piS ase’) 193lold VYV
3UTIRIS0IdOIIIN pue

uoneziuesi() Jossad01d

* RS

¢
© ¢ & v C P

L N NN N o

: P TYTTTT T , 2138w
«ap , rrvwwmwum, --“—z

3
]
]
¥
i "
- i » i - -
- . 3 o e’ “ . ® . " T
ot P ¢ . z
| : . E L 3 sy
3 ¥ & 5 i ' L] 4 S
: - ' ! ' ¥ v : + ' ® E
‘ v i t 9 ¥ i : r 2 ;
§ § ' § 8 § i i ¥ E %
. . ' ' ¢ ' v » g ,q 5
: . i ¥ ¥ s ! ' v
M W ¥ ¥ [¥ ; * : ' .
w % # ¥ ¥
& 8 82 @ 8 8 8 L
r 2 Fe ¥ ¥
H i 3 £ o § E
i |1 i i I
i F H i § § N
¥ 8 8 0 9 B 0 B B W 5 § 8 § A
b E N o = R 8 B wE S EENN %

PROCESSOR ORGANIZATION AND
MICROPROGRAMMING

PROCESSOR ORGANIZATION AND
MICROPROGRAMMING

A PROJECT CASE STUDY

Daniel J. Nesin
California State Polytechnic University, Pomona

Bmu ’

SCIENCE RESEARCH ASSOCIATES, INC.
Chicago, Henley-on-Thames, Sydney, Toronto

A Subsidiary of IBM

Acquisition Editor Al Lowe

Project Editor Geof Garvey
Copy Editor Dan Kirklin
Production Director Arthur Kuntz

Text Design, Cover Design, Baskerville Book
and Composition

Library of Congress Cataloging in Publication Data

Nesin, Daniel J., 1924-
Processor organization and microprogramming.

1. Computer architecture. 2. Microprocessors. 3. Microprogram-
ming. [. Title.
QA76.9.A73N46 1985 001.642 84-23560
ISBN 0-574-21770-3

Copyright © Science Research Associates, Inc., 1985

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of Science Research Associates,
Inc.

Printed in the United States of America

10 9 8 7 6 5 4 3 21

CONTENTS

PREFACE vii

E R
1 OVERVIEW OF PROCESSOR ARCHITECTURE 1

I . L

The Evolution of Computers : 1
Architectural Types and the Cycle of Computation 10

Forms and Uniformity among Processors 17
Processor Fabrication Technologies and Personal Impacts 25
Bibliography 29
Problems 29

2 FEATURES AND DEVICES OF PROCESSORS 33
Buses. Data Paths, Gates, and Buffers 34

Bus Hardware, Calculations, and Data Catalogs ~ 48
Multiplexing (MPX) and Demultiplexing (DMPX) 59
Memory Cells 67
Bibliography 73
Problems 74

3 ASSEMBLING AN ARCHITECTURE 77
Registers, Arrays, and Stacks ' , 77
Organizing an Architecture 84
User/Executive Modes 87

The Arithmetic/Logic Unit: Operations and Flags 87

Effects of Architectural Variations on Operations: Putting It all Together 100

Clock Characteristics and System-Clock Periods ' 106
General Edge-Triggered Clocking Characteristics 111
Bibliography 116
Problems 116

4 SEQUENTIAL-MACHINE (SM) FUNDAMENTALS 121
Microprogramming’s Basis in State Machine Theory 121
Sequential-Machine Representation 122
Sequential-Machine Visualization 129

SM Design Procedures 132
Logical Properties of Flip-Flops 137
Bibliography 151

Problems 151

vi CONTENTS

S STUPIDD V—A MICROPROCESSOR ANALYSIS AND CONSTRUCTION PROJECT 155

Common IC’s in a Systems Context 155
Commonality of Features of All Processors 156
Device Control and Nomenclature 160
The External World ' ‘168
CPU Construction Project and Checkout 182
Microprogramming Formats: The Control Word 213
Microcoding the EX Major State 228
Problems 238
6. THE CONTROL SYSTEM 241
_
Control System Overview ' 241
Control-System Device Details and Memory Maps 249
Control Store IC Details 259
Microcoding and the Control System , 266
Microcoding Examples 270
PROM Programming the Control System 283
Bibliography 304
Problems 304

READY REFERENCE OF KEY TOPICS 307

PREFACE

The material of this text arose out of a series of student projects in dig-
ital design initiated over a decade ago with electrical engineering stu-
dents. The projects answered two observed needs of students to
enhance their comprehension of digital processor systems: (1) to expe-
rience a complete processor—as opposed to partial amorphous archi-
tectural representations—in order to gain a comprehension of the
nature of processing systems; (2) to work with real (rather than hypo-
thetical) architectural constructs—thus demonstrating their mastery of
an actual archetypical processor, which proved a particular satisfaction
to them.

The associated Central Processor Unit construction project was
designed to be built and operated at home, to encourage an apprecia-
tion of the development of the hardware and microprogramming.

In 1981 the author began instructing software-oriented computer
science students who had very little, if any, prior exposure to hard-
ware. It was felt that removing the mystery and hardware fright of
these students should significantly improve their future careers, as the
distinction between hardware and software knowledge becomes
increasingly obsolete. These computer science students’ comprehen-
sion of the material formalized into this text appeared to be no differ-
ent from that of electrical engineers: 25 percent culture shock, 50
percent varying degrees of comprehension, and 25 percent enthusiasm
accompanied by innovative suggestions and activities. A significant
number of these software-emphasis students actually found that the
material helped open up new career opportunities, such as software
development for microprocessor-controlled instrumentation systems.

Chapter 1 presents a historical perspective on computers and
introduces the major fundamental systems architectures. It is shown
that a computer system is composed of a number of processors, which
possess unified underlying systems principles coordinated by the Cen-
tral Processing Unit (CPU) and the systems software developed for it.
The notion of the cycle of computation is introduced, with its two
major states: Instruction Fetch and Instruction Execute. The role of
the Program Counter in von Neumann architectures is explained, as is
its effect on memory-usage maps. The increasing need for systems
insight into the hardware/software relationship is stressed, with its
current trends and impacts on people.

Chapters 2, 3, and 4 are included in this text in response to the
many questions posed by the software-oriented student with little
hardware exposure. It is presented as a broad survey or review of
device and architecture fundamentals that an electrical engineering
student may or may not already have been exposed to. The goal of
these chapters is to create a working understanding and intuitive
mental image of fundamental logic devices and how they are incorpo-
rated into architectural structures. The manner in which many of these
devices of a digital system function can often be readily understood in
terms of logically equivalent analogs. For example, the transistor’s
behavior, in the systems context, can be perceived as that of a simple
switch. The functioning of logic and tri-state gates, buses, memory,

viii

PREFACE

A NOTE OF APPRECIATION

Arithmetic/Logic Unit (ALU) devices, and system-clock coordination
are presented.

- These structures are then incorporated into the larger architec-
tural block-diagram structures of a processor system. The ALU is
emphasized as the device that both transforms information and
originates the system signals that control the conditional flow of soft-
ware and state paths of the system. Chapter 4 reviews sequential
machine theory and implementation, stressing the State Table form of
representation and its relationship to microprogramming. The time
spent on these chapters will depend on the students’ prior exposure to
hardware. It does not exceed four to five weeks with the author’s stu-
dents.

Chapters 5 and 6 present the actual processor construction and
microprogramming projects. The CPU is presented as the archetypical
microprogrammable processor. Construction guidelines and a debug-
ging overview are presented. It should be emphasized that the Central
Processor Unit project has been constructed at home by computer sci-
ence students and therefore requires no school laboratory facilities. A
very simple wire-wrap tool and an inexpensive volt/ohmeter are all the
student requires. The power-supply can be a 6-volt camping lantern
battery and some silicon diodes. Several drilled holes and no more
than five soldered connections are needed.

The wire-wrap form of construction is recommended as best for
students who have little experience with hardware. Student feedback
has made it clear that the hours spent handling each integrated circuit
and consulting the data catalogs provide an extra dimension of
“hands-on” experience. This exposure is especially helpful when the
students are later required to work with the data catalogs of the
programmable peripheral microcomputer devices, such as communica-
tions, disk, and Direct Memory Access (DMA) controllers. This good
basic training has proved to be worth the time and expense of the proj-
ect.

The author’s computer science students have built the CPU por-
tion of the project and demonstrated the switch-controlled operation
of microcode, in a one-quarter course. The control system can be—and
actually has been—constructed on an elective follow-up basis. It can,
however, also be incorporated into a full-semester course. Very little
extra construction is required for the control system. The advanced
microprogramming activities of this phase of the projects require of the
student great creativity, total systems understanding, and the drive to
be innovative. These advanced activities require access to a PROM
programmer. The last section of Chapter 6 covers the use of an IBM
PC, with an aftermarket PROM programmer, for automating the
development and demonstration of microprograms. (Aftermarket
refers to components supplied by a secondary vendor.) Most flexible
personal computer systems these days support the programming of
PROM’s (Programmable Read Only Memories). Advanced microcom-
puter hobbyists often already have such equipment.

The drive to dominate the machine, as opposed to the reverse, grew
out of actual hardware-innovation experiences with students, which
the author would like to acknowledge here. In 1972 Xerox Corporation

Preface

ix

donated a 930 computer system on an “as-is” basis. This was a gift of
considerable value. The author and dedicated students revived the sys-
tem. They created a real-time operating system for it, with memory
mapping and instructional traps, implemented interactive graphics,
computer-aided drafting, etc. Their innovative hands-on hardware
experiences had significant effects on industry. Companies were
formed, jobs were created, and products most readers would be famil-
iar with were marketed. It is impossible to name all these movers and
shakers. They know who they are, and the author certainly remembers
them. The author does, however, wish to acknowledge the many con-
tributions from the students of the old Extracurricular Student Com-
puter Lab—we all grew from our experiences with hardware and
software basket cases. The author is appreciative because, after seven-
teen years in industry, another seventeen years in teaching could only
offer the satisfaction of positively affecting the world we live in. These
students provided that satisfaction—and then some.

CHAPTER 1
OVERVIEW OF PROCESSOR ARCHITECTURE

THE EVOLUTION OF COMPUTERS

The rapid pace of recent events, particularly in microprocessors,
appears to make computing a completely new phenomenon to some.
But computing is not new, nor has it always been electronic and digital
in nature. For a better perspective, let us briefly review the historical
background of computing. ‘

There can be no doubt that the ability to predict seasonal varia-
tions was important to early man. Using data to predict is one form of
computation. Cro-Magnon bone carvings, 300 centuries old, record the
lunar cycles and seasonal changes noted by members of a hunting soci-
ety, in relation to the flora and fauna of interest to them. While anthro-
pologists may -dispute some interpretations of these records, they
definitely constitute an early form of data base—most likely used to-
predict seasons, migrations, and so on. Later agricultural societies were
very dependent on the computation of the seasons and resulting har-
vest yields. Accurate astronomical observations, the development of
some numbering systems, and their use in predicting seasons and
accounting for harvests are, again, indications of data gathering for
computational use. The likelihood that a few unscientific spirits were
invoked to ensure the success of these processes only serves to indicate
that ancient programmers may have shared something with a few mod-
ern ones. Thus we see our own natural propensities for computation
applied to data collection, prediction, simulation, control, and the exe-
cution of events. These are the basis for the mechanization of applied
computation. Efficient computation requires the application of
advanced technologies.

EARLY CALCULATORS

The early development of modern computation was extremely slow by
today’s standards. Much of the mathematics we use evolved before the
existence of calculating machines, if we ignore our fingers and toes.
The abacus was an early calculating instrument first used about the
fourth century B.C. While useful for rapid addition of numbers, its
chief advantage lay in its ability to “remember” partial results, thus
enabling nimble fingers and unsure minds to perform tedious calcula-
tions. During the 1600s Schickhardt (1624), Pascal (1642), and Leibniz
(1673) first developed the mechanical calculators that were widely
applied in the 1800s, when the manufacturing technology was avail-
able. As technology evolved, these calculators were replaced by ones
using solid-state devices. The industrial revolution is a reflection of our
evolving ability to develop mechanisms for computational uses. The
problem with these early calculators was that none of them had the
ability to store a program. Each step had to be dictated by the human

2 ' THE EVOLUTION OF COMPUTERS

operator—thus delineating the difference between these early calcula-
tors and the computers that followed them.

EARLY COMPUTER DEVELOPMENTS

Babbage’s difference and analytical engines show that mechanical
technology alone could not produce an effective computer. In the
1820s, Charles Babbage, an Englishman and a founder of the Royal
Astronomical Society, became interested in developing a mechanical
computer for the solution of mathematical equations. He was assisted
in these efforts by Ada Augusta, Countess of Lovelace, after whom the
programming language Ada is named. She is often referred to as the
first programmer, but she was far more than that, for she understood
the hardware, the software, and theoretical basis of the computer. They
applied a good deal of thought and ingenuity to the task of designing a
computer. The many original concepts developed foreshadowed the
development of the modern computer. It is sad that, in the end, their
valid concepts could not be incorporated into a useful machine
because of the inability to hold to the required mechanical tolerances
in its manufacture. These manufacturing obstacles were eventually sur-
mounted by Scheutz, but the resulting machine’s accuracy, speed, and
cost would be unacceptable today. This is not to take away credit from
these pioneers. New technologies and new concepts were necessary for
further progress. Figure 1-1 displays some of these early calculators.

Some of the new concepts were provided by George Boole, who
in 1854 developed an algebra of logic. This algebra was primarily of
interest to mathematicians and philosophers until Claude Shannon
published “A Symbolic Analysis of Relay and Switching Circuits” in
1938. Shannon dealt with relay logic, the technology of that day, as a
result of his research in developing telephone switching circuits. Shan-
non made the first application of Boolean algebra to switching circuits,
paving the way for it to become the important tool that it is today.
Meanwhile, the need for an effective form of a stored-program digital
computer was growing. We have to go back a bit in time to see how it
evolved. ‘

Babbage began work on his analytical engine in 1833. On a pre-
vious visit to France, he had seen the Jacquard looms in action, weav-
ing fabrics. Jacquard developed this system of controlling looms by
pasteboard cards with holes “punched” in them, in 1805. (See Figure
1-2.) ‘Babbage was inspired by the Jacquard loom to formulate the
design of his new engine, which was to use two sets of these punched
cards. One set was the operation set of cards; the other, the variable set.
Thus, the concept for the first computer was born. We now call the
operation cards the program and the variable cards the data. Babbage
was frustrated by the lack of an adequate implementation technology,
but the machine he conceived became the basis for the Harvard-IBM
Mark I computer, produced a century later. Jacquard’s pierced paste-
boards also provided the inspiration for Herman Hollerith’s develop-
ment of punched-card tabulation, used for the United States census of
1890. Hollerith, seeking a way to tabulate census data mechanically
rather than manually, was advised to look at the Jacquard looms. In
1906 he founded the company that evolved into the International Busi-
ness Machines Corporation. Tabulating systems had thus arrived, as
well as their associated printer-listers, and they became common office

Overview of Processor Architecture

Eiglllrecl -ll 2
arly Calculators
L

v

a. Abacus

b. Pascal’s Machine

(Courtesy IBM Corporation)

c. Babbage’s Difference Engine
(Courtesy 1BM Corporation)

THE EVOLUTION OF COMPUTERS

HARVARD MACHINES

equipment. This business office equipment was in turn used in the
implementation of Babbage’s concepts in the development of the Har-
vard-IBM Mark I computer (1939-44).

VON NEUMANN MACHI‘NE

The Harvard Mark I used relay logic; as an electromechanical rather
than just mechanical device, it represents the beginning of the era of
modern computers. The Mark I could multiply 23-digit numbers in
about six seconds—not impressive by today’s standards, but remarka-
ble a relatively short time ago. One of its important tasks was the cal-
culation and analysis of ballistics equations, a vital contribution to the
nation’s efforts in World War II. The success of the Harvard machines,
the Mark I, IL, III, and IV, spurred researchers to find even better tech-
nological answers to the problems of implementing computation.

The Harvard machines had two storage areas: one for the pro-
gram and the other for data and results. The two storage areas were
isolated from each other and were typically of different word size.
These machines were termed automatic-sequence calculators and did
not have the capability of modifying their own programs. They were
dedicated special-purpose machines, whose principles are still used in
many small microprocessors today. They are most advantageous in
applications where the program is not expected to be modified during
operation, such as in vending machines or toys. They also offer a hypo-
thetical two-to-one speed advantage over the von Neumann-type
machine, discussed next. This important advantage is based on the fact
that the separate memories can be accessed simultaneously. Most 4-bit
and some early 8-bit microprocessors are Harvard-type machines,
huge numbers of which are still in use. Special-purpose high-speed
dedicated processors, often called controllers, can use the Harvard
(really, Babbage) approach to good advantage in their design. Today,
the trend is to use the Harvard architecture in custom-designed inte-
grated-circuit controllers (processors), where an inherent speed advan-
tage can be an important consideration.

The shortcomings of the Harvard architecture were perceived in the
mid-1940s by von Neumann, who recommended that a computer have
only a single storage area for both programs and data. This gave rise to
the prevalant form of digital computer extant today in business and
scientific applications. Von Neumann’s recommendations appear in a
summary article (Burks, Goldstine, and von Neumann 1946) and are
worthy of the reader’s time. The essence of his idea is that, if a com-
puter can operate on data, it can also operate on its own program, thus
obtaining the ability to alter its course conditionally, without operator
intervention, This was the beginning of the stored-program digital-com-
puter concept, as distinct from the Harvard concept, discussed earlier.

Overview of Processor Architecture

Figure 1-2

The Jacquard Loom
Photography by Jan Forman
Philadelphia College of
Textiles and Science

MICROPROGRAMMING CONCEPT

The very idea of letting a program operate on itself is repugnant to
modern structured programmers, but it was a milestone in computer
development and remains a powerful concept.

The late forties and the fifties produced many ideas on how to
improve, design, and build computers. It was a decade of realization of
what was practical in computation. Three-state logic devices (+, 0, —)
were considered, for example, but these lost out because of the greater
feasability of the two-state (on-off) transistor devices used today.
Among the ferment of-ideas produced in this era was Wilkes’s (1951)
concept of microprogramming. This important modification of the von
Neumann concept was too powerful to lose out permanently in the
feasibility contest. Rather, once a suitable modern implementation
technology had evolved, Wilkes’s concept became the rational basis for
designing a computer’s control system. Today, it is the internal organi-
zational foundation around which we structure most processors, com-
puters, and—what amounts to the same thing—microprocessors that
the reader is likely to encounter. An applied understanding of
microprogramming is a major goal of this text.

COMPUTER IMPLEMENTATION TECHNOLOGIES

Implementation technologies were rapidly improving. ENIAC, a Har-
vard-architecture program calculator, became operational in 1945. It

THE EVOLUTION OF COMPUTERS

BUS ORGANIZATION

was the first all-electronic computer, using vacuum-tube technology.
EDSAC and EDVAC, von Neumann-type stored-program computers,
became operational in 1949 and 1950. Subsequent development was
extremely rapid; although interesting, the full details are beyond the
scope of this book. By now, the major ways of organizing an architec-
ture were well established. Let us then refocus on the development of
implementation technologies. Digital computers were becoming better
because we were finding better ways to implement them with emergent
semiconductor technologies. The basic conceptual groundwork for the
organization of the types of processor we are most likely to encounter
had already been developed.

Tube-type computers are referred to as the “first generation.”
One could argue the point, if we consider the Harvard relay machines,
but in fact they formed the first generation of stored-program digital
computers, from 1950 to the early 1960s. In the early 1960s “second-
generation” computers—based on transistor technology—came on the
market. The “third generation”—based around small- and medium-
scale integrated circuits (MSI)—began to appear in the late 1960s. The
emphasis in that decade was primarily on how to build computers, for
a lot was known about architecture, but there was little economical
implementation technology available. Some very significant variations
on von Neumann-type architecture were being developed, though.
Noteworthy were Barton’s concepts for stack architecture (1961),
actual implementations of microprogrammed architectures, virtual
memory, and interactive real-time computing. Each new ‘“generation”
of computers involved a reduction in size and power consumption by
an order of magnitude. The need for air conditioning, for example, was
once a major consideration. Figure 1-3 illustrates the relative sizes of
these “generations” of computers. We shall not discuss here the evolu-
tion of programming and operating systems, except to note that they
developed along with the increasingly available hardware. :

SEMICONDUCTOR TECHNOLOGY

By 1970 part of the new hardware expertise developed concerned bus
organization and tri-state logic. A bus is simply a data path for com-
puter signals, consisting of one or more physical conductors of infor-
mation. Bus organization includes the study of methods for time-
sharing the use of a'single bus, thus reducing the total number of buses
required in a given computer. Tri-stzating is a means of interfacing sep-
arate entities to a time-shared bus. We shall study this important
implementation technology subsequently. The combination of the
ideas for bus organization and tri-state logic was widely applied in the
1970s. They became an important step in making microprocessors fea-
sible. Bus organization is still a vital topic, involving federal standards,
networking, multiprocessing, and many other aspects of computing.

Integrated Circuit (IC) manufacturing technologies continue to
develop at an unabated pace. MSI combines the equivalent of several
hundred transistor logic gates in a single design. Large Scale Integra-
tion (LSI) can put on the order of 10,000 transistor equivalents into a

Overview of Processor Architecture 7

a. Relay Machine:
The Harvard-IBM Mark | d. VLSI:
(Courtesy IBM Corporation) GRiD Compass Computer
(Courtesy GRiD Systems Corporation)

b. Tube-Type Machine: ; 6L un il : s
IBM 704 st T) , :
(Courtesy IBM Corporation)

ADDRESS HIGH ADDRESS LOW
EXECUTION UNIT | EXECUTION UNIT
{

c. Integrated-Circuit Machine:
IBM System 360 Model 85
(Courtesy IBM Corporation)

[

e. Modern IC Layout:
Motorola MC38000 Microprocessor
(Courtesy Motorola, Inc.)

Figure 1-3
Processor Development

THE EVOLUTION OF COMPUTERS

PROCESSOR SYSTEMS

single monolithic structure. In the mid-1960s attempts to apply MSI
and LSI technologies to commercial desk calculators were not fruitful,
but these efforts led to the monolithic microprocessor in the early
1970s. As in the past, if we can calculate, why can we not compute?
Thus, in 1971, Intel Corporation marketed the first microprocessor—
the Intel 4004. It was a Harvard machine with a 4-bit data bus, and it
contained the equivalent of 2,450 transistors on a “real estate™ silicon
chip 0.117 X 0.159 inches in size. This led to the flood of microproces-
sors that continues to this day, as Very Large Scale Integrated (VLSI)
circuits, approaching 500,000 transistor equivalents on a single mono-
lithic IC, are produced.

LSI and VLSI technology spawned another breed of processors
besides the computer itself. These belong to the very important class of
processor-support peripheral IC’s. We have not only the computer in
an IC today, but all the memory, communication channels, floating-
point arithmetic processors, disk and display controllers, and so on, as
well. Three important facts should be made apparent:

First, a computer is now a system, consisting of a collection of
IC’s ruled by the software and “firmware” created for it. The
firmware is a program permanently recorded in a Read Only
Memory (ROM).

Second, many of these IC’s in the system are processors.

Third, by studying the organization and function of an archetyp-
ical microprogrammable processor, we can obtain an apprecia-
tion of all the others.

All these processors, combined into the system we call a computer, can
be and in fact now are organized around a common set of micro-
programmed design principles. An understanding of these principles is
another of our main objectives in this text. Therefore, there is a com-
mon point of view through which we can gain an understanding of the
design, function, and operation of all the processor-type IC’s used in
the modern computer. This insight is as essential to the programmer as
it is to the hardware designer. It is not easy to write efficient code for
the software that drives a synchronous communications IC, a disk con-
troller, etc., without a secure grasp of the intrinsic nature of these
devices.

Thus, with our technological advances in computing, we find that
the distinction between hardware and software types is rapidly break-
ing down. This artificial distinction never existed for the creators,
Charles Babbage and Ada Lovelace, who truly understood the nature
of what they wrote programs for. They would have had no difficulty in
recognizing that the modern computer is a system composed of a
microprocessor and a collection of peripheral support 1C’s, all having
many functional features in common. At this writing, one major pro-
ducer is shipping 100,000 personal computers a month—each one hav-

Overview of Processor Architecture

PERSONAL IMPACTS

ing as much computing power as early mainframes and many
minicomputers still in use. The microprocessor is not a “different”
thing or a break with the past. It is a result of modern industry’s ability
to capitalize on past technological breakthroughs, now occurring at a
bewildering pace. The development of the microprocessor has been so
impressive that it leads to speculation about potential future applica-
tions. The microprocessor is becoming the mainframe computer of
today. True 32-bit microprocessors are on the market now, with their
full potential yet to be realized.

And that is probably why you are reading this text. The utility of
microprocessors (really, computers or just processors) is having a
profound effect on our lives. Can any of us, whether software or hard-
ware types, afford rot to understand philosophically the tools by which
we earn our livelihood? We all need insight into the intrinsic nature of
these devices if we are to stay current in our respective fields and
understand the world we live in. Perhaps our individual emphasis may
not be on the computations of seasonal migrations, crops, ballistics, or
astronomical calculations. These topics are still of interest to many.
Our interests, on the other hand, might be on the business, scientific,
educational, sociological, or even amusement aspects of applied com-
putation. We are still interested in planning, controlling, simulating,
and executing—except. that highly sophisticated technology is now
available to us for these purposes, on a mass basis, that would simply
amaze the early pioneers—let alone Cro-Magnon man.

(Those of us with a strange philosophical bent may ponder what
might have happened if Cro-Magnon man had turned his caves into
video arcades, if he had had the microprocessor. This might have
deprived - us of some of our most moving works of art. The
antitechnologist might presume that they would have planned anti-
Neanderthal games with the computer.)

We have always been interested in computation, for better or
worse. We can see the continuing evolution of the technologies used
for applied computation all around us and, it seems, the evolution of
our fascination with it. Table 1-1 summarizes this brief introduction
into the history of computing. We hope that it also conveys a feeling
for the rapidly accelerating pace of innovation that we are all caught
up in. Some essential concepts, however, change only slowly. It is the
innovative use of these concepts that avoids individual obsolescence.
Our goal will be to gain an understanding of the fundamental concepts
of microprogrammable processor organization. We will deal with the
topic not hypothetically but rather in the very real terms of analyzing,
implementing, and microprogramming an instructional 4-bit proces-
sor. In doing this, we can easily penetrate the mystique that still sur-
rounds the computer CPU and other processors—to eliminate the
“hardware fright” that accompanies a lack of understanding of these
systems.

10

ARCHITECTURAL TYPES AND THE CYCLE OF COMPUTATION

Table 1-1

Historical Computing Perspective: Selected Key Benchmarks

Year
30,000 B.C.

400 B.C.
1600-1700 A.D.

1805

1820
1833

1854
1890

1938

1939-1944

1945
1946

1949
1952
1950s
1960s
Late 1960s

1960s—1970s

1968
1971

1970s

1980s

Event in the Evolution of Computers

Bone carvings show evidence of calculation of lunar
and seasonal cycles by Cro-Magnon man.

Abacus first used.

Schickhardt, Pascal, and Liebniz develop mechanical
calculators.

Jacquard loom uses “punched” pasteboards.

Babbage conceives idea of difference engine.

Babbage conceives idea of analytical engine. Device
never built due to mechanical complexities. First true
computer concept, using punched pasteboards for
program storage.

Boole developes an algebra of logic.

Hollerith uses punched cards for 1890 census tabula-
tion; later founds IBM Corporation.

Shannon publishes “A Symbolic Analysis of Relay
Switching Circuits.” Applied logic design flowers as a
result.

Harvard-IBM Mark I-IV computers—relay logic imple-
mentations of Babbage’s concepts.
ENIAC-Harvard-type tube computer.

Von Neumann concept of stored-program computer
architecture published.

EDSAC-first von Neumann-type computer becomes
operational, using vacuum-tube technology.

Wilkes proposes microprogramming as rational
approach to computer control-system design.

Tube computers—first generation.

Transistor computers—second generation.

MSI technology employed: 1,000 transistor equivalents
on a monolithic IC.

LSI technology employed. 10,000 transistor equivalents
on a monolithic IC.

Calculator IC’s produced.

First microprocessor produced (Intel 4004). Harvard-
type 4-bit machine.

Personal computers. Processor-design methods applied
to peripheral-support IC’s.

VLSI in production. 500,000 transistor equivalents on
an IC. Microprocessors perform mainframe functions.
16-bit and 32-bit machines produced on a single IC.
Wall Street Journal reports on personal computers
almost daily.

ARCHITECTURAL TYPES AND THE CYCLE OF COMPUTATION

In sketching the evolution of computers, we have referred to three
major types: the Harvard architecture, the von Neumann approach,
and its modification—the Wilkes’s concept of a microprogrammed
architecture. As noted, all three methods of organizing a processor’s
architecture are currently used. This categorization by major type

Overview of Processor Architecture

11

Figure 1-4

Harvard Machine: Basic

Architecture

B

INPUT/OUTPUT
(1/0)

PROGRAM

PROGRAM
MEMORY

CONTROL
UNIT .

DATA ARITHMETIC

Y

> LOGIC UNIT
(ALU)

A
\

MEMORY

(Harvard vs. von Neumann) is apparent to a user who observes opera-
tional behavior. The recent VLSI processors are internally constructed
on the basis of microprogramming principles, due to their complexity
and this design method’s simplicity. A review of the basic architectural
features of these types, with comments on behaviorial characteristics,
is in order. In the end, we shall study the microprogrammed type in
depth.

These architectural types may be reduced to their fundamental
architectures. Figure 1-4 presents the essential block diagram for the
Harvard architecture. Note that the control section communicates with
all other blocks. It issues the command signals that dictate perform-
ance. The arrows of the diagram are important because, in this case,
they indicate that the completely separate program memory communi-
cates only with the control unit and not with any of the other structural
blocks. There is another, also separate, memory for storage of data.
These two typically possess different word sizes. They are not expected
to communicate with each other, in normal operation. Of particular
significance, in this Harvard approach, is the fact that the ALU does
not interact with the program memory at all: no path exists for the
ALU to operate on program information. The Input/Output block
(170) transfers information between the data memory and the “outside
world.” The ALU performs all transformations on data. That is, all
arithmetic and logical manipulations take place in this block. It con-
tains only combinational logic and no storage. It receives data from
and returns it to the data memory. These are the basic blocks of the
Harvard machine.

Already, the features of the Harvard machine that could affect
our selection of a processor begin to emerge. First, its program is
fixed in the program memory. The program is not dynamically alter-
able during operation, because only the ALU contains the power to
alter information, and no path exists between it and the program
store. We can expect this architecture to lend itself best to the less

12

ARCHITECTURAL TYPES AND THE CYCLE OF COMPUTATION

Figure 1-5
Von Neumann Machine: Basic
Architecture

INPUT/OUTPUT

(170) b

CONTROL
UNIT
)
Y
ARITHMETIC
> MEMORY - -+ LOGIC UNIT
(ALU)

complex, unchanging types of applications—as noted, toys, termi-
nals, microwave ovens, etc. Somewhat less obvious is the fact that
both memories may be active simultaneously. That is, the data mem-
ory may be used to fetch the current instruction’s data at the same
instant that the next instruction in the program store is also being
fetched. While this inherent two-to-one speed advantage is not fully
realized in practice, the fact remains that—for the same implementa-
tion technology and clock rate—Harvard machines can be faster than
von Neumann machines.

Figure 1-5 presents the von Neumann concept’s fundamental
block architecture, which contains the broad applicability features of
the stored-program digital computer. In this case, we have only one
memory system. Both data and instructions reside in this single mem-
ory. In their formats, both use the same-sized unit of addressing to
communicate with memory. The first important ramification of this is .
that, if we look at a random location in memory, we cannot be sure
whether the bit configuration is an instruction or merely data that hap-
pens to look like an instruction. This implies that we need a tool to
separate instructions from data. This is provided by reserving one of
the memory locations for use only as a Program Counter (PC), the
function of which is to keep track of where the next program step
resides in the rest of the memory. The second ramification is that, since
the instructions reside in the same memory as the data, they can also
be transformed by the ALU. Now the machine can dynamically alter
its own program. The other essential blocks perform the same func-
tions as in the Harvard architecture. :

A disadvantage of the early von Neumann machines was that
they were constructed on a hard-wired basis. That is, the instruction set
was a fixed, wired entity. Obtaining a large and modifiable set of
instructions requires resorting to microprogrammable-design method-
ology. Even though Wilkes’s concepts on microprogramming, as a
rational approach to the design of a computer’s control system, were
well known by 1952, they did not achieve widespread use until semi-
conductor Read Only Memory (ROM) technology became very eco-
nomical. Actual implementation of computer concepts has often
depended on the availability of suitable fabrication technologies. The
microprogrammed architecture is the last one we shall consider at this
point, but we shall work with it in the remainder of the text. This is not
a separate architecture from the von Neumann approach, only a better
way to implement it.

Overview of Processor Architecture

13

SEQUENTIAL MACHINE STATE TABLE

YYYY

ROM READ ONLY CONTROL
ADDRESS MEMORY (ROM) MICRO-STEPS
(PRESENT STATE)[NEXT STATE[PRESENT OUTPUT
[S—
[— »| | MACRO-STEP
Pa— | ¢ (COMPLETE
END | | INSTRUCTIONS)

ADDRESSING
AND BRANCH
CONTROL LOGIC

CONTROL | STORE

OP CODE AND

BRANCH CONTROL

CONTROL REGISTER FIELDS

<

CONTROL SYSTEM SIDE

T SIGNALS /

.

[N~ !
/ \ \ PROC:SSOR SIDE

Figure 1-6

NOTE: THIS BLOCK NOT ESSENTIAL TO
CONCEPT: SHOWN ONLY TO EMPHASIZE USE
OF BUS ORGANIZATION.

Microprogrammable Machine:

Basic Architecture

ALU || BUS-ORGANIZED]| _ [MAIN | [
<> CPU REGISTERS [€ |MEMORY [™ >
CONTROL
w
USER ACCESSIBLE MEMORY / i

[ALU]<>[MEMORY]<] 1/0]

WHEN SIMPLIFIED, THE
MICROPROGRAMMED
MACHINE IS STRUCTURALLY
A VON NEUMANN MACHINE.

Figure 1-6 portrays the organization of the Wilkes’s
microprogrammed architecture, stressing its State Table organizational
features. Many simple things appear complex because they are sophis-
ticated. This figure contains more detail than is comprehensible right
away. Since it is the system we really aim to explore, let us introduce
some of this detail in an overview. A ROM is the key feature of its con-
trol system. Again, we have a processor with two separate memory sys-
tems. The main memory contains both the data and the program’s
instructions that are to be executed during operation. The ROM mem-
ory is referred to as the Control Store. It, too, contains instructions, but
of an entirely different class. These instructions are the sequence of
marching orders that control the step-by-step operation of the system.
Each discrete control order is properly termed a microstep. A collection
of these microsteps, sequentially issued, forms a macro (or algorithm)
that the machine performs. These macros contain the processor’s
sequence of orders for the execution of an instruction that has been
fetched from main memory.

The collection of macros that reside in the control store makes
up the stored algorithms for the step-by-step execution of each instruc-
tion of a program. This collection of macros makes up the instruction
set of the system. It is of utmost importance to realize, at the very out-
set, that the contents of the control store ROM must have the form of
a state table for a sequential machine. After all, a processor is a
sequential machine that can be described (and controlled) by its state
table. Each instruction step in your program is sequentially presented
to the control store. The control store, figuratively, says “Aha! so that’s
what you want me to do. O.K., I will look up the steps for performing

14 ARCHITECTURAL TYPES AND THE CYCLE OF COMPUTATION

The Basic Cycle of ENTRY

. EVENTS IN THE CYCLE OF
Figure 1-7 PROGRAM v COMPUTATION
Computation

INSTRUCTION FETCH (IF)
ADDRESS MEMORY.

INCREMENT PROGRAM
COUNTER.

FETCH INSTRUCTION;
PLACE IN IR.

GO TO EX MAJOR STATE.

PROGRAM
EXECUTION

INSTRUCTION EXECUTE (EX)
DECODE INSTRUCTION.

FOR MEMORY REFERENCE
INSTRUCTIONS:

ADDRESS MEMORY.
FETCH OPERAND

PROGRAM

EXIT EXECUTE REQUESTED
OPERATION.
GO TO'IF MAJOR STATE.

your program’s instruction in my State Table, and I will sequentially
issue them to the hardware of the Central Processing Unit (CPU).”
Therefore, your instructions in the program lead to the selection of the
sequence of steps, found in the state table of the control store, that
actually get executed. This addressing of control store’s ROM and the
subsequent receipt of a word (a command) are stressed in the figure.

If we analyze Figure 1-6 closely, we find that we can reduce it to
the essential blocks of the von Neumann architecture, as shown. It
only looks complex, now, because we have prematurely enlarged upon
the details associated with the control system, to introduce its funda-
mental block structure and state-table organization.

CYCLE OF COMPUTATION

Because architectural types are capable of affecting the computer’s

" sequence and timing of the events in a cycle of computation, we must
define this cycle. We shall do this for the architecture of interest in this
text, the von Neumann architecture. A processor is a sequential
machine. That is, it is'a machine that can be in a finite, albeit large,
number of states or conditions. Each “next state” of the system must
be predictable from a knowledge of the “present state” and the “exter-
nal inputs” applied to it in this state. For every input, the system must
possess a defined state path. This information is contained in its con-
trol store. While we discuss these points in more detail later, the over-
all behavior of the computer can be reduced in complexity by
considering its two major states—Instruction Fetch (IF) and EXecute
(EX). All other states are minor states within these two. This is instruc-
tive because we can simply display the principal occurrences in a single
cycle of computation in relation to these two major states.

The cycle of computation is portrayed in Figure 1-7. How is the
c¢ycle initiated? Let us assume a simple case, in which the operator has
loaded the program to be run into the computer’s main memory and
has given the PC an initial value, which is the program’s entry point.

Overview of Processor Architecture

15

The front-panel controls are assumed to have these capabilities, as in
the old-time computers that required an operator.-By way of initializ-
ing the PC, the operator could set the console switches to order the sys-
tem to perform a BRanch Unconditional (BRU) to some starting
address. At this point, the operator hits the Run switch and stands
back. The cycle of computation’s sequences commences with the oper-
ator’'s BRU command. The BRU execution consists of placing the
branch address of this initial instruction, forced by the operator, into
the PC. Thereafter the machine behaves as shown in the figure until a
HALT instruction, say, is encountered.

After the execution of the forced BRU, the machine automati-
cally enters the IF major state. The system PC is now pointing to the
memory location of the next instruction to be fetched. The essential
events of the IF sequence are shown in Figure 1-7. The first event is to
address memory by transferring the contents of the PC to the Memory
Address Register (MAR). MAR is another portion of the system’s
memory reserved for a special purpose. This register only selects a loca-
tion to be communicated with in main memory. It does not handle
data. Since this address came from the PC, the contents of this memory
location had better be a valid instruction. Let us assume, as in early
computers, that each word in main memory contained the complete
instruction format. The second event performed in the IF state is to
readjust the PC so that it will point to the next instruction in main
memory. This is done by incrementing its contents. Now, the PC is
looking ahead again. As we use the PC, we also increment it. MAR still
contains the original contents of the PC or the address of the instruc-
tion we wish to fetch. In another event, we read the contents of this
location and transfer it into the Instruction Register (IR). The IR, like
the PC, is yet another example of a dedicated specialized use of the
system’s generalized memory. In the final event, the system ends the IF
phase by issuing the command to proceed on to the Execute (EX)
phase of operation. We stress the point that a small portion of the sys-
tem’s total generalized memory is dedicated to these special usages.

These four events of the IF phase of operation occur on every
von Neumann-type machine. Some of them may be performed in par-
allel, so it is not always true that a particular machine requires four
separate clock pulses to complete the sequence. The control system
records the fact that the EX state has been entered. In the EX state, it

‘looks at the contents of IR and figuratively says “You want me to do

that!” and so on. From decoding the contents of IR, it now can find
the macro in its control-store state table for the sequential execution of
“that.” The OPeration portion (or field) of IR is, in reality, the
encoded address of a macro’s starting location in the control store. The
last step of every macro contains an END order, to return the system
to the IF phase. The system continuously cycles through this cycle of
computation—IF to EX, and back again. Each time the machine
returns to the IF state, the PC must already be conveniently pointing
to the address of the next instruction. The microprogrammer that cre-
ates an instruction (macro) is responsible for properly advancing the
PC; we shall practice this later.

In the EX major state, the processor may have to use memory
again. This is important to recognize, since about 85 percent of all
instructions are memory-reference instructions. That is, the instruction
word itself contains a field that provides the address of an operand. In
this case, the address field of the instruction is transferred to MAR

16

ARCHITECTURAL TYPES AND THE CYCLE OF COMPUTATION

Figure 1-8
Memory Map of a Program’s
Blocks

X: =

BRU. X

ENTRY POINT: —»

HALT

4

LOCO
PRIMARY MEMORY

during the EX phase. The object, a piece of data, is brought in from
memory to be operated on in the course of executing the instruction.
Memory, then, is typically accessed twice within the full cycle of com-
putation. The first time, during IF, was for the purpose of fetching the
instruction (which usually contains an operand address). The second
time memory is accessed, if the instruction mandates this during the
EX state, the data to be operated on is fetched. Therefore, two memory
accesses in a single cycle of operation are usual. This is natural, since
both data and instructions reside in main memory.

The novice should carefully study the events in the cycle of com-
putation, until they are fully understood. This cycle is the basic
description of the operation of the von Neumann-type computer, the
type of architecture used in most personal or business computers. It
also illustrates when and why memory is accessed—usually twice dur-
ing the cycle of computation. An understanding of these events is
essential to the microprogrammer’s proper control of the PC. It also
leads to an appreciation of how a given system actually executes a par-
ticular instruction.

The von Neumann architecture’s cycle of computation also tells
us something about the way memory space is utilized by this type of
machine. We can now see how a program is mapped into total main-
memory address space, shown in Figure 1-8. Since the PC carries the
information of where the instructions are in memory—and since the PC
is incremented only during the cycle of computation—one instruction
must follow another in memory, except for branches. That is, instruc-
tions reside in contiguous locations in main memory. These contiguous
locations of instructions may be formed into blocks of memory. For a
given program, these blocks are linked by the address fields of the
branch (or jump) type of instruction. Recall, the execution of a branch
instruction simply amounts to a reloading of the PC. The rest of mem-
ory that is not occupied with blocks of instructions may now contain
the data these instructions access or the results they store.

The cycle of computation simplifies the computer into a machine
with two major states. This state diagram may be slightly expanded to

Overview of Processor Architecture

K

Y
)

@ @) @ s) @
MACROS THAT MAKE UP
USER SET OF INSTRUCTIONS
(EX MAJOR STATES)

Figure 1-9
Expanded IF-EX Major State
Diagram

better represent the actual case, as is shown in Figure 1-9. In this illus-
tration, we have only one IF major state. After all, IF is IF, and we
need only one copy of it in the control store’s state table. However, the
other macros in the user’s instruction set are not used in every cycle of
computation. Therefore, we require a separate state-table segment, in
control store, for each macro of the EX major state. The actual cycle
proceeds, in IF, to the fetch and subsequent decoding of the instruc-
tion word. This decoding process, during the EX major state, selects
the particular macro specified in the instruction word. That is, the sys-
tem executes only one user macro at a time and then returns to IF to
fetch another. IF therefore is not categorized as a user macro. It is
transparent to the user. Nevertheless, it is a macro—automatically
invoked and performed by the system in the course of executing our
programs. In a microprogrammable system, anything that the machine
is capable of performing must be a macro residing in the state table of
control store. We shall refer to the above cycle of computation as a
basic frame of reference many, many times.

FORMS AND UNIFORMITY AMONG PROCESSORS

Having reviewed the major basic architectural types among computers
which, as we have said, are one form of processor, we may now con-
sider the question—what is a processor? We propose to answer this
question in detail in this text by examining the internal organization,
microprogramming, and functioning of an instructional archetypical
Central Processor Unit. The essential structure of this CPU’s architec-
ture will be shown to be closely related to that of the Intel 8080 micro-
processor, the DEC PDP-11 minicomputer, the AMD 2901 bit-slice
IC, etc. Therefore, we are stressing the universality of the principles
behind the organization of a processor. Here, we must be careful to
distinguish between the organization of a computer’s CPU and that of
the total computer system. Briefly put, the organization of a computer

~system largely consists of the CPU and a number of other processors; a

means of intercommunication, the so-called busing structure; and the
system software that is executed by the CPU to coordinate the whole.
Our emphasis is on the concept of the generalized processor and its
essential characteristics.

To be more explicit, let us examine the block diagram of a com-
puter system, Figure 1-10. This figure displays channelized computer-
system organization, in the form most commonly seen in microcom-
puter systems. Variations of this structure are applied to large, so-

18

FORMS AND UNIFORMITY AMONG PROCESSORS

DEVICE(S)
E.G.. DISK(S)
DEVICE(S) (SECONDARY
E.G.. PRINTER, MEMORY)
COMMUNICATION ‘
)\ ﬁ
DATA BUS , k
I])\ 1 >
Y
Yy Y y
‘ v PERIPHERAL | PERIPHERAL
CPU PRIMARY PERIPHERAL DMA DEVICE
P MEMORY CONTROLLER [* | coNTROLLER 1 CONTROLLER [*
SYSTEM P p P
\]))
[

ADDRESS BUS

Y

CONTROL BUS

Y

NOTE: P ... P” ARE ALL PROCESSORS.

Figure 1-10
Channelized Computer
Systems Organization

called mainframe computer systems, as well as to small systems. It is a
universally used form of organization and could be the starting point
for a discussion on operating systems and their environment. What we
wish to highlight now, however, is the large number of processors pre-
sent within the system. The term CPU itself implies that a computer
system consists of a central processor and a number of other ones.
These other processors are the peripheral controllers whose coordina-
tion is orchestrated by the CPU. As shown, these processors peripheral
to the CPU are of two types—Direct Memory Access (DMA) and those
with indirect access to memory. By access we mean access to the sys-
tem’s primary memory—as opposed to access to mass-storage devices
or to secondary memory, such as disks.

The indirect-access processors exchange data with primary mem-
ory via the CPU. The direct-access processors can assume direct con-
trol of primary memory for a transfer of information between it and
another entity that does not involve the CPU.

Our point is, then, that a computer system consists of a number
of processors, coordinated by the system’s software. The peripheral
processors are the Arithmetic Processor Units, the DMA controllers,
communications controllers, disk (secondary-memory) controllers,
graphics™ controllers, and others. These days, they are most often
sophisticated programmable devices housed in a single IC. Any one of
them can be as complex as the CPU. An 80-bit floating-point arithme-
tic processor peripheral is as complex ‘as most CPU’s. So far, we have
said that these processors are all sequential machines. We will study
the organization of the microprogrammable form of the CPU to learn
what a processor really is—and we do mean what it really is. If we
understand this one, we will have gained an intuitive feel for all the
other forms of processors, for they all reduce essentially to sequential
automata. In developing microprograms for an instructional CPU, we
have to display an intimate knowledge of sequential machine behavior.
If we gain an appreciation of the essential common features of proces-

Overview of Processor Architecture 19

sor organization, then we should be better prepared to understand,
work with, and program the other processors of the total computer sys-
tem. This information is also a background for the synthesis and
implementation of processors.

Thus we consciously used the term processor—as opposed to com-
puter, microprocessor, dedicated processor, arithmetic processor, DMA

. channel, etc.—to stress the unity of their fundamental design and func-
tion. They are all sequential machines. Chapter 4 reviews sequential-
machine principles, because the fundamentals of sequential automata
are the foundation for our understanding of processors. Micropro-
gramming is a generalized approach to their design that, with today’s
empbhasis, can have a strong software component. We wish eventually
to explicitly illustrate how a microprogrammable type of architecture
is implemented. Its basic nature is no different from all the other types
of processors, regarded as sequential machines. An internal or even a
user-accessible microprogrammed memory, used as the core of the
sequential machine’s control system, is an integral part of most present
large-scale systems organizations. Via the techniques of microprogram-
ming, we can view the rationalization of control-system design for
processors as one of the technological advances that has made VLSI
fabrication feasible.

Let us briefly look at the external physical details of a processor,
as represented by some microprocessors. They are usually classified as
members of one of the three previously mentioned architectural types.
That is not to say that other important architectures do not exist. The
array processor, for example, has a distinctly different systems organi-
zation, yet its individual functional blocks likely behave as a member
of one of our major categories. Do microprocessors differ from what
we mean by computers? Not really—the differences are only of degree,
not kind. They still are computer-system processor units, implemented
today through VLSI technology. The differences are variations in
physical size, word size, instruction formats, program throughput, and
the complexity of the instruction set. A microprocessor’s instruction
set now may be as sophisticated as any of the older mainframe com-
puters. Even its bus and word size have entered the 32-bit region, for-
merly the domain of the mainframe. The speed and corresponding
productivity of the microprocessor can be much better, due to the
physically small, monolithic nature of its IC. The fact is that micro-
processors are beginning to replace mainframes, in many applications.
The mainframe will still be around in the future, but it will be a main-
frame.

Some physical statistics for a few IC processors are of interest.
They indicate advances in fabrication techniques—rather than the
essential nature—of processors. The first production microprocessor,
the Intel 4004, came in a 16-pin Dual In-line Package (DIP), whose
external measurements were 0.30 X 0.78 inches. The silicon surface
area (the amount of silicon “real estate”) used for the fabrication of the
actual IC measured 0.117 X 0.159 inches. The number of active
devices contained within this area, in several layers, is referred to as
the number of transistor equivalents. The 4004 contained on the order
of 2,500 transistor equivalents. Its word size was four bits: that is, the
data bus handled and it internally operated on four bits of information
at a time. It was followed by the 4040 microprocessor, packaged in a
24-pin DIP, externally measuring 0.6 X 1.25 inches. The microproces-
sor surface area size measured only 0.118 X 0.163 inches. The Motor-

20

FORMS AND UNIFORMITY AMONG PROCESSORS

ola 6800 8-bit microprocessor was packaged in a 40-pin DIP
measuring 0.6 X 2.0 inches, as was the Intel 8080 and most other 8-bit
microprocessors. The Intel 8086, a 16-bit machine, was also packaged
in the same size 40-pin DIP. Many of the peripheral support proces-
sors are also packaged in the 40-pin DIP. For a time, 40 pins was the
practical limit to package size. Current packages are larger, with
approximately 60 interface pin connections. As manufacturing tech-
nologies have improved, more and more logic has been designed into
the monolithic IC. The 8086 contains on the order of 80,000 transistor
equivalents. The Intel 80286 16-bit processor contains approximately
130,000 transistor equivalents. The current frontier is about 500,000
transistor equivalents in a single monolithic IC.

Because of the growing sophistication of microprocessors and the
limitations on package size, extensive time sharing of the interface pins
was resorted to. Time sharing of an interface pin, also called . Time
Division Multiplexing (TDM), is frequently employed to reduce the
number of required interface connections. Generally, manufacturing
and reliability problems increase with the number of interface connec-
tions. TDM typically allows a particular interface pin to function, say,
as an address-bus line in one clock period—yet serve as a data-bus line
in another. TDM is common practice, often confusing to the beginner.
It may help to imagine that an interface pin can be switch-connected
to an internal address bus in one time frame, then to an internal data
bus line in another. Thus, a single interface connection performs
entirely different functions at different times.

All the preceding indicates two things. First, today’s micropro-
cessor is becoming the previous decade’s smaller mainframe, because
of the amount of logic a monolithic IC may now contain and because
of improving design methodologies. Second, the typical processor of
today is housed in a monolithic IC—from peripheral controllers to the
CPU’s of microprocessors and mainframes. What we hope will become
apparent in the course of this text is the role of the techniques of
microprogramming in the creative shaping of the functions these
processors can perform; equally important is the fact that we can be in
control of the specification of these functions.

We now also raise the rhetorical question: How does one learn
about these production processors? The answer is that, after the intro-
ductory orientation of a text, we read manufacturers’ data manuals.
Much of the material of many good texts is obviously derived or even
taken straight from the data catalogs of these IC’s, unadulterated. We
must stress the importance of learning how to go—independently—

. straight to the source, thus gaining self sufficiency.

Mention should be made of a special group of processor IC’s, the
bit-sliced-based dedicated controllers, CPU’s, and computer emula-
tors. They have played an essential role in the technology of computa-
tion, with less publicity than the mainframes and microprocessors.
These processors have been organized around the use of bit-sliced
architectures. The bit-slice is a basic bus-organized central processor
unit, containing only an Arithmetic/Logic Unit, a register array, and a
general-purpose load and shift register, with associated bus paths and
combinational logic. It does not have a control system built into it. The
user supplies this, via microprogrammed design. In creating a com-
puter or dedicated processor with these bit slices, we simply employ as
many of the slices (in parallel) as we need to achieve the desired
machine size. Typically, we now add to this a microprogrammable

Overview of Processor Architecture

21

control store, to form the processor’s control system. The resulting
machines have been used to create dedicated controllers, such as high-
speed disk controllers. They have also been used to create fast emula-
tors of existing older mainframes and to form specialized computers,
such as those employed in avionics applications.

A popular bit slice has been the Advanced Micro Devices
Am2901 and Am2903 4-bit slices, housed in the same 40-pin DIP as
many of the other microprocessors and peripheral controllers. There is
a family of other related IC’s that support the creation of the total bit-
sliced processing system. This means that the designer forms a process-
ing system, using several different types of IC’s. In this do-it-yourself
approach, the processor is not a single IC but consists of several coor-
dinated IC’s from the family. The control system that we shall study
and implement here reflects the function and nature of these other IC’s
in the family. The 4-bit processor we shall study, construct. and
microprogram is a simplified model of a bit-sliced IC. As we shall see,
our own archetypical processor project will be a bus-organized CPU
containing a Register Array, an ALU, and a few dedicated registers—
much like the bit slice. To this we will add a microprogrammable con-
trol store for sequential behavior control and an external memory sys-
tem. These major structural features form the basis for the type of
processing system we call the computer. It is a hands-on, nonhypothet-
ical approach to the subject matter.

At the present writing, a new trend has emerged—due to the
availability of advanced VLSI IC-development technologies. It is now
possible for any of us to specify and design custom processor IC’s.
This, too, is a do-it-yourself approach to the design and implementa-
tion of custom IC’s, which relies on the very same system structural-
block approach we shall consider here. Many applications—communi-
cations, disk and instrument controllers, for example—have sufficiently
high production volumes to justify the development of custom proces-
sors in the form of the monolithic IC. We can apply the same organiza-
tional principles of microprogrammable systems to this task, too. This
important phenomenon is one indication of the spread of processor
design and implementation knowledgeability to the mass production,
low-cost stage that each of us can participate or lead in. It is now real-
istic for us to anticipate our own involvement in any of the design,
microprogramming, and software-development phases of processor-
controlled products—provided that we understand the systems organi-
zation of the archetypical processor.

From the discussion so far, we see that processors may be any-
thing from a simple dedicated controller to a microprocessor to a com-
puter mainframe. To understand this myriad of devices, we need a
common center of reference. This we provide by examining the
sequential machine organization and microprogramming of a 4-bit
CPU. The applied microprogramming-systems principles that we shall
study are exactly what a processor is organized around—this is the uni-
fying factor, which encompasses both hardware and software. These
processors may be used for many different purposes, but their funda-
mental sequential-machine organization is the same. Our view, then, is
that processors consist of the systems application of a set of principles
for the sequential-machine organization of computation and control.
Differences are largely due to scale and end-function adaptations,
rather than to their essential features.

22

FORMS AND UNIFORMITY AMONG PROCESSORS

Figure 1-11

Mainframe Instruction Word:
Typical Fields (Single
Address)

INSTRUCTION-WORD FORMATS

0A
oP MOD
OPERATION | ADDRESS OPERANBP’\‘DDRESS
CODE MODIFIER

LITERAL VALUE

31 ‘ <+—— BITS —— 0

Let us now proceed on to an important examination of the apparent
difference of form between the instruction word formats among those
processors we refer to as computers. A computer is a processor that
contains a large, flexible, instruction set suitable for multipurpose
adaptation, via user programming, to a variety of applications. These
range from the 4-bit microprocessor to the 64-bit or larger mainframe.
Common word sizes in microprocessors are 4, 8, 16, and now 32 bits.
Minicomputers typically have 12- to 18-bit word sizes: mainframes are
considered to have 24-bit and larger word sizes. An early number-
crunching machine even had .128-bit words.

It is totally incorrect to say that microprocessors are slower than
mainframes. The frequency of the driving clock for a microcomputer is
often greater than that of a mainframe system. Execution times, say,
for addition, are often comparable—even better. The real differences in
performance, for a given clock rate, depend on the number of bits
operated on at a single time in the process of executing a command.
An 8-bit micro adds two 8-bit quantities in one clock period, while a
mainframe may handle two 48-bit values in one period. By using
repeated addition (with carries), the microprocessor can add two large
48-bit numbers just as well as a mainframe. Since this also requires a
good deal of thrashing about between 1/0, memory, register
exchanges. etc., many extra operations are performed by the small-
word machine to obtain the same resulting precision. If the small
machine is not superfast, then its taroughpur suffers in comparison with
the large machine.

Throughput is a key criterion of application performance. In
measuring throughput, we refer to the techniques for evaluating how
long it takes to process a set of problems relative to some proposed
application. Two machines of the same word size may perform in sig-
nificantly different ways in a given situation, often due to differences in
their instruction sets. This important aspect of processor evaluation is
called benchmark testing. A number of firms specialize in providing
benchmark tests for competing processors for given applications. In
practicing microprogramming, we shall implement an instruction set.
This will create an acute awareness of the effects of architectural
design and of the choice of instruction sets on the speed of operation,
which affects a system’s throughput.

The monolithic-IC computer often utilizes a clock frequency sig-
nificantly higher than that of distributed mainframes. Associated with
it is a smaller word size. It has to hustle to obtain the same throughput.
Therefore, the distinctions between word sizes, instruction formats,
instruction words, and the addressable unit of memory deserve to be
discussed here. We will constantly be dealing with these concepts later.

Overview of Processor Architecture

23

FIELDS
SINGLE BYTE| OP MOD
7 BITS 0 IMMEDIATE AND
NONMEMORY-REFERENCE
INSTRUCTION TYPES
w”?ES OP MOD DATA
MEMORY-
THREE REFERENCE
BYTES OP MOD LOW ADDRESS HIGH ADDRESS INSTRUCTION
TYPES

Figure 1-12

Eight-Bit Microprocessor
Instruction Formats: Typical

Fields

Further, these concepts begin to make it clear that apparent differences
are not fundamental ones.

In the early computers, instruction formats were straightfor-
ward. The complete instruction word was stored in a single word in
memory and could be held in a single register within the CPU. The
format of this instruction word, however, is invariant for most
machines of interest to us. That is, they all are divided into the same
sets of fields. This is presented in Figure 1-11. The typical complete
single-address instruction word consists of three subfields, as shown.
These fundamental fields are the OP code, MODifier, and Operand
Address (OA) fields. Two- or three-address machines simply make
repeated use of one of these field types—the OA field. The OP field
contains the binary code naming the operation to be executed. The
OA field contains either the address of an operand or some value
specified in the program. Whether this field contains an address or a
value depends on the nature of the instruction specified in the OP
field, that is, on whether the instruction is ADD or SHIFT. If the OA
field is in fact an operand address, then the’'MOD field is used to
specify how the final Effective Address (EA) is to be calculated. The
MOD field specifies the addressing modes we can select for our pro-
grams.

The modes of addressing supported by a computer are important
factors in how effective its throughput is. The usual ones, which we
shall later microprogram, are the register, immediate, direct, indirect,
indexed, and the autoincrement/decrement modes.

The early single-address machines stored all three fields in one
memory word. The sizes of the instruction word, memory word
(addressable unit of memory), and the register were the same. Min-
icomputers and microprocessors have word sizes in the 4-18-bit range.
This requires that we distinguish between the complete instruction
word and the size of the addressable unit in memory (the memory
word). Currently, memory is often addressed using the byte (eight bits)
as the unit for numbering its addressable locations. Certainly, this is
true for the 8-bit machine. How does this affect the typical single-
address instruction format? The answer is—not at all. What it does
affect is its distribution in memory in the addressable units of memory
required to contain it.

A comparison of the instruction word format of a typical 8-bit
microprocessor with the early mainframe type above should clarify

24

FORMS AND UNIFORMITY AMONG PROCESSORS

this. This format for the 8-bit machine is presented in Figure 1-12. The
8-bit machine customarily uses the byte as the addressable unit of
memory, as do many larger processors today. It is also customary for
the first memory word addressed in the process of fetching the com-
plete instruction word to contain the OP and MOD fields of the entire
instruction. If the instruction can bz completely specified in this one
byte, e.g., a shift operation, then there is no need to use any more
addressable units of memory to form the complete instruction. There-
fore we can find single-byte complete instruction words on these small
register-size machines. ,

There is another type of instruction, which we shall later imple-
ment, that moves the byte following the OP and MOD fields of the
first byte of the complete instruction word into a register. This
instruction word is completed in two bytes (words) of memory, as is
also illustrated in Figure 1-12. Thus we have one-byte and two-byte
instruction formats, consistent with the formats of the early main-
frames. Memory space not needed is not simply wasted. Finally,
another type of instruction—let us use addition as an example—speci-
fies the operand’s address in primary memory in the complete
instruction word. Again, the customary practice in 8-bit machines is
to provide an address-bus size of two bytes’ (sixteen bits’) worth of
memory-address space. An instruction that specifies a complete
address in memory requires three bytes to form the complete instruc-
tion word. Its format is, again, the same as the one for the main-
frame—with all fields of the format required and present. Note, then,
that complete instruction words on small machines can contain 24 or
more bits—the same as mainframes.

Thus we see that machines with small word sizes have the same
instruction formats as the very large-sized ones. Insofar as instruction
formats are concerned, we are looking only at apparent differences—
not real ones. Because they do not waste the space for fields not used
in a specific instruction, the complete instruction word may consist of
one or more physical words (addressable units) in memory. The small-
register-size machines simply use a variable amount of memory space
to contain a complete instruction, for reasons of economy—a privilege
not available to the early mainframe. From this we can see that there
need be no fundamental differences among microprocessors, minicom-
puters, and mainframes; regarding the function and formatting of their
instruction words.

Practice varies. The Signetics 2650 8-bit microprocessor extended
the OP and MOD fields to nine bits. The ninth bit, the most significant
bit of the second byte of the instruction word, was used to specify indi-
rect addressing. This reduced the memory-address space to fifteen bits.
It truly had a minicomputerlike instruction set, which was extremely
satisfying to use, at the expense of the amount of memory it could
directly support. The PDP-11 16-bit minicomputer uses variable-word-
length instruction formats, too. In addition, many of its instructions
support two-operand addresses. The first word (two bytes) of an
instruction in memory defines the OP, MOD, and OA fields, in a man-
ner analogous to those previously discussed. The PDP-11 can define
two MOD and OA fields—one for the source, the other for the destina-
tion—for its two operands. Yet, the fundamental fields employed in its
sophisticated instruction word formats are the same as those named in
Figure 1-12.

Overview of Processor Architecture

25

In summary, then, a processor is any of a myriad of sequential
machine devices, which may have many apparent differences of form.
They are all, however, programmable sequential machines. They may
be comprehended, in their essence, by examining the broad fundamen-
tal organizational principles of a simple microprogrammable system. If'
we take advantage of the hands-on approach presented later in the
text, by constructing and microprogramming the instructional system
out of readily available IC’s, we shall face the real and creative chal-
lenges of conquering the system. This is a far better alternative than
remaining its victims.

PROCESSOR FABRICATION TECHNOLOGIES AND PERSONAL IMPACTS

Included in this introductory view of processors are the programmable
microprocessor-support IC’s. This is precisely why the software-ori-
ented person must comprehend processor organization to do systems
software development with confidence. The Direct Memory Access
(DMA) controller, the floating-point Numeric Data Processor unit, the
graphics or CRT controllers, the Floppy Disk Controller, and the
Communications interface 1C’s are all examples of programmable
devices—just the sort of devices we need to understand if we are to
dominate the computer system, instead of the reverse. They, too, have
instruction sets. Their instruction sets are the set of activation com-
mands issued by the so-called central processor under its programmer’s
software control. To program these devices via the central processor, it
helps to understand their intrinsic nature, which is almost universally
uniform. The manufacturers of microprocessor-controlled systems
require ever more software support in such projects as electronics
instruments, hospital-patient monitors, and the production of applica-
tions software for personal computers; it will help if we demystify
what this very large range of processors is about. That is our major
goal in constructing, microprogramming, and operating a processor.

Previously we introduced the concept of the existence of genera-
tions of processors. These generations were roughly based on the
fabrication technologies employed in their construction. Broadly, the
mainstream of computer development proceeded from mechanical
devices to relays to tubes to semiconductors. It has been asserted that
the widely used concepts on how to organize these processors, that is,
their architectures, have been few but persistently employed. Therefore
it is primarily in fabrication development that the dynamics of proces-
sor construction resides. As noted, we are most likely in practice to
encounter the Harvard, the von Neumann, and its variant—the Wilkes
microprogrammable concept—system architectures. There are impor-
tant organizational exceptions, such as array processors, but these are
special-purpose machines. Generally, they are design responses to spe-
cialized, important, but limited types of computational needs.

The interesting fact is that a computer system can contain many
processors. The peripheral LSI and VLSI processors mentioned out-
number the CPU’s. Their organization as sequential machines, describ-
able in terms of microprogrammed-design methodology, implies their
fundamental unity. There are many of these mass-produced processors
in current computer systems. In fact, they are just as much the basis
for the current widespread use of computers as is the CPU itself. They
are fabricated as monolithic IC’s, too. Thus we see that advances in the

26 PROCESSOR FABRICATION TECHNOLOGIES AND PERSONAL IMPACTS

Figure 1-
gure 1-13 SEMICONDUCTOR
Summary of Some Current FABRICATION
. . . TECHNOLOGIES
Microprocessor Fabrication
Technologies
MATERIAL
OF ICO
SUBSTRATE SILICON (S)I:ICON
SAPPHIRE
(508)
TYPE OF METAL-OXIDE
~ SEMICONDUCTOR
DEVICE BIPOLAR (MOS) Mos
—TL — PMOS CMOS
FORMS OF
TYPICAL l—T2°LS — NMOS
CIRCUITS
— I’L —CMOS
——ECL —— HMOS

art of building the processor IC’s of a computer have helped make IC’s
such a common feature of our lives and that there exists a common
basis for understanding them. The personal impacts of advancements
in fabrication technologies of processors are widespread. A short dis-
cussion of recent trends in the evolution of computers shows why this
is occurring -and how it affects all of us.

Semiconductor-fabrication technology commenced with the ger-
manium bipolar transistor and diode as its basis. This was soon
replaced with the silicon bipolar discrete-device technology. Then
came the metal oxide semiconductors, which were progressively incor-
porated into the monolithic structures of the small-, medium-, and
large-scale monolithic logic IC’s. The emphasis on developing better
fabrication techniques has been such that an entire tree-structured
spectrum of these technologies exists, with important application-
dependant choices to be made. Figure 1-13 introduces this perspective.
This figure presents just some of the more widely used semiconductor-
fabrication technologies. Experimentation is constantly proceeding,
for example, with gallium arsenide semiconductors, in the attempt to
improve speed, reduce power, and achieve economic viability. The
technology at the forefront of development efforts changes almost
yearly. In the late 1970s, IIL transistor arrays attracted much atten-
tion. Currently, CMOS processor and memory IC implementations are
emphasized.

Speed and power are important parameters in the selection of a
fabrication technology that addresses the application needs of the
end user. The early electronic machines were slow and consumed tre-
mendous amounts of power to remove the heat they produced.
Roughly the same amount of air-conditioning power is required as
the machine employs in its operation. Office automation with proces-
sors simply is not feasible if the cooling system cannot handle the
load. The inherent speed capability of a particular semiconductor

Overview of Processor Architecture

27

technology affects the throughput that it can achieve for a given
architecture. Early microprocessors used PMOS technology and the
Harvard architecture. This choice of architecture also masked the
slower speed of PMOS, as compared to NMOS or HMOS
fabrication. The Harvard architecture continues to be considered for
specific applications, to further enhance the inherent speed/power
properties of a given technology.

Table 1-2 presents relative factors of merit for some of the
microprocessor-fabrication technologies. As noted, architectural
choices can use inherent speed and power properties as a platform
for further improvement of performance. All this is subject to the
economics of the costs and yields obtainable with a particular tech-
nology, but the development process continues unabated. The
result is that several successful implementation technologies are
readily available for the rapid implementation of new processing
systems. These new IC’s meet the speed, power, and production
criteria required for mass marketing. A good example of this is the
portable personal computer.

Table 1-2
Relative Factors of Merit in Microprocessor Fabrication Technologies
Technologies MoOS SOS Bipolar
Factors PMOS NMOS CMOS CMOS TLS [I’L ECL
Speed 1 2 4 5 6 3 7
1 = Slowest
Power Req. 4 5 7 7 2 6 1
1 = Most
Packaging Density 5 6 3 5 2 5 1
1 = Least
Process Complex- 7 6 4 1 3 3 2
ity
1 = Most
Experience Factor 7 7 4 1 7 2 3
1 = Least

As semiconductor-fabrication technologies improved, modular IC
building-block components were introduced. The availability of these
components and their subsequent inclusion in large-scale fabrication
designs have had a great impact. These formed the basis for regular-
izing organizational approaches to the implementation of sequential
machines. The first of these popular devices to achieve wide usage was
the Programmable Read Only Memory (PROM). This is a form of
user-programmable permanent memory, which we shall discuss again,
that retains its contents even when the power is turned off. Anyone
who has had to bootstrap load an early machine with paper tape, on
powering it up, heaves a sigh of relief when turning power on to a per-
sonal computer, then relaxing while the boot program in PROM brings
in the disk operating system. The availability of the PROM solved the
problem of how to have a fixed program permanently available on
power-up. It also solved the problem of having an immediately avail-
able state table in control store for the control of a processor. The
PROM, with added registers, is employed in the construction of
microprogrammable-control systems.

In the 1970s, the Programmable Logic Array (PLA) came on the
market. It was followed by a variant, the PAL, in the early 1980s.

28

PROCESSOR FABRICATION TECHNOLOGIES AND PERSONAL IMPACTS

Here, user programmable gate logic permitted incorporation of large
amounts of combinational logic into a single IC. The PLA, in conjunc-
tion with registers, is also used extensively in control systems. This
construct is called a Programmable Logic Sequencer (PLS). A pattern
is beginning to emerge here. As modular components gained wide-
spread use, they were also incorporated into the design and construc-
tion of the processor IC. This continues to this day. The discrete IC’s
that we shall work with in our analysis, construction, and
microprogramming all have their functional equivalents incorporated
into the design of a monolithic processor IC.

Gate arrays are semiconductor IC’s containing a large number of
gates. The end user specifies how they are to be connected. From the
basic gate, we may construct an entire processor. The logic gate may
be perceived as a fundamental building block. Most of these modular
do-it-yourself structures are regular in nature, and they are therefore
easily incorporated into a custom IC. The craft of VLSI design has
evolved to the point where it is no longer necessary to work with fixed
arrays. Individual gates can be specified in Computer Aided Design
procedures to tailor their speed and power properties to the needs of
the application. Further, libraries of previously developed modules are
available for immediate incorporation into proposed processing sys-
tems.

The pattern that emerges here is that processors are constructed
by using fundamental constructs that were originally available in sepa-
rate IC form. These constructs are currently available in library form,
which the designer merely names (with associated parameters), making
it instantly available for incorporation into a custom IC’s system. New,
programmable processor IC’s are reaching mass markets at a rapidly
accelerating rate. Therefore the personal impact here is on our level of
understanding of processing systems, so that we may knowledgeably
work with them. This applies equally to hardware and software types.
The computer we work with or own contains not one but several
programmable processors. In the end, it is the system software that
rules the roost. To design, use, and program these processors effec-
tively, we require insight into them. An understanding of both hard-
ware and software is essential to current computer-systems
development. Operating-systems development, graphics, communica-
tions, video games, and business software all interact with a wide vari-
ety of programmable processors.

To illustrate some effects of these last statements, the author sat
with a former student who demonstrated the use of a Computer Aided
Design system to specify a PAL, by naming it and providing the sys-
tem with the number of inputs and outputs. This person was less than
four years out of college. In a few seconds, the design features were
displayed on the monitor screen for future integration into a larger and
complete custom processor IC. Also demonstrated was the design of a
gate with specifically enhanced performance properties. The final
processor design that used these building blocks was developed in five
months, contains over 9,000 transistor equivalents in a single IC—and
it worked from the very start. This feat was performed by a capable
individual who does not specialize in IC design, in response to a corpo-
rate need for a processor IC in a product. The age of rapid response to
both hardware and software computational needs is here—and it
affects us all.

Overview of Processor Architecture

29

BIBLIOGRAPHY

The construction project we shall study in this text follows the
pattern expressed above. We shall incorporate separate building-block
IC’s into a total processor-system design, to gain an understanding of
processor-system principles. These principles, using functional mod-
ules, are exactly what is employed in the system-concept development
of a custom IC. This, then, is the frontier fabrication technologies has
brought us to. System developers may now rapidly construct their own
processors, using VLSI custom IC-design technology. Users, designers,
and programmers must respond to this imperative if they wish to par-
ticipate in the implemetation aspects of computer systems applica-
tions—as opposed to being restricted to being an end user of a system.
That is all the more reason for us to understand these universal proces-
sor-system principles, to enhance our abilities to either program or
design these devices. '

PROBLEMS

Bell, C.G., and Newell, A. Computer Structures, Readings and
Examples. New York: McGraw-Hill, 1971.

Burks, A.W., Goldstine, H.H., and von Neumann, J. “Prelimi-
nary Discussion of the Logical Design of an Electronic Comput-
ing Instrument.” 28 June 1946. Reprinted in Datamation,
September and October 1962.

Goldstine, H.H. The Computer. Princeton, New Jersey: Princeton
University Press, 1972.

Marshack, A. “Exploring the Mind of Ice Age Man.” National
Geographic, pp. 65-89, January 1975.

Mead, C., and Conway, L. An Introduction to VLSI Systems.
Reading, Massachusetts: Addison-Wesley, 1980.

Shannon, C.E. “A Symbolic Analysis of Relay and Switching
Circuits.” AIEE 57, 713-23 (1928).

Spencer, D.D., An Introduction to Computers. Westerville, Ohio:
Charles E. Merrill, 1983.

Wilkes, M.V. “The Best Way to Design an Automatic Calculat-
ing Machine.” Paper read at Manchester University Computer
Inaugural Conference, July 1951.

Wilkes, M.V., and Stringer, J.B. “Microprogramming and the
Design of the Control Circuits in an Electronic Digital Com-
puter.” Proc. Cambridge Phil. Soc., Pt. 2, Vol. 49, pp. 230-38,
April 1953.

1. Count the number of microprocessor controlled products in your
home or in your car.

2. What are the essential differences between the Harvard and von
Neumann architectures, from the standpoint of a computer’s
organization?

30

PROBLEMS

Draw a simple timing diagram that illustrates and explains why
the Harvard architecture has an inherent speed advantage over
the von Neumann approach.

Define the meaning and original intent behind the term
microprogramming.

. What form of tabular representation is microprogrammed archi-

tecture organized around?

Define the terms micro and macro, with respect to microprogram-
ming.

. For a microprogrammed computer system, what is the relation-

ship between a user’s instruction in the instruction set and a
macro in the system’s control store?

Describe the cycle of computation and the principal events that
occur in each of its phases.

What is the role of the Program Counter in the von Neumann
architecture?

How does the von Neumann architecture affect the manner of
space allocation in the primary memory of a computer system?
Draw a memory map that illustrates your comments.

. How many programmable processors are there in the following

popular personal computer systems? Investigate at least one, and
list your findings. Do you understand the organizational basis for
these processors?

a. IBM PC or XT

b. Apple Ile

Apple Macintosh

d. Hewlett-Packard 150
e. DEC Rainbow

o

. Describe the channelized computer system pattern of organiza-

tion and its relationships to programmable processor I1C’s.

. What are the typical fields of a complete instruction word, and

what are the functions that each serves?

. What is the difference between a complete instruction word and

addressable units of memory?

. If you plan to participate in systems programming and develop-

ment of computers and processors, check off all the following
areas for which you feel adequately prepared, at the entry level:

a. The logical nature (not semiconductor physics) of semicon-
ductors and digital IC’s

b. Fundamental bus organizational and operational concepts

c. The logical nature and elementary physical principles
behind memory devices

d. Fundamental clock and timing relationships of a synchro-
nous digital system

e. The actual functioning of an ALU and how data is altered
in a CPU

Overview of Processor Architecture

31

W'T..

How the ALU influences conditional instructions and the
flow of software

Basic sequential machine organization, implementation,
and operating principles

Data flow and transformation within the context of a bus-
oriented system, including the block diagram of a com-
puter’s architecture

How logic IC’s—and systems that incorporate their fea-
tures—actually function

Freedom from “hardware fright”

. Participation in microprogramming activities

How an instruction in the instruction set of a processor is
actually executed

m. Implementing a digital processor system

How the various addressing modes of a computer function
and are executed

The fundamental organization behind the typical program-
mable peripheral processor, such as CPU’s, disk control-
lers, graphics and CRT controllers, communications IC’s,
numeric data processors, etc. An elementary background
for reading their data manuals and for using and program-
ming these devices

If you checked none of the items above, there are two choices:
either change your major, or carry on. Remember: This is only
the beginning.

CHAPTER 2
FEATURES AND ARCHITECTURE OF
PROCESSORS

Large-scale computers, minicomputers, microprocessors, and dedi-
cated programmable processors are all derived from the same common
heritage of basic features. The differences are more likely to be in the
scale on which each machine is constructed or in how the same fea-
tures are used, rather than in the varieties of features employed in their
architectures. For this reason, we shall refer to all of the foregoing as
processors in the future, to indicate that certain unified concepts
regarding structural features apply to all.

v There are many levels at which one can study the nature of
processors. These range from the component level (resistors, transis-
tors, etc.) at one extreme to the use of abstract computer-description
languages that detail the register and state transactions of a machine.
At the entry level, however, it is beneficial to obtain some insight into
the major basic working features of processors—and to understand
their mechanisms. As we review the basic logical devices employed in a
processor’s design and examine the fundamental concepts associated
with their use, observe that a limited number of devices and concepts
are used repeatedly. These form the “blocks” of logic employed in
describing and constructing an architecture; these are herein referred
to as “features” of an architecture. As we proceed, the fundamental
features that are now somewhat briefly introduced, in an overview of
their properties, will eventually be interconnected to form the mean-
ingful groups collectively referred to as a computer’s architecture.

There is a subtle relationship between architecture and software.
The instruction-set capability is embedded in the architectural fea-
tures—a fact that places a limit on software performance. This is
important nowadays, when software and application objectives are
considered before prescribing the requisite architectural arrangement
of the features. The hardware design of the VAX family of computers,
for example, was designed with certain software-performance objec-
tives in mind. Since we have to start somewhere, we shall introduce the
applicable basic terminology, devices, and features to arrive at the
architectural structures common to computers, microprocessors, and
dedicated processors and controllers. From this base, one should gain
some understanding of the analysis and implementation of a given
processor’s architecture discussed in the subsequent chapters.

It should be noted that the greatest cost associated with comput-
ing is that of software development and maintenance—the pain never
goes away. Thus, a “good” architecture supplies the vehicle for the
development of useful and enduring software. Plentiful software is the
reason some older systems (poor ones included) refuse to fade away.
Software and operating-systems development is expensive. Microproc-
essors have affected this situation in a strange way. The manufacturer
frequently markets devices, not software systems. The end user is
tempted to use the microprocessor chip for which the most software is
available—whatever the source. Thus, we see that, in gaining an under-

34

BUSES, DATA PATHS, GATES, AND BUFFERS

BUSES, DATA PATHS, GATES,

standing of the architectural features of processors, we become better
prepared to cope with the interrelated hardware and software
problems. This chapter, Chapter 3, and Chapter 4 are primarily for the
benefit of the more software-oriented student. The final goal is to dis-
pel the mystique that unfortunately still surrounds the internal struc-
ture and functioning of processors. By this means, we can bring both
hardware and software interests closer.

Finally, some comments on our approach in this chapter are in
order. While some exposure to and knowledge of logic devices is pre-
sumed, it is not always assumed in this text that one actually possesses
hardware experience. This is not intended as a first course in logic
design. The basic nature of fundamental logic elements is described
here in a manner intended to help one visualize their function and, in
so doing, to become comfortable with them. The reader should possess
a TTL 7400 series logic family data catalog from the very outset. This
is essential. As noted, the basic devices and building blocks described
in the TTL data catalogs will be combined to produce the more sophis-
ticated logic structures of which an architecture consists. The emphasis
is on the logical behavior of these computing structures, as opposed to
the electronics-design details of a particular device or system. It is nec-
essary, though, to explain logical computing structures in terms of the
familiar and commercially available small- and medium-scale TTL and
MOS logic devices available to you at any electronics parts store.

One soon learns that the features associated with the basic com-
mercial logic devices described in the manufacturer’s data catalogs, are—
logically speaking—the same features utilized in a microprocessor’s
design. It can be demonstrated that the microprocessor evolved out of
the ability to incorporate more and more of these basic features into a
monolithic circuit. Thus, from a study of these readily available devices,
one can gain an intuitive understanding of how Very Large Scale Inte-
grated (VLSI) processor systems are organized and how they function.
This is also good basic preparation for gaining an understanding of the
data sheets on microprocessors and programmable support logic, such
as communications, disk, printer, and input/output controllers. They
too are processors. Thus there is a big picture out there, consisting of an
understanding of the shared features of programmable processors and
the reader’s willingness to consult their data sheets.

An important point is that the task of gaining an understanding of
hardware is not hard. However, you must be willing to study the informa-
tion in data catalogs on your own. From a study of these basic logic
devices, you gain the ability to understand both function and performance
in processor systems, such as microprocessors, communications devices,
etc. By taking the time to really understand the functioning of about ren
reudily available IC’s and the way they are used in a systems context at the
end of this text, you can gain a strong hardware understanding of what
computer architecture is about. The 4-bit microprocessor we shall build
and work with is capable of demonstrating the operation of most instruc-
tion types, as well as several addressing modes, if you are willing to
microprogram it. First, we must learn to understand it.

AND BUFFERS

We shall start by forming a visual image of a total busing structure,
followed by a overview of the operating principles of typical devices

Features and Architecture of Processors

35

BUS SIGNAL PATH

/ - .-
TO
"n (PASSIVE CONDUCTORS) OTHER
y n TAPS
/ln
DRIVER BUFFER RECEIVER BUFFER
GATES (OPTIONAL) GATES (OPTIONAL)
SOURCE SELECTION CONTROL SINK DISTRIBUTION
(MULTIPLEXING) / SYSTEM ,’ +| (DEMULTIPLEXING)
METHOD P SIGNALS q METHOD (OPTIONALLY,
' COMBINATIONAL
] l | | ¥ ‘ ‘ LOGIC)
I I ‘ Il”) T I I
/
L - I
A LOAD , ,
n ENABLE
1 n SIGNALS A" e
SOURCE e o e |SOURCE REQUIRED SINK e o o > SINK
I 0 l—1> M 0
| 1 14
SYSTEM MASTER CLOCK SIGNAL
Figure 2-1 used at bus interfaces. A bus may be defined as a data path containing

Bus System Block Diagram

Bus CONTROL

one or more transmission lines over which information is transmitted
in a coordinated manner. Usually, a bus is time-shared by several
sources of information and will have one or more recipients, or sinks,
of the information it handles. A general block diagram of a bus’s struc-
ture is presented in Figure 2-1. More than one data-source selection
block, like the one shown in the figure, may interface with the bus at its
taps. This characterizes only the path from any one source to any of
the chosen sinks. Where a single tap contains both sources and sinks,
we say that it has bidirectional properties.

Associated with the bus are control signals emanating from the proces-
sor’s control system. These control signals coordinate the activity on
the bus. We are discussing clock-driven (synchronous) systems. The
control-system signals decide which single potential source to the bus
becomes the master of the bus during the current clock period. When
the selected source or its data selector (also called a multiplexer) does
not have the necessary power to drive the bus lines, a power-amplify-
ing driver called a buffer may be used to speed up signal-level transi-
tions. In some systems, receiver-buffer gates are optionally used to
detect the driven signal. The use of combinational-logic data dis-
tributers (called demultiplexers) to sort out which sink will receive the
bus information is seldom employed in large-scale current practice.
What is commonly used are a set of signals, as noted in the figure. One
of these is the control system master clock signal, which is distributed
over a common line to the clock input of each sink register. The other
elements of this set of signals are the separate control system load-
enable signals, one for each sink. The control system may enable none
or several sinks to receive information in any one time frame. This sep-
arate enable and common clocking is typical practice. If not enabled, a

36

BUSES, DATA PATHS, GATES, AND BUFFERS

LOGIC GATE CHARACTERIZATIONS

particular sink ignores the clock. If enabled, it stores the current
period’s bus information.

A bus system, then, is simply an associated passive bundle of
wires, traces on a printed circuit board, or deposited sets of conductors
within an integrated circuit. Associated with it are control-system-
driven source- and sink-selection signals. When driven by a selected
source, each line of the bus presents its information to all the sinks
simultaneously. Note that there can be only one source acting as
master of the bus at a particular moment; in principle, there are no
limitations to the number of sinks that may receive information from
the bus. The load-enable signals from the control system dictate which
sink(s) shall respond to the clock in the current period and thus store
the information at their inputs. For clarity, the slash (/) and an associ-
ated number are used in the figures when the bus contains more than a
single line. Thus —/~, indicates an eight-line bus.

Above we have characterized a bus system. This is a simple but
effective picture of what a bus is. Henceforth, when we speak of a bus,
this image should be recalled. Two basic but important tools (charac-
terization and visualization) for understanding digital systems architec-
ture have thus been introduced in this bus-organization example. By
characterization, we mean the understanding of the basic functional
and behavioral nature of the things we are talking about, perhaps in an
analogy. It is not at all necessary to understand semiconductor-design
details completely in order to understand computers. However, we
must be able to adequately characterize and visualize the system’s com-
ponents in our own minds. Putting these characterized components
together visually as a meaningful system is the essence of computer-
systems comprehension—and of what follows here. Some students may
be new to this way of thinking, so remember that characterization and
visualization are two major keys to understanding processor systems
behavior. Computers should always be approached from a systems
point of view.

A brief aside: Microprogramming was originally defined by
M.V. Wilkes as “a rational approach to the design of a computer’s
control system.” We shall discuss microprogrammed system-design
principles later in detail. It enters the scene here, since the bus-con-
trol signals mentioned above often come from a microprogrammed
controller. Sometimes the microprogrammer is responsible for
enforcing the single-source rule. The microprogrammer is always
responsible for the selection of the sinks that receive information at
the end of the current period. Bus control is an important aspect of
microprogramming, and the microprogrammer must always have an
image of the system in mind. The preceding presented one way to
visualize a bus. Let us now look at the principles, characterizations,
and terminology behind the design details of the physical devices
within a busing structure.

A fundamental appreciation of the nature of these devices substan-
tially reduces hardware fright. The logic gate is the basic building
block of interest. The major structural features of a logic gate are
shown in Figure 2-2. These consist of a control section (receiving both
external data and—in some cases—control inputs), followed by an

Features and Architecture of Processors

37

POWER
SUPPLY VOLTAGE CONTROLLED - TYPICALLY MOS

NOTE: CURRENT CONTROLLED - TYPICALLY BJT

|

pR—

LOGIC —
(DATA) § —™

INPUT(S) | —™
——

-#‘
CONTROL J __]
INPUT(S) ,

CONTROL
| SECTION
(CURRENT
OR
VOLTAGE
TYPE)

Figure 2-2

DIRECTION OF MAJOR —
CURRENT FLOW L | FAN-OUT
AMPLIFIER > TO
DRIVEN
LOADS

A, ————
CURRENT SOURCE LOGIC

Logic Gate—Typical

Organization

,L B. -———
CURRENT SINK LOGIC

amplifier. This amplifier may be cither an inverting or noninverting
one~—the choice is design-dependent. The control section is either cur-
rent- or voltage-controlled. Current-controlling inputs are typical of
the Bipolar Junction Transistor (BJT) logic families, such as Transis-
tor-Transistor Logic (TTL) and Emitter Coupled Logic (ECL). Volt-
age-controlling inputs are typical of the Metal Oxide Semiconductor
(MOS) transistor families, such as PMOS, NMOS, and CMOS. What-
ever the type of input control, the output must have the necessary
power to source or sink current on the driven line, to obtain the
desired speed of response at the output. All logic modules can both
source (feed onto a line) and sink (drain from a line) current. As noted,
though, current-source logic primarily drives current down the line;
current-sink logic primarily drains it from the line.

Briefly, look ahead at the components in the basic 7400 TTL
NAND gate, Figure 2-4. It is composed of resistors, transistors, and
diodes. The diodes are disguised as an intrinsic part of the multiple-
emitter input transistor. This structure simply means that the input
transistor is being used as a diode-logic gate. We need to characterize
the nature of these components to understand their computer system’s
behaviorial characteristics. We start with the resistor, symbolically
shown in Figure 2-3a. By analogy, the resistor restricts the flow of elec-
tricity—as a restriction in a pipe limits the flow of water. The resistor is
often used to limit the flow of current to avoid damage from improper
short circuits. The resistor is thus characterized, for our purposes, as a
restrictor or current limiter. It has other uses, but these need not con-
cern us now.

How does one characterize a diode? Its electrical and analog
symbols are shown in Figure 2-3b. In semiconductor terms, it is a junc-
tion of p and n-type silicon materials. More important to our under-
standing of its nature, the diode’s behavior is analogous to that of a
check or one-way valve in a pipe. Water (electricity) flows in one direc-
tion if the pressure (electrical potential or voltage) is high enough to
open the valve. High pressure on the opposite side only causes the

38

BUSES, DATA PATHS, GATES, AND BUFFERS

DEVICE

A. RESISTOR

B. DIODE

C. BJT TRANSISTOR

D. MOS TRANSISTOR

Figure 2-3

Characterizations of Basic

Electrical Devices

ELECTRICAL ANALOG EQUIVALENTS
SYMBOL
4\/\/\/\/_ —_— RESTRICTOR
/ (OR VALVE)
p[’n
: —_— \ CHECK VALVE
OR ‘
]
—d pln}—
C
COLLECTOR
(C) BACK-TO-BACK
l B DIODES
BASE (B) CONTROLLED
I CURRENT E
INPUT CONTR(m
CURRENT
EMITTER OR OR
(E)
NOTE: THE COLLECTOR C
CAN SERVE AS A SWITCH
DIODE IN SOME o (ACTUATED BY
APPLICATIONS B CURRENT FROM
CONTROLLER)
E
SWITCH
(G) (ACTUATED BY
CONTROLLED - VOLTAGE FROM
GATE (OQ) CURRENT CONTROLLER)
(VOLTAGE I
CONTROL)

(VOLTAGE CONTROL)

BIDIRECTIONAL
FLOW PIPE VALVE
: UNIDIRECTIONAL
B e

FLOW PIPE VALVE
OR -~
-t

valve to seat, thus sealing off all fluid flow. The diode, for our pur-
poses, is characterized as an electrical one-way check valve. The flow

of conventional current takes place in the direction of the arrow in the
symbol when the voltage at the base of the arrow is great enough to
“open the valve.” (This is usually about 0.7 volts for silicon diodes.)
When this is done, we say that the diode is forward-biased. A high volt-
age difference of the opposite polarity does not cause current to flow—

Features and Architecture of Processors

39

within reason: let’s not destroy the device! Under these conditions, we
refer to the diode as being back-biased.

The BJT is often characterized as two diodes, back to back. As
shown in Figure 2-3c, the usual symbol for this device uses the arrow
to indicate the diode we refer to as the emitter. In fact, the collector is
simply another diode that shares a common junction with the emitter—
which is the so-called base of the transistor. If the base is at a relatively
high voltage, in the type illustrated, current flows through whichever
diode has the lower potential—be it the emitter or collector. This is not
what is referred to as transistor action, but it does illustrate the fact
that transistors are often used as diodes in an IC’s design. As such, they
often serve as diode-based logic gates at a device’s inputs.

When transistor action prevails in the BJT, the structure behaves
as a current-controlled current amplifier. The amount of input (base)
current determines which of the three operating regions the transistor
is in. In the active region, the transistor acts as a linear amplifier, which
is not relevant to a description of the output’s interface behavior in a
logic gate. In digital circuits, the output transistors of the amplifier are
driven either into the full “on” (saturated) region or into the full “off”
(cutoff) region. This brings us to yet another way in which we may
characterize the transistor. That is as a current-controlled switch in the
BJT family of transistors and as a voltage-controlled switch in the
MOS family. This means that the physics and electronics of transistors
are often reducible to the analog of the current- or voltage-controlled
switch when we are examining the resultant behavior of the output circuits
of digital systems.

The Metal Oxide Semiconductor (MOS) transistor is character-
ized in Figure 2-3d. (It will soon be discussed in detail.) For now, let us
state that we can visualize it as a voltage-controlled switch, for the uni-
directional control of current flow, as the BJT is. For our switching
purposes, the valve is either fully open or fully closed. Thus its action
is the same as that of a switch that supports bidirectional current flow.
A second use of MOS transistors is as voltage-controlled bidirectional
gate valves that manage current flow. In this case, the direction of flow
is.determined solely by which side of the valve is at the higher “pres-
sure” (voltage), as illustrated.

To illustrate the preceding, let us first look at the equivalent cir-
cuit of a basic TTL NAND gate, Figure 2-4. Transistor Q1 of Figure 2-
4a is used not as a transistor but as multiple-emitter diodes placed
back to back with a single collector diode. This structure forms a diode
AND gate (if the high voltage level is interpreted as the “true” condi-
tion). Only if all the logic inputs are at the relatively high voltage level,
H, does current flow through the collector diode of Q1 to drive the
base of Q2, switching it on. The voltage at the top of resistor R3 is
driven up by the flow of current, causing some current to be fed to the
base of Q3, switching it on, in turn. Note that, in addition, Q2 is also
diverting current away from the base of Q4. Thus, Q3 is now in satura-
tion while Q4 is cut off. Q3 is sinking current from the gate’s output to
ground and may be thought of as a low impedance path to ground.
This path handles the current supplied to the output by the equivalent
of resistor R1 contained in other devices driven by this one, and any
charge stored in the parasitic capacitances of the driven line.

Conversely, if any one of the input diodes is held at the relatively
low voltage, L, current is diverted away from the base of Q2. The result
is that Q3 is no'v cut off, and Q4 is driven on. The analysis of this situ-

BUSES, DATA PATHS, GATES, AND BURFERS

SUPPLY
iﬁvcc
RI R2
a
=
A TN
~
T+
B T3 Z OUTPUT
DIODE © Q3
LOGIC
GATE ‘
QD /7 GROUND

b. Characterized Circuit

a. Equivalent Circuit

Figure 2-4
Basic TTL Logic Gate: NAND

ation requires circuit expertise beyond our current scope. Resistor R2
is chosen as a compromise between the conflicting desires to protect
against short circuits and yet provide as low an impedance path as pos-
sible between the supply voltage, Vcc, and the driven line. The current
sourced to the line from a single input is much lower than the total
sink-current capacity of Q3, due to the high impedance resistor, R1, in
the driven multiple-emitter input circuit. Nothing, however, protects
Q3 of the output except the common sense of the user in limiting the
total sink current arriving from all external sources. In summary, we
note that this NAND gate really consists of a diode AND gate fol-
lowed by an inverting amplifier. Thus, the NAND gate is treated as an
AND-NOT gate, but only when the high voltage level is designated as
the “true” level. «

Observe that the output consists of one transistor atop another,
both acting as switches. This important structure, referred to as a forem
pole, is found very frequently in digital-logic devices. When serving as
a logic gate, the two transistors of the totem pole are always mutually
exclusive. That is, if one is on, then the other is off, and vice versa. The
characterized model of Figure 2-4b summarizes all this. In characteriz-
ing these computer components, we are particularly concerned with
the nature of the input and output interfaces. Everything that lies
between these often can be referred to simply as the “guss” of the
device in question. That is, we must understand a device’s overall func-
tion; but what electronics lies between the input and output requires
only an intuitive understanding for systems-application purposes. It is
important to visualize the output as a tap that sits between the two
switches of a totem pole, which also contains a current-limiting resistor
at the top.

ACTIVITY LEVELS VERSUS ELECTRICAL LEVELS

Either of the two voltage levels, H or L, can be designated as the true
logic level. This choice is made by the user. The important connota-
tions of this fact are often confusing to beginners. Let us try to clear
this up by adopting the following conventions: In this text, the true
level is always referred to as a logic 1, and it may be either the high
or the low voltage. Once the true level is selected, the other voltage

Features and Architecture of Processors

41

DEVICE'S INVARIANT

ELECTRICAL CHARACTERISTICS

RESULTING LOGICAL BEHAVIOR

VS.
ADOPTED LOGICAL ACTIVITY LEVEL

INPUTS|| ouTPUT
Al B f
L| L H
A — B
L|H H f, f,
B— A
H| L H
H| H L
b. GATE SYMBOL FOR ¢. GATE SYMBOL FOR
POSITIVE LOGIC NEGATIVE LOGIC
a. ELECTRICAL LEVEL APPLICATION APPLICATION
CHARACTERISTICS TABLE, (ACTIVE HIGH) (ACTIVE LOW)

TTL NAND GATE

(SEE FIG. 2-4)

H = HIGH LOGIC VOLTAGE LEVEL
L = LOW LOGIC VOLTAGE LEVEL

Figure 2-5

Dual Logical Behavior of TTL

NAND Gate

level becomes the false, or logic-0 level. Much confusion can be over-
come by relating 1 and 0 only to true and false, respectively. When
the H level is selected as 1, we have what is termed a positive, or
active-high, logic system. If the L level is designated as 1, we have a
negative, or active-low, logic system. There are far more negative logic
signals at a processor’s interface than the beginner suspects. We shall
work with active-low logic signals later. There is no avoiding them in
practice. '

The consequences of the choice of the activity level to be applied
in a logic device can be substantial. It may come as a surprise to the
reader to learn that there is, in reality, no such a thing as a NAND
gate. There is only a NAND function, performed by a physical device
for one chosen activity level. If we think about the device of Figure 2-4
again, we see that it can be truly and consistently characterized by its
electrical behavior only as a device whose output must be high when
any of its inputs are low. Figure 2-5 presents a characteristics table for
this device’s electrical levels of L and H. In the context of a positive-
logic system, this produces the NAND function. In a negative-logic
system, it yields the NOR function. This electrical-level form of table
is often used in data manuals, as it is the only consistent way to
describe a device’s physical behavior. Logical behavior depends on
whether the active-high or the active-low logic convention has been
chosen.

Conversion of the H’s and L’s to the 1s and Os of a selected activ-
ity-level convention of this and other logic gates is an important exer-
cise in the problem set, to let the reader discover what functions the 1s
and Os produce for each chosen logical activity level. First, though, one
must determine the electrical-level characteristics of a device in terms
of H’s and L’s—since that is its real physical characteristic. This is done
in the laboratory by applying all possible input combinations to the
device, while recording the associated output response in terms of H’s
and L’s. The logic function performed is a consequence of the logical
activity level we later choose when we employ the device.

42 BUSES, DATA PATHS, GATES, AND BUFFERS

Figure 2-6 (T3) -
NMOS Transistor Structure n___ ¢
s e D s
and Biasing l [+ [- DIRECTION OF CURRENT
pa 0 FLOW DEPENDS ON

RELATIVE VOLTAGE
BETWEEN T1 AND T2.

b. Biasing for Channel Enhance-

ment (May Be Used as a DRAIN
Transmission Gate) (T1 OR T2)
D
ISOLATING
DIELECTRIC SUBSTRATE
(Si0,) GATE
(T3)
g e
“CHANNEL" — S
p TYPE SUBSTRATE -
SOURCE
-5 (T1 OR T2)
CONDUCTOR
¢. NMOS Transistor Gate Sym-
a. Simplified Device Structure bol with Enhancement Mode
Cross-Section Biasing

Further, by consistently treating logic 1 and 0 as true and false,
respectively, we can correctly perform arithmetic computations in
either positive or negative logic systems. In the arithmetic problems in
this text, the binary digits 0 and 1 are always associated with logic-0
and logic-1 truth levels, respectively. In summary, the H and L tables
consistently characterize device physical behavior, regardless of the
selected logical-activity level used. On the other hand, 1s and Os char-
acterize only truth-value behavior for a selected and known logical-
activity level. We consistently maintain these distinctions in this text.

MOS LOGIC CHARACTERIZATIONS

The MOS family of transistors generally consists of low-power devices,
often requiring auxiliary buffers. Most processor-type IC’s employ
MOS technology, including MOS bus interfaces. An understanding of
their fundamental means of operation is useful. They may be imple-
mented in a variety of ways. One basic manner widely used in logic
devices is illustrated in Figure 2-6. The voltage-controlled device in
this figure is an n-channel enhancement-mode Metal Oxide Semiconduc-
tor Field Effect Transistor (MOSFET). It was created by starting with a
piece of p-type silicon, into which two n-type silicon pockets were dif-
fused. The n and the p refer to the type of majority charge carriers pre-
sent in this region, negative electrons or positive “holes,” respectively.
An insulating metal-oxide layer is then deposited over the top surface,
except for the conducting pads T1 and T2. A third conducting pad, T3,
is applied over the insulating dielectric to form the gate of the device.
The gate and the substrate, separated by the insulator, form a “capaci-
tor.”

Features and Architecture of Processors

43

Note:

Q1 USED
AS A
RESISTOR

e o

77

a. Simple MOS Logic Gate

Figure 2-7
MOS Logic Gate: Simplified
Enhancement Mode Operation

—

INPUTS —|VOLTAGE
__|CON-
—{TROLLED|. _

H 1“GUTS”

ool ol I ol B ol |
ool I ol e ol Il | -~
[l Bl Kl le-

»

c. Characterized MOS Logic Gate

b. Electrical Level Characteristics
Table

Whatever polarity of voltage is applied between T1 and T2
(assuming T3 is open), no current flows because of the back-to-back
diode behavior of the n-p-n path between T1 and T2. One of these
diodes is always back-biased. The gate is capable of affecting the chan-
nel region between the two n-type regions, making the device conduc-
tive. If a positive voltage is applied to the gate, electrons (n-type
minority charge carriers always exist in a p-type region) are attracted
to the channel area, which is the other plate of the capacitor. This is
called the enhancement, or formation, of the channel. In enhancing the
channel, we have converted the former n-p-n structure to an n-n-n
structure. Thus, the diode behavior no longer applies, and there is a
current-conducting path between T1 and T2, as shown in Figure 2-6b.

An important result is that the direction of current flow depends
only on the polarity of the voltage between T1 and T2. We have thus
created the transmission gate, which supports bidirectional current
flow. When this same device is refined in manufacture to handle pri-
marily one direction of current flow, one end (T1 or T2) is optimized to
become the source of charge carriers; this end is referred to as the
source. The carrier-receiving end is called the drain. This modified form
of construction is common when the device is to be used as an MOS
transistor. Let us now connect both the substrate terminal (Figure 2-
6¢) and the source to the negative pole of a battery. The battery’s posi-
tive pole drives the gate. Since the gate dielectric has extremely high
resistance—on the order of 10'* ohms—no appreciable current flows
between the gate and the channel. Still, the channel is enhanced and
therefore is capable of conduction. Thus, an input gate voltage con-
trols the flow of channel current. This basic structure serves in two
ways: first, as a bilateral-current-flow transmission gate and, second, as
a unilateral-current-flow MOS transistor. The difference lies solely in
the manner of use. For digital circuits, both may be characterized as
behaving like a swirch. Where current flow is regulated in both direc-
tions, as in analog gates, the structure can be compared to a voltage-
controlled valve.

Several of these devices can be used to form a logic gate, Figure
2-7a. Simplified MOS-transistor symbols are used in the illustration.
Transistor Q1 is the MOS-technology equivalent of a current-limiting
resistor. Since the gate is always connected to the source and the power
supply, the channel of this transistor is always enhanced. The current

BUSES, DATA PATHS, GATES, AND BUFFERS

TRI-STATE CHARACTERIZATIONS

flow is limited by the intrinsic resistance of the channel, which is
designed to limit current flow sufficiently to avoid harm. Current flow
at the output of this gate is always a possibility. If either input A or B
is pulled high, the current of Q1 is diverted from the output, f, and
shunted to ground. The result is a low output voltage, used to control
other gates or devices. When this gate is used within a positive-logic
system, it produces the NOR function. The electrical-level-characteris-
tics table of Figure 2-7b characterizes the device’s physical behavior in
actual practice. The logic function actually performed depends on the
logical-activity-level convention adopted. Again, we see that the charac-
terization of logic devices starts with their observed electrical behavior,
expressed in terms of electrical levels. Boolean logic functions, where
relevant, are derived from this. .

This has been a functional explanation of just one of the many
FET technology families, which are similar in nature: all share the
advantages of simplicity, low cost, high packaging density, low power
consumption, and ease of fabrication. Coupled with reasonable speed
of response, these factors have contributed to the wide use of MOS-
FET’s in the manufacture of LSI and VLSI processors and memory
systems. We have seen the MOS transistor used as a transmission gate,
as a logic gate, and as a resistor. All these forms are frequently used. In
looking at the structure of MOS interfaces to the outside world, we
shall also find the ubiquitous totem pole formed with MOS devices. It
is apparent from Figure 2-7c that the patterns we are learning to visu-
alize contain a good deal of repetition. Here, a MOS logic gate (shown
with totem-pole outputs, as most commercial IC gates are) has almost
the same characterization as that of the BJT logic gate. The *“guts” now
manage voltage-controlled switches, and the current-limiting resistor
of the output is, in reality, a disguised MOS transistor whose source
and gate are connected.

As the use of bus structures evolved, it became necessary to
develop new techniques of interfacing logic gates to them. One impor-
tant technique was the development of methods for time-sharing a bus
among several sources. Let us look at the modifications to the inverting
gate that make it useful as a time-sharing structure. It is referred to as
the tri-state (or 3-state) gate. The third state is not a logical ievel but,
as we shall see, a state of electrical isolation.

If the inputs of the previously discussed NAND gate are tied together,
the result is the simple inverter. Looking at the output structure of the
gate, we notice that it consists of the totem-pole structure. Let us focus
on the BJT NAND gate, to demonstrate its transformation into the tri-
state interface. As presented so far, transistors Q3 and Q4 of Figure 2-
4 occupy mutually exclusive states. That is, if one is on, the other is off.
If both could be turned off simultaneously, then the gate’s output pin
would be electrically isolated from both power and ground by the very
high impedance of both off transistors. As far as the driven line is con-
cerned, it is as if the gate is nonexistent, because of the high impedance
of its output. Figure 2-8 illustrates the conversion of a TTL inverting
gate into a tri-state buffer. An extra level of inversion would produce a
noninverting buffer.

Features and Architecture of Processors

45

v(‘(’
Py ° 0 LOGIC | DISABLE T
INPUT JCONTRO OUTPUT
L
D
H L
Ql Q4
L H HI-Z
OUTPUT H H HI-Z
Q2
E ” g 6 b. Electrical Level
RS Q Q3 Characteristics Table
ENABLE
(TRI-STATE CONTROL)
GROUND
—0
a. Schematic
Py,
D
: DATA
D ——2 HIZ
OUTPUT
E OUTPUT Vee “GUTS”
EXTERNAL
E —_—— BUS
ENABLE LINE
(ACTIVE LOW) TRI-STATE
CONTROL

c. Logic Symbol

Figure 2-8
Elementary Tri-State Logic
Gate (TTL)

d. Disabled Tri-State Gate

This gate was created by adding Q5 and Q6 to the circuitry of
Figure 2-4 and feeding one of the former inputs back to the collector of
Q6. What we have now gained is a buffer gate with one data input and
one tri-state control input. This last input is often referred to as an
enable input. This term relates to the enabling (or disabling) of the
gate’s capacity to pass data through to the output. When the enable
line of Figure 2-8a is low, Q6 is deprived of its base current and in con-
sequence is cut off. In this state, one emitter of Q1 is internally held
high, while the other is driven by input data. As the truth table shows,
the output is the complement of the input logic state for this inverter.
Making this line high saturates Q6, thereby pulling both the internally
connected emitter and the base of Q4 low at the same time. This action
deprives both Q3 and Q4 of their base-current drives. The net result is
that both of these transistors are cut off, and the output is electrically
isolated from both power and ground. The data-input line can no
longer influence the output. The gate is now in the Hi-Z, or high impe-

46

BUSES, DATA PATHS, GATES, AND BUFFERS

dance state. This is the state of electrical isolation, as shown in the
table of Figure 2-8b. The logic symbol used to represent the tri-state
buffer gate is presented in Figure 2-8c.

Figure 2-8d shows our simple switch-analog picture for the Hi-Z
state of the totem pole. Note that both switches are open, thus electri-
cally isolating the gate from its driven line. This is an important visual
image, since bus interfacing and multiplexing often employs this con-
struct. Time-sharing of a bus line is accomplished by enabling only one
tri-state gate per line at any one time. The same tri-stating principles
are applied to all the many semiconductor fabrication technologies
that support controlled-switch behavior.

A comment on drawing notation may help prevent confusion.
The small circle at the control input, E, tells us that it is an active-low
input. Its absence would be indicative of an active-high input. The real
purpose of the small circles on logic diagrams is to indicate active-low
inputs and outputs. Previously, we referred to the NAND gate as an
AND-NOT gate. The small circle at the output of the AND symbol
merely indicates that the preceding function (the AND) was actuated
whenever there is a low output on that line. This has the same effect as
inversion. The small circle means only that the logic function associ-
ated with it is actuated when the logic line connected to it is low. This
criterion applies to both inputs and outputs. Unfortunately, to confuse
the situation, somewhat larger circles are often shown on data-sheet
logic diagrams. They merely represent actual output pins and have no
logical significance.

These are the principles underlying tri-state operation. They
work equally well with BJT, MOS, and other technologies. The tech-
nique is ubiquitous at the interfaces of LSI and VLSI integrated cir-
cuits, particularly where bus interfaces are concerned. When devices
are not capable of delivering power, tri-state buffers (usually BJT
devices) are used both to amplify power and to permit selective ena-
bling of the outputs of the source devices onto a bus.

Tri-stating is widely used to time-share access to a bus. This tech-
nique is referred to as Time Division Multiplexing (TDM). The basic
mechanism is illustrated in Figure 2-9. Here, two selection input lines
and an output enable line drive a one-of-four decoder (also called a
demultiplexer) with active-low outputs. An example of just such a
device is the 74L.S139 IC. When enabled, only one of the selector’s out-
put lines is low at any time—corresponding to the present state of the
device’s addressing inputs. Each of the output lines in turn controls the
enabling inputs of one tri-state gate. At a given instant, therefore, only
one of these gates can be active-low enabled, to pass its data on
through to the single bus line illustrated. With this system, we are
assured that only one gate can be master of the bus at any time. If the
decoder is not enabled (E is high in this case), no source is placed on
the bus at all. That is, the bus can be totally isolated from all sources,
when desired.

Naturally, a bus with more lines would require sets of tri-state
gates, each arranged as in Figure 2-9. There will be one set of gates
per driven bus line, the number of tri-state gates being equal to the
number of sources to the line. The corresponding source enable-con-
trol lines of each gate would be tied to the related common output
from a decoder. In our example, the data inputs to the tri-state gates
come from four different sources. The control system of a processor
can now determine which one of the four sources shall present its

Features and Architecture of Processors 47
E
ENABLE INPUT
1-OF-4 be— A SELECTION
DECODER B AND CONTROL
TRI-STATE CONTROL LINES
M () 3) 4
4
DATA 3) INPUTS TRI-STATE
SOURCES () ‘ CONTROL LINES
1
(1-OF- LINES() EJfALB 11213141
FROM EACH L L L LIH]|]HI|H
SOURCE) vl
L L|H H|L]|H}H
L HJ] L H|H L |H
L{H|HJHJH]H]|L
- & o ¢ 4 I H X1 X H|H]| H]|H
DATA BUS LINE) -
(TYP., 1-OF-n) b. Electrical Characteristics
a. Logic Diagram NOTE: WHEN E IS HIGH, NO
BUS SOURCE IS SELECTED.
Figure 2-9 data to the bus line, by both enabling the selector and forcing its two

Tri-State Application Example

addressing inputs to one of their four possible states. Thus three of
the tri-state control lines are always high, isolating their correspond-
ing outputs from the bus line. The control input of one tri-state set of
buffers is low, thus permitting it to present its selected input data to
the bus line(s). This approach to time-sharing a data bus with many
sources is very flexible. Since TTL logic modules and data are likely
to be most readily available to the reader, it is used here most often,
to enable the reader to experiment with implementation examples.
Where a processor-system design is fabricated with a number of
MOS, CMOS, TTL, and other components, some details change—but
few principles do.

The ability to select no source at all is inherent in tri-state opera-
tion. Where no source is selected, it is usually best to be sure that the
driven bus assumes a known quiescent state. Noise-immunity and
power-conservation considerations lead to the selection of the electri-
cally high level for the bus in these cases. Figure 2-10 presents one
method of implementing this type of bus structure. Notice that the
individual bus lines are forced high when all connected tri-state drivers
are in the Hi-Z state, by the typical “pull-up” resistors used on each
line. Similar methodologies apply to the internal workings of IC’s, but
this figure illustrates a typical problem to be resolved in interfacing an
IC to other IC’s. Eight separate sources are shown; the A’s and B’s
indicate the possibility that they belong to different classes of devices.
Each distinct source, however, has an associated set of tri-state gates,
through which it gains access to the bus, subject to some control
scheme. The size of each set of tri-state gates for a source must relate
to the number of lines of the bus that are accessed. The design of the
system must guarantee that it does not attempt to source more lines
than the bus can handle at a given instant.

48

Bus HARDWARE, CALCULATIONS, AND DATA CATALOGS

OTHER
SOURCE/SINK
conTroL | CONTROL BUS UL \‘/ch)
SYSTEM { SOURCE : . .
v E RESISTORS S «—TYP,,
SIGNALS ¥ cONTROL SELECTOR/ EACH LINE
BUS 3 DECODER |
ADDRESS ! -
—-ﬁ
L’
TRI-STATE DECODED 18 '
ENABLE CONTROLS P
- 7 Bl |—>¢
[3 INFOR-
MATION
A0 Al A2 A3 | B0 [—>¢ Sl(l;li{(
‘\TRI-STATABLE SOURCE
SOURCES r__,
- A
§ DATA BUS
Figure 2-10 Thus far, this chapter has been a general review of the characteri-

Tri-State Bus-Sourcing
Control Block Diagram

zation and visualization of some of the functional blocks and compo-
nents of a computer busing structure. We have also examined how to
visualize the application of these blocks and components in forming a
bus system. In a following section, we shall look at the specifications
for a few typical devices used in bus interfaces. These are available at
your local electronics-parts shop and may be used for experimentation.
The following section briefly discusses the bus calculations required
for proper application of IC devices. These calculations begin to dis-
close the considerations involved in interfacing, say, MOS microproc-
essors with external buses.

BUS HARDWARE, CALCULATIONS, AND DATA CATALOGS

We shall now examine some typical examples of commercial hardware

available to us for use in a data-path construct. The electrically high

state of the quiescent bus is maintained by “pull-up” resistors to the
power supply. These resistors are supplied in easy-to-use packages,
such as the Dual In-line Packages (DIP) used for other IC’s, as shown
in the schematic of Figure 2-11. Typically, there can be fifteen resistors
in a 16-pin DIP, where the last pin is a common connecter to the
power supply. In other modules, each resistor is treated as a separate
unit, with pin connections at both ends.

The following IC data sheets contain a great deal of useful and
practical information; the sheets should be studied in detail as we pro-
ceed. Figure 2-12 presents the manufacturer’s data on a typical
decoder/selector logic module that could be used to enable the tri-state
line drivers of a bus. The 74LS138 is a low-power Schottky TTL
decoder. The properties that enhance its usefulness are lower than
standard TTL power dissipation, which improves reliability by reduc-
ing heat failures, and low input-drive requirements. The low input
drive is especially interesting. Having a large number of devices con-
nected to a bus can severely tax the driving element’s ability to handle
the current load. Many sources, such as MQS IC’s, have very limited

Features and Architecture of Processors

49

Figure 2-11
Fifteen-Resistor Array DIP
Schematic: 16-Pin DIP
Package

Note: Pin 16 is common to all
resistors.

FAN-oUT

6 7 8

drive (current sink when driving TTL) capability and can handle an
adequate number of devices only when they have low input-drive
requirements. An example of a tri-state driver that has low input/high
output-drive characteristics is the 8T97 buffer shown in Figure 2-13.

The manner in which the preceding modules may be employed is
further detailed in Figure 2-14, a schematic of a single selected source
being fed onto a data bus. Pins 1, 2, and 3 (the address inputs) of the
74138 decoder select which of its outputs is low, provided that it is
enabled. Pins 4, 5, and 6 are the enabling inputs. Should pin 6 be low,
all outputs are high, and no source is selected. Pins 4 and 5 are addi-
tional enabling inputs, but they are active only when low. This large
number of enabling inputs is useful in decoding selection addresses
aimed at the chip, as well as in expanding the number of outputs by
adding more chips. To select a device with multiple enable inputs, a//
enables must be active, whether they are active high or low. Output pin
7, as illustrated, is used as a typical tri-state buffer-control line for a
single set of gates. It drives the gate enables on pins 1 and 15 of the
8T97 modules, which control access to an eight-line bus.

There is an important difference in the enabling of a tri-statable
interface, such as the 8797, and that of a module such as the 138. The
74138 does not have a tri-state front-end interface. It possesses the
conventional totem-pole output structure. In this case, when it is dis-
abled, all outputs are forced to the electrically high state, not the Hi-Z
tri-stated state. This way, all driven tri-state active-low control lines
are actively held high when the 138 is disabled. The driven tri-state
gates of this example are in the Hi-Z state under these conditions.
Therefore, we should be aware that some disabled IC’s can be actively
driving their outputs, as opposed to disabled tri-statable ones.

The current-handling capacity of a logic module has been referred to a
number of times, already. It is important to be aware of and check this
parameter in the use of logic modules, particularly since common prac- |
tice often intermixes logic families. For example, it is common to see
MOS and one of the TTL families interfaced to each other. In techni-
cal terms, the important parameters are referred to as fan-out (FO) and
fan-in (F1). Fan-in is defined as the number of inputs a gate can sup-
port and still operate properly. A two-input NAND gate has an FI of
two. Thus we see that this parameter has already been accounted for
by the circuit designer, and we need not concern ourselves with it,

50

BuUs HARDWARE, CALCULATIONS, AND DATA CATALOGS

TTL
MmSI

TYPES SN54L5138, SN54LS139, SN548138, SN548139,
SN741S138, SN741S139, SN74S138, SN74S139

DECODERS/DEMULTIPLEXERS

BULLETIN NO. DL-S 7611804, DECEMBER 1972—REVISED OCTOBER 1976

o Designed Specifically for High-Speed:
Memory Decoders
Data Transmission Systems

e ’'S138 and 'LS138 3-to-8-Line Decoders
Incorporate 3 Enable Inputs to Simplify
Cascading and/or Data Reception

e ’'S139 and 'LS139 Contain Two Fully
Independent 2-to-4-Line Decoders/
Demultiplexers

o Schottky Clamped for High Performance

‘LS138 22ns 32 mW

'S138 8ns 245 mW

'LS139 22ns 34 mW

'$139 75ns 300 mwW
description

TYPICAL
TYPE PROPAGATION DELAY
(3 LEVELS OF LOGIC)

SN54LS138, SN64S138 ...J OR WPACKAGE
SN74LS138,SN74S138...J OR N PACKAGE
(TOP VIEW)

TYPICAL
POWER DISSIPATION

DATA OUTPUTS
/\

vece /vo v1i vz vl ve_ vs e

wispwuggnpjwlls

Yo Y Y2 v3 ve Y5

IBIEAIERIERIER IR IRAIL
A 8 C,\GlA G® G, VI GND

ouTPuT
SELECT ENABLE

positive logic: see function table

These Schottky-clamped TTL MSI circuits are

SN54LS139, SN54S5139 ... J OR W PACKAGE

designed to be used in high-performance memory-
decoding or data-routing applications requiring very
short propagation delay times. In high-performance
memory systems these decoders can be used to
minimize the effects of system decoding. When
employed with high-speed memories utilizing a fast-
enable circuit the delay times of these decoders and
the enable time of the memory are usually less than
the typical access time of the memory. This means
that the effective system delay introduced by the
Schottky-clamped system decoder is negligible.

The 'LS138 and ‘S138 decode one-of-eight lines
dependent on the conditions at the three binary
select inputs and the three enable inputs. Two
active-low and one active-high enable inputs reduce
the need for external gates or inverters when
expanding. A 24-line decoder can be implemented
without external inverters and a 32-line decoder
requires only one inverter., An enable input can be
used as a data input for demuitiplexing applications.

SN74LS139, SN74S139...J OR N PACKAGE
(TOP VIEW)

SELECT DATA QUTPUTS

Vccm?g“‘n 28 \/2v0 2v1 2v2 2v3)
wlfsijuwppnjnijweijs

G

A B YO vi_v2 ¥3
IRIRZIERIERIRRILIREIL
G A 18, IV0 Vi 1vZ V3 GND
ENABLE

SELECT DATA OUTPUTS

positive logic: see function table

The 'LS139 and 'S139 comprise two individual two-line-to-four-line decoders in a single package. The active-low enable

input can be used as a data line in demultiplexing applications.

All of these decoders/demultiplexers feature fully buffered inputs each of which represents only one normalized Series
541L.S/74LS load (‘LS138, ‘LS139) or one normalized Series 545/74S load ('S138, ‘S139) to its driving circuit. All
inputs are clamped with high-performance Schottky diodes to suppress line-ringing and simplify system design. Series
54LS and 54S devices are characterized for operation over the full military temperature range of —55°C to 125°C;
Series 74LS and 74S devices are characterized for 0°C to 70°C industrial systems.

Figure 2-12

74L.S138 and 74LS139 Data
Sheets

For educational purposes only.
Data may be old and obsolete.
Courtesy of Texas Instruments,
Inc. © 1984, Texas

1

Instruments, Inc.

TEXAS| INSTRU

NCORPORATE

MENTS

POST OFFICE BOX 5012 « DALLAS, TEXAS 75222

Features and Architecture of Processors

TYPES SN54LS138, SN545138, SN5415139, SN545139
SN741S138, SN748138, SN74LS139, SN74S139
DECODERS/DEMULTIPLEXERS

functional block diagrams and logic

'LS138, 'S138
‘L5138, 5138 FUNCTION TABLE
INPUTS
OUTPUTS
(T— »"='~ ENABLE | SELECT
Gl G2*[C B A[Y0 Y1 Y2Y3VY4 Y5Y6 Y7
- | (14)
8 >-1_>°_" X H |X X X|HHUHTHHGHTEHH
ENABLE
NPUTS | 0 =| 131y, L X |X X X|HHHHHHHH
26— B o H L (L L L{L HHHHUHIHIH
| v oar H L (L L H|[H L HHHHHH
ATA
—— iy foveurs | H L JL H LI{H H L HHHHEH
H L L H H|HHHLHHHH
At {> SIS H L [H L L|{HHHHLTHHGH
seLect @ - 3&“ H L |[H L H|HHHHHTLHH
INPUTS H L |H H L|HHHHHMHL H
2 vs H L [H H H|HHHHHHIHIL
*G2 = G2A + G28B
H = high level, L = low level, X = irrelevant
'LS139, 'S139
£ 1vo 'LS139, 'S139
m (EACH DECODER/DEMULTIPLEXER)
ENABLE 1G | LI FUNCTION TABLE
vz INPUTS
2)
<D< OUTPUTS
sewect s . - ENABLE | SELECT
INPU
o> OATA G B A|vY0VYlv2vy3
QUTPUTS H X X H H H H
HZIIVO
e L L L|L HHH
ENAELEZG—-‘& { (LIPS L L HlH L H H
:D’ﬂﬂ L H L|H HLH
Y2
L H H[H H H L
eLect ZA”“ D
ISN;UTS ZB“M D © 2v3 H = high level, L = low level, X = irrelevant
schematics of inputs and outputs
EQUIVALENT OF EACH EQUIVALENT OF EACH TYPICAL OF OUTPUTS TYPICAL OF OUTPUTS
INPUT OF 'LS138, 'LS139 INPUT OF 'S138, 'S139 OF "LS138, ‘LS139 OF 'S138, 'S139
- Vee -=———¢+—Vcc
250 2 NOM 50 2 NOM
Vee - Vee - b 1
20 k2 NOM 2.8 k2 NOM|| — ——i
INPUT - INPUT - OUTPUT OUTPUT
) 4 - -
y
pa
TEXAS INSTRUMENTS
INCORPORATED

Figure 2-12

74L.S138 and 74L.S139 Data
Sheets

For educational purposes only.
Data may be old and obsolete.
Courtesy of Texas Instruments,
Inc. © 1984, Texas
Instruments, Inc.

POST OFFICE BOX 5012 + DALLAS, TEXAS 75222

52 Bus HARDWARE, CALCULATIONS, AND DATA CATALOGS

I.OGlC PRODUCTS
HEX BUFFERSIINVERTERS 8195 96 97 98
High Speed Hex 3-State Bulfers
DESCRIPTION High Speed Hex 3-State Inverters
Each of the 3-state bus interface elements TYPE TYPICAL PROPAGATION TYPICAL SUPPLY CURRENT
described herein has low current PNP DELAY (Total)
inputs and is designed with Schottky TTL
technology for ultra high speed. The NeTes 8ns 65mA
devices are used to convert TTL/DTL or N8T96 6.5ns 59mA
MOS/CMOS to 3-state TTL bus levels. For N8T97 8ns 65mA
maximum systems flexibility, the 8795
and 8797 do so without logic inversion, N8Te8 6.5ns 59mA

whereas the 8796 and 8T98 provide the
logical complement of the input. The 8T95 ORDERING CODE

and 8796 feature a common control line
COMMERCIAL RANGES MILITARY RANGES
for all six devices, whereas the 8797 and | PACKAGES Voo =5V £5%; Tom0°C10 4 70°C | Voo =5V 2 10%; T = - 85°C to + 126°C

8T98 have control lines for four devices

from one input and two from another NBT95N . N8T96N
input. Plastic DIP | \gro7n « NBTEBN
Plastic SO N8T97D . N8T98D
FUNCTION TABLE—8T95 Ceramic DIP S8T95F . S8T98F
S8T97F
INPUTS OUTPUT
DIs, | DIS, ! Y INPUT AND OUTPUT LOADING AND FAN-OUT TABLE
L L L L PINS DESCRIPTION 8T
L L H H
X H X @ Dis Input 1Sul
H X X [v4) | Input 1Sul
L = LOW voltage level Y Output) 24Sul
H= HlGrl voitage level NOTE
é) - 3:’&',: f,:':,d,,,ce (off) state A unit I0ad (Sul) is 504A Ijy a0 - 20MA Iy .
FUNCTION TABLE—8T96 N TABLE—38T98
NPUTS OUTPUT FUNCTION TABLE—8T97 FUNCTION TA -
pis, | oIS, | Y INPUTS OUTPUT INPUTS O,UI!’UT
TR T " oIS ! Y DIs I Y
L L H L L L L L L H
X H X @ L H H L H L
H X X [F4) H X) H X)
PIN CONFIGURATION
8785 8796 ’ 87197
oS O 5] vee ois, [T €] vee oisy [&) Vec 6] Vee
w 2] 5] ois, W 5] o1, Y e [75] o1s, [75] oS,
"]) 1 Y &) 1 v 3]) 1g m
12 (] [13] ve 12 2] 73] Vo 12 [} i3] Yo 3] Vs
v2 (5] [72] 15 e 2] 15 v2 [5] [12) 15 7] 15
13 (€] MmN 1 [€] 7] ¥s 13 5] 1] vs 7] Vs
vs [7] 14 Vs [0 0] 14 3 [[70] 14 1] 14
GND [3] 5] Yo GND [5] Va GND [E] 9] vq 5] Ya

Figure 2-13 Signetics
Tri-State Line Drivers Data

Sheet

(Courtesy of Signetics

Corporation) 1984 Signetics

Corporation.)

Features and Architecture of Processors

53

1 - 15)
SELECT { —2] O—]‘:
R
3 OT CONTROL
, 12 OUTPUTS
74L8138 N L |-OF-8 ACTIVE
ENABLE 6 or
- ; 5 10 NONE ACTIVE
—0 9
| 54 7
/ +5
\4 *R
TYPICAL.
EACH
, 1IN y [LINE
8 N) | k / 8 .
SOURCE _) s) patasus
TYPICAL
() / *NOTE: R ESTABLISHES A
KNOWN ELCTRICAL
o7 (LOGIC) STATE FOR A
NONSELECTED OR QUI-
—1 ESCENT BUS.
8T97 j
MODULE K 10 / 2
\ 12 11 /
) 15
\ N 14 13
; L
Y, 8T97 |)
MODULE 157,
|\ uR
Figure 2-14 beyond an understanding of the terminology. Fan-out is another mat-

Typical Source Feed onto a
Data Bus

ter altogether. We must learn to check this parameter carefully, a pro-
cess that also gives us an appreciation of why such a large number of
buffers and other interface IC’s are required in many systems. It
should be noted that VLSI relieves the user of many of these problems
by resolving them for us within the IC. Another modern trend, that of
having custom IC’s produced, eliminates many of the user’s interfacing
problems as well. In spite of these trends, we still have to handle
interfacing considerations—be it on our home computers or in evaluat-
ing what we see in some commercial computer product.

Let us look at the calculations involved in checking drive capac-
ity at an interface. FO refers to the situation that exists while a module
is driving the inputs of other modules. Any logic module can both
source and sink current, but a module usually is designed to have good
rrent capacity in only one of these modes. Standard TTL, in fact, sinks
16 milliamps and is rated to source only 0.8 milliamps. These IC
parameters, found in a data catalog, tell us how many other modules

54

BuUs HARDWARE, CALCULATIONS, AND DATA CATALOGS

the module can drive. Fan-out restrictions are often easy to violate in
use, and the results would be comic if they were not so sad. Quantita-
tively, FO is defined as the ratio:

Current Capacity of Driver Output

FO =
Total Current Requirements of Driven Inputs

This factor should be checked whenever logic modules are interfaced.
Above, we refer to driver (output) and driven (input) pins, which are
not necessarily members of the same family of logic devices. In prac- -
tice, it comes down to ascertaining whether the driver can handle the
total current requirements of the several types of driven elements it
may be interfaced with, e.g., MOS, TTL, LSTTL, among others.
Table 2-1 summarizes these parameters for a number of devices
of different families, as an indication of the spread of values that are
encountered in practice. Several logic families are included for com-
parison of their relative drive capacities. Values from this table are
used to illustrate the following examples. Since these values vary some-
what by manufacturer, by temperature, and between different devices
of the same family, one should consult a data catalog or a manufac-
turer’s representative for precise data. These are only guidelines.

Table 2-1
FO Current Drive Parameters
. Typical

FO Calcu MOS TTL Interface 1C’s

lation Units
Parameter cMOos NMOS p

Gate Processor 74LS 74 745 7415240 8T97
Interface

| 1* =+ 10* 20 40 50 20 40 uA

I, 1* + 10* -0.36 -1.6 -2.0 -0.2 - —04 mA

Lon 2.8 -04 -04 -04 -1.0 -15 -52 ‘mA

Iy, 2.8 2.0 8 16 20 24 40 mA
Notes: 1. *Leakage

2. Caution! These parameters vary with temperature, manufacturer, and device. The values given here are only

relative guides.

Two types of fan-out must be calculated: that for the electrically
high and that for the electrically low state. In industrial terminology,
the high-state parameter is FO! and the low state parameter is FOO.
Since we already know that 0 and / are truth not electrical values, we
can use the terms FOH and FOL instead in what follows. Below are
the calculations for the 74LS, driving 74 TTL modules:

I 400 pA
FOH = —% _ RN 10
Ly 40 pA
IOL 8 mA
FOL = =—=
I, 1.6mA

What are the terms Ly, 1o, 1,5, and 1,,2 I refers to current, , to output,
and ; to input. The ,, and 4 are of course the electrical-state levels. Almost
any good logic-family data catalog contains a glossary of terms such as -
these. '

The need for the student to have a data catalog for each family of
interest cannot be emphasized enough. A good deal of software is writ-

Features and Architecture of Processors

55

BI-DIRECTIONAL BUS DRIVERS

ten for specific devices. One must start early by learning the basic data-
catalog terminology, to comprehend the data sheets that describe the
functioning of floppy-disk controller or arithmetic processor IC’s and
how to program them. As a matter of fact, much of the information in
these texts is taken verbatim from the data catalog. Why not go
straight to the source? The advanced microprocessor and peripheral-
support IC data sheets start with this type of information and proceed
to the higher levels of systems application and programming. There-
fore, we are being exposed to basic training on how to read a data cata-
log as we proceed.

We can see that the 74LS family will adequately sink current
from five 74-series standard TTL inputs. This is the lower of the two
values calculated and must be used as the limit to the number of mod-
ules that can be interfaced safely. In comparison, each 74LS138 output
must handle eight 8T97 inputs in the interface scheme presented in
Figure 2-14. Since the 8T-series module features low current sourcing
inputs, this may be possible. The calculations that follow decide this.

L, 40 A
I,, 8mA

FOL =——2% =M% _ 5
I, 04mA

In this case, the 74LS138’s fan-out of ten in the FOH state is the limit-
ing factor, assuring us that we can drive the eight inputs of the sche-
matic and satisfying the fan-out criterion.

Notice, however, that the last calculation showed FOH to be the
limiting factor, not FOL, as in the first example. All this illustrates that
interfacing considerations are a large part of the work associated with
the implementation of processors and bus systems. Again, our best
allies are the data manuals of each family being used. Here, we are
examining the nature of the bus and its associated logic modules. The
terminology learned now—and the interpretive skills gained in the pro-
cess—will carry forward into the reading of microprocessor and periph-
eral-support IC data catalogs.

An important example of another bus-module interface construct,
either internal or external to an IC, is the bidirectional bus driver. We
will illustrate the features involved with the application of an 8T26
bidirectional bus transceiver module. There are many related buffers,
such as the more modern 74LS240 through 7415245 IC modules. The
8T26 is very flexible and instructive, because it can be externally con-
nected in several different ways, where some of the possible connec-
tions of most other modules are internally committed. It offers a high
current capacity to the driven bus tap and a moderate drive capability
to the side designated as the receiver, since this side does not usually
interface to the “outside world.” Its manufacturer’s specifications are
presented in Figure 2-15.

The essential characteristics of how this bidirectional driver
may be utilized are presented in the schematic and applications of
Figure 2-16, a bus relationship between a CPU and its external mem-
ory. The control lines are used to avoid confusion as to which is

56

BUS HARDWARE, CALCULATIONS, AND DATA CATALOGS

LOGIC PRODUCTS

e High speed Schottky
quad transceivers
e 48mA LOW:-state drive
¢ 200.A bus loading
¢ |deal for:
Half-duplex data
transmission
Memory interface
butfers
Data routing in bus
oriented systems
High current drivers
MOS/CMOS-to-TTL
interface
DESCRIPTION

The 8T26A/28 consists of four pairs of
3-state logic elements configured as quad
bus drivers/receivers, along with separate
buffered receiver enable and driver enable
lines. This single IC quad transceiver de-
sign distinguishes the 8T26A/28 from con-
ventional multi-IC implementations. In
addition, the 8T26/28's ultra high speed
while driving heavy bus capacitance
(300pF) makes these devices particularly

PIN CONFIGURATION

3-State Quad ranscelver

TYPE TYPICAL PROPAGATION TYPICAL SUPPLY CURRENT
DELAY (Total)
N8T26A 7ns 48mA
N8T28 10ns 87mA

ORDERING CODE

PACKAGES | | e Ta=0"C 1o 3 70°C | Vog 5V 2 10m Tae - 89C 0 + 128°C
Plastic DIP NB8T26AN ¢ NB8T28N
Ceramic DIP S8T26AF 3 S8T28F
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE
PINS DESCRIPTION NeT seT
In Input 0.5Sul 0.5Sul
DIE, RIE Inputs 0.5Sul 0.5Sul
Dour Output 24Sul 16Sul
Rout Output 10Sul . 6Sul

NOTE
A unit load (Sul) is 50uA Iyq and -2.0mA Iy .

suitable for memory systems and bidirec-

tional data buses.

Both the driver and receiver gates have
3-State outputs and low-current PNP in-

LOGIC SYMBOL

puts. 3-State outputs provide the high
switching speeds of totem-pole TTL cir-
cuits while offering the bus capability of
open collector gates. PNP inputs reduce
input loading to 200xA maximum.

RE [T 6] vee
Royr [Z] 5] ore
Oour (5] WL

N [3] 3] 0out
Rour [£] 2] IN
Oour [€] 7] Rout

i~ (5] 1] Dour
ano [E] B

1
RIE
2 15
Rout —< l——o DIE
3 14
Dour Rout
4
Dy O——— 13
5 Dour
Rout 12
5 DN
T26A s
8726, Doyr Rout
7 \
™ o——ij wo
’ ouT
Vo = Pin 16
GND= Pin 8 oo
“ 4 IN
RIE
2 15
Rour —< I»——o DIE
3 14
Oout Rout
4
DN O—— 13
5 Dout
2 nont L] .
1Y
6 1"
Oout Rout
7 \
LY 10
Dour
Ve =Pin 16 9
GND =Pin 8 OIN

LOGIC SYMBOL (IEEE/IEC)
1
. [
2

al pzvl—s-
14

8T26A 4 ;-] "
5.4
I, t: } 6
i1
D "
1_nfent
15__len2
. I

AvA

L DZVL

8T28 »
] |2
S [
1-.-_‘ Pt
n 10
1

Figure 2-15a

Tri-State Quad Bus
Transceiver Data Sheet
(Courtesy of Signetics
Corporation © 1984 Signetics
Corporation.)

i

Features and Architecture of Processors

57

TYPICAL APPLICATION
BIDIRECTIONAL DATA BUS
Fr——————————- 1 pemmmmemm————
| E
REC. | o REC.
our | our
[}
BUS :C j BUS
- IN o_!—@ 1 ' © ™
| , 4
REC. REC.
our © ! é ‘ I © our
. l b
8uUS i)C BUS
o [I ' 5 © W
REC. | REC.
out | | outr
BUS 1 1 8us
N Tt éj O w
REC. 5 | | l _D o REC
ourt | l | our
BUS N ° B8US
IN | I] T IN
FET O S
OTHERS8T26s | Lop e g
OR BUS ORIENTED
CIRCUITS 1 15
Control lines may be tied together. such that Logical "0" =active Logical "1 = active
logical "1” transmit. logical “0"" receive Logical “11"=Hiz Logical “0" = Hi-z
Signetics

Figure 2-15b

Tri-State Quad Bus
Transceiver Data Sheet
(Courtesy of Signetics
Corporation ©) 1984 Signetics
Corporation.)

master of the bus. They must be properly coordinated by the micro-
processor’s CPU control signals in the application. The CPU pos--
sesses the ability to tell the external bus driver whether it wants to
read or write memory, either directly or through decoding logic.
These signals manage the tri-state bus driver’s bidirectional behavior.
In this example, each end of the bus is connected in a different man-
ner. Note that the CPU’s bus interface is connected both to the
receiver output and to the driver input and that proper tri-stating
prevents electrical confusion. This is termed single-port, or common,
I70. Some memory systems have dual-port I/0. That is, some mod-
ules have separate inputs and outputs, as opposed to the common
170 of the CPU. In this case, the 8T26 has the flexibility to be used
in both cases, as illustrated at the memory interface. Follow the
direction-control logic action to observe how conflicts are avoided on
a typical line of a bidirectional bus system.

We will not go into the details of noise immunity, voltage mar-
gins, and other design criteria in this text, important as they are,
because this book is aimed at a general readership, not only designers,
for the purpose of providing an understanding of how a processor
functions internally for microprogramming purposes. The goal is to
enable one to recognize that hardware organization and software oper-
ation are really one unified subject. Fan-out is discussed because that
is one design criterion that even the home hobbyist must handle, and
as an insight into design specifics in hardware organization. If the fan-
out criteria are observed, other considerations are generally not vio-
lated.

58

MULTIPLEXING AND DEMULTIPLEXING

RECEIVER GATES ENABLE (ACTIVE LOW)

MEMORY
SEPf)gATE\ DATA BIT DATA BIT
IN OUT
___ TO OTHER DIRECTION s
GATES CONTROL
_ 8T26
IN'IC
2 COMMON
RECEIVER W/R
OUTPUT
4 wP
O DRIVER
DRIVER OUTPUT CPU
INPUT DATA BUS
——— TO OTHER 415
GATES IN IC DRIVER
CONTROL
DRIVER
GATES ENABLE SAMPLE APPLICATION (ONE BUS LINE)
(ACTIVE HIGH) NOTE: RECEIVER/DRIVER CONTROL IS MANAGED
5 BY CPU SYSTEM, TYPICALLY WITH A SINGLE
LOGIC SCHEMATIC WRITE/READ (W/R) CONTROL SIGNAL.
(SINGLE TRANSCEIVER)
Figure 2-16

Bus Transceiver: Schematic
and Application Example

The advanced hardware considerations have been kept to the
minimum that still enables us to practice computer “architecture” (vs.
design) as we proceed. The reading of data manuals has been empha-
sized as essential to practicing modern computer architecture,
microprogramming, and systems organization. It is also essential in the
development of systems software. Knowledge obtained from manufac-
turer’s data manuals, which often include software examples for the
programmable devices, gradually creates an awareness of the many
other factors that cannot be adequately treated here, lest we bury our
main points in extraneous detail. The TTL data catalog is basic train-
ing for these future purposes.

In summation, we have seen that the organization of sources
and sinks around a data path that employs gates, tri-state drivers,
selection modules, load enable signals, and a system clock are basi-
cally what a bus system is composed of. Some additional elements
are introduced as we proceed, but fundamentally, we have already
seen a busing system. The visual image of a bus system as a commu-
nication network is important. The bus has been referred to as the
“skeleton” of a computer system, around which the system itself is
constructed. Certainly, it is the communication structure through
which the computer system operates, by relating to its elements in
the structured manner managed by the control system. The concept
of the skeletal functioning of buses in systems structure even extends
to distributed processing systems via their networks. The topic is of
such importance that the federal government issues standards on
busing systems organization. The Anderson and Jensen article listed
in the References, on the taxonomy and characteristics of computer
interconnection structures (buses), offers an excellent perspective on
systems-interconnection methodology.

Features and Architecture of Processors 59

MULTIPLEXING AND DEMULTIPLEXING

We have already referred to the use of multiplexing (MPX) as a
method for time-sharing a communications channel. The main exam-
ple given so far was the tri-stating of buses, as detailed in the previous
section. Multiplexing can be implemented in several ways. In commu-
nications, Frequency Division Multiplexing (FDM) is often performed.
Here, separate sources share a communications medium simultane-
ously, each channel separated from the others only by the bandwidths
assigned to each of the sources. This method finds frequent use with
digital systems in the simultaneous transmission of several encoded
data packets. Time Division Multiplexing (TDM), previously men-
tioned, occurs when a single channel, such as a bus, is shared by sev-
eral sources, each using the path in a separate time slot. The time slots
are often derived from the system’s coordinated control and clock sig-
nals. Our interest at present is to pursue TDM methodologies further.
- We will also look further into the opposite of multiplexing,
called—as you might guess—demultiplexing (DMPX). Demultiplexing,
when employed as the counterpart of TDM, is the technique of placing
information from a single time-shared channel onto the appropriate
separate channels, to reach the desired sink. It is a means of distribut-
ing data. These methods of data selection and distribution may be
based on the use of combinational logic, tri-stating, open collector, and
other techniques. While tri-stating has some superior properties for
larger external interfaces, it is not the only important technique. Com-
binational-logic function and open-collector multiplexers are fre-
quently used, too. The major drawback of the combinational-logic
approach is the large number of gates or IC’s required, as compared to
the others, where there are many bus lines to interface to.

Multiplexing, then, means selecting one of several sources of
information and placing it on a single data path. Demultiplexing, on
the other hand, takes information from a single input source and selec-
tively distributes it to one of several outputs. Let us examine some data
sheets and the principles of logic related to these techniques.

Many IC’s are available to accomplish demultiplexing. Actually,
the three-line-to-eight-line 74LS138 decoder of Figure 2-12, which we
have already seen in the previous section, can also serve as a demul-
tiplexer. For example, with reference to this figure, suppose that, for a
given state of the three select (address) inputs A, B, and C, a corre-
sponding sink is to accept information from the output of the 138
when this IC is enabled. One way to achieve this is to bring G,, and
G, low. This only partially enables the 138. We must yet account for
the role of G, in this scheme.

If the last enable input, G,, of the 138 demultiplexer is controlled
by the incoming data, the complement of the data appears at its
selected output. Unselected outputs are always high, as are all outputs
of the device when it is not enabled by G,. All separate sink inputs are
connected to their corresponding outputs of the 138. The appropriate
sink, as managed by the control system, can clock in the comple-
mented data arriving at its input from the addressed output of the 138
via G,. When G, is high, the IC is enabled and the selected output is
low. When G; is low, the IC is disabled and all outputs are low. The
chip-enable lines have thus been partitioned into two parts—the actual
enabling of the IC and a data input. How does this differ from tri-stat-

60

MULTIPLEXING AND DEMULTIPLEXING

L

INPUTS

O
}O_UTPUT OUTPUTS

}J‘ }_o,
I, !
‘ INPUT

SELECT
CONTROL
(ADDRESS)

a. BASIC MULTIPLEXER
LOGIC CIRCUIT

Figure 2-17
MPX and DMPX with
Combinational Logic

MPX AND DMPX LoGIC

SELECT
CONTROL
SELECTED OUTPUT FOL-
LOWS INPUT

NONSELECTED OUTPUT
CLAMPED HIGH

b. BASIC DEMULTIPLEXER
LOGIC CIRCUIT

ing? How would you alter these arrangements if you did not want to
handle complemented data?

The fundamental circuit concepts behind combinational-logic mul-
tiplexers and demultiplexers are shown in Figure 2-17. In Figure 2-17a,
which illustrates the multiplexer, the control-input line and its inver-
sion force one of the two input NAND gates to have its output high.
Recall that the NAND function for active-high conventions is per-
- formed by a device whose output is high when any single input goes
low. If one of the two input-stage gates receives a low control signal,
then the other input of this gate, the data input, has no effect on this
gate’s output, since it is clamped high. Data levels will not propagate
further. For the other, the control-enabled gate, the complement of the
data appears at its output, and the output changes with the input data.
The final stage, also a NAND gate, always has one input held high and
the other active. Again, a NAND function was produced by a device
whose output is low only when both inputs are high. This results in the
recomplementation of the selected data at the final output. These prin-
ciples are simply extended to select more than the two inputs illus-
trated, in commercial IC’s. The functional explanation of the basic
combinational-logic circuitry behind demultiplexing is left as an exer-
cise.
An example of an IC that performs multiplexing through combina-
tional logic is the 74L.S251 IC module in Figure 2-18. Its three select
inputs, S, .. S,, determine which selected input appears at the output
when the chip is enabled. In addition, this IC offers tri-stated true and
complement outputs of the selected input. This tri-state capability is
interesting, in that the output can now also be TDMed onto a bus line,
along with several other outputs from other 251s. Figure 2-19 presents
a generalized block diagram of several multiplexers that time-share an
n-bit-wide bus between p different sources, also assumed to be n lines
wide. Each separate multiplexer is a p:1 data selector. As shown, each
individual MPX IC is responsible for picking up the same bit from
each separate source and placing it onto the corresponding bit line of
the driven bus that its output is connected to. That is, the ith bit of

Features and Architecture of Processors

61

OPEN-COLLECTOR INTERFACES

each source is multiplexed into ith multiplexer and placed on the ith
line of the driven bus, when selected. Thus, if a source address is pre-
sented to all of the multiplexers in common, the parallel data of the
source is reconstructed on the data bus. The source selection control
bus consists of m lines, such that 2™ = p, these m lines being con-
nected to all MPX’s in common, as address inputs. The tri-state con-
trol line is generally connected to all modules in common, too.

Some of these types of devices have open-collector outputs, which use
external pull-up resistors on the driven bus line. An open collector
driver contains only one transistor, instead of a totem pole, at its out-
put interface. This structure is shown in Figure 2-20. If this device is
disabled, the output(s) behave as an open switch. In this state, the line
is pulled high by the external pull-up resistor. If the device is enabled
and its data input(s) close the output switch, that line is pulled low.
This type of connection scheme is often referred to as wire-ANDing or
wire-ORing, because the drivers actually perform a logic function in
driving a common bus line. Tri-stating is not the principle used here.
True, disabling opens the output switch, but the driven line is always
pulled to the high (quiescent) level, when disabled, by a pull-up resis-
tor. No Hi-Z state is involved in these actions. Before tri-stating was
developed, open-collector operation was very popular for interfacing
to a bus. It has the advantage of requiring fewer gates than other meth-
ods, particularly for MPX applications. Since open-collector methods
make sparing use of gates, they are used in the internal design of IC’s.
Open-collector operation is often used with IC’s intended for
modular use, where a logical form of voting is required. The 74181
ALU, which we will soon study, has an open-collector interface at its
comparison output pin. If several of these ALUs are operated in paral-
lel, to form a larger ALU, their open-collector outputs are wired
together along with a single common pull-up resistor. The comparison
output can be high only when each individual ALU submodule in the
chain agrees (i.e., has voted) that equality is detected. (The vote con-
sists of all open-collector interfaces asserting a high—the wired AND.)
Figure 2-21, an illustration of TDM applied to a bus, shows that
the use of tri-stating can be very simple. Many sources (registers, etc.)
now come equipped with built-in tri-statable outputs and associated
control-enable input(s). A good example is the 74LS173 4-bit register,
which we shall make extensive use of later. Therefore, all the separate
source-output interfaces can be directly connected to the appropriate
driven bus lines. In these cases, one only has to enable the output of
one source at a time with tri-state control lines, as shown. The source
selection is often performed through the use of a 1-of-p decoder. Tri-
stating is widely used, but, as noted, combinational-logic multiplexers
may be more feasible where small amounts of data are handled.
Usually, in multiplexing, each source feeding an n-line bus con-
tains the same number of bits as the data bus it is fed onto. In some
important cases, two different sources of, say, x and y bits may be con-
catenated and then multiplexed onto a bus in parallel. In these
instances, x + y < n. An example is the formation of 16-bit results

62

MULTIPLEXING AND DEMULTIPLEXING

I.OG|C PRODUCTS

High speed 8-to-1
multiplexing

True and complement
outputs

Both outputs are 3-State
for further multiplexer
expansion

3-State outputs are buffer
type with 12mA/24mA
outputs for Military/
Commercial applications

DESCRIPTION

The '251 is a logical implementation of a
single-pole, 8-position switch with the
state of three Select inputs (Sq, Sy, S)
controlling the switch position. Assertion
(Y) and Negation (Y) outputs are both pro-
vided. The Output Enable input (OE) is ac-
tive LOW. The logic function provided at
the output, when activated, is:’

Y = OE- (I_Q-SO-S, Sy+ lge 80-81-82
+1225¢0°S:+S,+ I,-SO»S,-SQ
+14280+5,+5,4 15:5¢:5:+S,
+1g°50S1+S,+ 17289+54+8,).

Both outputs are in the HIGH impedance
(HIGH Z) state when the output enable is
HIGH, allowing multiplexer expansion by
tying the outputs of up to 128 devices

PIN CONFIGURATION

8- lnput Multlplexer (3- State)

TYPE TYPICAL PROPAGATION DELAY TYPICAL SUPPLY CURRENT
(Data to Y) (Total)
74LS251A _ 18ns 9mA
745251 8ns 55mA
ORDERING CODE
OMMERCI AN
PACKAGES Vccc= 5V S%STAAL= :"c toefsn'c Vec = va ;L:;:RTI : f::g:ez +125°C
Plastic DIP N74S251N e N74LS251AN
Ceramic DIP S54S251F e S54LS251AF
Flatpack $54S5251W e S54LS251AW
LLCC S54LS251G
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE
PINS DESCRIPTION 54/74S 54/74LS
All Inputs 1Sul 1LSul
All Outputs 10Sul 30LSul

NOTE

A 54/74S unit load (Sul) is 504A |y and - 2.0mA I and a 54/74LS unit load (LSul) is 204A Iy and - 0.4mA | .

together. All but one device must be in the
HIGH impedance state to avoid high cur-
rents that would exceed the maximum
ratings, when the outputs of the 3-State

- LOGIC SYMBOL

devices are tied together. Design of the
output enable signals must ensure there
is no overlap in the active LOW portion of
the enable voltages.

LOGIC SYMBOL (IEEE/IEC)

13 3 6] vee
[z 75] 14
3] [14] 15
o [&] 73] 1g
Y[[12] 17
G 7] so
of (7] 10]$¢
anpo [£] 9]S2

7 4 3 2 1 15 14 13 12
P S I I I
OE g Y 2 I3 g 15 g W
11— Sy
10— Sy
952
Y v
L] 5
Vee =Pin 16
GND=Pin 8

2
1=
x

L

-
ol—
L)
——
~jo

- fat b fk fet 1N 4O § 00 |
l”l“l‘lml I I I II
Noon srpoN-sON

Figure 2-18

Tri-State Line Drivers Data
Sheet

(Courtesy of Signetics
Corporation) 1984 Slgnetzcs
Corporation.) _

Signetics

Features and Architecture of Processors

63

LOGIC DIAGRAM

[U] 2 3 U} Is lg Iy
® “@) @] 18 14 3 12
s Do T >
s 0 —Dc T ﬁ‘#
()
8% Do T >
[y
:D pess bl Eoss Lid heded dpluled peas it
Vee =Pin 18
GND=Pin s ® ®
() =Pin numbers
FUNCTION TABLE
INPUTS OUTPUTS
OF S, S, S, Iy Iy I Iy Iy Is I Iy Y Y
H X X X X X X X X X X X) 2)
L L L L L X X X X X X X H L
L L L L H X X X X X X X L H
L L L H X L X X X X X X H L
L L L H X H X X X X X X L H
L L H L X X L X X X X X H L
L L H L X X H X X X X X L H
L L H H X X X L X X X X H L
L L H H X X X H X X X X L H
L H L L X X X X L X X X H L
L H L L X X X X H X X X L H
L H L H X X X X X L X X H L
L H L H X X X X X H X X L H
L H H L X X X X X X L X H L
L H H L X X X X X X H X L H
L H H H X X X X X X X L H L
L H H H X X X X X X X H L H

H = HIGH voltage level

L = LOW voltage level

X =Don't care

(2) = HIGH impedance (off) state

Figure 2-18

Tri-State Line Drivers Data
Sheet

(Courtesy of Signetics
Corporation) 1984 Signetics
Corporation.)

64

MULTIPLEXING AND DEMULTIPLEXING

SOURCE 0 SOURCE 1 SOURCE 2 SOURCE p-1
BITS BITS BITS | — — — — — BITS
01 n 01 n 01 n 01 n
| o S !
| | ' ‘ |
[| i
1o
‘ |1 !
| [! l |
OUTPUT ENABLE SHARED SELECT
—_— MPX 0 MPX 1 MPX n — 1 —ADDRESS
(COMMON TO
SOURCE CONTROL TO BUS, ALL)
COMMON TO ALL MPX
MODULES OF THIS SET DBO
o DBI
< . DBn -1
Figure 2-19
Multiplexing p Sources onto n
Bus Lines
? V(‘(‘ v(‘(‘
PULL-UP
GATE RESISTOR
INPUT(S) OUTPUT
6 tad _—= _-*
GUTS l DRIVEN LINE
.___.o ——,
ENABLE

Figure 2-20
Open-Collector Operating
Principle

IF DISABLED,

OUTPUT IS OFF.

NOTE: IF PULL-UP RESISTOR NOT USED, DRIVEN
LINE CONDITION IS NOT DEFINED AND DRIVEN
INPUTS WILL BE SUBJECTED TO NOISE PULSES.

from two 8-bit concatenated registers, with their subsequent multiplex-
ing onto a bus. This method is often used to concatenate separate

‘internal subregisters, within a processor, thus forming a larger entity

for either internal or external reference. A convenient method, then,
that we may use to control the reconfiguration of separate sources
being fed onto a bus is through the addressing and enabling of the tri-

Features and Architecture of Processors

65

CONTROL
SYSTEM
SIGNALS
E ADDR.
(OPTIONAL)
n n INPUTS n m
SRCp—l SRCp-2 o o o o o SRC @
OE OE OEP—9 (l)
[] L]
[] L]
[] L[]
o p-2
Qp-1
SOURCE SELECT
(TRI-STATE ENABLE) DECODER
LINES (1-OF-p)
L \ A \ / -
DRIVEN BUS /n
Figure 2-21
MPX via Tri-Stated Sources
SEND LINE (TYP) R
TERMINAL T. RECEIVERS >1 MEMORY
-~ R, > n -
(] ya
ym
e 8 MPX /
I /£ ;
- %~
I"L’ 8
> 0 8 /
A Y ‘L o
m | DATABUS |
4—| PROCESSOR
CONTROL BUS
T, Y
TERMINAL n - !
1 - .
R, (] /I
___ 7 DMPX
1 73
TERMINAL % 0 < 8
0 B R, TRANSMITTERS
" RECEIVE LINE (TYP)
Figure 2-22

MPX and DMPX in Digital

Data Transmission

66

MULTIPLEXING AND DEMULTIPLEXING

state interface lines of the different sources, or through functionally
equivalent methods. Therefore, we see that MPX and DMPX schemes
can be quite flexible.

LARGE SYSTEM MPX AND DMPX EXAMPLE

An overall systems example of the use of various means of MPX and
DMPX is illustrated in Figure 2-22, showing how frequently we may
unknowingly interact with these concepts in familiar situations. This
example is a simplified block structure of a system that interfaces a
number of user terminals to a remote processor, a common occurrence
in interactive time-shared systems. This figure displays the role of bus-
ing, MPX, and DMPX within a large-scale system block diagram.
Each user terminal has separate transmit (Tx) and receive (Rx) lines.
Information is placed on these lines one bit at a time by the user’s ter-
minal; this is serial data communication. At the other end of the sys-
tem, each of these lines is interfaced to receivers/transmitters, one for
each terminal. The widely used programmable Universal Asynchro-
nous Receive/Transmit (UART) communications IC module can pro-
vide these functions.

This figure displays varied forms of systems uses of MPX and
DMPX. The UART receivers are basically serial-to-parallel data con-
verters. The transmitters-are parallel-to-serial data converters. Both are
usually contained in one IC. The receiver portion, for example, takes
incoming serial data from a terminal and shifts it into a parallel regis-
ter. When a character is thus assembled, the processor is so notified
over the control bus. The transmitter section performs the reverse pro-
cedure. At this stage, both MPX and DMPX come into play. The
processor manages the task, using an 8-bit or larger data bus and an m-
bit control bus that manages and coordinates the data transfers. Each
receiver’s assembled characters is MPXed onto the host computer’s
data bus, one at a time, using TDM. Ultimately, the character from a
terminal winds up residing in its appropriate place in memory. Outgo-
ing characters are DMPXed into the appropriate transmitter for each
user, over the data bus.

Thus we can see how an understanding of the functioning of
common IC’s—-combined with the concepts of busing—begins to pro-
duce an overall picture of what transpires when we sit down at our ter-
minal to use a remote computer. Busing, along with its related
selection and distribution techniques, certainly is a large part of any
processing system. To really appreciate the behavior of programmable
UART: and related communications devices, the reader should obtain
and read a data sheet or application note from a vendor or manufac-
turer.

The principles for MPXing and DMPXing that we have just
reviewed are applied within a processor in many places. While we
may not know, in a particular case, exactly which method was
used, it is helpful to appreciate in a general way what is being done
within an architecture to move information about. Qur major goal
is to penetrate the mystique of processors and remove the fear fac-
tor. These topics resurface again soon, as we start to look at the
internal systems structure of the CPU we shall construct and
microprogram. Extensive use of MPX and DMPX will be made in
this project.

Features and Architecture of Processors

67

MEMORY CELLS

STATIC MEMORY FUNDAMENTALS

When we study the processor example of this text and its
microprogramming, we encounter several types of memory. Included
among these are flip-flops, registers, semiconductor memory, and read-
only memory. To work comfortably with all these memory devices, we
should have an understanding of their fundamental principles of oper-
ation. Let us start with the inverting logic gate’s role in the formation
of a “static” memory cell. Static memory cells are characterized by
their ability to retain information as long as the power is applied. The
inverting logic gate should be viewed as a basic building block of digi-
tal systems architecture. Many larger features, such as static memory
cells and registers, are formed out of these gates. The memory cell of
this type we examine here is formed by cross-coupling two inverting
gates (both NAND or both NOR). This type of cell, called a latch, is
illustrated in Figure 2-23a.

The logical properties of this latch cell are discussed in Chapter 4.
Here we shall review the basic mechanisms of its operation. It is widely
used as the fundamental part of flip-flops and registers. If not modi-
fied, the bare cross-coupled NAND-gate latch has some shortcomings
for general usage. These design modifications, which are beyond the
scope of this book, lead to the very common JK or D types of edge-
triggered flip-flops. Cross-coupled gates, or their functional equivalent,
are always found at the output end of these memory cells. They pro-
vide the feedback that gives rise to the memory-retention properties of
these cells while under power. It is therefore instructive to survey their
fundamental operating principles. .

As the latch characteristics table in Figure 2-23b shows, latch-
output behavior for input state I,, I, = 00 is undefined. This is
because, in general, we cannot say in advance which of the two NAND
gates is faster and therefore controls the output behavior when both
inputs “simultaneously” go from low to high. For this type of input
transition, the next state of the outputs is indeterminate. The root of
the problem is that, when both inputs are low, both outputs are simul-
taneously high. To be useful in many applications, this memory cell
must always have both its outputs in opposite, mutually exclusive logic
states. In fact, the difference between a latch and a JK flip-flop is that
the latter always meets this criterion through modification of the for-
mer. Still, the front end remains the basic latch, as in all static memory
cells. One way to force the latch to meet the criterion of mutually
exclusive outputs under all input conditions is to resort to pulse-mode
operation. A short review of pulsed operation provides insight into
why propagation delay is the underlying fundamental form of memory
for this class of devices. This is explained below.

In the NAND-based latch in the figure, the memory-retention
state occurs when both inputs, I, and I,, are high. Recall that a NAND
gate is in reality a device whose output is high when any of its inputs is
low. (Contrast this with the behavior of the so-called NOR gate.) Also,
we recognize that an input change that affects the output state requires
some time to propagate to the output. This time is referred to as the
gate’s propagation delay and is basic to the operating principles behind

68

MEMORY CELLS

a. BASIC STATIC MEMORY CELL

Figure 2-23
Basic Static Memory Cell

INPUTS OUTPUTS
TIME || TIME
t At OUTPUT BEHAVIOR
LIL{Q|Q
olof 1| 1] NoT DEFINED
o|l1f1]o0]| QISTRUE
1lolol1 | QIsFALSE
1|1]Ql Q| MEMORY-RETENTION STATE

Note: Positive logic conventions used.

b. LATCH-CHARACTERISTICS TABLE
(A SIMPLIFIED TRUTH TABLE)

t, ty t, t,

I 1,

“—'

POSSIBLE TRANSIENT
/Q DIST‘TJRBANCE

¢. PULSE-MODE OPERATION TIMING DIAGRAM

static memory. The following analysis of pulsed-latch behavior starts
with the assumption that both the inputs are tied together and have
been high for a time greater than the propagation delay. (A timing dia-
gram of pulsed operation is given in Figure 2-23c.) Therefore the out-
puts will have stabilized and become mutually exclusive.

This must occur when the inputs are both high, because a low at
the output of, say, G, is fed back to the input of, say, G,. This low cre-
ates a high output on G, which, when fed back to G,, helps to main-
tain its low. The condition of having all inputs high forces G, low. The
feedback paths maintain this static situation. For the NAND latch, the
memory-retention state occurs when both inputs are high. Assume
static conditions with both inputs and a high Q output. The /Q output
is low (/Q is read “NOT-Q”):

time frame t0:

A low pulse is simultaneously applied. Both inputs are tied
together and driven low for this purpose. After a propagation
delay, /Q is forced to change from its initial low value, due to its
current low-input condition (any low input forces a NAND gate
high). The Q output remains high for now, since it is not yet
affected by these changes. After the propagation time, /Q
assumes the high state and is fed back to G,.

Features and Architecture of Processors

69

time frame tl:

The common low pulse is removed. At this point, both external
inputs are high, and a low starts to propagate through G,. Notice
now that both G,’s inputs temporarily remain high. That is, its
external input is held high and the /Q feedback from G, is still
high. Remember that a low now is being forced to propagate to
the output of G,. For pulse-mode operation, the input-pulse
width is critical. It must be of sufficient duration (impart enough
energy) to initiate a change of state but short enough to avoid
indeterminate action.

time frame t2:

G, goes low. After its propagation delay, the output of G, is now
low. The internally fed-back input to gate G,, from the output of
G,, is now low. This forces G, to remain high. This high feeds
back to G,, which, combined with the now-high external input,
keeps its output low. The system is now stable, but the outputs have
reversed their respective mutually exclusive states. This is determi-
nate action that is now being exhibited.

The above very approximate illustration of pulse-mode behavior
points to one way the indeterminate input state of the latch may be
converted to the toggle (complementing) mode of a JK type of flip-
flop, where all input states lead to determinate behavior. Note that
propagation delay has a fundamental role in the performance of a
static memory cell. In essence, the propagation delay is the basic mem-
ory of the cell—it maintains a momentary history of past events that
are essential to its correct operation. Another way to obtain completely
determinate behavior of the edge-triggered JK flip-flop is to use the cir-
cuit’s ‘internal gates to form a level mode sequential circuit. Their
aggregate external behavior is both sensitive to clock transitions (edge-
sensitive) and determinate. Remember that the output stage of all flip-
flops and static memory cells consists of the basic latch just discussed
and that propagation delay plays its essential role in all of them. The
types of static memory cells we are interested in are clock-driven. We
shall discuss the characteristics and terminology of clock signals later.
These same methods of forming static memory cells are also used with
MOS and other technologies.

DYNAMIC MEMORY FUNDAMENTALS

MOS logic, though, has properties that also make it feasible for the
formation of “dynamic” memory cells. These properties are extremely
high gate-to-channel and off-state resistances and, most important,
gate-to-source parasitic capacitance. The last, which in fact is normally
a nuisance factor, is put to advantageous use here. Let us see what all
of this means. The organization of one type of basic dynamic memory
cell is given in Figure 2-24. This particular type of cell was at the heart
of the 1103-type of 1024-bit dynamic random access memory (RAM)
that appeared on the market in 1970. Its success led to the present-day
large-scale use of dynamic RAM IC’s, in which 256K bits of storage in
a single IC are common. Even larger storage capacities are under
development at this writing. The trend is such that semiconductor
memory systems now predominate as the main (random access) mem-

70

MEMORY CELLS

ACTS AS
PULL-UP
ESISTOR
s MR
DATA o o SENSE
DRIVER :] AMPLIFIER
DATA/SENSE LINE
INPUT — F ¢ - + F OUTPUT
(OTHER (OTHER
BIT CELLS) , BIT CELLS)
+"o @
o
C=
vV
o o
WRITE READ
. CLOCK CLOCK
Figure 2-24

Three-Transistor MOS
Dynamic Memory Cell

ory for most computers. The storage principles illustrated here proba-
bly apply to your personal computer.

In Figure 2-24, Q3 is utilized as a transmission gate. This means
that, when the voltage on the write line enhances the channel of Q3, a
current flows through the channel in the direction dictated by which
side has the higher potential. Recall that the MOS transistor—when
used as a transmission gate—has bilateral current-flow properties. The
data driver is shown as being, in effect, enabled by the write clock sig-
nal, too. If the driven data/sense line has a higher potential than the
storage capacitor, then the capacitor receives charge via Q3; if the
potential is lower, then the capacitor loses charge. Actually, the capaci-
tor consists of the purposefully increased gate-to-substrate parasitic
capacitance, which “remembers” the last transmitted information in
the form of an electrical charge. Once it is charged or discharged, Q3
attempts to isolate this charge when it is turned off. Nothing, such as
practical matters, can ruin a good scheme.

While the gate of QI has extremely high input impedance, the
rest of the circuit is less perfect. Thus the state of the charge in C is
subject to slow leakage between itself, Q3, and the substrate. While the
state of a fresh charge can be remembered through millions of com-
puter clock periods, “amnesia” eventually sets in. The net result is that
the state of the charge on C must be refreshed to prevent the loss of
stored information. This is done on the order of every two millisec-
onds. This explains why refresh is required in a dynamic memory sys-
tem. The refresh consists of restoring the state of the charge on C.
Although refresh techniques are beyond our present scope, we will
remark that refresh is usually automatically accomplished during use
whenever a given number of address lines are all addressed in a given

" time period. In this type of memory, then, the physical basis for infor-

mation retention is the amount of charge temporarily stored in a para-
sitic capacitor.

In this dynamic memory system, reads and writes occupy disjoint
time slots. When it is desired to read the information stored in C, Q3

Features and Architecture of Processors

71

COLUMN
SELECT O-

DRIVE

ROW
SELECT ©

ACTS AS
PULL-UP
Q3 \ RESISTOR

SENSE
NAMPLIFIER

l/
FUSELIKE BEHAVIOR (IN PROMS)

DRIVE

OTHER
BIT CELLS
IN COLUMN

Figure 2-25
MOS Read-Only Memory
Cell Structure

will be off (the write clock line is in the inagtive state), and the input
data driver is disabled. Under these conditions, the data/sense line is
pulled high through an internal resistive path and is also connected to
the input of a sense-amplifier. At the moment a read operation is in
effect, the read clock line enhances the channel of Q2, so that it acts as
a closed switch. The output stage of the sense amplifer is also enabled
by this line, where the memory system has tri-state outputs. The pull-
up high voltage of the sense line is now subject to the state of Q1. If
there is a charge in C, Q1’s channel is enhanced. It therefore becomes
conductive, and the sense line is pulled low because Q1 is behaving as a
closed switch. If C has no appreciable charge, Q1 is off and the sense
amplifier input senses the high created by the MOS transistor equiva-
lent of a pull-up resistor. The behavior of Q1 inverts the sense of the
information—a small matter taken care of by another inverter, like an
inverting sense amplifier. -

There are many other types of MOS dynamic memory cells, even
single-transistor ones. This cell, though, illustrates the main features
common to most: MOS transistor transmission gate and switch behav-
ior, purposefully used parasitic capacitance, the need to refresh, and
the use of the MOS transistor as an inverting buffer gate and as a pull-
up resistor—previously discussed fundamentals are all at work here.
The memory cells described thus far are also called volatile. That is,
information is maintained only while power is on. Turn off the power,
and all information is lost—be the cell static or dynamic.

NONVOLATILE (ROM) FUNDAMENTALS

Certain applications require permanent, nonvolatile storage. Nonvola-
tile cells retain their information regardless of whether the power sup-
ply is on. The control system of a processor is a case in point. It is
convenient to have the system defined the instant it comes up, without
the bother of loading its control memory. Permanent application pro-
grams are another case in point. We do not expect to reprogram a
processor-controlled vending machine to obtain a cup of coffee after a
power interrupt.

72

MEMORY CELLS

Nonvolatility can be achieved through the use of read only mem-
ory (ROM) cells, such as the MOS version shown in Figure 2-25. If a
memory system contains 256 words of eight bits each, we can imagine
the system as consisting of eight of the columns illustrated. The
number of memory words would then be equal to the number of ROM
cells in each column (only one is illustrated by the dashed box). Where
a high level is to be permanently stored in a particular cell, the source-
to-substrate connection of Q1 is deleted in the production mask or by
burning out its fuse equivalent, shown in Figure 2-25. Thus, when this
column and row are selected, the cell is not pulling the column low.
The result is a high maintained at the sense-amplifier input when this
row is selected. Had the cell remained intact, the row select’s going
high would turn on the transmission gate, which in turn would pull the
sense line low (that is, ground it).

A popular variation is to make the ROM user-programmable.
This is called a Programmable Read Only Memory, or PROM. In this
case, a fusible link is inserted into the ROM cell in line with transistor
QI. This device is user-programmed by “burning” or “blowing” the
fuse. When it is being programmed, a momentary very high voltage
applied to any column destroys the fuse of the cell selected by its trans-
mission gate. Yet another variation in MOS static memory cell types is
the Electrically Programmable Read Only Memory, or EPROM. These
are widely used in the experimental stages of developing software that
is to be permanently resident in a system. The most widely used of
these are erased by ultraviolet light and then electrically programmed
by the user. Since this can be done many times, they are very conve-
nient for development work. The microprograms we shall create for
the control sytem of our example processor will be stored in
EPROM’s.

Thus, some of the concepts behind nonvolatile MOS memory are
illustrated. ROM memory is used extensively in processor control and
operating systems, as we shall see, because we want it to be ready when
the power comes up. When used for the permanent storage of operat-
ing system, control system, and other applications software, these per-
manently enshrined types of software in a ROM are called firmware.
The last variation in nonvolatility deserving of mention now is bubble
memory. Bubble memories are serially accessed read/write memory
systems, which also retain their contents when the power is off. This,
though, is transient—though sometimes long-term—storage. Since users
have access to it, this memory normally does not remain the same for
the life of the system, as is expected of ROM.

We have only touched the broad subject of memory systems to
create an intuitive feel for a few of the most widely used underlying
principles. An overall view of the world of memory (Figure 2-26) will
show how these techniques fit into a tree-structured perspective of
memory systems. In general, we can expect to find incorporated—even
within a single processing system—many of the types of memory tech-
nologies discussed. At the root of the tree structure is memory per se.
At the next level down, the permanence of memory retention may
depend on the applied power. This separates memory into two broad
categories: volatile and nonvolatile. As noted, volatile memory systems
lose their contents when power is removed. One more level down,
directionality is shown as an attribute of memory systems. Some mem-
ories transfer information both into and out of their cells. Others are of
the type that may only be read. The next level below this deals with

Features and Architecture of Processors

73

LEVEL ATTRIBUTES MEMORY
POWER NON-VOLATILE VOLATILE
DEPENDENCE |
DIRECTIONALITY READ READ/WRITE READ/WRITE
ONLY
|
STATIC DYNAMIC
PHYSICAL SEMICONDUCTOR MAGNETICS CROSS COUPLED CAPACITIVE
PRINCIPLE INVERTING GATES CHARGE STORAGE
ACCESS RAM SAM RAM RAM RAM
METHOD DIODE BUBBLE CORE BIT MOS
PROM DISK MOS
TECHNOLOGY UV ERASABLE TAPE I*L
JUSED EPROM ETC.
Figure 2-26 access methods. Access can be to any location we choose at random

The World of Memory: Tree
Diagram

BIBLIOGRAPHY

(RAM), or it can be constrained to a serial march through all locations
to get to the desired location. This is Serial Access Memory (SAM).
Finally, typical fabrication technologies are indicated. As we work with
an actual example of a processor, we shall gain first-hand familiarity
with several of these types of memory.

Anderson, G.A., and Jensen, E.D. “Computer Interconnection
Structures: Taxonomy Characteristics and Examples.” ACM
Computing Surveys, Vol. 7, No. 4, December 1975, pp. 197-214.

Bowen, B.A., and Buhr, R.J.A. The Logical Design of Multiple
Microprocessor Systems. Englewood Cliffs, New Jersey: Prentice-
Hall, 1980.

Boylestad, R., and Nashelsky, L. Electronic Devices and Circuit
Theory. Englewood Cliffs, New Jersey: Prentice-Hall, 1982.

80/85 Family User’s Manual. Santa Clara, California: Intel Cor-
poration, 1983.

Fletcher, W.1. An Engineering Approach to Digital Design. Engle-
wood Cliffs, New Jersey: Prentice-Hall, 1980.

Siewiorek, D.P., Bell, C.G., and Newell, A. Computer Structures,
Principles and Examples. New York: McGraw-Hill, 1982.

TTL Data Book, The. Dallas, Texas: Texas Instruments, Inc.,
1976.

TTL Data Manual. Sunnyvale, California: Signetics Corporation,
1984.

VAX Architecture Handbook. Manard, Massachusetts: Digital
Equipment Corporation, 1983.

74 PROBLEMS
PROBLEMS
o ————————— —

a. Explain why the multiplexing of sources onto a bus is use-
ful common practice.

b. Explain the functions of the load-enable and clock signals
in controlling the transfer of information to one or more
sinks connected to a bus system.

c. Describe two methods of multiplexing.

2. Using simple analogies, explain the essential characteristics and

functions of the following;:

. Diode

a
b. Transistor

e

Multiple-emitter TTL input
d. Totem-pole output structure

e. Tri-state operation

. Explain why Q3 of the logic gate of Figure 2-4 is off when any of

the inputs (A, B) is tied low.

. Convert the logic table of Figure 2-5 into a truth table, using Os

and s, for:

a. Active-high logic convention
b. Active-low logic convention

. Derive the logic table, in terms of L and H, for the two-input

logic gate of Figure 2-7a. Via a truth table, verify the logical
functions that this structure performs for both active-high and
active-low logic conventions.

. Sketch a cross-sectional view of a MOS p-channel transistor.

Refer to Figure 2-6 for guidance. Using the MOS transistor sym-
bol for this construct, show the biasing that results in channel
enhancement.

. Sketch the switch-equivalent circuit of the totem-pole output

structure used in logic gates.

a. What is the function of the resistor?

b. When the totem pole is used in a simple NOR or NAND
gate, how do the switches behave?

c. Describe why the totem pole is capable of isolating its out-
put pin from the data-input behavior in a tri-state gate.

. Draw the totem-pole-switch equivalent of two tri-state outputs

connected to the same line of a bus. Explain, with respect to the
drawing, the following:

a. How the ENable inputs can be used to enforce the rule that
only one source is to be master of the bus at a time.

b. How the third state of electrical isolation, the hi-Z state, is
achieved at the output.

Features and Architecture of Processors

75

10.

11.

12.

13.

14.

15.

16.

Draw the logic diagram of the 74LS138 decoder/demultiplexer
as it would appear when used as a data demultiplexer.

a. Explain how the selected output-logic level can be made to
carry either the input data or its complement. Hint: Con-
sider how best to utilize the enable inputs for this purpose.

b. What is the quiescent electrical level of an unselected out-
put pin?

a. Define fan-out.

b. Using the above definition, calculate the number of low-
power Schottky TTL gates that can be driven by a standard
TTL gate.

a. Locate an 8080 microprocessor data sheet or catalog. Com-
pare the current drive capacity of the 8080 microprocessor
with that of the 74LS240 tri-state buffer. Calculate the
drive-current multiplication factor that can be achieved
when the buffer is used as a front-end interface to the
processor.

b. Typically, where would one expect to find the application
of unidirectional rather than bidirectional tri-state buffers
at the interface to a microprocessor? Under what condi-
tions and for which types of signals are these buffers most
applicable?

Discuss the differences between common and separate 170 inter-
faces, using bidirectional tri-state buffers.

Draw the logic diagrams of the following circuits, using NAND
gates:

a. A four-line into a one-line multiplexer.
b. A one-line into a four-line demultiplexer.

Refer to Figure 2-19 for guidance.

a. Draw a diagram of four sources, each containing four bits
of information, connected to a four-bit bus via combina-
tional-logic multiplexers. Explain the system’s operation.

b. Select components from the TTL data catalog you would
use to build the circuit. Draw a logic diagram of the actual
circuit using these components.

Refer to Figure 2-20. Draw two open collector gates, each with
one data input, interfaced to a bus line with a pull-up resistor.
Derive the electrical-level truth table for the bus line as a func-
tion of the two inputs. What logic functions are performed for
active-low and active-high conventions?

If NOR gates are used to form a basic memory cell or latch:

a. Draw the characteristic table for this latch.
b. What input conditions produce undefined output behavior?

c. What input conditions cause the latch to “remember” its
last state?

76

PROBLEMS

17.

18.

19.

For the dynamic memory cell of Figure 2-24:

a. Which transistor serves as a bilateral transmission gate?

b. Describe the physical mechanism for information storage
in this cell. -

¢. Why is it necessary to refresh this cell periodically?
Why are ROM cells useful in initiating a computer’s operation
on power-up?
Find three types of memory not now shown in Figure 2-26 and
place them in their proper place on this chart.

CHAPTER 3
ASSEMBLING AN ARCHITECTURE

REGISTERS, ARRAYS, AND STACKS

From the inverting logic gate to the memory cell of Chapter 2, we shall
proceed to their use in building the next-higher orders of processor
organization—registers, arrays, and stacks. Registers are simply a coor-
dinated group of some type of basic memory cells. They are coordi-
nated by signals emitted by the control system; we shall gradually
become acquainted with the terminology of this system. For example,
when a computer receives an instruction, it is placed—in parallel—into
a grouping of memory cells called the Instruction Register (IR). Typi-
cally, this consists of 8, 16, or 32 bits of memory, depending on the size
of the processor, each bit of information residing in one cell. An IR’s
input comes from the selected instruction in external memory and goes
to its parallel inputs over the data bus clocked in during the Instruc-
tion Fetch phase of operation. The parallel outputs of the IR inform
the control system of the current instruction to be performed, during
the EXecute phase of operation. The arrival of information, the simul-
taneous loading or clocking of these memory cells, and other activity
are all controlled by signals from the control system.

In some microprocessors, these cells of a register are even
refreshable dynamic cells, thus saving on the amount of silicon “real
estate” needed to implement this feature. In any case, the user treats
this structure as a logical entity having the storage properties associ-
ated with the term register—which is, generally, a parallel array of
coordinated memory cells. A CPU contains a number of these discrete
registers, some of which hold information only temporarily during a
cycle of operation. These important “temporary” registers are often
transparent to the programmer, and their presence is often unsus-
pected. They are critical, however, to the functioning of an architec-
ture. We start to illustrate their use and placement in this chapter.

In addition to parallel-loading registers, there are other varieties,
“such as shift registers and counters. We shall encounter all these types
in more detail later,too. The basic registers will be incorporated into
larger constructs called arrays and stacks. Once we add the Arithmetic
Logic Unit (ALU) to this assemblage of processor features, we will be

! able to discuss some basic architectural arrangements for CPU’s. As
we shall note later, the architectural features of a CPU most promi-
nently displayed are its buses, registers, arrays, and ALU.

REGISTER FEATURES

The terminology, including control signals, associated with general
shift and load registers is presented in Figure 3-1a. This figure displays
the common data and control-signal names for many other registers as
well. Naturally, the names of control-system signals are similar. Shift

78

REGISTERS, ARRAYS, AND STACKS

ARRAY CHARACTERISTICS

registers contain internal multiplexers used to select the proper bits of
data for the shift-right and shift-left operations. That is not apparent
from this form of logic diagram, but, since we previously discussed the
logic of data selection, there should no mystery about the basic mech-
anisms involved. Counter registers are generally of the parallel-load-
ing, parallel-output type, whose memory cells are based around the
combinational logic associated with a counter. They may be quite flexi-
ble in that they can count up or down and emit a control signal when
some Terminal Count (TC) is reached. The term 7'C often appears in
operations affecting the programming of timers. One example of a
counter register from the TTL catalogs is the 74LS161 4-bit binary
counter. Thus we see that the memory cells of a register are often pro-
vided with a considerable amount of associated combinational logic,
consisting of data selection, enabling, and other control functions,
such as that presented in Chapter 2.

The Clock Enable (CE) and Output Enable (OE) controls shown
in Figure 3-1 are of special interest to us. CE affects the loading of data
at inputs of a register, and OE affects the tri-state enabling of stored
data onto a bus at the outputs. An understanding of the coordinated
use of the CLK and CE signals is important to grasp, since similar sys-
tem signals, whose behavior we wish to understand, control the selec-
tive loading of a processor’s registers. The output enabling of a register
is frequently done via the tri-state techniques explained in Chapter 2.
The simple but important type of circuitry employed in clock enabling
is shown in Figure 3-1b. A control system utilizes this type of logic to
control when a clock pulse is transmitted to the cells of a register. Let
us examine its operation.

The clock and its enabling inputs are fed into separate inverting
buffers. The buffer outputs are then fed into a NAND gate. The output
of this NAND gate is distributed to each and every flip-flop’s clock
input of the cells of the register. As the timing diagram indicates, each
cell of a register “sees” a clock pulse only when CE is active (low, in
this case). The external system clock, CLK, runs continuously, but the
individual cells of a specific register receive the signal CLK2 only when
enabled by the control system to store information. The control system
maintains the proper phasing of the CE signal with the system clock.

Registers are a major feature in the structure of processor systems.
Actually, there is no conceptual difference between an on-board regis-
ter and. an external memory location. Both serve the purposes associ-
ated with data movement and storage. In most architectures, it is
desirable to maintain a coordinated group of registers within the CPU,
both to facilitate quick access and to simplify construction. One conve-
nient means of achieving this is to arrange the registers into a highly
organized structure called an array, as shown in Figure 3-2. In an inte-
grated circuit, the array structure is regular and therefore easy to pro-
duce. Moreover, it reduces complexity by sharing the bus-interfacing
circuitry insofar as possible. Registers are selected in an array through
the use of decoders, and communication is accomplished with mul-
tiplexers and demultiplexers over internally supplied buses. MPX and
DMPX can be implemented through combinational logic, tri-state
interfaces, or open collector interfaces—as discussed previously.

Assembling an Architecture

79

DATA IN
e —————— n [remsn————
v SDI SERIAL DATA IN
SDI D SDO SDO SERIAL DATA OUT
—OQICE CE CLOCK ENABLE
CTRL p—pf— OE OUTPUT (TRI-STATE) ENABLE
.._> CLK REGISTER : MR MASTER RESET
[MR OE D—— CLK CLOCK INPUT
D DATA INPUT(S)
Q Q DATA OUTPUT(S)
CTRL CONTROL, LE., SHIFT(R/L), COUNT (U/D), ETC.
n
a. Terminology:
DATA OUT Shift and Load Type
T
FFn o FFO
14
CLK >____D0’_C.‘Li JAN YAN
) CLK 2 __|
p——r - —— -
CE H——l>o—r-
—
UL
TIMING CE
RELATIONS > | l >
CLK*] [>
b. Clock-Enabling Logic and
Timing
Figure 3-1 The decoders—one for writes, the other for reads—select the reg-

Register Features

isters to be read or written into. The decoders are in fact an integral
part of the MPX and DMPX logic. With separate decoding, the simul-
taneous reading of one register while writing into another is common.
Apparently “simultaneous” reads and writes of the same register of the
transparent type of latch is more complex. The transparent latch is
characterized by its ability to also serve as a buffer gate would. Since
they are of simple construction, they are widely used in IC arrays. This
important special situation is dealt with in detail, both in our discus-
sion of the clock signal later in this chapter and in Chapter 5. We fre-
quently find transparent latch registers used in IC designs. The edge-
triggered memory cells, such as the JK flip-flop, can always undergo
true simultaneous reads and writes of the same cell. Signals from the
control system manage the action of loading or outputting the contents
of a register within an array, coordinated by the system clock. These
same signals are often called WRite (WR) and ReaD (RD) pulses and
are functionally equivalent to the foregoing CE and OE signals. As

80

REGISTERS, ARRAYS, AND STACKS

INTERNAL DATA BUS ,
- '3 * v >
A 8
REGISTER ¢
REGISTER 1
. |DMPX ¢ MPX
™LOGIC s LOGIC
| \
SYSTEM REGISTER n
CONTROL PART OF wy\ PART OF
SIGNALS DMPX 1 b A 5 MPX READ
REGISTER
WRITE SELECT
REGISTER | 1-OF-8° , y 1-OF-8
SELECT A DECODER [7§ 73 DECODER 3
SYSTEM
CLOCK FOR SEPARATE
LOAD | R/W
ENABLE)
OUTPUT
ENABLE 7~

Figure 3-2

Register-Array Organization

STACK CHARACTERISTICS

shown in Figure 3-2, the register-selection inputs come from the con-
trol system. If separate registers are to undergo a simultaneous read
and write operation, then the second decoder requires its own separate
set of register-select signals from the control system. In this manner,
we can move data from one register into another within an array (or
from one register into itself), over internal data buses, by output ena-
bling one while input enabling another (or the same one). This is the
usual form of the register-to-register MOVE operation.

A register array structured along the general principles above has
many uses. One often finds register arrays organized into separate
groups or banks. That is, the processor can contain more than one
array. For example, in a technique called bank switching, the control
system uses only one of several register arrays available to it at a given
time. Bank switching between arrays is an extremely fast way of saving
the status of one process while rapidly turning to serve another. This
saves the time otherwise required to tuck the current states of registers
safely away into external memory when attempting to respond rapidly
to, say, an interrupt request. The PDP 11/70 minicomputer employs
bank switching to implement its executive mode. Bank switching
among register arrays may be accomplished under either program or
hardware control, as when responding to interrupts. The unused bank
simply holds its state constant until control returns to it. In effect, a
bank is just a' segmented register array.

There are other ways register arrays are put to work besides banks,
such as general accumulator registers, memory pointers, and stacks.
Let us first examine stacks. There are two types of stacks, both operat-
ing on the same set of principles. The difference is that one is a distinct
single entity, organized around a register array, often called an on-

Assembling an Architecture

81

B y, INTERNAL DATA BUS N
I 4 1}
STACK 1
POINTER
COUNT —
ENABLE ——» B E D STACK MPX/DMPX
CLOCK —| & z M | REGISTER
INCREMENT/ _| & & ARRAY | P GENERAL
DECRENENT |5 © P X PURPOSE
5 X REGISTER
A ARRAY
&
=]
L 5 ‘) T I
ea
hd CONTROL
o LOAD TRI-STATE
? | CONTROL BUSACCESs SIGNALS
CONTROL
ON-BOARD STACK
Figure 3-3 board (or hardware) stack. The other form of stack is actually the same,

Microprocessor On-Board
Stack Features: Block
Diagram

but distributed throughout a computer’s total system. Both are widely
used. Those who program in high-level languages are more likely to
encounter the distributed form of the stack; microprogrammers often
encounter the on-board type. To promote a larger systems perspective,
the structural features of the on-board stack are portrayed in Figure 3-
3, along with some other central-processor features. In general, stacks
are used to store both addresses and data. The on-board variety, how-
ever, lends itself to the address-stack type of application, important in
the handling of subroutine calls and interrupts. In these applications,
the stack is an array of program counters, only one register of which
may serve as the current PC at any moment. The size of the array (the
number of registers) is usually very limited. Early microprocessors,
such as the Intel 8008 and the Signetics 2650, contained an on-board
stack of eight registers in the CPU. They were implemented so as to
facilitate the handling of subroutine calls, interrupts, and the returns
from these.

NOTES ON CALLS, INTERRUPTS, AND RETURNS

These events are of such conceptual importance to us that it is helpful
to explain at this point what physically occurs when they are invoked.
Later, we shall have to microprogram calls and returns. Starting with
the basics, both subroutines and Interrupt Service Routines (ISR) are
bodies of code likely to be used many times, either by the operating
system or by the programs they support. As an example, take the code
that defines how the operating system inputs a character each time a
key is struck. Let us call it CIN, for Character INput. This is an exam-
ple of a body of code that could be invoked by an interrupt-driven
mechanism or by a procedure call. A viable operating system should
support only one copy of each such system code, for all users. A
programmer, on the other hand, has no particular desire to write iden-

82

REGISTERS, ARRAYS, AND STACKS

tical bodies of code repeatedly every time they are needed. Their
repeated use may be invoked through the medium of the subroutine
call. Therefore, we need to look at the common related mechanisms
behind calls and interrupts—particularly with regard to how the hard-
ware supports a safe return to the program in operation before inter-
rupts or calls occur.

The program flow in a call or interrupt is graphically shown in
Figure 3-4. Here, the main program proceeds along on its path (the
upper level) until the occurrence of an interrupt or subroutine call,
such as the line of assembly language code:

CALL CIN

The call machine instruction evokes a branch to a new routine. How-
ever, that is not all the hardware does: the machine must “remember”
the value of the program counter in the present calling program’s
instruction stream. If this were not done, it would be impossible to
return to the calling program later. CIN is the symbolic name of the
address where the called subroutine starts. When jumping to this new
routine, we must save the current value of the PC.

Note that the on-board stack of Figure 3-3 now has a new feature
added to its register array, an up/down counter, called the stack
pointer. 1t drives a 1-of-n decoder that selects the register that is to
serve as the current PC. Processors that have an external stack operate
similarly to the following explanation of the embedded type. When the
call instruction is encountered or an interrupt occurs, the processor
must always save at least the current PC before branching to the rou-
tine CIN. The current PC, as discussed in Chapter 1, contains the
address of the next instruction during the execution phase, at the cur-
rent program level. More sophisticated processors authomatically save
more of the current state of the machine, such as the system flags, the
contents of the other registers, or both. In the case of interrupts,
acknowledgment of further interrupts is usually disabled automatically
until changed by an instruction. Where it is necessary to save the con-
tents of the flag and other registers, too, this must be programmed into
the start of each ISR or subroutine.

In this on-board example, the contents of the current PC are
saved simply by leaving the PC alone. Instead of affecting the PC, the
stack pointer counter is decremented by one, and the actual value of
CIN (the new address of the first instruction in the new routine) is
deposited in this freshly designated PC register, which is one level
down from the old and now inactive PC. The next instruction is
fetched, using the new PC with its just-loaded address. Since the old
PC is one level away in the stack, we say that we have “pushed” it onto
the stack. In reality, we have merely counted down the stack pointer
and reloaded the new PC register, so that it now points to the address
at which we wish to start fetching instructions. The essential difference
between interrupts and subroutines is that interrupts are often initi-
ated by a hardware-generated signal and subroutine calls are initiated
by a line of program code. Also, the interrupt hardware must supply
the means of determining the starting address of the interrupt service
routine. This can be accomplished either by arranging for the system
to “vector” to a fixed predetermined location or by requiring the inter-
rupting device to place an address onto the data bus to be used in
reloading the PC.

Assembling an Architecture 83

HAVE FAITH
A CALL OR

MAIN zom (INTERRUPT)

~___ PROGRAM

[

> >
MACHINE OPERATIONS
INTERRUPTS REﬁg(’RE
SAVES OLD PC, CALL1
LOADS NEW PC,
DISABLED AFTER ZOT! RETURN 1

AN INTERRUPT.

CALLS OR INTERRUPTS ‘ RETURNS
PUSHING CALL 2 ZAM! POPPING
THE THE
STACK RETURN 2 STACK

.. \ (MACHINE RESTORES OLD PC.)*
s ¥ \ ZAM! (RETURN)

*NOTE: INTERRUPTS MUST BE ENABLED
EITHER BY SOFTWARE OR BY HARDWARE
BEFORE OR DURING AN INTERRUPT RETURNS.

Figure 3-4 With the reloading of the PC, the processor completes the call
Program Levels and Hardware instruction (or response to an interrupt) by entering the next Instruc-
Actions for Calls, Interrupts, tion Fetch (IF) cycle. All instructions at the current level are succes-
and Returns sively fetched by first using the contents of the present PC as a pointer

to where the instruction resides in memory and then by incrementing
the PC to “look ahead” for the address of the next instruction—which
is normal PC behavior. In the course of executing a subroutine or ISR,
it may become necessary to respond to yet another subroutine or inter-
rupt. The stack pointer is decremented yet again, and the newly desig-
nated PC is again loaded with the new routine’s starting address. Two
old PC’s are now saved on the stack. The processor again enters the IF
phase of its operation for this new level. Obviously, this can go on until
the counter goes through a complete cycle and starts overwriting old
PC’s to which a return has not yet been made. Small size is the very
serious limitation of on-board program stacks. Even so, they are used
in bit-sliced types of microprocessor architectures because, being on
board, the stack is capable of very fast operation.

How does one return to a higher level after an interrupt or a call?
The last instruction in a proper ISR or called subroutine is a Return.
The return is always generated by a line of software code. Its execution
evokes a physical transfer back to the next-higher level of the currently
used set of program steps. The on-board stack simply increments the
stack pointer (referred to as “popping” the stack) and then enters the
IF state again. The incrementation of the stack pointer of the on-board
stack reselects an old PC, the one left behind after the last call or inter-
rupt. Since it was pointing to the next desired instruction before the
call or interrupt, the previous level is rejoined at exactly the correct
point. Returns are made until control is back to the original main pro-
gram. At this point we too return to examine some more of the details
of Figure 3-3.

84

ORGANIZING AN ARCHITECTURE

VORGANIZING AN ARCHITECTURE

DISTRIBUTED STACKS

As a preliminary means of introducing larger system-organizational
relationships among its structural blocks, Figure 3-3 contains more
than just an on-board stack. It has two register arrays, one organized
as a stack, the other serving as a bank of general registers. An ALU
and associated temporary registers are also shown. The ALU will be
examined in the next section. The temporary registers are “tempo-
rary” only in the sense that they are used to hold intermediate results
for a short time. The reader may wonder how the current program
counter of the stack can be incremented when only a parallel-loading
register in the stack serves as the PC. In this organizational structure,
which is far from optimum, the current PC register in the stack
(selected by the counter-pointer) can be placed onto the data bus,
passed through the ALU, where it is incremented, and stored in tem-
porary register 1. The next clock cycle restores this incremented
value to the current PC. This structure requires data and address
words of the same size. In most cases, however, they are of different
sizes. Better solutions are to equip the stack with its own incre-
menter/decrementer or to make the address word, say, twice as large
as the data word. This last solution is not a good one since it requires
that the PC be incremented in steps.

The severe size limitations of on-board stacks has led to the current
widespread use of distributed types of stack organizations, along with
the introduction of dual-sized register arrays, discussed below. The
architectural features of the distributed stack are presented in Figure
3-5, which represents a hypothetical dual 8/16-bit microprocessor. In
this case, one or more 16-bit stack pointer (SP) registers, as well as the
single 16-bit PC, are kept on board with the CPU. The SP registers ful-
fill the role of the counter-pointer of the on-board stack just discussed.
In this case, both the PC and SP now serve as counters and as pointers
to memory locations. The PC points to the location from which the
next instruction will be fetched. The SP points to the current Top of
the Stack (TOS), where old PC’s and data are to be saved. The com-
puter’s register array, which contains the stack pointer(s), is now a
more complex structure, utilizing a number of subarrays. As shown
here, a dual-bank 8-bit Register Pair (RP) array is combined and coor-
dinated with a 16-bit register array and its associated busing system,
all forming a single complex structure. Note the system’s large number
of bus paths and its great flexibility to move or alter information. All
the previously discussed architectural features of bus organization,
data selection, and distribution, as well as sink selection, are fully uti-
lized here.

DUAL-REGISTER-SIZED PROCESSORS

Modern processors often employ dual 8/16 or dual 16/32-bit architec-
tures. These provide the typical environment within which the distrib-
uted stack operates. Since they profoundly affect the manner in which
stack operations are performed, they are illustrated now. The nature of

Assembling an Architecture

85

/ INTERNAL DATA BUS

-8 EXTERNAL DATA BUS A

[BUFFER/LATCH]|

Y

78
oc
'DMPX | INTERFACE |
SELECTOR H
8 8 |
1 L
Y — EXTERNAL

A

INSTRUCTION
REGISTER
CONTROL o MEMORY
8-BIT RP
SYSTEM |, EE } R
GENERAL o
"PURPOSE 5@ = et
ALU
48 A8
| DATA LATCH |
A
e |
() L M
H P
X
ADDRESS LATCH
AND BUFFER
A EXTERNAL
416 ADDRESS
Y BUS -
Figure 3-5 this arrangement is also shown in Figure 3-5. The logical arrangement

Internal Control Features of
External Stack for a
Hypothetical 8/16-Bit
Microprocessor

of the two 8-bit register arrays permits pairs of corresponding registers
to behave as a single 16-bit register. This is accomplished by interfac-
ing them to a single 16-bit ALU. This ALU’s performance is usually
limited to simply incrementing, decrementing, or just passing along,
unchanged, the data presented to it. These few operations are far less
than is expected of the often smaller general-purpose ALU of the sys-
tem. Note that the 16-bit incrementer/decrementer ALU shown and
the data paths available to it can conveniently handle 16-bit PC, SP,
and RP simple arithmetic operations and information transmittal
without resort to the system’s smaller 8-bit general-purpose ALU. One
of the registers of the 16-bit array is designated as the PC. One or
maybe more registers of this array serve as the SP’s.

The stack proper now resides in external memory, where it can
be made as large as memory management allows. This space is con-
trolled by operating-system considerations, but it is far larger than
before. The severe size limitations of on-board stacks are now greatly
improved upon. Further, more than one stack can be maintained.
These can be used for data storage as well as for the type of system-
stack usage associated with calls, interrupts, and returns. Let us differ-
entiate between the use of the PC and the use of the SP. PC alone
points to the instruction stream in memory; SP does not. SP points to
old PC’s, process-status information, and data that is saved on a stack
for subsequent retrieval. Now the PC and SP registers serve as both
counters and pointers to locations in memory. They can now be incre-
mented/decremented (INCR/DCR) in one or two clock pulses for fast

86

ORGANIZING AN ARCHITECTURE

operation, as can the RP’s. Note that the processor now also has dual-
word-size operational capabilities.

These principles of operation may be configured in many differ-
ent ways. Thus, we have introduced multiple-sized operations along
with the array, as well as multiple ALU and stack constructs, in our
architectural considerations. Note that these new structures, as illus-
trated here, permit the placement of any 8-bit register or half of a 16-
bit one onto the 8-bit internal bus. The contents of 16-bit registers can
now be latched and used as memory-address drivers. Displaying all the
required open collector or tri-state interfaces would only clutter up the
figures. The reader should intuitively recognize where they may be
needed, by now, as well as the types of logic used for implementations.
In Chapters 5 and 6, we will put these organizational concepts to work
in the very real sense of creating the microcode that controls stack
operation.

The INCR/DCR logic provided in the simple 16-bit ALU of
Figure 3-5 can, as noted, only add 1 to, subtract 1 from, or transfer
through unchanged its sourced data. This ALU has associated with it
the indicated buses, data, and address latches that are transparent. Not
only does this flexible group serve to increment the PC, SP’s, and RP’s,
it is used to decrement SP’s and RPs as well. The output of a register
pair may be simply passed through the data latch or latched into it.
From here it feeds the simple ALU. Alternatively, its output can be fed
through the ALU to the address latch/buffer, where it is held to drive
the address bus as long as this address is needed. Any half of a RP may
be. MPXed onto the internal data bus at a time, using the system’s
feed-through ability. The difference in data and address word sizes is
accommodated by the fact that one is a multiple of the other. This
means that addresses may be conveniently stored in memory in multi-
ple steps (two, in this case) via the MPX logic. The data-flow paths
support this. Further, any 8-bit data register (or half of a 16-bit one)
can carry on exchanges with any single half of the registers in the 16-
bit array. This type of architecture is common to many microproces-
sors. The register-select logic also controls the loading of any RP, or
the selected half of one.)

DISTRIBUTED STACK OPERATION

Let us make an introductory examination of the steps involved in the
operation of such a total systemstructure. Storing the PC on the stack
in external memory after a call or interrupt is the case in point. Refer-
ring back to Figure 3-5, this may be carried out as follows:

1. The stack pointer register is stored in the data latch.

2. The ALU decrements the stored image of SP. The decremented
result is stored in both the SP and the address latch.

3. The program counter is transferred through the transparent data
latch and the ALU. Program Counter Low (PCL) is MPXed onto
the internal data bus and presented to external memory for stor-
age on the stack at the location specified by SP. The image of
SP’s contents in the address latch now drives the address bus.

4. Step one is repeated.

Assembling an Architecture

87

USER/EXECUTIVE MODES

5. Step two is repeated. Note that the initial value of SP has now
been decremented twice.

6. The PC is again transferred through the data latch and ALU.
Now, Program Counter High (PCH) is MPXed onto the internal
data bus to external memory, where it is stored on the stack.

Depending on architectural variations, some of the above steps may be
performed in parallel, so the process need not be as lengthy as it seems.
The point is that, while we have discussed two types of stacks, not all
stacks are the same. Obviously, there are some important choices to be
made in selecting a system stack architecture, such as the desired
amount of direct memory-address space desired, so even more com-
plex addressing schemes, based on these principles, are often found in
16-bit and larger microprocessors. The use of segmented addressing
methods is a case in point. Here, the program counter forms the low-
order part of the total address. A special segment register extends the
addressable memory space by supplying the bits that are beyond the
range of PC or SP.

As noted, data as well as PC and status information can now be placed
on a stack. This has led to the maintenance of more than one stack and
the use of several stack pointers. Newer microprocessors possess a user
data SP as well as the EXECutive or SYStem SP. The system SP is
used by the operating system to keep track of where the machine is
when a subroutine call or an interrupt is serviced. System stacks may
store, in addition to old PC, saved system-status information, such as
the flags and other vital statistics. Older architectures use only one SP
for both purposes but, as a result, are not as suitable for multiprogram-
ming operations. The more advanced systems contain both USER and
EXEC (or SYS) SP’s and operate in true user and executive modes. In
this case, only the operating system may manipulate the executive
stack; as a consequence, the users are protected from each other. In
USER mode, the user can perform stack operations on data, but not
with the system’s stack.

Thanks to R.S. Barton’s invention of stack computing, stack
operations have become a solidly entrenched feature of modern archi-
tectures—though true stack machines are rare. His stack-machine ideas
were first implemented on the Burroughs B5500 mainframe computer
in 1963. The author, then employed as a mechanical engineer, was
privileged both to observe and to participate as this machine became a
reality—and he became motivated toward a new career by this involve-
ment in its creation.

THE ARITHMETIC/LOGIC UNIT: OPERATIONS AND FLAGS

The structural features of a processor’s architecture has been likened to
functional building blocks. Familiarity with these blocks helps us'both
understand and create microprograms and processors. One or more
ALU’s are an integral part of every computer. In fact, the ALU and its
associated buses are the essential part of a CPU. Most registers could
reside in external memory. The number of ALU’s used within a design

88

THE ARITHMETIC/LOGIC UNIT: OPERATIONS AND FLAGS

ALU’S INTERFACE

can have a profound effect on how parallel the machine is—that is, how
many compatible operations can be transacted in the same time frame.
The expression “compatible operations” alludes to the important ques-
tion of how much can be accomplished in one clock period of a proces-
sor. Within these considerations lie many answers to such problems as
the required number of clock pulses per cycle, the instruction-set
power and sophistication, and the complexity of the design. In study-
ing the ALU’s detailed behavior, we begin to appreciate the nature of
many of the types of operations that can be part of a compatible set.
The ALU itself, being a purely combinational-logic circuit, never
receives a clock pulse. It operates within an environment of clocked
devices and interconnecting buses. The total set of these operations
must remain mutually compatible.

It is presumed that the reader has already been exposed to the
design of the combinational-logic full adder. In Chapters 2 and 3, we
stressed the functional nature of logical blocks (not their design) to
review fundamental principles of operation and to promote an under-
standing of how they are used, as well as their effect on system behav-
ior. Now may be the time for the less hardware-oriented to review a
basic text on Boolean logic design. A common form of the ALU IC
contains four full adders in one IC, operating in parallel. Associated
with these adders of the ALU are data selection, complementation,
and combinational logic. Relatively simple though the ALU may be,
knowledge of its behavior is central to an understanding of a proces-
sor. The ALU not only transforms information but also originates the
signals that control the flow of machine states and programs. In particu-
lar, all the conditional instructions have their origins in information
produced by the ALU. Let us now explore its detailed behavior.

The major interface features associated with an ALU are shown in Fig-
ure 3-6. The ALU contains three main data ports. The two ports called
A and B in the figure handle # lines of parallel-input data, usually from
separate sources. The F, or Function, port also handles n lines, but
these are called a data-output port of the ALU. What appears on these
lines is the combinational result of the arithmetic/logic operations the
ALU is capable of performing. It is important to realize that the ALU
is solely a combinational-logic device. 1t is fed data information as well
as a control word at the start of a clock period. It then combinationally
operates on the two sets of input data and—after the required settling
time—produces a stable result at the F port. The propagation and set-
tling time involved in these operations is an important design parame-
ter that limits the clock frequency at which a given system may be
driven.

Shown here are k + 2 control lines. The electrical level of the
mode control line establishes whether the combinational operation to
be performed is arithmetical or logical in nature. The Carry-In line,
referred to either as CI or C,, is ignored during logic operations but is
an essential part of arithmetic operations. For this reason, it is treated
here as a control input. The k lines of the function-control subset select
exactly which operation is to be performed within an established
mode. All these above-mentioned lines interface to the control system,
which of course controls the operations. The present instruction and

Assembling an Architecture

89

B PORT A PORT 4
BIDIRECTIONAL
AUXILIARY == INTERFACE
INPUTS/OUTPUTS
MODE * *
CONTROL FLAGS
CONTROL { CARRY IN ALU REGISTER
BUS FUNCTION
CONTROL K
 n F PORT
TRI-STATE
CONTROL TRI-STATE
(OPTIONAL) INTERFACE
A
- Y .
FUNCTION BUS, F
Figure 3-6 the present point in the cycle of computation are interpreted by the
ALU Features (Interface control system, which establishes the desired levels on these control
Diagram) lines at the start of the current clock period. The data results are stored

GENERATION OF SYSTEM FLAGS

in some sink at the end of the current period. The tri-state interfacing
of the F port is necessary only when more than one entity needs to
share the F bus with the ALU.

The signals of the auxiliary inputs/outputs include the carry
look-ahead, the carry generate, and the propagate signals used to speed
up ALU operations when several are joined in parallel. These func-
tions yield significant speed gains, but they are beyond our current
scope. The reader should consult a good TTL data catalog, which will
give the important application details. If a typical ALU based on a 4-
bit module of full adders is used in the construction of a 16-bit or
larger CPU, speed gains on the order of thirty percent may be realized
by using these auxiliary lines and the available logic IC’s associated
with them—namely, the fast carry look-ahead generators.

An extremely important function of a computer system’s main ALU is
its relationship to the associated Flag Register. Any time an ALU
operation occurs, information is also generated by the ALU, regarding
the nature of the results. This auxiliary information is stored in a flag
register when it is critical to subsequent operations. These flags
become the programmer’s decision-making mechanism. The impor-
tance of this stored flag information lies in their subsequent use in
selecting the future path of computation, based upon their contents.
The programmer may later (after the flags are loaded) specify condi-
tional instructions, which reference the stored flag values, to establish
the direction the program is to take for subsequent operations. For
example, conditional branches and multiple-precision arithmetic
instructions are based upon the use of flags. The basic idea is that cur-
rent information about an ALU operation is recorded for future use.
Among other things, the stored flag results of an ALU operation can
indicate that the results of a previous operation were

THE ARITHMETIC/LOGIC UNIT: OPERATIONS AND FLAGS

74181 ALU INTERFACE

Even (Odd)

Negative (Positive)

Zero

Carry (Borrow) generated

Interdigit Carry generated

Overflow (Underflow) occurred

Parity Even (Odd)

A port data Greater (Less than or Equal) than B

A commonly used minimal set of ALU flags (also called condition
codes) is Zero, Negative, Carry, and Overflow. The logical inequalities
may be deduced from this information. The list above includes condi-
tion-code terms that may be derived from a basic set of flags.

A bidirectional interface between the flag register and a system’s
data bus is necessary for saving the present status of the flags on a
stack when servicing calls or interrupts and for setting them to some
desired initial value. The flags are a part of the total state of a program
that has been subjected to a call or interrupt. They must be preserved
when it is put to rest, to correctly recall it again in the future. The
programmer, however, may wish to use the flags for, say, multiple-pre-
cision (multiple-word) addition. In this case, the first addition is speci-
fied as addition without a carry-in. Subsequent additions employ
machine instructions that perform an add with carry-in to obtain mul-
tiple-precision results. The carry-in is the carry-out resulting from the
previous addition, which was stored in a carry-flag cell. Thus the preci-
sion of an arithmetic operation can be extended from one word to as
many as desired. From these examples we see the necessity for
exchanges between the flag register and the rest of the system, as well
as for the existence of instructions that affect the flags.

At this point, let us clarify the meaning of the terms flags or condi-
tion codes, sense cells, and status words. We have just discussed flags and
status information as they are involved in the operation of an ALU. In
general, a flag is a memory cell (flip-flop) whose state is affected by the
occurrence of an event under conditions established by the control sys-
tem. There are two contexts in which the term flag is used—one external
and the other internal. Some processors have flag flip-flops that present
their state to the outside world for the use of other devices. These are gen-
erally set or reset under program control. A sense line generally refers to
an internal flag cell set by the external devices for the internal use of a
processor. This combination of the internally generated and externally
derived flags is of critical importance to the operation of an advanced sys-
tem, and the flags are often referred to collectively as the status word. A
status word or status register can contain some combination of condition
codes (internal flags), interrupt status, priority status, external flags, etc. It
is probably helpful to think of all flags, sense bits, or status bits simply as
generalized status information. They play a critical role in both program
and system operation.

Among the ALU’s that can be used for experimentation are the
74LS181 and the pin-compatible 74181. There are also CMOS versions

Assembling an Architecture

91

LOGIC PRODUCTS

¢ Provides 16 arithmetic
operations: ADD,
SUBTRACT, COMPARE,
DOUBLE, plus 12 other
arithmetic operations

¢ Provides all 16 logic
operations of two
variables: Exclusive-OR,
Compare, AND, NAND,
NOR, OR, plus 10 other
logic operations

¢ Full lookahead carry for
high-speed arithmetic
operation on long words

DESCRIPTION

The '181 is a 4-bit high-speed parallel
Arithmetic Logic Unit (ALU). Controiled by
the four Function Select inputs (S¢-S;)
and the Mode Control input (M), it can per-
form all the 16 possible logic operations or
16 different arithmetic operations on ac-
tive. HIGH or active LOW operands. The
Function Table lists these operations.

When the Mode Control input (M) is HIGH,
all internal carries are inhibited and the
device performs logic operations on the
individual bits as listed. When the Mode
Control input is LOW, the carries are en-
abled and the device performs arithmetic
operations on the two 4-bit words. The de-
vice incorporates full internal carry look-

PIN CONFIGURATION

4-Bit Arithmetic Logic Unit

TYPE TYPICAL PROPAGATION TYPICAL SUPPLY CURRENT
DELAY (Total)
74181 22ns 91mA
74L5181 22ns 21mA
745181 11ns 120mA
ORDERING CODE
COMMERCIAL RANGES MILITARY RANGES
PACKAGES Veo=5V £5%;Tp=0°Cto +70°C | Voc=5V £10%; Ty = —55°Cto +125°C
N74181N o N74LS181N
Plastic DIP N74S181N
. S54181F U S54LS181F
Ceramic DIP S54S181F
Flatpack S54LS181W
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE
PINS DESCRIPTION 54I74 54/748 54/74LS
Mode Input 1ul 1Sul 1LSul
AorB Inputs 3ul 3sul 3Lsul
S Inputs 4ul 4Sul 4LSul
Carry Input 5ul 5Sul SLSul
Fo-F3,A=B,Cp, 4 Outputs 10ul 10Sul 10LSul
G Output 10ul 10Sul 40LSul
P Output 10ul 10Sul 20LSul

NOTE

Where a 54/74 unit load (ul) is understood to be 40uA Iy and — 1.8mA Iy, a 54/74S unit load (Sul) is 50uA ||y and
—2.0mA Iy, and a 54/74LS unit load (LSul) is 204A |4 and — 0.4mA Iy .

ahead and provides for either ripple carry
between devices using the C,,, , output, or
for carry lookahead between packages

LOGIC SYMBOL

using the signals F"(garry Propagate) and
G (Carry Generate). P and G are not af-
fected by carry in. When speed require-

LOGIC SYMBOL (IEEE/IEC)

s ALU
- s 1°) M 1
8o (7] [22] vee 4 "l g; 17
Ao (7] 73] A4 21 2322 2120 1918 3] voos N~
s3 (3] 77 B b4 dd4ddd 2 _ls) pea Q2
- AQgBo A1By A2B2 A38B3 L4 Cl
s; [4] [37) A2 7 —{cn Cnva f— 16
S‘E E'ﬁz 8 —qm A=B j— 14 . _l [—
-] 2_1po
s [=% P b oo —
¢ [7] 5] 83 s,
e EE 3 —483 g £y F2 F3 —-—:: P1 10
- 2 Jas
o 604 AR .
21_1p;
H [e]] » Ve =Pin 24 20 |o, —
Fa [11] En=a GND =Pin 12
GND F. 19
= 7773 - ;:; 13
Signetics
Figure 3-7
Four-Bit ALU Data Sheet
(Courtesy of Signetics

Corporation) 1984 Signetics
Corporation.)

92

THE ARITHMETIC/LOGIC UNIT: OPERATIONS AND FLAGS

LOGIC PRODUCTS

ARITHMETIC LOGIC UNITS

54/74184,15184, 5181

ments are not stringent, it can be used ina
simple ripple carry mode by connecting
the Carry output (C, , ;) signal to the Carry
input (C,) of the next unit. For high-speed
operation the device is used in conjunc-
tion with the '182 carry lookahead circuit.
One carry lookahead package is required
for each group of four '181 devices. Carry
lookahead can be provided at various
levels and offers high-speed capability
over extremely long word lengths.

The A=B output from the device goes
HIGH when all four F outputs are HIGH
and can be used to indicate logic equiva-

LOGIC DIAGRAM

lence over 4 bits when the unit is in the
subtract mode. The A =B output is open
collector and can be wired-AND with other
A=B outputs to give a comparison for
more than 4 bits. The A = B signal can also
be used with the C,, , signal to indicate
A>B and A<B.

The Function Table lists the arithmetic
operations that are performed without a
carry in. An Incoming carry adds a one to
each operation. Thus, select code LHHL
generates A minus B minus 1 (2s comple-
ment notation) without a carry in and gen-
erates A minus B when a carry is applied.

Because subtraction s actually performed
by complementary addition (18 comple-
ment), a carry out means borrow; thus, a
carry is generated when there is no under-
flow and no carry is generated when there
is underflow. .

As indicated, this device can be used with
either active LOW inputs producing active
LOW outputs or with active HIGH inputs
producing active HIGH outputs. For either
case the table lists the operations that are
performed to the operands labeled inside
the logic symbol.

Ch M Ao Bo

(7147(0) (2) 1)

Ay 8 S0S18283
9 1 8

v

Y

|
> L&

? V

(L] (10 &ﬂ‘) (1)

Figure 3-7

Four-Bit ALU Data Sheet
(Courtesy of Signetics
Corporation ©) 1984 Signetics
Corporation.)

a3 s |e un
%o 7 A=8 2 F P Cnss &
Veo=Pin24
GND = Pin 12
()= Pin Numbers
Signetics

Assembling an Architecture

93

LOGIC PRODUCTS

ARITHMETIC LOGIC UNITS

54/744184,15484,5184

MODE SELECT—FUNCTION TABLE

ACTIVE HIGH INPUTS ACTIVE LOW INPUTS

MODE SELECT INPUTS & OUTPUTS MODE SELECT INPUTS & OUTPUTS

LOGIC ARITHMETIC** Loaic ARITHMETIC**
S: | Sa | S| So | maM) | M=L)(CruM) 83 | 82| 8 | S | MaM) | M=L)(Cpm=b)
L L L L |A A L L L L | R A minus 1
L | L | L | H|R+B A+B L|L|L|H]|AB AB minus 1
L L H L | AB A+B L L H L | A+B AB minus 1
L L H H Logical 0 minus 1 L L H H Logical 1 minus 1
L H L L | AB A plus AB L H L L + Aplus (A+B)
L H L H | B (A+B)plus AB L H L H |8 AB plus (A + B)
L H H L | AeB A minus B minus 1 L H H L | AeB A minus B minus 1
L H H H | AB AB minus 1 L H H H | A+B A+B
H L L L |A+8B A plus AB H L L L | A Aplus (A+B)
H L L H | AeB Aplus B H L L H | AeB Aplus B
H L H L |8 (A+B) plus AB H L H L |B AB plus (A +B)
H L H H AB AB minus 1 H L H H A+B A+B
H H L L Logical 1 A plus A* H H L L Logical 0 A plus A*
H H L H | A+B (A+B)plus A H H L H | AB AB plus A
H H H L | A+B (A+B)plus A H H H L | AB AB plus A
H H H H | A A minus 1 H H H H |A A

L = LOW voltage
H = HIGH voltage level

“Each bit is shifted to the next more significant position.
**Arithmaetic {] in2s notation.

ACTIVE HIGH OPERANDS

|
| 2.1 2322 2120 1918
|
|
|
i

IR

ApBo A18y A28; A383
7 Cn Cned JO— 18
8 —4M Axg p— 1
6 —1 S0 G p—1
M $1 ph—1s
4 —ds;
3 —483 5o £y [2) F3

° 10 " ik

ACTIVE LOW OPERANDS

21 2322 2120 w18

d4 44 dL Ll

A0Bo A18y A282 A383
1 —Jcn ava f— 16
8 g M A=8 b 14
6 ——q So G p— 17
:::; pJo— 15
3I——S3¢p Fy F2 F3

T 7 1 1

9 10 " 13

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range uniess otherwise noted.)

PARAMETER 54 54LS 548 74 74LS 748 UNIT
Vee Supply voltage 7.0 7.0 7.0 7.0 7.0 7.0 v
' -05t0o | -05t0 | -05t0 | ~05t0 | —-05t0o | —05to
Vin Input voltage +55 +55 +55 +55 +55 +55 v
-30to -30 to -30 to -30to -30to -30to
™ Input current +5 1 +5 +5 1 +5 mA
v Voitage applied to output in HIGH -05to0 -05to -05to -05tq -05to -05to v
OUT output state +Vee +Vee +Vee +Vee +Vee +Vee
Ta Operating free-air temperature range -55to +125 0to 70 °C
Signetics

Figure 3-7

Four-Bit ALU Data Sheet
(Courtesy of Signetics
Corporation ©) 1984 Signetics
Corporation.)

94

THE ARITHMETIC/LOGIC UNIT: OPERATIONS AND FLAGS

ALU RELATIVE MAGNITUDES

of the same device. This particular IC was fundamental in the develop-
ment of many minicomputers and controllers during the 1960s and
1970s. The manufacturer’s specification for this device, which comes in
a 24-pin dual in-line package (DIP), are presented in Figure 3-7. The
first step in using it is to adopt a convention for treating the dara either
as active high or as active low. Active-low data problems are presented
in the exercises. The use of active-low data conventions in ALU imple-
mentations and interfacing is widespread in practice. Some manufac-
turers’ data-sheet explanations emphasize only active-low data—that is,
the low level is the logically true level on the data lines. This is a reflec-
tion of the frequent use of active-low conventions. In this text, as in
most, we use active-high data as the usual convention. Even so, we
cannot avoid dealing with active-low conditions. The reader may
encounter difficulties later, unless the ALU problems that use active-
low conventions are mastered now.

The ALU interface contains borh active-high and active-low
interface pins. The carry-in and carry-out pins (7 and 16, respectively)
are always of the opposite activity levelfrom the data ports. For exam-
ple, in the case where active-high data is the selected convention, the
carries are active low. That is, a carry-in will be asserted by a low level
on pin 7 when the data is treated as active high. Had we chosen to con-
sider the data pins of this ALU as being active low, then these two
carry lines would have been treated as active high. Under these last
conditions, a high on either pin 7 or 16 implies the existence of a carry-
in or a carry-out, respectively. The confusion is caused by the improper
use of the overbar symbol on all the manufacturers’ data sheets: the
overbar symbol is correctly used for complementation, but it is incor-
rectly used when it also represents the active-low condition. Later in
the text, we shall use the symbol @ to indicate that a named signal is
active low. For now, the remedy is to think of the pin names of the
ALU just in terms of their functional names: data and carry pins. If
the data ports are designated to you as active high, then the carries are
all active low, and vice versa.

An output of this ALU, pin 14, is termed the A = B output. It too has
special characteristics. This pin is used to ascertain whether bit-for-bit
equality exists between the two sets of input-data lines. This equality
detection is performed when the ALU is in the subtract mode, while
the carry-in is high. Pin 14 is an open-collector output and therefore
requires a pull-up resistor between itself and the power supply, V¢, to
be useful. As the data-sheet specifications indicate, the combination of
carry-out (C,,,) and A = B may be used to establish the logical rela-
tionships between the A and B ports. C, is also utilized to control these
relative-magnitude operations. Table 3-1 summarizes the pin relation-
ships for these relative magnitude operations. As discussed, the control
over the flow of software originates in the ALU. These are the signal
types that, when stored as flags, enable conditional instructions to
make decisions. From the equivalent logic diagram, note that the A =
B function is produced when all the inputs to an AND gate are high.
Therefore the A = B output is always active high, regardless of the
data activity-level convention used. Further, A = B has the character-

Assembling an Architecture

95

Table 3-1
Relative Magnitude Tests
C, Input Active-Low Data Active- C, . , Output
High
Data
H A=B A<B H
H A<B A>B L
L A>B A<B H
L A<B A=B L
Notes: M = L

S;..S=LHHL

istic that it is high whenever all F lines are high—a useful fact that has
some innovative applications.

The ALU has a central role in both the organization and the
operation of any processor that transforms data. There is an ALU at
the heart of every computer, though it is not necessarily the 74181. A
study of the equivalent logic diagram of the ALU confirms that it con-
tains four combinational-logic full adders arranged in parallel, fed by
data selection and combination circuitry. A close scrutiny of this chip’s
logic (IC’s are also often referred to as chips) is well worth the time.

To specify arithmetic/logic operations, refer to the mode-select
function table in Figure 3-7. When the mode line is high, this ALU is in
the logic mode. In this mode, the four S lines (S, . . S,) specify the gen-
eration of all 16 functions of two variables. When binary logical opera-
tions are selected, these are performed on the basis of matched pairs of
data. Carries never enter into the logic-function formation process.
That is, A, and B, are logically operated on, independently of other bit
positions or carries, to form F,, and so forth. When the mode bit is
low, the arithmetic operations specified by S, . . S, depend on the state
of the carry-in, C,. Not all of these arithmetic operations yield useful
results, but there are some valuable operations, too. For example,
when selecting the function F = A (in the arithmetic mode) the C, line
can be used to produce either this or F = A plus 1, depending on the
value of the carry. This provides a means of either passing the contents
of A port through the ALU intact or incrementing it by one, before
handing it over to the F bus. Therefore, the carry-in affects which arith-
metic function is actually being performed, by adding one to the func-
tion produced when there is no carry. Some data sheets display two
arithmetic function columns. The second, missing here, is simply the
function shown here plus one. Note that the data sheets use the word
plus to indicate addition and use the symbol + only to indicate the
logical OR operation.

In the logic mode, we can also produce an F = A and an F = B
function. These are most useful when we simply wish to transfer the
contents of one input bus or the other to the output, or F bus. ALU’s
are frequently used for bus-transfer operations. Since carries cannot
influence the results, this is a less mistake-prone method of effecting
data transfers from one bus to another when specifying microcode.
Also note that, when the ALU is in the arithmetic mode and perform-
ing F = A plus A, the quantity is being doubled. In binary, this is tan-
tamount to shifting left one place. Thus this ALU shifts left, too. In
practice, however, shifting is usually accomplished with the aid of aux-
iliary registers and multiplexers. The power that can be packed into

96

THE ARITHMETIC/LOGIC UNIT: OPERATIONS AND FLAGS

ALU WORKSHEET

this relatively simple device is impressive. The ALUs used in a mono-
lithic processor design do not require all 16 logic functions or the use-
less arithmetic ones. They are therefore streamlined versions of this
ALU, tailored to meet the specific needs of a particular computer’s
design.

Figure 3-8 presents a work sheet for solving 74181 ALU problems. The
Data Activity Level column information must be given to work a prob-
lem. An AH in this column implies that the electrically high level is to
be considered as the logically true, or 1, level for that row. An AL
implies that the electrically low level is to be treated as the logical true
or | level for the current problem. Regardless of the given or chosen
activity level, all arithmetic computations are to be performed in
binary, using two’s-complement arithmetic conventions. If active-low
data is being used, an L in a given bit position signifies that an arith-
metic or logic 1 applies to that data bit. Keep in mind that the C, and
C, . , pins of the ALU have an activity level opposite that of the data.
This is a frequent source of errors. For a given truth value (1 or 0), the
electrical level (H or L) of the carries that is either applied or pro-
duced, respectively, is the reverse of the level of a data line for that
same truth value.

In the exercise problems, the ALU Function Performed column
either is given or must be derived from a specified control word, with
the aid of the data sheets of Figure 3-7. The control word may be
specified in the next six columns, or it must be derived from the
given function named through the use of the tables. One must be
given, the other derived. The M or mode bit controls whether the
operation to be performed is arithmetical or logical in nature. The
device data-sheets format species this, too. Referring to them again
shows that, when the M bit is high, this ALU is always in the logic-
operations mode, regardless of the data-activity level chosen. If the
M bit is low, then an arithmetic operation is specified. In either
mode, the four S lines select the exact function to be performed.
Remember that, in the logic mode, both the carry-in and carry-out
bits are treated as irrelevant. This irrelevance is signified by an X in
the appropriate place(s) on the work sheet.

As noted, in the arithmetic mode, the C, bit controls the function
to be performed, in a simple way. If the carry-in is a logical 0, that is,
no carry-in, then the arithmetic operation is as specified in the arith-
metic column of the data sheet. If the carry-in is active (true), then the
operation is this same operation plus one. The 16 functions of the
arithmetic mode are not all sensible or useful. Still, incrementation or
decrementation of the A port (A; .. A,) data, one’s- and two’s-comple-
ment addition of A and B port data, and subtraction are all quite use-
ful. Even shifting of the A-port data, which in practice is performed
outside the ALU by other hardware, may be demonstrated. This ALU
shifts only to the left. The results of all data operations appear at the
F, or function, port pins. The auxiliary information is also output on
the C, , ,, A = B and F, pins for possible storage as flags. The most
significant bit of the output is the sign bit in arithmetic operations.
That is F3 in this case. It, too, may be stored as a status flag. The flags

Assembling an Architecture

97

< £ 22|28 setecr |Z| DaTa DATA DATA 3
H EPEE LINES v LINES LINES LINES v
aga|=zz |2
< D@ Im|s3|s2|si|sofcijas|az|ai|ao]B3|B2|B1|BO}F3[F2|F1|FO] C\..
A)
B)
O
D)
E)
F)
G)
H)
METHOD: FILL IN BLANKS WITH APPROPRIATE H
Figure 3-8 OR L AFTER CONSULTING ALU TABLES. FILL IN

74181 ALU Worksheet

MISSING ALU FUNCTIONS. SHOW CALCULATIONS
BELOW.

we will use that originate in this ALU are the carry, equal, and sign
flags.

Two’S COMPLEMENT ALU PROBLEMS

A sample problem set and their solutions are given in Figures 3-9a and
3-9b. In the first problem, the data activity level is given as AL, and the
function required is A plus 1. Consulting the active-low data table for
the 74181, we find that, since this is an arithmetic operation, the mode
line must be low. For active low, the four select lines for the function f
= A are specified as S, .. S, = HHHH. Note that this is f = A in the
arithmetic mode. C, is specified as an L. We can rationalize this as fol-
lows: If the data is active low, the carries are active high, implying that
C, must be low to be inactive. The function we desire, however, is f =
A plus 1. To add 1 in the arithmetic mode, we specify C, as active, or
H. The A data is given as —2, decimal equivalent. In two’s-comple-

98

THE ARITHMETIC/LOGIC UNIT: OPERATIONS AND FLAGS

> %8 - Ll CTION A BUS B BUS F BUS E
cE@|o22 Q| seLect | Z]| DATA DATA DATA 5
<=z213vo]8 LINES v LINES LINES LINES v
QS_’ <%|§ =

< ma Ims3|s2|si|sofcijas|az]ai|aolB3|B2|B1|BO}F3|F2|F1|F0o} C.

- +
Al AL | Aptt 2 >
B)| AH Hliv|o|ofL|L
L{H|{L|H}L|L|H|H
-13 -
Of AL [AmiB
D)] AH LiH({H|L|L|L
L{L|{H|L}H]L|H|L
E)
F)
G)
H)
Figure 3-9a METHOD: FILL IN BLANKS WITH APPROPRIATE H

74181 ALU Worksheet:
Example Problem

OR L AFTER CONSULTING ALU TABLES.

ment (TC) arithmetic, negative numbers are represented by their TC
form, which is arrived at by the following simple procedure:

1.

Write the binary equivalent of the absolute magnitude of the
number: For example, the absolute magnitude of —2 in binary
notation is 0010. We are using a 4-bit ALU size, the most signifi-
cant bit being the sign bit. If the sign bit is a 0, the number is
positive. If the sign bit is a 1, the number is negative, and the bal-
ance of its bits (the magnitude bits) are in TC form.

Starting with the least significant binary digit, copy down all dig-
its, as they are, up to and including the first 1. That is, in the
example, copy the digits /0.

Now write down the complement of all the remaining digits.
That is, the lefthand Os become 1s, and vice versa. In the example
here, change the leftmost 00 to /1.

This result, 1110, is the TC form of the original number. Taking
the TC form of this number reproduces the original number
again.

Assembling an Architecture

99

-

z 82 L funcrion | A BUS B BUS F BUS g
< = 2|22 |8 seecr |Z| pama DATA DATA S
<Z2 26812 LINES 3 LINES LINES LINES &
QS__‘ <%L§ =
< @ IMIs3|s2|si|sojCvjA3|A2|Al|A0]B3|B2|BI|B0o}|F3|F2|F1|Fo} Cu.,
1)1 % 0OJoft 2 1Jtrjirjptirji1i 0
- +
A) AL JAplusif.LJH|H|H|H|]H
, clcfo|ulalclalolefefe]e] o
) X
B) AH F=AJH]JL|L|{L|L}JL X—
LIH|L|{HJL|L|H|HJH|L|H]|L
, PEETOT L fE 9 % ofo]o 1
C) AL JAminBJL}JL|H|H|L]J]H
LILJH|LJL|L|HJH}JH|H]|H]|L H J
D AH Apll LJH|H|L]LJL
) P Lfo|a|c]a{cfufco]u|L]u] u
L
METHOD: FILL IN BLANKS WITH APPROPRIATE H OR L
AFTER CONSULTING ALU TABLES.
0010 Q) 0011 0100
1110 1101 1100 = -4
+1 0100 0100
o)L = - (1) 0001
B) FROM DATA SHEETS D) A = LLHI 0010
F=A LHLH SHLA = (H)LHLL (0)0100
HLHL 1 H o +1 1
H (0)0101
Figure 3-9b The B data in the first problem is irrelevant because it is not involved

74181 ALU Worksheet:
Completed Problem

in the specified function. To complete the operation, we add 1 to the A
data, as follows:

1110 =

plus 1
1111

-2

-1

The logical carry-out is enclosed in parentheses. To convert this result
to the F-port electrical levels, convert all the true data bits to L’s, to
denote that, in this result, they are all active. The carry-out (for active-
low data) is active high. Since the carry-out of 0 means this line is not
to be active, we specify an L for C, + 4.

100 EFFECTS OF ARCHITECTURAL VARIATIONS ON OPERATIONS: PUTTING IT ALL TOGETHER

The third problem of the set illustrates the fact that the ALU does
not actually perform a physical subtraction—it contains only an adder. In
TC arithmetic, subtraction is accomplished within the ALU by adding the
subtrahend’s TC to the minuend. The A data (—3) is 1101. The B data
(—4) is 1100. To,subtract —4, we first find its TC form, and then add it
to the minuend. The arithmetic appears as follows:

-3 (-3) = 1101
min —4 TC of (—4) = plus 0100
? (1)0001

Note that the carry-out is now active and that C, . , is therefore an H.
The F-port data is now HHHL, in electrical-level terminology. The
advantage of the electrical-level symbology is that it expresses the
behavior of components without ambiguity.

We have spelled out terms in the arithmetic operation above, to
avoid confusing the two’s-complement arithmetic operation with the
sign of the value to be operated on. The data sheets reflect this prac-
tice, too. Differentiating between ALU operations and the signs of the
data values avoids a great deal of confusion.

The neat thing about TC arithmetic is that the results of all arith-
metic addition and subtraction operations are correct in both sign and
magnitude and that the carry-out is used only in the detection of over-
flow or underflow. Since we are not discussing these special overflow
situations here, we should mention that any TC arithmetic problem
formulation that causes an overflow or underflow to occur produces
erroneous results. It may come as a surprise to see that ordinary
processors have only the capability to add. Operations such as multi-
plication are performed by an algorithm involving successive addi-
tions. We will microprogram one of these later, using this ALU. The
high-performance microprocessors speed up multiplication and addi-
tion by providing special logic for these purposes. Since we make
extensive use of this ALU in microcoding instruction sets for a proces-
sor, the practice problems provide an opportunity to gain proficiency
in using this ALU.

EFFECTS OF ARCHITECTURAL VARIATIONS ON OPERATIONS:
PUTTING IT ALL TOGETHER

Let us now examine several basic systems architectures containing
the major constructs we have studied so far—buses, registers, arrays,
and ALU’s. As noted, the arrays and many registers, being memory,
need not be part of a CPU. To obtain speed, they generally are
included in the CPU. The ALU and associated buses are essential to
the formation of a CPU architecture. There are several CPU’s that
employ external memory for registers and arrays. Here, we put all
these major structural elements of the traditional CPU together in a
system, examining several architectural variations of bus-organized
systems. Specifically, we shall observe how the ALU and BUS organ-
ization impacts on their register transfers, as well as on the number of
clock periods required to accomplish a selected task. The number of
steps required to effect a transfer, along with the architectural sophis-

Assembling an Architecture

101

ARCHITECTURAL COMPARISONS

tication of the system, is an important subject in establishing an
architecture for a system. As so often happens, the considerations of
cost versus speed of a system are also involved. Because this subject
is at the heart of how we perceive and understand computer opera-
tions, a little experimentation with architectural variations should go
a long way toward providing insight into why a particular machine is
constructed or behaves in a given manner. In Chapters 5 and 6, we
will study a specific implementation of a basic 4-bit CPU, where this
type of perceptual background is applied to the microprogramming
of instruction sets.

Problem Statement

Definition (ADD)

EXAMPLE 1:

THE SINGLE-BUS SYSTEM
ARCHITECTURE
PERFORMANCE

To compare the effects of architecture on operation, we use the follow-
ing generalized situation for three selected architectural examples:

The overall problem consists of adding the contents of a register R in
an array to that of a memory location M. All arithmetic/logic opera-
tions are to be performed with the use of an Accumulator (ACC) regis-
ter.

Next, we define the operation of addition, as follows:

The operation of addition is defined as the summing of the present
contents of an ACC register with itself, or with the contents of another
register, or with the contents of a memory location. The results of the
operation are to be stored in the ACC register, generally changing its
contents. Source operands, other than the ACC, are to remain
unchanged. Note that tha ACC register always serves as a source of
one operand.

Figure 3-10 displays a single-bus system, defined as cuch because the
ALU’s inputs and outputs interface to the same internal data bus as
the register array. In this example, the register array is to be used only
for data retrieval and storage, not as an arithmetic/logic accumulator.
The results of all arithmetic/logic operations are to be deposited in the
special accumulator provided. In practice, this restriction is often
applied where an architecture lacks parallelism. Coincidentally, similar
constructs were utilized in the design of some very successful 8-bit
microprocessors, such as the 8080. For comparison purposes, we shall
examine the execution of an overall operation that includes the step of
addition, as presented in the problem statement.

In Figure 3-10, two registers feed the ALU. These are the ACC
and TEMP registers. The ACC is shown as a single register, presumed
to have edge-triggered JK-type clocking, for simplicity. Actually, two
transparent latches are often used here. In the next section, we shall
start to clear up these unexplained references to this widely applied
type of latch and its clock characteristics. The overall addition opera-
tion involves a register, say R1, of the array in the total transaction.
One of the numbers to be added comes from R1. The other number
comes from memory. The steps to add these numbers and store the
results in R1 follow. In this process, R1 is treated as the destination

102

EFFECTS OF ARCHITECTURAL VARIATIONS ON OPERATIONS: PUTTING IT ALL TOGETHER

EXTERNAL DATA BUS

A 4
Y
DBUF Y
A
ETC. < INTERNAL DBUS
A A
\ Y Y MEM
ACC TEMP FLAG MPX/DMPX
t—___q
- REG '|ARRAY
ALU |
ADR LATCH
\NOTE:
ADDRESS BUS
ALL INTERFACES
TO DBUS ARE TRI-STATABLE (EXTERNAL)
OR OPEN-COLLECTOR TYPES.
Figure 3-10 storage area for the final results. The special ACC register is the sole

Sifl‘gle-Bus System (Partial)
N

recipient of the results of all arithmetic/logic steps in the total opera-
tion. It would be nice if we could treat any register as a generalized
accumulator; this will come later. For now, the sequence of steps
required to add under these conditions is given below—each step is
synonymous with a single clock period: ’

1. Transfer the contents of R1 into ACC over the internal DBUS.

2. Bring in the contents of the desired memory location, assumed to
be present at DBUF, and store them in TEMP. These two steps
are preliminary to the actual operation of addition, next.

3. Place the ALU in the ADD state, and transfer its output to ACC
over DBUS. The ALU is fed by the ACC and TEMP registers.
Coincidentally, the FLAG register would be loaded at this point. It
would record only status information about this operation, such as
the state of the sign and carry bits, not the results of the addition.

4. Place the ALU in the transfer state, such that the previously
summed contents stored in ACC are placed onto the DBUS. At
the same time, have R1 capture these contents at the end of this
current clock period.

This entire procedure cannot be performed in fewer than these four
steps, given the constraints of this architecture. One cannot drive the
DBUS simultaneously from two different sources—a case of operations
that would be incompatible. Therefore we see that the single-bus sys-
tem requires a rather large number of steps to perform the given task.
This design approach is economical in its use of components, but, due
to a lack of parallelism, the trade-off penalty is the time required to
achieve the end result.

Assembling an Architecture

103

A A
A
DBUF
Y
. DBUS \ - MEM.
- A A \ o
MPX FLAG
ARRAY -
A
L e
DMPX U \
A > ACC
. \ _
- BBUS o

Figure 3-11
Two-Bus System (Partial)
EXAMPLE 2:
THE TWO-BUS SYSTEM
ARCHITECTURE
PERFORMANCE

Let us now compare the case above to the more sophisticated two-bus
architecture of Figure 3-11. In this new hypothetical case, which still
uses a single special ACC register, the following steps are necessary to
accomplish the same task:

1. Place the contents of Rl, in the array, onto the DBUS, and
deposit it into the ACC.

2. Place the contents of the desired memory location onto the
DBUS. With the ALU in the ADD state during this time frame,
the ACC captures the sum of the operands. All these operations
are compatible, since no data clashes occur on the buses.

3. Place the contents of ACC onto the BBUS and store the result in R1.

At the expense of an additional bus and interfaces (tri-state or func-
tional equivalents), it is now possible to perform this computation in
three steps. This is a more parallel architecture. Can you invent a bet-
ter architecture by slightly rearranging this one? Some of the embel-
lishments added in this example are:

a. The ACC is now interfaced to the DBUS via an appropri-
ate interface, which is seldom shown explicitly. -

b. The contents of any register in the array may be directly
presented to the ALU over the BBUS.

c. The contents of memory can directly reach the ALU over
the DBUS.

There are limitations on the designer in the selection of architectures, of
course. These include cost, state of the fabrication art, and optimization °
of an entire instruction set, as opposed to a single operation, as we are
doing. Yet building blocks are meant for building with, so let’s carry on.

104

EFFECTS OF ARCHITECTURAL VARIATIONS ON OPERATIONS: PUTTING IT ALL TOGETHER

EXAMPLE 3:

THE THREE-BUS SYSTEM
ARCHITECTURE
PERFORMANCE

Our last hypothetical example is the three-bus architecture, displayed
in Figure 3-12. In this example, we loosen the original constraints and
dispense with an explicit accumulator. The accumulator can be any of
the 8-bit registers in the dual-bank array. Notice, too, that we are now
definitely mixing dual-sized architectures together—a common prac-
tice. Now, all that is required to perform the given overall task is to:

1. Simultaneously place the contents of R1, which may exist in any
one of the two 8-bit arrays, via the MPX/DMPX logic, onto the
BBUS. The contents of memory are also placed onto the DBUS
in this same time frame. No conflicts here. In the current time
frame, the control system also orders the ALU to ADD. The
combinational result of the addition appears on the FBUS before
the end of this clock period. It can be stored in any general regis-

ter of the 8-bit array desired—we assume even R1. Thus, with this

architecture, the general registers in the arrays can serve as accu-
mulators. These registers in the array are called general registers,
as most of the PDP-11 registers are, to differentiate them from
some special registers—such as a possible SP or PC within the
array (not the case here).

The assumption that Rl can support true simultaneous reads and
writes is not always carried out in practice but could be in principle.
Chapter 5 more fully explains these practical concerns about the
proper ‘use of the widely applied transparent latch. If we assume the
straightforward use of edge-triggering for now, no principles are vio-
lated. We are careful to point out that actual usage may vary.
Depending on our choice of architectures and the parallelism of
their organization, we see that the number of steps to transform infor-
mation vary greatly. Maximizing the set of operations that can be per-
formed simultaneously is very advantageous. We apply this topic again

in the subsequent chapters that develop microprogramming skills. One

sobéring thought is that architectural design is not an end in itself.
What really counts is the set of instructions that-are avai'able to to the
programmer for the development of sophisticated software. In the final
analysis, good architectural design can only serve the best interests of
software sophistication—that is, it does not exist in a vacuum. When
we get around to practicing microprogramming for a limited architec-
ture, we can observe the frustrations attached to hardware/software
trade-off considerations. First, though, we need to grasp the system
coordination of the hardware. That involves a deeper understanding of
these architectural constructs, presented here in an introductory way
to provide motivation and orientation.

A few more remarks on the sophisticated three-bus approach of
Example 3 are relevant. Besides the mixing of 8-bit and 16-bit architec-
tures, notice the second autonomous simple ALU, which is an integral
part of the Address Bus (ABUS) structure of the system. This enhances
the concept of compatibility, in that even more can be performed in
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>