GND 
9 NC Not used 

10 NC Not used 
11 NC Not used 
12 NC Not used 
13 NC Not used 
14 U21 9 CSf/l 
15 NC Not used 
16 Vee 

Figure 5-18 CSL Wire-Wrap List (CPU: U3) 



194 

Figure 5-19 

Figure 5-20 

Part No. 
and name 

FROM 
pin no. 

1 
2 
3 
4 
s 
6 
7 
8 
9 

10 
11 
12 
13 
14 
lS 
16 

74LS173 

TO 
u pin 
no. no. 

U4 2 
UB 4 
U7 14 
U7 13 
U7 12 
U7 11 
us 7 

U4 10 
U22 12 
U2 13 
U2 11 
U2 10 
U2 9 
us lS 

T-Register Wire-Wrap List (CPU: U4) 

Part No. 
and name 

FROM 
pin no. 

1 
2 
3 
4 
s 
6 
7 
8 
9 

10 
11 
12 
13 
14 
lS 
16 

74LS173 

TO 
u pin 
no. no. 

us 2 
UB 1 
U9 s 
U9 6 
U9 7 
U9 4 
U6 7 

us 10 
U22 13 
U4 11 
U4 12 
U4 13 
U4 14 
U20 8 

SIGNAL NAME 

@ET 
@ET 
D0 
Dl 
D2 
D3 
CK 
GND 
@LT 
@LT 
F3 
F2 
Fl 
F0 
MR 
Vee 

SIGNAL NAME 

@EMD 
@EMD 
ADR0 
ADRl 
ADR2 
ADR3 
CK 
GND 
@LMAR 
@LMAR 
F3 
F2 
Fl 
F0 
MR 
Vee 

MAR-Register Wire-Wrap List (CPU: US) 

CPU WIRE LISTS 

T Register U4 

REMARKS 

Enable temp 

Clock 

Master reset 

MAR U5 

REMARKS 

Enable MAR, DEC0 

Load memory ADR REG 



STUPIDD V-A Microprocessor Analysis and Construction Project 

Figure 5-21 

Figure 5-22 

Part No. 
and name 

FROM 
pin no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

See 
See 

74LS173 

TO 
u pin SIGNAL NAME 
no. no. 

U6 2 L 
U6 8 L 
Ul5 2 EF 
Ul5 4 CF 
U15 6 SF 
NC 
U7 7 CK 

GND 
U6 10 @LFL 
U8 11 @LFL 
U6 8 L 
Ul 3 s 
U2 16 co 
U2 14 EQ 
U4 15 MR 

Vee 

FL-Register Wire-Wrap List (CPU: U 

Part No. 
and name 

FROM 
pin no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

See 
See 
See 
See 

74LS173 

TO 
u pin SIGNAL NAME 
no. no. 

U7 2 L 
U7 8 L 
Ul5 17 IR0 
Ul5 15 IRl 
Ul5 13 IR2 
NC 
U8 15 CK 

GND 
U7 10 @LIR 
U22 11 @LIR 
U2 19 D3 
U2 21 D2 
U2 23 Dl 
U2 2 D0 
U6 15 MR 

Vee 

IR-Register Wire-Wrap List (CPU: U7) 

195 

FL (Flags) U6 

REMARKS 

to GNn 
to GND 
Equal flag 
Carry flag 
Sign flag 
Not used 

Load flag REG 

To GND 
F3, sign bit 

IR U7 

REMARKS 

OE (to GND) 
OE (to GND) 

Not used 



196 CPU WIRE LISTS 

Part No. 74LS139 DEC0 & DECl us and name 

FROM TO 
pin no. u pin SIGNAL NAME REMARKS 

no. no. 

1 See us 2 @EMD *See Note 
2 Ul2 lS E0 
3 Ul2 16 El 
4 See U4 2 @ET 
s Ul9 4 @EM 
6 Ul0 1 EI 
7 NC Not used 
8 GND 
9 NC Not used 

10 Ull 9 @LO Load output REG 
11 See U6 10 @LFL 
12 U9 10 LM 
13 U22 10 Ll DECl Load Select 1 
14 U22 9 L0 DECl Load Select 0 
lS Ull 7 CK 
16 Vee 

*Note: This pin (U8--l) ties to GND if the control 
system is not constructed. 

Fil!Ure 5-23 DECO and DECl Wire•Wra~ List {CPU: US} 

Part No. 2114 M (Memory) U9 and name 

FROM TO 
pin no. u pin SIGNAL NAME REMARKS 

no. no. 

1 U9 2 L to GND 
2 U9 3 L to GND 
3 U9 17 L to GND 
4 See us 6 ADR3 
s See us 3 ADR0 
6 See us 4 ADRl 
7 See us s ADR2 
8 Ul9 8 CSM Chip select memory 
9 GND 

10 Ul9 s @LM (@WEM) 
11 U4 6 D3 
12 U4 s D2 
13 U4 4 Dl 
14 U4 3 D0 
lS U9 9 L to GND 
16 U9 lS L to GND 
17 U9 16 L to GND 
18 Vee 

Fil!Ure 5-24 Memon: Wire-Wra~ List {CPU: U9} 



STUPIDD V- A Microprocessor Analysis and Construction Project 

Figure 5-25 

Figure 5-26 

Part No. 
and name 

FROM 
pin no, 

1 
2 
J 
4 
5 
6 
7 
8 
9 

10 
11 
12 
lJ 
14 
15 
16 
17 
18 
19 
20 

See 

74LS244 

TO 
u pin 
no. no. 

us 6 
Ul2 9 
Ull 3 
Ul2 10 
Ull 4 
Ul2 11 
Ull 5 
Ul2 12 
Ull 6 

Ul0 12 
U9 11 
Ul0 14 
U9 12 
Ul0 16 
U9. 13 
Ul0 18 
U9 14 
Ul6 15 

SIGNAL NAME 

@EI 
IN0 
D1S0 
INl 
DISl 
IN2 
DIS2 
INJ 
DISJ 
GND 
DJ 
DJ 
D2 
D2 
Dl 
Dl 
D0 
D0 
DSDBUS 
Vee 

INBUF and DBUF Wire-Wrap List (CPU: UlO) 

Part No, 
and name 

FROM 
pin no. 

1 
2 
J 
4 
5 
6 
7 
8 
9 

10 
11 
12 
lJ 
14 
15 
16 

See 
See 
See 
See 

See 

74LS17J 

TO 
u pin 
no. no. 

Ull 2 
Ul6 7 
Ul0 3 
Ul0 5 
Ul0 7 
UHi 9 
U20 J 

US· 10 
Ull 9 
Ul0 11 
Ul0 13 
Ul0 15 
Ul0 17 
Ull 8 

' 
SIGNAL NAME 

@DSOUT 
@DSOUT 
DIS0 
DISl 
DIS2 
DISJ 
CK 
GND 
@LO 
@LO 
DJ 
D2 
Dl 
Del 
L 
Vee 

Output-Register Wire-Wrap List (CPU: Ult) 

197 

INBUF & DBUF UlO 

REMARKS 

OE. display DBUS 

OUT REG. Ult 

REMARKS 

Display out REG 

MR not used here 



198 

Part No. 
and name 

FROM 
pin no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

tlJ 

116 
u z 
114 

u z 
j 13 

NOTE: ASSOCIATED PULL-UP RESISTORS 
ARE LOCATED ON U23 

ASRC & IN DIPSW 

TO 
u pin SIGNAL NAME 
no. no. 

Ul2 2 L 
Ul2 3 L 
Ul2 4 L 
Ul2 5 L 
Ul2 6 L 
Ul2 7 L 
Ul2 8 L 

GND 
See Ul0 2 IN0 
See Ul0 4 INl 
See Ul0 6 IN2 
See Ul0 8 IN3 

NC 
NC 

See U8 2 E0 
See U8 3 El 

Figure 5-27 ASRC and IN DIP SW Wire-Wrap List (CPU: Ul2) 

Part No, 74LS244 
and name 

FROM TO 
pin no. u pin SIGNAL NAME 

no. no. 

1 See l,)32 19 @DLD 
2 U21 11 S0 
3 Ul 1 3 DIS0 
4 U21 12 Sl 
5 Ull 4 DISl 
6 U21 13 S2 
7 Ul 1 5 DIS2 
8 U21 14 S3 
9 Ul 1 6 DIS3 

10 GND 
11 U2 18 B3 
12 Ull 11 D3 
13 U2 20 B2 
14 Ul l 12 D2 
15 U2 22 Bl 
16 Ul 1 13 Dl 
17 U2 l B0 
18 Ull 14 D0 
19 Ul6 14 @DSBBUS 
20 Vee 

N z -111 

REMARKS 

to GND 
to GND 
to GND 
to GND 
to GND 
to GND 
to GND 

Not used 
Not used 

~ -19 

SP & B DISBUFS 

REMARKS 

*See note. 

Display BBUS 

*Note: Tie to Ul6--9 if control system is not constructed. 

Figure 5-28 SP and B DISBUFS Wire-Wrap List (CPU: Ul3) 

CPU WIRE LISTS 

U12 

u1".l .,., 



STUPJDD V- A Microprocessor Analysis and Construction Project 

Part No. 74LS244 F & ADR DISBUFS 
and name 

FROM TO 
pin no. u pin SIGNAL NAME REMARKS 

no. no. 

1 Ul6 13 @DSFBUS Display FBUS 
2 us 14 F0 
3 Ul4 18 DIS0 
4 us 13 Fl 
s 014 16 DISl 
6 us 12 F2 
7 014 14 DIS2 
8 us 11 F3 
9 U14 12 DIS3 

10 GND 
11 us 6 ADR3 
12 Ul3 9 DIS3 
13 us s ADR2 
14 Ul3 7 DIS2 
lS us 4 ADRl 
16 Ul3 s DISl 
17 us 3 ADR0 
18 U13 3 DIS0 
19 Ul6 12 @DSADR Display ADR BUS 
20 Vee 

Fieure S-29 F and ADR DISBUFS Wire-Wnm List (CPU: U14} 

Part No. 74LS244 FL & IR DISBUFS 
and name 

FROM TO 
pin no. u pin SIGNAL NAME REMARKS 

no. no. 
1 Ul6 11 @DSFL Display flag REG 
2 See 06 3 EF 
3 Ul5 18 DIS0 
4 See U6 4 CF 
5 Ul5 16 DIS! 
6 See U6 s SF 
7 Ul5 14 DIS2 
8 See U35 5 MPX CTRL system signal* 
9 Ul5 12 . DIS3 

10 GND 
11 See U32 5 MOD CTRL system signal** 
12 Ul4 9 DIS3 
13 See U7 5 IR2 
14 Ul4 7 DIS2 
15 See U7 4 IRl 
16 Ul4 5 DISl 
17 See U7 3 IR0 
18 Ul4 3 DIS0 
19 Ul6 10 @DSIR 
20 Vee 
*Ties to GND only if the control system is .!!£!. constructed, or bit 3 of 
displayed flags will always be high. Otherwise, if connected to the 
conditional address bit (MPX in control system) the MPX bit will be 
displayed together with the flags that determine its value. This helps 
in observing the control of conditional branches. 

**Ties to GND only if the control system is not constructed, or bit IR3 
will always be high. Avoids confusion. 

Fieure S-30 FL and IR DISBUFS Wire-Wrap List !CPU: UIS) 

199 

U14 

UIS 



200 

Part No. 
and name 

FROM 
pin no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

*Note: 

CPU WIRE LISTS 

74LS138 DSLCT Ul6 
TO 

u pin SIGNAL NAME REMARKS 
no. no. 
023 9 DA0 Display Select Address bit, DA~ 
U23 10 DAI Display Select Address bit, DAI 
U23 11 DA2 Display Select Address bit, DA2 
Ul6 5 Chip enable Tied low to enable 
UI6 8 Chip enaple Tied low to enable 
U23 2 Chip enable Pulled high to enable 

See Ull 2 @DSOUT 
GND 

NC @DSSP *See note. Important! 
See UIS 19 @DSIR 
See UlS 1 @DSFL 
See Ul4 19 @DSADR 
See 014 1 @DSFBUS 
See Ul3 19 @DSBBUS 
See Ul0 19 @DSDBUS 

Vee 
Leave as NC when the control system is constructed. May be used to 
enable display of spare buff er when control system is not constructed by 
connecting to 013--1. 

Figure. S-31 DSLCT Wire~Wrap List (CPU: U16) 

Part No. 
and name 

FROM 

DOTS INDICATE 
D TERMINALS 
I CONNECTED TO 
A COMMON 
L 

NO. I! 2 4 8 

0 

I . 
2 . 
3 . . 
4 . 
5 • . 
6 . . 
7 . . . 
8 . 
9 . . 

TRUTH TABLE 
TYPE 802-RED SWITCH 

230002G (EECO) 

TO 
pin no. u pin 

no. no. 

1 Ul6 1 
2 Ul7 7 
3 Ul6 3 
4 NC 
5 NC 
6 Ul6 2 
7 
8 NC 

SOCKET PIN NO'S. ---.._, 
2 c 

3 4 

TOP VIEW 

8 8 NC 

c 7 

BOTIOM VIEW 

.1 

c c c.-:4 
Switch, BCD 

SIGNAL NAME REMARKS 

DA0 
GND 
DA2 

Not used--locate 
SW on pin 1 of socket. 

DAI 
GND 

Not used 

Figure S-32 Switch, BCD Wire-Wrap List (CPU: U17) 

Ul7 



STUPIDD V- A Microprocessor Analysis and Construction Project 

Figure 5-33 

Figure 5-34 

Part No. 
and name 

FROM 
pin no. 

I 
2 
3 
4 
s 
6 
7 
8 
9 

10 
11 
12 
13 
i4 

TIL311 

TO 
u 
no. 

UIS 
UIS 
UIS 
NC 
UIS 
NC 

UIS 
NC 
NC 
NC 
UIS 
U15 

pin SIGNAL NAME 
no. 

14 Vee 
s DISI 
3 DIS0 

7 STB 

GND 
5 blanking 

9 DIS3 
7 DIS2 

Vee 

Hex Display, Tl Wire-Wrap List (CPU: Ul8) 

/CSM 

6 

HEX DISPLAY, TI 

REMARKS 

For LEDs 

Not used 
Used as enabled 
Not used 

Inactivated 
Not used 
Not used 
Not used 

For logic 

CSM 

8 

@LIR~ LIR 

~ 
(FOR CONTROL SYSTEM) 
(NOT IN CPU) 

Part No. 
and name 

FROM 
pin no. 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

See 

See 
See 
See 

See 

See 

74LS00 

TO 
u pin SIGNAL NAME 
no. no. 

Ul 11 W@R 
U20 2 /CK 
UI I2 @WE(R) 
us 5 @EM 
U9 I0 @LM 
Ul9 9 /CSM 

GND 
U9 8 CSM 
U19 10 /CSM 
U19 9 /CSM 
U20 13 LIR 
Ul9 13 @LIR 
U22 11 @LIR 

Vee 

NAND-Gate Wire-Wrap List (CPU: U19) 

NAND GATES 

REMARKS 

Chip select memory 
Inversion of CSM 

For control system 

201 

U18 

U19 



202 

(U25) 
PBI 

NC 

J-:: 

Part No. 
and name 

FROM 
pin no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

See 

See 

See 

See 
See 

See 

CPU WIRE LISTS 

------@MR 

MR 

IFMCL 

(FOR CONTROL SYSTEM NOT IN CPU) 

74LS00 NAND GATES U20 

TO 
u pin SIGNAL NAME REMARKS 
no. no. 

U23 14 PBlNC Pull-up 
U20 6 /CK 
U20 4 CK 
U20 3 CK 
U23 15 PBlNO Pull-up 
U20 2 /CK 

GND 
us 15 MR 
U20 10 @MR 
U20 9 @MR 
U30 11 @IFMCL Used only with control system 
U20 6 /CK Used only with control system 
Ul9 11 LIR Used only with control system 

Vee 

Figure 5-35 NAND-Gate Wire-Wrap List (CPU: U20) 



STUPJDD V- A Microprocessor Analysis and Construction Project 

~--:::>~ 
..:i :::> 

~~ ._. 

ta: 

~ Q 
~ 

~ ·: ):' 
Part No. 
and name 

FROM 
pin no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Ul 
11 
12 
13 
14 
15 
16 

~ 

)~· 

See 
See 
See 
See 
See 
See 
See 

&1 (ii 

)~ ):' 

TO 
u pin 
no. no. 

U21 2 
U21 3 
U21 4 
U21 5 
U21 6 
U21 7 
U21 8 

U3 14 
U3 2 
Ul3 2 
Ul3 4 
Ul3 6 
Ul3 8 
U2 8 
U20 9 

(ii ~ ~ (,,I 

{:' ):0 t 
CSTRl DIPSW 

SIGNAL NAME 

L 
L 
L 
L 
L 
L 
L 
GND 
CS0 
CSl 
S0 
Sl 
S2 
SJ 
MD 
@MR 

Figure 5-36 CSTRt DIPSW Wire-Wno Ust CCPU: Ull) 

203 

NOTE: 
SEE U24, 
U23 FOR 
PULL-UPS 

U21 

REMARKS 

to GND 
to GND 
to GND 
to GND 
to GND 
to GND 
to GND 



204 

Figure 5-37 

ci::: 

ci::: 
<C 

ci::: 
©) 55 

::; 
!::i -c;; ...l ...l 

~ ci::: ci::: ©) ©) ©) 

116 ps 114 

\ j, jl 
113 

j. 
112 

j, 
111 

j, 
NOTE: SEE U24 FOR PULL-UPS. 

Part No. 
and name 

FROM 
pin no. 

1 
2 
3 
4 
5 
6 
7 
s 
9 

191 
11 
12 
13 
14 
15 
16 

TO 
u 
no. 

U22 
u·22 
U22 
U22 
U22 
U22 
U22 

See us 
See us 
See U7 
See U4 
See us 

Ul 
Ul 
Ul9 

CSTR9J DIPSW 

pin SIGNAL NAME 
no. 

2 L 
3 L 
4 L 
5 • L 
6 L 
7 L 
s L 

GND 
14 L9l 
13 Ll 
191 @LIR 
191 @LT 
10 @LMAR 
14 RS0 
13 RSl 
1 W@R 

CSTRO DIPSW Wire-Wrap List (CPU: U22) 

CPU WIRE LISTS 

- 9 ....i 

po 

j, ~ 
U22 

REMARKS 

to GND 
to GND 
to GND 
to GND 
to GND 
to GND 
to GND 



STUPIDD V- A Microprocessor Analysis and Construction Project 

Vee 
16 

Part No, 
and name 

4.7 KQ , 15 resistor DIP 

FROM TO 
pin no. u pin SIGNAL NAME REMARKS 

no. no. 

1 U2 14 EQ 
2 See Ul6 6 H Pull-up to en. Ul6 
3 Ul2 9 IN0 Input switch 
4 Ul2 10 INl Input switch 
5 Ul2 11 IN2 Input switch 
6 Ul2 12 IN3 Input switch 
7 U12 15 E0 DBUS source (CSTR2) 
8 Ul2 16 El DBUS source (CSTR2) 
9 See Ul6 1 DA0 Display address of selector 

10 See Ul6 2 DAI Display address of selector 
11 See Ul6 3 DA2 Display address of selector 
12 See U3 3 H Pull-up for CI 
13 U21 16 @MR 
14 See U20 1 PBlNC To push-button clock 
15 See U20 5 PBlNO To push-button clock 
16 Vee 

Figure 5-38 4.7 K~ 15-resistor pack (CPU: U23) 

205 

U23 



206 

Part No. 
and name 

FROM 
pin no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

J. L lJ.L 1. 18 1, l .1, 1.1 3 1, 

4.7 K~ , 15 resistor DIP 

TO 
u pin SIGNAL NAME REMARKS 
no. no. 

U22 9 U'l CSTR0 signal 
U22 10 Ll CSTR0 signal 
U22 11 @LIR CSTR0 signal 
U22 12 @LT CSTR0 signai 
U22 13 @LMAR CSTR0 signal 
U22 14 RS0 CSTR0 signal 
U22 15 RSI CSTR0 signal 
U22 16 W@R CSTR0 signal 
U21 9 CS0 CSTRl signal 
U21 10 CSl CSTRl signal 
U21 11 S0 CSTRl signal 
U21 12 Sl CSTRl signal 
U21 13 S2 CSTRl signal 
U21 14 S3 CSTRl signal 
U21 15 MD CSTRl signal 

Vee 

Figure 5-39 4.7 KQ 15-resistor pack (CPU: U24) 

CPU WIRE LISTS 

U24 

simulation 
simulation 
simulation 
simulation 
simulation 
simulation 
simulation 
simulation 
simulation 
simulation 
simulation 
simulation 
simulation 
simulation 
simulation 



STUPIDD V- A Microprocessor Ana~rsis and Consrrucrion Project 207 

PRESENT 
STATE 

CONTROL STORE (CSTR) 
U32 U33 U34 U35 

MROM ~AD) CSTR2 
U31 

OLD 
AND 
CTRL 

SW 

ENABLING 
DOWNLOAD 

7 

BA (6 :0) 

2716 

AND MACRO'--....--......--.--' 
GROUP SELECT 

CONTROL 

74LS74 

U30 IF OP 
(IN CPU) 

3 

4 

DBUS 

U37 

0 0 <ZI 
u.l v 

EXTERNAL INPUTS 

Figure 5-40 STUPIDD V Control-System Block Diagram 

Item No. Part No. Description and Source 

1 741S74 IF, MOD flip-flops; U30 
2 741S241 3-state driver, D1D; U38 
3 2716 EPROM, U32-35 
4 741Sl 74 CAR; U36 
5 741Sl53 MPX; U37 
6 Socket, wire wrap, 3 high, 
7 Socket, wire wrap, 3 high, 
8 Socket, wire wrap, 3 high, 
9 Socket, wire wrap, 3 high, 

10 15-resistor array, 4.7 Kfl 
11 741S241 • DIP SW, SPST, 8 pos.; U31 

24 pin 
20 pin 
16 pin 
14 pin 

Note: PC board, etc., are in CPU system. 

Figure 5-41 Control-System Parts List 

CSTRI 

2716 
(TY Pl 

2 

CST RO 

18 

PRESENT 
OUTPUT 
FUNCTION 

TO 
CONTROL 
EXTERNAL 

ENVIRONMENT 

TO CONTROL CPU 

Quant. 

1 
1 
4 
1 
1 
4 
1 
3 
1 

j 



208 CONTROL SYSTEM WIRE LISTS 

Part No, 74LS74 IF & MOD U30 
and name 

1 U39 9 H Pull-up 
2 U34 17 ST 
3 U30 11 @IFMCL 
4 U21 16 @MR 
5 U32 4 IF 
6 NC Not used 
7 GND 
8 NC Not used 
9 U32 5 MOD 

10 U30 1 H Pull-up 
11 See U20 11 @IFMCL 
12 U7 11 D3 
13 U36 2 @CLMD 
14 Vee 

FROM TO 
pin no. u pin SIGNAL NAME REMARKS 

no. no. 

Fieure 5-42 IF and MOD Wire-WraJ! List (Control: U30} 

...l 
~ 0 f-u ...l - 0 w u Cl N 175 C/l C/l 
@) @) C/l C/l ::; ::; z Q.. Q.. Q.. 

r6 rs 14 113 112 rl ilO i9 

\ !. PULL-UPS ON U39 3 5 6 7 8 

2. PIN NUMBERS ARE THOSE 
OF SOCKET. 

Part No. SPST DIP SWITCH DLD & MACRO U31 and name SINGLE-POLE, SINGLE-THROW SET CONTROL 
FROM TO 

pin no. u pin SIGNAL NAME REMARKS 
no. no. 

1 U31 3 L 
2 NC Not used 
3 U31 7 L 
4 U31 14 @DLD @DLD also controls 
5 U31 4 @DLD operation of program 
6 U31 5 @DLD select switches 
7 U31 8 L 
8 GND 
9 U32 3 MS0 {Macro set select control 

10 U32 2 MSl Macro set select control 
11 U32 1 PS0 {Program select (PS) 
12 U32 23 PSI during down-load; 
13 U32 22 PS2 otherwise H 
14 U32 19 @DLD Down-load 
15 NC Not used 
16 U39 @ECTRL 

Figure 5-43 DLD and Macro-Set Control Wire-WraJ! List (Control: U31} 



STUP/DD V- A Microprocessor Analysis and Construction Project 209 

Part No. 27I6 MROM U32 
and name 

FROM TO 
pin no. u pin SIGNAL NAME REMARKS 

no. no. 

l See U3I 11 PS0 
2 See U3I I0 MSl 
3 See U31 9 MS0 
4 See U30 5 IF 
s UIS 1 I MOD 
6 U7 s IR2 
7 U7 4 IRl Carry in 
8 U7 3 IR0 
9 U33 4 BA0 

10 U33 3 BAI 
II U33 2 BA2 
I2 GND 
I3 U33 I BA3 
I4 U33 23 BA4 
15 U33 22 BAS 
I6 U33 19 BA6 
17 NC Not used 
18 U33 18 @ECTRL 
19 UI3 I @DLD 
20 U32 I8 @ECTRL 
21 U32 24 Vpp; ties to Vee for operation 
22 See U31 I3 PS2 
23 See U3I I2 PSl 
24 Vee 

Fi2t1re 5-44 MROM Wire-Wra~ List {Control: U32} 

Part No. 2716 CSTR2 U33 
and name 

FROM TO 
pin no. u pin SIGNAL NAME REMARKS 

no. no. 

I U34 1 BA3 
2 U34 2 BA2 
3 U34 3 BAI 
4 U34 4 BA0 
s U34 5 MPX 
6 U34 6 CAR2 
7 U34 7 CARI 
8 U34 8 CAR0 
9 U8 2 E0 

I0 U8 3 El 
11 U36 3 CLM 
12 GND 
13 U36 4 BC0 
14 U36 6 BC! 
lS U36 11 N0 
16 U36 13 Nl 
17 U36 14 N2 
18 U34 18 @ECTRL 
19 U34 19 BA6 
20 U33 18 @ECTRL 
21 U33 24 Vpp; ties to Vee for operation 
22 U34 22 BAS 
23 U34 23 BA4 
24 Vee 

J Figure 5-45 CSTR2 Wire-Wrap List (Control: U33) 



210 CONTROL SYSTEM WIRE LISTS 

Part No. 2716 CSTRl U34 
and name 

FROM TO 
pin no. u pin SIGNAL NAME REMARKS 

no. no. 

1 U3S 1 BA3 
2 U3S 2 BA2 
3 U3S 3 BAl 
4 U3S. 4 BA0 
s U3S s MPX 
6 U3S 6 CAR2 
7 U3S 7 CARI 
8 U3S 8 CAR0 
9 U21 9 CS0 

10 U21 10 CSl 
11 U21 11 S0 
12 GND 
13 U21 12 Sl 
14 U21 13 S2 
lS U21 14 SJ 
16 U21 lS MD 
17 See U30 2 ST 
18 U3S 18 @ECTRL 
19 U3S 19 BA6 
20 U34 18 @ECTRL 
21 U34 24 Vpp; ties to Vee for operation 
22 U35 22 BAS 
23 U35 23 BA4 
24 Vee 

Figure 5-46 CSTRI Wire-Wrap List (Control: U34) 

Part No. 2716 CSTR0 U35 
and name 

FROM TO 
pin no. u pin SIGNAL NAME REMARKS 

no. no. 

1 See U34 l BA3 
2 See U34 2 BA2 
3 See U34 3 BAl 
4 See U34 4 BA0 
s UlS 8 MPX 
6 See U34 6 CAR2 
7 See U34 7 CARl 
8 See U34 8 CAR0 
9 U22 9 L0 

10 U22 10 Ll 
11 U22 11 @LIR 
12 GND 
13 U22 12 @LT 
14 U22 13 @LMAR 
lS U22 14 RS0 
16 U22 lS RSl 
17 U22 16 W@R 
18 See U34 18 @ECTRL 
19 See U34 19 BA6 
20 U3S 18 @ECTRL 
21 U3S 24 Vpp, ties to Vee for operation 
22 See U34 22 BAS 
23 See U34 23 BA4 
24 Vee 

Figm:e 547 CSTRO Wire-Wra2 List {Control; U35} 



STUPIDD V- A Microprocessor Analysis and Construction Project 

Part No. 
and name 

FROM 
pin no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

See 
See 
See 

See 

See 

See 
See 

74LS174 

TO 
u pin SIGNAL NAME 
no. no. 

U30 4 @MR 
U30 13 @CLMD 
U33 11 CLM 
ti33 13 BC0 
U37 14 BC0P 
U33 14 BCl 
U37 2 BClP 

GND 
U20 4 CK 
U33 8 CAR0 
U33 15 N0 
U33 7 CARI 
U33 16 Nl 
U33 17 N2 
U33 6 CAR2 

Vee 

Figure 5-48 CAR Wire-Wrap List (Control: U36) 

Part No. 
and name 

FROM 
pin no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

See 

See 

74LS153 (~) MPX 

TO 
u pin SIGNAL NAME 
no. no. 

U37 8 L 
u36 7 BClP 
U6 3 EF 
U6 5 SF 
U6 4 CF 
U37 8 L 
U33 5 MPX 

GND 
NC 
NC 
NC 
NC 
NC 
U36 5 BC0P 
NC 

Vee 

Figure 5-49 MPX Wire-Wrap List (Control: U37) 

211 

CAR U36 

REMARKS 

U37 

REMARKS 

Tie to GND 
Branch control output from CAR 
MPX equal flag 
MPX sign flag 
MPX carry flag 
MPX a low (tie to GND) 

Not used 
Not used 
Not used 
Not used 
Not used 
Branch control output from CAR 
Not used 



212 CONTROL SYSTEM WIRE LISTS 

Put No. 74LS241 DLD CTRL 
and niime 

FROM TO 
pin no. u pin SIGNAL NAME REMARKS 

no. no. 

1 U31 14 @DLD 
2 U36 10 CAR0 
3 NC Not used 
4 .U36 12 CARI 
s NC Not used 
6 U36 lS CAR2 
7 NC Not used 
8 U37 7 MPX 
9 U39 2 @EMD 

10 GND 
11 U38 10 to GND 
12 us 6 ADR3 
13 NC Not used 
14 us s ADR2 
lS NC Not used 
16 us 4 ADRl 
17 NC Not used 
18 us 3 .ADR0 
19 U38 1 @DLD 
20 Vee 

Figyre 5-50 OLD CTRL Wire-Wra2 List (Control: U38} 

Part No. 
and name 

FROM 
pin no, 

1 
2 
3 
4 
s 
6 
7 
8 
9 See 

10 
11 
12 
13 
14 
lS 
16 

(TYP.) 4.7 KU RESISTOR ARRAY (15) 

TO 
u pin 
no. no. 
U32 18 
us 1 
U31 14 
U31 13 
ti31 12 
U31 11 
U31 10 
U31 9 
U30 1 
NC 
NC 
NC 
NC 
NC 
NC 

4. 7 Kn , lS-resistor 
DIP pack 

SIGNAL NAME REMARKS 

@ECTRL 
@EMD 
@DLD 
PS2 
PSl 
PS0 
MSl 
MS0 
H Pull-up 

Not used 
Not used or spare 
Not used or spare 
Not used or spare 
Not used or spare 
Not used or spare 

Vee 

Figyre 5-51 4.7 KU, 15 Res. DIP Pack Wire-Wrap List (Control: U39} 

U38 

U39 



STUPIDD V- A Microprocessor Analysis and Construction Project 213 

MICROPROGRAMMING FORMATS: THE CONTROL WORD 

SYSTEM CONTROL WORD 

SYSTEM TIMING CHARACTERISTICS 

The link between the control system and the resulting behavior of both 
the CPU and its external environment is embodied in the system con­
trol word. We begin our study of its symbolic notations, formats, and 
applied methods of usage in this section. This control word is a set of 
binary signals, produced by the control system, which affects the entire 
system-not just the CPU. The control system emits this control word 
at the start of each period, as defined by the system clock. At the start 
of the current period, the control signals are not likely to be valid. 
Some time is required for them to stabilize at their correct binary level. 

Portions of the control word influence purely combinational-logic cir­
cuitry, immediately; the balance control the loading of synchronous 
memory devices by the clock at the end of the current period. For 
example, if data is to be fed, say, from STUPIDD's T register onto the 
DBUS to the inputs of a selected sink, it must commence as soon as 
possible-so that the data, bus-path, and device-control signals will 
have stabilized before the end of the current period. At the end of the 
period, those synchronous devices so specified by the control word 
capture this information. This captured information becomes available 
for use during the next clock period. In reality, the system clock is the 
part of the control word that says "Go" to the enabled synchronous 
memory devices. By convention, we rarely talk about the clock as part 
of the control word-but it is. 

Both the combinational-logic and synchronous device-control sig­
nals are emitted by the control system at the start of each new period. 
Once the data has stabilized on the newly enabled data paths and the syn­
chronous device-control levels have stabilized too, then and only then can 
the clock signal safely terminate the current period. Some of the stored 
information is fed back to the control system to influence its future 
actions. Although the control system is a finite-state machine, it can make 
state-path choices only within its finite state-set, based on the stored 
results from the current period and the present external inputs. The 
required signal-stabilization time is an important factor in limiting the 
speed of systems. Our many past references to clock signals and the 
clocking characteristics of synchronous devices are about to be utilized in 
a system context. First, though, we must look at the symbolic notations 
and formats used in the control word. 

SYMBOLIC MICROPROGRAMMING NOTATIONS 

No design language or computer is yet capable of inventing a systems 
concept-this is a human's creative contribution. Creative expression 
evolves out of our ability to state desired systems performance in a 
convenient notation. Computer design and description languages pro­
vide orderly means of documenting, reviewing, simulating, and modi-



214 

CPDL Notation 

Table 5-5 
Introductory Set of CPDL Symbols 

Symbol Description 

I Negation operator 
@ Active-iow indicator 
<: Replacement operator 

>: State transfer operator 
& Boolean AND operator 
!& NAND function 
+ Boolean OR operator 

I+ NOR function 
? Exclusive-OR function 

I? Equivalence function 
pl Arithmetic addition 
mi Arithmetic subtraction 

MICROPROGRAMMING FORMATS: THE CONTROL WORD 

fying systems concepts. Their utility in the design of instruction-set 
algorithms in the development of a microprogrammed control store 
will become evident as we proceed. The notation used here is only 
slightly different from others in popular use, in that some of their 
minor shortcomings are avoided. First, the -symbol set used is 
restricted to a subset of the standard 7-level ASCII code that is used by 
the keyboards of all our CRT terminals and personal computers. 
Design or description languages often use symbol sets not available on 
most terminals, processors, and personal computers. This is important 
to us if we want to automate. the implementation of microcode later, 
using a terminal or personal computer. Second, new symbology for the 
expression of clock-timing relationships is presented. This aspect is 
mentioned now; it actually will becqme useful in a planned subsequent 
book on the synthesis of processor systems. In this text, we are concen­
trating on the analysis and microprogramming aspects of a given 
processor, whose behavi?f has general applicability. 

We now introduce some of the control-processor design language 
(CPDL) symbols and their meaning, which we currently use in the 
development of microcode. These are used in a form of register-trans­
fer notation (RTN) for specifying operations that are to occur within a 
line of microcode. For further insight into the design-language 
approach, the reader is referred to the Duley and Dietmeyer Refer­
ences at the end of this chapter. Table 5-5 summarizes the symbology 
used in the balance of this text. 

Example Meaning 

IA NOT-A 
@A A is active (true) when low. 

A<: B A is to receive the contents B at the end of the current clock 
period; the contents of B are not altered. 

>:C We are to go to state Cat the end of this clock period. 
A&B AANDB 
A/&B ANAND B 
A+B AORB 

A I+ B ANORB 
A?B A XOR B or 

A EB B 
A!? B A() B 
A pl B A plus B (See ALU data sheets.) 
Ami B A minus B 

ELECTRICAL-LEVEL MICROCODING FORMS 

The electrical-level coding format for specifying the control word is 
presented in Figure 5-52. This blank form is used several times, 
and the reader will want to make sufficient copies of it for the exer­
cises that follow. The leftmost column will contain the CPDL sym­
bolic notation that specifies what is to be accomplished by this line 
of microcode. The notation presented in Table 5-5 is elaborated on 
as we proceed. As a convenience, the darkened dots at the top of 



CSTR ADDRESS: ASSIGNED OP-CODE: 

0 MACRO: TADR. BRCH. a DBUS .... NEXT ADR. 0 SOURCE z CPDL DESCRIPTION: 
CTRL. ~ FIELD 

u.J 
z 0 ~ 
:i N - 0 u u 0 z z z ...J u.J u.J 

c:i c:i u 
...... 

0 

I 

2 

3 

4 

5 

6 

7 

8 0 

9 I 

A 
2 

B 3 

c 4 

D 5 

E 6 

F 7 

CPDL NOTATIONS CSTR2 

'igure 5-52 Microprogram Electrical-Level C()(fin2 Form (Blank) 

ALU FIELD 
u.J 
f- ALU FUNC. cs 
< 
f- a 0 r.ll ,..., N 0 u; 

~ r.ll f/J u; r.ll r.ll u u 

CSTRI 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 
0:: 0:: u; 0 < 0:: @) f-r.ll 
~ ...J :i ...J :::: 0:: 0:: 
...J - -- - -

CST RO 

0 
...J 

VJ 
'-l 
c::: 

""' .... 
0 
0 

I' 
::... 

~ ,., 
.... 
~ 
3 
§ 
s; 
::... 
~ 
~ 
"' ;;; 

"' " ""-

~ 
~ 

~ 
§ 
~ 

"' a· 

N 

V> 



216 

Microcoding Fields and Signals 
Terms 

Horizontal versus Vertical 
Microprogramming 

MICROPROGRAMMING FORMATS: THE CoNTROL WORD 

some columns indicate that the associated control signals are active 
low. We now examine the meaning and function of the signal terms 
found in the ~ontrol word's fields. These are the terms we must 
specify in creating microcode. 

At the bottom of Figure 5-52 appear the legends CSTRO (control 
store 0), CSTR 1, and CSTR2. Each of these is a byte of informa­
tion prodl}ced by the control system. In this beginning phase, we 
can simulate most of these signals with the set of DIP switches on 
the construction-project board. The object is to manage each IC's 
control pins as the system would. The function of these IC pins 
was described earlier in this chapter. At the top of Figure 5-52, the 
control word is broken up into meaningful convenient fields. Start­
ing at the left, switch CSTR2 contains the next address (NXT), 
branch controi (BC), and the operand addressing mode modification 
(MOD) bit fields. These three fields relate purely to the control-sys­
tem operation and will be analyzed in Chapter 6. ln addition, 
CSTR2 contains the DBUS source field. The two signals from this 
field drive half of the DECO IC (US), to select the master of the 
DBUS, as discussed previously. _ 

CSTRI contains the major state (ST) and ALU fields. The 
ALU field is broken down into the signal subfields that control the 
ALU. These are MD, for arithmetic/logic mode selection; the four 
S lines (S3 .. SO), which select the current function; and the carry­
select lines, CS I and CSO. Tpese last two are displayed as a subset 
of the total ALU field,. the· CS field, since. the carry-in, CI, of the 
ALU also controls· the precise afithmetic-mode function per­
formed. The control signal details for the individual IC's have 
already been presented. The ST field issues the signal that contrib­
utes to the transitions between the IF and EX major states. This 
field too is purely a part of the control system. In the earlier discus­
sion of the IR, it was pointed out that it is valid only when @LIR, 
which is one of the signals of CSTRO, is active. LlR stands for load 
instruction register. When @LIR is true, the signal ST determines 
the next major state, which must be either IF, when the ST line is 
high, or EX, when it is low. LIR and ST are used, simultaneously, 
only at the very end of an algorithm-where it is necessary that we 
coordinate a major state change. Together, they control transitions 
between the IF and EX major states of the cycle of computation. 

CSTRO encompasses all of the register array as well as the discrete reg­
ister sink-control fields. It is the source of the load-enable signals that 
control the clocking of the synchronous information-storage devices of 
ihe system. One very often wants to load more thiin one of the discrete 
registers simultaneously. When this . is the case, horizontal 
microprogra:lllming rnethods (one signal for each control function) for 
the control signals are used. Note, however, that this requires a larger 
(wider) control word. Use of short fields and decoders is termed verti­
cal microgrammed design. These two popular ·terms, which have 
already been discussed, represent the two extremes in governing the 
size of a control word or of one of its fields. 

Two signals in the sink-control field, L1 and LO, illustrate a verti­
cally microprogrammed subfield. They drive half of the 74LS139 
decoder (US). The clock signal is used in a special way in this applica­
tion. Note that the input to pin 15, the chip-enable input for this half 



STUPIDD V- A Microprocessor Analysis and Construction Project 217 

of the IC US, is driven by the system clock. This means that all the 
outputs are automatically disabled when the clock is high, and only the 
addressed output of this half of US can be active in the last half of the 
period, when the clock is low. This neatly avoids noise problems asso­
ciated with state transitions during the first half of the period, by 
masking them out. Important: since the outputs are clock-qualified, 
they may also be directly used as write strobes to the devices that this 
half of US serves. The DEC! outputs control the loading of the dis­
crete registers and memory writes as shown in Table 5-6. 

Table 5·6 
Vertical Sink-Control Switch Settings 

LI LO Signal Produced (Register enabled) 
L L @LM (Load Memory) 
L H @LF (Load Flags) 
H L @LO (Load Output) 
H H Not Connected (No register enabled) 

In Table 5-6, @LM is a signal authorizing a memory write. The function 
of the memory-address register, MAR, is to select the specific location we 
desire to communicate with (for both reads and writes). When @LM is 
active, memory is written into at the location specified in MAR. Note too 
that, by using HH as the selection-input condition to DECl, no device is 
enabled to be loaded. The net result is that three load-enables have been 
compressed into two control-system signals, thus permitting a smaller 
control word to be used. The number of control signals that can be 
encoded into a vertical field is a power of 2 function of the field size. Con­
siderable control-word-size compression can be obtained this way, but at 
the expense of using subsequent decoders. In this application, there is no 
need to make the loading of these registers mutually exclusive. There was 
a need, however, to reduce the size of the control word-trading off flexi­
bilityJor hardwar.e simplicity in the process. 

REGISTER ARRAY MICROPROGRAM CONTROL . 

The register-array subfield of the sink-control signals manages the 
loading and reading of the 4 x 4 generalized register array, R (Ul). 
W@R is tbe signal that determines whether a read or write is to take 
place. This array is normally in the read mode, unless a write is specifi­
cally desired. So long as we do not unintentially press the clock button, 
a temporary write switch setting has no effect. The othertwo bits, RSI 
and RSO, of the R field determine which particular register is to be 
addressed within the array. Register usage varies, but, as noted earlier, 
R3 is reserved for PC purposes. 

MICROPROGRAM FUNCTIONAL EFFECTS 

What do these control-word signals and fields accomplish? The simple 
correct answer is that they control functions. Some generalizations on the 
nature of the control fields and their signals help to clarify their functional 
use in the system. First, we can consider some as belonging to a group 
that controls devices such as the ALU. This is straightforward control. 
Second, we can categorize some of these signals as members of a group 
that determine access to a system bus. The number of source control 



218 

ALGORITHMS (MACROS) 

Macro Overall CPDL Descrip­
tion 

Microoperations 

Compatible Sets of Operations 

MICROPROGRAMMING FORMATS: THE CoNTROL WORD 

fields increases directly with the number of buses the system has. Any one 
source field controlling access .to a single bus benefits from some scheme 
of mutual exclusivity, such as vertical microprogramming. This guaran­
tees that only one source at a time is master of the bus. Last, we have the 
sink-field category, which emits the signals that specify which registers 
currently receive information. Sink fields tend to benefit from horizontal 
organization, which allows any number of registers to be loaded simulta­
neously. Vertical organization may be used in sink fields to shorten the 
control word, often at the probable expense of more clock cycles to 
obtain a given result. Of course, where different registers must be loaded 
at the same time, then separate sink signals are required. 

In summary, then, it is useful to think of control-word signals as 
members of one of the following groups: direct device control, bus­
access control, or register-sink control. These categorizations are useful 
in forming a total system functional perspective. In reality, a control is 
a control. The goal is to understand their system uses to control behav­
ior at some specific point in time. 

Refer once more to Figure 5-52, the electrical-level microcoding sheet 
that displays the control-word format. Notice the leftmost column, 
headed by the title MACRO. This is where we enter the name of the 
macro and, later, its starting address in the control store. Every total 
operation that STUPIDD performs is referred to as an algorithm or a 
macro operation. These terms are synonomous in the current context. 
Typical macros are the instruction fetch cycle, IF, and the execution of 
addition, ADD. Beneath the macro name is a space reserved for the 
form of register transfer notation, called CPDL, that is used in this 
text. The description of the overall function to be performed by the 
macro is placed here,_ where feasible. This does not tell us how the 
machine did the task, just what net result was obtained by the macro. 

This system permits a maximum of sixteen line numbers per algorithm 
(hex 0 through F). Each separate line is referred to as a micro opera­
tion, from which the term microprogramming is derived. A micro oper­
ation is, very simply, the set of control signals that we wish to create 
during any one clock period-and it corresponds to a single line of this 
coding sheet. A macro, then, is a collection of micros that perform some 
useful algorithm. The operational capabilities of a system are expressed 
by the total set of macros it possesses. These macros establish what it 
can do for us. For example, the instruction set of a microprogrammed 
computer consists of its set ·of macros. 

We are about to examine the specification of macros as consisting of 
sets of compatible microoperations. Each line of microcode commences 
with a CPDL notation or a description of the overall purpose of the 
line-why it is there. More than one operation may be simultaneously 
specified in a line of microcode. This parallelism of operations is bene­
ficial, since it increases throughput. The microprogrammer, however, 
has the responsibility of seeing that these operations do not conflict, 
that is, that they are compatible. Therefore, we must constantly check 
to see that the architecture, devices, or buses can support each opera-



STUPIDD V- A Microprocessor Analysis and Construction Project 219 

Restrictions 

IF ALGORITHM 

Electrical-Level Coding Entries 

Data Path and Architecture 
Visualizations of Microopera­
tions 

tion and that there are no bus conflicts. In essence, this requires that 
we really get to know the systems we work with. 

Since we have not as yet studied the control-system operation, the fol­
lowing restrictions apply for the present: 

All algorithms start at line 0. 

All algorithms progress from lin~ to line in sequence, until com­
plete. 

These restrictions will be lifted later. For the present, let us examine 
how the CPU and its external environment react to our switch-simu­
lated sequence of control words of the IF algorithm. Each step or line 
of microcode of this sequence is consummated with a clock pulse. 

The algorithm that performs the fetch of an instruction (IF) is detailed 
in Figure 5-53. (Refer as needed to our previous discussions of the 
cycle of computation in Chapter l, its major states of IF and EX, and 
the tasks that are performed during IF.) Figure 5-53 displays the 
sequence of control signals that accomplish these tasks. That portion 
of the control word that relates only to control-system operation is 
ignored for the present. These are the leftmost six columns of the con­
trol word in the figure. The coding entries may be either an H (for elec­
trical high), an L (for electrical low), or an X (don't care condition). As 
noted, the CPDL descriptions of each line's functions appear to the 
left of each line. These constitute a brief description of the set of com­
patible operations to be performed on this line. The coding table itself 
is the complete description of exactly how this is carried out. Each line 
of microcode becomes the CPU system's current orders from the con­
trol system at discrete points in time. 

The CPDL symbols used here are those introduced in Table 5-5. 
For example, B <: A means that the contents of A are to be trans­
ferred into B, leaving A unchanged. The symbol >: is the state-trans­
fer operator. The notation >: IF means that the system is to transfer 
to the IF state. Following the conventions used in the TTL data cata­
logs for the ALU, we also use pl to stand for addition and mi for sub­
traction. The data sheets on the ALU use + to represent the logical 
OR function as-we do in our CPDL notations. Let us now analyze each 
line of microcode for the instruction-fetch algorithm or macro. 

Line 0 establishes the control conditions necessary to execute the 
compatible set of operations (CSOP) expressed in CPDL as: 

MAR, T <:PC 

That is, MAR and T are to receive the contents of the program 
counter. Remember that register 3 of R, the register array, was to be 
used as STUPIDD's program counter. 

Two important questions must be satisfactorily answered to determine 
whether any CPDL CSOP can, in fact, be successfully implemented. 
These are 

I. Does the chosen architecture contain the data paths necessary to 
carry out the operations without conflict? 



CSTR ADDRESS: ASSIGN ED OP-CODE: 

d MACRO: IF BRCH. Cl DBUS 
NEXT ADR. 0 SOURCE IF z CTRL. ~ FIELD 

w PDL DESCRIPTION: 
z IR <: M{PC}, PC <: PC pl I, >:EX 0 ~ Cl N 0 ..... E-:J z z z u u ....J ~ ~ a:i a:i u t.l.l Cl) 

--
0 MAR,T <:PC x x x H 

l PC<: Tpl l L L x L 

.2 IR<: M{MAR}, >:EX L H L x 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 
D 

E 

F 

CPDL NOTATIONS CSTR2 

Fieure 5-53 IF Macro: Electrical-Level Form 

ALU FIELD 

ALU FUNC. cs 
~ ...., N 0 Cl) 

Cl) Cl) Cl) Cl) u u 

H L H L x x 
L L L L L L 

x x x x x x 

CSTRI 

SINK CONTROL FIELD 

RARRAY LOAD ENABLES 

~ et: 0 et: (§) E- -Cl) Cl) -~ et: et: _3_ ....l ....J ....J 

--- -- ~ 

L H H L L H H 

H H H H H H H 

L x x H H L H 

CST RO 

5 

H 

H 

H 

N 

~ 

~ 
i'i 

~ 
~ 
:::: 
:::: 
~ 

! 
;? 
rn 

i 
~ 
~ 



STUPIDD V- A Microprocessor Analysis and Construction Project 221 

R.PC 

Figure 5-54 
IF Algorithm Data Paths, 
Line 0 

R 

CONTROL FUNCTIONS 
MAR, T <: l>C 

F ... B LT LMAR 

BBUS 

T 

FBUS 

2. Does the control word issue all the requisite control signals to 
effect these operations? 

This means, for each op~ration, can you: 

a. Visualize the existence of required, nonconfticting data 
paths in a given architecture and 

b. Show that the existing control word is capable of evoking 
the required functions, sourcing and sinking, that will 
accomplish the desired actions? 

These two important questions encompass the major thought-provok­
ing aspects of the practice of microprogramming-assuming that one 
understands the hardware itself. 

For the beginner, the resolution of the above questions is aided 
by the drawing of a subset of the total architecture. Figure 5-54 does 
this for line 0 of the IF algorithm. It shows that information can flow 
from R through the ALU to the inputs of both T and MAR. Does the 
specified control word support this? Going back to Figure 5-53, notice 
the following: 

1. The R array field, a subset of the sink-control field, has placed R 
in the read mode and selected R3 (PC) to appear at its outputs. 
This information is also present at the ALU's B inputs. The R 
array field controls the read/write of the 74LS670 general regis­
ter array (Ul). This is a memory IC used internally by the CPU, 
sometimes referred to as a scratch pad memory. 

2. The bits of the ALU field have been specified to select the logic­
function mode, and the specific function to be performed is F = 
B, the transfer B to the F port operation. This tranfers informa­
tion on the BBUS to the FBUS. Since carries do not enter into 
logic operations, the CS subfield entries are designated as don't 
cares. Important-We are using active-high data conventions for 
all ALU operations in STUPIDD, as may be seen from the TTL 
manual. 

3. As a result of the foregoing, the contents of the PC are available 
at the inputs to both MAR and T on the FBUS. 



222 

W PC 

Figure 5-55 
IF Algorithm Data Paths, 
Line 1 

R 

MICROPROGRAMMING FORMATS: THE CONTROL WORD 

CONTROL FUNCTIONS 
PC<: Tpl I 
F==Apll 

DBUS 

FBUS 

ET 

T 

4. The ST field is a don't care until the end of the algorithm, when a 
major state change is required. This is clarified at line 2 of IF. 

5. The DBUS is not involved in this subarchitectural visualization. 
Therefore the DBUS source-field entries are don't cares. In prac­
tice, one may wish to specify this field so as to prevent arbitrary 
data appearing on the bus. In fact, an HH specification can be 
used to keep all the sources managed by the control system off 
the bus. 

6. The sink field contains clock-enable controls for the registers and 
memories of the system. The dots at the top of the columns of 
this field designate those enables that are active low. LMAR, LT, 
and LM are so designated. Note which registers have been clock­
enabled. When the system clock goes high, signifying the end of 
the current period, MAR and T will now have been synchro­
nously loaded with the data on the FBUS. The other registers 
simply ignore the dock and remain stable. Realize that, when 
new information is entered, the outputs of these load-enabled reg­
isters cannot be considered as stable for'some finite time into the 
next clock period. 

7. Realize, too, why we specified the loading of T as well as of MAR 
on this line of microcode. It is the first step in the incrementation of 
the PC. On the next line (line I) the PC will receive its present 
image (stored in T), incremented by one in passing through the 
ALU. 

Again, we wish to emphasize that the skills-building facet of the pre­
ceding consists of leaming how to visualize the existence of data paths 
and coordinating control signals. These are the two fundamental abili­
ties required to microprogram an architecture. Figures 5-55 and 5-56 
show the subarchitectures actively participating in lines 1 and 2 of the 
IF control-word coding. Do they make sense to you? 

In line 2, the IF algorithm is about to be terminated at the end of 
the clock period, because LIR is active. This control line also causes a 
flip-flop in the control system to be loaded with the logic value desig­
nated in the ST field. Since the ST field is specified as a logic low at 
this point, not only is this algorithm about to be terminated, but the 
control system will proceed to the EX major state in the next period. 
In EX, the instruction code loaded into IR at the end of IF informs the 



STUPIDD V- A Microprocessor Analysis and Construction Project 223 

>:EX 
...... ---ST• 0 LIR v ,; 

Figure 5-56 
IF Algorithm Data Paths, 
Line 2 

SYMBOLIC MICROCODING FORM 

SYMBOLIC CODE OF IF 

JR 

CONTROL FUNCTIONS 
IR <: M{MAR}. >: EX 

M 
A 

r----i 
I BFO : 
I I 

l . I 
I I 
I I L_ ___ J 

DBUS 

R ADRBUS 

EM RD 
I V 

J_ 

M 

control system which macro is to be executed. The study of the control 
system will clarify this further. What is apparent now is that 
STUPIDD goes from IF to EX and back each time IR is loaded. The 
ST field specifies the next major state at these times. For the IF macro, 
ST must always lead to the EX major state. At the end of any of the 
many possible different EX algorithms, IR is again loaded, with an 
undefined value in this system at the end of EX, but ST must now 
specify that the IF major state is about to commence. 

The electrical-level control-word coding format used so far is a neces­
sary one when we need to specify each bit for programming a ROM. 
For conceptual design, it is cumbersome to use. A symbolic control­
word coding sheet is presented in Figure 5-57. This sheet utilizes more 
recognizable mnemonic symbols as entries in the fields. The possible 
entries for each field are shown in Figure 5-58. The ALU field does not 
show all possible entries. Only some sample entries are shown, because 
this ALU performs many operations-a goodly number of which are 
useless. New entries to this field will be introduced as we proceed, 
using the 74181 ALU TTL data sheets as a guide. 

Figure 5-59 presents the IF algorithm in this simpler symbolic format. 
Notice that R should always be in the read mode, unless a write opera-



224 MICROPROGRAMMING FORMATS: THE CONTROL WORD 

tion is specifically called for. In this case, the RX symbolis employed. 
This precaution prevent~ the accidental specification of unwanted 
writes. Working with both microcoding formats is necessary in prac­
tice, and the exercises include the use of both. The simpler mnemonic 
coding form can be made to produce all the L's and H's by processing 
it through a microcode assembler program. The output of this assem­
bler could be a tabie showing the L's and H's, as we have already done 
or, more to the point, it could be information in the form required to 
program the control-system PROM's. The task of creating this assem­
bler is an interesting proje<it for one seriously interested in the art of 
microprogramming. In Chapter 6, we shall discuss in detail the pro­
gramming of the control system's EPROM's. 

In the next section, we illustrate the use of this symbolic coding 
form in the development of the microcode for the execution of some 
sample instructions for STUPIDD. This also serves to introduce the 
factors to be considered in the EX phase of the cycle of computation. 



Figure 5-57 MicroPl"OIIDllll Symbolic Codin2 Form (Blank) 

ci MACRO: l 
_I z NEXT BRCH 

UJ CPDL DESCRIPTION: 
z ADDRESS CTRL 
:i 

0 

I 

2 

3 

4 

5 

6 

7 

80 

9 _l 

A2 

83 

C4 

D_jl 

E6 

F7 

PDL NOTATIONS CSTR2 

0 
0 DBUS UJ ALU FIELD 
~ E-

SOURCE <!( 
ci: FIELD E-
...J Vl ALU FUNC. u --. -

CSTRI 

SINK CONTROL FIELD 

cs R ARRAY LOAD ENABLES 

CST RO 

V'l 

§ 
t:i 
t:i 

I' 
:... 

~ 
~ 
~ 

~ 
" i:: 
~ 
:... 
jg 
~ 
t;. 
§ 
l:l.. 

~ 

i ,.5· 

"' "' ~ ~­
~ 

1:3 
Vl 



CSTR ADDRESS: ASSIGNED OP-CODE: 

0 MACRO: 0 
0 DBUS z .· NEXT BRCH ~ w POL DESCRIPTION: ADDRESS CTRL SOURCE 

z a:: FIELD ..J 
:l ~ 

~ 

0 0 SF L T 

I I CF H M 

2 * A pl I ==> INCR 2 EF x I 

3 + ==> LOGICAL OR 3 L 0 

4 A mi B ==>SUB 4 

5 A pl B ==>ADD 5 

,6 A mi I ==> DECR 6 

7 7 

8 

*Note: USE pl FOR ADDITION, mi FOR 9 .._.. SUBTRACTION. THE NOTATIONS 

1A 
ADD, SUB, INCR, AND DECR ARE 
ALSO USED IN THE TEXT. 

B 

c 
D 

E 

1F 

POL NOTATIONS CSTR2 

Figure 5-58 Mnemonic Symbols Used in Microprogramming 

ALU FIELD w 
!--
<( 
!--
tll ALU FUNC. cs 

IF A x 

EX B co 

x Apl I L 

A+B CF 

A mi B H 

ETC. 

NOTE: F =IS 
IMPLIED ABOVE. 
CPDL LOGIC AND 
ARITHMETIC OPER-
ATORS ARE USED IN 
THIS COLUMN. 
REFER TO 74181 ALU 
FUNCTION TABLES 
FOR A COMPLETE 
LIST OF ALU OPER-
ATIONS. 

CSTRI 

J 
SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 

RO MAR 

WO T 

RI M 

WI OUT 

R2 FL 

W2 IR 

RPC 0 

WPC 

RX 

CST RO 

N 

~ 

61 
::<' 

~ 
g 

I 
! 



CSTR ADDRESS: ASSIGNED OP-CODE: 

0 MACRO: 0 
0 DBUS z NEXT BRCH ~ uJ PDL DESCRIPTION: ADDRESS CTRL SOURCE 

z IR<: M{PC}. PC<: PC pl 1, >:EX IX FIELD 
:i ..J 

~ --
0 MAR, T <:PC x 
I PC<: T pl I T 

2 IR<: M{MAR}, >:EX, LIR M 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 
D 

E 

F 

PDL NOTATIONS CSTR2 

Fi2lJl"e 5-59 IF Macro: Symbolic Form 

l 
uJ 
f-

ALU FIELD 

< 
f-
en ALU FUNC. cs 

x B x 

x Apt I L 

EX x x 

CSTRI 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 

RPC MAR, T 

WPC 0 

RX M 

CST RO 

c;,, 

§ 
0 
0 

~ 
:.... 

~ 
~ g 
~ 
~ 
:.... 
" "' 
""" "' ;;;· 

~ 

I 
§' 
~ 
~ .... 
0. 

N 
N 
-...) 



228 MICROCODING THE EX MAJOR STATE 

MICROCODING THE EX MAJOR STATE 

ADJUSTING THE PC 

M 

ETC 

01\2 l 
OA.1 THRH' WORD INSTRL:( fl01' 

MOP 

1 
r----;~:~ }· T\vo WORD INSTRUCHOI'< 

p:.::~.~~M M.OP 
\1.0P . . l :two WORD INSTRVCTION 

M.OP ()NE WORD lNSTRLX'TION 

Figure 5-60 
Instruction Word Formats in 
Program Stream 

Early in this text, the major fields of an instruction word were dis­
cussed. It was noted that, in a processor that possesses a small mem­
ory-word size, as is typical of many microprocessors, the fields of the 
complete instruction word are distributed over several memory words. 
We are careful to make the distinction between a "word" in memory 
(really the addressable unit of memory) and the full instruction 
"word," which can occupy several memory "words" or addressable 
units. The OP-code and MOD-bits are characteristically part of the 
first memory word. We shall define this to be true of STUPIDD-all 
OP and MOD bits are contained in the first memory word of its 
instructions. The OP field specifies the operation that is to be per­
formed. The MOD field specifies the addressing mode to be used for 
fetching the operand(s). This one-memory-word format for MOD and 
OP would not be practical in a commercial 4-bit processor. It allows 
for the .specification of only eight OP codes. At least two 4-bit memory 
words would be required to construct an adequate instruction set. 

The succeeding memory word(s) of an instruction word, if they 
exist at all, contain either a value (v) or an operand address (OA). If 
STUPIDD contained a larger memory space and larger MAR, say 256 
locations, two 4-bit memory words would be required to uniquely 
specify any one location within this range. For these reasons, a typical 
8-bit microprocessor has a maximum instruction format of three words 
with an address-field maximum length of sixteen bits. What does all 
this have to do with the execution of an instruction? The answer is 
found in our need to guarantee the proper functioning of the program 
counter, while developing microprograms for the EX phase of opera­
tion. 

The program counter must always be adjusted to point to the address 
of the next instruction before the IF major state is reentered. Examin­
ing some of STUPID D's instruction~word formats, displayed in Figure 
5-60, note that they are either one or two memory words in length. We 
will also demonstrate the creation of a three-memory-word instruction 
format later in this section. Let us look at these simpler examples, first. 

Take the case of any two-word instruction. At the start of 
instruction fetch, the program counter {originally) pointed to the 
address of the OP code and MOD bits, which are contained in the first 
word of.the instruction. This address was given to MAR, and then the 
PC was increased by l (through the intermediate use of T). The first 
instruction field (MOD and OP) is then fetched and placed in IR, and 
the EX phase is initiated. If the instruction is indeed a single-word 
instruction, the PC register is in fact pointing to the location of the 
start of the next instruction. On the other hand, if the OP code just 
fetched is a memb~r of one of STUPID D's two-word-long instructions, 
then the contents of. the PC now include either the address of a value in 
main memory or the address of the operand address in main memory. 
This is the state of affairs immediately after the instruction fetch, at the 
start of the EX phase. The PC is, in reality, an address pointer to main 
memory. One must be careful to ascertain exactly what it points to. 



STUPIDD V- A Microprocessor Analysis and Construction Project 229 

SURVEY OF ADDITION METHODS 

This can be a value, an operand address, or (as we later explore in indi­
rect addressing) another pointer to an operand address. 

The first thing the creator of an EX macro must ask is whether the PC 
must be adjusted to point to the next OP code. Failure to microcode 
this properly will cause the system to malfunction. It is the sort of 
responsibility that provides interesting job opportunities. Having rec­
ognized keeping track of and possibly having to adjust the PC as one 
great imperative in the microprogramming of any EX algorithm, we 
must now also recognize a second great imperative: the clear definition 
of any instruction. There are a variety of ways in which an operation 
rilay be performed. We must be certain what a particular instruction 
actually does, in detail. To illustrate this, let us first explore some 
macros that perform addition. We will finally select one to include in 
STUPIDD's final set of macros. These are given in Table 5-7. 

Table 5-7 
CPDL Descriptions of Possible Add Instructions 

Name of Macro 
ADR (add to r) 

ADT (add to T) 

ADM (add to M) 

CPDL Description 

R{OP} <: M{OA} pl R{OP} 
or 

R{OP} <: T pl R{OP} 
or 

R(i) <: R(j) pl R(i) 
T <: R{OP} pl T 

or 
T <: M{OA} pl T 

M{OA} <: R{OP} pl M{OA} 
or 

M{OA} <: T pl M{OA} 

Notes: The macro names above are temporary. Not all can be implemented on 

STUPIDD. {OP} means "as specified in. the OP code field of the instruction 
word." { OA} means "as specified in the Operand Address field of the 
instruction word" 

This tabulation of some possible candidates for future system macros 
that perform addition contains several implications that need to be 
explored. To start, the number of OP bits allocated in a design estab­
lishes the maximum number of instructions that may be implemented. 
The number of MOD bits affects the number of ways in which the 
effective address (EA) of an operand may be determined. Obviously; we 
must select only one of these candidates. Further, some (as in the last 
case) inay be awkward to implement because of the constraints of 
STUPIDD's architecture. 

The CPDL descriptions of the ADR type of macro· imply that 
something is to be added to a register's contents. The alternate choices 
disclose that the source of the operand can be memory, T, or another 
register. One or all of these options could be used in creating 
StUPIDD's instruction set. Oversophistication of an instruction set to 
include all possibilities is costly. Unwarranted variability can also 
make the software difficult to interpret. Suppose that we want to add 



230 MICROCODING THE EX MAJOR STATE 

to any register we choose. One solution is to have the OP code bits of 
the instruction specify both the source of the operand and the destina­
tion register of the result. This is the way the PDP- l l does it. Of 
course, this machine has sixteen bits to play with and employs a clever 
encoding scheme of pointers to make this .work. 

INSTRUCTION SET SPECIFICATION PROBLEMS 

In STUPID D's 4-bit instruction word, this selection of a register in R 
would use up half the instruction bits available. The problem is that 
the remaining bits can specify fewer instructions. For small-word 
machines, there are always more desired instructions possible than can 
be crammed into a given size of instruction word. Some desirable 
addressing modes are often sacrificed in the process, particularly 
among the 8-bit microprocessors. Instruction set optimization and the 
provision of flexible addressing modes soon runs into the word-size 
limitations of the small microprocessors. The 2650 8-bit microproces­
sor sacrificed one bit of address space to obtain a 9-bit instruction 
word. The excellent instruction set of the 2650 microprocessor, as com­
pared to others of its era, was limited to an address space of 32K bytes, 
as contrasted with the 64K bytes of address space the rest possessed. 
This was a high price to pay, indeed, even though its instruction set 
was far superior. 

One solution is to adopt a restrictive and pragmatic compromise 
that implements an attractive-if not ideal-instruction set. Out of all 
the possibilities in Table 5-7, let us decide to use RO as the implied des­
tination of all ADD-type instructions. This situation treats RO as a 
special accumulator. It does not require that any OP or MOD bits be 
used to specify the destination of the result. Investigating our options 
even further, we find that the bit patterns for the first field of the 
instruction word shown in Table 5-8 are possible. 

Table 5-8 
Bit Formats for ADR Type of Instruction 

IR Bit Pattern 
MOD OP 

0 100 

0 IOI 
0 110 

0 111 

CPDL Description 

RO<: M{OA} pl RO 
RO<: RO pl RI 
RO<: RO pl R2 
RO<: RO pl T 

If we were to adopt these conventions for STUPIDD, we would see in 
the first example in Table 5-8 that we can add any memory word speci­
fied in the operand address, or OA, portion of the instruction to RO 
when the two rightmost bits of the instruction are 00. This means that, 
when the bit pattern, 0100, appears in the IR, the next memory word is 
not an OP but must be the OA of the instruction. This coded pattern, 
when in IR, informs the control system what it is being requested to do 
during the EX phase. In this case, you, the macro designer, should plan 
on adjusting the PC in the macro you are creating to direct the control 
system to perform the correct steps. 

Note that the left two bits of the pattern (OlXX) specify the 
ADR operation. If the right two bits are not 00, then Table 5-8 shows 
that the instruction is completely specified in one word. Inspection of 



STUP/DD V-A Microprocessor Analysis and Construction Project 231 

SELECTION OF ADD MACRO 

the other examples of the table discloses that they are neither memory 
reference nor immediate mode instructions. In these cases, the PC will 
automatically point to the next OP after the instruction fetch is com­
pleted, and so it needs no further adjusting. The reason is that all 
source and destination fields must be implied in the definition of these 
single-memory-word types of instructions. That is, the bits of the first 
instruction-word field contains the code that the macro writer inter­
prets as meaning the implied source and sink. The control system 
(later) only carries out the steps we provide it with in the macros we 
develop. 

The incrementation of the PC by one during IF is as much as 
could done toward adjusting the PC in a generalized IF macro, short 
of designing a computer that has the ability to anticipate the length of 
an instruction word its control system has not yet Stien. It is the 
microprogrammer's responsibility to make any further adjustments to 
PC, if necessary. 

Commercial 4-bit processors use more than one memory word to spec­
ify the complete instruction, so do not panie. STUPIDD is only a 
learning tool. Yet with it we can demonstrate the inner workings of 
most instruction types, even though it is not a large machine. For now, 
we have succeeded in introducing some new concepts: a single-mem­
ory-word instruction-word format, a two-memory-word or longer 
instruction-word format, and the fact that the PC may require adjust­
ing during the EX phase of operation. These new concepts resurface as 
we proceed. Let us finally select, for microcode implementation, the 
following two-word instruction as an example of only one way we cah 
microcode the operation of addition: 

ADD: RO<: RO pl M{OA} 

The macro for addition, above, is the one we finally select for imple­
mentation. The second memory word of the complete instruction word 
specifies the address of the operand. The preceding discussion leading 
to this final choice reveals that the selection of an appropriate set of 
instructions and addressing modes-to be encoded into a fixed number 
of bits of an instruction word-is not a trivial task. 

As noted, it is important to be very clear about the precise mean­
ing of any instruction; these meanings are usually spelled out in sym­
bolic Register Transfer Notation (RTN) form in the programming cards 
or in the literature provided with commercial processors. Only the final 
symbolic results are presented in these RTN descriptions, often with­
out any clue as to how the microcode achieved it for a given architec­
ture. In the above CPDL description of the specific instruction ADD 
that we are now studying, RO is to receive the sum of its own contents 
and the contents of the memory location (specified in th(! OA field). 
Let us adopt this definition for now, as the precise statement of how 
STUPIDD performs addition. We now give it the official name of 
ADD. If we do not like this way of adding, all we have to do is create 
another macro for addition. 

Experience has shown the need to focus attention on the process 
of questioning the accuracy of one's own interpretation of any new 
instruction. Ob-,'iously, it helps to be familiar with the nature and 



232 

SYMBOLIC MICROCODE FOR ADD 

MICROCODING THE EX MAJOR STATE 

structure of the hardwar~ system. If the days of the purely hardware or 
purely software types are not numbered, this age of microcomputers 
has at least restricted the use of their talents. There are many types of 
microcomputers in service, and we must work closely with them-par­
ticularly with the many programmable peripheral devices they now 
contain. We need to understand the hardware, nowadays, to create the 
software. The reference literature offered by microprocessor manufac­
turers usually presents a form of symbolic RTN to describe the net 
effect of each instruction in its set. The CPDL notation is used here as 
a form of RTN. Gaining some intuitive feel for how hardware func­
tions in general is the intent of STUPIDD's design. In more complex 
systems, these RTN definitions of what an instruction actually 
achieves are the programmer's best aid to understanding what a 
machine actually does in executing an instruction, particularly if we 
can visualize the internal hardware organization of the system. 

The symbolic coding of the addition algorithm, or macro, is pre­
sented in Figure 5-61. The chosen symbolic name of this algorithm was 
ADD. It specifies that the contents of the memory location specified in 
the OA field are to be added to RO. This differs from the generalities of 
Table 5-7, where we were first exploring the range of possibilities. The 
symbolic CPDL notation of the net result produced by this instruction 
is displayed under the name of the macro as its overall function. It is 
just this sort of concise summary of the instruction that one must care­
fully interpret and rely on when using a computer. 

The details of how the net results are obtained and the CPDL notation 
of each line of our ADD instruction reside in each line of the com­
pleted macro coding sheet of Figure 5-6 l. An interpretation of these 
lines follows: 

Line 0 loads both MAR and T with the contents of the PC. This 
means that MAR now contains the address of the operand 
address. Since this is a two-word instruction. recall that the PC 
was left pointing to the OA after IF. The memory maps sketched 
on the coding sheets can be used as a visual aid in this process. 

In line l, the PC receives T pl 1, that is, it is incremented to 
advance it toward the next OP code. In this example, the PC now 
holds the address of the next OP field when this is done. This 
completes the adjustment of the PC required before IF begins 
again. 

Note the similarity to the first two lines of the IF macro. We have thus 
properly adjusted the PC for the next IF cycle and are currently hold­
ing the address of the operand address in MAR. Carefully think these 
distinctions out now, or suffer later: 

Line 2 commences the execution proper of the instruction. Here 
we fetch the operand address and place it into MAR, so as to b~ 
able to fetch the operand itself later. The beginner's mistake is to 
confuse the operand address (or pointer) with the actual oper­
and. 

In specifying line 3, the constraints of this architecture dictate 
that T receive the sum of the contents of RO and M, as specified 



ci MACRO: ADD Cl 
z 0 DBUS uJ 

NEXT BRCH ~ E-
uJ POL DESCRIPTION: SOURCE < z RO<: RO pl M{OA}, ADDRESS CTRL IX FIELD E-

...l (./) 

...l FL<: S, C, EQ ~ 
~ 

0 MAR,T <:PC 0 x 
I PC<: Tpl I T x 
2 MAR<: M{MAR} M x 
3 T <:RO pl M{MAR}, FL M x 
4 RO<: T, >:IF T IF 

5 

6 

7 

8 

9 

A 

B 

c 
D 

E 

F 

POL NOTATIONS CSTR2 

Figure 5-61 ADD Instruction Microcode 

ALU FIELD 

ALU FUNC. cs 

B x 
A pl I L 

A x 

Apl B H 

A x 

, 

CSTRI 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 

RPC MAR.T 

WPC 0 

RX MAR 

RO T,FL 

WO IR 

CST RO 

(') 

§ 
ti 
ti 

I' 
::... 

~ 
;::i 

"15 g 
~ 
::... 
~ 
~ 
~· 

~ 
~ 

~ 
§ 
~ 
~ ... 
~ 

N 
w 
w 



234 MICROCODING THE EX MAJOR STATE 

by the OA, which now resides in MAR. Specifically, the con­
straint is that we cannot simultaneously read and write the same 
register in the array, R. This necessitates the intermediate use of 
T. Now we clearly see how a register may J>e used to hold inter­
mediate results temporarily. Not only was the actual addition 
performed in line 3, but the flags are also loaded by the use of the 
mnemonic FL in the sink field. The loading of the flags means 
that information about the addition just performe<J-'-whether it 
generated a carry, its sign, or whatever-is available to a follow­
ing instruction (usually, the next one) for decision-making via 
conditional-jump types of instructions. We shall learn more 
about what controls the state-paths of both software and hard­
ware later. For now, note the recording of the flags at the opera­
tion, which is in essence the heart of the algorithm. 

Finally, in line 4, RO receives the result of the addition from T, 
and the system is told to fetch the next instruction, th~reby end­
ing this macro. The major state transfer is initiated by the clock, 
since both LIR and IF are specified (at the bit level) by the 
semantics of this line. 

There is some mystery here, in that IR is loaded with an undefined 
value on line 4. As we shall soon see better, the answer is that this par­
ticular control system ignores IR during the IF phase. That is, IR is 
consulted by (and guides) the control system only in the EX phase. 
Since the IF sequence commences in the next period, the use of the 
LIR control signal now to also enable the loading of the IF flip-flop in 
the control system produces no ill effects. This eliminates the need for 
an extra control line, which is the reason for taking advantage of this 
possibility. 

Now we have seen the complete basic cycle of operation of a 
processor: IF to EX and. back again. 

SYSTEM OPERATION SUMMARY OF MICROCODING 

The preceding paragraphs may seem short after the lengthy introduc­
tory treatment, but that's all there is to it. Having seen one macro of 
each major phase of operation, we have basically been exposed to the 
nature of all of them, though some general comments are appropriate. 
Single-word instructions enter the EX phase with the PC already 
pointing at the next OP code-no adjustment of the PC is necessary. 
These types of macros do not ·utilize the microcode of lines 0 and 1 of 
the ADD algorithm to adjust the PC. They directly attack the execu­
tion of the algorithm, starting on line 0. Commercial 4-bit microproc­
essors typically possess an address space that is three memory words 
(12 bits) long. The address space of 8-bit microprocessors is generally 
two memory words (16 bits) long, while 16-bit systems now offer 
address spaces of 20 or more bits. Adjusting the PC for these classes of 
machines can be more complex but, via STUPIDD, we have gained 
insight into the methodologies and procedures that render these sys­
tems comprehensible. Since systems vary widely, it is how we think 
about· them that is important, rather than how any single unit func­
tions-up to the point we choose one to work with. 



STUPIDD V- A Microprocessor Analysis and Construction Project 235 

Figure 5-62 
MVM Instruction Format 

CREATING NEW MACROS 

MVM-A 2-Address Macro 

t 
OA2 
OAI 

OP 
OP= MVM 

I. THE CPDL FORMAT IS 
M{OA2} <: M{OAI}. 

2. THE MOD BIT IS IGNORED 
AND PRESUMED LOW. 

The task before us now is to use this background creatively to invent 
and demonstrate our own instruction set for STUPIDD. For example, 
can this machine support a three-word instruction? Of course it can, if 
we want to design it. Let us invent a memory-to-memory data-move­
ment instruction, which we call MVM. The first step is to visualize the 
format of the proposed instruction as it would appear in memory. This 
is presented in Figure 5-62. 

The overall CPDL instruction description in Figure 5-62 specifies 
that the memory location, as specified in the OA2 instruction-word 
field, is to receive the contents of the memory location specified by the 
OA I field of the instruction word. Further, a "good" instruction does 
not affect the general registers in the register array R when they are not 
involved in the instruction. We shall not use any register in R for 
MVM. As noted, we presume the MOD bit to be an L, for now. This is 
discussed, with address modification, in Chapter 6. 

The next step is to visualize both the microlines of code required 
and the subarchitectures involved at each line. The goal of this is to 
find the shortest sequence of microcode that the architecture can sup­
port that will do the job. Figure 5-63 presents the completed macro for 
the MVM instruction on the symbolic coding form. The restriction 
that we apply now-and explain later-is that this macro must be con­
fined to the first eight lines of the coding sheet. There is a hardware 
reason for this, as we shall see. 

The first two lines of code are easy, for we have learned that the 
PC must be adjusted at least once. These are 

0) MAR, T <: PC 

1) PC<: T pl I 

This all looks familiar. MAR is currently holding the address of OA I, 
and PC now holds the address of OA2. Now comes the dilemma, for 
the PC needs to be adjusted still further. Its current contents must be 
used to obtain OA2. If we fetch OAI and place it into MAR, then tem­
porarily store the source data in T, we can surmount the problem. The 
next lines of code therefore read: 

2) MAR <: M{MAR} 

T may now receive the source data: 

3) T <: M{MAR} 

The flags could be loaded in the above line, if one wanted to collect 
information on the nature of the data being moved. Some machines do 



236 MICROCODING THE EX MAJOR STATE 

this. Since T is occupied with holding the piece of data to be moved, 
we cannot proceed in the previous manner of the PC incrementation. 
It can be included, however, in several steps: 

CSOP Microcode Comments 

4) MAR <: PC (MAR receives ADDRESS of OA2) 

5) MAR<: M{MAR} (MAR receives OA2) 

6) T <: PC, M{MAR} <: T (data to dest., the PC to T) 

7) PC <: T pl I, >: IF, LIR (advance the PC, End) 

These steps are a bit more involved, but they accomplish the task. 
Line 6 is of special interest. Note how the architecture was used 

to perform a compatible set of operations. The T register and memory 
were simultaneously enabled for loading of fresh information. The cur­
rent contents of Tare safely stored into M, due to T's true edge-trig­
gered behavior, before T's output changes. At the same time, T's 
inputs were enabled to accept new information during the T, .. Th 
interval, as discussed in chapters 2 and 3. 

The example above was sophisticated. We should draw partial 
architectures graphing the flow of data, as in the previous section, to be 
sure it is understood. This can easily be done by making a few copies 
of the CPU architecture. The MVM instruction format is also an 
example of a two-address instruction format. A source and destination 
address are part of the instruction-word format. This type of instruc­
tion-word formatting is employed in the PDP-11 processors and others 
patterned after it, such as the 68000 ~icroprocessors. These machines 
differ, however, in how they actually perform source and destination 
addressing. In them, encoded fields of the instruction word point to 
CPU registers through which all external addressing is accomplished. 
We have illustrated, though, that STUPIDD can demonstrate two­
address machine principles. 

In microprogrammed systems, all processor instructions are 
macros residing in the control-system store. We need to examine a few 
more to investigate the general spectrum of a processor's procedures, 
but this must come after the study of the operation of the control sys­
tem begins. The last items deserving of mention at this point are the 
external environment and the instructions related to it. These are 
macros that cause the control system to emit signals at appropriate 
lines of microcode that affect the world beyond the CPU. This has 
already been demonstrated in the reading and writing of memory. 
STU PI DD presents too simplistic a picture of 1/0 operations, and this 
is an area deserving more complete coverage. Concocting simple input 
and output algorithms with the current architecture is included in the 
problem set at the end of this chapter. 



0 z 
UJ 
z 
...J 

0 

I 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 

D 

E 

F 

MACRO: MVM 

NEXT BRCH 
POL DESCRIPTION: 
M{OA2} <: M{OAI} ADDRESS CTRL 

*(NOTES) 

T, MAR<: PC (MAR<: AOAI) 

PC<: Tpl I (PC<: AOA2) 

MAR<: M{MAR} (MAR<: OAI) 

T <: M{MAR} (T <:SOURCE DATA) 

MAR<: PC (MAR <: AOA2) 

MAR<: M{MAR} (MAR<: OA2) 

T <:PC, M{MAR}<: T 

PC<: T pl I,>: IF, LIR 

*NOTE: AOA(n) STANDS FOR 

ADDRESS OF OPERAND 

ADDRESS n 

PDL NOTATIONS CSTR2 

M Fi2UJ"e 5-63 MVM Instruction Microcode 
7 
I 

PC I ""' 

0 
0 DBUS 
~ SOURCE 

°' FIELD ...J 
v 

0 

T 

M 

M 

0 

M 

T 

T 

UJ 
I-

ALU FIELD 

< 
I-
C/l ALU FUNC. cs 

x B x 

x A pl I L 

x A x 
x A x 

x B x 
x A x 

x B x 

IF Apl I L 

CSTRI 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 

RPC MAR. T 

WPC 0 

RX MAR 

RX T 

RPC MAR 

RX MAR 

RPC T 

WPC IR 

CST RO 

~ 
""-l 

~ 
ti 
t::i 

~ 
:... 

~ 
~ 
~ 
"' !:: 
Si 
:... 
~ 
~ 

"' !:;· 

t 
[ 
~ 
5· :. 
~ a a· 

N 
w 
-.J 



238 

PROBLEMS 

-CONTROLS 

-CLOCK 

Figure 5-64 
Closed Data Loop for 
Problem 2 

173 

PROBLEMS 

Notes: Where microcoding is required in the following problems, first 
develop the mici:ocode, then demonstrate the microcode's actions, 
using the control-system simulation switches. 

Sketch the data-flow paths for each line of microcode, until you 
learn to visualize readily the data-flow path possibilities. This is espe­
cially helpful when. dealing with compatible sets of operations in a line 
of microcode. 

I. Obtain the functional descriptions for all the pins of two micro­
processor IC's, say, the 8080 and the 68000, Organize the pin 
names into three groups: data bus, address-bus lines, and con­
trol-bus interface signals. For the logic lines of the control bus 
group, further categorize these pin names into functional sub· 
groupings. For example, some pins are devoted to directional 
control of data transfers and others to bus access control or 110 
vs. memory operations, etc. The object is to form your own per­
spective of the minimal subset of the types of control functions 
performed that will encompass what the control bus signals do. 

2. Obtain the timing diagrams for the 74LS670 register array and 
the timing parameters for the 74LS181 ALU and 74LS173 4-bit 
register. The ALU is to perform the A pl I function. For the 
closed circuit shown in Figure 5-64, using these elements, draw 
the combined timing relationships of the circuit that: 

a. Show that the propagation delays of the circuit permit the 
173 to be loaded with its own modified output while the 
670 is in the transparent state. 

b. Establish the maximum speed of operation for the Read, 
Modify, Write of a register within the 670. The clocks 
received by the 670 and 173 must be nonoverlapping. 

3. Obtain the data sheets and timing diagrams for any of the 1 x 
64 K-bit dynamic memory IC's used in a microcomputer. 

a. Discuss the meaning and timing relationships of the RAS 
and CAS signals. 

b. Explain what must be done to refresh this IC. 

4. Obtain the equivalent logic diagram of the 74LS 194 shift register 
from the 1TL data catalog. Redraw the gating and flip-flop for 
one of its typical memory cells. Making four copies of this circuit 
will help in the following tasks. With reference to this logic dia­
gram, e:Xplain its operation for: 

a. Parallel loading 

b. Shift right 

c. Shift left, 

d. Do nothing 

5. Use the electrical-level microcoding sheet for this problem. 
Develop the microcode for the instruction that will shift left RO 
while filling the vacated LSB position with a 1. Call it SHU. The 
carry-out is stored in the FL register. 



STUPIDD V- A Microprocessor Analysis and Construction Project 239' 

6. Use the symbolic coding form for the following problem. Invent 
an algorithm for STUPIDD that compares the contents of RO 
and the contents of memory specified in the OA field of the. 
instruction. Only the flags are to be set in its operation. Name it 
CMP. U you are not sure of what a compare-type instruction 
does, research this operation in the instruction set of the PDP-11 
minicomputer or any of the microprocessors. 

7. Use the electrical-level (H & L) coding form for this problem. 
The instruction to be microcoded is DEC, R2. The POL net 
result description is 

R2 <: R2 mil, LFL 

8. Use the symbolic coding form for this problem. Microcode the 
instruction XOR, M. The POL description is 

RO<: RO E9 M{OA} 

9. Develop the microcode for the instruction rotate left through 
carry (RLC) using the electrical-level (Hor L) coding form. The 
instruction operates as follows, all events occurring at the same 
time: 

CF<: R0[3] 

RO[i] <: RO[i - 1), i = 3,2,l 

RO[O] <:CF 

10. Develop and demonstrate a short program that adds two values 
in memory and outpu~s the sum to the OUT register. 

1 I. Write the symbolic microcode for the instruction that POPs data 
off the stack. Do the same to create the instruction that PUSHes 
data onto the stack. Use RO as the implied register through whi.ch 
all stack-data transactions occur. · 

12. Create a macro for the add with carry (ADC) instruction that is 
consistent with the add instruction in the text. Discuss its use in 
multiple-precision addition. Write a program that uses these 
instructions to add two 8-bit quantities. 

13. Create a macro for the move immediate (MVI, R2) instruction. 
In this instruction, a data value is embedded in the program 
stream. That is, the memory word following the MOD, OP field 
is a data value. The CPDL description is 

R2 <: M{PC} pl 1 

where the contents of the PC referred to above are the address of 
the first memory word of the instruction. 





CHAPTER 6 
THE CONTROL SYSTEM 

CONTROL SYSTEM OVERVIEW 

CONTROL STORE EPROM's 

A block diagram of the control system of STUPIDD is presented in 
Figure 6-1. A few compromises have been made to keep this figure 
simple yet adequate for the purpose of providing insight into systems 
operation. These compromises are noted in the following overview of 
the system. 

The control store (CSTR) is at the heart of the system. It consists of 
three 2716 Erasable Programmable Read Only Memories (EPROM's). 
These devices are 2K x 8-bit read only memories whose contents may 
be erased with the aid of special ultraviolet lamps. Any other memory 
device would serve as well. but, since these can be erased and 
reprogrammed, they are popular for development work. After a design 
is frozen, EPROM's may be replaced with the permanent, lower cost, 
production type of ROM's. Both erasure and programming of this 
device require special equipment almost universally available in indus­
try and schools, but not necessarily in the hom,e. Therefore, it may be 
difficult for an individual to program the control system, without ready 
access to the resources needed. Computer clubs and advanced home 
hobbyists often possess this gear. Economical EPROM programmers 
are available for many personal computers. In fact, the Computer Sci­
ence Laboratory at California State Polytechnic University, Pomona. 
uses an IBM PC, an Advanced Microsystems PROM programmer, and 
UVP's EPROM eraser for this phase of the work. The construction of 
the control system therefore is strongly recommended. As an interim 
measure, we can always use the simulation switches to make the CPU 
respond to the control system's directives, once we understand how it 
operates. 

What the CSTR produces is a 24-bit control word, most of which 
we can simulate with the switches of our primitive CPU, as detailed in 
the previous sections. Should we construct the control store, its out­
put-the control word-simply replaces the actions of these switches on 
the CPU, which either must be removed or put in the disabled (open) 
position while we are using CSTR. Thus, we can demonstrate complete 
CPU system coordination either automatically or by manually setting 
switches. Explanation and understanding of the control-system work­
ings, though, are essential to our progress. If this is followed by a simu­
lation of CSTR's sequence of outputs by using the switches to control 
the CPU, then we will have demonstrated a knowledge of what it 
achieves, and how it does this. 



242 

U32 

MROM 

PRESENT 
STATE 

~~SAD) 

7 ""' 

CONTROL SYSTEM OVERVIEW 

CONTROL STORE (CSTR) 
U33 U34 U35 

CSTR2 CSTRI CSTRO 
U31 

DLD 
AND 
CTRL 

BA (6 :0) 

SW 

ENABLJNG 
DOWNLOAD 

2716 

AND MACRO........,,__,........,__. 
GROUP SELECT 

CONTROL 

74LS74 ------
U30 OP 

(IN CPU) 

3 

4 

DBUS 

O' 0 [/) 
uJ u 

2716 
(TYP) 

18 

PRESENT 
OUTPUT 
FUNCTION 

TO 
CONTROL 
EXTERNAL 

ENVIRONMENT 

TO CONTROL CPU 

EXTERNAL INPUTS 

Figure 6-1 
STUPIOD V Control-System 
Block Diagram 

STATE-TABLE ASPECTS OF CONTROL STORE 

Present-State Identification Figure 6-1 is organized so as to once again emphasize the sequential 
machine aspects of the control system. It is an extension of the basic 
microprogrammable von Neumann architecture introduced in Chap­
ter l. The control store is a memory that contains the elements of a 
state table for a sequential machine. These are-as a function of the 
present state and external input sets-the next state prediction and 
the present output function. These sets of entries are the contents of 
the CSTR memory. The present state of the system is the set of control 
store address (CSAD) lines addressing the EPROM's of the control 
store. This must be so, since whatever the machine is to do emanates 
from CSTR. These CSAD inputs are the only specifiers of where we 
are in CSTR, or the indicators of the present state. This address is 
affected by the external inputs, which are signals from the CPU, plus 
the MOD and IF flip-flops. The net result of this addressing proce­
dure is to bring out of the CSTR memory a group of bits that we call 
a line of microcode. The first six of these plus the ST field and LIR are 
next state predictors. Thus we have shown the presence of the ele-



The Control System 

Next-State Prediction 

Branch Control 

Pipeline Operations 

Flag Selection 

243 

ments of the 5-tuple that describe a sequential machine, namely <I, 
Q, Z, n, p > of Chapter 4. 

We postponed an examination of the leftmost six columns of the activ­
ity-level microcoding forms, Figure 5-52, until now. The first three col­
umns, which make up the NEXT address field of the coding sheets, are 
devoted to unconditional selection of the lower three bits of the next 
state prediction. This prediction is presented to the inputs of the cur­
rent address register (CAR). After each clock pulse has loaded CAR, 
these three inputs become a part of the current state, which is the first 
three bits of the control store address (CSAD)-when the signals settle 
down in the next period. The total CSAD address also consists of 
MPX and BA, as detailed below. Clearly, the NEXT field of CSTR 
predicts a portion of the next state. It is important to realize that these 
three bits select one of eight possible lines of microcode. This is why 
we restricted the MVM macro of. the previous section to eight lines. 
Yet, a single macro may be made to possess up to 16 lines of 
microcode, as we shall now discuss. 

The two columns following NEXT are used for the branch control 
(BC) field. Their use can lead to the production of the signal that con­
trols access to the other eight lines of microcode and is also used in the 
execution of conditional operations. These conditional operations are 
operations wherein the line of microcode selected for execution 
depends on the logical condition of an external input selected by the 
multiplexer driven by the BC field. These two lines are also loaded into 
a portion of CAR where-in the next period-they address a 4-line-to-
1-line multiplexer, a 74LS 153 called MPX. 

The function of this device is to select the source of the fourth bit of 
the CSAD,the current address of CSTR. This selected bit may come 
from one of several external sources, as controlled by the BC field. As 
we can see, though, we must anticipate and specify its use in the clock 
period before it is to take effect. This present specification of a future 
event in microcode is sometimes referred to as pipelining an architec­
ture. Where it is used, we must learn to think ahead and generate now 
the proper signals that .will take effect in the next or some future clock 
period. 

STUPIDD was limited in size to keep the chip count low. Previous 8-
bit microprocessor versions of the STUPIDD projects required in 
excess of fifty IC's. We have compromised here by feeding an L and 
only three flags to the inputs of MPX. Thus, the BC field of CSTR can 
control the binary value of the fourth bit of CSAD (the present state) 



244 

MP X Upper/ Lower Half 
Selection 

Block Addresses 

Clearing of MOD Bit 

Present Output Signal Feed­
back 

CONTROL SYSTEM OVERVIEW 

with only these four sources to MPX. It performs this by selecting 
either an absolute value of L or by permitting its value to be dic­
tated by the current value of the one of the three flags from FL we 
choose to utilize. This permits both absolute and conditional con­
trol of this bit. It would be nice if we could also select an H or 
some additional flags or could have more absolute control bits to 
provide greater flexibility. 

Note carefully that the current BC field from CSTR affects the MPX in 
the next clock period. Again, one has to think ahead in developing the 
microcode, which is usual in a so-called pipelined machine. This is how 
the first four bits of the next state are predicted, or formed, by the 
present state of CSTR. The 4-bit range of this portion of CSAD limits 
the maximum size of each individual macro to sixteen lines. Use of the 
BC field can lead to the conditional selection of CSTR addresses in 
either the lower or upper half of the block of sixteen lines of microcode 
allocated to each macro. The NEXT field leads to the specific selection 
of one of the eight lines within the half of the macro-block space deter­
mined by the BC field. 

All the other CSAD address lines are devoted to the selection of 
the block address (BA) of the current macro that is to be executed. 
These BA lines come from the mapping ROM, MROM, which we 
shall discuss shortly. These BA values are held constant during the 
execution of a macro and change only when we want to perform 
another macro. Therefore, the BA changes whenever the system 
goes from the IF to the EX major state, or back. Some of the first 
four lines of CSAD typically change with each clock pulse, to select 
the current line of microcode to be performed within a macro. The 
high-order bits of CSAD-that is, the BA-,,-only -ch;mge when 
another macro is in the process of being selected. The concurrent 
specification of an ST value and LIR initiates this change. Again, 
the BA remains constant during a macro's execution. Larger com­
mercial systems operate on related principles. The major difference 
is that, in utilizing both absolute and conditional control of next 
state predictions, these systems are designed to make both more 
efficient and more flexible use of CSTR memory space, through the 
use of more bits than our small system contains. 

Last of these previously unexplained six bits is the clear MOD bit, 
CLM. This bit is also loaded into CAR, where it can clear the MOD 
flip-flop after the address modification macro has been performed. To 
employ it effectively, one must look ahead to anticipate its use, as in 
the previous cases. None of these six signals affects the current state, 
just the next one after the current clock period has run its course, when 
they appear at CAR's outputs. Let us emphasize again that their use 
must be anticipated one clock pulse before they are to take effect-due 
to CA}l's single-period pipeline delay. 

The balance of the control word emitted by CSTR is sent to the 
CPU and its external environment, except for the signals that affect 



The Control System 

MOD FLIP-FLOP AND IR 

MAPPING ROM 

MROM Space Allocation for a 
Macro Set 

245 

the loading of the IF ftnd MOD bit flip-flops, LIR and ST. These 
signals could have been implemented in other ways, such as also 
incorporating the IF and MOD bits into CSTR and CAR, but at 
the expense of requiring a larger system. They are, in reality, a part 
of the state machine whose entire state table could be held in 
CSTR. In particular, IF is displayed apart from CSTR, both for 
simplicity and to emphasize the two major states of the cycle of 
computation. The output of IF drives the most significant bit (MSB) 
of the address lines of the EPROM labeled MROM. In this imple­
mentation. as the design shows, IF is loaded only when LIR is 
asserted. Its next state is predicted by the present value of the ST 
field of the microcode. Therefore, the portion of the total next state 
prediction emanating from CSTR is determined by NXT, BC, 
CLM, LIR, and ST. The next state of a sequential circuit of the 
Mealy or Moore type is also a function of external inputs, as we 
shall now discuss for the flags, MOD and OP inputs, next. 

The flip-flop labeled MOD is a part of the IR. It gives us the capability 
to simulate the use of MOD-bits in instruction words that specify 
operand address modification. Instruction register contents generally 
consist of two fields, the MOD and OP fields. The MOD field specifies 
the type of operand-addressing mode to be used during the execution 
of an instruction; the OP field specifies what operation is to be per­
formed on the operand after it has been fetched. The MOD flip-flop is 
set at the end of the IF macro by instructions in which address modifi­
cation is requested. Thus, the execution of the events that occur when 
either indexed or indirect addressing is specified can be displayed on 
this system. The MOD bit flip-flop output is fed to an input line of the 
EPROM named MROM, where it becomes the second most significant 
bit of the address space of MROM used in the normal operation of 
STUPIDD. The order in which MROM is addressed by IF and MOD 
is important, as we shall soon see. 

The rest of IR, which is the OP field in this system, drives the 
!ow-order address bits of MROM. It contains the code that specifies 
the current instruction to be performed during the EX phase of the 
cycle of computation. Both this OP register and the MOD bit are valid 
only during the EX phase of operation. The IF flip-flop specifies 
whether the system is in the EX or IF phase. We can see that the 
inputs to IR are truly external inputs, having come from the external 
memory, M. where the program stream resides. In point of origin, OP 
and MOD were generated outside the control system hardware. Glob­
ally speaking, a programmer actually created them. 

MROM, another 2716 EPROM, serves as a mapping read only mem­
ory. Mapping RO M's are frequently applied to the design of processor 



246 

MROM Priority Coded Opera­
tion 

CONTROL SYSTEM OVERVIEW 

control systems, though not necessarily in the simplistic manner used 
here. Their function is straightforward. It is to map the input fields 
(such as our IF, MOD. and OP fields) into a block address (BA) for 
accessing a macro in the CSTR~ It is important to note that the output 
of MROM selects a block address for CSTR, within which block the 
control system is currently operating. The NXT and BC fields from 
CSTR that are currently stored in CAR. on the other hand, select the 
specific line of rnicrocode within this block that is currently active. 
MROM therefore tnaps its inpuis into block addresses that appear at 
its outputs. It is emphasized that each block address selects a different 
macro or algorithm for STUPIDD to perform. Only five of MROM's 
input address lines are used in demonstrating the operation of a set of 
macros. Two other address lines are switch-selectable to increase to 
four the number of macro sets that can be demonstrated. In addition, 
there are three address bits of MROM that are used to download one 
of eight possible demonstration programs stored in CSTR, for ·ease of. 
operation. These refinements are discussed in the next section. 

The manner of MROM's use in STUPIDD is wasteful of mem­
ory space. The system was kept simple. It does, however, have its ele­
gant aspects. MROM can be made to serve as a priority encoder, while 
selecting block addresses. This is a concept tha:t needs to be fully 
understood to use this system. Figure 6-2 illustrates how the memory 
address space may be allocated in one of the four possible sets of 
macros that can reside in MROM. Several sets of macros may exist 
and be demonstrated, but only one set at a time is selected for use with 
a demonstration program. The concepts of the mapping operation, 
then, can be explained by examining the mapping of a typical set. This 
pattern is the same for all other sets of macros. 

Note, in Figure 6-2, that IF is the most significant bit of the input 
address lines for one set of macros. If IF is high, then the location 
selected must be somewhere in the upper half of MROM's macro 
set address space for this set, regardless of the current value of the 
other less significant address !in.es. If the programmer of the 
EPROM chooses to write the same value into all locations of this 
upper half of the address space used by this set of macros, then 
IF's being high always causes a constant block address to be emit­
ted, regardless of the other inputs. Thus, we program IF to have 
priority over all the other inputs of MROM. The block address 
emitted from MROM when IF is high is the starting address of the 
block location of the IF macro. This is sent to the high-order 
address lines of CSTR. Recall again that CAR and BC are selecting 
a specific current line of microcode within that block. Therefore, 
making the output of the IF flip-flop the MSB input to MROM for 
a set of macros gives it priority over all other inputs-when MROM 
is programmed in the manner described above. 

At the end of the IF macro, the IF flip-flop is set low by our 
concurrent use of the state and LIR'stgnals. Now all that the other 
inputs can do is select a location in the lower half of MROM's 
address space. When the MOD bit is high, the location selected 
must fall into the second quarter of MROM's macro set· address 
space. It is to be hoped that the programmer of MROM has written 
a single unique value into all these locations, too. This then pro­
duces the block address for the operand address-modification algo­
rithm that the system must perform, before actually obtaining the 



The Control System 

Figure 6-2 
Priority-Encoded MROM­
Space Allocation (for One Set 
of Macros) 

REL. LOC. I 

32 LOCATIONS 
USED 

(TOTAL) 

FOR ONE SET 
OF MACROS 

F 
I 

REL. LOC. 0 0 

MROM 

1E 
ALL LOCATIONS 
IN THIS SPACE 
HA VE THE SAME 
OUTPUT, WHICH 
IS THE BLOCK 
ADDRESS OF THE 
IF MACRO. 

M.QQ 

ALL LOCATIONS 
JN THIS SPACE 
HA VE THE SAME 
OUTPUT, DIFFER-
ENT FROM 
ABOVE . 

.Qf 
EACH INPUT 
ADDRESS TO 
THIS SPACE PRO-
DUCES A UNIQUE 
OUTPUT. 

+ + 
_.r 3 

MSB LSB 
IF MOD OP 
~ 
FROM IR 

247 

.L 

/' In 

TO BLOCK ADDRESS 
PORTION OF CSTR'S 

CADR INPUTS 

l/ 

operand and executing the operation specified upon it in OP. At 
the end of the address-modification procedure. the MOD bit is set 
low. With both IF and MOD low, the remaining inputs are capable 
only of selecting a location in the lowest quarter of MROM's macro 
set address space. Where more than one MOD bit is present, this 
priority encoding scheme may be employed again and again, as 
long as MROM has a sufficiently large address space. 

When both the IF and MOD bits are low, only then is the OP 
field permitted to have its say. Now the programmer of the EPROM 
resorts to a new tactic. Each OP selects a location in MROM into 
which separate and usually unique block addresses are programmed. 
We are no longer priority encoding as well as mapping-we are per­
forming straightforward mapping. That is how the system functions, 
regarding the selection of the BA's within each set of macros of the sys­
tem. CAR dictates, within these macro block-space bounds, precisely 
where the current control word is to come from. CAR, then, selects the 
lines of microcode of each macro that we originally created on the cod­
ing-form sheets. 

The addresses shown in Figure 6-2 are relative to a base address, 
as controlled by the macro-select switches provided in the control sys­
tem. There are four sets of different macros possible, each one contain-



248 

IF, MOD Flip~Flops 

CoNTROL SYSTEM OVERVIEW 

ing eight OP codes and one address-modification macro. The user can 
now invent and demonstrate a wide variety of instructions with the 
construction project. 

This wasteful but effective use of MROM's address space is eco­
nomically justified only for educational purposes. Actual implementa­
tions of CSTR addressing use larger CAR's, typically with expanded 
control over the high- and low-order bits. The low-order bit is some­
times used to multiplex in an external value for control of looping, 
while ihe high-order bit(s) is employed in branch or jump operations 
within CSTR. 

Both IF and MOD are implemented using a 74LS74 dual flip-flop. 
When LIR is active, that is, when the instruction register is being 
loaded, both these flip-flops are also loaded. To repeat, the use of LIR 
to enable the loading of IF is convenient, as it eliminates the need for a 
separate control signal. Also recall that, when LIR is active at the end 
of the EX phase, the loading of IR has no effect on the IF macro, 
because of IF's priority over all other lower order MROM-input bits, 
as discussed above. The IF flip-flop's data-input bit comes directly 
from CSTR as the ST signal. When this is high and LIR is active, the 
next state will be the start of the IF phase. At the end of IF, ST must 
be low to advance to the EX phase. The last line to be executed (not 
necessarily the highest-numbered line) in every macro must cause a 
major state transition to whatever is the opposite phase, IF or EX. The 
only exception is the address-modification type of macro, which 
employs the MOD flip-flop. 

The MOD flip-flop is part of what we call the IR register. When 
the IR is loaded at the end of IF, the logic value of D3 of the data bus 
is entered into MOD. This is the MSB of our instruction word and is 
used to signify to the control system that operand-address modifica­
tion is to be performed, as in indexed or indirect addressing of oper­
ands. Within the address-modification algorithm-on the last line­
MOD is specified to be cleared via the direct clear input at the start of 
the next period, This is accomplished by specifying an L in the CLR 
MOD field. Again, the one-period delay is due to the fact that this 
value must appear at the output of CAR at the start of the next period. 
Within the address-modification macro, excepting the last line, the 
CLR MOD field must always be high. It must also be specified as H at 
the end of IF. Anyplace else, this bit's value has no effect on system 
performance. Why is this so? 

The enabling of the control system and the procedure for 
downloading stored programs are presented, along with the con­
stuction details, in the next section. This completes the control-sys­
tem overview. In a future section, we look at the details of macros 
that include these control-system fields. The study of these instruc­
tion macros should clear up the remaining questions about the 
operation of the control system and its relationship to microcod­
ing. Two topics relevant to control-system design-control sequenc­
ers and pipelining-are beyond STUPIDD's scope. Nonetheless, 
this coverage is reasonably comprehensive for the addition of only 
eight more IC's to those of the CPU. Build it, and enjoy debugging 
it. The construction details, in the form of the parts list, associated 
wire lists, and assorted suggestions, were presented in Chapter 5, 
along with those of the CPU. 



The Control System 249 

THE CONTROL-SYSTEM DEVICE DETAILS AND MEMORY MAPS 

ENABLING OF CONTROL STORE 

This section contains the memory maps and logic schematics of the indi­
vidual IC's used in the construction of the control system. The fundamen­
tal system operational features of the IC's in the control system are also 
introduced. This is the same type of interface presentation seen in our 
previous discussion of the CPU portion of STUPIDD in Chapter 5. For 
convenience, the parts list and wire lists both for the control system and 
for the CPU are all grouped together at the end of Chapter 5 (see Figures 
5- l 5 to 5-5 l ). Construction and debugging guides are explained there, 
too. If any of the new IC's introduced here are not familiar, the reader 
should study their data sheets. Because the 2716 EPROM is likely to be a 
new acquaintance, not found in a TTL data catalog, its data sheets are 
presented later in this chapter, in Figure 6-11. For the utmost ease and 
optimal use of the construction project, we want to program and erase 
these EPROM's. We shall discuss the programming environment later. 
All other IC's are found in the TTL data catalog. Since the reader should 
by now have acquired the skills. for independently studying an IC data 
sheet, we shall now turn to a discussion of the control-system design 
details that are of interest at this point. 

The control system has been designed to enable the user to oper­
ate the system automatically. Manipulating the individual switches 
that are provided for manual operation of the CPU can soon grow 
tedious. The automatic features include both the downloading of dem­
onstration programs and their subsequent operation. This means that 
everything required for demonstrating both the development of 
macros and their subsequent use in demonstration programs can be 
conveniently preprogrammed into the EPROM's of MROM and the 
CSTR. Operation and the confirmation of correctness are now reduced 
to the manual operation of the clock push button. If one chooses to 
drive the clock input with a commercial TTL-compatible clock-signal 
generator, STUPIDD's performance may be tracked on an oscillo­
scope. Operation speeds in excess of l MHz have been observed. The 
construction of the control system makes the use and demonstration of 
STUPIDD very convenient. 

The convenience features for the operation of the control system are 
represented in the DIP-switch connections shown in Figure 6-3. These 
switches are located in the socket for U3 l; the corresponding wire list 
and associated schematic sheet, in Chapter 5, should be consulted, too. 
At the very top of Figure 6-3 is the switch that generates the level of 
the logic line @ECTRL-enable control. If this switch is open (H), all 
of the EPROM's in MROM and CSTR are not selected and their out­
puts are tri-stated-they are therefore inoperable. Under this condi­
tion, one may freely use the control-store simulation switches, which 
are part of the CPU, to operate STUPIDD. All these manual CPU-con­
trol switches should be opened or removed before closing @ECTRL. If 
these switches are removed, the input port (IN) may be operated by 
using a four-position DIP switch in the Ul2 socket, properly located. 
This removal precaution is necessary to prevent conflicts between the 
CPU's simulation switches and the outputs of the EPROM's. With two 
devices attempting to drive a line simultaneously to conflicting logic 



250 

Figure 6-3 
Download and Macro-Space 
Selection Switches 

DOWNLOADING OPERATION 

THE CONTROL-SYSTEM DEVICE DETAILS AND MEMORY MAPS 

DOWNLOAD 
CONTROL 

TO CPU 

PROGRAM 
SELECT 

FOR 
DOWNLOAD 

U31 

MACRO-SPACE 
SELECT 

SWITCHES 

@ECTRL 

~-..._----t11----- TO th CSTR 

18 20 

U32 

-----13 
MSO 

levels, a resulting voltage that is neither a logic 1 nor a logic 0 may 
exist. Logic 1/zs do not compute. When @ECTRL is active (L), the 
control system takes over. With the switches removed, the master-reset 
signal may be applied with the use of a short jumper wire at the posi­
tion the MR switch occupies. 

The next switch below this is @DLD, download control. A partial sche­
matic of how this affects both system operation and program download 
is presented in Figure 6-4. When active, this logic line disables MAR 
(US) and DECO (U8) in the CPU. This causes all CPU interfaces to 
both the DBUS and the ABUS to be tri-stated, to facilitate the follow­
ing OMA-type of operations. This is achieved with the help of the 
74LS241 buffer, U38. One half of this buffer (see the logic schematics of 
both Figure 6-4 and Figure 6-13) is active-high enabled; the four drivers 
.of the other half are active-low enabled. When @DLD is high, the half 
of the buffer that is enabled activates a buffer gate whose input is tied 
low. The output of this gate is therefore low, when enabled. This is the 
logic line @EMD that enables both MAR and half of DECO. Should 
@OLD be low, this part of U38 is disabled, and @EMD is pulled high 



The Control System 

@DLD 

U38 

(TYP) 4 

Figure 6-4 
Download Control: Partial 
Schematic 

LI LO 

us 
M 
A 
R 

@EM 

ABUS 

CSTR 
S3 ... SO 

M 

cs 

251 

Ull 

OUT DISPLAY 

DSOUT 

by a pull-up resistor in U39. The active-low half of buffer U38, also con­
trolled by @DLD, enables the four CSAD adress bits of CAR's (U36) 
and MPX's (U37) outputs to be placed onto the ABUS. Thus, memory 
is being directly addressed by something other than the CPU's MAR 
register. The data that accompanies these addresses comes from the S3 
.. SO field of CSTR, during downloading. 

The four S3 .. SO signals out of CSTR are presented to half of the 
74LS244 buffer (Ul3) in the CPU. This buffer is also directly controlled 
by @DLD, and it becomes the master of the DBUS when activated. 
The data now being presented to primary memory comes not from the 
CPU but from an external DMA type of device. Since DECO is disabled 
during a download, no conflicts for bus access can occur. The S3 .. SO 
field of CSTR, which will be programmed to contain the execution pro­
gram's steps and data for future demonstration of its operation, may 
now· be downloaded into memory in a coordinated manner. 

Under the conditions above, both the main memory address and 
the line address within a CSTR macro block are the same. Both come 
from CAR's outputs. For each clock pulse, these addresses are control­
lable through use of the NEXT _and BC fields of CSTR. Thus entries 
you place into CSTR's S3 .. SO portion of the ALU field for a demon­
stration program may ·be systematically written into RAM memory 
from CSTR, if we also remember to specify a memory write at the 
same time. The administration of a clock pulse aceomplishes this. The 
NEXT and BC field entries in CSTR, feeding the inputs of CAR, 
determine the next address for memory as well as CSTR. Due to the 
one-period delay of CAR, these take effect just after the application of 
the clock pulse. 

In summary, so far we can program a macro block in CSTR so 
that it contains an operational demonstration program for future 
downloading and execution. These downloading operations are analo-



252 

PROGRAM SELECTION 

MROM MEMORY MAP 

Block Addresses 

THE CONTROL-SYSTEM DEVICE DETAILS AND MEMORY MAPS 

gous to what actually occurs during DMA operations on a micropro­
cessor system. If the downloaded program loops back into itself, 
sustained continuous operation is observable. The fields of CSTR to be 
programmed in this process are NEXT, BC, the S3 .. SO field of the 
ALU, and the memory-loading signal LM. In addition to this, we are 
required to initialize the PC and the carry flag in the downloading pro- · 
cedure steps to be described later. 

The switches in socket U3 l are also used to control the locations of 
the block addresses that MROM emits. The three switches-PSO .. 
PS2-below @DLD, as shown in Figure 6-3, are used for program 
selection. Eight demonstration programs may be placed in CSTR. On 
the other hand, the bottom two switches-MSl and MSO-permit 
four separate sets of macros to be programmed into CSTR. MROM 
still only emits BA's. They are the BA's of all macros plus stored pro­
grams. Let us investigate how this occurs. The reasoning is similar to 
that for the priority-encoding use of the IF signal, previously 
described. @DLD, when low, controls downloading: Since it is phys­
ically the most significant bit of MROM, the eight stored demonstra­
tion program BA's actually reside in the lower half of MROM. This 
half of MROM is subdivided into eight blocks by the three PS 
switches. Utilizing the priority-encoding ability of MROM, intro­
duced in the pr~vious section, the remaining seven address inputs to 
MROM have no effect if all of the 128 locations they serve within a 
program select block contain the same BA. The BA's emitted by 
MROM will be programmed to be different for each setting of the 
PSO . . PS2 switches. 

The final resulting memory-use mapping of MROM is presented in 
Figure 6-5. When @DLD is inactive (high), this figure shows that 
the BA's of the four switch .. selectable sets of macros all reside at 
the very top of MROM in groups of 32 bytes each. Figure 6-3 also 
discloses that, in the operate mode, where @DLD is high, the PSO, 
PS 1, and PS2 signals addressing MROM are also pulled high, 
regardless of tlieir DIP-switch settings-because of how these con­
nectiOns are wired. With the upper four address lines clamped high, 
we are now in the upper eighth of MROM. This space is further 
subdivided into groups of 32 bytes by the MSl and MSO macro-set 
select switches. At this point, the addressing behavior of MROM is 
as illustrated in Figure 6-2 and its related text, except that we can 
program into MROM the BA's of up to four separate sets of 
macros. The BA's emitted for each macro set therefore come from 
the upper part of MROM. 

There is a new possible variation on how one may use the 32-byte 
macro-set BA space in MROM, as indicated in Figure 6-5. If we do 
not wish to include an address-modification algorithm within any one 
set of macros and we choose to use the MOD bit as the most signifi­
cant bit of the instruction, we can use the lower 16 bytes of the macro-



The Control System 

Figure 6-5 
MROM-Use Map 

Block Address Assignment 

I~ 7EO !!_ 
7CO 

I) BA OF( 
IF MACR 0 

I) BA OF( 
MOD MAC RO 

) BA OF (8 
EX MACR OS 

OR 

I) BA OF( 
IF MACR 0 

16) BA OF( 
EX MACR OS 

GEOF TYPICAL USA 
MACRO-SETS 
ALLOCATION 

PACE 
s 

MORY STARTING ME 
LOCATIONS (H EX) 

7AO 
780 

380 

300 

280 

200 

180 

100 

80 

0 

MROM 

253 

} 
4 x 32 ... 128 BYTES 
BLOCK ADDRESSES 
FOR FOUR SETS OF 
MACROS 

NOT USED 

8 x 128 = 1024 BYTES 
BLOCK ADDRESSES 
FOR DOWNLOADING 
OF EIGHT DEMON­
STRATION PROGRAMS 

set space to create BA's for 16 EX state macros. To do this, however, 
the CLR MOD bit in CSTR must be used carefully. Can you explain 
how it should be used? All sets of macro mappings in MROM must 
include a priority-encoded BA for the IF macro, but the BA assigned 
may be the same for all four. This is so because there need be only one 
IF procedure, shared by all sets of macros. 

The BA's emitted by MROM form the most significant bits (MSB's) of 
CSTR's address (present state). Figures 6-6 and 6-7 provide assistance 
in keeping track of the BA assignments in CSTR. Figure 6-6 con­
tains the suggested BA assignments for the IF, X (indexed address­
ing), and I (indirect addressing) macros. As noted in the figures, 
the high-order hexadecimal digits displayed in the HEX Starting 
Address column are also the BA that MROM must be programmed 
to emit when a macro is assigned to a given address. Figure 6-7 is a 
generalized assignment worksheet for those who like to do it their 
way. Since there is space in CSTR for 128 macros and a maximum 
of only about 64 BA's may be emitted from MROM, there is room 
to spare in CSTR. 



254 

Figure 6-6a 
CSTR Ma<:ro-Assignment 
Map Fonn (Numbered) 

HEX MACRO 
STARTING MNEMONIC 
ADDRESS 

00 IF 
10 

0 20 
ti 30 
ell 40 

~ 50 
u 60 
< 70 ::;E 80 

90 x 
AO - BO 

ti co 
ell DO 
0 EO ct: 

FO u 
< 100 
::;E 110 

120 I 

1'30 
140 
150 
160 
170 
180 
190 
IAO 
IBO 
ICO 
IDO 
IEO 
IFO 
200 
210 
220 
230 
240 
250 
260 
270 

THE CONTROL-SYSTEM DEVICE DETAILS AND MEMORY MAPS 

MACRO DESCRIPTION 

INSTRUCTION FETCH 

INDEXED ADDRESS MODIFICATION 

INDIRECT ADDRESS MODIFICATION 

' 

NOTE: HIGH ORDER HEX DIGITS ARE BA FROM· MROM. 



The Control System 

Figure (;.6b 
CSTR Macro-Assignment 
Map Form (Unnumbered) 

HEX MACRO 
STARTING MNEMONIC 
ADDRESS 

MACRO DESCRIPTION 

NOTE: HIGH ORDER HEX DIGITS ARE BA FROM MROM. 

255 



CSTR ADDRESS ASSIGNED OP-CODE 

0 MACRO:DLD 0 
0 DBUS z . NEXT BRCH ~ UJ POL DESCRIPTION: ADDRESS CTRL SOURCE 

2; DOWNLOAD MACRO IX FIELD ...J 
-l FIELD DESCRIPTIONS u 

0 PC <:I, LFL I L L x 

I 2 

2 3 

3 4 

4 5 

5 6 

6 7 
, 

7 SET TO MPX IN CF ON THIS LINE. 8 CF 

8 9 

9 A 

A B 

B c 

c D 

D E 

E F 

F GOTO LINEO. 0 L 
, 

POL NOTATIONS CSTR2 

Figure 6-7 Microprogram Symbolic Coding Forms for Download Programs 

ALU FIELD UJ 
f-
< 
f-en ALU FUNC. cs 

x A pl I L 

~ x 

YOUR PROGRAM 

AND DATA 

IN THE S3 .. SO FIELD 

CSTRJ 

SINK CONTROL FIELD 

RARRAY LOAD ENABLES 

WPC FL 

RO M 

, l 

CST RO 

filIT!t X = DON'T CARE. 

N 
VI 

°' 

:t 
rn 

i 
~ 
~· 
::: 

~ 
g 

~ 
~ 
i= 
"' 
~ 
0 
;s: 

~ 
~ 
is: 
> 
;)! 



The Control System 

Figure 6-8 
IF and MOD Bit Logic 

DOWNLOADING PROCEDURES 

DLD Microcoding Format 

DLD Setting the Carry Flag 

DLD PC Initialization 

Last Microline of Download 

257 

Vrr 
IF MOD 

N.C. N.C. U39-9 

5 6 8 9 
Q IQ IQ Q 

IO Cn 
IF MOD Sn 

So 
13 

74LS74 CD @CLMD 

7 GND 
U30 

Vrc 
14 

D D 
2 3 12 11 

@MR 

12 
!CK 

IFMCL 11 
13 

LIR (Ul9) 

03 

ST 

Let us now briefly discuss the facilities for downloading stored demon­
stration programs. The microcoding format for creating downloadable 
programs is presented in Figure 6-8. 

Line 0 is special. On this line, we must first initialize the PC and the 
carry flag. If the ALU is programmed, on line 0, to perform an A pl 1 
function, the S3 .. SO field will contain all low entries. 

During download, this very same field is also presented to the A port 
of the ALU by the OMA-type of action going on over the DBUS. 
Since the ALU's control lines cause the value on the DBUS to be 
incremented by one and appear on the FBUS, the PC may be set to 
location I at the end of this period. This initializes the PC to point to 
the first demonstration program step, which must appear in location 1 
of memory. At the same time, on line 0, we specified the loading of the 
flags. Since 0 plus I does not create a carry-and the carries are active 
low when active-high data conventions are used-then it follows that 
this will set the carry flag (CF in the FL register). 

This preestablished high residing in the CF flip-flop becomes 
handy when we want to use lines 8 through F of the macro-block space 
in a demonstration program. If the program we are creating goes 
beyond line 7, then line 7 must specify the MPXing in of the CF. In the 
next period, the MPX line of CSAD is then high. This places the 
CSTR address into the upper half of the macro-block space. While we 
wish to remain in this region, the .BC field must continue to multiplex 
in the CF flag. 

The last line of a program need not be line F. Whatever one chooses to 
make the last line should cause the next address field to specify a jump 



258 THE CONTROL SYSTEM DEVICE DETAILS AND MEMORY MAPS 

to line 0. If the last line happens to be in the upper. half of the allowed 
space, an Lin the BC field'reinforces this by specifying a return to the 
lower half of the macro space. This rule of operation causes the 
download procedure to cycle through a closed loop within the utilized 
block space. Issuing sixteen or more clock pulses downloads any dem­
onstration program and then simply commences harmlessly repeating 
the process, if one does not stop precisely at the end boundary. 

· Table 6- I lists the steps of the procedure for downloading and 
executing programs. The precaution repeated here is that @ECTRL, 
the switch that enables the control system, should not be closed unless 
all the CSTR-simulation switches in the CPU section are either open or 
removed. If, from the very start, we choose to construct STUPIDD 
only for use in the automatic mode of operation, then there is abso­
lutely no need to implement the simulation switches at all. This is rec­
ommended, for the control-system-simulation switches provided in the 
CPU are only a convenience for those building just the CPU and for 
those without access to an EPROM programmer. If one already has 
the switches, they may be removed for. safety during automatic opera­
tion. In this case, as already noted, the input switches (IN) may be 
used if the original eight-position DIP switch is replaced with a prop­
erly located four-position one. The master reset may be applied with a 
single DIP switch or a jumper wire. 

Table 6-1 
Download and Program Execution Procedure 

I. Start with the power o.ff and@ECTRL open on U31. 

2. Open all of the CSTR simulation switches in the CPU section of 
STUPIDD. These are found in sockets UJ2, U21, and U22. The 
set of four input switches on U 12 may be ignored now, but they 
can be used within a program. 

3. Set the display-select rotary switch to position 7, to display the 
contents of the DBUS. The DBUS, during download, carries the 
contents of the S3 .. SO field of the ALU function. The display 
presents the Hex equivalent of the program steps and data 
(except for the first line displayed, when this field is zero). 

4. Turn the power on. 

5. Cycle the Master Reset (MR) switch on U21. This clears registers 
MAR, T, IF, FL, IR, and CAR. Clearing CAR also automati- . 
cally clears the MOD bit. The MR switch is normally open dur­
ing system operation. 

6. Close @ECTRL on U31. The control system is now activated 
and in charge of the CPU. 

7. Close @DLD on U31. .The systetn is now in the Download 
mode. 

·8. Press the clock button at least 16 times while observing the 
display for verification of the contents being loaded into 
memory. 

9. Open @DLD on U3 I. The system is now in the Operate mode. 

10. Each subsequent clock pulse administered causes the execution 
of a line of microcode in whichever macro is currently being used 
by the demonstration program. This assumes that the macros 
invoked by the program already exist in CSTR. 



The Control System 

Figure 6-9 
Mapping ROM Logic Diagram 

CONTROL STORE IC DETAILS 

IF AND MOD (U30) 

MROM (U32) 

12GND 

U32 
2716 

MROM 

9 !fl;;; ;;: ;;; ~ ... Q ;;! 
o';""5.:::E::E-~-

~ 
SWITCH SELECTED 
BY DIPSW U31 

259 

v"(' 24 
v., 21 

OE20 @ECTRL (U31-16) 

CE 18 

17 NC 

16 BA6 

IS BAS 

14 BA4 

13 BA3 

II BA2 

10 BAI 

9 BAO 
.... 00 

The balance of the details in this section consist of the logic diagrams 
of the individual IC's. The associated parts and wire lists appear in the 
construction details in Chapter 5. The logic diagrams of the switch and 
pull-up resistor packages are shown on their respective wire-list sheets. 
Since we have worked with data catalogs for IC's, the following is a 
short summary of the manner of application and use of the IC inter­
faces in the control system. 

Figure 6-8 portrays the interface of the 74LS74 dual D-type flip-flops 
used to implement IF and MOD. In the case of IF, the set direct (SD) line 
is tied to@MR. the master reset. After the reset push button is depressed, 
the system will be in the IF major state. The clear direct (CD) line is held 
high by the pull-up resistor in U39, for noise suppression. The ST signal 
from CSTR is the data input of the IF flip-flop, controlling the major 
state of the machine during normal operation. Notice that the clocking of 
both IF and MOD is qualified by both LIR and /CK in a NANO gate of 
U20. The CD line for MOD is tied to the@CLMD signal produced by 
CAR, U36. This is somewhat different from other applications of IC's 
discussed thus far, in that both synchronous data loading and asynchro­
nous direct clears of this IC occur during normal operation. The 
microprogram in CSTR anticipates the clearing of MOD one bit period 
before it is to take effect. CAR produces a low as we enter the next 
period, immediately clearing the MOD bit near the start of the new 
period. The MOD flip-flop is loaded synchronously at the end of each 
macro. The data input for this is the 03 line of the DBUS. At the end of 
the IF phase of operation, the DBUS carries the first word of an instruc­
tion extracted from memory by the PC via MAR. This information con­
tains the MOD and OP bits of the full instruction word. As noted 
previously, the loading of the instruction word at the end of the EX 
macros does not affect the system's conduct. 

The MROM, like the three IC's of CSTR, consists of 2716 EPROM's. 
The data sheets for this IC are presented in Figure 6-10. The data 



260 CONTROL STORE IC DETAILS 

intJ 
2716 

16K (2K x 8) UV ERASABLE PROM 
• Fast Access Time 

- 2716-1: 350 ns Max. 
- 2716-2: 390 ns Max. 
- 2716: · 450 ns Max. 
- 2716-5: 490 ns Max. 
- 2716-6: 650 ns Max. 

• Single +sv Power Supply 

• Low Power Dissipation 
- Active Power: 525 mW Max. 
- Standby Power: 132 mW Max. 

• Pin Compatible to Intel 2732A EPROM 

• Simple Programming Requirements 
'."""- Single Location Programming 
- Programs with One 50 ms Pulse 

• Inputs and Outputs TTL Compatible 
During Read and Program 

• Completely Static 

The Intel 2716 is a 16,384-bit ultraviolet erasable and electrically programmable read-only memory (EPROM). 
The 2716 operates from a single 5-volt power supply, has a static standby mode, and features fast single­
address programming. It makes designing with EPROMs fast, easy and economical. 

The 2716, with its single 5-volt supply and with an access time up to 350 ns, is ideal for use with high· 
performance +5V microprocessors such as Intel's 8085 and 8086. Selected 2716·5s and 2716·6s are also 
available for slower speed applications. The 2716 also has a static standby mode which reduces power 
consumption without increasing access time. The maximum active power dissipation is 525 mW while the 
maximum standby power dissipation is only 132 mW. a 75% savings. 

The 2716 uses a simple and fast method for programming-a single TTL-level pulse. There is no need for high 
voltage pulsing because all programming controls are handled by TTL signals. Programming of any location at 
any time-either individually, sequentially or at random is possible with the 2716's single-address program· 
ming .. Total programming time for all 16,384 bits is only 100 seconds. 

Ar Vee 
A6 Ae 

As Ag 
A4 Vpp 
A, ~ 
A2 A10 
A, CE 
Ao 8 01 
0 0 9 0 6 

O, Os 
o, o. 

GND ._ ___ _.03 

PIH NAMES 

~o-A10 ADDRESSES 

CE CHIP ENABLE 

OE OUTPUT ENABLE 

Oo-01 OUTPUTS 
---1 

Figure 1. Pin Configuration 

-'o·A,, { ADDRESS 
INPUTS 

OUTPUT ENABLE 
CHIP ENABLE 

AND PROG LOGIC 

v 
DECODER 

x 
DECODER 

DATA OUTPUTS 
Oo-01 

VGllTING 

16,384-BIT 
CELL MATRIX 

Figure 2. Block Diagram 

Intel Corporation A11ume1 No Reaponaibitty for the .U1e of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No OO'lar Circuit Patent.Licenaea BM Implied. 
<IJINTEL CORPORATION, INC. 1982 NOVEMBER 1982 

4.5 

Figure 6-lOa 2716 (2K X 8) UV-Erasable PROM Data Sheet (Reprinted by permission of Intel 
Corporation © 1982, Intel Corporation.) 



The Control System 

2716 

DEVICE OPERATION 

The six modes of operation of the 2716 are listed in 
Table 1. It should be noted that inputs for all modes 
are TTL levels. The power supplies required are a 
+5V Vee and a Vpp. The Vpp power supply must be 
at 25V during the three programming modes, and 
must be at 5V in the other three modes. 

Read Mode 

The. 2716 has two control functions, both of which 
must be logically satisfied in order to obtain data at 
the outputs. Chip Enable (CE) is the power control 
and should be used, for device selection. Output 
Enable (OE) is the output control and should· be used 
to gate data from the output pins, independent of 
device selection. Assuming that addresses are sta­
ble, address access time (tAcc) is equal to the delay 
from CE to output (tee). Data is available at the out­
puts toe after the falling edge of OE, assuming that 
CE has been low and addresses have been stable for 
at least tAcc-toe· 

Standby Mode 

The 2716 has a standby mode which reduces the 
maximum active power dissipation by 75%, from 
525 mW to 132 mW. The 2716 is placed in the stand­
by mode by applying a TTL-high signal to the CE in­
put. When in standby mode, the outputs are in a 
high impedance state, independent of the OE input. 

Output OR-Tieing 

Because 2716s are usually used in larger memory 
arrays, Intel has provided a 2-line control function 
that accomodates this use of multiple memory con­
nections. The two-line control function allows for: 

a) the lowest possible memory power dissipation, 
and 

b) complete assurance that output bus contention 
will not occur. 

To use these two control lines most efficiently, CE 
(pin 18) should be decoded and used as the primary 
device selecting function, while OE (pin 20) should 
be made a common connection to all devices in the 
array and connected to the READ line from the 
system control bus. This assures that all deselected 
memory devices are In their low-power standby 
modes and that the output pins are active only when 
data is desired from a particular memory device. 

Programming 

Initially, and after each erasure, all bits of the 2716are 
in the "1" state. Data is introduced .by selectively 
prbgramming "O's" into .the desired bit locations. 
Although only "O's" will be programmed, both "1 's" 
and "O's" can be presented in the data word. The only 
way to change a "O" to a "1" ill by ultraviolet light 
erasure. 

The 2716 is in the programming mode when the Vpp 
power supply is at 25Vand OE is atV1H. The data to be 
programmed is applied 8 bits in parallel to the data 
output pins. The levels required for the address and 
data inputs are TTL. 

When the address and data are stable, a 50 msec, 
active-high, TTL program pulse is applied to the 
CE input. A pulse must be applied at each address 
location to be programmed. You can program any 
location at any time-either individually, sequential· 
ly, or at random. The program pulse has a maximum 
width of 55 msec. The 2716 must not be programmed 
with a DC signal applied to the CE input. 

Table 1. Mode Selection 

~ 
CE OE Vpp Vee Outputs 
(18) (20) (21) (24) (9-11, 13-17) 

e 

Read VIL V1L +5 +5 Dour 

Output Disable V1L V1H +5 +5 HighZ 

Standby V1H x +5 +5 HighZ 

Program Pulsed v1L to V1H VtH +25 +5 D1N 

Verify V1L V1L +25 +5 Dour 

Program Inhibit VIL V1H +25 +5 High Z 

NOTES: 1. x can be v,L or V1H 

4-6 AFN-008118 

Figure 6-IOb 2716 (2K X 8) UV-Erasable PROM Data Sheet (Reprinted by permission of Intel 
Corporation© 1982, Intel Corporation.) 

261 



262 

infef 2716 

Programming of multiple 2716s in parallel with the 
same data can be easily accomplished due to the 
simplicity of the programming requirements. Like 
inputs of the paralleled 2716s may be connected 
together when they are programmed with the same 
data. A high-level TTL pulse applied to the CE input 
programs the paralleled 2716s. 

Program Inhibit 

Programming of multiple 2716s in parallel with dif· 
ferent data is also easily accomplished. Except for 
CE, all like inputs (including OE) of the parallel 
2716s may be common. A TTL-level program pulse 
applied to a 2716's ~input with Vpp at 25V will pro· 
gram ihat 2716. A low-level CE input inhibits the 
other 2716 from being programmed. 

Verify 

A verify should be performed on the programmed 
bits to determine that they were correctly program· 
med. The verify may be performed with Vpp at 25V. 
Except during programming and program verify, Vpp 
must be at SV. 

4·8 

CONTROL STORE IC DETAILS 

ERASURE CHARACTERISTICS 

The erasure characteristics ofthe 2716 are such that 
erasure begins to occur upon exposure to tight with 
wavelengths shorter than ·approximately 4000 
Angstroms (A). It should.be noted .that sunlight and 
certain types of fluorescent lamps have wavelengths 
in the 3000-4000 A range. Data show that constant 
exposure to room-level fluorescent lighting could 
erase the typical 2716 in approximately 3 years, wliile 
it would take approximately 1 week to cause erasure 
when exposed to direct sunlight. If the 2716 is to be 
exposed to these types of lighting conditions for 
extended periods of time, opaque labels should be 
placed over the 2716 window to prevent uninten· 
tional erasure. 

The recommended erasure procedure for the 2716 is 
exposure to shortwave ultraviolet light which has a 
wavelength of 2537 Angstroms (A). The integrated 
dose (i.e., UV intensity X exposure time) for erasure 
should be a minimum of 15 W-sec/cm2• The erasure 
time with this dosage is approximately 15 to 20 
minutes using an ultraviolet lamp with a 12000 
µ. W/cm2 power rating. The 2716 should be placed 
within 1 inch of the .lamp tubes during erasure. 

AFN-008118 

Figure 6-lOc 2716 (2K x 8) UV-Erasable PROM Data Sheet (Reprinted by permission of Intel Corporation 
© 1982, Intel Corporation.) 



The Control System 

2718 

PROGRAMMING CHARACTERSITICS 
D.C. PROGRAMMING CHARACTERISTICS: T4 z25"C :t5"C, Vcc 111 =5V :5%, Vpp!1.2l =25V :t1V 

Symbol Parameter Min. Typ. Max. Unite 
Teet 

CondHlon1 

•u Input Current (for Any Input) 1a µ.A V1N = 5.25V/a.45 

lpp1 Vpp Supply Current 5 mA CE= V1L 

lpp2 Vpp Supply Current During 3a mA CE= V1H 
Programming Pulse 

•cc Vee Supply Current 100 mA 

V1L Input Low Level -a.1 a.e v 

Viii Input High Level 2.a Vcc+1 v 

A.C. PROGRAMMING CHARACTERISTICS: T4 =25"C :t5°C,Vcc111 =5V ±5%, Vpp 11 •21 =25V ±1V 

Symbol Parameter Min. Typ. Max. Unite 
Test 

Conditions• 

t45 Address Setup Time 2 µ.S 

ioes OE Setup Time 2 µ.S 

tos Data Setup Time 2 µ.S 

tAH Address Hold Time 2 µ.S 

toeH OE Hold Time 2 µ.S 

toH Data Hold Time 2 µ.S 

toFP Output Enable to Output Float Delay a 2aa ns CE= V1L 

toe Output Enable to Output Deley 2aa ns CE= V1L 

tpw Program Pulse Width 45 5a 55 ms 

tPRT Program Pulse Rise Time 5 ns 

tpFT Program Pulse Fall Time 5 ns 

* A.C. CONDITIONS OF TEST 
Input Rise and Fall Times (1ao/o to 90"/o) ..•....... 2a ns 
Input Pulse Levels ......................... a.a to 2.2V 
Input Timing Reference Level .............. a.av and 2V 
Output Timing Reference Level ............ a.av and 2V 

NOTES: 
1. Vee must be applied simultaneously or before Vpp and removed simultaneously or after Vpp. The 2716 must not be inserted into 

or removed from a board with Vpp at 25 ± 1 V to prevent damage to the device. . 
2. The maximum aHowable voltage which may be applied to the Vpp pin during progremming is +26V. Care must be taken when switching 

the Vpp supply to prevent overshoot exceeding this 26V maximum specification. 

4·10 AFN-008118 

Figure 6-lOd 2716 (2K X 8) UV-Erasable PROM Data Sheet (Reprinted by permission of Intel 
Corporation© 1982, Intel Corporation.) . 

263 



264 CONTROL STORE IC DETAILS 

2716 

Pi'OGRAMMING WAVEFORMS 

V1H 

ADDRESSES 

VIL 

V1H 

DATA 

VIL 

V1H 

ae 
V1L 

V1H 

Ci 

VIL 

IOFP 

(0.20MAXI- -

NOTE: 

PROGRAM 
--------- VERIFY ----1..i 

ADDRESS 

'•• (21 

DATA IN 
STAii.i! 

tPRT~ 

-----~~----+! 

HIGHZ 

lo• 
(0.20 
MAXI 

DATA OUT 
VALID 

toFP 

-- (0.20 MAX) 

1. ALL TIMES SHOWN IN PARENTHESIS ARE MINIMUM TIMES ANO ARE I' SEC UNLESS OTHERWISE NOTED. 

2. toe AND 'DFP ARE CHARACTERISTtCS OF THE DEVICE BUT MUST BE ACCOMMODATED BY THE PROGRAMMER. 

Figure 6-lOe 2716 (2K x 8) UV-Erasable PROM Data Sheet (Reprinted by permission of Intel 
Corporation © 1982, Intel Corporation.) 



The Control System 265 

NOTE: LEFT-SIDE PINS ARE COMMON TO ALL CSTR IC'S. 

BA6 
BAS 

BA4 

BA3 

BA2 

BAI 

BAO 

MPX 

CAR2 

CARI 

CARO 

Figure 6-11 

24 Yee 

21 Vpp 

200E 

18 CE 

12GND 

19 

22 

23 

2 

3 

4 

5 

6 

7 

8 
..... -0 V'l 

Control-Store Logic Diagram 

U33 
2716 

CSTR2 

'<t ...., -

CSTR 2 .. 0 (U33 THROUGH U35) 

- s - °' 

U34 
2716 

CSTRl 

U35 
2716 

CST RO 

sheets contain valuable information on the IC, its erasure, and its pro­
gramming aspects. MROM's logic interface is presented in Figure 6-9. 
The tri-state interface control (OE) and the chip enable (CE) control of 
each IC are connected to the @ECTRL line. @ECTRL is a manual 
switch setting provided for operational control of the normal operation 
and program downloading modes of usage. The nature of the inputs 
has been discussed at length in this chapter. The outputs of MROM 
are the BA inputs to CSTR, also discussed1 

The address inputs to the IC's of CSTR are all shared in common. 
The hierarchical nature of the addressing is shown in Figure 6-11. 
CARO .. CAR2, which originate in CSTR2's own NEXT field, are 
fed back to all the EPROM's of CSTR with a one-bit delay, via 
CAR. These are the line-selection bits for the half of the macro-block 
space that is currently selected. The MPX input determines which 
half of the block space we are operating in. It is specified in the BC 
field of CSTR2 and fed back via the one-bit delay of CAR, acting on 
the address inputs of the multiplexer, MPX. Unlike the BA lines, 
these lines can change with each clock pulse. Finally, the specific 
macro we are executing is selected by the BA lines from MROM. 
These BA lines remain stable for the duration of a macro, changing 
only when a new macro is selected. Except for CLM, ST, and LIR, 
which feed back to the control system for the uses previously dis­
cussed, the rest of CSTR's outputs directly control the CPU or its 



266 MICROCODING AND THE CONTROL SYSTEM 

0 ~ 
N 0 u u ...J :z. :z. :z. = = u 

7 14 13 11 6 4 3 

v ... 
MPX 
U37 

v,.,. D, D, 
v('(' 

D, D, D, 

CAR 
@MR 

y, 74LS153 

Figure 6-12 

.... _. N- _; a -- - - ~ 
3 4 5 6 2 14 

u. u. u. 
I.I.I tll u 

MPX and CAR Logic 
Diagrams 

MPX AND CAR (U37AND U36) 

16 16 
U36 

·74LS174 

GD c CK 
8 Q .• Q, Q, Q, Q, Q. 9 

15 12 IO 7 5 2 

N 0 Q., Q., Cl IX c:: c:: B ~ < < < u u u u = = ...J 

~ 

external environment. These lines are also the ones available in the 
simulation switches for CPU control. 

The MPX and CAR interfaces are presented in Figure 6-12. MPX (half 
of a 74LS153) is a one-of-four selector addressed by the BC bits emit­
ted by CAR. It can select one of the flag register's three utilized out­
puts or an absolute low. Its output controls the half of the macro-block 
space that the microprogram is operating in. CAR is a 74LS174 6-bit 
D-type edge-triggered register used in a straightforward manner. We 
have already discussed the functional aspects of its interface. 

DOWNLOAD (OLD) TRI-STATE CONTROL (U38) 

The operational aspects of the OLD interface were fully described in 
this section. (See Figure 6-4 and the associated discussion.) The tri­
state control interface is centered around the 74LS241 (U38) IC. The 
A side portrayed in Figure 6-13 becomes the master of the address bus 
during downloading. The B side produces the @EMD signal that 
enables MAR and half of DECO during normal operation and disables 
both of them during downloading. The analogy between this proce­
dure and the effects of a OMA operation has been commented on. In 
essence, this consists of the CPU's relinquishing control of memory to 
another entity-which is basically what happens here during 
downloading .. 

MICROCODING AND THE CONTROL SYSTEM 

THE FIRST SIX CSTR SIGNALS 

To understand the portion of the microcode that applies to the control 
system, let us return to the IF macro. Figure 6-14 presents the IF 



The Control System 

@DLD 

Next Address Field 

NEXT Field Terminating Con­
vention 

Conditional Branching in 
CSTR 

267 

macro with the first three fields supplied on the symbolic coding form 
(this contains the first six signals of the activity-level coding forms). 

The first field, Next Address, is to be programmed to specify the first 
three bits of CSAD-that is, the first three address lines of CSTR-in 
the next period. CAR, a six-bit register, accepts these bits at the end of 
each clock period and presents· them at its outputs at the start of the 
new period. The NEXT field need not proceed in the orderly way 
shown, except as a help in following the code. 

On line 0, the next address is specified as 1; on line I, it is specified as 
2. In general, this is an easy way to proceed, except for the last line to 
be executed in any macro. Here a 0 must be specified. This ensures that 
the system starts the EX macro selected on line 0. Similarly, all other 
EX macros, except those that use the MOD bit, contain a 0 entry in 
the NEXT field on the very last line to be executed. This is a convention 
we adopt to guarantee that all the macros start on the same line. That is, 
they must all have the same entry point, which is derived from the last 
executable line of the preceding macro. 

Other than the last line, the NEXT entries could have been any value 
between one and seven. In practice, to use memory space efficiently, 
the lines of microcode often are not in sequential order. Thus, the 
order is not important. What is important is the effects of the sequence 
of algorithm's logical controls (the fields of the present output func­
tion) produced by CSTR, contained in each lihe of code. This accounts 
for address bits CSADO .. CSAD2, but what about CSAD3? This is 
controlled by the BC field. Specifying a zero now means that CSAD3 



CSTR ADDRESS ASSIGNED OP-CODE 

0 MACRO: IF Cl 
0 DBUS UJ z NEXT BRCH ~ f-

UJ PDL DESCRIPTION: ADDRESS CTRL SOURCE < 
z IR<: M{PC}, PC<: PC pl I, ~ FIELD f-

....J r/l 
::1 >:EX u 

0 MAR, T <:PC I 0 x x x 
1 PC<: T pl I 2 0 H T x 

2 IR<: M{MAR}, >:EX 0 0 H M EX 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 

D 

E 

F 

PDL NOTATIONS CSTR2 

Figure 6-14 Microprogram Symbolic Coding Form: IF Macro with Control System Fields 

ALU FIELD 

ALU FUNC. cs 

B x 
A pl I L 

x x 

CSTRI 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 

RPC MAR,T 

WPC 0 

RX IR 

CST RO 

N 

°' 00 

;.<!:: 
(=i 

§ 
g 
~ 
~ 
0 

;! 
tr1 

f 
t""' 

~ 

~ 



The Control System 

Ahlo/life Branching in CSTR 

Terminating BC Field Conve11-
1io11 

Clear MOD Field 

269 

will be low in the next period. When we specify one of the flags (SF, 
CF, or EF) in the BC field, the two-bit output of BC causes the mul­
tiplexer. MPX, to present that flag's current value as the value of 
CSAD3 in the following clock period, due to the one-period delay 
imposed by CAR. The selected value may be either low or high. 
depending on the value of the flag at the time it was stored in the flag 
register. Thus, we have the ability to perform conditional branches both 
within a macro and within demonstration programs. What about ahso­
lwe branches? 

Absolute branches may be performed as well. If a flag has a known 
value that is useful in controlling the future value of CSAD3, then we 
simply multiplex it in when it is needed. An absolute low is always 
directly available to us. If we need an H flag, we can create one. For 
example, an arithmetic operation with active-high data that produces 
no carry will set the carry flag high. The technique, which is always 
available to us, is first to establish a known flag value, then to use it for 
branch control later on. If we wish to use the equal flag to establish an 
H. all we have to do is produce all highs at the F port,' load the flag 
register, and later multiplex in this value to gain access to the upper 
half of the macro-block space. We will now be on the line specified in 
NEXT. In this way one can, in principle as well as in practice, access 
all sixteen lines of microcode allocated to each macro. Marketable sys­
tems are more efficient and flexible in their usage of this macro space, 
but our purpose is to demonstrate the principles under which systems 
operate. The activity-level codes for the selection of the flags by MPX 
are presented in Table 6-2. 

Table 6-2 
Flag-Selection Codes for MPX 

BC Field Entry 
BC/ BCO 
L L 
L 
H 
H 

H 
L 
H 

FLAG Selected 
CSAD3 Source 

Low level 
CF (Carry Flag) 
SF (Sign Flag) 

EF (Equal Flag) 

We must specify the branch control field to be a zero, as we do for 
next. at the end of all macros. This ensures that, as we enter each new 
macro, bit 4 of CSAD will always be low. This convention maintains 
system consistency among the macros. Recall that, for STUPIDD, the 
entry point of all macros is line 0 of the lower half of the macro-block 
space. 

The CLR MOD field resets the MOD flip-flop via CAR. MOD is 
loaded at the end of the IF phase, because it is a part of the instruction 



270 

CLR MOD Conventions 

MICROCODING EXAMPLES 

EXAMPLE 6-1: DEC, R2 

MICROCODING EXAMPLES 

register. This means that the last two lines of the IF macro must contain 
an H in the CLR MOD field, to avoid clearing MOD before address 
modification has been performed. It may not be clear why the last two 
executable lines of the lF macro contain an H in this field, instead of 
only the last one alone. This precaution has to do with the mixing of 
asynchronous direct-reset signals, the synchronous loading of data, 
and possible propagation delays, extending the direct-reset signal into 
the start of the next period. In short, we want to guarantee that there 
will be no low-going noise pulses on MOD's direct-clear input at the 
start of EX. If CAR is loaded one time frame earlier, it will be flicker­
free at the direct-clear input. A useful exercise is to draw the timing 
diagram of the signals involved in these transactions. 

No such precaution is necessary at the end of the EX phase, because, 
when we enter IF, the IF bit is high and maps us into the upper half of 
MROM, regardless of the current value of the MOD bit or of any of 
the OP bits. The CLR MOD field must be specified as a low on the last 
line of any of the address-modification algorithms, such as indexing or 
indirect addressing. Once cleared, the MOD flip-flop is not set in any 
way that can affect operation, except at the end of IF. This means that, 
during the EX phase, the CLR MOD bit could have either an Hor L 
value, without influencing operation. Under these conditions, an X 
(don't-care) entry may be used in the CLR MOD field during EX. 
Recapitulating these rules, CLR MOD must be high for the last two 
lines of the IF macro and for all lines of any effective address (EA) cal­
culation macro-except the last one to be executed. On the last line of 
these operand address modification types of macros, CLR MOD will 
be specified as an L, to ensure the termination of this macro immedi­
ately as we enter the next period. 

This, then, explains the nature of the first six signals of CSTR2, 
which are associated with the operation of the control system. Let us 
now examine some new macros for possible inclusion in an instruction 
set, whose operation we can demonstrate with STUPIDD. 

The first example of a completely specified microcoding sheet is a sim­
ple macro, DECrement, R2. Figure 6-15 presents the electrical-level 
microcode for this macro. One of the first things to do in creating a 
macro is to determine how many memory words it requires and to then 
decide whether the PC should be incremented one or more times in 
such a way that it wiil point to the start of the next instruction before 
IF is reentered. An operation of this DEC; R2 type is generally speci­
fied within one memory word on 8-bit and larger machines. Let us 
assume that this is the case now and-since this instruction does not 
reference memory-that the next word in memory is an OP, which is 



CSTR ADDRESS ASSIGNED OP-CODE 

0 MACRO: DEC, R2 BRCH. 0 DBUS 
NEXT ADR. 0 SOURCE IF z POL DESCRIPTION: 

CTRL. :::E FIELD 
u..l 

R2 <: R2 mi I, LFL z - 0 :::E N 0 u u in !-,_J z z z ,_J u..l ~ ~ u tll 

--
0 T <: R2 L L H L L x x x x 
I R2 <: T mi I, LFL, >:IF L L L L L x L L H 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 

D 

E 

F 

CPDL NOTATIONS CSTR2 

PC~ ___.. OP 

OP 

Fifil!l"e 6_-15 DEC R2 Macro: Complete Electrical Form 

ALU FIELD 

ALU FUNC. cs 
0 0 

C') N u; 0 tll tll 
:::E tll tll tll u u 

H H L H L x x 
L H H H H H H 

CSTRI 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 
~ IZ - 0 < !- IZ @) tll tll 

IZ IZ 3 ,_J :l ,_J 

:::: -
L H L H L H H 

H H L H H L L 

CST RO 

0 
,_J 

H 

H 

~ 
"' 
~ 
[ 
~ 

~ 

N 
-.I 



272 

EXAMPLE 6-2: XOR, M 

MICROCODING ExAMPLES 

the start of the next instruction. The coding forms presented here often 
contain sketches of the mapping of the instruction stream in main 
memory, as:a visual aid. Recall that the PC pointed to the location of 
the current instruction in memory at the start of IF. It was incre­
mented once during IF, and it currently (in the EX phase of this par­
ticular macro) points to the next instruction to be fetched. Therefore 
we conclude that no further adjustment of the PC is needed to fetch a 
valid OP at the end of this macro. 

The execution is straightforward. On Hne 0, we transfer the con­
tents of R2 into T. The reasons for this should be clearly understood, 
since they are dictated by the nature and shortcomings of the IC's used 
in the system. The ALU does not support a decrement operation on its 
B port. This is not true of all ALU's. Further, the register array cannot 
read and write into the same register in one clock period. We must 
often learn about and live with the limitations of components and 
architecture. The NEXT line entry is to be 1, CSAD3 shall be a low, 
and the CLR MOD bit is specified as a don't care. The balance of line 
0 is easily interpreted from our past discussions. Line l causes R2 to 
receive the decremented contents of T (the original contents of R2), 
load the flags, and initiate the next IF cycle. On line 2, the NEXT field 
is accordingly a 0, BC is an L, and CLR MOD is an X. The ST signal is 
an H, signifying a return to the IF major state-provided that LIR is 
active, which it is. 

An example of a two-memory-word instruction is presented in the 
symbolic coding of exclusive OR (XOR, M), Figure 6-16. The CPDL 
summation of the net result of this macro is 

RO<: RO? M{OA} 

This is a memory-reference instruction and, as a result, occupies two 
words of memory. On entering this macro, the contents of the PC 
point to the operand address (OA) field of the instruction word (see 
the memory map in Figure 6-16). This field contains the address-not 
the value-of the operand. On line 0, two goals are specified. By load­
ing T with the contents of the PC, we start the incrementation (adjust­
ment) process for the PC. By loading MAR with the same value at this 
time, too, we addFess memory, so as to be able to obtain the operand 
address. Note that, just after the IF phase, the value in the PC points 
to the location in memory following the OP field. The PC, in this case, 
contains the address of the operand address. Think this over. The PC 
serves only as a pointer into main memory. It is critical to identify 
clearly exactly what is pointed to at each step of operation by PC. 

Line l specifies that the PC is to store its incremented value. 
Since it now points to the OP field of the next instruction, we will be 
ready for the new IF cycle when execution of the balance of this cur­
rent macro is completed. On line 2 of the macro, MAR will receive the 
contents of memory (the address of the operand) that MAR is cur­
rently addressing. On line 3, T is to receive the XOR of RO and the 
contents of memory pointed to by MAR: the actual operand, at la.st. It 
takes careful consideration of the meaning of an instruction to avoid 
confusing operands and their addresses. The flags could also have been 
loaded on line 3 of this macro, if we had wished to be able to control 



CSTR ADDRESS ASSIGNED OP-CODE 

0 MACRO:XOR,M Cl 
ALU FIELD 0 u.J z NEXT BRCH ~ 

DBUS f-
u.J POL DESCRIPTION: SOURCE < z RO<: RO? M{OA} ADDRESS CTRL 0::: FIELD f-
:::1 -l r./l ALU FUNC. v 

0 MAR, T <:PC I 0 x 0 x B 

I PC<: T pl I 2 0 x T x A pl I 

2 MAR<: M{MAR} 3 0 x M x A 

3 T <:RO? M{MAR} 4 0 x M x ? 

4 RO<: T, >:IF 0 0 x T IF A 

5 

6 

7 

8 

9 

A 

B 

c 
D 

E 

F 

PDL NOTATIONS CSTR2 CSTRI 

Fi2ure 6-16 Micropro2ram Symbolic Codin2 Form: XOR, M-A Memory-Reference Macro 

XOR 

cs 

x 

L 

x 

x 

x 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 

RPC MAR. T 

WPC 0 

RX MAR 

RRO T 

WRO IR 

CST RO 

;;:l 
" 
~ 
~ 
~ 

~ 

N 
-J ..,, 



. 

C'STR ADDRESS 

0 z 
UJ 
:z 
:J 

0 

I 

2 
·.· 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 
D 

E 

'' 

F 

MACRO: BMEQ, RO 

POL DESCRIPTION: 
BR TOOA2 IF 
M{OAI} =RO 

T, MAR<: PC 

PC<: Tpl I 

MAR <: M[MAR] 

M[MAR] min RO, LFL 

T. MAR<: PC 

PC<: T pl I,>: IF 

PC <: M[MAR], >: IF 

(5) 
(I) 

POL NOTATIONS 

l"' J BRCH ADR 

ASSIGNED OP-CODE 

0 
ALU FIELD 0 DBUS UJ 

NEXT BRCH ~ I-

ADDRESS CTRL SOURCE < a: FIELD I-
...J en ALU FUNC. cs v 

I 0 H 0 x B x 
2 0 H T x A pl I H 

3 0 H M x A x 
4 0 H M x Amin B H 

5 EQ H 0 x B x 
0 0 H T IF Apt I L 

0 0 H M IF A x 

CSTR2 CSTRI 

Fieure 6-17 Micropr02fam Symbolic CodinsLfOflll_; BMEQ. RO Microcode 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 

RPC T,MAR 

WPC 0 

RX MAR 

RRO FL 
-

RPC T.MAR 

WPC IR 

WPC IR 

CST RO 

N 

~ 

:::: 

i 
~ 
m 
~ 
3:: 
;!! 
rn 



The Control System 

EXAMPLE 6-3: BMEQ, RO 

Conditional Branching 

275 

the flow of the software with this instruction in a subsequent opera­
tion. Line 4 stores the result in RO and initiates a return to the IF 
phase of the cycle of computation. 

The next macro illustrates the use of the BC field, as well as showing 
again that it is feasible to create three-memory-word instructions. Fig­
ure 6-17 presents the symbolic microcode for the macro BMEQ, RO. 
As noted in the figure and its memory map, this is a three-memory­
word instruction. The first word contains the OP code, the second the 
operand address of the memory location to be used in the comparison 
(OA I), and the third word (OA2) is devoted to providing the branch 
address in the event that equality is established. The explanations of 
lines 0, l, and 2 are the same as in the previous macro. In this macro, 
however, note that we still have to adjust the PC at the end of these 
lines, to be able to proceed correctly on to the next IF cycle. We will 
pick up the sequence on line 3. 

On line 3, the ALU is placed in the subtract mode, so that we can 
use its equal output for the comparison. Refer to the 74181 data 
sheets if you have any questions on this point. The results of the 
subtraction are not stored-only the flags are loaded on this line. 
This is customary practice for the compare-type instructions. We 
only want to learn about the nature of the operand (OAl) in rela­
tion to the contents of RO. Further, we do this in a way that per­
mits the control of the flow of the software by loading the flags. 
Having loaded the flags on line 3, we may now consider how to 
complete the rest of our tasks for this macro, using the flags. In line 
4, we start the second incrementation of the PC, as well as the 
addressing of OA2, the branch address, in' case we need it. On this 
line, we also specify, in the BC field, that the pipeline register CAR 
is to receive the equal flag (EF) selection code. In the next period, 
line 5, MPX will present the stored value of the equal flag to CSTR 
as the current value of CSAD3. In this next period, the machine 
will be either on line 5 (EF = L) or on line D (EF = H), depending 
on the previously stored value of the flag now selected by MPX. 

The equal flag is always active high, regardless of the data's 
activity level. Therefore line 5 represents the case in which the 
equality-detection condition failed, and we do not branch. As a 
result, we merely specify the completion of the incrementation of 
the PC and initiate a return to IF on this line. Line D, however, 
represents the case in which equality was detected, and so we wish 
to generate a branch. Instead of completing the incrementation of 
the PC, which is no longer necessary if we are on this line, we sim­
ply reload the PC with the branch address contained in the mem­
ory location now addressed by MAR and end this macro by 
initiating a return to IF. Note that the BC field had to anticipate 
the use of the flags by one clock period in line 4, due to the pipe­
line-delay effect of CAR. 



CSTR ADDRESS ASSIGNED OP-CODE 

ci MACRO: BRX 0 
0 DBUS z NEXT BRCH ~ 

UJ PDL DESCRIPTION: ADDRESS CTRL SOURCE 
z Rl :<RI mil, IF(Rl = 0) et:: FIELD 
::i ....l 

THEN PC:< OA ELSE>: IF u 

0 T, MAR:< PC I 0 x 0 

l PC:< T pl I 2 0 x T 

2 T :<RI 3 0 x 0 

3 T, RI :< T mi 1, LFL 4 EF x T 

4 PC:< M[MAR], >:IF ·o 0 x M 

5 

6 

7 

8 

9 

A 

B 

c >: IF (NO BRANCH) 0 0 x 0 

D 

E 

F 

POL NOTATIONS CSTR2 

BRCH ADR~ 
ii 

Figure 6-18 Microprogram Symbolic Coding Form: BRX 

ALU FIELD UJ 
E-
<C 
~ ALU FUNC. cs 

x B x 
x Apl l L 

x B x 
x A mil H 

IF A x 

IF x x 

CSTRI 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 
> 

RPC T,MAR 

WPC 0 

T 

WRl T,FL 

WPC IR 

RX IR 

CSTRO 

N 

~ 

:::: 

~ z 
0 

~ 
3: 

~ 



The Control System 

EXAMPLE 6-4: BRX 

Index Register Usage 

Loop Termination 

A = B Functioning 

Flag Activity Levels 

277 

Another example of a macro that contains a conditional operation is 
the BRX macro of Figure 6-18. It is of particular interest, in that it 
reveals the true nature of how the equal logic functions within the 
74181. as well as the underlying principles of the autodecrementation 
(or,incrementation) and branch types of instructions. 

First, there is no explicit zero flag in STUPIDD. Second, many 
machines contain an instruction macro for an index register that is 
incremented or decremented each time this macro is invoked. An 
i.nstruction such as this is useful in searching a table a predeter­
mined number of times, for example. The initial value previously 
placed in the index register is related to the number of times we 
wish to repeat the loop. In this example, the number of times, n, we 
wish to go through a loop has already been placed into R l, by the 
execution of a prior instruction. We use RI as an example of index 
register operation. 

After each pass through the loop, this register is to be decremented and 
the flags are to be loaded. If we have not performed this n times, then 
we branch to the address specified in the OA field of the instruction, 
else we fall out of the loop by proceeding on to the next instruction of 
a program's sequence. 

Consult the equivalent-logic diagram found in the ALU data sheets 
for the following explanation of equality-detection operation. What 
this operation really detects is the presence of all highs at the F 
port. The A = B output comes from an AND device, whose output 
is high only when all inputs are high. This electrical behavior 
implies that, any time all of the F outputs of the ALU are high, 
since they are the inputs to the AND device, then the A = B out­
puts are also high. Not only does this explain how equality is 
detected, it also provides us with a means of detecting zero. If the 
contents of a register are decremented until the result at the output 
of the ALU is - 1 (all ones), then the A = B output is high. Load­
ing the flags as we decrement the contents of RI in passing it 
through the ALU, we may subsequently employ conditional 
branching on the equal flag result. By these means, we can specify 
repeated branching within an instruction macro to control how 
many times a loop is traversed. On line 3 of this macro, while we 
combinationally decrement, we also enable the loading of the flags. 
On this line, too, the MPX is to select EF (in the next period). As a 
result, we specify the branch on line 4 to go through the loop again. 
The other possible action, on line C, simply lets us fall out of the 
loop and proceed to fetch the next OP. 

A flag may not always be active high. For example, if one were to use 
the carry flag for controlling branches when using active-high data, the 
line on which the condition CF = true occurs when CF = L. This is, 
the opposite of the case above. Some care, then, must be exercised in 
determining which of the two possible lines of conditional microcode 
represents the true condition, since CSAD3 depends on the current 
value of a flag. The machine executes only one of these lines in any 
particular execution of the macro. Thus we see that the choice of the 



CSTR ADDRESS 

ci z 
u.J 
z 
...J 

0 

l 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 

D 

E 

F 

MACRO: CALL OA 

POL DESCRIPTION: 
SP<: SP mi I, M{SP} <:PC 
PC<: M{OA} 

T <: R2 

MAR, R2 < T mi 1 

T <:PC 

T <: T pl l 

M[MAR] <: T, MAR<: T mil 

PC <: M[MAR], >: IF 

POL NOTATIONS 

SUBROUTINE ADDRESS 
CALL 

ASSIGNED OP-CODE 

Cl 
ALU FIELD 0 DBUS u.J 

NEXT BRCH ::E f-

ADDRESS CTRL SOURCE < 
0:: FIELD f-
...J r:/l ALU FUNC. v --

l 0 H 0 x B 

2 0 H T x Amil 

3 0 H 0 x B 

4 0 H T x A pl l 

5 0 H T x A mi I 
-

0 0 H M IF A 

: 

1 

I 

CSTR2 CSTRI 

Figure 6-19 Microprogram Symbolic Coding Form: Call, OA 

cs 

x 

H 

x 
L 

H 

x 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 

RR2 

WR2 MAR 

RPC T 
' 

RX T 

RX MAR,M 

WPC IR 

CST RO 

!j 
00 

~ 
i'i 

§ 
0 z 
Cl 
tTl x 
;J> 
::: .,, 
r 
fjJ 



The Control System 

EXAMPLE 6-5: CALL, OA 

279 

line of microcode on which a branch is to occur depends both on the 
activity level of the selected flag and on its subsequent logical usage. 
Note, too, that the first three address bits of CSAD are the same for 
both lines when branch controlling flag seleqtion is in effect. The 
fourth bit alone depends on the value of the flag. This helps establish 
where the two lines appear on the microcoding forms. When the BC 
field is specified as an L, this fourth address bit of CSTR is always low 
in the next time period. 

Yet another useful illustration of the workings of m;~:rocode is the 
CALL, OA instruction. In Chapter 3, we discussed stack-pointer 
operation in relation to calls and returns. The mechanics of imple­
menting them requires that a register in R be designated as the stack 
pointer (SP). We shall use R2 to illustrate SP action. Adjusting the 
PC so as to point to the next instruction's OP field on reentering IF 
can often be a subtle process. The object is to use as few lines of 
microcode as possible. The CPDL description of the net result of the 
CALL instruction is 

SP<: SP mil 

M{SP} <:PC 

PC<: M{OA} 

The CPDL notation above discloses the net result of the action, not 
necessarily the sequence of actual steps in which it is performed. Fig­
ure 6-19 presents the symbolic microcode of one way to implement the 
call. 

Lines 0 and I are devoted to decrementing SP and placing 
this value in MAR. MAR now points to the location on the stack 
where the old PC will be preserved for the eventual return. In line 2 
of the microcode, we temporarily store th~ contents of the PC in T. 
In line 3, we increment T. This value represents the value of PC to 
be preserved for the eventual return, where PC must fetch the OP 
field of the next instruction on entering IF again. Line 4 may 
appear a bit tricky. Two compatible actions occur simultaneously. 
In one, we decrement the value of T by passing it through the ALU 
while it is in the decrement mode-to prepare to store this decre­
mented value in MAR. This action will result in MAR's addressing 
the memory location that is the OA (the address of the called sub­
routine) in the next period. In the other simultaneous compatible 
operation, since the current value of T (which now contains the 
return address) is on the DBUS, we simply store it away at the 
location in memory dictated by the current value of MAR. During 
the period of line 4, MAR contains the decremented value of the 
SP, which specifies where the old value of the PC is to be saved. In 
the next period, as a result of these actions, MAR will contain the 
address of the operand (the branch address). This operand holds 
the new value of PC. Finally, on line 5, the PC receives the address 
of the called subroutine, and a transfer to IF is initiated. This is 
not the only five-line solution to this problem. Can you invent 
another? 



280 

EXAMPLE 6-6: X (INDEXED 

ADDRESSING) 

Priority Encoding of Operand 
Address Modification 

MICROCODING EXAMPLES 

In the next IF, the instruction received is the first instruction 
of the subroutine. In practice, several other tasks may be per­
formed in a system during a call as well. On larger machines, the 
contents of the tlag register are often saved by the Call macro. 
These flags are sometimes referred to as the program status word 
(PSW). STUPIDD's architecture does not support the saving of 
flags, but not to do so would be a fatal design flaw in the real 
world. Thus we have illustrated the. fundamental operation of the 
call and some of the devices used to make its microcode compact, 
which translates into speed of operation. 

For our last example of microcode, we shall illustrate the 
microcoding of the Indexed Addressing macro. Figure 6-20 illus­
trates the operand-address modification algorithm to be performed 
during indexed addressing. In discussing address modification, we 
need to introduce the term effective address, or EA, as we shall call 
it. Up to this point, the EA of the operand for memory reference 
instructions has been the one(s) specified or implied (as for Mvr; 
in the instruction word. If the MSB of instruction is high, the 
MOD flip-flop is set when STUPIDD enters its EX phase of opera­
tion. Let us use RI as the system index register for purposes of 
illustrating the operational aspects of indexed operand address 
modification. Indexed operand addressing is defined as tl'\e calcula­
tion of the EA of an operand, performed by summing the contents 
of the OA value supplied in the instruction word and the contents 
of the designated index register (RI in our example). This sum 
becomes the EA and is to be placed into MAR: to fetch the desired 
target operand, as illustrated in Figure 6-20. 

The stratagem for selecting the BA of this macro relies on the use of 
the priority-encoding potential of MROM's input address lines. If 
MOD has been set high and the IF bit is low, the MROM address must 
be in the second quarter of its current macro-set address space. If we 
use the MOD bit to illustrate indexed addressing, the block address 
now emitted })y MROM will be the block address of this macro, pro­
vided that this quarter of the macro-set address space is entirely filled 
with a single BA value. As long as MOD is high, the system will ignore 
the lower ordered bits of the actual OP code to be performed. 
STUPIDD is now in the EX phase of operation, but it is performing 
the prioritized effective-address calculation of indexed addressing 
macro-not the execution of the actual instruction fetched during IF. 
That is, not until the MOD bit is cleared within the lndexed Address­
ing macro will the steps after the calculation of the operand's address 
of the fetched instruction begin. 

Figure 6-21 presents the microcode for the indexed addressing 
effective-address calculation. On line 0, MAR and T receive the PC. 
MAR is now pointing to the OA literally expressed in the instruction, 
not to the desired effective operand address EA. In line I, the PC is 
adjusted so as to point to the next OP, in anticipation of the next IF. 
On line 2, MAR receives the results of the summation that forms the 



The Control System 

Figure 6-20 
Operand-Address Modification 
by Indexing 

Operand Address Modification 
Fall-through 

x 
FROM 

RI 

ADD 
+ 

(pl) 

281 

OA 

FROM 
MEMORY 

M 

.._~~~~~--1MA 

EA 
EFFECTIVE ADDRESS R 

EA. Up to this point, the CLR MOD field had to be specified as an H. 
It must now be specied as an L. This value will be available at the out­
put of CAR at the start of the next period. Once MOD has been 
cleared, the block address emitted by MROM will be determined 
solely by the value of the current OP field in IR. The only question still 
to be resolved is what is the proper value to place in the next address 
field on line 2? 

To find a simple answer to the question above, we must adopt a 
consistent system-wide convention for all EA calculations. The 
indexed addressing algorithm must be considered in relation to the 
instruction whose operand address is to be modified. Let us use the 
ADD macro of Figure 5-61 to illustrate a simple method of system­
atically reconciling the termination of indexing with the comple­
tion of the instruction to be performed. For instructional purposes, 
we may deviate from this rule elsewhere. Nevertheless, all EA 
address-modification algorithms we create are assumed to coordi­
nate with the ADD instruction, unless otherwise specified. Note 
that, on line 2 of the ADD macro, MAR is being set up to receive 
the EA of the nonindexed instruction. On line 2 of the Index 
macro, the same event is about to occur. In both cases, MAR will 
hold the EA in the next period. Therefore, the NEXT address field 
of line 2 of the Index macro should contain the value 3. In this 
manner, when MOD is cleared, the system falls through from the 
Index macro to the instruction-execution line of code at the point 
where the EA in MAR will be used to complete the instruction in the 
customary manner. Also note that the PC has already been prop­
erly adjusted to point to the next OP in the Indexed Addressing 
macro. By its very nature, it had to have at least one operand 
address. 

Note that, in the above, the system does not return to IF until the 
end of the actual instruction execution. The priority-encoding features 
of MROM are employed to establish a macro for the calculation of the 
modified EA, and, when MOD is cleared, we fall through to the line of 
the instruction where the EA is used. A production system is more 
complex and flexible, but, in essence, it performs the same type of 
tasks. If STUPIDD, for example, had a larger block space for a macro, 
then we could afford to perform customized address modification 
within each particular macro that is controlled by the OP field of each 
instruction: The resulting advantage is that, rather than adopt a rigid 



CSTR ADDRESS ASSIGNED OP-CODE 

0 MACRO: INDEX (RI) 0 
0 DBUS z NEXT BRCH ~ 

t.U PDL DESCRIPTION: SOURCE 
z ADDRESS CTRL a:: FIELD 
:J 

..J 
v 

' 
0 T, MAR<: PC l 0 H 0 

l PC<: Tpl 2 0 H T 

2 MAR<: M[MAR] pl RI, CLM 3 0 L 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 
D 

E 

F 

PDL NOTATIONS CSTR2 

M fi211re 6-21 lndexed-Addressiru?. Macro 

(RI) 
~ 

t.U 
f-

ALU FIELD 

< 
f-
{/) ALU FUNC. cs 

x B x 
x ADD L 

x ADD H 

CSTRI 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 

RPC T,MAR 

WPC 0 

RRI MAR 

CST RO 

N 

~ 

~ 

I 
~ 
a: 
;!! 
!}! 



The Control System 283 

fall-through convention, we can customize the EA calculation to suit 
each individual instruction. In practice, there will be some variations 
in EA-calculation fall-through, but not too many. In these cases, sub­
routine calls located within CSTR save space and neatly sobre the 
problem. · 

The creation of the important macro for indirect addressing is 
left as an exercise. In this EA-calculation macro, the OA field of the 
instruction word contains the address of the address of the operand. h1 
solving this problem, one should first draw the memory map indicating 
what the instruction word and its subsequent pointers are pointing to. 

This completes our analysis of the organization, functioning, and 
microprogramming of the typical microprogrammed von Neumann 
type of computer/processor architecture. This type includes the vast 
majority of those one encounters in ordinary practice. These last, brief 
comments may appear anticlimactic, after all the preparation up to 
this point of the book. Practice is what counts now. With these exam­
ples as a guide, we can try our own hand at creating instructions in 
microcode for STUPIDD. For starters, take the example of indirect 
addressing. A number of other interesting macro-generation problems 
appear in the problem set for this chapter, including one for multipli­
cation. 

PROM PROGRAMMING THE CONTROL SYSTEM 

The use of EPROM programming in the development of instruction 
sets and demonstration programs for STUPIDD is a great conven­
ience. Since the 2716 EPROM's employed for MROM and CSTR are 
erasable and reusable, mistakes are readily corrected and innovative 
experimentation is facilitated. After the EPROM's are programmed, 
they are reinserted in their respective sockets, then demonstration pro­
grams are downloaded into memory (using the procedure presented in 
Table 6-2) and placed into operation by simply pressing the clock but­
ton at the rate we wish to proceed. Between clock pulses, we can 
examine the state of the machine, using the LED display or a voltmeter 

. to probe the voltage levels at the pins of various IC's. As noted, man-
ual operation of the CPU control switches is a good introductory tool, 
but it soon grows old. The programming of the EPROM's is a more 
highly developed approach to experimentation. The environment for 
PROM programming provides readers with useful experience, in that 
they may expect to encounter it in industrial development of firmware 
or of programs residing in some form of permanent memory. PROM 
programming is economical and is within the reach of both hobbyists 
and schools. 

Most personal .computers are capable of supporting PROM pro­
gramming. The three hardware elements required are the personal 
computer of choice, a PROM programmer that interfaces to it, and a 
UV EPROM-erasing lamp. In selecting these components, make sure 
that they come with sufficient software support. A reasonable amount 
of software development and adaptation readily creates the desired 
type of programming environment. The author uses a PROM 
programmer produced by Advanced Microcomputer Systems, Ft. Lau­
d~rdale, Florida. Figure 6-22 illustrates the adaptability of these 
peripheral devices. One of the two cards is inserted into a slot of the 
IBM PC or XT personal computer; the other adapts the devices to sys-



284 

Figure 6-22 
The PROM Programmer 
(Courtesy of Advanced 
Microcomputer Systems, Inc., 
Ft. Lauderdale, Florida ) 

PROM PROGRAMMING THE CONTROL SYSTEM 

terns using the SIOO bus. Once the card is inserted into an expansion 
slot, the supplied cabling is connected to the selected external PROM­
programming box. The EPROM programmer selected for use was 
installed in an IBM XT. The PROM-programmer hardware came with 
the essential core of soft ware and with a PROM programming manua l. 
Thi s elementary body of software can be readily incorporated into a 
user-friendly firmware-development environment, which we shall 
describe shortl y. 

An example of a UV erasing device is illustrated in Figure 6-23 . 
This particular one is produced by UYP, Inc., San G abriel. California. 
It contains a sliding drawer into which EPROM's are placed. The 
drawer is closed, the erasing action is initiated, and in less than 15 
minutes the erased EPROM's are available for reprogramming. A note 
of caution : These erasers have built-in safety features. Never try to 
defea t them, under any circumstances. Staring into the ultraviolet can 
damage your eyes. 

This presents an overview of the basic equipment required to 
establi sh our own PROM-programming environment. As noted, many 
personal computer enthusiasts already possess such equipment. A visit 
or two to a personal-computer club or user's group is often the best 
way to obtain specific assistance with your pa rticular machine. Knowl­
edgeable people at a personal-computer store may be able to assist 
you, too. The advertisements in the serious computer enthusiasts' mag­
azines, such as Dr. Dobb 's J ournal, and in the more technical maga­
zines devoted to the various personal computers are an excellent 
source of information on systems and soft ware development, as well as 
on hardware configu ra tion. 



The Control Srstem 

Figure 6-23 
The PROM UV Eraser 
(Counesr UVP. Inc .. San 
Gahriel. Cali{ MemoraseCR, is 
<I registered trademark o/ 
UVP. Inc.1 

285 

The IBM XT personal computer permits instant operation and 
provides the facilities for the maintenance of a large data base of pro­
grams. utilities. and instructional aids in the · PROM programming 
environment. These are available for student use on the XT's 10-
megabyte hard disk . Users can keep their personal work on their own 
floppy disks. while taking advantage of the software PROM-program­
ming environment available to them on the hard disk . Figure 6-24 
shows the laboratory setup in the Computer Science Department's lab­
oratory at the California State Polytechnic University, Pomona. This 
illustration shows a student team at work, with the attached EPROM 
programmer and a UV erasing device at their disposal. Let us now 
examine the type of development environment that will provide a user­
friendly PROM-programming environment. This will be presented in 
as general a way as possible, since the users of software often wish to 
have it programmed in a different language from the one used by the 
creator; furthermore. the operating systems often are incompatible. 

First, let us introduce a demonstration program for STUPIDD. 
This establishes the nature of the macros in one of the sets of macros 
required to run this program. The simple program selected is presented 
in Table 6-3. in Assembly-language format. 

Table 6-3 
Demonstration Program 0 (PROGO) 

Line Label Op Code Operands 

START MVI R0,03H 
2 LOOP OUT RO 
3 DCBZ RO,REPT 
4 BRU LOOP 
5 REPT OUT RO 
6 BRU START 
7 END START 

In this program we first move a hexadecimal value, arbitrarily chosen as 
3, into RO. Next, the contents of RO are output to the LED Hexadecimal 



286 

Figure 6-24 
PROM Programming Session 
in Progress 
(Photograph courtesy 
o( the author.) 

PROM PROGRAMMING THE CONTROL SYSTEM 

display. Line 3 means that we decrement RO and then, if the contents of 
RO are zero after the decrementation, we branch to symbolic location 
REPT. This test will fail more often than it will succeed. If it fails, the 
program loops back to symbolic location LOOP and outputs the new 
(decremented) value, then proceeds on in the loop. At symbolic location 
REPT (bne 5), we output the value of RO, i.e., zero, to the display and 
then, on line 6, branch right back to start the process all over again. 



The Control System 287 

Thus, the machine has been put into tight inner and outer loops 
for continuous operation and observance of clock-by-clock execution 
of the instructions and program we develop for it. In this process, the 
need to create some new instructions for the machine has arisen. A 
conditional OP code (DCBZ), outputs to the dfsplay, and branch 
instructions are used. The object is to invent all of these as we proceed, 
while describing a development environment that includes PROM pro­
gramming (or PROM burning, in the vernacular). It may seem strange 
at first that a desired body of software has given rise to the require­
ments of an instruction set. While this body of software is not signifi­
cant in the larger scheme of things, the priorities make good sense. 
Software goals should guide instruction-set as well as hardware-design 
activities. 

Since a single set of macros includes more than the above 
instructions, we specify Macro Set 0 in Table 6-4. 

Table 6-4 
Macros Selected for Macro Set 0 

Macro Op Code CSTR Address 
(Hex) 

IF OH 
/NM adr 000 JOH 
MVI RO, val 001 20H 
BRU adr OJO JOH 
OUT RO 011 40H 

DCBZ adr JOO 50H 
LDRO adr JO] 60H 
STRO adr 110 70H 
ADD adr 111 BOH 

x JXXX 90H 

We have rounded out the macros of Macro Set 0 to include loading 
and storing RO, addition, input to memory (INM) from the switches, 
and the indexed-addressing macro (X). The microcoding details of 
each are presented shortly. First, let us look at the microcoded form 
sheet of Demonstration Program 0 (PROGO), in Figure 6-25. 

Figure 6-25 displays the pertinent symbolic entries for the dem­
onstration program to be invoked when we download PROGO. (The 
ALU field contains the actual binary values.) As previously noted, line 
0 initializes the PC at the value l and is not a part of the program that 
will be demonstrated. The actual program steps start on line 1, with 
the MVI instruction. The succeeding ALU-field entries contain OP 
codes, addresses, or values in accordance with the purposes of the pro­
gram. Some points are worth comment. Line A is the last line of the 
actual program. Here, the NEXT address field contains a 0 entry, 
which causes the download procedure to loop back to line zero at this 
point, so that we do not have to laboriously count the number of times 
we press the clock button during download (assuming we press it more 
than 11 times). All entries below line A are don't-cares. 

Also observe that the ALU field of line A contains the value 
0001. This value is the branch address of the BRU instruction on the 
line above. This guarantees that the program will repeatedly loop back 
to symbolic location ST ART and run continuously, to make it easy to 
observe the details of its operation. On line 7 of the form, the CF flag is 
invoked in the BC field, to enable the second half of the macro space to 



CSTR ADDRESS: 270H ASSIGNED OP-CODE: -

0 MACRO: PROGO 1 ADR. 0 J_ 0 DBUS · z NEXT BRCH ~ 
LlJ CPDL DESCRIPTION: ADDRESS CTRL 

SOURCE 
~ DOWN-LOAD .PROO 0 

a: FIELD ..J 
..J u 

0 PC< l, LFL (/NIT. PC) l L L x 

l MVI RO; U (OP-CODE) 2 L L x 

2 VALUE (OF H) 3 L L x 

3 OUT RO 4 L L x 

4 DCBZ RO, ADR (OP-CODE) 5 L L x 

5 ADR(OBH) 6 L L x 

6 BRU ADR (OP-CODE) 7 L L x 

7 ADR(03H) 8 CF L x 

8 OUT RO (OP-CODE) 9 CF L x 

9 BRU ADR (OP-CODE) A CF L x 

A ADR (0/H) 0 L L x 

B x x x x 

c x x x x 

D x x x x 

E x x x x 

F x x x x 

CPDL NOTATIONS CSTR2 

Figure 6-25 
Microprogram Symbolic Coding Form: Demonstration Program 0 (PROG 0) 

LlJ ALU FIELD 
f-
<( 

t;j 
ALU FUNC. cs 

x 0000 (A pl l) L 

x 0001 x 
x 0011 x 
x 0011 x 
x 0100 x 
x 1000 x 
x 0010 x 
x 0011 x 
x 0011 x 
x 0010 x 
x 0001 x 
x x x 

x x x 
x x x 

x x x 
x x x 

CSTRI 

SINK CONTROL FIELD 

RARRAY LOAD ENABLES 

WPC FL 

RO M 

RO M 

RO M 

RO M 

RO M 

RO M 

RO M 

RO M 

RO M 

RO M 

x x 

x x 

x x 

x x 

x x 

CST RO 

1; 

' 

N 
00 
00 

"C 

~ 
::::: 

~ 
!:! 
3::: 
3::: 

* :il 
m 

I 
I 



The Control System 289 

HEX MACRO 
STARTING MNEMONIC MACRO DESCRIPTION 
ADDRESS 

00 IF INSTRUCTION FETCH 
10 INPM M[OA]<:(SWJ 

Q 20 MVI RO<:M[OA] 
tij 30 BRU PC<:(OA) 
Cf.I 40 OUT DISP<:(SWJ 
~ 50 DCBZ RO<:RO mi 1, IF RO•O THEN PC:<(OA) 
u 60 LDRO RO<:M{OA} 
< 70 STRO M{OA}<:(RO) 
~ 80 ADD RO<:M{OA} pl (RO) 

90 x INDEXED ADDRESS MODIFICATION 

AO 
- BO 
!:;j co 
Cf.I DO 

~ EO 
u FO 
< 100 
~ llO 

120 I INDIRECT ADDRESS MODIFICATION 

130 
140 
150 
160 

~ -

PROGO LOOPING PROG USING DCBZ 

NOTE: HIGH ORDER HEX DIGITS ARE BA FROM MROM. 

Figure 6-26 
Macro Assignment Map: 
Macro Set 0 and PROGO 

be used. Corresponding to this, line A contains an L in this field, to 
cause the program to return to line 1 (of the first half of the macro 
space) during operation. Finally, the flags were loaded on line 0, to set 
the CF high for the uses just described. On all other relevant lines, 
memory (M) is to be loaded during the download process. This takes 
the program in CSTR's ALU field and installs it into memory for sub­
sequent operation. 

Figure 6-26 summarizes much of the preceding by presenting the 
CSTR starting-address assignments for all the macros of Macro Set 0 
(MACSO), as well as for that of download PROGO. It will be helpful 
when we wish to determine the values to be burned into MROM and to 
identify the locations in CSTR where the macros are to be placed. 
Figures 6-27 through 6-36 present the complete electrical coding forms 
for each macro of Macro Set 0. For ease of interpretation, entries on 
these forms are in terms of the truth-value terms of 1 and 0. Active-high 
logic conventions are specified for their translation into the electrical 
levels of Hand L. Industrial PROM programming often provides these 
options, wherein the user specifies whether the truth values of the coding 
sheets are to apply to active-high or active-low programming of a 
PROM. These assignment and coding sheets shall now be analyzed to 
determine the actual contents of the locations of MROM, CSTR2, 
CSTRI, and CSTRO required for successful operation of STUPIDD. 



290 PROM PROGRAMMING THE CONTROL SYSTEM 

The next step is to establish the contents of MROM. Keep in 
mind that we are dealing with only one macro set (MACSO) and one 
download program (PROGO) at this time. The system can hold four 
sets of macros and eight downloadable programs based on the use of 
one of the macro sets. The 2716 EPROM's will contain all high values 
after erasure. Don't-care entries on the coding forms and all unused 
locations will remain high after the programming of the PROM's. 
Table 6-5 presents the locations of MROM that are to be programmed 
for our current purposes, together with their contents. Hexadecimal 
values are used for naming locations and their contents. The use of 
Hex notation is customary practice. 

Table 6-5 
MROM Mappings for PROGO, Macro Set 0 

Hexadecimal Address Hexadecimal Value Remarks 
OH-7F 27 BA of PROGO 

80H-77F FF *Not Used 
780 01 BA of INM 
781 02 BA of MVI 
782 03 BA of BRU 
783 04 BA of OUT 
784 05 BA of DCBC 
785 06 BA ofLDRO 
786 07 BA of STRO 
787 08 BA of ADD 

788-78F 09 BA of Index Adr. 
790-78F 00 BA of IF 
7A0-7FF FF *Not Used 

*Some of the unused locations may be used for other macro and program-set 

mappings in MROM. See Figure 6-5. 

With reference to Figure 6-5, which contains the use map of MROM, 
note that the first 128 locations of MROM are to contain the BA of 
PROGO. Accordingly, the Hex value 27H is specified in Table 6-5 for 
these locations. This program's contents actually start at location 
270H in CSTR. The first hexadecimal digit of this program specifica­
tion and of all the macros defines the maximum space in CSTR that 
each may occupy. Therefore all block addresses consist of all the 
higher order Hex digits to the left of this first one. 

The BA's of the macro sets reside in upper MROM locations. 
(See Figure 6-5.) MACSO BA's start at location 780H. The locations 
and nature of their contents have been. defined in accordance with the 
use map of Figure 6-2. This usage makes space to include only eight 
OP codes in the instruction set. If the user desires more instructions 
and is willing to sacrifice operand-address modification in the process, 
then, as suggested in Figure 6-5, the number of macros in a set may be 
expanded to sixteen. The observant reader will notice that MACSO 
must be modified to use the indexed-addressing mode. Why is this so? 
A good first user project is to alter MACSO so that the index macro 
can also be incorporated into a demonstration program. All macro sets 
need use only one IF macro in CSTR. The BA of the IF macro speci­
fied in MROM locations 7AOH .. 7BFH of MACSO is therefore OOH, 
and it will be the same for all sets. 



The Control System 291 

Table 6-6 
Hexadecimal Contents of CSTR for Macro Set 0 and Download 
Program 0 

Hexadecimal Contents of CSTR . 
Hex Address CSTR2 CSTRJ CSTRO Remarks 

000 27 EB 67 IF 
001 44 80 FF 
002 05 7F 7B 

003--00F FF FF FF * 
010 27 EB 67 INM 
011 44 80 FF 
012 06 FF 78 

013-0IF FF FF FF * 
020 27 EB 67 MVI 
021 44 80 FF 
022 05 FF 9B 

023-02F FF FF FF * 
030 27 EB 6F BRU 
031 05 FF FB 

032-03F FF FF FF * 
040 27 EB 17 OUT 
041 04 FF 7A 

042-04F FF FF FF .. 
050 27 EB 67 DCBZ 
051 44 80 FF 
052 67 EB 17 
053 9C BF 90 
054 07 FF 7B 

055-05B FF FF FF .. 
05C 05 FF FB 

05D-05F FF FF FF .. 
060 27 EB 67 LDRO 
061 44 80 FF 
062 65 FF 6F 
063 05 FF 9B 

Once we have decided where to place control-system values into 
CSTR, it is time to examine their contents. The contents of CSTR are 
presented in Table 6-6. The entries were taken from the individual cod­
ing forms of Figures 6-27 through 6-36, translated from the original 
binary into hexadecimal values. Each CSTR location used by a macro 
is divided into three fields: CSTR2, CSTRI, and CSTRO. These are 
straightforward conversions of the fields of the coding sheets from 
which they were taken. Of greater significance now is the columnar 
organization of the values for CSTR2, CSTR I, and CSTRO. Each col­
umn contains the information to be programmed into the correspond­
ing PROM. This means that we have reordered the information of the 
macro-coding sheets to obtain the string of Hex values to be burned 
into each EPROM in CSTR. 

The software support provided with the AMS prom programmer 
takes a file of the proper form, already residing in memory, and uses it 
to program the PROM: Each column of Table 6-6 may be used to cre­
ate separate files for the EPROM's of CSTR. The process may then be 
run on the IBM PC or XT to program these PROM's. Let us say that 



292 PROM PROGRAMMING THE CONTROL SYSTEM 

Table 6-6 (cont.} 

Hexadecimal Contents of CSTR 

Hex Address CSTR2 CSTRJ CST RO Remarks 
064-06F FF FF FF • 

070 27 EB 67 STRO 
071 44 80 FF 
072 65 FF 6F 
073 87 EB 17 
074 04 FF 78 

075-07F FF FF FF • 
080 27 EB 67 ADD 
081 44 80 FF 
082 65 FF 6F 
083 85 A7 15 
084 04 FF 9B 

085-08F FF FF FF • 
090 27 EB 67 INDEX 
091 44 80 FF 
092 61 A7 2F 

093-26F FF FF FF • 
270 23 80 FD PROGi 
271 43 C7 IC 
272 63 FF IC 
273 83 CF JC 
274 A3 D3 IC 
275 C3 E3 IC 

Loops Using 276 E3 CB IC 
277 OB CF IC DCBZ 

278 2B CF IC 
279 4B CB IC 
27A 03 C7 IC 

27B-27F FF FF FF • 
*Note: The asterisk denotes locations and ranges of locations that are not used. 
An erased PROM location will remain high (FF) if not programmed. 

this has been done and that PROGO is to be demonstrate,d. After pro­
gramming, the PROM's are reinserted into their respective sockets in 
STUPIDD. The display select may be set to display the contents of the 
OUT register, to check gross overall program performance. The pro­
gram is downloaded and run. The user may encounter a few surprises 
in the demonstration phase of PROGO-or any other demonstration 
program. The first value displayed in OUT has nothing to do with the 
program. It is the random value that happens to be present in the OUT 
register after downloading. The number of clock pulses to be manually 
administered is the next surprise. The operation actually consumes 
more pulses than one would expect, since we must cycle through the IF 
phase again each time the EX phase of an instruction is completed. We 
must understand and track every step of the total system's operation if 
it is to be adequately explained to an observer. 

The students shown in Figure 6-24 are currently developing a 
more sophisticated approach, to improve the PROM-programming· 
environment. This consists of a user-friendly menu-driven microcode 
Assembler based on the computer-aided application of the easy-to-use 



The Control System 293 

symbolic coding forms. Such a project is an excellent exercise for the 
more software-oriented reader who wants to apply software expertise 
in working close to the hardware. 

This approach establishes the environment in which a user may 
select, from the initial menu, the cho.ice of programming the entire 
control store in one sitting. After this menu option is selected, the sym­
bolic coding sheet form of a macro is displayed on the screen. The user 
may now enter the easy-to-use symbolic form into the fields of each 
line of microcode. When the macro is complete and edited to the user's 
satisfaction, the user assigns a CSTR address to it, before going on to 
another macro or terminating the session. The final task that can take 
place under user control is automatically translating this macro into 
the Hex programming form and placing the Hex values into their 
respective string files, at their proper locations. for the future program­
ming of the EPROM's of CSTR. If a complete string file for a PROM 
has already been created, the user may now choose to program it, by 
menu selection. This choice simply invokes the software that came 
with the PROM programmer in the first place. 

At this point we are in total control of the processor system: We 
can conveniently create its instruction sets and incorporate them into 
demonstration programs. We now realize that we can be better than 
this or any other processor we may encounter in the future, for we have 
touched the soul of our own machine . 

• 



CSTR ADDRESS: OH ASSIGNED OP-CODE: -

MACRO: IF NEXT BRCH Q DBUS 
0 ADDRESS CTRL 0 SOURCE LU z CPDL DESCRIPTION: 

~ FIELD E-
LU < z INSTRUCTION FETCH 0 ~ E- Cl N - 0 u u 0 tll 
::i z z z ...J ~ LU ::E cc cc u ----0 MAR. T <:PC 0 0 I 0 0 I I I I I 

I PC<: Tpl I 0 I 0 0 0 I 0 0 I 0 

2 IR<: M{MAR}. >:EX 0 0 0 0 0 I 0 I 0 I 

3 

4 

5 

6 

7 

8 IQ_ 

9 
I 

A 2 

B ll 

c 4 

D Ii 
E !§._ 

F 7 

CPDL NOTATIONS CSTR2 

Figure 6-27 Microprogram Electrical Level Coding Form: IF Macro 

ALU FIELD 

ALU FUNC. cs 

~ ~ N 0 
tll en ;;; tll tll 

u u 

I 0 I 0 I I 

0 0 0 0 0 0 

I I I I I I 

CSTRI 

SINKCONTROL FIELD 

RARRAY LOAD ENABLES 
·~ ci::: 0 ci::: @) ;;; E-tll. 
~ -l ::i ...J 

~ ci::: ci::: 
...J 
':-' - -0 I I 0 0 I I 

I I . I I I I I 

0 I I I I 0 I 

CST RO 

0 
...J 

I 

I 

I 

N 

'e. 

.,, 
:;!l 
0 
a:: .,, 

~ 
a:: 
a:: 
~ 
;! 
m 

~ 
~ 
r-

~ 
~ 
~ 



CSTR ADDRESS: JOH ASSIGNED OP CODE: 0 

MACRO: INM NEXT BRCH 0 DBUS 
ci ADDRESS CTRL 0 SOURCE UJ z CPDL DESCRIPTION: ~ FIELD !-
UJ < z M{OA}<:IN 0 :2: !- 0 
:3 N - 0 u u .J - &! tll 

:2: z z z = = ~ UJ 

-0 MAR,T<:PC 0 0 I 0 0 I I I I I 

I PC<:Tpl I 0 I 0 0 0 I 0 0 I 0 

2 M{MAR}<:IN,>:IF 0 0 0 0 0 I l 0 I l 

3 

4 

5 

6 

7 

8 

9 '·· 

A 

B 

c 

D 

E 

F 

CPDL NOTATIONS CSTR2 

Figure 6-28 Microprosuam Electrical Level Codin2 Form: INM Macro 

ALU FIELD 

ALU FUNC. cs 

~ <"") N 0 tll 
tll tll tll tll u u 

I 0 I 0 I 1 

0 0 0 0 0 0 

I 1 I l l l 

CSTRI 

SINK CONTROL HELD 

R ARRAY LOAD ENABLES 

~ ~. - 0 < ~ (§) tll en 
3_ !::i :3 

~ ~ ~ .J 
...-. ...-. 

0 
__.. -0 I I 0 I I 

I I I I 1 I I 

0 I l l I 0 0 

CSTRO 

0 
-2 

I 

I 

0 

;;! 
"' 

i ., 

"-> 
~ 



CSTR ADDRESS: 20H ASSIGNED OP-CODE: 0001 

MACRO: MVI NEXT BRCH 0 DBUS ALU FIELD 
ci ADDRESS CTRL 0 SOURCE UJ z RO<: M{PC pl I,} 

~ FIELD f- ALU FUNC. 
UJ < z N - 0 a:: f- '"' :3 

0 '-' '-' ...J ::i:: Vl ..... ri :r. z z z ;i; 2 er. er. er. cc cc u 
~ 

0 MAR, T <:'PC 0 0 I () () I I I I I I () I 0 

I PC<: Tpl I () I () () () I () () I () () () () () 

2 RO<: M{MAR} 0 0 () 0 () I () I I I I I I I 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 

D 

E 
. 

F I 

CPDL NOTATIONS CSTR2 CSTRI 

Figure 6-29 Microprogram Electrical Level-'C"""od=i=n.,.g--=F--=o=rm=:--=M~V--=l'-'M:..:.=a::.::c==-ro=-· _____________ _ 

cs 

er. ~ 
'-' '-' 

I I 

() () 

I I 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 
c:: c:: - ~ < c:: 
~ er. f-

2 ...J ::i ...J ::: c:: c:: 
...J 

() I I () () I I 

I I I I I I I 

1 0 0 I I () I 

CSTRO 

::l 

I 

I 

I 

N 

~ 

"ti 
;a 

~ 

~ 
~ 
=:: 
~ 
~ 
rn 

~ 
~ 

i 



CSTR ADDRESS: 30H ASSIGNED OP-CODE: OOIO 

MACRO: BRU NEXT BRCH 0 DBUS 
0 ADDRESS CTRL 0 SOURCE uJ z ~ FIELD E-
UJ CPDL DESCRIPTION: < z N - 0 0 :E 0 ti Cl 
:l PC<: M{PC pl 1} z z z (..I (..I ..J uJ uJ ~ a:l a:l (..I 

0 MAR<: PC 0 0 I 0 0 I 1 I I I 

I PC<: M{MAR} 0 0 0 0 0 I 0 I I 1 

2 

3 

4 

5 

6 

7 

8 0 

9 
I 

A 2 

B 3 

c 4 

D 5 

E 6 

F 7 

CPDL NOTATIONS CSTR2 

Figure 6-30 Micropro2ram Symbolic Codin2 Form: BRU Macro 

ALU FIELD 

ALU FUNC. cs 

<'"> N 0 Vi ~ r:n IZl Vi IZl (..I (..I 

I 0 I 0 1 1 

I I I I I I 

CSTRI 

SINK CONTROL FIELD 

RARRAY LOAD ENABLES 

ai:: ai:: 
@) IZl ~ < f- ai:: 

~ ai::. ~ ..J :l ..J 
~ -l 

0 I I 0 I 1 I 

I I I I I 0 I 

CSTRO 

0 
..J 

I 

I 

~ 
fl: 

~ 
~ 
·~ 
~ 

N 

'° -...) 



CSTR ADDRESS: 40H ASSIGNED OP-CODE: 0011 

MACRO: OUT . NEXT BRCH 0 DBUS ALU FIELD 
ci ADDRESS CTRL 0 SOURCE u.J z 2 FIELD f- ALU FUNC. 
u.J <I'. 
z CPDL DESCRIPTION N - 0 0 2 f- Cl v v ~ Cll ...-. N i]S ...J OUT<: RO z z z a:l a:l 

..J u.J 2 Cll Cll iii v 

0 T<:RO 0 0 I 0 0 I I I I I I 0 I 0 

I OUT<:T.>:IF 0 0 0 0 0 I 0 0 I I I I I I 

2 

3 

4 

5 

6 

7 

8 0 

9 I 

A 2 

B 3 

c 4 
-

D 5 

E 6 

F 7 

CPDL NOTATIONS CSTR2 CSTRI 

Figure 6-31 Microprogram Electrical-Level C=-od=i=l!,..2--"F-=o=r=m""": -=O'-U=--=-T-=M"-=a=c::..:ro"---------------

cs 
0 

Cll Cll v v 

I I 

I I 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 

0::: a:: 
@ iii ~ < 0::: f-

0::: ~ :3_ ..J :i ..J 
~ - -
0 0 0 ·l 0 I I 

.. 
() I I I I 0 I 

CST RO 

0 
..J 

0 

0 

tc: 
00 

'"t:I 

e; 
s:: 
'"t:I 

8 
~ 
i:: 
i:: z 
Cl 

5l 
m 
(') 

~ 
~ 
r 

~ 
i:: 



CSTR ADDRESS: 50H ASSIGNED OP-CODE: 0100 

ci MACRO: DCBZ NEXT BRCH 0 DBUS 
ADDRESS CTRL 0 SOURCE UJ z CPDL DESCRIPTION; ~ FIELD r-

UJ RO<: RO mi 1, LFL, < z a: t;; If RO = 0 Then PC.<: OA, 0 0 
..J N - 0 u u ..J @ 0 

Else>: IF z z z CQ CQ u UJ ~ 
~ 

0 MAR, T <:PC 0 0 I 0 0 I I I I I 

I PC<: T pl 1 0 I 0 0 0 I 0 0 I 0 

2 T <:RO 0 I I 0 0 I I I I I 

3 RO<: T mi I, LFL I 0 0 I I I 0 0 I 0 

4 >:IF 0 0 0 0 0 I I I I I 

5 

6 

7 

8 
0 

9 I 

A 2 

B 3 

c 4 PC<: M {MAR},>: IF 0 0 0 0 0 I 0 I I I 

D 5 

E 6 

F 7 

CPDL NOTATIONS CSTR2 

Figure 6-32 Micropr~ Electrical-Level Codine Form: DCBZ Macro 

ALU FIELD 

ALU FUNC. cs 
0 .... N - 0 ·tll 00 

00 00 00 00 u u 

I 0 I 0 I I 

0 0 0 0 0 0 

l 0 I 0 I I 

I I I I I I 

I I I I I I 

I I I I I l 

CSTRI 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 
ex: ex: 

@) (il ~ < a: 
~ s - -~ ex: a: ..J ..J 
...l 

0 I I 0 0 I I 

I I I I I I I 

0 0 0 I 0 I I 

I 0 0 I I I 0 

0 I I I I 0 I 

l 1 1 1 l 0 l 

CSTRO 

3 

I 

I 

I 

I 

I 

I 

;;l 
"' 
~ 
[ 
~ 
"' ~ 

~ 



CSTR ADDRESS: 60H ASSIGNED OP-CODE: 0101 

MACRO: LDRO NEXT BRC'H Q DBUS 
0 ADDRESS C'TRL 0 SOURCE u.J z ~ FIELD E-
u.l 

CPDL DESCRIPTION: 
< 

~ 0 ::E E- Q N - 0 u u 0 Vl 
RO <:M{OA} z z z ...J u.J u.J ::E ...J cc cc u 

0 T, MAR<: PC 0 0 l 0 0 I l I I I 

I PC<: Tpl l 0 l 0 0 0 l 0 0 l 0 

•. 2 MAR<: M{MAR} 0 I I 0 0 . I 0 I I I 

3 RO<: M{MAR}, >:IF 0 0 0 0 0 I 0 I I I 

4 

5 

.. 6 

7 

8 0 

9 
I 

·I A 
2 

' B 3 

c 4 . 
D 5 

E 6 

F 7 

CPDL NOTATIONS CSTR2 

Fieure 6-33 Microprogf1lm Electrical-Level Coding Form: LDRO Macro 

ALU FIELD 

ALU FUNC. cs 

00 ~ <"> N [;j 0 
Vl Vl Vl u u 

I 0 I 0 I I 

0 0 0 0 0 0 

l I 1 I I I 

I I I I I I 

CSTRI 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 
a: •. a: 

00 ~ < a: @) ~ 3- :i ..J 
~ 

a: a: 

0 l l 0 0 l l 

l I I I I I I 

0 I I 0 I I I 

I 0 0 l I 0 I 

CSTRO 

0 
...J 

l 

I 

I 

l 

8 

.,, 
~ 
~ .,, 

! 
:::: z 
0 

5! 
(11 

I 
~ 
~ 
~ 



CSTR ADDRESS: 70 ASSIGNED OP-CODE: OJ IO 

MACRO: STRO NEXT BRCH 0 DBUS ALU FIELD ci ADDRESS CTRL 0 SOURCE UJ z ~ FIELD !- ALU FUNC. 
UJ CPDL DESCRIPTION: < z M{OA} <:RO N - 0 0 ~ !- 0 v u 53 V'l ..., N en 0 
...J z z z ...J UJ ~ V'l V'l V'l 

a:i a:i v 

0 T, MAR<: PC 0 0 I 0 0 I I I I I I 0 I 0 

I PC<: T pl I 0 I 0 0 0 I 0 0 I 0 0 0 0 0 

2 MAR<: M{MAR} 0 I I 0 0 I 0 I I I I I I I 

3 T <:RO I 0 0 0 0 I I I I I I 0 I 0 

4 M{MAR} <: T, >:IF 0 0 0 0 0 I 0 0 I I I I I I 

5 

6 

7 

8 

9 

A 

B 

c 

D 

E 

F 

CPDL NOTATIONS CSTR2 CSTRI 

Figure 6-34 Microprogram Electrical-Level Codin2 Form: STRO Macro 

cs 

en 0 
V'l v u 

I I 

0 0 

I I 

I I 

I I 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 

0::: 0::: 
@) en ~ < !- IX 

IX 0::: 3_ ...J :l ...J 
~ 

0 I I 0 0 I I 

I I I I I I I 

0 I I 0 I I I 

0 0 0 I 0 I I 

0 I I _I I 0 0 

CSTRO 

0 
...J 

I 

I 

I 

I 

0 

;l 
" 
~ 
~ 
~ 

~ 

25 -



I 

CSTR ADDRESS: 80H ASSIGNED OP-CODE: 0111 

MACRO: ADD NEXT BRCH 0 DBUS 
0 ADDRESS CTRL 0 SOURCE UJ :z ::E FIELD E-
UJ 

CPDL DESCRIPTION: < :z 0 ::E ~ 0 N - 0 u u tn :J RO pl M{OA} :z z z a:l l:Q 
..J UJ ::E u 

0 T, MAR<: PC 0 0 I 0 0 I 1 I I I 

I PC<: T pl I 0 I 0 0 0 I 0 0 I 0 

2 MAR<: M{MAR} 0 I I 0 0 I 0 I I l 

3 T <:RO pl M{MAR}, LFL I 0 0 0 0 l 0 I I 0 

4 RO<: T, >:IF 0 0 0 0 0 I 0 0 I I 

5 

6 

7 

8 0 

9 I 

A 2 

B 3 

c 4 

D 5 

E 6 

F 7 

CPDL NOTATIONS CSTR2 

Figure 6-35. Microprogram Electrical-Level Coding Form: ADD Macro 

ALU FIELD 

ALU FUNC. cs 
,.., N iii 0 VJ ~ VJ VJ VJ u u 

I 0 I 0 I I 

0 0 0 0 0 0 

I I I I l l 

I 0 0 I 1 I 

I I I I I I 

CSTRI 

SINK CONTROL FIELD 

RARRAY LOAD ENABLES 
ei:: ei:: 

~ @) VJ < E- ei:: 
ei:: °' 3- ~ :J ..J ac 

0 I I 0 0 I I 

I l I l l I l 

0 l I 0 I I I 

0 0 0 I 0 I 0 

l 0 0 I I 0 I. 

. 

CST RO 

0 
..J 

I 

I 

I 

I 

I 

w s 

"Cl 

~ 
~ 

~ 
~ 
~ 
Cl 

:il 
m 
(") 

~ 
~ 
r-

~ 
::: 



CSTR ADDRESS: 90H ASSIGNED OP-CODE: IXXX 

MACRO: INDEX ADR. NEXT BRCH 0 DBUS 
0 ADDRESS CTRL 0 SOURCE u.J z :::;:; FIELD E-
u.J < z CPDL DESCRIPTION: 0 :::;:; E- 0 N - 0 u u 0 {I) 

...J EA<: M{OA} pl RI z z z ...J u.J u.J ~ CQ CQ u 
--0 MAR, T <:PC 0 0 I 0 0 I I I I I 

I PC<: T pl I 0 I 0 0 0 I 0 0 I 0 

2 MAR<: M{MAR} pl RI, CLM 0 I I 0 0 0 0 I I 0 

3 

4 

5 

6 

7 

8 
0 

9 I 

A 2 

B 3 

c 4 

D 5 

E 6 

F 7 

CPDL NOTATIONS CSTR2 

Figure 6-36 Mkr~program Electrical-Level Coding: Index ADR Macro 

ALU FIELD 

ALU FUNC. cs 
0 

<'l N r/i ?}l {I) {I) 
{I) {I) u u 

I 0 I 0 I I 

0 0 0 0 0 0 

I 0 0 I I I 

CSTRI 

SINK CONTROL FIELD 

R ARRAY LOAD ENABLES 

~ ~ r/i 0 ~ @) {I) r-
~ ~ :::;:; ...J ...J 

~ ...J 
...J -

0 I I 0 0 I I 

I I I I 1 I I 

0 0 I 0 I I I 

CSTRO 

0 
...J 

I 

I 

I 

;;l 
" 
~ 
~ 
~ 
""' ~ 

w 
0 
w 



304 

BIBLIOGRAPHY 

PROBLEMS 

PROBLEMS 

Build an Am2900 Microcomputer. Vol. I-IX. Sunnyvale, Califor­
nia: Advanced Micro Devices, Inc., 1978. 

Dietmeyer, Donald L. Logic Design of Digital Systems. Boston: 
Allyn and Bacon, 1978. 

Husson, Samir S. Microprogramming Principles and Practices. 
Englewood Cliffs, New Jersey: Prentice-Hall, 1970. 

Microprogram Design with the 2900 Family. Sunnyvale, Califor­
nia: Advanced Micro Devices, Inc., 1978. 

Wilkes, M.V. "The Best Way to Design an Automatic Calculat­
ing Machine." Manchester University Computer Inaugural Con­
ference, July 1951. 

Wilkes, M.V., and Stringer, J.B. "Microprogramming and the 
Design of the Control Circuits in an Electronic Digital Com­
puter." Proc. Cambridge Phil. Soc., Pt. 2, Vol. 49, pp. 230--38, 
April 1953. 

Yaohan Chu. Computer Organization and Microprogramming. 
Englewood Cliffs, New Jersey: Prentice-Hall, 1972. 

Note: First microcode the following problems on the appropriate cod­
ing form, then demonstrate their operation on the construction project. 

1. Use the electrical-level (H or L) coding form for this problem. 
Microcode the instruction CALL, OA. For this instruction, use 
R2 as the system stack pointer (SP). The CPDL description of 
the results is as follows: 

SP<: SP mi I 

M{SP} <: PC 

PC<: M{OA} 

Hint: Carefully consider the order in which one must adjust the 
PC and SP in STUPIDD's architecture. Recall that the PC must 
point to the next OP upon execution of a return. 

2. Use the symboiic coding form fur the following problem. This is 
an address-modification type of algorithm. The MOD bit on 
STUPIDD is to be used for indexing with automatic preincre­
mentation of the index register, R2. That is, R2 is to be incre­
mented before the effective address is formed. Name this macro 
+ X. As described in the text, fall-through shall be in relation to 
the ADD macro. 

3. Develop the microcode for the instruction rotate left through 
carry (RLC), using the electrical-level (H or L) coding form. The 
instruction operates as follows: 

CF<: R0[3] 

RO[i] <: RO[i mi I], i=3,2,l 



The Control System 305 

R9[0] <:CF 

4. Use the symbolic coding form for this problem. Develop the 
microcode for the instruction ReTurn from Subroutine (RTS). 
Register R2 is to be used as a stack pointer (SP). The instruction 
operates as follows: 

PC<: M{SP} 

SP<: SP pl I 

5. Use the symbolic coding form for this problem. Develop the 
microcode for the instruction PUSH RO. Register R2 is to serve 
as the stack pointer (SP). The instruction operates as follows: 

SP<: SP mi I 

M{SP} <:RO 

6. Use the symbolic coding form for this problem. Develop the 
microcode for the instruction branch if memory equal to RO 
(BMEQ, RO). This is a three-word instruction. The first memory 
word is' the OP code, BMEQ RO. The next memory word speci­
fies the address of the operand (OAI) that is to be compared with 
the contents of RO. The third memory word of the instruction, 
which we can call OA2, contains the branch address to be used if 
M{OAI} = RO. Just be careful to be sure that the PC is pointing 
to one of the two possible next OP codes when the IF major state 
is reached. 

7. Write the symbolic microcode for STUPIDD for the instruction 
that POPs data from the stack. Use RO as the implied register 
through which all stack data communications occur. 

8. Create a macro, using the symbolic coding form, that compares 
the contents of RO with the contents of memory specified in ·the 
OA I field. IF (M{OAJ} ;::::: RO), then jump to the location speci­
fied in OA2, else fetch the next instruction in sequence. 

9. Write the symbolic microcode for the instruction that increments 
RO and branches to the operand address if a carry has occurred. 
Call it INBC. 

10. Explain why the contents of STUPIDD's instruction register 
have no effect on the instruction fetch during the IF phase of 
operation. 

11. Develop a macro for clearing the carry flag (CF) and the sign flag 
(SF). Do the same for the setting of these flags. Discuss differ­
ences between the activity levels of these flags and the macro's 
effects on the algorithms. Given STUPIDD's architecture, is it 
possible to affect one flag and not the other? Discuss, comment­
ing on desirable changes in architecture. 

12. If the MAR, the T, and the IR registers were to be loaded only 
one at a time, instead of in parallel, as the microcoding forms 
now permit, how could you reduce the size of STUPIDD's con­
trol word by one bit? Do not use any integrated circuits that are 
not used in the existing design. 

13. Develop new methods for performing both conditional and 
unconditional branches between the upper and lower halves of 



306 PROBLEMS 

the macro-block space. Consider all four types of cases for each 
type of branch. 

14. This problem is a thought-provoking challenge. Unsigned multi­
plication may be performed by successive addition. The results 
occupy two registers R 1 and R2. Assume that the multiplier has 
already been placed in RO. The multiplier is decremented and 
tested for the nonzero condition. If it is not zero, then the multi­
plicand is added to the accumulator registers. The location of the 
multiplicand is specified in the OA field of the instruction word. 
The initial contents of RI and R2 are unknown. Microcode this 
algorithm, using the symbolic coding sheet. Hint: First solve 

· Problem 13. 

15. What would you do to prevent unimplemented OP codes from 
affecting normal, useful operation of a processor system? 

16. Create a macro for the indirect addressing of operands. Call it I. 
First draw the memory map of the chain of pointers, starting 
with the OA field of the instruction. Define what is contained in 
the locations that are pointed to. Submit your memory map with 
the solution. Remember that the PC also is a pointer into mem­
ory. Assume that the instruction we fall through to after the EA 
calculation is the ADD macro, shown in Figure 5-13. 

17. Create a macro for the branch relative (BRR) instruction. This is 
a two-word instruction, where the first word is the OP field and 
the second is the signed relative displacement to the location we 
are to branch to. That is, forward as well as backward branches 
can occur-within the range of +7 locations from the current 
location. The PDP- I I and other computers perform relative 
branches. Their hardware and assembly-language manuals pro­
vide good reference material on the operation of this type of 
instruction. 

18. Develop an algorithm for unsigned integer division. The numera­
tor is to be an eight-bit quantity already residing in two registers 
of the array R. The denominator's location in primary memory is 
specified by the OA field of the instruction word. Specify how 
you plan to handle the quotient and the remainder, define the 
algorithm, and give all other assumptions you plan to use. 

19. Create a macro, on the electrical-level coding format, for input­
ting data from STUPIDD's input switches, that uses a hand­
shake. That is, the MSB of the in switches is to be used as an 
indication that data is ready when this line is high. The other 
three switches are data. The algorithm is to loop until data is 
ready. When the data is ready, it is to be placed into the T regis­
ter with the MSB changed to a low (the ready signal is stripped 
out). 

20. Use the symbolic coding form for this problem. Write the macro 
for the instruction that decrements R l and jumps to the address 
specified in the OA field of the instruction if the results are nega­
tive. Call this one DJRl. 



READY REFERENCE OF KEY TOPICS 

Activity levels, 40 
of ALU carry flags, 94 

Addition 
ADD macro, selection of, 231 

Fall-through to (indexed addressing), 281 
methods, 229 
symbolic microcode, 232; figure, 233 

Algorithms (macros), 218 
ALU Worksheet, 96; figure, 97 
Architecture, I, 33 

assembling an. 77 
bus organization, 6 
comparisons, 10 I 
and the cycle of computation, 10 
dual-sized registers in, 84 
Harvard machines, 4; figure, 11 
organizing. 84 
performance comparisons of, 100 
Von Neumann machine. 4;figure, 12 

Arithmetic/Logic Unit (ALU) 
interface, 88 
operations and flags, 87; data sheet, 91 
relative magnitudes, 94 
two's complement problems, 97 
wire-wrap list, 193 

Array characteristics, 78; figure, 80 
ASRC and IN DIP SW wire-wrap list; figure, 198 

B DISBUF wire-wrap list, 198 
Bidirectional transceiver, 55 

data sheet, 56 
schematic, 58 

BJT transistor, 37, 44; figure, 38 
Block addresses, 244, 252 
Branch control, 243, 269 
Buses, 34 

control, 35; figure 
drivers, bidirectional, 55 
hardware, calculations, and data catalogs, 48 
organization, 6 
transceiver schematic, 58 

Calls, 81; figure, 83 
CAR (U36) 

CSTR IC details, 266 
wire-wrap list, 211 

Cartesian product, 125 
Channelized organization figure, 18 
Characteristic equation (CE), 140 
CLM, 244 
CLR MOD, 270 
Clock 

characteristics and system-clock periods, 106; data 
sheets, 107 

parameters ( t11, tR), 112 
phases, 106; figure, 110, 111 

single-phase, 108 
two-phase, 109 

Computer implementation technologies, 5 
Control store (CSTR) and control system, 241 

CSTRI and CSTRO DIPSW wire-wrap lists, 203, 204 
CSTR IC's (U33-35), 265; wire-wrap list, 209, 210 
device details and memory maps. 249 
macro assignment form, 254 
parts list, 207; block diagram 
wire-wrap lists, 208 

CPDL 
descriptions of add instructions table, 229 
symbols table, 214 

CPU (STUPIDD V) 
block diagram, 157 
construction project and checkout, 182; figure 
system summary, 173 
parts list, 192; wire-wrap lists, 193 

CSL wire-wrap list, 194 
Cycle of computation, 14 

Data bus source feed figure, 53 
Data paths, 34 

microoperations, 219; figure, 222 
Data sheets 

ALU (74LS181), 91 
bidirectional bus drivers (8T28), 56 
clock circuits, 107 
decoders (74LSl38 and 74LSI39), 50 
hex display (TIL3 l 1 ), 176 
J-K flip-flops, 138 
static RAM (2114A), 179 
tri-state line drivers (74LS241), 62 
UV-erasable PROM (2716), 260 

DBUF wire-wrap list, 197 
DECO and DEC! 

DBUS source and clock-enable controls (US), 172 
wire-wrap list, 196 

Demultiplexing, 59; figure, 64, 65 
large system example, 66 

Diode, 37; figure, 38 
Direct memory access (OMA), 18 
Display 

data sheets, 176 
selection, 171 
wire-wrap list, 201 

Distributed stacks, 84 
Distributed stack operation, 86 
OLD and macro-set control wire-wrap list, 208 
DLD CTRL (U38) 

CSTR IC details, 259 
wire-wrap list, 212 



308 

Downloading operations, 250, 257; figure, 250 
procedures table, 258 

Dual-register-sized processors, 84 
Dynamic memory fundamentals, 69 

Electrical-level microcoding forms, 214;figure, 215 
Enabling, 45, 78, 249 
EPROM. 241 
EX major state. 14; figure. 11 

microcoding. 228 
Excitation table derivation, 142 
Extended display logic (U13 through UIS), 171 

F and ADJl DISBUFS wire-wrap list. 199 
Fan-out. 49 
Flags 

activity level in CSTR. 277 
generation. 89 
register (U6). 166; wire-wrap list, 195 
selection in CSTR, 243 

FL DISBUF wire-wrap list. 199 
Flip-flops (FF's). 137; data sheets. 138 
FO current drive parameters, 54 
4.7 K-ohm 15-resistor pack (CPU) wire-wrap lists. 205. 

206 
4.7 K-ohm 15-resistor DIP pack (control) wire-wrap 

list. 212 

Gates, 34 

Harvard machines. 4; figure, 11 
Hex display 

data sheets. 176 
wire-wrap list. 201 

IC's. common, in a systems context. 155 
IF major state, 14; figure. J 7 

algorithm. 219; figure, 220. 221 
flip-flop in CSTR, 248, 259 
macro in CSTR. 266; figure, 268 
symbolic code. 223; figure, 227 
wire-wrap list. 208 

INBUF wire-wrap list. 197 
Input interface (IN) (U IO. U 12). 169 
Instruction register (IR) (U7). 168 

IR DISBUF wire-wrap list. 199 
IR-register wire-wrap list. 195 

Instruction set specification problems, 230 
Instruction-word formats, 22; figure 
Integrated circuits figure, 7 
Interface signals for control and coordination of IC's, 

160 
Interrupts. 81; figure, 83 

J-K flip-flop. 137 

Large system MPX and DMPX example, 66 
Latch 

READY REFERENCE OF KEY TOPICS 

SC, 137 
transparent, 79, 115. 160; figures, 115, 161 

Logic gate characteristics, 36; figure, 31 

Macro. 13 
creating new, 235 
program selection in CSTR, 252; table, 287 

Major states, 14 
Mealy machine, 125; figure 
Memory 

addressable units, 22 
cell types, 67; figure, 68 
static, fundamentals, 67 

Memory address register (MAR) (US). 166 
wire-wrap list, 194 

Memory system (M) (U9), 170 
wire-wrap list, 196 

Micro, 13 
Microcoding 

control system, 266 
electrical-level form, 214; figure, 215 
EX major state, 228 
symbolic form, 223; figure, 225 
system operation, 234 

Microprocessor slice block diagram, 158 
Microprogramming, 5 

control system, 266 
control word, 213 
examples, 270 
in state-machine theory, 121 
Wilkes concept, 12 

MOD 
flip-fl.op in CSTR, 245, 259 
wire-wrap list, 208 

Moore model, 126; figure, 128, 131 
MOS transistor, 39; figure, 38 
MOS logic characterizations, 42 
MROM 

IC's in CSTR, 259 
memory map, 252 
priority coded operation, 246 
space allocation, for macro, 245; figure, 247 
wire-wrap list, 209 

Multiplexing, 46, 59; figure, 64, 65 
CSTR IC details, 266 
large system example, 66 
logic, 60 
selection in CSTR, 244 
wire-wrap list, 211 

MVM instruction format.figure, 235, 237 

NAND gate, 37; figure, 40 
wire-wrap lists, 202 

Next-state prediction, 243 
Nonvolatile (ROM) fundamentals, 71 

Open-collector gate, 61; figure, 64 
Operand address modification, 280 
Output register (OUT) (Ull), 169; wire-wrap list, 197 



Ready Reference of Key Topics 

Parts lists 
control, 207 
CPU, 192 

Pipeline operations, 243 
Power supply. See V cc· 
Present-state identification, 242 
Priority encoding, in MROM, 246 
Processor systems, 8, 17, 156 
Processor interface signal categorization, 157 

fabrication technologies, 25; figure, 26 
features and architecture, 33 

Program counter (PC), 228 
OLD initialization, 257 

PROM programming the control system, 283; data 
sheets, 260 

Register array 
features, 77; figure, 79 
STUPIDD V (Ul), 160 

select control, 163 
microprogram control, 217 
wire-wrap list, 192 

Register and logic usage, specialized, 159 
Remote communication, 129 
Resistor, 37; figure, 38 

A !so see MOS transistor. 
Returns, 81; figure, 83 
ROM, 12 

Semiconductor technology, 6 
Sequential machine (SM), 121, 144 
Set-up time (t8 ), 112 
74LS138 and 74LS139 data sheets, 50 
74181 interface, 90 
Socket orientation and layout, 184 
SP DISBUF wire-wrap list, 198 
State-machine aspects of microprogramming, 121 
Stack characteristics, 80; figure, 81 
State, 122 

major states, 14 
State diagram, 129; figure, 128 
State-sequencing register, 123 
State table, 127, 136 

in CSTR, 242 

Static memory, 67 
Switch, BCD, wire-wrap list, 200 
Symbolic microprogramming, 213 

CPDL, 213, 229 
form, 223; figure, 225 

Synchronous operation, need for, 123 
Synchronization SM problems, 129 
System flags, generation of, 89 
System checkout, 187 
System control word, 213 

Tables, useful, 189 

309 

Temporary register (R) (U4), 165; wire-wrap list, 194 
TIL31 l hex display, 172; data sheets, 176 
Time-division multiplexing (TOM), 20, 46 
Totem pole, 40, 46 
Transistor 

binary junction (BJT), 37, 44; figure, 38 
metal oxide semiconductor (MOS), 39, 42; figure, 38 

Tri-state 
characterizations, 44; figure, 45 
enabling, 45, 49 
line drivers data sheets, 52, 62 
quad bus transceiver data sheet, 56 

Trouble-shooting guide, 187 
TTL, 37; figure, 40 
2114A Static RAM data sheets, 179 
Two's complement arithmetic, 97 

Useful tables, 189 
User/executive modes, 87 

V cc. 175; figure, 174 
VLSI figure, 7 
Von Neumann machine, 4; figure, 12 

Wilkes's microprogrammed architecture, 12 
Wire-wrapping 

lists 
control, 207 
CPU, 192 

procedure, 185 
Write/read control, 163 







. 
:j~ iil1 :~~::ili~ililiill!!!: ::l!!I ~~=1~~~5 

IA IUS 

MPX 

M~?t_M 
IRO I AO 00~ 0 

r---""""'-~L'-1 A 1 01 t7:---j 1 
112 ~ A2 02~ 2 
~ A3 03 ffi==i 3 

CAR IUS 

" ..Ill. 

c~;~ 2 

O I AO 00 ~· 
1 lt--lt--t-~7'-t A 1 0 T ~ 
2 6 A2 02 CLM 

~ A3 03 3 ICO 
0 ~ A4 04 14 _ii:1 
1 p As Os ii: NO 

2~A6 06~ 

I~ A4 04~4 
,_ _ _.M=SO~+t-+-Ht--~::iJ"i AS 0 S ~ S 

.----'~"':"'o''-+-1-+~---'~'-I :~ 06 p..L-J 6 

~U39 

345671 

rr ~ 
3 14I r-tf. ~ PS2 12 ,,. 

11 PSO 

U31 

NOTES: UNLESS OTHERWISE SPECIFIED 

1, Vee & GND NOT SHOWN FOR IC POWER. 

2. 

3. 

PULL-UP RESISTORS 4. 7 K 

~= Y« ¢:GND 

3~A7 07~ 
4 f---* Al 

t =tj~o 
Ypp 

PS1 ::ii Al 
PS2 22 

Ftj a· 
~ Ypp 

~ U33 

..!!,!CTRL 

CAR 
74LS174 

0 lt--<1-.m_..,l 'i 4Q 6D ~ 

~ ~=====~12~ SQ SD~ 6 Q ~~ 6 IC 1 

~..!.!""'C~LM"""D-4------------..... --1--..:i:.:•JC~L~M~D....___.2'-f 1Q 20 aco 
BCOP ~ 23QQ Cl~ 39 CCKLM 

l 

IF & 
MOD 

If 

U3•4. 

• 
9MR ~ 

n~~ IQ~ I ...+ 10 

'-----""""'~•_Ei:-l"'l3!CI>;=;,. I • i 
~ m :iii p.z--! 

IFMCL r::f:TI:j 20 
.--------'"""==-1-+'-'-l>CK 

~ 

03 

+ TO CPU + 

MOO 

.---1--+---"'BC"'l"'P----'-'-I rn lo-l---i 

MPX 

MPX 

r--"c~·-~-~r"'1~:"'~U 
.--~'''--+-1--+-'4"1 1( 2 1 y 7 

" 3 

~ 
~ 

... 
" 

l..lq 

1C3 

SA 
SB 

iG 

U37 

U36 

GIMR 

M 

lA 1!11. 

C.U.llll 

CSTR 1 

0 ...I. A-:i 1:o~9 
~ll-'11--1".i'"""I ~~ g~ , ..... 

4 A3 03 ·1 !! A4 04~ 
1 A5 OSr-"~s~---
2 1...-...a A6 06 1-...H..,._ ___ _. 

3~ A7 07p:z 

il~ :1. Ci 
0. 

'---i"""-1 Ypp 

....__\!!!_ 

CONTROL 

SYSTEM 
DRAWN IY 

.. .. 
:E 

M•X 

t 

DANIEL J. BROWN 

CSTR 0 
2716 

0 
I AO 00 

~ 1 Al 01 
::t: 2 A2 02 

A3 03 

1~ 
A4 04 ljt---J 
As OS ... 06 ..li. 
A7 07 17 

Al 
A9 

·1 A10 
Ci 
Oi 
Ypp 

.___!!!L. 

.A!>LD 

OLD. 
CTRL. 
~ lL 0 L2.._ 1A1 1Y't 0 

1 ~ 1A2 1Y2 :ii: 1 
2 1A3 1Y3 

14 2 
12 1Y4 3 

MPX I 1A4 
U3•4. r 2A1 

2 

iG 
~ 

~ 

DATE 

Son 

•• 2Y1 9 

L.Jw._J 

STU Pl DD 
STU01N1 PooJ1c1 

IN D1G1TAL Ou10N 

I APPROVED IY 

1984 DAN J. Nu1N 




	0000
	0001
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	A-01
	A-02
	xback

