
The Language Landscape

The
ProgrammingLanguage

Landscape

The
ProgrammingLanguage

Landscape

Henry Ledgard
Human Factors Limited
Leverett, Massachusetts

Michael Marcotty
General Motors

Research Laboratories
and

Wayne State University

®

SCIENCE RESEARCH ASSOCIATES. INC.
Chicago. Palo Alto. Toronto. Henley-on-Thames. Sydney. Paris

A Subsidiary of IBM

The SRA Computer Science Series

William A. Barrett and John D. Couch, Compiler Construction:
Theory and Practice

Marilyn Bohl and Arline Walter, Introduction to PLII Programming and PLIC
Mark Elson, Concepts of Programming Languages
Mark Elson, Data Structures
Peter Freeman, Software Systems Principles: A Survey
C. W. Gear, Introduction to Computer Science
C. W. Gear, Introduction to Computer Science: Short Edition
A. N. Habermann, Introduction to Operating System Design
Harry Katzan, Jr., Computer Systems Organization and Programming
Henry Ledgard and Michael Marcotty, The Programming Language Landscape
James L. Parker and Marilyn Bohl, FORTRAN Programming and WATFIV
Stephen M. Pizer, Numerical Computing and Mathematical Analysis
Harold S. Stone, Discrete Mathematical Structures and Their Applications
Harold S. Stone, Introduction to Computer Architecture. Second Edition

Acquisition Editor
Project Editor
Production and Composition
Illustrator
Cover Photo

Alan W. Lowe
James C. Budd

Human Factors Limited
Drake Maher

Foto Saporetti

Library of Congress Cataloging in Publication Data

Ledgard, Henry 1943
The programming language landscape.

Bibliography: p.
Includes index.
1. Programming languages (Electronic computers)

I. Marcotty, Michael, 1931- joint author.
II. Title.
QA76.L44 001.64'24 80-25219
ISBN 0-574-21340-6

© 1981 Science Research Associates, Inc. All rights reserved.

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Acknowledgments

Cover Background detail from the painting of 11 Moro meeting the
Emperor, from Grammatica di Donato. Photograph by Foto
Saporetti, Milan, Italy.

Chapter 1 Aerial photograph of the alps near Freiburg, Switzerland.
Photo by Swissair A.G.

Chapter 2 Enlarged portion of a U.S. Geological Survey topographic
map of the Grand Canyon, Arizona.

Chapter 3 Photograph taken in Grand Canyon showing Sumner Butte.
Photo by Don Hart.

Chapter 4 Photograph taken at Guam by United Press International.

Chapter 5 Highway crisscross near Frankfurt, Germany. From "The
World from Above" by Hanns Reich. Photo by Aero Ex
ploration.

Chapter 6 Monument Valley, Arizona. Photo by David Muench.

Chapter 7 Factory Chimneys in England. From "The World from
Above" by Hanns Reich. Photo by Aerofilms.

Chapter 8 The Souf Oasis. Photo by Georg Gerster.

Chapter 9 American Superhighway. From "The World from Above"
by Hanns Reich. Photo by Instituto Geografico di Agostini.

Chapter 10 Balancing rock in Chiricahua National Monument, Arizona.
Photo by Ed Cooper.

Chapter 11 Zagros Mountains, Western Iran. From "The World from
Above" by Hanns Reich. Photo by Aerofilms.

Chapter 12 Battersea Power Station, London. Photo by Robert Estall.

Chapter 13 Volcano. Photo by Eliot Elisofon, Life Magazine, © 1951,
Time Inc.

Chapter 14 Landslide. Photo by Nat Farbman, Life Magazine, © 1959,
Time Inc.

Chapter 15 Flock of sheep on highway. From "The World from Above"
by Hanns Reich. Photo by Bayer. Flugdienst.

Chapter 16 Mangrove Swamp, Everglades. Photo by Dan McCoy.

Stronicft t~ Po'swiftczmy Wirtuozce Wie/u Dziedzin,
Pani Lindzie Skrzypek-Strzegowskiej

Contents

Preface xiii

The Landscape

1. Introduction 3
•. 1 The Building of the Tower of Babel 3
1.2 What Is a Programming Language? 6
1.3 Why Study Programming Languages? 10
1.4 What Should We Look for in a Language? 11
1.5 Language Design Issues 13
1.6 Elements of a Programming Language 17
1.7 The Study of Programming Languages 18

2. Syntax 25
2.1 Informal Description of Mini-language Core 26
2.2 Syntactic Components of Programming Languages 30
2.3 Syntax and the Programming Process 31
2.4 The Description of Syntax 36
2.5 Grammars for Describing Syntax 38
2.6 The Backus-Naur Form 42
2.7 Other Context Free Syntax Definitions 54
2.8 Overview of the Translation Process 5S

x Contents

3. Semantics... 67
3.1 The Semantics of Mini-language Core 67
3.2 Defining the Semantics of a Language 76
3.3 Semantic Questions 78
3.4 Formal Descriptions of Programming Languages 85
3.5 The Correctness of a Program 91
3.6 A Further View of Translation 92

Dominant Features

4. Names, Locations, and Values 105
4.1 Mini-language Ref 107
4.2 Declaration and Assignment 114
4.3 A Model of Storage 119
4.4 Symbol Tables 121

.5. Control Structures. .. 129
5.1 Mini-language p 130
5.2 Basic Control Structures and Flowgraphs 133
5.3 The Fundamental Control Structure Theorem 138
5.4 Comments on the Theorem and its Proof 145
5.5 Other One-in, One-out Control Structures... 146

6. Data Types 159
6.1 Mini-language Type 160
6.2 The Meaning of Type 165
6.3 Primitive Types 167
6.4 Array Typ'es 174
6.5 Record Types 177
6.6 Type Checking 184

7. Procedures and Parameters 191
7.1 Mini-language Procedures 192
7.2 Procedures as Abstractions 200
7.3 Arguments a~d Parameters 204
7.4 Value-returning Procedures 209
7.5 Coroutines 211

8. Nesting and Scope 219
8.1 Mini-language Scope 220
8.2 The Idea of Scope 226
8.3 Dynamic .Storage Allocation 231
8.4 Dynamic Scope 238

Contents xi

A Closer Look

9. Higher Level Control Structures 247
9.1 Mini-language L 245
9.2 Classes of Control Structures 252
9.3 The Concept of Power in Control Structures 256
9.4 An Example 259
9.5 The Goto Statement and Label Values 264
9.6 Conclusions 266

10. Definition of New Data Types 275
10.1 Mini-language Typedef 276
10.2 Type Definitions 284
10.3 Definition of Structured Types 286
10.4 User Defined Operators and Type Encapsulation 288

11. An Applicative Language: Functions and Recursion 297
11.1 Mini-language Apply 297
11.2 Functions 305
11.3 Recursion 314
11.4 Functions as Objects 320

Enhancement

12. Input and Output 329
12.1 Mini-language Format 330
12.2 Varieties of Input-Output Specifications 335
12.3 Remote Format Specifications 337
12.4 Data Described with Picture Specifications 344
12.5 Input and Output via Specialized Procedures 345
12.6 Communication with the Outside World 349

13. Dynamically Varying Structures 355
13.1 Mini-language Structures 355
13.2 Dynamically Varying Data Structures 362
13.3 Pointers 366
13.4 Design Criteria for Data Structures 367
13.5 Dynamic Allocation of Storage 370

14. Exception Handling 377
14.1 Mini-language Exceptions 378
14.2 Exceptions 382
14.3 Issues in Exception Handling 384

xii Contents

15. Parallel Processing 393
15.1 Mini-language Parallel 394
15.2 A First Solution to the Decoding Problem 401
15.3 Putting a Buffer in a Task 401
15.4 Interrupting a Task 403
15.5 Issues in Parallel Processing 405

The Landscape Re-examined

16. The Swamp of Complexity 419
16.1 The Forms of Complexity 420
16.2 Escaping from the Swamp 426

References 433

Index 449

Preface

There are several approaches to the study of programming languages.
One is to examine several existing languages in detail, compare and
contrast their salient features, and attempt to draw conclusions about
underlying design principles. Another path starts with the design
principles, studies them in relative isolation, and then seeks examples of
the implementation of these principles in real languages. This text
follows the second approach because we believe that it is only by
understanding the basic concepts that meaningful comparisons may be
drawn between various languages.

Central to our approach is the use of mini-languages, each of
which has been designed around some key language feature. The mini
languages allow a concept to be studied without the need to understand
the wealth of detail and complexity found in real programming lan
guages. One of the first uses of this technique was in Ledgard's paper,
"Ten Mini-Languages: A Study of Topical Issues in Programming
Languages," Computing Surveys, September 1971.

The chapters are self-contained. Each has its own mini-language,
with a small number of constructs designed to illustrate the concept
under discussion. Most of the mini-languages are built on a common
core described in Chapters 2 and 3. An overriding theme of all of the
chapters is the need for much greater simplicity in language design.

The reader is expected to have experience with one (perhaps more)
high-level languages. The concepts discussed here are drawn mainly
from Ada, Algol 60, Algol 68, Cobol, Fortran, Lisp, Pascal, and PL/I.
Between these languages, almost any programming language principle,
good or bad, can be found. Other languages referenced include APL,
Basic, Bliss, and Simula 67. Obviously, there can be no attempt to
present a description of all these languages. However, the reader, even

xiv Prefa~e

if unfamiliar with these languages, should have no difficulty in under
standing this text. It is expected that the reader will wish to refer to
detailed manuals to obtain a deeper understanding of some of the
languages mentioned. Reference material for all languages mentioned is
cited in the bibliography under the name of the language. Suggestions
for further reading are contained at the end of each chapter.

There is no firmly established convention for the style of writing
the names of programming languages. Usage varies, with no obvious
criterion, between use of upper case only and just capitalizing the initial
letters - for example, between FORTRAN and Fortran. In this text,
we have adopted the rule that, if the name is pronounced as a sequence
of letters, all the letters will be written in upper case, otherwise the
name is treated as a normal proper noun. Examples of the application of
this rule are: AED, Ada, Algol 60, APL, BCPL, Fortran, and PL/I.

For teaching, this book follows the guidelines of course CS 8,
"Organization of Programming Languages," given in Curriculum '78,
Communications of the ACM, March 1979. As such, it may be useful
for undergraduate and early graduate courses, as well as for anyone
seeking a perspective of the programming language area.

Although each chapter in this book is self-containtd, we treat
programming languages in four su<:cessively deeper levels. The first
level, Chapters 1 through 3, introduces the area of programming
language, discusses a number of broad issues, and generally set the
landscape for the remainder of the book. The second level, Chapters 4
through 8, discusses five dominant features of most contemporary
languages: assignment, control structures, data types, procedures, and
nesting.

The third level, Chapters 9 through 12, elaborate on these and
other related concepts. Chapters 13 through 15 treat three specialized
but important areas: dynamically varying data structures, exception
handling, and concurrent processing. The last chapter, Chapter 16,
presents some views on the complexity of programming languages.
Some suggested term projects are given at the end of this chapter.

The design of translators is not discussed specifically. However,
implementation is not forgotten and the reader can see how language
design, translation processes, and execution environment interact. Of
particular interest throughout is the clarity and naturalness of -expres
sion that can be obtained from differing language constructs.

This book owes its inception to a mixed graduate, undergraduate
course that Marcotty has been teaching at Wayne State and Oakland
Universities. We are particularly grateful for the excellent proofreading
done by the 1980 fall semester Principles of Programming languages
class at Wayne State University, especially by Elizabeth LaCharite,
Karen Schaefer, Madea Jones, Dan Cecchine, and Louis Paine.

Prelate xv

The book has gained much of its breadth from the work done by
Ledgard on the design of Ada. The syntax of many of the mini
languages has also benefited from this work. Andrew Signer provided
thoughtful comments throughout the development of this text. Finally,
we are grateful to J .A.N. Lee, who for many years has promoted the use
of mini-languages in teaching.

Henry Ledgard
Michael Marcotty

The Landscape

I
Introduction

1.1 THE BUILDING OF THE TOWER OF BABEL

Before 1954 almost all programming was done in machine language.
Solving a problem on a computer required the detailed encoding of long
sequences of instructions into numbers in binary or octal form.
Sometimes, some mnemonic help was provided by the written form of
the machine language, and letter codes were used for operations, for
example, MPY in place of 021 for multiply. This help was later
augmented by the use of symbolic names instead of numeric addresses
to refer to values. The nature of the work is illustrated by the fact that
the actual writing of the instructions was called coding rather than
programming - programming implies the more difficult task of
designing algorithms.

The problems with this method of expressing algorithms were:

• The programs had to be tailored to the particular
characteristics of the available computer. Much effort was
devoted to overcoming deficiencies of the computer's archi
tecture, for example, no index registers, lack of built-in
floating point operations, and restricted instruction sets.

• When a new computer replaced the old one, all this
inventiveness was for nought; the old programs had to be
thrown away and the process of building a new library
started again.

4 Chapter I

• The close association between a program and a particu
lar machine design not only permitted but actively encour
aged the invention of all kinds of tricks to wring maximum
performance from the computer. The correctness of programs
constructed in this way was very difficult to verify, and it was
practically impossible to discover the algorithm behind a
program coded by a colleague.

• The language in which the program was written con
tained practically no textual redundancy that could be used
to detect errors. Almost any combination of characters could
be executed. To tie the execution errors back to the faulty
code was difficult and time consuming.

These shortcomings led to the development of so-called automatic
programming systems. These systems generally provided operations
such as floating point addition and trigonometric functions, together
with either fixed or variable operands. Usually, the programmer had to
write statements in a fixed format that did not allow mathematical
expressions to be written in anything resembling natural notation.

Automatic programming systems gave the programmer a synthetic
"computer" with an instruction set that was different from that of a real
machine. In particular, the synthetic machine generally had floating
point operations, index registers, and improved input and output
commands. It was thus much easier to program than its real counterpart.
The programmer was able to think of a floating point addition as just
that, and forget the details of carrying it out in the hardware. The
synthetic machine was thus an abstract machine.

The early automatic programming systems were costly to use since
they slowed the actual machine down by a factor of five or more, most
of the time being spent in floating point subroutines. Experience with
these systems, coupled with their familiarity with cunning programming
tricks, convinced programmers that any mechanical coding method
would fail to apply the versatile ingenuity that all programmers believed
they used constantly in their work.

The advent of computers with built-in floating point and indexing
further increased the skepticism. By speeding up the floating point
computations by a factor of ten, a common source of inefficiency in
handwritten programs was removed. Consequently, the automatic gener
ation of programs that were efficient, by comparison with handwritten
ones, became an order of magnitude more difficult. Those who wanted
to simplify programming could only gain acceptance for their system if

Introduction 5

they could demonstrate that it could produce programs that were almost
as efficient as handcoded ones in practically every case.

In this atmosphere John Backus formed a group in 1954 to develop
the Fortran (FORmula TRANslator) compiler aimed at the automatic
translation of mathematical formulas into machine instructions. The
group hoped to bring about a radical change in the economics of
scientific computing by making programming much cheaper through a
drastic reduction in the time it took for a working program to be
prepared. Because of the atmosphere of skepticism, the group's empha
sis was on the efficiency of the translated program rather than on
language design.

It was thought that, once the ideas of an assignment statement,
subscripted variables, and the DO statement had been adopted, the
remaining problems of language design would be trivial! Their solution
would be dictated either by the need to provide some machine facility or
by some programming task that could not be done with existing
structures.

At that time, nothing was known of many issues that were later
thought to be important: block and control structures, nested subpro
grams, and type declarations - issues that are addressed in detail in
this book. The Fortran programming system was viewed as applying to
just one machine and very little thought was given to the implications of
making a machine-independent programming language. As a result,
certain characteristics of the machine on which Fortran was first
implemented became part of the language; for example, the naming of
output channels was determined by the numbering of the tape units on
the IBM 704 computer.

Fortran was just one of several programming languages that
appeared in 1956 and 1957. This period was the beginning of a
programming revolution; it almost seemed that each new computer, and
even each programming group, was spawning its own algebraic language
or favorite dialect of an existing one. Most of these languages were
aimed at helping the scientific programmer and were restricted to a
particular machine. Their designers were generally a small group of
implementors, rather than users, drawn from a single company. A
primary design objective was to produce efficient machine code, even if
it meant sacrificing some clarity of expression in the language.

The objectives of the designers of Cobol (Common Business
Oriented Language) were different. In 1959, a committee of representa
tives from several organizations was established to design a machine
independent programming language suitable for use by the business
community. The committee decided that the language should make the

6 Chapter I

maximum use of simple English so that managers who had no
programming experience would be able to understand the programs. It
was felt by many committee members that arithmetic operations should
be specified by words like ADD and MULTIPLY rather than by the
symbols + and • because these words would be more readily understood.
The important thing is not whether the committee was right, but that a
serious effort was being made to design a language for communication
between people and computers.

Fortran and Cobol are only two examples of the many languages
that have been developed for programming computers. In many cases,
however, little thought has been put into their design. This is demonstra
ted in two major ways:

• The external form of the language has often been
designed according to what was thought to be the easiest
form for computer analysis rather than what was most natural
as a means of expression.

• Economy of design and simplicity of structure are rarely
seen.

The profusion of programming languages and their design weak
nesses severely hinders valuable communication between programmers.
We are still in the state ascribed in. Genesis as leading to the failure of
the Tower of Babel project. This is despite the efforts of many very
talented people working individually, in groups, in small and large
committees, and even in international committees. Some have attempted
to design a "universal" language. There have been several candidates
for this position but none has achieved widespread acceptance and use.

If programming languages are examined carefully, they are found
to resemble each other more than their external forms would lead us to
suppose. They are built on a number of basic concepts; it is the object of
this book to study these concepts so that we can have a better
understanding of these languages.

1.2 WHAT IS A PROGRAMMING LANGUAGE?

The computer was conceived as a device that would speed up compli
cated and time consuming computations. Despite this, it is not its ability
to perform arithmetic that is important in the majority of applications,
but the fact that it can store and access large amounts of data. These
data form an abstraction of some part of the real world.

Introduction 7

Consider the master file used in a payroll application. Each
employee is represented by the data needed for the accounting proce
dures involved in preparing the payroll. These will probably include
such items as the employee's name, social security number, and salary.
Other data, such as hair color, shoe size, and name of a favorite
breakfast cereal, will probably not be included. These, while very much
part of a full description of the employee, are irrelevent to the paycheck
computation and do not form part of the abstraction that represents the
employee in the master payroll file.

The data stored in the computer are thus a representation of real
world objects. We speak of the data items as abstract objects.
Associated with an abstract object is a set of operations that transforms
it into other abstract objects. The computation consists of applying
these operations to an initial set of abstract objects, the input data, so as
to transform them into new abstract objects that represent the result of
the computation. .

We define an algorithm as a specification of the sequence of
operations to be performed on the initial set of objects to produce the
resulting set of objects. This algorithm must be represented in a form
that can be communicated both to the computer and to other program
mers. A programming language is a set of conventions for communica
ting algorithms. An algorithm expressed in a programming language is a
program.

Although all programming languages share a number of common
principles that we shall study later, the languages are of different
varieties. These may be very loosely classified according to the area of
application or mode of use.

A commercial language is one that is particularly concerned
with the manipulation of files of alphanumeric data and with
the production of reports. Cobol is the best known commer
cial language.

A scientific language is one that is used mainly for the
manipulation of numeric data. Fortran is the best known
scientific language.

An interactive language is one that is designed to allow a
programmer to make changes and corrections from a terminal
during execution. For example, both Lisp and APL are
designed to be used interactively.

A procedural language is one that allows the user to specify
a set of imperative statements that are to be performed in a

8 Chapter 1

particular sequence. Most contemporary programming lan
guages are procedural.

A nonprocedural language is one in which the user does not
specify the sequence of operations that are to be performed to
obtain a problem's solution. Only the problem is defined; the
emphasis is on what is to be done rather than how it is to be
done. Well-known examples of nonprocedural languages
(although some may dispute that they are, in fact, program
ming languages) are sort and report generators, in which the
user specifies the forms of the input and the output without
any description of the detailed steps required to transform the
former into the latter.

An applicative language is one in which the program
consists of the evaluation of a function that uses the input
data as arguments and whose value is the result of the
computation. uPure" Lisp is an example of an applicative
language.

A real-time language is one that allows the programming of
procedures that can be executed concurrently and can be
activated in response to external signals as required. Concur
rent Pascal and Ada are examples of real-time programming
languages.

A special purpose language is one that is designed with a
limited objective, such as ease of use in a particular applica
tion area. For example, the language Apt is used to write
programs to control machine tools.

You should recognize of course that these classifications are very
informal, and that certain languages will fall into more than one
category.

Implementation Schemes

The realization of a programming language in a computer system is
called the implementation. Programming languages may be implement
ed in one of two ways: compliation or interpretation.

Compilation: The program written in the programming lan
guage, the source program, is translated into an equivalent

Introduction 9

program, the object program, in the machine language of the
computer on which it is to be executed, the target machine.
The object program is then executed by the target machine.

The translation from source program to object program is performed by
a program generally referred to as a translator or compiler. The
translator is itself usually executed on the target machine. However, if
this is not feasible, for example, if the target machine is too small for
the compiler to run, then the translator is executed on a larger machine,
possibly of an entirely different architecture. In this case, the translator
is known as a cross compiler. Much of the programming for minicom
puters is done through cross compilers.

InterpretQtion: The source program is translated into an
object program that cannot be executed directly by an actual
computer. Instead, the execution of the object program is
achieved by an interpreter. This is a program that is
executed on the target machine performing the operations
specified in the object program by means of subroutines.

The use of an interpreter allows for greater flexibility than can be
achieved by direct execution. However, the penalty is that interpretation
is generally much slower than direct execution. Examples of languages
that are often implemented in this way are APL, Basic, and Lisp.

There is no hard line of differentiation between compilation and
interpretation. Even in systems where the compiler produces machine
code for a real machine, an extensive support library of subroutines is
usually required for execution of the object program. As the system
design moves more in the direction of interpretation, the library
becomes bigger and less is done by execution of compiled codes.

Interpretation and execution merge at the point where the object
program consists of a sequence of machine code subroutine invocations,
and the interpreter consists of the subroutines that are invoked during
execution. The amount of processing performed by the translator ranges
from doing nothing, in which case the character string representation of
the source program is interpreted directly, through complete translation
into target machine code. An implementation of a programming lan
guage includes the translator, interpreter, and supporting subroutines.

There is, of course, a relationship between a language and its
implementation. While there may be several different ways of realizing
the facilities of a language, some are inherently more difficult and
expensive than others. The ability to manipulate strings that do not have

10 Chapter 1

a predetermined upper bound for their length, for example, offers great
flexibility to the programmer; at the same time, such a facility requires
expensive storage management techniques. Awareness of the associated
implementation complexities allows a choice to be made between utility
and cost.

1.3 WHY STUDY PROGRAMMING LANGUAGES?

Although they are all natural languages, an ability to speak English
does not automatically confer the .ability to understand French and
German. Nevertheless, the three languages are based on very similar
principles due to their common Indo-European origin. English is
blessed (or cursed) with a very tolerant grammar; many students whose
mother tongue is English have problems with languages with more rigid
grammars. This is because grammatical concepts that are only vestigai
ly present in English are important in other languages and need to be
understood. Although the subjunctive exists in English, its use is
vanishing fast and most English-speaking people are unaware of it. In
French, however, it has a very important place and must be understood
before the language can be mastered. An understanding of the common
grammatical basis of English and French clearly helps' the student.
Both languages, however, allow the same basic ideas to be communi
cated.

The situation is very much the same with programming languages;
they differ widely in their external forms and range of facilities, yet
they are based on a relatively small group of basic concepts. Whether
you are learning a new language or increasing your knowledge of a
large language, an understanding of these underlying concepts will
make this task simpler. You will be able to see beyond the external
format of the language to so~e principles that you can understand.

Of all the aspects of programming, the design of a language
requires the greatest skill and judgment. The linguist Benjamin Whorf
[1956] has hypothesized that one's language has a considerable effect
on the way that one thinks; indeed on what one can think. The
language designer's task transcends programming itself and concerns
itself with the symbolism that is used to express computations. Thus, if
Whorf's hypothesis is correct, the skill of the designer will have a
considerable effect on the range of problems that can be solved in a
language. The designer must survey the many attractive features that
are available for inclusion in a language and choose the most powerful
set of facilities that will constitute a harmoneous assembly. The
objective is sufficient power with minimal complexity.

Introduction 11

Of course, most programmers and computer scientists do not
become language designers, which is a good thing since there are
already too many languages. However a proper understanding of the
concepts of programming languages will help make the design of
programs considerably easier. Success will be indicated by a program
that is a pleasure to use.

1.4 WHAT SHOULD WE LOOK FOR IN A LANGUAGE?

A programming language is the programmer's most important tool. A
good language can lead the programmer to the correct solution of a
problem in a natural and easy manner. Conversely, a poor language
may add so much complexity to finding the solution that the program
mer will abandon the attempt at solving the problem in favor of an
easier one. A programming language thus serves a programmer in the
same way that a notation serves a mathematician. As said in [Whitehead
1911]:

By relieving the brain of all unnecessary work, a good notation
sets it free to concentrate ,on more advanced problems, and in
effect increases the mental power of the race. Before the
introduction of the Arabic notation, multiplication was
difficult, and the division even of integers called into play the
highest mathematical faculties. Probably nothing in the
modern world would have more astonished a Greek mathema
tician than to learn that ... a large proportion of the population
of Western Europe could perform the operation of division for
the largest numbers. This fact would have seemed to him a
sheer impossibility. . .. Our modern power of easy reckoning
with decimal fractions is the almost miraculous result of the
gradual discovery of a perfect notation.

The primary purpose of a programming language is to help in the
task of programming. Thus it must aid in those areas that are the most
difficult:

Program design: deciding and specifying what must be done
and how the data are to be represented.

Understanding: explaining the working of the program to a
human reader.

Verification: establishing the correctness of the program.

12 Chapter I

We tum then to some of the characteristics of a programming language /
that will make it useful in these areas. It will become evident that the
areas are not independent and that some desirable characteristics are
helpful in all three.

Program Design

In program design, the language must assist the programmer in
specifying the process and the data clearly and naturally. It must be
possible to construct abstractions that match the characteristics of the
problem. This means that it must be possible to avoid extraneous detail
that will clutter up the solution.

A common deficiency in this area is the inability of a language to
manipulate abstract data objects other than the few primitive types
supplied by the language. For example, in Fortran, Cobol, and to a
large extent PL/I, all data must be mapped into a few basic elements.
The details of this representation are likely to obtrude into the
algorithm, making it more difficult to understand.

For example, a date, if it is to be manipulated in these languages,
must be represented as a number. A programmer may use operations,
like division, that are valid for numbers but that have no meaning when
applied to dates. Thus, it is most important for the ease and clarity of
programming that the language be able to treat abstract objects that
match the problem data.

Understanding

All too often documentation is added to a program as a chore
after the program has been made to work. As a result, either too little
or too much detail is supplied. If there is not enough, the programmer
who wishes to modify the program later will not be able to do the job
reliably. If there is too much detail, it usually repeats what is written in
the code and serves to obscure rather than enlighten.

A well-designed language will encourage the programmer to write
so clearly that the program will be self-documenting, with only modest
need for additional comments. Making the documentation an integral
part of the program avoids the well-known trap of misleading documen
tation that occurs when a program is modified without corresponding
changes in the separate documentation. For self-documentation to be
possible, the language must allow the specification of operations and
data to be made clearly and naturally.

A frequently applied criterion in the design of languages is the
minimization of keystrokes on the grounds that this will help the

Introduction 13

programmer. Shopping lists are usually constructed this way, with terse
phrases based on a great deal of contextual information in the writer's
mind. Six months later, a shopping list is often too cryptic to be
understood because the contextual information has been forgotten.

Readability is thus a much more important criterion than writabil
ity; after all, the program will probably only be written once, but read
many times. It must be recognized, however, that, even though a
language may be designed with the goal of program clarity, it does not
follow that all programs written in that language will be clear. It is
impossible to design a language in which an obscure program cannot be
written.

Verification

To help with verification, the programming language must give the
programmer confidence that the program is correct. Thus, it must aid
the programmer to obtain either formal or informal verification. Again,
one of the best ways of achieving this is for the program to have been
written with such crystal clarity that it is obviously correct. Since it is
probable that careless errors will always be made, the notation of the
programming language should be designed so that the scope of such
errors will be reduced and the bulk of them detected by the compiler.

1.5 LANGUAGE DESIGN ISSUES

PL/I has a rule allowing implicit declaration of variables, that is, the
translator allows the use of variables that have not been explicitly
declared to be used. The designers argued that this would save the
programmer trouble in cases where the attributes assumed by the
translator matched those required by the programmer. The penalty for
this convenience is that the compiler can no longer detect simple
spelling errors in the names of variables. The occurrence of a
misspelled name constitutes an implicit declaration of that name as a
new identifier.

More importantly, the explicit declaration of variables does a
great deal to establish the intent of the program in the reader's mind.
The declarations may then be viewed as "definitions" of program
objects, and the executable statements as steps in the process of
computing the result.

Not all programming errors can be detected by the compiler. The
language must be designed so that the effects of these errors can all be
explained through the language without recourse to details of the
implementation or the underlying real machine. To require knowledge

14 Chapter 1

of the real machine is to shatter the abstract machine provided by the
language. The Fortran error message

STATE--ABEND CODE IS: SYSTEH0200. USER 0000
10-NONE. SCB;OFIOCO. PSW IS 078D2000000A98B2E

has no meaning in the language; the Fortran machine does not have an
SCB or PSW.

Sometimes implementors attempt to provide security without
exacting a large execution time penalty by providing two compilers: a
debugging compiler and an optimizing compiler for use when the
program has graduated from debugging to production. This provides an
added difficulty by introducing the possibility that the abstract ma
chines represented by the two compilers may. not be identical.
Furthermore, it also implies that, once the program is in production and
its results have become important, many of the safeguards on correct
ness will be removed.

Underlying all of the needed language characteristics is simplicity.
The programmer must be able to understand the tool completely. How
many Fortran or PL/I programmers can claim that they know the
language completely? Understanding a language often represents such a
large investment in time that programmers find it impossible to change
to a new language despite the acknowledged weaknesses of an old one.

An important part of a simple design is that there should not be
more than one way of expressing any action in the language, that is,
each component of the language should be independent of the other
components. The design is then said to be orthogonal. In a truly
orthogonal design, there are a small number of separate, basic
constructions and these are combined according to regular and sys
tematic rules without arbitrary restrictions.

Many programming languages include composite data types, such
as structures and arrays. They also allow functions, processes that map
arguments into a result. A proper combination of these two orthogonal
concepts, data types and functions, would permit functions to return
results of any data type that is allowed as an argument.

An arbitrary restriction, for example, would allow arguments to be
of composite data type but permit only scalar results. This type of
restriction is seen in Fortran, Algol 60, and some versions of PL/I.
However, there is a danger in removing all restrictions; the cQmplexity
of the language will be increased without a corresponding gain in
facility.

The provision of more than one form to denote a concept always
increases the size of a language. The additional complexity introduced
by such features must be carefully weighed against their usefulness.

Introduction 15

Cobol provides an example of questionable duplicate forms. The
sequence of arithmetic statements

COMPUTE TOTAL-HOURS = OVERTIME-HOURS + REGULAR-HOURS.
COMPUTE NUM-ON-PAYROLL = NUM-EMPLOYEES - NUM-ON-VACATION

- NUM-ON-LEAVE.

performs the same computation as the sequence of statements

ADD OVERTIME-HOURS TO REGULAR-HOURS GIVING TOTAL-HOURS.
SUBTRACT NUM-ON-VACATION. NUH-ON-LEAVE FROH NUH-EHPLOYEES

GIVING NUH-ON-PAYROLL.

and both sequences are homogeneous to the eye. However, when both
notations are combined as in

COHPUTE TOTAL-HOURS = OVERTIME-HOURS + REGULAR-HOURS.
SUBTRACT NUM-ON-VACATION. NUM-ON-LEAVE FROM NUH-EHPLOYEES

GIVING NUH-ON-PAYROLL.

the symmetry of like operations becomes less visible. A designer may
prefer the concise mathematical form of the first sequence or the
English-like notation of the second. In any case, it would be simpler to
retain a single notation in the language. We prefer the arithmetic
version in this case.

PL/I provides another ready example of questionable duplicate
forms. For instance, fully qualified names for composite structures are
often cumbersome to read and write, especially when the same element
is referenced often in a short span of text. Consider the PL/I
declaration:

DECLARE 1 A(1 : 10. 1: 12).
2 B(1 : 5).

3 C(I : 7) CHARACTER(5).
3 0 CHARACTER(I);

There are many different forms that can be used to reference the same
component of the structure. For example, the fully qualified references

A(9. II).B(4).C(7)
A(9).B(II. 4).C(7)
A(9).B(II).C(4. 7)
A.B.C(9. 11. 4. 7)
A(9. II. 4. 7).B.C

16 Chapter I

and, in certain contexts, the partially qualified references

8(9. 11. 4).C(7)

A.C(9. II. 4. 7)
C(9. 11. 4. 7)

can all be used to reference the same component in the structure. In
each of these cases, any potential gain in brevity may be offset by a
loss in clarity.

In some languages that attempt to provide everything for every
body, the problem of maintaining simplicity is attacked by so-called
modularity of design. The idea is that an individual user will only be
concerned with a particular part of the language and will not need to
know anything about the other parts of the language. Thus the language
is designed so that there are a number of, generally overlapping,
subsets. In principle, this appears acceptable.

There are many problems with this approach however. The user
will still be intimidated by the whole language, and separate texts may
need to be written for the individual users. The compiler, which is
written for the union of all the subsets, does not take account of the
fact that the user only knows part of the language. There is even the
danger that a user may write something that is meaningless in the
particular subset being used but valid in another subset that is not
known to the programmer. When the program is executed, an unin
tended action will take place, one that cannot be explained in terms of
the original subset.

The properties that we have discussed so far have been charac
teristics of the design of a language. There are also some general
questions of implementation that must be considered. Among these are:

Availability: Are there compilers available for the language
on a wide range of machines?

External support: Are the standard processes, such as
sorting, solution of differential equations, and graphic dis
play, available for use or must they be written specially?

Implementation: Is the compiler easy to use and does it
produce clear diagnostics?

Efficiency: Is the compiler efficient both in the compilation
process and in the object code that it produces?

Documentation: Are the language and its compiler well
documented? Are the supporting documents written clearly
and unambiguously?

Introduction 17

1.6 ELEMENTS OF A PROGRAMMING LANGUAGE

Before we can use a language, there are certain things that we need to
know about it. This information must be contained in any proper
description of the language.

First of all, we must know what type of objects can be
manipulated in the language. Historically, programming languages have
been designed to deal principally, though not exclusively, with some
specific type of object. For example:

Fortran and Algol programs manipulate numbers.
Snobol programs manipulate strings.
Setl programs manipulate sets.
Lisp programs manipulate lists.

There are also attempts at "universal" languages, such as PL/I, that
can manipulate many types of objects.

A more recent trend is to permit the programmer to define new
abstract objects. For example, the Pascal declaration

type SUIT = (CLUBS. DIAMONDS. HEARTS. SPADES);

defines a type of abstract object, the suit, which can have one of four
values. The identifiers CLUBS, DIAMONDS, HEARTS, and SPADES
name these values. These are the names of constants of this type of
abstract object, just as the numerals 0, 1, and so on, are the names of
constants of the type of abstract objects called numbers.

The next thing we need to know about a language is what kind of
algorithms it can be used to specify. In principle, almost any programming
language, even the simplest, can be used to specify any algorithm. It can
be shown that a very simple machine consisting only of a store and the
single instruction

Change the contents of location A by subtracting the contents
of location B from it; branch to location C if the result is
negative, and otherwise proceed. sequentially to the next
instruction

can evaluate any computable function. However, such a machine will not
be easy to program and its programs will not be easy to understand. Thus
while any programming language can be used for anything (Fortran has
been used for payrolls and Cobol for solving differential equations), it is
important to know whether a particular kind of algorithm can be
reasonably written in a language. Fortran and Cobol, for example, are not
suitable for writing recursively defined functions (ones that can invoke
themselves), but Algol and Pascal are.

18 Chapter 1

Most real applications are so complex that they must be built from a
number of smaller algorithms so that the programs do not become
complicated to understand. It is therefore important to know how larger
operations on objects can be constructed from smaller ones. In general,
this means knowing what subroutine mechanism the language supplies?

Finally, we must know how a program in the language is to be
written; that is, we must know what must be entered through the terminal
or punched on the card, and what the program does. We discuss these
issues next.

1.7 THE STUDY OF PROGRAMMING LANGUAGES

Generally the study of programming languages is divided into two distinct
parts,- the syntax and the semantics. Broadly speaking, the syntax of a
language is concerned with the way that a program is written and the
semantics with what happens when the program is executed, that is, with
its meaning.

. A program in a language is represented outside the computer as a
string composed of symbols drawn from a finite set of symbols.
Commonly, the symbols comprise the character set of a keypunch or
terminal, but other sets of symbols are possible. Most of the strings of
$ymbols are not programs in the language, they are meaningless gibberish.
the syntax of the language consists of rules that define strings of symbols
constructed in a particular way. These strings are called syntactically
legal programs. The syntax rules of Fortran, for example, specify that the
sequence of characters

2 + 3 = I + 1

is not a valid Fortran statement and thus no string containing this
sequence of symbols outside a comment or string will be a legal Fortran
program.

Only a small fraction of the legal programs will execute correctly.
The rules of syntax govern only the construction of programs from the
symbols and have no concern with what happens when the programs are
executed. The semantic rules of the language define a subset of legal
programs that have a meaning. In a similar way, there are many
grammatical sentences in English, like:

THE SPHERICAL WALL GARGLED THE BUS

The semantics of English tells us that this sentence is nonsense. To return
to Fortran, the sequence of statements

Introduction 19

J = 0
K = 3 / J

results in division by zero. A program that contains such a sequence of
symbols is said to contain a semantic error and to be meaningless.

The boundary between syntax and semantics is not well defined;
different authors may define it differently. For example, the association of
an identifier with a declaration is regarded by some as being syntactic and
by others as semantic. There is a temptation to become over-involved with
syntactic questions, and many textbooks succumb to this. The reason for
this is primarily due to the fact that there is some well-developed
mathematics connected with the syntax of languages. Consequently, a
much tidier presentation is possible in this area. In most programming
languages, the syntax is the only part defined with any degree of
formalism. Usually, the semantic rules are only expressed informally.
However, the semantic questions are much more difficult.

All too often, an intuitive understanding of the semantics turns out to
be woefully superficial. When an attempt at implementation (which is,
after all, a kind of formal definition) is made, ramifications and
discrepancies appear. What was thought to have been fully understood is
discovered to have been differently perceived by various readers of the
same informal description. By then, it is frequently too late to change and
incompatibilities have been cast in code. There is thus a great need for
formalism that would remove the ambiguities and vagueness from
semantic definitions. However, despite a great deal of work in this area,
there is still little known about how to define semantics clearly. We return
to this question in Chapter 3.

In Chapters 2 and 3, we discuss the general issues in syntax and
semantics. The following chapters treat particularly important language
issues common to several currently used languages.

We introduce mini-languages at appropriate points to provide
vehicles for the discussion. The idea of a mini-language is that it contains
only those features that are being currently discussed. Thus it is small
enough to be easily described and understood, and the particular area of
interest can be studied without worrying about interactions with other
features in the language. Although heavy use of mini-languages provides a
focus for discussion, examples of well-known programming languages are
also cited frequently.

FURTHER READING

There are a number of books in the general area of programming languages, and
most of them are textbooks. However, there are also a number of shorter works.

20 Chapter 1

One of the more cleverly written of these is [Wirth 1976J. This paper discusses a
number of language issues, and then presents an amusing script describing the
design of a hypothetical computer language. Other short papers in the general area
of language design are [Hoare 1973], [Richard and Ledgard 1977J, and [Wirth
1974J.

In 1978, a conference was held on the history of programming languages.
This conference discussed the early development of a number of languages,
including Fortran, Cobol, PL/I, and Basic. The proceedings of this conference
appear in the August 1978 issue of ACM Sigplan Notices. This document is
certainly relevant to this text. An earlier and comprehensive work in this area is
[Sammet 1969J.

There are other texts similar in intent to this one. Some of these are [Barron
1977J, [Elson 1973], [Nicholls 1975], [Organick et a1. 1978J, and [Pratt 1975J.

EXERCISES

Exercise 1.1 Language Complexity

It has been the fate of languages to get larger and larger as time
passes. For instance, the original version of Fortran developed in the
1950's was ,quite small, although admittedly with some severe limitations.
Then came Fortran II, Fortran IV, and Fortran 77; each larger and more
complex than its predecessor. No language that we know of has become
smaller over time.

Choose one of the languages, Ada, Basic, Fortran, Pascal, or PL/I,
and two features that you would remove from the language. Give a
rationale for each deletion. This rationale should include consideration of
the effects of the deletion on the remainder of the language.

Note: Do not be misled by this exercise. The design of language features
is often so interconnected that removal is extremely difficult. The key to
smaller and less complex languages is not simply a matter of deletion.
The key is the initial underlying design.

Exercise 1.2 Areas of Application

In Section 1.2 we give a loose classification of languages according
to their area of application or mode ofuse. Choose three such areas and an
appropriate language for each area, and then describe why the language is
suited to the area. For example, what is it that makes Cobol such a
popular language for data processing? Illustrate the points you make with
examples.

Introduction 21

Exercise 1.3 Machine Independence

What does it mean to say that a programming language is machine
independent? Why is machine independence thought to be an important
language design consideration? Describe some of the points that must be
kept in mind when designing a machine independent language. Illustrate
your answers with examples showing both machine independence and
dependence from existing languages.

Exercise 1.4 Language Description

What are the important concepts used in describing a programming
language and what are the criteria that should be used injudging the design
of the language? Illustrate your answer with examples from an existing
language description showing:

1. The application of your description concepts.

2. How your design criteria are both satisfied and violated by
different languages.

Exercise 1.5 Abstract Machines

An operating system defines an abstract machine that differs from
the actual host hardware. Choose an operating system with which you are
familiar and determine the structure of the abstract machine that it
defines. In what way does the abstract machine differ from the actual
hardware? Give examples of restrictions (for example, features of the
hardware that are not available to users of the operating system) and of
extensions (that is, facilities that are directly available in the abstract
machine but that can only be obtained by software simulation on the
actual hardware).

Exercise 1.6 Language Design for Human Use

Based on your experience and drawing on examples taken from
existing programming languages, list some things the language designers
might do to make the programming process as difficult as possible. (This
exercise is from Richard L. Wexelblat.) You might wish to have a look at
[Ledgard et al. 1981].

22 Chapter I

Exercise 1.7 Programming in Two Languages

On most interactive systems you must enter a "password" in
order to start programming. This helps ensure that someone else does
not have access to your files of information or does not charge you for
using the computer facilities.

Write a program in two different computer languages (your
choice) to prompt a user for a password. If the password is not given
correctly within three tries, the program should inform the user that the
passwords given are incorrect and then terminate; otherwise, the user
should be informed of a successful entry, and then, at least for this
exercise, terminate. Your program will define the correct password.

a. Successful entry

Computer: PLEASE ENTER YOUR PASSWORD
lJser SHERLOCK
Computer: OF COURSE, GO RIGHT AHEAD

b. Unsuccessful entry

Computer:
lJser
Computer:
lJser
Computer:
lJser
Computer:

PLEASE ENTER YOUR PASSWORD
MYCROFT
WHO?
WATSON
WHO?
HOLMES
FORGET IT.

When you are done, comment on the most significant differences
between the two languages, as expressed by your two programs.

Note: The two programs should have identical behavior.

·J "~~i
../ .-! f)
../('/
./.,-"

I --.-.)

\
\

\ -' .

2
Syntax

In this chapter we describe the outward appearance of a programming
language, that is, its syntax. To help us in our discussions we will begin
by describing a mini-language in an informal way. From this informal
view of the syntax, we will be able to identify the syntactic components
of the language. The way in which these syntactic components are
designed and fitted together to form the fabric of the complete language
greatly influences the ease of using the language.

This description of the syntax of the mini-language is informal. It
is thus subject to the vagaries of English prose. We will discuss more
formal techniques for the description of syntax and show how the
example mini-language would be described with these techniques. This
will lead us to the choice of a particular method that we will use
throughout the rest of this book.

As we saw in the previous chapter, a program written in a
programming language must be translated before it can be executed.
This translation consists of two main processes, analysis and synthesis.
The analysis phase converts the source program into an internal form
from which the equivalent object program can be synthesized. The
analysis phase is thus closely connected to the syntax of the source
language. We will give an overview of this phase and see its connection
to fo'rmal descriptions of the language syntax.

26 Chapter 2

2.1 INFORMAL DESCRIPTION OF MINI-LANGUAGE CORE

A Mini-language Core program is introduced by the symbol program.
Despite the fact that program is written with several letters, it is
considered to be a unique symbol of the language. The language has
several such symbols and these will be shown in lowercase letters. The
program consists of two sections: a declaration section, which follows
immediately after the program symbol, and a statement section. The
statement section follows the declaration section; it is introduced by the
begin symbol and terminated by the end symbol and a semicolon. The
declaration section is forined of declarations consisting of the symbol
declare followed by a list of identifiers separated by commas and
terminated by a semicolon, as in:

declare AI B;
declare Xl VI Z;

The statement section consists of a sequence of statements. There
are five kinds of statements: assignment, If, loop, input, and output
statements. Each is terminated by a semicolon.

The assignment statement consists of an identifier, the symbol :=,
and an expression, in that order. The following are examples of
assignment state~ents:'

X := B;
X := X + 1;

The if statement has two forms

if comparison then
statement...

end if;

and

if comparison then
statement...

else
statement...

end if;

where "statement..." represents a sequence of statements, and if, then,
else, and end are SYmbols. Two examples of the if statement are

if (X = 2) then
A := B;
X := X + I;

end if;

and

if (A 1: B) then
X:=X-I;

else
X := X + I;

end if;

A loop statement has the form

whi Ie comparison loop
statement...

end loop;

where while, loop, and end are symbols. An example of a loop
statement is:

while (Z < X) loop
Z := Z + I;
y := Y + Z;

end loop;

The input and output statements are similar to each other. The
input statement consists of the symbol input followed by a list of
identifiers separated by commas. The output statement consists of the
symbol output followed by a similar list of identifiers. Examples of
these statements are:

input A;
output XI YI Z;

Expressions are built from operands consisting of identifiers,
integers, and parenthesized expressions separated by operators. The
operators are the symbols +, -, and •. The following are examples of
Core expressions:

28 Chapter 2

If several operators occur in an expression, the parenthesized expres
sions are evaluated first, followed by the operator • and then the
operators + and -. The operator • is said to have a higher precedence
than the + and - operators. The + and - operators have equal
precedence. Sequences of operators of equal precedence are evaluated
in order from left to right. Thus

A+ B• 3

is equivalent to

A+ (B • 3)

and

A - B - C

is equivalent to

(A - B) - C

Comparisons consist of parentheses enclosing a pair of operands,
each an identifier or integer, separated by one of the comparison
operators =, f, <, and >. For example,

(A = 3)

(X t: Y)
(5 > Y)

are comparisons.
An identifier consists of a sequence of letters A through Z, with

any two adjacent letters possibly separated by an underscore. Thus

A
ALPHA
SU"-.OF_SQUARES

are all examples of identifiers.
An integer consists of a sequence of the digits 0 through 9.

Particular implementations of Mini-language Core may impose limita
tions on the lengths of identifiers and integers.

In addition to the rules given for the construction of a program in
Core, there are two constraints:

1. All identifiers used in the statements of the program
must be declared.

Syntax 29

Thus, for example, the program

program
declare A;

begin
input AI 8;
output AI B;

end;

is illegal because the identifier B has not been declared.

2. No identifier may be declared more than once.

That is, no identifier may appear more than once in the declaration
section of the program. For example, the declaration section

declare A, B;
declare B, C. C;

is illegal since both the identifiers B and C are declared more than
once.

Example 2.1 gives a complete example of a program in Mini
language Core.

program
declare COUNT, LIMIT;
declare LAST_TERM, THIS_TERM, NEXT_TERM;

begin
COUNT := 0;
LASLTERM := I;
THIS_TERM := I;
input LIMIT;

while (COUNT < LIMIT) loop
output LAST_TERM;
NEXT_TERM := LAST_TERM + THIS_TERM;
LAST_TERM := THIS_TERM;
THIS_TERM := NEXT_TERM;
COUNT := COUNT + I;

end loop;
end;

Example 2.1 A program in Mini-language Core

30 Chapter 2

2.2 THE SYNTACTIC CO~IPONENTS OF PROGRAM~IING LANGUAGES

A program consists of a hierarchy of syntactic units. At the highest
level we have the complete program. In Mini-language Core, the
complete program consists of the three symbols, program, begin, and
end, together with everything contained within the framework they
provide. In other programming languages there may be other large
structural units. For example, in PL/I, a program may consist of
several separate "external" procedures that have been individually
translated and subsequently linked together for execution.

At the next level of syntactic structure there are statements and
declarations. Each of these units is one of a number of specific forms.
Some statements contain expressions: these are syntactic units of
arbitrary size built according to certain rules, with subunits separated
from each other by operators.

At the bottom of the syntactic scale are the lexical elements, the
symbols from which programs in the language are constructed. In the
case of Core, the lexical elements are

program begin end declare if then else while loop
input output

o 1 234 5 6 789

ABC DE F GHI J KL HN0 P QRSTU VWXy Z

- I
; + _ 0 < > = ~ ()

and the blank character, which, when we need to represent it explicitly,
will be denoted by the letter ~.

The set of symbols from which a language is constructed is its
vocabulary. Some of these symbols are always used by themselves, for
example, begin, end, +, and •. Others are used to construct larger
syntactic units like identifiers and integers. Identifiers and integers are
always terminated by one of the special symbols, shown in the last row
of the lexical elements above, or by blanks. The symbols used to
terminate identifiers and integers are known as delimiters. In all the
mini-languages used in this book, at any point where a delimiter can
occur in a program, an arbitrary number of blanks may be inserted.

If the purpose of a programming language is to communicate
algorithms to programmers as well as computers, then the programmer
will sometimes need to annotate the program. Annotations, generally
called comments, can provide the human reader with explanations at a
higher level of abstraction than is possible in the actual programming

Syntax 31

language. From the point of view of the translator, comments do not
change the program in any way; it is as if the comments were not there.
The compiler's only action is to copy the comment into the listing of
the source code. No vestige of the comment appears in the object
program.

In the mini-languages in this book we shall use a single convention
for comments:

A comment is introduced by two contiguous hyphen symbols
(that is, -). These two symbols and the remaining
characters on the same line are treated as the text of the
comment and have no effect on program execution. A
comment can occur in the program at any point where a
blank may appear.

For example, we may have

INCHES := FEET· 12; - make conversion to inches

Since this convention is uniform throughout the mini-languages in this
book, it will not be mentioned when describing them. Comments will,
however, be used frequently in examples.

A comment on comments. You may notice that the above comment
is quite superfluous is describing the program's meaning. Generally, we
believe that such inline (as distinct from header) program comments
should be rare. Good mnemonic names and other programming
conventions can make the use of inline comments virtually nonexistent.
In this text our major use of inline comments will be to make points
about the language (not the program).

2.3 SYNTAX AND THE PROGRAMMING PROCESS

The importance of program clarity has been discussed in Chapter 1. In
a large measure, the syntax of a language controls the clarity of
programs. This does not mean that programs written in a language with
a perfectly designed syntax, assuming that such a thing were possible,
would necessarily be easy to read. It is always possible to write
obscure programs, whatever the language.

A second effect of the design of the syntax is the number of errors
that can be made during the writing of the program. These syntax
errors are not due to incorrect thinking, but occur because the syntax
does not conform to the programmer's intuition. For example, both

32 Chapter 2

from their experience with natural language and from mathematics,
people are used to certain ways of using spaces and punctuation.
Programming languages that vary from these "normal" uses will
guarantee errors where none need be made.

Were frequency counts of the types of syntax errors committed
available, they would provide an interesting way of comparing lan
guages. Each language would have its own set of characteristic errors,
which would ge~erally reflect the weak spots in its design.

There hav~ been several experimental studies of the relationship
between progr~ming language design and programming errors [see for
example, Gannon and Homing 1975].

In the remainder of this section, we will discuss particular aspects
of syntax and the considerations that must be borne in mind during
language design. It must be emphasized that this is only representative
of the questions that need to be weighed during the design process.

Free F~rm versus Fixed Form

Some programming languages have rigid requirements on the form
in which statements in the program are to be written. Originally, all
statements in Fortran had to start in column 7 and the programmer was
unable to indicate the structure of the program through indentation of
the statements. Such rigid requirements remain true to this day in some
Fortran and Basic implementations. If we consider the way in which we
normally use blanks, indentation, and other layout techniques when we
write prose, it is remarkable that this convention has survived so long.
It is very important that the programmer be allowed to use white space
to enhance the overall readability of the program.

One of the design considerations of Fortran was that blanks could
be ignored at all points in a program, and the compiler would rely on
other delimiters to analyze the program. For example, the two
statements

DO 13 K= 1.3

and

DO 13 K= 1,3

are both valid statements. The first is an assignment statement that
assigns 1.3 to the variable DOI3K, and the second is the start of an
iterative statement that loops with the variable K having the successive
values 1, 2, and 3. It has been said that just such a confusion led to the
loss of a Venus probe. One of the arguments for this philosophy is that,

when Fortran first came out, there were no Fortran coding sheets and
programmers wrote their programs on blank paper; as a consequence, it
was feared that keypunchers would Find it too· difficult to count blanks
accqrately. A result of this convention is that we still see Fortran
programs written without any blank characters at all.

Just as free form encourages the use of horizontal white space, it
should also encourage the use of vertical white space. The language
and the compiler should allow empty lines to appear in the source
program. In ~ddition, there should be some way of controlling the
layout of the listing of the source program produced by the compiler.
This would allow separate sections of a program to be started on
separate pages.

Comments

There are various conventions for comments:

• Start the comment in a specific column and continue to
the end of the line. This is often used in low level languages
like assemblers. The use of free format in higher level
languages prevents the use of this convention.

• Use a symbol to make a complete line into a comment.
Fortran uses a letter C in column 1 for this purpose. The
main disadvantage is that it does not permit comments to be
put on the same line as the statement being annotated.

• Start the comment with a special symbol and terminate it
with a special symbol. This is a common convention. Algol
60 uses the keyword comment to mark the start and
continues to a semicolon. Pascal uses (to mark the
beginning and } as a terminator. With this method, it is
possible to put a comment into the middle of a statement and
continue the comment on the same line, as in

if BASE_PTR = nil (the list is empty} then

which is not possible with the other two conventions. This
advantage is, however, offset by the danger that, since the
end of line plays no part in marking comments, the omission
of the terminator can cause part of the program to be treated
as a comment by the compiler - generally with bad
consequences.

34 Chapter 2

• Start the comment with a special symbol and continue to
the end of the line. This is the convention used in Ada and is
the one we have adopted for the mini-languages used in this
book. This method seems to have advantages in readability,
convenience of use, and reliability.

SemieoloDS

It has become common practice to use semicolons as punctuation
in programs. There are, however, two views on their usage. They can
be used either to terminate or to separate statements. In the Mini
language Core fragment,

while (LIMIT> COUNT) loop
NEXT_TERM := LAST_TERM + THIS_TERM;
LAST_TERM := THIS_TERM;
THIS_TERM := NEXT_TERM;
COUNT :~COUNT + 1;

end loop;

the semicolon is used to terminate the four assignments and the one
loop statement.

If the semicolon had been used as a separator, there would be no
semicolon after the fourth assignment since that statement does not
need separating from the next statement in the sequence. Instead, the
end of the sequence would be marked by the symbols end loop. PL/I
has adopted the convention of using the semicolon as a terminator,
while Algol 60, Pascal, Bliss, and several others use it as a statement
separator. Pascal makes things even worse by effectively using the
semicolon as a terminator and a separator in the declarative part, thus
making the placement of the semicolons very confusing.

In an experiment reported in [Gannon and Homing 1975], errors
with separators were ten times more likely than errors with terminators.
It seems that the rule where a statement is always terminated by a
punctuation mark is easier to understand and remember than the rule
that a punctuation mark is required whenever one statement is being
separated from another. Such a rule reflects usage in normal prose.

Resened Words

Mini-language Core uses symbols like while, loop, and if in the
construction of the statements. These serve the dual purpose of
differentiating one kind of statement from another and of making the
programs easy to read. We have used lowercase to distinguish these

symbols from the identifiers that can be constructed by the program
mer. In some languages, the luxury of upper- and lowercase is not
possible. Moreover, keypunches and terminals are often limited to a
single case, generally upper. In such cases, the fixed symbols of a
language are called keywords and have the same representation as
identifiers.

There are three main techniques used to distinguish keywords
from identifiers:

• Precede them by a special symbol, for example, $.

A loop statement in the Mini-language Core might then
become:

$WHILE (A < B) SLOOP
A := A+ X;
SEND SLOOP;

The special symbol here is obtrusive and seriously affects the
readability of the program.

The other two techniques are really antithetical and will be
discussed together.

• Define the keywords to be reserved words, that is, forbid
the programmer from using these keywords as identifiers.

• Rely on context to make the distinction. That is, to say

WHILE := LOOP;

is an assignment statement because of the symbol

These last two conventions are heavily debated. Ada, Pascal, and
Cobol have opted for reserved words, while PL/I has no reserved
words. The arguments may be summarized as follows:

• If keywords are reserved then there is no danger of a
loss of readability due to the programmer choosing identifi
ers that clash with keywords. While it is true that a perverse
PL/I programmer could write

IF IF = THEN THEN
THEN =ELSE;

it is likely that the programmer would soon tire of this.
There is neither evidence that unreserved keywords actually

36 Chapter 2

presents a readability problem in PL/I programs nor that
programs are more readable with reserved keywords.

• A language that has reserved words requires the pro
grammer to memorize all the keywords of the language
even for parts of the language that have no bearing on the
problem being solved.

• If a reserved word language is extended, it is quite likely
that new keywords will be required. This will extend the list
of reserved words and render illegal existing programs that
have used these new keywords as identifiers before they
were made keywords.

• In a reserved word language, the keywords provide fixed
markers in the syntax that allow the compiler to make better
recovery in the face of syntax errors and give more
meaningful error messages.

This matter is not fully resolved.

2.4 THE DESCRIPTION OF SYNTAX

In our informal description of Mini-language Core in Section 2.1, we
gave what appeared to be a complete description of the rules for writing
a program in Core. However, the description suffers from the impreci
sion of English and its possible ambiguities. It is difficult to know
whether the description is complete.

For example, consider the following questions:

I. Does the begi n symbol need a semicolon after it?
2. Is it legal to have a program without a declaration?
3. Is it legal to have a program without statements?

Of course, once these questions have been thought of, it is possible to
amplify the informal description to include their answers. However,
what about all the other possible questions?

There is thus a need for a more formal way of qescribing the
syntax of programming languages. In this section we will describe the
most common approaches to this problem.

Some Basic Notions

• A grammar defines a set, generally infinite, of the
sentences that can be written in a language.

• A sentence of a language is a finite sequence of symbols
from a vocabulary constructed according to the rules of the
language's grammar.

• A vocabulary or alphabet is a finite set of symbols.

• A symbol is an atomic entity represented by a graphic,
for example, +, (, a letter, or a digit.

In some languages like Mini-language Core, complete words, for
example, begin, may be treated as symbols. Such symbols can be
distinguished from identifiers, which are also constructed from letters,
by using a different typeface, making them reserved words, or some
other device, such as introducing them with a special symbol, as
discussed above.

The following are examples of languages:

L1. The set of strings of length greater than zero composed
of the symbols 0 and 1. These two symbols constitute the
vocabulary of Ll.

L2. The set of strings consisting of n occurrences of the
symbol A followed by n occurrences of the symbol B. The
vocabulary of this language consists of the symbols A and B.
The grammar states that there are equal numbers of occur
rences of the symbol A and of the symbol B. The strings

AAAABBBB
AB

are examples of sentences in L2.

L3. The set of grammatical sentences in English. The
vocabulary here consists of the words of the English
language; the grammar is the grammar of English, which
requires that the form of a verb m'atch the subject of the
verb. Thus HE IS A MAN is legal, while HE ARE A MAN
is not.

In describing these languages, the sentences were defined by
giving rules for constructing them from the vocabulary of the language.
These rules form the grammar or the rules of syntax (often referred to
as simply the syntax of the language). In the languages Ll and L2, the
rules are quite specific; Ll and L2 are very simple languages. In the
case of L3, use was made of the vague term "grammatical sentences."
The rules of English grammar are very complex and ill-defined in many

38 Chapter 2

places. Luckily, programming languages are not nearly as complex as
English, and we are able to produce reasonably simple and precise
grammars for them.

2.5 GRAM~IARS FOR DESCRIBING SYNTAX

In the analysis or parsing of English sentences, the words in a sentence
are placed in different categories according to their functions in the
sentence. In the simple sentence THE MAN EATS THE APPLE,
THE MAN is the subject and EATS THE APPLE is the predicate.
The subject consists of an article followed by the noun MAN. The
predicate consists of the verb EATS followed by the direct object THE
APPLE, which is an article and a noun.

We can represent this analysis by a tree-like structure known as a
parse tree:

1
noun

I
APPLE

"'"\
direct-object,

(
article

I
THE

,
predicate

I

sentence
I

'\ (
noun verb

MAN EATS

(
subject

I
(

article

THE

In this parse tree there are two kinds of objects named points,
generally called nodes. One type of node represents of the words of the
original sentence. These appear at the ends of the branches of the tree
and are called terminals. They appear in uppercase, as they do in the
original sentence. The terminals talqm in left-to-right order form the
original sentence. The other type of node, written here in lowercase, are
nonterminals and bear the names of the grammatical categories they
represent. These are often called syntactic categories.

Each nonterminal of the parse tree has one or more subnodes
connected by a line drawn from the bottom of the node. Each subnode
is either a terminal or a nonterminal. Except for one nonterminal (the
root of the tree), each symbol has exactly one parent nod"e. The
grammar of a language consists of a set of rules that specify for each
nonterminal precisely what subnodes it may have.

S"ow: 39

For our example sentence, we can write a grammar as:

sentence · .- subject predicate
subject · .- article noun
predicate · .- verb direct-object
direct-object - article noun
article · .- THE
noun ·. HAN
noun ·.- APPLE
verb · .- EATS

The :: = symbol indicates that the item to the left has the items on the
right as subnodes. This symbol is not part of the language being defined
by the grammar but is part of yet another language, one used to
describe languages. Such a language is called a syntax meta-language.
In this grammar there is precisely one symbol that does not appear on
the right of a rule, this is the goal of the grammar and will be the root
of the parse tree.

The rules of a grammar can be used to generate all the sentences
of a language. If we use our simple grammar, starting with the syntactic
category sentence, we can see that the only possible subnodes are
subject and predicate. Indeed, there is no choice possible until we come
to noun, at which point we can choose between MAN and APPLE.
There are thus only four possible trees that we can draw with this
grammar. They correspond to the sentences:

THE HAN EATS THE APPLE
THE HAN EATS THE HAN
THE APPLE EATS THE APPLE
THE APPLE EATS THE HAN

These are the four sentences that constitute the language defined by
this grammar. Because of this use of a grammar to produce sentences,
the rules are often known as productions.

An alternative way of using a grammar is to analyze a given
sentence to see if it is a syntactically correct sentence of the language.
This is done by using the rules of the grammar to attempt to construct a
tree whose terminals, taken in left-to-right order, form the given
sentence. If it is possible to construct such a tree, then the sentence is
in the language. The analysis of a sentence in this way is called
parsing.

Grammars are thus used in two ways:

1. Generatively to construct all possible sentences in the
language.

40 Chapter 2

2. Analytically to determine whether a given string is a
sentence in the language.

Context Free Grammars

In our use of the grammar to construct the four sentences, when it
came to choosing a subnode for noun the second time, no account was
taken of pur first choice. That is, whenever we make a choice, we are
not able to allow our choice to be affected by any of the categories and
terminal symbols that already exist in the partial derivation tree. Our
choice is made without context.

A rule of a grammar where context is considered would have the
form

wxy ::= wzy

where w, y, and z are sequences of terminals and nonterminals and x is
a nonterminal. The sequences wand y provide the context that defines
where the nonterminal x can be replaced by the sequence z.

A grammar where no account of context is taken when making a
substitution is a context free language. Con~ext sensitive grammars are
more complex than context free grammars because the' fact that a
substitution in one part of the derivation tre~ can influence the structure
in another part must be expressed in the grammar. Almost all
languages, both natural and artificial, have context sensitivities. Pro
gramming languages generally have some context sensitive rules.. As we
shall explain later, the rule in Mini-language Core that an identifier
may not be declared more than once in a program is an example of a
context sensitive rule.

In order to avoid the added complexity of context, the syntax of
programming languages is generally defined in a context free form with
additional, usually informal, rules descr~bing the context sensitivities. '

A context free grammar requires the specification of four items:

1. A vocabulary of nonterminal symbols.

2. A vocabulary of terminal symbols.

3. A set of productions of the form

x ::= y

where x is a nonterminal drawn from the nonterminal
vocabulary and y is a combination of symbols drawn from
the combined terminal and nonterminal vocabularies.

Syntax 41

4. A goal symbol that does not appear on the right side of
any production.

Derivations

In general, the repeated application of the productions gives
sequences of symbols, both terminal and nonterminal, that can be
derived from the goal symbol. These seque,nces are the sentential
forms of the language defined by the grammar G. Any string that
contains only terminal symbols and that can be derived from the goal
symbol is a sentence of the language defined by G.

We would show the derivation of the sentence

THE MAN EATS THE APPLE

as a sequence of pictures that show the parse tree growing:

sentence

sentence

(
I

'\
subject predicate

sentence

I
I

1subject predicate
r

I
'\

article noun

and so on. An alternative method is to show the entire derivation as

sentence
-+ subject predicate

-+ article noun predicate
-+ THE noun predicate

-+ THE MAN predicate
-+ THE MAN verb direct-object

-+ THE MAN EATS direct-object
-+ THE MAN EATS article noun

-+ THE MAN EATS THE noun
-+ THE MAN EATS THE APPLE

42 Chapter 2

where each line represents the terminal nodes of the parse tree in its
current state of development. The arrow at the beginning of the lines
means "is derived from the previous line by.the application of a single
rule." At each application of a rule, a single nonterminal is replaced by
one or more symbols. Thus this representation shows the order in
which the substitutions are made. The last line of the derivation
contains only terminal symbols of the grammar and no further
substitutions can be made.

2.6 THE BACKUS-NAUR FORM

Probably the most common meta-language for specifying the context
free syntax of programming languages is the Backus-Naur Form,
sometimes called Backus Normal Form, generally abbreviated to BNF.
This was introduced in 1959 by John Backus as a method for the
definition of the syntax of Algol 60. The first version of the meta
language was improved shortly thereafter by Peter Naur.

The meta-symbols of BNF are:

meaning "is defined as"

meaning "or"

< > angle brackets used to surround category names

The angle brackets distinguish category names from terminal symbols,
which are written exactly as they are to be represented.

A BNF rule defining a nonterminal has the form:

The nonterminal being defined,

The meta-symbol :: =

Then a sequence of alternatives consisting of strings of
terminals and nonterminals, where the alternatives are sepa
rated by the meta-symbol I.

For example, the BNF production for a Mini-language Core program
is:

<program> program
<declaration-sequence>

begin
<statement-sequence>

end;

This shows that a Mini-language Core program consists of the keyword
program followed by the declaration sequence, then the keyword begin
and the statement sequence, finally the keyword end and a semi-colon.
The nonterminal symbol <program> is the goal symbol.

The statements of the Mini-language Core can be specified in
BNF as a set of productions:

<statement>
<statement>
<statement>
<statement>
<statement>

: := <assignment-statement>
: := <if-statement>
: := <loop-statement>
: := <input-statement>
: := <output-statement>

This may be abbreviated

<statement> :: = <assignment-statement>
I <if-statement>
I <loop-statement>
I <input-statement>
I <output-statement>

In the BNF definition of Mini-language Core there is a clash
between the greater-than and less-than symbols used in the comparison
and the printed brackets of the BNF notation. In order to avoid the
clash, the symbols that are part of the Mini-language are underlined in
the definition. Thus:

<comparison> :: = «operand> < <operand>)

Recursive Productions

The informal definition of Mini-language Core specifies an integer
to be an arbitrary sequence of digits. Thus, we might think that this
would be represented in BNF as

<integer> <digit>
<digit> <digit>
<digit> <digit> <digit>

and so on, with an arbitrary number of alternatives corresponding to all
possible lengths of integers.

However, each of the alternatives, after the first, really consists of
an <integer> followed by a single <digit>. Thus, in order to avoid the
need for an arbitrary number of alternatives, we write:

44 Chapter 2

<integer> - <digit>
<integer> <digit>

This type of definition, where the defined nonterminal is part of the
definition itself, is called a recursive definition.

A recursive definition can only be used provided that there is
some way of terminating it. The single production

<a> ::= <a> A

is useless since it is impossible to produce a line containing only
terminal symbols. In our definition of <integer>, the alternative

<integer> :: = <digit>

provides the means for terminating the recursion.

Canonical Derivations

The definition for <integer> given in the last section requires a
rule for <digit>. By adding this, we can define integers in Mini
language Core by the small grammar:

<goal> .. - <integer>

<integer> .. - <digit>
<integer> <digit>

<digit> - 0 I 1 12 I 3 I 4 I 5 I 6 I 7 18 I 9

This small grammar allows us to derive all legal integers. For
example, abbreviating <integer> by i and <digit> by d, we have
two possible derivations of the integer 193:

<goal>
-+i

<goal>
-+i

-+ i d
-+ i d d

-+ d d d
-+ Idd

-+ 19d
-+ 1 9 3

-+ i d
-+ i 3

-+ id3
-+ i 9 3

-+ d 9 3
-+ 1 9 3

There are many possible derivations, depending on the order in which
the nonterminals are chosen for replacement. It is convenient to be able
to single out a particular derivation as being the derivation. This is
generally called the canonical derivation. The choice of canonical
derivation is essentially arbitrary; the usual choice is the one where, at

Syntax 45

each stage in the derivation the left-most nonterminal is the one that is
replaced. This corresponds to the derivation of 193 on the left.

Ambiguous Grammars

One possible grammar for simple expressions involving only
multiplication and addition is:

<goal> - <expression>

<expression> - <expression> + <expression>
<expression> • <expression>
<identifier>

<identifier> - X I y I z

In this grammar, the sentence

X + Y • Z

has two distinct canonical derivations.
The first is:

<goal>
-+ <expression>

-+ <expression> + <expression>
-+ <identifier> + <expression>

-+ X + <expression>
-+ X + <expression> • <expression>

-+ X + <identifier> 0 <expression>
-+ X + Y • <expression>

-+ X + Y 0 <identifier>
-+ X + Y • Z

Its corresponding parse tree is:

+ '\
< expression>

(--~,---\
<expression> • <expression>

I I
<identifier> <identifier>

I I
y z

<goal>

I
<expression>

I(
<expression>

I
<identifier>

I
X

46 Chapter 2

The second derivation is:

<goal>
~ <expression>
~ <expression> • <expression>
~ <expression> + <expression> • <expression>
~ <identifier> + <expression> • <expression>
~ X + <expression> • <expression>
~ X + <identifier> • <expression>
~ X + Y • <expression>
~ X + Y • <identifier>
~ X + Y • Z

Its corresponding parse tree is:

r
<expression>

I
<factor>

I
<identifier>

I
X

<~i_l_> \
+ <factor>

{~--I--",
<factor> * <identifier>

< idenIifier> I
I Z
Y

If, as in this case, the rules of a grammar permit more than one
canonical derivation of a sentence of the language, the grammar is said
to be ambiguous.

If the only use for grammars were to determine whether a string
belongs to the language, this ambiguity would be of little importance.
The number of ways of generating a string would not be relevant.
However, for programming languages, part of the meaning of a program
is sometimes specified in terms of the corresponding syntactic structure.
The existence of more than one structure could imply more than one
meaning for the program.

In the example that we have just shown, the two trees correspond
to two different evaluation sequences for the operators • and +. In the
first tree, the Y and the Z are bound together by the • operator and it
is the result of this operation that is added to X. If we take • to mean
multiplication, this derivation corresponds to the precedence specified
in the informal definition of Mini-language Core. Note that the
ambiguity is syntactic and has severe consequences when meaning is
ascribed to the symbols.

Syntax 47

The second derivation shows that X and Yare added together and
the result is multiplied by Z. It is as if the expression had been written:

(X + Y) III Z

If we are to avoid this ambiguity, we must restructure our grammar and
ensure that it defines a single correct meaning for the sentences
representing expressions. The following grammar does this:

<goal> - <expression>

<expression> .. - <factor>
<expression> + <factor>

<factor> - <identifier>
<factor> '" <identifier>

<identifier> - X I Y I Z

The corresponding parse tree is:

<goal>

I
<expression>

r'----I----.....,
<expression> • <expression>

(I ~ I
<expression> + <expression> < identifier>

I I I
< identifier> < identifier> Z

I I
X Y

Although it is possible to determine whether certain grammars are
ambiguous, it is not possible to do this in general. Similarly, although
there are arbitrarily many context free grammars for any context free
language, it is not always possible to determine whether two grammars
define the same language.

Programming languages, including the higher level ones, differ
fundamentally from natural languages. Programming languages have a
smaller vocabulary and a simpler grammar. More importantly, they are
formal languages; that is, every grammatical statement has one and
only one meaning and that meaning can be abstracted by a simple
procedure from the structure of the statement. In a natural language, on
the other hand, ambiguity is common and statements that are grammat-

48 Chapter 2

ically impeccable can often be understood only from the meaning of the
words.

Compare, for example, the two sentences:

TIME FLIES LIKE AN ARROW
FRUIT FLIES LIKE ABANANA

They both have the same structure, yet they are parsed differently. In
one, FLIES is a verb and in the other a noun.

The if statement in PL/I has an optional else part just as it does
in Mini-language Core. Consider the form of a nested if statement in
PL/I.

IF boolean-expressioIi-l THEN
IF boolean-expression-2 THEN
statement-I;
ELSE
statement-2;

To which if statement does the else clause belong? PL/I has solved this
potential ambiguity by defining the syntax so that the else clause is
associated with the last uncompleted if statement, that is, with the
second one. Mini-language Core avoids the problem through the use of
the end if symbols.

Some problems cannot be resolved so easily. Consider, for
example, the Ada assignment statement:

I :=F(J);

Is the reference to F an invocation of a function procedure or to an
element of an array F? In Algol 60 this problem is solved by writing
the two kinds of reference as F(J) and F[J] respectively. IIi Ada,
information from the declaration of F must be used to make the
differentiation. This is called contextual information.

Context Sensitivity Again

It must be recognized that there are certain things that cannot be
represented in BNF. Consider, for example, the Mini-language Core
rule that an identifier may not be declared more than once in a
program. This rule cannot be defined in BNF.

Suppose there were only three possible identifiers allowed in Core
and only one declaration were allowed in a program. The declaration
statement could then be defined in BNF as;

S"ntax 49

declare B;
declare A, B;
declare B. C;
declare C, A;
declare AI B, C;
declare B. C, A;
declare CI A, B;

declaration declare A;
declare C;
declare AI C;
declare BI A;
declare C, B;
declare B, A, C;
declare A, C, B;
declare C, B, A;

that is, all legal possibilities are specified. In the actual Mini-language
Core, there is an infinite number of possible identifiers. Thus, there
would have to be an infinite number of alternatives to show the set of
legal declarations.

The problem is one of context. In Mini-language Core, the
declaration

declare A;

is legal if it does not occur in the same program as another declaration
of A. That is, in the context of another declaration of A, BNF is a
context free grammar and can only show a context sensitive rule with
an infinite number of productions. Thus, in any BNF description of the
syntax of a programming language, the context sensitive rules must be
given separately.

Context Free Syntax of Mini-language Core in BNF

Table 2.1 shows a BNF definition of the context free syntax of
the Mini-language Core. In the form shown there, some of the structure
of programs and statements has been indicated by the use of indenta
tion on the right side of a production. This indentation is not part of the
definition and has been added for clarity.

Even with the indentation, the BNF definition presents some
readability problems. These are mainly concerned with the specifica
tion of optional parts and sequences. Consider, for example, the
production for the <if statement> shown in Table 2.1.

<if-statement> : := if <comparison> then
<statement-sequence>

end if;
i f <comparison> then

<statement-sequence>
else

<statement-sequence>
end if;

50 Cbapter 2

Table 2.1 Context Free Syntax of Mini-Language Core in BNF

<program> - program
<declaration-sequence>

begin
<statement-sequence>

end;

<declaration-sequence> - <declaration>
<declaration> <declaration-sequence>

<statement-sequence> - <statement>
<statement> <statement-sequence>

<declaration> " declare <identifier-list> ;

<identifier-list> , , <identifier>
<identifier> I <identifier-list>

<statement> .. <assignment-statement>
<if-statement>
<loop-statement>
<input-statement>
<output-statement>

<assignment-statement> , , <identifier> <expression>

<if-statement>

<loop-statement>

<input-statement>

<output-statement>

if <comparison> then
<statement-sequence>

end if;
if <comparison> then

<statement-sequence>
else

<statement-sequence>
end if;

whi Ie <comparison> loop
<statement-sequence>

end loop;

input <identifier-list>

output <identifier-list>

Syntax 51

Table 2.1 continued

<comparison>

<expression>

<factor>

<operand>

<identifier>

<integer>

<letter>

<digit>

(<operand> <operand>)
«operand> F <operand»
«operand> ~ <operand»
«operand> > <operand»

·. <factor>
<expression> + <factor>
<expression> - <factor>

.. <operand>
<factor> • <operand>

.. <integer>
<identifier>
(<expression>

· . <letter>
<identifier> <letter>
<identifier> _ <letter>

.. <digit> <integer> <digit>

·. A B C 0 E F G H I
J K l H N 0 p Q R
S T U V W X Y Z

: := 0 I 2 I 3 I 4 I 5 I 6 7 I 8 I 9

This requires two productions to specify that the else part is optional.
In order to see exactly which parts are optional, the two alternatives
must be examined closely.

The production for <statement-sequence> in Table 2.1 is:

<statement-sequence> <statement>
<statement> <statement-sequence>

In order to represent the sequence as being of arbitrary length, a
recursive production must be used. Finally, the use of the < and >
symbols to enclose the names of syntactic categories makes the
definition less readable.

52 Chapter 2

The three problems can be solved with the following extensions to
BNF:

• Optional Items: These are enclosed in brackets, thus
introducing the additional meta-symbols [and 1.

• Sequences: The ellipsis symbol (...) is introduced as
another meta-symbol to indicate the repetition of the preced
ing category or group of categories contained in brackets an
arbitrary number of times.

• Type faces: The names of BNF categories will be
written without < and > but in a typeface different from
that of the language being defined.

Using these extensions, the production for the if statement becomes:

if-statement: := if comparison then
statement...

else
statement...

end if;

Table 2.2 shows the definition of the context free syntax of Mini
language Core using these extensions to BNF. We will use this
extended form of BNF to define the mini-languages used in the later
chapters.

As with BNF, where there is a clash between a meta-symbol and
a symbol of the Mini-language, the symbol that is part of the Mini
language will be underlined. For example,

variable identifier
identifier ! expressionl

The definitions of identifier and integer are the same in all of the
mini-languages and, for simplicity, their productions will be omitted
from future syntax definitions.

program

Table 2.2 Mini-language Core

program
declaration...

begin
statement...

end;

declaration

statement

assignment-statement

if-statement

loop-statement

dec Iare identifier [I identifier]... ;

assignment-statement I if-statement
loop-statement I input-statement
output-statement

identifier := expression

if comparison then
statement. ..

else
statement...

end if;

whi Ie comparison loop
statement. ..

end loop;

input-statement
output-statement

input identifier [
output identifier [

identifier] .
identifier] .

comparison

expression

factor

operand
identifier
integer

(operand comparison-operator operand)

expression +] factor
expression -] factor

factor •] operand

integer I identifier I (expression)
letter [[_] letter] ...
digit...

6 I 7 I 8 I 9

comparison-operator

letter

digit

< I

A I B
J I K
SiT

o I

C D
l H
U V

I 2 I 3 I 4

>

E
N
W

5

F
o
X

G
p
y

H
Q
z

I
R

54 Chapter 2

2.1 OTHER CONTEXT FREE SYNTAX DEFINITIONS

Although BNF is the best known method for defining the context free
syntax of a programming language, several other techniques are in use.

The Cobol Notation

The Cobol syntax notation was developed by the Short-Range
Subcommittee commissioned by CODASYL (the Committee on Data
Systems Languages) to develop a business-oriented programming
language. As described in [Sammet 1978], although there are many
similarities between BNF and the Cobol notation, the development of
these two meta-languages was parallel and independent. This notation
has been used, in addition to defining standard Cobol, for the
description of PL/I.

Unlike BNF, which is used to define complete programs, the
Cobol meta-language is used to define only small parts of the language,
particularly statements. Some basic elements of the notation are:

• Vertical bar: separates alternatives. Alternatives may
also be listed vertically within brackets or braces.

• Brackets: enclose an optional syntactical unit.

• Braces: group elements of a syntactical unit or a
vertically listed choice.

• Ellipsis: indicates repetition of the immediately preced
ing syntactical unit one or more times.

Table 2.3 Syntax of Mini-language Core If Statement
using the Cobol Notation

if comparison then
statement...

else
statement...

end if;

where "comparison" is

integer
identifier
(expression)

I< I = I f I > I integer I
identifier)
(expression)

As an example of this notation, Table 2.3 shows the definition of
Mini-language Core if statement.

Syntax Diagrams

An entirely different method of syntax definition is the graphic
representation known as syntax diagrams or charts. This method has
been used to define the syntax of Pascal in [Wirth 1973] and Fortran
77.

The rules take the form of flow diagrams. The possible paths
represent the possible sequences of symbols. Starting at the beginning
of a diagram, a path is followed either by transfering to another
diagram if a rectangle is reached or by reading a basic symbol
contained in a circle or box with rounded ends. For example, an
identifier in Mini-language Core is defined by the diagram.

Table 2.4 shows the definition of the context free syntax of Mini
language Core by syntax charts.

2.8 OVERVIEW OF THE TRANSLATION PROCESS

A translator is a program that is used to transform a program, the
source program, from the source language into an equivalent object
program in the target language. Frequently, but by no means universal
ly, the source language is a high level language and the target language
is some form, of machine language.

An implementation can be looked upon as a sequence of two
processes:

source
program I-translation object ~

program execution - L:J

Usually these two processes are separate, but the dividing line can vary
considerably. The translation phase may merely transform the source

56 Chapter 2

Tahle 2.4 Syntax of Mini-language Core Defined by Syntax Charts

PROGRAM

DEClARATION

STATEMENT

EXPRESSION

-LeXP'_ion~
FACTOR

OPERAND

Table 2.4 continued

Syntax 57

COMPARISON

IDENTIFIER

~-~-ter •

LETTER

INTEGER

~~digilI) •

DIGIT

•

58 Cha~ter 2

program into some internal form that does not correspond to the
architecture of any real machine. As described in Section 1.2, the
execution may be an interpretation of this by another part of the
translator. Some languages are implemented in this way so as to
achieve extra flexibility, for example, APL and Lisp.

The translation process may be divided into two subprocesses:
analysis and generation.' We will discuss only the analysis part here;
generation will be treated in the next chapter.

source
program .-analysis

abstract object
program generation--. program

During the a~~lysis phase, the source program is parsed and an
abstract representation of the program is built. The abstract representa
tion of the prograJll can take a number of forms depending on the
design of the translator. It can be in the form of a tree having a similar
construction to the parse tree. Another alternative is for it to consist of
a sequence of instructions for a hypothetical machine, typically one
where each instruction has an operator, two operands, and a result.

In the original 'source form, the program is represented as a
character string wjth only a single dimension, although a program really
has two dimensions. In order to achieve this, the source program
contains a number of syntactic symbols whose sole function is to
indicate the two-dimensional structure of the program, for example,
semicolons to separate the statements and symbols or keywords like
begin to show the major structure of the program. In the abstract form,
the program does not contain these syntactic symbols because it is
represented as a two~dimensional structure and has no need for them.
While the abstract representation of the program is being built during
analysis, ~ome' equivalent of the derivation tree is constructed. General
ly, only a p~ of th~ derivation tree is present in the translator at any
one time, since it is too big to exist in its entirety.

An abstract program really represents many equivalent source
programs. For inst~ce, in PL/I, the keyword PROCEDURE may be
used or, equivalently, the abbreviation PROC. Two source programs
that differ only in their use of abbreviations for keywords will have
identical abstract representations.

During the generation phase of the compiler, the abstract program
is converted into the equivalent object program. This part is sometimes
known as the code generation phase. Although we have shown the code
generation to be a $eparate phase from the analysis, this is not always

the case and the part of the object program corresponding to the
beginning of the source program may be generated before the end of the
source program has been parsed.

If the parsing and code generation are combined, the translator is
frequently known as a "single pass" compiler. Most translators for
large languages require several passes over the program being trans
lated. Often the actual number of passes depends on the parts of the
language that are used in a particular source program. The decision
that a single pass compiler will be used imposes certain constraints on
the source language. These constraints are required to ensure that
sufficient information is available to generate code before the source
program has been completely parsed. This means that, for example,
variables must be declared before they are referenced so that their type
is known at the time the code is to be generated to manipulate their
values.

The analysis phase may itself be divided into three subprocesses:
scanning, parsing, and completion.

source
program ~scanning

symbols

source
program parsing
tokens

derivation completion
tree

abstract
program

During the scanning phase, the source program is divided into
tokens, the basic syntactic units from which a program can be
constructed. Each token represents a sequence of characters that can be
treated as a single logical entity. Identifiers, numbers, operators,
language symbols like begin and semicolons are typical tokens of the
Mini-language Core. There are two kinds of tokens: those that
represent fixed sequences of characters like :=, begin, or a comma,
and those that represent classes of character strings like identifiers or
numbers.

All tokens have a type, and those that represent classes have a
value as well, for example, an identifier token might have the value
COUNT.

It is the function of the parsing part to take the tokens and build
the derivation tree whose root is the goal symbol of the grammar and
whose terminals are the tokens.

There are two classes of parsing techniques: top-down and
bottom-up. Each class is characterized by the order in which the
productions of the derivation tree are recognized. The top-down parser
builds the tree by starting with the root, the goal symbol, and by
working down to produce a tree whose terminal nodes match the

60 Chapter 2

sequence of tokens in the source program. The bottom-up technique
replaces right sides of productions by the corresponding left side symbol
until only the goal symbol· remains. These two strategies for parsing
have been extensively studied.

Somewhat greater attention has been given to bottom-up techni
ques since they are more efficient and the research was conducted at a
time when parsing efficiency was thought to be very important. It turns
out that parsing is a relatively small part of the whole translation
process; the generation of the object program takes the larger part of the
time. Another attraction of the bottom-up technique is that it is possible
to take a grammar specified in BNF and generate tables automatically
for a parser. This means that changes to the syntax of a language can be
accommodated quickly and it also ensures that the language being
parsed matches the language specified in the written syntax. The
problem with bottom-up parsing is that one must find the correct right
side of a rule to perform a reverse derivation step. While this can be
done efficiently when the program being parsed is syntactically correct,
it is more difficult to perform error recovery when a syntactic error is
discovered. There are two problems at this stage: to provide helpful
information to the programmer so that the error can be found and
corrected and to retain control so that parsing can continue without
providing a spate of meaningless error messages.

The completion phase takes the derivation tree and constructs the
abstract programs from it. This process involves abstracting those parts
concerned with the meaning of the program from those that have only
syntactic functions. In addition, the completion will add some things,
making details explicit that were only implicit in the source program.
For example, in a language like PL/I, those attributes that are not
explicitly declared are manufactured through the application of some
contextual rules and defaults. If there is no declaration for an identifier,
then one is constructed, possibly with some attributes obtained from the
context in which references to the identifier occur. An identifier,
MASTER, that appears in the context

OPEN FIlE(HASTER);

will be given the attribute file in its constructed declaration. At the end
of the synthesis process, all the contextual implications of the source
program will have been made plain and the abstract form of the program
will be complete.

S)'ntax 61

FURTHER READING

There are really not many works on the syntax of programming languages,
aside from work on formal grammars and methods of implementation. The
larger issues of readability and presentation of programs are seldom discussed.

One thoughtful work on the subject of syntax is Chapter 2 of the
"Rationale for the Design of Ada" [see Ichbiah et a1. 1979]. This discusses
numerous issues concerning the presentation of the syntax of a programming
language. An entirely different but relevant work is [Gannon and Horning
1976]. This paper describes an experiment intended to compare the utility of
various forms for expressing programming language constructs.

On the subject of formal grammars, perhaps the most comprehensive
treatment is given in [Cleaveland and Uzgalis 1976]. This work discusses the
notion of context free grammars as well as development of BNF that allows
context sensitive rules to be defined. This is done through the use of macro
productions that will generate the infinite number of productions needed.

Other works of interest include [Ledgard 1977] and the survey of parsing
techniques in [Aho and Johnson 1974], and a description, including a complete
listing, of a simple compiler in [McKeeman et a1. 1970].

EXERCISES

Exercise 2.1 Learning the P's and Q's of Syntax

There are many little and often annoying details that must be
learned in a language. Some of these are covered in the following true
false quiz. Try it on Mini-language Core.

a. The first nonblank character in a program must be the p
in program.

b. The last nonblank character in a program must be a
semicolon.

c. The identifier end may be used as the name of an integer
variable.

d. Only one statement may appear on a line.

e. The following sequence of characters is a well-formed
comment:

-- The symbols -- may be used in comments.

+

/
•

62 Chapter 2

Exer~ise 2.2 Writing Context Free Grammars

A simple grammar for expressions is:

expression .. term
expression + term

term - operand
term • operand

operand ..- X I y I z

Extend this grammar to include the subtraction and division operators,
the use of parentheses to change precedence, and a prefix minus
operator.

Exercise 2.3 Operator Precedence

Each of the two grammars Gland G2 below defines the syntax of
expressions involving identifier operands and the operations

infix plus
prefix and infix minus
multiplication
division

•• exponentiation

These two grammars differ slightly in the order in which operations are
evaluated.

Explain the effects of this difference, illustrating your answer by
showing the differences in the two parse trees for at least three
expressions defined by the grammars. Describe the practical signifi
cance of this difference and give arguments in favor of choosing one of
the grammars for describing the expressions.

Grammar GJ

expression

expression-l

expression-l
expression + expression-l
expression - expression-l

expression-2
expression-l • expression-2
expression-l / expression-2

S)"ntax 63

expression-2 · .- identifier
- expression-2
expression-3

expression-3 - identifier •• expression-2

Grammar G2

expression - expression-l
expression-l + expression
expression-l - expression

expression-l · .- expression-2
expression-2 • expression-l
expression-2 / expression-l

expression-2 · .- expression-2 •• expression-3
expression-3

expression-3 - identifier
- identifier

Exereise 2.4 Writing a Grammar to Describe Trees

Consider the following trees:

These trees can be represented by the lists:

(A B)

«A B) C)
«(A» A)
«(A BC) D) E (F GH»

Write a grammar using the BNF variant of Table 2.2 to describe
lists with one letter nodes.

64 Chapter 2

Exercise 2.5 Extensions to Context Free Grammars

A context free grammar is sometimes either inadequate or clumsy
for expressing some restrictions in the language it defines. As such,
many forms of extension have been proposed.

One form of extension allows a grouping of n counters designated
cl, c2, and so on, which may take on integer values. In the extended
grammar, a rule is written

[p] left-side ::= right-side [a]

where [p] is a predicate, a condition that must be satisfied before the
rule is applied and [a] is an action to be performed after the rule is
applied. The predicates and actions are expressions involving only
counters and integer constants. For example, we may have:

[c2 < c1 + 3] left-side := right-side [c2 := c2 + 1]

A rule may be without a predicate or action. A rule with no
predicate may be applied just as the rules of a contentional context free
grammar are applied.

Suppose the following context free rules are used to define the
syntax of identifiers and integers:

identifier ·.- letter
identifier ·.- identifier letter-or-digit
letter-or-digit ·.- letter
letter-or-digit · .- digit
integer · .- digit
integer ·.- integer digit

Assume the grammar has 26 rules for the nonterminal letter, each
rule having a distinct letter as its right side. Similarly, there are 10
rules for the nonterminal digit to define the decimal digits.

Extend the rules to enforce the restriction that identifiers have no
more than 10 characters and integers have no more than five digits.

Could a context free grammar without extensions be used to effect
this sort of a length restriction? If not, explain why. If so, write a new
set of rules for limiting integers to five digits.

Exercise 2.6 Describing BNF with BNF

Write a grammar to describe the BNF variant used in Table 2.2.
Since the symbols you will be using in the meta-language will be the

Syntax 65

same as those of the language being described, you will have to use the
technique of underlining such symbols in the language being described.
This technique was introduced in Section 2.6. Your grammar will begin
something like:

grammar
production

production...
variable .:..:.: right-side

Exereise 2.7 The Shortest Possible Program

There are always a few tricky but interesting questions you can
ask about a language. One of these concerns the shortest possible
program you can write. Such a program would obviously do nothing
when executed. Write one for Mini-language Core. How many non
blank characters are there?

3
Semantics

You may have observed that, in the last chapter, no mention was made
of what a program in Mini-language Core actually does; that is, what it
means. Of course, symbols like + and if give clues to those
experienced in programming languages. Nevertheless, we have delibera
tely separated the discussion of the written form of programs from their
meaning. It is this question of meaning - the semantics - that we
take up in this chapter.

We start by describing informally the semantics of Mini-language
Core, whose syntax was given in Chapter 2 and is repeated here in
Table 3.1, for reference. The way in which a programming language is
defined raises 'a number of interesting but difficult questions. For
example, how can precision be maintained without rendering the
description inaccessible to the majority of readers? This and other
questions concerning the semantics of languages are discussed follow
ing the presentation of Mini-language Core.

3.1 THE SEMANTICS OF MINI-LANGUAGE CORE

We now discuss the semantics of the mini-language corresponding to
the syntactic categories given in Table 3.1.

DeciaratioDs

A declaration in Mini-language Core specifies one or more
identifiers that can be used as variables in a program. Each declared

68 Chapter 3

variable can take on only integer values. An integer is a positive whole
number, for example:

o 16 1776 12345

The maximum value of an integer is defined by a particular implemen
tation and may vary from one implementation to another according to
the characteristics of the host machine. However, the maximum value
will not be less than 99999999.

The execution of a statement causes actions defined below to take
place. The statements in a statement sequence are executed in the order
in which they appear. However, some statements are compound in that
they enclose other statement sequences. The execution of a compound
statement and its enclosed statements is defined below. A program
terminates normally after the execution of its last statement.

It is possible for the action specified by a statement to be
meaningless. An attempt to execute such a statement causes the
program to terminate abnormally. In addition, the execution of a loop
statement, defined below, can result in its contained statements being
executed endlessly. Hence, some programs may never terminate.

Thus there are only three possible outcomes to the execution of a
program:

• Normal termination
• Abnormal termination
• Nontermination

The exact meaning of a program is defined only for programs that
terminate normally.

Assignment Statements

An assignment statement causes the value of the expression at the
time of execution to be associated with a variable. For example, we
may have:

A := 0;
B := B + 1;

-- value of A is set to 0
-- value of B is incremented by 1

Execution of an assignment statement takes place as follows:

1. The expression given on the right of the assignment
statement is evaluated according to the rules given below. If
the expression contains any variables, their current value is
used in the evaluation.

Semantics 69

Table 3.1 Mini-language Core

program

declaration

statement

assignment-statement

if-statement

loop-statement

input-statement

output-statement

comparison

expression

factor

operand

: :=

::=

: :=

program
declaration...

begin
statement. ..

end;

dec 1are identifier [I identifier] ...

assignment-statement
if-statement
loop-statement
input-statement
output-statement

identifier := expression

if comparison then
statement...

else
statement...

end if;

while comparison loop
statement...

end loop;

input identifier [identifier] ...

output identifier [I identifier] ...

(operand comparison-operator operand)

[expression +] factor
[expression -] factor

[factor •] operand

integer
identifier
(expression)

comparison-operator : := < I = I F >

70 Chapter 3

2. The value obtained from the evaluation of the expression
becomes the current value of the variable on the left of the
assignment.

Provided that the evaluation of the expression does not terminate
abnormally, the assignment statement will execute normally.

Input Statements

An input statement causes one or more integer values to be read
from an external source, one value for each identifier given in the list of
identifiers. Subsequent execution of the same or other input statements
causes further values to be input. Each input value in the external
source must be separated by one or more blank characters, and end-of
line boundaries are treated as single blank characters. For example, if
the external data source contained

o 5
16

then the input statement

input A, B, C;

would read these values into the variables A, B, and C respectively.
For this set of data values, the input statement is thus equivalent to the
assignments:

A := 0;
B := 5;
C := 16;

There are three kinds of error that can occur during the execution
of an input statement:

1. The external data source contains fewer values than there
are identifiers in the input statement. This is an insufficient
data error.

2. The integer value read from the external data source is
greater than the maximum allowed by the implementation.
This is a size error.

Semanties 71

3. One of the characters read from the external data source
is an illegal character, other than a digit or blank. This is an
illegal character error.

If any of these errors occur, the program is abnormally terminated.

Output Statements

Execution of an output statement causes the value of each of the
variables in the list to be printed. Each value is preceded by the name
of the variable and an = symbol. For example, the output statement

output A. 8. C;

assuming that the values of A, B, and C are as given above, would
result in the output:

A = 0 8 = 5 C = 16

The output from an output statement starts on a new line and
consists of the name of a variable, the = symbol, and the value, each
separated by a single blank. The length of an output field is thus:

length(identifier) + Jength(integer-value) + 3

The length of ail output line is defined to be 72 characters. If there is
insufficient room left on a line to accommodate the next output field, a
new line is started. An output field is not split between lines unless its
length is greater than 72 characters.

There is one error that can occur during the execution of an
output statement:

• One of the variables in the list has not had a value
~signed to it. This is the undefined value error.

If Statements

An if statement is a compound statement headed by a comparison.
The. comparison allows the programmer to make a choice of which
statements are to be executed. The simplest form of an if statement
contains only a comparison and one enclosed sequence of statements,
for e?Cample:

72 Chapter 3

if (A = 0) then
INDEX := INDEX - 1;
PRODUCT := PRODUCT 0 INDEX;
output INDEX. PRODUCT;

end if;

Here, the two assignment statements and the output statement are
executed only if the variable A has the value zero. If the value of A is
not equal to zero, then none of the contained statements is executed.

If statements may have an else part, which contains an alternative
sequence of statements to be executed if the comparison is false. For
example, we may have:

if (A = 0) then
INDEX := INDEX - 1;
PRODUCT := PRODUCT 0 INDEX;
output INDEX. PRODUCT;

else
INDEX := INDEX + 1;
SUM := SUM + INDEX;
output INDEX. SUM;

end if;

Here, depending on the value of A, either the first three enclosed
statements are executed or the second three enclosed statements are
executed. An if statement terminates abnormally if the evaluation of the
operands in the comparison leads to an error, as defined below.

Loop Statements

A loop statement is a compound statement that specifies that the
statements within the loop are to be executed repeatedly for as long as
the comparison at the head of the loop is true. For example, we may
have:

while (CHANGE> 99) loop
DOLLARS := DOLLARS + 1;
CHANGE := CHANGE - 100;

end loop;

Here the value of CHANGE is compared with 99. If it is greater than
99, the two enclosed assignments are executed and the process is
repeated. If, for example, the value of CHANGE were initially 265,
then the two assignments in the loop would be executed. The value of

Semanties 73

CHANGE would then be 165 and the loop would be executed a
second time. At this point, the value of CHANGE w'ould be 65 and the
execution of the loop statement would be complete. If the initial value
of CHANGE were 65, the enclosed assignment statements would not
be executed at all.

As in the if statement, the loop statement terminates abnormally if
evaluation of the operands in the comparison leads to an error.

ExpressioDs

An expression defines the computation of a value. An expression
consists of one or more operands, separated by an operator +, - ,or •
meaning addition, subtraction, and multiplication. The operators are
evaluated in order of decreasing precedence, defined by the rules:

• The operator • has higher precedence than the + and
- operators, which have equal precedence.

• Operators of equal precedence are evaluated in textual
order from left to right.

• An expression enclosed in parentheses is evaluated to a
single value before other operators.

Table 3.2 shows a number of example expressions and the order in
which their components are evaluated.

There are two errors that can arise during the evaluation of an
expression:

1. A variable in the expression has not previously had a
value assigned to it. This is an undefined value error.

2. One of the operations leads to a value greater than the
maximum permitted value defined by the implementation.
This is an overflow error.

The occurrence of either of these errors causes abnormal termination of
the program.

ComparisoDs

A comparison consists of two operands separated by one of the
comparison operators, <. =. F. >. meaning less than, equal to, not
equal to, and greater than respectively. If v1 is the value of the operand

74 Chapter 3

Table 3.2 Evaluation of Expressions

Sequence of Equivalent
Expressions Values Computed Expressions

A+ B + C x .- A+ B (A + B) + C
y .- x + C

A- B- C x .- A- B (A - B) - C
y .- x - C

A+ B• C x .- B• C A+ (B • C)
y .- A+ x

A• B + C x .- A• B (A • B) + C
y .- x + C

A III B+ CillO X .- A• B (A • B) + (C • D)
y .- C • 0
z .- x + y

A• (B + C) • 0 x .- B+ C (A • (B + C» • 0
y .- A• x
z .- o • y

x1 and v2 is the value of the operand x2, then the result of the
comparison:

(xl < x2)
(xl = x2)
(xl #: x2)
(xl > x2)

will be true if vI is less than v2
will be true if vI is equal to v2
will be true if vI is not equal to v2
will be true if vI is greater than v2

Otherwise, the result of the comparison will be false.
Should the evaluation of one of the operands lead to an error, the

program will be terminated abnormally.

Examples

The example shown at the end of Section 2.1 and reproduced here
as Example 3.1, generates the Fibonacci series where, after the first

Semanti£8 75

program
declare COUNT, LIMIT;
declare LAST_TERM. THIS_TERM, NEXT_TERM;

begin
COUNT := 0;
LASLTERM := 1;
THIS_TERM := 1;
input LIMIT;

while (COUNT < LIMIT) loop
output LAST_TERM;
NEXT_TERM := LAST_TERM + THIS_TERM;
LAST_TERM := THIS_TERM;
THIS_TERM := NEXT_TERM;
COUNT := COUNT + 1;

end loop;
end;

Example 3.1 Program to print the Fibonacci series

two terms, each term is the sum of the previous two. If the value read
by the input statement were 10, the output would be:

LAST_TERM = 1
LAST_TERM = 1
LAST_TERM = 2
LAST_TERM = 3
LAST_TERM =5
LAST_TERM =8
LAST_TERM = 13
LAST_TERM = 21
LAST_TERM = 34
LAST_TERM = 55

Should the value read from the external data source be sufficiently
large, the program will terminate with an overflow error during the
execution of the statement:

The following is a very simple program with one assignment
statement.

76 Chapter 3

program
declare A;

begin
A :} A £ 1; -- A has not been initialized
output A;

end;

When the expression in this assignment statement is evaluated, the
variable A has had no value assigned. Thus this program terminates
abnormally and no output is generated.

3.2 DEFINING THE SEMANTICS OF A LANGUAGE

The semantics of a language give it an interpretation and provide a
meaning to its expressions, statements, and programs. The symbols
must be given an interpretation. We must be able to say, for example,
that all the values in the language are integers and that all the
operations performed on the values are operations in integer arithmetic.

In Section 3.1 we gave an informal but complete description of the
meaning of all constructs in Mini-language Core. The problem of
defining the semantics of a language is far from easy. The general goal,
of course, is to specify the meaning of every well formed program in
such a way that the programmer can understand its behavior unambig
uously. There are two important concerns. First, the definition of the
language must be complete - there must be no room for ambiguity as
to the meaning of any construct. Second, the language should be
defined in such a way that a programmer can easily refer to the
language definition in order to answer questions about the language.
These two goals, completeness and clarity, are not easy to satisfy
separately and are very difficult to achieve together.

The semantics of most programming languages are, as we have
done for Mini-language Core, defined informally. Only the context free
syntax is defined formally. The definition of the semantics is usually
through appeal to concepts presumably understood by the reader.
Several techniques are commonly used.

Appeal to Mathematical Properties

Frequently, semantics are described by reference to commonly
understood mathematical properties. When we defined the evaluation of
expressions· in Mini-language Core, for example, we appealed to the
reader's background knowledge of integer arithmetic. Programming
language conventions that limit the value that can be computed in any
expression supplement the concepts of arithmetic.

Semantics 77

The same principle applies to the definition of the semantics of
comparisons. There, we assume knowledge about the ordering of
integers and the way in which they can be compared.

Appeal to Mechanical Models of Computation

Another method of defining semantics is through the mechanical
properties of the machine. This was used in explaining the sequence of
statement execution. We assumed that the reader had in mind a model
in which statements are processed one by one, based on the way in
which computer instructions are executed. Concepts like if statements
and loop statements are explained in terms of these properties. For
example, the statements within the loop are executed repeatedly for as
long as the comparison at the head of the loop is true. Futhermore,
statements in a sequence of statements are executed one after another.
Thus the reader of a definition can make use of the idea of the step by
step execution of each statement in a program.

The concept of assignment is explained analogously. Here an
appeal is made to the idea that each variable in a program has an
associated location in which its value is stored. An assignment is
viewed as a change of the value stored in a location.

Appeal to Abstraction

A very common, but more subtle, method of explaining the
semantics of a language is by abstraction. Use is made of higher level
concepts for the phenomena being explained.

For example, data that are sent for printing on an output device,
such as a typewriter terminal, consist of a series of character codes.
Some of these character codes are printable and represent the data,
while others are not printed but control the output device, causing a
new line, tabbing, or backspace. We can define the semantics of the
output statement by the abstraction of fields in lines separated by blank
characters. The abstraction of a group of characters representing the
conceptual unit of an integer is used in describing the semantics of the
input statement. Thus the execution of the input statement can be
viewed as an abstracted operation that reads a succession of numbers
from some external source of data.

Abstraction is also used in the description of the semantics of an
array. It is viewed as a collection of items forming a table. Each item
in the array has an index, and this index uniquely denotes a component
of the array. Thus, rather than talking about computing the address of a
component or saying that the components of arrays are stored in
successive addresses in computer memory, which might not be true, we
make the simple appeal to the concept of an indexed table.

78 Chapter 3

3.3 SEMANTIC QUESTIONS

There are many questions related to the semantics of programming
languages:

• How can we. present a precise definition of a language
so that it is comprehensible to the average user?

• How can we develop correct terminology, as well as
avoid the profusion of computer jargon typically associated
with the definition of a language?

• How can we find abstractions for issues that are noted
for their excessive detail, for example, input and output or
arithmetic with real numbers?

• How can we describe the conditions under which a
program is erroneous?

• How can we isolate those portions of a language that are
dependent upon the implementation?

• Last, is there a real need for formal definitions of
semantics?

We treat these issues next.

Presentation of a Language

Programming languages are usually defined informally. Typically
such descriptions employ normal prose, mixed with the use of tables,
equations, and examples. Such is the case for the descriptions of our
mini-languages in this and the following chapters.

One of the key decisions in describing a language is the order in
which the concepts are presented. Typically, language descriptions take
a bottom-up approach; that is, low level ideas, for example, numbers,
identifiers, and character sets, are described first. The description
slowly expands to include higher level parts of the language, for
example, procedures, nesting of declarations, and, finally, programs.

This method presumes that the lower level concepts are easier to
understand, and that a slow building of the user's knowledge will
eventually lead to a comprehension of a complete program. Unfortu
nately, this method of description forces the reader to learn many
features of a language whose utility may not be apparent until much
more of the language is understood. As a result, there is some reason to

Semanties 79

believe that languages should be defined the other way around. This is
the top-down order.

In a top-down presentation, the higher level concepts are given
first, defined in terms of constructions that are to be specified later. All
of the mini-language descriptions and all of the tables describing the
syntax are arranged in this way. The category program is defined by the
first production in terms of categories defined in subsequent produc
tions.

We may argue that a top-down description of a language leads to a
more rapid comprehension. Often this is because the lower level items,
such as numbers and expressions, are common to most languages and
the reader does not have to waste time rehearsing concepts that are
already well known. More importantly, the general structure is outlined
at the beginning and the details filled in subsequently according to the
needs of the reader.

The major purpose of a language description has a considerable
bearing on the choice of method. A definition intended for beginning
programmers is likely to be organized differently from one for use by an
experienced programmer as a reference. A description intended for
beginners can appeal to little in the way of background knowledge. A
programmer using a language as a reference uses it to answer certain
questions about the language. Typical of such questions are: Is a
semicolon needed here? Under what conditions will a particular
construct lead to abnormal termination? What happens if I write this
statement? Obviously, the choice of a good organization for a reference
manual is a difficult issue and may be neither top-down nor bottom-up.
Certainly a comprehensive index to any language description is
essential.

People learn by examples, and with programming languages this is
particularly true. Unfortunately, most language descriptions do not give
realistic examples. The use of program fragments without a context or
without a concern for style and clarity is all too frequent. For example,
a construct like

while (1 < J) loop
J := J - 1;

end loop;

or even worse,

while (1 < J) loop J := J - 1; end loop;

are hardly illuminating. From their identifiers, there is no inkling of the
parts played by the variables I and J in the computation.

80 Chapter 3

It may be argued that the development of good examples is
difficult, and indeed it is. In this text, we too have occasionally used
somewhat less than meaningful examples. On this point, we can only
say, the better the examples, the better the language description.

Terminology

We now speak more about the words with which a language is
described. A reference manual for a programming language is a
compromise between a legal document describing the exact meaning of
every feature in the language and a prose description suitable for the
human reaQer. Typically, such descriptions introduce terminology and
notations that have a special meaning with respect to the computer
language. .

One of the keys to the precision and clarity with which a language
is described is the terminology used. Consider the simple and familiar
term value. A value presumably denotes some object that can be
constructed in a program. Thus it makes sense to speak of the value of
an expression, the value existing on some input or output device, or the
value returned by a function. This term is, however, used in other
contexts.

For example, we often speak of the value associated with a
parameter of a procedure, or the value of a variable given on the left
side of an assignment statement. In these contexts, the term value is
not quite so obvious. For example, the value associated with a
parameter to a procedure may, in fact, mean the location of the
corresponding argument. Similarly, the value of the variable on the left
side of an assignment statement may also denote a location, rather than
some object computed by the programmer. We consider this question in
much greater detail in Chapter 4.

Similar problems arise with the two familiar terms operator and
operation. We often speak of the additiorl operator and some times
speak of the addition operation. Similarly, we speak of the assignment
operator and sometimes of the assignment operation. Frequently, a
clear definition of these two terms is not given.

In our description of the mini-languages we have made the
following rather narrow distinction between these two terms. An
operator can be applied to values to produce another value. Thus we
speak of the addition operator or the equality operator. An operation is
an action causing an effect on the internal state of the program. Thus
we speak of an assignment operation and an input or output operation.
This difference between an operation and an operator is one we also
draw between a procedure and a function in Chapter 7.

Semantics 81

There are many such related questions. What is "scope"? What is
an "attribute"? What does it mean for an object to have a "location"?
We discuss these particular points in later chapters.

These are typical of the kinds of issues that make the description
of a programming language difficult. It is certainly true that the
description of a programming language requires a great deal of care,
and often a great deal of effort.

Speeifying Details

Many features of a programming language involve numerous
details. In Fortran, for example, the form and meaning of FORMAT
statements is quite complicated because of the many options specifying
the type and field width of items. A careful specification of all of the
format options in Fortran typically takes pages and pages of text.

Another area of particular difficulty is the detailed behavior of
arithmetic for floating point numbers. Specifying the resolution to
which each arithmetic computation is evaluated, maximum and mini
mum values, the number of significant digits, and rounding or trunca
tion conventions can be quite elaborate. Even with the simple Mini
language Core, the definition of these details is lengthy.

Errors

Programmers do not intend their programs to terminate abnormal
ly. Nevertheless, errors occur, often to the great surprise of the
programmer.

The specification of the conditions under which a program will
terminate abnormally is an important part of any programming lan
guage description. All too often the specification of error conditions is
not clearly defined.

In Mini-language Core there are several conditions that can lead
to abnormal termination of a program. These are:

1. Undefined value error. This error occurs whenever an
attempt is made to use the value of a variable that has not
been assigned a value.

2. Overflow error. This error occurs whenever an attempt is
made to compute a value greater than the maximum integer
supported by the implementation.

82 Chapter 3

3. Insufficient data error. This error occurs whenever an
attempt is made to input a value from the external data
source and no such value exists.

4. Size error. This error occurs whenever an integer value
input from the external data source is greater than the
maximum allowed by the implementation.

5. Illegal character error. This occurs whenever a character
read from the external data source is other than a digit or a
blank.

In addition, a program may be erroneous if it contains a loop that does
not terminate.

Because Mini-language Core is such a small language, it has been
possible to keep the number of semantic errors to a very small number.
In real programming languages defining all the possible execution time
errors is much more difficult, yet a complete definition must do so.

Implementation Dependeneies

It is a fond wish for high level programming languages to be
independent of the host machine and operating system on which they
run. The program that runs on machine X should also run on machine
Y without modification. To some degree, this is achieved. It is usually
possible to move a program, in one of the "standard" languages from
one implementation to another without too much difficulty. This is
because most programs make use of those parts of the language that are
well understood and avoid the fringe areas.

Nevertheless, there are some areas that commonly give problems,
for example:

• Maximum length of identifiers: Different implementa
tions of the same language, because of different machine
characteristics, may find it convenient to set different bounds
on the lengths of identifiers or discriminate between identifi
ers on different numbers of characters.

• Arithmetic precision: The different word lengths of
various machine architectures encourage arithmetic of differ
ent precision. This variance is compounded by a variety of
number representations that bring computed results that may
not be equal. For example, rounding on a two's complement
machine may not give the same answer as rounding on a
machine that uses a base ten representation.

Semantics 83

• Character sets: The character sets can be different from
one implementation to another. While it is true that the
sequence of letters in the alphabet is likely to be consistent,
other important details are not. The two most popular
character encodings are the ASCII set, which is a standard
in the United States, and the EBCDIC scheme of IBM. In
the ASCII code, the digits precede the letters; and in
EBCDIC, the letters come first.

The choice of character set is generally made by the
manufacturer of the hardware and is "built into" the
hardware. It would therefore be difficult to implement a
language that called for the ASCII character set on a
machine that was designed for EBCDIC. Every time that
two character strings were compared, special measures
would have to be used, rather than making direct use of the
hardware instructions.

Even beyond these kinds of issues, there is a tacit assumption that the
implementation has adhered to the "standard" definition of the
language. All too often this is not the case.

The definition of a language must therefore take care to separate
those parts of the language that are to be consistent across all
implementations from those that are left to the implementor's discre
tion. The parts beyond the core part of the language can be divided into
three categories:

1. Minimum requirement. The definition may specify some
minimum requirements, for example, the minimum number
of characters used to distinguish between identifiers and a
minimum for the largest number that can be represented. An
implementation may make extensions beyond this minimum,
however, a program that makes use of identifiers that are
longer than the specified minimum might not be transporta
ble from one implementation to another.

2. Implementation defined. This is closely connected to the
first category in that the language specification would require
that the documentation supplied by the implementor should
augment the language definition by supplying certain details,
such as the maximum number of characters used in discrimi
nating identifiers.

3. Deliberately undefined. Certain details of a language can
be left explicitly undefined, for example, the order in which
subscript expressions in an array reference are evaluated. By

84 Chapter 3

leaving them deliberately undefined, the programmer would
know that programs that depend on these details are likely
not to be movable from machine to machine; indeed,
different versions of the same compiler may treat them
differently.

In any case, a complete definition of a language must adopt a position
on all details of the language.

Need For Formal Definitions

Computer science has already made considerable progress without
having a generally accepted formal technique for defining programming
languages, just as the English language was well developed before the
advent of Johnson's Dictionary of the English Language in 1755.
However, the lack of general use of formal definitions has not been
without severe consequences. For example:

• Language designers do not have good tools for careful
analysis of their decisions.

• Standardization efforts have been impeded by the lack
of an adequate formal notation.

• It is impossible to make a contract with a vendor for a
compiler and be assured that the product will be an exact
implementation of the language.

• It is difficult to write reference manuals and tutorial
texts without glossing over critical details.

• The answers to detailed questions about a programming
language frequently have to be obtained by trying an
implementation or hoping for a consensus from several
implementations.

Most of these problems would be avoided if there were good
formal definitions for the languages. There would then be a single place
for the precise details of each language, and no question would be left
unanswered. Importantly, there would be a tendency to improve the
design of a language by bringing its complexities out into the open. It is
easy to say, "Language X is block structured and jumps out of blocks
are permitted." But without a formal description of language X, the
consequences are not so obvious.

Semanti~s 85

Among the characteristics that are important to the successful use
of any method are:

1. Completeness: There must be no gaps in the definition.
In particular, there must be no questions about the syntax or
semantics of the language that cannot be answered by means
of the definition.

2. Clarity: The user of the definition must be able to
understand the definition and to find answers to his questions
easily. While it is obvious that some facility with the
language is essential before being able to understand the
definition fully, the amount of effort required should be
small.

3. Naturalness: The naturalness of a notation has a very
large effect on the ability of a user to understand a
definition. The naturalness of a notation is more important
than its conciseness, although there is a relation between the
two.

4. Realism: Although the designer of a language may wish
to be free from such mundane restrictions as finite numeric
ranges and bounded storage, these restrictions are realities of
an implementation. The definition provided by the designer,
which is the implementor's manufacturing specifications,
must specify exactly where restrictions or choices can be
made and where the designer's unobstructed landscape must
be modeled exactly.

3.4 FORMAL DESCRIPTIONS OF PROGRAMMING LANGUAGES

As explained, there is a need for the precise and understandable
specification of programming languages. Many different techniques
have been attempted. The methods that have been used range from
simple context free grammars with informally described semantics to
complete mathematical definitions. In this section we will discuss some
of the techniques used in completely formal definitions.

A full discussion of formal definition techniques is far beyond the
scope of this text. The reader who wishes a more detailed introduction
to this area is referred to the paper [Marcotty et a1. 1976]. In this
section, we simply highlight three dominant definition techniques.

86 Chapter 3

Operational Definitions

One of the earliest proposals f~r the rigorous definition of a
programming language was Garwick's suggestion [1963] that an actual
implemention be used. The major objections to this technique are the
inevitable encroachment of the host hardware into the language being
defined and the restricted availability of the definition. To escape these
objections the IBM Vienna Laboratories developed the idea of a
hypothetical machine as proposed in [McCarthy 1962], [Elgot and
Robinson 1964], and [Landin 1965] on which to make an implementa
tion. This work led to the Vienna Definition Language (VOL) and was
used originally for a formal definition of PL/I [Lucas and Walk 1969].

In VOL a formal definition is based on a hypothetical computer
that is not based on any real hardware. This is the abstract machine, as
shown in Figure 3.1. It has a state with general components and some
primitive instructions. The meaning of a program is defined by the
sequence of changes in the state of the abstract machine as the program
is executed. The rules of execution are defined by an algorithm, the
Interpreter.

To make a distinction between those properties of a program that
can be determined statically and those that are intrinsically connected
to the dynamics of the program's execution, the original program is
transformed into an abstract form before execution. This transformation
is performed by another algorithm, the translator, which corresponds to
the early phases of a compiler in a real implementation. During the
transformation, the context sensitive requirements on syntax can be
checked.

The state of the abstract machine used as the base of a VOL
definition of Mini-language Core would have five components:

1. The program: the abstract program constructed by the
translator.

2. The control: defining the part of the abstracted program
currently being interpreted

3. The store: the storage part of the abstract machine

4. The input file

5. The output file

The idea underlying this type of formal definition is that, although
the abstract machine is divorced from reality, it is simple enough that it
is impossible to misunderstand its operation. Once the abstracted

Semantics 87

ABSTRACT
MACHINE

INTERPRETER

SOURCE
PROGRAM

,-----------_ ABSTRACTED
TRANSLATOR

PROGRAM
INPUT ------- ---1---....
DATA ------...,~

Figure 3.1 The VDL definition scheme

OUTPUT
DATA

program has been understood, one merely has to trace through it, step
by step, to determine its precise meaning.

Axiomatic Definitions

The axiomatic definition differs significantly from the operational
approach just described. Instead of relying on a model of execution, the
definition of the constructs of the language is designed so that it is
possible to prove properties about programs built from the constructs.
The meaning .of aconstruct is given in terms of assertions about the
computation state before and after execution of the construct. The
definition associates an axiom with each kind of construct in the
language. The axiom states what can be asserted after execution of the
construct based on what was true before. Thus the definition of a
statement can be expressed as:

P I (statement} P

Here, P I is the set of assertions that are true before execution of the
statement, and P the set of assertions that can be derived from P I after
execution of the statement.

For the assignment statement, we have the axiom

P[expression -+ identifier] (identifier: = expression} P

The notation P[expression -+ identifier] denotes the set of assertions
obtained from P by replacing all occurrences of the identifier by the
value of the expression. In a sense, the axiom for assignment appears
to be the wrong way around, since we are deriving the assertion that
must be true before assignment from the assertion that is true

88 Chapter 3

afterward. This initially counter-intuitive definition reflects the fact that
any assertion derived after execution of the statement must be true
when the identifier is replaced by the expression before execution of the
statement. Thus, for example, we have

(A + B + C) > 0 (0 ;= A + B;) (0 + C) > 0

As another example, consider the loop statement of Mini-language
Core

while comparison loop
statement...

end loop;

We know that when the loop terminates, provided that it does, the
comparison will be false. In addition to asserting that the comparison is
false, it will be possible to make other assertions after execution of the
loop. These will depend on what was true before the loop was executed
and on the effect of executing the sequence of statements contained in
the loop. Since it is impossible to assert how many times the loop will
be traversed, it is only possible to state that those assertions Pinv that
were true before execution of the loop and that are not made false by
execution of the loop will still be true after the loop has terminated.
These assertions are known as the loop invariant. Thus, the axiom for
the loop statement is

Piny (loop-statement) Piny & not(comparison)

Axiomatic definitions of the statements show nothing about how
the statements are executed. They describe only assertions about
values before and after execution. Our attention is turned away from
the mechanics of execution toward more static and easier to observe
objects, assertions. The assertions that are true after executing one
statement are those that are true before executing the next statement.
By using the first-order predicate calculus to link assertions, it is
possible to derive assertions about results at termination of the entire
program.

The technique of axiomatic definition grew out of work described
in [Floyd 1967], where assertions were attached to links of flowcharts.
The application to the definition of programming languages has been
mainly developed in [Hoare 1969]. It was used to define some of the
semantics of Pascal in [Hoare and Wirth 1973].

Semantics 89

Denotational Definition

This approach to the definition of semantics is based on the idea
that every construct in the programming language can be defined in
terms of mathematical entities that model their meaning. These entities
are the denotations. As a very simple example of this, we can say that
the expressions (4 + 2), (12 - 6), and (2 • 3) all denote the same
number, the number denoted by 6.

The denotational approach to defining semantics was developed
by Strachey and Scott, e.g. see [Scott and Strachey 1972]. Over the
years this method of defining semantics has gained considerable
popularity. It can be argued that this method is the only one that
addresses fundamental semantic issues. Unfortunately, it has been often
associated with a great deal of specialized and often complex notation.
This has hampered the understanding of its underlying ideas.

Two of the most important of these are the concepts of an
"environment" and a "store." An environment is viewed as a function
that maps identifiers into locations. The identifiers are those existing in
a program. The locations are abstract entities somewhat similar to
those needed in an underlying implementation. For example, in a
program with two declared identifiers, say A and B, the environment
for thi~ program would be denoted as:

A -+ location-l
B -+ location-2

This function intuitively reflects the idea that the declaration of a
variable also implicitly introduces a declaration of a location in which
its values can be stored.

The idea of a store is also modeled as a function. In the above
case, we would have a store mapping each location into some value
that can be stored in the location, for example:

location-l -+ value-l
location-2 -+ value-2

With this greatly oversimplified view of the method, we can take a view
of semantics as follows.

The semantics of a declaration is a function mapping an
environment and a store into a new environment and store. The new
environment is derived from the old by the addition of an identifier
mapped into some newly created location. The new store is derived
from the original store by mapping this location into an initially

90 Chapter 3

undefined value. The semantics of a statement is a mapping from a
store into a new store where the new store is derived from the original
store by updating the value associated with a location. One must also
introduce abstract definitions of both input and output files in order to
define the semantics of a program involving input-output.

More generally, we may view the semantics of a "program" as a
mapping from an input and an output file into a new input and output
file. In order to define this mapping we need to ~efin~ the concept of a
state. A state is defined as a 4-tuple consisting of ~he following:

<Environment, Store, Input-file, Output-file>

The state is used to model the internal behavior of the program.
One of the important ideas associated with this method of

semantic definition is the "undefined" value. An undefined value is
treated just as any other value; for example, evaluation of an
expression may produce an undefined value if an error is detected
during its evaluation. In particular, the domain of integers introduced
by Mini-language Core may be viewed as a set of objects containing
the whole numbers through the maximum integer of the implementation,
plus the undefined value. The undefined value is used to model error
conditions.

A full discussion of this method of semantics takes us into the
very deep foundations of programming languages. Rather than attempt
any more than a brief introduction, further readings on this topic are
suggested at the end of this chapter.

Interrelation of the Three Approaehes

The aim of the definition of a programming language is to specify
the meaning of all programs in that language. A compiler provides one
such definition. To get the semantics of a particular program, it is
necessary to determine its behavior under the standard implementation.
This is expressed as ~ machine state transformation of the computer.
This involves ail the details of the compiler and the supporting
op~rating system~'The problem of proving the correctness of any other
implementation under these circumstances is horrendous.

In order to simplify this definition we can use a simpler abstract
machine and supporting system. This is the operational approach.
Although it is simpler than an actual complier, the problem of proving
implementation correctness is still very difficult.

The denot~tional method specifies a mathematical "value" for
each construct in the language. It also allows us to talk about equality;

Semantics 91

two constructs are equal if they both denote the same value. Thus the
task of proving two implementations equivalent now becomes one of
demonstrating that they are both realizations of the same mathematical
objects. To express it in this way is by no means to dismiss the
problem as now simple; it is still extremely difficult, particularly for a
large language; however, it is now conceptually much easier.

The axioms of a language are really theorems on the mathematical
entities of the corresponding denotational definition.

It is not helpful to regard these three approaches as competing or
that one method is better than the other. They are really different
aspects of the same problem. The operational approach is likely to be
of most value to the implementor, since it describes the language in a
familiar algorithmic metaphor. The axiomatic definition should give the
programmer the tools needed to prove the correctness, formally or
informally, of a program. Finally, denotational definitions are likely to
help the language designer, since they bring out the underlying
mathematical structure of the language.

3.5 THE CORRECTNESS OF A PROGRAM

It is a common view that a program is either correct or incorrect.
Correctness is thus viewed as some kind of absolute property of a
program. Strictly speaking, this view may be .valid, but in practice it is
not always helpful.

The language definition, the programmer, and the user of a
program all provide different views of correctness. The following is a
list of various interpretations of correctness in order of increasing
difficulty of attainment.

1. The program contains no context free syntax errors.

2. The program contains no context free or context sensitive
syntax errors.

3. The program contains no syntax errors and executes to a
normal termination.

4. The program contains no syntax errors and there exists
some set of input data for which the program executes to
normal termination to yield the correct result.

S. The program contains no syntax errors and, for a typical
set of input data, executes to normal termination to yield the
correct results.

92 Chapter 3

6. The program contains no syntax errors and, for deliber
ately difficult sets of test data, executes to normal termina
tion to yield the correct results.

7. The program contains no syntax errors and, for all
possible sets of input data that are valid according to the
problem specification, executes to normal termination to
yield the correct results.

8. The program contains no syntax errors and, for all
possible sets of input data, executes to normal termination to
yield the correct or reasonable results.

The beginning programmer will, for a short while, be happy with
levels 1 or 2. Eventually the programmer will generally be satisfied
with level 6. The user, of course, would like to see all programs at level
8 but must come to realize that this may be prohibitively expensive.

From the point of view of the definition of most programming
languages, any program that has no syntax errors and executes to
normal termination is a correct program and has a meaning. That the
program does not produce correct results from the programmer's point
of view does not destroy its validity. It is still a correct program written
to a specification other than the one that the programmer intended.

Some languages allow the programmer to include assertions as
part of the program. These can then be checked against the statements
in the program either during compilation with the help of a theorem
prover, or during execution with extra machine instructions. For such
languages, the programmer's view of correctness of results has some
meaning. However, it should be remembered that the statements and
the assertions are really two different ways of saying the same thing.
All that can be checked is that these two versions match. There can be
no guarantee that what was written down matched what the program
mer or user had in mind.

3.6 A FURTHER VIEW OF TRANSLATION

In Section 2.5 we described how, during compilation, the source
program is converted to the abstract program. In this section we review
the conversion of the abstract program to the object program. This
phase of the compiler often involves two parts, optimization and code
generation.

abstract ~optimization
program

Semantics 93

abstract code generation- object
program program

The goal of optimization is to make the object program as small
and as fast as possible. To do this, transformations are applied to the
abstract program that make it more efficient but do not change its
meaning. The term optimization is a misnomer, since to produce a
truly optimal version of a program would generally involve discarding
the original program and substituting the best possible algorithm for
performing the desired task. All that can generally be achieved is a
better program than can be produced without optimization.

Typical transformations that can be done during optimization are:

II Folding: performing operations whose operands have
values that are known at during compilation.

For example,

I := 4 + J - 5;

can be transformed to

I:=J-l;

A less obvious example is that the pair of assignments

I := 3;
J := I + 2;

can be transformed to

I := 3;
J := 5;

• Elimination of redundant operations: This generally
involves factoring out common subexpressions.

For example, the three assignments

94 Chapter 3

A :; 6 • (8 + C);
o := 3 + 7 • (8 + C);
E := A• (8 + C);

can be transformed to

TEMP := 8 + C;
A := 6 • TEMP;
o := 3 + 7 • TEMP;
E :; A• TEMP;

where TEMP is a new variable created by the compiler to hold the
value B + C.

• Loop·optimization: Usually this means moving expres
sions whose values do not change within a loop out of the
loop.

Consider, for example, the Mini-language Core loop statement:

while (COUNT < LIMIT) loop
input SALES;
VALUE := SALES • (MARK-UP + TAX);
output VALUE;
COUNT := COUNT +1;

end loop;

The computation of the value MARK-.UP + TAX is performed each
time the loop is executed, yet its value does not change. The loop is
transformed to

TEMP := MARK-UP + TAX;
while (COUNT < LIMIT) loop

input SALES;
VALUE := SALES • TEMP;
output VALUE;
COUNT := COUNT +1;

end loop;

Although the examples of optimization transformations just given
are shown as transformations of the source program, in most compilers
it is the abstract program that is transformed. In all cases, the

Semantics 95

transformation must preserve the meaning of the program. Depending
on the skill with which the source program was written, factors of about
two in improvement may be obtained by using optimization techniques.

The transformations during optimization are generally independent
of the target machine for the compilation. The characteristics of this
machine become of great importance during the final stage of the
compilation. At that point, the abstract program is translated into the
machine instructions of the target machine and the object program is
output in a form suitable for the target machine's operating system.
Some functions called for in the program may require the use of library
subroutines. The code generation stage must construct the necessary
calls for these subroutines so that they can be incorporated in the final
object program.

Even during the code generation phase some transformations akin
to those that are done during optimization can take place. The
difference between these and the previous ones is that the characteris
tics of the target machine are taken into account. Typical of these
transformations is the movement of constant address calculations to the
outside of loops.

With all the optimization transformations, it is essential that the
meaning of the program not be changed. The compiler must make a
very careful analysis of the program to make sure of this and, if there is
the slightest doubt, the form of the program must be left unchanged.
We shall see in later chapters that the design of a language can have a
profound effect on what transformations can be performed.

FURTHER READING

On a subject as broad as semantics the possible readings are numerous. We list
but a few.

The general subject of language design and semantic issues, in particular,
are treated in [Hoare 1973] and [Richard and Ledgard 1977]. Both of these
papers are quite readable and tend to emphasize directions in design, rather
than specific proposals for improvement. A much more rigorous but somewhat
less readable exposition of the language design area is given in [Ichbiah et al.
1979]. This document, "Rationale for the Design of the Ada Programming
Language," examines almost every area of language design.

Another view of the programming languages is given in lStrachey 1972).
This short report presents a thoughtful analysis of programming languages by
simply discussing the kinds of objects denoted by programming constructs.

In the area of formal definition, a rather elaborate survey is given in
[Marcotty et al. 1976]. This paper not only surveys the area of formal
definition techniques but presents a small language similar to Mini-language

96 Chapter 3

Core whose syntax and semantics are defined using four different formal
techniques.

Another comparative view of formal definition techniques is given in
[Donahue 1976]. Papers on the origins of definition techniques include the
work in [Strachey 1966] and [Landin 1964].

The Vienna Definition Approach to defining semantics has received
considerable attention in the literature. A fundamental paper on this topic is
[Lucas and Walk 1971]. A further description of this technique can be found in
[Lee 1972].

The functional or denotational approach to defining semantics has evolved
over the years. Surveys of this approach are given in [Stoy 1977] and [Gordon
1979]. Of these, the text by Stoy is more comprehensive, and the paper by
Gordon is more readable to the uninitiated. The origins of this approach are
discussed in [Scott and Strachey 1972] and [Scott 1970]. A fairly comprehen
sive bibliography on this approach is given in [Donahue 1976]. A survey of
this approach is also given in [Tennent 1976].

There are a large number of works on axiomatic definition of languages
and proofs of program correctness. The early work by Floyd [1967] gives one
of the first attempts at work in this area. Also of importance are the work
[Hoare 1969] and the classic axiomatic definition of Pascal given in [Hoare
and Wirth 1973]. Again, a good bibliography in this area as well as a
comparison of axiomatic approaches with the denotation approach is given in
[Donahue 1976].

EXERCISES

Exercise 3.1 Defining a Language

The description of Mini-language Core was quite carefully writ
ten. Nevertheless, a thorough reading of the description reveals a
number of points in which the exact meaning of a program is not
explicitly stated. Enumerate four such points.

Note: Problems like those found above are commonplace in language
descriptions. In commonly used (and thus much larger) languages, the
possibilities for imprecision are much greater.

Exercise 3.2 Programming in Mini-language Core

The numbers on the pages of a book go in ascending order; the
first page is 1, the second 2, and so forth.

Semantics 97

If you are a typesetter in a printing shop, you need to have
sufficient digits to print the page number for each page. For example, in
a book with only 51 pages, you need:

5 Zeros
16 Ones
15 Twos
15 Threes
15 Fours

7 Fives
5 Sixes
5 Sevens
5 Eights
5 Nines

Assuming you never have to print a book with more than 1,000
pages, write a program in Mini-language Core to input the number of
pages in a book and to output the number of each digit required.

Exercise 3.3 Proofs of Correctness

The following program computes the greatest common divisor of
X and Y.

program
declare X, Y, GCD

begin
input XI Y;
while (X F Y) loop

if (X > Y) then
X := X- Y;

else
Y := Y- X;

end if;
end loop;
GCD ;= X;
output GCD;

end;

Using the mathematical properties of greatest common divisors, for
example,

gcd(X, Y)
gcd(X, Y)

gcd(Y, X)
gcd(X+Y, Y)

give a formal proof of correctness for this program.

98 Chapter 3

Exercise 3.4 Writing a Reference Manual

Consider the following strange looking language.

A program is a sequence of string replacement rules of the
form

L -+ R

where Land R are strings of characters. Some of the rules
may have a period after the arrow, as in

L -+. R

A replacement R which is denoted by an empty right side.
The input to each program is itself a character string.

A program is executed as follows. The sequence of rules is
scanned for the first rule, such that the string L given on the
left side occurs within the input string S. Then the leftmost
occurrence of L within S is replaced by R, giving a new
input string S I. This process continues until a rule with a
period is execqted, or until no substitution is possible, at
which point the program terminates.

The final value of the input string is the output of the
program.

This language is known as a Markov Normal Algorithm (1954] and
can, in fact, express any computable operation. For example, the
program

B -+ 0
C -+ F
0 -+ I

transforms the
program

B -+ 0
C -+. T
0 -+ I

string COBBLER into the string FIDDLER, and the

transforms the string COBBLER into the string TODDLER.

Semantics 99

Consider also the following program for taking a parenthesized
string of letters from the alphabet {I, 0, N, X} and producing a string
where the initial letters are reversed:

11° -+ 1°1
10° -+ 0°1
IN° -+ N°r
IXo -+ XOI

01· -+ 1°0
00· -+ 0·0
ON· -+ N·O
OXo -+ X·O

NIo -+ ION
NOo -+ OON
NN° -+ N°N
NXo -+ XON

Xlo -+ I·X
XO· -+ OOX
XN· -+ N°X
xx· -+ X·X

(1° -+ I(
(0° -+ O(
(N° -+ N(
(XO -+ X(

() -+.

) -+ 0)

For example, the input

(lNNOX)

gives the output

(XONNI)

Now for the exercise. Write a reference manual for this "programming
language."

100 Chapter 3

Exereise 3.5 Proper Terminology

Imagine for the moment that you are writing a glossary of terms
for Mini-language Core. Give precise definitions for each of the
following terms, using at most two sentences for each definition:

program
declaration
statement
identifier
expression
comparison

integer
value
operator
operand
location

Semantics 101

Exercise 3.6 Optimization

The following program in Core does not do anything sensible.
However, apply the optimization techniques of folding, elimination of
redundant operations, and loop optimization to transform it into a more
efficient program.

program
declare A, B, C, 0, E, F;

begin
B := 1;
C := 2;
while (C < 10) loop

A := B + C;
o := A - B;
if (A > 3) then

F := E + 1;
end if;
while (E < 5) loop

o := CoD
if (F < X) then

o := B + C;
F := F + 1;
E := E + 1;

else
E := 5;

end if;
end loop;
C := B + C;
E := A - B;

end loop;
B := CoD;
C := B - 0;
output A, B, C, 0, E, F;

end;

Explain and justify each transformation that you make.

Dominant Features

,.

• -1

4
Names, Locations, and Values

A programming language is designed for the manipulation of objects, for
example, numbers, st!ings, people's names, colors, and so forth. An
object that is to be operated on by a program has two attributes:

1. The place where it is stored; this is its "location."

2. Its value; this value may change during the course of the
program's execution.

We use the term location rather than address, since address is a
hardware concept that may have no meaning in a programming
language. An object can occupy only one location, yet it may occupy
several hardware addresses. For example, on a byte-addressed machine,
a number may occupy more than one byte. The value of a pointer
variable in PL/I may often be thought of as an address, and the built-in
function ADDR encourages this thought; in fact, the pointer value might
not be a physical address but an index into a vector of actual addresses.
In general, for a given location, we can always obtain the value that is
stored there.

The objects manipulated by a program are identified by names.
However, sometimes names are used to mean the location of an object;
and, at other points in the same program, the name can be used to mean
the value stored at that location. Thus, in the Fortran statement

J =J + 1

106 Chapter 4

the J on the left is used to refer to a location, while the one on the right
means the value stored at that location.

In the following excerpt from Lewis Carroll's Through the Looking
Glass, the White Knight demonstrates the problem:

" ...The name of the song is called 'Haddocks' Eyes'!"
"Oh, that's the name of the song, is it?" Alice said, trying to

feel interested.
"No, you don't understand," the Knight said, looking a little

vexed. "Thafs what the name is called. The name really is 'The
Aged Aged Man.' "

"Then I ought to have said 'That's what the song is called'?"
Alice corrected herself.

"No, you oughtn't: that's quite another thing! The song is
called 'Ways and Means': but that's only what it is called you
know!"

"Well, what is the song then?" said Alice, who was by this
time completely bewildered.

"I was coming to that," the Knight said. "The song really is
'A-Sitting on a Gate': and the tune's my own invention."

The White Knight is showing the difference between:

1. the song - "A-Sitting on a Gate"
2. What the song is called - "Ways and Means"
3. The name of the song - "The Aged Aged Man"
4. What the name is called - "Haddocks' Eyes"

Consider the statement about a program:

The value of the variable X is pi.

This really means:

X is the name of the place where the number called pi is
stored at this moment.

Thus, to draw a parallel with the White Knight's distinctions:

1. The number - 3.1415926535
2. What the number is called - pi
3. The name of the number - some location in storage
4. What the name is called - X.

If we return to our example of the Fortran assignment

Names, Locations, and Values 107

J = J + 1

we can clarify the problem by saying that the J on the left gives a
reference and the J on the right gives a value. Thus a reference
identifies a location at which a value is stored. Some writers use the
terms I-value (left value) for location and r-value (right value) for the
value stored in the location.

Mini-language Ref, defined next, will help clarify some of the
issues involved in names.

4.1 MINI-LANGUAGE REF

Mini-language Ref derives its reference mechanism from Algol 68. Its
context free syntax is defined in Table 4.1.

A program consists of a sequence of declarations followed by a
sequence of statements. Each identifier used in these statements must
appear exactly once in the declarations.

A declaration associates a type with one or more identifiers. The
type of an identifier defines the type of value to which it may refer or
represent. The value can be a constant, in which case the type integer
constant, followed by an = symbol and the value. The value can also
be a variable, in that case, the type specification is integer preceded by
zero or more re f symbols.

If we declare the value associated with an identifier to be constant,
for example

dec lare PAGE _LENGTH: integer constant = 63;

then the identifier essentially becomes a notation for the constant value.
The two assignments

X := PAGE _LENGTH;

and

X := 63;

are exactly equivalent. The symbol = in the declaration indicates that
the identifier is identically equal to the given value throughout the
program; it cannot be changed. This has two advantages: the meaning of
the constant value in the program is more easily understood from the
name than its value and, should the value have to be altered, only one
statement in the program would need to be changed.

108 Chapter 4

program

declaration

type

statement

Table 4.1 Mini-language Ref

: := program
declaration...

begin
statement. ..

end;

: := dec 1are identifier [I identifier]... type

integer constant = integer
[ref ...] integer

assignment-statement
input-statement
output-statement

assignment-statement · . identifier := expression

input-statement · . input identifier [identifier] ...

output-statement · . output identifier [I identifier] ...

expression · . [operand +] operand

operand · . integer
identifier

integer;
integer constant = 1;

Names, Loeations, and Values 109

If the value associated with the identifier is to be variable, then
there are many different kinds of values that can be associated with the
identifiers, depending on the type specifications.

If the type specification does not contain any occurrences of the
symbol ref then the associated identifiers refer to integer values. If the
type specification contains a single ref symbol, then the values to which
the associated identifiers refer are themselves references to integer
values; that is, the values identify locations in which integer objects are
stored. If the type specification contains two re f symbols, then the
values to which the associated identifiers refer are references to
locations that contain references to integer values, and so on.

In each case, starting with an identifier and following the chain of
references, one eventually finishes at a location that contains an integer
value. The number of links is defined by the number of ref symbols in
the specification of the type. Since the language does not impose an
upper bound on the number of ref symbols in a declaration, there are
arbitrarily many different types in any program.

The executable statements are assignment statements, input state
ments, and output statements, all of which have familiar syntax.

Consider the very simple program:

program
declare X
declare ONE:

begin
input X;
X := X+ ONE;
output X;

end;

This program reads in a positive integer value, adds one to the value,
and prints the result.

This simple program uses an identifier that refers directly to an
integer value similar to the variable A in the declaration:

declare X: integer;

This variable, like all variables, must be given a value, either by
assignment or input, before it can be used in an expression.

When we declare a variable as having the type integer constant,
we are saying that the identifier is identically equal to an integer value,
that is, the mode of the identifer is integer. The identifier X declared to
be of type integer has associated with it an integer value that can change
during program execution.

110 tbapter 4

Since X refers to integer values, its mode is reference-to-integer.
Compare this with the variable B declared as:

declare Y: ref integer;

Here Y is a variable that refers to reference-to-integer values. Thus the
mode of Y is a reference-to-reference-to-integer.

Executing the assignment

Y := X;

sets the value of Y to be a reference to the integer value to which X
refers. Executing the assignment

X := 7;

does not change the value of Y, still a reference to the integer value to
which X refers, but it does change that integer value. Thus the integer
value that is at the end of the chain of references that starts with the
identifier Y is changed.

To obtain the integer value at the end of this chain of references,
the value of Y must be dereferenced twice, corresponding to the two
occurrences of references-to in the mode of Y. This mechanism is
extended for variables declared with more than one re f symbol.

The operator + represents addition. To evaluate an expression that
consists of the + operator and operands that are identifiers, the value of
each identifier must be dereferenced as many times as needed to obtain
an integer value.

For an assignment statement to be legal, the identifier on the left
must not be declared with integer constant and one of the following
must be true, either:

1. The expression consists of more than operand, a single
identifier that has been declared to be an integer constant or
an integer,~identifier on the left is declared without
any re~~mbol~

2. There is an identifier on the right side, and the number of
~in the declaration of the identifier on t~ left side
is at most one greater tbaD tbe BUDlbe; of re f §Ymho.ls in the
aeclaration of the identifier on the right side:-

For example, given the declarations

Names, Locations, and Values III

declare A: integer constant = 5;
declare B: integer;
declare C: ref integer;
declare 0: ref ref integer;

both the assignments

B := A:
C := 0;

satisfy the requirements above. On the other hand, the assignments

C := A;
o := B;

both violate the conditions and are thus illegal.
Execution of a legal assignment is as follows:

1. The expression consists of more than one operand, a
single identifier declared with the type integer constant or an
integer.

The value of the expression (which by definition is an
integer value) is copied into the location associated with the
identifier on the left.

2. The expression is an identifier.

tase 2.1: The number of ref symbols in the declaration of the
identifier on the right is one less than the number of ref
symbols in the declaration of the identifier on the left.

In this case, a reference to the location associated with
the identifier on the right is copied into the location associ
ated with the location on the left.

tase 2.2: The number of ref symbols in the declaration of the
identifier on the right is greater than or equal to the number
of ref symbols in the declaration of the identifier on the left.

In this case, the value contained in the location associ
ated with the identifier on the right is obtained. This value
refers to a location. This value is dereferenced, that is, it is
replaced by the value contained in the location to which it
refers. The dereferencing operation is performed a number oL

..fu!!..es equal to the excess number of ref symbols in the.
declaration of the identifier on the left. The resulting value is
,.-------_.--' -

112 Chapter 4

..gopied into the location associated wi~h __~he identifier on the
left. ---

For the assignment to be executed without error, it must be possible to
perform the required number of dereference operations. Notice that in
case 2.2, each time a value is obtained from a location, that location
must contain a defined value; that is, the location must have had a value
assigned to it either by an assignment statement or by an input
statement.

Input and output statements specify the reading and writing of
integer values. On input it must be possible to dereference each
identifier by the number of ref symbols given in its declaration. On
output it must be possible to dereference each identifier in the output
statement fully to obtain an integer value. Otherwise, the input or output
action is in error.

As an illustration of the dereferencing mechanism, consider the
program of Example 4.1. After the fifth assignment has been executed,
two chains of references will have been set up and the state will be as
shown schematically in Figure 4.1 .. Note that REF_REF_INT_F has
not been assigned a value.

program
declare INT_A, INT_B: integer;
declare REF_INT_C, REF_INT_D: ref integer;
declare REF_REF_INT_E, REF_REF_INT_F: ref ref integer;

begin
INLA := I;
INLB := 2;

REF_INT_C := INT_A;
REF_INT_D := INT_B;

REF_REF_INT_E := REF_INT_C; -- state shown in Figure 4.1

REF_INT_C := INT_B; -- state shown in Figure 4.2

INT_A := REF_REF_INT_E;
input REF_REF_INT_E; -- state shown in Figure 4.3
output REF_INT_D;

end;

Example 4.1 Dereferencing in Mini-language Ref

Names, Locations, and Values 113

I RE~INU I ~
6H ,L)>---1--0

IRE~~NTj) I I INT_B

• <
,

) -0INU

Figure 4.1 State after execution of the fifth assignment of Example 4.2

The next assignment

causes the value of REF_INT_C to refer to the location associated with" :
INT_B. No other value is changed. The situation after executing this
statement is as shown in Figure 4.2.

I RE~~NT_D I I IN,-"

Figure 4.2 State after executing REF_HLC

114 Chapter 4

The final assignment causes the value of REF_REF_INT_E to be
dereferenced twice to obtain the integer 2, which is copied into the
location associated with INT_A. The input statement causes a value,
say 3, to be read from the input file and assigned to the variable found
by following the chain starting at REF_REF_INT_E. The semantics of
Mini-language Ref require that this chain be set up by a sequence of
assignment statements before an input statement is executed. The result
is depicted in Figure 4.3. The final statment thus prints the value 3.

Notice that an attempt to execute

in place of the given output statement is in error, since the value of
REF_REF_INT_F is undefined and cannot be dereferenced to produce
an integer.

4.2 DECLARATION AND ASSIGNMENT

Consider a declaration of a variable, such as:

declare A: integer;

This states that A is the name of a variable. A variable has two things:

a. A location
b. A value

Thus associated with the name A is a reference to a location, one that
can contain a particular kind of object; in this case, an integer object.
This association may be represented pictorially as:

A declaration of a variable creates this structure with an
undefined value in the location. Once the location associated with the
identifier A has been created, it cannot be changed although the value
stored in the location can be. The identifier A is said to be bound by
the declaration. Since A always refers to a location that can only
contain an integer object, it always refers to an integer.

Names, Lo~ations, and Values 115

Figure 4.3 Final state of Example 4.1

Ne~t consider the assignment:

A := 5;

Execution of this statement puts a copy of the integer object 5 into the
location associated with the identifier A, giving:

A new variable does not have a value until it has been explicitly
assigned. A program that attempts to obtain the value of a variable
before it has been assigned is in error.

The digit 5 is the name of a constant whose value is the integer S.
The role of locations is made clear in Algol 68, where the declaration

real x

is an abbreviation for the declaration:

ref real X= loc real

Here X is a constant whose value is a reference to a real value; loc real
is a generator that acquires the location that is to be defined as the value

116 Chapter 4

of X; that is, X is identically equal to a reference-to-real value that is
given by IDe real. In this case we have

Thus

real X

really declares X to be the name of a constant value, the location where
a real value may be stored. Thus the location associated with X cannot
change, but the real value that is stored in the location can.

Returning to our mini-language, consider the declaration

declare AI B: integer;

and the statements:

A := 5;
B := A;

By the second assignment we mean: obtain the value associated with A
and copy it into the location associated with B. Thus, the execution of
this second assignment may be represented as:

It is possible to have more than one name referring to a single
value. For example, in Mini-language Ref, consider the declaration

declare REF_A: ref integer;

Here REF_A is a variable that refers to a location that can contain
reference-to-integer objects. Such a variable is somewhat like a PL/I

Names, Locations, and Values 117

pointer variable, but is constrained to take only values that are
references-to-integers.

Next consider:

declare Al B: integer;
declare REF_A: ref integer;
A 5;
REF_A A;
B REF_A;

The declarations set up the following:

undefined integer
value

undefined integer
value

Note that a location can only contain objects of a particular type. For
this reason, we use different shapes in the diagrams.

The assignment

causes the location associated with A to be assigned to the location
associated with REF_A.

Thus A and REF_A both refer to the same integer value, though
REF_A refers through an extra level of indirection. The assignment

118 Chapter 4

B := REF_A;

causes a simple dereferencing operation to be applied to the value in the
location associated with the variable REF_A. This value is the location
associated with A. Dereferencing this gives the value 5, which is copied
into the location associated with B.

Notice, if we now execute the assignment statement

A := 10;

this will change both the value that A refers to directly, as well as the
value that REF_A refers to indirectly.

In a language like PL/I, for example, it is possible to have two
names that refer directly to the same value. The PL/I declaration

DECLARE XFIXED.
YFIXED DEFINED X;

gives rise to the naming structure:

As we have seen, when a name is used in a program sometimes its
location and sometimes the object contained in that location is meant.
Consider, for example, the Pascal program

Names, Locations, and Values 119

program EXAMPLE (INPUT. OUTPUT);
var

A: INTEGER;

procedure P (var B: INTEGER);
begin

B := B + 2
end;

begin
A := 1;
A := A+
P(A)

end

l' ..

Here A is used with two distinct meanings. In the expression:

A + 1

A really means some value. Once we are given the value of A, we can
perform the required addition without concern about the name of A or
the location of the value of A.

On the left side of the assignment, A really denotes some location.
Once we are given this location, we can proceed with the assignment
without concern about the name A or its value.

In the procedure invocation P(A), A really means its location; for
on invocation, the parameter B of procedure P is associated with the
location of A. Hence the occurrence of B on the left side of

B := B + 2

refers to the location of A (whose value is to be changed), whereas the
occurrence of B on the right side denotes the value stored in the location
of A.

4.3 A MODEL OF STORAGE

In general, a store is a carrier of information that may be realized in
computer hardware as immediate access main storage or by some other
technique that has longer access time. From the point of view of the
programming language, it is the holder of the objects that are manipu
lated by the language. It thus stands between the abstract world of the
language and the real world of hardware realization.

120 Chapter 4

As we described earlier, associated with a variable is a location,
and an object may be stored in that location, both of which must be
represented in our model. A store provides a mapping, S, between
locations and values; that is, given a location loc, we can obtain a value
v. Thus we can write:

v = S(loc)

The store S may only be a partial mapping since there can be locations
that have no defined value if none has been assigned.

As the contents of the store are changed, so too, are the mapping
changes. After the value of a location has been changed, applying the
mapping to the same location gives a different vaiue. An assignment
thus changes the mapping S into a new mapping S' .

A particular assignment changes the value in a location loc from
S(loc) to v I such that

v'=S'(loc)

where

S'(x) = if (x = loc) then v' else S(x)

that is, an assignment changes the value of one location only.
So far we have considered assignment only; there are also the

operations of allocation and freeing that can be performed on storage.
The mapping S allows a certain set of values for loc; there are only
certain locations that are valid. This corresponds to the amount of
storage that can be accessed at any particular time. The set L is the set
of active locations.

Allocation is the inclusion of new locations in the set L of active
locations. Allocation may be implied by a declaration of a variable or
by an explicit command, like the ALLOCATE statement of PL/I or the
heap statement of Algol 68. Allocation is an operation on the mapping
S to produce a new mapping, SI. Suppose loc is not a member of the set
of active locations L, then

(ALLOCATE loc)(S) = S'

where

S'(lac)

Names, LocatioDs, and Values 121

is undefined, and

S'(loc l
) = S(loc l

)

for all loc I in L. Thus the set of active locations L I consists of the set L
with the additional element loco

We may define the operation of freeing similiarly. Examples of
this are the implicit freeing of storage at the end of a block in a language
like Algol o~ an explicit command, such as FREE in PL/I

FREE(loc)(S) =SI

where loc is a member of the set L, and

S'(loc') = S(loc l
)

Here loc I is a member of the ~ew set of active locations L I derived
from L by deleting loc; that is, for all loc I Floc, the freeing operation
leaves them unchanged.

So far we have only considered elementary values made up of the
single primitive objects manipulated by the language. We discuss
objects that are collections of other objects in Chapter 6.

4.4 SYMBOL TABLES

A symbol table is an implementation concept used to translate a
program into a form suitable for execution. Conceptually a symbol table
is a dictionary providing a correspondence between identifiers and their
properties. These properties include names, their attributes, and ma
chine addresses. It is referenced constantly during compilation: during
syntax analysis for its construction and during code generation for its
information. .

Consider the program declarations

declare AI B: integer;
declare C. 0: ref integer;
declare E. F: ref ref integer;

A simple symbol table might be

122 Chapter 4

Identifier Attribute Address

A int 100
B int 101
C ref int 102
0 ref int 103
E ref ref int 104
F ref ref int 105

The identifiers and attributes are inserted during analysis of the
declarations. The addresses are inserted before code generation. The
table is later used during code generation to construct appropriate
machine instructions for execution of the Pf9gram.

FURTHER READING

More than any other, the concept of assignment separates programming
languages from conventional mathematical systems. Without assignment, the
world of programming languages would be quite different.

Perhaps the most thoughtful work of assignment is a very early one,
[Strachey 1967]. This paper may be difficult to obtain, but it presents a number
of early fundamental ideas about programming languages.

EXERCISES

Exercise 4.1 Names, Locations, and Values

The occurrence of an identifier can imply the use of either its
name, the location associated with the identifier, or the value associated
with the identifier. Which of these uses of the identifier A is made in the
following PL/I or Pascal statements? Not all are from the same
program.

PLII Pascal

a. A= 3; A := 3
b. B= A; B := A
c. CALL A; A
d. A(1) = 2 A[l] := 2
e. ALLOCATE A; NEW(A)
f. X= A-> Y; X := At .Y
g. GOTO A; goto A
h. OPEN FILE (A) ; RESET(A)

Names, Loeations, and Values 123

Exereise 4.2 Explicit Dereferencing

We have already remarked that in many languages the two
instances of the identifier I in the assignment statement

I = I + 1;

denote either the location associated with I or the value contained in
that location. In the systems programming language Bliss [Wulf et al.
1971] an identifier always denotes a location. In order to obtain the
value stored in the location, the programmer must make explicit use of
the memory prefix . operator to dereference the location. Thus the
assignment would have to be written

I :;:: ,I + 1;

Consider a variant of Mini-language Core in which the same rule
obtains. Using this variant, write a program that is equivalent to the
program shown in Example 4.1.

Exereise 4.3 Mini-language Ref

Consider the fragment of Ref program:

:;:: ONE;
:= .A + ONE;

A'I
B'I
RC;
RD;
RRE;
RRF;

program
declare ONE
declare TWO
declare AI B
declare RC I RD
dec lare RRE I RRF
declare RRRG I RRRH:

begin
A
B
RC
RO
RRE
RRF
RRRG
RRRH

end;

integer constant = 1;
integer constant = 2;
integer;
ref integer;
ref ref integer;
ref ref ref integer;

124 Chapter 4

Given the state after executing this fragment, for each of the following
statements state whether it is legal (and describe its effect) or illegal
(and give reasons).

a. A := RRRG + B;
b. RRRH:= RC;
c. RC := RRRH;
d. RC := RRRH + RD;
e. RRRH:= RRE;
f. RRF := RRRG;
g. RRF := RRRG + TWO;
h. input RC;
i. RD := RC;
j. B := RRRG;

Exercise 4.4 Reference Variables

There are two different views of reference variables. In Mini
language Ref, like Algol 68, Pascal, and Ada, a reference (or pointer)
variable may only designate an object of a specific type which is
specified before the program is compiled. The other view, exemplified
by PL/I, is that a pointer variable can designate any kind of object, for
example, the fragment:

DECLARE
I FIXED.
F FLOAT,
IB FIXED BASED.
FB FLOAT BASED.
P POINTER;

I = 1;
F = 1.0EO;
P = ADDR (I) ;
P -> IB = 2;
P = ADDR(F);
P -> FB = 2.0EO;

/. P now designates I ./
/. The value of I changed to 2 ./
/. P now designates F ./
/. The value of F changed to 2.0 ./

Thus P can be used to designate both a fixed and a floating point object.
The location is obtained from the value of P and the type is obtained
from the associated based identifier, IB or FB. There is, however, the
restriction that the type obtained from the associated based identifier
must match the type of the object in the designated location. For
example, given the state at the end of the above fragment, the statement

Names, LoeatioDs, and Values 125

P -> IB = 3;

would be illegal since P, at this stage, designates a floating point object
and the type obtained from the associated based identifier is fixed point.

Discuss the relative advantages and disadvantages of these two
views of reference variables.

Exereise 4.5 Multiple Assignment

PL/I has the multiple assignment statement of the form

ref}. ref 2•.. " ref n = exp;

where ref., ref2, through refn are references and exp is an expression.
There are a number of possible rules for executing this kind of
statement, for example:

1. Evaluate exp to obtain a value val
For i = 1 to n step 1

evaluate refi to obtain a location loci
assign val to location loci

2. Evaluate exp to obtain a value val
For i = n to 1 step -1

evaluate refi to obtain location loci
assign val to location loci

3. Evaluate ref. to obtain a location locI
Evaluate exp to obtain a value val
Assign val to locI
For i = 2 to n step 1

evaluate refi to obtain location loci
assign val to location loci

4. Evaluate refn to obtain a location locn
Evaluate exp to obtain a value val
Assign val to locn
For i = n-l to 1 step -1

evaluate refi to obtain location loci
assign val to location loci

5. For i = 1 to n step 1
evaluate refi to obtain a location loci

Evaluate exp to obtain a value val
For i = 1 to n step 1

assign val to location loci

126 Chapter 4

6. Evaluate exp to obtain a value val
For each value of i, 1 < i < n, taken in undefined order

evaluate re~ to obtain location loci
assign val to location loci

There are, of course, other possible sets of rules. Discuss the possible
advantages and disadvantages of each of the six given rules. Choose one
of these methods or another that you feel would be the best and explain
why.

Note: You may start by considering the assignment

A(J·I). A(J). A(J+I) = J;

where A is an array. Also, the possible semantics of the statements have
been described in an algorithmic manner. These algorithms are for
definitional purposes only and are not intended as implementation
models.

Exercise 4.6 Declarations

All the mini-languages and many real languages, such as Pascal
and Ada require that the declaration of a variable occur before it is
used. For example, in Pascal you can say

const
NUHITEHS = 10;

var
A: array [I .. NUHITEHS] of INTEGER;

but not

var
A: array [I .. NUHITEHS] of INTEGER;

const
NUHITEHS = 10;

Discuss the advantages and disadvantages of this requirement, both
from the point of view of the user and of the implementor.

5
Control Structures

The power of computers comes in large part through the programmer's
ability to specify the sequence in which the statements of the program
are to be executed. The execution sequence is defined by such
techniques as loop and if statements. Statements of this sort are called
control structures.

The choice of control structures in a language has long been a
subject of controversy, and for good reason. One of the keys to clarity is
the set of control structures used.

Although a great deal has been written on the subject of control
structures, the debates and polarized opinions remain. On one side, we
have the view that only conditional and simple loop structures should be
used. On the other side, there is the view that high-order structures, like
exits, are essential to good programming. In this chapter we treat simple
conditional and looping structures. The goto statement and high-order
structures are treated in Chapter 9.

5.1 MINI-LANGUAGE D

In order to provide a focus for our discussion, we define a mini-language
whose essential ingredient is, of course, a set of control structures. The
syntax of this language, Mini-language 0, is specified in Table 5.1.

130 Chapter 5

Control Struetures

In Mini-language D, there are three ways in which the sequence of
statement execution may be specified:

1. Sequential execution
2. Conditional or selective execution
3. Iterative execution

In sequential execution the statements are executed precisely in
the order in which they are written, for example:

input X, V;
X := X + I;
y := Y + I;
output V, X;

Conditional execution in Mini-language D is expressed by the if
statement. In its full form this statement is: .

if condition-expression then
statement...

else
statement...

end if;

Execution of an if statement begins by the evaluation of the condition
expression. If its value is true, then the sequence of statements between
the then and else symbols is executed. If its value is false, the
sequence of statements between the else and end if symbols is
executed. In both cases, after execution of the appropriate statement
sequence, control passes to the statement following the if statement; the
first statement after the end if; symbols.

In an alternative form of the if statement, the else part is omitted:

if condition-expression then
statement...

end if;

In this case, if the condition-expression evaluates to true, the statement
sequence between the then and end if symbols is executed.
Otherwise, control passes immediately to the statement following the if
statement.

program

declaration

statement

assignment-statement

if-statement

loop-statement

Control Structures 131

Table 5.1 Mini-language D

program
declaration...

begin
statement. ..

end;

dec Iare identifier [I identifier]... ;

assignment-statement I if-statement
loop-statement I input-statement
output-statement

identifier := integer-expression

if condition-expression then
statement...

else
statement...

end if;

while condition-expression loop
statement...

end loop;

input-statement

output-statement

condition-expression

input identifier [

output identifier [

condition and
condition 0 r

identifier] ...

identifier] ...

condition
condition

condition

comparison

integer-expression

operand

comparison-operator : :=

comparison
(condition-expression)

operand comparison-operator operand)

[operand +] operand
[operand -] operand

integer I indentifier
(integer-expression

132 Chapter 5

The iterative control structure in Mini-language D is the loop
statement, which specifies that a sequence of statements, the body of
the loop, is to be executed repeatedly. There is only one form of loop
statement, the while loop, in which the loop body is prefixed by a
condition-expression. This structure has the form:

while condition-expression loop
statement...

end loop;

Each time control arrives at the top of the loop, the condition
expression is evaluated. If its evaluation gives the value true, the body
of the loop between the loop and end loop symbols is executed. When
execution of the loop body is complete, control is returned to the top of
the loop and the condition-expression is re-evaluated.

Thus, before any execution of the body of the loop, the condition
expression at the head of the loop is evaluated; it is the result of this
evaluation that determines whether the body is to be executed or the
loop is to be terminated. Note that the value of the condition
expression, were it to be evaluated during the execution of the loop
body, has no effect on the termination of the loop. If the condition- .
expression has the value false initially, the body of the loop is never
executed; and the loop statement has no net effect.

A condition-expression is either a single condition or a pair of
conditions separated by one of the logical operators and and or. A
condition is either a comparison of two integer operands or a parenthe
sized condition-expression. A condition-expression consisting of two
conditions separated by the and operator evaluates to true only if both
conditions evaluate to true. A condition-expression consisting of two
conditions separated by the or operator evaluates to true if either or
both conditions evaluate to true. The order in which the components of
a condition-expression are evaluated is defined by the parentheses, just
as in the arithmetic expressions.

Other Features

Programs in Mini-language D, of course, have variables; and all
variables in a program must be declared. A variable can only have
integer values.

The remaining statements in the language are the common:

• Assignment statements
• Input statements
• Output statements

Control Structures 133

Examples

We next tum to some example programs. Example 5.1 shows a
simple program for converting nautical or 24-hour clock time into the
more common 12-hour notation. A flag AM-OR...PM specifies morning
(0) or afternoon (1). For example, if 1830 is given as input, the program
outputs:

HOURS :: 6 MINUTES :: 30

The basic structure of this program is quite simple. The integer value of
the nautical TIME is input, and the number of HOURS and the number
of MINUTES are calculated. If the number of HOURS or MINUTES
is out of range for a valid time, the value input for TIME is printed.
Otherwise, the appropriate time is printed.

5.2 BASIC CONTROL STRUCTURES AND FLOWGRAPHS

In the study of flow of control, it is useful to represent a program as a
flowgraph. This is a set of nodes, representing actions in the program,
connected by directed lines that represent the sequence in which the
actions occur during program execution, the flow of control. There are
three kinds of nodes:

• Basic actions: These are represented by rectangles and
denote actions that can change the values of variables but
cannot alter the flow of control. Thus a basic action node has
only one flow line leaving it.

• Conditions: These are represented by diamonds and
denote actions that can change the flow of control but cannot
alter the values of variables. A condition node has two flow
lines leaving it, implying that a binary choice of flow
sequence is being made.

• Joins: These are represented by a simple junction of flow
lines. Joins do not denote any action and thus cannot change
the values of variables and have only a single flow line
leaving them.

We now discuss a class of simple control structures called D
structures, D for Dijkstra [as in Bruno and Steiglitz 1972]. A D
structure is either a

134 Chapter t)

program
-- This program reads in an integer value representing the time
-- on a 24·hour clock and prints out the corresponding 12-hour
-- clock time. If the input value does not represent a correct
-- time. the input value is printed.

declare TIME, HOURS_AND_MINUTES, HOURS, MINUTES, AM-DR-PM;
begin

input TIME;
HOURS_AND_MINUTES := TIME;
HOURS := 0;
while (HOURS_AND_MINUTES > 100) loop

HOURS_AND_MINUTES := HOURS_AND_MINUTES - 100;
HOURS := HOURS + 1;

end loop;
MINUTES := HOURS_AND_MINUTES;

if (HOURS> 23) then
if (HOURS =24) and (MINUTES =0) then

AM-DR-PM := 0;
HOURS := 12;
output HOURS, MINUTES, AM_DR-PM;

else
output TIME;

end if;
else

if (MINUTES> 59) then
output TIME;

else
AM-OR-PM := 0;
if (HOURS = 0) then

HOURS := 12;
else

if (HOURS> 11) then
AM-OILPM := 1;
if (HOURS> 12) then

HOURS := HOURS - 12;
end if;

end if;
end if;
output HOURS. MINUTES. AM-OILPM;

end if;
end if;

end;

Example 5.1 A Mini-language D program

Control Structures 135

• Basic action: For example, an assignment statement,
procedure call, or input-output statement;

or it is constructed from simpler D-structures, each using one of the
following forms:

• Sequence

s. s2 ... So

of two or more D-structures s. through sn'

• Conditional structure

if c then
s.

else
s2

end if;

where c is a condition and s. and s2 are D-structures.

• Iterative structure

while c loop
s

end loop;

where c is a condition and s is aD-structure.

D-structures may be represented in the form of flowgraphs as shown in
Figure 5.1. We use the convention in all flowgraphs that the true branch
is always shown on the left of the node.

Since the basic actions are such that no transfers of control can
occur during their execution, then we can say that they are one-in, one
out structures; that is, control enters by only one path and leaves by
only one path. The assumption we have made is that there is no
mechanism by which control can return from a procedure to a statement
other than the one immediately following the call statement. D
structures built from one-in, one-out actions are themselves one-in, one
out structures.

A program that is constructed entirely from D-structures is itself a
D-structure. Consequently, it will have only one entry and one exit. The
control schemes of Mini-language D correspond exactly to the construc
tion rules for D-structures. As a result, all programs written in Mini
language Dare D-structures.

136 Chapter 5

Basic actioep

Sequential SChem;

51

52

Figure 5.1 Flowgraph representation of D-structures

program
-- This program reads a number of integer
-- values and prints their maximum value

declare NUH_VALUES, CURRENT_MAX,
NEW_VALUE, VALUE_COUNT;

begin
input NUH_VALUES;

VALUE-COUNT := 0;
CURRENT_MAX := 0;

while (VALUE-COUNT < NUK-VALUES) loop
input NEW_VALUE;
if (NEW_VALUE> CURRENT_MAX) then

CURRENT_HAX := NEW_VALUE;
end if;
VALUE_COUNT := VALUE-COUNT + 1;

end loop;
output CURRENT_MAX;

end;

Figure 5.2 A Mini-language D program and its flowgraph

Control Structures 137

A program that is a D-structure can be readily diagrammed as a
planar flowgraph. Figure 5.2 shows a Mini-language D program and the
corresponding flowgraph. Notice that an if-then statement can be
considered as an if-then-else structure in which s2 is null, that is, in
which s2 performs no action.

More generally, the flow of control of any program, whether D
structure or not, can be depicted as a flowgraph. Figure 5.3 shows the
flowgraph of a program that is not a D-structure. Since the program is
not a D-structure, it cannot be written in Mini-language D. The program

L1: al;

L2: a2;

L3: a3;
if C1 then

a4;
goto L2;

end if;

if C2 then
as;
goto L4;

end if;

a6;
if C3; then

a7;
goto L4;

else
as;
goto L3;

end if;

L4: ag;
if C4 then

goto L1;

end if

Figure 5.3 An Example of a program that is not aD-structure

138 Chapter 5

corresponding to the flowgraph, also shown in Figure 5.3, is written
with explicit transfers of control. Here, execution of a statement

goto label;

results in program execution continuing at the statement prefixed by the
label.

5.3 THE FUNDAMENTAL CONTROL STRUCTURE THEOREM

We now turn to the classic theorem of Boehm and Jacopini [1966],
which shows that D-structures are sufficient for the construction of any
program. This result, virtually unnoticed at first, has had a far-reaching
effect on programming and has spawned much controversy about the
proper use of control structures.

In this section we give an informal proof of the theorem. A more
formal version of the proof given here is contained in [Mills 1972]. The
implications of this result are discussed in the following section.

The basic conclusion can be stated simply as:

For any proper program there exists an equivalent program
that is aD-structure.

By "any proper program" we mean any computer program, no matter
what control structures are used, provided:

1. There is precisely one entry and one exit to the program.

2. For every node in the flowgraph representation of the
program, there is at least one path from the entry point,
through that node, to the exit point.

This latter restriction rules out programs containing infinite loops and
statements that are not reached by the flow of control from the programs
at entry point.

By equivalent program we mean a program that will always give
the same result as the original one for the same input data. Two
equivalent programs may have very different flowgraphs. For example,
we can compare two programs that calculate the square root of their
input. One obtains the result by successive approximation, while the
other uses a table look-up method. These two programs will be
equivalent if their results are exactly equal for all possible input values.

Control Structures 139

The proof of the existence of an equivalent D-structure program
consists of a step-by-step method of deriving aD-structured flowgraph
that is equivalent to the flowgraph for the original program. This derived
flowgraph corresponds to a D-structure program equivalent to the
original one.

Proof of the Fundamental Control Structure Theorem

To convert a program to an equivalent one that is aD-structure,
we first construct a flowgraph G corresponding to the original program.
We then make a sequence of changes to G, working from the input point
in a step-by-step manner until the whole flowgraph is a D-structure. At
each stage, the change to be made is determined by the first component
of the unexamined part of the flowgraph.

There are three cases to consider:

Case 1: The first component of G is an basic action, a.

Hence G is of the form

where g is an as yet unexamined part of G. This case is simple: we
already have a sequence of two structures and we apply our step-by-step
process to g.

Case 2: The first component of G is a conditional, c.

In this case, G is of the form:

140 Chapter 5

We perform the conversion by constructing two flowgraphs gl and 82
from g. The flowgraph gl is derived from 8 by making a copy of those
parts of g that can be reached from the true branch of c. Similarly the
flowgraph g2 is constructed by copying those components of g that are
reached by the false branch of c.

Although both gl and g2 may contain copies of identical parts of g,
neither gl nor g2 can contain more components than g. We now replace
g by gl and g2 to form the flowgraph

and apply our process to gl and g2 separately.
As an example of this case, consider the flowgraph G of Figure

5.4. The equivalent flowgraph that is derived from it is shown in Figure
5.5. Notice that both gl and g2 contain a copy of the action a4'
Although gl and g2 are, in this case, already D-structures, in general
this will not be the case.

Figure 5.4 An example of flowgraph case 2

r-----
I true
I
I
I
I I
I I
191 I, J

Control Structures 141

-- - --"'\
false I

I
I
I
I
I
I

I_____ J

Figure 5.5 Flowgraph derived from Figure 5.4

Case 3: The first component of G is a junction.

The flowgraph G is thus of the form:

In this case, our action depends upon the next component in G, that is,
the first component of g. Again, there are three cases to consider.

Case 3.1: The first component of g is an action.

In this case, the flowgraph G has the form:

142 Chapter 5

Here we transform G by moving the junction to the other side of the
action a and inserting a copy of the action into the flowpath from g I to
the junction. This gives the flowgraph:

I
I
I
I
I
I

- - __ .I

r---- ----""
I
I
I
I
I
I
I

Ig"
'- ---

We then apply our transformation process to the flowgraph gil.
As an example of this case, consider the flowgraph:

As a result of the transformation just described we obtain the structure:

which, again, turns out to be aD-structure.

Control Struetures 143

Case 3.2: The first component of g is a conditional.

Here the flowgraph G has the form:

This case is not so easy. As we did in Case 2, we construct two
flowgraphs, gt' and g2 I I that consist of all the components of g I that
can be reached from the true and false branches of c, respectively. Both
gt I and g2 I may have two exits, one for the return to c and one that is
linked directly to the exit from g I •

Figure 5.6 Derived Flowgraph in case 3.2

144 Cbapter 5 .

In order to make the transformation in this case, we must choose a
new variable, say V, that can take the values 0 and 1. We insert a new
action node before the junction that assigns the value 1 to V. In each of
the flowgraphs gl' and g2' we insert actions on each of their exit lines.
On the exit line that leads back to c, the new action assigns the value 1
to V and on the exit line that goes directly to the exit of G, the action
assigns the value 0 to V. Finally, we join the exit lines from both 81'
and g2 I back to c and insert a new conditional that tests the value of V
between the junction and c.

Do not despair! Our derived flowgraph is now as shown in Figure
5.6. Effectively, what we have done is to put g inside an iterative
schema that will continue to loop until the value of V has been set to O.
This will happen when control passes along the exit line of gIl or g2'
that was directly connected to the exit of G. The transformation process
is then applied separately to the new flowgraphs gill and g2 II shown in
Figure 5.6.

Case 3.3: The first component of g is also a junction.

Here we have a flowgraph of the form:

The conversion here is simple. We transform G into:

The trick here is to see that our revised flowgraph is closer to a D
structure. This is illustrated in Exercise 5.4.

Control Structures 145

This completes our informal proof. We suggest that you convert
one of your own programs to an equivalent D-structure using this
method. The exercises at the end of this chapter also pose a few
transformation problems.

5.4 COMMENTS ON THE THEOREM AND ITS PROOF

The impact of the theorem is that it is possible to write any program as
a D-structure. The theorem guarantees that any problem can be
programmed using only D-structures. If you stick to using only D
structures from the very start, you are sure to have enough ammunition
to write your program. In particular, if your programming language
includes only the following control statements

1. Sequences of one or more statements

2. Conditional statements of the form

if condition then
statement...

else
statement...

end if;

3. Loops of the form

while condition loop
statement...

end loop;

or their equivalent, then this is all you need, at least theoretically.
Of lesser importance is the method by which the theorem is

proved. It is a proof by construction. We take an arbitrary flowgraph
and keep on transforming it according to the rules until we reach an
equivalent D-structure. It should be clear that converting a program

. using the method shown in the proof does not always result in a clearer
or more efficient program. In many instances the converted program will
even be less efficient and far less clear. There are methods of
mechanical restructuring that are more effective, [for example, Arsac
1979], but this topic is far beyond the scope of this text. The important
point is that restructuring a poorly designed algorithm in a mechanical
way will probably not improve it. A clear structure should be there from
the outset.

146 Cbapter 5

5.5 OTHER ONE-IN, ONE-OUT CONTROL STRUCTURES

There are other one-in, one-out control structures that allow the clear
expression of some algorithms. These structures are available in some
programming languages, particularly those designed more recently. In
this section we will discuss several of these structures. All have the
important property that they are one-in, one-out.

By a one-in, one-out control structure we mean a control structure
that always has one entry and one exit, and for which any substructure
also has precisely one entry and one exit. For example, in a structure of
the form

if condition then
statement-l
statement-2
statement-3

end if;

our definition excludes the use of any statement, say statement-2, to
cause an explicit branch out of the if-then statement.

As you may have noticed in Example 5.1, the simple form of the if
statement in Mini-language 0 is not very satisfactory when there are
many possible conditions. The statement becomes deeply indented and
difficult to understand. A simple language design approach to this
problem would be to extend the definition of the if statement to:

if-statement :: = if condition-expression then
statement...

elsi f condition-expression then
statement...]...

[else
statement...]

end if;

This is similar to that found in the programming language Ada.
Execution of this form of the statement consists of evaluating each of
the condition-expressions in the order in which they appear until the
first one with the value true is encountered. At this point, the
corresponding sequence of statements is executed. After execution of
the statement sequence, control passes to the statement following the if
statement. If none of the condition-expressions evaluates to true, the
statement sequence that follows the else symbol is executed if it exists;
otherwise control passes directly to the statement following the if
statement.

Control Structures 147

This form of the if statement is useful in problems where a choice
of actions is determined by the first of several conditions that is true.
For example, it allows statements like:

if (DISCRIMINANT> 0) then
PRINT ('TWO REAL ROOTS');

elsif (DISCRIMINANT = 0) then
PRINT ('ONE ROOT');

else
PRINT ('TWO IMAGINARY ROOTS');

end if;

This is clearer than using the nested if-then-else statement:

if (DISCRIMINANT> 0) then
PRINT ('TWO REAL ROOTS');

else
if (DISCRIMINANT = 0) then

PRINT ('ONE ROOT');
else

PRINT ('TWO IMAGINARY ROOTS');
end if;

end if;

With many conditions, the point becomes even more evident.
An important one-in, one-out structure found in many languages is

the case statement. It is a form of conditional statement where the
actions to be carried out depend upon the value of an expression given
at the head of the case statement. In a simple form, it has a structure
like that found in Ada:

case expression 0 f
when value-l => statement .
when value-2 => statement...

when value-n => statement...
end case;

Here the expression following the case symbol is evaluated and its value
is compared in tum with each of the values that follow the when symbols.
As soon as a match is found, the corresponding sequence of statements
is executed.

There are many variants of this kind of statement. One of the most
useful contains an otherwise option to cover any values not explicitly
given. For example, we may have:

148 Chapter 5

=> -- what to do if the value of I is 0
=> -- what to do if the value of I is I

-- what to do for all other values of I

case I of
when 0
when I
otherwise =>

end case;

There are a number of questions that must be resolved by the
language designer when specifying such a statement. For example:

• Must all the conditions be mutually exclusive?

• Are the conditions evaluated strictly in the order in
which they appear?

• Suppose that none of the conditions evaluate to true. Is it
an error if there is no other wise option?

The situations where the conditions need not be mutually exclusive and
where more than one may be true are discussed in Chapter 15.

For iteration structures, there are numerous useful forms. One of
them is a variant of the while loop where, instead of testing the
termination condition before each iteration, it is tested after the body of
the loop has been executed. Thus at least one iteration of the loop is
guaranteed. This can be expressed in the form:

loop
statement...

end loop when condition;

In most existing languages this structure is written with a syntax using
the keywords repeat and until for example, as:

repeat
statement. ..

until condition;

This form of loop is especially useful when the condition depends on a
value that is initialized within the loop, for example:

repeat
-- some statements
input X;
-- other statements

until (X = 0);

Control Struetures 149

Anoth~r useful form is the for loop, where the number of iterations
of a loop is specified beforehand; and at each iteration a variable, called
the control variable, is assigned one of a sequence of values. A simple
example can be shown by a loop that computes the sum of 100 input
values:

SUM := 0;
for I := 1 to 100 loop

input X;
SUM := SUM + X;

end loop;

This structure also has many alternative forms. For example, we may
have a loop that terminates when either the control variable completes
its assigned values or when a condition is satisfied:

SUM := 0;
for I := 1 to 100 while (not ENO_OF_INPUT_FIlE) loop

input X;
SUM := SUM + X;

end loop;

Here too, there are a number of points that must be resolved by the
language designer, for example:

• Can the value of the control variable be changed inside
the body of the loop?

• What is the value of the control variable immediately
after terminating the loop?

All of these structures illustrate a general point. Even within the basic
framework of one-in, one-out structures, of which D-structures are a
part, it is possible to provide considerable expressive power.

Another set of one-in, one-out control structures based on nonde
terminism is discussed in Section 15.5.

FURTHER READING

The practice of using only one-in, one-out control structures is generally
attributed to Dijkstra. His famous Letter to the Editor [1968a] hurled the
challenge to the goto statement. A later work [1972] presents a thoughtful

150 Chapter 5

treatise on programming, in' which only one-in, one-out control structures were
used. These two works are classics in the area.

The proof of the Boehm and Jacopini theorem given in this chapter is
taken from the work [Mills 1972]. Another form of this theorem that gives the
stronger result that for every proper program there exists an equivalent program
that is a D-structure with one occurrence of the iterative structure is in [Cooper
1967]. An interesting account of the history of these two forms of the theorem is
in [Harel 1980].

EXERCISES

Exercise 5.1 Programming Mini-language D

Write a program in Mini-language D to check the relationship
between the height and weight of men. The input consists of pairs of
integers representing a man's height and weight respectively. The input
is terminated by a height of zero.

If the height is less than 62, then the man is in category 1. If the
height is greater than 75, then the man is in category 2. Otherwise if,
the man's weight is less than 124 plus 4 times the amount by which the
man's height exceeds 62, the man is in category 3. If the man's weight
is greater than 143 plus 4 times the amount by which the man's height
exceeds 62, the man is in category 4. Otherwise the man is in category
5.

For each pair of numbers input, output the corresponding category
number.

Make a second version of your program using a variant of Mini
language D that also contains the alternative forms described in Section
5.5.

Exercise 5.2 Elimination of Goto's

Restructure the following program to eliminate as many goto's as
possible by using the control structures of Mini-language D.

program

declare XI MAX-VALUE;

Control Structures 151

begin
input MAX-VALUE;
goto 3;

I: if (X = 0) then
goto 9;

else
goto 5;

end if;

5: if (X > MAX-VALUE) then
goto 6;

else
goto 4;

end if;

9: output X;
goto 7;

3: input X;
goto 1;

6: X := X + 1;

8: X := X+ X;
goto 9;

4: X := X+ 2;
goto 8;

7: output X;

end;

Exercise 5.3 Conversion of a Flowgraph

Convert the flowgraph shown below into a functionally equivalent
one built from a sequence, if-then-else and do-while structures only.
You can introduce boolean variables if needed. The aim is to produce
the clearest possible flowgraph for the algorithm. Compare the clarity of
the structured flowgraph with the original unstructured one.

152 Chapter 5

Elerci@using the Boehm and Jacopini Theorem

Consider the following two flowgraphs. These are both examples
of Case 3, in which the first component is a rejoin point. Using the
method of the Boehm and Jacopini Theorem, convert these two
flowgraphs to aD-structure.

Control Structures 153

Exereise 5.5 Designing an If Statement

In the design of any language feature, a choice must be made
among alternative designs. Consider the following alternative syntax
equations for if statements:

1. Mini·language D:

if-statement

2. Pascal· like:

if-statement

unit-statement

3. Choice· like:

if-statement

if comparison then
statement...

elsi f comparison then
statement...]

else
statement...

end if;

if comparison the n
unit-statement

else
unit-statement]

statement
begin

statement...
end;

select
when comparison => statement .

[when comparison => statement] ...
end select;

In alternative 3, the first true comparison determines which statements
are executed. F aced with the above choices, choose one alternative and
justify your choice.

154 Chapter 5

Exertise 5.6 Loop Invariants

In Section 3.4 we alluded briefly to invariant relations of loops.
Suppose Mini-language D included arrays. Then in the loop

1 := 1;
X:=A[l];
while (I F N) loop

1 := I + 1;
if (A[I] > X) then

X := A[I];
end if

end loop;

the invariant relation is that X contains the maximum value of the first I
elements of the array A. Verify that executing the body of the loop does
not change the invariant relation.

Consider next the following program fragment to reverse the order
of the first N values in the array A:

LOWER := 1;
UPPER := N;
while (LOWER < UPPER) loop

TEMP A[LOWER];
A[LOWER] A[UPPER];
A[UPPER] TEMP;
LOWER LOWER + 1;
UPPER UPPER - 1;

end loop;

Determine what the invariant relation of the loop and then show that
this relation together with the condition for loop termination (LOWER =
UPPER) demonstrates that the program ~as ~xecuted correctly.

Exerei@onverSion of a Program

Consider the following program:

program
declare X;

begin
input X;

1. if (X > 1) then
goto 2;

X:=X+I;
if (X >5) then

goto 2;
X := X + 1;
goto 1;

2. output X;
end;

Control Structures 155

-J
/.

I" ~ (v, '7 \ 'I) OK LX '75"'\ T' ~vJ 1'\\ I. t;... --.

, --- ...~ -----
Convert the program to a D-structure without introducing new varia
bles, or show that it cannot be done.

Exercise 5.8 Prettyprinting of Control Structures

One design requirement for features in a programming language is that
they be able to be displayed in a readable fashion. Consider the
following alternatives for Mini-language D:

a. if (X > Y) then X := Y;
else Y := X;

end if;

b. if (X > Y) then
X := Y;

else
Y := X;

end if;

c. if (X > Y)
then

X := Y;
else

Y := X;
end if;

156 Chapter 5

Each of these versions is debatable. In the general use where there may
be several contained statements, nested structures leading to wide lines
of text, or no else part, the issue is even more debatable.

Your problem is to choose one of the following positions, and
support it with a three or four page position paper. Even if you disagree
with them all, you must choose one.

1. Any prettyprinting conventions should be chosen by the
programmer. In particular cases, options (a), (b), or (c) may
be individually desirable, and each should be allowed.

2. All conditional statements should be displayed as in
option (b) above. No exceptions should be allowed.

3. All conditional statements should be displayed as in
option (c) above. No exceptions should be allowed.

4. Prettyprinting is an over-rated issue. It tends to emphasize
small concerns at the expense of more important issues.

Don't be bashful.

6
Data Types

A program manipulates abstract objects that represent real world
objects. The closer the properties of an abstract object mirrors those of
the corresponding real world object, the easier it will be to understand
the program. Early programming languages permitted only numbers as
abstract objects, all real world objects had to be represented by
numbers. Since early programming was largely computational, the
mapping between real and abstract was generally simple, though by no
means perfect. As the need to represent other kinds of objects, for
instance characters, increased, the limitation to numerical objects
became more inadequate. With improvements in the design of pro
gramming languages, more varied and useful kinds of objects have been
allowed.

In this chapter we discuss the kinds of objects that can be an
intrinsic part of languages. We begin by describing Mini-language Type,
which can operate on different kinds of objects, that is, data of various
types. This mini-language serves as a basis for a discussion of the
concept of type in programming languages. This discussion is limited to
the primitive types of a language, that is, the types that are part of the
language. In Chapter 10, we take up the issue again, with a discussion
of techniques that allow the programmer to specify new data types that
closely match the real objects of a given problem.

160 Chapter 6

6.1 MINI-LANGUAGE TYPE

The context-free syntax of Mini-language Type is given in Table 6.1.
Note here that the symbol ~ represents the single blank space character.

As usual, a program in Mini-language Type consists of a sequence
of declarations followed by a sequence of statements. The declarations
specify the type of value that can be associated with each identifier. The
statements define the operations to be performed on values associated
with declared variables.

A declaration specifies that a given list of identifiers can refer only
to objects of the given type. The types in Mini-language Type are either
simple or composite. The simple types include the integers (for
example, 10 and 1776), strings of characters (for example, I ABC I and
'123'), and the boolean values true and false. Note that the integer
123, denoting the numeric value one hundred and twenty three, is
different from the string 1123', denoting the three characters for the
digits representing one, two, and three.

The composite types in Mini-language Type are arrays of a given
simple type and record structures. For example, an array TABLE with
ten integers is declared as

declare TABLE: array [1 .. 10] of integer;

and a record structure COMPLEX _NUM representing a complex
number is declared as:

dec lare COMPLEX _NUM:
record

REAL _PART: integer;
IMAG _PART: integer;

end record;

J

All identifiers referenced in the program must be declared exactly once.
A variable is either:

• An identifier, in which case, its type must be simple and
given in tqe declaration for the identifier.

• An identifier declared to be an array followed by a
bracketed expression; in which case, it denotes some array
component whose type is specified in the declaration for the
identifier.

Data Types 161

Table 6.1 Mini-language Type

program program
declaration...

begin
statement. ..

end;

l ..·
type
type

declare identifier [I identifier l ... : type;

simple-type I array-type I record-type

integer 1 string 1 boolean

array! bounds 1 of type

record
identifier

[identifier
end record;

declaration ..
type ..

simple-type ..
array-type ..
record-type ..

bounds

statement

assignment-statement

if-statement

input-statement

output-statement

expression

operand

variable

string

boolean

operator

integer .. integer

assignment-statement if-statement
input-statement I output-statement

variable := expression

if expression then
statement...

[else
statement. ..

end if;

input variable variable l .

output variable variable l ..

[operand operator] operand

variable integer I string
boolean (expression)

identifier I variable.identifier
variable ! expression 1
I character... '

true I false

<1= I~ I> 1+ I-I· 1/
cat I and I or

special-charactercharacter

special-character

letter

)j I + I
. I I

digit

I • I
$ I ~ I

/ I
= I ~

I
> I <

162 Chapter 6

• An identifier declared to be a record followed by a dot
and an identifier; in which case, it denotes some component
of a record whose type is specified in a record declaration.

Thus a variable always references a simple integer, string, or boolean
value.

For example, using the declaration of TABLE above, the variable
TABLE[3] is of type integer and denotes the third element of the array
TABLE. Similarly, using the declaration of COMPLEX _NUM above,
COMPLEX_NUM.REAL_PART is a type of integer component of
the record structure named COMPLEX-NUM.

There are four varieties of statement in Mini-language Type, each
of the usual form:

1. An assignment statement: Both the variable and the
expression must be of the same simple type.

2. An if statement: The conditional expression must be of
boolean type.

3. An input statement.

4. An output statement.

Notice that if TABLE were declared to be an array of strings, then
TABLE[3] would be of type string and the statement

TABLE[3] := 'XXXX';

would assign the string XXXX to the third element of A..
Variables may be combined by operators in an expression to form

new values. The operators +, -, and • I are defined over integers to yield
their conventional result.

The relational operators < and > are defined over integers and give
a result of type boolean. The equality operators = and F are defined over
any two objects of the same simple type and also yield a result of type
boolean.

The operators and and or are defined over two boolean values and
perform the boolean "and" and "or" operations on the two values. The
operator cat is defined over two string values and yields the string
consisting of the concatenation of the two values.

Data Types 163

For example, consider the declarations:

declare XI VI II J: integer;

declare ITEM_FOUND, NO_MORE_ITEMS: boolean;
declare TEXT: string;

declare TABLE: array[l .. 10] of integer;
declare ITEM: array[l .. lO] of string;

declare COMPLEX _NUM:
record

REAL _PART: integer;
IMAG_PART: integer;

end record;

The following expressions are legal:

Expressions of type integer:

223
(X+2)
(X / 10)
(2 ~ (X - V))

TABLE[I]
COMPLEX _NUM. REAL _PART

Expressions of type string:

'UUW'
TEXT cat IABC'
ITEM[I] cat ('A' cat ITEM[J])

Expressions of type boolean:

true
(ITEM[I] = 'AI)
TABLE[I] = COMPLEX_NUM.REAL_PART
ITEM _FOUND
ITEM _FOUND or NO_MORE _ITEMS

Here we see a number of expressions whose values are integer, string,
or boolean. Note that, for simplicity, no precedence rules specifying the
order of operations are needed for Mini-language Type, as all expres
sions with more than one operator must be parenthesized.

164 Chapter 6

Examples

The following program is illegal:

program
declare A: integer;

begin
A IXYZ'; -- A is not of type string

end;

This example shows a fundamental property of most languages with
several types. Once a variable is declared to have a certain type, in this
case integer, the type cannot be changed during execution. It is thus
illegal to assign values of another type (for example, string) to it.

The next program is also illegal:

program
declare Al B: integer;

begin
A := 0;
B (3 or A); -- or is an illegal operation for integers

end;

The error here is the attempt to use an operation that is only applicable
to boolean values and applying it to two integer values.

The next example can give an error during execution:

program
declare A: integer;

begin
input A; input value may not be an integer
A := A + I;
output A;

end;

If a variable is declared to be of a certain type and thus can take on only
values within that type, an attempt to input a value of a different type
will result in an error during execution. In particular, if the input
statement attempts to read a string or a boolean value, an execution
error occurs.

Data Types 165

Finally, the following shows a program that adds two complex
numbers:

program
declare I, J. RESULT:

record
REAl-PART: integer;
IMAG-PART: integer;

end record;
begin

input I.REAL_PART. I.IHAG-PART;
input J.REAL_PART. J.IHAG-PART;

RESULT.REAL_PART := I.REAL_PART + J.REAl-PART;
RESULT.IMAG_PART := I.IMAG-PART + J.IHAG-PART;

output RESULT. REAl-PART, RESULT.IMAG_PART;
end;

This illustrates the use of record variables.

6.2 THE MEANING OF TYPE

A view of programming is shown in Figure 6.1. The problem to be
solved by the computer is presented as a real world algorithm that
manipulates real world objects. For example, the algorithm takes
objects such as names, hours worked, and salaries, and produces a
payroll.

Programming consists of describing a computer model of the real
world algorithm through a programming language. To model the
algorithm, the programmer must choose a representation of the objects
in the problem from the possibilities afforded by the programming
language.

The choice of representation can have a great effect on the clarity
and correctness of the computer algorithm. Thus, for example, a floating
point number would not be a suitable representation of a social security
number, since there are likely to be inaccuracies introduced in convert
ing it to and from the real world form. A character string representation
would be better in this case.

With each set of objects of a particular type that can be
manipulated in a programming language, there is a corresponding set of
operations that can be performed on objects. In Mini-language Type,

166 Chapter 6

addition, subtraction, multiplication, division, and the four comparison
operations can be performed on integer objects. However, concatenation
and tests of equality and inequality are the only valid operations for
string objects.

A consequence of a particular choice of representation of a real
world object is the set of operations that can be performed on the object
in the model. Each operation permitted by the language should have a
corresponding meaning in the real world; for example, dates might be
represented by integers. This would mean that all the operations that are
available for integers could be performed on the modeled dates. While
two dates may be subtracted to give a time interval, there is no analogue
of the addition, multiplication, or division of dates in the real world.

This view of programming leads to a definition of types:

A type is a collection of objects and operations that can be
validly performed on the objects.

For example, the type "dollars" may be viewed as a collection of
quantities, $1, $2, etc., along with certain operations. For example, it is
meaningful to "add" or "subtract" two dollar amounts to yield another
dollar amount. It is also meaningful to "multiply" a dollar amount by an
integer or a percentage to yield another dollar amount.

PROBLEM

Real World

Data

Real World
Algorithm

The Programmer's
Representation
of the Problem

Result

Human
Interpretation

of Results

. Computer
Algorithm

Figure 6.1 Model for a typical programming task

Data Types 161

Generally sophisticated types such as dollars and percentages are
not included directly within a programming language. Rather, most
programming languages, like Mini-language Type, provide a few basic
types that the programmer must use in order to define meaningful
computations on a class of real world objects. Languages that allow the
programmer to define data types that are a close match to the problem
objects will be discussed in Chapter 10.

6.3 PRIMITIVE TYPES

In this section we discuss several kinds of primitive types: boolean
types, integer types, and other numeric types.

Boolean Types

Perhaps the simplest of all types found in programming is the
boolean type. This type contains only two values, true and false.
Operationss on values of this type vary from language to language, as
do the operations for almost every type. Typical operators include:

not: a unary operator for negating a boolean value.

or: a binary operator for computing the logical "or" of two
boolean values.

and: a binary operator for computing the logical "and" of
two boolean values.

Other operators are usually provided for mapping non-boolean
values into true or false. The most common, of course, is the equality
operator. This operator maps two values, for example, two integers or
two arrays, into true if the values are equal, and into false otherwise.

Some languages do not have boolean values in the pure sense. For
example, in PL/I the bit string 10 I B is treated as false and I 11 B is
treated as true. Cobol allows only indirect use of boolean values.
Instead, it permits conditional expressions, for example

IF (X = Y) THEN ...

but does not permit boolean valued variables or functions that return
boolean values.

168 Chapter 6

Character and String Types

The manipulation of characters is fundamental to many program
ming problems, since communication with users is generally via se
quences of characters. The real requirement is not to handle characters
by themselves but to manipulate sequences of several characters in
juxtaposition. These sequences are usually known as strings.

There are two kind~ of operations that can be performed on strings.

1. Those that treat strings in their entirety; comparison,
assignment, and building longer strings through concatena
tion.

2. Those that require the decomposition of strings into
substrings.

This differentiation is reflected by the two, essentially opposing,
approaches used to provide string manipulation in languages.

String as the Primitive Type

Access to constituent substrings is provided by means of special
operations and functions. Typical of these operations is the substring
function of PL/I. This function has the form

SUBSTR(s. ". m)

where s is a string value (variable or constant), and nand m are integer
values denoting respectively the starting position of the substring and its
length. Thus the value of

SUBSTR('ABCDEFG 1
I 3. 2)

is the substring CD. In addition, an operation, generally concatenation,
is provided for building a string out of substrings. This is the approach
that we have taken in the Mini-language Type; though, for simplicity, no
substring operation has been supplied.

A Single Character as the Primitive Type

A string is treated as an array of characters. This approach has
been taken in Pascal and Ada. We will return to this method in Section
6.4 when arrays are discussed.

Data Types 169

The approach taken by Mini-language Type has been to say that
all variables declared to be of type string can take string values of any
length. To implement this kind of string satisfactorily requires a
complex dynamic storage management capability, which may explain
why such facilities are comparatively rare in languages. We discuss the
storage management problems in Section 13.3. The simple alternative to
the variable length method is to require that all string variables be
declared with a length. When a string value is assigned to a string
variable, the value will be padded on the right with blanks if it is too
short or truncated if it is too long.

In addition to the fixed length string approach, PL/I also offers a
half-way position between that and the implementation problems of
completely variable length. The declaration

DECLARE STR CHARACTER(20) VARYING;

specifies that STR can be assigned string values up to a maximum
length of 20 characters. Above that length, the values are truncated as is
done for fixed length strings. A similar approach is taken in Basic.

Numeric Types

Numerical calculations have always had an important role in the
use of computers. All programming languages manipulate numeric data.
Even in languages designed for non-numeric work, Snobol for example,
there is a need for numbers to act as counters, field widths, and control
values in computation.

An important difference between the numeric values in program
ming languages and those in mathematics is that the computer values all
have finite representations. Thus they are frequently approximations to
their real world equivalents. There is no way that a completely accurate
value of pi can be represented in a computer. The need to represent
objects with a wide range of number values, even if the representations
were approximate, resulted in the floating point form.

Numeric types generally fall into one of three classes:

1. Integer: used for exact arithmetic on whole numbers
within a fixed range.

2. Fixed point: used for non-integer values with a fixed
number of digits before and after the radix point.

3. Floating point: used for non-integer values with a fixed
number of significant digits and a widely varying magnitude.

170 Chapter 6

Lexieal Issues

The written form of numeric values is largely determined by
conventional usage. To aid readability, some languages allow a break
character to divide lengthy sequences of digits. For example, the
denoting

1000000
1 000 000
LOOO_OOO

-- PL/I. Mini-language Type
-- Algol 60. Fortran
-- Ada

are different ways of writing the same integer.
The written representation of fixed point numbers is generally of

the form:

digit-sequence.digit-sequence

For clarity, neither digit sequence should be null, and the radix point
should always be required.

The written form of floating point forms values has an essential
difference from integer and fixed point values due to the need for an
exponent. Frequently, the beginning of the exponent part is marked with
the letter E, for example:

3.14259EO
10E+2

With the above syntax rules, it is possible to determine the type of
all written numeric values. In languages where there are no implicit type
conversions, it is possible to enforce the rule that only constants of the
appropriate type can be used in assignments and expressions. This
discipline has the important advantage that different types of arithmetic
are distinguished; the exact computations are separated from the
approximate.

Integer Types

In programming languages, the integer type has a finite set of
values, the largest of which is determined either by an implementation
or by the language definition. Integers are by far the most common of
the numeric types. Since integers can be represented exactly on all
digital computers, the usual operations of addition, subtraction, and
multiplication can be provided without surprising results, even if the
actual machine representation is in a base other than the conventional

Data T~'pes 171

decimal. Should the result of these operations be outside the finite range
of permitted values, an execution error will result.

In many languages, the integer type also includes the operators:

di v for integer division,
mod for the remainder after integer division.

For example,

5 div 3 1
5 mod 3 2

-5 div 3 = -1
-5 mod 3 -2

In addition, relational operators like < and = are usually defined over
integers and yield a boolean result.

Fixed Point Types

Values of a fixed point type are similar to integers in that they are
uniformly spaced over a range. Two quantities are required to specify
this range:

Precision: the total number of digits used for representing the
value.

Scale: the number of digits in the fractional part of the value.

Thus the number 123.4567 has a precision of 7 and a scale of 4. This
definition is equally applicable to numbers represented in bases other
than the conventional decimal; for example, the fixed point binary
number 11011.11101101 has a precision of 13 and a scale of 8.

Languages that provide a fixed point type generally allow the user
to declare variables with different precisions and scales. Because these
two quantities must be taken into account, the operations on fixed point
values are more complex than the corresponding operations on integer
values.

The concept of fixed point assignment is reasonably simple to
define. The value must be copied into the target location so that its
radix point is in the correct place. We align decimal quantities in this
way when we write them down on paper. Fixed point variables,
however, have the added problem that their precision and scale are
fixed. The language must define what is to happen when the precision

172 Chapter 6

and scale of the assigned value do not match those of the target
variable.

If the value has more fraction digits than the target, then the value
must be truncated to fit, either with or without rounding. If the value has
more digits before the point than the target, the situation is more
serious. A radical decision is to disallow any assignments that might
lead to this situation. While this restriction can be detected during
compilation, it is probably too severe for most users. The alternative is
to define such assignments to be execution errors. This requires special
checking during execution, which may be thought to be too expensive.
However, to ignore such cases is likely to lead to unreliable programs.

The operations of addition, subtraction, and multiplication present
further complications. In each of these there is the possibility that the
precision of the result will exceed that of either operand. For example,
if X is a fixed point variable with precision 5, scale 3, and value
12.345, then the value of the expression X*X is 152.399025. This has
a precision of 9 and a scale of 6.

In an actual implementation, there will be an upper bound to the
precision of a fixed point number. There is a problem similar to the one
with assignment just described. Again, the radical solution of forbidding
any expressions whose result might exceed this bound on the precision
is too restrictive. We must expect that the result of some expressions
will exceed the bound and that possible truncation may occur. It is the
task of the language designer to find the most useful method for
controlling this loss of information.

The amount of truncation must be calculated during compilation,
otherwise we would be duplicating the effect of floating point arithmetic.
There are two main approaches, truncation at the right end and
truncation at the left end. Truncation at the right, while avoiding the
loss of significant digits, involves a loss of accuracy in all results. This
abandons the accuracy of fixed point computation without gaining the
flexibility of floating point. Truncation at the left end preserves
accuracy, but brings the same problem that exists in assignment of
detectin2 loss of significant digits during execution.

The operation of division is still more complicated due to the
potential requirement for infinite precision to represent the quotient. A
discussion of this is beyond the scope of this book. A more complete
discussion of fixed point arithmetic is to be found in [Nicholls 1975].

Floating Point Types

A floating point value has two parts, a fraction and an exponent.
The fractional part is sometimes called the mantissa. It represents the
significant digits of the value. The exponent is a scaling factor to be
applied to the fraction to obtain the proper value.

Data T)'pes 173

significant digits of the value. The exponent is a scaling factor to be
applied to the fraction to obtain the proper value.

From the programmer's point of view, the major characteristics of
floating point values are:

• There is only a finite set of values.
• They do not contain the set of integers as a subset.
• They are not uniformly distributed.

In some languages, for example, Fortran, Algol, and Ada, the floating
point type is referred to as a real type. As can be seen from these
properties, the behavior of the floating point type is considerably
different from the real numbers of mathematics.

The fact that the set of floating point values does not contain the
integers as a subset leads to many anomalies in floating point arithme
tic. These contribute to the complexity and inaccuracy of floating point
computations. A full discussion of floating point arithmetic is beyond
the scope of this book; for further information, see [Knuth 1969].

Operations

One feature that is common to the three numeric types is the set of
arithmetic operators. Although these operators are written with the
same symbol for each type, they connote somewhat different actions.
For example, fixed point addition maintains the position of the radix
point, whereas floating point addition adjusts its position to accommo
date a range of values. The use of a single symbol to denote an
operation whose meaning is determined by the operand types is called
overloading or polymorphism. Probably the two most common over
loaded operations are the relations = and F which generally apply to all
types.

Conversions

In our everyday pencil and paper calculations, we treat all numeric
data as being of a single type, numbers. We do not think whether they
are integers, rationals, or irrationals. In programming, things are not so
simple; there are different numeric types with separate representations.

In Mini-language Type, there is only one numeric type, integer, so
the problem of assigning one type of numeric value to a variable of
another does not arise. In most languages, this problem exists and these
assignments are usually allowed. The same numeric value may have
different representations in separate numeric types. The mappings

174 Chapter 6

between these representations are generally called conversions. Algol
68 and Pascal use the term coercion. Conversions from integer to fixed
point, from fixed point to floating point, and from floating point to
complex can generally be done without loss of information. A coercion
of this sort is called a widening.

As the number of numeric data types in a language increases, so
does the number of possible conversions. Some languages, for example,
Pascal and Algol 68, insist that almost all conversions be done through
the explicit use of a function. For example, to convert a real value to an
integer in Algol 68, the function entier is used. At the other end of the
scale, PL/I has the deliberate policy of defining all mappings between
data types whenever they have a "reasonable" meaning. These implicit
conversions can lead to programming errors that are accepted by the
compiler as a reasonable conversion. The advantage of the Pascal and
Algol 68 kind of approach is that the programmer is made aware of
almost all conversions, and we support this view.

6.4 ARRAY TYPES

A fundamental property of the values belonging to the simple types is
that they are indivisible without special action, like the use of a
substring function. The modeling of objects, like a deck of cards, a birth
certificate, or a bank account, brings up the general issue of composite
types. Objects of a composite type are not indivisible, but have
components bearing some relation to each other.

Every programming language offers one or more built-in composite
types. Among others, Fortran has arrays, Cobol has record structures,
Pascal has sets, Lisp has lists, and APL has vectors.

The composite types in a language are critical to the ease with
which real world objects can be represented. For example, representing
a bank account is quite easy in Cobol and representing a network is
quite easy in Lisp, but not necessarily vice versa. In this section we
discuss an elementary composite type, the array, where all the compo
nents are of the same type. In the next section, we discuss a different
composite type, the record. The components of records can be of
differing types.

The array is perhaps the most familiar composite type in pro
gramming. An array is basically a mapping from a range of contiguous
integers to a set of elements. These integer values are called the index
or subscript values.

In its simplest form, an array is a representation of a table. For
example, consider a table that represents the number of people waiting

Data Types 175

in line at each of five counters. In Mini-language Type this array might
be declared by:

declare QUEUE-LENGTH: array [I .. 5] of integer;

An intrinsic property of an array is that the value of anyone of its
elements can be changed without affecting the value of any of the other
elements.

The range of index values of an array defines the number of
elements of the array; this is the size of the array. In most programming
languages the range of index values must be specified by the program
mer.

The point at which the size of an array must be known is a subject
of considerable difference in programming languages. For example,
consider the following cases:

declare A: array [1 .. 5] of integer;

Here the size of the array is defined at the time the declaration is
written:

declare N: integer constant = 5;
declare A: array [I .. N] of integer;

Here the size of the array is defined at the time the declaration of the
constant N is written:

procedure F (N: integer):
declare A: array [I .. N] of integer;

In this fragment of a procedure, N is a parameter whose value is
established when the procedure is invoked. Thus the size of the array is
only determined at execution time and can vary from one invocation to
another.

Finally, consider:

type VECTOR is array (INTEGER range <» of FLOAT;
type VECTOR-REF is access VECTOR;
A: VECTOR-REF;

A := new VECTOR(I .. 100);

In this fragment of Ada, the array A has an access type, which means
that its value is allocated at run time. This value does not exist until the

176 Chapter 6

new operation is executed. In the declaration of A, the number of
elements is specified as being determined by an initially unspecified
integer range. This range is given at the time the storage for the array is
obtained by executing the new operation. In this example, the array will
have 100 elements.

Generally, once the size of an array has been established, it does
not change during its existence. Algol 68, however, allows the size of
arrays that are declared with flexible bounds to be changed by
assignment.

Usually languages permit arrays to have more than one index. For
example, in an extension to Mini-language Type, one might write the
declaration:

declare B: array [1 .. 5, 1.. 10] of integer;

Such an array can be thought of as a rectangular arrangement of
elements with five rows and ten columns. Usually, each of the sets of
bounds is referred to as a dimension. The array B has two dimensions.
An array of one dimension is often called a vector.

Conceptually the elements of an array may be of any type,
including simple types and other composite types, including arrays. In
practice, most languages place restrictions on the types of elements,
often restricting the elements to simple types.

The basic operation on an array is element selection, that is, a
reference to the value of an element in the array. This operation is
usually denoted by giving a bracketed expression following the array
name. For example, for the array A, a reference to an element is
denoted by

A(3)
A(I)
A(I + 1)

in Ada, Fortran, and PL/I, but

A[3]
A[I]
A[I + 1]

in Mini-language Type, Pascal, and Algol.
Sometimes it is convenient to be able to reference a subpart of an

array as a single entity. In Algol 68 it is possible to treat the three
elements of A with subscripts 2, 3, and 4 as an array by the reference
A[2:4]. This is called a trimmed reference. A similar concept is found

Data Types 177

in the Ada slice. If B is a one-dimensional array then the reference B(2
.. 8) references elements 2 through 8.

Assignment to array elements is allowed in every language with
array types. In some languages the assignment operation is also allowed
on complete arrays. For example, if A and Bare lO-element arrays of
integers, then

A := B;

copies the values in B to A. This raises the issue of arrays of constant
values, a feature that is present in few languages. For example, one
might allow the initialization of A to be specified as

A := (1 .. 10 => 0);

as is done in Ada. Most languages, however, allow assignment only on
an element-by-element basis, as in Mini-language Type.

A Note on Strings

As mentioned in Section 6.3, an alternative to the primitive type
string is the use of arrays of elements of the primitive type character.
The rationale behind this view is that the basic unit is really the
character, and the composite type array properly reflects the construc
tion of the string. However, in order to provide the proper access to
substrings and variable length strings, we need a mechanism like
trimmed references and flexible bounds as in Algol 68. This poses
considerable implementation problems. Conceptually, we believe that
representing strings as arrays is unwieldy, and that strings deserve to be
a type in their own right.

6.5 RECORD TYPES

A programmer must often deal with objects having a number of different
components. For example, a driving license may be viewed as an object
having a:

Driver: a name consisting of a
First name: a string of letters
Middle initial: a single letter
last name: a string of letters

license number: an eight digit number

178 Chapter 6

Expiration date: a calendar date consisting of a
Month: a number from 1 to 12
Day: a number from I to 31
Year: a four digit number

Driving code: a character

The type used for collections of related objects is often called a
record. Basically a record type contains a collection of components,
each of which may be of a different type. Each component has a name
and a value.

For example, a record of type LICENSE can be declared in Mini
language Type by:

declare LICENSE:
record

DRIVER: record
FIRST_NAME string;
MIDDLE-INITIAL: string;
LAST_NAME string;

end record;
LICENSE-NUM: string;
EXPIRATION-DATE: record

MONTH: integer;
DAY : integer;
YEAR: integer;

end record;
DRIVING-CODE: string;

end record;

Notice, forex~mple, that though the original description of the license
specifies the license number as a number, it is really a sequence of
digits. It does not make sense to multiply a license number by five.
Similarly, the month, day, and year of expiration are not really integers,
although it is convenient to perform limited numerical calculations, for
example, computing when to send out the renewal notice, two months
before expiration.

The basic operation on record types is component selection. For
example, to refer to the driving code component, we write:

LICENSE. DRIVING_CODE

This is the method used in Ada, PL/I, Pascal, and Euclid. Algol 68 and
Cobol take a different point of view, by writing:

DRIVING CODE of LICENSE
DRIVING-CODE in LICENSE

-- Algol 68
-- Cobol

Data Types 179

This approach seems to focus most attention on the component, while
the Ada, PL/I, Pascal, and Euclid view attaches more importance to the
record as a whole.

The value of the reference LICENSE.DRIVER is also a record,
so that it is possible to write:

LICENSE.DRIVER.LAST_NAHE

A reference to the component of a record behaves just as a reference to
the component of an array. For example, we may have:

LICENSE.LICENSE-NUH := 1022325795 1;
LICENSE. EXPIRATION_DATE. YEAR

LICENSE. EXPIRATION_DATE. YEAR + 4;

In practice, record types may have several components that are
themselves records, and references to these components are common.
As a result, references to records may become long and tedious.
Consider the simple problem of assigning the following values to the
components of the name of a DRIVER:

LICENSE.DRIVER.FIRST_NAHE
LICENSE.DRIVER.HIDDLE-INITIAL
LICENSE.DRIVER.LAST_NAHE

1 HENRY 1 ;

IF' ;
I LEDGARD';

There are several solutions to this problem. One solution, similar
to PL/I and Cobol, allows omission of component names as long as the
shortened reference can be uniquely identified. For example, if there
were no other records in the program with the component names
FIRST_NAME, MIDDLE_INITIAL, or LAST_NAME, the above
sequence could be written as:

FIRST_NAHE
HIDDLE-INITIAL
LAST_NAHE

'HENRY' ;
'F I;
1LEDGARD I;

This solution has one severe disadvantage in that to understand which
record variable is being referenced requires knowledge of the declara
tions for all record variables. It also tends to produce awkward naming
conventions in the attempt to keep component names distinct from each
other.

180 Chapter 6

Another solution, offered by Pascal, is the inclusion of a statement
specifying a local context for a statement sequence. For example, the
above sequence may be written as:

with LICENSE.DRIVER do
begin

FIRST_NAME
MIDDLE-INITIAL
LAST_NAME

end;

'HENRY' ;
'F I;
I LEDGARD' ;

Here, the with clause provides the top level qualifier over the part of the
program contained between the begin and end. The Pascal solution has
a disadvantage when other variables are included in the body of the

with statement, in that it is not always clear to the reader which
references need qualification.

Still another solution offered by Cobal, Euclid and Ada allows the
programmers to declare a name as a shorthand reference to record
components. For example, we may declare something like

ME: renames LICENSE. DRIVER;

and then have:

ME. FIRST_NAME
ME. MIDDLE_INITIAL
ME. LAST_NAME

'HENRY' ;
'F' ;
'LEDGARD' ;

This convention avoids the disadvantages of the other two solutions but
still requires all record variables to be qualified by a prefix. However, if
the prefix is chosen carefully, this will add to the clarity of the program.

Variant Records

As mentioned earlier, there are cases where the information within
a record may be missing or where additional information may be
required when another record component has certain values. In our
license example, a driver may not have a middle initial, and the driving
code may indicate a special or a restricted permit requiring other
information. This kind of structure is generally handled with a record
variant.

A record type with a variant part must have a special component
called a tag and a selection mechanism giving the various substructures

Data Types 181

for possible values of the tag. For the selection mechanism denoting the
variant we shall use a case-like notation, similar to that for case
statements. This method is borrowed from the preliminary version of
Ada.

To represent our license example in full, we can write the
declaration of Example 6.1. Here, the component DRIVING_CODE is
used as a tag, and the following case structure defines the record
variant. When the tag value is S, the information for a special vehicle
type is included; when its value is R, the information for a restricted
permit is included; when the tag HAS_MIDDLE_INITIAL has a false
value, the variant is explicitly stated as being null or empty.

Each variant 01' a record type can take a separate set of values.
Thus the complete record type with all its variants can take the union of
these sets of values. It is common to refer to such record types as
unions and to refer to those that contain a tag field to distinguish
between the variants as discriminated unions. Those unions where the
language does not insist on the tag field are known as free unions.

Algol 68 provides an example of unions. To take a simple case, a
variable could be declared to be a union of integer and boolean values.
The value of such a variable is either of type integer or type boolean,
depending on which type of value was last assigned to the variable. The
language requires that, each time the value of the union variable is used,
the programmer must provide explicit checks to determine if the current
value is of the correct type. Union variables do not contain an explicit
tag as in variant records, but do have internal coding to record the type
of the current value.

Variant records, while useful, raise some difficulties with reliability
and implementation. First, there is the question of assignment to the tag
field. The value of the tag is set when the record object is created.
While the program must be able to assign values with an ordinary
statement to components of the record, assignment of a new value to the
tag is a very different question. To change the tag really implies a
change in the structure of the record. From the implementation view,
this could imply a change in the amount of storage required for the
record. Ada specifically forbids the assignment to tags, while Pascal
allows them.

A second question is that of reference to a record component that
is not prescribed by the value of the tag. For example, in the record
LICENSE, if the value of DRIVING_CODE is I SI, then a reference to
the element VEHICLE_TYPE is valid, whereas a reference to the
element CORRECTIVE_LENSES is not. Checking the validity of such
references results in an overhead during c:xecution. For the programmer,
guarding against such errors can be difficult.

182 Chapter 6

Another serious problem is the design of a readable syntax. It is
not obvious from the above syntax that DRIVER has potentially four
components, and nested record types with variants make the problem
even more acute.

declare LICENSE:
record

DRIVER: record
FIRST_NAHE: string;
LAST_NAME : string;
HAS_MIDDLE_INITIAL: boolean; -- tag
case HAS_HIDDLE-INITIAl of
when true => HIDDLE-INITIAL: string;
when false => null;
end case;

end record;

-- tag

else
end case;

LICENSt-NUH: string;

DRIVING-CODE: string;
case DRIVING-CODE of

when'S' => record
VEHICLE-TYPE : integer;
PASSENGER-PERMIT: boolean;
ZONE-CODE : boolean;

end record;
when 'R' => record

CORECTIVE-LENSES : boolean;
DAYLIGHT_ONLY boolean;
AUTO_TRANSMISSION: boolean;

end record;
=> null;

EXPIRATION_DATE: record
MONTH: integer;
DAY : integer;
YEAR: integer;

end record;
end record;

Example 6.1 A record variant

Data TJpes 183

Record Mapping

Once the programmer has defined a record, the layout of the fields
in the computer storage must be determined. This is generally done by
the compiler. It must be done according to a well-defined set of rules to
ensure compatibility between separately compiled parts of a complete
program.

Generally the precise way in which the fields are laid out is of
little consequence to the programmer. The actual addresses usually have
no meaning in the language. On the other hand, where interlanguage
communication is required, as for instance, when data generated by a
Cobol program being processed by a PL/I program, that the mapping
from declaration to addresses becomes important. Two languages may
map their records differently and appropriate programming will be
required for the records produced in one language to be read in the
other.

The simplest mapping would be to put each component of a record
immediately adjacent to its declared neighbors. This is practical only in
a computer where each bit of storage can be addressed individually. On
most computers only groups of bits, words or bytes, for example, are
accessed directly. Information that does not fall on these particular
boundaries requires extra machine instructions, generally masking and
shifting, for access. In order to avoid this, padding must be inserted
between the end of one field and the beginning of the next. Thus there is
a choice between inefficient programs and inefficient use of storage.
PL/I takes account of this by allowing the programmer to specify for
each field whether it is to be ALIGNED on a storage boundary to
permit efficient access at the cost of extra storage.

In addition to the question of storage use versus execution time,
the language itself places two requirements on the storage mapping.
First, the mapping of a record component must be independent of its
position in the record that contains it. Second, in order to access a
component of a record, the attributes of only those subitems that occur
between the beginning of the record and the component being referenced
need be known. These are both needed to allow access to parts of a
record without having knowledge of the whole record, for example when
a component of a record is passed as an argument to a separately
compiled procedure.

A more complete description of the problem of storage mapping,
including a discussion of particular algorithms, is in [MacLaren 1970].

184 Chapter 6

6.6 TYPE CHECKING

The partitioning of objects into types allows each assignment to be
checked for a match between source value and target variable. The
validity of each operation for its operands can also be verified. If these
tests can be made during compilation, before execution, then we say
that the type checking is static. Ada, Fortran and Algol 68, for example,
have static type checking. These three languages allow the type
checking to be complete with no chance of a mismatch slipping through;
they are said to be strongly typed. Pascal, on the other hand, because it
allows the tag field of variant records to be changed is not strongly
typed.

If the type checking can only be done during execution then the
type checking is dynamic. APL and Pal are examples of dynamically
typed languages.

The essential difference between statically and dynamically typed
languages is that in a statically typed language, the type is associated by
declaration with an identifier. In a dynamically typed language, the type
is associated with the value. This is implemented by storing type
information with each value. Any type of value can be assigned to a
variable. Before any operation is applied to a value, the type of the
value is examined to see if it is compatible with the operation.

Dynamic type checking is usually simple to implement. However,
since the checkup is performed during execution, there is a considerable
machine time penalty. Furthermore, since type errors can only be found
by execution, it is generally impossible to verify that a program contains
no type errors. It is often claimed that dynamic typing allows the
programmer greater flexibility; however, it is not clear that this gain is
sufficient to offset the loss of reliability.

Some languages avoid the idea of type altogether. These are
generally the high-level systems programming languages. Examples of
such languages are Bliss and BCPL. In Bliss, any contiguous set of bits
in storage can be named and from the language's point of view, merely
contains a pattern of bits. Various operations, such as integer arithme
tic, comparison, or boolean operations, may be applied to these bit
patterns. The interpretation placed on a particular bit pattern and the
consequent transformation performed by the operator is an intrinsic
property of the operator and not of its operands.

The argument for type checking is one of security. A language that
regards the store as a homogeneous array of words is very error prone.
It is only possible to make trivial checks on the use of data. The
rationale behind strong type checking, as opposed to dynamic type
checking, is that a large number of errors can be detected before the
program is run when it is feasible to make extensive checks.

Data Types 185

The counter argument is that strong typing removes a lot of the
flexibility that programmers find useful, particularly in systems pro
gramming. Two examples illustrate this kind of flexibility.

• The need for arrays of heterogeneous elements. For
example, in an interpreter, a stack for expression evaluation
may have to consist of integer, floating point, and boolean
components. Although each element in the stack assumes
only one fixed type during its lifetime, the underlying static
array element appears to have a varying type. This could be
achieved by Algol 68 unions.

• The realization of implicit type conversions. For in
stance, a floating point variable might need to be treated as a
bit string for printing its internal representation during error
analysis of numerical computation. PL/I provides a conver
sion function, UNSPEC, for precisely this purpose.

The arguments between the two views continue with no resolution in
sight.

FURTHER READING

In the literature, works solely on the concept of type have been overshadowed
by the rather large effort in the area of type definition discussed in Chapter 10.
Nevertheless, we mention here a few relevant references.

An early work [Morris 1973] discusses the now prevalent view of a type,
which is characterized by a set of objects as well as operations over the objects.
A later paper [Brosgol 1977] discusses a number of issues relevant to types.

A paper by Haberman [1973] presents a critique of the view of types in
the programming language Pascal. As is often the case in this text, type issues
are also extensively discussed in the rationale for the preliminary version of
Ada [Ichbiah et al. 1979].

EXERCISES

Exereise 6.1 Programming in Mini-language Type

On many computer systems, a calendar date is express in six-digit
form. For example,

02 22 43

186 Chapter 6

means the month 02, day 22, year 1943, or in more familiar terms we
use day to day:

FEBRUARY 22. 1943

Write a program in Mini-language Type to read in three integer
numbers and output the corresponding dte in day-to-day notation. If the
integers do not represent a valid date, an appropriate message should be
printed.

For example, with

13 22 43

the output should be:

NOT AVALID DATE

Don't forget about leap year.
You must take note that in the mini-languages, each printed value

is prefixed by the variable name and an equal sign. Thus your output
may be something like:

MONTH = FEBRUARY
DAY = 22
YEAR = 1943

Exercise 6.2 Strong typing

In Section 6.S we mentioned that the strong typing in Pascal is not
complete because the tag field of a variant record can be changed during
execution. Explain how some type checking in Pascal can be defeated in
this way. It is said that such loopholes are necessary in certain
applications such as system programming. Discuss this argument.

Exercise 6.3 Mixed Mode

Some languages with multiple data types (modes) allow mixed
mode expressions. In PL/I, for example, an expression may involve
operands of many different types that are converted at run time if
necessary to compatible modes before the operators are applied. In
other languages, operands that are not of the correct mode for an

Data Types 187

operation must be explicitly converted by using a set of functions
provided in the language for that purpose.

For example, if J were an integer, in PL/I one could write the
expression

(J + '3 1
)

while in the other class of languages, one would have to write this as

(J + CHAR-TO_INT('3 1 »

where CHAR...TO_INT is a function which performs character string to
integer conversion. What are the advantages and disadvantages of each
scheme?

Exercise 6.4 Literals for Arrays

In some languages it is possible to write values for both composite
objects and for simple objects. For example, in Ada, a ten-element
array A may be set to zero with the assignment:

A := (1 .. 10 => 0);

For a five-element array where elements are

11, 14, 10, 16, and 11

we may write

(II, 14, 10. 16, 11)

where the array elements are listed in positioned order, or alternatively,

(1 => 11; 2 => 14; 3 => 10; 4 => 16; 5 => 11)

where the index values are identified. Discuss the pro's and con's of
these two notations.

Exercise 6.5 Array Access

Consider a language in which arrays may have many dimensions.
The number of dimensions and the bounds on the dimensions are fixed

188 Chapter 6

by the declaration and may not be changed dynamically. Suppose a
particular array has n dimensions with lower bounds 11' 12 through In and
upper bounds ul' u2 through ~ and that the array is stored as a
contiguous set of elements. Describe how the location of a particular
element of the array can be calculated from it subscripts.

Exercise 6.6 String Handling

In Section 6.3, we described how character strings can either be
viewed as a primitive type of the language, as in Mini-language Type, or
treated as vectors of the primitive type character. By designing
additional syntax and semantics, compare two variants of Mini-language
Type demonstrating the two methods of character string representation.
The comparison should be based on the operations:

Concatenate two strings to form a new string.
Extract a portion of a string.
Search within a string for a given substring.
Obtain the length of a string.
Delete a substring or replace it by another substring,

not necessarily of the same length.
Insert a string within another string at a specified

point.

Note: To do this exercise well, you will need to think carefully.

, ,

•

7
Procedures and Parameters

The use of subprograms is a familiar programming concept. Charles
Babbage's Analytical Engine in 1840 already had provision for the use
of a group of punched cards for performing a frequently used part of a
larger calculation. Now, it is hard to imagine a programming language
that does not offer a subprogram facility in some form.

Subprograms allow the programmer to package computations and
parameterize their behavior. There are two forms of subprograms,
procedures and functions. A procedure subprogram is a sequence of
actions that is invoked by a call statement. A function subprogram is a
sequence of computations that results in a single value and is invoked
from within an expression. Usually, control returns to the point of
invocation after execution of the subprogram, thus forming another one
in, one-out control structure. Both forms of subprogram invocation
represent operational abstractions that simplify the programs that
contain them.

There must be some means of passing data between the subpro
gram and the program that calls it. The usual method of passing data is
through parameters in the subprogram and through global variables. In
this chapter, we use a mini-language to provide a basis for discussing
procedures and the various mechanisms used for passing data. Global
variables are discussed in Chapter 8. The special properties of functions
are described in Chapter 11.

192 Chapter 7

Before describing the Mini-language, there is a question of
terminology that must be clarified. In different languages, various terms
are used to describe the data passed between procedures. For example:

• The information that is passed to a subprogram by a
caller is termed the argument in Fortran and PL/I. In Ada,
Pascal, and Algol, it is called the actual parameter. We will
use the term argument.

• The information that is received from a caller by a
subprogram is termed the dummy argument in Fortran; the
formal parameter in Ad~, Pascal, and Algol; and parameter
in PL/I. We will use the term parameter.

7.1 MINI-LANGUAGE PROCEDURES

We begin with our mini-language, as described in Table 7.l.
A program in Mini-language Procedures consists, as usual, of a

sequence of declarations followed by a sequence of statements. There
are two types of declarations, for variables and for procedures.

Variable declarations introduce simple variables and arrays that
take integer values. Array variables contain an unspecified number of
components. For example, we may have:

declare XI VI TOTAL;
declare AI B: array;

-- three integer-valued variables
-- two arrays with integer components

All variables used in the statement part of a program must be declared
exactly once.

A procedure declaration defines· a procedure subprogram and
contains the following parts:

• an identifier that is the name of the procedure,

• the names of any parameters and their mode,

• the declaration of any variables local to the procedure,

• a sequence of statements comprising the body of the
procedure.

Procedures and Parameters 193

Table 7.1 Mini-language Procedures

program program
variable-declaration...
procedure...

begin
statement...

end;

variable-declaration declare identifier [identifier] ... [: array];

procedure procedure identifier (parameter-list)
variable-declaration...

begin
statement...

end;

parameter-list parameter [I parameter] ...

parameter identifier : parameter-mode

parameter-mode value I result
value-result I location
name

variable ::;: expression ;

identifier (expression [I expression] ...

assignment-statement call-statement
input-statement I output-statement

integer I variable expression)

variable] ...

variable] ...

identifier [expression 1

input variable

identifier

[expression +] operand

output variable

statement ·.

assignment-statement ·.

call-statement · .

input-statement · .

output-statement ·.

expression ·.

operand · .

variable

194 Chapter 7

For example, consider the procedure declaration:

procedure SUM-FIVE-TIMES (I: value, J: value, SUM: result):
declare TEMP;

begin
TEMP := I + J;
SUM := TEMP + TEMP + TEMP + TEMP + TEMP;

end;

This procedure has the following characteristics:

1. Its name is SUM.-FIVE_TIMES.

2. It has two parameters I and J of mode value I and another
parameter SUM of mode result.

3. There is one local variable named TEMP.

4. The body contains two assignment statements.

In Mini-language Procedures, all variables used within the body of a
procedure must either be declared in the procedure or be parameters.
The meaning of the different parameter modes will be discussed below.

There are four kinds of statements in Mini-language Procedures.
An assignment statement causes the value of an expression to be
assigned to an integer variable or to a component of an array. Input
statements allow integer values to be read into a variable. Output
statements allow the values of variables to be printed. Finally, a call
statement consists of the name of a declared procedure and arguments
corresponding to each parameter associated with the procedure. The
number of arguments must equal the number of parameters declared in
the procedure. For example, we may have:

X := 7;
Y := 9;
SUK-FIVE-TIMES(X, Y, TOTAL);
output TOTAL;

The third statement invokes the procedure SUM.-FIVE_TIMES. When
control returns from executing the procedure, the value of the variable
TOTAL is five times the sum of the values of X and Y, that is 80. The
next statement to be executed is the output statement.

Note that, since TEMP is a local variable belonging to the
procedure SUM-FIVE_TIMES, this variable cannot be referred to by
any statement outside the body of the procedure. Also, the rules of

Procedures and Parameters 195

mini-language preclude any reference from the body of a procedure to
variables declared outside the procedure except through the argument
parameter correspondence, which we shall next describe.

We now turn to the exact mechanism by which procedures are
invoked. A call statement consists of the name of the procedure to be
invoked followed by a parenthesized list of expressions, the argument
list. During the execution of a call statement, two things take place:

1. A correspondence between the arguments in the argument
list and the parameters in the procedure is established in left
to-right order. The i-th argument corresponds to the i-th
parameter. The rules for passing the argument to the proce
dure being called are then applied to each separately.

2. Control is transferred to the first executable statement of
the body in the invoked procedure.

When the last statement in the called procedure has been executed,
control is returned to the statement following the call statement.

The way in which the argument is passed to its corresponding
parameter depends on the mode of the parameter. Since the rules are
applied to each parameter separately, we will describe the rules by
assuming that each procedure has only one parameter. Where there is
the possibility of interaction among several parameters, this will be
discussed.

We use the terms pass by value, pass by result, and so on to
indicate the way in which information passes between argument and
parameter. Sometimes the terms call by value, call by result, and so on
are used for the same concept. We prefer to reserve call for the actual
invocation of a procedure.

Pass bJ Value

Here the parameter acts as a. local variable belonging to the
procedure. This local variable is initialized with the value of the
corresponding argument. Since the parameter is purely a local variable,
any change of its value during execution of the procedure can have no
effect on the corresponding argument. An argument passed by value can
be an integer-valued expression.

Pass bJ Result

In this case the parameter again acts as a local variable, but its
value must be initialized locally within the procedure body. After the

196 Chapter 7

statements of the body have been executed, the value of the parameter
is assigned to the corresponding argument. In this case, of course, the
argument must be a variable.

We see here the dual roles of pass by value and pass by result.
Arguments passed by value are expressions that provide inputs to a
procedure; arguments passed by result are variables that receive outputs
from a procedure.

Pass by Value-Result

Pass by value-result combines the effects of pass by value and pass
by result. The parameter is considered as a variable local to the
procedure: its initial value is given by the value of the corresponding
argument, and the final value of the parameter is assigned to the
argument on completion of execution of the procedure. In this case as
well, the corresponding argument must be a variable.

Pass by LotatioD

Here again, the argument must be a variable. The parameter is
considered as a local variable of the procedure, but its iocation is the
location of the argument. Thus any reference to the value of the
parameter is considered to be a reference to the value of the argument,
and any assignment to the parameter is an assignment to the location of
the corresponding argument, thus changing the argument's value.

Pass by Name

This case is the most difficult. Again, the argument must be a
variable. A reference to a parameter that is passed by name is a direct
use of the corresponding argument.

The pass by name mechanism can be modeled as a textual
modification to the procedure at the time of invocation. Each reference
in a statement to the parameter is replaced by the text of the argument.
This is accompanied by a relaxation of the rule against referring to
variables that are neither parameters nor local variables. For example,
in the procedure:

procedure ADD_ONE(X: name):
begin

X := X + 1;
end;

Procedures and Parameters 197

Execution of the call

results in executing the procedure body with X replaced by V. Thus the
call to the procedure is equivalent to executing the assignment:

V:=V+l;

Similarly, execution of the call

ADD_ONE (COUNT);

is equivalent to executing the assignment:

COUNT := COUNT + 1;

For arguments that are scalars, as V and COUNT, pass by name
has the same effect as pass by location. However, if the argument is a
reference to an array component, the effect is somewhat different.
Execution of the call

ADD_ONE (A[COUNT]);

is equivalent to executing the assignment

A[COUNT] := A[COUNT] + 1;

and the component of the array A that is incremented depends on the
value of COUNT at the time the statement is executed. This point will
be illustrated in the following examples.

Some Examples

To clarify the issues of parameter passing in Mini-language
Procedures, we now present a series of small examples.

Consider the following very simple procedure:

198 Chapter 7

program
declare A, B, SUM;

procedure ADD(X: value, Y: value, R: result):
begin

R := X+ Y;
end;

begin
A := 2;
B := 3;
ADD (At B, SUM);
output At Bt SUM;

end;

This is the very model of what a procedure is conceptually. Here the
procedure ADD takes two input values, named X to Y, and has a single
output named R. The net effect of the procedure is simply to add X and
Y and return the value through R.

The statement part of the main program calls the procedure ADD
with two input arguments A and B, and another variable SUM intended
to store the result of calling the procedure ADD. The final values of A,
B, and SUM are then printed. These are 2, 3, and 5.

To illustrate the' effects of parameter passing modes we use a
rather well known example, that of swapping the values of two variables
passed as arguments. Examples 7.1 through 7.4 are identical except for
the modes in which the arguments are passed. In each example, a
variable I is set to 3, a variable A[I] is set to 6, and a procedure to swap
the values of the two variables is invoked. Finally, the values of I and
A[I] are printed.

In Example 7.1 the parameters of the swapping procedure are
called by value. For value parameters, the corresponding arguments are
used solely as initial values. As a result, the assignments to the
parameters X and Y in the procedure have no effect on the arguments.
Thus the procedure does not perform the desired action. Execution of
the procedure has left the values of I and A[I] unchanged.

In Example 7.2 the parameters are passed by location. Thus any
assignment to X and Y results in assigning the values to the correspond
ing location of the variables given as arguments, in this case the
locations in which I and All] are stored. Thus, this procedure has the
desired effect, as shown by the output of the program. Note that it is the
value of I at the time the call statement is executed that determines the
component of A referenced by Y. That is, the loca,tion that is passed is
evaluated at the time the procedure is invoked and before the first
statement in the body is executed.

Procedures and Parameters 199

program
declare I;
declare A: array;
procedure SWAP_BY_VALUE(X: value. Y: value):

declare TEMP;
begin

TEMP := X;
X := Y;
Y := TEMP;

end;
begin

I := 3;
A[I] := 6;
output I, A[3];
SWAP_BY_VALUE (I, A[I]);
output I, A[3];

end;

Output
1=3
1=3

A[3] = 6
A[3] :;;: 6

Example 7.1 Call by value

program
declare I;
declare A: array;
procedure SWAP_BY_LOCATION(X: location, Y: location):

declare TEMP;
begin

TEMP := X;
X := Y;
Y := TEMP;

end;
begin

I := 3;
A[I] := 6;
output I, A[3];
SWAP_BY_LOCATION(I, A[I);
output I, A[3];

end;

Output
1=3
1=6

A[3) = 6
A(3] = 3

Example 7.2 Call by location

200 Chapter 7

In Example 7.3 where the parameters are passed by name, we
have a rather surprising result. The values of I and A[3] are set to 3 and
6, respectively, as before. Then the procedure call SWAP_BY_NAME
(I, A[I]) is executed. This is equivalent to executing the statements:

TEMP := I;
I :=A[I];
A[I] := TEMP;

This execution results in 3 being assigned to TEMP, 6 to I, and then 3
to A[6]! The value of A[3] is left unchanged.

In Example 7.4, the arguments are passed by result. Since result
parameters can only provide return values to their corresponding
arguments, and must be given initial values by statements in the
procedure, execution of this program will result in a run-time error. The
error will occur when the assignment of the value of X to the local
variable TEMP is attempted, since X is given no value within the body
of the procedure. Notice that this error occurs despite the fact that the
argument corresponding to X has a value.

These examples show some of the consequences of the various
methods of passing arguments. We return to this discussion in Section
7.4.

7.2 PROCEDURES AS ABSTRACTIONS

The procedure facilities in a programming language can be a powerful
tool for coding clear, modular programs. Not only do these facilities
allow the programmer to "factor out" frequently executed sections of
code but, more importantly, they provide a basic unit for abstraction of
program modules. This abstraction can have a great effect on program
readability by exposing the program's logical structure.

When procedures are used effectively, they allow the program to
be presented in levels of abstractions. The top-most level, the main
program, defines the outer structure of the program. The successive
lower levels give increasing details about the computations needed to
perform the desired result.

Perhaps the most primitive facility for procedures is evident in
Basic and Cobol. In these languages procedures have no parameters and
must rely on global variables but, still, units of computation can be
grouped into modules and invoked through some form of procedure call.

Procedures and Parameters 201

program
declare I;
declare A: array;
procedure SWAP_BY_NAME(X: name, Y: name):

declare TEMP;
begin

TEMP := X;
X := Y;
Y := TEMP;

end;
begin

I := 3;
A[I] := 6;
output I, A[3];
SWAP_BY_NAME(I, A[I]);
output I, A[3];

end;

Output
1=3
1=6

A[3] = 6
A[3] = 6

Example 7.3 Call by name

program
declare I;
declare A: array;
procedure SWAP_BY_RESUlT(X: result, Y: result):

declare TEMP;
begin

TEMP := X;
X := Y;
Y := TEMP;

end;
begin

I := 3;
A[I] := 6;
output I, A[3];
SWAP_BY_RESULT(I, A[I]);
output I, A[3];

end;

Output
I =3 A[3] = 6
••• ERROR: ATTEMPT TO EVALUATE AN UNDEFINED VARIABLE X

Example 7.4 Call by result

202 Chapter 7

Example 7.5 shows the use of procedures in Cobol. The names of
procedures are given as paragraph headers and procedures are invoked
using a perform statement, and as:

PERFORM PRODUCE-PAGE-EJECT.

This perform statement invokes the paragraph named PRODUCE
PAGE-EJECT, and after execution of this paragraph control returns to
the calling sequence.

Even with this simple scheme, we see a basic value in providing
procedures in a programming language. In particular, they allow named
units of computation to be extracted from the program text and to be
invoked when needed. The simple procedure facility of Cobol brings up
an important issue not present in Mini-language Procedures. Notice that
in the Cobol program of Example 7.5, execution of the procedure takes
place as if the procedure were inserted in place at the point of call. As a
result, the effect of the procedure takes place directly upon the variables
that can be referenced at the point where the procedure is invoked. This
is in sharp contrast to Mini-language Procedures, where all variables in
a procedure are local and the effect of the procedure takes place only by
assignment to arguments of the call.

In most programming languages, procedures may achieve an effect
by both methods. That is, a procedure may affect its arguments or may
affect variables that can be referenced at the point where the procedure
is called. This brings up the whole idea of global variables, as well as
the concepts of block structure and the nesting of procedures. These
topics are saved for treatment in Chapter 8. Our intent here is to present
procedures in their simplest form, without these additional linguistic
complexities.

Procedures have one clear and strong advantage from our point of
view. In our discussion of control structures, we noted the simplicity
gained if the flow of control in a program followed a one-in, one-out
strategy. Procedures fit perfectly within this scheme. Even with the
somewhat simple procedure structure in Cobol, we see the value of
using these one-in, one-out abstractions.

In order to follow a strict one-in, one-out structure, procedures can
have only a single entry point and a single exit. In Mini-language
Procedures, the programmer is not allowed any choice in this matter. In
other languages it can be different. PL/I, for example, permits a
procedure to have several entry points, each with its own name that can
be called separately. Ada, Fortran, and PL/I also allow the programmer

Procedures and Parameters 203

PREPARE-ACTION-RPT.
PERFORM PRODUCE-PAGE-EJECT.
PERFORM PRODUCE-ACTION-RPT-HEADER.

INCORPORATE-NEXT-TRANSACTION.
PERFORH GET-NEXT-TRANSACTION-REC.
IF (NOT EOF-SALE-TRANSACTION-FILE)

PERFORH GET-HATCHING-HASTER-REC
IF (HATCHING-HASTER-REC-OBTAINED)

PERFORH UPDATE-HASTER-REC
ADD 1 TO NUH-OF-UPDATES

ELSE
PERFORH HANDLE-UNHATCHED-TRANSACTION.

PRODUCE-PAGE-EJECT.
HOVE SPACES TO RPT-LINE.
WRITE RPT-LINE BEFORE ADVANCING PAGE.

PRODUCE-ACTION-RPT-HEADER.
ACCEPT TODAYS-DATE IN ACTION-RPT-HEADER FROH DATE.
HOVE ACTION-RPT-HEADER TO RPT-LINE.
PERFORH FREE-RPT-LINE.

GET-NEXT-TRANSACTION-REC.
READ SALE-TRANSACTION-FILE

AT END HOVE 1 TO SALE-TRANSACTION-FILE-STATUS.

GET-HATCHING-HASTER-REC.
HOVE SALESPERSON-ID-NUH IN TRANSACTION-REC

TO 10 IN HASTER-REC.
HOVE 0 TO HATCHING-HASTER-REC-STATUS.
READ SALESPERSON-HASTER-FILE

INVALID KEY HOVE 2 TO HATCHING-HASTER-REC-STATUS.

HANDLE-UNMATCHED-TRANSACTION.
IF (NUH-OF-UNMATCHED-TRANSACTIONS = 0)

PERFORM PRODUCE-LINE-SKIP
PERFORH PRODUCE-UNMATCH-IST-HEADER.

PERFORM LIST-UNMATCHED-TRANSACTION.

Example 7.5 Use of procedures in Cobol

204 Chapter 7

to use a return statement to specify that control is to return to the
calling procedure. Thus it is possible to construct a procedure that is no
longer a one-in, one-out structure. It is clear that these extra facilities
add complexity to programs. What is not so clear is whether this added
complexity brings with it an equivalent simplification to the reader.

7.3 ARGUMENTS AND PARAMETERS

Of course, procedures cannot exist in isolation. They must have some
form of data communication with the point at which they are called.
Parameters are an important part of almost every facility for proce
dures, for it is through parameters that we generalize the action of a
procedure.

The identifiers used for the parameters of a procedure have no
effect on its meaning. Thus the effect of

procedure ADO (X: value. Y: value. R: result):
begin

R := X+ Y;
end;

is precisely the same as the effect of

procedure ADD (ITEMl: value. ITEM2: value. SUM: result):
begin

SUM := ITEMl + ITEM2;
end;

where the identifiers have been changed. Parameter identifiers are
purely local to the procedure and have no connection with any
identifiers used outside the procedure. Because Mini-language Proce
dures has a rule against declaring an identifier more than once, there is
no chance of a parameter identifier being the same as a locally declared
variable. If this rule were relaxed then it would be possible for a
parameter identifier to be the same as an identifier used for a variable
elsewhere in the procedure. Nevertheless, the two uses of the identifier
are quite separate, and a call statement like

ADD(SUM. ITEMI. ITEM2);

would invoke the procedure ADD, using the values of the variables
SUM and ITEM! and assign the result to the variable ITEM2. This

Procedures and Parameters 205

independence between the two sets of identifiers is essential to the
procedure's role as an abstraction. The user does not need to be aware
of the internal details of the procedure in order to be able to use it.

Conceptually we may view a procedure in rather simple terms. In
particular, parameters may be classed as:

• Inputs: The inputs provide values from the caller that are
to be used within a procedure. If we view a procedure like a
function, inputs are arguments in the traditional sense.

• Outputs: The outputs of a procedure convey the values
returned to the calling environment. Again, if we view a
procedure as a function, outputs correspond to the value
computed by a function. While normally a function may
return only a single value, with procedures, several outputs
may be computed.

• Updates: The updates characterize those objects in a
calling environment that are used both as inputs and as
outputs by a procedure. Because of the use of assignment in
programming languages, it is frequently the case that an
object, for example an array or variable, will need to be
modified by a call to a procedure.

This rather simple view of procedures is illustrated as follows:

Updates Updates

Inputs Procedure Outputs- -

Generally speaking, each parameter-modes of Mini-language Pro
cedures models one of these three types of parameters. Unfortunately, it
is the nature of programming languages that such a simple view of
parameter passing is often not sufficient to characterize their behavior.
We now turn to the various methods by which arguments are passed.

Passing by Value

Argument passing by value is used in many computer languages,
for example, Algol 60, Pascal, Algol 68 and Snobol. The reason for the

206 Chapter 7

popularity of this method is its analogy to the arguments of a function,
where values are provided in order to compute the result.

The simple description of passing by value is that the parameters
are treated as local variables. Initial values are provided by copying the
values of the corresponding arguments. However, all is not quite so
easy.

One of the debits of call by value is that the operation of copying
the value of an argument into the location used for the corresponding
parameter may be an expensive operation. This is especially true when
large objects are passed. Imagine for the moment a procedure with two
parameters, the first being a thousand element array and the second
being an integer valued variable. Assume that the first parameter is
called by value, and the second by result. The body of the procedure
simply sums all of the elements in the array and passes the result back
to the calling environment via the second variable.

Although copying such a large array is expensive, the operation is
necessary, since in general a value parameter may be modified in the
body of the procedure, and thus a local copy of the array is needed.

This problem is nicely solved in Ada by in parameters. Such
parameters are similar to value mode parameters but may not be targets
of assignments. Thus, the value of such a parameter acts as a local
constant whose value is initialized by the procedure call. There is no
need to copy the values supplied as an argument when the procedure is
invoked. Since no updates to the parameter are allowed within the
procedure body, the compiler can check this and generate code that
refers directly to the actual argument.

Passing b}' Result

Passing by result is a relatively rare method of argument passing,
but exists in Algol Wand Ada. In a sense, passing by result is the
converse of passing by value, in that the values of the corresponding
arguments are set on completion of the execution of the procedure body.
Passing by result thus directly" models the principle of outputs men
tioned above. Of course, the arguments corresponding to a parameter
passed by result must be variables.

There are two potential problems with result parameters that can
only be resolved by careful language design and definition. If a
procedure has more than one result parameter, there is the possibility
that it will be invoked by a call statement that associates two of them
with the same variable, for example a call statement like P(I I I);. If,
after" execution of the procedure, the two parameters have different
values, the question of the order in which these two values are assigned
to I arises.

Procedures and Parameters 207

Mini-language Procedures does not specify this ordering and it is
left to the decision of the implementor. For this reason, a call statement
like this is generally regarded as a programming error or at least as poor
programming practice. Indeed, some languages. specifically forbid such
calls because the results are indeterminate.

The second problem arises where an argument passed by result is
a subscripted variable whose subscript depends on other arguments in
the same call. For example, if the procedure Q has two result
parameters and it is invoked by the call statement:

Q (A[Il, I);

Here, the language definition must specify carefully whether the
location of the first argument is evaluated before or after the procedure
Q is executed. The effect of the procedure can be quite different in these
two cases. In this particular example, the effect of the procedure will
also depend on the solution taken in the first problem. In languages
where global variables exist, the situation is more complex.

Perhaps the reason for the general lack of passing by result in
programming languages is that the same effect can usually be achieved
with passing by location. However, in general we feel that the notion of
outputs of a procedure is so important that a parameter passing
convention strictly for this case is well justified.

Pa88iDg by LocatioD

Passing by location, sometimes known as passing by reference, is
a popular method of argument passing. This method exists in Fortran,
Cobol, Pascal, PL/I, and Algol 68. The popularity of this method must
be due to its simplicity and its direct analogy with the idea that
variables have a location from which their values can be obtained or
updated. Passing by location models update parameters for a procedure.

Pass by location can be implemented efficiently, for its implemen
tation only requires the computation of the address of each argument,
which is then associated with the corresponding parameter.

Like passing by result, there are two areas where careful attention
to the details of the design must be given. Again, the first one concerns
the same variable being used as two arguments and thus associated with
two different parameters. That is, both parameters are associated with
the same location. The two parameters are said to be aliases.
Generally, the term is used to cover the situation where two different
identifiers in a segment of a program refer to the same location. There
are other ways in which this can occur as we shall see in Chapter 8.

208 Chapter 7

Procedures in which there are aliases are difficult to understand. In
addition, when there is a potential for aliasing there are certain
optimizations that cannot be performed for fear of changing the meaning
of the program. In PL/I, where arguments are passed by location,
procedures are often compiled separately from the call statements that
invoke them. In these circumstances, it is impossible for the compiler to
determine whether any aliasing exists; the conservative approach must
be taken, by omitting the optimization.

The second area of design concerns the restriction that arguments
that are passed by location must be variables. Certainly, if an argument
were an expression, its value could be stored in a temporary location
and this passed to the corresponding parameter. This would then mean
that an assignment in the procedure to the parameter would be an
assignment to the temporary value. This would allow the parameter to
continue in its role as one of the procedure's local variables. Such an
assignment would have no effect in the calling environment. It is an
open question of language design whether passing arguments that are
expressions by location should be allowed.

Passing by Value-Result

In spirit, this method of passing arguments is similar to passing by
location. The value of the argument, which must be a variable, is
assigned as the initial value of the corresponding parameter. When the
procedure completes execution, the final value of the parameter is
assigned to the argument variable. Like passing by result, passing by
value-result is rare but it does exist in Algol W.

Because of the copying of values that is required, this method of
passing arguments is less efficient than passing by location. However,
since the parameter is a variable in its own right, there can be no danger
of aliasing. Thus there is a greater potential for optimization than there
is with location mode parameters.

A sharp difference between passing by location and passing by
value-result occurs in cases where an exception condition arises during
execution of the procedure. Exception conditions are discussed in
Chapter 14, but a brief point will be made here.

Consider a procedure with one value-result parameter. Let us
assume that arithmetic is performed on the parameter and that during
the arithmetic computation, a value is computed that lies beyond the
maximum numeric value handled by the implementation. This is an
overflow condition. In this case, a program will usually terminate
abnormally, and then the values of variables can often be inspected.

Procedures and Parameters 209

With passing by value-result, inspection of the corresponding
argument will reveal that the value is the same as that obtained when
the procedure was invoked, as no change to the value of this variable is
performed during execution of the procedure body. With passing by
location, however, the value stored in the location may be altered.

Inspection of the value of the variable given as an argument will
show such a change. Thus the two methods of parameter passing may
differ under abnormal termination conditions.

Passing by Name

Historically, passing by name has received much attention in the
literature. Yet its use is very rare, and to our knowledge, exists only in
Algol 60.

The relative unpopularity of this method is due to the surprises it
can give the programmer and to its inefficiencies. This method of
passing arguments stems directly from the Lambda Calculus [Church
1941].

The characteristic of passing by name is the deferred evaluation of
the argument. In the other modes of argument passing, the argument is
evaluated before the body of the called procedure is executed. Instead
of passing a value or location to a name parameter, a rule for evaluating
the argument is passed. This rule is used whenever the argument is
referenced. In Section 7.1, we described this process through the
metaphor of textual substitution. This metaphor works well for a small
language like Mini-language Procedures, however, in a more complex
language, it soon loses its simplicity if it is to remain accurate. The
problem is that the application of the rule for evaluating the argument is
only valid in the context of the call statement. Thus, if the argument is
A[I] and there is a variable I declared in the called procedure, simple
textual substitution does not tie the I in A[I] back to the calling context.

7.4 VALUE-RETURNING PROCEDURES

A value-returning procedure is one that is invoked as a function
reference in an expression. It thus computes a value that is used in the
next stage in evaluation of the expression.

Suppose Mini-language Procedures were extended to include a
return statement with the syntax:

return identifier;

210 Chapter 7

This statement would only be permitted in a procedure. Its execution
would cause control to return to the point at which the procedure was
invoked with the value associated with the identifier as the value of the
reference to the procedure. To invoke a procedure containing a return
statement by a call statement would be meaningless since there would
be no way of using the returned value. The Mini-language extension
would therefore require a rule that restricted reference to a procedure
containing return statements to expressions.

Consider the following example of a value-returning procedure:

procedure ADD_ONE (V: value):
begin

V := V + 1;
return V;

end;

Such a procedure must be invoked in an expression such as:

X := A III ADD_ONE(A) + A;

If the value of A were 3, then 15 would be assigned to X.
Note that the parameter is declared with value mode. Had it been

declared with location mode, the evaluation of the expression

would be harder to understand and the outcome less certain. The
problem is that, when V has a location mode, execution of the
ADD_ONE procedure not only calculates a return value but also adds
one to the argument. This is known as aside-effect. The actual result
that is assigned to X in the above example will now depend on the
details of the evaluation mechanism of the expression. Depending on
these, the expression could be equivalent to one of the following:

3 III 4 + 3
3 III 4 + 4
4 III 4 + 4

Thus the use of value-returning procedures that have side effects can
have implementation defined results and is bad programming practice.

Procedures and Parameters 211

7.5 COROUTINES

The invocation and execution of procedures described in this chapter
are the classical form common to most standard programming lan
guages. Another form, known as coroutines, is much less common and
will be described in this section.

The relationship between the part of a program that contains a call
statement, often called the main procedure, and the subroutine is
asymmetric. The flow of control that characterizes this relationship is
shown in Figure 7.1. The asymmetry is shown by the fact that the called
procedure is always entered at its first statement whereas, when control
returns to the main procedure, execution is resumed at the point
following the call. Thus the subprocedure is in a subservient role to the
main procedure.

Coroutines have a more symmetric relationship between the calling
and called parts of the program. In normal use, a pair of procedures
work together as coroutines. When they are invoked, they do not
execute to completion as in normal procedures, but return control after
partial execution. At this point execution of one coroutine is suspended
and the execution of the other is resumed from the point at which its
execution was suspended. This sequence of suspensions and resump
tions of control continues as the coroutines work together, as shown in
Figure 7.2. In this arrangement, the two coroutines are on the same
level and there is no master-slave relationship as there is in normal
calling mechanisms.

Main procedure Sub procedure S

end:

Figure 7.1 Control flow relationship between
main procedure and subprocedure

212 Chapter 7

Coroutine A Coroutine B

r-r---.....-.--.L.J k

r--t---~---_J_-...J A;

B; ,-_...... +-_-' A;

Figure 7.2 Flow of control between a pair of coroutines

Coroutines allow programs with complex sequencing logic to be
simplified by allowing the details of the sequencing structure to be
separated into separate modules. Coroutines are of use in complex
searching processes and in simulation of multiprocessing, discussed in
Chapter IS, as well as in the handling of interleaved lists, discussed in
Chapter 12.

FURTHER READING

There are several further readings that deserve special note here. Of importance
is [Jones and Muchnick 1978]. This discusses the general concept of binding
time and the methods of parameter passing in programming languages. It treats
most of the issues covered in this chapter and presents the concepts in a clear
and effective way.

Readers who wish to explore the origins of call by name may refer to the
classic work [Church 1941). The use of this parameter passing mechanism in
Algol 60 is described in [Rutishauser 1977].

Traditionally, as well as in the presentation given above, the arguments of
a procedure are always passed in positional order. That is, the arguments given
in a procedure call correspond one by one to the corresponding position of the
parameters given in the declaration of the procedure itself. An interesting
variation of this method of parameter passing is described in [Ichbiah et al.
1979]. This reference describes an alternative mechanism for stating the
correspondence between arguments and parameters through the use of a

Procedures and Parameters 213

keyword notation, in which the procedure call explicitly names the association
between arguments and parameters.

Coroutines were introduced in [Conway 1963]; this paper serves as a good
introduction to the use of coroutines in the compiling process.

EXERCISES

Exercise 7.1 Methods of Passing Parameters

Suppose Mini-language Procedures were modified so that a variable
declared outside a procedure could be referenced and modified from within
the procedure. Consider the following program, written in this variant of
Procedures where a parameter mode has been omitted.

program
declare I;
declare B: array;

procedure Q(X:
begin

I := 1;
X := X+ 2;
B[I] := 10;
I := 2;
X := X+ 2;

end;

begin
B[l] := 1;
B[2] := 1;
I := 1;
Q(B[I]);
output B[l]. B[2];

end;

) :

Consider the mode of the parameter X of procedure Q to be (1)
value, (2) result, (3) value result, (4) location, and (5) name execute the
program for each argument passing convention and determine the values
output.

Note: One of the executions terminates abnormally; in all others, the
results are different.

214 Chapter 7

Exercise 7.2 Pass by Name versus Pass by Value

The short program below incorporates most of the basic pass-by
name and pass-by-value problems. The value returning procedures,
INCREMENT_BY_VALUE and INCREMENT_BY_NAME, differ in
that their argument is passed by value versus by name. That is the only
difference. ADD_BY_VALUE and ADD_BY_NAME differ similarly.

The problem is to determine the values printed in each output
statement.

Note: This exercise is adapted from Weil (1965].

program
declare A, B;
procedure INCREHENT_BY_VAlUE (X: value):
begin

X := X+ 2;
return X;

end;
procedure INCREHENT_BY_NAHE (X: name):
begin

X := X+ 2;
return X;

end;
procedure ADD_BY_VAlUE (X: value):
begin

return X+ X;
end;
procedure ADO_BY_NAHE (X: name):
begin

return X+ X;
end;

begin
A := 3;
B := AOO_BY_VAlUE(INCREHENT_BY_VAlUE(A»;
output A, B;
A := 3;
B := ADD_BY_VAlUE(INCREHENT_BY_NAHE(A»;
output A: B;
A := 3;
B := ADD_BY_NAHE(INCREHENT_BY_VAlUE(A»;
output A, B;
A := 3;
B := ADD_BY_NAHE(INCREHENT_BY_NAHE(A»;
output A, B;

end;

Procedures and Parameters 215

Exercise 7.3 Jensen's Device

Passing parameters by name may be used in a programming
stratagem known as Jensen's Device. To use the technique, a procedure
has two or more parameters that are passed by name. During execution the
value of one or mote of these parameters is changed. If one of the
arguments is an expression that involves the variable that is updated during
execution, the expression may be evaluated for many different values of its
variables.

A simple example of this procedure is the function procedure:

procedure SUM (l-BOUND: value, U_BOUND: value. INCREMENT: value,
TERM: name, EXPRESSION: name):

declare TOTAL;

begin
TOTAL := 0;
TERM := L_BOUND;
WHILE (TERM <= U_BOUND) loop

TOTAL := TOTAL + EXPRESSION;
TERM := TERM + INCREMENT;

end loop;
return TOTAL;

end;

The invocation of the procedure SUM by

SUM (1, 25, I, I, A[I]);

will produce the sum of the first 25 elements of the array A. The
invocation

SUM (1. 25, I, I. IjA[I]);

will compute the sum of the inverses of the elements.

1. Write an invocation of SUM that will give the sum of the
first five powers of three.

2. Write a general purpose routine that will find the maximum
value from a set of values obtained by evaluating an arbitrary
expression containing a variable that ranges from a given lower
bound to a given upper bound in a given step size.

3. Describe the limitations of this technique.

216 Chapter 7

Exercise 7.4 Aliasing

The term aliasing is used to describe the situation where a single
location, and hence its value, may be accessed through more than one
name. Describe:

1. The ways in which aliasing can occur,

2. The implementation problems that aliasing can cause,

3. Some rules for a language without pointers that attempt to
prevent aliasing.

Illustrate your answer with examples.

Exercise 7.5 Coroutines

Devise some additional syntax and 'define the corresponding seman
tics for the extension of Mini-language Procedure to include coroutines.
How could your proposal be generalized to allow any number of
intercommunicating coroutines?

Exercise 7.6 Named Parameter Passing

In Ada, the agruments to a subprogram can be given in positional
order or by naming the parameters associated with the arguments, or in
combination. Named parameters can be given in any order.

For example, with the procedure header

procedure PLOT (X, Y: in REAL; PEN-UP: in BOOLEAN);

where in denotes an input parameter, we may have the calls:

PLOT (0.0., 0.0, TRUE); -- positional
PLOT (X;> 0.0, Y;> 0.0, PER-UP ;> TRUE); -- named
PLOT (PER-UP ;> TRUE, X;> 0.0, Y=> 0.0); -- names reordered
PLOT (0.0, 0.0, PER-UP => TRUE); -- combination

There are basically two positions on this feature:

1. Such a feature is useful and is highly reliable. The program
mer does not have to remember the order of parameters. With
long parameter lists, the feature is almost indispensible.

Procedures and Parameters 217

2. Such a feature is of dubious importance. The desired
effect on readability can be achieved in other ways, for
example, writing procedures with fewer arguements or giving
mnemonic names to arguments. Furthermore, a change to the
names of parameters forces the calls to be changed.

Make your choice, and write a one to three page position paper on your
choice.

..
/.~.

/,. ,

'j", ',::
. . .:'

'. ,

•

••

8
Nesting and Scope

The association between a parameter and its value holds only within the
procedure. Outside the procedure, either the identifier has no meaning,
or it is associated with some other object. We say that the identifer is
local to the procedure.

Identifiers are used in programs to refer to many different kinds of
entities. In a large program there can be hundreds, if not thousands, of
such identifiers. Since a large program is likely to be the work of many
programmers, there must be some method of avoiding incompatible uses
of the same identifier without onerous bookkeeping. Identifiers intro
duced by a programmer should not be required to have the same
meaning over the complete program. It must be possible to limit the
area of a program in which a particular identifier is associated with a
specific entity.

The part of the program over which an identifier refers to the value
defined in its declaration is the scope of the declaration. The process of
matching an identifier reference to its defining declaration is the
resolution of the reference. An identifier is said to be known within the
scope of its declaration.

Mini-language Scope introduced here has rules based on those of
Algol and Pascal.

220 Chapter 8

8.1 MINI-LANGUAGE SCOPE

As with most of our mini-languages, the program consists of one or
more declarations followed by a sequence of statements, as shown in
Table 8.1. There are two kinds of declarations: variable declarations
and procedure declarations. In any declaration section, a name may be
declared only once.

Declarations

A variable declaration introduces one or more integer variables.
All variables in a program must be declared.

A procedure declaration introduces a named procedure. A proce
dure consists of one or more declarations followed by a sequence of
statements. All identifiers used within a procedure must also be
declared, either in the declarations given with the procedure or in an
outer program unit. A program unit is either a procedure (that is,
bracketed by the keywords procedure and end) or a main program (that
is, bracketed by the keywords program and end).

Statements

Mini-language Scope has assignment, call, input, and output
statements, all of familiar form. The expressions that can be used in an
assignment statement are extremely simple, and can only consist of
operands or the addition of operands.

Scope Rules

A declaration associates certain properties with an identifier; in
this mini-language it defines whether an identifier is an integer variable
or a procedure. The region of a program over which a particular
declaration of an identifier is in effect is the scope of the declaration.
Within anyone declaration section, a particular identifier may only be
declared once. A reference to an identifier in a statement sequence must
be within the scope of the declaration of that identifier.

A program in Mini-language Scope is made up of blocks. The
complete program is itself a block. The part of a procedure declaration
from the symbol : to the end symbol that terminates the procedure is
also a block. Except for the outermost block, all blocks are contained in
at least one other block. The scope of a declaration consists of the block

Nesting and Scope 221

Table 8.1 Mini-Language Scope

program

declaration-section

variable-declaration

procedure-declaration

statement

assignment-statement

call-statement

: :=

program
declaration-section

begin
statement...

end;

[variable-declaration...]
[procedure-declaration...

declare identifier [I identifier]... integer;

procedure identifier :
declaration-section

begin
statement...

end;

assignment-statement
call-statement
input-statement
output-statement

identifier := expression

identifier

input-statement

output-statement

input identifier [

output identifier [

identifier] ...

identifier] ...

expression

operand : :=

[operand +] operand

integer
identifier
(expression

222 Chapter 8

in which it occurs and all contained blocks that do not have a
redeclaration of the same identifier.

Although a particular identifier may not be declared more than
once in anyone declaration section, it may be declared in other
declaration sections. Each such declaration can associate the identifier
with different properties. Each declaration has its own scope, which is
disjoint from the scopes of all other declarations of the same identifier.

The following program fragment shows how the scopes of different
declarations of the same identifier cover different parts of the program:

Scopes
Al A2 A3

program
declare A: integer; -- Al I
procedure B: _I

declare A: integer; -- A2 I
I

end; -- B _I
procedure C: I

procedure E: _I
procedure A: -- A3 I

I
end; -- A I

I
end; -- E _I

I
end; -- C I

I
end; _I

The outer declaration of A has a scope that consists of the outermost
block and the procedure C; however, it includes neither the procedure
B, where it is redeclared as an integer variable, nor the procedure E,
where it is redeclared as a procedure. The gaps corresponding to parts
of the text where the identifier has been redeclared are known as holes
in the scope.

An identifier declared in a block is said to be internal or local to
the block in which it is declared, and external or global to all inner
blocks that do not contain redeclarations of it.

Nesting and Scope 223

When an identifier is used within a statement sequence, the
declaration that defines the identifier can be determined as follows:

• If the declaration section of the block that contains the
statement sequence has a declaration of the identifier, that is,
the defining declaration.

• Otherwise, the blocks enclosing the sequence of state
ments are examined, and the most local closing block
containing a declaration of the identifier defines the given
identifier.

A procedure's local variables do not exist until the procedure is
invoked. At that time, the variables are created with undefined values.
The variables continue to exist until execution of the procedure is
completed, at which point they cease to exist.

Examples

Example 8.1 shows the use of nesting and the redeclara~ion of
identifiers. Here a variable named A is declared within the procedure
PURELY_LOCAL. Its scope thus consists only of the procedure itself.
The variable A is also declared in the main program; it~ scope does not
include the procedure PURELY_LOCAL.

When the program of Example 8.1 is executed, the value of A will
be set to 1, and then this value will be output. The procedure
PURELY_LOCAL is then called; this proceq~re sets the local variable
to 5 and outputs its value. It thus has no effect on the containing
program unit. Finally, the value of A in the main program unit is again
printed. Since the value associated with this identifier has not been
changed by the call of PURELY_LOCAL, the value 1 will ag~in be
printed for the variable A.

Example 8.2 shows a program similar to that of Example 8.1,
except that the variable A is not declared as local to the procedure. The
effect of the procedure PURELY_GLOBAL in Example 8.2 will be to
change the value of A declared in the main program. Thus when this
program is executed, the first output statement will print the value 1 and
the second output statement will print the value 5. However, in this
example, the third output statement will also print the value 5, since the
call to PURELY_GLOBAL changes the value of A.

224 Chapter 8

program
declare A: integer;

procedure PURELY_LOCAL:
declare A: integer;

begin
A :::: 5;
output A;

end;

begin
A :::: I;
output A;
PURELY-LOCAL;
output A;

end;

Output
A::: 1
A ::: 5
A::: 1

Example 8.1 Use of a local variable

program
declare A: integer;

procedure PURELY_GLOBAL;
begin

A := 5;
output A;

end;

begin
A := 1;
output A;
PURELY-GLOBAL;
output A;

end;

Output
A=1
A=5
A::: 5

Example 8.2 Use of a global variable

Nesting and Scope 225

Example 8.3 illustrates the full complexities of Mini-language
Scope. The main program unit introduces three variables A, B, and C.
Three procedures, Q, R, and S, are also defined within the main
program unit. Furthermore, procedure R introduces a local declaration
of the variable C, and procedure S introduces local declarations of B
and C, as well as an inner declaration of procedure Q.

The way in which this program executes is shown in Table 8.2.
The statement numbers correspond to those shown in comments in the
program. In order to distinguish the separate uses of the same identifier,
the variables are distinguished in Table 8.2 by prefixing their names
with the name of the procedure in which they are declared. For
example, S.C is the variable C declared in the procedure S. Execution
begins at the first statement in the statement sequence of the outermost
program unit, line 17.

Where the same identifier is used for more than one object in a
program and the rules of scope must be used to determine which object
is being referenced, the names of the objects are said to clash. The
many clashes illustrating the rules of Scope in Example 8.3 make the
program difficult to understand and are best avoided.

8.2 THE IDEA OF SCOPE

In mathematical writing, the concept of scope is used extensively. It is
common to introduce local definitions to give the current meaning of a
symbol. For instance, we may write, "let N be ..." Such definitions are
usually local to a section of text and have no connection to other uses of
the symbol N elsewhere in the text. Although there are no formal rules
that define the scope of such textual declarations, in a clearly written
document there will be no difficulty in understanding. The meaning in
programming languages, since compilers have no intuition to rely on, we
must be 'more precise in our definition of scope, hence, for example, the
scope rule given for Mini-language Scope.

The idea of. a declaration having a scope that is less than the
complete program, allows the same identifier to be used for different
purposes in separate parts of a program. Consider the program fragment
of Example 8.4. We assume that we are writing a program that
processes text. This program contains two procedures, GET_SYMBOL
and MOVE_LINE_POSITION. Within these procedures a number of
variables are declared, and these declarations are assumed to hold for
the procedure in which they are given. Notice that two variables,
INDEX and LENGTH, happen to have the same identifier in both
procedures, although they represent different entities. To reflect this

226 Chapter 8

meaning, each of the variables has a scope that consists of a region of
text comprising the procedure in which the declaration of the variable is
given.

-- line 1
-- line 2
-- line 3

program
declare A, B, C: integer; -- variables A, B, and C

procedure Q:
begin

A := A+ 2;
C := C + 2;

end;

integer; - variable R.C
- line 4
-- line 5
-- line 6
-- line 7
-- line 8

procedure R:
declare C:

begin
C := 2;
Q;
B := A + B;
output A, B, C;

end;

procedure S:
declare B, C:
procedure Q:
begin

A := A + 1;
C := C + 1;

end;
begin

B := 3;
C := 1;
Q;
R·,

end;

integer; -- variables S.B, and S.C

-- line 9
-- line 10
-- line 11

- line 12
-- line 13
-- line 14
-- line 15
-- line 16

begin
A := 1
B := 1
C := 1
R·,
s;

end;

-- line 17
-- line 18
-- line 19
-- line 20
- line 21
-- line 22

Example 8.3 The joys of scope

Nesting and Scope 227

Table 8.2 Execution of Example 8.3

line A B 5.B C R.C S.C Notes

17 ? ? ? The three local variables of the outer-
most block have no defined value. No
other variables exist.

18 I ? ? A is assigned I.
19 I I ? B is assigned I.
20 I I I C if assigned I.
21 I I I The procedure R is invoked.
4 I I I ? R's local variable C is created.
5 I I I 2 R's local variable C is assigned 2.
6 I I I 2 The procedure Q is invoked.
I I I I 2
2 3 I I 2 A is incremented by 2.
3 3 I 3 2 C is incremented by 2, Q is completed.
7 3 4 3 2
8 3 4 3 2 A=3, B=4, C=2 is printed. R is

completed. R's local variable C ceases
to exist. Control returns to the main
program.

22 3 4 3 Procedure S is invoked.
12 3 4 ? 3 ? S's local variables Band C are created.
13 3 4 3 3 ? S's local variable B is assigned 3.
14 3 4 3 3 I S's local variable C is assigned I.
IS 3 4 3 3 I Procedure Q contained in S is invoked.
9 3 4 3 3 I

10 4 4 3 3 I A is incremented.
11 4 4 3 3 2 S's local variable C is incremented.

Q completed.
16 4 4 3 3 2 Procedure R is invoked.
4 4 4 3 3 ? 2 R's local variable C is created.
5 4 4 3 3 2 2 R's local variable C is assigned 2.
6 4 4 3 3 2 2 The procedure Q is invoked.
1 4 4 3 3 2 2
2 6 4 3 3 2 2 A is incremented by 2.
3 6 4 3 5 2 2 C is incremented by 2. Q is completed.
7 6 10 3 5 2 2
7 6 10 3 5 2 2 A=6, B=IO, C=2 is printed. R is

completed. Control returns to S. S is
completed. Control returns to main
program, which is completed.

228 Chapter 8

program

procedure GET_SYHBOL:
declare INDEX, LENGTH, SYHBOl-CODE: integer;

begin
-- statements for obtaining the next symbol code;

end;

procedure HOVE-LINE-POSITION:
declare INDEX, LENGTH, TEHP_POSITION: integer;

begin
-- statements for advancing the current line position;

end;

begin

-- statements for main program

end;

Example 8.4 Reuse of local variable names

The value of such an idea is immediate. When writing a procedure,
a programmer can devise names that are suitable for the computation at
hand, without regard to other portions of the program. In a program with
a large number of procedures written by several programmers, the
programmers can choose names quite freely.

Some languages, for instance, Basic and Cobol, do not have the
concept of scope. Whenever a new entity must be declared, the
programmer is forced to devise a unique name for the entity. Even in
relatively small programs, this forces somewhat awkward naming
conventions. Perhaps even more important, the declaration and use of
the name may be quite distant. Thus the programmer may have no clear
way of showing the locality of effects on the various components of the
program. For these reasons, almost all recently designed programming
languages have some notion of scope.

Block Structuring

Mini-language Scope is modeled on the idea of block-structured
languages, originally introduced with Algol 60. Similar directions have
been taken in many other languages, for example, PL/I, Pascal, Algol
68, and Ada.

Nesting and Scope 229

The essential feature of block structure is a system of program
units that delimit the regions of program text and a method for
specifying the names that belong to these regions. In Mini-language
Scope, we use program or procedure as the opening bracket of a unit and
end as the closing bracket. Note that blocks can be nested one inside
another.

There are in general two sets of rules for the resolution of name
references. These rules correspond to the static and the dynamic
structure of the program. We will first discuss the box that corresponds
to the static structure of the program, this is sometimes called lexical
scoping. The term lexical refers to the fact that all references can be
resolved from the text of the program. The term static binding is also
used, this indicates that the connection between the declaration and the
reference does not change during the execution of the program.

The conventional rules of lexical scoping are:

• The scope of a declaration includes the block in which it
occurs but excludes any block surrounding it.

• The scope of a declaration includes any block contained
within the block in which the declaration occurs but excludes
any contained block in which the same identifier is rede
clared.

These two rules are a more formal statement of the concept of scope for
Mini-Ianguge Scope given in Section 8.1.

One effect of these rules is to prevent access to variables and
procedures declared within a procedure from outside the procedure. For
example, consider the fragment:

procedure P:
declare B: integer;
procedure C:

end;
begin

-- statements for P
end;

The variable B cannot be referenced outside the procedure P nor can the
procedure C be invoked from outside the procedure P. The variable B in
P does not exist unless the procedure P has been invoked.

230 Chapter 8

Another consequence is that the redeclaration of an identifier
prevents reference to the original entity. For example, consider the
fragment:

declare X: integer; -- outer X
procedure A:

declare X: integer; -- inner X
procedure B:

begin
-- the outer Xcannot be referenced here

end;
begin

end;

PL/I provides an escape from this situation by using external names.
External variables behave as though they were declared in a conceptual
block that contains all the separately compiled procedures of the
program.

An external name may be referenced within the scope of any
declaration of the same identifier with the attribute EXTERNAL, as in
the following fragment:

DECLARE X FIXEO EXTERNAL; /0 OUTER VARIABLE X0/
A:
PROCEDURE;

DECLARE X FIXED; /0 INNER VARIABLE X*/
B:
PROCEDURE;

DECLARE X FIXED EXTERNAL;
X= 5; /* REFERENCE TO OUTER VARIABLE X0/
END B;
X= 5; /* REFERENCE TO INNER VARIABLE X0/

END;
X= 5; /* REFERENCE TO THE OUTER VARIABLE X*/

Global Variables

The use of even a few global variables in a block increases the
complexity of the block considerably. An understanding of the computa
tion performed by the block involves considering the use that is made of
the global variables in the larger context of the complete program.
Changes made to global variables outside the block can affect the
correctness of the block itself.

Nesting and S~ope 231

With blocks that are procedures, the dangers of global variables
can be seen quite dramatically. Consider the program of Example 8.2.
Here we have the sequence of statements:

output A;
PURELY_GLOBAL;
output A;

Notice that the same output statement appears twice, but the value
output by each statement is different. The problem here is caused by the
invocation of the procedure PURELY_GLOBAL. The call statement
does not even mention the variable A, yet the invocation of the
procedure changes the value of this variable. This is known as a side
effect or a context effect.

In a small program like Example 8.2, the danger of side effects
may not appear to be particularly serious. But imagine a program with
hundreds of statements and many procedure calls, where each procedure
exhibits some side effect. Keeping track of the dynamic behavior of such
a program is often almost impossible.

8.3 DYNAMIC STORAGE ALLOCATION

In addition to the use of block structure as a means of controlling the
scope of declarations, it is also of significance at execution time.
Variables are associated with locations in storage, and a consequence of
a block structure is that it leads to an efficient technique for storage
management. It may be argued that, with the development of inexpen
sive storage on modern computers, this gain in efficiency may be
dubious.

The fact that a variable is not known outside the block in which it
is declared means that storage for variables in a block need only be
allocated during the execution of the block. Thus storage for the
variables is obtained when the block is entered and released when the
block is completed. This provides a basis for the sharing of storage
between blocks in an easily controlled and well-defined way. This form
of storage management is known as dynamic storage allocation. It was
originally developed for the implementation of Algol 60 and has since
been adapted for other block structured languages.

The acquisition of storage on block entry is handled by a special
sequence of instructions, known as the prologue, generated by the
compiler. Corresponding to the prologue, there is an epilogue that is
executed as the block terminates. The epilogue handles the release of
storage that is no longer required. Generally, the simplest way to
manage dynamic allocation is through the use of a stack.

232 Chapter 8

The Run-time Staek

The basic' idea is to use a region of consecutive locations of
storage as a stack. That is, allocated storage will always be added to the
top of the stack by incrementing a stack pointer, and released storage
will always be removed from the top of the stack by decrementing the
pointer. Although this kind of management technique is unable to
handle arbitrary allocation and release of storage, the last-in, first-out
mode of operation corresponds precisely to the storage requirements of
a block structured language.

All the storage required for the fixed size variables of a block is
collected together into a single area of storage called an activation
record. In addition to the storage for variables, an activation record will
contain other items concerned with the control of the execution of the
program. Such items include:

• Information about parameters

• Information about local variables that cannot be deter
mined during compilation, for example, where the bounds of
a local array are calculated from the parameters.

• Temporary storage for expression evaluation

• Addressing information for nonlocal variables

• The return address, that is, the point in the calling block
to which control returns when the current block terminates

• A pointer to the activation record of the caller.

The prologue manipulates the stack pointer and the initializes the
newly created activation record on the stack. Upon termination, the
pointer is reset to its position before the block's invocation and returns
control to the caller. Thus, at any time during execution, the run-time
stack consists of activation records for all those blocks that have been
invoked but have not yet terminated.

As an illustration of the use of the run-time stack, we trace block
entries and exits (with their corresponding effects on the run-time stack)
of Example 8.3, as shown in Table 8.3.

The rules of scope define a mapping from an identifier reference to
a declaration. The environment of a block provides the mapping from
the declarations to locations and thus values. The mechanism of

Nesting and Scope 233

providing one or more environment pointers in an activation record is
not the only possible implementation. A full discussion of these
techniques is beyond the scope of this text; for further information the
reader is referred to a compiler text such as [Aho and Ullman 1977].

Arrays and structures whose sizes are unknown during compilation
can also be handled on the run-time stack. The technique generally
employed is to allocate first the part of the activation record whose size
is known during compilation. Once this has been done, the size of the
array can be calculated and the size of the activation record can be
increased by advancing the stack pointer. A pointer to the array is then
inserted into the fixed part so that it can be accessed through an address
calculated during compilation.

A recursive procedure is one that can have more than one
activation record on the run-time stack at some point during execution.
Each of these activation records is distinct and each can contain
locations for different generations of the local variables. It is of
particular importance in dealing with recursive invocations that ques
tions of environment be carefully defined. We shall return to this
question in later chapters.

Other Kinds of Storage Management

A block structured language allocates storage for variables as each
block is invoked. This is however not true of all languages; there are
essentially three different times at which storage can be allocated:

1. When the complete program is loaded into storage. This is
the case in Fortran and Cobol, the PL/I storage class
STATIC, and Algol own variables. PL/I static storage and
Algol own variables differ from normal block structured
storage in that they are preserved when control leaves a block
containing them and their values are made available on re
entry.

2. When the block is invoked. This is the type of storage
management that we have described in detail in this section.
The allocation and release of storage is tied directly to the
block structure of the program.

3. Under the direct control of the programmer. This is
achieved through the execution of special statements. This
case is discussed in Chapter 13.

234 Chapter 8

Table 8.3 Stack Execution of Example 8.3

[SP denotes the stack pointer]

Line 17: The main program is entered. An
activation record containing locations for
variables A, B, and C is created.

MAIN

A ?
B ?
C ?

r-- SP

Line 21: Procedure R is invoked.
Line 4: Procedure R is entered. An activation
record containing a location for variable C is
created. This new activation record contains a
pointer to the activation record of the caller.
A reference to the identifier C in this block is
a reference to the current activation record.
However references to the identifiers A and B
are references to these variables in the
previous activation record labeled MAIN.

MAIN

A 1
B 1
C 1

R
-f-

ENV - ~

C ?
SP

Line 6: Procedure Q is invoked.
Line 1: Procedure Q is entered. An activation
record for this block is obtained. Since this
block does not have any local variables there is
no need for any storage for them. However, space
for control information such as the return
address is still needed. References to the
identifier A and C are references to the
activation record of the main program. A simple
pointer to the activation record of the caller
does not provide the necessary information and
an additional pointer, labeled ENV, is needed.
This is the environment pointer and is used
when the calling procedure does not contain
the called one, for example, when S invokes R.

MAIN

Nesting and Scope 235

Table 8.3 continued

SP

MAIN

A 3
B 1

C 3

R
"--

ENV ~

C 2

Line 3: Execution of Q completes and control
returns to Line 7. The activation record for Q
is removed from the stack.

Line 8: Execution of R is completed and control
returns to line 22. The activation record for R
is removed from the stack.

MAIN

A 3
B 4
C 3

SP

Line 22: Procedure S is invoked.
Line J2: Procedure S is entered. An activation
record contairiing locations for variables Band
C is created. The storage used for this
activation record is the space just released
from the activation record of procedure R.

MAIN
A 3
B 4
C 3

S
'-I-

ENV - I-'

B ?
C ?

SP

236 Chapter 8

Table 8.3 continued

Line 15: Procedure Q internal to S is invoked.
Line 3: Procedure Q is entered. An activation
record for this block is obtained. The
environment for this block consists of the
activation record for S for references to the
identifiers Band C and the activation record
for MAIN for references to the identifier A.
Thus two environment pointers are provided in
the activation record for procedure Q.

Line 11: Execution of procedure Q is completed
and control returns to line 16. The activation
record for procedure Q is removed from the
stack.

Line 16: Procedure R is invoked.
Line 4: Procedure R is entered. An activation
record containing a location for the variable C
is create. The environment pointer permits
references to A and B in the main program.

MAIN
....

A 3
B 4
C 3

5 -.... I-f-

ENV -f-"

B 3
C 1

a
'-f-

ENV1- --'

ENV2 -~
SP

MAIN

A 4
B 4
C 3

t==::f.-SP

MAIN

I::===t-SP

Table 8.3 continued

Line 6: Procedure Q is invoked.
Line 1: Procedure Q is entered. An activation
record for this block is obtained. This
activation record is at a different place on the
run-time stack from the previous activation
record for this block. Since procedures Q, R, and
S are all immediately contained in the main
procedure, the activation record for the main
procedure is the environment for each of these
blocks.
Line 3: Execution of Q is completed and control
returns to line 7. The activation record for Q
is removed from the stack.

Line 8: Execution of R completes and control
returns to the end of procedure S. This
terminates S and returns control to the end
of the main procedure, which also terminates. As
each terminates, its activation record is
removed from the stack. The stack is left empty.

Nesting and Scope 237

MAIN

MAIN

F====t-SP

238 Chapter 8

8.4 DYNAMIC SCOPE

In addition to the more usual static rules of scope that we have defined
and demonstrated through Mini-language Scope, there are some lan
guages where the resolution of an identifier reference to the defining
declaration must be performed dynamically. That is to say, the region of
the program over which a particular declaration applies varies during
the execution of the program.

The scope rules used by Snobol, APL, and Lisp are essentially the
same. These require that a reference to an identifier be resolved to the
declaration of that identifer in the most recently invoked, but not yet
terminated, block that contains a declaration of the identifier. Thus, the
resolution of a nonlocal reference will depend on the sequence of
invocations and the resolution can change during execution.

The implementation of this type of scope rule can be achieved with
a run-time stack by including in the activation record a list of all
identifiers declared in the block. Resolution is performed by searching
the stack for the most recent activation record that contains the desired
identifier. In practice, this can be time consuming and more efficient
implementations are available. However, it serves well as a model of the
process.

Some surprising effects can result from this kind of scope rule. In
particular, an assignment statement does not always change the same
variable, and a call statement may invoke a different procedure
depending on the state of the run-time stack.

For example, suppose that the rules of Mini-language Scope were
changed so that name resolution had to be performed dynamically. The
execution of Example 8.3 would then proceed differently. In particular,
procedure R is invoked both from the main procedure and from
procedure S. When R is invoked from the main procedure, the reference
to B in line 7 is to the variable B in the main procedure, and the
invocation of Q in line 6 is an invocation of the procedure Q that
includes lines 1 through 3. When R is invoked from procedure S, the
reference to B in line 7 is resolved to a reference to the variable S.B and
the invocation of Q in line 6 is an invocation of the procedure Q that
includes lines 9 through 11. This is because S's activation record is
more recent than that of the main procedure.

A consequence of this kind of behavior is that it is impossible to
protect the variables of a block against access by a subroutine. In a
statically scoped language, such protection exists where the subroutine
is not contained inside the calling block. This danger with dynamic
scoping brings into serious question the applicability of dynamically
scoped languages to the production of large reliable programs.

Nesting and Scope 239

FURTHER READING

Certainly the most complete reference on the topics treated in this chapter is
given in [Schwenke 1978]. This rather lengthy paper outlines the area
traditionally associated with scope, surveys the various mechanisms required in
a number of contemporary programming languages, and studies the impact of
many of these issues on implementation.

An earlier article [Wulf and Shaw 1973] summarizes the dangers associ
ated with the use of global variables.

Another early work [Johnston 1971] discusses a model in which block
structured languages with scope rules may be viewed.

An additional work in this area is [Jones and Muchnick 1978]. This short
text defines a small language called Tempo; this language and the authors
treatment present an overall view of argument passing and scope, with particular
emphasis on the notion of binding times (see Exercise 8.5).

EXERCISES

Exercise 8.1 Revisiting the Joys of Scope

Trace the execution of the following program written in Mini
language Scope.

program

declare A. B, C;

procedure Q:
begin

B := B + 2;
C := C+ 2;

end; -- Q

procedure R:
declare A;

begin
C := 2;
Q;
B := A + B;
output A, B. C;

end; -- R

240 Chapter 8

procedure S:
declare A, C;
procedure Q:

declare C;
begin

A := A + I;
C := C + I;

end;
begin

8 := 3;
C := I;
Q;
R;

end; -- S

begin
A := 1;
8 := I;
C := I;
R;
s;

end;

Exercise 8.2 Static Scope

This is more difficult than Exercise 8.1. Trace the execution of the
following program:

program
declare A, B, C;

procedure P:
declare C;

procedure Q:
declare A, B;

begin
A ;= 3;
B := C+ A;
output A, B, C;

end; -- Q

Nesting and Scope 241

procedure S:
declare C, 0;
procedure R:
begin

C := A+ (B + 3);
A := B + 0;
output A, B. C;

end;
begin

A := A+ 3;
C := 5;
o := 2;
Q;
R;

end; -- S

begin
C := 2;
A := A + 1;
B := A + C;
R;
S;

end; -- P

procedure R:
declare A;

begin
A := B+ 2;
B := B + C;
C := C + 5;
output A, B. C;

end; -- R

begin
A := 1;
B := 2;
C := 3;
P;

end;

Exercise 8.3 Avoiding Side-effects in Functions

Consider a programming language having the usual rules of scope,
that is, a block structured language. There are two types of internal
procedures allowed in the language: functions, which return a value to

242 Chapter 8

the point of invocation, and subroutines, which do not. The language is
defined so that function invocation cannot cause any side effects.

If you were implementing the compiler, how would you make sure
that this rule is enforced?

Note: It may be necessary to restrict the types of statements that can
appear within the body of a function, either to enforce the rule or to
warn programmers who apparently do not understand the rule.

Exereise 8.4 Reaching Above a Local Scope

In accordance with the "usual" block structure rules of scope, a
declaration causes a declared identifier to have local scope. The use of
an identifier yields a reference to the innermost containing procedure or
block in which the identifier is declared.

Suppose we wish to retain these rules but add some way of
allowing identifiers to be declared so that they have a nonlocal scope
that is derived from a containing block, but not necessarily the
innermost containing block. For example, with the structure

procedure A:
declare X;

procedure B:
declare X;

procedure C:
declare X;

- use of X
end; -- C

end; -- B

end; -- A

we would like some way for the use of X in procedure C to refer to the
X in procedure A, rather than be local as it is now, or refer to the X in
procedure B as it would if it were not redeclared in procedure C.

1. Suggest an extension or modification to the declaration
syntax to accommodate the revised scope rules.

Nesting and Scope 243

2. What problems, if any, would this extension cause if run
time references were resolved using the usual simple symbol
table?

3. Offer arguments for or against the use of these revised
scope rules in a programming language.

Exercise 8.5 Binding Time

The term binding is used to denote the association of an identifier
with a value. Basically there are six times at which binding can occur:

1. Writing of program text
2. Compilation of program text
3. Linking together of separately compiled modules to form

a complete program
4. Loading of complete program into machine storage
5. Invocation of a subprogram
6. Execution of a statement.

Give an example of a binding that can occur at each of these times.

Exercise 8.6 Dynamic Scope

Trace the execution of Example 8.2 under the rule of dynamic
scope as described in Section 8.4.

Exercise 8.7 Aliasing

Construct an example of a program fragment where an optimizing
compiler would be unable to perform an optimization due to the
possibility of aliasing.

A Closer Look

9
Higher Level Control Structures

Most programming languages offer control facilities beyond those of the
basic sequence, conditional, and loop structures of Mini-language D.
These additional control structures are believed to allow the program
mer to express algorithms more clearly and naturally.

Iri this chapter we discuss the meaning and application of these
structures. In addition, we discuss the goto statement and the conse
quences of including it in a programming language. As usual, we begin
with a mini-language.

9.1 MINI-LANGUAGE L

The context free syntax of Mini-language L is given in Table 9.1. As in
most of our Mini-languages, a program consists of a declaration section
followed by a sequence of executable statements. Each of the variables
used in a program must be declared exactly once.

The simplest kind of statement in Mini-language L is the assign
ment statement, whereby an identifier is assigned the value of ah
expression. An expression consists of a sequence of operands separated
by the symbols + or -.

The if statement has the same form and meaning as the if
statement in Mini-language D.

The mechanism for repeated calculations is the loop statement:

-- inner and outer loops terminated

248 Chapter 9

loop
-- statements to be repeated

end loop;

The statements within the loop are executed repeatedly until an exit,
cycle, or goto statement transfers control out of the loop.

An exit statement has the form

exi t (i);

where i is an integer greater than zero. Execution of an exit command
causes termination of the i enclosing loops. For example, consider the
loop:

loop
-- statements to obtain data values
if (INPUT_VALUE = 0) then

exit(1) ;
end if;
-- statements to process data values

end loop;
-- statements following loop

This loop continues to obtain and process data until INPUT_VALUE is
0, at which point the exit statement is executed and the loop is
terminated by transfering control to the statement following the loop.
The value of i must be less than or equal to the number of enclosing
loops.

Consider next the sketch:

begin

loop

loop

exit (2);

end loop;
end loop;

-- continuation point (a)

exit (1);

end;

-- illegal, no enclosing loop

program

declaration

statement

simple-statement

assignment-statement

if-statement

Higher Level Control StnJ(~ture8 249

Table 9.1 Mini-language L

program
dec~aration ...

begin
statement...

end;

dec Iare identifier [I identifier]...

[identifier :] simple-statement

assignment-statement I if-statement
loop-statement I cycle-statement
exit-statement I goto-statement
input-statement I output-statement

identifier := expression

if condition then
statement...

else
statement...

end if;

loop-statement

cycle-statement

exit-statement

goto-statement

input-statement

output-statement

condition

loop
statement. ..

end loop;

cycle (integer);

exit (integer);

goto identifier ;

input identifier [

output identifier [

condition and]
condition or]

identifier] ..

identifier] .

comparison
comparison

comparison

expression

operand

comparison-operator

operand comparison-operator operand)

expression +] operand
expression -] operand

integer I identifier expression)

= I F I < I >

250 Chapter 9

Here execution of

exit (2);

causes termination of both enclosing loops and execution to continue at
point (a). The statement

exit (1);

is illegally placed since there are no loops bracketing it.
Programs may also contain control statements of the form

cycle (i);

where i is an integer greater than zero. The execution of a cycle
statement is similar to an exit statement, except that the ith enclosing
loop is re-executed, that is to say, control is transfered back to the
beginning of that loop. For example, in the sketch

begin

loop -- beginning of outermost loop

loop

cycle (2); -- transfer to start of outermost loop
end loop;

end loop;

cycle (1); -- illegal. no enclosing loop

end;

execution of the nested cycle statement causes re-execution of the
outermost loop. Execution of the statement

cycle (1);

is illegal, since there are no enclosing loops.
Statements within a program may be prefixed by a label consisting

of an identifier:

HERE: A:= A+ 1;

Higher Level Control StnJetures 251

A label prefix is a declaration of the identifier as a label, thus marking a
statement in the program to which control can be transfered by a goto
statement. Since the label prefix acts as a declaration, a label identifier
cannot be the same as an identifier declared as a variable or as any
other label.

For example, we may have:

HERE: A:= A+ 1;

THERE: A:= A+ 2;

if (X > 10) then
goto HERE;

else
goto THERE;

end if;

Any statement within the program may be labeled, and execution of a
goto statement causes execution to continue at the referenced statement.
If no label exists, the goto statement is illegal. In particular, a goto
statement can transfer control in to and out of loops and to a statement
within the then or else parts of an if statement. For example, in the
following

goto INNEJLLOOP;

loop

loop
INNEJLLOOP: A := A+ 1;

goto THEN_PART;
end loop;

end loop;
if (A = 3) then

THEN-PART: output B;
end if;

both kinds of transfers of control are shown.
Generally speaking, we can state the flow of control rules of Mini

language L as follows:

252 Chapter 9

• Statements in a sequence are executed in the order in
which they appear unless a loop, if, goto, exit, or cycle
statement is encountered.

• Execution of a loop statement causes the enclosed
statement sequence to be executed repeatedly, until an exit,
cycle or goto statement transfers control out of the loop.

• Execution of an if statement causes the execution of the
statement sequence following the then symbol if the condition
is true; otherwise the statement sequence following the else
symbol, if it exists, is executed.

• Execution of a goto statement causes control to be
passed to the statement labeled by the identifier in the goto
statement.

• Execution of ex it (i) causes control to be passed to the
statement immediately following the ith loop enclosing the
exit statement.

• Execution of cycle (i) causes control to be passed to the
beginning of the ith loop enclosing the cycle statement.

Finally, Mini-language L also includes the usual input and output
statements.

We next give two small examples in Mini-language L. Example
9.1 shows the use of a simple one-level exit from a loop. The loop is
used to calculate the sum of a number of items. When the value of
COUNT is equal to the number of items, the loop is terminated.

Example 9.2 performs the same calculation as Example 9.1 except
that, in Example 9.2, the loop is terminated by a goto statement. When
the goto statement is executed, control continues at the output statement
prefixed by the label DONE.

9.2 CLASSES OF CONTROL STRUCTURES

We now turn to various classes of control structures.

D-struetures

We begin by reviewing the definition of "D-structures," given in
Chapter 5 for Mini-language D. A D-structure is any program construc
ted from only the following one-in, one-out primitive structures:

Higher Level Control StnJetures 253

program

-- This program reads in an integer specifying the number
-- of int~ger items and then reads in the items.
-- It outputs the sum of the integers.

declare COUNT, NUH-ITEHS, NEXT_ITEH, SUH;

begin
input NUM_ITEMS;
COUNT := 0;
SUM := 0;
if (NUM_ITEMS > 0) then

loop
input NEXLITEM;
SUM := SUM + NEXT_ITEM;
COUNT := COUNT + 1;
if (COUNT = NUH-ITEMS) then

exit (1);

end if;
end loop;

end if;
output SUM;

end;

Example 9.1 Use of a simple exit

1. Basic actions that can be D-structures themselves
2. Sequences
3. Conditional constructs
4. Loops

DI -struetures

D I -structures consist of D-structures plus some extensions built
from them; these are:

1. Single branching if statements
2. Multi-way branching case statements
3. Until loops
4. For loops

The set of D I -structures contain the set of Pascal control structures
apart from the goto. As defined here, all D I -structures are one-in, one
out structures in the sense that any well-defined loop has one entry and
one exit.

254 Chapter 9

program

-- This program reads in an integer specifying the number
-- of integer items and then reads in the items.
-- It outputs the sum of the integers.

declare COUNT, NU"-ITEMS, NEXT_ITEM, SUM;

begin
input NUM_ITEMS;
COUNT := 0;
SUM := 0;
if (NUM_ITEMS > 0) then

loop
input NEXLITEM;
SUM := SUM + NEXT_ITEM;
COUNT := COUNT + 1;
if (COUNT = NUM_ITEMS) then

goto DONE;
end if;

end loop;
end if;
DONE: output SUM;

end;

Example 9.2 Use of a simple goto statement

REI-struetures

An REI-structure is composed of basic actions, sequences, if-then
else structures, loop structures, and exit statements that leave a single
enclosing loop, that is, exit (1) statements. For example, we may have:

loop

if c1 then
exit (1);

end if;

if c2 then
exit (1);

end if;
end loop;

Higher Level Control Structures 255

Note that a while loop of the form

while (A = B)
-- statements

end loop;

is equivalent to the RE I-structure:

loop
if (A 1= B) then

exit (1);
end if;
- statements to be repeated

end loop;

REa-structures

An REn-structure is composed of basic actions, sequences, if-then
else, and loop structures, together with exit statements of the form, exi t
(i), where i is a positive integer between 1 and n. On execution, the
statements within a loop are to be repeated indefinitely until an exit
statement is encountered. The execution of the exit statement causes
termination of the i enclosing loops.

RECa-structures

An REen-structure is similar to an REn-structure, with the
inclusion of additional statements of the form, cycle (i); . The execution
of a cycle statement is similar to an exit command, except that the ith
enclosing loop is re-executed.

REen-structures and their variants represent conventional pro
grams for which transfers of control c~n only be made to the end or the
beginning of an enclosing control loop.

L-structures

An L-structure is defined as any structure without restrictions on
the transfers of control. An L-structure corresponds to a program with
free use of labels and goto statements.

This set of control structures embraces most of the control
structures found in conventional languages. It is important to note that
these control structures do not take into account scope rules.

256 Chapter 9

9.3 THE CONCEPT OF POWER IN CONTROL STRUCTURES

We now consider the relative power of control structures by examining
the conversion of a control structure to an equivalent form. Conversions
of this type formed the basis of our demonstration of the Boehm and
Jacopini theorem in Chapter s.

The minimum requirement that we place on the conversion of a
control structure S into a control structure T is that it preserve the
function of the structure, that is: '

For every input, T computes the same result as S.

If this condition holds, we say that the two structures are functionally
equivalent. We also say that a control structure S is more powerful
than a structure T if the conversion of S to T requires the introduction
of new actions, conditions, or variables. Finally, we say that a structure
S is semantically equivalent to T if the conversion of S to T does not
require any new actions, conditions, or variables.

The Boehm and Jacopini theorem on the theoretical completeness
of D-structures makes the following points:

1. Any L-structure (even including those permitting arbitrary
transfer of control) can be converted to a functionally
equivalent D-structure,

2. In the functional conversion of an L-structure to a D
structure, a number of boolean variables may have to be
introduced.

The importance of result (1) is that it proves that the goto statement is,
at least theoretically, not needed to perform computations and that, D
structures are sufficient.

We might now ask: under which conditions is a control structure
convertible to a D-structure, without introducing new boolean variables
or changing the particular actions and conditions of a program? The
answer to this question [Kosaraju 1974] lies in the detection of a loop
with two or more distinct exits. In general, an L-structure is convertible
to a semantically equivalent D-structure if and only if the structure does
not contain a loop with more than one distinct exit. If a structure
contains only loops with one exit, conversion can be made by
rearrangement and possible duplication of the existing actions and
predicates.

For example, consider the program schema of Figure 9.1. This is a
typical structure that cannot be converted to a D-structure without new

Higher Level Control Structures 257

Figure 9.1 An L-Structure not convertible to a D structure
without new variables or new actions

variables or actions. Here we have a loop consisting of a sequence with
two exits, one through a6 and the other through as. Note that the branch
to a4 is not an exit from this loop, since the flow of control must return
to a3' via a2.

McCabe [1976] has shown that any program that is not written
with just D-structures will contain at least two of the following control
situations:

Branching out of a loop
Branching into a loop
Branching into a decision
Branching out of a decision

For example, the path from c3 to as in Figure 9.1 branches both out of a
loop and out of a decision. This, result gives a basis for understanding
why departures from the pure use of D-structures apparently increase
the complexity of programs.

258 Chapter 9

A Hierar~hy of Control Stru~tures

There have been numerous attempts to discover the limitations of
D-structures as well as to explore the expressive power of other control
structures. These results show that there are programs that cannot be
converted to D-structure form without changing the length, execution
time, or basic actions of a given program. One of the more important
results, due to Kosaraju [1974], answers the question: how do the
structures given in section 9.2 relate to each other?

The basic results are outlined in Figure 9.2. A downward line
connecting one class of structures to another class means that the upper
class is in general only convertible to the lower one with the introduc
tion of new actions and variables. The main results shown in Figure 9.2
may be summarized as:

• D and D I -structures are semantically equivalent; that is,
the basic D-structures can provide a simple means of
expressing the extensions embraced by D I -structures.

• D and D I -structures are less powerful than RE I or
REel-structures. Thus to write a program using only D or
D I -structures, we may have to introduce new boolean varia
bles and actions to achieve the desired effect.

• REn-structures are semantically equivalent to RECn
structures. Somewhat surprisingly, the addition of the cycle
statement does not add to the theoretical power of the repeat
exit control structure.

• If no prior bound is placed on the index n, any structure
is convertible to an REn or RECn-structure.

• For any finite value of D, there exist L structures that
cannot be converted to RED or RECD-structures without the
introduction of new actions and predicates.

Impli~ations of the Results

From the programmer's viewpoint, the results suggest that there
are control situations where more powerful control structures, (e.g. RE I

or lrstructures) are preferable to D or D I -structures because, for
example, they do not require new control variables, conditions, or
actions. Aside from questions of efficiency, the results also suggest that
the use of stronger control structures like RED-structures and their

Higher Lenl Control Structures 259

RE n == REC n
I

RE1:: RECl

I
0:: 0'

Figure 9.2 A hierarchy of control structures

variants may obviate the need for goto's and control variables. In the
next section, we show an example that, in fact, presents evidence
counter to these suggestions.

9.4 AN EXAMPLE

When all is said and done, the practicing programmer is primarily
interested in solving problems using the set of control structures
provided by a particular language. Although theorems on the conversion
of one form of structure to another may be of some practical interest in
that they show the situations where the introduction of new variables
may be required, conversion is not the basic issue.

Of much greater importance is the question of naturalness of
expression. That is, can the control structures of the language under
consideration form a natural expression of the algorithm needed to solve
the current problem? In particular, are there problems for which 0 or
o I -structures do not provide solutions that are as clear as the more
powerful control structures? We now present an example aimed at
resolving this issue.

We have chosen a problem that is apparently difficult for 0 I

structures; its solution seems to require the ability to leave nested loops
both to restart and to terminate the loops.

For this problem, we must write a program segment that sets the
value of a variable LEGALNAME_FLAG to 1 or 0, depending on
whether a given PL/I qualified name is a legal or illegal reference.

260 Chapter 9

Data structures in PL/I may be declared with nested components,
for example:

DECLARE 1 A,
2 B,

3 C CHARACTER (5),
3 DFIXED;

DECLARE 1 X,
2 B.

3 C FLOAT,
3 E FLOAT;

A reference to a structure element is legal if, and only if, it designates a
unique component of a structure. Using the declarations of A and X, the
references A, A.B, A.B.C, A.C, and B.E are all legal. However, both
references Band B.C are ambiguous and hence illegal. The reference
B.C could refer to either A.B.C or to X.B.C.

To solve this problem, a number of primitives are assumed:

1. A linked list of entries, called QUALIFIED_NAME, that
contains a separate entry for each identifier component of the
qualified name to be tested.

2. A linked list of entries called SYMBOL....TABLE, which
contains a separate entry for each identifier declared in a
program. An identifier declared in more than one structure
has an entry corresponding to each occurrence.

3. A function named BASE_ID, which, when applied to
QUALIFIED_NAME, yields the rightmost or lowest level
entry in the name. For example, the BASE_ID of the
qualified name A.B.C is the entry for C.

4. A function named NEXT, which, when first applied to
SYMBOL....TABLE, gives the first entry, and on subsequent
applications to a symbol table gives succeding entries in the
symbol table. Repeated applications thus provide each entry
of the symbol table in some undefined order, terminated by a
null entry.

5. A function FATHER, which can be applied to either a
qualified name entry or symbol table entry. In each case, it
yields the next higher order entry in the corresponding linked
list, or the null entry if there is no father entry. For example,
in the linked list for A.B.C, the father of the entry for C is the
entry for B, and the father of the entry for A is the null entry.

Higher Level Control Stmetures 261

Each of these primitives is illustrated in Figure 9.3. Finally, we assume
that FALSE and TRUE are constants with the respective values 0 and
1.

Example 9.3 shows a solution to this problem using RECr
structures. This solution makes liberal use of cycle and exit statements
for escapes from one and two levels of loops. A conversion of this
program to a D or D I -structure is impossible without the introduction of

Entry for the Qualified Name A.B.C.

FATHER FATHER FATHER
NULL 1 A • B 1 C

t
BASUD

Symbol table for the declarations:

DECLARE 1 A.
2 B.

3 C.
3 E:

DECLARE 1 X.
2 B.

3 C.
3 E:

NEXT FATHER
- - - - - A) I NULL

.NEXT i FATHER

NEXTrJFAT)
C FATHER

NEXT.

D
NEXT I

• FATHER
X I NULL

NEXT ~) FATHER

NEXT J) FAT)
C FATHER

NEXT.

E
NEXT i

NULL

Figure 9.3 Primitives for the qualified name problem

262 Chapter 9

NAME-BASE := BASE-ID(QUALIFIED_NAME);
TABLE-ENTRY := NEXT(SYMBOl-TABLE);
DIRECT_HIT := FALSE;
NUM_PARTIAl-HITS := 0;
loop

if (TABLE-ENTRY =NULL) then
exit (1);

end if;
if (TABLE-ENTRY = NAME-BASE) then

LOCAL_NAME_ENTRY := FATHER(NAME_BASE);
LOCAL_TABLE-ENTRY := FATHER(TABLE-ENTRY);
SKIP := FALSE;
loop

if (LOCAl-TABLE-ENTRY = NULL) then
if (LOCAL_NAME-ENTRY =NULL) then

if (SKIP =TRUE) then
NUH-PARTIAl-HITS := NUM-PARTIAl-HITS + 1;

else
DIRECT_HIT := TRUE;
exit(2);

end if;
else

NUM-PARTIAl-HITS := NUM-PARTIAl-HITS + 1;
end if;

else
if (LOCAl-TABLE-ENTRY =LOCAL_NAME-ENTRY) then

LOCAL_NAME-ENTRY := FATHER(LOCAl-NAME-ENTRY);
else

SKIP ::::: TRUE;
end if;
LOCAL_TABLE-ENTRY := FATHER(LOCAL_TABLE-ENTRY);
cycle (1);

end if;
TABLE-ENTRY := NEXT(SYMBOL_TABLE);
cycle (2);

end loop;
TABLE-ENTRY := NEXT(SYMBOl-TABLE);
cycle (1);

end if;
TABLE_ENTRY := NEXT(SYMBOl-TABLE);

end loop;

if (DIRECT_HIT = TRUE) or (NUH-PARTIAl-HITS = 1) then
LEGAL_NAME := TRUE;

else
LEGAL_NAME := FALSE;

end if;

Example 9.3 A solution using RECn-structures

Higher Level Control Struetures 263

NAME-BASE := BASE_ID(QUALIFIED_NAME);
TABLE-ENTRY := NEXT(SYHBOl-TABLE);
DIRECT HIT := FALSE;
NUH_PARTIAl-HITS := 0;

while (TABLE-ENTRY ~ NULL) and (DIRECT_HIT = FALSE) loop

if (TABLE-ENTRY = NAME_BASE) then
LOCAL_NAME-ENTRY := FATHER(NAHE-BASE);
LOCAl-TABLE-ENTRY := FATHER(TABLE-ENTRY);
SKIP := FALSE;

while (LOCAl-NAME-ENTRY ~ NULL) and (LOCAl-TABLE_ENTRY ~ NULL) loop
if (LOCAL_NAME_ENTRY = LOCAl-TABLE_ENTRY) then

LOCAl-NAME_ENTRY := FATHER(LOCAl-NAME-ENTRY);
else

SKIP := TRUE;
end if;
LOCAl-TABLE-ENTRY := FATHER(LOCAL_TABLE-ENTRY);

end loop;

if (LOCAl-NAME_ENTRY = NULL) then
if (LOCAl-TABLE-ENTRY =NULL) then

if (SKIP = TRUE) then
NUM_PARTIAl-HITS := NUM_PARTIAL_HITS + I;

else
DIRECT_HIT := TRUE;

end if;
else

NUM_PARTIAl-HITS := NUM-PARTIAL_HITS + 1;
end if;

end if;
end if;

TABLE_ENTRY := NEXT(TABLE-ENTRY);
end loop;

if (DIRECT_HIT = TRUE) or (NUM-PARTIAL_HITS = 1) then
LEGAL_NAME := TRUE;

else
LEGAL_NAME := FALSE;

end if;

Example 9.4 A solution using D I -structures

264 Chapter 9

new boolean-valued variables. While not intrinsically bad and often
making for clearer programs, in this case the additional boolean
variables increase the complexity of the program.

However, by starting again from the original problem statement, it
is possible to devise a new functionally equivalent solution using D I

structures. This solution, shown in 'Example 9.4, requires neither new
variables nor excessive copying of code; its clarity compares very
favorably with the solution using RECrstructures. Thus, the expected
superi9rity of RECrstructures over D I -structures is not supported by
the example.

9.5 THE GOTO STATEMENT AND LABEL VALUES

In recent years there has been a great deal of discussion of the goto
statement. Although not th~ first to speak against its use, Dijkstra
[1968] provided the first argument against it that was really noticed. It
began:

"For a number of years I have been familiar with the
observation that the quality of programmers is a decreasing
function of the density of goto statements in the programs
they produce."

Reaction was strong. Many people appeared to have misunderstood
what Dijkstra was sayin$' He was not arguing against all transfers of
control, which would be ridiculous since the power of a computer stems
from conditionals and loops, but rather against the use of undisciplined
transfers of control. In this section we examine the properties of the
goto statement and label values.

Among the contributions to the debate on the goto statement there
was a tongue-in-cheek suggestion in [Clark 1973] that the goto
statement could be eliminated in favor of a come from statement. For
example, in Fortran:

10 J:; 1
11 COME FROM 20
12 WRITE (6,40) J

STOP
13 COME FROM 10
20 J:; J + 2
40 FORMAT(I4)

Higher Level Control Stmctures 265

Here, after executing statement 10, control is transferred to statement
13. Although this was intended as a spoof, there was a large grain of
truth contained in it, and it really shows the difficulty with the goto
statement.

In a program with many goto statements, we are likely to have this
kind of situation:

goto LA;

goto LA;

LA:

goto LA;

At any point in a computation, there is a particular value associated
with each of the program's variables. The set of these values constitute
the computation state at that point in the program. Thus, when control
is transferred to the statement labeled LA, the computation state will
depend on the point from which control came. In order to understand
the program, the programmer must be aware of all the possible states
and therefore must be able to keep in mind the state at each goto
statement. Thus, it is not so much a goto problem as a come from
problem.

The computation state is generally referred to as the environment.
The environment is a mapping from an identifier in a declaration to a
location and thus to a value. The action of a goto statement not only
involves a transfer of control but also a transfer of environment. A large
measure of the complexity of a program with goto statements is due to
the difficulty in understanding the possible computation states at various
points in the program. While, for transfers of control that remain within
a single block, the mapping between identifiers and locations does not
change, this is not the case when goto statements are allowed to tranfer
control in to or out of blocks. Such transfers increase program
complexity greatly.

Consider a cross between the Mini-languages Scope and L, where
goto statements can transfer control between procedures. Assume also
that the value of a label identifier can be assigned a variable. A label
identifier denotes a label constant whose value is a label object, which
has two parts:

266 Chapter 9

1. The unique statement designated by the label.

2. An environment for the designated statement.

The execution of a goto statement of the form goto X is:

• The value of X is obtained. If it is not a label value, the
program is in error. Note that the mini-language is dynamic
ally typed, that is both integer and label values can be
assigned to the same variable at different points in the
program.

• Execution continues from the statement designated by
the label value with the environment defined by the label
value.

Consider the program shown in Example 9.5. Here, the statement
goto A in the procedure P causes control to be transferred to the
statement labeled LA. This is because the label value LA was assigned
to the variable A before the procedure P was entered. The transfer to
LA causes the procedure P to be terminated.

In the program shown in Example 9.6, the execution of the
statement labeled LA causes the procedure P to be re-entered. What
precisely happens at thi's point depends on the definition of the
environment part of the label value assigned to the variable A inside P.
This definition specifies, for example, whether P's variable B has value
3 or is undefined when control arrives at the statement labeled LC. The
whole issue of goto's and environment changes is a rather heavy matter,
and would take us far beyond our intent.

9.6 CONCLUSIONS

We draw three basic conclusions from our discussion of Mini-languages
D and L.

• From the programmer's viewpoint, theoretical results
based on the conversion of one program form to another,
under restrictive conditions, may not be of practical signifi
cance.

The formal results discussed earlier in this chapter suggest the limita
tions of D and 0 I -structures. The supporting evidence rests mainly on
the impossibility of converting (under particular restrictions) control

Higher Level Control Stnlctures 267

program
declare A, B;

procedure P:
declare B, C;

begin
B := 3;
C := 4;
goto A;

end;

begin
A := LA;
B := 2;
p.,
A := 6;

LA: A:= I;
output A;

end;

Example 9.5 Example of leaving a block by a goto statement

program
declare A, B;

procedure P:
declare B, C;

begin
B := 3;
A := LC;
goto LA;

LC: C:= 4;
go to LB;

end;

begin
B := 2;
p.,
A := 6;

LA: goto A;
LB: A:= 1;

output A;
end;

Example 9.6 Simple example of environment

268 Chapter 9

schema into equivalent forms limited to D or D I_structures. However,
the practicing programmer is rarely concerned with converting programs
from one form to another. Concern is centered on the naturalness with
which a particular set of control structures can express the algorithmic
solution to the problem at hand.

For the programmer then, the acid test of the "power" of control
structures must involve their use in the solution of specific problems
typical of those met in programming. Of course, the potential strengths
and weaknesses indicated by the theoretical results will guide the choice
of particular test problems. For example, the Qualified Name problem
of Section 9.4 was originally chosen to illustrate the weakness of D and
D'-structures in dealing with exit problems. To make the comparison,
separate solutions to the same problem were independently programmed
using the control structures under investigation.

Inevitably, the conventions of a programming language dictate the
way that the solution to a problem is expressed. Developing each
solution from the original problem statement will ensure that the
peculiarities of one set of control structures do not become obstacles to
the clear expression of another solution using a different set. Each
Qualified Name solution was shaped by the particular characteristics of
the control structure being used. Had the solution based on the RECr
structure been converted into one using D I-structures, we would have
had to introduce additional complexity as well as several new variables.
The result of this comparison shows that it is easy to gain the wrong
impression by considering theoretical results that are based only on
conversion under restricted conditions.

• The need for higher level (above D or D I) control
structures remains unproven.

There have been many, many works suggesting new control
structures, higher than D and D I. These higher control structures are
generally techniques for implementing exits from containing structures.
In our opinion, such exits reduce clarity. The basic function of a control
structure is to provide clarity by operational abstraction. Thus, the
reader of a program should be able to take a level at a time, without
having to bother with the inner details to find the exit conditions. For
this reason, one-in, one-out structures like D and D I provide very
effective abstractions.

We believe that there is no good evidence for the need of these
higher forms. For these higher forms to be advantageous, the gain in
naturalness, clarity of expression, and efficiency in solving problems
must be sufficient to offset the additional complications introduced to
both the language and its compiler.

Higher Lel'el Control StnJctures 269

• The utility of the goto is seriously questioned.

In some ways it is strange that the discussion of the goto statement
has been included with that of the higher level control structures. On the
one hand, the goto statement is the most powerful control structure from
the point of view of the Kosaraju hierarchy presented earlier. On the
other hand, as Dijkstra [1968] says, "The goto statement as it stands is
just too primitive; it is too much an invitation to make a mess of one's
program."

Generally the arguments advanced in favor of the use of the goto
statement are for clarity and efficiency. Knuth [1974] says that
"Sometimes it is necessary to exit from several levels ... and the most
graceful way to do this is a direct approach via the goto or its
equivalent." Here, its equivalent would appear to be a more disciplined
form such as an exit statement. While one example does not make a
theorem any more than one swallow makes a summer, our example
discussed in Section 9.4 does not seem to support this contention. The
use of a disciplined form of exit statement is preferable to the use of the
goto statement for the same purpose.

The argument for efficiency, that the goto statement allows for
more efficient programs, is frequently made. That is, by clever use of
the goto statement a more efficient algorithm can be constructed.
However, in almost every large program, efficiency obtained by clever
use of control structures is a tiny fraction of the overall cost. While no
optimizing compiler can be expected to perform macro·efficient optimi
zations like converting a linear search into a binary one, redundant tests
and repeated actions are typical of the micro·efficient conditions that
can be eliminated by good optimizing compilers, rare though they may
be at the present time. It is this type of optimization that is the province
of the compiler and not that of the programmer, who should be primarily
interested in developing clear macro-efficient programs. Indeed, it is
becoming clear that general optimization can be done automatically
with greater effect when the program is built from D-structures.

Finally, we admit that any recommendation for a good set of
control structures is subjective. However, we must conclude from this
examination that D-structures and their variants, with all their simplic
ity, lead the practicing programmer toward clear and effective solutions.

FURTHER READING

Two readings relevant to this chapter stand out. The first is [Kosaraju 1974],
where the results on control structures are carefully explained. Beware though,
this paper is surely for those with a mathematical mind.

270 Chapter 9

The second reading [Knuth 1974] presents arguments that we have
criticized here. Though this paper summarizes well the arguments given by
those supporting the use of higher order control structures, a counter view is
expressed in [Ledgard and Marcotty 1975].

EXERCISES

Exercise 9.1 Programming in Mini-language L

In Exercise 3.2, we defined a program to compute the number of
each digit required for typesetting a book. Solve this problem in Mini
language L, without using goto's.

Exercise 9.2 Mechanical Restructuring

It is often a tedious exercise to convert a program from one form
into another, and about as much fun as maintaining someone else's
program. But there are rewards, so here goes.

a. Take the program of Example 9.3, which contains cycle
and exit statements, and construct its flowgraph.

b. Convert the flowgraph to D-structure form using the
restructuring algorithm given with the Bohm and Jacopini
proof in Chapter S.

c. Take the flowgraph obtained after conversion and write
the corresponding program.

d. Compare the program obtained in (c) with the program
shown in Example 9.6.

Exercise 9.3 Use of Various Control Structures

In [Knuth 1974) there is a text processing example.
Suppose that we are processing a stream of text character by

character and that we want to read and print the next character.
However, if the character is a slash (I), we want to tabu/ate instead

Higher Le"el Control Stmctures 271

(that is, to advance the output to the next tab-stop position on the
current line); moreover, two consecutive slashes means a carriage return
(that is, to advance the output to the beginning of the next line). After
printing a period (.), we also want to insert an additional space in the
output.

The following code adapted from Knuth clearly does the trick.

input X;

if (X ; SLASH) then
input X;
if (X ; SLASH) then

return the carriage;
goto DONE;

else
tabulate;

end if;
end if;

output X;
if (X ; PERIOD) then

output SPACE;
end if;

DONE: ' ..

Write two other solutions to this program, one using only 0 or 0 1_

structures and the other using only the control structures of Mini
language L (but without goto's).

In both cases, you should strive for the clearest possible program.
You will probably find it best to start from the problem statement rather
than to try to convert the above program. Finally, compare your
solution with the one shown above.

Exercise 9.4 Use of Various Control Structures

The meaning of the informally expressed program shown below
should be quite clear, even though it is unstructured.

Set MAX to N
If N<= 1 go to DONE
Set I to 1

272 Chapter 9

LOOP: Set J to I
Set FLAG to false

COMPARE: If TABLE[J] < TABLE[J+I] go to INC
Set TEMP to TABLE[J]
Set TABLE[J] to TABLE[J+I]
Set TABLE[J+I] to TEMP

INC: Set J to J+I
If J < MAX go to COMPARE
If FLAG is false go to DONE
Set I to I + I
Set MAX to MAX·I
If I < (N+I) go to LOOP

DONE: Exit

a. Rewrite this program using only the control structures of
Mini-language D. To do this you may need additional
boolean variables. Preserve the form of the algorithm as
much as possible.

b. Rewrite the program using only the control structures of
Mini-language L, but no goto's. Again, preserve the form of
the original algorithm as much as possible.

c. Write the clearest functionally equivalent program to the
given program, using any control structures you wish. The
form of the original algorithm may be changed provided that
the new version performs the same net computation. If you
feel that cycle and exit statements will help you to produce
the clearest program, then use them.

Exercise 9.5 The Zahn Control Structure

The Za~n control structure [see Knuth 1974] is a loop to be
repeated until one of a number of events occurs. When this happens,
the loop is terminated. Exit from the loop invokes a specific action
determined by the event that caused the exit. A possible syntax for this
in Mini-language L would be:

Higher Level Control Structures 273

zahn-statement ::= loop until event [or event] ...
begin

loop-statement...
end;

then
event => statement...

[event => statement...] ...
end loop;

loop-statement :: =
I

event

event;
statement

identifier

Write a program to solve the Qualified Name problem given in
Section 9.4 using Mini-language L extended to include the Zahn
structure.

Exercise 9.6 Environment

In Section 9.5 we describe the semantics of the goto statements
and label values. The exact behavior of the program shown in Example
9.8 depends on the way in which the environment component of a label
is defined. There are several possible definitions for this, for example:

E 1. The environment component of a label value consists of
a snapshot of the environment made at the time of the
assignment of a label value to a variable. This snapshot
records the locations and values of all identifiers in the
environment and is used to reestablish the environment when
a goto statement is executed.

E2. The label value has no environment component. The
environment that exists following the execution of a goto
statement is the current environment of the statement to
which control is transferred.

E3. The environment upon exit from the block containing
the label value assignment to the environment is established
by the goto statement.

Execute the program shown in Example 9.6 under each of these
definitions. Comment on the implementation consequences of each.

10
Definition of New Data Types

A high level programming language seeks to develop tools that
represent the objects and operations of an application properly. Differ
ent areas of application, for example, data processing, graphics,
operations research, or text preparation, require abstractions through
data types that are not directly available in general purpose languages
like Fortran, PL/I, or Basic. With these languages, the programmer
must make mental associations between the objects and operations of
the application's real world and the structured data objects that
represent them in the program.

To make application programming easier, special purpose lan
guages have often been developed to suit some well-defined application
area, such as machine tool control. This approach has the drawback
that, because of limitations on the size of a language, not all the objects
and operations that would be potentially useful in writing programs for a
single application area can be included in the language. More important
ly, almost every application involves more than one application domain,
and planning to live with any predetermined number of special purpose
features will restrict the usefulness of the language.

Another approach has been taken in the more recent languages
such as Pascal, Simula 67, Algol 68, Euclid, Alphard, Clu, and Ada.
To various extents, these languages enable the application programmer
to define particular abstract objects and operations, that is, to define

276 Chapter 10

new data types. The application program can then be written using
newly defined types and their operations. In essence, the programmer
can create a dialect of the original language that more closely matches
the application.

In this chapter, the beginnings of a user-defined type mechanism is
explored using Mini-language Typedef. This mechanism is like that
provided in Pascal. Important extensions of this facility available in
other languages are then discussed.

10.1 MINI-LANGUAGE TYPEDEF

The syntax of Mini-language Typedef is given in Table 10.1. Mini
language Typedef has many features similar to the Mini-languages
presented in previous chapters. As with previous Mini-languages, a
program in Typedef consists of a declarative part followed by a
sequence of statements.

All identifiers in a Typedef program must be declared exactly
once. There are two kinds of declarations, type declarations and
variable declarations. A variable declaration associates one or more
identifiers with the type integer or with a type that has been defined in a
type declaration. Integers have the usual meaning and operations.

The statements in Mini-language Typedef are quite straightfor
ward. In an assignment statement, the variable and the expression must
have the same type.

The major item of interest in Mini-language Typedef, however, lies
in the declaration of new types. For example, we may have:

type DAY: (MON, TUE. WED, THU, FRI. SAT, SUN);
type COIN: (PENNY. NICKEL. DIME, QUARTER, HALF_DOLLAR, DOLLAR);

The first declaration introduces a type named DAY. Just as we can say

declare COUNTER: integer;

to declare a variable COUNTER of type integer, we can say

declare TODAY: DAY;
declare NEW-COIN: COIN;

to declare a variable TODAY of type DAY and also a variable
NEW_COIN of type COIN.

Similarly, just as a variable of type integer can only take integer
values, a variable of type DAY can only take one of the seven values

Definition of New Data T)'pes 277

Table 10.1 Mini-language Typedef

array-type

program

type-declaration

variable-declaration

type

type-definition

enumeration-type

range
value

array-type

statement

assignment-statement

if-statement

loop-statement

input-statement
output-statement

comparison
expression

operand

variable

arithmetic-operator
comparison-operator

: :::

: :=

program
type-declaration...
variable-declaration...

begin
statement...

end;

type identifier : type-definition ;

declare identifier [, identifier l ... : type;

integer I type-definition identifier

enumeration-type range

(identifier [I identifier l ...

value .. value
integer I identifier

array ! range 1 of identifier

assignment-statement I loop-statement
if-statement I input-statement
output-statement

variable ::: expression

if comparison then
statement...

else
statement. ..

end if;

while comparison loop
statement. ..

end loop;

input variable [, variable l... ;
output variable [, variable l... ;

operand comparison-operator operand)
operand arithmetic-operator l operand

integer I identifier I variable I (expression)
succ (expression) I pred (expression)

identifier identifier ! expression 1

+ I - I • I div
< I I ~ I >

278 Chapter 10

MON through SUN. In this language, type describes a class of values.
The two types introduced above are called enumeration types since the
type declarations explicitly enumerate the class of values.

One of the properties of every enumeration type is that the values
are ordered. In particular, the values are assumed to be enumerated in
increasing order. For the type DAY, the first value is MON, the last is
SUN.

As emphasized in Chapter 6, a data type implies more than a class
of values. There is also a class of operations that can be performed on
the values. In Typedef, the operations for an enumeration type are
predefined by the language. Variables declared with the new types
behave much like variables declared of type integer. They can be
assigned to variables of the same type and have values assigned to them
from constants belonging to that class of values. For example, we may
have

TODAY := MON;
NEW_COIN := NICKEL;

but not:

SUN ;= MON; -- only variables can be assigned values
TODAY := 1; -- types do not match
TODAY := NICKEL; -- types do not match

Variables of the same type can be compared with each other and
with values of the type. Thus if variable TODAY has the value MON,
we may have the following comparisons:

(TODAY = TUE)
(TODAY ~ FRI)

-- comparison is false
-- comparison is true

However, the arithmetic operators can only operate on integer values
and are not available for variables of enumeration values. The operators
+, - and III are conventional; the di v operator provides integer division.

The functions succ and pred are two predefined operations that
only apply to enumeration values. They yield respectively the next and
previous values of an enumeration value in the declared ordering. For a
given enumeration type, the first value in the type definition has no
predecessor, and the last value has no successor. For example, we can
have the expressions

succ(MON) -- value is TUE
succ(succ(MON)) -- value is WED

Definition of New Data Types 279

but not:

succ(SUN)
pred(TODAY)

-- value is undefined
-- undefined, value of TODAY is MON

The input and output facilities of Mini-language Typedef also
apply to values of enumeration types. When applied to an enumeration
variable, ,an input statement gets the next item in the input stream,
checks that it is the character representation for a value of the
enumeration type of the variable, and sets this value to the correspond
ing variable. Similarly, an output statement prints the character repre
sentation corresponding to the enumeration value of the variable.

Finally, for simplicity, an identifier can only appear in one
enumeration type. Thus the pair of declarations

type TRAFFIC_LIGHT: (RED, AMBER, GREEN);
type FLAG-COLOR: (RED, WHITE, BLUE);

is not allowed.
Restricted sequences or subranges of both integer and enumeration

types can be defined by a range type. A range is specified by its
bounds, its lowest and highest values. The purpose of range types is to
control the set of values that a variable may take during execution. For
example, we may have:

type YEAR-NUM : 1776 .. 2001;
type COLUMN-POS: 1.. 72;
type WEEKDAY MON .. FRI;
type WEEKEND SAT .. SUN;

Both the lower and upper bounds of a range must be of the same type
and must be stated in increasing order.

The operations that are valid over variables of a range are those of
the type of its bounds. For example, the following range definitions are
illegal:

type A: 1.. PENNY;
type B: DOLLAR .. PENNY;

-- bounds not of the same type
-- bounds not in increasing order

A range type is thus characterized by three properties:

• The containing type: For instance, the containing type of
YEAR...NUM is integer;the containing type of WEEKDAY
is DAY.

280 Chapter 10

• The bounds of the range: For instance, 1766 and 2001
are the bounds for the type YEAR...NUM.

• The range size: This is the number of elements in the
range type. For instance, the range size of WEEKDAY is S.

Variables of a range type are declared just as for variables of other
types. Examples are:

declare WORK-DAY: WEEKDAY;
declare THIS_YEAR: YEAR-NUH;

A range variable behaves much like a variable of the containing type.
The only difference is that a range variable is constrained during
execution to hold only scalar values that belong to the range.

While the value of a range type is a subset of the containing type,
the operations of a range type are those that are applicable to the
containing type. Thus, the succ and pred functions, comparison opera
tors, and input-output operations apply to range values exactly as they
apply to values of the containing type. For range types whose containing
type is integer, the arithmetic operators apply as well. In Typedef,
expressions including variables and constants of various types are
allowed, provided that operations are applied only to values for which
the operation is defined. For instance, consider the following:

(TODAY = HON) -- valid only if TODAY is of type DAY

X+ Y -- valid only if Xand Yare of type integer
-- or ranges thereof

The context in which expressions appear may require the result
value to be restricted to a specified range. For example, the left side of
an assignment statement may be a variable declared with a range
constraint. In such assignments, the evaluation of the expression on the
right must yield a value within the range of the variable. Any attempt to
assign a value that lies outside of the declared range will result in an
execution error. Examples of range variable assignments in Mini
language Typedef are:

WORK-DAY := SUCC(TUE);
THIS_YEAR := THIS_YEAR + 50;

-- always valid
-- can lead to an execution error

Definition of New Data T}'pes 281

In general, exceeding a declared range can only be detected during
execution. However, it is important to note that sensible use of ranges
allows system detection of range errors. Without a range specification,
there would be no hint of wrong-doing until some doubtful results
appear in the program output.

Finally, the types definable in Mini-language Typedef include
array types. For example, we may declare the array variables

declare INPUT_VALUES: array [1 .. 72] of integer;
declare COIN_VALUE array [PENNY .. OOLLAR] of integer;

or alternatively, use:

type INPUT_LINE : array [1 .. 72] of integer;
type HONEY_VALUES: array [PENNY .. DOLLAR] of integer;

declare INPUT_VALUE: INPUT_LINE;
declare COIN_VALUES: MONEY_VALUES;

As for range types, the bounds of an array type must belong to a
declared enumeration type or to the predefined type integer.

The components of an array are denoted by naming the array and
giving an expression specifying an individual element. For example, we
may have:

INPUT_VALUE [2] -- the second input value
INPUT_VALUE[I] -- the I-th input value
COIH-VA~UE[PENNY] -- the value of the PENNY

Any attempt to use a subscript outside the bounds declared for the array
variable results in an execution error.

As a simple illustration of the power of user-defined types, we
present two example programs. Both perform the same transformation
of data.

The first program is given in Example H>.I. This program uses
typical language characteristics of languages without enumeration types
and type definition mechanisms. The second program is given in
Example 10.2. (The need to define a STOPPER in Example 10.2 is
discussed in an exercise at the end of this chapter.)

These examples illustrate the basic idea that a program can
introduce a type to describe a class of values needed for an application.

282 Chapter 10

program

-- This program reads in six integer values. respectively
-- representing the number of pennies. nickels. dimes. quarters.
-- half-dollars. and silver dollars in coinage.
-- The program outputs the total value of the coins in dollars
-- and cents.

declare NEXT_COIN. COIN-COUNT. TOTAl-VALUE.
NUH-CENTS. NUH-DOLLARS: integer;

declare COIN-VALUE: array [1 .. 6] of integer;

begin

COIN-VALUE[l] 1;
COIN-VALUE [2] 5;
COIN-VALUE [3] 10;
COIN-VALUE [4] := 25;
COIN-VALUE[5] 50;
COIN-VALUE[6] := 100;

TOTAL_VALUE := 0;

NEXLCOIN := 1;

while (NEXT_COIN ~ 7) loop
input COIN-COUNT;
TOTAL_VALUE := TOTAl-VALUE + (COIN-VALUE[NEXT_COIN]-COIN_COUNT);
NEXT_COIN := NEXT_COIN + 1;

end loop;

if (TOTAl-VALUE =0) then
output TOTAl-VALUE;

else
NUH-DOLLARS := TOTAl-VALUE div 100;
NUH-CENTS := TOTAl-VALUE - (NUH-DOLLARS-IOO);
output NUH-DOLLARS. NUH-CENTS;

end if;

end;

Example 10.1 Counting money

1;
5;

:= 10;
25;
50;

:= 100;

Definition of Ne,,' Data Types 283

program

-- This programs reads in six integer values, respectively
-- representing the number of pennies, nickels, dimes, quarters,
-- half-dollars, and silver dollars in coinage.
-- This program outputs the total value of the coins in dollars
-- and cents.

type COIN:
(PENNY, NICKEL, DIHE, QUARTER, HALF_DOLLAR, DOLLAR, STOPPER);

type HONEY_VALUES: array (PENNY .. DOLLAR] of integer;

declare COI~COUNT, TOTAl-VALUE,
NUH_CENTS, NUH_DOLLARS: integer;

declare NEXT_COIN : COIN;
declare COIN_VALUE: HONEY_VALUES;

begin
COIH-VALUE[PENNY]
COIH-VALUE[NICKEL]
COI~VALUE[DIHE]

COIH-VALUE[QUARTER]
COI~VALUE[HALF_DOLLAR]

COIN-VALUE [DOLLAR]

TOTAL_VALUE := 0;
NEXT_COIN := PENNY;

while (NEXT_COIN F STOPPER) loop
input COIN-COUNT;
TOTAL_VALUE := TOTAl-VALUE + (COIN_VALUE[NEXT_COIN]·COIN_COUNT);
NEXT_COIN := succ(NEXT_COIN);

end loop;

if (TOTAL_VALUE =0) then
output TOTAl-VALUE;

else
NUH_DOLLARS := TOTAl-VALUE div 100;
NUH_CENTS := TOTAL_VALUE - (NUH_DOLLARS·IOO);
output NUH-DOLLARS, NUH_CENTS;

end if;
end;

Example 10.2 Counting money using the type COIN

284 Chapter 10

10.2 TYPE DEFINITIONS

In Mini-language Typedef all programmer-defined types are introduced
by type declarations of the form:

type identifier : type-definition

The identifier specifies a name for the type. The type definition specifies
the class of values and, implicitly, the operations defining ways in which
the values can be used. Except for subranges of other defined types,
every type definition introduces a distinct type.

With this discussion in mind, we recall the basic definition of a
type given earlier:

A type characterizes a set of values and the set of operations
that are applicable to the values.

The type definitions given in Mini-language Typedef allow the
specification of the set of values for a type, however, they do not allow
for the specification of new operations that are particular to the type.
We will return to this question later in the chapter. In programs written
in statically typed languages, like Typedef, all variables have an
associated type that is specified when the variable is declared.

One of the key issues in programming is the certainty with which
we can draw conclusions about a program. Consider the following
declarations:

declare TODAY DAY;
declare NEW-COIN: COIN;
declare COUNTER: integer;

It would be meaningful to have the statements,

TODAY := TUE;
NEW_COIN := NICKEL;
COUNTER := COUNTER + 1;

but not meaningful to have the statements:

TODAY := NICKEL; -- NICKEL is not a day
NEW_COIN := TUE; -- TUE is not a coin
COUNTER := TODAY + 1; -- addition is not legal for days

Definition of New Data Types 285

As a result of the use of the types DAY and COIN, the compiler
enforces more restrictive type checking than is possible with only the
primitive types of a language. There is thus a greater certainty that the
program is correct, because there will be no violation of type properties
during execution.

As mentioned earlier, an enumeration type is defined by enumerat
ing its values. Such types can be used as freely as integers, and often
with greater clarity. For example, we may declare a table itemizing the
number of hours worked on each day of the week as:

HOURS_WORKED: array [HON .. FRI] of integer;

Furthermore, we may have a loop iterating over Monday through
Friday, as in:

CURRENT_DAY := HON;
while (CURRENT_DAY F SAT) loop

-- what to do for each value of CURRENT_DAY
CURRENT_DAY := succ(CURRENT_DAY);

end loop;

Note the clarity of this loop compared with the following:

DAY_INDEX := 1;
while (DAY_INDEX F 6) loop

-- what to do for each value of DAY_INDEX
DAY_INDEX := DAY_INDEX + 1;

end loop;

Table 10.2 shows the definition of a number of enumeration types.
The use of such types can add considerably to the clarity of a program.
However, the rather limited type definition mechanism of Typedef still
has some problems. In particular, all enumeration types have an
ordering forced on them even when, as in CONTROL_CHAR or
COLOR, this ordering does not correspond to anything meaningful in
the real world. Later we will see how more advanced languages can
avoid this problem.

286 Chapter 10

Table 10.2

type DAY:

type COIN:

type DIRECTION:

type OP_CODE:

type HALf_DAY:

type fILE-STATUS:

type ARMY-RANK:

type CONTROL-CHAR:

type PEN_STATUS:

type SHAPE:

type DRIVING-CODE:

type COLOR:

A Sampler of Enumeration Types

(MON. TUE. WED. THU. fRI. SAT. SUN);

(PENNY. NICKEL, DIHE. QUARTER,
HALf_DOLLAR. DOLLAR);

(NORTH, EAST, SOUTH, WEST);

(ADD. SUB. HUL, LOA. STA, STI);

(AM, PH);

(OPEN. CLOSED);

(PRIVATE. CORPORAL, SERGEANT. LIEUTENANT.
CAPTAIN. MAJOR. COLONEL, GENERAL);

(NULL. END_Of_TRANSHISSION, ENQUIRE, BELL.
BACKSPACE, LINE-fEED, CANCEL. ESCAPE);

(DOWN, UP);

(TRIANGLE, QUADRANGLE, PENTAGON. HEXAGON);

(NORMAL, LIHITED, SPECIAL. VIP);

(RED, BLUE. GREEN. BROWN);

10.3 DEFINITION OF STRUCTURED TYPES

The type definition mechanism for array types in Mini-language
Typedef can be readily extended to include the type definition of record
structures like those in Mini-language Type.

Record types are similar to record structured variables in Mini
language Type, in that records are used to model some composite entity
in an application. The important difference is that record types enable
the programmer to separate the abstraction process of representing a
real world object by a collection of data items from the declaration of
variables that reference the abstraction.

A record type can be defined by associating a new type name with
a description of the fields in the record structure. A simple record type
definition is given below:

type COMPLEX-INTEGER: record
REAl-PART: integer;
IHAG-PART: integer;

end record;

Definition of New Data Types 287

The component types need not be restricted to the predefined types,
such as integer, but may be any other type defined in a program. The
following sequence of declarations is thus perfectly acceptable:

type MONTH_NAME: (JAN. FEB. MAR. APR. MAY. JUN.
JUL. AUG. SEP. OCT. NOV. DEC);

type YEAR_NUMBER: 1776 .. 2001;

type DAY_NUMBER: 1.. 31;

type DATE: record
MONTH: MONTH_NAME;
DAY : DAY_NUMBER;
YEAR : YEAR_NUMBER;

end record;

This set of declarations provides the basis on which the following are
built:

type EMPLOYEE-NUM: integer;

type MARITAL_STATUS: (SINGLE. MARRIED. DIVORCED. WIDOWED);

type EMPLOYEE: record
10 EMPLOYEE_NUM;
STATUS: MARITAL_STATUS;
BORN : DATE;
HIRED : DATE;

end record;

Note that in the last record type definition, the two fields BORN and
HIRED are actually two record components of type DATE.

Just as for other types, variables may be declared as having a
record type. Example record variable declarations are:

declare PERSON: EMPLOYEE;
declare BIRTH_DATE. TODAY: DATE;

One advantage of record type definitions, in this case, is that it is clear
to the user that the variables BIRTH-DATE and TODAY have
identical types, that is, identical structure and component types.

Just as for array type variables, record type variables inherit the
operations for record types, for example, component selection. Thus
TODAY.MONTH refers to the MONTH component of TODAY. In
some languages, global operators, that is, operators that apply to the

288 Chapter 10

entire structure, are allowed. For example, if E and F have the same
record type,

(E ; F)

will be true only if all corresponding components in E and F have
identical values, and

E ;= F;

will assign the value of F to E.

10.4 USER DEFINED OPERATORS AND TYPE ENCAPSULATION

Mini-language Typedef embodies several of the basic ideas for a data
type definition mechanism. However, the mini-language lacks some
critical features that are available in several languages. These allow the
programmer to exercise the full power of a type definition mechanism.
They include the ability to define operations as part of the type
definition and to make the type definition into a module that is separate
from the program.

User Defined Operations

Consider a program that is manipulating data of the type DATE,
defined in the previous section. Although the declaration part of the
program shows that the program concerns dates, the executable part
may contain statements such as

TOMORROW.DAY := TODAY.DAY + 1;

and much of the abstraction is lost because it is written, not in terms of
dates, but in terms of fields or components of a type named DATE. It is
not clear to the reader that TOMORROW gets the right value during
execution; all assignments to the individual fields of TOMORROW
must be inspected. If for any reason the definition of the type named
DATE has to be changed, the entire executable part of the program
must be scanned for further changes. For large programs, this process is
unreliable.

Suppose we want to rewrite this program in a manner that better
emphasizes the abstraction of a date. What we would like to write is
something like

Definition of ~ew Data T~'pes 289

input TODAY;
TOMORROW := NEXT_DATE(TODAY);
output TOMORROW;

In order to write such a program we need to be able to define a
new operation, the function NEXT_DATE for a type DATE. This is
not possible in Mini-language Typedef, where all operators are prede
fined. Instead, we need to program new operators for user-defined types,
as well as for predefined types. This is part of the general principle of
type encapsulation, that is, the packaging of operators and values to
form a type. One method of encapsulating types is through a function
and procedure facility. In our case, we need to be able to write a
function that takes a DATE as an argument and returns a DATE a
result.

A function implementing the NEXT_DATE operator for DATE
might read:

function NEXT_DATE(D: DATE) return DATE:
declare NEXT: DATE;

begin
NEXT.DAY := NEXT_DAY(D);
if (NEXT.DAY < D.DAY) then

NEXT.MONTH = NEXT_MONTH(D.MONTH);
else

NEXT.MONTH = D.MONTH;
if (NEXT.MONTH < D.MONTH) then

NEXT.YEAR := D.YEAR + 1;
else

NEXT. YEAR := D.YEAR;
return NEXT;

end;

It is only during the writing of an operator such as this that the
actual structure of the type DATE needs to be defined. The operator
NEXT_DATE is defined through the use of the operators NEXT_DAY
and NEXT_MONTH over the field types. The definition of the
structure of DATE is paralleled by the definition of its NEXT_DATE
operator.

An alternative approach would be for it to be possible to define an
infix operator, such as +, to mean adding a number of elapsed days to a
date to get a new date. So, instead of using the operator NEXT_DATE,
we could write:

TOMORROW := TODAY + 1;

290 Chapter 10

This would mean defining another type of overloading to the + operator.
This might be done with a definition of the form:

operator + (DAY: DATE. INCREMENT: integer) return DATE:
-- body of operator

end;

Note that this does not define a + operator between two dates, which
does not correspond to reality, but between a DATE value and an
integer value. In order to permit an expression of the form,

1 + TODAY

a companion operator,

operator + (INCREMENT: integer. DAY: DATE) return DATE:
begin

return (DAY + INCREMENT);
end

would also have to be defined.

Complete Type Encapsulation

By careful programming, knowledge of a type representation can
be restricted to its own operators, as indicated above. Such practice
makes a program easier to understand and maintain.

Although use of functions and procedures can provide good
facilities for abstractions, it does not guarantee the integrity of these
abstractions. Nothing prevents a main program from accessing the fields
of a DATE and changing them arbitrarily. This may be convenient, but
it may also lead to serious troubles. For instance, the main program
could set a date variable to the thirty-first day of February, which is not
a valid date. Furthermore, it is not known how the operations over a
date would behave on such data, since they were written with real dates
in mind. Programming errors of this kind can be especially difficult to
correct. Thus, some safeguards are needed to preserve the integrity of
these abstractions.

In Ada (most notably), Alphard, Euclid, and Clu the definition of
a data representation for a new type and the definition of new
operations are grouped in a program module. This module can be
separated from the main program, and thus the representation can be
"hidden" from the main program. The module includes specifications of
what can be known about itself from outside of the module. Some parts

Definition of New Data T)"pes 291

of the data type representation may remain private to the module and be
used exclusively for internal computations needed to implement the
operations. Similarly, operations needed to implement the visible
operations may be hidden from the user.

For example, consider Example 10.3 where the type DATE is
sketched as an Ada package. The only items that may be known outside
of the package are declared in the module header, in the span of the text
between the package and private keywords. That is, the type name
DATE, and the fact that the operator NEXT_DATE takes a DATE
value and returns a DATE value. Note that the internal representation
of type DATE is kept private to the package. A user cannot make use of
the fact that a date may be represented by a record structure and cannot
access any field of a DATE.

The combination of information-hiding mechanisms with data type
definition mechanisms promotes abstraction by enforcing a clear separa
tion between type implementation and type usage. This separation
represents a clear conceptual advantage for program design. It also
facilitates validation and maintenance. Changes in a data type represen
tation need only affect the type definition module, while changes to the
main program or to other modules remain localized.

package D is
type DATE is private;
function NEXT_DATE(D: DATE) return DATE;

private
type DATE is

record
-- internal structure of a date that is
-- kept hidden in the module

end record;
end;

package body D is
-- local declarations and types

function NEXT_DATE(D: DATE) return DATE is

end;

-- definition of other operations

begin
-- code to initialize data abstractions

end;

Example 10.3 An Ada package

292 Chapter 10

The preceding paragraphs have sketched a type definition mecha
nism combining the type definition facility of Typedeft a function and
procedure facility t modular groupingt and information hiding mecha
nisms. Some languages implement this scheme to various degrees.
Pascal and Algol 68 lack the module and information control facilities.
Pascal lacks the means of defining operators. Simula 67 provides a
powerful modular facility called a "classu but access to module
components cannot be restricted. Alphardt Clut Euclidt and Ada offer
all the abstraction mechanisms described above. However t these lan
guages differ in the extensions and complexities of the basic mechanism.

ConelusioD

Type definition mechanisms enable the user to bring the program
ming environment closer to the application than many languages usually
allow. The early stages of program design may require more effort and
discipline to select the abstractions of applications that need to be
implemented in order to solve the application problem. Howevert when
compared to other languages t languages with type definition mecha
nisms promote the development of self-documenting code and security.
The clear separation between the definition and use of a type facilitates
validation and maintenance of programs.

FURTHER READING

Of the topics treated in this text, few have received more attention in the
literature than the idea of abstract data types and the definition of new types.

A key work in this area is [Hoare 1972]. This work discusses both the
notion of simple types as well as composite types. The properties of types are
well expressed in the work [Guttag 1977].

In the area of type encapsulation facilities, there are numerous relevant
works. The early work [Liskov and Zilles 1976] discusses a model for type
definitions. Other related works are [Mailloux 1968] and [Demers et al. 1977].

A good discussion of some of the problems in the area of data abstraction
can be found in [Gries and Gehani 1977].

Of all of the language facilities for encapsulated types, the design of the
package facility in Ada clearly stands out. The rationale for this design is given
in [Ichbiah et al. 1979].

Definition of New Data TJpes 293

EXERCISES

Exercise 10.1 The Stack Data Type

Define an extension to Mini-language Typedef that adds a stack
structure to the base language in the same way that an array is part of
the language. This definition should include the operations that are to be
available in the language for access and manipulation of stacks.

Exercise 10.2 Programming Using Type Definitions

Complete the program sketched in Example 10.3 in one of the
following languages: Pascal, Simula 67, Algol 68, Euclid, Alphard, Clu,
or Ada.

Exercise 10.3 Enumerated Types

In Section 10.2 we show a program fragment for performing a
computation by iterating over the days of the week:

CURRENT_DAY := HON;
while (CURRENT_DAY ~ SAT) loop

-- what to do for each value of CURRENT_DAY;
CURRENT_DAY SUCC(CURRENT_DAY);

end loop;

If we attempt to modify this program to iterate over Monday
through Sunday, a problem arises. Describe this problem. A rather
unsatisfactory solution to the problem is the use of STOPPER in the
definition of the type COIN in Example 10.2. Propose changes to Mini
language Typedef that would avoid this problem entirely.

Exercise 10.4 Definitions of Record Types

Write down the context-free productions needed to add the record
type definitions like those given in Example 10.3 to Mini-language
Typedef.

294 Chapter 10

Exercise 10.5 "Extensible" Languages

Opinions differ on what extensible means when applied to pro
gramming languages. At the trivial level only simple text substitution is
allowed, while the very ambitious allow elaborate new data types and
operations on them to be defined.

Describe what you feel an extensible language should offer. Aim
for an intermediate level of complexity between the two extremes:
simple enough for competent programmers to understand and use
without heroic efforts, yet complex enough to add nontrivial power and
capability to the language.

Illustrate your ideas with examples showing the syntax and
semantics of your extensions. Your ideas must be implementable
without recourse to magic, but do not describe implementation strategy.
You may assume that the base language has a reasonable assortment of
data types and control structures, that is, that one can write nontrivial
programs in the base language without extending it.

11
An Applieative Language:
Functions and Recursion

We now turn to a mini-language that is very different from the other
mini-languages given in this text. This mini-language is devoted to
functions and their application to produce values. Perhaps the most
striking feature of this mini-language is the absence of commands, for
example, assignment and repetition, that are common to the other mini
languages.

The material in this chapter has roots from several sources. The
most notable is the programming language Lisp. Other roots are the
work of Landin [1965] and the lambda-calculus [Church 1941].

11.1 MINI-LANGUAGE APPLY

A program in Mini-language Apply consists of an expression, optionally
followed by a sequence of function definitions. The syntax of the
language is defined in Table 11.1.

Execution of the program consists of evaluation of an expression
and the printing of its value. This may involve invocation of the
functions specified by the function definitions.

298 Chapter 11

A function definition associates a n~e with a function that maps
one or more arguments into a single value. Within the function
definition, the arguments are denoted by identifiers. The value returned
by the function is specified by an expression. The expression may
contain identifiers denoting the parameters of the function and refer
ences to other functions. All functions referenced must either be
explicitly defined or be built-in functions of the language.

For example, consider the function definition:

where DOUBLE(X) is
X+ X

This definition specifies a function named DOUBLE. The function has
one parameter, denoted by the identifier X. The value returned by the
function is the sum of X and X. Execution of the simple program

program
DOUBLE(6) + 3
where DOUBLE(X) is

X+ X
end

will cause the application of the function DOUBLE to the argument 6
and add 3 to the result. Finally, the number 15 is printed.

Expressions

The expressions in Mini-language Apply are of two varieties:
simple expressions, whose values can be computed directly, and selector
expressions, whose values depend on the truth of one or more
conditions. The value of an expression is either an integer, one of the
truth values, true or false, or a list of integer values. A special value
null denotes a list with no components. For example, we may have the
following simple expressions:

6
true
11,2,3,4 1

null

-- an integer
-- a truth value
-- a list with four integers
-- the empty list

An Appli~ative Language 299

Table 11.1 Mini-language Apply

program

function-definition

expression

simple expression

::::: program
expression

[function-definition] ...
end

where identifier (identifier [. identifier] ...) is
expression

simple expression
selector-expression

operand +]... operand
operand -]... operand
operand •]... operand

selector-expression select
condition

[condition
[else

end select

=> expression
=> expression] ...
=> expression]

condition : := function-application comparison

tail
length

comparison

operand

function-application

function-name

integer-list

: :=

: :=

: :=

(operand comparison-operator operand)

identifier I integer
truth-value I integer-list
function-application I (expression

function-name (expression [I expression] ...

identifier
first I last
stem I append

nu 11 I I integer [I integer]... I

truth-value

comparison-operator

true

< I

false

I f: I >

300 Chapter 11

Values can also be computed through the application of a function
to arguments. For example, we may have:

OQUBLE(I) -- a simple function application
OQUBLE(I) + OQUBLE(2) -- an addition of two computed values

Assuming that the function named DOUBLE is as specified above,
these expressions have the values 2 and 6 respectively.

A number of functions are predefined within the language. These
functions are given as follows:

1. first - This function takes a list as an argument and
returns the first component of the list. If the list is empty, an
execution error results.

2. last - This function takes a list as an argument and
returns the last component of the list. If the list is empty, an
execution error results.

3. tail - This function takes a list as an argument and
returns the list obtained from the argument by removing its
first component. If the argument is a list with one component
or is empty, the empty list is returned as a result.

4. stem - This function takes a list as an argument and
returns a list obtained from the argument by removing the last
component of the list. If the argument is a list with one
component or is empty, the empty list is returned as a result.

S. append - This function takes two arguments, a list and an
integer, and returns a list constructed by appending the given
integer to the end of the given list. If the first argument is an
empty list, the value of the function is a list consisting of a
single element, the second argument.

6. length - This function takes a single argument, a list, and
returns an integer, whose value is the number of elements in
the given list.

Table 11.2 illustrates the application of each of these functions to
various arguments.

As mentioned above, within the body of a function definition, an
identifier is used to denote the value of a parameter. For example, we

An Applieative Language 301

Table 11.2 Examples of Application of the Predefined Functions

Expression Value

first ('1,2,3,4') I
first ('5') 5
first (null) error

last ('1,2,3,4,5') 5
last ('5') 5
last (nu11) error

tail ('1,2,3,4,5') '2,3,4,5'
tail ('5') null
tail (nu 11) null

stem ('1,2,3,4,5') '1,2,3,4'
stem (' 5') null
stem (null) null

append ('1,2,3,4', 5) '1,2,3,4,5'
append ('5', 1) '5, I'
append (null, 1) t I'

length ('1,2,3,4,5') 5
length (, It) 1
length (null) 0

may have the expressions:

x + X
X + G(X+l)
tail(X)
append(L, last(H»

-- computes twice X
-- computes X plus the result of G(X + 1)
-- computes the tail of a list
-- appends a copy of the last element of
-- list Hto the list L

The value of each of these expressions depends, of course, on the values
of the arguments corresponding to the parameters X and M.

The second form of expression in Mini-language Apply is the
selector expression consisting of a sequence of conditions, each associ
ated with a corresponding expression. When a selector expression is

302 Chapter 11

evaluated, each of the conditions is evaluated in sequence until one of
the conditions evaluates to true. When a true condition is found, the
value of its associated expression is the value of the selector expression.

For example, consider the following selector expression:

select
(X < Y) => 1
(X = Y) => 2
(X > Y) => 3

end select

Depending on whether X is less than, equal to, or greater than Y, the
value of this expression will be respectively 1, 2, or 3.

Normally, a selector expression will be terminated by an else part.
The expression following the else symbol is returned as the value of the
expression if none of the previous conditions evaluates to true. For
example, consider the following expression:

select
(X > 5) => X
else => X+

end se-Iect

Here if X is greater than 5, the value of X itself is returned. Otherwise,
the value of X + 1 is returned. Evaluation of a selector expression for
which no condition is true results in an execution error.

The conditions forming a selector expression can be comparisons
in which two operands are compared using one of the comparison
operators. This is the case in the two examples given above. A
condition can also be a function application where the value returned by
the function is either true or false.

The body of a function may reference not only the names of other
functions but also its own name. Thus a function may be defined
recursively. This recursive invocation causes no problem. When the
body of a function is evaluated, evaluation proceeds normally. If it
happens that evaluation of the function body requires re-application of
the function itself, the function is simply reapplied to the new arguments
before the evaluation of the initial application is completed.

An Applitative Language 303

Examples

Consider the program:

program
F(2) + F(6)
where F(X) is

select
(X > 5) => X
else => X+ I

end select
end

In the evaluation of the expression F(2) + F(6), the function F is
invoked twice giving the values 3 and 6.

In the example,

program
G(3)
where G(X) is

select
(X > 5) => X
else => X+ G(X + 1)

end select
end

G is a function defined recursively. If its parameter X is greater than 5,
then the X is returned as the value of the function; otherwise, G is
applied to the argument X + 1 and the value of this application is added
to X. The evaluation of the expression G(3) gives the value 18. The
evaluation process may be viewed as the following steps:

Depth of Call

o
1
2
3
4

Value

G(3)
3 + G(4)
3 + 4 + G(5)
3 + 4 + 5 + G(6)
3 + 4 + 5 + 6

304 Chapter II

Thus the function G is called four times, and on the fourth call it returns
the simple value 6. The final sum, 18, is the result of evaluating G(3).

The next example,

program
LENGTH(II,2,3,4 1

)

where LENGTH(L) is
select

(L = null) => 0
else => I + LENGTH(tail(L»

end select
end

contains a definition of the function LENGTH, which is the same as the
predefined function length. This shows that, even though the function
length is predefined, it can also be defined in the language. The result of
executing this program is 4.

The name of a function may also be used as an argument to
another function. Consider the following example:

program
G(DOUBLE, 2) + G(TRIPLE, 3)

where G(P 1 X) is
P(X) + PO)

where DOUBLE(X) is
X+ X

where TRIPLE(X) is
X+ X+ X

end

Here the function G has two parameters, P and X. It returns the value
of an expression in which P is applied twice, once to X and once to the
integer 1. For correct execution, the argument, corresponding to the
parameter P, must be the name of a function. In evaluating the
expression

G(DOUBLE, 2) + G(TRIPLE, 3)

the function G is invoked twice. The parameter P takes on two different
values, DOUBLE and TRIPLE. When the expression

P(X) + PO)

An Applicative Language 305

is evaluated during the first invocation of G, it is the equivalent of
evaluating

DOUBLE(2) + DOUBLE(l)

and, in the second invocation, it is equivalent to:

TRIPLE(3) + TRIPLE(l)

The result of executing this program is 18.

11.2 FUNCTIONS

The dominant feature in Mini-language Apply is that a program is
written entirely as the definition and application of functions. Functions
have a long history in mathematics and it is from this concept that
functions in programming languages have been developed.

A function f is a mapping or rule of correspondence between one
object x, the argument, and another unique object y, the value, of the
function. Thus we can say that f transforms x into y, or that y is the
result of applying f to x. This is generally written:

y = f(x)

Generally, functions may only be applied to certain kinds of
objects and will only produce certain kinds of objects as a result. The
set of objects to which a function may be applied is the domain of the
function. The set of objects that can result from the application is the
range of the function. In describing a function, it is common to specify
the types of the domain and range. For example

DOUBLE: integer -. integer
length: list -. integer
append: list, integer -. list

specify the types of the functions DOUBLE, length, and append.
Operations used in expressions are also functions. Thus an

alternative notation for writing the expression

A+ B

would be:

306 Chapter 11

+ (A. B)

In Mini-language Apply, the type of the + operator is:

+: integer, integer -. integer

The type of a function in Mini-language Apply is not defined
explicitly in a declare statement as in other mini-languages. Neverthe
less, a mismatch of types will lead to an execution error. For example,
if the function G defined by

where G(P. X) is
P(X) + P(1)

were invoked by the expression

G(1. 2)

there would be an execution error when the parameter P was applied to
the parameter X, because the constant 1 is an integer, not the name of a
function.

One of the fundamental and useful properties of using pure
functions is a principle generally known as referential transparency.
Given an expression of the form

where F is a function and Xl through Xn denote arguments, we can
always replace. the expression by a value. The replacement of the
expression by its value is entirely independent of the context in which
the function application appears. For example, given the definition of
DOUBLE shown earlier, an expression including

DOUBLE(2) + DOUBLE(3) ...

may be directly replaced by the value 10, no matter what context
surrounds the expression. Even when an expression appears with
identifiers denoting arguments, for example

DOUBLE(X)

we may still perform the same abstraction. That is, the above expression
always returns a value that is twice its argument. With the property of
referential transparency, all we need to know in order to abstract the

An Applicative Language 307

value of an expression is knowledge of the values of its components.
This property is true of all of the examples in Mini-language Apply.

The two major differences between programming in a conventional
procedural language like Cobol or Pascal and in an applicative language
are:

• The applicative language has no concept of sequence of
operations or flow of control. The whole program execution
consists of the evaluation of an expression.

• The applicative language has no assignment statement.
Values are communicated entirely through the use of parame
ters.

To illustrate the difference between programming in a procedural
language and programming in an applicative language, we consider the
well-known problem of writing a program to solve the Eight Queens
problem.

Eight Queens Problem

The Eight Queens problem is stated as follows. We wish to write a
program to determine an arrangement of eight queens on a standard
chessboard in such a way that no queen can capture any other. A
chessboard can be viewed as an 8 by 8 array of squares, and one queen
can capture another if they are both in the same row, same column, or
on the same diagonal.

For example, consider:

2345678

/

..

....

2 ;
I---+--+'---'I--+'-""""t---.i"-""'-'t-r->~

3
l---f--+~~+--+--:-1-~""i

4
~-+--+~t-+--+:=-t-';"--i

5
\--.....(-.-4---Jf----+--.,-f---f-+----i

6
I---+--+~I--+=o:...t---.i-+--t

7
l---f--+-i~-+--+...-.o1-+--i

8

....... f:r

The queen in row 1, column 3, board[l, 3] can capture any other queen
in row 1 or column 3. She can also capture the queen in board[4, 6]

308 Chapter 11

because they are on the same diagonal. The queen in board[6, 5] cannot
be captured by either of the other queens. We wish our program to
indicate either that no solution is possible, or to find one of the possible
configurations in which the eight queens can be placed.

The straightforward approach would be for the program to form
every possible way of arranging eight queens on the board and testing
each of these as a solution. The difficulty with this approach is the large
number of trials that must be made. There are about 4.4*109 ways of
placing eight queens on the board; and if we assume that we can
generate and check a possible solution in 100 microseconds, it will take
about 122 hours to check every possibility. It is obviously necessary to
find a shortcut. Our solution, based on [Wirth 1971], is designed to
reduce time by eliminating impossible arrangements before they are
fully generated.

First of all, we eliminate all configurations with more than one
queen in any column. The strategy is to start by placing a queen at
board[1, 1]. Since this queen is the only one, she is safe. The next step
is to find a safe position in column 2 where the second queen can be
placed. Another queen is placed at board[l, 2]. Since this queen can be
attacked, the row number is incremented by 1 and the queen is tested on
that square. This process continues, successively advancing a queen
until a safe position in a column is found. If a configuration arises in
which no queen can be placed safely in a given column, the queen
already positioned in the previous column is advanced to the next row.
The entire process is continued until a complete configuration is found.

One small point: two queens lie on the same downward diagonal if
the difference between the row and column coordinates is the same.
Similarly, two queens lie on the same upward diagonal if the sum of
their row and column positions are identical.

A solution to the eight queens problem in the procedural language
Pascal is given in Example 11.1. In this solution an array named
CONFIGURATION is used to store the row positions of the queens
safely placed in each of the columns 1 through 8.

Boolean valued arrays are also introduced. For each column 1
through 8, the array SAFEROW has the value TRUE or FALSE
depending on whether the given row has another queen positioned
somewhere in the same row. Similarly, each entry of the arrays
SAFEDOWNDIAG and SAFEUPDIAG has the value TRUE or
FALSE according to whether another queen exists on the corresponding
upward or downward diagonal.

In the program in Example 11.1, assignment is used to set the
components of the arrays describing the status of the board. Notice also
that looping statements are used to iterate over the various board

An Applieative Language 309

configurations. Finally ~ notice that the procedures and functions used
in this program employ a number of global variables~ in this case, the
variables describing the status of the board.

A substantially different solution to the Eight Queens problem is
given in Example i 1.2. This solution to this problem is written using
Mini-language Apply. Notice here that there is no use of assignment~no
looping control structures~ and no global variables. Rather, the solution
consists of a single expression

QUEENS(111)

followed by a sequence of function definitions.
In this program~ the board configuration is represented by a list of

integers giving the row positions of the queens safely placed in each
column that has been processed. The initial invocation of QUEENS is
with an integer list that represents the first step toward a solution~

placing the queen in the first column in row 1. This list is similar to the
array CONFIGURATION in Example 11.1.

The solution of Example 11.2 compares quite favorably with the
Pascal solution~ despite the meager facilities of Mini-language Apply.
Both programs find the same board configuration as their solution to the
problem:

234 567 8

2

3

4

5

6

7

8

~!1 :

re
~

~
~

~",
~

~~

Funetions in a ProeeduraJ Language

You may have noticed the use of a function in the Pascal solution to
the eight queens problem. The function~ ISSAFE~ is a function in the same
sense as those used in Mini-language Apply. Generally, however, the

:= FALSE;
:= FALSE;
:= FALSE;
:= ROW

:= TRUE;
:= TRUE;
:= TRUE;
:= 0

310 Chapter II

program QUEENS (INPUT. OUTPUT);
var I,

ROW. COL: INTEGER;
SOLUTIONFOUND: BOOLEAN;
CONFIGURATION: array [1 .. 8] of INTEGER;
SAFEROW : array [1 .. 8] of BOOLEAN;
SAFEDOWNDIAG : array [-7 .. 7] of BOOLEAN;
SAFEUPDIAG : array [2 .. 16] of BOOLEAN;

procedure CLEARTHEBOARD;
var I: INTEGER;

begin
for I := 1 to 8 do

SAFEROW[I] := TRUE;
for I := -7 to 7 do

SAFEDOWNDIAG[I] := TRUE;
for I := 2 to 16 do

SAFEUPDIAG[I] := TRUE
end;

procedure SETQUEEN(ROW, COL);
begin

SAFEROW[ROW]
SAFEDOWNDIAG[ROW - COL]
SAFEUPDAIG[ROW + COL]
CONFIGURATION[COL]

end;

procedure REHOVEQUEEN(ROW , COL);
begin

SAFEROW[ROW]
SAFEDOWNDIAG[ROW - COL]
SAFEUPDIAG[ROW + COL]
CONFIGURATION[COL]

end;

procedure ISSAFE(ROW, COL): BOOLEAN;
begin

if SAFEROW[ROW] and SAFEDOWNDIAG[ROW - COL]
and SAFEUPDIAG[ROW + COL] then

ISSAFE := TRUE
else

ISSAFE := FALSE
end;

Example 11.1 Pascal solution to the Eight Queens problem

An Applicative Language 311

begin
CLEARTHEBOARD;
COL := I;
ROW := I;

repeat
while (ROW < 9) and (COL < 9) do

if ISSAFE(ROW, COL) then
begin

SETQUEEN (ROW, COL);
COL := COL + I;
ROW := 1

end
else

ROW := ROW + 1;

if (ROW = 9) then
begin

COL := COL - 1;
ROW := CONFIGURATION[COL];
REHOVEQUEEN (ROW, COL);
ROW := ROW + 1

end
until (COL =9)

for I := I to 8 do
WRITE (CONFIGURATION[I])

end.

Example 11.1 continued

facility for functions in a procedural language is not quite so pure as that in
Mini-language Apply. There are often three major differences:

1. In some languages, the value of the argument to the function
may be altered during a call to the function.

2. In most languages, execution of the body of the function
may result in a change in the value of a variable that is global to
the function body.

3. In every language that we know of, the body of a function
may reference variables whose values are global to the function
body, even if they are not changed.

·312 Chapter II

program
QUEENS(, I')
where QUEENS(CONFIGURATION) is

select
IS_COMPLETE(CONFIGURATION) => CONFIGURATION
else => QUEENS(GET_ANOTHER(CONFIGURATION»

end select
where IS_COHPLETE(CONFIGURATION) is

select
(length(CONFIGURATION) = 8) => IS-SAFE(CONFIGURATION)
else => false

end select
where GET_ANOTHER(CONFIGURATION) is

select
(last(CONFIGURATION) =9) => ADVANCE(stem(CONFIGURATION»
IS_SAFE (CONFIGURATION) => START_NEW_COL(CONFIGURATION)
else => ADVANCE(CONFIGURATION)

end select
where AOVANCE(CONFIGURATION) is

append(stem(CONFIGURATION), (last(CONFIGURATION) + 1)

where START_NEW-COL(CONFIGURATION) is
append(CONFIGURATION, 1)

where IS_SAFE(CONFIGURATION) is
select

(length(CONFIGURATION) =0) => true
else => CHECK-NEW_QUEEN(stem(CONFIGURATION),

last(CONFIGURATION),
length(CONFIGURATION»

end select
where CHECK-NEW-QUEEN(CONFIGURATION, ROW, COL) is

select
(length(CONFIGURATION) =0) => true
POSSIBLE-CAPTURE(last(CONFIGURATION), length(CONFIGURATION),

ROW, COL) => false
else => CHECK-NEW-QUEEN(stem(CONFIGURATION), ROW, COL)

end select
where POSSIBLE-CAPTURE (ATTACK-ROW, ATTACK-COL, ROW, COL) is

select
(ATTACK-ROW =ROW) => true
«ATTACK-ROW - ATTACK-COL) = (ROW - COL» => true
«ATTACK-ROW + ATTACK-COL) = (ROW + COL» => true
else => false

end select
end

Example Il.2Mini-language Apply solution to the Eight Queens

An Applicative Language 313

REAL A, B, C, F, G
COMMON A

A= 10.0
B = 3.0

10 C= F(B) + G(B)
WRITE (2, 200) C

A= 10.0
B = 3.0

20 C =G(B) + F(B)
WRITE (2, 200) C

200 FORMAT (F5.2)
END

REAL FUNCTION F(X)
REAL A, X
COMMON A
A =A + 1.0
F = A • X
RETURN
END

REAL FUNCTION G(X)
REAL AI X
COMMON A
A = A + 2.0
G=A• X
RETURN
END

Example 11.3 Fortran functions with side effects

The first two properties allow functions with side effects to be written in
procedural languages. That is, functions can change the value of variables
that exist outside the function.

Example 11.3 demonstrates this problem with a very simple Fortran
program. The expressions in the statements labeled 10 and 20 are identical
except for the order in which the functions F and G are invoked.

Using a left-to-right evaluation, the values printed for C (72 and 75)
are not the same. Here, the familiar commutative property of addition is
lost because of the assignment to a global variable in COMMON.

314 Chapter 11

Certainly many programmers would be surprised to learn that

F(B) + G(B)

is not equivalent to:

G(B) + F(B).

Since Fortran employs conventional mathematical notation, it is dangerous
to write functions that violate the properties of established mathematical
systems.

The case against side effects becomes even more severe when we .
need to modify a program. Change is a daily occurrence in programming.
Someone may find a more efficient algorithm, an error may be detected, or
revised specifications may be given. H a piece of code to be changed has
side effects, then those effects must be accounted for. This requires delving
deeply into the entire program for a clear understanding of what effects a
function has on other parts of the program. Adding a few extra lines of
code for that desirable change may kill the correctness of another piece of
code. As a result, another change may be needed to right matters, and so
on.

Even if this process succeeds, it is not likely to add to the clarity or
flexibility of the program. Had the original program been written without
side effects, the function could be changed without looking at the rest of
the program.

In short, the design of a good facility for functions is an important
part of most programming languages. Any deviation from their normal
mathematical properties should be handled with great care.

11.3 RECURSION

We have already seen in this chapter an example of a recursive definition:

where LENGTH(L) is
select

(L = null) => 0
else => I + LENGTH(tail(L»

end select

We have also seen recursive definitions in Chapter 2.
Loosely speaking, a recursive definition is one in which the object

being dofined is used as part of the defmition. For example, the word
dr::scendant may be defmed as:

An Applieative Language 315

A descendant of a person is an offspring or a descendant of an
offspring of the person.

In this defmition, a" the descendants of the person are simply and
precisely accounted for. A nonrecursive definition of descendant that
attempts to take all possibilities into account is the following:

A descendant of a person is a son or daughter, or a grandson or
granddaughter of the person, or a great-grandson or great
granddaughter of the person, etc.

In this case, the definition is longer than the recursive definition and avoids
infinite length through the use of "etc." Dictionaries try to avoid obvious
recursion by defming a descendant as:

One who has a specific person among one's ancestors.

However, an ancestor is defined as:

One from whom a person is descended.

Thus the recursion is still present, though indirectly.
It is unfortunate that recursion is so little understood in many

programming circles. In Mini-language Apply, the idea is particularly
important. All iteration is handled by recursion, since there is no flow of
control. Mathematically, recursive defmitions are often more succinct than
iterative ones, and this applies in programming as well.

Consider, for example, the following Pascal function TOTAL, which
takes a vector A and integer N as arguments and returns the sum of the
first N elements of A:

function TOTAL(A: VECTOR; N: INTEGER): INTEGER;
var

PARTIALSUH. I: INTEGER;
begin

PARTIALSUH := 0;
for I := 1 to Ndo

PARTIALSUH := PARTIALSUH + A[I];

TOTAL := PARTIALSUH
end;

The equivalent function in Mini-language Apply is as follows:

316 Cbapter 11

where TOTAL(A, N) is
select

(N = 0) => 0
else => first(A) + TOTAL(tail(A) , N-I)

end select

Here the array is represented by a list. The recursive defmition in Apply is
simpler because it avoids the use of the extra variables, such as
PARTIALSUM and I.

Models for ReeunioD

There appear to be three predominant models for understanding
recursion:

• The replacement of recursion by an equivalent iteration.

• The use of push-down stacks. This is often used in
explaining the implementation of a programming language.

• The mathematical concept of flXed points.

We believe that fixed points provide the clearest approach to understand
ing recursion.

A recursive definition has the form:

q = ... q ... q ...

Here we have a definition of some entity q in which the same entity q is
used in the definition. In reality, such defmitions do not define anything.
Rather, they are equations, and there must exist some entity that when
used for q satisfies the equation.

For example, consider the following recursive defmitions:

1. y = y - 12

2. identifier :: = letter I identifier letter

3. L = (a, L)

I
=> N 0 F(N - 1)

4. where F(N) is
select

(N = 0) =>

else
end select

=> 1
=> N• INCREHENT(N - 1)

An Applicative Language 317

What are the "solutions" to these equations? The type of object defined
depends on the defining equation:

1. the integers 4 and - 3

2. the infinite set of identifiers {A B Z AA AB ... }

3. the infinite binary list (a, (a, (a, »)

4. the function for computing the factorial of its argument

Notice that in each case, the solution "satisfies" the equation.
In obtaining a solution to equation (4), we will treat F as

representing an object, a function object, in just the same way that y in
equation (1) represents an object, an integer object. The type of F is:

integer -. integer

We are looking for some function that, when substituted for F, leaves it
unchanged. Such a function is said to be a fixed point of the definition.

Let's try the function INCREMENT, which adds one to its
argument, as a fixed point of the definition. By replacing F by
INCREMENT in our equations, we have:

INCREMENT(N)
select

(N = 0)
else

end select

select
(N = 0) => I
else => N• N

end select

1: INCREHENT(N)

Thus INCREMENT is not a solution of the equation.
Now let's try the function FACTORIAL. We have:

FACTORIAL(N)
select

(N = 0) => 1
else => N• FACTORIAl(N - 1)

end select

FACTORIAL(N)

Thus FACTORIAL works and is a fixed point of the equation.

318 Chapter 11

This view leads to an important point. In programming languages
there are really no such entities as recursive functions. There are recursive
defInitions or equations whose solution yields a function. A function is a
bona fide entity, and it is not recursive. Thus we should not say that F is a
recursive function. Instead, we should say that the function F is defmed
recursively, and has a solution that is the factorial function. After all, the
factorial function simply maps a number N into N • (N - 1) • .. . • 1.

A StraDge Function

To emphasize this last point, consider the program:

program
F(14)
where F(N) is

select
(N > 100) => N - 10
else => F(F(N + 11))

end select
end

If we attempt to step through the execution of this program as it evaluates
the expression F(l4), we have:

F(14) = F(F(25)) = F(F(F(36))) = F(F(F(F(47)))) =

There seems to be no way of getting the result easily.
Suppose we now approach the problem as one of finding the fixed

point of the recursive definition. There are many functions that we could
try without success. However, we will try, for no more logical reason than
that we already know the answer, the function NINETY_ONE:

where NINETY_ONE(N) is
select

(N > 100) => N- 10
else => 91

end select

Substituting this into the recursive defmition of F, we have:

An Appli~ative Language 319

where
NINETY_ONE(N) is

select
(N > 100) => N - 10
else => NINETY_ONE(NINETY_ONE(N + 11))

end select

Now

NINETY_ONE(NINETY_ONE(N + 11)) for N< 100

is

for N< 111

which is always 91. Thus the NINETY_ONE function is a fixed point of
the recursive definition of F. Hence the recursive definition was really a
defmition of the NINETY_ONE function. Now what is F(14)? Sure, 91.

At this point you may very well feel that this discussion only serves
to verify that the function NINETY_ONE is, in fact, a fIXed point of the
recursive definition. While the preceding discussion will not in general help
you to fmd the fIXed point of a recursive defmition, it does illustrate the
idea of the fIXed point, an important concept in understanding recursion.

Understanding Recursion

Consider, for example, the recursive definition:

where REVERSE(l) is
select

(l = null) ;> null
(length(L) = 1) => L
else => append(REVERSE(tail(L)). first(l))

end select

If we read this definition, we know from its name that it has something to
do with lists and putting their components in reverse order. Let us assume,
for the moment, that the function does compute a list with its elements
exactly in reverse order. Thus our fll'St step in understanding recursion is to
develop a clear mental picture of what we assume the definition defmes.

320 Chapter II

Our second step is to test our mentally assumed fixed point against
the defmition at hand. To do this, we read the recursive definition and
constantly test the defmition against the assumed fixed point. In the above
case, our thinking may go as follows:

a. If the parameter is null, then certainly its reverse is null, and
thus the answer given in the recursive defmition is correct, at
least for this case.

b. If the parameter is a list of length 1, then the list has only
one element and the reverse of the list is clearly itself. Thus, the
recursive definition gives assume4 fixed point in this case also.

c. Now for the real mental leap. If the list is not null and does
not have one element, then the else clause applies. In this case,
our definition calls on us to apply the reverse function to the tail
of L. Assuming our fIXed point is correct we can easily imagine
reversing the second, third, and so on elements of L. Our
definition then asks' us to form a single list by appending the
first element of L to the end of the list formed by reversing the
tail of L. With a little thought, we see that this is exactly the
reverse of a list with two or more elements.

Of course, our job is not complete. Having verified that our definition
returns the correct answer in all cases stated in the definition, we must
finally check that all of the possible input values are covered. In our case
above, we see that lists of length zero and one are covered in the fll'st two
cases, and lists of two or more elements are covered by the else clause.
Thus our defmition is also complete.

Finally, note that the above discussion presents a model of recursion
that can be interpreted statically, that is, without the need for simulating
nested recursive caDs or employing pushdown stacks.

11.4 FUNCTIONS AS OBJECTS

The definition of the function

where F(Y) is
Y+ 3

is really the equivalent of saying that:

F is the function of Y that is Y + 3

An Applieative Language 321

It is a declaration of the identifier F as having a constant meaning or value,
just as the Mini-language Ref declaration

declare MAX-COL: integer constant =72;

associates the identifier MAX....COL with a constant value.
We are familiar with the idea of functions having constant meanings,

since that is how they generally appear in mathematics. In the expression

(x + y) • (x + z)

the x and yare regarded as variables that can take on a range of values.
The operators + and • I however, always have the same meaning, like the
numerals 3, 5, or 7.

In most programming languages, functions are usually treated as
restricted objects that can only be used in certain contexts. For example, in
most languages functions cannot be passed as arguments to subroutines.
This would be useful, for example, in writing a numerical integration
routine where a parameter could be the function that calculates the value of
the mathematical function being integrated.

Funetions Whose Values Are Funetions

We are familiar with functions whose values are integers, lists, or
other simple values. We have already seen a function whose parameter is
itself a function. We will now see how functions can have values that are
functions in their own right.

The plus function is a function of two variables. Thus we can write (2
+ X) as +(2 I X). Suppose we introduce a new function +' that takes a single
argument, for example, + I (2). The value of the function + I is defined to be
a new function of a single argument that adds a constant to it. Thus, the
value of + I (2) is a function that adds two to its argument. In other words,
its value is the function:

X ~ X + 2

Similarly, the value of + I (5) is the function:

X ~ X + 5

The type of both functions is:

integer ~ integer

322 Cbapter 11

Hence the type of the function + I is:

integer ~ (integer ~ integer)

With only a minor change to the syntax of the Mini-language
Apply, we can write a definition of this function as follows:

where PLUS_PRIHE(X) is
G
where G(Y) is

X+ Y

As part of our modification to Mini-language Apply, we now allow the
expression in a function defmition to refer to an identifier that does not
occur in the parameter list In the function G, the identifier X refers to the
parameter of PLUS_PRIME, which contains G. Thus we have slyly
introduced a kind of variable into Apply.

A variable, such as X, whose value is established outside the function
defmiation is known as a free variable and corresponds to a global variable
in procedural languages. A variable that is not a free variable is a
parameter, also known as a bound variable.

The function PLUS_PRIME consists of a simple expression that
names its internal function G. This function is the value returned by
PLUS_PRIME. This is analogous with a function that consists of the
simple expression 5. Evaluation of this function returns the integer object
5. In the case of PLUS_PRIME, it is a function object that is returned, one
of the class of inte~er ~ integer function objects.

A function object consists of two parts, the body of the function
that defines how to calculate the result, and a free variable list that
provides the values needed to complete evaluation of the function body.

In the case of evaluating the expression

PLUS_PRIHE(K)

we would have:

body: K + Y
free variable list: K

Here Y is the parameter of the function object. The free variable list of the
function object corresponds to the environment part of a label value as
described in Chapter 10.

An Appli~ative Language 323

Use8 for Function Objects

We have already mentioned the use of parameters that are functions
in numerical integration programs. Generalized sort routines can also use
such parameters in order to obtain access to functions that compare and
interchange the objects being sorted. In this way, the sort routine does not
need to have the definition of the objects and can be used for any set of
objects.

In artificial intelligence research, much work is being done to devise
new ways of representing knowledge. While much can be done through
records that contain conventional values, such as integers and character
strings, in certain areas it is more convenient to represent knowledge as
functions and procedures. For example, the representation of certain
classes of patterns can best be done by executable functions that return a
truth value that reports if the pattern has been recognized. The inclusion of
such functions in a data base is an application of functions as data objects.

While certain languages already allow functions to be treated as
objects, much research is still needed in this area.

FURTHER READING

The basis of Mini-language Apply is taken from Lisp [see McCarthy et.aI. 1960].
More recent work on the applicative type of languages is contained in [Burge 1975,
Backus 1978, and Henderson 1980J.

A foundation work for treating functions as objects is the lambda-calculus.
The original work [Church 1941J and the work in [Curry and Feys 1958] are
definitive references on this topic, although certainly hard to read. Numerous
applications of the lambda-calculus and derived formal systems can be found. The
most famous of these is the work by Landin [1964]. Other implications are given in
[Stoy 1977].

An interesting informal account of recursing and the application of function
objects is given in [Hofstadter 1979J.

EXERCISES

Exerci8e 11.1 Removing Duplicates from a List

In Mini-language Apply, a list can have duplicate elements, for
example:

324 Chapter 11

II. 2. 3. 1, 2, 3, 4 1

12, 2, 3, 3, 2'

Write a function named REDUCE that takes a list as an argument and
returns the list without duplicate elements. For example,

REDUCE(ll, 2, 3, 1, 2. 3, 4')

has the value '1. 2 I 3 I 4' and

REDUCE(13, 2, 3, 3, 21)

has the value I 3, 2 I •

Exercise 11.2 Sorting

Write a program in Mini-language Apply that will rearrange a list of
integers into ascending order.

Exercise 11.3 Finding a Fixed Point

Consider the following definition:

where H(X) is
select

(X > 0) => 1 + H(X - 1)
else => 0

end select

What is the fixed point of H? Once you find it, write a simpler definition of
H.

Exercise 11.4 Self-Application

Is X(X) ever meaningful, that is, does it ever make sense to apply an
object to itself?

An Applieative Language 325

Exercise 11.5 Ackennann's Function

Trace the execution of the following Apply program:

program
ACKERHANN(2, 3)
where ACKERHANN(M, N) is

select
(M = 0) => N + 1
(N = 0) => ACKERMANN (H-I, 1)
else => ACKERMANN (M-l, ACKERMANN(M, N-l»

end select
end

Exercise 11.6 Applicative versus Conventional Languages

The nodes in a graph may be labeled with integers, and a connection
from one node to another may be given as a pair of integers. In a graph
with four nodes, the nodes may thus be denoted as 1, 2, 3, 4. A connection
from node 1 to node 3 may be given as (1 3).

A graph is said to be connected if there is a path from each node to
every other. Thus the connections

(1 2) (2 3) (3 4)

or
(1 3) (3 1) (2 4) (3 2)

describe a connected graph, whereas

(1 3) (3 1) (2 4)

does not.
Write one program in Mini-language Apply and another in a

conventional language (for example, Fortran, Pascal, or Mini-language
Typedef) to determine if a graph is connected. You may give the input
data in any suitable form.

Enhancement

12
Input and Output

Input and output are generally found to be among the least satisfactory
aspects of a programming language. This is probably because the clean
abstract view of the world presented by a programming language must
meet the practical compromises of the real world. In the early days of
high level languages, the compiler generated code that interacted
directly with the input-output hardware; as a result, the peculiarities of
the hardware were reflected directly in the language.

Currently, many of these rather unpleasant details are screened
from the programming language by the operating system. By providing a
standard interface between the abstract machine of the language and the
abstract machine represented by the operating system, it is possible to
achieve a considerable measure of implementation independence.

While every programming language provides facilities for input
and output of data, there seems to be little agreement on standard
methods for doing it. For example, Fortran uses a format statement
approach, Snobol uses a pattern matching operation for input and a
special print operation for output, and Ada uses the procedure approach
for defining specialized input and output operations.

The methods mentioned above are used primarily for communica
tion between programs and humans. For example, a user may be
entering data from results of tests, or may be reading a report
summarizing the test results. A second class of input-output issues
arises when communication is internal to the machine. For example,
data may be read from a secondary storage device or may be stored on

330 Chapter 12

magnetic tape. This type of transmission is fundamentally different from
the first.

Because of the profusion of input-output methods, their occurrence
in every programming language, and the need for standardized, straight
forward techniques to specify them, a mini-language devoted exclusively
to input-output has been devised. Mini-language Format is based on the
famiiiar format statement in Fortran. This mini-language gives rise to a
discussion of methods for human input and output. Finally, we briefly
treat methods for machine input and output.

For this mini-language the common definition of input and output
statements given for the other mini-languages does not apply.

12.1 MINI-LANGUAGE FORMAT

The syntax of Mini-language Format is given in Table 12.1.

We assume that we have two devices, one for input and one for
output. Each of these can be viewed as a device containing an infinitely
long piece of paper allowing 72 characters per line and 55 lines per
page. For input we shall look at the characters typed, from left to right
and line by line. For output, we shall print characters in the same
conventional order.

The layout of characters on the input or output device is specified
through format declarations. Given that the device is positioned at some
point on a line, a format declaration specifies the text to follow, on a
character by character basis. Actual input-output is initiated with an
input or output statement referencing a particular format declaration.
During execution of the input-output statement, a correspondence is
established between items in the statement and fields in the format
declaration.

Consider the following sequence:

format NEXT_NUH: 20;

input N using NEXT_NUH;
output N using NEXT_NUH;

When the input statement is executed, a value from the input device is
obtained and assigned to the variable N. The value is specified as
having the form indicated by 2D. The item specification 2D indicates
that the next two characters are to represent a number having one or
two digits. Either, but not both, of the characters may be blank.

Similarly, when the output statement is executed, two characters
will be printed on the output device. These characters represent the

program

Input and Output 331

Table 12.1 Mini-language Format

program
variable-declaration .
format-declaration .

begin
statement...

end;

variable-declaration

format-declaration

field

item-specification

statement

assignment-statement

loop-statement

if-statement

: :=

decIa re identifier [I identifier] .

format identifier : field [. field] ..

integer item-specification

B I LID I c
assignment-statement loop-statement
input-statement output-statement
if-statement

identifier := expression

for identifier := expression to expression loop
statement. ..

end loop;

if comparison then
statement...

else
statement...

end if;

input [identifier [I identifier] ...]
us i ng identifer ;

output [output-item [I output-item]...]
us i ng identifier

operand arithmetic-operator] operand

operand relational-operator operand)

integer identifier I (expression

letter I digit special-character

+ I - I 0 I div

< I I F I >

)11+1-1 0 1/1:1 1_1.1,1 sl~l=

input-statement ·.

output-statement ..-

output-item ·.
expression · .

comparison · .

operand · .-

character ·.
arithmetic-operator · .
relational-operator · .
special-character · .

expression I I character... '

332 Chapter 12

value of N. If the value of N can be specified with one digit, then the
digit is right-justified in the space where the two characters are to be
printed.

In general, each input statement specifies a list of variables to be
input, and the external form of the variables is specified in the named
format declaration. Similarly, an output statement generally contains a
list of expressions and character strings whose values are to be output,
and the printed form of each expression or string is specified in the
associated format declaration. Every correct expression in Mini-lan
guage Format has an integer value.

For the output of expressions, the integer value is right-justified.
For the output of strings, the characters are left-justified. When the
value cannot fit within the specified space, an execution error will
result.

For example, consider the following output statement and associ
ated format declaration:

format HEADER: 25C;

output 'HUMAN FACTORS LIMITED' using HEADER;

Here a text string HUMAN FACTORS LIMITED is output with a field
specification of 25C. The format specification, 25C, indicates that 25
characters are reserved for the output of a string. Since the string is
shorter than 25 characters, the string is left-justified within the reserved
space. The remainder of the space is filled with blanks.

Aside from the specification of the arrangement of integer and
string values, format declarations can also specify the configuration of
blank spaces and blank lines. For example, consider the following
statements and associated format declaration:

format NEXT_LINE: IB, 3D, lB, 3D, IL;

input A, B using NEXT_LINE;
output A, B using NEXT_LINE;

The input statement reads in the values of A and B as follows:

IB -- skip 1 character
3D -- assign the integer in the next 3 characters to A
IB -- skip 1 character
3D -- assign the integer in the next 3 characters to B
Il -- skip the rest of the line

Input and Output 333

Similarly, consider the effect of the output statement:

IB -- print 1 blank
3D -- print the value of A in the next 3 character positions
IB -- print 1 blank
3D -- print the value of B in the next 3 character positions
Il -- skip to the next line

We may now summarize the actions to be taken on input and output:

1. For each input or output statement, the named format
declaration is examined.

2. If the next field in the format declaration specifies a
spacing action, the appropriate spacing action takes place.

3. If the next field specifies a sequence of digits, the
corresponding input or output item must be a numeric item,
and the input or output of this value takes place.

4. For output statements, if the next field specifies a charac
ter string, the corresponding output item must be a character
string, and the output action takes place.

5. Input or output terminates when the last field in the
format declaration is processed.

In all cases, the number of items to be input or output must match the
number of format fields in the named format declaration.

An input action results in an execution error if a numeric field does
not contain an integer. An output action results in an execution error if
there is not enough space for an output item. A summary of input and
output actions is given in Table 12.2.

We now tum to more mundane parts of our mini-language. As in
most of our mini-languages, a program consists of a sequence of
declarations followed by a sequence of executable statements. All
variables used in a program must be declared exactly once, and each
format specification named in an input or output statement must also be
declared.

In addition to input and output statements, the executable state
ments in Mini-language Format include:

• an assignment statement

• an if statement

334 Chapter 12

Table 12.2 Summary of Input-Output Actions

Let X be the next item on the input or output list, and n be the val~e of the
integer in the corresponding format field.

Format Action on Input
Spacing:

nB The next n characters from
the input device are skipped.

nL The remaining characters on
the current line and the
next (n-l) lines from the

nL The remaining characters on
the current line and the
next (n-l) lines from the
input device are skipped.

Data:

Action on Output

The next n characters sent to
the output device are printed
as blanks.

The remaining characters on
the current line and the
next (n-l) lines sent to
the output device are printed
as blanks.

The remaining characters on
the current line and the next
(n-l) lines sent to the output
device are printed as blanks.

nD

nC

The next n characters from
the input device will be
treated as a number and
assigned as the value of X.
If the next n characters are
input action is in error.
Leading or trailing blanks

Not allowed.

The digits of the value of X
will be printed on the output
device. If the value of X can
be specified by fewer than
n digits, the number will be
right-justified with leading
zeroes suppressed. If there is
not enough space specified for
the value of X, the output
action is in error.

The characters of X will be
printed on the output device.
If X has fewer than n charac
ters, the characters will be
left-justified. If X has more
than n characters, the output
action is in error.

Input and Output 335

• a for loop, whereby an enclosed sequence of statements
is executed repeatedly.

The definition of a for loop specifies a control variable that is to be
assigned a seuence of values, starting from the value of one expression
and increasing by one at each iteration until the value of a second
expression is reached. The control variable in a for loop may not be
updated within the loop, and on termination of the loop, the value of the
control variable is undefined.

Finally, a few brief notes. Input or output statements need not
contain data items, in which case only a spacing action may be specified
in the format declaration. The character strings given in an output
statement may. include letters, digits, blanks, and a number of special
characters as defined in Table 12.1.

Examples

In Example 12.1 we see a very simple program in Mini-language
Format. Here a single line of text is output, in this case, a sequence of
six integer values.

In Example 12.2, if the first line on the input device contains an
integer N in its first three characters, and the next N lines contain two
(to be appropriately spaced) columns of integers, then the two columns
are printed in reverse order on the output device.

12.2 VARIETIES OF INPUT-OUTPUT SPECIFICATIONS

There appear to be three dominant strategies for handling the formatting
of input or output data. These three approaches can be summarized as
follows:

1. Remote Format specifications: Format specifications are
based upon the idea that an input or output statement has an
associated but separate format declaration. This declaration
specifies the layout of data values and the use of spacing.

This method is used in Mini-language Format as well as in Fortran and
PL/I. The central idea here is that every input or output action is
associated with a construct describing the layout of the associated
characters in the external medium.

336 Chapter 12

program
declare A. 8. I;
format TWO-NUMS: 40, 40;

begin
A := 11;
8 := 22;
for I := I to 3 loop

output A. 8 using TWO_NUMS;
end loop;

end;

Output

11 22 11 22 11 22

Example 12.1 A simple output of a line of integers

program

declare A. 8. NUH-LINES, LINE-COUNT;
format IN_LINE: 3D. IL;
format NEXT_LINE: 28. 3D. 28. 3D. IL;

begin
input NUH-LINES using IN-LINE;
for LINE-COUNT := 1 to NUH-LINES loop

input A, 8 using NEXT_LINE;
output 8. A using NEXT_LINE;

end loop;
end;

Input

3
1 2

11 22
III 222

Output

2 1
22 11

222 III

Example 12.2 A simple column reversal program

Input and Output 337

2. Picture specifications: With picture specifications, the
layout of characters is associated with a particular data item.
Each piece of data has an associated picture clause describ
ing the form that such an item would have on an input or
output device.

Thus, the character layout of an item is not associated with an actual
input or output statement, but rather with a declaration of the item
itself. This view appears in Cobol and PL/I.

3. Specialized procedures: Here the layout of data for
different kinds of data items is defined in specialized proce
dures. For example, we may have a procedure to output
integers, another procedure to output real numbers, and
another procedure to output character strings.

With this technique of input and output, there is no notion akin to a
format or picture declaration. The spacing and layout of data is handled
entirely by the particular procedure invoked. This method is used in
Pascal, Simula 67, and Ada.

Even within these three major approaches, there are, of course,
considerable differences in language details. Nevertheless, the method
for input and output in most programming languages follows one of
these three general approaches.

In the following discussion, we consider a common problem, the
generation of a simple report. Table 12.3 illustrates a simple price list
giving two columns of data. The first column indicates the quantity of
the item sold, and the second column indicates the price of the
corresponding quantity, assuming a fixed unit price. Our problem is to
generate this price list, exactly as shown in Table 12.3.

12.3 REMOTE FORMAT SPECIFICATIONS

Remote format specifications are based on the idea that the layout of
data on an external device can be described separately from the input or
output statement initiating the input-output. Typically such schemes
describe not only the form of data but also the configuration of blank
spaces and blank lines. To describe the layout, special description
characters are introduced and numbers are used to indicate repeated
specification characters.

338 Chapter 12

Table 12.3 A Simple Price List

PRICE LIST

ITEM CODE : 1234
ITEM : EASY APPLICATOR
UNIT PRICE: $4.36

QU~NT!IY PRICE

1 $ 4.36
2 $ 8.72
3 $13.08
4 $17.44
5 $21. 80

6 $26.16
7 $30.52
8 $34.88
9 $39.24

10 $43.60

11 $47.96
12 $52.32
13 $56.68
14 $61. 04
15 $65.40

16 $69.76
17 $74.12
18 $78.48
19 $82.84
20 $87.20

Input and Output 339

For example, in Fortran we can have the format specifications:

13 -- space for a 3 digit integer, right·justified
2X -- 2 blank spaces

F6.2 -- space for a 5 digit fixed point number with a decimal
-- point 2 digits from the right

AI0 -- space for 10 characters

Notice that the letters I (for integers), X (for blanks), F (for fixed point
numbers), and A (for characters) indicate the type of the field.

This is the method used in Mini-language Format. Example 12.3
shows a solution to our price list problem using Mini-language Format.
A number of comments about this approach are in order.

First, each format statement is associated with a name, which can
be referenced by various input and output statements. Thus, it is
possible to give some mnemonic significance to a format description.

Because formats are identified by name, it is also possible to refer
to the same format specification in different input or output statements.
In Example 12.3, the format specification named TITLE_LINE is
referenced in two output statements, one giving the title and the other its
underline. This kind of reuse of a format specification can enhance both
maintenance and readability.

One of the debits of this approach is, of course, that the
remoteness of the format specifications may cause difficulties in
understanding programs with a good deal of input and output. Often, the
reader of a program will have to turn to a different section of the
program in order to discover the exact layout of characters. One could
in turn argue that format declarations should really be statements,
which could then be placed near the corresponding input or output
statements. This alternative has problems in that format information
might detract from the readability of the algorithm specified by the other
statements.

The design of the compiled code for the output of a list of values
according to a format list frequently makes use of the idea of coroutines
(described in section 7.5). This provides a convenient way of stepping
through the data item list and the format list in parallel.

One small but interesting problem occurs in Mini-language Format
when no data items are printed but some control over blank spacing or
blank lines is needed. For example, consider the output statement:

output using TRIPLE-SPACE;

340 Chapter 12

program

declare GROUP, UNIT_PRICE, QUANTITY. PRICE. DOLLARS. CENTS;

format LINE-SKIP : lL;
format TRIPLE_SPACE: 3L;
format TITLE-LINE 258, IOC, lL;
format ITEM_INFO 2SC, lL;
format COl-HEADER SC, 6B, 5C. lL;
format ITEM_LINE 2B. 20. 98, lC, 20. lC, 20. lL;

begin
output using TRIPLE_SPACE;

output 'PRICE LIST' using TITLE-LINE;
output ,----------, using TITLE-LINE;

output using TRIPLE_SPACE;

output 'ITEM CODE : 1234' using ITEM-INFO;
output 'ITEM : EASY APPLICATOR' using ITEM_INFO;
output 'UNIT PRICE: $4.36' using ITEM-INFO;

output using TRIPLE-SPACE;

output 'QUANTITY'. 'PRICE' using COl-HEADER;
output ,-------- ' using COl-HEADER;

UNIT_PRICE := 436;
for GROUP := 0 to 3 loop

output using LINE_SKIP;

for QUANTITY := (GROUP*5) + 1 to (GROUP*5) + 5 loop
PRICE := QUANTITY * UNIT_PRICE;
DOLLARS := PRICE div 100;
CENTS := PRICE - (DOLLARS * IOO);
output QUANTITY, '$'. DOLLARS. '.', CENTS using ITEM-LINE;

end loop;
end loop;

end;

Example 12.3 Generation of a price list using format specifications

Input and Output 341

This problem can occur in Fortran when READ and WRITE reference
format statements but have no associated list of statements and
expressions. This suggests that the syntax of the input or output
statements could be better formulated to avoid the anomaly. For
example, we might have adopted a syntax along the lines:

output format-identifier [using output-item-list];

I~ this case we would have output statements like:

output TRIPLE_SPACE;
output TITLE-LINE ·using 'PRICE LIST';

We leave this matter unresolved.

12.4 DATA DESCRIBED WITH PICTURE SPECIFICATIONS

The central idea behind picture specifications is that the physical layout
of the data is described along with other declarative information for the
data. For example, in the declaration of an integer variable one also
specifies how the integer variable is to be represented outside the
program. Typically the control of blanks and new lines is also
associated with data. Thus the description of data is grouped with
corresponding information about leading and trailing spaces as well as
blank lines.

Picture specifications are best known in Cobol, where input and
output is an important application area. In Cobol the items comprising a
unit of printed information are collected into a record-like structure.
Each item in the structure is associated with a picture clause describing
its external form. Like Mini-language Format, special characters are
used to indicate the type of information, and thus a picture clause
indirectly defines the type of any variable.

A program along these lines is given in Example 12.4; another
solution to our problem of generating a price list. In this program we
have altered the syntax of Mini-language Format in order to present the
solution; these changes should cause no problem.

In this example, the basic unit of input or output is assumed to be
a line. Each line is broken into fields. Each field has a name, as well as
a picture clause describing the external appearance of the field.

342 Chapter 12

program
declare GROUP, UNIT_PRICE, QUANTITY;

Iine LINE_SKIP:
FILLER: picture 728;

end line;

line TITLE:
LEFLPADDING
CAPTION
RIGHLPADDING:

end line;

picture 258;
picture IOC;
picture 378;

line ITEM_INFO:
TEXT picture 28C;
PADDING: picture 448;

end line;

line COLHEADER:
QTLHEADER
FILLER
PRICE_HEADER
RIGHLPADDING:

end line;

I ine ITEM_LINE:
LEFLPADDING
QUANTITY
FILLER
PRICE
RIGHLPADDING:

end line;

picture 8C;
picture 68;
picture 5C;
picture 538;

picture 28;
picture 20;
picture 98;
picture SOD. DO;
picture 538;

Example 12.4 Generation of a price list using picture specifica
tions

Input and Output 343

' 1.

I

EASY APPLICATOR';

1234 ';

I I •

I

1 PRICE LIST';

begin
wr i te LINLSKIP;
write LINLSKIP;
write LINLSKIP;
TITLE. CAPTION
write TITLE;
TITLE. CAPTION
write TITLE;
write LINE_SKIP;
write LINLSKIP;
write LINLSKIP;
ITEM-INFO. TEXT := 'ITEM CODE
write ITEM-INFO;
ITEM-INFO. TEXT := 'ITEM
write ITEM-INFO;
ITEM-INFO. TEXT := 'UNIT PRICE: $4.36';
write ITEM-INFO;
write LINE_SKIP;
write LINLSKIP;
write LINLSKIP;
COL_HEADER.QTY_HEADER := 'QUANTITY';
COl-HEADER.PRICLHEADER := 'PRICE';
write COL_HEADER;
COL_HEADER.QTY_HEADER := 1 ';

COl-HEADER.PRICLHEADER
write COL_HEADER;
UNIT_PRICE := 436;
for GROUP := 0 to 3 loop

wr i te LINLSKIP;
for QUANTITY := (GROUP*S) + 1 to (GROUP*5) + 5 loop

ITEM-LINE. QUANTITY := QUANTITY;
ITEM-LINE. PRICE := UNIT_PRICE * QUANTITY;
wr i te ITEM-LINE;

end loop;
end loop;

end;

Example 12.4 continued

344 thapter 12

F or example, consider the following:

1i ne ITEM_INFO:
TEXT picture 28C; -- space for 28 characters
PADDING: picture 448; -- 44 remaining blank spaces

end line;

Here the line of text named ITEM....INFO is defined as having two
fields: TEXT for containing a text string, and PADDING for contain
ing blank spaces. The two fields comprise a complete line.

With this scheme, any nonblank item must be assigned a value
before printing. In the above case, TEXT must be assigned a string of
text, whereas PADDING is assumed to be all blanks. The setting of
such values is typically done through assignment statements, for
example:

ITEM-INFO.TEXT := lITEM CODE : 1234 1
;

Here we use the conventional notation for assignment to components of
records.

The actual input or output of data is handled by input-output
statements naming only the unit to be input or output, in this case by
naming the entire line structure. For example, to output the contents of
ITEM....INFO we simply use the statement:

write ITEM_INFO;

One advantage of the picture specification approach is that all the
information about a line of text is contained in a single structure. Since
both the type and layout of data are specified together, all that one
needs to know about a unit of information can be examined quite
simply.

Another advantage of this approach is that "insertion" characters
are included in the description of data. For example, consider the
following:

PRICE: picture SOD. DO;

Here the characters $ and . are considered as insertion characters that
are placed within the numeric value as printed. Thus, for example, the
number

436

Input and Output 345

will be printed as:

$ 4.36

We assume here that numbers with decimal points are treated as exact
numeric quantities.

Finally we note a clear disadvantage with this approach as given:
the description of data must often be accompanied by considerable,
apparently extraneous, information. For example, in the description of
COLHEADER, we see the need to describe four different fields, two
of which are all blank, but all of which must be associated with a name
and picture clause. Such descriptions are cumbersome.

12.5 INPUT AND OUTPUT VIA SPECIALIZED PROCEDURES

The last approach we discuss here is that of using specialized proce
dures for input and output. This approach has emerged in more recent
languages, such as Simula 67, Algol 68, Pascal, Ada. The general idea
is that for each type of data, and thus for each conceptually different
layout operation, a dedicated procedure is used. For example, if we
wish to output an integer, a procedure for printing integers is invoked.
This procedure may have a parameter indicating the character width of
the integer. As with all approaches, there are considerable variations
within the general theme.

Consider the following sequence of procedure calls:

PRINT_STRING (lITEM CODE : 1234 1
);

ADVANCE-LINE (1);

Here the procedure PRINT_STRING takes an argument that is a
character .string and prints the string on an output device. The following
procedure ADVANCE_LINE fills the rest of the printed line with blank
spaces and advances to the next line.

The exact control of spacing for data items is usually handled with
parameters specifying appropriate field widths. For example, consider
the following procedure call:

PRINT_INTEGER(DOLLARS. 2);

Here an integer is printed in a two-digit field. In the case where only
one digit is required, the digit is right-justified.

346 Chapter 12

Our third program for generating a price list is given in Example
12.5. Again we have modified the syntax of Mini-language Format to
illustrate this technique for input and output.

The use of specialized procedures for input and output has a
number of key advantages. Most importantly, we can dispense with
explicit format or picture specifications and include input-output within
an already accepted feature of programming languages procedures. Thus
a programmer does not need to learn any additional language features.
Furthermore, the details of printing can be summarized in terms of a
familiar abstraction, the call to a procedure.

Another a,,"vantage with this approach is that the user will
generally want to define special input and output procedures particularly
suited to an application. Such procedures fit nicely with any that might
be predefined in the language.

We observe several problems with the approach taken in Example
12.5. For one, the sequence of procedure calls to perform a given input
or output action can be quite lengthy, as compared with the terse forms
used with format specifications. While repeatedly calling procedure
after procedure can be quite tedious, it may be argued that the intent is
just as clear as referring to remote format or picture specifications.

The subject of specialized procedures brings up two rather interest
ing extensions to this approach that can add simplicity to the specifica
tion of input and output, but at the cost of adding some complexity to
the mechanism for procedures. These two extensions are overloading
and default parameters.

Overloading of Subprograms

There are situations where we want to define the same conceptual
operation on arguments of different types. A typical case is a print
operation for printing different types of values.

Consider the procedure headers

procedure PRINT (X: integer);
procedure PRINT (X: real);
procedure PRINT (X: string);

for printing the string representation of an integer, a floating point
number, or a string, respectively.

The actions of each procedure will differ since they are dependent
on the format for printing the three kinds of values. The use of two or
more subprograms with the same name but different types of parameters
is called overloading.

Input and Output 347

program

declare GROUP, UNIT_PRICE, QUANTITY, PRICE, DOLLARS, CENTS;

begin
ADVANCE-LINE (3);
PULSPACES (25);
PRINT_STRING ('PRICE LIST');
ADVANCE-LINE (I);
PULSPACES (25);
PRINT_STRING('----------');

ADVANCE-LINE (4);
PRINT_STRING ('ITEM CODE 1234');
ADVANCE-LINE (I);
PRINT_STRING ('ITEM EASY APPLICATOR');
ADVANCE-LINE (I);
PRINT_STRING ('UNIT PRICE: $4.36');

ADVANCE-LINE (3);
PRINT_STRING ('QUANTITY PRICE');
ADVANCE-LINE (I);
PRINT_STRING ('-------- -----');
ADVANCE-LINE (I);

UNIT_PRICE := 436;
for GROUP := 0 to 3 loop

ADVANCE-LINE (I);

for QUANTITY := (GROUP*5)+ 1 to (GROUP*5)+ 5 loop
PULSPACES (2);
PRINT_INTEGER (QUANTITY, 2);
PRICE := QUANTITY * UNIT_PRICE;
DOLLARS := PRICE div 100;
CENTS := PRICE - (DOLLARS * lOa);
PULSPACES (9);
PRINT_STRING ('S');
PRINT_INTEGER (DOLLARS, 2);
PRINT_STRING ('. ');
PRINT_INTEGER (CENTS, 2);
ADVANCE-LINE (1);

end loop;
end loop;

end;

Example 12.5 Generation of a price list using specialized
procedures

348 Chapter 12

Overloaded subprograms can be called in the conventional man
ner, for example:

PRINT (I + 1); -- print an integer
PRINT (SQRT(Y»; -- print a floating point number
PRINT ('THIS MESSAGE'); -- print a string

The key idea here is that these three subroutine calls are really calls to
three different subroutines, each with the name PRINT. The choice of
which particular subroutine PRINT is to be invoked by the call is
determined by the type of the argument. The subroutine is chosen so
that the type of its parameter matches the type of the argument. In most
languages, this choice can be made by the compiler.

We note in passing that this use of overloading is similar to the use
of + as an operator both for integer addition and floating point addition
as discussed in Chapter 6.

Default Parameters

Next consider the following procedure calls:

PRINT (I, 3): -- I is printed with a 3 character field width

PRINT (I); -- I is printed with a standard field width

Here we have two calls to the procedure PUT, and in each case the
value of an integer is printed. In the first case, a three-digit field width is
specified. In the second case, no second argument is given and the
integer is printed with a standard field width. The field width in the
procedure is said to be a default parameter in the sense that if it is not
provided in the call, a standard value is provided in the body of the
procedure.

Default parameters can be handled by the use of overloading. For
example, with two procedures defined by the headers

procedure PRINT (X: integer); -- uses the standard width
procedure PRINT (X: integer; WIDTH: integer);

both of the above call can be accomodated. Hence their inclusion in a
language is questionable.

Input and Output 349

12.6 COMMUNICATION WITH THE OUTSIDE WORLD

Older programming languages often refer to specific devices but more
modern languages generally deal with the more abstract notion of a file.
A file can be a source or a sink of data and act as a value in a language
just like an array or record. In Pascal there are file variables. The
correspondence between the abstract file of a program and the physical
file or data set of the operating system is established by system control
statements outside the language. Since these statements are also outside
the program, this correspondence can be changed without recompiling
the program.

The actual physical connection between the data set and the file is
established only at the time the file is opened and is broken when the
file is closed.

Some languages provide special statements for the opening and
closing of files. In others, the file is opened when it is first used and
closed when the program terminates. At the time of opening the file,
checks are made that the data set connected to the file match some of
the requirements of the program.

For example, we may have:

access mode:
read only (card reader, magnetic tape)
write only (line printer, card punch, magnetic tape)
read/write (disk or drum, terminal)

.There are two distinct ways in which a program can transfer data to and
from a file. One mode of transfer takes place without any conversion,
that is, the internal representation of the data in the program is identical
with its representation in external storage. This type of storage is not
meant for data for human consumption, but is intended as a backing
store to hold temporary results further processed later in the program.
In the other mode of transfers, there is a conversion of representation,
for example from a two's complement binary representation to a string
of decimal characters preceded by a sign. This is the mode discussed in
the earlier sections of this chapter.

Finally, there are two fundamental forms of file organization,
sequential and random. A sequential file may be accessed as input only
in the order in which the data were written, from first to last. The basic
operation is the next operation, which gives the next data item in order.
The files in the earlier part of this chapter are sequential files. Random

350 Chapter 12

files are accessed in an order that is not only different from that in
which they were written but in an unpredictable order. The statements
for this kind of access must provide a key by which the referenced
record can be identifed.

Between these two extreme forms of access, there are many
intermediate ways of file organization. Like other topics in this text, a
full discussion of the subject of file organization goes beyond the scope
of this book. Such topics include the language aspects of dealing with
such input-output problems as graphics and real-time data acquisition.

FURTHER READING

Of all of the topics covered in this text, the topic of input-output has received
least attention. Works devoted primarily to this area are particularly sparse.

As typical language examples, format statements are described in Fortran and
PL/I, picture clauses in Cobol, and specialized procedures in Algol 68 and Simula
67.

The use of specialized procedures for input-output as used in Ada is described
in [Ichbiah et at. 1979]. Here extensive use is made of overloading and default
parameters.

EXERCISES

Exercise 12.1 Table Generation

The object of this exercise is to compare the three methods of
output specification described in this chapter. Write three versions of a
program defined below using the output specification techniques shown
in Examples 12.3, 12.4, and 12.5 to print the temperature conversion
table defined below. When you have completed the three programs,
compare their clarity and ease of writing.

The program is to output a simple table. The table consists of two
columns labeled Fahrenheit and Celsius. The Fahrenheit temperatures are
listed for every degree from 32 through 212. The corresponding Celsius
temperatures are printed as integers. There is a blank line left after every
five degrees. After every 50 degrees, 10 blank lines are output and the
column headings are repeated. The Celsius equivalent of t degrees
Fahrenheit is 5(t-32)/9. The first few lines of the table are:

Fahrenheit

32
33
34
35
36

37
38

Celsius

o
I
1
2
2

3
3

Input and Output 351

Exercise 12.2 Programming in Mini-language Format

Write a program in Mini-language Format that reads a number N
from the input device and then prints a pattern of the form shown below.

1
2 2

3 3

N N

The pattern should be centered on the output device. You may assume
that the value of N will be less than 20.

Exercise 12.3 Programming in Mini-language Format

Printing tables and reports is certainly one of the most important
applications of input-output. Write a program to solve the following
problem.

January 1, 1901 was a Tuesday. The objective of this exercise is to write
a Mini-language Format program that takes as input the number of a
month (from 1 to 12) and the number of a year (from 1901 to 2000),
and prints a calendar for the month. For example:

352 Chapter 12

JANUARY

S H T W T F S-------------------
1 234 5

6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

Exercise 12.4 Printing Pictures

Suppose that output consists of pictures printed on a two
dimensional coordinate system. If the pictures are limited to straight
lines, circles, and arcs of circles, define a set of formatting features for a
programming language suitable for drawing pictures.

Exercise 12.5 Backing Storage

Design additional syntax and semantics for Mini-language Format
for input and output of data on a file that is to serve as a backup store
for temporary results. Such transmission is to take place without any
conversion, and the data is represented in the file in the same way that it
is represented in machine storage during execution. The new facilities
should allow both sequential and random order access to the data.

Exercise 12.6 Using Money

Examples 12.3, 12.4, and 12.5 use three basic approaches for
reading and writing data: format specifications, picture specifications,
and specialized procedures.

Suppose that input and output of amounts of money were impor
tant enough in the design of a special purpose language that they should
be built into the language. Describe a good set of primitives for this
using each of the three approaches. You will need to handle dollar signs,
commas in numbers, and decimal point notation for cents.

13
Dynamically Varying Structures

One area of programming languages with many divergent views is the
area generally included under the term data structures. By a data
structure we mean a collection of data that bear some relation to each
other and are organized so as to represent these relationships. The
organization reflects real world relationships and thus must be able to
change dynamically. For example, we may describe the nodes in a
network, the components of a data base, the items in a linked list, or the
members of a family tree.

The naming, searching, deleting, sharing, and updating of items in
a data structure are all critical issues. Mini-language Structures is an
attempt to deal with some of these issues. In our opinion, the concept of
a data structure is still quite vague and none of the existing facilities for
data structures is satisfactory. A good attempt to provide such a facility
has been made in the language Ada, and the Mini-language Structures is
based on this work.

13.1 MINI-LANGUAGE STRUCTURES

Along with integers and strings, the types in Mini-language Structures
include classes ·of objects called structures. A structure type is declared
by a structure declaration that gives the name of the type being declared
and also the name and type of each structure component. All structure
types must be declared, and inter-dependent definitions are allowed.

356 Chapter 13

For example, we may have the structure declarations:

1. type COHPLEX-NUH:
structure

REALPART: integer;
IHAG....PART: integer;

end structure;

2. type PERSON:
structure

NAHE string;
SS_NUH string;
NEXT_Of_KIN: PERSON;

end structure;

3. type LIST:
structure

HEAD: integer;
TAIL: LIST;

end structure; , '

4. ~ype COHPLEX-NUH-LIST:
C Atructure

~HEAD: COMPLEX-HUH;
A- TAIL: COHPLEX-HUH-LIST;

nd structure;

Examples of each of these structures are shown in Figure 13.1. Here an
arrow is used to refer to a component that is itself a structure.

The first declaration above declares a very simple structure with
two integer components. This structure is analogous to a record
structure in Mini-language Type. The essential difference is illustrated
in the second example. Here we see a structure type named PERSON,
which has a string component, an integer component, and a third
component that is of type PERSON itself. This is a recursive definition
and defines a potentially infinite class of objects, one such object is
illustrated in Figure 13.1. The apparent infinite recursion is handled in
Mini-language Structures by a special object called null. The value of
nu 11 designates an object with no components. Each defined structure
types includes the null object as one of its values.

The third structure declaration defines a type called LIST. A list
denotes a series of objects, each with a head and a tail component,
terminated by the null object.

The fourth structure declaration defines another class of lists
called COMPLEx....NUM.-LIST. The HEAD of each component of

Dynamicall)' Varying Structures 357

Table 13.1 Mini-language Structures

program

structure-declaration

structure-definition

variable-declaration

type

statement

assignment-statement

if-statement

loop-statement

input-statement
output-statement

comparison
expression
operand

variable

string

character

comparison-operator

program
structure-declaration .
variable-declaration .

begin
statement...

end;

type identifier : structure-definition

structure
identifier: type;

[identifier: type;] ...
end structure

dec lare identifier [I identifier]... type;

identifier I string I integer

assignment-statement I loop-statement
if-statement I input-statement
output-statement

variable := expression ;
variable:= new identifier

(expression [I expression] ...

if comparison then
statement. ..

else
statement. ..

end if;

wh i Ie comparison loop
statement...

end loop;

input variable [• variable] .
output variable [• variable] I

(operand comparison-operator operand)
[expression +] operand
nu 11 I integer I string
(expression) I variable

identifier I variable.identifier

I character... I

letter I digit)i

< I :;;: I ~ I >

358 Chapter 13

(2) An object of type PERSON

NAME

SS_NUM

NEXT_OF_KIN

t
'EVE' NAME 'ADAM'

000000002 SS_NUM 000000001

~ NEXT_OF_KIN null

(3) An object of type LIST

HEAD
t-----4

TAIL

HEAD
t-----4

TAIL

HEAD
t-----4

TAIL

(4) An object of type COMPLEX NUM_LIST

Figure 13.1 Illustrations of structures

The fourth structure declaration defines another class of lists
called COMPLEx...NUM...LIST. The HEAD of each component of
such a list is a COMPLEx...NUM object. This structure declaration
illustrates the definition of structures that require more than one
structure declaration for their specification. One member of this class of
objects is also illustrated in Figure 13.1.

declare HIS NAME: string;
declare NUM HITS. NODE_VALUE: integer;

D)'namieaU}' Var,.ing Structures 359

declare ADAM, EVE, LAST_BORN: PERSON;
declare L: LIST;
declare NEXT_NUM: COMPLEX-NUM;
declare ITEM: COMPLEX_NUM-LIST;

There are important differences between the semantics of these
declarations of structure variables and declarations of record variables
in Mini-language Type. In Type, an identifier declared to be of a record
type x has the mode reference-to-x and is identically equal to a location
that can contain record objects of type x. This meaning of declarations
was discussed in Chapter 4. In Mini~language Structures, an extra level
of referencing is inserted. The identifier ADAM declared above is not
identically equal to a location that can contain a PERSON object but to
a location that can contain a reference to a PERSON object. This
object does not exist until it is constructed, as described below, and the
contents of the location associated with ADAM are initially undefined.

Components of structure variables can be designated by naming
the variable itself, followed by a dot and the name of one of its
components. As nested structures are allowed, nested components are
designated by giving the name of the appropriate component at each
level of nesting. For example, we may have the variables:

ADAM.SS_NUM
ADAM.NEXT_OF_KIN
ITEM.HEAD.REAL_PART

a component of type string
a component of type PERSON
a component of type integer

Several kinds of assignment statements are allowed in Mini
language Structures. The first is the simple assignment of an arithmetic
or string value, for example:

NUM-HITS := NUM-HITS + 1;
HIS_NAME := 'GEORGE WASHINGTON';

NEXT_NUM.REAL_PART 2;
NEXT_NUM.REAl-PART := NEXT_NUM.REAL_PART + 1;

All values assigned to a variable must be of the same type as that
declared for the variable.

Of more interest to us here is the assignment of structure objects to
structure variables. A 'null value can be assigned to a structure variable
by simply giving null as the assigned expression, as in:

LAST_BORN
ADAM.NEXT_OF_KIN
L. TAIL

- null ;
- null ;
- null ;

360 Chapter 13

A special kind of assignment is used to create a structure object.
The assigned expression is prefixed by the symbol new followed by the
name of the structure type and a parenthesized list of expression values,
one for each component of the structure. For example, we may have:

/ 1V\;t,·~,AL.-~

NEXT_NUM new COMPlEX-NUH(2,1);
ITEM new COHPlEX-NUK-LIST(NEXT_NUM, null);
ADAM := new PERSON('ADAM', '000000001 ' , null);

Such statements specify the dynamic creation of an object of the type
specified by the structure identifier and assigns this value to the variable
given on the left hand side of the assignment. The assigned value is a
reference to the dynamically created object.

During the creaion of a structure object, the components of the
object are given values from the parenthesized list of expressions
following the symbol new. If any of these expressions refers to a
previously created object, the value of the expression is a reference to
the previously created object. For example, the variables NEXT_NUM
and ITEM created above may be represented as in:

ITEM

HEAD
I---~

TAIL

Assignment of one structure variable to another structure variable
is also allowed. In this case, after the assignment, both variables will
refer to the same dynamically created object. For example, if the above
sequence were followed by the assignment:

LAST_BORN := ADAM;

then both ADAM and LAST_BORN would refer to the same object, as
illustrated in:

ADAM LAST_BORN

NAME 'ADAM'

SS_NUM OOOOOOOO1

NEXT_OF_KIN null

Dynamically Varying Structures 361

Finally, Mini-language Structures includes the following more
traditional statements:

• If statements
• Loop statements
• Input statements
• Output statements

The input and output statements handle only integer and string values.

Examples

Consider Example 13.1. The first statement

LAST_BORN := null;

sets the value of the variable LAST_BORN to reference a null object.
The birth of the first member of our family is accomplished with the
operation new:

ADAH := new PERSON(IADAH 1, 1000000001 1
, null);

LAST_BORN := ADAH;

The first statement above creates a new object with three components
and the variable ADAM is set to reference this new object. The second
statement assigns a reference to the same newly constructed object to
LAST_BORN. Notice that the third component of the object referenced
by ADAM is null.

Next, consider a new birth given in the statements:

EVE := new PERSON('EVE ' , '000000002', ADAH);
ADAM.NEXT_OF_KIN EVE;
LAST_BORN := EVE;

The first statement creates yet another object. The second statement
results in setting the third component of the object associated with
ADAM as a reference to EVE. The third statement updates the value of
LAST_BORN.

Now that we have two persons in our family, we can see the
development of dynamic relationships during program execution. The
third components of ADAM and EVE now refer to each other and
LAST_BORN has been maintained as a reference to the person who
was last born.

362 Chapter 13

program
type PERSON:

structure
NAME
SS_NUM
NEXLOF_KIN:

end structure;

string;
string;
PERSON;

declare ADAM, EVE, LAST_BORN: PERSON;

begin
-- initial state, no one on earth
LAST_BORN := null;

-- birth of Adam
ADAM := new PERSON ('ADAM', '000000001', null);
LAST_BORN := ADAM;

-- birth of Adam's spouse
EVE := new PERSON('EVE', '000000002', ADAM);
ADAM.NEXT_OF_KIN EVE;
LAST_BORN EVE;

end;

Example 13.1 The beginning of a genealogy

Next consider Example 13.2. After execution of the first six
statements, the structure of Figure 13.2 is obtained. The following
statements read in an integer representing a node value and then print
the number of times the node value occurs in the tree list.

13.2 DYNAMICALLY VARYING DATA STRUCTURES

The general notion of data structures is quite diffuse and almost
impossible to treat with a single mini-language.

Often we need to model large amounts of data and express quite
complex relationships between the data items. Whether it be the symbol
table of a compiler, the connections in a rail network, the accounting
system in an organization, Census Bureau information, or simply a
binary tree of alphabetically ordered keys, there is an inherent variety
and complexity in the kinds of problems that data structures are meant
to solve. To deal with this complexity, programmers should be able to
work at a very high level of abstraction, often far removed from the
details of a machine implementation.

DJnamicall), Varying Structures 363

program
type TREE:

structure
NODE: integer;
LB : TREE;
RB : TREE;

end structure;

type TREE_LIST:
structure

HEAD : TREE;
TAIL : TREE-LIST;

end structure;

declare NODE-VALUE, NUH_HITS: integer;
declare A, B, C: TREE;
declare L, P TREE_LIST;

begin
A := new TREE(1, null, null);
B := new TREE(2, null, null);
C := new TREE(3, null, null);

L := new TREE_LIST(C, null);
L := new TREE_LIST(B, L);
L := new TREE_LIST(A, L);

input NODE-VALUE;
P := L;

NUH_HITS := 0;
whi Ie (P ;: null) loop

if P.HEAD.NODE = NODE_VALUE then
NUH_HITS := NUH_HITS + 1;

end if;
P := P.TAIL;

end loop;

output NU~HITS;

end;

Example 13.2 Searching a .linked list

364 Chapter 13

A B C

NODE NODE NODE 3

LB null LB null LB null

RB null RB null RB null

HEAD
t------4

TAIL

Figure 13.2 Development of a tree list

From a language viewpoint, the concept of such data structures
brings in some critical new issues. The first is that the storage
requirements for a program cannot be determined simply from the
number of variables and the nature of their types. For example, consider
the following sequence:

L := new LIST(I. null);
L := new LIST(2. L);
L := new LIST(3. L);
L := new LIST(4, L);

Here we see the development of a single list structure named L. Over
the course of execution, the size of L grows progressively. Generally,
the actual number of elements cannot be predicted until execution is
completed. Thus, we see a need to allocate storage dynamically. This is
in sharp contrast with the variables introduced in previous mini
languages.

A second issue with such structures is that the components of a
structure may relate to previously defined structures, and these relation
ships may themselves change during program execution. In the above
sequence of statements, the interrelation of the list elements changes as
each statement is executed.

Perhaps the most central issue in the use of data structures is the
sharing of information. For example, consider the program of Example
13.3. The structure set up by this program is shown in Figure 13.3.
Here both L and M are lists, some of whose components are identical.

Dynami~ally Varying Stru~ture8 365

program
type lIST: structure

HEAD: integer;
TAIL: LIST;

end structure;
declare l, H: lIST;

begin
l := new lIST(I, null);
l := new LIST(2. L);
H := new lIST(3, l);
L := new LIST(4, H);

output l.TAIl.HEAD, H.HEAD; -- values are 3 and 3
end;

Example 13.3 Building a list in Mini-Language Structures

L M

HEAD
t------f

TAIL

HEAD
t------i

TAIL

HEAD
t----ooot

TAIL

HEAD
t-----f

TAIL
~-..........

Figure 13.3 A list structure with shared components

In particular, both

L.TAIL.HEAD
H.HEAD

denote the same value, the integer 3. Finally, note that even if the list L
is assigned a completely new value, as with the statement

L := new LIST(5, null);

some elements originally in L will still be accessible via the list named
M. This brings up another difficult issue, namely, when do the objects of
a structure become inaccessible?

366 Chapter 13

13.3 POINTERS

In many higher level languages (and in most lower level languages) data
structures are developed with some kind of mechanism for pointers. A
pointer is an object that gives the address of, or refers to, another
object.

Working with pointers is full of hazards for the unwary. The object
associated with a pointer may change during program execution.
Although complex structures may be developed, the programmer must
always keep in mind whether a variable refers to an object directly or
indirectly through a pointer. Where a complex data structure is
involved, a clear understanding of a program that uses pointers is
difficult to obtain. The complex relationships that pointers are intended
to represent are often very diflJcult to fathom.

Nevertheless, there is still a fundamental question: do we need the
notion of a pointer in order to understand the use of data structures? For
example, consider the statements that establish the list structure
illustrated above. Here the value of M.HEAD is 3. Now suppose we
execute the statement:

L.TAIL.HEAD := 6;

The value of M.HEAD will now be 6. Notice that M does not appear in
this assignment statement, but its value is changed nevertheless.

This is a situation in which the program behavior can be readily
understood in terms of the concepts of a pointer. This is especially true
when we have the sharing of structure information. Thus, we see that
even in Mini-language Structures, in which pointers are not explicit, the
idea of a pointer is quite central to understanding actions performed in
the language.

Many programming languages make the notion of a pointer
explicit. For example, consider the following Pascal declarations:

type ITEM = t LIST;
LIST = record

HEAD: INTEGER;
TAIL: ITEM

end;

var L, MI NEXT: ITEM;

Here a pointer type is explicitly indicated with an t . In Pascal, the
type of object to which a pointer points must be explicitly indicated, in

DynamicaU,· Varying Structures 367

this case a list. The Pascal statements corresponding to the structures of
Figure 13.3 are given in Example 13.4.

Each call to the procedure NEW allocates space for the type of
object referenced by the pointer given as an argument and assigns a
reference to the new object to the pointer. In subsequent statements, all
references to the objects pointed to by L or M must be explicitly
indicated. For example, we have:

L -- denotes the pointer value of L
Lt -- denotes the object pointed to by L

In comparison with Mini-language Structures, we see here a very
straightforward set of conventions in which pointers are explicitly
identified. Unlike Mini-language Structures, however, the Pascal pro
grammer must always be aware of the notion of a pointer, even in the
case where knowledge that a value is a pointer is somewhat superfluous.
While both views are valid and a final resolution of this issue is not
clear, we generally support the suppression of pointers.

13.4 DESIGN CRITERIA FOR DATA STRUCTURES

Facilities for defining dynamically varying collections of data are not a
part of every language. For example, neither Fortran nor in Basic has a
facility corresponding to that given in Mini-language Structures. With
such languages, the reader is forced to use alternative constructs in
order to deal with structured data. Typically, arrays are used with
indices to simulate pointers. Clearly, if the development of dynamically
varying data structures is an important application domain, such
languages are difficult to use.

To discuss the various design issues in data structures, we will
compare the facilities given in Mini-language Structures with those in
Pascal. This is taken further in Examples 13.3 and 13.4.

Definition of Data Structures

A definition of a data structure defines the objects to be manipu
lated and, implicitly, the ways in which they can be referenced.

In Mini-language Structures, the definition of data structures is
handled by a type declaration in which each of the components of the
structure is identified. This requires that the structure be defined to have
a specific form since arbitrarily connected structures are prohibited. The
development of chained structures is handled by the use of recursion in

368 Chapter 13

program BUIlOlIST (INPUT,OUTPUT);

type ITEH = t LIST;
LIST = record

HEAD: INTEGER;
TAIL: ITEH

end;

var L, H, NEXT: ITEH;

begin
NEW (L);

Lt .. HEAD := l;

Lt .TAIL := nil;
NEXt := l;

NEW (L);
Lt. HEAD := 2;
Lt. TAIL := NEXT;
NEXT := l;

NEW (H);
Ht .HEAD := 3;

Ht .TAIL := NEXT;
NEXT := H;

NEW (L);
Lt. HEAD := 4;
Lt. TAIL := NEXT;

WRITE (L t .TAIL t .HEAD, Ht .HEAD)
(output values are 3 and 3 J

end

Example 13.4 Building a list structure in Pascal

the definition of the structure. The apparent infinite recursion indicated
in Example 13.3 is prevented by associating a null object with each
defined structure.

In Pascal, the mechanism for defining structures is analogous to
that of Mini-language Structures. Here, however, an intermediate type
must be used to indicate a pointer to another structure, which is in fact
the normal record structure in Pascal. This intermediate type slightly
obscures the definition of the object being defined, but makes the
existence of pointers explicit, as well as clearing up any ambiguity
about possible infiniie recursion.

DJnamicaU), VarJing Structures 369

Operations over Structures

There are two general kinds of operations relevant to the use of
structures. First are those provided within the language. Second are the
higher level operations more suitable to the domain these structures are
intended to represent.

In Mini-language Structures, the primitive operations over struc
tures are basically those of creation, assignment, and component
selection. Assignment of structures is handled just as assignment of
variables that can take single values. References to components of
structures are specified by the dot notation used for record structures.
With the dot notation the use of pointers is suppressed and the
dereferencing operation (see Chapter 4) is implicit. Consider the
variable M.HEAD in Example 13.3. Here, although M can be viewed
as a pointer to a structure, if a component of that structure, HEAD, for
instance, is referenced, it is as if M points to the component instead of
the whole structure. This implicit dereferencing appears to be generally
what is meant when the components of the structure are referenced.
Thus Mini-language Structures presents a conceptually simple mecha
nism for handling the components of structures.

In Pascal, on the other hand, the use of pointers is made explicit.
Each reference to the component of a structure must be handled by
giving an up-arrow explicitly dereferencing the pointer to the named
structure to one of its components. The extensive use of the up arrow-in
Pascal is somewhat annoying. While it does make explicit the fact that
an object is really a reference to a structure, the repeated use of the up
arrow somewhat detracts from the readability of the intended opera
tions.

For higher level operations, for example, a subprogram to reorder
the components of a list, Mini-language Structures and Pascal both
require the use of functions and procedures. Thus the user has no way
of expiicitly defining higher level operations on the structures other than
through the mechanism of subprograms. The general issue of defining
such operations is treated in Chapter lOon type definitions.

Construction of Data Structures

In Mini-language Structures the construction of new structures is
handled with the new operation. Values must be given for each
component of a structure and the component type must be stated.
Notice that only one instance of a structure can be generated by a single
statement. More complex structures must be built via repeated assign
ment statements, each with a new operation.

310 thapter 13

In Mini-language Structures both the allocation of space for the
structure and the setting of the pointer value are handled implicitly.
Thus, the user can think more directly in terms of the actual kinds of
objects being generated.

In Pascal, on the other hand, objects of structures are not created
directly. The Pascal procedure NEW must be applied to an object with
a pointer type. This procedure call allocates the space for the object and
sets a pointer value to this storage area. The actual setting of
components of structures must be handled via direct record assignment
to each component. This method suffers from the fact that objects are
not treated as a whole, but only on a component-by-component basis.
Furthermore, the pointer set by the procedure NEW must be explicitly
dereferenced when any component of the structure is initialized.

Both languages treat the selection of components of structures in a
manner analogous to that of selecting the components of a record valued
variable. Pascal, however, has a drawback from our point of view, in
that the pointer to the structure object must always be explicitly
dereferenced before a component can be selected.

When dealing with data structures, especially large ones, it is
frequently the case that different types of objects must be connected into
the structure at a particular point. There is thus a need for union types
as described in Section 6.4. Furthermore, there will be a need to make a
test the type of a given object. That is, it must be possible to define
predicates that test which type the current value of a union variable
belongs to. Union types and such tests are still very uncommon in
modern programming languages.

In Pascal, for example, the type of an object is part of the
specification of a procedure. Procedures that operate on multiple types
are not allowed, and thus the writing of any generalized procedures is
prohibited.

The development of data structures is becoming an increasingly
important application domain for computers. Development of large
information bases and the applications of computers to much more
sophisticated information processing areas is becoming more and more
widespread. The issue of dynamically varying data structures as
discussed here is only a part of the problem. In this chapter in
particular, we have barely scratched the surface.

13.5 DYNAMIC ALLOCATION OF STORAGE

In Mini-language Structures, storage is allocated for structure objects
through a special form of the assignment statement. It 'is thus under the
direct control of the programmer. This differs from the allocation

Dynamically Varying Structures 371

pattern for variables in block structured languages, where the activation
record forms the model. This pattern was described in Section 8.3.

The space for variables of a block structured language is created
when the block is invoked and destroyed when the block terminates.
The lifetime of an object thus directly follows the dynamic block
structure of the language and may be implemented with an execution
stack. The lifetime of an object that is created explicitly by the
execution of a special statement does not follow the block invocation
pattern. A structure object can exist from one block invocation to the
next. Thus a method of storage management that is separate from the
execution stack is required for languages where the programmer has
explicit control of storage allocation.

In some languages, for example Pascal and PL/I, specific state
ments are provided for the release of storage allocated for an object.
Suppose a destroy statement were added to Mini-language Stuctures,
where the form of the statement is:

destroy identifier ;

Execution of the statement would have the effect of destroying the
object referenced by the identifier and setting the value of the identifier
to undefined. The problem here is exemplified by the statement
sequence:

l := new lIST(l. null);
l := new lIST(2. l);
H := new lIST(3. l);
l := new lIST(4, H);
destroy l;

The complete list referenced by L has now been destroyed and the value
of L is undefined. However, the variable M now references a location
that no longer exists. It has become a dangling reference. While it is
easy to see what is happening in this short fragment, in a larger program
invalid references of this sort are very difficult to detect.

An alternative is, as in the original definition of Mini-language
Structures, to provide no explicit means for the destruction of an object.
Then, for example, if the statement

l := new lIST(l, null);

which creates a new object and assigns a reference to L, were
immediately followed by the statement

372 Chapter 13

L := new LIST(2, null);

this would create a second LIST object and supplants the reference to
the first object by a reference to the second one. The original object can
no longer be referenced and there is no way of regaining access to it.
The storage occupied by the object is no longer usable and can be
returned to the system for potential reallocation. In some languages,
such as Lisp and Algol 68, this is done by a special support routine,
known as a garbage collector, which searches currently allocated
storage for objects that are no longer accessible and destroys them.
Such support can require a considerable execution overhead.

FURTHER READING

Much of the original work in recursive data statements was done by Hoare
[1974]. A good discussion of the issues presented in this section is given in
[Ichbiah et a1. 1979]. In the rationale for the Ada programming language, a
number of issues and problems associated with dynamic types are discussed.

EXERCISES

Exercise 13.1 Programming in Mini-language Structures

Write a program in Mini-language Structures that will read a
sequence of numbers, terminated by zero, and put them into a binary
tree. When all the numbers have been read, print the numbers in
ascending order.

Exercise 13.2 Explicit Versus Implicit Pointers

In Chapter 4, we described Mini-language Ref with explicit
pointers. Consider a variant of Mini-language Structures with reference
variables instead of recursive structure definitions. Thus the declaration
for the type PERSON would be:

type PERSON:
structure

NAME
SS_NUM
NEXT_OF_KIN

end structure;

D}'nami£ally Varying Stru£tures 373

string;
string;
ref PERSON;

This variant requires an explicit dereferencing operator.
Compare the use of explicit versus implicit pointers on the clarity

and ease of programming, including comparative examples from both
variants of Mini-language Structures.

Exer£ise 13.3 Storage Management

Mini-language Structures provides no way for the programmer to
return storage longer required to the system. Instead, the implementa
tion must detect and reclaim storage through the use of some garbage
collection routine. Explain how such a routine could be implemented.

Exerdse 13.4 The Dangers of Explicit Pointers

It has been suggested by Hoare that there is an analogy between
pointers in a data structure and goto statements in a program. Both are
primitive tools capable of increasing the complexity of the program.
Provide arguments and examples that support this position and examine
how recursive data structures, as used in Mini-language Structures
overcomes the problem.

Exerdse 13.5 Notation for Pointers

Pascal uses an up-arrow (t) for dereferencing a pointer and
producing the object pointed to. For example, if P is a pointer to an
integer, P t denotes the integer. At first glance you might prefer a down
arrow to suggest the idea of following down a pointer. Or are there yet
better notations?

Propose a notation for declaring and using pointers, and discuss its
impact on program readability.

314 Chapter 13

Exereise 13.6 Tree Building

Write a program in Mini-language Structures that will read in a
sequence of integers, terminated by 0, build a binary tree containing
these integers, and then print the integers in scending order.

Normally the traversal of the tree required to print out the minutes
in ascending order is done with a recursive program. Here, since Mini
language Structures does not allow recursion, you will have to simulate
it with a stack built as a dynamic data structure.

"

,-, ."
-.·t

. '.f;

14
Exception Handling

There are "exceptional" conditions that can arise in every program.
Input data may contain values that are out of range, a hardware unit
may fail, a table may become full, or the wrong reel of tape may be
mounted.

To think of all exceptional conditions as errors is too limiting.
There are exceptional conditions whose occurrences, though rare, are
required for the proper termination of the program. For example, the
end of the input file may mark the end of the input phase of a program
and the beginning of its computation phase. Unfortunately, there is no
generally accepted distinction between exceptional and normal condi
tions. What is normal in one context, may be exceptional in another.

For our purposes here, we define an exception condition as:

A condition that is detected by an operation, that cannot be
resolved within the local context of the operation, and must
be brought to the attention of the operation's invoke.

The action of bringing the condition to the invoker's attention is called
raising the exception. The corresponding action by the invoker is called
handling the exception.

Generally, once an exception condition is raised, it must be
handled; otherwise, the program is in error. Some languages provide
default actions for conditions that are not handled by the program.

378 Chapter 14

Since exception conditions are linked to particular operations, they
are synchronous in the sense that they can only occur at specific points
in the program. For example, a subscript error can only occur during
array manipulation. Asynchronous events, such as an interrupt caused
by a user pressing the break key on a terminal, can occur at any point
during a program's execution. The handling of asynchronous events is
discussed in Chapter 15. In this chapter, we discuss only synchronous
conditions.

14.1 MINI-LANGUAGE EXCEPTIONS

As illustrated in Table 14.1, our mini-language for this chapter contains
many features that have appeared in other mini-languages. As usual, the
first part of a program consists of a sequence of one or more variable
declarations, and each variable in a program must be declared exactly
once. Each identifier may represent either a single integer value or a
vector of integer values. Integer values may contain at most eight
decimal digits. The number of components in arrays is 100, with a
subscript range of 1 through 100.

Mini-language Exceptions has a simple procedural mechanism.
Each procedure has a name and a body. The body simply consists of a
sequence of statements and may also have an exception part, described
below.

Most of the statements of this mini-language are familiar, they
include:

• Assignment statements
• Loop and if statements
• Call statements
• Input and output statements

In addition, there is a raise statement whose meaning will be explained
below.

ExeeptioD8

There are a number of specific situations that can cause excep
tions. These exceptions are described in Table 14.2. When one of these
situations arises during program execution, the corresponding exception
condition is raised. For example, if no value has been assigned to the
variable INDEX, then evaluation of the expression

INDEX + 1

program

Exception Handling 379

Table 14.1 Mini-Language Exceptions

program
variable-declaration., .
procedure...

begin
statement. ..

[exception-handler]
end;

variable-declaration

procedure

statement "

exception-handler , , -

exception-name "

assignment-statement "

loop-statement · .

if-statement · .

call-statement , .
raise-statement · ,

input-statement , ,

output-statement ·.
comparison · ,

expression -
operand -
variable · ,

comparison-operator : :=

declare identifier [,identifier...]: integer [array];

procedure identifier :
statement...

[exception-handler]
end;

assignment-statement I loop-statement
if-statement I call-statement I raise-statement
input-statement I output statement

exception
when exception-name => statement...

[when exception-name => statement...] ...

identifier I overt low I undefined_value
data-error I subscript_error I end_ot_input

variable := expression

whi Ie comparison loop
statement. ..

end loop;

it comparison then
statement...

else
statement...

end it;

identifier ;
raise exception-name
input variable [I variable] ;
output variable [I variable] ;

(operand comparison-operator operand)
[expression +] operand
integer I variable I (expression)
identifier I identifier!expressionl

< I = I ~ I >

380 Chapter 14

causes the suspension of nonnal execution and the raising of the
undef ined_value condition.

Each of the conditions defined in Table 14.2 can also be raised by
the execution of a raise statement. For example, execution of the
statement

raise overflow;

causes the overflow condition to be raised, just as it is when overflow
occurs during computation. The raise statement can also be used to
raise programmer-defined conditions, thus allowing a subroutine to
report the occurrence of an exceptional condition. For example, the
statement

raise TABLE-EMPTY;

would raise the TABLE_EMPTY condition and could be used to
indicate that there were no entries in a table. This is a condition defined
by the programmer for the particular program. The appearance of the
identifier TABLE_EMPTY in the raise statement defines it to be a
conditon. Whether this would be an error situation would depend upon
the context in which it was used.

In Mini-language Exceptions, the user may define how a condition
is to be handled. The response can range from printing the values of one
or more variables, to taking elaborate steps to deal with the cause of the
exception. If the programmer does not specify how an exception
condition is to be handled, the program is in error and is terminated.
This applies to both predefined and user-defined conditons.

A response to an exception condition is defined by an exception
handler included in a program unit. A program unit is either the main
program or a procedure. For example, consider the handler:

exception
when data_error => INVALID_DATA-FLAG := I;

ERROR-COUNT := ERROR-COUNT + 1;
when INVALID_ACCOUNT_NUMBER => output ACCOUNT_NUMBER;

When an exception condition is raised, normal execution is suspended.
If there is an appropriate handler defined in the program unit that was
being executed, the corresponding sequence of statements in the given
handler is executed. These statements are executed instead of comple
ting execution of the statement that caused the condition to be raised.
After execution of the handler, normal execution of the procedure
continues at the statement following the one that raised the condition.

Eneption Handling 381

ove r flow The absolute value of some quantity exceeds
99999999.

undef ined_value An attempt to obtain the value of a variable to
which no value has been assigned.

datLerror The characters read during the execution of an input
statement, do not constitute an integer or there is
a transmission error due to a hardware malfunction.

subscripLerror The use of an array subscript outside the range
1 through 100.

end_oLinput The execution of an input statement when
there is no more data to be read.

If there is no appropriate handler for the exception condition in the
program unit, execution of the unit is terminated and the same condition
is raised by the call statement that invoked the procedure. This process
is continued until either a handler for the condition is executed or the
program is terminated. Thus, if the main program does not contain a
handler for the condition, the program is terminated.

Consider the simple procedure:

procedure INITIALIZE-TABLE:
END_Of_DATA := 0;
TABLE-INDEX := 1;
input XI VI Z;
while (END_Of_DATA = 0) loop

TABLE[TABLE-INDEX] := X+ V+ Z;
TABLE-INDEX := TABLE-INDEX + 1;
input XI VI Z;

end loop;

exception
when end_of_input => END_Of_DATA:= 1;
when overflow => TABLE[TABLE_INDEX] := MAX-VALUE;
when subscript_error => output XI VI Z;

TABLE_INDEX := 1;
end;

382 Chapter 14

This procedure has handlers for three exception conditions. When the
condition for end of input is raised, the value of END_OF_DATA is set
to 1. Control then returns to the statement following the input statement
that raised the condition. The detection of the end of input is thus used
to signal the end of the initialization process. The raising of the overflow
condition is assumed to be due to the computation of the value to be
inserted in the table. When this happens, the table value is set to the
constant value MAX.....VALUE defined in the containing program, and
execution continues normally.

If the input contains more than 100 sets of values, the subscript
error condition will be raised. The handler for this condition prints the
set of values last read (and ignored), and resets TABLE_INDEX to 1.

14.2 EXCEPTIONS

There are two broad classes of exceptions:

• Domain failure: The input parameters to the operation
do not satisfy the requirements of the operation. In Mini
language Exceptions, the subscripting operation has a domain
failure when it is passed a subscript greater than 100.

• Range failure: The operation is unable to produce a
result that is in its range. For example, an input statement
can encounter an end of file mark instead of a value. As we
have seen, this is not necessarily an error; it depends upon
the context of the operation. The overflow condition is a kind
of range failure.

The exception handling mechanism of the mini-language treats both
classes of exceptions in accordance with our definition of an exception.
The raising of an exception condition by a statement brings the
exception to the notice of the procedure containing the statement. If the
procedure does not have a handler, the condition cannot be handled at
that level and must be passed higher in the dynamic invocation chain.

Before we discuss the issues in exception handling, we tum to
other common means for handling exceptions.

Unu8ual Retura Value

This is the simplest and most primitive method of handling
exception conditions. The operation returns an "impossible" value, that
is, a value that is established by convention and that lies outside the
normal range of the operation.

Exception Handling 383

In its unadorned form, this method has obvious deficiencies. It
requires explicit checking after each return from the operation and can
destroy the abstraction of the type of the value returned. This can either
lead to incomprehensible code that takes advantage of a particular
representation for data or it can lead the programmer into spectacular
errors.

For example, suppose an operation is defined to calculate the
length of some object. Its range is therefore limited to positive values. If
the convention is adopted that a specific value (say -1) is used to
indicate the detection of an error, the programmer must always be aware
that this impossible value may be returned. To forget this is to accept
the risk that the value may be used in subsequent arithmetic operations
and lead to bizarre results.

The Error Return

This is a mechanism that involves a nonstandard control structure.
A call statement passes one or more ~abel parameters designating error
returns. These label values mark the beginnings of handlers for various
exceptional conditions. For example, consider:

GET(I, OVERFLOW, BAD_DATA);

OVERFLOW:
BAD_DATA:

The idea is that, if the subroutine detects an exceptional condition, it
branches to the label value specified by the appropriate parameter. The
use of parameters allows the subroutine to be used in a number of
contexts, since it is not tied to specific handlers. This technique imposes
little overhead and requires no checking after each return as is required
by an unusual return value. However, it does raise serious program
structuring issues. In addition, the programmer may have difficulty in
knowing where the program is to be resumed after the error has been
handled.

In cases where the operation is a block that is internal to the block
that invokes it, the label of the handler does not have to be passed as an
argument. This makes the program's control structure even more
difficult to understand.

Error Routines

In this case, the operation may be invoked with an entry argument
specifying the procedure to be invoked by the operation if an exception
is detected. For example, '.

384 Chapter 14

GET(I, E)

where E is the name of the error handling procedure that is to be
invoked if GET wishes to raise a condition.

The exception handler is a procedure and thus returns to its
invoker. The structure of the control flow is therefore preserved and the
operation that detected the condition is able to respond to any recovery
action taken by the handler.

The use of a procedure as an exception handler does not require
that the procedure be passed explicitly to the operation. Instead, the
handler to be used can be specified implicitly. The handler can be
associated with the object being processed or can be dynamically
associated with the condition that is detected.

An example of associating the handler with the object would be to
specify, as part of the declaration of a file, the procedure to be executed
when the end of that file is detected. Thus the handler is associated with
the file. As another example, the AED language allows a programmer
to divide storage into zones and to associate with each zone a
subroutine to be invoked if a subsequent space allocation request for
that zone cannot be satisfied.

The dynamic association of a handler with a condition is typified
by the PL/I on-unit mechanism. This was perhaps the first attempt to
provide an explicit exception condition mechanism in a high level
language. It has the disadvantage that, though the handler has many of
the attributes of a procedure, there is no parameter passing mechanism.
All communication between the operation and the handler must be
passed through global variables. This reduces both flexiblilty and
clarity.

14.3 ISSUES IN EXCEPTION HANDLING

Is there any real need to worry about exception conditions? Anyone
who has ever built a large program that makes any pretense at
robustness appreciates the problems. As programs grow in size, special
cases and unusual circumstances proliferate. Even the perfonnanceof a
seemingly simple task, like a tape-to-tape copy program, abounds with
exception conditions. The end-of-input condition will generally be
handled properly since it probably marks the end of the process.
However, what can be done about tape label checking and the multitude
of possible hardware malfunctions? Exceptions exist in even the
simplest task and the complexity that they induce in the program is
large. None of the techniques described in the previous section
adequately controls this complexity.

Exception Handling 385

It is clear that, for a program to be robust, any exception condition
that can arise must be handled. The difficulty is in designing a simple
mechanism of sufficient generality to handle all possibilities.

One common method is to make an explicit test for each exception
at all possible points of occurrence. This method has the great
advantage that no special mechanism is required. In many cases,
however, the inclusion of such tests can complicate the structure of the
program and hide the algorithm behind a welter of special cases. Thus
we need to search for some method that is sufficiently general, has
manageable complexity, and yet remains clear enough so that the
normal is not obscured by the handling of the exceptional.

In the quest for such a method, there are a variety of issues that
must be addressed.

• The specification of a handler

• The use of defaults when the programmer has not
provided an explicit handler

• The propagation of conditions outside the program unit
in which they are detected

• The resumption of execution following handling

• The possibility of suppressing the detection of conditions

Handler Specification

The basic operation of an exception handler is to perform some
diagnostic or repair actions. Frequently, a handler will take over when
some exception condition is raised. In order to act appropriately, a
handler may need access to the environment in which the exception was
raised.

One of the critical choices in the design of an exception facility is
the method by which the handlers are defined. In Mini-language
Exceptions a very simple mechanism is used. A handler may be
specified within a procedure. This handler is supposed to complete the
work of the operation that raised the condition. Because of the
simplicity, the mechanism cannot cope with a situation where different
handlers are required at different points in a procedure. While the
handler has access to the complete environment of the operation, there
is no easy way to determine which one of several operations that have
the potential for raising the condition actually raised it. For example, if
the procedure has several arithmetic expressions, there is ~o way of
telling which operation caused the overflow condition.

386 Chapter 14

Use of Default Handlers

In Mini-language Exceptions, nearly all of the predefined condi
tions represent error situations. Generally, these error situations have
the potential of being raised at many points in the program. This brings
up the need for default exception handlers.

A default handler is one that is used in the absence of an explicitly
defined handler. The Mini-language Exceptions approach defines a
single default action for all conditions - program termination.

Termination may not be adequate for many programs. For exam
ple, whenever an overflow occurs, we may wish simply to assign the
maximum possible number to the offending expression and then resume
normal execution. This brings up a number of issues. How does one
define a default handler to be used throughout a program? When should
a specifically provided handler override the default handler? The
question of the resumption of execution will be taken up later in this
section.

The conventional response to an error situation in a programming
language is a simple abnormal termination of a program, usually with
the printing of some diagnostic message. We may view this action itself
as simply the default handler provided for the exception situation raised
by the error condition. Accordingly, one test of the adequacy of any
exception handling mechanism is that it should be possible to define the
normal response to errors provided in a programming language. With
Mini-language Exceptions, this test is not satisfied.

PropagatioD of ExceptioDs

The underlying reason for devising an exception mechanism is the
realization that the context in which a condition is detected may not be
the proper context in which to process it. For this reason, notice of its
detection must be passed to the context where it can be processed. This
is generally another procedure at a different level of abstraction. In
order to preserve the abstraction, the detecting operation should express
the exception condition in terms of the abstraction that it defines.

It may not be possible for the recipient of an exception to process
the condition completely. The occurrence of the exception may serious
ly affect its behavior, forcing it to raise an exception as well. In order to
maintain the higher level of abstraction of the recipient, this second
exception must be expressed in terms of the abstraction represented by
its recipient. In short, it must not simply pass the condition raised by
the original operation straight through.

Exception Handling 387

In Chapter 1 we cited the Fortran error message:

STATE-ABEND CODE IS: SYSTEM 0200. USER 0000
IO-NONE. SCB=OFIOCO, PSW IS 078D2000000A98B7E

Here is an example of an exception condition that was originally
detected and raised at the level of abstraction of the operating system
and passed to the Fortran run time support library. This library
represents the change of abstraction level from that of operating system
to that of programming language. Howevert in our examplet the
condition was not modified at that level to maintain the proper
abstraction. Thus the programmer cannot assign any meaning to the
message.

This example also illustrates a second problem in design: the
unilateral decision by a subroutine to terminate execution rather than to
offer the programmer the option of effecting a repair and continuing t or
of cleaning up before terminating in an orderly manner. Consider the
difficulties that a language module can bring by aborting execution of a
data base system instead of propagating the exception upward. Crucial
files of the data base may be left in an inconsistent statet potentially
causing further erroneous behavior when the data base system is later
restored.

A raise statement like that in Mini-language Exceptions provides a
simple basis for the propagation of exception conditions while maintain
ing the proper levels of abstraction. However t because of its extreme
simplicity this mechanism does not provide for adequate passage of
information from the detecting operation to the handler. There is no way
in which variable information can be passed other than through the
clumsy use of global variables.

Resuming Program Execution

With most methods of exception handling t the flow of control
passes to some remote program text that defines the action to be taken
when the exception is raised. Thus the handler may be viewed as a sort
of trap. One basic question about exception handling iS t what happens
after handling the exception? This amounts to a question of whether
resumption of normal program flow is meaningful.

One view of exception handlers is that they are basically subrou
tines to which control is automatically passed when the exception is
raised. As with all subroutine calls t after completion of the subroutine t

control resumes at the statement after the subroutine call. With this

388 Chapter 14

view, the notion of a trap is still retained, but resumption of normal
program flow is implicit.

A second view is that exceptions represent program errors. This
means that when an exception occurs in a given environment, this
environment is to be terminated. The primary role of an exception
handler is to provide some appropriate clean-up operation before
termination. With this view, resumption of normal execution is mean
ingless. The handler may decide to restore the same sequence of actions
under better conditions, but it will do so by a different invocation of
these actions, not a simple resumption.

The first view of exception handlers is the one adopted in PL/I.
However, the question of resumption was not treated in a consistent
manner. In some cases, resumption implies repetition of the action that
raised the condition with the presumption that some sort of fix-up has
been made in the handler. In other cases, resumption takes place at the
statement following the one that raised the condition. For a third class
of conditions, no sort of resumption is possible without the use of labels
and goto statements.

The second view of exceptions is taken by Ada. It provides for
local detection of exceptions, which are synonymous with errors. With
this view of exceptions, a handler is part of the program unit in which
the exception may be raised. Here, the notion of a trap is perhaps not as
appropriate, for the handler takes over in case of a faulty situation
within the procedure. In this view, normal program execution resumes at
the point in which the procedure is called, just as if there had been no
exception raised in the first place.

The view taken by Mini-language Exceptions lies between these
two positions. The handler does not really constitute a subroutine, but
resumption is possible.

Suppression of ExceptioDs

It could be said that the detection of exception conditions should
never be turned off. There is, however, a counter view to this.

Some exception conditions may be quite inefficient to implement.
For example, in a language with arrays whose subscripts are restricted
to lie within certain bounds (as is the case with most programming
languages), range checks for subscripts may need to be implemented in
software. Such checks require an implementation overhead during
execution of a program.

In addition, in some languages there are exception conditions that
certainly require excess overhead. For example, a language may include

Exception Handling 389

the ability for the user to specify assertions that must be true during
execution of a program, for example, that the value of one variable must
always be greater than the value of another. When assertions are
themselves present in a programming language, the validity of each
assertion must be checked with the underlying software. Such assertion
checks can be quite expensive to implement.

Imagine for the moment that you are sure that the program you
have written is correct. That is, assume that you tested it, and that in all
conceivable cases the output produced by the program is as desired.
While we might argue that a program is never fully certified to be
correct, in practice we may want to make this assumption. In these
cases, the checking of exception conditions is superfluous. For this
reason, we may wish a feature in a programming language to indicate
that one or more (or all) exception conditions should not be checked.
This gives us the notion of suppression of exception conditions.

There seem to be two basic views regarding the suppression of
exceptions. On the one hand, perhaps the suppression of exceptions is
best indicated by a command given in the environment in which the
program is run. Such a feature would not have any direct impact on the
programming language itself. On the other hand, we may wish to state
the explicit suppression of exceptions within the programming language.
This question is not addressed in Mini-language Exceptions.

FURTHER READING

Perhaps the most significant works related to this chapter are the paper
[Goodenough 1975] and the thesis [Levin 1977]. These works survey a number
of issues regarding exception handling.
. An early paper relevant to the discussion here is that by Hill [1971]. A

more recent discussion of exception handling is given in [Ichbiah et at. 1979].
Another view of exception handling is that by Parnas and Wurges [1976].

EXERCISES

Exereise 14.1 Programming in Mini-language Exceptions

Write a program in Mini-language Exceptions that will calculate
and print the largest integer value supported by the implementation.

390 Chapter 14

Exercise 14.2 Using the Raise Statement

Write a program in Mini-language Exceptions that first reads in a
sequence of pairs of integers terminated by a pair of zeros. The first
integer of each pair represents a part number and the second, the
number of parts in stock. The part numbers should be stored in one
array and the quantity on hand in another.

Following the table initialization phase, terminated by the two
zeros, another sequence of integer pairs is to be read, this is the
sequence terminated by end-of-input. This second sequence represents
additions to the quantity-on-hand for certain parts in the original
sequence. Thus, for each part number in the second sequence, the table
must be searched to find the index so that the corresponding quantity on
hand can be updated. Finally, the updated table is to be printed out.

During table initialization, the table must be checked for each new
part number to ensure that there are no erroneous duplicate entries.
During the updating phase, appropriate error action must be taken if a
part number that doesn't exist in the table is supplied. Both phases
should use the same table search routine, which should report the fact
that the searched-for entry does not exist in the table (using a raise
statement).

Exercise 14.3 Resumption of Execution after an Exception

There are many points of view on how execution of a program
should be resumed after the handling of an exception. In Ada, for
example, the action of the handler terminates the execution of the
program unit containing the statement that raised the exception. Thus
execution is resumed after the statement that invoked the unit. Mini
language Exceptions takes the view that the handler terminates the
operation that raised the exception. In PL/I, the point of resumption
depends on the type of exception, and varies from repeating the
operation to aborting the program.

An exception may be raised by an operation that has only partially
completed and it may be inappropriate or undesirable to return control
to the precise point at which the exception was raised. Discuss what
might be an appropriate set of return points after the following
exceptions:

a. Overflow during integer arithmetic.
b. Subscript range error.

Exception Handling 391

c. End of page after output of the second line of a four-line
block of printing.

d. Non-numeric character encountered during conversion of
a character string to numeric representation.

e. Insufficient storage during creation of a dynamic data
structure.

f. End of file during an input operation.
g. Following the execution of a raise statement.

Exercise 14.4 Handlers with Parameters

Mini-language Exceptions has no provision for the passing of
parameters to exception handlers. Suggest modifications to the syntax
and semantics of the mini-language that will allow this.

Exercise 14.5 Default Handlers

Mini-language Exceptions defines a single default action for all
conditions, program termination. Propose a more useful set of defa\llt
handlers for the conditions detected in the mini-language.

15
Parallel Processing

We are all familiar with sets of related actions that take place
concurrently. The operation of many moving trains on a rail network
and the handling of several lines of customers at a bank are typical
examples. In contrast, the traditional stored program digital computer
has had as its primary objective the sequential execution of the steps
forming a single algorithm. As a consequence, most programming
languages address only questions of sequence and ignore parallelism.

However, parallelism has had a place in computers. The desire for
increased speed has led to overlapping of input and output with
computation, arithmetic units that work in parallel, and to multipro
grammed and multiprocessor operating systems. However, this parallel
ism has generally been hidden from the programmer. In this chapter we
examine the programming language implications of specifying indepen
dent, but related, tasks that are to be executed concurrently. These are
sometimes known as concurrent processes. To achieve concurrency in a
controlled and reliable manner, the tasks must be able to communicate
and synchronize with each other.

It is not necessary that the component steps of the tasks actually
take place concurrently. In a multiprogramming, single processor,
operating system they may be arbitrarily interleaved. The important
point is that the execution of the tasks is only required to be
synchronized at specific points specified by the programmer. Thus the
requirement for parallel execution poses a new level of discipline on the
programming process.

394 Chapter 15

Our discussion here will make frequent use of a single example.
We wish to write a program to decode messages. Let us not worry about
what the messages mean. They are generated at some remote field
station, decoded, and then printed on a line printer. In particular, we
wish to define three program units, RECEIVE_CODES, DECODER,
and PRINT_MESSAGES:

• RECEIVE_CODES: This program unit reads encoded
data and passes them on, code by code.

• DECODER: This program unit receives encoded data,
decodes them by some method, which does not concern us
here, and transmits the decoded characters.

• PRINT_MESSAGES: This program unit receives char
acters, and when it obtains a full line of text, prints the line
on a line printer..

Both the codes and characters are assumed to be represented by
integers.

The important point about our program is that the three program
units are conceptually independent and can progress at their own rates.
Except for specific points of synchronization, the interleaving in time
for executing the individual statements of the three program units is of
no concern.

Mini-language Parallel is designed to solve such problems. This
mini-language is based on the work of Hoare [1978]; its syntax is
inspired by that of Ada.

15.1 MINI-LANGUAGE PARALLEL

As usual, a program consists of a sequence of declarations followed by
a sequence of statements, as shown in Table 15.1. Declarations
introduce variables whose values are either simple integers or arrays of
integers. The bounds of arrays are unspecified. All variables used in a
program must be declared exactly once.

The syntax and semantics of the assignment statement are familiar.
Addition and subtraction operators may be used in arithmetic expres
sions.

Parallel Processing 395

Table 15.1 Mini-language Parallel

program

declaration : :=

program
declaration...

begin
statement...

end;

dec1are identifier [, identifier) ... array);

statement assignment-statement
start-statement I
receive-statement

send-statement
select-statement

assignment-statement

start-statement

send-statement

receive-statement

select-statement

guard

receive-clause

comparison

: :=

variable := expression

start tasks
task-identifier: statement. ..

[task-identifier: statement...) ...
end tasks;

send variable to task-identifier ;

receive variable from task-identifier;

select [loop]
when guard => statement .

[when guard => statement)...
end select;

comparison [and comparison] ...
[and receive-clause)
receive-clause
recei ve variable from task-identifier

(operand comparison-operator operand)

identifier !expressionl

expression

operand

variable

task-identifier

comparison-operator

: :=

[operand +] operand
[operand -) operand

integer I variable I
identifier

identifier

< I = I f I >

expression

396 Chapter 15

Tasks

A task is a program unit that can be executed concurrently with
other tasks. Each task has a name and a body. The body of a task
simply consists of a sequence of one or more statements.

A start statement specifies the concurrent execution of one or more
tasks. All tasks in a start statement may begin execution simultaneous
ly. A start statement terminates successfully when all named tasks have
been successfully completed.

For example, consider the following sketch:

start tasks
RECEIVE-CODES:

-- statements for obtaining codes

DECODER:
-- statements for decoding code values
-- into character values

PRINT_MESSAGES:
-- statements for printing the decoded messages

end tasks;

Execution of the start statement results in the parallel execution of the
bodies of each named task.

As far as termination is concerned, each task will terminate
normally after execution of its last statement. The start statement
containing the tasks will terminate when all named tasks have termina
ted, at which time control continues at the statement following the start
statement. In our example above, the start statement will wait at its end
for the three tasks named RECEIVE-CODES, DECODER, and
PRINT_MESSAGES to terminate. If any of the tasks leads to an
execution error, the entire program terminates abnormally.

There is one important requirement on the use of tasks within a
start statement. Each of the tasks must be disjoint in the sense that a
task may not use a variable that occurs as a target variable in one of the
other tasks. A target variable is a variable that occurs on the left hand
side of the assignment statement or a variable that occurs in a receive
statement, defined below.

CommuDitatioDs between Tasks

In any system of related tasks, there must be some form of
communication. We clearly do not want the trains on a rail network to
collide, we may want to ensure that two bank tellers do not make

Parallel Processing 397

conflicting transactions on the same account, or we may need to
coordinate the actions of the devices in a computing system.

In Mini-language Parallel, the basic form of communication
between tasks is through send and receive statements. Communication
occurs between two tasks whenever:

• A send statement in one task specifies a value to be
transmitted to another task, and

• A receive statement in the other task specifies a target
variable whose value is to be obtained from the sending task.

When these two conditions arise, the two tasks are said to meet in a
rendezvous:

Consider the statement

send NEW_CODE to DECODER;

which occurs in the task body for RECEIVE_CODES, and the
following clause

receive CODE from RECEIVE_CODES;

taken from the body of DECODER. There are two possibilities for a
rendezvous, according to whether the send statement in the task
RECEIVE_CODES is executed before or after the corresponding
receive statement is reached by the task DECODER. Whichever gets
there first waits for the other. When the rendezvous is achieved, the
value of NEW_CODE is passed to the variable CODE, and both tasks
again proceed independently.

We thus see the two basic functions achieved with a rendezvous:

1. Synchronization: The sending task must execute a send
statement naming the receiving task and the receiving task
must reach a corresponding receive statement, which names
the sending task.

2. Transmission of information: The sending task transmits
a value to the receiving task.

It should be observed that a receiving task can only handle one send
statement at a time. Although not illustrated by our example, there
could be several tasks with pending send statements to a single receiving
task. The send statements are processed on a first come, first served
basis.

398 Chapter 15

Finally, we note that simple integer values and complete arrays
may be transmitted during a rendezvous. The type of the value that is
sent must match the type of the corresponding receiving variable;
otherwise the program is terminated abnormally.

Guarded Statements

A guarded statement (or a guarded sequence of statements) is a
statement prefixed by a guard, which determines whether or not a
statement is to be executed. A guard can contain a sequence of
comparisons each separated by and. A guard may also contain a receive
clause (defined below). Such a guard may contain only one receive
clause, which must appear as the last element of the guard.

Guarded statements form the alternatives of a select statement, as
in:

select
when (LINE-POSITION < LINE-SIZE) =>

LINE-POSITION := LINE-POSITION + 1;

when (LINE-POSITION = LINE-SIZE) =>

send LINE to OUTPUT_DEVICE;
LINE-POSITION := 1;

end select;

This select statement contains two guarded statements: one for the case
when the value of LINE-POSITION is less than LINE_SIZE and the
other for when LINE_POSITION equals LINE_SIZE.

Execution of a select statement takes place as follows. First, each
of the guards in the select statement is evaluated. If none of the guards
evaluates to true, the select statement has no net effect and is equivalent
to an empty statement. If exactly one of the guards evaluates to true,
then the statement prefixed by this guard is executed. Otherwise, if
more than one guard evaluates to true, then a statement with a true
guard is selected arbitrarily and executed. In our example above, where
line positions are assumed to be integers in a range of 1 through
LINE_SIZE, exactly one of the guards will always be true.

It is important to note that when more than one guard evaluates to
true, execution of a select statement is nondeterministic. This is in
sharp contrast with our other mini-languages, where a program will
always execute statements in a determined order. In Mini-language
Parallel, it is possible to write select statements with several true
guards, and to give different actions for each true guard. The precise
effect of such a select statement cannot be predicted.

Parallel Processing 399

As mentioned above, a guard may contain a single receive clause.
This has the same form as a receive statement but in this context serves
the additional function of a guard. For example, consider the following
select statement:

select
when receive MESSAGE-CHAR from DECODER =>

LINE[LINE-POSITION] := MESSAGE_CHAR;
end select;

Here a statement is guarded by a receive clause. A receive clause is
said to be:

• True if there is a corresponding send statement that is
waiting for its information to be received. In this case, the
receive clause performs the function of a receive statement
and the information is transferred between the tasks. The
statement guarded by the receive clause is then executed.

• Pending if no corresponding send statement has been
issued by the task named in the receive clause and that task
is still active.

• False if the task named in the receive clause has
terminated.

Accordingly, in a select statement, the following cases can arise:

1. One or more guards evaluate to the value true. In this
case, one of the guarded statements is executed.

2. All guards evaluate to the value false. In this case,
execution of the select statement has no effect.

3. One or more of the guards is pending, and the remaining
guards evaluate to false. In this case, the select statement is
not executed immediately but must await a corresponding
send statement from one of the named tasks. When that send
statement is issued, the appropriate guarded statement is
executed. If all named tasks terminate without issuing a send
statement, the select statement is completed with no net
effect.

Thus we see that a select statement may be immediately executed, or
may be delayed until a send statement in another task is executed.

400 Chapter 15

Another form of select statement is used to specify loops. This is
the select loop statement. For example, consider the following select
loop:

select loop
when (COUNT < N) =>

COUNT ;= COUNT + 1;
end select;

As long as the variable COUNT remains less than N, the variable
COUNT will continue to be incremented by one. The loop will
terminate when the value of COUNT is equal to N.

Execution of a select loop is similar to that of a select statement,
except that, as long as guards remain true or contain pending receive
clauses, the alternatives in the body of the loop will continue to be
executed. In particular, execution of a select loop proceeds as follows:

• If one or more of the guards evaluate to true, one of the
corresponding guarded statements is executed, and the select
loop is executed again.

• If none of the guards evaluates to true but one or more of
the guards contains a pending receive clause, execution of the
loop is suspended. When a corresponding send statement is
issued, execution of the loop is continues. If all pending tasks
terminate before issuing a send statement, the loop is also
terminated.

• If all of the guards evaluate to false, the loop is
terminated.

Predefined Tasks

Two tasks are predefined in Mini-language Parallel. The first is a
task named INPUT_DEVICE. This task is assumed to be associated
with some input device that sends characters to a program containing a
corresponding receive clause. The second is the predefined task named
OUTPUT_DEVICE.-This task corresponds to some output device that
receives lines of text containing 72 characters. Such lines of text are
represented as arrays in Mini-language Parallel.

Parallel Proeessiog 401

15.2 A FIRST SOLUTION TO THE DECODING PROBLEM

We are now in a position to present a solution to the decoding problem
described earlier. This solution is given in Example 15.1.

The program of Example 15. i essentially consists of three tasks,
named: RECEIVE_CODES, DECODER, and PRINT_MESSAGES.

The task RECEIVlLCODES consists of a simple select loop that
continues to receive new codes from the input device and transmits
these codes to the task named DECODER. Notice that the guard in the
select loop for this task consists of a single receive clause. This receive
clause continues to wait for values to be transmitted to the target
variable NEW_CODE. Notice also that this task may be delayed if no
codes are forthcoming for a period of time.

The second task, named DECODER, consists of a simple select
loop also, again with a single guarded statement prefixed by a receive
clause. When a code is sent from the task RECEIVE_CODES, the
value of the code is analyzed and its decoded value is stored in the
integer variable named CHAR. Notice here, that in cases where the
decoding of codes is somewhat time consuming, this task may operate
more slowly than the sending task RECEIVE_CODES. If the data from
the input device cannot be delayed, some sort of buffering mechanism
will have to be added to RECEIVE_CODES.

Finally, a third task, named PRINT_MESSAGES, again consists
of a simple select loop. This loop continues to receive message
characters from the task named DECODER, fills an array named LINE
with these characters and, when a full line is given, sends the value of
LINE to the output device.

The three tasks operate quite independently, but are, of course,
synchronized through the corresponding send statements and receive
clauses. As given, the three tasks operate forever, and the program
never terminates.

15.3 PUTIING A BUFFER IN A TASK

The computation performed on a code by DECODER may not be
completed by the time the next code is received by RECEIVE_CODES.
Since RECEIVE_CODES cannot receive the next code until the
transmission of the previous one has been completed, there may be a loss
of input data. Of course, on average, the decoding process must be able to
keep pace with the reception of codes, but this may not be true over short
bursts of input activity. We would like the reception of codes and their
decoding to go on much more independently.

402 Chapter 15

program

declare CODE, NEW_CODE, CHAR, MESSAGE-CHAR,
LINE-POSITION, LINE-SIZE;

declare LINE: array;

begin
start tasks

RECEIVE-CODES:
select loop

when receive NEW-CODE from INPUT_DEVICE =>

send NEW-CODE to DECODER;
end select;

DECODER:
select loop

when receive CODE from RECEIVE-CODES =>

-- statements for decoding the value of CODE
-- and producing the decoded value in CHAR

send CHAR to PRINT_MESSAGES;
end select;

PRINLMESSAGES:
LINE-POSITION := 1;
LINE-SIZE := 72;
select loop

when receive MESSAG~CHAR from DECODER =>

LINE[LINE-POSITION] := MESSAGE-CHAR;
select

when (LINE-POSITION < LINE-SIZE) =>

LINE-POSITION = LINE-POSITION + 1;
when (LINE-POSITION = LINE-SIZE) =>

send LINE to OUTPUT_DEVICE;
LINE-POSITION := 1;

end select;
end select;

end tasks;
end;

Example 15.1 A solution to the decoding problem

Parallel Processing 403

In particular, if our decoding process is slow, we would still like
RECEIVE_CODES to accept a burst of new data. For this purpose, we
can introduce a storage area for characters in the RECEIVE_CODES
task as a buffer. The design must be such that as long as the buffer is
neither full nor empty, the task is able to accept requests for both input
and output.

To do this, the conditions that guard the alternatives must be such
that if there is room in the buffer, a new code can be accepted and, if there
are characters to be sent, a send request can be performed. Consider the
following outline:

select loop
when (COUNT < STORAGE-SIZE) =>

-- what to do if more storage space is available

when (COUNT > 0) =>

-- what to do if the storage area is not empty
end select;

Only those statements whose guarding conditions evaluate to true can be
executed. Importantly, when both guards are true, either guarded
statement can be executed. Thus we have a case of nondeterminism,
where the choice of actions is not specified by the programmer.

These points are illustrated in Example 15.2. The major change is in
the RECEIVE_CODES task where there is an array managed as a
circular buffer. That is, whenever the end of the storage area is reached, it
is continued again at the beginning. The two indexes, IN_INDEX and
OUT_INDEX, are used to denote the elements in the buffer for the next
incoming code and the next code for transmission, respectively.

To prevent the RECEIVE_CODES task from being hung up while
waiting for the completion of decoding by the DECODER task, the send
statement is not executed until a request has been received from
DECODER. The request does not have a value that is used, it is merely
used as a synchronizing signal.

15.4 INTERRUPTING A TASK

On many systems, we have hardware interrupts that are triggered by
certain events. For example, we may wish to install a stop button in our
decoding system. If no more codes are to be produced, or if for some
reason the user wants the program to terminate, the user can press the stop
button. All the tasks must then be brought to an orderly completion with
all codes printed.

404 Chapter 15

program
declare CODE, NEW_CODE, CHAR, MESSAGE-CHAR, LINE_POSITION, LINE-SIZE;
declare COUNT, IN_INDEX,OUT_INDEX, STORAGE-SIZE, REQUEST_Q,REQUEST_A;
declare LINE, STORAGE_AREA: array;

begin
start tasks

RECEIVLCODES:
COUNT := 0;
IN-INDEX 1;
OUT_INDEX 1;
STORAGLSIZE := 500;

select loop
when (COUNT < STORAGLSIZE)

and receive NEW_CODE from INPUT_DEVICE =>

STORAGLAREA[IN_INDEX] := NEW_CODE;
COUNT := COUNT + 1;
select

when (IN-INDEX < STORAGLSIZE) =>

IN-INDEX := IN_INDEX + 1;
when (IN-INDEX = STORAGLSIZE) =>

I~INDEX := 1;
end select;

when (COUNT > 0)
and receive REQUEST_A from DECODER =>

send STORAGLAREA[OUT_INDEX] to DECODER;
COUNT := COUNT - 1;
select

when (OUT_INDEX < STORAGLSIZE) =>

OUT_INDEX := OUT_INDEX + 1;
when (OUT_INDEX = STORAGLSIZE) =>

OULINDEX := 1;
end select;

end select;

DECODER:
REQUESLQ := 1;
select loop

when (1 = 1) => -- always true
send REQUEST_Q to RECEIVLCODES;
receive CODE from RECEIVLCODES;
-- statements for decoding the value of CODE
-- and producing the decoded value in CHAR
send CHAR to PRINT_MESSAGES;

end select;

Example 15.2 Putting a buffer into the receiving task

Parallel Pro~e88iDg 405

PRINT_MESSAGES:
LINE-POSITION := 1;
LINE-SIZE := 72;
select loop

when receive MESSAGE-CHAR from DECODER =>

LINE[LINE-POSITION] := MESSAGE-CHAR;
select

when (LINE-POSITION < LINE-SIZE) =>

LINE-POSITION := LINE_POSITION + 1;
when (LINE-POSITION = LINE-SIZE) =>

send LINE to OUTPUT_DEVICE;
LINE-POSITION := 1;

end select;
end select;

end tasks;
end;

Example 15.2 continued

Hardware interrupts can be handled in various ways. Conceptually,
we can think of the user as another task that transmits a single piece of
information, the pressing of the button. This model fits well with the way
that we view a task as executing independently except for a particular
rendezvous for the purpose of transmitting data.

Example 15.3 shows the complete solution incorporating both the
buffering described in the previous section and the provision for a stop
button. Note that if the user presses the stop button when the input
buffer is full, that is, when

(COUNT = STORAGE_SIZE)

there is the possibility that one of the input codes will be lost. It seems
that in such a situation, shutting down the system should take priority.

15.5 ISSUES IN PARALLEL PROCESSING

Parallel processing brings up a number of new issues with programming
languages. Traditionally, we are quite accustomed to the idea of a
program as a purely sequential process. After one statement is executed,
the next statement to be executed is specified precisely and in a
deterministic manner. However, with the advancement of computer
technology, systems with multiple processors and multiple devices are

406 Chapter 15

program
declare CODE, NEW_CODE, CHAR, MESSAGE_CHAR, LINE_POSITION, LINE-SIZE;
declare COUNT, IN_INDEX, OUT_INDEX , STORAGE-SIZE, REQUEST_Q,REQUEST_A;
declare STOP, STOP_CODE, STOP_FLAG, STOP_DECODING, OFF, ON;
declare LINE, STORAGE-AREA: array;

begin
OFF 0;
ON 1;
STOP_CODE := 999;
start tasks

RECEIVE-CODES:
STOP_FLAG := OFF;
COUNT 0;
IH-INDEX 1;
OUT_INDEX 1;
STORAGE-SIZE := 500;
select loop

when (STOP_FLAG = OFF)
and receive STOP from USER =>

STOP_FLAG := ON;
STORAGE-AREA[IH-INDEX] := STOP_CODE;
COUNT := COUNT + 1;

when (STOP_FLAG = OFF) and (COUNT < STORAGE_SIZE)
and receive NEW_CODE from INPUT_DEVICE =>

STORAGE-AREA[IN_INDEX] := NEW_CODE;
COUNT := COUNT + 1;
select

when (IN-INDEX < STORAGE-SIZE) =>
IH-INDEX := IN_INDEX + 1;

when (IN-INDEX = STORAGE-SIZE) =>
IN_INDEX := 1;

end select;
when (COUNT> 0)

and receive REQUEST_A from DECODER =>
send STORAGE-AREA[OUT_INDEX] to DECODER;
COUNT := COUNT - 1;
select

when (OUT_INDEX < STORAGE_SIZE) =>
OUT_INDEX := OUT_INDEX + 1;

when (OUT_INDEX = STORAGE_SIZE) =>
OULINDEX := 1;

end select;
end select;

Example 15.3 Adding a stop button to the encoding problem

Parallel Processing 407

DECODER:
REQUESLQ := 1;
STOP_DECODING := OFF;
select loop

when (STOP_DECODING = OFF) =>
send REQUEST_Q to RECEIVE_Cob~s;

receive CODE from RECEIVE_CODES;
select

when (CODE F STOP_CODE) =>
-- statements for decoding values of CODE
-- and producing the decoded value in CHAR
send CHAR to PRINT MESSAGES;

when (CODE = STOP_CODE) =>
STOP_DECODING := ON;
send STOP_CODE to PRINT_MESSAGES;

end select;
end select;

PRINLMESSAGES:
LINE-POSITION := 1;
LINE-SIZE := 72;
receive MESSAGE-CHAR from DECODER;
select loop

when (MESSAGE_CHAR F STOP_CODE) =>
LINE[LINE-POSITION] := MESSAGE-CHAR;
select

when (LINE-POSITION < LINE-SIZE) =>
LINE-POSITION := LINE_POSITION + 1;

when (LINE-POSITION = LINE-SIZE) =>
send LINE to OUTPUT_DEVICE;
LINE-POSITION := 1;

end select;
receive MESSAGE-CHAR from DECODER;

end select;

LINE[LINE-POSITION] := STOP_CODE;
send LINE to OUTPUT_DEVICE;

end tasks;
end;

Example 15.3 continued

408 Chapter 15

becoming commonplace. Effective use of these resources demands special
constructs for parallel processing.

Concurrency

The fact that different portions ofthe same program may be executed
concurrently can lead to a number of serious problems. These problems
arise when two or more tasks have access to the same location. In
particular, execution of one of the tasks may update a variable, while
another task may not be sure that the value of the variable has been
changed. Such a variable is generally called a shared variable.

In Mini-language Parallel, this problem is avoided by requiring that
each task be disjoint. That is, no task may mention a variable that is
updated by another task, and there are thus no shared variables. This
restriction clearly simplifies the understanding of concurrently executed
tasks. The only means of communication between two tasks is through a
rendezvous, as in Ada.

When shared variables are allowed, the construct of a critical region
is usually introduced, see [Brinch Hansen 1972]. A critical region is a
portion of program text for which one or more shared variables are
referenced. These variables are protected from use by other tasks during
execution of the statements of the critical region.

Critical regions solve the problem of preventing undesired access to
shared data; however, shared variables are in a sense global variables and
entail some of their complexities. Although Mini-language Parallel was
not designed to have the scope of variables limited to tasks in which they
are declared, this could have been done. This would have ensured
disjointness without hindering communication through a rendezvous.
Critical regions do not treat the problem of task synchronization.

Synchronization

The execution of concurrent tasks is not completely independent. A
collection of tasks is executed in order to solve some problem. Often one
task must complete some computation before another task can complete
its own computation. This is the general problem of synchronization.

In Mini-language Parallel, the synchronization between tasks is
handled by corresponding send and receive statements. Before a task
can receive a data item, another task must send the data item to the
given task. Thus, even if each task is executed with a given piece of
hardware, certain tasks may be suspended during execution. The actual
rates at which tasks progress is really a matter for the underlying
implementation.

Parallel Processing 409

A synchronization primitive available in some languages is the
semaphore, introduced by Dijkstra [1968b]. The name semaphore
evokes the idea of a signal used on railroads to permit or deny entry of a
train to a section of track. A semaphore is a special variable that has an
integer associated with it. We might declare a semaphore variable as:

declare S: semaphore;

The only valid operations on semaphores are P (from the Dutch
passeren meaning "to pass"), sometimes called WAIT, and V (from the
Dutch vrijgeven meaning "to release"), sometimes called SIGNAL.
The two semaphore operations allow a process to cause itself to wait for
a certain event and then to be awakened by another process when the
event occurs. P and V have the following meaning:

P(S): Wait until the value of S > 0 and then
subtract one from S and continue execution.

V(S): Add 1 to S. This will allow a process that is
waiting because it executed P(S) to continue.

Both P and V must be performed indivisibly. That is, there can be no
partial completion of the operation while something else takes place. On
some machines, the equivalent of these operations is implemented as a
hardware instruction.

An example of how these might be used to communicate between
tasks is shown in Example 15.4. The difficulty with semaphores is that
they are not associated with the shared variable except by a programmer
convention. The compiler is thus not able to check that the semaphore is
being used to ensure mutual exclusion of the tasks whenever the value
of the variable is changed. As a programming language mechanism they
are therefore, unreliable.

Communication

In addition to synchronizing their behavior, tasks must also be able
to exchange information. In Mini-language Parallel, synchronization of
tasks and exchange of information are inseparable. These two require
ments are embraced by the concept of a rendezvous. During the
rendezvous, the value of an expression is passed to a target variable in
another task.

A rendezvous has several strong advantages in the writing of
concurrent programs. For one, it allows interactions between tasks to be
clearly defined and isolated. Furthermore, there is a pleasant symmetry

410 Chapter 15

program

declare COUNT; -- used to pass information between tasks
declare S: semaphore;

begin
COUNT := 0;
start tasks

SENDER:
select loop

when (1 = 1) =>

-- code to observe an event
P{S); -- prepare to change COUNT
COUNT := COUNT + 1;
V{S); -- signal that COUNT is available

end select;

RECEIVER:
select loop

when (1 = 1) =>

P{S); -- prepare to read COUNT and reset it
print COUNT;
COUNT := 0;
V{S); -- signal that COUNT is available

end select;
end tasks;

end;

Example 15.4 Use of semaphores

between send and receive statements. The symmetry helps make the
behavior of the tasks quite explicit. Most importantly, aside from a
rendezvous, we may view the operation of each task independently from
the others.

In Mini-language Parallel, the sending task must name the task to
which information is sent, and the receiving task must mention the
sending task. In certain circumstances, this symmetry may have
drawbacks. In particular, it is difficult to describe the behavior of a task
that can accept information from several other tasks, independently of
the origin of the information. In the programming language Ada, only
the sending task can name the destination to which information is sent.
From the receiver's point of view, the information received is anony
mous.

Parallel Processing 411

Scheduling

In most applications of concurrent processing, there will be
senders and receivers of information. In particular, a request to receive
information may have been preceded by numerous requests to send the
information, presumably from different tasks. In Mini-language Parallel,
when this case arises, the requests to send information are presumed to
be processed on a first come, first served basis. This brings up the
notion of scheduling.

The problem with this method of scheduling is that a first come,
first served basis may not always be desirable. In particular, there may
be certain tasks whose urgency is far greater than that of other tasks. In
some languages, tasks can be assigned a priority, and tasks with a more
higher priority are processed first.

It is possible to express the notion of urgency entirely within Mini
language Parallel. This can be accomplished by the suitable use of
select statements, where outer level guards can be used to handle urgent
requests and nested guards can be used to handle less urgent requests.
While this kind of solution may appear to be somewhat awkward, it
may, in fact, express the desired urgency in an appropriate manner. A
final resolution to this matter is not clear.

Deadlock

Imagine for the moment a task named TASK...A and one named
TASK...B, which contain the following statements:

start tasks
TASILA:

receive VALUE-A from TASILB;
send (VALUE-A + 1) to TASILB;

TASILB:
receive VALUE-B from TASILA;
send (VALUE-B - 1) to TASILA;

end tasks;

When these two tasks are initiated, they will immediately deadlock.
That is, TASK...A will await a value from TASK...B, and TASK...B will
await a value from TASK...A. Since neither value has been sent, both
receive statements will be suspended, in this case indefinitely.

The deadlock problem for concurrent tasks is as difficult to avoid
as the writing of infinite loops in a sequential language and the detection

412 Chapter 15

of deadlocks is just as difficult. Only the care of the programmer can
prevent this circumstance from happening.

Nondeterminism

In the select statement of Mini-language Parallel, more than one
guard may evaluate to true. In this case, one of the corresponding
guarded statements is executed. The choice among the guarded state
ments whose guards evaluate to true is arbitrary. In this sense, the
execution of the select statement is nondeterministic.

This is consistent with much of concurrent processing. Frequently,
a task is. used to control a mechanical device that has a timing variance
that is much larger than the machine instruction time. Thus, when an
execution of the task is repeated, it will be impossible to obtain
synchronization without using special synchronizing constructs. Pro
grammers who are used to repeatability in the execution of simple
sequential programs find it difficult to become accustomed to the
nondeterminancy of concurrent programming.

The application of nondeterminism is not limited to concurrent
processes. An elegant solution based on nondeterminism to the problem
of providing control structures in a programming language has been
proposed in [Dijkstra 1975J. There, the conditional and iterative
structures are of similar form to the select statement of Mini-language
Parallel. Indeed, its use of guarded commands comes from Dijkstra's
work by way of Ada. In the conditional statement, one of the guards
must be true, otherwise the statement terminates abnormally. In the
iterative form, the iteration continues as long as there exists a true
guard. In both cases, if more than one guard is true, the statement
sequence to be executed is selected nondeterministically. This has the
potential of permitting certain optimizations to be effected by the
compiler while allowing the programmer to retain determinancy by
specifying that no two guards are ever true concurrently.

Concurrent processing does not necessarily imply a mechanism
with nondeterministic behavior, although such is the case in Mini
language Parallel, the proposal by Hoare [1978J, and Ada.

Comments on Parallel Processing

As with most of the topics treated in the Mini-languages, a full
discussion of all the attendant issues is difficult, and as usual, we make
no pretense of treating these areas completely.

Parallel Proeessing 413

Two general remarks seem to be in order. Parallel processing is
important, and in many application areas it is essential.

Second, while it may seem superfluous to say, we believe strongly
that extreme care is required in the design of any linguistic facility to
handle parallel processing. When tasks operate in parallel, the potential
chaos to the average programmer is enormous. No expense should be
spared to make the facility in a programming language as clear as
possible. Any' such facility should be designed with a careful eye
towards making it- one that can be programmed with ease and with
clarity.

FURTHER READING

The basis for this chapter, as mentioned earlier, to the work of Hoare [1978].
Certainly, this work deserves reading for a further examination of the issues
discussed here.

An early survey of parallel processing is presented in [Brinch Hansen
1972]. A further work [Brinch Hansen 1977] describes the actual concepts used
to define a version of Pascal that includes parallel processing.

Often, concepts are developed that later tum out to be somewhat minor
variations of concepts introduced much earlier. Such is the case with the
parallel processing facilities introduced in Mini-language Parallel. Here we have
in mind the very early work of Conway [1963], which introduces the idea of a
coroutine. It is here that the notion of a rendezvous is introduced.

The application of guarded commands to sequential programming lan
guages is described in [Dijkstra 1975].

EXERCISES

Exereise 15.1 Terminology for Parallel Processing

In a difficult area like parallel processing, it is all the more
important to define the terminology precisely. Write a one to four
sentence definition of each of the following terms:

Task
Synchronization
Rendezvous
Guard

Critical Region
Deadlock
Delay
Semaphore

414 Chapter 15

Exercise 15.2 Programming in Mini-language Parallel

Modify the program in Example 15.3· so that there are two
separate RECEIVE_CODES tasks, named RECEIVE_CODES_A and
RECEIVE_CODES_B, which obtain data from different sources, and
feed their buffered input to DECODER. Each one of them is able to
receive a stop signal from its own user. Receipt of a stop signal by either
task shuts down the entire program, including the other receiving task,
in an orderly manner.

Exercise 15.3 Mutual Exclusion

One method of implementing process waiting is through a loop that
repeatedly tests the condition for the termination of the wait. The body
of the loop is empty. This technique is known as busy waiting, since the
processor is executing constantly during the waiting period.

Consider the following two implementations of the P and V
semaphore operations through busy waiting. Supposing that busy
waiting is acceptable and that there are two tasks that use the constants
THIS and OTHER to distinguish them, determine whether the imple
mentations are correct. The first is:

P(S):
S[THIS] := true;
while (S[OTHER] = true) loop
end loop;

V(S):
S[THIS] := false;

The second is:

P(S):
S[THIS] := true;
while (S[OTHER] =true) loop

S[THIS] := false;
while (S[OTHER] = true) loop
end loop;
S[THIS] := true;

end loop;

V(S):
S[THIS] := false;

If either, or both, of these implementations is incorrect, explain.

Parallel Processing 415

Exercise 15.4 Semaphores

Consider a variant of Mini-language Parallel that does not have
the send and receive mechanism defined in Section 15.1 but instead
allows the declaration of semaphore variables as described in Section
15.5. Rewrite the program in Example 15.2 using this variant of the
mini-language.

Exercise 15.5 Guarded Commands

Consider a variant of Mini-language D where the if statement and
loop statement are described by the syntax:

if-statement

loop-statement

guard

if
when guard => statement...

[when guard => statement...] ...
end if;

loop
when guard => statement...

[when guard => statement...] ...
end loop;

condition-expression

During execution of the if statement, the statement sequence corre
sponding to an arbitrarily chosen true guard (at least one of the guards
must be true, otherwise the program terminates abnormally) is executed.
Execution of the loop statement takes place in the same way except
that, if no guard is true, no action is performed and the loop is
terminated. Execution of the the loop statement is repeated until none of
the guards is true.

Rewrite the program in Example 5.1 using this version of Mini
language D with guards.

The Landscape Re-examined

16
The Swamp of· Complexity

A programming language is a notation and, as such, serves to record
and assist the development of human thought in a particular direction
the formulation of processes to be carried out on a computer. For a
notation to be effective, it must have, among other properties, economy
and the ability to subordinate detail. In a programming language, by
economy we mean that a wide range of programs can be expressed
naturally using a relatively small vocabulary and simple grammatical
rules.

The ability to subordinate detail, often called abstraction, leads to
a reduction in programming complexity. The power of a language to
provide abstraction is the source of its usefulness to the programmer. It
allows the programmer to concentrate on the problem being solved
without having to worry about the very detailed stream of instructions
that must be given to the machine.

Although the mini-languages presented here are all small, they
nevertheless show complexities, for example, the dereferencing rules in
Mini-language Ref, and the intricacies of scope rules. Real program
ming languages are many times more complex than any of the mini
languages. It is this complexity that seriously restricts their effective
ness as an adequate notation.

420 Chapter 16

16.1 THE FORMS OF COMPLEXITY

There are many forms that complexity takes in a language. All too
frequently, a language designer pays only token homage to simplicity,
without really making the underlying design simple. Although simplicity
may be attempted by building the language from the simplest elements,
there is no guarantee that these can be combined clearly to form a
coherent whole. In this section, we follow the general organization of
the book in examining the forms of complexity.

Complexity Due to Seale

Probably the greatest single symptom of complexity is the scale of
the language. Generally size comes through an attempt to meet the
demands of would-be users, who want to see special additions to make
their own applications easier. The two largest languages are at the
moment, and we hope that this will remain true, PL/I and Ada. In both
cases, much of their size has come about through the attempt to meet
many isolated special demands.

The design goal for PL/I was a language that would satisfy the
needs of scientific, commercial, and special purpose users. Following
the release of the initial version of the design, there started a dialogue
between the designers and the future users of the language. This
dialogue continued up to the production of the ANSI Standard for PL/I.
During this period, far more has been added than has been deleted. As a
result, using the language has been likened to "flying a plane with 7,000
buttons, switches, and handles to manipulate in the cockpit" [Dijkstra
1972b].

Ada was designed to meet specifications produced by the Depart
ment of Defense, see [Whitaker 1978], for a language to be used
throughout the Department and the military services. The specifications
were drawn up by taking requests for facilities from potential users of
the language. These requirements were used by its designers, who in
tum, had their own requirements to satisfy as well. Further adding to
the cacophony of advice were the many consultants and hundreds of
critics. The objective was, of course, to amalgamate all these require
ments into a coherant whole. This process has been described as like
trying to commission a symphony for an orchestra by constructing it
from a few bars each contributed by a large number of individual
composers.

In both PL/I and Ada, the size and complexity of the languages go
to the limits of the user's intellectual control. These languages, which
were designed by what amounts to very large committees, may be
compared to languages that were designed by individuals or small

The Swamp of Complexity 421

committees, for example, Algol 60, Algol 68, Pascal, and APL.
Although they may have other problems, they do not suffer to the same
degree from complexity due to absolute size.

A language may be small and yet suffer from complexity due to
scale. This can come about through the addition of features that are
beyond the scope of the language. Pascal was designed primarily as a
language to be used in teaching. Admittedly Pascal has achieved a
popularity beyond that for teaching, but as a pedagogic language, it is
extremely large. For example, we question the need for the proposed
complicated rules for file types [Addyman et a1. 1980], record variants
(hardly an introductory topic), the rather elaborate scope rules, the goto
statement (of questionable value in a language with many one-in, one
out structures), set types (of limited use as defined), and so forth.

Almost every programming language suffers in some way from
excessive complexity, either in size, compression of language forms, or
special cases. There are several consequences of such complexity:

• Potential and beginning users feel threatened by the
magnitude of the language.

• Writing comprehensible tutorial documents becomes al
most impossible. As a result, teaching the language becomes
very difficult.

• Implementation is error prone and inefficient, with diag
nostic messages that are difficult to interpret.

• Language forms become overloaded so that subtle and
often treacherous distinctions must be made by the user.

• It becomes more difficult for the user to develop a simple
set of rules for using the language. Thus the number of errors
made increases.

What is needed above all is that the high level syntax should be
simple. Consider, for example, the Pascal declaration section. Here
everything is static and there is reasonable consistency.

Each statement of the language should have a meaning that
matches its intuitive meaning for the user; that is, there should be no
nasty surprises. An example of this kind of surprise is to be found in
APL. Throughout our early mathematical education we became famil
iary with the precedence of multiplication and division over addition
and subtraction. In APL, operator precedence runs strictly from right to
left. For e'Carnpl~; the value of the APL expression (36 / 4 + 5) is 4,

422 Chapter 16

not 13, as we would expect from our mathematical experience. It might
well be that the APL rule is the best one and traditional mathematics is
wrong in its approach. That is beside the point - the APL expression
has a different meaning from the intuitive one of most of us ..

In keeping with the idea of relying on the user's intuitive feeling for
the meaning of the forms in the language, the use of English-like
constructs helps the English-speaking user. With reservations, we
support the direction taken by Cobol. Unfortunately, the form of Cobol
is flawed by a lack of clear structure. This makes Cobol programs
difficult to understand despite their resemblance to natural language.
Following the usage in English, Cobol uses the period to end complete
sentences. Unfortunately, the omission of a period is easy to overlook,
and this can change the meaning of a program without any warning. For
example in

IF TYPE-CODE IS EQUAL TO IAI
PERFORM SCALE THROUGH EXIT-SCALE
ADD 1 TO TITLE-COUNT

ELSE
PERFORM TITLE-PRINT
MOVE 1 TO TITLE-COUNT

MOVE BLANK TO TYPE-CODE.

the indentation is misleading. The absence of a period at the end of the
next-to-last line includes the final line as part of the else clause.
BLANK is only moved to TYPE-CODE if TYPE-CODE is not 'AI.

Finally, the syntax should be uniform in its use of constructs. That
is, the form of a particular construct should be independent of the
context of its use. Consider the punctuation in the two Fortran
statements:

READ (5) A. B. C. D
GO TO K. (10. 20. 30. 40)

In one case there is a comma, in the other none. In one case, the list is
in parentheses, in the other, the single item.

Semantics

Probably the greatest contribution to semantic complexity comes
from side-effects. In various places in this book we have shown how
side-effects can lead to loss of clarity. A classic case is a function

The Swamp or Complexity 423

subprogr~ that can change the values of its arguments or of global
variables in addition to reurning a value to the invoker. This can lead to
programs that are almost impossible to understand. Indeedt their precise
meaning can depend upon some quirks of a particular implementation
rather than a designed feature of the language.

Functions t although the most commonly mentioned t are not the
only sources of side-effects in programming languages. In Example 4.2
we saw how the assignment .

can affect the outcome of the assignment

even though the two statements do not explicitly reference any common
variables. A similar situation arises with lists in Section 13.2. Side
effects are the root of the problems with aliasing.

However t it is important to remember that side-effects are really
endemic to procedural languages since they depend on the side-effect of
changing the computer store in an assignment. This is the basic
principle of programs that is descended directly from the original von
Neumann design of a computer. Functional languages like Mini
language Apply have no side-effects. Indeed t some contend t particularly
[Backus 1978]t that the continue4 reliance on the von Neumann model
of computation has limited the proper development of funtional lan
guages t which are conceptually much simplier.

Control Struetures

In Chapter 9 t we examine the question of the kinds of control
statements that should be available in a programming language. Our
conclusion is that the matter reduced to a balance of complexity. On the
one hand t a possible reduction of programming effort may be obtained
by adding higher level control structures such as exit and cycle; on the
other an increased complexity of the language is caused by additional
statements.

We believe that the case for these higher level control structures
has yet to be proven. This is not t by any means t a universally held
belief. The disigners of the language Bliss felt that each specifi~ control
environment required its own escape mechanism. Each escape scheme
causes control to leave a specific control environment. This seems to us
to be an excessive burden of complexity for a single semantic pattern.

424 Chapter 16

Types

One of the problems with the term type is that it tends to be over
used. PL/I has subsumed the notion of type into the more general one of
attribute, which includes the ideas of scope and storage management.
Our concept of type is limited to the specification of the set of values
that may be taken by an object and the class of operations that
manipulate the objects.

In languages where the choice of type is limited to those fixed in
the language initially, the concept remains fairly simple except for the
question of conversion from one type to another. Where there are many
built-in types, the number of possible conversions is large. Most of these
occur between various forms of numeric representation.

A great deal of complexity is added to a language by the many
possible conversions, especially if they can occur implicitly, as in PL/I.
The addition of the attribute complex doubled the number of potential
conversions without adding and adequate return on this investment in
complication. By requiring that conversions be mentioned explicitly,
some of the complexity is reduced. However there remains an inescapa
ble residue of complexity due to the variety of numeric representations
that are forced on the language designer by the realities of hardware.
This is really due to the mapping of the real world's infinite domain of
numbers onto the computer's finite one.

Composite data types bring complexities of their own. First, there
is the question of operations on composite values. Even such an
apparently simple operation as assignment can be anything but simple.
For arrays, questions of bounds arise, and for records, there are such
fundamental issues as how much alike must two records have to be in
order to be assignable. If the question of variant records is added, the
problem becomes even more difficult. Indeed, the inclusion of variant
records of the form described in Section 6.5 adds considerable complex
ity to the language.

An interesting example of the question of balance between
complexity and utility is that of character strings. As discussed in
Chapter 6, there are two fundamentally different views of character
strings: either as an array of the primitive type character, or as a
primitive type in their own right. Making them a part of the already
existing array construct would seem at first to be a simplification.
However, the need to handle varying length character strings either
requires flexible array bounds, an added complication of both the
language and the implementation, or puts considerable extra detail into
programs, which degrades the utility of the language. On balance, the
provision of the character string as a primitive type certainly seems to
provide the simpler solution.

The Swamp of Complexity 425

Procedures and Parameters

Procedures provide a form of packaging. They simplify programs
by allowing details that are not germane at the level of the caller to be
replaced by a call statement. The argument-parameter correspondences
provides generality so that a single procedure can be used in a variety of
contexts.

In order that the full effects of this simplification can be realized,
the interface between the caller and the subroutine must be kept as
simple as possible. That is to say, the boundary around the procedure
should have only one passage for data, the argument-parameter trans
mission. Any others, such as the use of globals, necessarily weaken the
integrity of the structure and reduce its effectiveness as an abstraction.

As discussed in Chapter 7, there are many ways in which the
argument-parameter transmission can be defined. Again, simplicity is
the criterion. Passing by reference is certainly the simplest; however
great care is required to avoid the complexities of aliasing.

While procedures act as statements, functions act as expressions.
If clarity is to be preserved, functions must not have side-effects as this
inevitably brings questions of order of evaluation and a host of rules that
hinder more than they help.

Mini-language Apply is a pure function language where there is no
possibility of side-effects. When this principle is used in procedural
languages, some questions arise. If a function can have no side-effects,
then it can cause no change of state, and therefore input-output
transmission cannot be permitted. It is not clear at this stage how this
question can be resolved. Lisp originally started as a pure applicative
language, but later versions included the use of global variables. It is not
obvious that this added complexity was exchanged for a corresponding
simplification in programming.

Scope

The original intent of scope rules was to allow localization of
names and to permit the reuse of names from in other contexts. Thus the
rules of scope define the set of names that may be used at a given point
in a program. From the relatively simple concept of block structure
many more complicated schemes have been developed, each ramifica
tion being rationalized as rectifying some previous deficiency. Each
ramification has also added its quota of complexity. Ada provides an
example of how scope rules can become greatly complicated, as is
attested by the fact that the reference manual devotes an entire chapter
to the subject.

426 Chapter 16

The entire issue of scope itself needs to be questioned. Fortran has
seldom been criticized on scope grounds, yet the scope rules are simple.
Although COMMON variables complicate matters, the underlying idea
is simple - nesting is not allowed and everything is local. The Cobol
model is also simple, but just the opposite - everything is global.

Input and Output

Generally, the area of input and output has been one of the most
complex features of programming languages. While some of the com
plexity is due to the nature of the problem being solved, much is due to
the way in which the approach has evolved. Solutions have tended to be
ad hoc without a proper high level treatment.

Exeeptions and Parallelism

At this state in the development of programming languages,
progress in these areas has only occurred recently. Thus, while the
earlier attempts at the problem, fork, join , and semaphores for example,
had much complexity, there seems to be good progress in the direction
of simplification.

16.2 ESCAPING FROM THE SWAMP

A discussion of the languages PL/I, Ada, and Algol 68 is instructive.
One of the design goals of Algol 68 was miriimization of the number of
independent primitive concepts. Power and breadth was obtained by
combining these concepts uniformly. A construct that can be used in
one context can be used in any other context where there is no semantic
ambiguity. Since the primitive concepts are independent, duplication of
function is avoided. Both PL/I and Ada lack this uniformity. Although
PL/I allows user defined functions as objects that can be assigned, the
built-in functions cannot be used in this way. Ada has task types, but no
objects or operations that belong to this type.

The mechanism for defining new types and operators allows a
language to be extended to suit a particular application. In Algol 68 this
mechanism has been used to keep the core of the language very small.
All the operators and some types like complex numbers are defined
through this mechanism in a standard prologue. Conceptually, an
implementation of Algol 68 could be realized with a relatively simple
compiler for the core language and processing the text of the standard
prologue before each source program. This would not be an efficient
method from the point of view of the user.

The Swamp or Complexitl 427

Much of PL/I's size is due to its attempt to cater, without the
benefit of extensibility, to a large community of users. Ada, on the other
hand, has been able to take advantage of the technology of extensibility.
However the basis for the extension is a very large language in its own
right; many times larger than the core of Algol 68. The core of Ada was
designed to economize on concepts and yet meets its many require
ments. As a result, many of its elegant features, for example, the type
model, packages, and one-in, one-out control structures, are obscured.

While the design of Algol 68 is elegant in its basis, its external
appearance is not. The definition of the language is forbidding with
much new terminology for old concepts. The syntax seems often to have
been designed to save keystrokes rather than to promote readability, and
the same symbol often serves many purposes, depending on the context.

Nevertheless, the message seems clear. The way to escape the
dangers of complexity and yet provide a powerful programming lan
guage must be based on:

• a minimum of independent concepts combined in a
uniform manner.

• a comprehensive definition mechanism to provide the
breadth.

• a small core language on which the extensions are based.

• a syntax that is chosen for its readability.

The problems that must be solved by today's languages are not
simple. It is important that the programmer's task not be compounded
by an additional layer of complexity from the very tool that is being
used to solve the problem.

EXERCISES

Note: All of the following exercises are difficult, and could be used for
term projects.

Exercise 16.1 Implementing a Mini-language

Language implementations are a popular exercise, and for good
reason. By the time you are done, you will have a much deeper
knowledge of the language and an appreciation of the difficulty of what

428 Chapter 16

first appears to be an easy task. The difficulty of the task is most
evident by the many implementations that are never finished.

Your task is to implement one of the mini-languages. Obviously,
some are more difficult than others. Mini-language Core is probably a
good representative language. Mini-language Typedef is quite difficult,
and Mini-language Parallel even more so.

There are many characteristics of a good implementation:

1. Completeness. The implementation should adhere exact
ly to the definition.

2. Correctness. All difficult cases should be tested. Bound
ary cases (for example, a program with no variables or with
arithmetic over large numbers) should also be tested.

3. Response to Errors. This area is always difficult. The
implementation should try to give good feedback to a user
who makes an error. If a program contains many errors, the
implementation should not get completely lost, but should try
to recover and go on.

4. Human Engineering. The listings provided for the user
should be clean and readable. Printing all kinds of diagnostic
information may be a poor idea.

S. Documentation. The implementation, test cases, sum
mary of its behavior, and performance data should be
presented clearly and crisply.

A common complaint in many efforts of this sort is low quality work
resulting from an overly optimistic and ambitious effort. Another
complaint is a lack of concern for the user [see Ledgard et a1. 1981]. So
don't be afraid to limit the scope of the task. Put your emphasis on the
quality of the result.

Exereise 16.2 Error Assistance

The possibilities for errors in programs are endless. Often the
manual is of little help.

Your task here is to provide a document to be used with one of the
mini-languages, your choice. The document is intended to provide as
much help as possible to a programmer who has made an error. The
following points are important.

The Swamp or Complexity 429

1. Coverage. You should attempt to cover all possible errors
in both syntax and semantics. The errors will range from
simple spelling or punctuation mistakes, to input-output
errors, to various ways in which a program will give rise to
an infinite loop.

2. Examples. You should give examples of each kind cf
error. The examples should be short and to the point.

3. Organization. The organization of the document should
allow the programmer with a specific error to get help
without wading through each case.

A good place to start this exercise is with a written list of all
conceivable cases that could arise. For Mini-language Core, a good
document will probably require twenty or more pages.

As samples of such errors, a programmer might write

Al :=Al + 1;

instead of

Al := A2 + 1;

or might input three values in the wrong order, or might forget to test for
a case that leads to division by O.

Exertise 16.3 Designing a Mini-language

The teaching of widely-used programming languages is in part
difficult because of the larger scale and complexity of the language. One
technique to alleviate this problem is to teach only a small (but useful)
fragment of the language first. Such a fragment would need its own
documentation and its own examples. It would become a "mini
language" in the same sense as those of previous chapters.

Your task is to choose a language you know well, and from it
prepare a mini-language subset that would be suitable for teaching. The
result of your effort will be a document describing the mini-language.
Your mini-language must be small. It should be useful enough that it
could be used for several weeks of teaching.

430 thapter 16

Exercise 16.4 Literature Review

Almost any topic in this text is treated, directly or indirectly, by
articles in the literature. Subjects like semantics, control structures, or
parallelism are heavily treated, while topics like human engineering or
scale have been given less attention.

Choose a topic taken from the index of this text and attempt to
find at least ten works relevant to the subject. Prepare a report on the
topic. The report should discuss the relevance of the topic, debatable
concerns, unresolved issues, ramifications in existing languages, and
questions of scale and complexity. Your report should clearly state at
least one conclusion of your own.

Exercise 16.5 Language Critique

When a new book is published, it is common to see book reviews
commenting on its significance, its weakness, its bias, and so forth.

Your task here is to do the same for a programming language that
is unfamiliar to you. In particular, you are to prepare a twenty to thirty
page report treating the major issues in its design. You may wish to
discuss:

1. The justification for the language
2. The clarity of syntax
3. The documentation
4. Areas in need of more work
5. Constructs that are difficult to use
6. Human engineering of the effort
7. Features that could be deleted.

Ada and Algol 68 are two good general choices. If you wish to try
something different, pick a special-purpose language like Snobol or Apt.
If you are not familiar with some of the older classics, try Basic or
Fortran.

Exercise 16.6 Detailed Paper Review

Developing a critical perspective of papers in the literature is
certainly a strong asset; Each of the following papers is in some way
important to the study of programming languages.

[Backus 1978]
[Beech 1970]
[Bliss 1971]
[Gannon and Horning 1975]
[Haberman 1973]

The Swamp of Complexity 431

[Hoare 1973]
[Knuth 1974]
[Ledgard 1977]
[Liskov and Zilles 1974]
[Tannenbaum 1976]

Your task is to select one of these papers and to provide a detailed
technical review (10 or 15 pages). Your review should summarize the
work, point out its strengths and weaknesses, its clarity, and any other
aspect you wish.

References

[Ada]
Reference Manual for the ADA Programming Language
U.S. Department of Defense, July 1980
(Also to be published by Springer-Verlag, New York, Spring 1981)

[Addyman et al. 1979]
A. M. Addyman et al.
A Draft Description of Pascal
Software Practice and Experience, May 1979

[AED]
Softech Inc.
Introduction to AED Programming, 4·th Edition
Softech Inc., Waltham, Massachusetts, 1973

[Aho and Johnson 1974]
Alfred V. Aho and Stephen C. Johnson
LR Parsing
Computing Surveys, June 1974

[Aho and Ullman 1977]
Alfred V. Aho and Jeffrey D. Ullman
Principles of Compiler Design
Addison-Wesley, Reading, Massachusetts, 1977

[Algol 60)
Peter Naur, Editor
Revised report on the Algorithmic Language Algol 60
Communications of the ACM, January 1963

434 References

[Algol 60J
Edsger W. Dijkstra
A Primer of Algol 60 Programming
Academic Press. New York 1960

[Algol 68J
Aard van Wijngaarden et al.
Revised Report on the Algorithmic Language Algol 68
Acta Informatica. Vo1.5, 1975,
(also reproduced in Sigplan Notices, May 1977)

[Algol 68J
Charles Lindsey and S. G. van der Meulen
Informal Introduction to Algol 68
North-Holland Publishing Company, Amsterdam 1975

[Algol WJ
Niklaus Wirth and C.A.R. Hoare
A Contribution to the Development of Algol
Communications of the ACM. June 1966

IAlphafdJ
William A. Wulf, Ralph L. London, and Mary Shaw
Abstraction and Verification in Alphard: Introduction to Language and
Methodology,
USC Information Science Technical Report, University of Southern California. Los
Angeles, 1976

[APLJ
APL Language
Form No. GC26-3847-4. IBM Data Processing Division, White Plains. NY

[APLJ
Kenneth E. Iverson
A Programming Language
John Wiley and Sons, 1962

[AptJ
Apt Part Programming
McGraw-Hill Book Company, New York 1970

[Arsac 1979J
Jacques J. Arsac
Syntactic Source to Source Transforms and Program Manipulation
Communications of the ACM. January 1979

[Backus 1978J
John Backus
Can Programming be Liberated from the von Newmann Style?
Communications of the ACM, August 1978

References 435

[Barron 1977]
David W. Barron
An Introduction to the Study of Programming Languages
Cambridge University Press, 1977

[BCPL)
Martin Richards
BCPL: A Tool for Compiler Writing and System Programming
Proceedings of Spring Joint Computer Conference, 1969

[Beech 1970]
David Beech
A Structural View of PL/I
Computing Surveys, March 1970

[Bliss]
William A. Wulf, D.B. Russel, and A. Nico Habermann
Bliss: A Language for Systems Programming
Communications of the ACM, December 1971

[Boehm and Jacopini 1966]
Corrado Boehm and Giuseppi Jacopini
Flow Diagrams. Turing Machines. and Languages with Only Two Formation Rules
Communications of the ACM, May 1966

[Brinch Hansen 1972]
Per Brinch Hansen
Concurrent Programming Concepts
Computing Surveys, June 1972

[Brinch Hansen 1977]
Per Brinch Hansen
The Programming Language Concurrent Pascal
IEEE Transactions on Software Engineering, June 1975

[Brosgol 1977]
Benjamin Brosgol
Some Issues in Data Types and Type Checking
in Design and Implementation of Programming Languages
Springer-Verlag, New York, 1977

[Bruno and Steiglitz 1972)
J. Bruno and K. Steiglitz
The Expression of Algorithms by Charts
Journal of the ACM, July 1972

[Burge 1975]
William H. Burge
Recursive Programming Techniques
Addison-Wesley, Reading, Massachusetts 1975

436 Referentes

[Church 1941]
Alonzo Church
The Calculi of Lambda-conversion
Annals of Mathematic Studies, No.6, Princeton University Press, 1941

[Clark 1973J
R. Lawrence Clark
A Linguistic Contribution to Goto-less Programming
Datamation, December 1973

[Cleaveland and Uzgalis 1976J
James C. Cleaveland and Robert C. Uzgalis
Grammars for Programming Languages: What Every Programmer Should Know
about Grammar .
American Elsevier Publishing Company, New York, 1976

[Cluj
Barbara Liskov et al
Clu Reference Manual
Massachusetts Institute of Technology
MIT/LCS/TR-225, Camb~dge, Massachusetts 1979

[CobolJ
American National Standard Programming Language Cobol,
ANSI X3.23-1974, American National Standards Institute, New York, 1974

[Conway 1963J
Melvin E. Conway
Design of a Separable Transition-Diagram Compiler
Communications of the ACM, July 1963

[Cooper 1967J
David C. Cooper
Bohm and Jacopini's Reduction of Flow Charts
Letter to the Editor, Communications of the ACM, August 1967

[Curry and Feys 1958J
Haskell B. Curry and Robert Feys
Combinatory Logic, Vol. I
North-Holland Publication Company, Amsterdam, 1958

[Demers et al 1977J
Alan Demers, James Donahue, Ray Teitelbaum, and John Williams
Encapsulated Data Types and Generic Procedures
in Design and Implementation of Programming Languages
Lecture Notes in Computer Science, Springer-Verlag, New York, 1977

Rererences 437

[Dijkstra 1968aJ
Edsger w. Dijkstra
Goto Statement Considered Harmful
Letter to the Editor, Communications of the ACM, March 1968

[Dijkstra 1968bJ
Edsger W. Dijkstra
Cooperating Sequential Processes
in Programming Languages (F. Genuys, editor)
Academic Press, New York 1968

[Dijkstra 1972aJ
Edsger W. Dijkstra
Notes on Structured Programming
in Structured Programming by Dahl, Dijkstra, and Hoare
Academic Press, New York 1972

IDijkstra 1972bJ
Edsger W. Dijkstra
The Humble Programmer
Communications of the ACM, October 1972

[Dijkstra 1975]
Edsger W. Dijkstra
Guarded Commands, Nondeterminancy, and Formal Derivation of Programs
Communications of the ACM, August 1975

[Donahue 1976J
James E. Donahue
Complementary Definitions of Programming Language Semantics
Lecture Notes in Computer Science, Springer-Verlag, New York, 1976

[Elgot and Robinson 1964J
Calvin C. Elgot and Abraham Robinson
Random Access Stored-program Machines: An Approach to Programming Languages
Journal of the ACM, October 1964

[Elson 1973J
Mark Elson
Concepts of Programming Languages
Science Research Associates, Chicago, 1973

[EuclidJ
Butler W. Lampson, et aI,
Report on the Programming Language Euclid
Sigplan Notices, February 1977

438 References

[Floyd 1967]
Robert W. Floyd
Assigning Meaning. to Programs
Proceedings of Symposia in Applied Mathematics Vol. 19
Mathematical Aspects of Computer Science. 1967

[Fortran]
Ansi Standard Fortran
American National Standards Institute. New York. 1966

[Fortran 77]
Draft Proposed ANS Fortran
American National Standards Committee X3J3
Sigplan Notices, March 1976

[Gannon and Homing 1975]
John D. Gannon and James J. Homing
Language Design for Programming Reliability
IEEE Transactions on Software Engineering, June 1975

[Garwick 1963]
Jan V. Garwick
The Definition of Programming Languages
in Formal Language Description Languages. (T. B. Steel, editor)
North-Holland Publication Company, Amsterdam 1963

[Goodenough 1975]
John B. Goodenough
Exception Handling: Issues and A Proposed Notation
Communications of the ACM, December 1975

[Gordon 1979]
Michael J. C. Gordon
The Denotational Description of Programming Languages: An Introduction
Springer-Verlag, Ne\v York 1979

[Gries and Gehani 1977]
David Gries and Nargain Gehani
Some Ideas on Data Types in High-Level Languages
Communications of the ACM, June 1977

[Guttag 1977]
John Guttag
Abstract Data Types and the Development of Data Structures
Communications of the ACM, June 1977

[Haberman 1973]
A. Nico Haberman
Critical Comments on the Programming Language Pascal
Acta Informatica 3, 1973,

Referenees 439

[Harel 1980]
David Harel
On Folk Theorems
Communications of the ACMt July 1980

[Henderson 1980]
Peter Henderson
Functional Programming Application and Implementation
Prentice-Hall Intemationalt Londont 1980

[Hill 1971]
I. D. Hill
Faults in Functions in Algol and Fortran
Computer Joumal t August 1971

[Hoare 1969]
C. A. R. Hoare
An Axiomatic Approach to Computer Programming
Communications of the ACMt October 1969

[Hoare 1972]
C. A. R. Hoare
~~M~W~~~ .
in Structured Programming by Dahlt Dijkstrat and Hoare
Academic Presst New Yorkt 1972

(Hoare 1973]
C. A. R. Hoare
Hints on Programming Language Design
Computer Science Departmentt Technical Report STAN-CS-73-403 t Stanford
UniversitYt Californiat December 1973
(also in Computer Systems Reliabilityt Infotech State of the Art Report No. 20t
1974)

[Hoare 1978]
C. A. R. Hoare
Communicating Sequential Processes
Communications of the ACMt August 1978

[Hoare and Wirth 1973]
C. A. R. Hoare and Niklaus Wirth
An Axiomatic Definition of the Programming Language Pascal
Acta Information 2t 1973

(Hofstadter 1979]
Douglas R. Hofstadter
Godel. Escher. Bach: An Eternal Golden Braid
Basic Books, Inc., New York 1979

440 References

(Ichbiah et al. 1979)
Jean Ichbiah et al.
Rationale for the Design of the Ada Programming Language
Sigplan Notices, June 1979

[Johnston 1971)
John B. Johnston
The Contour Model of Block Structured Processes
Sigplan Notices, February 1971

[Jones and Muchnick 1978)
N.D. Jones and S.S. Muchnick
Tempo: A Unified Treatment of Binding Times and Parameter Parsing Concepts in
Programming Languages
Lecture Notes in Computer Science, Springer-Verlag, New York 1978

[Knuth 1967)
Donald E. Knuth
Remaining Trouble Spots in Algol 60
Communications of the ACM, October 1967

[Knuth 1969)
Donald E. Knuth
The Art of Computer Programming, Vol 2.
Addison-Wesley, Reading, Massachusetts 1969

[Knuth 1974)
Donald E. Knuth
Structured Programming with Goto Statements
Computing Surveys, December 1974

[Kosaraju 1974)
Rao Kosaraju
Analysis of Structured Programs
Journal of Computers and System Science, December 1974

[Landin 1964)
Peter J. Landin
The Mechanical Evaluation of Expressions
Computer Journal, Vol. 6(4), 1963

[Landin 1965)
Peter J. Landin
A Correspondence between Algol 60 and Church's Lambda-Notation
Communications of the ACM, February 1965

[Ledgard 1971)
Henry F. Ledgard
Ten Mini·languages: A Study of Topical Issues in Programming Languages
Computing Surveys, September 1971

~ererence8 441

[Ledgard 1977)
Henry F. Ledgard
Production Systems: A Notation for Defining Syntax and Translation of Programming
Languages
IEEE Transactions on Software Engineering, April 1977

[Ledgard et al. 1981]
Henry F. Ledgard, Andrew Singer, and John Whiteside
Directions in Human Factors for Interactive Systems
Lecture Notes in Computer Science, Springer-Verlag, New York, 1981

[Ledgard and Marcotty 1975)
Henry F. Ledgard and Michael Marcotty
A Genealogy of Control Structures
Communications of the ACM, November 1975

[Lee 1972)
J.A.N. Lee
Computer Semantics
Van Nostrand Reinhold, New York, 1972

[Levin 1977)
Roy Levin
Program Structures for Exceptional Condition Handling
Ph.D. Thesis, Computer Science Department, Carnegie Mellon University, 1977

[Lisp 1.5]
John McCarthy et al.
Lisp 1.5 Programmer's Manual
MIT Press, Cambridge Massachusetts, 1962

[Liskov and Zilles 1976)
Barbara Liskov and Stephen Zilles
Specification Techniques for Data Abstractions
Sigplan Notices, June 1976

[Lucas and Walk 1969]
Peter Lucas and Kurt Walk
On the Formal Definition of PLII
Annual Review in Automatic Programming, Vol. 6 Pergamon Press, 1969

[MacLaren 1970)
M. Donald MacLaren
Data Matching, Data Alignment, and Structure Mapping in PLII
Sigplan Notices, December 1970

[Mailloux and Peck 1968]
Barry J. Mailloux and John E.C. Peck
Algol 68 as an Extensible Language
Sigplan Notices, May 1969

442 References

[Marcotty et al. 1976]
Michael Marcotty, Henry F. Ledgard, and Gregor Bochmann
A Sampler of Formal Definitions
Computing Surveys, June 1976

[Markov 1954]
Andrei A. Markov
A Theory of Algorithms
(Russian) Academy of Sciences of USSR, Moscow 1954
English translation py Israel Program for Scientific Translations

[McCabe 1976]
Thomas J. McCabe
A Complexity Measure
IEEE Transactions in Software Engineering, December 1976

[McCarthy 1960]
John McCarthy
Recursive Functions of Symbolic Expressions and Their Computation by Machine
Communications of the ACM, April 1960

[McCarthy 19~2]

John McCarthy
Towards a Mathematical Theory of Computation
Proceedings of IFIP Congress 1962, North-Holland, Amsterdam 1962

[Mills 1972]
Harlan D. Mills
Mathematical Foundations for Structured Programming
IBM Corporation Rep9rt FSC 71-6012, Gaithersburg Maryland, February 1972

[Morris 1973]
James H. Morris
Types are Not Sets
Proceedings of Sigplan/Sigact Symposium on Programming Languages, Boston, 1973

[Nicholls 1975]
John E. Nicholls
The Structure and Design of Programming Languages
Addison-Wesley, Reading Massachusetts, 1975

[Organick et al. 1978]
Elliott I. Organick, Alexandra I. Forsythe, and Robert P. Plummer
Programming Language Structures
Academic Press, New York, 1978

[Pal]
Arthur Evans, Jr.
Pal: A Language Designed for Teaching Programming Language Linguistics
Proceedings ACM National Conference, 1968

References 443

[Parnas and Wurges 1976)
David L. Pamas and H. Wurges
Response to Undesired Events in Software Systems Proceedings
Second International Conference on Software Engineering, 1976

[Pascal]
Kathleen Jensen and Niklaus Wirth
Pascal User Manual and Report
Springer-Verlag, New York, 1975

[Pascal]
Niklaus Wirth
The Programming Language Pascal
Acta Informatica, Vol. 1, 1971

[Peterson et al. 1973]
W. Peterson, T. Kasami, and N. Tokura
On the Capabilities of While. Repeat, and Exit Statements
Communications of the ACM, August 1973

[PL/I]
American National Standard Programming Language PL/I
ANSI X3.53-1976 American National Standards Institute, New York, 1976

[Pratt 1975]
Terrance Pratt
Programming Languages: Design and Implementation
Prentice-Hall, Englewood Cliffs New Jersey, 1975

[Richard and Ledgard 1977)
Frederic Richard and Henry F. Ledgard
A Reminder for Language Designers
Sigplan Notices, December 1977

[Rutishauser 1967]
H. Rutishauser
Description of Algol 60
Springer-Verlag, New York, 1967

[Sammet 1969]
Jean E. Sammet
Programming Languages: History and Fundamentals
Prentice-Hall, Englewood Cliffs New Jersey, 1969

[Sammet 1978]
Jean E. Sammet
The Early History of Cobol
Sigplan Notices, August 1978

444 References

[Schwenke 1978]
Robert Schwenke
Survey of Scope Issues in Programming Languages
Computer Science Department, Technical Report CMU-CS-78-131, Carnegie
Mellon University, Pittsburgh, 1978

[Scott 1970]
Dana Scott
Outline of a Mathematical Theory of Computation
Proceedings 4th Annual Princeton Conference on Information Sciences and Systems;
(also Technical Monograph PRG-2, Oxford University Computing Laboratory,
Programming Research Group, Oxford 1970

[Scott and Strachey 1972]
Dana Scott and Christopher Strachey
Toward a Mathematical Semantics for Computer Languages
in Computers and Automata
John Wiley and Sons, New York, 1972

[SETL]
Jacob Schwartz
The SETL Language and Examples of its Use
Computer Science Department, Courant Institute of Mathematical Sciences, New
York 1971

[Simula 67]
O. J. Dahl, B. Myhrhaug, and U. Nygaard
The Simula 67 Common Base Language
Norwegian Computing Center, Oslo, 1968

[Snobol]
R. Griswold, J. Poage, and I. Polansky
The Snobol 4 Programming Language
Prentice-Hall, Englewood Cliffs New Jersey, 1971

[Stoy 1977]
Joseph Stoy
Denotational Semantics
MIT Press, Cambridge, Massachusetts, 1977

[Strachey 1966]
Christopher Strachey
Towards a Formal Semantics
in Formal Description Languages for Computer Programming (T. B. Steel, editor)
North-Holland Publishing Company, Amsterdam, 1966

[Strachey 1967]
Christopher Strachey
Fundamental Concepts in Programming Languages
International Summer School in Computer Programming, 1967

References 445

[Strachey 1972]
Christopher Strachey
Varieties of Programming Languages
Technical monograph PRG-I0, Oxford University Computing Laboratory,
Programming Research Group, September 1972

[Tannenbaum 1976]
Andrew S. Tannenbaum
A Tutorial on Algol 68
Computing Surveys, June 1976

[Tennent 1976]
Richard D. Tennent
The Denotational Semantics of Programming Languages
Communications of the ACM, August 1976

[Weil 1965]
Roman L. Weil, Jr.
Testing the Understanding of the Difference Between Call By Name and
Call By Value in Algol 60
Communications of the ACM, June 1961

[Whitaker 1978]
William A. Whitaker
The US Department of Defense Common High Order Language Effort
Sigplan Notices, February 1978

[Whitehead 1911]
Alfred North Whitehead
An Introduction to Mathematics
Oxford University Press, Oxford 1911

[Wirth 1971]
Niklaus Wirth
Program Development by Stepwise Refinement
Communications of the ACM, April 1971

[Wirth 1973]
Niklaus Wirth
Systematic Programming: An Introduction
Prentice-Hall, Englewood Cliffs New Jersey, 1973

[Wirth 1974]
Niklaus Wirth
On the Design of Programming Languages
Information Processing Programming Methodology, North-Holland, Amsterdam,
1974

446 References

[Wirth 1976]
Niklaus Wirth
Programming Languages: What to Demand and How to Assess Them. and Professor
Cleverbyte's Visit to Heaven
E.T.H. Institute fuer Infonnatik, Technical Report 17, Munich, March 1978

[Whorf 1956]
Benjamin Whorf
Language Thought and Reality
MIT Press. Cambridge Massachusetts, 1956

[Wulf and Shaw 1973]
William Wulf and Mary Shaw
Global Variable Considered Harmful
Sigplan Notices. August 1973

Index

abnormal termination, 68, 81, 386
abstract

machine, 4, 21, 86
machine state. 86
object. 7, 159
program, 58

abstraction. 6. 77. 78. 200, 286.
288. 386

access mode of file. 349
accuracy of computation, 172
Ackermann's function, 325
activation record. 232
active location, 120
actual parameter. 192
Ada, 8, 20, 34-35. 61, 95, 124,

126. 146-147. 168. 173, 175-181,
184-185. 187. 192. 202. 206, 216.
228, 275, 290, 292-293, 329, 337,
345. 350. 355, 372. 388, 390, 394,
408, 410. 412. 420. 425-427. 430

Ada package. 291
ADDR PL/I function, 105
address, 95, 105. 183
Addyman. A. D., 421, 434
AED. 384. 433
Aho. Alfred, 61. 233, 433
Algol, 17, 121. 173. 176, 192
Algol 60, 14, 33-34. 42. 48, 205.

209,228,231,233,421,433-434
Algol 68.107.115.116,120,124,

174,176-179.181,184-185.205.
207, 228. 275. 292-293, 345. 350,
372. 421. 426-427. 430. 434

Algol W. 206. 208. 434
algorithm, 7
alias, 207, 216. 243
Alice, 106
ALIGNED, PL/I attribute. 183
ALLOCATE, PL/I statement. 120
allocation of storage, 231. 233.

364. 384. 391
alphabet. 37
Alphard. 275, 290, 292-293. 434
ambiguous grammar, 45. 46
analysis. 58
analysis of sentence. 38
Analytical Engine. 191
analytical use of grammar, 40
and operator. 167
ANSI. 420. 436, 438, 443
APL. 7, 9. 58. 174. 184. 238. 421.

422. 434
append, Apply function. 300. 305
application of function, 305
application programming, 275
applicative language, 8
Apply Mini-language. 299
Apt, 8. 430. 434
argument. 192, 305
argument-parameter correspondence, 195
arithmetic precision, 82
arithmetic: floating point. 172
array, 14,77. 154, 160, 168, 185.424

access. 187
assignment, 177
bounds, 176, 232

450 Index

dimension, I76
flexible bounds, 176, 424
literal, 187
size, 175
type, 174, 287
variable, 281

Arsac, Jacques, 145, 434
artificial intelligence, 323
ASCII, 83
assertion, 87, 389
assignment, 120

arrays, 177
structures, 369
statement, 26, 68, 87, 111, 135,

307, 309
multiple, 125

asynchronous event, 378
attribute, 121, 424
automatic programming systems, 4
availability, 16
axiomatic definition, 87, 88, 91, 96

Babbage, Charles, 191
backing store, 349, 352
Backus, John, 5, 42, 323, 423, 431,

434
Backus-Naur Form, 42-54, 60, 61, 63

64
Barron, David, 20, 435
Basic, 9, 20, 32, 169, 200, 228, 275

367, 430
basic action, 135, 253
basic action, flowgraph node, 133
BCPL, 184, 435
Beech, David, 431, 435
binary operator, 167
binary tree, 362
binding time, 239, 243
bit string, 167
blank character, 30, 32, 70
Bliss, 34, 123, 184, 423, 431, 435
block, 220

structure, 228, 233, 241-242, 425
termination, 231

BNf, 42-54, 60, 61, 63-64
Bochmann, Gregor, 442
body

function, 302
loop, 132, 149
procedure, 192

Boehm and Jacopini Theorem, 138, 152

Boehm, Corrado, 138, 150, 256, 435
boolean, 160, 162, 163, 167
bottom-up

description, 78, 79
parsing, 59

bound variable, 322
bounds

array, 176, 424
range, 279, 280

brace, use in meta-language, 54
bracket, use in meta-language, 52
Brinch Hansen, Per, 408, 413, 435
Brosgol, Benjamin, 185, 435
Bruno, J. 133, 435
buffer, 401, 403
Burge, William, 323, 435
busy waiting, 414
byte-addressed machine, 105

calendar, 185, 351
call by ... , 195
call statement, 135, 194, 231
canonical derivation, 44
card punch, 349
card reader, 349
Carroll, Lewis, 106
case statement, 147, 253
category name, 38, 42
Celsius, 350
character

set, 83
string, 424
type, 168

characteristic error, 32
Church, Alonzo, 209, 212, 297, 323,

436
clarity, 31, 85, 129, 151, 170, 268
Clark, Lawrence, 264, 436
clash of names, 226
Cleaveland, James, 61, 436
closing a file, 349
Clu, 275, 290, 292-293, 436
Cobol, 5-7, 12, 15, 17,20, 35,54,

167, 174, 178-180, 183, 200, 202,
207,228,233,307,337,341,350,
422, 426, 436

Cobol notation, 54
CODASYL,54
code generation, 58, 92, 95, 121,

122
coding, 3

coercion, 174
come from statement, 264
comment, 18, 30, 31, 33
commercial language, 7
common subexpression, 93
COMMON, Fortran storage, 313, 426
communication, 349, 409

between tasks, 396
comparison, 28, 43, 73
compiler, 8, 55, 92
completeness, 428

of a definition, 76, 85
completion of abstract program, 59
complex number, 160, 356, 424, 426
complexity, 10, 40, 419-427
component selection, 369
components of record structure, 178
composite data types, 14, 160, 174
comprehensible definition, 78
computation state, 265
computer model of real world, 166
concatenation operator, 166, 168
concurrency, 393, 408
condition, 377

flowgraph node, 133
expression, 130
programmer defined, 380

conditional
execution, 130
structure, 135, 247, 253

constant, 17, 107, 109
containing type, 279
context, 40, 48

effect, 231
free syntax, 40, 49, 64, 76
sensitive syntax error, 91

contract, 84
control structure, 129-150, 155,

247-270, 383, 423
hierarchy, 258
theorem, 138
power, 256

control variable, 149
conversion, 173

data error, 391
control structure, 268
flowgraph, 151
program, 154

Conway, Melvin, 213, 413, 436
Cooper, David, 150, 436
Core Mini-language, 53, 69

Index 451

coroutine, 211, 216, 339, 413
correct results, 92
correct terminology, 78
correctness, 4, 91-92, 428

proof, 97
correspondence: argument-parameter,

195
creation of structures, 369
critical region, 408
cross-compiler, 9
Curry, Haskell, 323, 436
cycle statement, 248, 250

D Mini-language, 131
D' -structure, 253
D-structure, 133-135, 145, 252, 269
Dahl, O. -J., 439, 444
dangling reference, 371
data set, 349
data structure, 14, 260, 355-372

mapping, 183
data type, 159-185, 275-292, 355-372,

424, 426
representation, 291

data_error condition, 381
date, 185, 288
deadlock, 411
declaration, 28, 29, 67, 89, 114,

122, 126, 174,276,287,421
declaration section, 26
decoding problem, 401
default exception handler, 386
default parameter, 348, 350
deferred evaluation, 209
DEFINED, PL/I attribute, 118
definition

recursive, 316
semantics, 76

delimiter, 30, 32
Demers, Alan, 292, 436
denotation, 89
denotational definition, 89, 91, 96
Department of Defense, 420
depth of call, 303
dereferencing, 110-112, 123, 369, 419
derivation, 41
destroy statement, 371
Dictionary of the English Language,

84
digit, 28
Dijkstra, Edsger, 133, 149, 264, 409,

452 Index

412-413. 420. 434. 347. 439
dimension. 176
discriminated union. 181
disjoint tasks. 396
disk. 349
division operator. 171
documentation. 12. 16. 428, 430
.domain failure, 382
domain of function, 305
Donahue, James. 96, 436, 437
drum, 349
dummy argument. 192
dynamic

invocation chain, 382
scope. 238, 243
storage allocation, 231. 364
type checking. 184

EBCDIC, 83
economy of design, 6, 419
efficiency, 16, 268
eight queens problem, 307-309
Elgot. Calvin, 86, 437
elimination of goto statement, 150
elimination of redundant

operations, 93. 100
ellipsis. 52, 54
elsif clause. 146
Elson. Mark. 20. 437
end of file condition, 391
end of input, 377
end_oLinput condition, 381, 384
end of line character, 70
end of page condition, 391
English, 10. 18, 25, 36, 37, 38, 422
entier, Algol 68 function, 174
entry point, 202
enumeration type, 278, 285, 293
environment, 89, 232. 265, 266, 273
epilogue. 231
equality operator. 162, 166
equivalent program, 138
error, 31, 81, 377

message, 14, 60, 387
return, 383
routine, 383

Euclid, 178-180. 275, 290. 292-293,
437

Evans. Arthur. 442
examples, 79
exception, 377-389, 426

condition. 208, 377
handler, 380, 391
handler. default, 386
propagation. 386
suppression, 388

Exceptions Mini-language. 379
execution. 55

resumption after exception, 390
sequence, 129

exit statement. 248, 269
explicit dereferencing, 123
explicit pointer. 372, 373
exponent. 172
expression. 27. 73
extensible language, 293, 426
external

form, 6
identifier, 222
support, 16
variable. 230

EXTERNAL, PL/I attribute, 230

factorial, 317
factoring common subexpressions. 93
Fahrenheit, 350
Feys, Robert, 323, 436
Fibonacci series, 74
file, 349
file variable, 349
first, Apply function, 300
first-order predicate calculus. 88
fixed form, 32
fixed point. in recursion, 316-320,

324
fixed point number, 169-171
flexible bound of array, 176, 424
floating point, 4, 81, 169-172
flow of control, 133, 307
flowchart. 88
flowgraph. 133, 151
Floyd. Robert, 88, 96, 438
folding, 93, 100
for loop statement, 149, 253
fork statement, 426
formal

definition. 84
language. 47
parameter, 192

format
declaration, 330, 333, 339
field. 334

specification 335-337
statement, 339

Format Mini-language, 331
FORMAT, Fortran statement, 81
Forsythe, Alexandra, 442
Fortran, 5-7, 12, 14, 17-18,20,32

33,81, 105-106, 173-176, 184, 192
202,207,233,264,275, 313-314,
325, 329-330, 335, 341, 350, 367,
387, 426, 430, 438

Fortran 77, 20, 55. 438
free union, 181
free variable, 322
FREE, PL/I statement, 121
free-form, 32
fully qualified reference, 15
function, 241, 297-323

Ackermann's, 325
application, 302, 305
body, 302
definition, 297, 298
object, 320, 321, 322, 323
subprogram, 191

functional equivalence, 256

Gannon, John, 32, 34, 61, 431, 438
garbage collection, 372-373
Garwick, Jan, 86, 438
Gehani, Nargain, 292, 438
generation, 58
generative use of grammar, 39
global operator, 287
global variable, 200-222, 230, 309,

311-313, 322-384, 387, 425-426
goal, 39
Goodenough, John, 389, 438
Gordon, Michael, 96, 438
goto statement, 138, 150, 248, 25 I,

265
goto statement harmful, 264
grammar, 10. 36

analytical use. 40
generative use, 39

greatest common divisor, 97
Gries, David, 292, 438
Griswold, Ralph, 444
guard, 398, 399, 400
guarded statement, 398, 413, 415
Guttag, John, 292, 438

Habermann. Nico. 185. 431. 435. 438

Index 453

handler, 380
handler specification, 385
handling an exception, 377
hardware interrupt, 405
hardware malfunction, 384
Harel, David, 150, 439
header comment, 31
heap, Algol 68 statement, 120
Henderson, Peter, 323
hiding of information, 290-291
hierarchy of control structure, 258
Hill, I. D., 389, 439
history of programming languages, 3-6
Hoare, C. A. R., 20, 88, 95. 96, 292,

372-373, 394,412-413,431,434,
439

Hofstadter, Douglas, 323, 440
hole in scope, 222
Homing, James, 32, 34, 61, 431, 438
human engineering, 428, 430

IBM Vienna Laboratories, 86
IBM704,5
Ichbiah, Jean, 61, 95, 185, 212, 292,

350, 372, 389, 440
identifier, 28-30, 35, 122

maximum length, 82
if statement, 26, 71, 77, 146, 153
if statement with single branch, 253
illegal character error, 71, 82
illegal operation, 164
implementation, 16

contract, 84
correctness, 90
defined, 83
dependency, 78, 82
schemes, 8

implicit declaration, 13
implicit pointer, 372
impossible value, 382
inaccessible structure. 365
indentation, 49
indentifier, 27
index, 174
indexed table, 77
Indo-European language, 10
inequality, 166
infinite loop, 69, 411
information hiding, 290-291
information sharing, 366
inline comment. 31

454 Index

input and output. 329-350. 426
input parameter, 205
input statement, 27, 70. 135. 332.

333
insertion picture character, 344
insufficient data error, 70, 82
integer, 27, 28. 30, 43, 160, 169

arithmetic, 76
constant, 107, 109
expression, 163
object. 114
type, 170

inter-language communication. 183
inter-task communication, 396, 409
interactive language, 7
internal identifier, 222
interpretation, 8, 9
interrupt, 378, 405
interrupting task, 403
intuition, 31
invocation chain, 382
invocation of procedures. 195
iteration. 149
iterative control structure. 132, 135
iterative execution, 130
Iverson, Kenneth, 434

Jacopini, Giuseppi, 138, ISO, 256,
435

jargon. 78
Jensen's Device, 215
Jensen. Kathleen, 443
Johnson, Samuel, 84
Johnson, Stephen, 61, 433
Johnston, John, 239, 440
join statement. 426
join, flowgraph node, 133
Jones, N. D., 212, 239, 440

Kasami, T., 443
key, 350
keystrokes, 12
keyword, 33-36, 58
known identifier. 219
Knuth, Donald, 173,269-272.431,

440
Kosaraju. Rao, 256, 258. 269, 440

L Mini-language. 249
L-structure. 255
I-value, 107

label, 250-251
identifier, 265
parameter, 383
value. 264

lambda calculus. 209. 323
Lampson. Butler, 437
Landin, Peter. 86. 96, 297. 323, 440
language design, 5, 16. 84
language extensibility, 293, 426
last, Apply function, 300
Ledgard, Henry. 20-21. 61, 95, 270,

431, 440-443
Lee. J. A. N., 96, 441
left-justification, 332
left-value, 107
legal assignment. 111
length of output field. 71
length, Apply function, 300,

304-305
.letter, 28
level of abstraction. 200, 386
Levin, Roy, 389, 441
lexical element, 30

lexical scope, 229
lexical scope rules, 229
library

subroutine, 95
support. 9, 387

Lindsey, Charles, 434
line length, 330
line printer, 349
Liskov, Barbara, 292. 431, 436, 441
Lisp. 7-9. 17,58. 174.238,297,

372. 425. 441
list, 17, 174, 298, 356. 364
literal, 187
loc real, Algol 68 construct, 115
local name, 219-222
local variable, 223, 232, 426
location, 80, 105-122
London, Ralph, 434
loop, 95, 247. 248, 253, 285, 400.

411
body, 132. 149
control, 309
invariant, 88, 154
optimization, 94, 100
statement, 27, 72, 77, 88, 132,

148, 154
termination, 149

Lucas, Peter. 86. 96. 441

machine
address, 121
independence,S, 2 ~

language, 3
state, 86

machine-tool control, 8
MacLaren, Donald, 183, 441
macro-efficiency, 269
magnetic tape, 349
Mailloux, Barry, 292, 441
main procedure, 211
maintenance of programs, 290
man-machine communication, 6
mantissa, 172
mapping records, 183
Marcotty, Michael, 85, 95, 270, 441

442
Markov, Andrei, 98, 442
mathematical properties, 76
maximum length of identifier, 82
McCabe, Thomas, 257, 442
McCarthy, John, 86, 323, 441, 442
McKeeman, William, 61
meaning, 18
meaning of type, 165
mechanical model of computation, 77
mechanical restructuring, 270
mechanical restructuring of program

145
mental leap, 320
meta-symbol, 42

!, 42, 54
... , 42, 52, 54
: :=,42
<, 42, 52
>, 42, 52
[,52
],52
{,54
1,54

meta-language, 39
micro-efficiency, 269
Mills, Harlan, 138, 150, 442
Mini-language

Apply, 299
Core, 53, 69
D, 131
Exceptions, 379
Format, 331
L,249
Parallel, 395

Index 455

Procedures, 193
Ref, 108
Scope, 221
Structures, 357
Type, 161
Typedef, 277

minicomputer, 9
minimization of keystrokes, 12
mixed mode expression, 186
mnemonic name, 3, 31, 79, 339
mode, 109, 186
model

real world, 166
recursion, 316
storage, 119

modular program, 200
modularity, 16
Morris, James, 185, 442
Muchnick, S. S., 212, 239, 440
multiple assignment, 125
multiple declaration, 29
multiprocessor, 393
multiprogramming, 393
Myhrhaug, B., 444

name, 79, 105-222
clash, 226
resolution, 219

naming convention, 228
natural language, 47
naturalness of definition, 85
Naur, Peter, 42, 433
nesting, 219-239
new, Ada operation, 176
NEW, Pascal procedure, 367, 370
Nicholls, John, 20, 172, 442
node. 38
nontermination, 68
nondeterminism, 398, 403, 412
nonlocal variable, 232
nonprocedural language, 7, 8
nonterminal symbol, 38-42
normal termination, 68, 91
not operator, 167
notation, 11
null list, 298
null object, 356, 359
number, 17
number type, 169
numeric value, 170
Nygaard, U", 444

456 Index

object program, 8, 55, 95
on-unit, PL/I construct, 384
one-in, one-out structure, 135, 146

202
opening a file, 349
operand, 27
operation, 80, 173
operational abstraction, 191
operational definition, 86, 91, 96
operator, 28, 73, 80, 162, 167

definition, 289
precedence, 421

optimization, 92, 100, 208, 269
Organick, Elliott, 20, 442
orthogonality of design, 14
otherwise option, 147
output, 329, 426

field length, 71
parameter, 205
statement, 27, 71,77, 135,332
333

outside world, 349
overflow condition, 208, 381, 382

385, 390
overflow error, 81
overloading, 173, 290, 346, 350
own variable, 233

P, semaphore operation, 409, 414
package, Ada construct, 291
padding, 183
page length, 330
Pal, 184, 442
Parallel Mini-language, 395
parallel processing, 393-413, 426
parameter, 191-213, 219, 232, 391,

425
passing, 213
default, 350
error, 383

parent node, 38
parenthesized expression, 27, 73
Pamas, David, 389, 443
parse tree, 38-41
parsing, 38-41, 59
partially qualified reference, 16
Pascal, 8, 17, 20, 33-35, 55, 88,

96, 118-119, 122, 124, 126, 153,
168, 174, 176, 178-181, 185-186,
192, 205, 207, 228, 253, 275-276,
292-293, 307-309, 315, 325, 337,

345, 349, 367-373, 421, 443
Pascal pointer, 366
pass argument by

location, 196, 207, 213
name, 196, 209, 213, 214, 216
reference, 207
result, 195, 206, 213
value, 195,205,213, 214
value-result, 196, 208, 213

Peck, John, 441
pedagogic language, 421
pending, 399
PERFORM, Cobol statement, 202
Peterson, W., 443
picture specification, 337, 341, 346
PL/I, 12-15, 17, 20, 30, 34-35, 48,

54, 58, 60, lOS, 116-118, 120-122,
124-125, 167-169, 174, 176, 178,
179, 183, 185-187, 192,202,207
208, 228, 230, 233, 259, 275, 335,
337, 350, 371, 384, 388, 390, 420,
424, 426-427, 443

PL/I data structure, 260
Plummer, Robert, 442 .
Poage, J., 444
pointer, 105, 117, 124, 366, 369,

372-373
Polansky, I., 444
polymorphism, 173
power of language, 419
power of structure, 256
Pratt, Terrance, 20, 443
precedence, 28, 62, 73, 421
precise definition, 78
precision, 171
predecessor function, 278, 280
predicate, 38
presentation 'of language, 78
prettyprinting, 155
primitive type, 159
priority, 411
procedural language, 7, 307, 309
procedure, 191-213, 220, 425

body, 192
call, 135
declaration, 192
invocation, 195
separately compiled, 230

Procedures Mini-language, 193
production, 39, 40
program, 7, 42

assertion, 389
conversion, 154
correctness, 4, 91
design, 11-12
error, 78, 388
maintenance, 290
semantics, 90
structure, 383
termination, 69, 377, 386
transformation, 93-95

programmer-defined condition, 380
programming, 3

examples, 79
language, 7
systems, 4
tricks, 4

prologue, 231
proof of correctness, 97
propagation of exception, 386
proper program, 138
pure Lisp, 8
push down stack, 316, 320

qualified name problem, 259, 268, 273

r-value, 107
raise statement, 380, 390-391
raising an exception, 377
random file organization, 349
range, 279

failure, 382
of function, 305
size, 280
variable assignment, 280

RE I-structure. 254
READ, Fortran statement, 341
readability. 13. 35, 49. 155, 170
real type. 173
real world, 166
real-time language. 8
realism of definition, 85
receive clause. 399
receive statement, 397
REen-structure. 255
record

components. 178
key. 350
mapping. 183
structure, 160, 174, 286
type, 177.286.293
variable, 359

Index 457

variant. 180
rectangular array. 176
recursion. 43. 309, 314-320
recursive definition. 44, 303, 316,

318
recursive function. 318
recursive production, 43
redundancy, 4
Ref Mini-language. 108
reference. 107, 109

dangling. 371
manual, 84
to record component. 178-179
variable. 109, 110, 124, 359

referential transparency, 306
relational operator, 162
release of storage. 233
remainder operator. 171
remote format specification, 335,

337, 346
RED-structure, 255
renames. 180
rendezvous. 397, 398. 409, 413

repeat statement. 148
report generator, 8
representation of data, 291
reserved word, 34. 36
resolution of name, 219
response to error, 428
restricted sequence, 279
restructuring of programs. 145. 270
resumption of execution, 387, 390
return

address. 232
after error, 383
statement. 204, 209

Richard. Frederic. 20. 95. 443
Richards, Martin. 435
right-justification. 332
right-value. 107
Robinson. Abraham. 86. 437
robustness, 384
root. 38
rules of scope, 220. 232
rules of syntax. 37
run-time library, 387
run-time stack, 232
Russel, D. B., 435
Rutishauser, H., 212, 443

Sammet. Jean. 20. 54, 443

458 Index

scale, 171, 419-427
scanning, 59
scheduling, 411
Schwartz, Jacob, 444
Schwenke, Robert, 239, 444
scientific language, 7
scope, 219-239, 425
Scope Mini-language, 221
scope rules, 220, 232, 419
scope, hole in, 222
Scott, Dana, 89, 444
security, 184
select loop, 400
select statement, 398, 399, 400
selective execution, 130
selector expression, 298, 301, 302
self documenting, 12
semantic equivalence, 256
semantic error, 19, 81
semantics, 18, 67-95, 422
semaphore, 409, 414, 415, 426
semicolon, 34
send statement, 397
sentence, 37, 41

analysis, 38
sentential form, 41
separately compiled procedure, 230
separator, 34
sequence, 135, 247, 253
sequence, meta-language symbol, 52
sequential execution, 130
sequential file organization, 349
set, 17, 174
Setl, 17, 444
shared variable, 408
sharing data structure, 366
Shaw, Mary, 239, 434, 446
shorthand reference, 180
side effect, 210, 231, 241, 311,

314, 425
signal, 409
significant digits, 172
simple expression, 298
simple type, 160
simplicity of structure, 6
Simula 67, 275, 292-293, 337, 345,

350, 444
single-pass compiler, 59
size error, 70, 82
size of array, I 74
slice of an array, 177

Snobol, 17, 169, 205, 238, 329, 430,
444

sort generator, 8
source program, 8, 55
spacing control, 339
special purpose language, 8
specialized input output procedure,

337, 345
specification of detail, 81
spelling error, 13
stack, 231, 316, 320
stack data type, 293
stack pointer, 234
standard prologue, 426
standardization, 84
state, 90
statement, 43

ALLOCATE, in, PL/I, 120
assignment, 26, 68, 87, Ill, 135,

307, 309
call, 135, 194,231
case, 147, 253
come from, 264
cycle, 248, 250
destroy, 371
execution, 129, 130
exit, 248, 269
for loop, 149, 253
fork, 426
format, 339
FORMAT, in, Fortran, 81
FREE, in, PL/I, 121
goto, 138, 150, 248, 251, 265
guarded, 398, 413, 415
heap, in Algol 68, 120
if, 26, 71, 77, 146, 153,253
input, 27, 70, 135, 332, 333
join, 426
label, 25 I
loop, 27, 72, 77, 88, 132, 148,

154
output, 27, 71, 77, 135, 332, 333
PERFORM, in, Cobol, 202
raise, 380, 390, 391
READ, in, Fortran, 341
receive, 397
repeat, 148
return, 204, 209
section, 26
select, 398, 399, 400
send, 397

sequence, 135
until, 148, 253
WRITE, in, Fortran, 341

static binding, 229
static type checking, 184
Steiglitz, K., 133, 435
stelll, Apply function, 300
stop button, 403
stopper, 281, 293
storage, 89, 119

allocation, 231, 364, 384
allocation error, 391
class in PL/I, 233
management, 373

store, backing, 349, 352
Stoy, Joseph, 96, 323, 444
Strachey, Christopher, 89, 95, 96,

122,
string, 9, 18, 160, 166, 177, 188

expression, 163
type, 168

strong typing, 184, 186
structure, 14, 260, 355-372

components, 178
conversion, 268
declaration, 358
mapping, 183

Structures Mini-language. 357
subject, grammatical, 38
subnode, 38
subprogram, 191
subprogram overloading, 346
subrange, 279
subroutine, 242
subscript, 174
subscript range error, 390
subscript-error condition, 381,

382
SUBSTR, PL/I function, 168
substring, 168
successor function, 278, 280
support, 16
support library, 9, 387
suppression of exception, 388
symbol, 18, 37
symbol table, 121, 362
symbol, goal, 39
synchronization of tasks, 397,

408

Index 459

synchronizing signal, 403
synchronous event, 378
syntactic category, 38
syntactic component, 30
syntactic error, 60
syntactic unit, 30
syntactically legal program, 18
syntax, 18,25-61,421,427,430

chart, 55
diagram, 55
error, 18, 31, 32, 91
meta-language, 39

systems programming language, 184,
185

tag in variant record, 180, 181
ta ii, Apply function, 300
Tannenbaum, Andrew, 431, 445
tape label checking, 384
target machine, 8, 95
target variable, 396
task, 396, 408

communication, 396, 409
interruption, 403

Teitelbaum, Ray, 436
Tempo, 239
temporary storage, 208, 232
Tennent, Richard, 96, 445
terminal symbol, 39, 40, 42
terminal, user, 349
termination of loop, 149
termination of program, 69, 377, 386
terminator, 34
terminology, 78, 80, 99, 413
thtlorem prover, 92
Through the Looking Glass, 106
token, 59
Tokura, N., 443
top-down parsing, 59
top-down presentation, 78
Tower of Babel, 3, 6
transfer of control, 138
transformation of program, 93
translation, 55, 92
translator, 8
trap, 387, 388
tree, 374
trigonometric functions, 4
trimmed array reference, 176
truncation of results, 172

460 Index

type, 15?-185, 275-292, 355-372,

424, 426
check, 285
checking, 184
declaration, 276
definition, 284
encapsulation, 288, 289, 290
of function, 306
of operator, 306
union, 370

Type Mini-language, 161
type-free language, 184
Typedef Mini-language, 277
typeface, use of, 52

Ullman, Jeffrey, 233, 433
unary operator, 167
undefined semantics, 83
undefined value, 90
undefined value error, 71, 73, 81,

200
undefined_value condition, 381
underlining in syntax definition,

43,52
understanding, II, 12
understanding program, 290
understanding recursion, 319
union type, 181, 185, 370
universal language, 6
UNSPEC, PL/I function, 185
until statement, 148, 253
update, parameter, 205, 207
Uzgalis, Robert, 61, 436

V, semaphore operation, 409, 414
value, 80, 105-122
value-returning procedure, 210
van der Meulen, S. G., 434
van Wijngaarden, Aard, 434
variable, 109

global, 200-222, 230, 309, 311
313, 322-384, 387, 425-426

local, 223, 232, 426
shared, 408

variant record, 180
VARYING, PL/I attribute, 169
VOL, 86, 96
vector, 174, 176
Venus probe, 32
verification, II, 13
Vienna Definition Language, 86, 96
vocabulary, 30, 37, 40

von Neumann, John, 423

wait, 397, 409, 414
Walk, Kurt, 86, 96, 441
Weil, Roman, 214, 445
Wexelblat, Richard, 21
Whitaker, William, 420, 445
White Knight, 106
white space, 33
Whitehead, Alfred North, II, 445
Whorf, Benjamin, 10, 446
widening, 174
Williams, John, 436
Wirth, Niklaus, 20, 55, 88, 96, 308

434, 439, 443, 445-446
with, Pascal construct, 180
writability, 13
WRITE, Fortran statement, 341
Wulf, William, 123, 239, 434-435,

Wurges, H., 389, 443
Zahn, Charles, 272-273
ZilIes, Stephen, 292, 431, 441

	Acknowledgments
	Contents
	Preface
	The Landscape
	1. Introduction
	2. Syntax
	3. Semantics
	Dominant Features
	4. Names, Locations, and Values
	5. Control Structures
	6. Data Types
	7. Procedures and Parameters
	8. Nesting and Scope
	A Closer Look
	9. Higher Level Control Structures
	10. Definition of New Data Types
	11. An Applicative Language: Functions and Recursion
	Enhancement
	12. Input and Output
	13. Dynamically Varying Structures
	14. Exception Handling
	15. Parallel Processing
	The Landscape Re-examined
	16. The Swamp of Complexity
	References
	Index

