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Preface

There are several approaches to the study of programming languages.
One is to examine several existing languages in detail, compare and
contrast their salient features, and attempt to draw conclusions about
underlying design principles. Another path starts with the design
principles, studies them in relative isolation, and then seeks examples of
the implementation of these principles in real languages. This text
follows the second approach because we believe that it is only by
understanding the basic concepts that meaningful comparisons may be
drawn between various languages.

Central to our approach is the use of mini-languages, each of
which has been designed around some key language feature. The mini-
languages allow a concept to be studied without the need to understand
the wealth of detail and complexity found in real programming lan-
guages. One of the first uses of this technique was in Ledgard’s paper,
“Ten Mini-Languages: A Study of Topical Issues in Programming
Languages,” Computing Surveys, September 1971.

The chapters are self-contained. Each has its own mini-language,
with a small number of constructs designed to illustrate the concept
under discussion. Most of the mini-languages are built on a common
core described in Chapters 2 and 3. An overriding theme of all of the
chapters is the need for much greater simplicity in language design.

The reader is expected to have experience with one (perhaps more)
high-level languages. The concepts discussed here are drawn mainly
from Ada, Algol 60, Algol 68, Cobol, Fortran, Lisp, Pascal, and PL/I.
Between these languages, almost any programming language principle,
good or bad, can be found. Other languages referenced include APL,
Basic, Bliss, and Simula 67. Obviously, there can be no attempt to
present a description of all these languages. However, the reader, even
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if unfamiliar with these languages, should have no difficulty in under-
standing this text. It is expected that the reader will wish to refer to
detailed manuals to obtain a deeper understanding of some of the
languages mentioned. Reference material for all languages mentioned is
cited in the bibliography under the name of the language. Suggestions
for further reading are contained at the end of each chapter.

There is no firmly established convention for the style of writing
the names of programming languages. Usage varies, with no obvious
criterion, between use of upper case only and just capitalizing the initial
letters — for example, between FORTRAN and Fortran. In this text,
we have adopted the rule that, if the name is pronounced as a sequence
of letters, all the letters will be written in upper case, otherwise the
name is treated as a normal proper noun. Examples of the application of
this rule are: AED, Ada, Algol 60, APL, BCPL, Fortran, and PL/I.

For teaching, this book follows the guidelines of course CS 8,
“Organization of Programming Languages,” given in Curriculum 78,
Communications of the ACM, March 1979. As such, it may be useful
for undergraduate and early graduate courses, as well as for anyone
seeking a perspective of the programming language area.

Although each chapter in this book is self-contained, we treat
programming languages in four successively deeper levels. The first
level, Chapters 1 through 3, introduces the area of programming
language, discusses a number of broad issues, and generally set the
landscape for the remainder of the book. The second level, Chapters 4
through 8, discusses five dominant features of most contemporary
languages: assignment, control structures, data types, procedures, and
nesting,.

The third level, Chapters 9 through 12, elaborate on these and
other related concepts. Chapters 13 through 15 treat three specialized
but important areas: dynamically varying data structures, exception
handling, and concurrent processing. The last chapter, Chapter 16,
presents some views on the complexity of programming languages.
Some suggested term projects are given at the end of this chapter.

The design of translators is not discussed specifically. However,
implementation is not forgotten and the reader can see how language
design, translation processes, and execution environment interact. of
particular interest throughout is the clarity and naturalness of expres-
sion that can be obtained from differing language constructs.

This book owes its inception to a mixed graduate, undergraduate
course that Marcotty has been teaching at Wayne State and Oakland
Universities. We are particularly grateful for the excellent proofreading
done by the 1980 fall semester Principles of Programming languages
class at Wayne State University, especially by Elizabeth LaCharite,
Karen Schaefer, Madea Jones, Dan Cecchine, and Louis Paine.
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The book has gained much of its breadth from the work done by
Ledgard on the design of Ada. The syntax of many of the mini-
languages has also benefited from this work. Andrew Signer provided
thoughtful comments throughout the development of this text. Finally,
we are grateful to J.A.N. Lee, who for many years has promoted the use
of mini-languages in teaching.

Henry Ledgard
Michael Marcotty
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Introduction

1.1 THE BUILDING OF THE TOWER OF BABEL

Before 1954 almost all programming was done in machine language.
Solving a problem on a computer required the detailed encoding of long
sequences of instructions into numbers in binary or octal form.
Sometimes, some mnemonic help was provided by the written form of
the machine language, and letter codes were used for operations, for
example, MPY in place of 021 for multiply. This help was later
augmented by the use of symbolic names instead of numeric addresses
to refer to values. The nature of the work is illustrated by the fact that
the actual writing of the instructions was called coding rather than
programming — programming implies the more difficult task of
designing algorithms.
The problems with this method of expressing algorithms were:

m The programs had to be tailored to the particular
characteristics of the available computer. Much effort was
devoted to overcoming deficiencies of the computer’s archi-
tecture, for example, no index registers, lack of built-in
floating point operations, and restricted instruction sets.

B When a new computer replaced the old one, all this
inventiveness was for nought; the old programs had to be
thrown away and the process of building a new library
started again.
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B The close association between a program and a particu-
lar machine design not only permitted but actively encour-
aged the invention of all kinds of tricks to wring maximum
performance from the computer. The correctness of programs
constructed in this way was very difficult to verify, and it was
practically impossible to discover the algorithm behind a
program coded by a colleague.

® The language in which the program was written con-
tained practically no textual redundancy that could be used
to detect errors. Almost any combination of characters could
be executed. To tie the execution errors back to the faulty
code was difficult and time consuming.

These shortcomings led to the development of so-called automatic
programming systems. These systems generally provided operations
such as floating point addition and trigonometric functions, together
with either fixed or variable operands. Usually, the programmer had to
write statements in a fixed format that did not allow mathematical
expressions to be written in anything resembling natural notation.

Automatic programming systems gave the programmer a synthetic
“computer” with an instruction set that was different from that of a real
machine. In particular, the synthetic machine generally had floating
point operations, index registers, and improved input and output
commands. It was thus much easier to program than its real counterpart.
The programmer was able to think of a floating point addition as just
that, and forget the details of carrying it out in the hardware. The
synthetic machine was thus an abstract machine.

The early automatic programming systems were costly to use since
they slowed the actual machine down by a factor of five or more, most
of the time being spent in floating point subroutines. Experience with
these systems, coupled with their familiarity with cunning programming
tricks, convinced programmers that any mechanical coding method
would fail to apply the versatile ingenuity that all programmers believed
they used constantly in their work.

The advent of computers with built-in floating point and indexing
further increased the skepticism. By speeding up the floating point
computations by a factor of ten, a common source of inefficiency in
handwritten programs was removed. Consequently, the automatic gener-
ation of programs that were efficient, by comparison with handwritten
ones, became an order of magnitude more difficult. Those who wanted
to simplify programming could only gain acceptance for their system if
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they could demonstrate that it could produce programs that were almost
as efficient as handcoded ones in practically every case.

In this atmosphere John Backus formed a group in 1954 to develop
the Fortran (FORmula TRANslator) compiler aimed at the automatic
translation of mathematical formulas into machine instructions. The
group hoped to bring about a radical change in the economics of
scientific computing by making programming much cheaper through a
drastic reduction in the time it took for a working program to be
prepared. Because of the atmosphere of skepticism, the group’s empha-
sis was on the efficiency of the translated program rather than on
language design.

It was thought that, once the ideas of an assignment statement,
subscripted variables, and the DO statement had been adopted, the
remaining problems of language design would be trivial! Their solution
would be dictated either by the need to provide some machine facility or
by some programming task that could not be done with existing
structures.

At that time, nothing was known of many issues that were later
thought to be important: block and control structures, nested subpro-
grams, and type declarations — issues that are addressed in detail in
this book. The Fortran programming system was viewed as applying to
just one machine and very little thought was given to the implications of
making a machine-independent programming language. As a result,
certain characteristics of the machine on which Fortran was first
implemented became part of the language; for example, the naming of
output channels was determined by the numbering of the tape units on
the IBM 704 computer.

Fortran was just one of several programming languages that
appeared in 1956 and 1957. This period was the beginning of a
programming revolution; it almost seemed that each new computer, and
even each programming group, was spawning its own algebraic language
or favorite dialect of an existing one. Most of these languages were
aimed at helping the scientific programmer and were restricted to a
particular machine. Their designers were generally a small group of
implementors, rather than users, drawn from a single company. A
primary design objective was to produce efficient machine code, even if
it meant sacrificing some clarity of expression in the language.

The objectives of the designers of Cobol (Common Business
Oriented Language) were different. In 1959, a committee of representa-
tives from several organizations was established to design a machine
independent programming language suitable for use by the business
community. The committee decided that the language should make the
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maximum use of simple English so that managers who had no
programming experience would be able to understand the programs. It
was felt by many committee members that arithmetic operations should
be specified by words like ADD and MULTIPLY rather than by the
symbols + and * because these words would be more readily understood.
The important thing is not whether the committee was right, but that a
serious effort was being made to design a language for communication
between people and computers.

Fortran and Cobol are only two examples of the many languages
that have been developed for programming computers. In many cases,
however, little thought has been put into their design. This is demonstra-
ted in two major ways:

B The external form of the language has often been
designed according to what was thought to be the easiest
form for computer analysis rather than what was most natural
as a means of expression.

B Economy of design and simplicity of structure are rarely
seen.

The profusion of programming languages and their design weak-
nesses severely hinders valuable communication between programmers.
We are still in the state ascribed in. Genesis as leading to the failure of
the Tower of Babel project. This is despite the efforts of many very
talented people working individually, in groups, in small and large
committees, and even in international committees. Some have attempted
to design a ‘“‘universal” language. There have been several candidates
for this position but none has achieved widespread acceptance and use.

If programming languages are examined carefully, they are found
to resemble each other more than their external forms would lead us to
suppose. They are built on a number of basic concepts; it is the object of
this book to study these concepts so that we can have a better
understanding of these languages.

1.2 WHAT IS A PROGRAMMING LANGUAGE?

The computer was conceived as a device that would speed up compli-
cated and time consuming computations. Despite this, it is not its ability
to perform arithmetic that is important in the majority of applications,
but the fact that it can store and access large amounts of data. These
data form an abstraction of some part of the real world.
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Consider the master file used in a payroll application. Each
employee is represented by the data needed for the accounting proce-
dures involved in preparing the payroll. These will probably include
such items as the employee’s name, social security number, and salary.
Other data, such as hair color, shoe size, and name of a favorite
breakfast cereal, will probably not be included. These, while very much
part of a full description of the employee, are irrelevent to the paycheck
computation and do not form part of the abstraction that represents the
employee in the master payroll file.

The data stored in the computer are thus a representation of real
world objects. We speak of the data items as abstract objects.
Associated with an abstract object is a set of operations that transforms
it into other abstract objects. The computation consists of applying
these operations to an initial set of abstract objects, the input data, so as
to transform them into new abstract objects that represent the result of
the computation. '

We define an algorithm as a specification of the sequence of
operations to be performed on the initial set of objects to produce the
resulting set of objects. This algorithm must be represented in a form
that can be communicated both to the computer and to other program-
mers. A programming language is a set of conventions for communica-
ting algorithms. An algorithm expressed in a programming language is a
program.

Although all programming languages share a number of common
principles that we shall study later, the languages are of different
varieties. These may be very loosely classified according to the area of
application or mode of use.

A commercial language is one that is particularly concerned
with the manipulation of files of alphanumeric data and with
the production of reports. Cobol is the best known commer-
cial language.

A scientific language is one that is used mainly for the
manipulation of numeric data. Fortran is the best known
scientific language.

An interactive language is one that is designed to allow a
programmer to make changes and corrections from a terminal
during execution. For example, both Lisp and APL are
designed to be used interactively.

A procedural language is one that allows the user to specify
a set of imperative statements that are to be performed in a
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particular sequence. Most contemporary programming lan-
guages are procedural.

A nonprocedural language is one in which the user does not
specify the sequence of operations that are to be performed to
obtain a problem’s solution. Only the problem is defined; the
emphasis is on what is to be done rather than how it is to be
done. Well-known examples of nonprocedural languages
(although some may dispute that they are, in fact, program-
ming languages) are sort and report generators, in which the
user specifies the forms of the input and the output without
any description of the detailed steps required to transform the
former into the latter.

An applicative language is one in which the program
consists of the evaluation of a function that uses the input
data as arguments and whose value is the result of the
computation. “Pure” Lisp is an example of an applicative
language.

A real-time language is one that allows the programming of
procedures that can be executed concurrently and can be
activated in response to external signals as required. Concur-
rent Pascal and Ada are examples of real-time programming
languages.

A special purpose language is one that is designed with a
limited objective, such as ease of use in a particular applica-
tion area. For example, the language Apt is used to write
programs to control machine tools.

You should recognize of course that these classifications are very
informal, and that certain languages will fall into more than one
category.

Implementation Schemes

The realization of a programming language in a computer system is
called the implementation. Programming languages may be implement-
ed in one of two ways: compliation or interpretation.

Compilation: The program written in the programming lan-
guage, the source program, is translated into an equivalent
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program, the object program, in the machine language of the
computer on which it is to be executed, the target machine.
The object program is then executed by the target machine.

The translation from source program to object program is performed by
a program generally referred to as a translator or compiler. The
translator is itself usually executed on the target machine. However, if
this is not feasible, for example, if the target machine is too small for
the compiler to run, then the translator is executed on a larger machine,
possibly of an entirely different architecture. In this case, the translator
is known as a cross compiler. Much of the programming for minicom-
puters is done through cross compilers.

Interpretation: The source program is translated into an
object program that cannot be executed directly by an actual
computer. Instead, the execution of the object program is
achieved by an interpreter. This is a program that is
executed on the target machine performing the operations
specified in the object program by means of subroutines.

The use of an interpreter allows for greater flexibility than can be
achieved by direct execution. However, the penalty is that interpretation
is generally much slower than direct execution. Examples of languages
that are often implemented in this way are APL, Basic, and Lisp.
There is no hard line of differentiation between compilation and
interpretation. Even in systems where the compiler produces machine
code for a real machine, an extensive support library of subroutines is
usually required for execution of the object program. As the system
design moves more in the direction of interpretation, the library
becomes bigger and less is done by execution of compiled codes.
Interpretation and execution merge at the point where the object
program consists of a sequence of machine code subroutine invocations,
and the interpreter consists of the subroutines that are invoked during
execution. The amount of processing performed by the translator ranges
from doing nothing, in which case the character string representation of
the source program is interpreted directly, through complete translation
into target machine code. An implementation of a programming lan-
guage includes the translator, interpreter, and supporting subroutines.
There is, of course, a relationship between a language and its
implementation. While there may be several different ways of realizing
the facilities of a language, some are inherently more difficult and
expensive than others. The ability to manipulate strings that do not have
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a predetermined upper bound for their length, for example, offers great
flexibility to the programmer; at the same time, such a facility requires
expensive storage management techniques. Awareness of the associated
implementation complexities allows a choice to be made between utility
and cost.

1.3 WHY STUDY PROGRAMMING LANGUAGES?

Although they are all natural languages, an ability to speak English
does not automatically confer the ability to understand French and
German. Nevertheless, the three languages are based on very similar
principles due to their common Indo-European origin. English is
blessed (or cursed) with a very tolerant grammar; many students whose
mother tongue is English have problems with languages with more rigid
grammars. This is because grammatical concepts that are only vestigal-
ly present in English are important in other languages and need to be
understood. Although the subjunctive exists in English, its use is
vanishing fast and most English-speaking people are unaware of it. In
French, however, it has a very important place and must be understood
before the language can be mastered. An understanding of the common
grammatical basis of English and French clearly helps the student.
Both languages, however, allow the same basic ideas to be communi-
cated.

The situation is very much the same with programming languages;
they differ widely in their external forms and range of facilities, yet
they are based on a relatively small group of basic concepts. Whether
you are learning a new language or increasing your knowledge of a
large language, an understanding of these underlying concepts will
make this task simpler. You will be able to see beyond the external
format of the language to some principles that you can understand.

Of all the aspects of programming, the design of a language
requires the greatest skill and judgment. The linguist Benjamin Whorf
[1956] has hypothesized that one’s language has a considerable effect
on the way that one thinks; indeed on what one can think. The
language designer’s task transcends programming itself and concerns
itself with the symbolism that is used to express computations. Thus, if
Whorf’s hypothesis is correct, the skill of the designer will have a
considerable effect on the range of problems that can be solved in a
language. The designer must survey the many attractive features that
are available for inclusion in a language and choose the most powerful
set of facilities that will constitute a harmoneous assembly. The
objective is sufficient power with minimal complexity.
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Of course, most programmers and computer scientists do not
become language designers, which is a good thing since there are
already too many languages. However a proper understanding of the
concepts of programming languages will help make the design of
programs considerably easier. Success will be indicated by a program
that is a pleasure to use.

1.4 WHAT SHOULD WE LOOK FOR IN A LANGUAGE?

A programming language is the programmer’s most important tool. A
good language can lead the programmer to the correct solution of a
problem in a natural and easy manner. Conversely, a poor language
may add so much complexity to finding the solution that the program-
mer will abandon the attempt at solving the problem in favor of an
easier one. A programming language thus serves a programmer in the
same way that a notation serves a mathematician. As said in [Whitehead
1911]:

By relieving the brain of all unnecessary work, a good notation
sets it free to concentrate on more advanced problems, and in
effect increases the mental power of the race. Before the
introduction of the Arabic notation, multiplication was
difficult, and the division even of integers called into play the
highest mathematical faculties. Probably nothing in the
modern world would have more astonished a Greek mathema-
tician than to learn that . . . a large proportion of the population
of Western Europe could perform the operation of division for
the largest numbers. This fact would have seemed to him a
sheer impossibility. ... Our modern power of easy reckoning
with decimal fractions is the almost miraculous result of the
gradual discovery of a perfect notation.

The primary purpose of a programming language is to help in the
task of programming. Thus it must aid in those areas that are the most
difficult:

Program design: deciding and specifying what must be done
and how the data are to be represented.

Understanding: explaining the working of the program to a
human reader.

Verification: establishing the correctness of the program.
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We turn then to some of the characteristics of a programming language -
that will make it useful in these areas. It will become evident that the
areas are not independent and that some desirable characteristics are
helpful in all three.

Program Design

In program design, the language must assist the programmer in
specifying the process and the data clearly and naturally. It must be
possible to construct abstractions that match the characteristics of the
problem. This means that it must be possible to avoid extraneous detail
that will clutter up the solution.

A common deficiency in this area is the inability of a language to
manipulate abstract data objects other than the few primitive types
supplied by the language. For example, in Fortran, Cobol, and to a
large extent PL/I, all data must be mapped into a few basic elements.
The details of this representation are likely to obtrude into the
algorithm, making it more difficult to understand.

For example, a date, if it is to be manipulated in these languages,
must be represented as a number. A programmer may use operations,
like division, that are valid for numbers but that have no meaning when
applied to dates. Thus, it is most important for the ease and clarity of
programming that the language be able to treat abstract objects that
match the problem data.

Understanding

All too often documentation is added to a program as a chore
after the program has been made to work. As a result, either too little
or too much detail is supplied. If there is not enough, the programmer
who wishes to modify the program later will not be able to do the job
reliably. If there is too much detail, it usually repeats what is written in
the code and serves to obscure rather than enlighten.

A well-designed language will encourage the programmer to write
so clearly that the program will be self-documenting, with only modest
need for additional comments. Making the documentation an integral
part of the program avoids the well-known trap of misleading documen-
tation that occurs when a program is modified without corresponding
changes in the separate documentation. For self-documentation to be
possible, the language must allow the specification of operations and
data to be made clearly and naturally.

A frequently applied criterion in the design of languages is the
minimization of keystrokes on the grounds that this will help the
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programmer. Shopping lists are usually constructed this way, with terse
phrases based on a great deal of contextual information in the writer’s
mind. Six months later, a shopping list is often too cryptic to be
understood because the contextual information has been forgotten.

Readability is thus a much more important criterion than writabil-
ity; after all, the program will probably only be written once, but read
many times. It must be recognized, however, that, even though a
language may be designed with the goal of program clarity, it does not
follow that all programs written in that language will be clear. It is
impossible to design a language in which an obscure program cannot be
written.

Verification

To help with verification, the programming language must give the
programmer confidence that the program is correct. Thus, it must aid
the programmer to obtain either formal or informal verification. Again,
one of the best ways of achieving this is for the program to have been
written with such crystal clarity that it is obviously correct. Since it is
probable that careless errors will always be made, the notation of the
programming language should be designed so that the scope of such
errors will be reduced and the bulk of them detected by the compiler.

1.5 LANGUAGE DESIGN ISSUES

PL/I has a rule allowing implicit declaration of variables, that is, the
translator allows the use of variables that have not been explicitly
declared to be used. The designers argued that this would save the
programmer trouble in cases where the attributes assumed by the
translator matched those required by the programmer. The penalty for
this convenience is that the compiler can no longer detect simple
spelling errors in the names of variables. The occurrence of a
misspelled name constitutes an implicit declaration of that name as a
new identifier.

More importantly, the explicit declaration of variables does a
great deal to establish the intent of the program in the reader’s mind.
The declarations may then be viewed as ‘“‘definitions’” of program
objects, and the executable statements as steps in the process of
computing the result.

Not all programming errors can be detected by the compiler. The
language must be designed so that the effects of these errors can all be
explained through the language without recourse to details of the
implementation or the underlying real machine. To require knowledge
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of the real machine is to shatter the abstract machine provided by the
language. The Fortran error message

STATE--ABEND CODE IS: SYSTEM0200, USER 0000
10-NONE, SCB=0F10C0, PSW IS 078D2000000A98B2E

has no meaning in the language; the Fortran machine does not have an
SCB or PSW.

Sometimes implementors attempt to provide security without
exacting a large execution time penalty by providing two compilers: a
debugging compiler and an optimizing compiler for use when the
program has graduated from debugging to production. This provides an
added difficulty by introducing the possibility that the abstract ma-
chines represented by the two compilers may not be identical.
Furthermore, it also implies that, once the program is in production and
its results have become important, many of the safeguards on correct-
ness will be removed.

Underlying all of the needed language characteristics is simplicity.
The programmer must be able to understand the tool completely. How
many Fortran or PL/I programmers can claim that they know the
language completely? Understanding a language often represents such a
large investment in time that programmers find it impossible to change
to a new language despite the acknowledged weaknesses of an old one.

An important part of a simple design is that there should not be
more than one way of expressing any action in the language, that is,
each component of the language should be independent of the other
components. The design is then said to be orthogonal In a truly
orthogonal design, there are a small number of separate, basic
constructions and these are combined according to regular and sys-
tematic rules without arbitrary restrictions.

Many programming languages include composite data types, such
as structures and arrays. They also allow functions, processes that map
arguments into a result. A proper combination of these two orthogonal
concepts, data types and functions, would permit functions to return
results of any data type that is allowed as an argument.

An arbitrary restriction, for example, would allow arguments to be
of composite data type but permit only scalar results. This type of
restriction is seen in Fortran, Algol 60, and some versions of PL/I.
However, there is a danger in removing all restrictions; the complexity
of the language will be increased without a corresponding gain in
facility.

The provision of more than one form to denote a concept always
increases the size of a language. The additional complexity introduced
by such features must be carefully weighed against their usefulness.
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Cobol provides an example of questionable duplicate forms. The
sequence of arithmetic statements

COMPUTE  TOTAL-HOURS
COMPUTE  NUM-ON-PAYROLL

1l

OVERTIME-HOURS + REGULAR-HOURS.
NUM-EMPLOYEES - NUM-ON-VACATION
- NUM-ON-LEAVE.

performs the same computation as the sequence of statements

ADD OVERTIME-HOURS TO REGULAR-HOURS GIVING TOTAL-HOURS.
SUBTRACT NUM-ON-VACATION, NUM-ON-LEAVE FROM NUM-EMPLOYEES
GIVING NUM-ON-PAYROLL.

and both sequences are homogeneous to the eye. However, when both
notations are combined as in

COMPUTE TOTAL-HOURS = OVERTIME-HOURS + REGULAR-HOURS.
SUBTRACT NUM-ON-VACATION, NUM-ON-LEAVE FROM NUM-EMPLOYEES
GIVING NUM-ON-PAYROLL .

the symmetry of like operations becomes less visible. A designer may
prefer the concise mathematical form of the first sequence or the
English-like notation of the second. In any case, it would be simpler to
retain a single notation in the language. We prefer the arithmetic
version in this case.

PL/I provides another ready example of questionable duplicate
forms. For instance, fully qualified names for composite structures are
often cumbersome to read and write, especially when the same element
is referenced often in a short span of text. Consider the PL/I
declaration:

DECLARE 1 A(1 : 10, 1 : 12),

2 B(1 :9),
3 C(1 : 7) CHARACTER(S),
3D CHARACTER(1);

There are many different forms that can be used to reference the same
component of the structure. For example, the fully qualified references

A9, 11).B(4).C(7)
A(9).B(11, 4).C(7)
A(9).B(11).C(4, 7)
A.B.C(9, 11, 4, 7)
A9, 11, 4, 7).B.C
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and, in certain contexts, the partially qualified references

B(9, 11, 4).C(7)
A.C(9, 11, 4, 7)
c(9, 11, 4, 7)

can all be used to reference the same component in the structure. In
each of these cases, any potential gain in brevity may be offset by a
loss in clarity.

In some languages that attempt to provide everything for every-
body, the problem of maintaining simplicity is attacked by so-called
modularity of design. The idea is that an individual user will only be
concerned with a particular part of the language and will not need to
know anything about the other parts of the language. Thus the language
is designed so that there are a number of, generally overlapping,
subsets. In principle, this appears acceptable.

There are many problems with this approach however. The user
will still be intimidated by the whole language, and separate texts may
need to be written for the individual users. The compiler, which is
written for the union of all the subsets, does not take account of the
fact that the user only knows part of the language. There is even the
danger that a user may write something that is meaningless in the
particular subset being used but valid in another subset that is not
known to the programmer. When the program is executed, an unin-
tended action will take place, one that cannot be explained in terms of
the original subset.

The properties that we have discussed so far have been charac-
teristics of the design of a language. There are also some general
questions of implementation that must be considered. Among these are:

Availability: Are there compilers available for the language
on a wide range of machines?

External support: Are the standard processes, such as
sorting, solution of differential equations, and graphic dis-
play, available for use or must they be written specially?

Implementation: Is the compiler easy to use and does it
produce clear diagnostics?

Efficiency: Is the compiler efficient both in the compilation
process and in the object code that it produces?

Documentation: Are the language and its compiler well
documented? Are the supporting documents written clearly
and unambiguously?
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1.6 ELEMENTS OF A PROGRAMMING LANGUAGE

Before we can use a language, there are certain things that we need to
know about it. This information must be contained in any proper
description of the language.

First of all, we must know what type of objects can be
manipulated in the language. Historically, programming languages have
been designed to deal principally, though not exclusively, with some
specific type of object. For example:

Fortran and Algol programs manipulate numbers.
Snobol programs manipulate strings.

Setl programs manipulate sets.

Lisp programs manipulate lists.

There are also attempts at ‘“‘universal’’ languages, such as PL/I, that
can manipulate many types of objects.

A more recent trend is to permit the programmer to define new
abstract objects. For example, the Pascal declaration

type SUIT = (CLUBS, DIAMONDS, HEARTS, SPADES);

defines a type of abstract object, the suit, which can have one of four
values. The identifiers CLUBS, DIAMONDS, HEARTS, and SPADES
name these values. These are the names of constants of this type of
abstract object, just as the numerals O, 1, and so on, are the names of
constants of the type of abstract objects called numbers.

The next thing we need to know about a language is what kind of
algorithms it can be used to specify. In principle, almost any programming
language, even the simplest, can be used to specify any algorithm. It can
be shown that a very simple machine consisting only of a store and the
single instruction

Change the contents of location A by subtracting the contents
of location B from it; branch to location C if the result is
negative, and otherwise proceed sequentially to the next
instruction

can evaluate any computable function. However, such a machine will not
be easy to program and its programs will not be easy to understand. Thus
while any programming language can be used for anything (Fortran has
been used for payrolls and Cobol for solving differential equations), it is
important to know whether a particular kind of algorithm can be
reasonably written in a language. Fortran and Cobol, for example, are not
suitable for writing recursively defined functions (ones that can invoke
themselves), but Algol and Pascal are.
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Most real applications are so complex that they must be built from a
number of smaller algorithms so that the programs do not become
complicated to understand. It is therefore important to know how larger
operations on objects can be constructed from smaller ones. In general,
this means knowing what subroutine mechanism the language supplies?

Finally, we must know how a program in the language is to be
written; that is, we must know what must be entered through the terminal
or punched on the card, and what the program does. We discuss these
issues next.

1.7 THE STUDY OF PROGRAMMING LANGUAGES

Generally the study of programming languages is divided into two distinct
parts, the syntax and the semantics. Broadly speaking, the syntax of a
language is concerned with the way that a program is written and the
semantics with what happens when the program is executed, that is, with
its meaning.

A program in a language is represented outside the computer as a
string composed of symbols drawn from a finite set of symbols.
Commonly, the symbols comprise the character set of a keypunch or
terminal, but other sets of symbols are possible. Most of the strings of
symbols are not programs in the language, they are meaningless gibberish.
The syntax of the language consists of rules that define strings of symbols
constructed in a particular way. These strings are called syntactically
legal programs. The syntax rules of Fortran, for example, specify that the
sequence of characters

2+3=1+1

is not a valid Fortran statement and thus no string containing this
sequence of symbols outside a comment or string will be a legal Fortran
program.

Only a small fraction of the legal programs will execute correctly.
The rules of syntax govern only the construction of programs from the
symbols and have no concern with what happens when the programs are
executed. The semantic rules of the language define a subset of legal
programs that have a meaning. In a similar way, there are many
grammatical sentences in English, like:

THE SPHERICAL WALL GARGLED THE BUS

The semantics of English tells us that this sentence is nonsense. To return
to Fortran, the sequence of statements
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J=20
K=3/1

results in division by zero. A program that contains such a sequence of
symbols is said to contain a semantic error and to be meaningless.

The boundary between syntax and semantics is not well defined;
different authors may define it differently. For example, the association of
an identifier with a declaration is regarded by some as being syntactic and
by others as semantic. There is a temptation to become over-involved with
syntactic questions, and many textbooks succumb to this. The reason for
this is primarily due to the fact that there is some well-developed
mathematics connected with the syntax of languages. Consequently, a
much tidier presentation is possible in this area. In most programming
languages, the syntax is the only part defined with any degree of
formalism. Usually, the semantic rules are only expressed informally.
However, the semantic questions are much more difficult.

All too often, an intuitive understanding of the semantics turns out to
be woefully superficial. When an attempt at implementation (which is,
after all, a kind of formal definition) is made, ramifications and
discrepancies appear. What was thought to have been fully understood is
discovered to have been differently perceived by various readers of the
same informal description. By then, it is frequently too late to change and
incompatibilities have been cast in code. There is thus a great need for
formalism that would remove the ambiguities and vagueness from
semantic definitions. However, despite a great deal of work in this area,
there is still little known about how to define semantics clearly. We return
to this question in Chapter 3.

In Chapters 2 and 3, we discuss the general issues in syntax and
semantics. The following chapters treat particularly important language
issues common to several currently used languages.

We introduce mini-languages at appropriate points to provide
vehicles for the discussion. The idea of a mini-language is that it contains
only those features that are being currently discussed. Thus it is small
enough to be easily described and understood, and the particular area of
interest can be studied without worrying about interactions with other
features in the language. Although heavy use of mini-languages provides a
focus for discussion, examples of well-known programming languages are
also cited frequently.

FURTHER READING

There are a number of books in the general area of programming languages, and
most of them are textbooks. However, there are also a number of shorter works.
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One of the more cleverly written of these is [Wirth 1976]. This paper discusses a
number of language issues, and then presents an amusing script describing the
design of a hypothetical computer language. Other short papers in the general area
of language design are [Hoare 1973], [Richard and Ledgard 1977], and [Wirth
1974).

In 1978, a conference was held on the history of programming languages.
This conference discussed the early development of a number of languages,
including Fortran, Cobol, PL/I, and Basic. The proceedings of this conference
appear in the August 1978 issue of ACM Sigplan Notices. This document is
certainly relevant to this text. An earlier and comprehensive work in this area is
[Sammet 1969].

There are other texts similar in intent to this one. Some of these are [Barron
1977], [Elson 1973], [Nicholls 1975], [Organick et al. 1978], and [Pratt 1975].

EXERCISES

Exercise 1.1 Language Complexity

It has been the fate of languages to get larger and larger as time
passes. For instance, the original version of Fortran developed in the
1950’s was quite small, although admittedly with some severe limitations.
Then came Fortran 11, Fortran IV, and Fortran 77; each larger and more
complex than its predecessor. No language that we know of has become
smaller over time.

Choose one of the languages, Ada, Basic, Fortran, Pascal, or PL/I,
and two features that you would remove from the language. Give a
rationale for each deletion. This rationale should include consideration of
the effects of the deletion on the remainder of the language.

Note: Do not be misled by this exercise. The design of language features
is often so interconnected that removal is extremely difficult. The key to
smaller and less complex languages is not simply a matter of deletion.
The key is the initial underlying design.

Exercise 1.2 Areas of Application

In Section 1.2 we give a loose classification of languages according
to their area of application or mode of use. Choose three such areas and an
appropriate language for each area, and then describe why the language is
suited to the area. For example, what is it that makes Cobol such a
popular language for data processing? Illustrate the points you make with
examples.



Introduction 21

Exercise 1.3 Machine Independence

What does it mean to say that a programming language is machine
independent? Why is machine independence thought to be an important
language design consideration? Describe some of the points that must be
kept in mind when designing a machine independent language. Illustrate
your answers with examples showing both machine independence and
dependence from existing languages.

Exercise 1.4 Language Description

What are the important concepts used in describing a programming
language and what are the criteria that should be used in judging the design
of the language? Illustrate your answer with examples from an existing
language description showing:

1. The application of your description concepts.

2. How your design criteria are both satisfied and violated by
different languages.

Exercise 1.5 Abstract Machines

An operating system defines an abstract machine that differs from
the actual host hardware. Choose an operating system with which you are
familiar and determine the structure of the abstract machine that it
defines. In what way does the abstract machine differ from the actual
hardware? Give examples of restrictions (for example, features of the
hardware that are not available to users of the operating system) and of
extensions (that is, facilities that are directly available in the abstract
machine but that can only be obtained by software simulation on the
actual hardware).

Exercise 1.6 Language Design for Human Use

Based on your experience and drawing on examples taken from
existing programming languages, list some things the language designers
might do to make the programming process as difficult as possible. (This
exercise is from Richard L. Wexelblat.) You might wish to have a look at
[Ledgard et al. 1981].
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Exercise 1.7 Programming in Two Languages

On most interactive systems you must enter a “password” in
order to start programming. This helps ensure that someone else does
not have access to your files of information or does not charge you for
using the computer facilities.

Write a program in two different computer languages (your
choice) to prompt a user for a password. If the password is not given
correctly within three tries, the program should inform the user that the
passwords given are incorrect and then terminate; otherwise, the user
should be informed of a successful entry, and then, at least for this
exercise, terminate. Your program will define the correct password.

a. Successful éntry

Computer: PLEASE ENTER YOUR PASSWORD
User . SHERLOCK
Computer: 0F COURSE, GO RIGHT AHEAD

b. Unsuccessful entry

Computer: PLEASE ENTER YOUR PASSWORD

User ¢ MYCROFT
Computer: WH0?
User : WATSON

Computer: WH0?
User : HOLMES
Computer: FORGET IT.

When you are done, comment on the most significant differences
between the two languages, as expressed by your two programs.

Note: The two programs should have identical behavior.









Syntax

In this chapter we describe the outward appearance of a programming
language, that is, its syntax. To help us in our discussions we will begin
by describing a mini-language in an informal way. From this informal
view of the syntax, we will be able to identify the syntactic components
of the language. The way in which these syntactic components are
designed and fitted together to form the fabric of the complete language
greatly influences the ease of using the language.

This description of the syntax of the mini-language is informal. It
is thus subject to the vagaries of English prose. We will discuss more
formal techniques for the description of syntax and show how the
example mini-language would be described with these techniques. This
will lead us to the choice of a particular method that we will use
throughout the rest of this book.

As we saw in the previous chapter, a program written in a
programming language must be translated before it can be executed.
This translation consists of two main processes, analysis and synthesis.
The analysis phase converts the source program into an internal form
from which the equivalent object program can be synthesized. The
analysis phase is thus closely connected to the syntax of the source
language. We will give an overview of this phase and see its connection
to formal descriptions of the language syntax.
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2.1 INFORMAL DESCRIPTION OF MINI-LANGUAGE CORE

A Mini-language Core program is introduced by the symbol program,
Despite the fact that program is written with several letters, it is
considered to be a unique symbol of the language. The language has
several such symbols and these will be shown in lowercase letters. The
program consists of two sections: a declaration section, which follows
immediately after the program symbol, and a statement section. The
statement section follows the declaration section; it is introduced by the
begin symbol and terminated by the end symbol and a semicolon. The
declaration section is formed of declarations consisting of the symbol
declare followed by a list of identifiers separated by commas and
terminated by a semicolon, as in:

declare A, B;
declare X, Y, Z;

The statement section consists of a sequence of statements. There
are five kinds of statements: assignment, if, loop, input, and output
statements. Each is terminated by a semicolon.

The assignment statement consists of an identifier, the symbol :=,
and an expression, in that order. The following are examples of
assignment statements:’

X :=B;
X :=X+1;

The if statement has two forms

if comparison then
statement...
end if; -

and

if comparison then
statement...
else
statement...
end if;

where “statement...”” represents a sequence of statements, and if, then,
else, and end are symbols. Two examples of the if statement are



Syntax 27

if (X = 2) then
A := B;
X :=X+1;
end if;

and

if (A # B) then

X:=X-1;
else

X =X+ 1;
end if;

A loop statement has the form

while comparison loop
statement...
end loop;

where while, loop, and end are symbols. An example of a loop
statement is:

while (Z < X) loop
1:=7+1;
Y =Y+
end loop;

The input and output statements are similar to each other. The
input statement consists of the symbol input followed by a list of
identifiers separated by commas. The output statement consists of the
symbol output followed by a similar list of identifiers. Examples of
these statements are:

input A;
output X, Y, Z;

Expressions are built from operands consisting of identifiers,
integers, and parenthesized expressions separated by operators. The
operators are the symbols +, -, and *. The following are examples of
Core expressions:

A+B*3
(A+8B) *3
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If several operators occur in an expression, the parenthesized expres-
sions are evaluated first, followed by the operator * and then the
operators + and -. The operator * is said to have a higher precedence
than the + and - operators. The + and - operators have equal
precedence. Sequences of operators of equal precedence are evaluated
in order from left to right. Thus

A+B=*3
is equivalent to

A+ (B*3)
and

A-B-¢C
is equivalent to

(A-8B)-¢C

Comparisons consist of parentheses enclosing a pair of operands,
each an identifier or integer, separated by one of the comparison
operators =, #, <, and >. For example,

(A=23)
X#£Y)
5>Y)

are comparisons.
An identifier consists of a sequence of letters A through Z, with
any two adjacent letters possibly separated by an underscore. Thus

A
ALPHA
SUM_OF_SQUARES

are all examples of identifiers.

An integer consists of a sequence of the digits O through 9.
Particular implementations of Mini-language Core may impose limita-
tions on the lengths of identifiers and integers.

In addition to the rules given for the construction of a program in
Core, there are two constraints:

1. All identifiers used in the statements of the program
must be declared.



Syntax 29

Thus, for example, the program

program
declare A;
begin
input A, B;
output A, B;
end;

is illegal because the identifier B has not been declared.
2. No identifier may be declared more than once.

That is, no identifier may appear more than once in the declaration
section of the program. For example, the declaration section

declare A, B;
declare B, C, C;

is illegal since both the identifiers B and C are declared more than
once.

Example 2.1 gives a complete example of a program in Mini-
language Core.

program
declare COUNT, LIMIT;
declare LAST_TERM, THIS_TERM, NEXT_TERN;
begin
COUNT
LAST_TERN :
THIS_TERM :
input LIMIT;

n
[—3

non
—

while (COUNT < LIMIT) loop
output LAST_TERM;

NEXT_TERM := LAST_TERM + THIS_TERN;
LAST_TERM := THIS_TERNM;
THIS_TERM := NEXT_TERN;
COUNT := COUNT + 1;
end loop;

end;

Example 2.1 A program in Mini-language Core
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2.2 THE SYNTACTIC COMPONENTS OF PROGRAMMING LANGUAGES

A program consists of a hierarchy of syntactic units. At the highest
level we have the complete program. In Mini-language Core, the
complete program consists of the three symbols, program, begin, and
end, together with everything contained within the framework they
provide. In other programming languages there may be other large
structural units. For example, in PL/I, a program may consist of
several separate ‘‘external” procedures that have been individually
translated and subsequently linked together for execution.

At the next level of syntactic structure there are statements and
declarations. Each of these units is one of a number of specific forms.
Some statements contain expressions: these are syntactic units of
arbitrary size built according to certain rules, with subunits separated
from each other by operators.

At the bottom of the syntactic scale are the lexical elements, the
symbols from which programs in the language are constructed. In the
case of Core, the lexical elements are

program begin end declare if then else while loop
input output

0123456789

ABCDEFGHIJKLMNOPQRSTUVWXY?Z

-t =P <> = 4 () =
and the blank character, which, when we need to represent it explicitly,
will be denoted by the letter §.

The set of symbols from which a language is constructed is its
vocabulary. Some of these symbols are always used by themselves, for
example, begin, end, +, and *. Others are used to construct larger
syntactic units like identifiers and integers. Identifiers and integers are
always terminated by one of the special symbols, shown in the last row
of the lexical elements above, or by blanks. The symbols used to
terminate identifiers and integers are known as delimiters. In all the
mini-languages used in this book, at any point where a delimiter can
occur in a program, an arbitrary number of blanks may be inserted.

If the purpose of a programming language is to communicate
algorithms to programmers as well as computers, then the programmer
will sometimes need to annotate the program. Annotations, generally
called comments, can provide the human reader with explanations at a
higher level of abstraction than is possible in the actual programming
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language. From the point of view of the translator, comments do not
change the program in any wayj; it is as if the comments were not there.
The compiler’s only action is to copy the comment into the listing of
the source code. No vestige of the comment appears in the object
program.

In the mini-languages in this book we shall use a single convention
for comments:

A comment is introduced by two contiguous hyphen symbols
(that is, — ). These two symbols and the remaining
characters on the same line are treated as the text of the
comment and have no effect on program execution. A
comment can occur in the program at any point where a
blank may appear.

For example, we may have
INCHES := FEET * 12; - make conversion to inches

Since this convention is uniform throughout the mini-languages in this
book, it will not be mentioned when describing them. Comments will,
however, be used frequently in examples.

A comment on comments. You may notice that the above comment
is quite superfluous is describing the program’s meaning. Generally, we
believe that such inline (as distinct from header) program comments
should be rare. Good mnemonic names and other programming
conventions can make the use of inline comments virtually nonexistent.
In this text our major use of inline comments will be to make points
about the language (not the program).

2.3 SYNTAX AND THE PROGRAMMING PROCESS

The importance of program clarity has been discussed in Chapter 1. In
a large measure, the syntax of a language controls the clarity of
programs. This does not mean that programs written in a language with
a perfectly designed syntax, assuming that such a thing were possible,
would necessarily be easy to read. It is always possible to write
obscure programs, whatever the language.

A second effect of the design of the syntax is the number of errors
that can be made during the writing of the program. These syntax
errors are not due to incorrect thinking, but occur because the syntax
does not conform to the programmer’s intuition. For example, both
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from their experience with natural language and from mathematics,
people are used to certain ways of using spaces and punctuation.
Programming languages that vary from these “normal” uses will
guarantee errors where none need be made.

Were frequency counts of the types of syntax errors committed
available, they would provide an interesting way of comparing lan-
guages. Each language would have its own set of characteristic errors,
which would generally reflect the weak spots in its design.

There have been several experimental studies of the relationship
between programming language design and programming errors [see for
example, Gannon and Horning 1975].

In the remainder of this section, we will discuss particular aspects
of syntax and the considerations that must be borne in mind during
language design. It must be emphasized that this is only representative
of the questions that need to be weighed during the design process.

Free Form versus Fixed Form

Some programming languages have rigid requirements on the form
in which statements in the program are to be written. Originally, all
statements in Fortran had to start in column 7 and the programmer was
unable to indicate the structure of the program through indentation of
the statements. Such rigid requirements remain true to this day in some
Fortran and Basic implementations. If we consider the way in which we
normally use blanks, indentation, and other layout techniques when we
write prose, it is remarkable that this convention has survived so long.
It is very important that the programmer be allowed to use white space
to enhance the overall readability of the program.

One of the design considerations of Fortran was that blanks could
be ignored at all points in a program, and the compiler would rely on
other delimiters to analyze the program. For example, the two
statements

DO 13 K=1.3
and
D013 K=1,3

are both valid statements. The first is an assignment statement that
assigns 1.3 to the variable D013K, and the second is the start of an
iterative statement that loops with the variable K having the successive
values 1, 2, and 3. It has been said that just such a confusion led to the
loss of a Venus probe. One of the arguments for this philosophy is that,
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when Fortran first came out, there were no Fortran coding sheets and
programmers wrote their programs on blank paper; as a consequence, it
was feared that keypunchers would find it too difficult to count blanks
accurately. A result of this convention is that we still see Fortran
programs written without any blank characters at all.

Just as free form encourages the use of horizontal white space, it
should also encourage the use of vertical white space. The language
and the compiler should allow empty lines to appear in the source
program. In addition, there should be some way of controlling the
layout of the listing of the source program produced by the compiler.
This would allow separate sections of a program to be started on
separate pages.

Comments

There are various conventions for comments:

m Start the comment in a specific column and continue to
the end of the line. This is often used in low level languages
like assemblers. The use of free format in higher level
languages prevents the use of this convention.

m Use a symbol to make a complete line into a comment.
Fortran uses a letter C in column 1 for this purpose. The
main disadvantage is that it does not permit comments to be
put on the same line as the statement being annotated.

m Start the comment with a special symbol and terminate it
with a special symbol. This is a common convention. Algol
60 uses the keyword comment to mark the start and
continues to a semicolon. Pascal uses { to mark the
beginning and |} as a terminator. With this method, it is
possible to put a comment into the middle of a statement and
continue the comment on the same line, as in

if BASE_PTR = nil { the list is empty } then

which is not possible with the other two conventions. This
advantage is, however, offset by the danger that, since the
end of line plays no part in marking comments, the omission
of the terminator can cause part of the program to be treated
as a comment by the compiler — generally with bad
consequences.
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m  Start the comment with a special symbol and continue to
the end of the line. This is the convention used in Ada and is
the one we have adopted for the mini-languages used in this
book. This method seems to have advantages in readability,
convenience of use, and reliability.

Semicolons

It has become common practice to use semicolons as punctuation
in programs. There are, however, two views on their usage. They can
be used either to terminate or to separate statements. In the Mini-
language Core fragment, '

while (LIMIT > COUNT) loop
NEXT_TERM := LAST_TERM + THIS_TERM;

LAST_TERM := THIS_TERN;

THIS_TERM := NEXT_TERN;

COUNT ;= "COUNT + 1;
end loop;

the semicolon is used to terminate the four assignments and the one
loop statement.

If the semicolon had been used as a separator, there would be no
semicolon after the fourth assignment since that statement does not
need separating from the next statement in the sequence. Instead, the
end of the sequence would be marked by the symbols end loop. PL/I
has adopted the convention of using the semicolon as a terminator,
while Algol 60, Pascal, Bliss, and several others use it as a statement
separator. Pascal makes things even worse by effectively using the
semicolon as a terminator and a separator in the declarative part, thus
making the placement of the semicolons very confusing.

In an experiment reported in [Gannon and Horning 1975], errors
with separators were ten times more likely than errors with terminators.
It seems that the rule where a statement is always terminated by a
punctuation mark is easier to understand and remember than the rule
that a punctuation mark is required whenever one statement is being
separated from another. Such a rule reflects usage in normal prose.

Reserved Words

Mini-language Core uses symbols like while, loop, and if in the
construction of the statements. These serve the dual purpose of
differentiating one kind of statement from another and of making the
programs easy to read. We have used lowercase to distinguish these
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symbols from the identifiers that can be constructed by the program-
mer. In some languages, the luxury of upper- and lowercase is not
possible. Moreover, keypunches and terminals are often limited to a
single case, generally upper. In such cases, the fixed symbols of a
language are called keywords and have the same representation as
identifiers.

There are three main techniques used to distinguish keywords
from identifiers:

m  Precede them by a special symbol, for example, $.

A loop statement in the Mini-language Core might then
become:

SWHILE (A < B) $LOOP
A=A+ X
$END $LOOP;

The special symbol here is obtrusive and seriously affects the
readability of the program.

The other two techniques are really antithetical and will be
discussed together.

@ Define the keywords to be reserved words, that is, forbid
the programmer from using these keywords as identifiers.
B Rely on context to make the distinction. That is, to say
WHILE := LOOP;
is an assignment statement because of the symbol :=.
These last two conventions are heavily debated. Ada, Pascal, and

Cobol have opted for reserved words, while PL/I has no reserved
words. The arguments may be summarized as follows:

m If keywords are reserved then there is no danger of a
loss of readability due to the programmer choosing identifi-
ers that clash with keywords. While it is true that a perverse
PL/I programmer could write

IF IF = THEN THEN
THEN = ELSE;

it is likely that the programmer would soon tire of this.
There is neither evidence that unreserved keywords actually
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presents a readability problem in PL/I programs nor that
programs are more readable with reserved keywords.

B A language that has reserved words requires the pro-
grammer to memorize all the keywords of the language —
even for parts of the language that have no bearing on the
problem being solved.

B If a reserved word language is extended, it is quite likely
that new keywords will be required. This will extend the list
of reserved words and render illegal existing programs that
have used these new keywords as identifiers before they
were made keywords.

® In areserved word language, the keywords provide fixed
markers in the syntax that allow the compiler to make better
recovery in the face of syntax errors and give more
meaningful error messages.

This matter is not fully resolved.

2.4 THE DESCRIPTION OF SYNTAX

In our informal description of Mini-language Core in Section 2.1, we
gave what appeared to be a complete description of the rules for writing
a program in Core. However, the description suffers from the impreci-
sion of English and its possible ambiguities. It is difficult to know
whether the description is complete.

For example, consider the following questions:

1. Does the begin symbol need a semicolon after it?
2. Is it legal to have a program without a declaration?
3. Is it legal to have a program without statements?

Of course, once these questions have been thought of, it is possible to
amplify the informal description to include their answers. However,
what about all the other possible questions?

There is thus a need for a more formal way of describing the
syntax of programming languages. In this section we will describe the
most common approaches to this problem.

Some Basic Notions

® A grammar defines a set, generally infinite, of the
sentences that can be written in a language.
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® A sentence of a language is a finite sequence of symbols
from a vocabulary constructed according to the rules of the
language’s grammar.

W A vocabulary or alphabet is a finite set of symbols.

@ A symbol is an atomic entity represented by a graphic,
for example, +, (, a letter, or a digit.

In some languages like Mini-language Core, compliete words, for
example, begin, may be treated as symbols. Such symbols can be
distinguished from identifiers, which are also constructed from letters,
by using a different typeface, making them reserved words, or some
other device, such as introducing them with a special symbol, as
discussed above.

The following are examples of languages:

L1. The set of strings of length greater than zero composed
of the symbols 0 and 1. These two symbols constitute the
vocabulary of L1.

L2. The set of strings consisting of n occurrences of the
symbol A followed by n occurrences of the symbol B. The
vocabulary of this language consists of the symbols A and B.
The grammar states that there are equal numbers of occur-
rences of the symbol A and of the symbol B. The strings

AAAABBBB
AB

are examples of sentences in L2.

L3. The set of grammatical sentences in English. The
vocabulary here consists of the words of the English
language; the grammar is the grammar of English, which
requires that the form of a verb match the subject of the
verb. Thus HE IS A MAN is legal, while HE ARE A MAN
is not.

In describing these languages, the sentences were defined by
giving rules for constructing them from the vocabulary of the language.
These rules form the grammar or the rules of syntax (often referred to
as simply the syntax of the language). In the languages L1 and L2, the
rules are quite specific; L1 and L2 are very simple languages. In the
case of L3, use was made of the vague term ‘‘grammatical sentences.”
The rules of English grammar are very complex and ill-defined in many
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places. Luckily, programming languages are not nearly as complex as
English, and we are able to produce reasonably simple and precise
grammars for them.

2.5 GRAMMARS FOR DESCRIBING SYNTAX

In the analysis or parsing of English sentences, the words in a sentence
are placed in different categories according to their functions in the
sentence. In the simple sentence THE MAN EATS THE APPLE,
THE MAN is the subject and EATS THE APPLE is the predicate.
The subject consists of an article followed by the noun MAN. The
predicate consists of the verb EATS followed by the direct object THE
APPLE, which is an article and a noun.

We can represent this analysis by a tree-like structure known as a
parse tree:

sent(lence
4 )
subject predicate
article noun verb direct-object
1
( h
article noun
THE MAN EATS THE APPLE

In this parse tree there are two kinds of objects named points,
generally called nodes. One type of node represents of the words of the
original sentence. These appear at the ends of the branches of the tree
and are called terminals. They appear in uppercase, as they do in the
original sentence. The terminals taken in left-to-right order form the
original sentence. The other type of node, written here in lowercase, are
nonterminals and bear the names of the grammatical categories they
represent. These are often called syntactic categories.

Each nonterminal of the parse tree has one or more subnodes
connected by a line drawn from the bottom of the node. Each subnode
is either a terminal or a nonterminal. Except for one nonterminal (the
root of the tree), each symbol has exactly one parent node. The
grammar of a language consists of a set of rules that specify for each
nonterminal precisely what subnodes it may have.
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For our example sentence, we can write a grammar as:

sentence = subject predicate
subject = article noun
predicate = verb direct-object
direct-object = article noun
article i:= THE
noun ii= MAN
noun = APPLE
verb = EATS
The ::= symbol indicates that the item to the left has the items on the

right as subnodes. This symbol is not part of the language being defined
by the grammar but is part of yet another language, one used to
describe languages. Such a language is called a syntax meta-language.
In this grammar there is precisely one symbol that does not appear on
the right of a rule, this is the goal of the grammar and will be the root
of the parse tree.

The rules of a grammar can be used to generate all the sentences
of a language. If we use our simple grammar, starting with the syntactic
category sentence, we can see that the only possible subnodes are
subject and predicate. Indeed, there is no choice possible until we come
to noun, at which point we can choose between MAN and APPLE.
There are thus only four possible trees that we can draw with this
grammar. They correspond to the sentences:

THE MAN EATS THE APPLE
THE MAN EATS THE MAN
THE APPLE EATS THE APPLE
THE APPLE EATS THE MAN

These are the four sentences that constitute the language defined by
this grammar. Because of this use of a grammar to produce sentences,
the rules are often known as productions.

An alternative way of using a grammar is to analyze a given
sentence to see if it is a syntactically correct sentence of the language.
This is done by using the rules of the grammar to attempt to construct a
tree whose terminals, taken in left-to-right order, form the given
sentence. If it is possible to construct such a tree, then the sentence is
in the language. The analysis of a sentence in this way is called
parsing.

Grammars are thus used in two ways:

1. Generatively to construct all possible sentences in the
language.
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2. Analytically to determine whether a given string is a
sentence in the language.

Context Free Grammars

In our use of the grammar to construct the four sentences, when it
came to choosing a subnode for noun the second time, no account was
taken of our first choice. That is, whenever we make a choice, we are
not able to allow our choice to be affected by any of the categories and
terminal symbols that already exist in the partial derivation tree. Our
choice is made without context.

A rule of a grammar where context is considered would have the
form

WXy = wzy

where w, y, and z are sequences of terminals and nonterminals and x is
a nonterminal. The sequences w and y provide the context that defines
where the nonterminal x can be replaced by the sequence z.

A grammar where no account of context is taken when making a
substitution is a context free language. Context sensitive grgmmars are
more complex than context free grammars because the fact that a
substitution in one part of the derivation tree can influence the structure
in another part must be expressed in the grammar. Almost all
languages, both natural and artificial, have context sensitivities. Pro-
gramming languages generally have some context sensitive rules. As we
shall explain later, the rule in Mini-language Core that an identifier
may not be declared more than once in a program is an example of a
context sensitive rule. '

In order to avoid the added complexity of context, the syntax of
programming languages is generally defined in a context free form with
additional, usually informal, rules describing the context sensitivities.

A context free grammar requires the specification of four items:

1. A vocabulary of nonterminal symbols.
2. A vocabulary of terminal symbols.
3. A set of productions of the form

X 1=y

where x is a nonterminal drawn from the nonterminal
vocabulary and y is a combination of symbols drawn from
the combined terminal and nonterminal vocabularies.
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4. A goal symbol that does not appear on the right side of
any production.

Derivations

In general, the repeated application of the productions gives
sequences of symbols, both terminal and nonterminal, that can be
derived from the goal symbol. These sequences are the sentential
forms of the language defined by the grammar G. Any string that
contains only terminal symbols and that can be derived from the goal
symbol is a sentence of the language defined by G.

We would show the derivation of the sentence

THE MAN EATS THE APPLE

as a sequence of pictures that show the parse tree growing:

sentence
sentence
N
subject predicate
séntfnce
‘ )
subject predicate
article noun

and so on. An alternative method is to show the entire derivation as

sentence
- subject predicate
- article noun predicate
- THE noun predicate
- THE MAN predicate
—> THE MAN verb direct-object
— THE MAN EATS direct-object
- THE MAN EATS article noun
- THE MAN EATS THE noun
- THE MAN EATS THE APPLE
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where each line represents the terminal nodes of the parse tree in its
current state of development. The arrow at the beginning of the lines
means ‘“‘is derived from the previous line by the application of a single
rule.” At each application of a rule, a single nonterminal is replaced by
one or more symbols. Thus this representation shows the order in
which the substitutions are made. The last line of the derivation
contains only terminal symbols of the grammar and no further
substitutions can be made.

2.6 THE BACKUS-NAUR FORM

Probably the most common meta-language for specifying the context
free syntax of programming languages is the Backus-Naur Form,
sometimes called Backus Normal Form, generally abbreviated to BNF.
This was introduced in 1959 by John Backus as a method for the
definition of the syntax of Algol 60. The first version of the meta-
language was improved shortly thereafter by Peter Naur,

The meta-symbols of BNF are:

::= meaning “is defined as”
meaning ‘“‘or”

< > angle brackets used to surround category names

The angle brackets distinguish category names from terminal symbols,
which are written exactly as they are to be represented.
A BNF rule defining a nonterminal has the form:

The nonterminal being defined,
The meta-symbol ::=

Then a sequence of alternatives consisting of strings of
terminals and nonterminals, where the alternatives are sepa-
rated by the meta-symbol

For example, the BNF production for a Mini-language Core program
is:

<program> ::= program
<declaration-sequence>
begin
<statement-sequence>
end;
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This shows that a Mini-language Core program consists of the keyword
progran followed by the declaration sequence, then the keyword begin
and the statement sequence, finally the keyword end and a semi-colon.
The nonterminal symbol <program> is the goal symbol.

The statements of the Mini-language Core can be specified in
BNF as a set of productions:

<statement> = <assignment-statement>
<statement> ::= <if-statement>
<statement> ::= <loop-statement>
<statement> ::= <input-statement>
<statement> ::= <output-statement>

This may be abbreviated

<statement> ::= <assignment-statement>
| <if-statement>
| <loop-statement>
| <input-statement>
| <output-statement>

In the BNF definition of Mini-language Core there is a clash
between the greater-than and less-than symbols used in the comparison
and the printed brackets of the BNF notation. In order to avoid the
clash, the symbols that are part of the Mini-language are underlined in
the definition. Thus:

<comparison> ::= (<operand> < <operand>)

Recursive Productions

The informal definition of Mini-language Core specifies an integer
to be an arbitrary sequence of digits. Thus, we might think that this
would be represented in BNF as

<integer> = <digit>
| <digit> <digit>
| <digit> <digit> <digit>

and so on, with an arbitrary number of alternatives corresponding to all
possible lengths of integers.

However, each of the alternatives, after the first, really consists of
an <integer> followed by a single <digit>. Thus, in order to avoid the
need for an arbitrary number of alternatives, we write:
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<integer> ::= <digit>
<integer> <digit>

This type of definition, where the defined nonterminal is part of the
definition itself, is called a recursive definition.

A recursive definition can only be used provided that there is
some way of terminating it. The single production

<a> = <a> A

is useless since it is impossible to produce a line containing only
terminal symbols. In our definition of <integer>, the alternative

<integer> ::= <digit>
provides the means for terminating the recursion.

Canonical Derivations

The definition for <integer> given in the last section requires a
rule for <«digit>. By adding this, we can define integers in Mini-
language Core by the small grammar:

<goal> = <integer>
<integer> ::= <digit>
<integer> <digit>
<digit> = o0l1l213laislelzl8l9

This small grammar allows us to derive all legal integers. For
example, abbreviating <integer> by i and <digit> by d, we have
two possible derivations of the integer 193:

<goal> <goal>
- i - i
- id - id
- idd - i3
- ddd - id3
- 1dd - 193
- 19d - d93
- 193 - 193

There are many possible derivations, depending on the order in which
the nonterminals are chosen for replacement. It is convenient to be able
to single out a particular derivation as being the derivation. This is
generally called the canonical derivation. The choice of canonical
derivation is essentially arbitrary; the usual choice is the one where, at
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each stage in the derivation the left-most nonterminal is the one that is
replaced. This corresponds to the derivation of 193 on the left.

Ambiguous Grammars

One possible grammar for simple expressions involving only
multiplication and addition is:

<goal> =  <expression>

<expression> ::= <expression> + <expression>
|  <expression> * <expression>
| <identifier>

<identifier> = x|y |z

In this grammar, the sentence
X+Y=*2Z

has two distinct canonical derivations.
The first is:

<goal>
-> <expression>
- <expression> + <expression>
- <identifier> + <expression>
- X + <expression>
- X + <expression> * <expression>
- X + <identifier» * <expression>
- X + Y * <expression>
- X + Y * <identifier»
- X + Y * 2
Its corresponding parse tree is:

< goal>

<expression>

r +

<expression>

<expression>
1

4 1 \

<identifier> <expression> * <expression>

X <identifier> <identifier>

Y z
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The second derivation is:

<goal>
-> <expression>
-> <expression> * <expression>
— <expression> + <expression> * <expression>
-> <identifier> + <expression> * <expression>
- X + <expression> * <expression>
- X + <identifier> * <expression>
- X + Y * <expression>
- X + Y * <identifier>
- X + Y * 27
Its corresponding parse tree is:

<goal>

I'd i

N\
< expression> <factor>

<factor> <factor> *  <identifier >
< identifier> <identifier>
1 |
X Y

If, as in this case, the rules of a grammar permit more than one
canonical derivation of a sentence of the language, the grammar is said
to be ambiguous.

If the only use for grammars were to determine whether a string
belongs to the language, this ambiguity would be of little importance.
The number of ways of generating a string would not be relevant.
However, for programming languages, part of the meaning of a program
is sometimes specified in terms of the corresponding syntactic structure.
The existence of more than one structure could imply more than one
meaning for the program.

In the example that we have just shown, the two trees correspond
to two different evaluation sequences for the operators * and +. In the
first tree, the Y and the Z are bound together by the * operator and it
is the result of this operation that is added to X. If we take * to mean
multiplication, this derivation corresponds to the precedence specified
in the informal definition of Mini-language Core. Note that the
ambiguity is syntactic and has severe consequences when meaning is
ascribed to the symbols.
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The second derivation shows that X and Y are added together and
the result is multiplied by Z. It is as if the expression had been written:

X+y)y*2
If we are to avoid this ambiguity, we must restructure our grammar and

ensure that it defines a single correct meaning for the sentences
representing expressions. The following grammar does this:

<goal> = <expression>
<expression> = <factor>
<expression> + <factor>
<factor> ::=  <identifier>
| <factor> * <identifier>
<identifier> = x|y |z

The corresponding parse tree is:

< goal>

<expression>
|

<expression> * <expression>
<expression> + <expression> < identlifier>
! ,
< identifier > < identifier> 2
]
X Y

Although it is possible to determine whether certain grammars are
ambiguous, it is not possible to do this in general. Similarly, although
there are arbitrarily many context free grammars for any context free
language, it is not always possible to determine whether two grammars
define the same language.

Programming languages, including the higher level ones, differ
fundamentally from natural languages. Programming languages have a
smaller vocabulary and a simpler grammar. More importantly, they are
formal languages; that is, every grammatical statement has one and
only one meaning and that meaning can be abstracted by a simple
procedure from the structure of the statement. In a natural language, on
the other hand, ambiguity is common and statements that are grammat-
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ically impeccable can often be understood only from the meaning of the
words.
Compare, for example, the two sentences:

TIME FLIES LIKE AN ARROW
FRUIT FLIES LIKE A BANANA

They both have the same structure, yet they are parsed differently. In
one, FLIES is a verb and in the other a noun.

The if statement in PL/I has an optional else part just as it does
in Mini-language Core. Consider the form of a nested if statement in
PL/L

IF boolean-expression-1 THEN
IF boolean-expression-2 THEN
statement-1;

ELSE

statement-2;

To which if statement does the else clause belong? PL/I has solved this
potential ambiguity by defining the syntax so that the else clause is
associated with the last uncompleted if statement, that is, with the
second one. Mini-language Core avoids the problem through the use of
the end if symbols.

Some problems cannot be resolved so easily. Consider, for
example, the Ada assignment statement:

I :=F(J);

Is the reference to F an invocation of a function procedure or to an
element of an array F? In Algol 60 this problem is solved by writing
the two kinds of reference as F(J) and F[J] respectively. In Ada,
information from the declaration of F must be used to madke the
differentiation. This is called contextual information.

Context Sensitivity Again

It must be recognized that there are certain things that cannot be
represented in BNF. Consider, for example, the Mini-language Core
rule that an identifier may not be declared more than once in a
program. This rule cannot be defined in BNF.

Suppose there were only three possible identifiers allowed in Core
and only one declaration were allowed in a program. The declaration
statement could then be defined in BNF as;
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declaration ::= declare A; | declare B;

| declare C; | declare A, B;

| declare A, C; | declare B, C;

| declare B, A; | declare C, A;

| declare C, B; | declare A, B, C;
| declare B, A, C; | declare B, C, A;
|  declare A, C, B; | declareC, A, B;
| declare C, B, A;

that is, all legal possibilities are specified. In the actual Mini-language
Core, there is an infinite number of possible identifiers. Thus, there
would have to be an infinite number of alternatives to show the set of
legal declarations.

The problem is one of context. In Mini-language Core, the
declaration

declare A;

is legal if it does not occur in the same program as another declaration
of A. That is, in the context of another declaration of A, BNF is a
context free grammar and can only show a context sensitive rule with
an infinite number of productions. Thus, in any BNF description of the
syntax of a programming language, the context sensitive rules must be
given separately.

Context Free Syntax of Mini-language Core in BNF

Table 2.1 shows a BNF definition of the context free syntax of
the Mini-language Core. In the form shown there, some of the structure
of programs and statements has been indicated by the use of indenta-
tion on the right side of a production. This indentation is not part of the
definition and has been added for clarity.

Even with the indentation, the BNF definition presents some
readability problems. These are mainly concerned with the specifica-
tion of optional parts and sequences. Consider, for example, the
production for the «if statement> shown in Table 2.1.

<if-statement> ::= if <comparison> then
<statement-sequence>
end if;
| if <comparison> then
<statement-sequence>
else
<statement-sequence>
end if;
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Table 2.1 Context Free Syntax of Mini-Language Core in BNF

<program>

<declaration-sequence>

<statement-sequence>

<declaration>

<identifier-list>

<statement>

<assignment-statement> ::

<if-statement>

<loop-statement>

<input-statement>

<output-statement>

program
<declaration-sequence>
begin
<statement-sequence>
end;

<declaration>
<declaration> <declaration-sequence>

<statement>
<statement> <statement-sequence>

declare <identifier-list>;
<identifier>
<identifier>, <identifier-list>

<assignment-statement>
<if-statement>
<loop-statement>
<input-statement>
<output-statement>

<identifier> := <expression>

if <comparison> then
<statement-sequence>

end if;

if <comparison> then
<statement-sequence>

else
<statement-sequence>

end if;

while <comparison> loop
<statement-sequence>
end loop;

input <identifier-list> ;

output <identifier-list> ;
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Table 2.1 continued

<comparison> ::= ( <operand> = <operand> )
| ( <operand> # <operand> )
[ <operand> < <operand> )
| ( <operand> > <operand> )
<expression> = <factor>
|  <expression> + <factor>
| <expression> - <factor>
<factor> ::=  <operand>
|  <factor> * <operand>
<operand> ;:=  <integer>
| <identifier>
[ <expression> )
<identifier> = <letter>
| <identifier> <letter>
| <identifier> _ <letter>
<integer> = «<digit | <integer <digit>
<letter> = alelclolelr e nlrl
gl klodlwlInlole loqler
s It lulviwlx Iy |z
<digit> = 0 l1l213lals el sy

This requires two productions to specify that the else part is optional.
In order to see exactly which parts are optional, the two alternatives
must be examined closely.

The production for <statement-sequence> in Table 2.1 is:

<statement-sequence> ::= <statement>
<statement> <statement-sequence>

In order to represent the sequence as being of arbitrary length, a
recursivé production must be used. Finally, the use of the < and >
symbols to enclose the names of syntactic categories makes the
definition less readable.
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The three problems can be solved with the following extensions to
BNF:

B Optional Items: These are enclosed in brackets, thus
introducing the additional meta-symbols [ and ] .

B  Sequences: The ellipsis symbol ( ... ) is introduced as
another meta-symbol to indicate the repetition of the preced-
ing category or group of categories contained in brackets an
arbitrary number of times.

B Type faces: The names of BNF categories will be

written without < and > but in a typeface different from
that of the language being defined.

Using these extensions, the production for the if statement becomes:

if-statement: : = if comparison then
statement...
[ else
statement... ]
end if;

Table 2.2 shows the definition of the context free syntax of Mini-
language Core using these extensions to BNF. We will use this
extended form of BNF to define the mini-languages used in the later
chapters.

As with BNF, where there is a clash between a meta-symbol and
a symbol of the Mini-language, the symbol that is part of the Mini-
language will be underlined. For example,

variable ::= identifier
| identifier [expression]

The definitions of identifier and integer are the same in all of the
mini-languages and, for simplicity, their productions will be omitted
from future syntax definitions.
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declaration

statement

assignment-statement

if-statement

loop-statement

input-statement
output-statement

comparison

expression

factor
operand
identifier
integer

comparison-operator

letter

digit
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Syntax

2.2 Mini-language Core

program
declaration...
begin
statement...
end;

declare identifier [ , identifier ]... ;

if-statement
input-statement

assignment-statement |
loop-statement |
output-statement

identifier := expression ;

if comparison then
statement...
else
statement... ]
end if;

while comparison loop
statement...
end loop;

input identifier [ , identifier ]... ;
output identifier [ , identifier ]... ;

( operand comparison-operator operand )

[ expression + ] factor
[ expression - ] factor

[ factor * ] operand

integer | identifier | ( expression )
letter [ [ _ ] letter ]...

digit...

<l =1 # | >

s lc o lelf 6 |n
y bk v IwliNloler o
st lolv I iwlx Iy lz
olrl2131als el |38

93
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2.7 OTHER CONTEXT FREE SYNTAX DEFINITIONS

Although BNF is the best known method for defining the context free
syntax of a programming language, several other techniques are in use.

The Cobol Notation

The Cobol syntax notation was developed by the Short-Range
Subcommittee commissioned by CODASYL (the Committee on Data
Systems Languages) to develop a business-oriented programming
language. As described in [Sammet 1978], although there are many
similarities between BNF and the Cobol notation, the development of
these two meta-languages was parallel and independent. This notation
has been used, in addition to defining standard Cobol, for the
description of PL/I.

Unlike BNF, which is used to define complete programs, the
Cobol meta-language is used to define only small parts of the language,
particularly statements. Some basic elements of the notation are:

W Vertical bar: separates alternatives. Alternatives may
also be listed vertically within brackets or braces.

@ Brackets: enclose an optional syntactical unit.

B Braces: group elements of a syntactical unit or a
vertically listed choice.

® CEllipsis: indicates repetition of the immediately preced-
ing syntactical unit one or more times.

Table 2.3 Syntax of Mini-language Core If Statement
using the Cobol Notation

if  comparison then
statement...
[ else
statement... )
end if;

where ‘“‘comparison” is

integer integer
(| identifier <l=1¢1> ‘ identifier )
(expression) (expression)
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As an example of this notation, Table 2.3 shows the definition of
Mini-language Corte if statement.

Syntax Diagrams

An entirely different method of syntax definition is the graphic
representation known as syntax diagrams or charts. This method has
been used to define the syntax of Pascal in [Wirth 1973] and Fortran
71.

The rules take the form of flow diagrams. The possible paths
represent the possible sequences of symbols. Starting at the beginning
of a diagram, a path is followed either by transfering to another
diagram if a rectangle is reached or by reading a basic symbol
contained in a circle or box with rounded ends. For example, an
identifier in Mini-language Core is defined by the diagram.

2

etter

Table 2.4 shows the definition of the context free syntax of Mini-
language Core by syntax charts.

2.8 OVERVIEW OF THE TRANSLATION PROCESS

A translator is a program that is used to transform a program, the
source program, from the source language into an equivalent object
program in the target language. Frequently, but by no means universal-
ly, the source language is a high level language and the target language
is some form of machine language.

An implementation can be looked upon as a sequence of two
processes:

source ; object ;
program ["'ransiation-= proéram —execution-a~] results

Usuglly these two processes are separate, but the dividing line can vary
considerably. The translation phase may merely transform the source
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Table 2.4 Syntax of Mini-language Core Defined by Syntax Charts

PROGRAM
—-@rogram declaration begin .smement. @
DECLARATION
——@eclare identifier
STATEMENT
—— identifier expression —_—
e }— (e —

comparison

statement end il)—

while comparison m end loop

Ne—Cinput identifier }

“—{output identifier } \ O—-—

EXPRESSION

FACTOR




LLLLL
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55033335553300 |
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program into some internal form that does not correspond to the
architecture of any real machine. As described in Section 1.2, the
execution may be an interpretation of this by another part of the
translator. Some languages are implemented in this way so as to
achieve extra flexibility, for example, APL and Lisp.

The translation process may be divided into two subprocesses:
analysis and generation. We will discuss only the analysis part here;
generation will be treated in the next chapter.

source analvsi abstract ti object
program [3NAIYSIS—== nrogram [~9€NEralion—=t oro0ram

During the analysis phase, the source program is parsed and an
abstract representation of the program is built. The abstract representa-
tion of the program can take a number of forms depending on the
design of the translator. It can be in the form of a tree having a similar
construction to the parse tree. Another alternative is for it to consist of
a sequence of instructions for a hypothetical machine, typically one
where each instruction has an operator, two operands, and a resuit.

In the original 'source form, the program is represented as a
character string with only a single dimension, although a program really
has two dimensions. In order to achieve this, the source program
contains a number of syntactic symbols whose sole function is to
indicate the two-dimensional structure of the program, for example,
semicolons to separate the statements and symbols or keywords like
begin to show the major structure of the program. In the abstract form,
the program does not contain these syntactic symbols because it is
represented as a two-dimensional structure and has no need for them.
While the abstract representation of the program is being built during
analysis, some equivalent of the derivation tree is constructed. General-
ly, only a part of the derivation tree is present in the translator at any
one time, since it is too big to exist in its entirety.

An abstract program really represents many equivalent source
programs. For instance, in PL/I, the keyword PROCEDURE may be
used or, equivalently, the abbreviation PROC. Two source programs
that differ only in their use of abbreviations for keywords will have
identical abstract representations.

During the generation phase of the compiler, the abstract program
is converted into the equivalent object program. This part is sometimes
known as the code generation phase. Although we have shown the code
generation to be a separate phase from the analysis, this is not always
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the case and the part of the object program corresponding to the
beginning of the source program may be generated before the end of the
source program has been parsed.

If the parsing and code generation are combined, the translator is
frequently known as a ‘‘single pass” compiler. Most translators for
large languages require several passes over the program being trans-
lated. Often the actual number of passes depends on the parts of the
language that are used in a particular source program. The decision
that a single pass compiler will be used imposes certain constraints on
the source language. These constraints are required to ensure that
sufficient information is available to generate code before the source
program has been completely parsed. This means that, for example,
variables must be declared before they are referenced so that their type
is known at the time the code is to be generated to manipulate their
values.

The analysis phase may itself be divided into three subprocesses:
scanning, parsing, and completion.

source source o
program |-scanning-=—{ program |-parsing-s=| der{vatlon - completion — a:):t;:;:
symbols | “tokens ree preg

During the scanning phase, the source program is divided into
tokens, the basic syntactic units from which a program can be
constructed. Each token represents a sequence of characters that can be
treated as a single logical entity. Identifiers, numbers, operators,
language symbols like begin and semicolons are typical tokens of the
Mini-language Core. There are two kinds of tokens: those that
represent fixed sequences of characters like :=, begin, or a comma,
and those that represent classes of character strings like identifiers or
numbers.

All tokens have a type, and those that represent classes have a
value as well, for example, an identifier token might have the value
COUNT.

It is the function of the parsing part to take the tokens and build
the derivation tree whose root is the goal symbol of the grammar and
whose terminals are the tokens.

There are two classes of parsing techniques: top-down and
bottom-up. Each class is characterized by the order in which the
productions of the derivation tree are recognized. The top-down parser
builds the tree by starting with the root, the goal symbol, and by
working down to produce a tree whose terminal nodes match the
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sequence of tokens in the source program. The bottom-up technique
replaces right sides of productions by the corresponding left side symbol
until only the goal symbol remains. These two strategies for parsing
have been extensively studied.

Somewhat greater attention has been given to bottom-up techni-
ques since they are more efficient and the research was conducted at a
time when parsing efficiency was thought to be very important. It turns
out that parsing is a relatively small part of the whole translation
process; the generation of the object program takes the larger part of the
time. Another attraction of the bottom-up technique is that it is possible
to take a grammar specified in BNF and generate tables automatically
for a parser. This means that changes to the syntax of a language can be
accommodated quickly and it also ensures that the language being
parsed matches the language specified in the written syntax. The
problem with bottom-up parsing is that one must find the correct right
side of a rule to perform a reverse derivation step. While this can be
done efficiently when the program being parsed is syntactically correct,
it is more difficult to perform error recovery when a syntactic error is
discovered. There are two problems at this stage: to provide helpful
information to the programmer so that the error can be found and
corrected and to retain control so that parsing can continue without
providing a spate of meaningless error messages.

The completion phase takes the derivation tree and constructs the
abstract programs from it. This process involves abstracting those parts
concerned with the meaning of the program from those that have only
syntactic functions. In addition, the completion will add some things,
making details explicit that were only implicit in the source program.
For example, in a language like PL/I, those attributes that are not
explicitly declared are manufactured through the application of some
contextual rules and defaults. If there is no declaration for an identifier,
then one is constructed, possibly with some attributes obtained from the
context in which references to the identifier occur. An identifier,
MASTER, that appears in the context

OPEN FILE(MASTER);

will be given the attribute file in its constructed declaration. At the end
of the synthesis process, all the contextual implications of the source
program will have been made plain and the abstract form of the program
will be complete.
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FURTHER READING

There are really not many works on the syntax of programming languages,
aside from work on formal grammars and methods of implementation. The
larger issues of readability and presentation of programs are seldom discussed.

One thoughtful work on the subject of syntax is Chapter 2 of the
“Rationale for the Design of Ada” [see Ichbiah et al. 1979]. This discusses
numerous issues concerning the presentation of the syntax of a programming
language. An entirely different but relevant work is [Gannon and Horning
1976). This paper describes an experiment intended to compare the utility of
various forms for expressing programming language constructs.

On the subject of formal grammars, perhaps the most comprehensive
treatment is given in [Cleaveland and Uzgalis 1976]. This work discusses the
notion of context free grammars as well as development of BNF that allows
context sensitive rules to be defined. This is done through the use of macro
productions that will generate the infinite number of productions needed.

Other works of interest include [Ledgard 1977] and the survey of parsing
techniques in [Aho and Johnson 1974], and a description, including a complete
listing, of a simple compiler in [McKeeman et al. 1970].

EXERCISES

Exercise 2.1 Learning the P’s and Q’s of Syntax

There are many little and often annoying details that must be
learned in a language. Some of these are covered in the following true-
false quiz. Try it on Mini-language Core.

a. The first nonblank character in a program must be the p
in program.

b. The last nonblank character in a program must be a
semicolon.

c. The identifier end may be used as the name of an integer
variable.

d. Only one statement may appear on a line.

e. The following sequence of characters is a well-formed
comment;

-- The symbols -- may be used in comments.
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Exercise 2.2 Writing Context Free Grammars

A simple grammar for expressions is:

expression = term
expression + term
term ::=  operand
| term * operand
operand = x vy lz

Extend this grammar to include the subtraction and division operators,
the use of parentheses to change precedence, and a prefix minus
operator.

Exercise 2.3 Operator Precedence

Each of the two grammars G1 and G2 below defines the syntax of
expressions involving identifier operands and the operations

+ infix plus

prefix and infix minus
* multiplication

division
** exponentiation

These two grammars differ slightly in the order in which operations are
evaluated.

Explain the effects of this difference, illustrating your answer by
showing the differences in the two parse trees for at least three
expressions defined by the grammars. Describe the practical signifi-
cance of this difference and give arguments in favor of choosing one of
the grammars for describing the expressions.

Grammar Gl

expression =  expression-1
} expression + expression-1

expression - expression-1

expression-1 =  expression-2
} expression-1 * expression-2

expression-1 / expression-2
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= identifier
| - expression-2
| expression-3

expression-2

expression-3  ::= identifier ** expression-2

Grammar G2

expression =  expression-1
| expression-1 + expression

expression-1 - expression

expression-1 expression-2

|  expression-2 * expression-1
| expression-2 / expression-1

expression-2  ::=  expression-2 ** expression-3
| expression-3

expression-3  ::=  identifier
| - identifier
Exercise 2.4 Writing a Grammar to Describe Trees

Consider the following trees:

A B
D
A e F 6
A B €

These trees can be represented by the lists:

(A B)

((AB) C)

(((A)) A)
(((ABC)D)E(FGH))

Write a grammar using the BNF variant of Table 2.2 to describe
lists with one letter nodes.
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Exercise 2.5 Extensions to Context Free Grammars

A context free grammar is sometimes either inadequate or clumsy
for expressing some restrictions in the language it defines. As such,
many forms of extension have been proposed.

One form of extension allows a grouping of n counters designated
cl, c2, and so on, which may take on integer values. In the extended
grammar, a rule is written

(p] left-side ::= right-side [a)

where [p] is a predicate, a condition that must be satisfied before the
rule is applied and [a] is an action to be performed after the rule is
applied. The predicates and actions are expressions involving only
counters and integer constants. For example, we may have:

[c2 < ¢l + 3] left-side := right-side [c2 := ¢2 + 1]

A rule may be without a predicate or action. A rule with no
predicate may be applied just as the rules of a contentional context free
grammar are applied.

Suppose the following context free rules are used to define the
syntax of identifiers and integers:

identifier = letter

identifier ::=  identifier letter-or-digit
letter-or-digit = letter

letter-or-digit = digit

integer = digit

integer ;1= integer digit

Assume the grammar has 26 rules for the nonterminal letter, each
rule having a distinct letter as its right side. Similarly, there are 10
rules for the nonterminal digit to define the decimal digits.

Extend the rules to enforce the restriction that identifiers have no
more than 10 characters and integers have no more than five digits.

Could a context free grammar without extensions be used to effect
this sort of a length restriction? If not, explain why. If so, write a new
set of rules for limiting integers to five digits.

Exercise 2.6 Describing BNF with BNF

Write a grammar to describe the BNF variant used in Table 2.2.
Since the symbols you will be using in the meta-language will be the
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same as those of the language being described, you will have to use the
technique of underlining such symbols in the language being described.
This technique was introduced in Section 2.6. Your grammar will begin
something like:

grammar
production

production...
variable ::= right-side

Exercise 2.7 The Shortest Possible Program

There are always a few tricky but interesting questions you can
ask about a language. One of these concerns the shortest possible
program you can write. Such a program would obviously do nothing
when executed. Write one for Mini-language Core. How many non-
blank characters are there?
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Semantics

You may have observed that, in the last chapter, no mention was made
of what a program in Mini-language Core actually does; that is, what it
means. Of course, symbols like + and if give clues to those
experienced in programming languages. Nevertheless, we have delibera-
tely separated the discussion of the written form of programs from their
meaning. It is this question of meaning — the semantics — that we
take up in this chapter.

We start by describing informally the semantics of Mini-language
Core, whose syntax was given in Chapter 2 and is repeated here in
Table 3.1, for reference. The way in which a programming language is
defined raises a number of interesting but difficult questions. For
example, how can precision be maintained without rendering the
description inaccessible to the majority of readers? This and other
questions concerning the semantics of languages are discussed follow-
ing the presentation of Mini-language Core.

3.1 THE SEMANTICS OF MINI-LANGUAGE CORE

We now discuss the semantics of the mini-language corresponding to
the syntactic categories given in Table 3.1

Declarations

A declaration in Mini-language Core specifies one or more
identifiers that can be used as variables in a program. Each declared
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variable can take on only integer values. An integer is a positive whole
number, for example:

0 16 1776 12345

The maximum value of an integer is defined by a particular implemen-
tation and may vary from one implementation to another according to
the characteristics of the host machine. However, the maximum value
will not be less than 99999999,

The execution of a statement causes actions defined below to take
place. The statements in a statement sequence are executed in the order
in which they appear. However, some statements are compound in that
they enclose other statement sequences. The execution of a compound
statement and its enclosed statements is defined below. A program
terminates normally after the execution of its last statement.

It is possible for the action specified by a statement to be
meaningless. An attempt to execute such a statement causes the
program to terminate abnormally. In addition, the execution of a loop
statement, defined below, can result in its contained statements being
executed endlessly. Hence, some programs may never terminate.

Thus there are only three possible outcomes to the execution of a
program:

m Normal termination
m Abnormal termination
m Nontermination

The exact meaning of a program is defined only for programs that
terminate normally.

Assignment Statements
An assignment statement causes the value of the expression at the
time of execution to be associated with a variable. For example, we

may have:

A:=0; -- value of A is set to 0
B:=B+1; ~--value of B is incremented by 1

Execution of an assignment statement takes place as follows:

1. The expression given on the right of the assignment
statement is evaluated according to the rules given below, If
the expression contains any variables, their current value is
used in the evaluation.
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Table 3.1 Mini-language Core

program 1= progran
declaration...
begin
statement...
end;
declaration 1= declare identifier [ , identifier ]... ;

statement = assignment-statement
| if-statement

| loop-statement

, input-statement

output-statement

assignment-statement identifier := expression ;
if-statement L= if comparison then
statement...
[ else
statement... ]
end if;

loop-statement L= while comparison loop
statement...
end loop;

input-statement ii= input identifier [ , identifier ]... ;

output-statement output identifier [ , identifier ]... ;
comparison = ( operand comparison-operator operand)

expression = [ expression + ] factor
| [ expression - ] factor

factor = [ factor * ] operand
operand integer

| identifier
| ( expression )

< |l =1 &1 >

i

comparison-operator

69
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2. The value obtained from the evaluation of the expression
becomes the current value of the variable on the left of the
assignment.

Provided that the evaluation of the expression does not terminate
abnormally, the assignment statement will execute normally.

Input Statements

An input statement causes one or more integer values to be read
from an external source, one value for each identifier given in the list of
identifiers. Subsequent execution of the same or other input statements
causes further values to be input. Each input value in the external
source must be separated by one or more blank characters, and end-of-
line boundaries are treated as single blank characters. For example, if
the external data source contained

0 5
16

then the input statement
input A, B, C;
would read these values into the variables A, B, and C respectively.

For this set of data values, the input statement is thus equivalent to the
assignments:

A :=0;
B :=5;
C :=16;

There are three kinds of error that can occur during the execution
of an input statement:

1. The external data source contains fewer values than there
are identifiers in the input statement. This is an insufficient
data error.

2. The integer value read from the external data source is
greater than the maximum allowed by the implementation.
This is a size error.
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3. One of the characters read from the external data source
is an illegal character, other than a digit or blank. This is an
illegal character error.

If any of these errors occur, the program is abnormally terminated.
Output Statements

Execution of an output statement causes the value of each of the
variables in the list to be printed. Each value is preceded by the name
of the variable and an = symbol. For example, the output statement

output A, B, C;

assuming that the values of A, B, and C are as given above, would
result in the output:

A=0 B=5 C=16

The output from an output statement starts on a new line and
consists of the name of a variable, the = symbol, and the value, each
separated by a single blank. The length of an output field is thus:

length(identifier) + length(integer-value) + 3

The length of an output line is defined to be 72 characters. If there is
insufficient room left on a line to accommodate the next output field, a
new line is started. An output field is not split between lines unless its
length is greater than 72 characters.

There is one error that can occur during the execution of an
output statement:

B One of the variables in the list has not had a value
assigned to it. This is the undefined value error.

If Statements

An if statement is a compound statement headed by a comparison.
The comparison allows the programmer to make a choice of which
statements are to be executed. The simplest form of an if statement
contains only a comparison and one enclosed sequence of statements,
for example:
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if (A = 0) then
INDEX := INDEX - 1;
PRODUCT := PRODUCT * INDEX;
output INDEX, PRODUCT;

end if;

Here, the two assignment statements and the output statement are
executed only if the variable A has the value zero. If the value of A is
not equal to zero, then none of the contained statements is executed.

If statements may have an else part, which contains an alternative
sequence of statements to be executed if the comparison is false. For
example, we may have:

if (A =0) then
INDEX  := INDEX - 1;
PRODUCT := PRODUCT * INDEX;
output INDEX, PRODUCT;

else
INDEX := INDEX + I;
SUM  := SUM + INDEX;
output INDEX, SUM;
end if;

Here, depending on the value of A, either the first three enclosed
statements are executed or the second three enclosed statements are
executed. An if statement terminates abnormally if the evaluation of the
operands in the comparison leads to an error, as defined below.

Loop Statements

A loop statement is a compound statement that specifies that the
statements within the loop are to be executed repeatedly for as long as
the comparison at the head of the loop is true. For example, we may
have:

while (CHANGE > 99) loop
DOLLARS := DOLLARS + 1;
CHANGE := CHANGE - 100;
end loop;

Here the value of CHANGE is compared with 99. If it is greater than
99, the two enclosed assignments are executed and the process is
repeated. If, for example, the value of CHANGE were initially 265,
then the two assignments in the loop would be executed. The value of
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CHANGE would then be 165 and the loop would be executed a
second time. At this point, the value of CHANGE would be 65 and the
execution of the loop statement would be complete. If the initial value
of CHANGE were 65, the enclosed assignment statements would not
be executed at all.

As in the if statement, the loop statement terminates abnormally if
evaluation of the operands in the comparison leads to an error.

Expressions

An expression defines the computation of a value. An expression
consists of one or more operands, separated by an operator +, - , or *
meaning addition, subtraction, and multiplication. The operators are
evaluated in order of decreasing precedence, defined by the rules:

@ The operator * has higher precedence than the + and
- operators, which have equal precedence.

® Operators of equal precedence are evaluated in textual
order from left to right.

B An expression enclosed in parentheses is evaluated to a
single value before other operators.

Table 3.2 shows a number of example expressions and the order in
which their components are evaluated.

There are two errors that can arise during the evaluation of an
expression:

1. A variable in the expression has not previously had a
value assigned to it. This is an undefined value error.

2. One of the operations leads to a value greater than the
maximum permitted value defined by the implementation.
This is an overflow error.

The occurrence of either of these errors causes abnormal termination of
the program.

Comparisons
A comparison consists of two operands separated by one of the

comparison operators, <, =, #, >, meaning less than, equal to, not
equal to, and greater than respectively. If v1 is the value of the operand
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Table 3.2 Evaluation of Expressions

Sequence of Equivalent
Expressions Values Computed Expressions
A+B+¢C x <« A+B (A+8B)+C
«< x+C
A-B-C <« A-B (A-8)-¢C
y <« x-C
A+B*C x « B*C A+ (B*C)
y <« A+x
A*B+¢(C x <« A*B (A*B) +C
y < x+¢C
A*B+C*D X « A*B (A*8)+(C*D
y <« C*D
2 « x+y
A* B+C)*D X <« B+C (A* (B+C))*D
y <« A*®
2 « D*y

x1 and v2 is
comparison:

(x1 < x2)
(x1 = x2)
(x] # x2)
(x1 > x2)

the value of the operand x2, then the result of the

will be true if vl is less than v2
will be true if vl is equal to v2
will be true if vl is not equal to v2
will be true if vl is greater than v2

Otherwise, the result of the comparison will be false.
Should the evaluation of one of the operands lead to an error, the
program will be terminated abnormally.

Examples

The example shown at the end of Section 2.1 and reproduced here
as Example 3.1, generates the Fibonacci series where, after the first
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program
declare COUNT, LIMIT;
declare LAST_TERM, THIS_TERM, NEXT_TERM;

begin
COUNT
LAST_TERM :
THIS_TERN :
input LIMIT;

now o
[euli —J

—

while (COUNT < LIMIT) loop
output LAST_TERM;

NEXT_TERM := LAST_TERM + THIS_TERM:
LAST_TERM := THIS_TERN;
THIS_TERM := NEXT_TERM;
COUNT := COUNT + 1;
end loop;

end;

Example 3.1 Program to print the Fibonacci series

two terms, each term is the sum of the previous two. If the value read
by the input statement were 10, the output would be:

LAST_TERM = 1
LAST_TERM = 1
LAST_TERM = 2
LAST_TERM = 3
LAST_TERM = 5
LAST_TERM = 8
LAST_TERM = 13
LAST_TERM = 21
LAST_TERM = 34
LAST_TERM = 55

Should the value read from the external data source be sufficiently
large, the program will terminate with an overflow error during the
execution of the statement:

NEXT_TERM := LAST_TERM + THIS_TERM;

The following is a very simple program with one assignment
statement.
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program
declare A;

begin
A} AL£1; —— A has not been initialized
output A;

end;

When the expression in this assignment statement is evaluated, the
variable A has had no value assigned. Thus this program terminates
abnormally and no output is generated.

3.2 DEFINING THE SEMANTICS OF A LANGUAGE

The semantics of a language give it an interpretation and provide a
meaning to its expressions, statements, and programs. The symbols
must be given an interpretation. We must be able to say, for example,
that all the values in the language are integers and that all the
operations performed on the values are operations in integer arithmetic.

In Section 3.1 we gave an informal but complete description of the
meaning of all constructs in Mini-language Core. The problem of
defining the semantics of a language is far from easy. The general goal,
of course, is to specify the meaning of every well formed program in
such a way that the programmer can understand its behavior unambig-
uously. There are two important concerns. First, the definition of the
language must be complete — there must be no room for ambiguity as
to the meaning of any construct. Second, the language should be
defined in such a way that a programmer can easily refer to the
language definition in order to answer questions about the language.
These two goals, completeness and clarity, are not easy to satisfy
separately and are very difficult to achieve together.

The semantics of most programming languages are, as we have
done for Mini-language Core, defined informally. Only the context free
syntax is defined formally. The definition of the semantics is usually
through appeal to concepts presumably understood by the reader.
Several techniques are commonly used.

Appeal to Mathematical Properties

Frequently, semantics are described by reference to commonly
understood mathematical properties. When we defined the evaluation of
expressions in Mini-language Core, for example, we appealed to the
reader’s background knowledge of integer arithmetic. Programming
language conventions that limit the value that can be computed in any
expression supplement the concepts of arithmetic.
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The same principle applies to the definition of the semantics of
comparisons. There, we assume knowledge about the ordering of
integers and the way in which they can be compared.

Appeal to Mechanical Models of Computation

Another method of defining semantics is through the mechanical
properties of the machine. This was used in explaining the sequence of
statement execution. We assumed that the reader had in mind a model
in which statements are processed one by one, based on the way in
which computer instructions are executed. Concepts like if statements
and loop statements are explained in terms of these properties. For
example, the statements within the loop are executed repeatedly for as
long as the comparison at the head of the loop is true. Futhermore,
statements in a sequence of statements are executed one after another.
Thus the reader of a definition can make use of the idea of the step by
step execution of each statement in a program.

The concept of assignment is explained analogously. Here an
appeal is made to the idea that each variable in a program has an
associated location in which its value is stored. An assignment is
viewed as a change of the value stored in a location.

Appeal to Abstraction

A very common, but more subtle, method of explaining the
semantics of a language is by abstraction. Use is made of higher level
concepts for the phenomena being explained.

For example, data that are sent for printing on an output device,
such as a typewriter terminal, consist of a series of character codes.
Some of these character codes are printable and represent the data,
while others are not printed but control the output device, causing a
new line, tabbing, or backspace. We can define the semantics of the
output statement by the abstraction of fields in lines separated by blank
characters. The abstraction of a group of characters representing the
conceptual unit of an integer is used in describing the semantics of the
input statement. Thus the execution of the input statement can be
viewed as an abstracted operation that reads a succession of numbers
from some external source of data.

Abstraction is also used in the description of the semantics of an
array. It is viewed as a collection of items forming a table. Each item
in the array has an index, and this index uniquely denotes a component
of the array. Thus, rather than talking about computing the address of a
component or saying that the components of arrays are stored in
successive addresses in computer memory, which might not be true, we
make the simple appeal to the concept of an indexed table.
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3.3 SEMANTIC QUESTIONS

There are many questions related to the semantics of programming
languages:

m How can we present a precise definition of a language
so that it is comprehensible to the average user?

@ How can we develop correct terminology, as well as
avoid the profusion of computer jargon typically associated
with the definition of a language?

B How can we find abstractions for issues that are noted
for their excessive detail, for example, input and output or
arithmetic with real numbers?

® How can we describe the conditions under which a
program is erroneous?

® How can we isolate those portions of a language that are
dependent upon the implementation?

m Last, is there a real need for formal definitions of
semantics? :

We treat these issues next.
Presentation of a Language

Programming languages are usually defined informally. Typically
such descriptions employ normal prose, mixed with the use of tables,
equations, and examples. Such is the case for the descriptions of our
mini-languages in this and the following chapters.

One of the key decisions in describing a language is the order in
which the concepts are presented. Typically, language descriptions take
a bottom-up approach; that is, low level ideas, for example, numbers,
identifiers, and character sets, are described first. The description
slowly expands to include higher level parts of the language, for
example, procedures, nesting of declarations, and, finally, programs.

This method presumes that the lower level concepts are easier to
understand, and that a slow building of the user’s knowledge will
eventually lead to a comprehension of a complete program. Unfortu-
nately, this method of description forces the reader to learn many
features of a language whose utility may not be apparent until much
more of the language is understood. As a result, there is some reason to
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believe that languages should be defined the other way around. This is
the top-down order.

In a top-down presentation, the higher level concepts are given
first, defined in terms of constructions that are to be specified later. All
of the mini-language descriptions and all of the tables describing the
syntax are arranged in this way. The category program is defined by the
first production in terms of categories defined in subsequent produc-
tions.

on We may argue that a top-down description of a language leads to a

more rapid comprehension. Often this is because the lower level items,
such as numbers and expressions, are common to most languages and
the reader does not have to waste time rehearsing concepts that are
already well known. More importantly, the general structure is outlined
at the beginning and the details filled in subsequently according to the
needs of the reader.

The major purpose of a language description has a considerable
bearing on the choice of method. A definition intended for beginning
programmers is likely to be organized differently from one for use by an
experienced programmer as a reference. A description intended for
beginners can appeal to little in the way of background knowledge. A
programmer using a language as a reference uses it to answer certain
questions about the language. Typical of such questions are: Is a
semicolon needed here? Under what conditions will a particular
construct lead to abnormal termination? What happens if I write this
statement? Obviously, the choice of a good organization for a reference
manual is a difficult issue and may be neither top-down nor bottom-up.
Certainly a comprehensive index to any language description is
essential.

People learn by examples, and with programming languages this is
particularly true. Unfortunately, most language descriptions do not give
realistic examples. The use of program fragments without a context or
without a concern for style and clarity is all too frequent. For example,
a construct like

while (I < J) loop
J:=J-1;
end loop;

or even worse,
while (I < J) loop J :=J - 1; end loop;

are hardly illuminating. From their identifiers, there is no inkling of the
parts played by the variables I and J in the computation.
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It may be argued that the development of good examples is
difficult, and indeed it is. In this text, we too have occasionally used
somewhat less than meaningful examples. On this point, we can only
say, the better the examples, the better the language description.

Terminology

We now speak more about the words with which a language is
described. A reference manual for a programming language is a
compromise between a legal document describing the exact meaning of
every feature in the language and a prose description suitable for the
human reader. Typically, such descriptions introduce terminology and
notations that have a special meaning with respect to the computer
language. ,

One of the keys to the precision and clarity with which a language
is described is the terminology used. Consider the simple and familiar
term value. A value presumably denotes some object that can be
constructed in a program. Thus it makes sense to speak of the value of
an expression, the value existing on some input or output device, or the
value returned by a function. This term is, however, used in other
contexts.

For example, we often speak of the value associated with a
parameter of a procedure, or the value of a variable given on the left
side of an assignment statement. In these contexts, the term value is
not quite so obvious. For example, the value associated with a
parameter to a procedure may, in fact, mean the location of the
corresponding argument. Similarly, the value of the variable on the left
side of an assignment statement may also denote a location, rather than
some object computed by the programmer. We consider this question in
much greater detail in Chapter 4.

Similar problems arise with the two familiar terms operator and
operation. We often speak of the addition operator and some times
speak of the addition operation. Similarly, we speak of the assignment
operator and sometimes of the assignment operation. Frequently, a
clear definition of these two terms is not given.

In our description of the mini-languages we have made the
following rather narrow distinction between these two terms. An
operator can be applied to values to produce another value. Thus we
speak of the addition operator or the equality operator. An operation is
an action causing an effect on the internal state of the program. Thus
we speak of an assignment operation and an input or output operation.
This difference between an operation and an operator is one we also
draw between a procedure and a function in Chapter 7.
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There are many such related questions. What is ‘“‘scope’’? What is
an ‘“‘attribute”’? What does it mean for an object to have a ‘“location’’?
We discuss these particular points in later chapters.

These are typical of the kinds of issues that make the description
of a programming language difficult. It is certainly true that the
description of a programming language requires a great deal of care,
and often a great deal of effort.

Specifying Details

Many features of a programming language involve numerous
details. In Fortran, for example, the form and meaning of FORMAT
statements is quite complicated because of the many options specifying
the type and field width of items. A careful specification of all of the
format options in Fortran typically takes pages and pages of text.

Another area of particular difficulty is the detailed behavior of
arithmetic for floating point numbers. Specifying the resolution to
which each arithmetic computation is evaluated, maximum and mini-
mum values, the number of significant digits, and rounding or trunca-
tion conventions can be quite elaborate. Even with the simple Mini-
language Core, the definition of these details is lengthy.

Errors

Programmers do not intend their programs to terminate abnormal-
ly. Nevertheless, errors occur, often to the great surprise of the
programmer.

The specification of the conditions under which a program will
terminate abnormally is an important part of any programming lan-
guage description. All too often the specification of error conditions is
not clearly defined.

In Mini-language Core there are several conditions that can lead
to abnormal termination of a program. These are:

1. Undefined value error. This error occurs whenever an
attempt is made to use the value of a variable that has not
been assigned a value.

2. Qverflow error. This error occurs whenever an attempt is
made to compute a value greater than the maximum integer
supported by the implementation.
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3. Insufficient data error. This error occurs whenever an
attempt is made to input a value from the external data
source and no such value exists.

4. Size error. This error occurs whenever an integer value
input from the external data source is greater than the
maximum allowed by the implementation.

5. lllegal character error. This occurs whenever a character
read from the external data source is other than a digit or a
blank.

In addition, a program may be erroneous if it contains a loop that does
not terminate.

Because Mini-language Core is such a small language, it has been
possible to keep the number of semantic errors to a very small number.
In real programming languages defining all the possible execution time
errors is much more difficult, yet a complete definition must do so.

lmplementation Dependencies

It is a fond wish for high level programming languages to be
independent of the host machine and operating system on which they
run, The program that runs on machine X should also run on machine
Y without modification. To some degree, this is achieved. It is usually
possible to move a program.in one of the ‘“‘standard’’ languages from
one implementation to another without too much difficulty. This is
because most programs make use of those parts of the language that are
well understood and avoid the fringe areas.

Nevertheless, there are some areas that commonly give problems,
for example:

B Maximum length of identifiers: Different implementa-
tions of the same language, because of different machine
characteristics, may find it convenient to set different bounds
on the lengths of identifiers or discriminate between identifi-
ers on different numbers of characters.

B Arithmetic precision: The different word lengths of
various machine architectures encourage arithmetic of differ-
ent precision. This variance is compounded by a variety of
number representations that bring computed results that may
not be equal. For example, rounding on a two’s complement
machine may not give the same answer as rounding on a
machine that uses a base ten representation.
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8 Character sets: The character sets can be different from
one implementation to another. While it is true that the
sequence of letters in the alphabet is likely to be consistent,
other important details are not. The two most popular
character encodings are the ASCII set, which is a standard
in the United States, and the EBCDIC scheme of IBM. In
the ASCII code, the digits precede the letters; and in
EBCDIC, the letters come first.

The choice of character set is generally made by the
manufacturer of the hardware and is “built into” the
hardware. It would therefore be difficult to implement a
language that called for the ASCII character set on a
machine that was designed for EBCDIC. Every time that
two character strings were compared, special measures
would have to be used, rather than making direct use of the
hardware instructions.

Even beyond these kinds of issues, there is a tacit assumption that the
implementation has adhered to the ‘‘standard” definition of the
language. All too often this is not the case.

The definition of a language must therefore take care to separate
those parts of the language that are to be consistent across all
implementations from those that are left to the implementor’s discre-
tion. The parts beyond the core part of the language can be divided into
three categories:

1. Minimum requirement. The definition may specify some
minimum requirements, for example, the minimum number
of characters used to distinguish between identifiers and a
minimum for the largest number that can be represented. An
implementation may make extensions beyond this minimum,
however, a program that makes use of identifiers that are
longer than the specified minimum might not be transporta-
ble from one implementation to another.

2. Implementation defined. This is closely connected to the
first category in that the language specification would require
that the documentation supplied by the implementor should
augment the language definition by supplying certain details,
such as the maximum number of characters used in discrimi-
nating identifiers.

3. Deliberately undefined. Certain details of a language can
be left explicitly undefined, for example, the order in which
subscript expressions in an array reference are evaluated. By
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leaving them deliberately undefined, the programmer would
know that programs that depend on these details are likely
not to be movable from machine to machine; indeed,
different versions of the same compiler may treat them
differently.

In any case, a complete definition of a language must adopt a position
on all details of the language.

Need For Formal Definitions

Computer science has already made considerable progress without
having a generally accepted formal technique for defining programming
languages, just as the English language was well developed before the
advent of Johnson’s Dictionary of the English Language in 1755.
However, the lack of general use of formal definitions has not been
without severe consequences. For example:

B Language designers do not have good tools for careful
analysis of their decisions.

m Standardization efforts have been impeded by the lack
of an adequate formal notation.

m It is impossible to make a contract with a vendor for a
compiler and be assured that the product will be an exact
implementation of the language.

® It is difficult to write reference manuals and tutorial
texts without glossing over critical details.

® The answers to detailed questions about a programming
language frequently have to be obtained by trying an
implementation or hoping for a consensus from several
implementations.

Most of these problems would be avoided if there were good
formal definitions for the languages. There would then be a single place
for the precise details of each language, and no question would be left
unanswered. Importantly, there would be a tendency to improve the
design of a language by bringing its complexities out into the open. It is
easy to say, ‘“‘Language X is block structured and jumps out of blocks
are permitted.” But without a formal description of language X, the
consequences are not so obvious.
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Among the characteristics that are important to the successful use
of any method are:

1. Completeness: There must be no gaps in the definition.
In particular, there must be no questions about the syntax or
semantics of the language that cannot be answered by means
of the definition.

2. Clarity: The user of the definition must be able to
understand the definition and to find answers to his questions
easily. While it is obvious that some facility with the
language is essential before being able to understand the
definition fully, the amount of effort required should be
small.

3. Naturalness: The naturalness of a notation has a very
large effect on the ability of a user to understand a
definition. The naturalness of a notation is more important
than its conciseness, although there is a relation between the
two.

4. Realism: Although the designer of a language may wish
to be free from such mundane restrictions as finite numeric
ranges and bounded storage, these restrictions are realities of
an implementation. The definition provided by the designer,
which is the implementor’s manufacturing specifications,
must specify exactly where restrictions or choices can be
made and where the designer’s unobstructed landscape must
be modeled exactly.

3.4 FORMAL DESCRIPTIONS OF PROGRAMMING LANGUAGES

As explained, there is a need for the precise and understandable
specification of programming languages. Many different techniques
have been attempted. The methods that have been used range from
simple context free grammars with informally described semantics to
complete mathematical definitions. In this section we will discuss some
of the techniques used in completely formal definitions.

A full discussion of formal definition techniques is far beyond the
scope of this text. The reader who wishes a more detailed introduction
to this area is referred to the paper [Marcotty et al. 1976]. In this
section, we simply highlight three dominant definition techniques.
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Operational Definitions

One of the earliest proposals for the rigorous definition of a
programming language was Garwick’s suggestion [1963] that an actual
implemention be used. The major objections to this technique are the
inevitable encroachment of the host hardware into the language being
defined and the restricted availability of the definition. To escape these
objections the IBM Vienna Laboratories developed the idea of a
hypothetical machine as proposed in [McCarthy 1962], [Elgot and
Robinson 1964], and [Landin 1965)] on which to make an implementa-
tion. This work led to the Vienna Definition Language (VDL) and was
used originally for a formal definition of PL/I [Lucas and Walk 1969].

- In VDL a formal definition is based on a hypothetical computer
that is not based on any real hardware. This is the abstract machine, as
shown in Figure 3.1. It has a state with general components and some
primitive instructions. The meaning of a program is defined by the
sequence of changes in the state of the abstract machine as the program
is executed. The rules of execution are defined by an algorithm, the
Interpreter.

To make a distinction between those properties of a program that
can be determined statically and those that are intrinsically connected
to the dynamics of the program’s execution, the original program is
transformed into an abstract form before execution. This transformation
is performed by another algorithm, the translator, which corresponds to
the early phases of a compiler in a real implementation. During the
transformation, the context sensitive requirements on syntax can be
checked. :

The state of the abstract machine used as the base of a VDL
definition of Mini-language Core would have five components:

1. The program: the abstract program constructed by the
translator.

2. The control: defining the part of the abstracted program
currently being interpreted

3. The store: the storage part of the abstract machine
4. The input file

5. The output file

The idea underlying this type of formal definition is that, although
the abstract machine is divorced from reality, it is simple enough that it
is impossible to misunderstand its operation. Once the abstracted
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ABSTRACT
MACHINE
INTERPRETER
SOURCE \_/———————\ ABSTRACTED |
PROGRAM ——\ TRANSLATOR — )
PROGRAM OUTPUT
INPUT L\ | DATA
DATA /—[)__J

Figure 3.1 The VDL definition scheme

program has been understood, one merely has to trace through it, step
by step, to determine its precise meaning.

Axiomatic Definitions

The axiomatic definition differs significantly from the operational
approach just described. Instead of relying on a model of execution, the
definition of the constructs of the language is designed so that it is
possible to prove properties about programs built from the constructs.
The mearing of a construct is given in terms of assertions about the
computation state before and after execution of the construct. The
definition associates an axiom with each kind of construct in the
language. The axiom states what can be asserted after execution of the
construct based on what was true before. Thus the definition of a
statement can be expressed as:

P' {statement] P

Here, P' is the set of assertions that are true before execution of the
statement, and P the set of assertions that can be derived from P' after
execution of the statement.

For the assignment statement, we have the axiom

P[expression —> identifier] {identifier := expression} P

The notation P[expression — identifier] denotes the set of assertions
obtained from P by replacing all occurrences of the identifier by the
value of the expression. In a sense, the axiom for assignment appears
to be the wrong way around, since we are deriving the assertion that
must be true before assignment from the assertion that is true
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afterward. This initially counter-intuitive definition reflects the fact that
any assertion derived after execution of the statement must be true
when the identifier is replaced by the expression before execution of the
statement. Thus, for example, we have

(A+B+C)>0 D:=A+8B;} (D+C)>0

As another example, consider the loop statement of Mini-language
Core

while comparison loop
statement...
end loop;

We know that when the loop terminates, provided that it does, the
comparison will be false. In addition to asserting that the comparison is
false, it will be possible to make other assertions after execution of the
loop. These will depend on what was true before the loop was executed
and on the effect of executing the sequence of statements contained in
the loop. Since it is impossible to assert how many times the loop will
be traversed, it is only possible to state that those assertions P, , that
were true before execution of the loop and that are not made false by
execution of the loop will still be true after the loop has terminated.
These assertions are known as the loop invariant. Thus, the axiom for
the loop statement is

P,y { loop-statement } P, , & not(comparison)

Axiomatic definitions of the statements show nothing about how
the statements are executed. They describe only assertions about
values before and after execution. Our attention is turned away from
the mechanics of execution toward more static and easier to observe
objects, assertions. The assertions that are true after executing one
statement are those that are true before executing the next statement.
By using the first-order predicate calculus to link assertions, it is
possible to derive assertions about results at termination of the entire
program,

The technique of axiomatic definition grew out of work described
in [Floyd 1967], where assertions were attached to links of flowcharts.
The application to the definition of programming languages has been
mainly developed in [Hoare 1969]. It was used to define some of the
semantics of Pascal in [Hoare and Wirth 1973].
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Denotational Definition

This approach to the definition of semantics is based on the idea
that every construct in the programming language can be defined in
terms of mathematical entities that model their meaning. These entities
are the denotations. As a very simple example of this, we can say that
the expressions (4 + 2), (12 - 6), and (2 * 3) all denote the same
number, the number denoted by 6.

The denotational approach to defining semantics was developed
by Strachey and Scott, e.g. see [Scott and Strachey 1972]. Over the
years this method of defining semantics has gained considerable
popularity. It can be argued that this method is the only one that
addresses fundamental semantic issues. Unfortunately, it has been often
associated with a great deal of specialized and often complex notation.
This has hampered the understanding of its underlying ideas.

Two of the most important of these are the concepts of an
“environment’’ and a “store.”’ An environment is viewed as a function
that maps identifiers into locations. The identifiers are those existing in
a program. The locations are abstract entities somewhat similar to
those needed in an underlying implementation. For example, in a
program with two declared identifiers, say A and B, the environment
for this program would be denoted as:

A - location-1
B — location-2

This function intuitively reflects the idea that the declaration of a
variable also implicitly introduces a declaration of a location in which
its values can be stored.

The idea of a store is also modeled as a function. In the above
case, we would have a store mapping each location into some value
that can be stored in the location, for example:

location-1 - value-1
location-2 —> value-2

With this greatly oversimplified view of the method, we can take a view
of semantics as follows.

The semantics of a declaration is a function mapping an
environment and a store into a new environment and store. The new
environment is derived from the old by the addition of an identifier
mapped into some newly created location. The new store is derived
from the original store by mapping this location into an initially
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undefined value. The semantics of a statement is a mapping from a
store into a new store where the new store is derived from the original
store by updating the value associated with a location. One must also
introduce abstract definitions of both input and output files in order to
define the semantics of a program involving input-output.

More generally, we may view the semantics of a “program” as a
mapping from an input and an output file into a new input and output
file. In order to define this mapping we need to define the concept of a
state. A state is defined as a 4-tuple consxstmg of the following:

<Environment, Store, Input-file, Output-file>

The state is used to model the internal behavior of the program.

One of the important ideas associated with this method of
semantic definition is the ‘“undefined” value. An undefined value is
treated just as any other value; for example, evaluation of an
expression may produce an undefined value if an error is detected
during its evaluation. In particular, the domain of integers introduced
by Mini-language Core may be viewed as a set of objects containing
the whole numbers through the maximum integer of the implementation,
plus the undefined value. The undefined value is used to model error
conditions.

A full discussion of this method of semantics takes us into the
very deep foundations of programming languages. Rather than attempt
any more than a brief introduction, further readings on this topic are
suggested at the end of this chapter.

Interrelation of the Three Approaches

The aim of the definition of a programming language is to specify
the meaning of all programs in that language. A compiler provides one
such definition. To get the semantics of a particular program, it is
necessary to determine its behavior under the standard implementation.
This is expressed as a machine state transformation of the computer.
This involves all the details of the compiler and the supporting
operating system, The problem of proving the correctness of any other
implementation under these circumstances is horrendous.

In order to simplify this definition we can use a simpler abstract
machine and supporting system. This is the operational approach.
Although it is simpler than an actual complier, the problem of proving
implementation correctness is still very difficult.

The denotational method specifies a mathematical ‘“‘value” for
each construct in the language. It also allows us to talk about equality;
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two constructs are equal if they both denote the same value. Thus the
task of proving two implementations equivalent now becomes one of
demonstrating that they are both realizations of the same mathematical
objects. To express it in this way is by no means to dismiss the
problem as now simple; it is still extremely difficult, particularly for a
large language; however, it is now conceptually much easier.

The axioms of a language are really theorems on the mathematical
entities of the corresponding denotational definition.

It is not helpful to regard these three approaches as competing or
that one method is better than the other. They are really different
aspects of the same problem. The operational approach is likely to be
of most value to the implementor, since it describes the language in a
familiar algorithmic metaphor. The axiomatic definition should give the
programmer the tools needed to prove the correctness, formally or
informally, of a program. Finally, denotational definitions are likely to
help the language designer, since they bring out the underlying
mathematical structure of the language.

3.5 THE CORRECTNESS OF A PROGRAM

It is a common view that a program is either correct or incorrect.
Correctness is thus viewed as some kind of absolute property of a
program. Strictly speaking, this view may be valid, but in practice it is
not always helpful.

The language definition, the programmer, and the user of a
program all provide different views of correctness. The following is a
list of various interpretations of correctness in order of increasing
difficulty of attainment.

1. The program contains no context free syntax errors.

2. The program contains no context free or context sensitive
syntax errors.

3. The program contains no syntax errors and executes to a
normal termination.

4. The program contains no syntax errors and there exists
some set of input data for which the program executes to
normal termination to yield the correct result.

5. The program contains no syntax errors and, for a typical
set of input data, executes to normal termination to yield the
correct results.
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6. The program contains no syntax errors and, for deliber-
ately difficult sets of test data, executes to normal termina-
tion to yield the correct results.

7. The program contains no syntax errors and, for all
possible sets of input data that are valid according to the
problem specification, executes to normal termination to
yield the correct results.

8. The program contains no syntax errors and, for all
possible sets of input data, executes to normal termination to
yield the correct or reasonable results.

The beginning programmer will, for a short while, be happy with
levels 1 or 2. Eventually the programmer will generally be satisfied
with level 6. The user, of course, would like to see all programs at level
8 but must come to realize that this may be prohibitively expensive.

From the point of view of the definition of most programming
languages, any program that has no syntax errors and executes to
normal termination is a correct program and has a meaning. That the
program does not produce correct results from the programmer’s point
of view does not destroy its validity. It is still a correct program written
to a specification other than the one that the programmer intended.

Some languages allow the programmer to include assertions as
part of the program. These can then be checked against the statements
in the program either during compilation with the help of a theorem
prover, or during execution with extra machine instructions. For such
languages, the programmer’s view of correctness of results has some
meaning. However, it should be remembered that the statements and
the assertions are really two different ways of saying the same thing.
All that can be checked is that these two versions match. There can be
no guarantee that what was written down matched what the program-
mer or user had in mind.

3.6 A FURTHER VIEW OF TRANSLATION

In Section 2.5 we described how, during compilation, the source
program is converted to the abstract program. In this section we review
the conversion of the abstract program to the object program. This
phase of the compiler often involves two parts, optimization and code
generation.
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abstract
program

abstract
program

object

-optimization-s program

-code generation-s

The goal of optimization is to make the object program as small
and as fast as possible. To do this, transformations are applied to the
abstract program that make it more efficient but do not change its
meaning. The term optimization is a misnomer, since to produce a
truly optimal version of a program would generally involve discarding
the original program and substituting the best possible algorithm for
performing the desired task. All that can generally be achieved is a
better program than can be produced without optimization.

Typical transformations that can be done during optimization are:

m Folding: performing operations whose operands have
values that are known at during compilation.

For example,
I:=4+)-5;

can be transformed to
I:=J)-1,

A less obvious example is that the pair of assignments

=3,

=1+ 2

can be transformed to

= 3

= 5;

m Elimination of redundant operations: This generally

involves factoring out common subexpressions.

For example, the three assignments
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A:=6*(B+C);
D:=3+7*(B+C);
E:=A"® (B+0);

can be transformed to

TEMP := B + C;

A =6 * TENP;

D =3+ 7 * TEMP,;
£ = A * TEMP;

where TEMP is a new variable created by the compiler to hold the
value B + C.

W Loop-optimization: Usually this means moving expres-
sions whose values do not change within a loop out of the
loop.

Consider, for example, the Mini-language Core loop statement:

while (COUNT < LIMIT) loop
input SALES;
VALUE := SALES * (MARK_UP + TAX);
output VALUE;
COUNT := COUNT +1;
end loop;

The computation of the value MARK_UP + TAX is performed each
time the loop is executed, yet its value does not change. The loop is
transformed to

TEMP := MARK_UP + TAX;
while (COUNT < LIMIT) loop
input SALES;
VALUE := SALES * TENP,
output VALUE;
COUNT := COUNT +1;
end loop;

Although the examples of optimization transformations just given
are shown as transformations of the source program, in most compilers
it is the abstract program that is transformed. In all cases, the
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transformation must preserve the meaning of the program. Depending
on the skill with which the source program was written, factors of about
two in improvement may be obtained by using optimization techniques.

The transformations during optimization are generally independent
of the target machine for the compilation. The characteristics of this
machine become of great importance during the final stage of the
compilation. At that point, the abstract program is translated into the
machine instructions of the target machine and the object program is
output in a form suitable for the target machine’s operating system.
Some functions called for in the program may require the use of library
subroutines. The code generation stage must construct the necessary
calls for these subroutines so that they can be incorporated in the final
object program.

Even during the code generation phase some transformations akin
to those that are done during optimization can take place. The
difference between these and the previous ones is that the characteris-
tics of the target machine are taken into account. Typical of these
transformations is the movement of constant address calculations to the
outside of loops. )

With all the optimization transformations, it is essential that the
meaning of the program not be changed. The compiler must make a
very careful analysis of the program to make sure of this and, if there is
the slightest doubt, the form of the program must be left unchanged.
We shall see in later chapters that the design of a language can have a
profound effect on what transformations can be performed.

FURTHER READING

On a subject as broad as semantics the possible readings are numerous. We list
but a few.

The general subject of language design and semantic issues, in particular,
are treated in [Hoare 1973] and [Richard and Ledgard 1977]. Both of these
papers are quite readable and tend to emphasize directions in design, rather
than specific proposals for improvement. A much more rigorous but somewhat
less readable exposition of the language design area is given in [Ichbiah et al.
1979]. This document, “Rationale for the Design of the Ada Programming
Language,” examines almost every area of language design.

Another view of the programming languages is given in [Strachey 1972].
This short report presents a thoughtful analysis of programming languages by
simply discussing the kinds of objects denoted by programming constructs.

In the area of formal definition, a rather elaborate survey is given in
[Marcotty et al. 1976). This paper not only surveys the area of formal
definition techniques but presents a small language similar to Mini-language
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Core whose syntax and semantics are defined using four different formal
techniques.

Another comparative view of formal definition techniques is given in
[Donahue 1976). Papers on the origins of definition techniques include the
work in [Strachey 1966) and [Landin 1964].

The Vienna Definition Approach to defining semantics has received
considerable attention in the literature. A fundamental paper on this topic is
[Lucas and Walk 1971]. A further description of this technique can be found in
[Lee 1972].

The functional or denotational approach to defining semantics has evolved
over the years. Surveys of this approach are given in [Stoy 1977] and {Gordon
1979]. Of these, the text by Stoy is more comprehensive, and the paper by
Gordon is more readable to the uninitiated. The origins of this approach are
discussed in [Scott and Strachey 1972} and [Scott 1970]. A fairly comprehen-
sive bibliography on this approach is given in [Donahue 1976). A survey of
this approach is also given in [Tennent 1976).

There are a large number of works on axiomatic definition of languages
and proofs of program correctness. The early work by Floyd [1967] gives one
of the first attempts at work in this area. Also of importance are the work
[Hoare 1969] and the classic axiomatic definition of Pascal given in [Hoare
and Wirth 1973]. Again, a good bibliography in this area as well as a
comparison of axiomatic approaches with the denotation approach is given in
[Donahue 1976].

EXERCISES

Exercise 3.1 Defining a Language

The description of Mini-language Core was quite carefully writ-
ten. Nevertheless, a thorough reading of the description reveals a
number of points in which the exact meaning of a program is not
explicitly stated. Enumerate four such points.

Note: Problems like those found above are commonplace in language
descriptions. In commonly used (and thus much larger) languages, the
possibilities for imprecision are much greater.

Exercise 3.2 Programming in Mini-language Core

The numbers on the pages of a book go in ascending order; the
first page is 1, the second 2, and so forth.
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If you are a typesetter in a printing shop, you need to have
sufficient digits to print the page number for each page. For example, in
a book with only 51 pages, you need:

S5 Zeros 7 Fives
16 Ones 5 Sixes
15 Twos 5 Sevens
15 Threes 5 Eights
15 Fours 5 Nines

Assuming you never have to print a book with more than 1,000
pages, write a program in Mini-language Core to input the number of
pages in a book and to output the number of each digit required.

Exercise 3.3 Proofs of Correctness

The following program computes the greatest common divisor of
X and Y.

program
declare X, Y, GCD

begin
input X, Y,
while (X # Y) loop
if (X > Y) then
X :=X-Y;
else
Y =Y -X;
end if;
end loop;
GCD := X;
output GCD;
end;

Using the mathematical properties of greatest common divisors, for
example,

ged(X, Y)
ged(X, Y)

ged(Y, X)
ged(X+Y, Y)

give a formal proof of correctness for this program.
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Exercise 3.4 Writing a Reference Manual
Consider the following strange looking language.

A program is a sequence of string replacement rules of the
form

L - R

where L and R are strings of characters. Some of the rules
may have a period after the arrow, as in

L -». R

A replacement R which is denoted by an empty right side.
The input to each program is itself a character string.

A program is executed as follows. The sequence of rules is
scanned for the first rule, such that the string L given on the
left side occurs within the input string S. Then the leftmost
occurrence of L within S is replaced by R, giving a new
input string S'. This process continues until a rule with a
period is executed, or until no substitution is possible, at
which point the program terminates.

The final value of the input string is the output of the
program.

This language is known as a Markov Normal Algorithm [1954] and

can, in fact, express any computable operation. For example, the
program

D
F
I

vl

transforms the string COBBLER into the string FIDDLER, and the
program

B - D
C -». T
0 » I

transforms the string COBBLER into the string TODDLER.
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Consider also the following program for taking a parenthesized
string of letters from the alphabet {I, O, N, X} and producing a string
where the initial letters are reversed:

II* - I*I
10+ - 0°]
IN* —-> N*I
IX* - X*I
01* - I*0
00* - 0°0
ON* - N°0
ox* - X0
NI* - I*N
NO* —> O°*N
NN* - N*N
NX* —> X*N
XI* - I*X
X0* - 0°*X
XN¢ = N*X
Xxe - X*X
(I* - I(
(0 - 0o
(N = N(
xX* = X(
0 -

-> %)

For example, the input
(INNOX)

gives the output
(XONNI)

Now for the exercise. Write a reference manual for this ‘“programming
language.”
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Exercise 3.5 Proper Terminology

Imagine for the moment that you are writing a glossary of terms
for Mini-language Core. Give precise definitions for each of the
following terms, using at most two sentences for each definition:

program
declaration
statement
identifier
expression
comparison

integer
value
operator
operand
location
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Exercise 3.6 Optimization

The following program in Core does not do anything sensible.
However, apply the optimization techniques of folding, elimination of
redundant operations, and loop optimization to transform it into a more
efficient program.

program

declare A, B, C, D, E, F;
begin

B :=1;

C .

end if;
while (E < 5) loop
D:=C*D
if (F < X) then
D:=8+C;
F:=F+1,
E =Lk +1;
else
E :=5;
end if;
end loop;
C :=8B+C;
E:=A-B;
end loop;
B :=C* 0D,
¢ :=B-0D;
output A, B, C, D, E, F;
end;

Explain and justify each transformation that you make.
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4

Names, Locations, and Values

A programming language is designed for the manipulation of objects, for
example, numbers, strings, people’s names, colors, and so forth. An
object that is to be operated on by a program has two attributes:

1. The place where it is stored; this is its ‘‘location.”

2. Its value; this value may change during the course of the
program’s execution.

We use the term location rather than address, since address is a
hardware concept that may have no meaning in a programming
language. An object can occupy only one location, yet it may occupy
several hardware addresses. For example, on a byte-addressed machine,
a number may occupy more than one byte. The value of a pointer
variable in PL/I may often be thought of as an address, and the built-in
function ADDR encourages this thought; in fact, the pointer value might
not be a physical address but an index into a vector of actual addresses.
In general, for a given location, we can always obtain the value that is
stored there.

The objects manipulated by a program are identified by names.
However, sometimes names are used to mean the location of an object;
and, at other points in the same program, the name can be used to mean
the value stored at that location. Thus, in the Fortran statement

J=J+1
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the J on the left is used to refer to a location, while the one on the right
means the value stored at that location.

In the following excerpt from Lewis Carroll’s Through the Looking
Glass, the White Knight demonstrates the problem:

*...The name of the song is called ‘Haddocks' Eyes’!”

*“Oh, that’s the name of the song, is it?” Alice said, trying to
feel interested.

“No, you don’t understand,” the Knight said, looking a little
vexed. “That’s what the name is called. The name really is ‘The
Aged Aged Man.’”

“Then I ought to have said ‘That’s what the song is called’?”
Alice corrected herself.

“No, you oughtn’t: that’s quite another thing! The song is
called ‘Ways and Means’: but that’s only what it is called you
know!”

“Well, what is the song then?” said Alice, who was by this
time completely bewildered.

“I was coming to that,” the Knight said. ‘“The song really is
‘A-Sitting on a Gate’: and the tune’s my own invention.”

The White Knight is showing the difference between:

the song — “A-Sitting on a Gate”

What the song is called — “Ways and Means”
The name of the song — *“The Aged Aged Man”
What the name is called — “Haddocks' Eyes”

N

Consider the statement about a program:
The value of the variable X is pi.
This really means:

X is the name of the place where the number called pi is
stored at this moment,

Thus, to draw a parallel with the White Knight’s distinctions:

1. The number — 3.1415926535

2. What the number is called — pi

3. The name of the number — some location in storage
4. What the name is called — X.

If we return to our example of the Fortran assignment
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J=J+1

we can clarify the problem by saying that the J on the left gives a
reference and the J on the right gives a value. Thus a reference
identifies a location at which a value is stored. Some writers use the
terms l-value (left value) for location and r-value (right value) for the
value stored in the location.

Mini-language Ref, defined next, will help clarify some of the
issues involved in names.

4.1 MINI-LANGUAGE REF

Mini-language Ref derives its reference mechanism from Algol 68. Its
context free syntax is defined in Table 4.1.

A program consists of a sequence of declarations followed by a
sequence of statements. Each identifier used in these statements must
appear exactly once in the declarations.

A declaration associates a type with one or more identifiers. The
type of an identifier defines the type of value to which it may refer or
represent. The value can be a constant, in which case the type integer
constant, followed by an = symbol and the value. The value can also
be a variable, in that case, the type specification is integer preceded by
zero or more ref symbols.

If we declare the value associated with an identifier to be constant,
for example

declare PAGE _LENGTH: integer constant = 63;

then the identifier essentially becomes a notation for the constant value.
The two assignments

X :

PAGE _LENGTH;
and

x .

63;

are exactly equivalent. The symbol = in the declaration indicates that
the identifier is identically equal to the given value throughout the
program; it cannot be changed. This has two advantages: the meaning of
the constant value in the program is more easily understood from the
name than its value and, should the value have to be altered, only one
statement in the program would need to be changed.
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program

declaration

type

statement

assignment-statement
input-statement
output-statement
expression

operand

Table 4.1 Mini-language Ref

program
declaration...
begin
statement...
end;

declare identifier [ , identifier ]... :

integer constant = integer
[ ref ... ] integer

assignment-statement
input-statement
output-statement

identifier := expression ;

input identifier [ , identifier ]... ;

output identifier [ , identifier ]... ;

[ operand + ] operand

integer
identifier

type ;
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If the value associated with the identifier is to be variable, then
there are many different kinds of values that can be associated with the
identifiers, depending on the type specifications.

If the type specification does not contain any occurrences of the
symbol ref then the associated identifiers refer to integer values. If the
type specification contains a single ref symbol, then the values to which
the associated identifiers refer are themselves references to integer
values; that is, the values identify locations in which integer objects are
stored. If the type specification contains two ref symbols, then the
values to which the associated identifiers refer are references to
locations that contain references to integer values, and so on.

In each case, starting with an identifier and following the chain of
references, one eventually finishes at a location that contains an integer
value. The number of links is defined by the number of ref symbols in
the specification of the type. Since the language does not impose an
upper bound on the number of ref symbols in a declaration, there are
arbitrarily many different types in any program.

The executable statements are assignment statements, input state-
ments, and output statements, all of which have familiar syntax.

Consider the very simple program:

program

declare X : integer;

declare ONE: integer constant = 1;
begin

input X;

X := X + ONE;

output X;
end;

This program reads in a positive integer value, adds one to the value,
and prints the result.

This simple program uses an identifier that refers directly to an
integer value similar to the variable A in the declaration:

declare X: integer;

This variable, like all variables, must be given a value, either by
assignment or input, before it can be used in an expression.

When we declare a variable as having the type integer constant,
we are saying that the identifier is identically equal to an integer value,
that is, the mode of the identifer is integer. The identifier X declared to
be of type integer has associated with it an integer value that can change
during program execution.
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Since X refers to integer values, its mode is reference-to-integer.
Compare this with the variable B declared as:

declare Y: ref integer;

Here Y is a variable that refers to reference-to-integer values. Thus the
mode of Y is a reference-to-reference-to-integer.
Executing the assignment

Y :=X;

sets the value of Y to be a reference to the integer value to which X
refers. Executing the assignment

X :=17,

does not change the value of Y, still a reference to the integer value to
which X refers, but it does change that integer value. Thus the integer
value that is at the end of the chain of references that starts with the
identifier Y is changed.

To obtain the integer value at the end of this chain of references,
the value of Y must be dereferenced twice, corresponding to the two
occurrences of references-to in the mode of Y. This mechanism is
extended for variables declared with more than one ref symbol.

The operator + represents addition. To evaluate an expression that
consists of the + operator and operands that are identifiers, the value of
each identifier must be dereferenced as many times as needed to obtain
an integer value,

For an assignment statement to be legal, the identifier on the left
must not be declared with integer constant and one of the following
must be true, either:

1. The expression consists of more than operand, a single
identifier that has been declared to be an integer constant or
an integer, and the identifier on the left is declared w1thout

_eny ref symbols-

2. There is an identifier on the right side, and the number of

tef symbols in the declaration of the identifier on the left side

is at most one great ber of ref s

eclaration of the identifier on the right side.

For example, given the declarations
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declare A: integer constant = 5;
declare B: integer;

declare C: ref integer;

declare D: ref ref integer;

both the assignments

B := A:
C :=0D;

satisfy the requirements above. On the other hand, the assignments

C := A
D := B;

both violate the conditions and are thus illegal.
Execution of a legal assignment is as follows:

1. The expression consists of more than one operand, a
single identifier declared with the type integer constant or an
integer.

The value of the expression (which by definition is an
integer value) is copied into the location associated with the
identifier on the left.

2. The expression is an identifier.

Case 2.1: The number of ref symbols in the declaration of the
identifier on the right is one less than the number of ref
symbols in the declaration of the identifier on the left.

In this case, a reference to the location associated with
the identifier on the right is copied into the location associ-
ated with the location on the left.

Case 2.2: The number of ref symbols in the declaration of the
identifier on the right is greater than or equal to the number
of ref symbols in the declaration of the identifier on the left.

In this case, the value contained in the location associ-
ated with the identifier on the right is obtained. This value
refers to a location. This value is dereferenced, that is, it is
replaced by the value contamed in the location to which it

refers. The d is performed a

times equal t ber

times equal to the excess number of ref symbols_in the
declaration of the identifier on the left. The resulti lue is
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copied into the location associated with the identifier on the

left. -

For the assignment to be executed without error, it must be possible to
perform the required number of dereference operations. Notice that in
case 2.2, each time a value is obtained from a location, that location
must contain a defined value; that is, the location must have had a value
assigned to it either by an assignment statement or by an input
statement.

Input and output statements specify the reading and writing of
integer values. On input it must be possible to dereference each
identifier by the number of ref symbols given in its declaration. On
output it must be possible to dereference each identifier in the output
statement fully to obtain an integer value. Otherwise, the input or output
action is in error.

As an illustration of the dereferencing mechanism, consider the
program of Example 4.1. After the fifth assignment has been executed,
two chains of references will have been set up and the state will be as
shown schematically in Figure 4.1..Note that REF_REF_INT_F has
not been assigned a value.

program
declare INT_A, INT_B: integer;
declare REF_INT_C, REF_INT_D: ref integer;
declare REF_REF_INT_E, REF_REF_INT_F: ref ref integer;

begin
INT_A :=1;
INT_B := 2;
REF_INT_C := INT_A;
REF_INT_D := INT_B;
REF_REF_INT_E := REF_INT_C; -- state shown in Figure 4.1
REF_INT_C := INT_B; -~ state shown in Figure 4.2
INT_A := REF_REF_INT_E;
input REF_REF_INT_E; -- state shown in Figure 4.3
output  REF_INT_D;

end;

Example 4.1 Dereferencing in Mini-language Ref
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REF_REE.INT_E REEINTC INTA
REF_REEINT_F REF_INTD INT_B

w 0

Figure 4.1 State after execution of the fifth assignment of Example 4.2

The next assignment
REF_INT_C := INT_B;

causes the value of REF_INT_C to refer to the location associated with’
INT_B. No other value is changed. The situation after executing this
statement is as shown in Figure 4.2.

REF_REFINTE REEINT.C INT.A
i :
REF_REFINT_F REFINT_D INT_B

@ O

Figure 4.2 State after executing REF_IN_C := INT_B;
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The final assignment causes the value of REF_REF_INT_E to be
dereferenced twice to obtain the integer 2, which is copied into the
location associated with INT_A. The input statement causes a value,
say 3, to be read from the input file and assigned to the variable found
by following the chain starting at REF_REF_INT_E. The semantics of
Mini-language Ref require that this chain be set up by a sequence of
assignment statements before an input statement is executed. The result
is depicted in Figure 4.3. The final statment thus prints the value 3.

Notice that an attempt to execute

output REF_REF_INT_F;
in place of the given output statement is in error, since the value of
REF_REF_INT_F is undefined and cannot be dereferenced to produce
an integer.
4.2 DECLARATION AND ASSIGNMENT
Consider a declaration of a variable, such as:

declare A: integer;
This states that A is the name of a variable. A variable has two things:

a. A location
b. A value

Thus associated with the name A is a reference to a location, one that

can contain a particular kind of object; in this case, an integer object.
This association may be represented pictorially as:

F O

name reference value

A declaration of a variable creates this structure with an
undefined value in the location. Once the location associated with the
identifier A has been created, it cannot be changed although the value
stored in the location can be. The identifier A is said to be bound by
the declaration. Since A always refers to a location that can only
contain an integer object, it always refers to an integer.
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REF_REF_INT_E REFINT_C INT.A
REF_REF_INT_F REE_INT_D INT_B

@ -0

Figure 4.3 Final state of Example 4.1

Next consider the assignment:
A :=5;

Execution of this statement puts a copy of the integer object 5 into the
location associated with the identifier A, giving:

: —

A new variable does not have a value until it has been explicitly
assigned. A program that attempts to obtain the value of a variable
before it has been assigned is in error.

The digit 5 is the name of a constant whose value is the integer 5.
The role of locations is made clear in Algol 68, where the declaration

real x
is an abbreviation for the declaration:
ref real X = loc real

Here X is a constant whose value is a reference to a real value; loc real
is a generator that acquires the location that is to be defined as the value
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of X; that is, X is identically equal to a reference-to-real value that is
given by loc real. In this case we have

1

name ref real value

Thus
real X
really declares X to be the name of a constant value, the location where
a real value may be stored. Thus the location associated with X cannot
change, but the real value that is stored in the location can.
Returning to our mini-language, consider the declaration
declare A, B: integer;

and the statements:

A :=5;
B := A;

By the second assignment we mean: obtain the value associated with A
and copy it into the location associated with B. Thus, the execution of
this second assignment may be represented as:

T
1=

It is possible to have more than one name referring to a single
value. For example, in Mini-language Ref, consider the declaration

declare REF_A: ref integer;

Here REF_A is a variable that refers to a location that can contain
reference-to-integer objects. Such a variable is somewhat like a PL/I
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pointer variable, but is constrained to take only values that are
references-to-integers.
Next consider:

declare A, B: integer;
declare REF_A: ref integer;

A = 5
REF_A := A;
B = REF_A;

The declarations set up the following:

| undefined integer
A value
undefined
REEA u=< reference - to - integer
value
B | undefined integer
value

Note that a location can only contain objects of a particular type. For
this reason, we use different shapes in the diagrams.
The assignment

REF_A := A;

causes the location associated with A to be assigned to the location
associated with REF_A.

<
= 0

Thus A and REF_A both refer to the same integer value, though
REF_A refers through an extra level of indirection. The assignment
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B := REF_A;

causes a simple dereferencing operation to be applied to the value in the
location associated with the variable REF_A. This value is the location
associated with A. Dereferencing this gives the value 5, which is copied
into the location associated with B.

A :( 5
O

Notice, if we now execute the assignment statement

A :=10;
this will change both the value that A refers to directly, as well as the
value that REF_A refers to indirectly.

In a language like PL/I, for example, it is possible to have two
names that refer directly to the same value. The PL/I declaration

DECLARE X FIXED,
Y FIXED DEFINED X;

gives rise to the naming structure:

=
Bt

As we have seen, when a name is used in a program sometimes its
location and sometimes the object contained in that location is meant.
Consider, for example, the Pascal program
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program EXAMPLE (INPUT, OUTPUT),
var
A: INTEGER;

procedure P (var B: INTEGER);
begin

B :=8B+2
end;

begin
A =1,
A:=A+1;"
P(RA)

end

Here A is used with two distinct meanings. In the expression:
A+l

A really means some value. Once we are given the value of A, we can
perform the required addition without concern about the name of A or
the location of the value of A.

On the left side of the assignment, A really denotes some location.
Once we are given this location, we can proceed with the assignment
without concern about the name A or its value.

In the procedure invocation P(A), A really means its location; for
on invocation, the parameter B of procedure P is associated with the
location of A. Hence the occurrence of B on the left side of

B:=B+2

refers to the location of A (whose value is to be changed), whereas the
occurrence of B on the right side denotes the value stored in the location
of A.

4.3 A MODEL OF STORAGE

In general, a store is a carrier of information that may be realized in
computer hardware as immediate access main storage or by some other
technique that has longer access time. From the point of view of the
programming language, it is the holder of the objects that are manipu-
lated by the language. It thus stands between the abstract world of the
language and the real world of hardware realization.
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As we described earlier, associated with a variable is a location,
and an object may be stored in that location, both of which must be
represented in our model. A store provides a mapping, S, between
locations and values; that is, given a location loc, we can obtain a value
v. Thus we can write:

v = §(loc)

The store S may only be a partial mapping since there can be locations
that have no defined value if none has been assigned.

As the contents of the store are changed, so too, are the mapping
changes. After the value of a location has been changed, applying the
mapping to the same location gives a different value. An assignment
thus changes the mapping S into a new mapping S'.

A particular assignment changes the value in a location loc from
S(loc) to v' such that

v' = §'(loc)
where
S$'(x) = 1if (x = loc) then v' else S(x)

that is, an assignment changes the value of one location only.

So far we have considered assignment only; there are also the
operations of allocation and freeing that can be performed on storage.
The mapping S allows a certain set of values for loc; there are only
certain locations that are valid. This corresponds to the amount of
storage that can be accessed at any particular time. The set L is the set
of active locations.

Allocation is the inclusion of new locations in the set L of active
locations. Allocation may be implied by a declaration of a variable or
by an explicit command, like the ALLOCATE statement of PL/I or the
heap statement of Algol 68. Allocation is an operation on the mapping
S to produce a new mapping, S'. Suppose loc is not a member of the set
of active locations L, then

(ALLOCATE loc)(S) = §'
where

S$'(loc)
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is undefined, and
S'(loc') = $(loc')

for all loc' in L. Thus the set of active locations L' consists of the set L
with the additional element loc.

We may define the operation of freeing similiarly. Examples of
this are the implicit freeing of storage at the end of a block in a language
like Algol or an explicit command, such as FREE in PL/I

FREE(loc)(S) = §'
where loc is a member of the set L, and
S'(loc') = S(loc')

Here loc' is a member of the new set of active locations L' derived
from L by deleting loc; that is, for all loc' # loc, the freeing operation
leaves them unchanged.

So far we have only considered elementary values made up of the
single primitive objects manipulated by the language. We discuss
objects that are collections of other objects in Chapter 6.

4.4 SYMBOL TABLES

A symbol table is an implementation concept used to translate a
program into a form suitable for execution. Conceptually a symbol table
is a dictionary providing a correspondence between identifiers and their
properties. These properties include names, their attributes, and ma-
chine addresses. It is referenced constantly during compilation: during
syntax analysis for its construction and during code generation for its
information.
Consider the program declarations

declare A, B: integer;
declare C, D: ref integer;
declare E, F: ref ref integer;

A simple symbol table might be
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Identifier Attribute Address
A int 100
B int 101
C ref int 102
D ref int 103
E ref ref int 104
F ref ref int 105

The identifiers and attributes are inserted during analysis of the
declarations. The addresses are inserted before code generation. The
table is later used during code generation to construct appropriate
machine instructions for execution of the program.

FURTHER READING

More than any other, the concept of assignment separates programming
languages from conventional mathematical systems. Without assignment, the
world of programming languages would be quite different.

Perhaps the most thoughtful work of assignment is a very early one,
[Strachey 1967). This paper may be difficult to obtain, but it presents a number
of early fundamental ideas about programming languages.

EXERCISES
Exercise 4.1 Names, Locations, and Values

The occurrence of an identifier can imply the use of either its
name, the location associated with the identifier, or the value associated
with the identifier. Which of these uses of the identifier A is made in the
following PL/I or Pascal statements? Not all are from the same
program.

PL/I Pascal
a. A-=3; A =3
b. B=A4A; B :=A
c. CALL A A
d. A(l) = A[l] :=2
e. ALLOC ; NEN(A)
f. =A - =At.Y
g GOTO A goto A
h. OPEN FILE(A); RESET (A)
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Exercise 4.2 Explicit Dereferencing

We have already remarked that in many languages the two
instances of the identifier I in the assignment statement

I=1+1,

denote either the location associated with I or the value contained in
that location. In the systems programming language Bliss [Wulf et al.
1971] an identifier always denotes a location. In order to obtain the
value stored in the location, the programmer must make explicit use of
the memory prefix . operator to dereference the location. Thus the
assignment would have to be written

I:=.1+1;

Consider a variant of Mini-language Core in which the same rule
obtains. Using this variant, write a program that is equivalent to the
program shown in Example 4.1.

Exercise 4.3 Mini-language Ref

Consider the fragment of Ref program:

program
declare ONE : integer constant = 1,
declare TWO . integer constant = 2;
declare A, B : integer,
declare RC, RD . ref integer;

declare RRE, RRF : ref ref integer,
declare RRRG, RRRH: ref ref ref integer;

begin
A ;= ONE;
B := A + ONE; )
RC = A; - d):(‘@re/vxc/vj
RD = B;
RRE = RC;
RRF  := RD;
RRRG := RRE;
RRRH := RRF;

end;
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Given the state after executing this fragment, for each of the following
statements state whether it is legal (and describe its effect) or illegal
(and give reasons).

a. A := RRRG + B;
b. RRRH := RC;

€. RC := RRRH;

d. RC := RRRH + RD;
€. RRRH := RRE;

f. RRF := RRRG;

g. RRF := RRRG + TWO;
h. input RC;

i. RD :=RC;

jo B := RRRG;

Exercise 4.4 Reference Variables

There are two different views of reference variables. In Mini-
language Ref, like Algol 68, Pascal, and Ada, a reference (or pointer)
variable may only designate an object of a specific type which is
specified before the program is compiled. The other view, exemplified
by PL/I, is that a pointer variable can designate any kind of object, for
example, the fragment:

DECLARE
I FIXED,
F FLOAT,

IB FIXED BASED,
FB FLOAT BASED,

P POINTER;
I=1;
F = 1.0E0;
P = ADDR(I); /* P now designates I */
P->18B=2; /* The value of I changed to 2 */
P = ADDR(F); /* P now designates F */

P ->FB=2.0E0; /* The value of F changed to 2.0 */

Thus P can be used to designate both a fixed and a floating point object.
The location is obtained from the value of P and the type is obtained
from the associated based identifier, IB or FB. There is, however, the
restriction that the type obtained from the associated based identifier
must match the type of the object in the designated location. For
example, given the state at the end of the above fragment, the statement
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P->1IB = 3;

would be illegal since P, at this stage, designates a floating point object
and the type obtained from the associated based identifier is fixed point.

Discuss the relative advantages and disadvantages of these two
views of reference variables.

Exercise 4.5 Multiple Assignment
PL/I has the multiple assignment statement of the form

ref,, ref,, ..., ref, = exp;
where ref), ref,, through ref, are references and exp is an expression.
There are a number of possible rules for executing this kind of
statement, for example:

1. Evaluate exp to obtain a value val
Fori=1 to n step 1
evaluate ref; to obtain a location loc;
assign val to location loc;

2. Evaluate exp to obtain a value val
Fori=nto 1 step -1
evaluate ref; to obtain location loc;
assign val to location loc;

3. Evaluate ref| to obtain a location loc,
Evaluate exp to obtain a value val
Assign val to loc,
Fori=2tonstep 1

evaluate ref; to obtain location loc;
assign val to location loc;

4. Evaluate ref, to obtain a location loc,
Evaluate exp to obtain a value val
Assign val to loc,

For i = n-1 to 1 step -1
evaluate ref; to obtain location loc;
assign val to location loc;

5. Fori=1to n step 1
evaluate ref; to obtain a location loc;
Evaluate exp to obtain a value val
Fori=1 ton step 1
assign val to location loc;
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6. Evaluate exp to obtain a value val
For each value of i, 1 < i < n, taken in undefined order
evaluate ref; to obtain location loc;
assign val to location loc;

There are, of course, other possible sets of rules. Discuss the possible
advantages and disadvantages of each of the six given rules. Choose one
of these methods or another that you feel would be the best and explain
why.

Note: You may start by considering the assignment
AQJ-1), AQD), AQJ+D) = J;

where A is an array. Also, the possible semantics of the statements have
been described in an algorithmic manner. These algorithms are for
definitional purposes only and are not intended as implementation
models.

Exercise 4.6 Declarations

All the mini-languages and many real languages, such as Pascal
and Ada require that the declaration of a variable occur before it is
used. For example, in Pascal you can say

const
NUMITEMS = 10;
var
A: array [1 .. NUMITEMS] of INTEGER;

but not

var
A: array [1 .. NUMITEMS] of INTEGER;
const
NUMITEMS = 10;

Discuss the advantages and disadvantages of this requirement, both
from the point of view of the user and of the implementor.
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Control Structures

The power of computers comes in large part through the programmer’s
ability to specify the sequence in which the statements of the program
are to be executed. The execution sequence is defined by such
techniques as loop and if statements. Statements of this sort are called
control structures.

The choice of control structures in a language has long been a
subject of controversy, and for good reason. One of the keys to clarity is
the set of control structures used.

Although a great deal has been written on the subject of control
structures, the debates and polarized opinions remain. On one side, we
have the view that only conditional and simple loop structures should be
used. On the other side, there is the view that high-order structures, like
exits, are essential to good programming. In this chapter we treat simple
conditional and looping structures. The goto statement and high-order
structures are treated in Chapter 9.

5.1 MINI-LANGUAGE D

In order to provide a focus for our discussion, we define a mini-language
whose essential ingredient is, of course, a set of control structures. The
syntax of this language, Mini-language D, is specified in Table 5.1.
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Control Structures

In Mini-language D, there are three ways in which the sequence of
statement execution may be specified:

1. Sequential execution
2. Conditional or selective execution
3. Iterative execution

In sequential execution the statements are executed precisely in
the order in which they are written, for example:

input X, Y;
X:=X+1;
Y=Y+ 1,
output Y, X;

Conditional execution in Mini-language D is expressed by the if
statement. In its full form this statement is:

if condition-expression then
statement...

else
statement...

end if;

Execution of an if statement begins by the evaluation of the condition-
expression. If its value is true, then the sequence of statements between
the then and else symbols is executed. If its value is false, the
sequence of statements between the else and end if symbols is
executed. In both cases, after execution of the appropriate statement
sequence, control passes to the statement following the if statement; the
first statement after the end if; symbols.

In an alternative form of the if statement, the else part is omitted:

if condition-expression then
statement...
end if;

In this case, if the condition-expression evaluates to true, the statement
sequence between the then and end if symbols is executed.
Otherwise, control passes immediately to the statement following the if
statement.



program

declaration

statement

assignment-statement

if-statement

loop-statement

input-statement
output-statement

condition-expression

condition

comparison

integer-expression

operand

comparison-operator

Control Structures

Table 5.1 Mini-language D

program
declaration...
begin
statement...
end;

declare identifier { , identifier ]... ;

assignment-statement | if-statement

loop-statement | input-statement

output-statement

identifier := integer-expression ;

if condition-expression then
statement...

else
statement... ]

end if;

while condition-expression loop
statement...

end loop;

input identifier [ , identifier ]... ;

output identifier [ , identifier ]... ;

[ condition and ] condition
[ condition or ] condition

comparison
( condition-expression )

( operand comparison-operator operand )

[ operand + ] operand
( operand - ] operand

integer | indentifier
( integer-expression )

131
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The iterative control structure in Mini-language D is the loop
statement, which specifies that a sequence of statements, the body of
the loop, is to be executed repeatedly. There is only one form of loop
statement, the while loop, in which the loop body is prefixed by a
condition-expression. This structure has the form:

while condition-expression loop
statement...
end loop;

Each time control arrives at the top of the loop, the condition-
expression is evaluated. If its evaluation gives the value true, the body
of the loop between the loop and end loop symbols is executed. When
execution of the loop body is complete, control is returned to the top of
the loop and the condition-expression is re-evaluated.

Thus, before any execution of the body of the loop, the condition-
expression at the head of the loop is evaluated; it is the result of this
evaluation that determines whether the body is to be executed or the
loop is to be terminated. Note that the value of the condition-
expression, were it to be evaluated during the execution of the loop
body, has no effect on the termination of the loop. If the condition- '
expression has the value false initially, the body of the loop is never
executed; and the loop statement has no net effect.

A condition-expression is either a single condition or a pair of
conditions separated by one of the logical operators and and or. A
condition is either a comparison of two integer operands or a parenthe-
sized condition-expression. A condition-expression consisting of two
conditions separated by the and operator evaluates to true only if both
conditions evaluate to true. A condition-expression consisting of two
conditions separated by the or operator evaluates to true if either or
both conditions evaluate to true. The order in which the components of
a condition-expression are evaluated is defined by the parentheses, just
as in the arithmetic expressions.

Other Features

Programs in Mini-language D, of course, have variables; and all
variables in a program must be declared. A variable can only have
integer values.

The remaining statements in the language are the common:

® Assignment statements
®m Input statements
® Output statements
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Examples

We next turn to some example programs. Example 5.1 shows a
simple program for converting nautical or 24-hour clock time into the
more common 12-hour notation. A flag AM_OR_PM specifies morning
(0) or afternoon (1). For example, if 1830 is given as input, the program
outputs:

HOURS = 6 MINUTES = 30 AN_OR_PN =1

The basic structure of this program is quite simple. The integer value of
the nautical TIME is input, and the number of HOURS and the number
of MINUTES are calculated. If the number of HOURS or MINUTES
is out of range for a valid time, the value input for TIME is printed.
Otherwise, the appropriate time is printed.

5.2 BASIC CONTROL STRUCTURES AND FLOWGRAPHS

In the study of flow of control, it is useful to represent a program as a
flowgraph. This is a set of nodes, representing actions in the program,
connected by directed lines that represent the sequence in which the
actions occur during program execution, the flow of control. There are
three kinds of nodes:

B Basic actions: These are represented by rectangles and
denote actions that can change the values of variables but
cannot alter the flow of control. Thus a basic action node has
only one flow line leaving it.

® Conditions: These are represented by diamonds and
denote actions that can change the flow of control but cannot
alter the values of variables. A condition node has two flow
lines leaving it, implying that a binary choice of flow
sequence is being made.

® Joins: These are represented by a simple junction of flow
lines. Joins do not denote any action and thus cannot change
the values of variables and have only a single flow line
leaving them.

We now discuss a class of simple control structures called D-
structures, D for Dijkstra [as in Bruno and Steiglitz 1972]. A D-
structure is either a
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program
— This program reads in an integer value representing the time
== on a 24-hour clock and prints out the corresponding 12-hour
—— clock time. If the input value does not represent a correct
— time, the input value is printed.

declare TIME, HOURS_AND_MINUTES, HOURS, MINUTES, AM_OR_PM:
begin

input TINE;

HOURS_AND_ HINUTES

HOURS

while (HOURS_AND_ MIN TES > 100) loop
HOURS_AND_MINUTES := HOURS_AND_MINUTES - 100;
HOURS := HOURS + 1;

end loop;

MINUTES := HOURS_AND_MINUTES;

if (HOURS > 23) then
if (HOURS = 24) and (MINUTES = 0) then
AM_OR_PM := 0;
HOURS = 12;
output HOURS, MINUTES, AM_OR_PM;
else
output TINME;
end if;
else
if (MINUTES > 59) then
output TIME;

TINE;
0;

else
AM_OR_PH :=
if (HOURS = 0) then
HOURS := 12;
else
if (HOURS > 11) then
AM_OR_PM := 1;
if (HOURS > 12) then
HOURS := HOURS - 12;
end if,;
end if;
end if;
output HOURS, MINUTES, AM_OR_PN;
end if;
end if;

end;

Example 5.1 A Mini-language D program
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B Basic action: For example, an assignment statement,
procedure call, or input-output statement;

or it is constructed from simpler D-structures, each using one of the
following forms:

B Sequence
S Sy ... Sy

of two or more D-structures s; through s,.

®m Conditional structure

if ¢ then
51
else
S2
end if;

where ¢ is a condition and s, and s, are D-structures.

B Jterative structure

while ¢ loop
s
end loop;

where ¢ is a condition and s is a D-structure.

D-structures may be represented in the form of flowgraphs as shown in
Figure 5.1. We use the convention in all flowgraphs that the true branch
is always shown on the left of the node.

Since the basic actions are such that no transfers of control can
occur during their execution, then we can say that they are one-in, one-
out structures; that is, control enters by only one path and leaves by
only one path. The assumption we have made is that there is no
mechanism by which control can return from a procedure to a statement
other than the one immediately following the call statement. D-
structures built from one-in, one-out actions are themselves one-in, one-
out structures.

A program that is constructed entirely from D-structures is itself a
D-structure. Consequently, it will have only one entry and one exit. The
control schemes of Mini-language D correspond exactly to the construc-
tion rules for D-structures. As a result, all programs written in Mini-
language D are D-structures.



136 Chapter 5

Basic action Conditional scheme
Sequential scheme
Hl Interative scheme

Figure 5.1 Flowgraph representation of D-structures

program
-- This program reads a number of integer
—— values and prints their maximum value

declare NUM_VALUES, CURRENT_MAX,
NEW_VALUE, VALUE_COUNT;

begin
input NUM_VALUES;
VALUE_COUNT := 0;
CURRENT_MAX := 0;
while (VALUE_COUNT < NUM_VALUES) loop
input NEW_VALUE;
if (NEW_VALUE > CURRENT_MAX) then
CURRENT_MAX := NEW_VALUE;
end if;
VALUE_COUNT := VALUE_COUNT + 1;
end loop; E—‘
output CURRENT_MAX;

end;

Figure 5.2 A Mini-language D program and its flowgraph
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A program that is a D-structure can be readily diagrammed as a
planar flowgraph. Figure 5.2 shows a Mini-language D program and the
corresponding flowgraph. Notice that an if-then statement can be
considered as an if-then-else structure in which s, is null, that is, in
which s, performs no action.

More generally, the flow of control of any program, whether D-
structure or not, can be depicted as a flowgraph. Figure 5.3 shows the
flowgraph of a program that is not a D-structure. Since the program is
not a D-structure, it cannot be written in Mini-language D. The program

L;: ap
L: ay

Ly: a2y,
if C; then
a,,
goto L,;
end if;

if C, then
ag,

goto L,; (_}

end if;

ag,
if C3; then
a;,
goto L,;
else

ag;
goto Lj;
end if;

Lyt 2.
if C, then
goto L;;
end if

Figure 5.3 An Example of a program that is not a D-structure
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corresponding to the flowgraph, also shown in Figure 5.3, is written
with explicit transfers of control. Here, execution of a statement

goto label;

results in program execution continuing at the statement prefixed by the
label.

5.3 THE FUNDAMENTAL CONTROL STRUCTURE THEOREM

We now turn to the classic theorem of Boehm and Jacopini [1966],
which shows that D-structures are sufficient for the construction of any
program. This result, virtually unnoticed at first, has had a far-reaching
effect on programming and has spawned much controversy about the
proper use of control structures.

In this section we give an informal proof of the theorem. A more
formal version of the proof given here is contained in [Mills 1972]. The
implications of this result are discussed in the following section.

The basic conclusion can be stated simply as:

For any proper program there exists an equivalent program
that is a D-structure.

By ‘““any proper program” we mean any computer program, no matter
what control structures are used, provided:

1. There is precisely one entry and one exit to the program.

2. For every node in the flowgraph representation of the
program, there is at least one path from the entry point,
through that node, to the exit point.

This latter restriction rules out programs containing infinite loops and
statements that are not reached by the flow of control from the programs
at entry point.

By equivalent program we mean a program that will always give
the same result as the original one for the same input data. Two
equivalent programs may have very different flowgraphs. For example,
we can compare two programs that calculate the square root of their
input. One obtains the result by successive approximation, while the
other uses a table look-up method. These two programs will be
equivalent if their results are exactly equal for all possible input values.
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The proof of the existence of an equivalent D-structure program
consists of a step-by-step method of deriving a D-structured flowgraph
that is equivalent to the flowgraph for the original program. This derived
flowgraph corresponds to a D-structure program equivalent to the
original one.

Proof of the Fundamental Control Structure Theorem

To convert a program to an equivalent one that is a D-structure,
we first construct a flowgraph G corresponding to the original program.
We then make a sequence of changes to G, working from the input point
in a step-by-step manner until the whole flowgraph is a D-structure. At
each stage, the change to be made is determined by the first component
of the unexamined part of the flowgraph.

There are three cases to consider:
Case 1: The first component of G is an basic action, a.

Hence G is of the form

(>

f

where g is an as yet unexamined part of G. This case is simple: we
already have a sequence of two structures and we apply our step-by-step
process to g.

Case 2: The first component of G is a conditional, c.

In this case, G is of the form:

true o false
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We perform the conversion by constructing two flowgraphs g, and g,
from g. The flowgraph g, is derived from g by making a copy of those
parts of g that can be reached from the true branch of c. Similarly the
flowgraph g, is constructed by copying those components of g that are
reached by the false branch of c.

Although both g, and g, may contain copies of identical parts of g,
neither g, nor g, can contain more components than g. We now replace
g by g, and g, to form the flowgraph

true o false

OO

and apply our process to g, and g, separately.

As an example of this case, consider the flowgraph G of Figure
5.4. The equivalent flowgraph that is derived from it is shown in Figure
5.5. Notice that both g, and g, contain a copy of the action a,.
Although g, and g, are, in this case, already D-structures, in general
this will not be the case.

Figure 5.4 An example of flowgraph case 2
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Figure 5.5 Flowgraph derived from Figure 5.4

Case 3: The first component of G is a junction.

The flowgraph G is thus of the form:

In this case, our action depends upon the next component in G, that is,
the first component of g. Again, there are three cases to consider.

Case 3.1: The first component of g is an action.

In this case, the flowgraph G has the form:

<
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Here we transform G by moving the junction to the other side of the
action a and inserting a copy of the action into the flowpath from g' to
the junction. This gives the flowgraph:

We then apply our transformation process to the flowgraph g".
As an example of this case, consider the flowgraph:

4

O
2 ]

As a result of the transformation just described we obtain the structure:

which, again, turns out to be a D-structure.
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Case 3.2: The first component of g is a conditional.

Here the flowgraph G has the form:

true o false

This case is not so easy. As we did in Case 2, we construct two
flowgraphs, g,' and g,', that consist of all the components of g' that
can be reached from the true and false branches of ¢, respectively. Both
g,' and g,' may have two exits, one for the return to ¢ and one that is
linked directly to the exit from g'.

{

Figure 5.6 Derived Flowgraph in case 3.2
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In order to make the transformation in this case, we must choose a
new variable, say V, that can take the values O and 1. We insert a new
action node before the junction that assigns the value 1 to V. In each of
the flowgraphs g,' and g,' we insert actions on each of their exit lines.
On the exit line that leads back to c, the new action assigns the value 1
to V and on the exit line that goes directly to the exit of G, the action
assigns the value O to V. Finally, we join the exit lines from both g,'
and g,' back to ¢ and insert a new conditional that tests the value of V
between the junction and c.

Do not despair! Our derived flowgraph is now as shown in Figure
5.6. Effectively, what we have done is to put g inside an iterative
schema that will continue to loop until the value of V has been set to 0.
This will happen when control passes along the exit line of g;' or g,'
that was directly connected to the exit of G. The transformation process
is then applied separately to the new flowgraphs g" and g," shown in
Figure 5.6.

Case 3.3: The first component of g is also a junction.

Here we have a flowgraph of the form:

The conversion here is simple. We transform G into:

The trick here is to see that our revised flowgraph is closer to a D-
structure. This is illustrated in Exercise 5.4.
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This completes our informal proof. We suggest that you convert
one of your own programs to an equivalent D-structure using this
method. The exercises at the end of this chapter also pose a few
transformation problems.

5.4 COMMENTS ON THE THEOREM AND ITS PROOF

The impact of the theorem is that it is possible to write any program as
a D-structure. The theorem guarantees that any problem can be
programmed using only D-structures. If you stick to using only D-
structures from the very start, you are sure to have enough ammunition
to write your program. In particular, if your programming language
includes only the following control statements

1. Sequences of one or more statements
2. Conditional statements of the form

if condition then
statement...
else
statement...
end if;

3. Loops of the form

while condition loop
statement...
end loop;

or their equivalent, then this is all you need, at least theoretically.
Of lesser importance is the method by which the theorem is
proved. It is a proof by construction. We take an arbitrary flowgraph
and keep on transforming it according to the rules until we reach an
equivalent D-structure. It should be clear that converting a program
using the method shown in the proof does not always result in a clearer
or more efficient program. In many instances the converted program will
even be less efficient and far less clear. There are methods of
mechanical restructuring that are more effective, [for example, Arsac
1979], but this topic is far beyond the scope of this text. The important
point is that restructuring a poorly designed algorithm in a mechanical
way will probably not improve it. A clear structure should be there from
the outset.
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5.5 OTHER ONE-IN, ONE-OUT CONTROL STRUCTURES

There are other one-in, one-out control structures that allow the clear
expression of some algorithms. These structures are available in some
programming languages, particularly those designed more recently. In
this section we will discuss several of these structures. All have the
important property that they are one-in, one-out.

By a one-in, one-out control structure we mean a control structure
that always has one entry and one exit, and for which any substructure
also has precisely one entry and one exit. For example, in a structure of
the form

if condition then
statement-1
statement-2
statement-3
end if;

our definition excludes the use of any statement, say statement-2, to
cause an explicit branch out of the if-then statement.

As you may have noticed in Example 5.1, the simple form of the if
statement in Mini-language D is not very satisfactory when there are
many possible conditions. The statement becomes deeply indented and
difficult to understand. A simple language design approach to this
problem would be to extend the definition of the if statement to:

if-statement ::= if condition-expression then
statement...
[ elsif condition-expression then
statement... ]...
[ else
statement... ]
end if;

This is similar to that found in the programming language Ada.
Execution of this form of the statement consists of evaluating each of
the condition-expressions in the order in which they appear until the
first one with the value true is encountered. At this point, the
corresponding sequence of statements is executed. After execution of
the statement sequence, control passes to the statement following the if
statement. If none of the condition-expressions evaluates to true, the
statement sequence that follows the else symbol is executed if it exists;
otherwise control passes directly to the statement following the if
statement.
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This form of the if statement is useful in problems where a choice
of actions is determined by the first of several conditions that is true.
For example, it allows statements like:

if (DISCRIMINANT > 0) then
PRINT ('TWO REAL ROOTS');
elsif (DISCRIMINANT = 0) then
PRINT ('ONE ROOT');
else
PRINT ('TWO IMAGINARY ROOTS');
end if;

This is clearer than using the nested if-then-else statement:

if (DISCRIMINANT > 0) then
PRINT ('TWO REAL ROOTS');
else
if (DISCRIMINANT = 0) then
PRINT ('ONE ROOT');
else
PRINT ('TWO IMAGINARY ROOTS');
end if;
end if;

With many conditions, the point becomes even more evident.

An important one-in, one-out structure found in many languages is
the case statement. It is a form of conditional statement where the
actions to be carried out depend upon the value of an expression given
at the head of the case statement. In a simple form, it has a structure
like that found in Ada:

case expression of
when value-1 => statement...
when value-2 => statement...

when value-n => statement...
end case;

Here the expression following the case symbol is evaluated and its value
is compared in turn with each of the values that follow the when symbols.
As soon as a match is found, the corresponding sequence of statements
is executed.

There are many variants of this kind of statement. One of the most
useful contains an otherwise option to cover any values not explicitly
given. For example, we may have:
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case I of
when 0 => -- what to do if the value of I is 0
when 1 => -- what to do if the value of I is 1
otherwise => -- what to do for all other values of 1
end case;

There are a number of questions that must be resolved by the
language designer when specifying such a statement. For example:

B Must all the conditions be mutually exclusive?

B Are the conditions evaluated strictly in the order in
which they appear?

B Suppose that none of the conditions evaluate to true. Is it
an error if there is no other wise option?

The situations where the conditions need not be mutually exclusive and
where more than one may be true are discussed in Chapter 15.

For iteration structures, there are numerous useful forms. One of
them is a variant of the while loop where, instead of testing the
termination condition before each iteration, it is tested after the body of
the loop has been executed. Thus at least one iteration of the loop is
guaranteed. This can be expressed in the form:

loop
statement...
end loop when condition;

In most existing languages this structure is written with a syntax using
the keywords repeat and until for example, as:

repeat
statement...
until condition;

This form of loop is especially useful when the condition depends on a
value that is initialized within the loop, for example:

repeat
— some statements
input X;
—- other statements
until (X = 0);



Control Structures 149

Another useful form is the for loop, where the number of iterations
of a loop is specified beforehand; and at each iteration a variable, called
the control variable, is assigned one of a sequence of values. A simple
example can be shown by a loop that computes the sum of 100 input
values:

SUM := 0;

for T :=1 to 100 loop
input X;
SUM := SUM + X;

end loop;

This structure also has many alternative forms. For example, we may
have a loop that terminates when either the control variable completes
its assigned values or when a condition is satisfied:

SUM = 0;

for I :=1 to 100 while (not END_OF_INPUT_FILE) loop
input X;
SUM := SUM + X;

end loop;

Here too, there are a number of points that must be resolved by the
language designer, for example:

@ Can the value of the control variable be changed inside
the body of the loop?

® What is the value of the control variable immediately
after terminating the loop?

All of these structures illustrate a general point. Even within the basic
framework of one-in, one-out structures, of which D-structures are a
part, it is possible to provide considerable expressive power.

Another set of one-in, one-out control structures based on nonde-
terminism is discussed in Section 15.5.

FURTHER READING

The practice of using only one-in, one-out control structures is generally
attributed to Dijkstra. His famous Letter to the Editor [1968a] hurled the
challenge to the goto statement. A later work [1972] presents a thoughtful
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treatise on programming, in which only one-in, one-out control structures were
used. These two works are classics in the area.

The proof of the Boehm and Jacopini theorem given in this chapter is
taken from the work [Mills 1972]. Another form of this theorem that gives the
stronger result that for every proper program there exists an equivalent program
that is a D-structure with one occurrence of the iterative structure is in [Cooper
1967]. An interesting account of the history of these two forms of the theorem is
in [Harel 1980].

EXERCISES

Exercise 5.1 Programming Mini-language D

Write a program in Mini-language D to check the relationship
between the height and weight of men. The input consists of pairs of
integers representing a man’s height and weight respectively. The input
is terminated by a height of zero.

If the height is less than 62, then the man is in category 1. If the
height is greater than 75, then the man is in category 2. Otherwise if,
the man’s weight is less than 124 plus 4 times the amount by which the
man’s height exceeds 62, the man is in category 3. If the man’s weight
is greater than 143 plus 4 times the amount by which the man’s height
exceeds 62, the man is in category 4. Otherwise the man is in category
S.

For each pair of numbers input, output the corresponding category
number.

Make a second version of your program using a variant of Mini-
language D that also contains the alternative forms described in Section
5.5.

Exercise 5.2 Elimination of Goto’s

Restructure the following program to eliminate as many goto’s as
possible by using the control structures of Mini-language D.

program
declare X, MAX_VALUE;
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begin _
input MAX_VALUE;
goto 3;

1: if (X = 0) then
goto 9;
else
goto 5;
end if;

5: if (X > MAX_VALUE) then
goto 6;
else
goto 4;
end if;
9: output X;
goto 7;
3: input X;
goto 1;

6: X =X+ 1;
8: X =X+ X;
goto 9;

4: X ;=X + 2;
goto 8;

7: output X;

end;

Exereise 5.3 Conversion of a Flowgraph

Convert the flowgraph shown below into a functionally equivalent
one built from a sequence, if-then-else and do-while structures only.
You can introduce boolean variables if needed. The aim is to produce
the clearest possible flowgraph for the algorithm. Compare the clarity of
the structured flowgraph with the original unstructured one.
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ExerciUsing the Boehm and Jacopini Theorem

Consider the following two flowgraphs. These are both examples
of Case 3, in which the first component is a rejoin point. Using the
method of the Boehm and Jacopini Theorem, convert these two
flowgraphs to a D-structure.

a

1

<D <>
L2

<>
2] [%]
i, B
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Exercise 5.5 Designing an If Statement

In the design of any language feature, a choice must be made
among alternative designs. Consider the following alternative syntax
equations for if statements:

1. Mini-language D:

if-statement ::= if comparison then
statement...
[ elsif comparison then
statement... ]

[ else
statement... ]
end if;
2. Pascal-like:
if-statement ::=  if comparison then
unit-statement
[ else
unit-statement ]
unit-statement = statement
| begin
statement...
end;
3. Choice-like:
if-statement ::= select

when comparison => statement...
[ when comparison => statement... ]...
end select;

In alternative 3, the first true comparison determines which statements
are executed. Faced with the above choices, choose one alternative and
justify your choice.
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Exercise 5.6 Loop Invariants

In Section 3.4 we alluded briefly to invariant relations of loops.
Suppose Mini-language D included arrays. Then in the loop

I:=1;

X := A[1];

while (I # N) loop
I:=1+1;
if (A[I] > X) then

X := A[lI];

end if

end loop;

the invariant relation is that X contains the maximum value of the first I
elements of the array A. Verify that executing the body of the loop does
not change the invariant relation.

Consider next the following program fragment to reverse the order
of the first N values in the array A:

LOWER := 1;

UPPER := N;

while (LOWER < UPPER) loop
TEMP ;= A[LOWER];
A[LOWER] := A[UPPER];
A[UPPER] := TENP;
LOWER = LOWER + 1;
UPPER := UPPER - I;

end loop;

Determine what the invariant relation of the loop and then show that
this relation together with the condition for loop termination (LOWER =
UPPER) demonstrates that the program has executed correctly.

Exereise 5.7 JConversion of a Program

Consider the following program:
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program
declare X;
begin ,
input X; Sei%a
1. if (X > 1) then
goto 2; ]
X :=X+1; i
if (X >5) then _ —
goto 2; \—73-\
X=X+ waie {1 ) or XF5Y TO
goto 1;
2. output X; ot
end: N )
Convert the program to a D-structure without introducing new varia-
bles, or show that it cannot be done.

Exercise 5.8 Prettyprinting of Control Structures
One design requirement for features in a programming language is that
they be able to be displayed in a readable fashion. Consider the

following alternatives for Mini-language D:

a. if (X > Y) then X :=Y;

else Y = X;
end if;
b. if (X > Y) then
X =Y,
else
Y :=X;
end if;
c. if (X>Y)
then
X =Y,
else
Y = X;

end if,
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Each of these versions is debatable. In the general use where there may
be several contained statements, nested structures leading to wide lines
of text, or no else part, the issue is even more debatable.

Your problem is to choose one of the following positions, and
support it with a three or four page position paper. Even if you disagree
with them all, you must choose one.

1. Any prettyprinting conventions should be chosen by the
programmer. In particular cases, options (a), (b), or (c) may
be individually desirable, and each should be allowed.

2. All conditional statements should be displayed as in
option (b) above. No exceptions should be allowed.

3. All conditional statements should be displayed as in
option (c) above. No exceptions should be allowed.

4. Prettyprinting is an over-rated issue. It tends to emphasize
small concerns at the expense of more important issues.

Don’t be bashful.
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Data Types

A program manipulates abstract objects that represent real world
objects. The closer the properties of an abstract object mirrors those of
the corresponding real world object, the easier it will be to understand
the program. Early programming languages permitted only numbers as
abstract objects, all real world objects had to be represented by
numbers. Since early programming was largely computational, the
mapping between real and abstract was generally simple, though by no
means perfect. As the need to represent other kinds of objects, for
instance characters, increased, the limitation to numerical objects
became more inadequate. With improvements in the design of pro-
gramming languages, more varied and useful kinds of objects have been
allowed.

In this chapter we discuss the kinds of objects that can be an
intrinsic part of languages. We begin by describing Mini-language Type,
which can operate on different kinds of objects, that is, data of various
types. This mini-language serves as a basis for a discussion of the
concept of type in programming languages. This discussion is limited to
the primitive types of a language, that is, the types that are part of the
language. In Chapter 10, we take up the issue again, with a discussion
of techniques that allow the programmer to specify new data types that
closely match the real objects of a given problem.
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6.1 MINI-LANGUAGE TYPE

The context-free syntax of Mini-language Type is given in Table 6.1.
Note here that the symbol b represents the single blank space character.

As usual, a program in Mini-language Type consists of a sequence
of declarations followed by a sequence of statements. The declarations
specify the type of value that can be associated with each identifier. The
statements define the operations to be performed on values associated
with declared variables.

A declaration specifies that a given list of identifiers can refer only
to objects of the given type. The types in Mini-language Type are either
simple or composite. The simple types include the integers (for
example, 10 and 1776), strings of characters (for example, 'ABC' and
'123'), and the boolean values true and false. Note that the integer
123, denoting the numeric value one hundred and twenty three, is
different from the string '123', denoting the three characters for the
digits representing one, two, and three. ‘

The composite types in Mini-language Type are arrays of a given
simple type and record structures. For example, an array TABLE with
ten integers is declared as

declare TABLE: array [1..10] of integer;

and a record structure COMPLEX _NUM representing a complex
number is declared as:

declare COMPLEX _NUNM:
record J
REAL _PART: integer;
IMAG _PART: integer;
end record;

All identifiers referenced in the program must be declared exactly once.
A variable is either:

B An identifier, in which case, its type must be simple and
given in the declaration for the identifier.

® An identifier declared to be an array followed by a
bracketed expression; in which case, it denotes some array
component whose type is specified in the declaration for the
identifier. ,



program

declaration
type
simple-type
array-type

record-type

bounds

statement

assignment-statement

if-statement

input-statement
output-statement
expression

operand

variable

string
boolean

operator

character

special-character

Table

n

6.1 Mini-language Type

program
declaration...
begin
statement...
end;

declare identifier [ , identifier ]...

simple-type |

integer | string

array [ bounds ] of type

record
identifier : type ;
[ identifier :
end record;
integer .. integer

assignment-statement

input-statement |

variable := expression ;

if expression then
statement...

[ else

statement... ]
end if;

array-type

type : 1...
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:type |

| record-type

| boolean

if-statement
output-statement

input variable [ , variable ]... ;

output variable [ , variable ]... ;

[ operand operator ] operand

variable | integer |
boolean |

identifier |

variable [ expression ]
' character... '

true | false

< I = | # | >

cat | and | or
letter | digit |
pl o+ | - |
N

string
( expression )

variable.identifier

[ = |/

special-character

R
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® An identifier declared to be a record followed by a dot
and an identifier; in which case, it denotes some component
of a record whose type is specified in a record declaration.

Thus a variable always references a simple integer, string, or boolean
value.

For example, using the declaration of TABLE above, the variable
TABLE[3] is of type integer and denotes the third element of the array
TABLE. Similarly, using the declaration of COMPLEX _NUM above,
COMPLEX _NUM.REAL _PART is a type of integer component of
the record structure named COMPLEX_NUM.

There are four varieties of statement in Mini-language Type, each
of the usual form:

1. An assignment statement: Both the variable and the
expression must be of the same simple type.

2. An <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>