
William A. Barrett

John D. Couch

COMPILER CONSTRUCTION:
THEORY AND PRACTICE

COMPILER CONSTRUCTION Theory and Practice

COMPILER CONSTRUCTION
Theory and Practice

WILLIAM A. BARRETT
JOHN D. COUCH

Composition
Acquisition Editor
Project Editor
Technical Art

Typothetae and William A. Barrett
Alan W. Lowe

Jay Schauer
Blakely Graphics

© 1979 Science Research Associates, Inc. All rights reserved.

Printed in the United States of America.

Library of Congress Cataloging in Publication Data

Barrett, William A
Compiler construction.

Bibliography: p.
Includes index.
1. Compiling (Electronic computers) I. Couch,

John D., joint author. II. Title.
QA76.6.B367 001.6/425 78-26183
ISBN 0-574-21160-8

10 9 8 7 6 5 4 3 2

FOREWORD by Harold Stone

Compiler Construction: Theory and Practice is exactly what the title promiseso
It is an excellent mix of the mathematical foundations of compilers and the
practical considerations required in developing high quality compilers for
commercial release. The level of discussion is suitable for college juniors and
seniors. The material is readily digested because all of the mathematical pre­
requisites are included in the book, and they are exposed in a highly palatable
fashion.

One of the strengths of the book is that algorithms are normally discussed
in high-level Pascal-like language that brings out the structure and flow of
the algorithms with great clarity in contrast to similar descriptions in flow­
chart language or automation operations used by some earlier texts in the
area. The authors do a particularly commendable job on the practical aspects
of code generation, code optimization, and syntax error handling, all three of
which are still "black arts" by comparison to the topic of parsing where
theory and practice have largely merged.

Here is a book that the professional compiler writer can use to create better
language translators, that the computer scientist and engineer can use to gain
an understanding and appreciation of the process of language translation
that is part of his interface with the computer, and that the student can use to
further his knowledge of the capabilities of computers and methods for
harnessing the power of the computer.

v

FOREWORD by W. M. McKeeman

The art of translating programming languages has, in many ways, come of
age. From its beginnings in Fortran and Algol and hundreds of other lan­
guages, we find the concept of high-level languages well established and the
construction of translators routine.

Such progress exists because of the highly developed craft of compiler
writers to whom the tools of the trade are well-known and regularly applied.
There are few places where that rich craft is recorded altogether in a way
that is understandable and immediately applicable. To provide such a source
is the purpose served by the following text.

The reader must be a programmer. The terminology comes from that
field, and the insights necessary to understand the material do so as well.
Assuming that background, the reader should find here the world of auto­
matic translation opening up - from the formalities of language description
to the tough details of machine code generation. It is a fascinating subject
and well worth the intellectual effort of study.

vi

PREFACE

Compiler Construction: Theory and Practice is intended as a one- or two­
semester course in the fundamentals of compiler construction andjor lan­
guage translation. It is designed especially for students with some program­
ming and computer systems background. A strong background in discrete
mathematics is helpful, but not required.

This text treats:

• Grammars, trees, and parsing fundamentals.

• Finite-state automata-their relation to regular grammars and regular
expressions, their systematic generation, their reduction to minimal
form, their representations, and their application to compilers.

• Top-down parsing - principles, LL(k) grammars, LL(1) and recursive­
descent parsers.

• Bottom-up parsing-principles, precedence parsers, and the LR(k)
parser.

• Syntax-directed translation-principles and application to translation.

• Symbol tables and operations-principles, scope rules, type rrues,
static representation of PLjI, Cobol, and Pascal structures. Efficient
name table access methods.

• Run-time machine models-to support recursive procedure calls,
block structure parameter passing, data space allocation, and data
access.

• Practical machine systems- a review of three commercial machine
systems and their application as a target machine. Details of loader
design, support of partial compilation, relocation, recursive calls, etc.

• Optimization-efficient register allocation, constant folding, recog­
nition of common subexpressions, and introduction to data-flow
analysis.

• Error recovery- recovering from syntax, scanner and semantic errors,
with special attention paid to LR(k) recovery, use of forward move,
and experimental studies of recovery.

The Authors

The authors have both academic and industrial experience in compiler con­
struction. William Barrett taught courses in introductory computer systems
and compiler construction at Lehigh University, Bethlehem, Pennsylvania,

vii

viii Preface

before accepting a staffposition in software development at Hewlett-Packard,
Cupertino, California. He is currently responsible for a systems program­
ming language. Its compiler incorporates a number of advanced features
described in this textbook. John Couch taught compiler construction at
San Jose State University for several years. Formerly responsible for systems
software development at Hewlett-Packard, including several compiler proj­
ects, he is now Director of Product Development for Apple Computer Co.,
Cupertino, California.

As teachers, the authors believe that some language theory is an essential
part of compiler construction. However, much of language theory is irrele­
vant to compiler construction. This text should help bridge the gap between
theory and practice.

The authors also believe that a balance should be struck between parsing
and code synthesis, and between top-down and bottom-up methods. Although
most of the synthesis material in this text pertains to bottom-up parsing,
both parsing approaches are given approximately equal treatment. Many
of the synthesis considerations are applicable to either parsing approach.

Features

Along with basic core material, this text contains source material that has
been collected in one book for the first time, and original material found
nowhere else.

The first three chapters present a core treatment of grammars, trees,
parsing, and finite state automata. We have included only enough language
theory and automata theory to understand parsers and compilers. We have
omitted such topics as Turing machines and computability. Enough auto­
maton theory is presented to make it possible to develop the commonly
used top-down and bottom-up parsers, and to prove that they perform as
claimed. We believe that, with the formal descriptions, proofs, extensive
discussions, and the many examples ofmachines and machine traces, a student
will be able to understand how a parser works, and will also be able to
understand professional literature in programming languages for additional
information.

Chapter 3 discusses finite state automata, their relation to regular gram­
mars and regular expressions, and their reduction to minimal form. As an
application, lexical analysis is discussed briefly. A designer mustbe aware
that some languages, such as Fortran, pose difficult lexical problems. Such
problems are discussed in some detail.

The remaining chapters contain much original material. An extensive
discussion of recursive descent parsers will be found in Chapter 5. We not
only describe this commonly used parsing method, but also develop an
automatic generator and the conditions under which the parser operates
correctly.

Preface ix

The LR(k) parsing methods, which are recently being incorporated into
some commercial compiler systems, are discussed in considerable detail in
Chapter 6. Methods of reducing the size of the stored LR tables and of esti­
mating the size of the tables are also given. Parser reductions based on special
grammar properties are described in some detail.

The organization of a symbol table for single and multiple pass compilers
with multiple block levels is given in Chapter 8. Efficient access methods
are also described there. We show how to organize a symbol table for PL/I
structures and P~scal types, and how to resolve partially specified names.

Run-time data structures are dealt with in Chqpter 9. We develop a special
machine system that can be used to implement Algol, Fortran, Pascal, and
many other languages. This system, or its equivalent, must be emulated or
simulated in order to support various features of these languages. The im­
portant issues of procedure calls, parameter passing, blocks, and array and
structure access are dealt with in considerable detail. The material on the
efficient access of multi-dimensional arrays and structures should be of par­
ticular interest.

Three specific machine architectures and their supporting system con­
ventions are described in some detail in Chapter 10: the HP 3000, CDC 6400,
and the IBM 360. The HP 3000 system is described at length. However,
the principles of loader table design and machine architecture, exemplified
in the tIP 3000, are applicable to any system. In particular, we show how
procedUres can be independently compiled and brought together later by a
loader to form a complete program.

Optimization issues are dealt with in Chapter 1-1. We have followed a
modern school of thought in this area- that of constructing a directed acyclic
graph of a program segment, then performing various reductions on that
grqph. We consider the multi-register allocation problem at some length,
following the work of Aho and others in this field. Finally, we develop the
fupdamental notions of flow analysis, which can be used to reduce code and
to detect subtle programmer errors during compilation.

The book ends with a chapter on error recovery. We classify program
errors, then deal at some length with the problem of patching over a syntax
error in a free-form language. We give different methods of dealing with
syntax errors and discuss their effect on semantic issues. We summarize the
results of some error recovery experiments.

Designing a Compiler Course

For a one-semester course, some portions of this text should be covered in
detail; other sections should be approached tangentially. To concentrate on
basic matters in one semester, Chapters 1-4 and 6-9 provide a solid ground­
ing in grammars, top-down and bottom-up parsers, syntax-directed trans­
lation, symbol table issues, and static and dynamic data structures. We sug-

x Preface

gest skipping Chapter 5, on precedence methods, and Chapters 10 through 12.
For a two-semester course, use Chapters 1-7 and Chapter 12 for the first

semester, then 8-11 for the second semester. These chapters should be
augmented with additional outside material or a class project. Many sug­
gestions for projects are contained in exercises in these chapters. If the course
is being taught for the first time, a useful project would be a top-down or
bottom-up parser generator, based on the algorithms given in the text. This
generator can thep be used in subsequent years as a tool for practice in
designing grammars and in writing compilers.

A simulator of the system described in Chapter 8 and a compiler that
generates code for this system would also be instructive projects.

Acknowledgements

We wish to thank Frank DeRemer, Harold Stone, and Bill McKeeman for
many helpful criticisms and a detailed reading of the manuscript; Richard
Page of Hewlett-Packard for simulating the AOC machine and correcting
potential errors; Steve Glanville for his criticism and for permission to use
his thesis material; Tom Pennello for permission to use his thesis material;
George Miller of the University of California for classroom testing this text;
and Fred Clegg, and Tom Whitney for their patience, encouragement, and
understanding.

We wish to thank Hewlett-Packard for allowing us to use their computer
systems for manuscript preparation. We thank Control Data Corporation,
IBM, and Hewlett-Packard for permission to create illustrations based on
their technical manuals.

Finally, we thank our wives who supported us, despite the fact that we
were around the house much less than they (and we) would have liked,
through the many long hours spent working on "The Book."

WB.
I.e.

CONTENTS

Foreword by Harold Stone

ForevJord by W Mo McKeeman

Preface

1. Introduction

1.1. Translators
1.2. Why write a compiler?
1.3. The cost of a compiler
1.4. The compiling process
1.5. Translator issues

2. Introduction to language theory

2.1. Language elements
2.1.1. Tokens and alphabets
2.1.2. Strings

2.2. Generative grammars and languages
2.2.1. Terminals and nonterminals
2.2.2. Production rules and grammars
2.2.3. Classes of grammars
2.2.4. Sentential forms and language definition
2.2.5. Production trees and syntax trees
2.2.6. Canonical derivations
2.2.7. Ambiguity

2.3. Introduction to parsing
2.3.1. Top-down and bottom-up parsing
2.3.2. Backtracking
2.3.3. A deterministic top-down parser
2.3.4. A deterministic bottom-up parser

2.4. Bibliographical notes

3. Finite-state machines

3.1. Formal definitions
3.2. Transformation of a NDFSA to a DFSA

3.2.1. Empty cycle detection and removal
3.2.2. Removal of empty transitions

xi

v

vt

vu

1

1
2
6
7

11

15

15
15
16
17
18
19
20
26
28
40
43
46
46
50
58
60
62

63

67
75
76
77

xii Contents

3.2.3. Transformation from nondeterministic
to deterministic 82

3.2.4. Accessible states 85
3.3. Machine equivalence 88

3.3.1. Definitions 88
3.3.2. Reduction 90
3.3.3. A systematic reduction method 94

3.4. Regular grammars and FSA 97
3.5. Regular expressions and FSA 100

3.5.1. Definitions 100
3.5.2. Regular expression identities 103
3.5.3. Correspondence to FSA 104
3.5.4. Regular expression of a regular grammar 111

3.6. FSA representations 114

3.6.1. Sparse array tables 114
3.6.2. Table reductions 117
3.6.3. Sparse array representation of a FSA 117
3.6.4. Program representation of a FSA 120

3.7. Applications of FSA 122
3.7.1. Recognition of literals 122
3.7.2. Lexical analysis 124

3.8. Some FSA theorems and their proofs 132
3.8.1. Equivalence of empty cycle states 132
3.8.2. Equivalence through removal of empty moves 132
3.8.3. Equivalence on the NDFSA to

DFSA transformation 134
3.8.4. The pairs table reduction algorithm 134

3.9. Bibliographical notes 136

4. Top-down parsing 137

4.1. Nondeterministic push-down automata 137
4.2. LL(k) grammars 148

4.2.1. Definitions 148
4.2.2. Some properties 149

4.3. Deterministic LL(1) parser 155
4.3.1. LL(1) selector table 156
4.3.2. LL(1) grammar transformations 160

4.4. Recursive descent parsers 161
4.4.1. Construction and validation 167
4.4.2. Extended grammars 176
4.4.3. Construction and validation from

extended grammar 178
4.5. BibliographiCal notes 192

Contents xiii

5. Bottom-up parsing and precedence parsers 193

5.1. Nondeterministic bottom-up parsing 193
5.2. Precedence parsing 199

5.2.1. Relations 201
5.2.2. Boolean matrix sum and product 202
5.2.3. Viable prefix 205
5.2.4. Precedence pairs 205
5.2.5. Precedence relations 206
5.2.6. Simple precedence grammar 206
5.2.7. Wirth-Weber relations 212
5.2.8. Other precedence parsers 218

5.3. Bibliographical notes 223

6. Bottom-up LR(k) parsers 224

6.1. LR(k) grammars and parsers 224
6.1.1. LR(k) grammars 224
6.1.2. An LR(1) parser 225
6.1.3. LR(O) parser construction 235
6.1.4. Resolution of inadequate states 246

6.2. LR(k) parsers 252
6.2.1. Canonical LR(1) parsing tables 254
6.2.2. A canonical parser 255
6.2.3. Table reductions 260
6.2.4. LALR(1) tables 268

6.3. Augmented grammars 269
6.4. Size of LR(k) tables 273
6.5. Comparison of parsing methods 275
6.6. Bibliographical notes 278

7. Syntax-directed translation 279

7.1. General principles 279
7.1.1. Definitions 280
7.1.2. Tree transformations 282

7.2. Simple SDTS and top-down transducers 284
7.3. Simple postfix SDTS and bottom-up transducers 289
7.4. A general transducer 295
7.5. String transducers and their limitations 299

7.5.1. String translators 299
7.5.2. Abstract-syntax tree construction 303
7.5.3. A practical bottom-up synthesis system 308

7.6. Bibliographical notes 319

xiv Contents

8. Static representations of data objects 320

8.1. Symbols and declarations 321
8.2. General organization of a symbol table 323

8.2.1. Scope of names 324
8.2.2. Names and attributes 329

8.3. Data objects and their static representation 333
8.3.1. Primitive objects 334
8.3.2. Types 337
8.3.3. Structures 342

8.3.3.1. Array objects 344
8.3.3.2. PL/I structures 347
8.3.3.3. Pascal structures 352

8.4. String tables and their access 361
8.4.1. Linear access 363
8.4.2. Binary access 364
8.4.3. Tree access 366
8.4.4. Hash access 368
8.4.5. Comparison of access methods 372

8.5. Bibliographical notes 375

9. Run-time machine structures 376

9.1. Introduction 376
9.2. Run-time structures for Algol-like languages 377

9.2.1. Arithmetic and logical expressions 379
9.2.2. Assignment statements 382
9.2.3. Conditionals 384

9.3. Stack and heap allocation 386
9.4. Input-output 388
9.5. Blocks and storage allocation 388
9.6. Procedures and recursion 393

9.6.1. Procedures and the free variable problem 397
9.6.2 Textual addresses 401
9.6.3. Block entry and exit 403
9.6.4. The static display chain 407
9.6.5. The display revisited 411
9.6.6. Labels and GOTO's 413

9.7. Arrays 418
9.7.1. Packed arrays 418
9.7.2. Array access through matrix pointers 425
9.7.3. Dynamic arrays and redimensioning 429
9.7.4. Pascal data structures 431
9.7.5. Pascal data object access 434

9.8. Typed procedures and procedure parameters 437

Contents XV

9.8.1. The procedure copy rule (PCR)
and call by name 438

9.8.2. Call by value (CBV) 439
9.8.3. More about free variables 441
9.8.4. Fortran parameter-passing rules 442
9.8.5. Implementation of CBV·and typed procedures 443
9.8.6. Typed procedure return value 445
9.8.7. Implementation of CBN procedure parameters 446
9.8.8. Implementation of eBN label parameters 448
9.8.9. Summary of procedure parameter mechanisms 450
9.8.10. Call by name of implementation 454
9.8.11. CBV versus CBN 460

9.9. Summary of AOC instructions 460
9.10. Bibliographical notes 453

10. Object code and machine architectures 465

10.1. Introduction 465
10.2. Intermediate languages 466
10.3. The pros and cons of intermediate languages 470
10.4. Machine architectures 473
10.5. The Hewlett-Packard 3000 475

10.5.1. Data formats 475
10.5.2. Memory and register organization 476
10.5.3. Memory reference instruction format 478
10.5.4. Indirection and indexing 479
10.5.5. Stack configuration during program execution 482
10.5.6. Stack marker, procedure calls, and exits 482
10.5.7. Instructions 487
10.5.8. Allocation of memory space for OWN and

outer block variables 493
10.5.9. Partial compilation and segmentation 493
10.5.10. The USL file structure 494
10.5.11. Procedure compilation and USL linkage 496
10.5.12. Primary DB header 497
10.5.13. Secondary DB/ 0 WN initial values header 498
10.5.14. Procedure call header 499
10.5.15. OWN variable pointer correction header 501
10.5.16. Procedure local variables 501
10.5.17. Branches and constants 503
10.5.18. Conclusions 507

10.6. The Control Data 6000 computer system 511
10.6.1. Registers and arithmetic 513
10.6.2. Instruction format 515
10.6.3. The register set operations 516

xvi Contents

10.6.4. Arithmetic and logical operations 517
10.65. Branches 518
10.6.6. Other operations 520
10.6.7. Procedure parameters in a Fortran

implementation 520
10.6.8. Arithmetic expressions 521
10.6.9. Saving and restoring registers 522
10.6.10. Relocatable linking and partial compilation 523
10.6.11. A Pascal implementation 524
10.6.12. Summary 525

10.7. The IBM System/360 527
10.7.1. Instructions 529
10.7.2. An instruction example 531
10.7.3. Procedures and program relocation 534
10.7.4. Save areas 535
10.7.5. Object modules 536
10.7.6. Addressing 538
10.7.7. Object module design 539
10.7.8. Register allocation 541
10.7.9. Summary 542

10.8. A generalized code generator 543
10.8.1. Table construction 547
10.8.2. Experimental results 549

10.9. Bibliographical notes 550

11. Optimization 551

11.1. Machine-dependent optimizations 553
11.2. Machine-independent optimizations 553

11.2.1. Expression (AST) optimizations 556
11.2.2. Flattening 557

11.3. Optimal AST" evaluation for a multiregister machine 562
11.3.1. The machine 563
11.3.2. Tree labeling 564
11.3.3. Optimal code generation 565
11.3.4. Discussion 567
11.3.5. Commutative operators 570
11.3.6. Associative and commutative operators 571

11.4. Code improvement over a sequence of statements 572
11.4.1. Blocks 573

Contents xvii

11.4.2. Variables and their domains 574
11.4.3. Equivalent and normal blocks 575
11.4.4. Representation of a block as a (DAG) 576
11.4.5. Value of a DAG 577
11.4.6. Common subexpression identification 578
11.4.7. Use of associativity and commutativity 579
11.4.8. DAG reduction 580
11.4.9. DAG evaluation 581
11.4.10. Register assignment and code generation 584

11.5. Data flow analysis 587
11.5.1. Definitions 588
11.5.2. The basic data flow analysis method 594
11.~.3. Intervals 596
11.5.4. Higher order intervals 597
11.5.5. Use and live information 599
11.5.6. The interval-based reach algorithm 600
11.5.7. Applications of data flow information 603

11.6. Bibliographical notes 605

12. Error recovery 607

12.1. Introduction 607
12.2. Semantic errors 611
12.3. ~yntax errors 613

12.3.1. General methods 614
12.3.2. Diagnosis of a syntax error 614
12.3.3. Patching a syntax error 615
12.3.4. Semantics operations in error recovery 618
12.3.5. A bounded-range error recovery strategy 618
12.3.6. Variations on the bounded-range strategy 620
12.3.7. Forward move 621
12.3.8. Correction strategies with a forward move 623
12.3.9. Empirical study of error recovery 628
12.3.10. Recovery in a recursive descent compiler 636

12.4. Bibliographical notes 637

Annotated bibliography

Index

639

655

CHAPTER 1

INTRODUCTION

1.1. Translators

A translator accepts a source program and transforms it into an object
program. The source program is a member of a source language and the object
program is a member of an object language. Both languages are artificial,
inasmuch as they are designed for a digital computer, as opposed to a natural
language like English or German.

Each program expresses some algorithm. Weare primarily interested in
those translations for which the source and object algorithms are identical.
For example, a Fortran program should yield the same results for a given
input regardless of the machine language to which it is translated. Those
results should be as expected from the specification of the Fortran language
and the algorithm as expressed in Fortran.

Artificial translation is rapidly becoming a mathematical discipline, while
natural translation remains rather more an art. Yet the two are somewhat
akin. Any student of foreign languages knows that one language cannot be
translated to another by simply substituting words. A human translator must
first grasp the precise meaning of each source sentence, then compose an
equivalent sentence in the object language. So it is with artificial translators.
A source program must first be analyzed to uncover its underlying meaning
and structure; this process is called parsing. Then a number of transforma­
tions on the structure are performed, ultimately ending in the object program.

For a given source language, the translation may be carried to several
different levels of completeness: to assembly code, to machine code, or to
execution. Assembly code' is a sequence of mnemonic instructions and
symbolic address references; it is a member ofan assembly language, and must
be translated into machine code by yet another translator called an assembler.
Assembly language usually has a very simple structure with a fixed format-a
program location field, an instruction field, and an address field. Each line of
assembly code usually translates to one machine instruction. There are no
nested statements, arithmetic expressions, or procedures as in Fortran or
Algol.

Machine code is a sequence of binary machine instructions that require
little or no modification in order to be executed.

An interpreter accepts a source program, translates it into some intermedi­
ate data structure, then executes the algorithm by carrying out each operation
given in the intermediate structure. An interpreter is considerably less
efficient than a compiler, because it carries the burden of intermediate
structure analysis as well as execution. However, a program can be rapidly

1

2 Compiler Construction: Theory and Practice

developed with an interpreter, since its test can follow its modification so
rapidly.

The advantage of a compiler is that it generates an efficient, short,
executable program. It demands fairly heavy computer resources while
compiling, but when executing, only those resources needed by the executing
program are required. The disadvantage of a compiler is the lag time between
writing a program and executing it.

An interpreter as an algorithm is very similar to a compiler. The analysis of
the source statements and bookkeeping for identifiers and literals are tasks
common to interpreters and compilers. We shall therefore not be concerned
with the differences between an interpreter and a compiler in this textbook.

A compiler or an interpreter is itself a program written in some language,
called the host language. We therefore see that three languages are involved in
a compiler- source, object, and host. These are often three different
languages. A Fortran compiler that runs on an IBM 360 might be written in
PL/I, and generate machine code for a 1401. A compiler that generates code
for its host machine is called self-resident; if, in addition, it is written in its
own source language, it is self-compiling. If it generates code for a machine
other than the host, it is called a cross compiler.

1.2. Why Write a Compiler?

A programming language is designed and a compiler written for it for only
one reason-to make it easier for human beings to get a computer to carry out
a class of tasks. If it were possible for us to rapidly translate a task description
into the long lists ofbinary numbers that a computer expects as its instruction
list, with no errors, then programming languages and compilers would be
unnecessary. Unfortunately, human beings make mistakes. They are unable
to cope with a big list of binary numbers, and their time is valuable compared
to machine time. A computer is well suited to clerical tasks and can handle
them cheaply and accurately. One task that a computer can be expected to
perform is assisting us in programming itself.

Here are some of the services that a compiler should provide for its user:

1. Evaluate symbolic references to instructions and instruction locations.
Consider branches. At the machine level, a branch might look like this in
16-bit octal code:

location contents

037663 024433

On an HP 2100 minicomputer, the number 024433 is interpreted as a
direct branch to location 433. (The "024" is the instruction and the "433" is
the address.)

Now it is unreasonable to expect anyone to remember the rather
complicated pattern ofbits that make up a branch instruction, nor those of the

1 Introduction 3

dozens of other instructions offered on a typical small computer. It is
therefore better to assign a mnemonic name such as JMP to each instruction.
Then the same branch might be written

location contents

037663 JMP 433

This change reads better than the 024433, yet now requires some kind of
ufu.ls1ator, one which can interpret the characters in "JMP" and turn them
into the "024" of the JMP instruction on a 2100. The other instructions may
similarly be given mnemonic codes. A simple program might then look like
this:

location contents comment

(start) 0 LDX 7 {Load index register, address 7}
1 LDA 7,X {Load accumulator, indexed}
2 DSZ {Decrement X and skip if zero}
3 JMP 6 {Go to location 6}
4 ADA 10,X {Add location 10, indexed,

to accumulator}
5 JMP 2 {Go to location 2}
6 HLT {Stop}
7 4 {Data needed by the program}

10 16
11 32
12 176
13 24

This program can now be read by someone familiar with the 2100 instruction
set. The intention of the programmer was to add up the list of four numbers
in locations 10 through 13. However, the program doesn't do that; it simply
loads 24 in the accumulator register, then halts. There are several errors; a
correct program is given below:

location contents

0 LDX 6
1 LDA 7,X
2 ADA 6,X
3 DSZ
4 JMP 2
5 HLT
6 3
7 16

10 32
11 176
12 24

4 Compiler Construction: Theory and Practice

Now these errors would be obvious only to someone with considerable
experience in 2100 assembly language coding. Yet this is quite a simple
algorithm. How many errors are likely to be introduced in the assembly­
language coding of a large data base manager or of an operating system?

Notice that lots of things have changed between the two programs. The
most painful change is the removal of one instruction, which has caused a
shift in the locations of the variables and all the instructions past the deleted
one. In other words, every instruction referring to one of the shifted constants
must be changed. One simple change in a long list of instructions can require
many changes throughout the program.

The burden of finding and changing lots of instructions can be removed as
a human activity and shifted to a computer by introducing symbolic location
names. Any location that must be referred to in an instruction is assigned a
sYmbolic name; then only names need appear in instructions. The assembler
must then determine the location of each label and fix the instructions
accordingly. The sample program then might look like this:

LDX Ll
LDA L2,X

L4: ADA Ll,X
DSZ
JMP L4
HLT

Ll: 3
L2: 16

32
176
24

Symbolic labels carry several unexpected bonuses. The absolute locations
have disappeared, which means that our program may now be placed
anywhere within some other program; the assembler will work out the
locations. Only those locations that must be referenced are labeled; however,
the label associated with some instruction may be hard to find in a large
listing. The assembler may check that every symbol appears as a label exactly
once in the program.

2. Constants should be converted to internal form by a compiler. Modern
computers can handle a variety of internal data forms, for example,
multiple-precision integers, floating-point (real) numbers, packed decimal
numbers, strings, etc. No human being should be expected to perform the
required conversion to internal form; there is also no valid reason why a
programmer should even have to know the internal form.

3. Special control structures may be devised that read better than the
primitive instructions of an assembler. For example, the sample program
might read as follows in Algol:

1 Introduction 5

INTEGER ARRAY A(4):=(16, 32, 176,24);
INTEGER I, SUM;

SUM:= 0;
FOR I := 0 UNTIL 3 DO SUM: = SUM + A(I);

Although this is somewhat more wordy than the assembly language form, it is
certainly easier to understand. The data variables are clearly declared
separately from the algorithm that operates upon them, and the one-line FOR
statement expresses the desired operation very clearly.

If a concise description of an algorithm is the most desirable feature of a
programming language, then the language APL probably takes top honors.
The above algorithm to add the four numbers 16,32, 176, and 24 is written
this way in APL:

SUM (- + /(16 32 176 24)

4. Programs written in any of several common high-level languages are
often transportable. By this, we mean that a program written in, say, Fortran,
can be compiled and executed with few changes on any of several different
computers, despite differences in internal architecture and instruction set.
When software is transportable, a computer user with a large program library
may change computers without incurring a heavy software development cost.
Programs written in assembly language for one computer are worthless on
any other computer. Computers also become obsolete, and the assembly
language programs written for them become worthless.

5. Assembly language programs are much more likely to contain subtle
errors than the same programs written in a high-level language. There are
several reasons for this: assembly language is hard to read except by an expert
very well versed in the machine; assembly language programs are "unstruc­
tured," i.e., there are no control structures to guide coding and reading; it
takes many more assembly language instructions to achieve the same effect as
a suitable high-level language statement; and a machine instruction often has
many subtle side-effects to trap an unsophisticated programmer, e.g., a
condition code or carry bit may be set or cleared and an index register value
may be altered. A modern high-level programming language and its compiler
should protect the programmer from many such error-causing complications.

6. A high-level language lends itself to the division of the labor of a
software task. A programming team can agree on the properties of certain
procedures or macros, then go their separate ways to write and check out their
part of the whole task. This principle also applies to a sophisticated
assembler, but more agreements need to be reached on programming
conventions among the team during the design phase.

7. A modern high-level language will engender good programming style.
For example, an IF-THEN-ELSE construct forces a programmer to

6 Compiler Construction: Theory and Practice

consider both alternatives of an IF test; a failure to deal with one cries out
from the printed page. In assembly language, it is often difficult to find the
two alternatives of a branching test, and it is easy to obscure one of the two.
The compiler can be made to check array bounds, so that during testing, any
instance of an out-of-range index can be detected and subsequently analyzed.
Good programming style also means that someone else can read and
understand the program without a lot of analysis.

8. A number of high-level languages are rather simple in structure and can
easily be learned by someone with little or no computer background. For
example, BaBic is used extensively in some grade schools. Such languages
make computer services accessible to people who would otherwise never
consider using them.

These ::\re some of the major advantages provided by a high-level
programming language and a compiler for it. There are many others. All
these result in an appreciable increase in engineering efficiency in the writing,
maintepance, and modification of software.

1.3. The Cost of a Compiler

The development of a compiler is a major software effort. Depending on
the complexity of the language and the target machine, as little as three
man-months or as much as thirty man-years may be required to write and
debug a compiler. The most complex compiler ever written was probably
PL/I for the IBM. 360. PL/I is an extraordinarily rich language, containing
not o~y several file access methods, but a large set of data types and
operations.

Another cost is a certain loss of machine efficiency for a program written in
a high-level lapguage compared to the same algorithm written by a skilled
programmer using assembly language. A high-level language imposes certain
constraints upon a programmer in its forms ofcontrol structures, limited data
types, etc., whicp. do not exist in assembly language. This loss of efficiency is
particularly severe for a high-level language that is not particularly well
suited to its target machine. Thus Algol and PLII are rather well suited to a
stack architecture. A multiregister m~chine, such as the 360, generally
requires elaborate optimization techniques in order that a compiler can
compete with an assembl~r in number of words of code and execution time.
The optimizat~onphase of compiler design for a machine poorly suited to the
language can double the compiler cost and size.

A compiler's inefficiency in generating executable code is p~id for upon
each use of the code. If that cost is deemed too high, several alternatives can
be chosen, among them recoding in another language, or coding portions of
the software in assembly language. Often an inefficiency in a programming
system stems' from a poor choice of algorithm, or a poor peripheral device
access strategy, rather than from ;m inherent inefficiency in the compiler.

1 Introduction 7

1.4. The Compiling Process

The major operations in a compiler are illustrated in figure 1.1. The
process begins with a source file at the top of the figure, and ends with
optimized object code at the bottom. Our description in this section will
necessarily be highly simplified; many special problems in a real compiler
system will be overlooked in this review.

Source Source
file Records File records

, I
access

2

DDDDDDDD Character
III(

manipulator

3

Characters
Scanner ~Oc=J

J\ 4

~I\rl I
Tokens

Abstract Parser

syntax
tree

Lj
I

J\ Reduced
Optimizer • /\ tree

r~·
6 \

Raw

I
Code I· Iobject

code
generator

7

I Peep hole ,~ Optimized
optimizer object

code

Figure 1.1. Majoroperations in a compiler.

8 Compiler Construction: Theory and Practice

A compiler is based on a sequence of transformations that preserve the
operational meaning of a program, but not necessarily all the information in
it, nor even the exact sequence of operations requested (or thought to be
requested) in the source program.

The nature of the system upon which the compiler resides has a strong
influence on the design ofa compiler. Most computers have a severely limited
"fast" memory (semiconductor or magnetic core), but extensive "mass"
memory (disk, drum, magnetic tape). A compiler is often expected to process
very large source programs, so that only a relatively small portion of the
source can be actively under process at anyone time. A compiler must usually
be such that only the least information necessary be retained in fast memory,
and such that most of the compilation is sequential in character-object code
or some intermediate structures will be emitted as additional source is read.

Not all translators fit this pattern, nor must a compiler be strictly sequential
on all systems. A system with virtual memory, for example, has unlimited
memory available, in effect, so that sequential processing is less important.
An interpreter usually has to carryall of the source, symbol tables, and
program along during editing and execution; however, they need not
necessarily all be in fast memory.

Compilation begins with some source form, shown in figure 1.1 as a file. Of
course, source can originate in any of a variety of forms, such as punched
cards, paper tape, a terminal, and magnetic tape. Their access is quite
different, but the differences are usually of little or no concern to the compiler
writer. File access (box 1) is generalized in most operating systems, so that the
particular form of source is of no consequence. The compiler therefore first
sees some sequence of source records, emitted by box 1.

In some languages, source record boundaries are important as statement
delimiters (e.g., Fortran or Basic). In others, source boundaries are of no
consequence. Hence a compiler will likely contain a section that accepts
source records and emits a sequence of characters, box 2. This section may
well detect and remove comments and special control commands that have
nothing to do with the source language. If the language specification is such
that blanks are ignored, then blanks would be suppressed by the character
manipulator, box 2. However, this is not always easy. In Fortran, blanks are
crucial in some contexts but not in others, and the necessary distinctions are
sometimes difficult.

The character sequence is next subdivided into a sequence of tokens by a
scanner or screener, box 3. A token may be a single character, or some special
sequence of characters. The scanner may be responsible for skipping
comments and blanks, if necessary. Examples of tokens are identifiers (names
assigned to variables, statement labels, etc.), quoted strings, numbers, and
special character sequences, such as ": =" in Algol.

Boxes 2 and 3 are sometimes called a lexical analyzer. They must be
tailored to the language and the grammatical description of the language

1 Introduction 9

chosen by the compiler implementors. For example, the Fortran source
record

6 DOl =4,X *(Y-16) ,16

would be translated by a lexical analyzer into the token sequence:

6
DO
I

4

x
*
(
Y

16
)

16

The token sequence emitted by the lexical analyzer is next processed by a
parser, box 4, whose task is to determine the underlying structure or
"meaning" of the program. Until the parser is reached, the tokens have been
collected with little or no regard to their position within the program as a
whole. The parser considers the context of each token and classifies groups of
tokens into larger entities such as declarations, statements, and control
structures. The product of the parser is usually an abstract syntax tree. (An
example of an abstract syntax tree for the Fortran DO statement is given in
figure 1.2.) A tree is a very useful representation of a program or program
segment, inasmuch as it facilitates several subsequent transformations
designed to minimize the number of machine instructions needed to carry out
the required operations.

The abstract syntax tree may next be subjected to a number of optimiza­
tions through a tree optimizer, box 5. The result is some reduced tree,
possibly rearranged to suit the needs of the machine architecture. Examples
ofoptimization possible at this level include: constant expression evaluation,
use of commutativity, associativity, and distributivity of certain operators to
collect constant expressions together, detection of common subexpressions,
or rearrangement to suit a particular architecture.

The reduced tree may then be transformed into a sequence of raw object
code by a code generator, box 6. The object code may be of several different

10 Compiler Construction: Theory and Practice

<DO statement>

<Variable)

1
<Constant) <Expression> <Constant)

1 ! 1
4 * 16

~
<Variable>

x <Variable)

!
y

<Constant)

1
16

Figure 1.2. Abstract syntax tree for the Fortran statement DO 1=4, X*(Y -16), 16

kinds, depending on the purpose of the compiler: (1) it may be machine code
for some particular target machine, or (2) it may be a special intermediate file
designed to be further processed by a loader, or (3) it may be specially
designed intermediate code that must be further translated by another system
into machine code or a loader structure.

Finally, the raw object code may be subjected to further optimizations by a
peep-hole optimizer, box 7. Such an optimizer examines short sequences of
code and determines whether, in certain cases, a sequence canbe replaced by a
shorter equivalent sequence. For example, the sequence

STaR A; {copy accumulator to location A}
LOAD A; {copy location to accumulator}

could be reduced by removing the LOAD instruction. This sequence can
easily occur if the STaR represents the end of one statement and LOAD the
beginning of another. As another example, the sequence

1 Introduction 11

LOAD A;
ADD =1; {add constant 1 to accumulator}
STOR A;

might be replaced by a single instruction,

INCM A; {increment contents of location A}

on a machine containing such an instruction. Such optimizations can
appreciably reduce the number of emitted instructions.

Other operations not shown in figure 1.1 include string table management
and error recovery. The string table contains a copy of each identifier
appearing in the program. It is usually linked to an attribute table, so that
properties assigned to some identifier can be made available throughout the
compilation process. The string table and attribute table together are called a
symbol table. The attributes of an identifier might include:

• How it was declared, (e.g. REAL, ARRAY).

• Its dimensions, if an array.

• The number of storage elements required for it.

• Its location in memory.

An error recovery system is usually attached to the parser, box 4, and takes
control when a syntax error in the source program is detected. Its purpose is
to diagnose the error and attempt some kind of recovery, so that the
subsequent source input need not be discarded. The error recovery system
may, for example, decide to insert some tokens, or discard some input tokens
in an attempt to patch over the offending section of source.

1.5. Translator Issues

Often a very simple compiler can be made by omitting all the optimization
steps, even the tree-building step. Many compilers generate machine code
directly through the parse steps, using a variety of heuristic methods to
achieve the translation.

A compiler might translate a source language to another closely-related
intermediate language, or to symbolic assembly code. The latter can then be
translated by some existing compiler or assembler to machine code. Many of
the functions of a full compiler can thus be omitted, considerably reducing
the compiler development task. However, such a compiler will likely neither
be very efficient nor generate particularly efficient object code.

A compiler that generates an intermediate language could be used with
several different machines. Of course, a translator from intermediate lan-

12 Compiler Construction: Theory and Practice

guage to each machine's code is also needed, but these are often easier to write
than several different complete compilers. For example, a translator from
Pascal to PCODE has been used to implement Pascal on several different
machines. In some of the implementations, PCODE is interpreted, rather
than translated.

The steps outlined in figure 1.1 may be carried out in one or several passes.
A pass in general is some scan through either the source records, or through
some translation of the source. A practical multipass compiler requires
sufficient temporary memory to hold the intermediate translation; this could
be any read/write medium. The intermediate structures may well be much
larger than the final machine code, and in any case, during compilation, the
machine's memory must be shared with the compiler program and the
compiler's data areas.

In a one-pass compiler, the different sections ofthe compiler represented in
figure 1.1 appear as different procedures in one large compiler program.
Whenever a point in some process is complete, a procedure may be called that
accomplishes the next step. For example, the parser may be the primary
"driver" for the compiler, i.e., the main program, first called. It might then
call the lexical analyzer to deliver one token; the lexical analyzer in turn may
call a file handler to deliver one record, etc. The parser in turn might then call
a tree-builder as the various parts of a source statement are analyzed. The tree
could be built in one of several different ways, but when enough is completed,
a tree optimizer might be called, then it calls the code emitters. In such a
system, all of the steps of figure 1.1 are repeatedly performed as the compiler
scans the source text, and code is emitted in short segments that correspond to
segments of source text.

In a multipass compiler, each of the steps in figure 1.1 might be a separate
pass. In practice, some groups of steps are combined, for example, it is
feasible to construct a sequence of abstract syntax trees in one pass, then
devote subsequent passes to reducing or transforming the tree. The tree itself
can either be stored as a linked-list data structure, or represented in some
linear form, such as reverse Polish.

The principle advantage of a multipass compiler is its ability to collect
information that can be used to efficiently allocate storage for variables and
emit instructions, information that is often difficult to obtain in one pass.
Some optimizations require several scans over a major source program
module. The principle disadvantage is that it is only applicable to a computer
system· with sufficient intermediate storage. Small computer systems that
have very poor or slow intermediate storage (e.g. paper tape) are therefore
poor candidates for a multipass compiler.

Summary

A compiler, as a translator ofone language to another, can be organized in a
variety of ways, depending on the source language, the target language, the

1 Introduction 13

degree of optimization desired, the time available to develop the compiler,
and its future value. A characteristic of nearly every compiler is a means of
translating source records into a sequence of tokens (characteristic of the
language), parsing this sequence to yield a syntax tree, and then transforming
the tree to yield the object program. Alternatively, it is usually possible to
bypass tree building, and simply emit code directly from the parsing system.
Modern practice seems to favor tree construction and multiple passes,
because they facilitate a number of optimizations, modularize the compiler
design, and are often more efficient than the alternatives.

For Discussion

1. Choose some assembler you are familiar with and make a list of the
services that it provides its users. How valuable are each ofthese services? Are
there services that it could provide, but fails to?

2. Consider two or three high-level programming languages that you are
familiar with and discuss those features that you feel are most valuable to a
programmer. Also discuss features that you would most like to see added to
the language.

3. How desirable is brevity in a programming language? (Compare Cobol
and APL, for example.) Discuss the merits and demerits of extreme brevity.

4. What do you feel should be uppermost in the design of a "good"
programming language among the following characteristics? How much does
your choice depend on the application or the user community? Which
desirable features are likely to conflict with each other?

(a) Ease of grasping the program's algorithm, upon reading the program.

(b) Ease of learning the programming language for the first time.

(c) Protection against coding errors, to the degree possible in a language.

(d) Ability to use any feature supported by the target machine, as needed, in
order to obtain the most efficient execution.

(e) Convenience to the keypunch or terminal operator.

(t) The number of different operations available in the language.

(g) Immediate line-by-line syntax checking while preparing the program.

(h) A large number of operations.

(i) Conciseness of expression. (Compare APL and Cobol.)

5. Suppose that you are given an assignment ofwriting a compiler for some
language to be implemented on a machine equipped with a symbolic
assembler and a Fortran compiler. Discuss in general terms your strategy,
given each of the following objectives:

(a) The compiler may implement only selected features of the language L
(your choice) and may be very inefficient, but must be finished as soon as
possible.

14 Compiler Construction: Theory and Practice

(b) The compiler must implement the complete language, may generate
inefficient code, but must run as efficiently as possible and require as little
memory space as possible. (It will be used for short student programs that
will likely be executed only once).

(c) The compiler may be as large as you have time and patience to develop
it and may be inefficient as a program, but must generate the most efficient
code possible for the target machine.'I'

(d) The compiler may generate inefficient code and be inefficient as a
program, but must later be transformed into a compiler for another target
machine with minimum effort.

CHAPTER 2

INTRODUCTION TO LANGUAGE THEORY

2.1. Language Elements

The elements of a language are its alphabet, its grammar, and its semantics.
The alphabet is a finite set of tokens of which sentences in the language are
composed. The grammar is a set of structural rules defining the legal contexts
of tokens in sentences. The semantics is a set of rules that define the
operational effect ofany program written in the language when translated and
executed on some machine. This and the next four chapters deal principally
with grammars and translation apart from semantics.

Sentences in English are constructed from the set of characters consisting
of the letters, digits, space, and punctuation marks. These characters are
composed into words through the aid of spelling rules and a dictionary, and
then words are composed into sentences through the aid ofgrammatical ~ules.

A computer program may similarly be constructed from a sequence of
characters drawn from the computer's character set. Such a sequence may be
composed into tokens (corresponding to English words) and the tokens
composed into sentences through a grammar. The principal difference
between English and a programming language is that the grammatical and
spelling rules for English are very complicated and have many exceptions and
ambiguities, while the corresponding rules for a programming language are
concise, highly structured, have few (if any) special cases, and (hopefully) no
amibiguities.

In this chapter, we will develop the notions of alphabets, strings in an
alphabet, generative grammar systems, and the problem ofparsing a sentence.
Parsing is the process by which we determine the specific grammar rule
applications that yield a given sentence; it corresponds roughly to determin­
ing the structure of an English sentence.

2.1.1.Tokens and Alphabets

An alphabet is a finite set of tokens, fixed at the time of definition of the
source language. Every source program consists of some sequence of tokens
drawn from the alphabet of the source language.

The alphabet of a programming language could be a set of keyboard
characters; each letter, each blank, each digit, and special symbol is a distinct
token, and it is possible to define useful programming languages on such an
alphabet.

15

16 Compiler Construction: Theory and Practice

More often, certain easily recognizable sequences of characters are
collected together to form the tokens of the language. For example, in Algol
60, the characters ":" and "=" when written together in that order ": = "
represent one token which is used for assignments. In Fortran, the character
sequence DO usually represents a special token that initiates a loop structure.
The task of assembling a sequence of source characters into tokens comprises
that part of a compiler called the scanner or lexical analyzer. That task may be
simple or difficult; the end result in any case is to yield a sequence of tokens
for the benefit of the language structural analysis that is to follow.

Examples of alphabets:
1. The Fortran character set, which contains the 26 letters, the ten digits,

and the special symbols + - * / ., () = $' :, a total of 48 characters. Every
Fortran program may therefore be considered as one long string of
characters. For practical reasons, the end of a Fortran statement and a blank
may also be considered characters, and are important as language elements.
The end of a Fortran program, or end-of-file, may also be considered a
character in the alphabet, bringing the alphabet to 51 characters.

2. The set of Fortran special names, identifiers, constants, and special
symbols. In this alphabet, special names such as DO, IF, and READ are
separate tokens, distinct from names invented by the programmer. Similarly,
a number is considered a token. A name invented by a programmer (an
identifier) is considered an element of the alphabet.

The symbol ~ will be used to designate an alphabet. Mathematically, ~ is a
set of objects. Lower case letters near the beginning of the English alphabet,
e.g., a, b, c, d, will usually represent members of~.

2.1.2. Strings

A string is a sequence of elements drawn from an alphabet. The set of all
strings of length one or more consisting of members of ~ will be designated
~+. Thus if an alphabet ~ consists of the characters #,4, %, and +, written:

~ = {#, 4, %, +}
then each of these strings is a member of ~+:

#

4444##%+

+##4

+++

There are, of course, many other possible members.

2 Introduction to Language Theory 17

The length of a string is the number of characters in the string, written:

1FORTRAN\ = length of the string "FORTRAN" = 7

Thus 14444# #%+\ is 8, I#1 is 1, etc.
Lowercase letters near the end of the alphabet, e.g. w, x, y, will be used to

represent strings.
A string whose length is zero is called the empty string, written €.

Two strings, wand x, may be connected together to form a single new
string, wx. This operation is called concatenation. Either of the strings may
consist of a single character, multiple characters, or the empty string.
Concatenation is an implied operation and as such has no special symbol. The
concatenation of an empty string with any other string x results in x; that is:

€X = X

x€ = X

X€y = xy

Note that if strings x and yare each members of ~+, then the string xy is
also a member of ~+.

Although the empty string "disappears" when concatenated with any other
string, it could be a member of any set of strings. In particular, the set ~* is
the set ~+ together with the empty string, which can be written using the set
union operator U as:

~*=~+U{€}

In terms of compilers, an empty string corresponds to a source program
containing no tokens. In practice, such a program must be followed by an
end-of-file indicator. The compiler then can conclude that the program is an
empty string by detecting the end-of-file as the first token.

An empty string is not the same as an empty set 0 . A set may consist only
of the empty string; such a set is not empty. An empty set contains nothing,
not even an empty string. Again, there is a correspondence of these concepts
in a compiler. A compiler may accept an empty string by noticing an
end-of-file marker. A compiler that accepts an empty set will reject every
input including an empty input and will then halt regardless of the input
source.

2.2. Generative Grammars and Languages

A language is some subset of~* ,where ~ is its alphabet. This definition is
much too broad to be of any practical use. If the alphabet consists of the
English characters, then ~* contains the text of all the books in the world, but

18 Compiler Construction: Theory and Practice

also contains whatever happens to be pecked out by a monkey at a
typewriter. ~* includes meaningful sentences of value to a reader, but also
includes random sequences of characters.

A language may also be finite or infinite. If a language is infinite, there
cannot be a bound on the maximum length ofa string in the language. If there
were such a bound, then because the alphabet is finite, there is a finite number
of arrangements of the tokens in the finite-length strings.

To be useful, a language must contain structure. There must be a
reasonably small set of rules that govern the manner in which the tokens of~
may be organized into strings in the language. We call the set of rules that
define a legal class of strings a grammar.

For example, telephone numbers in the United States have a certain
structure familiar to everyone-an area code, an office number, a party
number, and an extension, for example:

(212) 438-7021 X643

Some of these components may not appear in a phone number; if there are no
extensions or the area code is understood, they may be omitted. Also some
telephone systems permit dialing only the party number. We can represent a
phone number by the structure

< area code> < office> < party> < extension>

Each of these has a structure of its own. The area code is commonly written in
parentheses, e.g., (212), so we see that the structure <area code> has the
structure

(<three-digit number>)

and in turn, this structure < three-digit number> has the structure

<digit> <digit> <digit>

Finally, each <digit> has one of the forms 0, 1,2, ... , 9.

The overall structure of a phone number can be seen as a set of structures,
each of which provides a more detailed description of the number. The
"smallest" components are the members of the phone number alphabet,
consisting of the digits, dashes, parentheses, and "X".

2.2.1. Terminals and nonterminals

A terminal is any member of ~, and is therefore a synonym for token. A
nonterminal stands for some set of strings in ~* , but is not itself in ~.

Nonterminals are used in a language's structural rules. For a given grammar,
there will be a finite set of nonterminals; this set will usually be designated N.
A symbol is a terminal or a nonterminal.

2 Introduction to Language Theory 19

In the telephone number structure example given above, each of the names

<area code>
<office>
<party>
<extension>

are nonterminals. We could equally well use single characters as nonter­
minals, and shall do so frequently. For most of the simple example grammars
in this text, we will use capital letters near the beginning of the English
alphabet to designate a particular nonterminal, e.g. A, B, C. A capital letter
near the end of the English alphabet, e.g. X, Y, Z, will generally stand for an
"arbitrary" nonterminal.

For large grammars, we will need more than 26 nonterminals, and will
therefore fabricate special nonterminal names. The convention ofusing < >
to designate a nonterminal is used widely to define programming languages.
The nonterminals <area code> and <office> are examples of this
convention.

2.2.2. Production Rules and Grammars

A production rule, or production for short, has the general form

x~y

where x and yare strings in the terminal and nonterminal sets of a given
grammar. The y may the empty string, but x cannot be. Productions are used
in a special subclass of grammars called replacement systems. Essentially, in
such a system, we can generate other strings in the language by starting with a
string of the form

wxz

then applying a production of the form x~ y to yield a new string

wyz

We have effectively replaced x in the string wxz by y, through a given
production x~ y. The y is called a simple phrase of wyz. The replacement
step wxz to wyz is called a derivation step, and we say that wxz derives wyz.

Eventually, given enough such replacements and productions, we could
end up with a string of terminal symbols. However, we haven't yet specified
where wxz came from, nor have we restricted the productions x~ y in any
way.

If we could start with any string at all, and then commence with
replacement rules, we would really have failed to define a language. One
possibility is "no replacement," so such a strategy leads to a language

20 Compiler Construction: Theory and Practi.ce

consisting of ~* again. We therefore need some uniquely specified starting
string. We may in fact choose one nonterminal as the starting string, rather
than some other string w, without loss ofgenerality, since we can always add a
production of the form S~ w to a grammar whose starting string is w.

N ext we need some precise way of knowing when to stop a sequence of
derivations. We choose to stop when we obtain a string that contains no
nonterminals; the nonterminals after all are subject to further reduction. This
feature implies two other important properties that a grammar should satisfy:
(1) the nonterminal and terminal sets are disjoint. If a token is both terminal
and nonterminal, it is not clear whether to stop the derivation or not. (2)
Every production rule must contain at least one nonterminal in its left
member, i.e., given a production y ~ x, y must contain at least one
nonterminaI. If both properties are satisfied by the grammar, then no further
derivations are possible once we have an all-terminal string.

We conclude that a grammar is a four-tuple (~, N, P, S), where ~ is a
terminal alphabet, N is a nonterminal alphabet, ~ and N are disjoint, P is a set
of productions of the form y~ x, where y and x are in (N U ~)* , and y
contains at least one element in N, and S is a designated start symbol in N.

Such a grammar is called a phrase-structure grammar.

2.2.3. Classes of Grammars

Chomsky [1965] distinguished four general classes of grammars. The most
general class, the unrestricted grammars, is"not phrase-structured. The other
three classes are phrase-structured. They are the context-sensitive, context-free
and right-linear grammars.

The most general phrase-structured class is the context-sensitive grammar.
In this class, each production has the form

x~y

where x and yare members of (N U ~)* , x contains at least one member of
N, and Ixl ::; Iyl. Note that the latter requirement implies that y cannot be
empty. An example of a context-sensitive grammar is

G 1 = ({S, B, C}, {a, b, c}, P, S})

where the productions Pare

1. S~ aSBC

2. S~ abC

3. CB~ BC

4. bB~ bb

5. bC~ bc

6. cC~ cc

2 Introduction to Language Theory 21

Let us develop a set of replacements in this grammar. Since S is the
designated starting string, we look for a production with S as its left member.
Either of the first two will do:

S~ aSBC

so that aSBC is a new string. Now in string aSBC, we can only use another S
rule; let's choose the second one:

aSBC becomes aabCBC

Here, the third or fifth rule may be chosen; let us choose the third:

aabCBC becomes aabBCC

Continuing, we find the following sequence of replacements:

aabbCC

aabbcC

aabbcc

We end up with all terminals, so this is the end of the possible replacements.
We could reach a string for which no production can apply. For example,

in the string aabCBC, if we choose the fifth rule instead of the third, we obtain
aabcBC, and we find that no rule can be applied to this string. The
consequence of such a failure to, obtain a terminal string is simply that we
must try other possibilities until we find those that yield terminal strings.

Exercises

1. Derive the strings

abc
aaabbbccc

in G 1: ({ S, B, C}, {a, b, c}, P, S), where P = {S~ aSBC, S~ abC, CB
~ BC, bB~ bb, bC~ bc, cC~ cc}.

2. Show informally that the strings

abbc
aabc
abcc

cannot be derived in G 1•

3. From Exercises 1 and 2, frame a conjecture regarding the kind of strings
derivable in Gl' and attempt an informal proof of your conjecture.

22 Compiler Construction: Theory and Practice

4. Derive a context-sensitive grammar for strings of O's and I's such that
the number of 0's and I's is equal.

Context-Free Grammars

The next most general class ofgrammars is one that we shall be studying in
most of this text-the class of context-free grammars. In a context-free
grammar, or CFG, each production has the form x~ y, where x is a member
ofN, and y is any string in (N U ~)* . Note that y may be the empty string,
hence any context-free grammar with a rule A~ E: cannot be context-sensi­
tive; the latter class does not permit such a rule.

An example of a context-free grammar is one that we shall be using
repeatedly, an arithmetic expression grammar Go:

N = {E, T, F}, ~={ +, *, (,), a}, S = E, and P = the set

l.E~E+T

2. E~T

3. T~ T * F

4. T~F

5. F~ (E)

6. F~a

Here, the nonterminai set is clear!y {E, T, F}, the terminal set is { +, *, (,),
a}, and the start symbol is E. We may obtain a typical expression by applying
the replacement rules, as before:

E derives E + T, using the first rule
E + T derives T + T, using the second rule
T + T derives F + T, using the fourth rule
F + T derives a + T, using the last rule
a + T derives a + F, using the fourth rule
a + F derives a + a, using the last rule

Many other examples of derived terminal strings in this grammar may be
obtained.

Whenever a grammar has several productions with the same left member,
we will sometimes use the symbol "I" which stands for alternation. Thus the
two rules E~ E + T and E ~ T may also be written

E~E+TIT

2 Introduction to Language Theory 23

Exercises

1. Derive the following strings in Go:

a*a+a
(a+a)*a
«a»

2. Show informally that the following strings cannot be derived in Go:

a*+a
a+aa
«a)

3. Show informally that in Go:

(a) Any string of the form (... (a) ...) can be derived, where the number
of left parentheses is equal to the number of right parentheses.

(b) Any string of the form a+ a + a+ a+ ... + a can be derived.

(c) The pairs *+, + +, **, and + * can never appear in a derivation.

(d) The pair aa can never appear in a derivation.

4. Show informally that each of the nonterminals in Go can derive an
arbitrarily long terminal string.

5. Give an example of a simple grammar containing a nonterminal that
cannot derive any terminal string, i.e., where every derived string
contains some nonterminal.

6. Construct a context-free grammar for telephone numbers, along the
line introduced in section 2.2.

7. Write a context-free grammar for the following language. The notation
1n stands for a sequence of n 1'so

Examples of strings in this language are: 000,01010,0110110.

24 Compiler Construction: Theory and Practice

8. Write a context-free grammar that specifies the set of decimal literals
that may be written in Fortran. Examples of these literals are

-21.5
0.25
3.7E-6
.5E7
6E6
100.E+3

Note that E or a decimal point is sufficient to specify a decimal number.
If neither is present, then the number is considered fixed point.

9. Given the grammar G = ({ A, B, C, D}, {x, y}, P, A), where P is the set
of productions

A--?BID
B --? BCC I x
C --? yx
D --? xCyD I xy

show that x, xy, xyxyx, and xyxyxyxyxy but none of xyx, xyxy, and
xyxyxyx are derivable from A.

Right-Linear Grammars

If each production in P has the form A --? xB or A --? x, where A and Bare
in N and x is in }:* , the grammar is said to be right-linear.

The right-linear grammars are dearly a subset of the context-free
grammars. An example of a right-linear grammar is the following grammar
G2; it defines a set of ternary fixed point numbers, with an optional plus or
minus sign:

V --? N I +N I -N
N--?°111 2
N --? ON I IN I 2N

Two other grammars related to the right-linear grammar are the left-linear
and the regular grammar. A left-linear grammar has productions in P of the
form A --? Bx or A --? x, where A, B, and x have the above meanings. A
regular grammar is such that every production in P, with the exception of S
--? € (S is the start symbol) is of the form A --? aB or A --? a, where a is in }:.
Further, if S--? € is in the grammar, then S does not appear on the right of arty
production.

2 Introduction to Language Theory 25

An example of a regular grammar here defines the fixed point decimal
numbers with a decimal point. The "d" stands for a decimal digit:

S~ dB +AI -A I .G
A~ dB .G
B ~ dB .H I d
G~dH

H~dH d

Exercises

1. Derive the following strings in G 2 :

220
-12
+2

2. Show informally that the following strings cannot be derived in G2 :

+
2-0
3+

3. Show informally that G2 can derive arbitrarily long strings. What
property of the grammar makes this possible?

4. Give a left-linear grammar that expresses the same set of terminal
strings as G2.

Significance of the Grammar Classification

These grammar classifications are to some extent arbitrary. One may
define many variations on the basic patterns given. However, these particular
definitions lead to particularly simple classes of sentence recognizing
machines or automata.

An automaton, for our purposes, is some system with a finite description
(but not necessarily containing a finite number of parts) that can accept some
string of terminal symbols, given a grammar, and that can determine whether
the string can be derived in the grammar.

The process of finding a derivation, given a grammar and a terminal string
supposedly derivable in the grammar, is called parsing, and an automaton
capable ofparsing is called aparser. A parsing automaton is clearly of value in
a compiler. A grammar is a concise, yet accurate description of some

26 Compiler Construction: Theory and Practice

language; it expresses the class of structures that we want in the language.
However, so far we see only how to construct legal strings in the language.
We need to solve the opposite problem: given some string, to determine if it is
legal. We also need to go farther than that; we must determine the sequence of
productions needed to obtain the string.

Now each of the three phrase-structured grammar classes has a fairly
simple yet powerful automaton associated with it:

1. The right-linear grammars can be recognized by a finite-state automa­
ton, which consists merely of a finite set of states and a set of transitions
between pairs of states. Each transition is associated with some terminal
symbol. We shall define finite-state automata more completely in the next
chapter.

2. The context-free grammars are accepted by a finite-state automaton
controlling a push-down stack, with certain simple rules governing the
operations. The push-down stack is the only element that can be indefinitely
large. However, only a finite group of top stack members are ever referenced
in the finite description of this automaton.

3. The context-sensitive grammars are accepted by a two-way, linear
bounded automaton, which is essentially a Turing machine whose tape is not
permitted to grow longer than the input string.

Of these three, only the first two will be dealt with at length in this
textbook. It turns out that the class of context-free grammars is sufficiently
powerful to encompass most of the features of nearly every common
programming language. Those features which are not covered by a context­
free grammar are not in practice covered by a context-sensitive grammar,
either, but require special extensions to the recognizing automaton.

2.2.4. Sentential Forms and Language Definition

Recall that in one derivation step, we transform a string

wxz

into a string

wyz

given a production x -? y in the grammar. We represent a derivation step by
the symbol ==?,

wxz ==? wyz

Each of the strings wxz and wyz are called sententialfonns, provided that we
started with the start symbol S of the grammar and obtained wxz through a
sequence of derivation steps.

A sequence of one or more derivation steps is indicated by

==?+

2 Introduction to Language Theory 27

For example, in grammar Go, we have

E~ E+T~ E+T+T~ T+T+T

hence we may write

E~+T+T+T

Here, since E is the start symbol, the string T + T + T is a sentential form in

Go·
A sentential form consisting only of terminals is called a sentence. Clearly,

if we have

S~ + (some sentence)

then we have obtained, or derived a member of the language defined by the
grammar. We may put this in set notation as follows.

Given a grammar G =(N,~, P, S), then L(G), the language defined by G, is

L(G) = {x I x E ~* , and S ~+ x}

The form {x I C} is read: "the set of all x's such that condition C holds." L(G)
is then the set ofall strings x such that x is terminal and x can be derived from
the start symbol S.

This definition holds for any of the three language classes context-sensi­
tive, context-free, and right-linear.

Under this definition, L(G) may consist of the null set, or it may consist of
one or more terminal strings, possibly including the empty string. For
example, consider the grammars GE and Go, as follows:

Go = ({S}, {E}, {S~ S}, S)

In neither case is the production set empty (it could be, incidentally).
However, in the first case, we have a language consisting of one string, the
empty string. Such a language might be accepted by a compiler that notices
that a source program contains nothing, and then halts (or in practice, goes on
to the next source program in a job sequence).

In the second case, Go, the only production just yields another S and can
never yield a terminal string. Nor can it yield the empty string; we need some
way for S~+ E to do that. We conclude that the language of Go is empty (0),
and is different from the language of GE •

Sometimes it is useful to refer to a derivation of "zero" steps. This just
means "no step"; the sentential form is left unchanged. We indicate a
derivation of zero or more steps by the symbol ~ * .

28 Compiler Construction: Theory and Practice

Exercises

1. Show that the following are sentential forms in Go:

(E+a)
a+T*a
(E)*a

2. Given a grammar with an empty production set, is its language empty?

3. Can a grammar have an empty nontermina1 set? An empty terminal set?
A terminal set consisting only of the empty string? If so, what can be
said of the grammar's language in each case?

2.2.5. Production Trees and Syntax Trees

Recall that a tree is useful as an intermediate representation ofa program or
a portion ofa program. It is also useful as a means ofrepresenting a derivation
of some sentence in a context-free language, or of representing the produc­
tions of a CFG.

A tree is an abstract representation of a certain connectedness among a set
of objects. The objects are called nodes and the connections among them are
called directed edges. A tree may be constructed of distinct objects by the
following recursive process:

1. One distinguished node is called the start node. Let N designate a start
node; N is a tree.

2. Given any node N of a tree T with no out-directed edges~ We may
construct another tree T' from T by adding one or more nodes N 1, N2, ••• ,

Nn(not already in T) to T, and connecting each of these to node N by an edge
directed from N to the node. The nodes N l' N 2, ••• , Nnare called the children
or immediate descendants of N, and N is called the parent or immediate
ancestor of the nodes N p N 2, ••• ,Nn. The nodes N p ... ,Nn are siblings of
each other.

Every tree has exactly one node with no indirected edges called the root
node. A node with no outdirected edge is called a leafor terminal node. Every
tree has at least one terminal node that may also be the root. A node with at
least one outdirected edge is called an internal node. Apath is any set of nodes
np n2, ••• ,nk such that one edge connects ni to ni+p in that order, for all i such
that 1 :::; i < k.

The length of some path containing n nodes is n - 1. For the sake of
generality, we consider one node as a path of length zero.

Given any node N, there is a unique path from the root to that node. If its
length is L, then node N is said to be at level L in the tree.

2 Introduction to Language Theory 29

There is no path that connects a node to itself. A tree is said to be acyclic for
this reason, however, there are acyclic graphs that are not trees.

The height ofa tree is the maximum level in the tree, hence the length of the
longest path. This longest path must extend from the root to some leaf node.

We will generally draw our trees upside down, with the root node at the
top. figure 2.1 shows a tree with its parts labeled.

A tree may be embedded in a plane with each node a distinct point and no
two edges crossing. The tree definition suggests how this can be done.

Each node N of a tree is the root of another tree, sometimes called a subtree
rooted in N.

A tree embedded in a plane can be ordered in several different ways. The
scheme we shall most often use is called a preorder, or left-to-right natural
order, illustrated in figure 2.2. We obtain a preorder by imagining the tree
surrounded by a directed circle, with the direction counterclockwise (figure
2.3). Then let the circle collapse around the tree, so that by following its path
we contact every edge twice, once on one side and once on the other. We then
order the nodes by assigning 1 to the root and the successive integers to the
nodes when first touched by the collapsed circle.

A postorder is obtained by following the same procedure as a preorder,
except that successive integers are assigned to the nodes when last 'touched by
the collapsed circle.

Any tree can be represented in a linear memory space by a set of nodes,
each of which contains two pointers: to its child and to its right sibling. Since
either or both of these may not exist, a special pointer called a nil pointer is
needed, that indicates this fact. Such a pointer system also imposes an
ordering on the children. However, it is difficult to find the parent node of a
given tree node N with this system; it is necessary to examine all the nodes in
the tree starting with the root until we find that node one of whose children is
N.

In order to locate a parent node rapidly, we may either add another pointer
to each node, pointing to its parent, or set the right sibling pointer of each
right-most .sibling to point to its parent. The latter kind of tree is shown in
figure 2.4. We need only some mark on the right-most sibling to indicate that
its right sibling pointer points to the parent, not to its right sibling.

A Pascal data structure for such a tree is the following:

type TREENODE: record CHILD, SIBLING: t TREENODE;
PARENT: Boolean

end

The symbol t means that CHILD and SIBLING are pointers to a data
structure of type TREENODE. If PARENT is TRUE, then SIBLING is
the right-most sibling, and it points to its parent. The links in figure 2.4
clear!yare in preorder.

30 Compiler Construction: Theory and Practice

Figure 2.1. A typical tree.

o 0

Figure 2.2. Preorder.

2 Introduction to Language Theory 31

Figure 2.3. Obtaining preorder.

A tree node is said to be decorated when it carries some information in
addition to its connectness. We may attach any sort of data to a node. Ip.
practice, we simply add more cells to each of the node elements shown in
figure 2.4. For example, a cell may contain some simple data element or a
pointer to some other data structure.

Exercises

1. The terminology of tree structures is obviously borrowed from certain
properties of the plant phylum. If the root system of a plant must be
included, is there a correspondence of the plant's components to :;l tree?
Why not?

2. Consider the biblical injunction, "No man can serve two masters"
(Matt. 6:24). If this applies to a business organization, would the

32 Compiler Construction: Theory and Practice

Root r-=-1-r-_----,

Father

Figure 2.4. A simple pointer representation of the tree of figure 2.2.

organization correspond to a tree? What other conditions (if any) are
needed?

3. Show that a tree must be acyclic, from its recursive definition.

4. Write a Pascal program that traverses a tree in preorder, given the
pointer structure definition above.

Derivation Tree

A derivation tree displays the derivation of some sentential form in a
grammar. Each node of a derivation is associated with a single terminal or
nonterminal. A node associated with a terminal has no children. A node
associated with a nonterminal mayor may not have a set ofchildren. Let N be
a node associated with a nonterminal A, and suppose it has children. Then the
children of N are associated with the symbols xl' X2, ••• , Xm where

A~ Xl X2 ••• Xn

is a production in G.

2 Introduction to Language Theory 33

Figure 2.5. A derivation tree in grammar Go-

Consider grammar Go' given previously. A typical derivation tree in Go is
shown in figure 2.5, rooted in the nontermina1 element T. Its leaves, read in
preorder, comprise the string

a*(E)

The string comprising the leaves of some derivation tree, in preorder, is
called the frontier of the tree.

It is easy to show that the frontier of a derivation tree rooted in some token
A is derivable from A in the tree's grammar.

We prove this by induction on the height of the tree.

Basis step. Let the height be 0. We then have A=;>* A in a derivation of zero
steps, by definition of such a derivation.

Inductive step. Let the height be h, and consider some tree T of height
h+ 1. Let N be the root ofT. Since h>O, N must have at least one child. By
the construction process of T, there is a production

where A is associated with Nand ai is associated with the i-th child ofN. Now
each of the i subtrees has a maximum height h, hence by the inductive
hypothesis has a frontier fi derivable from the token ai' It should be clear that

34 Compiler Construction: Theory and Practice

the frontier of T is the left-to-right concatenation of the frontiers f1' f2, ••• ,

fn • But also

Hence the frontier of T is derivable from the root token of T. QED.
The converse is also true. Given some derivation A =9*w in a grammar G,

we can always construct a derivation tree rooted in A with frontier w. The
proof is left to the reader.

A picturesque way oflooking at a derivation tree is to imagine that we have
lots of tree dominoes, like the ones shown in figure 2.6. Each domino
represents a production in the given grammar, and each part that carries a
nonterminal is keyed so that it will only fit another domino with a matching
key. The edges in each domino are made of rubber bands so that we may
spread them apart as needed. We may start with any piece and build a tree
downward from it. The terminal symbol parts cannot be connected to
anything.

We assume that we have plenty of copies of each domino, so that we never
run out of anyone kind of domino.

A complete derivation tree for a grammar G = (N, L, P, S) is such that its
root node is associated with S and its frontier is a terminal string. The frontier
is clearly a sentence in the language L(G). We shall normally assume that a
derivation tree is complete, unless otherwise stated. A derivation tree may
otherwise have a root node other than S, or its frontier may contain a
nonterminal.

Exercises

1. Construct complete derivation trees for each of the following strings in
L(Go):

(a)+a
a*(a+a)
«a))

2. Show that, given some derivation A =9 * w in a grammar G, there exists
a derivation tree rooted in A whose frontier is w.

3. Can a derivation tree for a derivation in a context-sensitive grammar
always be constructed? Why not? Give an example grammar and
discuss.

4. Characterize informally the derivation tree of a right-linear grammar.

2 Introduction to Language Theory 35

E

Figure 2.6. Tree dominoes for grammar Go-

o
E

36 Compiler Construction: Theory and Practice

5. Figure 2.7 is a derivation tree for a sentence in some context-free
grammar G = {N,~, P, S} for which the productions and symbols are
not known.

(a) What is the frontier of the tree?

(b) What symbols are necessarily in N?

(c) What symbols are necessarily in ~?

(d) What productions are necessarily in P?

Syntax Trees

A syntax tree is a display of all of the productions in some grammar G. It
contains two kinds of nodes, a production or P node and a token or T node.
The root is a T node, and every path down from the root contains alternating
P and T nodes.

A T node is associated with a terminal or nonterminal token A. It has
children if A is nonterminal, and these are all the productions of the form A
~ w. The children of a T node are P nodes.

A P node is associated with some production A~ w. Its children are the
tokens in w, and these are T nodes.

Figure 2.8 shows a syntax tree for grammar Go. T nodes are indicated by
circles and P nodes by squares.

It should be clear that this defines an infinitely large tree; we can always add
more nodes. However, we generally choose to consider a finite syntax tree in
which each production appears exactly once. We build such a tree by starting
with the root T node associated with the start symbol. We then add a
production to the tree somewhere only if it does not already exist in the tree.
The production consists of a P node and its T -node children. The tree's
frontier then consists of T nodes.

An abbreviated represention for a syntax tree is shown in figure 2.9. Here,
the P nodes have become vertical lines with horizontal branches, and the T
nodes are simply the tokens of the production right part. This structure lends
itself to a simple mechanical printing of a syntax tree from a set of
productions.

A syntax tree may be transformed into a directed acyclic graph, called a
syntax graph by adding directed edges as follows:

Given a nonterminal T node N with no children-it has no children
because the productions normally connected to it appear elsewhere in the
tree-add a directed edge from N to that T node associated with the same
nonterminal symbol that does have a set of children.

Figure 2.10 shows Go represented as a syntax graph. We have simply
added directed edges from nodes E, T, and F to their defining nodes in the
tree of figure 2.9.

2 Introduction to Language Theory 37

s

* y

T

s z

v

v

+

A v

M

z v

A

€

Figure 2.7. An example derivation tree.

38 Compiler Construction: Theory and Practice

o TNode

D PNode

1. E-EH
2. E-T
3. T-T*F
4. T-F
5. F-(E)
6. F-a

Figure 2.8. A production tree for grammar Go.

A syntax graph is a useful and practical rep~esentation of a grammar.
Cohen and Gotlieb (Cohen [1970]) show how sentences in a language may be
generated or parsed by means of very simple procedures that interpret a
syntax gr~ph.

Semantic operations in a compiler must often be performed at just the right
point during the sentence analysis. The operation is keyed by a particular
productipn rule, and a syntax graph or tree en~bles us to easily determine the
appropriate production rule for some operation.

2 Introduction to Language Theory 39

E

t: E+T

T

t: T*F

F

t: (E)

a

Figure 2.9. A finite production tree for grammar Co.

E

Figure 2.10. A syntax graph for grammar Co.

Exercises

1. Consider a finite syntax tree constructed indefinitely far, but such that
each T node has exactly one or zero children, and the leaves are T nodes.
Show that its frontier is a sentential form.

2. Outline an algorithm that can accept a context-free grammar as input

40 Compiler Construction: Theory and Practice

and print its syntax tree in the form of figure 2.9. How might you deal
with a finite page width and length?

3. A nonterminal X in a grammar G is said to be useless if and only if no
terminal string can be derived from X. Develop an algorithm that
identifies all useless nonterminals. (Hint-focus on the "useful" nonter­
minals; build a set ofuseful nonterminals; these either derive a terminal
string or a string consisting of terminals and useful nonterminals in one
step.) Give an algorithm for eliminating useless nonterminals from a
grammar that preserves the grammar's language.

4. A nonterminal X is said to inaccessible if and only if no sentential form
contains X. Develop an algorithm that identifies the inaccessible
nonterminals and an algorithm for their elimination from the grammar.

5. Given a grammar G, possibly containing empty productions, find a
transformation to an equivalent grammar G' such that G'contains at
most one empty production, S'-H, where S' is the start symbol of G'.

6. Given a grammar G, possibly containing single productions (of the
form A~B, where A and Bare nonterminals), find a transformation to
an equivalent grammar G' such that G' contains no single productions.

(Remark: The transformations ofexercises 3 to 6 are important in reducing a
grammar so that it is amenable to a precedence parsing method.)

2.2.6. Canonical Derivations

In general, a derivation step requires two kinds of choices to be made. We
may have more than one nonterminal symbol in our sentential form, and for
each nonterminal symbol, there usually is more than one production that may
be used for the replacement.

For example, in grammar Go' we can derive T*F as follows:

E~ T~ T*F

Now in the sentential form T*F, we may next replace either the T or the F.
There is also more than one production with T as the left member (and with F
as the left member).

The first kind of choice, that of which nonterminal to replace, has no effect
on the class of sentence strings that can be derived from the start symbol. We
may state this property as follows:

2 Introduction to language Theory 41

Given a sentential form xXyYz, where X and Yare in N, that can derive a
sentence w through the derivation steps:

xXyYz ~ xryYz ~* w

then there exists a derivation

xXyYz ~ xXysz ~* w

and conversely.

,Proof: In the derivation

xXyYz ~ xryYz ~* w

Y must be replaced somewhere. At that point we will have a sentential form

x'r'y'sz'

where Y~s, x ~* x', r ~* r', y ~* y' and z ~* z'. We also know that

x'r'y'sz' ~* w

We may therefore reorganize the derivation as follows:

xXyYz ~ xXysz ~ xrysz ~* x'r'y'sz' ~* w

The converse is easily proven in a similar way. QED
This independence of the order of selection of nonterminals is a property

of context-free grammars, but not of context-sensitive grammars. In a
context-free grammar, each nonterminal can be expanded into some terminal
string independently of its neighbors, and its expanded string essentially
"pushes aside" its neighbors without interfering with their order in any way.
Hence it doesn't matter which of several nonterminals in a sentential form are
selected next for a derivation step.

We would like to have a standard derivation order, however, and each of
the parsing methods to be introduced later has an inherent derivation order.
Whenever we impose some ordering rule for the selection of the next
nonterminal to replace in a sentential form, we have a canonical derivation.
The two most common rules are left-most and right-most. In a left-most
derivation, the left-most nonterminal in each sentential form is selected for
the next replacement. In a right-most derivation, the right-most nonterminal
is selected.

A top-down parse of some sentence, scanning from left-to-right through
the sentence, corresponds to a left-most derivation. A bottom-up parse,
scanning from left-to-right, corresponds to a right-most derivation in reverse
order, i.e., the parser works from the sentence to the start symbol.

For example, in figure 2.11, we have effectively worked out the partial
left-most derivation

42 Compiler Construction: Theory and Practice

E

E

/
T

/
F

/
a +

T

Figure 2.11. Top-down derivation tree construction.

E~ E+T~T+T~F+T~ a+T

The remaining parse task is clearly T ~+ (a*a) . The next derivation step
must invoke the production T ~ F, to yield
a+T~ a+F
In figure 2.12, we have effectively worked out the partial right-most

derivation

E+(F*a) ~ E+(a*a) ~ T + (a*a) ~ F + (a*a) ~ a+(a*a)

A bottom-up parser has developed this in backward order, starting with
a+(a*a) and ending (so far) with E+(F*a). The next parse step should
invoke production T ~ F on the right-most F, so that we will have the
derivation step

E+(T*a) ~ E+(F*a)

Note that this is consistent with a right-most derivation.

Exercises

1. Give right-most and left-most derivations for each of the following
strings in Go:

a*(E)
(a+a)*a
a+«a))

{see figure 2.5}

2 Introduction to Language Theory 43

a + a * a

Figure 2.12. Bottom-up derivation tree construction.

2. Give yet another canonical derivation rule and illustrate a derivation in
Go using your rule.

3. A left-most and a right-most derivation of some sentence w has the
same derivation tree. Why?

2.2.7. Ambiguity

Suppose that we have a grammar and a sentence w for which two different
derivation trees exist. By "different" we mean that the structure or the node
labeling is different in some respect. We then say that the grammar is
ambiguous. If no sentence has more than one derivation tree, we say that the
grammar is unambiguous.

An ambiguous grammar is not a particularly desirable basis for a
programming language. The meaning of a sentence lies mostly in its
structure, as determined by the structure of its derivation tree, and not just in
the set of symbols that comprise it. If there are two different derivation trees
for some sentence, then it is possible that two different meanings can be
attributed to the sentence.

English is full of ambiguous sentences, owing to the possibility of many
words serving in different ways. For example,

44 Compiler Construction: Theory and Practice

"Time flies like an arrow."

can be interpreted in at least three ways: as an observation on the passage of
time, as a command to compare the timing of flies with the timing of an
arrow, or as a statement on the preferences of "time flies," whatever they are.

Similarly, a context free grammar may be ambiguous. For example, the
grammar

E~E+E

E ~ E * E
E ~ (E)
E~a

derives exactly the same sentences as Go' yet is an ambiguous grammar.
Figure 2.13 shows two different derivation trees for the sentence

a+a*a

Now we can show that if two different derivation trees for some sentence
exist, then there must also be two different canonical derivations for the
sentence as well, and conversely. Thus in figure 2.13, we have the two
different left-most derivations

E ~ E+E ~ a+E ~ a+E*E ~ a+a*E ~ a+a*a

and E ~ E*E ~ E+E*E ~ a+E*E ~ a+a*E ~ a+a*a

We could similarly demonstrate two different right-most derivations.
We offer a left-most derivation proofof this assertion; a right-most proof is

similar. '

Theorem: Two or more distinct derivation trees for some sentence w exist if
and only if two or more distinct left-most derivations exist for w.

Proof-"if" part. We have two distinct left-most derivations. The two agree
exactly until some derivation step, in which the left-most nonterminal is
replaced by one string in one and another string in the other, e.g.,

S~+uXv~ uxv~* w

or S ~+ uXv ~ ux'v ~ * w

where x and x' are different. Now consider the two derivation trees
corresponding to these derivations. They may obviously be constructed
top-down by following the derivation steps. The two trees are identical until
the nonterminal node X is reached; its children are the string x in one tree and
x' in the other. Yet when the construction process is complete, both trees have
the frontier w. QED

2 Introduction to Language Theory 45

Grammar: E-E+E
E-E* E
E-(E)
E-a

a

E

a

*E

+

E

11\
E

t

aa

E*E

a

E

11\
E + E

t 11\ 11\
E

t t t

(a) (b)

Figure 2.13. Two different derivation trees for the sentence a+ a*a, through the
ambiguous grammar given.

"Only if" part. Consider two different derivation trees T and T'with the
same frontier w, rooted in S, and with the same grammar. We walk down
through both trees (in preorder) starting at their root node, and continue as
long as we find agreement, stopping on the first difference.

This tree walk is the same as the top-down construction process corre­
sponding to a left-most derivation. Ifwe are at some node N in T and it agrees
with the corresponding node in T', then we consider the productions rooted
in Nand N'. If these fail to agree, we stop on node N. If they agree, then we
compare each of the children, in preorder. We start the walk on the root node,
and continue until the difference is found.

Now in the walk process, we have also generated two sequences of
productions, corresponding to left-most derivations of the trees' frontiers.
The sequences will agree until the tree difference is found, then there will be
two different derivation steps, e.g.,

For tree T, we have
S~ * uXv ~ uxv ~ * w

and for tree T', we have

S ~* uXv ~ ux'v ~* w

46 Compiler Construction: Theory and Practice

where the derivation S =? * uXv corresponds to that portion of the tree walk
just before the tree difference at node X is detected. QED

A language is said to be ambiguous if no unambiguous grammar exists for
it. Note that a given language may have more than one grammar that
describes it; some of these grammars may be ambiguous and others not.
However, if one unambiguous grammar for a language can be found, then the
language is unambiguous.

An important result in language theory states that there exists no algorithm
that can accept an arbitrary context-free grammar and determirie that it is
either ambiguous or unambiguous. However, there exist algorithms that can
return one of the results: {unambiguous, don't know}. These turn dut to be
parser constructor algorithms.

ExerCises

These two exercises refer to the grammar E-?E+E I E*E I a

1. Three different derivation trees for the sentence a+a*a+a exist.
Display them.

2. Suppose that ADD is emitted whenever production E -? E + E is used
in a left-most derivation, and MPY whenever E -? E*E is used.
"LOAD a" is emitted whenever E -? a is used. Give the emitted code
for the trees of figure 2.13, and discuss their significance.

2.3. Introduction to Parsing

A parser or parsing automaton is some system that is capable of
constructing the derivation of any sentence in some language L(G) based on a
grammar G. We are primarily interested only in parsers for right-linear and
context-free grammars.

A parser may also be viewed as some mechanism for the construction of a
derivation tree. However, we almost never actually construct a derivation tree
in a practical compiler; instead the parsing algorithm makes use of a
push-down stack and a finite state machine control.

Let us first look at parsing as a tree construction process.

2.3.1. Top-Oown and Bottom-Up Parsing

The problem ofstructural analysis, or parsing, in a compiler may be seen as
the problem of constructing a derivation tree, given a grammar and a sentence
in the language. The sentence must form the frontier of the tree, and the tree
will be rooted in the grammar's start symbol.

2 Introduction to Language Theory 47

This is a nontrivial problem. Let us consider grammar Go' whose
productions are

E~E+T

E~ T
T~ T * F
T~F

F ~ (E)
F~a

Then consider the sentence:

(a*(a+a))+a

Several different approaches may be taken. One might begin at the start
symbol E and work downward towardthe desired frontier. Many guesses are
usually needed, and it will be found that a wrong guess somewhere in the
process will usually result in an impossible situation. For example, figure 2.14
shows a partially constructed tree that appears reasonable, but in the end
cannot possibly be right. Several mistakes were made in its construction. We
still have to fit "a + a" into the inner parentheses, and have" +,a" left over.
We have found a partial tree for a sentence like (a*(a)), but it will not do for
the sentence (a*(a+a))+a.

If we start at the bottom and work up, we also find ourselves making a
number of guesses. It is certainly clear that every token "a" must be fitted to
an F, since only one rule exists for that. It is also clear that somehow the left
and right parentheses must be fitted into the production F ~ (E), since only
that production contains parentheses. However, it is by no means clear (even
with some practice) just how to fit these ideas together into a systematic plan
for constructing a derivation tree.

In fact, a number of systematic derivation contruction methods have been
discovered in recent years. We shall consider four of the most common and
powerful of these in Chapters 4 and 5. These parsing methods fall into two
broad classes-top-down and bottom-up. (A new parsing method, called
left-corner~ is an interesting blend of theSe two; see Rosenkrantz [1970a] and
Demers [1976]).

Each of these methods reduces to the unit operation: "Determine a
derivation step." Each may scan a sentence from right to left or from left to
right. Now a sentence based in some grammar may be easily parsed from left
to right, but with difficulty from right to left. It happens that most common
programming languages are easily parsed from left to right, and furthermore,
algebraic operations are usually performed in that order, by convention. We
therefore confine our discussion to a left-to-right sentence scan.

Let us first consider the top-down, left-to-right parsing problem. A typical
situation is shown in figure 2.11, for grammar Go. We have already decided
on the productions

48 Compiler Construction: Theory and Practice

E

J
T

~
F

~
E

~
T

~
T * F

~ ~
F E

~ ~
a T

Figure 2.14. A bad guess for a derivation tree for sentence (M(a+a)) + a; top-down
construction. The shaded parts cannot be incorporated in the tree.

E ~ E+T
E~ T
T~F

F~a

and have accounted for the first two symbols a+ of the sentence a+(a*a).
The left-most exposed nonterminal in the tree is T, therefore the parsing
decision problem at this point may be stated:

2 Introduction to Language Theory 49

Which of the productions {T~ F, T ~ T*F} should be connected to the
exposed T node, given the partially constructed tree and the remaining input
sentence (a*a)?

If we are somehow able to make the correct decision, given the information
shown, each time, then we can repeat this operation again and again, until the
tree is completely constructed. We would like to make each decision correctly
by means ofan algorithm, so that it will never be necessary to throwaway our
work and start over again. We also need some assurance, given any grammar,
that we can find an algorithm and that it will work correctly for all the
sentences in the grammar's language.

There are more considerations. What if it is possible to construct more
than one derivation tree for some sentence? How can we be sure that the
parsing method will reject sentences that are not in the language? These
questions will be resolved when we study the top-down and bottom-up
parsers in chapters 4 and 5.

Now let us consider the bottom-up parsing problem. Here we work from
the given sentence upward toward the start symbol, in a left-to-right manner.
We attempt to build a tree upward as far as we can before connecting
productions to more sentence tokens. A partially constructed tree for
grammar Go and the sentence "a+(a*a)" is shown in figure 2.12. We have
decided that the productions

F~a

T~F

E~ T
F~a

apply to the parsing process so far, and ask what the next production must be.
lt appears to be a more difficult decision than for a top-down parser-there are
more possibilities. Should we go on to the next "a" token and apply another F
~ a? Or should we extend the F tree through a production like T ~ F? We
can limit the choices somewhat by looking at the production right parts that
can conceivably apply somewhere in the exposed tree, but in general, this still
yields more choices than we can deal with.

However, we can still state the bottom-up parsing decision problem as
follows:

Given a set ofderivation trees (a tree may be an isolated terminal symbol or
some tree rooted in a nonterminal), determine the production whose right
member fits the left-most set of roots of the trees, and that "belongs" in the
final derivation tree.

Neither the top-down nor the bottom-up parsing problem has a trivial or
obvious solution. lt is significant that these problems were not solved in a
general way until about fifteen years after their statement.

50 Compiler Construction: Theory and Practice

2.3.2. Backtracking

The parsing problem can be seen as one of managing a sequence of choices
in such a way as to find a set ofchoices that leads to a solution. For example, in
figure 2.11, we have two choices of next production to be attached to the T
node, T~ T*F or T~ F. Neither ofthese contains "(", "a" or ")". Although
T ~ T*F contains "*", which we will need, it turns out that this choice is a
poor one; the derivation tree cannot be finished if T ~ T*F is used at this
point.

One approach to parsing is the general problem-solving method of
backtracking. Let us first define the backtracking method in general, then
show how it can be applied to top-down parsing.

Backtracking can be applied to any computation with these properties:

1. There exists a starting point and a goal.

2. The goal may be reached by starting at the starting point and following
some path consisting of defined operations separated by nodes. At each
node, some arbitrary choice among a finite set must be made. An
operation leading from one node to another can either succeed or fail.
We say the computation blocks if an operation fails.

3. Depending on the sequence of choices made, the computation will
either reach its goal or block on some operation. If the computation
blocks, we must back up one node and try another of the set of choices.

A backtracking machine will systematically explore all the choices and
continue until either the goal is reached, or all the possible choices have been
exhausted and lead to blocks. Unfortunately, the computation may continue
forever. We need, in every application, some proof that the number of
operations is bounded. We shall see that certain grammars will cause a
backtracking parser to run forever on certain input strings.

There may also be more than one path to the goal. The path first found
depends on the order in which the choices associated with the nodes are tried.
An ambiguous grammar will yield a backtracking machine with multiple
paths to the goal.

Let M be a generalized backtracking machine that contains a read/write
tape used as a stack. Each cell of the tape will carry a state and a choice. Also,
M manages the backtracking computation process by providing a systematic
means of backing up and restarting when the process blocks.

The process will consist of a sequence of computations based on some
algorithm, separated by choice points. At each choice point, a record is made
on M's tape of the current state of the computation, and the particular choice
made at that choice point. Each choice set must be finite and ordered in some

2 Introduction to language Theory 51

way so that it is always apparent, given a state and some choice, whether there
is another untested choice.

The backtracking system then has these three moves:

1. A forward move from some state just recorded, using the particular
choice selected by M. This will continue until: the machine blocks (step
2), it reaches its goal (halt), or it reaches another choice point (step 3).

2. A backtracR move, initiated by a block. Here, we consult the last-writ­
ten M cell. Ifanother choice exists in that state, we select it, record it, set
the system to the state recorded in the cell, and do a forward move (step
1). Ifno more choices exist in that state, we remove the top cell from the
tape. If the tape is empty, we halt (failure to reach goal). If the tape is not
empty, we start again on step 2.

3. A choice move. Here we have reached a point at which some choice must
be made. A new cell is added to the end of the tape containing the
current system state and an initial choice (the first of the ordered finite
set of choices available in this state). Then go to step 1.

We start the machine in step 3, by assuming that every backtracking
process has an initial choice step.

In any machine application, we must show that the process will always halt
in a bounded number of moves, otherwise we do not have an algorithm.

Application to Parsing a Context-Free Grammar

Let us apply our machine to the top-down parsing of a sentence in a
context-free grammar. We have an input string at a2 ••• an of finite length. We
also assume that we are building a derivation tree that will be accessible
throughout the calculation. The tape will contain references to nodes in this
tree.

At any point in the parse, the state of the system is the partial tree
constructed so far, which incidentally includes the current position in the
input string. We could conceivably just record the entire tree built so far on a
tape cell, along with the particular choice of production made for the
left-most exposed nonterminal node. However, such a move would be
incredibly inefficient. We can accomplish the same result by storing only the
two items: (1) current left-most exposed tree node, and (2) a production
choice compatible with that node.

Step 1: The forward move. On a forward move, we have just chosen a
production. We therefore attach it to the tree and examine the situation. Let
the production be

52 Compiler Construction: Theory and Practice

If Xl is a nonterminal, we have reached another choice point, based on Xl' and
therefore go to step 3. Otherwise, Xl must match the left-most exposed input
character. If it fails to match, we block and retreat to the backtrack move step
2. Each of the tokens x2, x3, ••• , Xn are similarly examined, until we either
match all of them or we find the left-most nonterminal.

Suppose all of them match. We then search the partially constructed tree
for a left-most exposed node. (This procedure will require an algorithm for
moving up to the parent, seeing if it has any exposed right siblings, etc., the
details of which will not concern us here). If a left-most exposed node exists,
and is nonterminal, go to step 3 (a choice of production is needed).

If a left-most exposed node exists and is terminal, it must match the
left-most exposed input token. On a failure to match, go to step 2 (backtrack).
On a match success, continue matching.

Finally, suppose that no left-most exposed node exists. Now either the
input string is completely attached to the tree or not. If it is attached, then we
halt and report "success". Otherwise, we block and go to step 2.

Step 2: The backtrack move. On any backtrack move, we must discard a
portion of the partially complete tree and try another production at the
left-most exposed nonterminal node. We need the two items of information
in a tape cell: the left-most exposed nonterminal node and the particular
production chosen for it. Given the node, we can delete the subtree hanging
from it and determine the input string position. Given the production choice,
we can decide if another production choice exists. If it does, take it, record it,
and go to step 1. If another choice does not exist, go to step 2 again.

Step 3: The choice move. The choice move is easy: we record the current
left-most exposed nonterminal tree node, then select and record a production
compatible with that node; it should be the first of an ordered set of
compatible productions. (If the exposed node is associated with nonterminal
A, then the compatible productions are all those with the form A~ w.)

Example. A grammar for which the backtracking system will work is the
following (we shall later demonstrate two other ways to parse sentences
derivable in this grammar). This grammar describes decimal numbers
(containing a decimal point) with an optional sign.

Grammar G3 =({V, S, R, N}, {+, -, ., d, ..l}, P, V), where P is

1. V ~ SR..l
2. S ~ +

{..l is a stop symbol}

3. S ~ -
4. S ~ E

5. R ~ .dN
6. R ~ dN.N
7. N ~ dN
8. N ~ E

Consider the input string:

2 Introduction to Language Theory 53

{E is the empty string}
{d is a decimal digit}

+.dd-.L

A complete trace is shown in figure 2.15. There are no backups required for
this string until the state shown in part (f) is reached. In trying the first choice
(N~ dN) for the exposed node 9, we find that "d" and the next symbol -.L
fail to match, hence we must back up. The top cell says node 9 was given
production 7 previously. Production 8 (N~ E) is still available, so we try it
and find that we can match the remaining exposed node (the token -.L) and
exhaust the input string.

Exercises

1. Trace the backtracking system on the strings

dd.d-.L
- dd-.L

2. Show that the backtracking system cannot accept either of the strings

d- -.L
- +-.L

3. Consider the following ambiguous grammar:

S ~ E-.L
E ~ aEE I E

and its backtracking parser. Trace its behavior on the string

aa-.L

Discuss informally the factors influencing its choice of several possible
parses.

Limitations of Backtracking

This system will succeed if and only if no left-recursive derivation in the
basis grammar exists. A left-recursive derivation is such that

54 Compiler Construction: Theory and Practice

Tape Partial tree

(a)

(b)

Node
~

(1,1)
t

Production

(1,1)

@
+.ddl

+.ddl

1

(c)

(d)

(1,1)(2,2)

(1,1)(2,2)(4,5)

Figure 2.15. Trace of a top-down backtracking parse of a string" + .dd.l" in grammar G3 .

(e)

(f)

(g)

(1,1)(2,2)(4,5)(7,7)

(1,1)(2,2)(4,5)
(7,7) (7,7) (9,7)

Back-up
(1,1)(2,2) (4,5)
(7,7)(7,7)(9,8)

Success

2 Introduction to Language Theory 55

~
1 Conflict

56 Compiler Construction: Theory and Practice

A~+Aw

for some nonterminal A. We shall not prove this; however, we can easily show
that a left-recursion will cause a system failure. Consider grammar Go and the
partial tree of figure 2.11. We have two productions compatible with the
left-most exposed rtode T: T ~ F and T ~ T*F. Note that the latter
production is left-recursive. Ifwe choose T ~ T*F, we end up with another
tree with the same exposed input string and the left-most exposed node T. '
The system will again choose T~ T*F (assuming this is the first choice), etc.
The tree and the backup tape will continue to grow indefinitely, with no
progresS in scannihg the input string.

We might argue that the trouble lies in choosing T ~ T*F first. Why not
arrange the productions so that left-recursive productions are chosen after the
others? This choice seems to work in figure 2.11. We can add T ~ F to the
tree and can continue nicely for awhile. In fact, by placing the left-recursive
productions last among the choices, we can parse every string in the language
L(Go)·

However, this is not good enough. A parser must also be able to detect and
report errors in syntax, i.e., it must be able to determine that some strings are
not in the language. For example, suppose that in figure 2.11, the left-most
exposed input string element were "*" instead of "(". We have a string that is
obviously not in the language, and there is therefore no subtree that can be
attached to the node T that will match a "*". What will the backtracking
system do? It will attempt all possibilities. The T~ F choice will eventually
be found to fail (after many trials and errors), hence the choice T ~ T*F will
be attempted. This choice, too, must fail because we eventually must get the
same exposed input string and exposed nonterminal node as before and the
system will run forever. We conclude that with a left-recursive production in
the grammar, there are strings for which the system will never halt.

Aho [1972] shows that the backtracking system will never fail if the
grammar is not left-recursive.

Time Bound

It can be shown (Aho [1972], chapter 4) that a parse of a string of length
n2: 1 for a non-Ieft-recursive grammar will require no more than cn

operations. The c is some constant, > 1, that is characteristic of the grammar.
This is a "best" bound, to the extent that we restrict the grammar in no way
other than requiring that it be non-Ieft-recursive.

Indeed, there exist grammars that cause the backtracking system to spend a

2 Introduction to Language Theory 57

time proportional to an exponential of the length of the input. For example,
consider

S ~ cSS
S~ E:

which derives sequences of c's. If Y(n) is the number of partial left parses
consistent with string w = cccc ... c, where Iwl = n, then yen) is certainly
greater than 2n (Aho [1972]).

This grammar causes the backtracking parser to construct and discard
every possible partial tree before reaching its goal.

The behavior of any backtracking parser upon encountering a syntax error
is also exponential in character. Since every possible partial tree consistent
with the input string up to the position of the error must result in a block, the
parser constructs and discards all of them. For a reasonably large grammar
and strings of practica11ength, the time spent in such analysis is enormous.

We conclude that a backtracking parser system is impractical. We shall see
that backtracking is unnecessary for a large class of grammars. There also
exist more powerful generalized parsing methods (e.g., Earley [1968], also
described in Aho [1972], chapter 4) that not only will parse any context-free
grammar but do so with a better time bound than any backtracking system.

Exercises

1. Trace the backtracking parser for Go on the invalid string

a** -l.

far enough to show that it will never halt. Use the left-recursive
productions last.

2. Trace the backtracking parser on the grammar

S~cSS IE:

for strings

c
cc
ccc

and discuss the parsing pattern it exhibits.

58 Compiler Construction: Theory and Practice

2.3.3. A Deterministic Top-Down Parser

The backtracking parser of section 2.3.1 is said to be nondetenninistic. That
is, given a choice at some node in the partially constructed tree, it simply
makes an arbitrary choice and prepares for the possibility (the very likely
possibility!) that its choice will be wrong.

Suppose that we had some way of making the correct choice each time. For
a top-down parser, we have some information in the exposed input string that
could be used to make the correct choice. For example, in figure 2.11, the
exposed input string is (a*a), and this should be sufficient to determine that
the correct choice of a T production is T ~ F. We can then conceive of a
large table such that each row is associated with a nonterminal node and each
column with some legal input string. The table will then tell us which of
several possible productions to choose for the next top-down move.

Unfortunately, such a table would be infinitely large-for interesting
grammars, the number of possible unexposed input strings is infinite. For a
practical compiler, we need a finite table.

Suppose instead we settle for a table such that every column contains only
one input token, the left-most exposed string token, or next token. We dearly
have potentially useful information in the rest of the exposed input string, but
we can't use more than a finite amount of it anyway.

We still require that our table (now finite) fix a production choice for every
possible situation. This requirement imposes a restriction on the basis
grammar. It is possible to build such a table for some grammars and not for
others.

Let us again consider grammar G3' introduced in the previous section.
Grammar G3 = ({V, S, R, N}, {+, -,., d, .-L}, P, V), where Pis:

1. V ~ SR.-L
2. S ~ +
3. S ~
4. S ~ E

5. R ~ .dN
6. R ~ dN.N
7. N ~ dN
8. N ~ E

{.-L is a stop symbol}

{E is the empty string}
{d is a decimal digit}

A top-down, one-symbol parsing table can be constructed for this
grammar, by methods described in chapter 4. It is given in figure 2.16. Each
row corresponds to a possible exposed left-most nonterminal node in the
partially constructed tree. Each column corresponds to the next token. The
entries are either a production number (1 through 8) or an X. The X means
that there must be a syntax error; there is no way that a derivation based on
the exposed nonterminal can match that token. For example, with token "."

2 Introduction to Language Theory 59

Next token
+ d 1

Left-most
V 1 1 1 X

Exposed
S 2 3 4 4 X

Nonterminal
R X X 5 6 X

N I X X 8 7 8

Figure 2.16. A top-down LL(1) parsing table for grammar G3 0

and nonterminal S, the table says that production 4 (S~ E) is the appropriate
one to attach to the tree.

We can illustrate a parse without drawing a lot oftrees. All we really need is
the frontier of the partially constructed tree and the remainder of the input
string. Thus figure 2.11 has the frontier a+ T and the remaining string (a*a).

Given these two strings, we apply the table to the left-most nonterminal in
the frontier and the first token of the remaining string, which yields a
replacement string w. If the first tokens in ware terminal tokens, they must
either match the tokens in the input string or else a syntax error exists. If they
match, we drop the matched tokens before applying the table again.
Let us trace the process with the string - ddd.dd-l.

Frontier

V
SR--l
-R--l
R--l
dN.N--l
N.N--l
dN.N--l
N.N--l
dN.N--l
N.N--l
.N--l
N--l
dN--l
N--l
dN--l
N--l
--l

Remaining Input

-ddd.dd--l
-ddd.dd--l
-ddd.dd--l
ddd.dd--l
ddd.dd--l
dd.dd--l
dd.dd--l
d.dd--l
d.dd--l
.dd--l
.dd--l
dd--l
dd--l
d--l
d--l
--l
--l

Production

1
3
(match, drop "-")
6
(match)
7
(match)
7
(match)
8
(match)
7
(match)
7
(match)
8
(match and halt)

{illegal}
{illegal}
{illegal}

60 Compiler Construction: Theory and Practice

We stop and report "success" when both the tree frontier and the input list
are empty. Other possibilities exist on input strings that are not in the
language; for these the machine must report "failure." We require that every
input string be terminated with the special symboll-, and that this symbol
not appear elsewhere in the input.

It can be shown that this parsing process has a time bound linear with the
length of the input string, obviously a vast improvement over the backtrack­
ing approach of the previous section. However, we have paid for this time
improvement with a certain restriction in the class of grammars that are
amenable to this approach.

This parsing system is called an LL(l) parser, and was first described in
Rosenkrantz [1970]. It has been used as the basis of several compilers, for
example, see Lewis [1968]. "LL" means "Left-to-right, Left-most." The "I"
refers to the single input symbol used to resolve the production choice. We
could also use 2, 3, ... symbols, yielding an LL(2), LL(3), ... parser.

Exercise

1. Trace the parser of figure 2.16 on the strings

dd.dl-
.dddl-
-.dl-
-.+d-.L
d.d+l­
d.d.l-

2.3.4. A Deterministic Bottom-up Parser

The bottom-up parsing problem seems more difficult than the top-down
problem. There are more choices that must be made. Not only must we
somehow select a production, but we must decide on the part of the partially
completed tree that it applies to. Nevertheless, we can often construct a
systematic deterministic bottom-up parser with no backtracking.

Let us begin with a definition: the skyline of a sequence of bottom-up
parsing trees (see figure 2.12 for an example) is the left-to-right sequence of
their roots. The skyline will always be a right-most sentential form, provided
that the input string is a sentence in the language. For example, in figure 2.12,
the skyline is E + (F*a), derivable from S by a right-most derivation.

Now we can introduce the bottom-up parsing machine, called an LR(l)
parser. "LR" means "Left-to-right, Right-most"; the "I" refers to the

2 Introduction to Language Theory 61

parser's need to examine at most one symbol in the input string past its
current parsing point.

The parsing machine is shown in figure 2.17. It consists of a set of states
(the circles) connected by transitions. Two kinds of transition appear: a read
transition and a lookahead transition. The lookahead transitions are indicated
by braces {...}. Note that the transitions are on the tokens in the terminal and
nonterminal alphabets of the grammar G3 •

The states 1 through 8 (marked with a #) are called apply states. In an
apply state, the associated production can be attached to the right-most
exposed tree skyline. The states 9 through 17 call for a read or a lookahead
transition.

We apply this machine to some partial tree skyline, starting with the start
state 9 and continuing until we hit an apply state. On each read transition, we
match the current skyline token against a transition token, then move to the
next token and state. On each lookahead transition, we match the current
skyline token against a transition token, and move to the next state, but do not
move on in the skyline. A lookahead transition may carry more than one
token. For example, in state 9, token "." or "d" is acceptable as a lookahead
transition to state 4.

In an apply state, we have some production A ~ w indicated by the
machine. The string w must then fit that part of the skyline we have just
scanned. Notice that the machine "spells out" the string w upon falling into
an apply state, associated with A~ w.

As in the top-down parsing machine, we do not need to draw a lot of trees
to illustrate the process. We need only show the skyline string. The initial

+

d

{.d}

#3 s-- {.}
#8 N-f

N

{l}
#6 R-dN.N

Figure 2.17. A bottom-up parsing machine for grammar G3 .

62 CompilerConstruction: Theory and Practice

skyline string is the input sentence, and the final, or halt, state is upon
applying production # 1, V~ SR-l in the machine; the skyline will consist
only of the start symbol V.

Let us trace this parsing machine with the input string ddd.dd-l

Skyline State Path Production

ddd.dd-l 9 4, S ~ {
Sddd.dd-l 9, 10, 13, 16, 16 8, N ~ {
SdddN.dd-l 9, 10, 13, 16, 16 7, N ~ dN
SddN.dd-l 9, 10, 13, 16 7, N ~ dN
SdN.dd-l 9, 10, 13, 15, 17, 16, 16 8, N ~ (
SdN.ddN-l 9, 10, 13, 15, 17, 16, 16 7, N ~ dN
SdN.dN-l 9, 10, 13, 15, 17, 16 7, N ~ dN
SdN·N-l 9, 10, 13, 15, 17 6, R ~ dN.N
SR-l 9, 10, 11 1, V ~ SR-l
V (halt)

It should be clear that we have reproduced a right-most derivation of the
sentence, in reverse order.

A syntax error is detected in this machine whenever we cannot find a
transition from some state that matches the next input symbol. For example,
ifwe reach state 12 and fail to see a "d" symbol, then there must be a syntax
error at that point, and the input string cannot be in the language L(G3).

We shall further discuss bottom-up parsing in chapter 5.

Exercise

1. Trace the parser of figure 2.17 on the strings

dd.d-l
.ddd-l
-.d-l
- .+d-l{illegal}
d.d + -l {illegal}
d.d. -l {illegal}

2.4. Bibliographical notes

Some early papers on grammars and generating systems are found in
Chomsky [1956]. A survey paper with additional references is Chomsky
[1963]. The notation used for grammars and derivations is from Chomsky
[1959]. References for most of the remaining material in this chapter may be
found in the notes for the subsequent chapters.

CHAPTER 3

FINITE STATE MACHINES

A large digital system cannot be designed through a detailed electrical
analysis of all its circuits. There are just too many components and the
electrical circuit laws are too difficult to solve. The system as a whole can only
be understood by a model that simplifies the system. One such model is the
finite-state machine. In this model, a digital system is viewed as one that
moves in discrete steps from one state to another. Each transition is
determined by the state it currently is in, along with a set of inputs. In the
transition, the machine may also output some discrete set of values.

A st~te in a digital hardware system is defined by some finite set of signal
voltages, interpreted in a discrete manner (usually high or low). A state in a
software system might be defined by the set of values of the storage registers,
including the current position in the stored program.

The finite state machine model has many applications. Every digital
computer system is conceptually a finite state machine, albeit one with a vast
number of states. Many seemingly difficult language recognition problems
yield to a finite state machine synthesis. Many computer subsystems, such as
peripheral device controllers, tape formatters, etc., are first designed as finite
state machines that are then transformed into fheir logic circuit equivalents.

We shall examine in detail only one class of finite state machines-the
so-called incompletely specified no-output machines. These are particularly
useful as language recognizers. We shall see that the class of finite state
machines, or finite state automata, (FSA for short) is equivalent in recogni­
tion power to the class of regular grammars, and also to a special class of
language generators called regular expressions. Many simple programming
languages can be recognized by FSA.

An Example FSA

Before we formally define a finite-state machine, let us examine one that
will serve as an example for the formal descriptions to come, figure 3.1. This
machine recognizes a language consisting of the signed or unsigned decimal
numbers.

An FSA ~onsistsofa set of states, transitions among the states, and an input
string scanned by a reaq head. The read head starts at the left-most string
token and moves to the right as the FSA moves from state to state.

The circles containing letters represent states. At anyone time, the
machine is in exactly one state. The state S is a start state. The machine is

63

64 Compiler Construction: Theory and Practice

placed in this state initially. The states Band H are called halt or accepting
states, and are so indicated by the double circles.

The arrows connecting the states represent state transitions. Each one is
labeled with a member of the alphabet of the language recognized by the
machine. For this machine, the alphabet consists of four tokens:

{d; +, -,.}

where d represents one of the decimal digits 0, 1,2, ... , 9.
As each token in the input string is scanned, the machine moves from state

to state, according to the tokens on the arrows. For example, if the first token
is "+", then the first transition is from S to A. Then if the. next token is a
decimal point, ".", the second transition is from A to G.

The FSA continues with its transitions until it either finishes the string, i.e.,
scans all the tokens, or it encounters a token that has no transition associated
with it. If it scans the string and ends in a halt state (B or H), the string is said
to be accepted. On the other hand, if it scans the string, but fails to end in a halt
state, or if it is unable to scan the string because ofa failure to find a matching
transition on some token, then the machine fails to accept the string, and is
said to block.

The FSA of figure 3.1 is incompletely specified, i.e., some states have no
transitions on some tokens. For instance, state A has no transitions on "+ " or
" "

The FSA of figure 3.1 is designed to accept those strings in the form of a
signed or unsigned decimal number and only those strings. For example, it
will accept these strings:

-15.
75.38
+.002
000001
+34.76

but will not accept these strings:

-75+
+ 17-56
3..14
.000.1

Now consider the specific string "+34.76", which is accepted by the
machine of figure 3.1. The transitions are

S to A on token "+"
A to B on token "3" (a digit d)

Start--~

Read head

3 Finite State Machines 65

d

Figure 3.1. A finite-state automaton.

B to B on token "4"
B to H on token "."
H to H on token "7"
H to H on token "6"

Input string

Since H is a halt state, and we have succeeded in scanning the entire string, the
machine accepts "+ 34.76".

Now consider the string"+ 17 - 56", which will not be accepted by the
machine. The transitions are

S to A on token "+"
A to B on token "I"
B to B on token "7"

At this point the scan must end, since there is no transition from state B on
token" -". There is only one transition on "-", from state S; however, it is
of no value now because the machine is not in state S. State B is a halt state,
but the input list must also be completely scanned, and it has not been. Hence
the machine fails to recognize" + 17 - 56"; it blocks on the" -".

66 Compiler Construction: Theory and Practice

Finally, consider the string"+." that will not be accepted. The transitions
are

S to A on token "+"
A to G on token "."

The FSAhas scanned the entire string, but has ended in state G, which is not
a halt state. Hence the machine has failed to recognize the string"+.".

The value of such a machine in a computer system should be obvious-it
provides a logically sound way to test input strings for membership in some
language, that is, it serves as a syntax checker.

An FSA has many more applications. For example, we may associate an
output string with each transition; we would then have a simple translator.
We may also associate some general operation with each transition; such an
FSA could then serve as a basis for a class of algorithms or as a machine
controller, etc.

Exercises

1. Show that the FSA of figure 3.1 accepts these strings:

75.38
-15.
00000001
.000005

but not these:

+17-56
-75+
3..14
.00.1

2. Suppose that only state H is a halt state in the machine of figure 3.1.
Describe the language of the FSA informally.

3. Suppose that only state B is a halt state. Using the definition of
acceptance above, what is the significance of an input string that leads to
state H? Is state H of any value to the FSA as a language recognizer?
Show informally that it may be removed. What other state can also be
removed? What language is recognized by the resulting machine?

3 Finite State Machines 67

4. Extend the machine of figure 3.1 to accept decimal numbers with an
exponent field, e.g.,

+3.7E+6

3.1. Formal definitions

We now provide a more formal definition of a FSA, one that will be useful
in exploring its properties. A deterministic finite-state automaton, or DFSA, is
a five-tuple M = (Q, L, 8, qo' F), where

1. Q is a finite set of states.

2. L is a finite set of permissible input tokens, i.e., the alphabet of the
machine.

3. 8 is a partial function that maps a state and an input token to another
state, called the state transition function.

4. qo is a designated state in Q, called the initial or start state of the FSA,

5. F is a subset of Q, consisting of at least one final state.

The FSA operates through a sequence of moves. Each move is dictated by
the present state and the next input token to be scanned by the machine. The
move consists of scanning the next input token, and simultaneously transfer­
ring from a "current" state to a "next" state (which may be the same as the
current state). A move may be made only if the 8 function permits it to be
made; the current state and the next token must map to another state through
the 8 function.

For example, consider the FSA of figure 3.1. Its state set Q = {S, A, B, G,
H}, qo is S, its halt set F = {B, H}, its alphabet L ={+, -, d, .}, and its
mapping function is:

8(S, +) = A
8(S, -) = A
8(S, .) = G
8(S, d) = B
8(A, d) = B
8(A, .) = G
8(B, d) = B
8(B, .) = H
8(G, d) H
8(H, d) = H

68 Compiler Construction: Theory and Practice

For example, the function 8 maps state A and token "." to G. This
corresponds to the transition A to Gunder "." in figure 3.1. The state
transition function does not map all possible states and tokens to states; those
state-token pairs that are not mapped are not permitted as automaton moves.

Transition Function as a Table

The transition function for a FSA may be expressed as a table. The input
tokens are listed along the top and the states along the left side (figure 3.2).
The table contains the mapping 8(P, a), where P (a state) defines a row and "a"
(a token) defines a column. A blank entry means that 8 is undefined for that
state and input.

Configurations

Suppose that a FSA has completed a number of moves in a string. To
predict its future behavior, we need only know the remainder of the input
string, starting with the next token, and the current state. These two items of
information provide a complete description of the FSA at a particular point in
a particular application, and will be called a configuration. A configuration
will be designated (q, w), where q is a state and w is the string remaining to be
scanned.

The configuration (qo, w), where qo is the start state and w is any string to
be accepted or rejected by the automaton is called an initial configuration. A
configuration (q, E), where € is the empty string, is called afinal configuration,
provided that q is in F, the set of halt states.

A move of the machine (designated "f--") connects one configuration to
another. We have

(q, aw) f-- (q', w) if and only if "a" is in~, w is in ~*, and q'= 8(q, a).

which means that given a machine in state q, with the input string "aw" ("a" is
the first token and "w" is the rest of the string), one move results in state q'
and string "w". The token "a" has been scanned by the move, leaving the rest
of the string "w". The move is only possible if the state transition function 8
yields a state q' for the current state q and input token "a".

A sequence of moves of the machine may be designated f-- * or f-- +. The +
means "one or more moves," and the * means "zero or more moves". A zero
move results in no change in state and no scan of the input string. The
sequence f-- + is called the transitive closure of f--, and f-- * is called the
reflexive transitive closure of f-- .

With this notation, we may succinctly define the language L(M) recog­
nized by a FSA M:

L(M) = {w €~* I (qo, w) f-- * (q, €) for some q in F}

3 Finite State Machines 69

Input token
0 + d

S A A G B

A G B

States CD H B

G H

@ H

Figure 3.2. Finite-state automaton of figure 3.1 as a table, expressing the transition
function 8.

which means that the language L(M) is the set of strings w such that the FSA
can begin in start state qo, scan through string w, and end in a halt state when
the string is completely scanned.

Exercise

Describe the acceptance of the string +.002 by the FSA of figure 3.1 as a
sequence of configurations, starting with (S, + .002) and ending with (q, t:),
where q is in {B, H}.

Machine Equivalence

Two machines, M and M', are said to be syntactically equivalent if they
recognize the same language, i.e., if L(M) = L(M'). The machines need not
have the same number ofstates, nor must the states carry the same state labels.
This definition is equivalent to the statement:

M and M' are equivalent if and only if for every string x, M accepts x if and
only if M' accepts x.

Ifa machine M can be transformed into a machine M' by merely relabeling
its states, then M and M' are said to be isomorphic.

A fundamental theorem of FSA is that for every machine M, there exists an
equivalent machine M' with a minimal number of states, and that every
machine M" with the same number of states as M', and equivalent to M',
must be isomorphic to M', i.e., M' is structurally unique.

We shall expand upon this notion of equivalence later, and show how an .
arbitrary machine can be reduced to minimal form.

70 Compiler Construction: Theory and Practice

Nondeterministic Finite-State Automata

An FSA is said to be deterministic when no choices are provided in any of
its moves. Every move is absolutely determined by the current state and the
next token, clearly a desirable machine for any implementation. A nondeter­
ministic FSA is such that some arbitrary choices are permitted in some of its
transitions. There are some states and input tokens for which more than one
transition may be taken. A. number of concepts are easier to express
nondeterministically than deterministically. We shall also show that, given a
nondeterministic automaton, we can always systematically convert it into a
deterministic automaton that recognizes the same language.

A nondeterministic FSA, or NDFSA for short, is defined exactly as a
deterministic FSA, with two exceptions:

1. Some moves may involve a choice. This choice is represented by a state
transition function 8 that maps a state-next-token pair into a set of states. The
set may consist of a single state, in which case no choice is provided for that
particular state-next-token pair. However, in general some of the state-next­
token pairs map to two or more states. We therefore use the notation:

8(q, a) = {some set of states}

for a nondeterministic transition function.
2. Some moves may be made without scanning the next token. Such a move

is called an empty move, and may be included iQ. the state transition function
by the notation

8(q, €) = {some set of states}

There may be one or mor~ possible next states. An empty move may be
invoked (if it exists) even when the string pas been completely scanned. In
this way, it may be possible to reach a halt state through one or more empty
moves from a non-halt state.

We say that a nondeterministic finite automaton accepts a string w if there
exists some sequence of moves, beginning with the start state and ending in a
halt state that scans the entire string. It is not necessary that each sequence of
choices leads to acceptance; only one sequence is necessary.

Figure 3.3 gives an example of a nondeterministic FSA. Its transition table
is figure 3,4. This machine happens to recognize the same language as the
FSA of figure 3.1. We shall prove this in due time. Note that it contains a
number of empty moves, S to A, A to E, etc. Also note that in state A, there
are three possible moves on token "d". The machine may scan the "d" and
transfer to either B or C, or it may make an empty move to E and then scan
"d".

Now consider the recognition of the string" - 24.57" by the NDFSA of
figure 3.3. A correct choice would be the" -" transition from the start state S
to A; the machine might also choose the empty transition to A. However, the

3 Finite State Machines 71

Figure 3.3. A non-deterministic machine equivalent to the machine in figure 3.1.

empty move results in a block, since there is no way to scan "-" once the
machine reaches state A.

When in A, a choice among three possible paths exists, to state B, C, or E.
Depending on the next token, any of the three may be possible moves.
However, a move along the upper path, through B, means that a decimal point
can never be scanned. An examination of the remaining two paths reveals that
either one is satisfactory fot our example, and results in acceptance of the
string" - 24.57". Thus, the middle path yields the state sequence A, C, C, D,
D, D, F. Note again the nondeterminism of the final transition D to F. The
machine is in D when the last token (a digit) is read, but may continue to make
more empty moves to reach a final state (F).

Although it appears thata nondeterministic machine is more "loose" in its
recognition capability, this is not really the case. We challenge the reader to
find a string recognized by the automaton of figure 3.3 that is not recognized
by the automaton of figure 3.1. The two automata are equivalent.

Exercises

1. Find a sequence of accepting moves for each of the following strings in
the NDFSA of figure 3.3:

+.004
56.3
-334

72 Compiler Construction: Theory and Practice

Input Symbols

0 + d

S A A A

A B,C E

B B F

C D C

States D D F

E G E

0
G H

H H F

Figure 3.4. Tabular form of the non-deterministic finite automaton of figure 3.3.

2. Show that each of the following strings cannot be accepted by the
NDFSA of figure 3.3, by exploring all the possible move sequences:

+0.0.
-2.+3
..02

3. Consider the NDFSA of figure 3.3, but with one of the three paths
starting with A removed (there are three such machines). Discuss the
three languages informally.

4. Design a simple NDFSA such that the acceptance of a string of finite
length can be made in an indefinitely large number of moves.

3 Finite State Machines 73

A Backtracking Machine Model for a NDFSA

A nondeterministic FSA can be modeled by a backtracking system of the
sort described in section 2.3.2. We do not propose implementing a FSA in
this fashion; we merely present the model as another means of viewing a
nondeterministic automaton.

Recall that a backtracking problem-solving system has three kinds of
moves: a forward move, a backtracking move and a choice move. For a
NDFSA, we may make each state transition a choice move, for the sake of
generality, whether a state in fact has any choices or not. The backtracking
move is invoked on any failure to accept the string. The forward move is
simply a transition to the next state, scanning a string character in the process.
The input string will be scanned left-to-right by a read head, however, the
read head is permitted to move backward in a backtracking move.

The backtracking system tape T will have cells containing the state
number, the position of the input token on the input list, and the particular
state transition adopted, figure 3.5.

Initially, the tape T is empty and positioned at its left-most end; the
machine M is in the start state; and the read head is positioned at the left-most
token of the input list.

Upon leaving any state Q in a forward move, a cell on tape T is written.

IfM blocks, the tape T is backed up cell by cell, until a cell is found such
that an alternative move is found. The read head of M is then set to the
position indicated by the cell, the state of M is set, the alternative move is
made, and the cell is replaced by a new cell characteristic of the new move.

This process is repeated until one of two things happens:

1. The tape T is backed up to the first cell, and this cell indicates that no
alternative moves exist. In this case, the input string is not in the
machine's language.

2. The machine M ultimately reaches a halt state, and the input string has
been completely scanned. In this case, the input string has been accepted
by M. Tape T contains a record of the moves.

Now consider the NDFSA in figure 3.5, and let the transitions in each state
be ordered from top to bottom in a clockwise sense. Thus transition "d" from
A to B is labeled 1, transition d from A to C is labeled 2, and the empty
transition from A to E is labeled 3. We also need string positions; let these be
1, 2, and 3, respectively:

3

1 2 3

74 Compiler Construction: Theory and Practice

1 2

3

3

.7;
/\

Input list
Current symbol:
Current state: B

One cell

TAPE TL-.-_-'--_-'--_--JJ...---r----L.-.----a.----._""'--_-'--_........._--"- ..-

Empty

Figure 3.5. Backtracking machine M and its tape T, shown in one configuration. Input
string: "- 3.".

Let us trace some of the moves of the system for the above string. Initially,
T is empty.

The first move from state S must be on the minus transition, 2, (first choice)
so the first cell reads (S, 1,2). The next move involves a digit "3" in position
2, from state A. We have three possible moves: to state B, to state C, or to state
E. We take the first one, creating the cell (A, 2, 1). Tape T now reads (S, 1,2)
(A, 2, 1). The next move, from state B, calls for a decimal point. Although
there is no such transition from B, the empty move to F may be taken. This
yields the tape (S, 1,2) (A, 2, 1) (B, 2, 2). Note that the input string position is
unchanged. Figure 3.5 shows a snapshot of machine M, its input string, and
the tape T at this point in the process.

We now find machine M in state F, with no more possible moves, and the
input list incompletely read-which is not an acceptance condition, hence we
must back up tape T and examine other alternatives. The last cell, (B,2,2),
offers no hope, since there are no other moves out of B on the last token ".".

3 Finite State Machines 75

The next-to-Iast cell, (A,2,1), does provide another alternative. The cell
indicates that the machine M chose the A to B transition on token "3". We
can also move to C on this token, hence we do so, yielding the modified tape:
(S, I, 2) (A, 2, 2).

We now find the machine M in state C, with token ".". Clearly, the move
from C to D (number 2 by the ordering scheme) is legal and yields the tape (S,
1,2) (A, 2, 2) (C, 3, 2), with machine M in state D. The input list is now fully
scanned; however, the empty move to F is legal, yielding acceptance and the
final tape T = (S, 1,2) (A, 2, 2) (C, 3,2) (D, 3, 2).

As we shall see, it is never necessary to implement a nondeterministic finite
automaton with a backtracking tape, because a nondeterministic finite
automaton can always be transformed into an equivalent deterministic finite
automaton. A deterministic automaton never needs to back up. If it blocks on
a token, there exist no choices that have been made arbitrarily in its previous
moves, and the block is therefore sufficient proof that the string is not in the
machine's language.

Exercises

1. Trace the acceptance of the following strings through the backtracking
system, figure 3.5:

~.16

3.6
9.

2. Show that the following strings fail to be accepted by tracing the
backtracking system:

.3.

3. Show that the backtracking system will fail if an empty move cycle
exists in the machine M, through an example. An empty move cycle is a
sequence of transitions from some state A back to A, all with empty
moves. Why will the system fail?

4. Show that the system will always terminate on a finite input string if no
empty move cycle exists in the FSA.

3.2. Transformation of a NDFSA to a DFSA

The transformation of a NDFSA to a DFSA is accomplished by the
following steps: (I) detection and removal of empty move cycles, (2) removal

76 Compiler Construction: Theory and Practice

of the remaining empty moves, and (3) transformation into a deterministic
FSA.

3.2.1. Empty Cycle Detection and Removal

An empty move cycle is a sequence of empty transitions that begins with
some state A and ends in state A. All the states in such a cycle are clearly
equivalent, since we may get from anyone of them to any other on any input
token, without changing the read-head position.

An empty move cycle may be eliminated by merging their states. A set of
states is merged by giving them all a common name. This has the effect of
causing a transition into or out of anyone of the empty cycle states to
effectively be a transition associated with all of the states. If anyone of the
merged states is'a halt state, the newly named state must also be a halt state.

Example

Figure 3.6 shows a machine with several empty cycles, ACD, etc. The
ACD empty cycle may be collapsed by merging states A, C, and D. This
merger yields figure 3.7, in which the ACED empty cycle has become the
cycle AE. Collapsing this one yields the machine offigure 3.8, which contains
no empty cycles.

Empty move cycles are detected and removed by the following algorithm.

Algorithm 3.1. Empty cycle removal

Let each state carry a mark in the set {0,1 }. Mark 1 indicates that the state
has been considered. Initially, every state carries mark 0 (not considered).

Figure 3.6. A finite-state automaton with several empty cycles,

3 Finite State Machines 77

Figure 3.7. The finite-state automaton of figure 3.6 with the ACD empty cycle
removed by merging states AI CI and D.

1. Choose any state p with mark o. We then construct a tree whose nodes
are states. Its root is p, and the children of any state q are those states for
which an empty move from q exists. The construction of any path is
terminated on a node with no empty moves, or on a node q' such that q'
appears anywhere else in the tree (whether on that path or not). The tree is
obviously finite, since it can contain at most as many nodes as there are states.

2. If node p appears twice in the tree, once as the root and again on some
node N, then the path from the root to N represents the states on an empty
cycle. Merge these states, and return to step 1. (Note that p remains
unmarked).

3. If node p appears exactly once in the tree, as the root, then there are no
empty cycles containing p. Mark p (1) and go to step 1.

The number of steps in this algorithm is clearly finite, and it is easy to show
that at its conclusion, the machine M contains no empty cycles.

Exercise

Construct such a tree for the FSA of figure 3.6 and for each of the states B
andC.

3.2.2. Removal of Empty Transitions

Once all the empty cycles have been eliminated, the remaining noncyclic

Figure 3.8. The finite-state automaton of figure 3.7 with all empty cycles removed by
merging states.

78 Compiler ConstrLiction: Theory and Practice

empty moves may be removed. Consider some state p in machine M, with
empty moves to states ql' Q2' q3' ... (figure 3.9). This part of machine Mis
expressed by the transition function

8(p, E)= {ql' q2' ... }

Now each of the states ql' q2' have transitions (in general) to other states
rl'f2, ... on tokens al' a2, Some of the r states may be q states or the p
state, and some of the tokens aI' a2, ... may be empty. However, no transition
from p through q to itself can consist only of empty transitions.

Clearly, the empty move from p to qi can be eliminated if we add to p's
moves the moves:

P to r l on al' and

P to r2 on a2 •

The idea is that if M can reach r l from p on an empty move and then on aI'
then an equivalent move is from p to r I on a l directly.

Figure 3.9. A state p with empty moves to states ql1 q21 ...

3 Finite State Machines 79

Similarly, the empty move from p to q2 may be eliminated by adding the
moves

P to r5 on a5 •

One more operation must be performed: If q is a halt state and an empty
move from 15 to q exists, then p must be added to the set of halt states upon
removing the empty move. We observe that if the input string is completely
scanned when M is in state p, then M may move to q on no token and accept
the string. If the empty move to q is removed, then this would no longer be
possible; hehce,p must become a halt state.

The algorithm for this process follows.

Algorithm 3.2. Removal of empty transitions

Given an empty transition p to q on €; i.e., q is a member of 8(p, E). Set 8(p,
€) = 0, and add r to 8(p, a), for every a and r such that r is in 8(q, a). Ifq is in
F, then p must be added to F.

This algorithm may result in one or more new empty transitions from p to
some state r, arid will therefore have to be repeated. However, it must
ultimately end with no empty transitions from p, given that machine M
contains no empty cycles. The argument is essentially that ri repetitions of
this algorithm involve state p, and a sequence of states r l' r2' etc., each of
which must be distinct. If the r's were not distinct and different from p, then
there must exist an empty cycle, a contradiction.

For example, consider figure 3.3. Although there are no empty cycles, there
are five empty moves. Consider the empty move ftom H to F. There are no
moves from F in this machine. However, since F is a halt state, H must
become a halt state. Similarly, the empty moves from B to F and from D to F
may be removed by making Band D halt states. We end up with a machine
with four halt states B, D, H, and F. Since F can no longer be reached from
the start state, state F is called an inaccessible state. There is no point in
keeping inaccessible states, so machine M looks like figure 3.10 after
removing these three empty moves and state F.

Next consider the empty move from S to A in figuie 3.10. The rule is that
we replace it with three new transitions froin S to B, C, and E. Since A is not
in the halt set, S is not added to the halt set. The result is the machine offigure
3.11, which still has two empty moves. One of them came from the empty
move A to E. (Trust us-the reduction process is not caught in an infinite
loop.)

80 Compiler Construction: Theory and Practice

Start state: S
Halt states: B,D,H

Figure 3.10. The finite-state automaton of figure 3.3 with the empty moves to F
removed.

d

~I~

d

Figure 3.11. The finite-state automaton of figure 3.10 with the 5 to A empty moves
removed.

L

3 Finite State Machines 81

Consider next the empty move from A to E. Its removal means that state A
picks up transitions to E on "d" and to G on ".". Finally, the removal of the
empty move from S to E means that state S picks up transitions to E on "d"
and to G on ".". The final machine M', free of empty moves, is shown in
figure 3.12.

Removal of Empty Moves Using a Transition Table

A more systematic way ofempty move reduction is through use of the table
representation for the FSA. We first identify every state with an empty move
to a halt state. When one is found, it is marked as a halt state. Considering
figure 3.4, states B, D, and H have empty moves to F. Hence they can be
circled, yielding figure 3.13. There are no other states that need be marked as
halt states, since there are no empty moves to B, D, or H.

Now consider the empty move from state A to state E, figure 3.13. For
token "+", SeE, +) has no members. Hence S(A, +) remains empty.
Similarly for token"-". For token ".", SeE, .) contains state G. Hence, we add
state G to SeA, .). In the same manner, for token "d", state E is added to SeA,
d). Figure 3.14 shows the resulting "A" row.

This operation is continued for every state with an outgoing empty
transition, until no further additions to the table can be made. When this
point is reached, all the empty moves may be dropped by crossing out the
empty move column. Thus in figure 3.13, nothing is added to the table by the

Figure 3.12. The finite-state automaton of figure 3.11 with all empty moves removed.

82 Compiler Construction: Theory and Practice

Input symbols

a +

S A

A

0
C

States ®
E

0
G

@

d

A A

B,C E

B F

D C

D F

G E

H

H F

Figure 3.13. Tabular form of the non-deterministic finite-state automaton of figure
3.5, with the halt states marked.

empty moves from B, D, and H to F, since F is empty anyway. However, the
S row is expanded by the A row's states because of the empty transition from
S to A. The final table, representing a FSA free of empty moves, is given in
figure 3.14.

3.2.3. Transformation from Nondeterministic to Deterministic

The machine of figure 3.12 (or figure 3.14) is still nondeterministic. For
example, there are three transitions from state A on a "d". Removal of the
empty moves has not changed this situation; indeed, it has aggravated it.

The remaining nondeterministic moves of an NDFSA with no empty
moves stems from one or more states with several moves on the same token
possible. There are two such states in figure 3.12, Sand A. We can resolve the
choices in these states by calling each set of states a new state; the new state
then will be the merger of its component states. Thus we create a new state
"BCE" which will receive the merger of the transitions from states B, C, and
E. Weare in a sense deferring the choice on token "d" and state S by
introducing a new target state "BCE".

The general method is defined in algorithm 3.3, as follows:

3 Finite State Machines 83

Algorithm 3.3. Converting a NDFSA M into an equivalent DFSA M'

. 1. The states ofM' consist of sets of states of M. That is, if A, C, and Fare
states in M, then {A}, {C}, {F}, {A, C}, {C, F}, {A, F}, {A, C, F} are states
in M'. Since it is unusual to think of a set of states as a state, we change our
notation slightly by using brackets [] instead of braces {} to represent a state
in M'. Then [A,C] is the name ofa state in M', where A and C are states in M.

Although there are many possible sets of states of M, the maximum
number is finite; indeed, if there are n states in M, then the largest possible
number ofstates in M' is (2n - 1). This can obviously be a very large number.
Fortunately, most of the states in M' are inaccessible and need never appear in
the reduction process.

2. IfP is a halt state in M, then every state [..., P, ...] containing P in M' is
a halt state in M'.

3. If S is the start state in M, then [S] is the start state in M'.

4. Let [PI' P2' •.. , Pn] be a state in M'. Then consider all the transition
functions

Input symbols

0 + d

5 A A G B,C,E A

A G B,C,E E

CD B F

C D C

States ® D F

E G E

(0
G H

® H F

Figure 3.14. Empty move removal. The £ column may be deleted.

84 Compiler Construction: Theory and Practice

8(Pp a), 8(P2, a), ... , 8(Pn ,a)

on some token "a" in M. We then construct a new transition function 8' in M'
as follows:

(a) Let8(Pp a) U 8(P2, a) U ... U 8(Pn,a) = {QpQ2, ... Qr}. That is, we
collect all of the states to which the states PI' P2••• ,Pntransfer on token "a",
and call these Qp Q2' ... , Qr.

(b)Thenset8'([Pp P2,···,Pn],a) = [QpQ2, ... ,Qr]. Note that this is
a deterministic transition function, since the M' state [PI' P2' • . • , Pn] on
token "a" transfers to exactly one state [Qp Q2' ... , Qr].

5. Step (4) is repeated for every state in M' and every transition token "a".

This algorithm looks formidable, but in fact it is quite easy, particularly
when carried out on a state table, as we shall see.

Tabular Reduction of a NDFSA to a DFSA

Consider figure 3.14. Its FSA may be transformed into a DFSA through
row operations similar to those used for removal of the empty moves. The
nondeterminism of figure 3.14 is accounted for by a multiple state set in the S
and A rows, in the "d" column. According to algorithm 3.4, we need a new
state [B, C, E] in M', since the set {B, C, E} appears in a transition in M. Let
us therefore add such a state to the table. The transitions from the new state
[B, C, E] consist:

• For token "+", of NULL, since neither of the states B, C, or E has a
transition on token "+".

• For token "-", of NULL.

• For token".", ofa transition to state [D, G], since D is reached from Con
token ".", and G is reached from E on token ".".

• For token "d", of a transition to state [B, C, E], since B goes to B on "d",
C goes to C on "d", and E goes to E on "d".

Thus the new row for state [B, C, E] appears as shown in figure 3.15. Since
the new state [B, C, E] contains a halt state (B) in M, it is marked as a halt state
inM'.

In the process, we have introduced another state, [D, G]. This is a halt
state. Its development in the table leads to the definition of another halt state,
[D, H]. The algorithm ends on state [D, H], since every state appearing in the
table is defined as some row in the table. The final DFSA is in figure 3.16.

Algorithm 3.3 generates a machine M' from a machine M, such that M and
M' are equivalent. A proof of this assertion will be given later in the chapter,
after we have defined equivalence more formally.

3 Finite State Machines 85

Input symbols

~ + d

S A A G B,C,E

A G B,C,E

CD B

C D C

States ® D

E G E

®
G H

0 H
----- -------------------------

}New states0 D,G B,C,E

Figure 3.15. New composite state {B,C,E} created.

3.2.4. Accessible States

Some of the states in figure 3.16 .cannot be reached from the start state, for
example, state B. We may therefore delete all the inaccessible states from the
DFSA, by using the following algorithm, which should be self-evident:

Algorithm 3.4 Detection of accessible states in a DFSA

1. Mark the start state S.

2. Given any marked state P, mark every state Q such that a transition
from P to Q on some input token exists.

3. Repeat step (2) until no more states can be marked.

Upon completing algorithm 3.4, every nonmarked state is inaccessible
from the start state, and may therefore be discarded.

Algorithm 3.4 applied to figure 3.16 shows that states B, C, D, E, and F are
inaccessible. What happened to them? State F served only one purpose in the
machine of figure 3.13-that of providing a halt state. But we have marked

86 Compiler Construction: Theory and Practice

Input symbols

a + d

S A A G {B,C,E}

A G {B,C,E}

® B

C D C

States @ D

E G E

0)

G H

® H

------ ------------------------

8 {D,G} {B,C,E}

8 {D,H}
New
states

(9 {D,H}

Figure 3.16. Completion of new state creation.

several accessible states in figure 3.16 as halt states, and they got that way
through empty transitions to F. Hence F "lives on" in its presence in some
other states.

State B, to examine another one, survives in the composite state [B, C, E],

3 Finite State Machines 87

similarly, C and E. State D survives in the composite states [D, G] and [D, H].
So while they are gone, they have left their mark on the FSA.

The DFSA, with its inaccessible states removed, is shown in figure 3.17.

Exercise

1. Reduce the following NDFSA to a DFSA, and remove the inaccessible
states:

input token
8 + () * E:

S A C
A D D B
B A B C E
C D F A
D E B
E C F D F
F* B

(the * indicates a halt state).

Input symbols

0 + d

S A A G B,C,E

A G B,C,E

G H

States 8) H

8 D,G B,C,E

@ D,H

G D,H

Figure 3.17. Inaccessible states removed.

88 Compiler Construction: theory and Practice

3.3. Machine Equivalence

We have until now used the notion of machine equivalence without much
development. Two machines M and M' are equivalent if they accept the same
language. That definition has sufficed thus far. We now develop the concept
ofequivalence more formally, and will arrive at an an algorithm for reducing
the number of states in a finite-state automaton to the least possible. The
reduction method will also enable us to decide whether two seemingly
different finite-state machines are in fact equivalent. The general notion of
language acceptance is not practical, since we can seldom try all possible
strings on both machines and test their acceptances.

The reduction of a machine to the fewest possible states is obviously of
economic value. Among other things, it will reduce the task of designing
semantic actions for the machine to a minimum.

3.3.1. Definitions

We start by defining the k-equivalence between two states P in M and P'
in M', where k is some integer, k2:: 0 and M and M' may be the same machine.

State P in M and state P' in M' are said to be k-equivalent if, for every
string x of length k or less, machine M in state P accepts x if and only if
machine M' in state P' accepts x.

If states P and P' are not k-equivalent, then they are said to be
k-distinguishable; there is then some string x of length k or less, such that
either: (1) machine M in state P accepts x, but machine M' in state P' does not,
or (2) machine M' in state P'accepts x, but machine M in state P does not.

Two states P and P' are said to be equivalent if they are k-equivalent for all
k.

A machine M is said to be reduced if no state in its state set is inaccessible
and no two distinct states are equivalent.

A pair of equivalent states P and Q in a machine M may be merged by
changing the name "Q" to "P" everywhere, without affecting the language
recognized by the machine.

Let P ~ Q denote k-equivalence of states P and Q in a FSA M. Obviously
P ~ P, and by the symmetry of the definition, if P ~ Q, then Q ~ P. The
k-equivalence is an example of a relation, and any relation that satisfies these
two properties is said to be symmetric and reflexive.

The k-equivalence relation is also transitive: IfP ~ Qand Q ~ R, then P
~R. It is easy to show that k-equivalence is transitive. Let x be any string of

length k or less that is accepted in state P. Then ifP ~ Q, it is also,accepted in
state Q. If Q ~ R, it is also accepted by state R. Hence P ~ R.

Any relation that is symmetric, reflexive, and transitive is called an
equivalence relation. A fundamental property of an equivalence relation, and

3 Finite State Machines 89

one that we shall exploit in reducing a FSA to its minimal form, is the
following:

An equivalence relation R upon a finite set of objects S partitions S into
disjoint subsets, such that any two members of any subset are equivalent to
each other, and no two members of different subsets are equivalent to each
other.

This assertion may be proven by first considering how a set S is divided
into subsets by an equivalence relation. Let the members of S be aI' a2, ... , au.
Then we create a sequence ofsubsets Sp S2' ... of S as follows. Each of Sp S2'
... is initially empty. SI is created by placing a l into it, then including a copy
of every other member of S that is equivalent to a l . Note that by symmetry
and transitivity, these must be equivalent to each other. When SI is
completed, there mayor may not be some members of S-SI left over. Suppose
there are some members of S-SI; call these bp b2, ... , bm' We then start a new
subset S2 by placing b i in it, then adding all the members of S that are
equivalent to b l . The interesting question is whether there can be a state that
belongs to both SI and S2' Suppose there were; let it be called Q. Then by
transitivity and reflexivity, Q must be equivalent to ap because it is in Sp and
also to bp because it is in S2' But then by transitivity a l is equivalent to b l . We
are led to a contradiction, since b i was specifically one of the states left out of
set SI when we first collected together the states equivalent to a l . Hence set SI
and S2 must be disjoint. A similar argument applies to sets S3' S4' etc.

Now suppose that we have somehow partitioned the state set of a FSA by
k-equivalence. What is the nature of the partition induced by (k+ 1)-equiva­
lence? The answer is that a (k + 1)-equivalence is a refinement of a
k-equivalence. By refinement, we mean either that the partition of a
(k+1)-equivalence is exactly the same as that ofa k-equivalence or that some
of the subsets in the k-equivalence have become further subdivided. The
boundaries between the subsets of a partition are not changed by a
refinement; rather, additional boundaries are introduced.

Refinement may be illustrated as follows. Suppose we have a set S of states
A, B, ... , J, in a machine M, and they are partitioned as follows:

S = {A, D, I} {B, C} {E, F, G, H} {J}

Note that each state appears exactly once and belongs to exactly one subset. A
refinement of this partition might be the following example:

{A} {D, I} {B, C} {E, F} {G, H} {J}

When at least one subset of a partition is subdivided in a refinement, the
refinement is called proper. The above example is a proper refinement.

The following partition is NOT a refinement of the partition S:

{A, B, D} {I, C} {E, J} {G, H} {F}

90 Compiler Construction: Theory and Practice

Although there are more subsets, states I and C have become members of a
common subset, whereas in S they were in disjoint subsets.

We now prove our assertion: that a (k + 1)-equivalence induces a refine­
ment on the partition induced by a k-equivalence. We need only show that a
pair of states P and Q tpat were disjoint in the k-equivalence partition S
remain disjoint in the (k + 1)-equivalence partition S'.

To prove this assertion, recall that P and Q are disj,oint in S because there
exists some string x of length k or less that distinguishes these two states. But
this string is also of length (k + 1) or less, consequently P and Q must be
disjoint in S'.

3.3.2. Reduction

We are at last in a position to reduce a FSA to its minimal form in a
systematic manner. We need only these observations, which should be
evident from the preceding discussion:

1. The O-equivalent partition of the state set of a machine M is {F},
{Q-F}. That is, the O-equivalent partition consists of the halt states and the
non-halt states. These must be in separate partitions because the machine is in
either an accepting or a rejecting state, depending on which state it is in, for a
string of length O.

2. As a partition is refined by identifying distinguishable states, eventually
there must be a (k + 1)-equivalence partition which is exactly the same as the
k-equivalence partition. This reasoning follows because the state set is finite,
and there are therefore a limited number of times a boundary can be
introduced into a partition. For this k, the k-equivalent states must be
equivalent (with no string length restriction), since no further refinement is
possible. This partition is (k + 1)-equivalent, (k +2)-equivalent, etc. There­
fore each subset of this partition is a set of equivalent states.

3. A partition is refined by noting whether two states in the same subset can
be distinguished by some single input token. For example, suppose P and Q
belong to the same subset in a k-equivalent partition, and we find (by
examining the state transitions), that P goes to P' and Q goes to Q' on some
token "b". If P' and Q' are in different partitions, then they are distinguish­
able; consequently P and Q must be distinguishable and belong in different
subsets in· the (k+ 1)-equivalent partition. The two states may also be
distinguished if one of them possesses a transition on some token, while the
other does not. A nonexistent transition on a state P and token "b" means that
the machine cannot scan string "b" in state P. If state Q has a transition on
token "b" while P does not, then P and Q are distinguishable and belong in
different subsets of the partition.

Summarizing, we begin with the two-fold partition of halt and non-halt
states. Then we induce refinements on these by looking for single tokens that
can distinguish two members ofa subset. When no further refinements can be
made, the machine has been reduced to minimal form.

3 Finite State Machines 91

Example. Consider the DFSA whose state transition table is given in figure
3.18.

The initial partition, on halt and nonhalt states, is

{A, B, C, D} {E, F}

We now attempt to refine this partition by looking for tokens that can
distinguish pairs of states within either of the subsets.

Consider the pair (A,B). State B has a transition (to C) on "a", but A does
not; hence these states belong in different subsets.

Next consider the pair (A,C). Again, C has a transition on "a", but A does
not; hence, these belong in different subsets. Note that these conclusions do
not prove that Band C belong in different subsets; hence, we must also con-
sider pair (B, C). .

States Band C have transitions on each of the three tokens. On token "0",
they both transfer to E, on token"1", they both transfer to D, hence neither of
these tokens serves to distinguish them. On token "a", state B goes to C and
state C goes to B. Since Band C are in the same partition, token "a" also fails
to distinguish them. We conclude that Band C belong in a common subset in
the next partition.

Next consider states A and D, both clearly distinguishable. Also, since D
has only one transition (on token "0"), it is distinguishable from B and C"
Hence D belongs in its own partition.

I) 0 1 a

A B C

B E D C

C E D B

D F

CD D

CD
Figure 3.18. A machine to be reduced.

92 Compiler Construction: Theory and Practice

Finally, consider states E and F. State E has a transition on "1" not
possessed by F, hence this pair is distinguishable.

Our I-equivalent partition therefore looks like this:

{A} {B,C} {D}{E} {F}

There is only one subset that is a potential candidate for a partition, the {B,
C} pair. A glance at the table shows that this partition cannot be refined.
Hence these two states must be equivalent. The reduced machine has five
states. State C may be renamed "B" wherever it appears. The reduced
machine is in figure 3.19.

Another Example. Consider the decimal number machine in figure 3.17. Its
initial partition is

{S, A, G} {H, BCE, DG, DH}

States S, A, and G are clearly distinguishable. Similarly, state BCE belongs in
its own partition. However, what about H, DG, and DH? They all transfer to
a common subset on token "d", whether in this partition or the next one. The
final partition is then:

{S} {A} {G} {BeE} {H, DG, DH}

and the triplet subset cannot be further partitioned. Hence the final machine
has five states, with two halt states, as shown in figure 3.20, which may be
compared with figure 3.1; these two machines are clearly isomorphic.

B 0 1 a

A B B

B E 0 B

D F

0 0

(0

Figure 3.19. Machine of figure 3.18 reduced.

3 Finite State Machines 93

d

Figure 3.20. The machine of figure 3.12 made deterministic and reduced.

Summary

Recall that we asserted that the machine of figure 3.1 was equivalent to the
nondeterministic machine of figure 3.3. We have now demonstrated that
assertion, through the following machine transformation steps. These steps
provide a systematic way to construct a program to recognize an important
class of languages.

• Removal of empty move cycles (if any).

• Removal of empty moves.

• Removal of nondeterminism.

• Removal of inaccessible states.

• Reduction by identifying and merging equivalent states.

Since this process may be applied systematically to any FSA, and we have
assurance that it will always yield a machine with the minimum number of
states, it is possible to determine whether two different-appearing machines
are in fact equivalent. We merely reduce each of them by the above process,
then test them for isomorphism. We leave the matter of testing isomorphism
for an exercise.

94 Compiler Construction: Theory and Practice

Exercises

1. Reduce the following FSA:

state input
o I

ABC
B E F
C A A
D F E
E D F
F D E

2. Show that if two states P and Q are k-distinguishable for k~ 0 then they
are (k+ I)-distinguishable.

3. A machine M has n states. Give a bound for the largest k such that some
pair of states is (k - I)-distinguishable but k-equivalent.

4. Develop an algorithm that tests two reduced machines M and M' for
isomorphism.

5. Develop an algorithm that tests two nonreduced machines M and M'
for equivalence. Note: The obvious approach is to reduce each of them,
then apply the solution to exercise 4. Is there a more direct approach?

3.3.3. A Systematic Reduction Method

Several systematic tabular methods for machine reduction exist. We
describe one that can be programmed easily on any computer, called the pairs
table method.

Apairs table contains a pair of states or a null at the intersection ofeach row
and column. EaclJ. column is associated with an input token. Each row is
associated with afeasible state-pair. The reduction consists oftwo algorithms,
one that builds a pairs table for the nonreduced deterministic FSA and one
that marks certain rows. At the conclusion of the second algorithm, each row
that is not marked is associated with a pair of equivalent states; each row that
is marked is associated with a pair of distinguishable (nonequivalent) states.
Furthermore, all the equivalent states appear as unmarked state-pairs in the
final table.

A feasible state-pair is a pair of states that conceivably could be equivalent
upon a cursory examination of the FSA transition table. More precisely, a
state-pair (p,q) is a member ofthe feasible state-pair set if (I) {p, q} is a subset
ofeither For Q-F, i.e., both are halt states or both are non-halt states, and (2)
for every input tokep. "a", 8(p, a) is 0 if and only if 8(q, a) is 0. .

3 Finite State Machines 95

By selecting only those state-pairs that satisfy these two conditions, we
eliminate from further consideration all those pairs of states that are
obviously distinguishable, e.g. (1) a halt state is distinguishable from a
non-halt state, and (2) a state with a transition on some symbol is
distinguishable from another without a transition on that symbol.

For example, consider figure 3.17. The state-pair (S, A) is not a feasible
state-pair, because S has a transition to A on token "+", while A does not.
The state-pair (G, H) is not feasible because H is a halt state, while G is not.

Thus the set of feasible state-pairs for the machine of figure 3.17 consists of
the set:

{(H, DG), (H, DH), (DG, DH)}

None of the other state-pairs are feasible. Since this machine is rather trivial
under the reduction algorithm, we choose a more interesting maqp.ine, given
in figure 3.21. For this machine, the set of fe::lsible pairs inclu'd,es all the
internal combinations of the sets: .

{1, 3}, {2, 5, 7}, {4}, and {6}

Input

a b c

1 2 5

2 3 4 1

3 5 2

States 0 3 2 1

5 1 4 1

6 1 1

7 3 6 3

Figure 3.21. Another machine to be reduced.

96 Compiler Construction: Theory and Practice

Thus the feasible pairs are

{I, 3}, {2, 5}, {2, 7}, {5, 7}

States 4 and· 6 do not appear in any feasible pairs, since they they are
distinguishable from all the other states.

We now describe the pairs table construction. Given a pair (p, q) associated
with a row, then the table entry for token "a" is the pair (p', q'), where p' =
o(p, a), and q' = o(q, a). That is, we simply list the pair of states to which (p,
q) transfers on each of the input tokens. Note that by the feasible pair
selection process, only those states either possessing or not possessing such
transitions are in the pairs table; hence we will get either a new state-pair or a
null entry. Also, the machine is deterministic, which means that o(p, a) and
o(q, a) contain at most one state each.

The resulting pairs table for the machine in figure 3.21 is shown in figure
3.22(a).

Apair is unordered, e.g., the pair (2, 5) is equivalent to the pair (5, 2). To
facilitate the recognition of such equivalences, the members of each pair are
written in numeric order in figure 3.22. Thus the states (1, 3) actually transfer
to (5, 2) on token "b"; however, the state-pair (5, 2) is written (2, 5). By the
same reasoning, if a pair (2, 5) appears in the feasible state-pair list, we do not
include (5, 2).

(a) Unmarked Input

a b c

(1,3) (2,5) (2,5)
Feasible (2,5) (1,3) (4,4) (1,1)
state
pairs (2,7) (3,3) (4,6) (1,3)

(5,7) (1,3) (4,6) (1,3)

(b) Marked Input

a b c

(1,3) (2,5) (2,5)

Feasible (2,5) (1,3) (4,4) (1,1)
state v' (2,7) (3,3) (4,6) (1,3)
pairs

11'(5,7) (1,3) (4,6) (1,3)

Figure 3.22. Pairs table for machine of figure 3.21.

3 Finite State Machines 97

The next operation is marking those state-pairs that are distinguishable.
This is the marking rule: A state-pair in the set of feasible state-pairs is
marked if there exists a transition to a state-pair (p, q) such that (1) P and q are
different, and (2) (p, q) is either marked or not among the feasible state-pairs.

This operation is repeated until no more state-pairs can be marked. Thus in
figure 3.22, state-pair (1, 3) transfers to state-pair (2, 5) on both tokens "a"
and "b"; (2, 5) is in the feasible state-pair set and is unmarked, hence (1, 3)
is not marked.

Consider the pair (2, 5), the second row, which has transitions to pairs (1,
3), (4, 4), and (1, 1). The transitions to (4, 4) and (1, 1) do not call for marking,
nor does the transition to (1, 3), since (4, 4) and (1, 1) are singlet pairs, and (I,
3) is in the table, unmarked.

Pair (2, 7) is marked, however, since there is a transition to pair (4, 6), on
token "b", and (4, 6) is not in the table. Similarly, pair (5, 7) is marked.

Repeating the operation on pairs (1, 3) and (2,5), we find that they still are
not marked, since (2, 7) and (5, 7) are not among the state-pairs to which they
transfer. Hence we conclude that these two pairs remain unmarked, and are
therefore the equivalent state-pairs.

The pairs algorithm therefore indicates that the equivalent state-sets of the
machine in figure 3.21 are:

{I, 3}, {2, 5}, {4}, {6}, {7}

Exercises

1. Reduce the following FSA by the pairs table method:

state input
0 1

A B C
B E F
C A A
D F E
E D F
F D E

2. Show that the members of each feasible state-pair are I-equivalent.

3.4. Regular Grammars and FSA

Regular grammars and finite-state automata have a very close correspond­
ence. Given any FSA, a regular grammar may be constructed from it whose
language is identical to that of the FSA, and given any regular grammar, an
FSA may be constructed from it whose language is identical to that of the

98 Compiler Construction: Theory and Practice

grammar. We give the constructions for these assertions, with examples. The
proofs are elementary.

FSA from a Regular Grammar

Recall that a regular grammar G = (N,~, P, S) has productions in the set P
of the form

A~ aB
A~b

where BEN, and a € ~

where b E ~

Given a grammar G, we construct a NDFSA M = (Q, ~, 8, qo' F) as
follows:

The states of M are associated with the nonterminals of G, except for one
additional state q' not in N. The halt-state set F is {q'}. The state qo is
associated with the start token S in G. Then for every production A~ aB in
G, we add state B to the transition set 8(a, A). For every productionA~ bin
G, we add state q' to the transition set 8(b, A).

Note that the alphabets of M and G are identical, and that M may be
nondeterministic.

For example, consider the simple grammar Gz, with productions:

S~ + N
S~ - N
S~dN

S ~ d
N~dN

N~d

The language of this grammar will be recognized as the signed decimal
numbers, where "d" is a decimal digit.

The machine M will contain the states {S, N, F}, where F is a new halt
state.

Then the transitions of M are defined by the following transition function:

8(S, +) = N
8(S, -) = N
8(S, d) = N
8(S, d) = F
8(N, d) N
8(N, d) = F

The moves of M in recognizing a string x mimic the derivation of x in the
grammar. For example, consider the string "-313", or "-ddd" as it appears in
the grammar. The moves are

3 Finite State Machines 99

S to N on "-",
N to N on "d",
N to N on "d",
N to F on "d".

The derivation is

S~ -N~ -dN~ -ddN~ -ddd

We leave a proof that L(G) = L(M) to the reader.

FSA to a Regular Grammar

Given a FSA M, a regular grammar G may be constructed from M, such
that L(M) = L(G), as follows. Let M be deterministic. Let G = (N, L, P, S),
where N, the nonterminals, correspond to the machine states Q, the alphabets
of G and M are identical, S corresponds to the start state of the machine, and
the productions in P are constructed as follows:

· If o(A, a) = B, then include production A~ aB in P.

• Ifo(A, a) = B, where B is in the halt set F, then include production A~
a in P.

The resulting grammar is clearly regular. Again, machine M mimics a
derivation in G for some string x. We leave a proof that L(M) = L(G) to the
reader.

Exercises

1. Construct a regular grammar for the FSA offigure 3.21, for the reduced
FSA.

2. Construct an FSA for the regular grammar G, given below. Reduce it
and discuss the language L(G) iri.formally.

A~ OB ID
B ~ OB lC I 1
C ~ IE OD
D~ OD IE I
E ~ lC OB
F ~ OC IG I 0
G ~ IE OF I 1

3. Show that ifa string x can be derived in a grammar G, then it is accepted
by the FSA M constructed as above. (Hint-show by induction on the
derivation length).

100 Compiler Construction: Theory and Practice

3.5. Regular Expressions and FSA

A regular expression is a compact way of representing a regular language.
In addition to string elements, a regular expression uses three basic
operations, concatenation, alternation, and closure. We have introduced each
of these operations previously, in a less formal manner.

3.5.1. Definitions

Concatenation is all associative, noncommutative binary operation. The
token for concatenation is juxtaposition, e.g., if E1 and Ez are two regular
expressions, then E1Ez is the concatenation of the two. If E1 and Ez denote
the sets of strings Sl and Sz' respectively, then E1E2 denotes the set

S = {uv Iu € Sl and v € S2}

Another way to express E1Ez is: Choose any string "u" in the set denoted by
E1; choose any string "v" in the set denoted by E2; then the concatenated
string "uv" is in E1Ez. Also, any string in E1Ez can be divided into a "u"
prefix and a "v" suffix, where "u" is in the set denoted by E1 and "v" in the set
deQoted by Ez.

Alternation is an associative, commutative binary operation, represented
by the symbol Ior +. If E1 and E2are two regular expressions, denoting the
sets ofstrings Sl and Sz' then E1 I Ez is a regular expression denoting Sl U Sz'
the union of Sl and S2. We have introduced alternation previously; it is
commonly used in the BNF representation of production rules.

Closure is a unary operation. If E is a regular expression denoting some set
of strings S, then {E} is a regular expression, called the closure of E, and
represents the set ofall possible strings formed by choosing members of Sand
concatenating them, together with the empty string €. Thus the closure {E} of
a regular expression E is a compact way of writing the infinitely large regular
expression

€ I E I EE I EEE I EEEE I ...

Closure may also be defined by the following set expression:

{E} = { xY Ix €E and Y €{E} } U {€}

This definition may appear circular, since the closure operation which is
being defined appears in its own definition. Therefore let us explore this
matter briefly. By the definition, the empty string € is in {E}, which means
that Y can be E within the definition and, by the first halfof the union, all those
x's in E are also in {E}. In other words, {E} contains E I E. Thus Y may
contain anything in E IE and, by the first half of the union, all those xY's such
that x is in E are in {E}; therefore {E} contains EE IE I €, etc.

3 Finite State Machines 101

Closure may also be represented by the token * following the expression to
be closed, thus E* = {E}. If E consists of more than one token, it must be
enclosed in parentheses when this notation is used.

Recall that we earlier stated that ~ * represents the set of strings in the
alphabet~. This statement is clearly consistent with the definition of closure.

Parentheses may be used freely in regular expressions as needed to keep the
relative ordering of the operations clear. Closure is represented by a
parenthesis structure {} and does not require any precedence rule; it operates
on the expression contained therein. By convention, concatenation has a
higher precedence than alternation, therefore the regular expression

ablcde

is interpreted

(ab)l(cde)

Closure represented by *has a higher precedence than either concatenation
or alternation. Thus

a I bc*

is interpreted

(a) I (b (c)*)

The elements of a regular expression are the tokens of an alphabet ~, the
empty token {, and the null set 0. A null-set regular expression denotes an
empty set, containing neither { nor any strings. The regular expression (
denotes a string set containing only the empty string.

The symbols for alternation, closure, etc. are called metasymbols and cannot
be in the alphabet of the regular language. Of course, parentheses appear in
many common languages, so that any practical implementation must deal
with a potential conflict of metasymbols and the language alphabet. A choice
ofmetasymbols might be provided, or a special quote character might be used
to delimit alphabet symbols.

A Context-Free Grammar for Regular Expressions

The language of regular expressions is expressed by the following
context-free grammar G r = (N,~, P, R), where

N = {R, C, L}; ~ = {+, (,), {, }, a}, and

the production set P is

R~ R + C
R~ C
C~ C L

(alternation)

(concatenation)

102 Compiler Construction: Theory and Practice

c~ L
L ~ (R)
L ~ { R }
L~a

L~E

(parenthesizing)
(closure)
(any token in the regular language)
(empty string)

This grammar expresses the precedence of the operations, as well as the
structural rules for regular expression formation. In the following discussion,
we shall assume that any regular expression may be parsed and a derivation
tree created for it.

Examples of Regular Expressions

The regular expression

(+ I - I E) d{q}

represents the set of (possibly) signed numbers, where d represents the set of
digits. This expression may be interpreted in English as follows:

E consists of a choice of" + ," "- ," or empty (E) followed by a single digit,
followed by any number (including zero) of digits.

The regular expression

(+ I - I E) (d{ d}.{ d}1 {d}.d{d}) (EI(E(+ I - I E) d{ d}»

represents a floating point number. To see this, let us divide the expression
into three parts as follows:

(+ I I E)(d{d} .{d} I{ d} .d{d}) (EI (E(+ I IE) d{d} »
I II III

Then part I represents an optional sign. Part II is the mantissa. It must
contain a decimal point and at least one digit ahead or behind the decimal
poirlt. Part III represents an optional exponent, signaled by an "E" followed
by an optional sign and at least one digit.

Note the use of precedence of concatenation over alternation in part II.

Exercises

1. Describe informally the languages of each of the following regular
expressions and giv~ some examples of strings in each one:

(A + {B})ABB
OO{OI + 10+ 11} + 11{0! + 10+00}
(a+b){ a+ b+O}b

3 Finite State Machines 103

2. Construct a regular expression that represents:

(a) A sequence of O's and l's such that the combination 11 appears
exactly once.

(b) Arithmetic expressions containing binary +, -, *, /, unary -, and
one level of parenthesis nesting.

(c) The set of Cobol identifiers, consisting of a sequence of letters, digits,
and underline (_), starting with a letter.

3.5.2. Regular Expression Identities

Regular expressions satisfy a number of identities, which may be used to
reduce the complexity of a regular expression or to prove that two regular
expressions represent the same language. Unfortunately, there seems to be no
systematic procedure for transforming regular expressions into standard
forms, as in ordinary algebra or trigonometry.

Let A, B, and C be regular expressions. Then the following identities hold:

(identity of alternation)

AE=EA=A
0E=E0=0
{E} = E + {E}
{{E}} = {E}
E + 0 = E

(4) A(B C) = (A B)C
(5) A(B+C) = A B + A C

(1) A + B = B + A (commutivity of alternation)
(2) { 0} = E (closure of an empty set is the null string)
(3) A + (B + C) = (A + B) + C (associativity of

alternation)
(associativity of concatenation)

(distributivity of
concatenation over alternation)

(identity of concatenation)
(zero of concatenation)

(6)
(7)
(8)
(9)

(10)

Most of these follow directly from the corresponding properties of the string
sets represented by the regular expression. For example, the "+" operator
corresponds to a set union, which satisfies commutivity and associativity.
Similarly, concatenation can easily be shown to be associative.

Identity 2 follows immediately from the definition of closure- regardless
ofwhat (if anything) is in a set E, {E} contains E.

Identity 8 follows immediately from the observation that every string in E
is also in {E}, hence the union of these two is exactly {E}.

104 Compiler Construction: Theory and Practice

Exercises

1. Show that the following are identities through use of the ten identities
listed previously.

E{E} = {E}EE
E(E + {E}E) = {E}E
B(A + AA) = BAA + BA
{{A}{B}} = {A + B}

2. Prove each of the ten identities through the use of the equivalent set
definitions.

3.5.3. Correspondence to FSA

We now demonstrate that, for every regular expression E denoting some
language L(E), there exists a FSA M such that L(M) = L(E). The
construction of the machine is particularly useful, since it is often more
convenient to represent a language as a regular expression than as a FSA. We
therefore need a systematic way to cOnstruct a recognizer for the language ofa
regular expression.

The machine we construct will be nondeterministic, in general, but may be
reduced to a minimal deterministic machine by the methods of the previous
sections.

The basic idea of the transformation is simple. We conceive a FSA that
contains a start state S and one halt state F. Somehow, it recognizes a regular
expression E, as diagrammed in figure 3.23(a). The square box containing
"E" represents a set of states and transitions between states Sand F.

Now suppose that E is the empty set 0. Since 0 is an empty language,
which contains neither any string nor E, the only possible machine for 0 is the
isolated Sand F states, figure 3.23(b). This machine refuses to accept any
string, including the empty string, since it can never reach the halt state.

Next suppose that E is the empty string E. A recognizing machine for this
language is shown in figure 3.23(c), which permits one transition-an empty
move from S to F. This machine clearly exactly accepts the empty string. A
string of length> 0 is rejected, since there are no other moves from either S
or F.

If E is an alphabet token "a", the machine of figure 3.23(d) exactly
recognizes a string consisting of that token.

Now we consider some more sophisticated machines. If E is a parenthe­
sized expression, E = (E'), a recognizer machine for E is clearly a recognizer
for E'.

3 Finite State Machines 105

(a)
General
machine

(b) ~
(Null) Empty

set

(c) ~t-----~.@

(d) ~t-- a --~.@

Empty
string

Alphabet
symbol

(e)

(f)

(g)

Concatenation
C = E1 E2

Alternation
E = E1 IE2

Closure

E={E'}

Figure 3.23. Generation of a non-deterministic finite-state automaton from the
components of a regular expression.

106 Compiler Construction: Theory and Practice

Consider the concatenation E of two expressions, Eland E2. A recognizer
for E clearly must recognize El, then E2, in that order. Such a machine is
shown in figure 3.23(e).

An alternation expression E = E1 I E2 is recognized exactly by the machine
of figure 3.23(f). Recall that the set of strings represented by E1 I E2 is the
union of the sets represented by E 1 and E2 • Now let machine M 1 recognize E1

and M 2 recognize E2 • Then consider a string x in E. The string x must be in
E1 or in E2 (it could belong to both, ofcourse). If in EI' then the upper path of
figure 3.23(f) yields a recognition; if in E2, then the lower path of figure
3.23(f) yields a recognition. No strings other than those in the union of
L(M1) and L(M2) are in the composite machine; any string recognized by the
composite would have to be recognized in the upper or lower path, therefore
by either M 1 or M 2 •

Finally, a closure expression E = {E'} is recognized exactly by the
machine of figure 3.23(g). The empty moves are needed when these machine
segments are combined to form a complete recognizer for some regular
expression. Machine (g) clearly recognizes the empty string (two empty
moves, S to A, A to F), and one or more concatenations of the strings in E'.
Thus a string consisting ofn members (n2:: 0) of the regular expression E'may
be recognized by the empty move from S to A, n moves from A to itself
through the machine for E', followed by the move from A to F.

Figure 3.23 essentially outlines the rules by which a complete machine for
an arbitrary regular expression may be built from its parts. The construction
operations are effectively guided by the derivation tree for the regular
expression, and may be done bottom-up or top-down. The top-down process
will be be illustrated for an example. Then a top-down procedure will be
given.

Consider the regular expression

E = (+ I - If)d{d}

which displays all the operations and tokens of regular expressions except the
o set, which should never appear within a regular expression anyway.

A simplified tree for this expression is given in figure 3.24. It is essentially
the derivation tree with the single productions and parenthesis nodes
removed.

At the root level, E consists ofa concatenation oftwo pieces, which we shall
call E1 and E2 :

E = E 1 E2

where E1 = (+ I - If) and E2 = d{ d}. Thus the first machine looks like
figure 3.25(a). We have introduced a new intermediate state, A.

The transition from S to A is an alternation of + with (- If), as shown in
figure 3.24. The single transition is therefore split into two, one for" +", the
other for "(- If)". The latter in turn splits into one for" - " and one for ''€''.

3 Finite State Machines 107

Root

+

~
d

o Concatenation (binary)

CD Alternation (binary)

o Closure (unary)

Expression: (+1-1 E)d{d}

Figure 3.24. The regular expression 1/(+I-I f)d{ d}" as a tree.

The resulting machine is shown in figure 3.25(b).
Turning to the machine between states A and F, we see that it is another

concatenation, of"d" with "{d}". The machine of figure 3.25(c) is the result,
containing another new state, B.

The last machine is between states Band F and is a closure machine. The
final NDFSA for the regular expression is therefore shown in figure 3.25(d).
As it turns out, neither of the (-moves between states Band F are necessary in
this machine; however, there is no harm in keeping them, since they will be
eliminated and the machine reduced to minimal form by the methods
previously described.

We now give a recursive procedure FSM(EXPR, P, Q), which, when given
a regular expression EXPR, an initial state P = S, and a final state Q = F,
yields a set of states and a transition function for a machine (nondeterministic
in general) whose language is that of the regular expression. The final
machine has one halt state, F.

We use a Pascal-like notation for the procedure. The operator"=" is an
equality comparison; operator ": =" means the left side's value is replaced by
the value of the right-side expression. Lowercase words represent keywords,
and uppercase words represent variables and arguments. The" U " is the set
union operation. A comment starts with { and ends with }. The vari­
able 8 represents the tabular representation of the transition function.
Thus

o then return;
E then

108 Compiler Construction: Theory and Practice

(a) CD (+I-\E) .01--- d{_d} ~.@

(b) E9 d{d} .@

~}J
d ·0 {d} .(0)(c)

(d)~
d ·0 E .<f] d E .@

Figure 3.25. Development of a finite-state automaton from the regular expression
J/(+I_I €)d{d}".

o(R, A) := o(R, A) U {Q}

means that state Q is added to the set o(R,A).

procedure FSM(EXPR, P, Q);
begin

if EXPR
if EXPR
begin

O(P, E) := o(P, E) U {Q};
return;

end;

if EXPR = a € ~, then
begin

o(P, a) := o(P, a) U {Q};
return;

end;

if EXPR = (X) then
begin

call FSM(X, P, Q);

3 Finite State Machines 109

return;
end;

if EXPR = X Y then {concatenation}
begin

create a new state A;
call FSM(X, P, A);
call FSM(Y, A, Q);
return;

end;

if EXPR = X I Y then {alternation}
begin

call FSM(X, P, Q);
call FSM(Y, P, Q);
return;

if EXPR = {X} then {closure}
begin

create a new state A;
call FSM(€, P, A);
call FSM(X, A, A);
call FSM(€, A, Q);
return;

end;
end;

Example. Let EXPR = (+ I - I €)d{d}. Then we call FSM(EXPR, S, F). S
will be the start state and F the (only) halt state of the final machine for
EXPR. The following is a trace of the calls of FSM, the actions taken, and the
returns. The periods "..." indicate the depth of nesting in the recursive calls.

call FSM('(+ I - I €)d{dr, S, F);
· create a new state: R1;

· call FSM('(+ I - I €)', S, R1);

· . call FSM('+ I - I €', S, R1);

· call FSM('+', S, R 1);

· . 8(S, +) := 8(S, +) U {Rd;
· . return;
· call FSM('- I €', S, R1);

· ... call FSM('-', S, R1);

. 8(S, -) := 8(S, -) U {Rd;
· return;

110 tompiler Construction: Theory and Practice

· call FSM('€', S, R1);

· . o(S, €) :== 8(S, €) U {Rd;
; . return;
· return;

· return;
· return;

. call FSM('d{dr, Rl' F);
· create. a new state: R2;

· call FSM('d', Rl' R2);

· . 8(Rl' d) := 8(Rl' d) U {R2 };

· . return;
· call FSM('{dr, R2, F);

· create a new state: R3;

· call FSM('€', R2, R3);

· . 8(R2, €) := 8(R2, €) U {R3 };

· . return;
· call FSM('d', R2, R3);

· 8(R2, d): =8(R2, d) U {R2 };

· return;
call FSM('€', R2, F);
· 8(R2, €) . - 8(R2 , €) U {F};
· return;

· return;
· return;

. return;

The result of this FSM call is the transition function shown graphically in
figure 3.25(d).

Exercises

1. Show that the regular expression

(+ I - I €) (d{d} I d{d} .{d} I {d}.d{d})

yields the FSA of figure 3.3.

2. Add an exponent part to the expression of the previous expression,
develop its FSA and reduce it.

3. Define data structures for procedure FSM in Pascal and develop a
complete program around it, Assume that a reduced tree structure for
the regular expression is available, similar to that in figure 3.24. (The
next chapters deal with the problem of parsing a regular expression and
generating a reduced tree from the parse).

3 Finite State Machines 111

3.5.4. Regular Expression of a Regular Grammar

We first observe that a given regular language has many representations in
regular expressions, and that it is not easy to reduce a given regular
expression to some minimal form. The method given below always yields a
valid regular expression, but it may be larger than another one that also
represents the same language. We know of no systematic reduction process
for regular expressions similar to those useful in ordinary algebra.

We first introduce the concept of a regular expression equation, which
contains regular expressions and variables X[I], X[2], etc., that stand for
some uriknown regular expression. These resemble linear equations and are
written in standard form as follows:

X[I] = a[I,O] + a[I,I] X[I] + a[I,2] X[2] + + a[l,n] X[n]

X[2] = a[2,0] + a[2,1] X[I] + a[2,2] X[2] + + a[2,n] X[n]

X[n] = a[n,O] + a[n,l] X[1] + a[n,2] X[2] + ... + a[n,n] X[n]

Each ofthe coefficients a[i,j] is a regular expression in general, but contains no
variables.

Note that a set ofproductions in a regular grammar may be represented as a
set of regular expression equations. For example, the regular grammar

S ~ OA
S ~ IB
S~O

S ~ 1
A~ OS
A~ IB
A~1

B ~ OA
B ~ IS
B~E:

may be written as a set of three regular expression equations in the three
unknowns, S, A, and B, as follows:

S = (0+ 1) + OA + IB
A = 1 + OS + IB
B = E: + IS + OA

Thus, the first four productions are equivalent to

(3.1)
(3.2)
(3.3)

112 Compiler Construction: Theory and Practice

S~ OA liB 1 0 II

which may be written, using" +" for the alternation "I" and "=" for "~",
as:

S = 0+ I +OA+ IB

We then observe that if it is somehow possible to solve a system of
equations for the variable S, the solution being a regular expression in the
alphabet, we will have a regular expression representing the language of the
underlying grammar.

We first need a solution for the equation

S = as + b (3.4)

where "a" and "b" are regular expressions in the alphabet and possibly in the
other variables. Note that any regular expression equation in any variable S
may be written in this form.

A solution for this equation is

S = {a}b

or S = a* b, using the alternate notation.

To prove this, consider the substitution of {a} b for S in equation (3.4):

{a}b = a{a}b + b

Fa,c:tor the right side, yielding

{a}b=(a{a} +€)b

(3.5)

Now {a} = a{ a} + €, since € is in both sides, "a" is in both sides, and any
string in {a}, other than "a" or €, is in {a} and in a{ a}. Hence Eq. (3.5) is an
identity, and {a} b is a solution of Eq. (3.4).

We will not show that {a} b is in some sense a complete solution of Eq.
(3.4). Now there are solutions to (3.4) that are not in {a} b, if "a" contains the
empty string. Indeed, {a}(b + c) is a solution to (3.4), where c represents any
set of strings whatsoever, if "a" contains the empty string. However, it turns
out that {a} b, called the minimal fixed point of Eq. (3.4), is sufficient to
generate an equivalent regular expression.

Now we can solve a general system of equations for the start token S. We
illustrate the method using Eqs. (3.1) to (3.3) given above. The general
method should be clear from this example; a more rigorous treatment is given
in Aho[1972].

We start with some equation other than the S equation, for example, the B
equation, Eq. (3.3). If this had the form

B=aB+b

3 Finite State Machines 113

we would first transform it into the equation

B = {alb

which eliminates B from the right-hand side. Since the right side of (3.3) does
not contain B, this step is unnecessary.

The regular expression obtained for B, which is just Eq. (3.3), may now be
substituted into the other equations. The resulting equations are then free of
variable B. The result of this substitution in the set (3.1) and (3.2) is

A = 1 + OS + l(E + IS + OA)

= 1 + (0 + 11)S + lOA

S = (0 + 1) + OA + l(E + IS + OA)

= (0 + 1) + (0 + 10)A + lIS

(3.5)

(3.6)

We have made use of some of the identities in the second step in each case.
For example, in the A equation,

1 + OS + l(E+ 1S+0A) = 1 + OS + h + lIS + lOA

= 1 + 1 + OS + lIS + lOA = 1 + (0 + lI)S + lOA

in Eq. (3.5).
We next rewrite Eq. (3.5) in the form A = aA + b:

A = lOA + (1 + (0 + 11)S)

which has the minimal fixed point solution:

A = {10}(1 + (0 + lI)S)

Substituting this solution into the remaining S equation yields:

(3.7)

(3.8)

S = (0+1+(0+10){10}1) + ((0+10){10}(0+1I)+1I)S (3.9)

after some rearrangement and factoring. It has the fixed-point solution

S = {(O+ 10){10}(0+1I)+ 11}(0+1+(0+10){10}1) (3.10)

which should be a regular expression equivalent to the original regular
grammar given above. As a check, it would be wise to construct an automaton
from Eq. (3.10), reduce it, and verify that its regular grammar agrees with the
original grammar. It is clearly not obvious that Eq. (3.10) reflects our
grammar, nor is it clear whether a shorter expression can be found for S.
Different expressions result, depending on which variables are eliminated
first, and it may pay to do the reduction in different ways to see if a shorter
expression can be obtained.

114 Compiler Construction: Theory and Practice

Exercises

1. Transform the FSA offigure 3.25(d) into a regular grammar, then into a
regular expression. Can you show that the result is equivalent to (+ I ­
I €)d{ d}? (Note: Empty moves must be removed first.)

2. Solve the following set of regular expression equations: .

A ({ O} + I)A + B
. B 11 + OA + 11 C
C € + A

3. Show that {a}(b+c) is a solution of S = as +b if "a" contains €, and "c"
is any string whatever.

3.6. FSA Representations

A deterministic FSA may be embedded in a computer program in either of
two ways-as a set of tables which are interpreted by a general purpose
program, or as a specially constructed program that represents the machine.
The table approach is usually superior to the program approach for large
automata in memory and in reliability. The table interpreter need be written
only once for any machine whatever, and usually a machine table requires less
storage space than the equivalent program instructions. However, interpre­
tation of a table demands more running time. Therefore, if minimal run-time
without regard to storage space is wanted, a program approach is better. If
minimal storage space is wanted, then the table approach is better.

Interpreted Tables

A FSA table is based on its transition table. Usually, semantic actions on
certain transitions are also needed, hence each transition should carry an
additional table entry that specifies a semantic action.

FSA tables are generally sparse. By this we mean that most of the table
entries are empty. For a large machine, over 90 percent of the table may
consist of empty entries. We therefore have an opportunity to construct a set
of tables that specify only the useful entries, omitting the empty entries. We
now describe how this might be done.

3.6.1. Sparse Array Tables

The fundamental idea of a sparse array table system is rather simple,
although the implementation looks complicated. We collect all the non-

3 Finite State Machines 115

NULL table entries together in order into one linear array, called VALUEA.
Let its size be T; this is the total number of non-NULL entries in the original
table. Then we create another array of size T. It carries one of the index
values associated with the values in VALUEA, say the J indices. Call this
array INDEX}. Now suppose the value V (non-NULL) is in the original
array at position (I,J), and shows up in the VALUEA array at index K. Then
INDEXJ(K) = J.

We now need a guide to the I index values in VALUEA and INDEXJ, and
it is provided by tV10 other smaller arraysJ INDEXI and NUMBEROFJ.
Given an index I, INDEXI(I) is the VALUEA and INDEXJ index of the list
found in row I of the original matrix. NUMBEROFJ(I) is the number of
values in that list.

For example, consider the following matrix A(I,J):

J 1 2 3 4 5
I I
1 15 9
2 3 7
3 5
4 10

We first list its values in the array VALUEA, working left-to-right then
down:

K VALUEA

1 15
2 9
3 3
4 7
5 5
6 10

Next, we add the associated INDEXJ values:

K

1
2
3
4
5
6

VALUEA

15
9
3
7
5

10

INDEXJ

3
4
1
5
2
4

116 Compiler Construction: Theory and Practice

The last tables are INDEXI and NUMBEROFJ, as follows:

I

I
2
3
4

INDEXI

I
3
5
6

NUMBEROFJ

2
2
I
I

Then, to find A(2, 5), we enter INDEXI(2) and NUMBEROFJ(2),
yielding 3 and 2, respectively. Then enter INDEXJ(3) and search the list for
at most 2 items; these are I and 5. Since 5 matches J in A(I, J), the associated
VALUEA is 7, which is A(2, 5).

The algorithm is expressed by the following Pascal procedure, that returns
the value A(I, J), given the array declarations described above:

function A(I, J: integer): integer;
begin

var K: integer;

if NUMBEROFJ(I)=O then A:=O {indicates empty}
else
begin

for K: = INDEXI(I) until
INDEX(I)+NUMBEROFJ(I) do

begin
if J =INDEXJ(K) then
begin

A: = VALUEA(K);
return

end
end;
A:=O

end
end

Suppose an array A has the dimensions (M, N), and it contains T useful
(nonempty) elements. Then a two-dimensional array would require MXN
entries, while the reduced sparse matrix system defined above would contain
2(M+T) entries. There is a considerable saving in storage space with the
sparse scheme for large M and N, and T much smaller than MXN. For
example, if M =20, N =100, and T =20, then M X N = 2000, while
2(M + T) = 80, a reduction in table size of 25 to 1. Furthermore, the
NUMBEROFJ array usually consists of fairly small numbers, which may
possibly be compacted in memory as bytes, which the direct storage of an
array A requires M X N units ofwhatever storage is required for the A values.

3 Finite State Machines 117

Clearly, either of the dimensions in A(I, J) may be chosen for the INDEXI
table. The sizes of the INDEXJ and VALUEA tables are not affected by the
choice, but the INDEXI and NUMBEROFJ tables are. The index (I or J)
with the least cardinality should therefore be selected for the INDEXI and
NUMBEROFJ table index.

3.6.2. Table Reductions

The NUMBEROFJ table is often unnecessary. If INDEXI is arranged in
monotonic increasing order, we may infer .the NUMBEROFJ value from
two consecutive INDEXI values. That is,

NUMBEROFJ(I) = INDEXI(I + 1) - INDEXI(I)

which is valid for all but the largest 1. We therefore need one more entry in
INDEXI, for index 5, and the NUMBEROFJ table may be dispensed with.
The resulting INDEXI table from the previous example thep looks like this:

I INDEXI

1 1
2 3
3 5
4 6
5 7

The INDEXJ list may also be arranged in monotonic increasing order.
The storage space required for it may be reduced appreciably in one of two
ways. Suppose the smallest unit of storage is an element whose maximum
value is V. Then the state table may be listed as actual states, until the state
number exceeds V. At that point, all of the subsequent numbers are reduced
by V, and started over. A special marker is needed to indicate the "brea~s" in
the table, and the table search algorithm must be organized to reflect this
change.

Another way to reduce the INDEXJ list is to record only the positive
increments from one state to the next. Except for the first state, which could
be a fairly large number, most of the subsequent states are likely to be small
numbers. This plan breaks down if the table contains a few large increments.

3.6.3. Sparse Array Representation of a FSA

A FSA is clearly expressed by its transition function, which is just a
two-dimensional array, 8(p, a). Following the guidelines given above, we
should choose the least dimension. Usually the token set is smaller than the
state set, particularly if letters can be lumped together into one token and
numbers can. be lumped together into one token, for transition purposes.

118 Compiler Construction: Theory and Practice

Then the total number of tokens may be a few dozen at most. The number of
states can be much larger, and depends on the complexity of the machine's
language.

We also need some way to indicate semantic actions and whether the
machine may halt in a given state. We are therefore led to the following set of
tables for a general FSA:

READX, size = number of tokens. For a token I, READX(I) is an index
into the STATE table.

STATE, size = number of transitions. Let K = READX(I), for an input
token I, and N = (READX(I+ 1) - READX(I». Then the list STATE(K),
STATE(K+ 1), ... , STATE(K+N - 1) contains all the legal present states
corresponding to the input token I. Ifa match with the present state S cannot
be found, then the.niachine blocks (error). If a match can be found, let the
STATE indei be M, i.e., STATE(M) = present state.

CALL, size = number of transitions. CALL(M), where M is found as
explained in the preceding paragraph, contains information on which
semantic action to perform. In general, CALL(M) will be a number
specifying orie of several possible semantic actions, a branch address, or a
subroutine location.

HALT, size = number of transitions. This array contains single bits, T or
F. If HALT(M)=T, then a halt is legal on this state and input token;
otherwise, a halt is illegal (error if this IS the last token).

GOTO, size = number of transitions. This array contains the next state;
i.e., if the current state P and token "a" result in the STATE index M, then
GOTO(M) = 8(P, a). The next state is used if another input token exists;
otherwise, the machine halts and reports "error" or "accept", depending on
the HALT bit.

Example FSA Expressed as a Sparse Table

Figure 3.26 shows the FSA of figure 3.17 expressed as a sparse matrix
system. (State DH is equivalent to state DG, and is therefore not included.)
The states are numbered:

$: 1
A: 2
G: 3
H: 4
BCE: 5
DG: 6

3 Finite State Machines 119

Index Symbol State
index

1 (+) 1

2 (-) 2

3 (.) 3

4 (d) 6

5 I~

READX

Index State Call Halt Gala

(+) 1 1 (S) 1 F 2

(-) 2 1 (S) 2 F 2

(.) 3 1 (S) 3 F 3

(.) 4 2 (A) 4 F 3

(.) 5 5 (B,C,E) 5 T 6

(d) 6 1 (S) 6 F 5

(d) 7 2 (A) 7 F 5

(d) 8 3 (C) 8 F 4

(d) 9 4 (H) 9 T 4

(d) 10 5 (B,C,E) 10 T 5

(d) 11 9 (D,G) 11 T 6

Figure 3.26. Finite-state automaton expressed as a sparse matrix table, for machine of
figure 3.17.

The input tokens are also numbered:

+: 1
2

.. 3
digit: 4

For example, consider input token "digit" (4), and present state H (4). The
READX table says that the list of legal current states begins at index 6 in
STATE table, and the list contains 6 elements. We therefore search the
STATE table from index 6· through 11, and find state 4 at index 9.
Corresponding to this index is a semantics operation call (9), a "T" 'HALT
indicator (legal to halt if this is the last token), and GOTO = 4 (next state is
number 4, H).

120 Compiler Construction: Theory and Practice

Exercises

1. Trace the acceptance of the string

+dd.d

through the sparse table system of figure 3.26.

2. Write a Pascal procedure that interprets a set of reduced FSA sparse
tables and calls an action procedure on every transition with a semantics
action indicated in the table. It accepts tokens from a scanner.

3. Write a program that generates reduced tables from a complete state
table.

3.6.4. Program Representation of a FSA

A direct program representation of a FSA will be the most time-efficient
means of representation, if memory size is no consideration. There are many
forms of representation, and the best will likely depend on the kind of
machine instructions available. If the machine contains an instruction that
can search for a given number in a list of numbers, returning its inde({, then
essentially it can solve the problem of searching the STATE list in the sparse
tables described above, and may also be used effectively in a direct program
representation.

For example, the following program represents the FSA of figure 3.1. The
states S, A, B, G, and H are represented by numbers 0, 1, 2, 3, and 4. It
contains several utility procedures, as follows:

OPEN'INPUT, which opens the input list file,. preparing it for reading by
procedure NEXT'CHAR.

NEXT'CHAR, which fetches the next character, placing it in CHARAC­
TER, returning TRUE if a character exists or FALSE if the input list is
exhausted.

ERROR, which reports a machine block or failure to terminate in a halt
state. What happens after an error is detected is not defined in this program.
We may assume for now that the error is simply reported, and the program
halts.

FSA Program Example

STATE: =0;
OPEN'INPUT;

3 Finite State Machines 121

while NEXT'CHAR do
begin

case STATE of
0: if "0" :::; CHARACTER :::; "9" then STATE: = 2

else if CHARACTER = "+"
or CHARACTER = "-" then

STATE: = 1
else if CHARACTER = "." t..hen STATE: =3
else ERROR;

1: if "0" :::; CHARACTER:::; "9" then STATE:=2
else if CHARACTER = "." then STATE:=3

2: if "0" :::; CHARACTER :::; "9" then STATE: = 2
else if CHARACTER "." then STATE:=4
else ERROR;

3: if "0" :::; CHARACTER ::s; "9" then STATE: = 4
else ERROR;

4: if "0" ::s; CHARACTER ::s; "9" then STATE: = 4
else ERROR;

end;
end; {end of while-do loop}

{if here, the input list is empty}

if not(STATE=2 or STATE=4) then ERROR;

Summary

The choice between a direct program representation or an interpreted table
approach to a FSA depends on the size of the FSA, the desired efficiency, and
the size of the available memory. For a small FSA, containing perhaps fewer
than a dozen or so states, a direct program representation would probably be
more efficient and require less computer memory, since the interpreting
program is fairly complicated, and is no different in memory size for a large
FSA than for a small one.

For a large FSA, a direct program should be attempted only if an automatic
program generator is available. The possibility of an error increases with the
number of transitions, and the program itself becomes less and less readable.
Maintenance is also a problem, since a minor change in the FSA may require
a major rewriting of the program and all the state numbers.

122 Compiler Construction: Theory and Practice

With a table approach, the memory size is minimal, once the interpreting
program space is considered. A change in the FSA requires only a table
change and a few changes in the affected semantic procedures, nothing else.
An automatic FSA generator should clearly generate reduced sparse tables
that can be immediately used in a general-purpose FSA interpreting
program.

Exercise

Propose other program-oriented FSA representations, including one in
assembly language for your favorite machine architecture.

3.7. Applications of FSA

FSA have many applications in compilers. The parser in an LR(1)
recognizer contains a FSA (section 2.3.4). Certain symbol table operations
are nicely modeled as a FSA (section 7.4). We shall explore some of the
concepts of lexical analysis in the remainder of this chapter.

3.7.1. Recognition of Literals

Most common programming languages contain a class of literal constants
that can be recognized by a finite-state machine. They may appear in the
compiler source language and in data to be formatted.

Let us consider one example, based on the automaton studied in the first
part of this chapter. The design of a recognizer may start with a deterministic
or nondeterministic automaton, a regular expression or a regular grammar.
The choice depends on the nature of the literal specification in the
language. If the specification is in BNF, it may be best to attempt to construct
a regular expression from the BNF by the expansion methods of section 3.5.
In any case, the end result of a definition and a reduction must be a
deterministic FSA, such as the one in figure 3.1 for simple decimal numbers.

Let us add conversion operations to this machine. In general, we assign one
or more registers to the machine, and then assign operations on the register
contents to each of the transitions. The result is a machine as shown in figure
3.27. There are three registers, SIGN, P, and N. SIGN holds either -lor
+ 1. The registers P and N hold floating-point numbers. Certain of the
transitions carry operations on these registers. We include transitions into the
start state and out of the halt states for completeness.

Initially, SIGN is + 1, P is 10.0, and N is 0.0. SIGN is changed to -1 only
upon the transition S to A on "-"; otherwise it remains + 1. Each transition

3 Finite State Machines 123

on a digit "d" involves the function "value(d)"- the numeric equivalent of the
character "d". Thus in the S to B transition, value(d) is assigned to N. Upon
an exit from B or H, the final value of the number is SIGN*N.

On the transition B to B, the old value ofN is multiplied by 10 and added to
value(d). The digit d precedes any decimal point, hence each digit causes the
place value of those preceding them to be increased by a factor of 10.

On scanning a decimal point, the register P is used; P carries the power of
ten corresponding to the place value of the digits following a decimal point.
Thus in the transition G to H, value(d)IP is added to N, and P is increased by
a factor of 10.

An exit from halt state B clearly means that no decimal point was scanned;
the number is an integer. The exit from halt state H means the number carries
a decimal point.

Start

Sign=+1
P=10

N=O.O

N=10*N+Value(d)

Exit

d

N=Value(d)

N=N+(Value(d)/P)
P=P*10

Figure 3.27. The machine of figure 3.1 with semantic operations added. This machine
recognizes a decimal number and converts it to an internal form.

124 Compiler Construction: Theory and Practice

The exits from Band H are clearly taken on any token other than"." or "d"
for B or "d" for H. A lookahead of one token is evidently needed in order to
exit properly. However, there may be other kinds of halt indicator. If the
recognizer is used in a Fortran formatter to recognize numbers in an input
record with fixed column boundaries, it may be necessary to halt on the end of
the field, not the next character. Such details can clearly be worked out as a
programming exercise.

Exercises

1. Trace figure 3.27 with the string" - 33.62".

2. Extend figure 3.27 to exponent parts for floating point numbers.

3. Discuss optional blanks in a language: (a) If a number can be preceded
by any number of blanks, what additional states are needed in the FSA
of figure 3.27? (b) If a number can contain blanks separating any of its
parts except the digits in the numbers, what additional states and/or
transitions are needed?

4. Construct a FSA that accepts either numbers, Fortran identifiers,
quoted strings, or comments. The quoted strings are delimited by a pair
of quote marks, and may contain a quote mark by writing it twice. A
comment begins with the keyword COMMENT and ends on a
semicolon. Invent something to deal with the problem that COM­
MENT is in the class of Fortran identifiers.

5. Make an assertion that holds for each of the states in the FSA of figure
3.27. Use these states to prove that the FSA correctly generates the
numeric equivalent ofaccepted input strings. For example, a reasonable
assertion for any of the states is, "N is the absolute value of the decimal
number scanned so far."

3.7.2. Lexical Analysis

A lexical analyzer assembles sequential groups ofone or more characters in
the source into tokens. The process may be relatively simple or quite difficult,
depending on the language.

A lexical analyzer comprises a number of functions:

1. Source file handler. The lexical analyzer is responsible for opening and
reading the source file. Some compilers permit several input files to be
merged, or for a source file to call out another file, etc. Record

3 Finite State Machines 125

boundaries must either be made into tokens or made invisible to the
parser.

2. Comment scanner. Most programming languages contain provisions
for comments, which may appear anywhere and are therefore difficult to
build into a grammar. The lexical analyzer must then recognize them
and make them invisible to the parser.

3. Macro processor. A macro processor is essentially a string expander that
looks for macro definitions and macro calls and expands the latter.
Usually, the macro processor has little or no relation to the syntax of the
source program that it generates, and it may therefore process the
source independently of the rest of the compiler.

4. Token assembler and screener. The lexical analyzer is responsible for
collecting sequences of characters in the source into identifiable tokens
for the parser. The tokens it assembles correspond to the terminals of
the language's grammar. The recognition of tokens may not be a trivial
matter, as some programming languages contain keywords that can also
be used as variable names.

5. Literal converter. Floating point literals, fixed point literals, literal
strings, and other literal forms may all be recognized and converted to
internal form by the lexical analyzer.

Source Records and Characters

A programming language may be either free-form or line-oriented. Algol
60, Algol 68, Pascal, and PL/I are examples of free-form languages; Basic
and Fortran are examples of line-oriented languages.

In a free-form language, the characters comprising the source are
conceptually assumed to be one long sequence uninterrupted by source
record boundaries. Thus if the physical records of the source happen to be 80
characters each, some procedure in the compiler must arrange that the 80th
character of each record is effectively contiguous with the first character of
the next record; that is, the record boundaries must be invisible to the lexical
analyzer and the parser. The lexical analyzer is best organized in two
procedural levels: GETCHAR and GETTOKEN, as follows:

GETCHAR is at the lowest level, is called by GETTOKEN, and supplies
one character on each call. It is responsible for accessing the source file and
for processing any special control records that are not in the compiler's
language. For example, in many large systems, records with certain special
characters in the left-most columns must be recognized as control records,
with a special syntax.

126 Compiler Construction: Theory and Practice

GETTOKEN calls GETCHAR for each character needed in assembling a
token. It knows nothing of the source record arrangement, but must be
tailored to the language. GETTOKEN is called by the parser system and
supplies one token for each call.

In a line-oriented language, the parser and scanner system may be reset to
some known starting state at the beginning of each line. Line boundaries may
or may not serve as delimiters, however, the beginning of the next line
certainly serves as an end-of-line delimiter. The Fortran conventions are
interesting and illustrate a class of lexical analyzer problems. The lines are
organized as 80-byte records, corresponding to a standard IBM card. Column
1is used to indicate that the record is a comment. A statement label number
may appear in columns 2 to 5. Column 6 is not used on'the first of several
continuation records. The source text resides in columns 7 to 72. If column 6
ofthe next record is marked, it serves as a continuation record, in which case,
colulIln 7 of the second record must effectively follow column 72 of the first
(the boundary is invisible). Up to 19 continuation records are permitted.
Statement labels are not permitted on continuation records.

A Fortran statement therefore has the form

<label> <delimiter> <statement> <end-of-statement>

where <delimiter> and <end-of-statement> are special tokens that
separate the statement label, the statement, and the next record.

A token is a member of the terminal alphabet of the grammar and may be a
single character or one of the following common character sequences:

Two or more special characters, e.g., {: =, < =, **}.

Identifier. Generally an identifier begins with a letter and continues with
letters, digits and (sometimes) certain special characters, e.g., PAY_RQLL
(Cobol), or S156 (most common languages). Identifiers must usually be
classified as user names and keywords. A user name is invented by the
programmer to serve as a data, procedure, Of statement label. A keyword is a
terminal token in the language's grammar that happens also to fit an identifier
pattern. In Pascal, WHILE, DO, IF, THEN, etc. are keywords. The task of
separating keywords and user names is often difficult.

Number. The number formats of the language often include fixed- and
floating-point forms, e.g., -17.56E-22 (Fortran). In most compilers, the
lexical analyzer recognizes and converts such numbers. However, a compli­
cated number format may also be easier to recognize through the parser
system, so that the lexical analyzer need only return the smaller tokens"17",
".", "E", etc.

3 Finite State Machines 127

Quoted string. Many programming languages permit an arbitrary sequence of
characters to be quoted and treated as a single token, a string.

Counted string. One of the Fortran FORMAT statement forms is a string
preceded by a count, e.g., 5H # #)ab. The string following the "H" can only
be determined by first scanning the count "5" and then counting off five
characters; this is a lexical analyzer task.

Distinguishing Tokens

Algol 60 contains each of the following tokens:

used between a statement label and the statement.
used as an "equal" relation.

.- used as the replacement operator.

The lexical analyzer must distinguish these, and can do so by a left-to-right
scan of the source characters, along with a single character lookahead. If ":"
has been scanned, and the next character is not" =", then the returned token
must be ":". In general, the analyzer should assemble the longest sequence of
characters that is consistent with a single token in the language. Whether this
rule will be effective must be investigated through a study of the grammar.
The grammar should be such that token "=" can never follow":" except in
the composite token ": =". Other composite tokens must satisfy a similar
property. A discussion of the follow problem is given in the next chapter.

A delimiter is any character that serves to terminate a token; it is not a part
of the terminated token, but may itself be a token or part of a token. In some
languages, a blank is a valid delimiter. In others, Fortran in particular, a blank
is ignored except in quoted strings and therefore cannot serve as a delimiter.

If blanks are everywhere ignored, then tokens must be delimited by other
tokens. Consider this example in Fortran:

DO101 = 1 7 E 3 . G T . X

We have separated the characters of the statement for clarity. It happens that
the lexical analyzer cannot determine whether this statement begins with the
keyword "DO" or the identifier "DOlO!" until the "E" is scanned. A DO
statement would have to have another digit or a comma before the "E" posi­
tion. (This example draws upon the Fortran rule that a DO loop variable must
be fixed-point. If, in some Fortran extension, a DO loop variable could be
floating-point, then the lexical analyzer would have to scan to the first ","
before determining that the statement is an assignment.) On the other hand, if
one or more blanks were required as delimiters of tokens, but not permitted
within a token, the statement would have to read

128 Compiler Construction: Theory and Practice

D010I = 17E3. GT. X

A DO statement would then have to carry a separating blank between the DO
and the next token, e.g.,

DO 101=17,1,25

Other blanks are unnecessary, since the remaining tokens can be distin­
guished.

There are several distinct language policies regarding the use of blanks and
reserved words, as follows:

1. No policy, as in Algo160. The problem of distinguishing keywords and
separating tokens is left to an implementation. With no policy, a
program may be untransportable without extensive editing.

2. Blanks must be inserted as needed as separators, and keywords are
reserved. Many implementations follow this policy, for the sake of
simplicity of the compiler.

3. Blanks must be inserted, and keywords are not reserved. (e.g., PL/I).

4. Blanks are ignored, ala Fortran, and keywords are reserved. (e.g., ANS
Fortran subset).

5. Blanks are ignored, and keywords are not reserved. (e.g., ANS full
Fortran).

One of these policies usually applies to a language to be implemented. Of
these, policy 2 is the easiest. The analyzer can easily distinguish tokens in a
left-to-right scan, and keywords can be distinguished from user identifiers
through a table lookup. Unfortunately, this policy can be vexing to a compiler
user. For example, PL/I contains over 100 keywords. It is unreasonable to
expect every user to know everyone of these keywords and never declare any
of them as an identifier. A policy 2 implementation will also yield obscure
syntax errors unless great care is taken to look for and properly report errors
stemming from the use of keywords as identifiers.

Policy 3 is somewhat more difficult to implement, assuming the language is
unambiguous under the policy. With inserted blanks, tokens are easily
distinguished. However, the compiler may have to scan several tokens into
the source string on some assumption regarding an identifier before finding
that the assumption was right or wrong. If wrong, it must backtrack and try
an alternative. Keywords are rarely used as identifiers, hence if the first choice
is always "keyword" (if a choice exists), the amount of backtracking required
will be small.

3 Finite State Machines 129

Policy 3 is considerably aided by a language policy of predeclared
variables. Then the analyzer can be alert to any keywords that have been
declared in its backtracking process. A keyword that has not been previously
declared can be positively identified as such and not confused with an
identifier.

Even this procedure breaks down if a variable declaration can begin with a
declared identifier. Fortunately, most common programming languages
require some keyword in a declaration preceding the declared identifier. Thus
in Fortran, a declaration is triggered by one of the keywords COMMON,
DIMENSION, REAL, INTEGER, etc. In PL/I, a declaration is triggered
by the keyword DECLARE or DCL, and the declaration must appear first in
a block. In Pascal, a declaration is triggered by one of the keywords TYPE or
VAR.

Now consider an identifier DCL in PL/I declared in some block. The
compiler will evidently have a problem when DCL is encountered at the head
of some inner block. Is this a declaration or some statement beginning with
DCL? For example,

BEGIN
DCL DCL FIXED BINARY;

BEGIN
DCL I FIXED BINARY; /* This DCL is a problem */
DCL .- I; /* So is this DCL */
DCL I-I; /* This DCL is not a problem */

END;
END;

Once the compiler is into the executable statements of a block, a
declaration is no longer permissable, and DCL must be the user identifier.
Other keywords can be distinguished by the keyword marking technique
discussed above, based on the previously declared identifiers.

Policies 4 and 5 are still more difficult. The lexical analyzer must now make
some decisions based on substrings of statements. Without certain other
restrictions in the language, lexical analysis of a policy 5 language may be
impossible, and the language may in fact be ambiguous-all this despite the
existence of a perfectly reasonable and unambiguous high-level grammar for
the language.

130 Compiler Construction: Theory and Practice

An example of a policy 5 language is Fortran. What makes Fortran
translatable and unambiguous are other properties, as follows:

1. A statement is bounded in length and has a well-defined origin. These
are defined by special record and continuation conventions (described above).
A reasonable analyzer strategy is then to first bring a complete statement into
a string buffer (the maximum size required is 1360 characters-20 maximum
lines at 68 characters per line), so that the scanning can backtrack as needed
without requiring the source file handler to back up.

2. Each statement either is a replacement statement of the form

< name> < optional index> = < expr>

or a control statement with a keyword prefix, e.g.,

<keyword> <remainder of control statement>

3. Names are limited to seven characters.

These help limit the number of possibilities in a statement. Unfortunately,
ANS Fortran permits a variable declaration to appear anywhere in the
program, and variables need not be declared. This means that any statement,
induding the last one, is potentially a statement beginning with a user
identifier masquerading as a keyword.

Now consider the replacement statement. If the <optional index> is
present, some Fortran implementations permit an arbitrary expression for the
index, e.g., .

X(A+B*(17-S» = y

ANS Fortran permits only simple expressions of the form A*X ± B as an
array index. An expression index could continue through most of the 1360
characters of the statement buffer. Also the left part of a replacement has the
same form as the left part of an IF statement:

IF(<expr» < number>, <number>,<number>

or a FORMAT statement:

FORMAT(<format specification>)

An IF statement cannot be distinguished from an indexed replacement until
the character past the closing right parenthesis is scanned.

A FORMAT can also create difficulties for a lexical analyzer. For example,
suppose the strategy is to match left and right parentheses in an attempt to
locate the closing right parenthesis of an indexed replacement, ignoring other
context. This appears on the surface to be reasonable. Unfortunately, this
strategy fails on certain Fortran statements, for example:

FORMAT(5H223) = , 15, 4X)

3 Finite State Machines 131

Such a scan will continue past the replacement symbol" =", and falter on the
comma. The difficulty, of course, lies in the failure to fully parse a
replacement syntax (the "5H223" doesn't belong as an index).

A backtracking strategy can deal with all the special problems of Fortran
and other languages with difficult lexical policies. While backtracking,
nothing much else can be done, since it is possible that any additional work
must be undone later. However, it may be possible to build the abstract
syntax tree for the statement, with no other immediate action. The initial
parsing assumption is that the statement is a replacement. When it is apparent
that this assumption is wrong, it may be possible to make some minor changes
in the tree to reflect the alternative, and continue parsing. This approach
requires that the parser be sufficiently general to accept both kinds of
statement and that the parse trees for the alternatives are not too different.
The symbol table should not be changed until the possibility of a wrong
choice is eliminated.

Comments and Quoted Strings

A comment in A1go160 begins with the reserved word COMMENT and
ends on the next semicolon. Other languages have a similar arrangement. In
Pascal, a comment is enclosed in braces { }, and in PL/1 a comment is
enclosed in the character pairs / * and */ .

A quoted string is used as a data element in many languages, and is
delimited by a pair of quotation marks. The beginning and ending quotation
marks are sometimes the same character and sometimes different characters.
In any case, the rule for quoted strings usually is that the string begins after
the first quotation mark and continues to the terminating quotation, through
whatever characters appear-blanks, comment strings, etc.

In dealing with comments and quoted strings, the lexical analyzer must
have three states: an outer state S in which it looks for language tokens, a quote
state Q in which it is scanning a quoted string, and a comment state C in which
it is scanning a comment string. In state S, it may transfer to state Q on a
quote mark or to state C on a comment opener. It remains in S for allother
tokens. While in state C, the source is scanned and the analyzer should be
sensitive to only two tokens-an end-of-fi1e and a closing comment token. All
others are ignored. The closing comment token causes a return to state S; an
end-of-fi1e should cause an error message and an orderly termination of the
compile.

State Q is similar-only a closing quotation mark or an end-of-fi1e is of
interest.

Exercises

1. Outline a lexical analyzer for Algol 60. Start by making a list of the

132 Compiler Construction: Theory and Practice

tokens in the language, then examine the rules regarding reserved
identifiers, blanks, and comments. Finally, design a finite-state automa­
ton that will classify the tokens. Consider identifiers, quoted strings, and
numbers as tokens.

2. Discuss the problem of efficient recognition of reserved words. For
example, does it make sense to walk down through a tree on a sequence
of letters, such that upon reaching some terminal node, the identifier
ends? (You may wish to read chapter 6 next, or come back to this
problem after studying chapter 6.)

3.8. Some FSA Theorems and Their Proofs

In this section, we prove a number of theorems stated earlier in the text.

3.8.1. Equivalence of Empty Cycle States

Let p and q be two states in a machine M such that p f- + q and q f- + P on
empty moves only. Let x be any string accepted by M starting from state p
(but p need not be the start state).

Then p f- + q implies that there exists a sequence of states PI' P2' ... Pn
(n~O) such that

PI is in «S(p, E),
P2 is in «S(pp E),

Pn is in «S(Pn_p E), and
q is in «S(Pn' E)

But then (p, x) I- (PI' x) f- (P2' x) f- ... f- (Pn' x) f- (q,x) and therefore x is
accepted by M starting from state q.

Ifwe interchange "p" and "q" in this argument, we can show that any state
x accepted by M in state q is also accepted by M in state p, therefore states p
and q must be equivalent. QED.

3.8.2. Equivalence Through Removal of Empty Moves

A simple algorithm for the removal ofempty transitions from a machine M
to yield a machine M' was given in sectIon 3.2.2. We have already shown that
the algorithmterminates (the absence ofempty cycles is crucial). It should be
clear that no empty moves remain. We need to show equivalence. We do this
by proving the somewhat stronger lemma:

3 Finite State Machines 133

Lemma. For all (x in ~* ,p in Q) ((p, x) f- * (f, €) in M if and only if (p', x)
f- * (f', €) in M') where f is in F and f' is in F'.

For convenience, we indicate the states in M' with primed letters, e.g., p', q',
and the states in M with unprimed letters, e.g., p, q. Q is the state set in M, and
F is the set of halt states in M. The algorithm does not remove or add any
states, so that every state p in M corresponds to a state p' in M'.

Proof: "Only-if" part. Let (p, x) f- * (f, €) in k moves, k~ o.

The basis step (k = 0). Clearly p =f and is in F. But p' must be in F' by state
correspondence.

The inductive step (k> 0). Consider the first step in the machine move
sequence:

(p, ax) f- (q, x) f- * (f, E), where a is in ~ U {€}

We have several cases to consider. If a is nonempty, then q' is in o(p',a) and
therefore (p',ax) f- (q',x). But then (q',x) must yield (f, €) ink-l moves or less,
by the inductive hypothesis, hence M' accepts ax in state p'.

Ifa is empty, we have (p, x) f- (q, x) f- * (f, E), with q in o(p, E). But q' is not
in o(p', €) in M'. We now have two subcases to consider: x empty or not.

Ifx is empty, then (p, €) f- (q, €) f- * (f, €). The complete sequence involves
only empty moves, with a sequence of states (p, q, qp q2' ... , f). By the halt
state rule in the construction process, each of the states p', q', q'p ... must be
halt states. But then (p', €) is an accepting configuration for M'.

If x is nonempty, there must be some first nonempty move in the move
sequence, as follows:

(p, ax) f- (PI' ax) f- ... f- (Ph' ax) f- (q, x) f- * (f, €)

But by the construction process, we must have

q' in o(p'm a),
p'n-2 in o(q',a),

p' in o(q',a).

Hence, (p', ax) f- (q', x) f- * (f', E). (The latter set of moves follows from
the inductive hypothesis; there are less than k moves in that sequence). QED

A proof of the "if' part is similar in character.

134 Compiler Construction: Theory and Practice

3.8.3. Equivalence on the NDFSA to DFSA transformation

We show that L(M) is a subset of L(M'), where M' is derived from M by
the NDFSA~ DFSA transformation of section 3.2.3.

Proof: Let (p, x) ~ * (f, €) in Min k steps. We show that ([...p...], x) ~ * ([.
. .f...], €) in M', for every state [...p...] in M'.

Basis, k = 0: Here p=fandf is in F. But then [...p...] must be in F', hence x
is accepted by M.

Inductive step, k> 0: Consider the first step

(p, ax) ~ (q, x) ~ * (f, €)

where "a" is in the alphabet. (Note: No empty moves can exist). But then we
have q in 8(p, a) and therefore [...q...] is in 8([...p...], a) in M' for every state
of the form [p] in M'. Then

([p], a~) ~ ([...q...], x) ~ * ([.. J...], €)

The proof that L(M') is a subset of L(M) is similar. QED

3.8.4. The Pairs Table Reduction Algorithm

We divide the proof into a lemma and a theorem. The theorem applies to
the pairs table upon completing its construction, and the lemma to the
completion of the marking process.

Lemma. The feasible state-pairs contain all the equivalent state-pairs of the
FSA.

Theorem. The unmarked state-pairs contain all and only the equivalent
state-pairs of the FSA.

A proof of the lemma is left as an exercise. A proof of the theorem follows.

Proof: The"All" Part. Let (p, q) be an equivalent state-pair in the FSA. Then
by the lemma, it is among the feasible state-pairs in the construction of ~he
pairs table. Now suppose (p, q) becomes marked during the marking phase,
and therefore is not among the unmarked set. It became marked because some
token caused a transition from it to some marked or absent state,...pair, (p', q').
If (p', q') were absent, then states p' and q' must be distinguishable, by the
lemma, and therefore (p, q) are distinguishable states: This statement
contradicts the assertion of their equiv~l1ence. Suppose instead that the
state-pair (p', q') is marked. By a repetition of this argument, there must have

3 Finite State Machines 135

been a transition from it to some other state-pair that caused it to be marked.
The first such marking in this chain had to be caused by a transition to a
missing state-pair. Hence (p', q') is distinguishable, and (p, q) must be
distinguishable, which again contradicts the assertion of equivalence.

Proof: The "Only" Part. Let (p, q) be an unmarked pair appearing in the
pairs table at the end of the process, but p and q are distinguishable in the
machine. That they appear in the feasible set is no evidence of equivalence or
distinguishability. However, if they are distinguishable, then there is some
string x = ala2a3...ansuch that x is accepted by the machine in state p, but not
in q, or vice versa. Without loss of generality, assume that q is the
non-accepting state. Now the failure to accept can be the result of a machine
block prior to completing string x, or the result of completing x, but
terminating in a non-halt state. Suppose first that the machine blocks. Then
the state sequences beginning with p and with q look like this:

P f- P2 f- P3 f- . . . f- Pn (acceptance)

(block)

where m <n, and n = Ixl. Now states Pm and qm are clearly not in the feasible
state-pair set, since at least one transition (on the mth token of string x) can
occur on Pm' but not on qm' It follows that (Pm-l' tIm-I) is either not in the
feasible state-pair or has become marked, since there is a tranSition from the
pair (Pm-l' 'lm-l) to (Pm' qm), and the latter is not in the feasible state-pair set.
Similarly, (Pm-2' 'lm-2) become marked, etc., and eventually (p, q) become
marked.

If the failure to recognize string x in state q is because of a nonhalt state
upon completi1J.g x, then the state sequences beginning with p and with q look
like this:

P f- P2 f- P3 f- . . . f- Pn

qf-q2 f-q3 f- ... f-~

Here, Pn is in the halt set, but~ is not. The pair (Pn, ~) therefore cannot be in
the feasible state-pair set. Thus (Pn-l' ~-l) become marked, and because they
are marked and there is a transition step from (Pn-2' ~-2) to (Pn-l' ~-l)' the
pair (Pn-2' ~-2) become marked, etc. Eventually (p, q) becomes marked. QED

3.9. Bibliographical Notes
. I

The earliest work on FSA is in McCullough [1943]. Kleene [1952] and
[1956] first introduced the notion of regular expressions. Algorithms for the

136 Compiler Constry,tion: Theory and Practice

interconversion of state transition functions and regular expressions are
found in McNaughton and Yamada (McNaughton [1960]). An early review
paper is Brzozowski [1962]. The material on equivalence is largely from
Huffman [1954], Moore [1956], Mealy [1955], and Aufenkamp and Hohn
(Aufenkamp [1957]), as found in Gill [1962]. A regularity test for a
context-free grammar is given py Stearns [1967]. The literature on FSA and
their applications to logic circuitry is very large; some representative texts are
Booth [1967], Gill [1962], Harrison [1965], Hartmanis and Stearns (Hart­
mams [1966]), Kohavi [1971], Maley and Earle (Maley [1963]), McCluskey
[1965a], and McCluskey·and Bartee (McCluskey [1965b]). In addition, Aho
and Ullman (Aho [1972a] and Hopcroft and Ullman (Hopcroft [1969])
contain material on finite-state automata and their relation to language
recognition. Lexical analysis has been discussed by many authors; a
representative sample is Johnson [1968], Conway [1963], DeRemer [1974c],
Gries [1971], Feldman [1968].

CHAPTER 4

TOP-DOWN PARSING

A top-down parser conceptually develops a derivation tree for a sentence in
the language from the root node down. We have seen previously that the
essential problem is that of deciding which of several productions with the
same left-member applies in the tree next. We always know the next
left-member, for it is associated with a tree node known to be a part of the
final derivation tree.

We first address ourselves to the general problem of a top-down translator
for a context-free language by examining a general nondeterministic parser.
Although a nondeterministic machine is impractical in a real compiler, it
exhibits many of the properties that must exist in a real compiler. Further­
more, any context-free language can be parsed by such a machine and we can
easily prove that the machine recognizes exactly the language of the
context-free grammar used to construct it.

A deterministic top-down parsing machine unfortunately cannot be
constructed for every context-free grammar; there are context-free languages
which cannot be recognized by a deterministic top-down parsing machine.

However, those grammars with a deterministic top-down parser are
sufficiently powerful to define many common programming languages and
therefore to construct useful and efficient compilers.

4.1. Nondeterministic Push-Down Automata

The nondeterministic top-down parser we shall construct is an example of
a general class of push-down automata, or PDA in short. A push-down, or
stack automaton, contains (I) an input string, ofsymbols in the alphabet of the
machine, (2) a read head, which may examine one symbol in the input list at a
time and may move only from left to right, (3) a finite-state' macliine, which
serves to control the system's operations, and (4) a last-in-first-out push-down
stack. See. figure 4.l(a).

A move in a PDA is governed by the present state, the input symbol under
the read head, and the symbol on the top ofthe push-down stack. In a move,
the read head is advanced, the state is changed, and the top stack symbol is
replaced by some string (possibly empty).

A PDA scans its input string by a succession of such moves. It may be
unable to move at some point, in which case some other set of choices made
earlier must be tried. If a set of choices permits the machine to scan the input

137

138 Compiler Construction: Theory and Practice

Figure 4.1. Non-empty move of a push-down automaton. The read head is advanced
one token in the input list, the state changes from q to p[i], token Z on
the stack is replaced by a string h[i].

string and either end in a halt state, or empty its stack, then the input string is
said to be acc'epted by the PDA.

A PDA is therefore a 7-tuple (K, ~, H, 8, qo' Zo' F), where:

• K is a finite set of states.

• ~ is a finite input alphabet, i.e., the set of symbols appearing in the input
list..

• H is a finite push-down stack alphabet. For generality, we permit
different symbols to be used on the push-~own stack than elsewhere.

• qo E K is the initial state of the machine.

• Zo E H is the initial symbol on the push-down stack.

• F c K is a set of final or halt states.

• 8 is a transition function, mapping a triple (q, a, Z) to a set of pairs {(PI'
hI)' (P2' h2), ... }, where q is in the state set K, "a" is a member of ~ U
{E}, Z is in the push-down stack alphabet H, PI' P2' ... are members of
the state set K, and hI' h2, ••• are strings in H* .

4 Top-Down Parsing 139

A PDA move is governed by the transition function 8, just as in a
finite-state automaton. However, in a push-down automaton, the move is
controlled not only by the next input symbol and the present state but also by
the symbol on the top of the push-down stack. Furthermore, the result of a
move is not only some new state, but also the replacement of the top symbol
on the push-down stack by a string of symbols drawn from the stack alphabet
H.

Let us explore a typical move in more detail. Consider a member of the
transition function:

(4.1)

In figure 4.1(a), the PDA is shown in a state in which symbol "a" is under
the read head, the controlling FSA is in state q, and the top symbol on the
push-down stack is Z. These are the conditions necessary to invoke the move
expressed by the transition function member, Eq. (4.1) above. The move is
made by choosing one of the pairs in the set 8(q, a ,Z), assuming that at least
one pair exists. Suppose we choose the pair (Pi' hi)' Then the next state of the
FSA is Pi' the symbol Z on the stack top is replaced by the string hi' and the
read head is advanced to the next symbol in the input list, figure 4.1(b). (Note
that the push-down stack is drawn with its top to the left, which is useful in
describing a top-down PDA, as we shall see.)

There are two possible variations on Eq. (4.1). The symbol "a" in 8(q, a, Z)
may be the empty string, E. If this is so, then the machine may move without
considering the input symbol; it may move on the basis of its state and the top
stack symbol alone. The move is also made without moving the read head.

In a second variation, the string hi in a transition set pair may be empty.
Then the stack top symbol Z is effectively popped from the stack, exposing
the symbol (if any) beneath it. With this variation, the stack can be reduced
and ultimately emptied.

A PDA may halt in either of two ways-by empty stack or by final state. It
is said to halt by empty stack and accept the input string if, upon the move in
which the read head advances just past the end of the input list, the
push-down stack is emptied. It is said to halt by final state and accept the
input string if, upon the move in which the read head advances just past the
end of the input list, the FSA enters a member of the final state set F. A given
PDA is always defined to halt in one manner or the other. However, it can be
shown that for every PDA of one kind, there exists an equivalent PDA of the
other kind, so that we may choose whichever is more convenient.

In either case, a nondeterministic PDA is said to accept a given input string
if there exists a sequence of moves that lead from its initial state and stack
contents to a halt ~ondition.

The PDA is said to block if it fails to accept an input string.

(4.2)

140 Compiler Construction: Theory and Practice

Configurations and moves

A configuration of a PDA is a triple (q, w, h), where q is some state in K, w
is the portion of the input list from the read head position to its right-end and
a member of~*,and h is the contents of the push-down stack and a member
ofH* .

A configuration contains all the information needed to predict the future
behavior of a PDA. For example, the PDA of figure 4.1(a) may be described
by the configuration

(q, abc..., ZWXY...)

The PDA of figure 4.l(b) may be described by the configuration

(Pi' be..., hiWXY...)

A move in a PDA may be regarded as a means of transforming one
configuration into another one, which provides a more concise way of
defining a machine move, as follows.

We say that

(q, ax, Zh') f- (p, x, hh')

is a possible move if and only if (p, h) is in B(q, a, Z). (Note that this move
definition is consistent with the possibility that a=E, and h =E.)

A sequence of one or more moves is denoted by f- +. A sequence of zero or
more moves, where a "zero" move is no change in the present configuration,
is denoted by f- *. With this notation, we may define the language L(M)
recognized by a PDA Mas:

L(M) = {w I (qo, w, Zo) f- * (p, E, E) }

for some p in K, where machine M halts by empty stack, or as:

L(M) = {wi (qo, w, Zo) f- * (p, E, h), P in F } (4.3)

for some h in H* , where machine M halts by final state.
The definition in (4.2) may be translated to English roughly as follows:

The language L(M) of a PDAM consists of all those strings w such that,
given a PDA initially in state qo' with stack contents Zo, and the read head
positioned at the first symbol of w, there exists a sequence of moves that
results in the read head completing the input string, an empty stack, and some
end state (not necessarily a final state).

The definition in (4.3) may be similarly interpreted.

Example Consider the two-state machine defined by figure 4.2. The states
are P and Q, the input symbols are 0 and 1, and the stack symbols are R, B,
and G. This machine recognizes all palindromes in the symbols 0 and 1, i.e.,
the language

4 Top-Down Parsing 141

"From" "To"

!
Input Stack

State symbol symbol State Stack State State
Row p a z q1 h1 q2 h2i

1 P 0 R P BR
2 P 1 R P GR
3 P 0 B P BB Q f

4 P 0 G P BG
5 P 1 B P BB
6 P 1 G P GG Q f

7 P f R Q f

8 Q 0 B Q f

9 Q 1 G Q f

10 Q f R Q f

d(p, a, Z) = [(q1' h1) , (q2' h2) , ...]

Figure 4.2. A two-state push-down automaton, recognizing the strings {wwR I w f

(0,1)* }, the palindromes in {O,1}* .

{ W W R I w € {0,1} * }
where wR is the string w, but reversed in order.

This machine is nondeterministic because the moves in rows 3 and 6
contain alternative moves, and also because a move may be made on no input
symbol (row 7), and alternatives to this exist.

The starting state is P, and the initial stack contents is R. It halts by empty
stack.

Consider the input string 001100, and let us trace the machine configura­
tions:

(P, 001100, R) f- (P, 01100, BR) by row 1
or f- (Q, 001100, €) by row 7 (block)

(P, 01100, BR) f- (P, 1100, BBR) by row 3a
or f- (Q, 01100, R) by row 3b

(Q, 01100, R) f- (Q, 01100, €) by row 10 (block)
(P, 1100, BBR) f- (P, 100, GBBR) by row 5
(P, 100, GBBR) f- (P, 00, GGBBR) by row 6a

or f- (Q, 00, BBR) by row 6b
(P, 00, GGBBR) f- (P, 0, BGGBBR) by row 4
(P, 0, BGGBBR) f- (P, €, BBGGBBR) by row 3a (block)

or f- (Q, €, GGBBR) by row 3b (block)

142 Compiler Construction: Theory and Practice

(Q, 00, BBR)
(Q, 0, BR)
(Q, €, R)

f- (Q, 0, BR)
f- (Q, €, R)
f- (Q, €, €)

by row 8
by row 8
by row 10 (accept)

The above· trace shows the consequences of running down the various
blind alleys that occur; nevertheless, the machine ends in an acceptance of the
string.

This PDA does its work essentially by pushing B on the stack for every 0
and G for every i fomid in the .first half of the ihput string. It ll).ust
nondeterministically decide when the second half of the string begins. If it
makes the wrong choice for a turning point, it will either exhaust its stack too
soon, or it will exhaust its input string before the stack is empty.

It_remains in state P for the first half of the string, and switches to state Q
for the second half. While in state Q, the input string elements are effectively
matched against the stack symbols; 0 must correspond to a B on the stack, and
1 to a G.

The initial stack symbol R becomes buried in the stack as soon as some
symbols in ware matched, and becomes uncovered only as the last symbol in
the input string is matched. Upon uncovering R, the stack is also emptied,
permitting a halt. R is never pushed onto the stack; it therefore serves as an
end marker for the stack.

If the input string is not a palindrome, the machine is unable to find a
sequence of accepting moves. It will fail through an inability to match the
stacked B's and G's against the O's and 1's in the second halfof the input list in
state Q, or it will fail through exhausting the stack before exhausting the
input list or vice versa.

Exercises

1. Trace the PDA of figure 4.2 for the strings 010010, 1010 and 0111.
Show that the latter strings cannot be accepted by any sequence of
moves.

2. Design a PDA that recognizes palindromes in the alphabet {O, 1, C},
where C marks the center of the palindrome; e.g., 011OCO110 is a legal
palindrome. A deterministic PDA for this language exists.

3. Design a PDA that accepts strings in {(,)} consisting of all correctly
nested parentheses, e.g., (() ()) is in the language, but ()) () (is not.

4. Define a backtracking system for a PDA. The tape need not cOnsist of
fixed-length cells. Can you find a PDA for which the baCKtracking
system will fail? Can you characterize the class of PDA's for which your
backtracking system will fail?

4 Top-Down Parsing 143

Context-Free Languages and PDA

An important theorem connecting PDA and context-free languages is the
following:

Theorem 4.1. For every context-free language L there exists a nondeter­
ministic PDA M such that M exactly recognizes L, and conversely.

The practical importance of this theorem in compiler systems lies in the
realization that essentially the syntax of every programming language in
existence can be expressed almost exactly by a context-free grammar. Then
theorem 4.1 insists that a mechanical recognizer for the language must exactly
be a push-down automaton.

Of course, every regular grammar is also context-free, by its very form;
The converse is not true. There are context-free languages that are not
regular. The palindrome language is an example ofa nonregular language, yet
we have seen that a PDA can recognize it. (The proof that a palindrome
cannot be regular is beyond the scope of this book). It may also be possible to
trarisform a grammar which appears to be context-free into a regular
grammar. However, in general such a transformation is not always possible,
and when it: is not, we must have a recognizer with a push-down stack.

The push-down stack in a compiler may be explicitly coded into the
program, or it may be hidden. A recursive-descent compiler is an example of
a top-down context-free recognizer in which the PDA push-down stack is in
fact a stack of return addresses formed during the procedure calls which
const~tlite the parsing process. Since this retilrn address. stacking system is
invisible to the user of a moderli programming language, the parsing process
appears not to involve a stack.

Theorem 4.1 has two faces. The most interesting one from the point of
view of compiler construction is that a given context-free language can be
recognized by some PDA M. The converse, that given a PDA M, one can
construct a11 equivalent grammar from it, is also true, but. hardly needed in
compiler construction. We shall therefore define the machine construction
and prove equivalence to the language of the given grammar.

Algorithm 4.1. CFG to a Nondeterministic PDA

The machine M will be nondeterministic, will have only one state, q, and
will have the rules defined as follows:

• 8(q, € , A) contains (q, w) for every production A~ w in P.

• 8(q, a, a) contains (q, €) fox, every a in~.

The stack symbols are in N U ~,and the stack initially contains the start
symbol S. Machine M will accept by empty stack.

144 Compiler Construction: Theory and Practice

Example. Consider the simple grammar

S~ OSII c

This grammar describes the language {O} c{ I}, where the number of 0'sand
1's are equal. The transition function rules are:

o(q, 0, 0) = (q, E)
o(q, 1, 1) = (q, E)
o(q, c, c) = (q, E)
o(q, E, S) = {(q, OSI), (q, cn

A trace of the machine moves for the string OOc11 is given next. We omit
the state from the configurations, since.it is always the same.

(OOelI, S) f- (OOelI, OSl)
or (OOell, c)

(OOelI, OSI) f- (Oc11, SI)
(OelI, SI) f- (Oc11, OSl1)

or (OelI, el)
(OelI, OSl1) f-(c11, Sl1)
(ell, Sl1) f- (ell, OSl1I)

or (ell, ell)
(c11, ell) f- (11, 11)
(11, 11) f- (1, 1)
(1, 1) f- (E, E)

(O.K.)
(N.G.)

(N.G.)

(N.G.)

(acceptance)

Another E~ample. Empty production rules are acceptable, too:

S~ OSII E
The transition function is

o(q, 0, 0) = (q, E)
o(q, 1, 1) = (q, E)
o(q, E, S) = {(q, OSI), (q, En

Then the string 0011 is accepted as follows:

(0011, S) f- (0011, OSI) f- (011, SI) f- (Ol1,OSl1)

f- (11, Sl1) f- (11, 11) f- (1, 1) f- (E, E), acceptance.

Discussion

By following the example machine traces just given, it may be seen that the
effect of the rule

o(q, a, a) = (q, E) for all a E~

4 Top-Down Parsing 145

is to match input terminal symbols against terminal symbols on the stack top.
The move is only possible when the two symbols match, and the result is to
move the read head and pop the symbol from the stack. This matching
operation ceases only when a nonterminal symbol appears on the stack top.
Then the other rule:

Seq, E, A) contains (q, w) for every A~ win P

applies. The machine must somehow choose among one of several produc­
tions with the same ieft member; the ieft member is known, since it is on the
stack top.

Once a choice is made, the nonterminal A is replaced on the stack by the
string w, which in general contains both terminals and nonterminals.

Recall that the production rule choice problem was also present in
attempting to construct a derivation tree for a sentence from the top down.
We have not solved the choice problem, but are examining it from a different
point of view.

Exercise

Construct a PDA for grammar Go' given below, then show that it
accepts the string (a+a)*a but not the string (+a).

E ~ E+T IT
T ~ T*F IF
F ~ (E) I a

Proof of Theorem 4.1: We prove the stronger result expressed by the next
lemma.

Lemma 4.1. (q, wx, Ay) f-- * (q, x, y) in M ifand only ifA=}* w in grammar
G, where A is in N, wx is in ~* , and y is in (N U ~)* .

This lemma includes theorem 4.1 as a special case, with A = S, and x = y
= E.

Proof: If Part. We prove the if part of the lemma by induction on the
number of steps in the derivation A =}* w. Consider a derivation of one step.
Then A ~ w is a production, with w a terminal string. This production
implies that there is a transition

S(q, E, A) contains (q, w)

which yields the machine move:

(q, wx, Ay) f-- (q, wx, wy)

146 Compiler Construction: Theory and Practice

Now w is a terminal string. If its length Iwl = n, then we may invoke n
applications of the matching rules, which have the form:

8(q, a, a) = {(q, €)}

for every terminal "a" in the alphabet. These n applications yield the
configuration

(q, x, y)

which was to be shown.
Now assume that the derivation A ~* w requires k steps, where k> 1, and

that lemma 4.1 holds for all k' <k. The first step of the derivation has the
form

where Xl ~* Xl' X2 ~* X2, etc., and Xl' ... , Xn are in NUL.
Thus the move

exists. Now if Xl is a terminal symbol, it must be equal to Xl' and the
transition 8(q, Xl' Xl) = {(q, €)} may be made. If Xl is nonterminal, then by
the inductive hypothesis (since Xl ~* Xl by less than k moves), the moves

(q, xlr, XIS) f- * (q, r, s)

for any strings rand sexist.
Thus in either case, the following moves exist:

(q, XIX2 ••• XnX, X IX2 ••• Xn y) f- * (q, X2 ••• XnX, X2 ••• Xny)

More repetitions of this process, for X2, • • • , Xn eventually yields the
configuration (q, X, y), which was to be shown. QED

Proof: Only If part. Let (q, WX, Ay) f- (q, x, y) in k moves; we prove that A
~* w by induction on the number of moves, k.

For k =1, w must be € and A~ € is in P. (There are no other possibilities
with A on the top ofthe stack, in one machine move). Thus assume the lemma
valid for all moves of length k' <k; we prove it valid for k. The first move
must have the form

(q, WX, Ay) f- (q, WX, Xl ... Xny)

where A~ Xl ... Xn is in P, and

(q, Xi' Xi) f- * (q, €, €)

for alii::::; i ::::; n in k' moves or less, where w = Xl X2•••Xn.

4 Top-Down Parsing 147

Then Xi =9 * Xi for all i, by the inductive hypothesis; but putting all this
together, we find

A=9 Xl'" Xu =9* XIX2 ••• Xu =9* XIX2X3 ••• Xu =9* ... =9* XIX2 ••• Xu = W

QED

The Input list, the Stack, and Sententiai Forms

An interesting property of the NDPDA defined in algorithm 4.1 is
expressed by the following theorem:

Theorem 4.2. Let (q, y, h) be any configuration of the NDPDA for some
grammar G, where the input string is xy, such that

(q, xy, S) f- * (q, y, h)

Then xh is a left-most sentential form in G, i.e., S =9* xh.
The converse is also true: Given any sentential form xh in G, such that x is

a terminal string, and at most one left-most symbol in h is terminal, then (q, y,
h) is a configuration of the NDPDA such that

(q, xy, S) f- * (q, y, h)

To visualize the significance of this theorem, consider figure 4.1(a). The
string x is "...de", y is "abc..", and the stack string h is "ZWXY..". Then the
theorem says that "...deZWXY.." is a sentential form. In short, the input list
to the left of the read head, when concatenated with the stack, is a sentential
form.

To prove this, note that it is trivially true for the initial configuration; the
input string prefix x is empty, and S is on the stack. Therefore, assume that
the theorem holds for n moves of the NDPDA, n2::0, and consider the
(n+ l)th move. This move either is a matching move, or a production rule
replacement move. If a matching move, the string xh is clearly unchanged,
since first symbol in h effectively is moved to the last position in x.

If a replacement move, the string xh before the move is of the form xAz,
where h =Az. After the move, the string has the form xwz, where A~ w is a
production. By the inductive hypothesis, xAz is a sentential form, i.e.,

S =9* xAz

But since A~ w is a production, xwz is also a sentential form:

S =9* xAz =9 xwz

QED
A proof of the converse is similar.

148 Compiler Construction: Theory and Practice

4.2. LL(k) Grammars

The LL(k) grammars are a proper subset of the context-free grammars.
They are the largest such class that permits deterministic left-to-right
top-down recognition with a lookahead of k symbols.

The deterministic top-down parsing problem is represented by figure 2.11,
in chapter 2. We have some nonterminal node (T in the figure), and an
uncompleted string, "(a*a)" in the figure. If the correct production can be
deduced from the partially constructed tree and the next k symbols in the
unscanned string, for every possible top-down parsing step, then we say that
the grammar is LL(k). It is usually not obvious whether a given grammar is
LL(k), nor can we ordinarily examine every possible parsing step. We seem
to need two algorithms: one to test a grammar for the LL(k) condition and
another one to generate a parsing table, similar to figure 2.16, for some
grammar. It turns out that only the latter algorithm is needed; the failure to
generate a parsing table will be apparent from the algorithm, and this failure
will mean that the grammar is not LL(k). If the table generation succeeds,
then the grammar is LL(k), and we will not only have a definition of a
deterministic parser, but will also know that the grammar is unambiguous.

4.2.1. Definitions

The discussion on lookahead of k symbols is considerably simplified if
there always exist at least k symbols to examine. For this reason, we introduce
a new terminal symbol -.1 not already in the grammar, and append k of these
symbols to every input string, prior to parsing. Hence we introduce a new
nonterminal S' and a production

S'~ S-.1k

where S is the grammar's start symbol, and -.1 k is a string of k symbols -.1.
The symbol S' becomes the new start symbol.

Definition 1. A productionA~ Xl in a context-free grammar G is called an
LL(k) production, if in G,

S' ===?* wAy ===? w Xl Y===?* W z..., and

S' ===?* wAy' ===? w X2 y' ===?* W z...

with Izl = k implies Xl = x2•

Definition 2. A nonterminal in a context-free grammar is called an LL(k)
nontenninalif all its productions are LL(k) productions.

4 Top-Down Parsing 149

Example. In the grammar

S~ Abc I aAcb

S is an LL(l) nonterminal, while A is an LL(2) nonterminal. The strings
derivable from S are (first production) bc, bbc, cbc, and (second production)
acb, abcb, accD. Clearly, the second production is uniquely selected on the
lookahead symbol "a", while the first is selected on symbols "b" or "c".

For the A productions, we need to consider the sentential forms in which A
is embedded, e.g., "Abc" and "aAcb". By the definition, the string preceding
A is different, so we need only consider whether the three A productions can
be distinguished within"Abc" and within "aAcb". In the former, we have the
three lookahead strings "bc", "bb" and "cb"; these are distinguishable with k
= 2 but not with k = 1. In the latter production, the lookahead strings are
"cb", "bc", and "cc", again distinguishable with k = 2 but not k = 1. The A
productions are therefore LL(2), but not LL(1).

Note that if the lookahead sets were considered without regard to the
particular sentential form prefix w in S =;>* wAy, then the A nonterminal
requires three lookahead symbols.

It is clear that an LL(k) grammar is also an LL(k - 1) grammar, for k2:: 1.

4.2.2. Some Properties

Theorem 4.2.1. Each LL(k) grammar is unambiguous.

An ambiguity would lead to a contradiction with definitions 1 and 2.

Theorem 4.2.2. An LL(k) grammar has no left-recursive nonterminals, i.e.,
nonterminals A such that A =;>+ Aw for some w.

Proof: Suppose that a nonterminal Ao is left-recursive. Then there is some
sequence of nonterminals Ao, AI' ... , An that are all left-recursive, and such
that

and An = Ao• Now at least one of these must have another production,
otherwise all of them would be useless and could be deleted from the
grammar. Also, at least one of the Xi must be incapable of deriving the empty
string; if they all could, then we could have a derivation sequence Ao =;> + Ao'

150 Compiler Construction: Theory and Practice

and an obvious ambiguity. Thus one of the Ai (call it A from here on) is such
that

A=::;> Bx'=::;>+ Ax

where Ixl >0, and alsoA~ y, where y is not Bx'. Then we can construct the
derivation sequences

S =::;>+ rAxk... =::;> rBx'xk... =::;> rAxk+1••• =::;> ryxk+I ... =::;>* rz...

S =::;>+ rAxk... =::;> ryxk... =::;>* rz...

where Izi =k, and they contradict the assumption that the grammar is LL(k).
QED

The LL(k) definition states that, given a left-most sentential form wAx,
such that w matcheS the first Iwi symbols of the input string, then the next
productionA~ y can be inferred from the next k input symbols. It appears
that in order to select the production A~ Ywe need a mapping of all strings
wAx' to the production set, where Ix'i = k. The resulting LL(k) parsing table
would be impossibly large. The following two theorems show that we do not
need such a complete mapping-a mapping of strings Ax' to the production
set is sufficient. Before we can introduce these theorems, we need to develop
two useful functions FiRSTk(w) and FOLLOWk(w).

FIRST and FOLLOW sets

The domain of FIRSTk is some string w in (N U ~)* and the domain of
FOLLOWk is a nonterminal A in N. The functions are then defined as
follows:

FIRSTk(w) = { x Iw =::;>* xy, xy E ~* ,and

(if Ixyl < k then y = E else Ixl = k)}

FOLLOWk(A) = { x IS=::;>* uAy and x E FIRSTk(y)}

where the derivations are left-most. That is, FIRSTk(W) for some string w is
the set ofall leading terminal strings oflength k or less in the strings derivable
from w. A string x in FIRSTk(w) is less than k in length only if x is fully
derivable from w, i.e., w =::;> * x, and Ixl < k. The empty string .is in
FIRSTk(w) if w =::;> * Eo Note that w may include or consist of ncinterminals.

FOLLOWk(A) is the set of all derivable terminal strings oflength k or less
that can follow A in some left-most sentential form. The empty string E will
be in FOLLOWk(A) if A is the last syinbol in some sentential form. In
particular, E is in FOLLOWk(S), where S is the start symbol.

4 Top-Down Parsing 151

With these definitions, the following useful properties can readily be
proven. In these, the range of the FIRSTk set is extended to include a set of
strings; i.e., FIRSTk(D V), where U and V are sets of strings, is the union of
all FIRSTk(U v), where u is in U and v is in V. Also FIRSTk(W) = Efor k:::;O.

1. FIRSTk(aw) = a FIRSTk_1(w) for any string w, where a is in L.

2. FIRSTk(E) = {E}.

3. FIRSI~(x y) = FIRSTk(FIRSTk(x) FIRSTk(y)) =
FIRSTk(X FIRSTl«y)) = FIRSTk(FIRSTk(X) y).

4. Given a production A ~ w in G, FIRSTk(A) contains FIRSTk(w).

5. Given a productionA~ xXy in G, FOLLOWk(X) contains FIRSTkey
FOLLOWk(A)). Note that y may be the empty string.

6. FOLLOWk(S) contains E, where S is the start symbol of G.

Prop~rties 1 and 2 should be obvious from the definitions. Property 3
expresses associativity of the FIRSTk operator and concatenation; however,
note that FIRSTk(X y) is not identical to FIRSTk(X) FIRSTkey), since the
former may be of length k at most and the latter may be of length greater than
k.

Property 4 follows immediately from the definition.

Example. Consider the following simple grammar G 1. Let lIS compute
FIRSTk and FOLLOWk for its nonterminals, for k = 1:

1. G~E-.l

2. E~ TE'
3. E' ~ +E
4. E' ~ E

5. T ~ FT'
6. T' ~ *T
7. T' ~ E

8. F ~ (E)
9. F ~ a

• FIRST1(F) = {(, a} from productions 8 and 9

• FIRST1(T') = {*, E} from productions 6 and 7

• FIRST1(T) = FIRST1(FT') = FIRST1(F FIRST1(T')) = {(, a}

• FIRST1(E') = { +, E} from productions 3 and 4

• FIRST1(E) = FIRST1(TE') = {(, a}

• FIRST1(G) = FIRST1(E) = {(, a}

152 Compiler Construction: Theory and Practice

• FOLLOWl(E) = {-l,)} u FOLLOWl(E') from productions 1, 3, and
8

• FOLLOWl(G) = {(} using property (6)

• FOLLOWl(E') = FOLLOWl(E) from production 2

• FOLLOWl(T) = FIRSTl(E'FOLLOWl(E» U FOLLOWl(T')from
productions 2 and 6

• FOLLOWl(T') = FOLLOWl(T) from production 5

• FOLLOWl(F) = FIRSTl(T' FOLLOWl(T» from production 5

By using these relations repeatedly, we obtain the following table of
FOLLOWl sets:

1 2

G (

E -l)
E'
T
T'
F

3 456

-l
-l +
-l +
-l + *

Columns 1 and 2 are the contents of FOLLOWl(G) and FOLLOWl(E)
known directly from the productions. The remaining columns are deter­
mined by inference from these and the FOLLOWl and FIRSTlrelations
given above.

Exercises

1. A grammar and its FIRSTl and FOLLOWl sets are given below.
Verify the grammar's FIRST and FOLLOW sets:

S ~ SA Ba
A~ Ab B I (
B ~ aA c

nonterminal FIRSTl FOLLOWl

S a, c (, a, b, c
A (, a, b, c (, a, b
B a, c (, a, b

2. Prove the six properties from the definitions.

3. Develop an algorithm based on the six properties that yields the
FIRSTk and FOLLOWk sets for any grammar.

4 Top-Down Parsing 153

Some Implications of the LL(k) Definition

We now use the FIRST and FOLLOW functions in a set of theorems that
will lead to an efficient LL(l) parser.

Theorem 4.2.3. Let G be a context-free grammar. Then Gis LL(k) if and
only if: For every distinct pair of productions A~ u and A~ v, and every
left-most sentential form wAx derivable in G, FIRSTk(ux) n FIRSTk(vx)
= 0.

The proof is left to an exercise.
Now suppose that G has no empty productions and that G is LL(1). Then

neither u nor v are empty, nor can either of these derive E. Clearly x doesn't
matter, since FIRST1(ux) = FIRST1(u) and FIRST1(vx) = FIRST1(v). It
also means that the particular sentential form in which A appears is no longer
important. We then have the weaker condition expressed in the following
theorem.

Theorem 4.2.4. Let G be a context-free grammar with no empty produc­
tions. Then G is LL(1) if and only if, for every pair of productions A~ u and
A~ v, FIRST1(u) n FIRST1(v) = 0.

The proof is trivial, given Theorem 4.2.3.
Is there a similar LL(1) condition for grammars with empty productions?

Consider Theorem 4.2.3 again. IfG contains empty productions, then u or v
can be empty, or can derive empty strings. Ifu~* E is possible, then clearly
FIRST1(ux) includes FIRST1(x), and FIRST1(x) need not be a subset of
FIRST1(u). However, note that x follows A in the left-most sentential form
wAx of the theorem, and this suggests the following theorem:

Theorem 4.2.5. Let G be a context-free grammar. Then G is LL(l) if and
only if, for every pair of productions A ~ u and A ~ v the following
condition holds:

FIRST1(u FOLLOW1(A)) n FIRST1(v FOLLOW1(A)) = 0

The FIRST-FOLLOW condition is certainly necessary for G to be
LL(l). If u can derive E, then FIRST1(ux) contains FIRST1(x) and
FIRST1(x) is a subset of FOLLOW1(A). We must show that the condition is
also sufficient-which is perhaps surprising, since FOLLOW1(A) is not
related to anyone sentential form, but rather the entire class of sentential
forms containing A. We therefore prove sufficiency-the "if' part of the
theorem.

Proof: Suppose. that G were not LL(l). Then there exists a pair of
derivations

154 Compiler Construction: Theory and Practice

S' ~* wAx ~ wux ~* wz

and S' ~* wAx ~ wvx ~* wz'

where u -=I- v, and FIRST1(z) = FIRST1(z'). Now

ux~* z

and vx ~* z'

Now let z = u'x' and z' = v'x" where u ~* u', x ~* x', v ~* v', and x ~*
x". Note that FIRST1(x') is in FOLLOW1(A), and FIRST1(x") is also in
FOLLOW1(A). We now examine three cases, depending on whether u' or v'
or neither or both, are empty:

CASE 1

u'. -=I- E and v' -=I- E. Then clearly

FIRST1(z) C FIRST1(u) C FIRST1(u FOLLOW(A))

and FIRST1(z') C FIRST1(v) C FIRST1(v FOLLOW(A))

Then

QED
(We have proven that premise P implies Q by proving that rv Q implies rv P).

CASE 2

u' = E and v' -=I- E. Here,

FIRST1(z') C FIRST1(v) n FIRST1(v FOLLOW(A))

FIRST1(x') C FOLLOW1(A) C FIRST1(u FOL­
LOW(A))

Again,

FIRST1(u FOLLOW(A)) C FIRST1(v FOLLOW(A)) -=I- 0

CASE 3

u' = E, v' = E. Here,

FIRST1(z) = FIRST1(x') C FOLLOW1(A) C FIRST1(u FOLLOW(A))

and FIRST1(z')

QED

FIRST1(x") C FOLLOW1(A) C FIRST1(v FOL­
LOW(A))

4 Top-Down Parsing 155

Theorem 4.2.5 suggests the following generalization:

G is LL(k) if and only if for every pair of productions A~ u and A~ v,
FIRSTk(u FOLLOWk(A» n FIRSTk(v FOLLOWk(A» = 0.

Unfortunately, this statement is not true for k> 1. A grammar satisfying
the above condition is said to be strong LL(k), and it happens that not all
strong LL(k) grammars are LL(k), as the example given earlier shows:

Let G have the productions

S ~ Abc I aAcb
A~€lblc

Now FOLLOW2(A) = {bc, cb}. Then for A~ €we have

FIRST2(€ FOLLOW2(A» = {bc, cb}

ForA~ bwehave FIRST2(bFOLLOW2(A» = {bb, bc}. Hence this is not
strong LL(2), yet it is LL(2), as we have shown previously.

Essentially, the set FIRSTk(u FOLLOWk(A» for a production A ~ u
contains all of the k-symbollookaheads derivable from Ax in all the left-most
sentential forms wAx. However, a top-down decision step in an LL(k) parser
is based on a particular left-most sentential form wAx, and the possible
k-symbol lookaheads derivable from Ax is a subset of FIRSTk(U FOL­
LOWk(A», for a productionA~ u.

The case k> 1 is different from the case k = 1 essentially because a pair of
symbols comprising a lookahead string can stem from a combination of
derivations based on A and on the strings following A, and the combination
causes certain grammars to be strong LL(k) but not LL(k).

4.3. Deterministic LL(1) Parser

The push-down automaton given in section 4.1 is nondeterministic for
only one reason-when a nonterminal symbol A appears on the top of the
stack, then a choice must be made among the set ofproductions A~ WI Iw2 I
w3 1 ... in P.

We therefore see that to make this parser deterministic, we need a table to
select one of several productions. Such a table will consider the stack top
symbol A and the next k input symbols in the input list; based on this pair, it
must uniquely select a production A~ Wi.

An LL(k) selector table maps a pair (X,u) to a production X~ w, where X is
a nonterminal symbol (on the stack top), and u is some terminal string, of
length k. Such a table must yield a many-to-one mapping, since many
possible strings u may correspond to a given production, yet a production

156 Compiler Construction: Theory and Practice

must be uniquely selected from the pair (X,u). The table size is finite, since
there are a finite number of nonterminals and terminal strings of fixed· length
k.

Theorem 4.2.5 provides the justification for such a table, and also states
that the grammars that can be so parsed are the strong LL(k) grammars.

4.3.1. LL(l) Selector Table

A finite selector table can be constructed for any k. However, its size grows
very rapidly with k for a typical grammar. It turns out that in practice, if a
grammar is not LL(I), it wi11likely not be LL(k) for any k. It is better to
transform the grammar in an attempt to find an LL(I) grammar, rather than
attempt to construct a parser with k > 1. We therefore restrict the following
discussion to k = I.

Note that a LL(O) grammar can contain at most one production A --? W

for each nonterminal A, and is therefore useless for any practical purpose-at
most one terminal string can be derived in the grammar.

Before we describe the construction of a selector table, let us examine a
typical LL(I) selector table, figure 4.3. This table describes a grammar G 1

whose language is the class of arithmetic expressions with all four operations
+ - * / and parenthesizing. The productions for the grammar are given in
the right-hand column of figure 4.3. The language of this grammar is
essentially the arithmetic language L(Go)' chapter 2, however, Go is not
LL(k) for any k, since it contains left-recursive productions, while G 1 is
LL(I). Grammar Go can be transformed into G 1 by means to be described
later.

LL(l) Parser Algorithm

I. Initially, the parser PDA contains the start symbol S on its stack top.

2. If the stack top contains a terminal symbol "a", then the input symbol
must be an "a", else ERROR. If the two match, then advance the read
head and pop the terminal symbol from the stack.

3. If the stack top contains a nonterminal symbol A, then examine the
input symbol currently under the read head, and consult the LL(1)
selector table (figure 4.3, for example) to determine which production is
to be applied. If the selector table indicates production A --? w, then
remove A from the stack and push the string w onto the stack.

4. The machine halts by empty stack.

Let us try this machine on the string "a - a - a". The initial configuration is
therefore:

4 Top-Down Parsing 157

Non-terminal Input Production

1 E aJ (E- TE"

2 E" +J - E" - T'E"

3 E")J E E" - E

4 T' + l' - +T

5 l' l' --T

6 T aJ (T- Fr

7 T" *J I T" - F'T"

8 Til +J -J)J E T" - E

9 F' * F' - *F

10 F' I F' - IF

11 F a F-a

12 F F - (E)

Figure 4.3. An LL(1) selector table I for gram mar G1 .

[a-a-a, E]

since E is the start symbol of the grammar. The selector table row 1 indicates
that with E on the stack top and "a" the next symbol, E ~ TE" should be
applied; TE" replaces E on the stack top, yielding the configuration

[a-a-a, TE"]

Next, the selector table indicates that T should be replaced by FT" on the
stack top, yielding

[a - a- a, FT"E"]

Then the selector table indicates replacing F by a, yielding

[a - a - a, aT"E"]

At this point, the matching rule (2) applies, yielding the configuration

[- a - a, T"E"]

The remaining moves are

[-a-a, T"E"] f- [-a-a, E"]

f- [-a-a, T'E"] f- [-a-a, - TE"]

f- [a-a, TE"] f- [a-a, FT"E"]

158 Compiler Construction: Theory and Practice

f-- [a - a, aT"E"] f-- [-a, T"E"]

f-- [- a, E"] f-- [- a, T'E"] f-- [- a, - TE"] f-- [a, TE"]

f-- [a, FT"E"] f-- [a, aT"E"] f-- [E:, T"E"] f-- [E:, E"]

f-- [E:, E:]

The derivation tree for this sentence and grammar is shown in figure 4.4. A
comparison of the machine moves with this tree reveals that the machine
effectively constructs the tree top-down by a left-to-right tree scan. That is,
the derivation is

E ~ TE" ~ FT"E" ~ aT"E" ...

for the first few steps.

Selector Table Construction

Most of our work is done. Given an algorithm for the FIRST and
FOLLOW sets, an LL(l) selector table is very easy to build:

Let A ---7 W be any production in the grammar, and let the terminal symbol
x be in the set FIRST1(w FOLLOW1(A)). Then the selector table pair (A, x)
maps to production A ---7 w.

If any pair (A,x) maps to two or more different productions, then the
grammar cannot be LL(1); we say that we have a conflict.

For example, consider the grammar G 1 given previously. The selector
table for this grammar is given next and is seen to be free of conflicts:

Pair Production

E, (E ---7 TE'
E, a E ---7 TE'
E', + E' ---7 +E
E',) E' ---7 E:
E', -.l E' ---7 E:
T, (T ---7 FT'
T, a T ---7 FT'
T', * T' ---7 *T
T', + T' ---7 E:
T', -.l T' ---7 E:

T~,) T' ---7 E:
F, (F ---7 (E)
F, a F---7a
G, (G ---7 E-.l
G, a G ---7 E-.l

4 Top-Down Parsing 159

Figure 4.4. Derivation tree for string " a- a- a" in grammar G1 .

On the other hand, the following simple grammar has a selector table
containing conflicts; it is therefore not LL(1):

s ~ A-l
A~ B I C
B ~ aC
C ~ aa

Pair Production

S, a S ~ A-l
A, a A~ B
A,a A~C

B, a B ~ aC
C, a C ~ aa

The difficulty is with the pair of productions A~ B and A~ C, both of
which correspond to the selector pair (A, a). The parser cannot deterministi­
cally map (A, a) to a single production, hence is not LL(l). Both Band C
derive strings beginning with "a", hence the PDA cannot decide between the
productions A~ B and A~ C when "a" is the next input symbol.

160 Compiler Construction: Theory and Practice

4.3.2. LL(1) Grammar Transformations

We now consider a transformation that is often effective on a grammar
containing a left-recursion, which (1) will preserve the semantic ordering of
binary operations, and (2) will usually succeed in generating an LL(1)
grammar.

Given a simple left-recursion of the form

A~ Ax I Ay I .•• I w I z I ...

we first stratify this production set by introducing two new nonterminals B
and C, as follows:

A~ABIC

B ~ x I y I·
C ~ wi z I ...

Note that B collects the strings past the A in the left-recursive A productions,
and that C collects all the other A production right-hand parts. Then the
productions A~ AB I C are rewritten:

A~ CA'
A'~ BA' If.

where A' is another new nonterminal.
Here is an example, which yields the production set G 1 displayed in the

selector table in figure 4.3, as based on grammar Go:
The basis grammar is:

E~E+TIE-TIT

T~T*FIT/FIF

F~al(E)

which is an obvious extension of Go.
We first stratify the E productions, introducing the new nonterminals E"

andT':
Write T'~ + T I - T, so that the E productions become:

E~ET'IT

Then these two productions are rewritten as:

E ~ T E"
E" ~ T' E" I f.

4 Top-Down Parsing 161

In a similar way, the T productions are rewritten:

F'~*FI/F
T ~ F T"
T" ~ F' T" I E:

The F productions remain unchanged. We clearly obtain the production
set displayed in figure 4.3. The reader should verify that the resulting
granh'l1ar is LL(l) by verifying the selection table given in the figure. Figure
4.4 displays a derivation tree for the sentence "a - a- a", which shows that
the two operators are correctly associated.

Exercises

1. Design a table-driven LL(1) implementation, using the sparse table
approach described in chapter 3. Write a table interpreter in some
language of your choice.

2. Add unary minus, logical operators and indexed variables to grammar
G1, and attempt to transform it into an LL(I) grammar.

3. Construct a selector table for the grammar

S~ OSO lIS1 I E:

and trace the PDA for the strings 0110 and 0011.

4. Consider the LL(I) parser and grammar given in figure 4.3. Let the
parser emit "LOAD a" on production F~ a, ADD on production T'~
+T, SUB on production T'~ - T, MPY on production F'~ *F and
DIV on production F'~ IF. Show through selected examples that the
system emits valid reverse Polish code for arithmetic instructions,
correctly associated and distributed.

4.4. Recursive Descent Parsers

The recursive descent parsers are closely related to the LL(I) parsers.
They are among the most popular of the compiler parsers, perhaps because
the parsing and semantics operations appear together as a reasonably lucid
and self-explanatory program. The method uses procedure calls and other
programming techniques familiar to most programmers. It is a top-down
method, and we shall show that a necessary condition for a recursive descent

162 Compiler Construction: Theory and Practice

compiler to operate correctly is that its source grammar be LL(l). We shall
explore two recursive descent synthesis methods. The first is an algorithm
that accepts an LL(I) grammar and generates a recursive descent compiler
program, in the form of a sequence of statements in an Algol-like language.
The program produced by this method can be proven correct without much
effort and illustrates the connection of recursive descent to LL(I) grammars;
however, it is rather inefficient, as it exploits only a few of the control
structures available in a high-level language.

The second recursive descent method accepts an extended BNF grammar.
Such a grammar may contain closure, alternation, and concatenation opera­
tors, similar to those in regular expressions. With these features, a more
satisfying recursive descent parser may be constructed. It, too, is related to
the LL(I) grammars; however, the LL(I) concepts must also be extended to
the new grammar form, and we shall show how this is done, and how the
parser may be certified valid relative to its basis grammar.

The basic notion of recursive descent is that each nonterminal in a
grammar is associated with a recursive procedure. The task of the procedure
is to accept any string derivable from that nonterminal, and only such strings.
It must furthermore move the read head through the string only if it accepts
it, and not move the read head if it fails to accept it. Within such a procedure,
the alternative right parts of the productions associated with the procedure
are tested one at a time. It is essential that for any string in which one
alternative succeeds, none of the others may succeed.

It can be seen from this brief introduction that a recursive descent parser is
a top-down system, and that the central problem ofvalidation for the parser is
that the alternatives within a production set with a common left member be
distinguishable through their first symbol. We shall explore this notion in
greater detail upon formally defining a recursive descent parser generator.

Example of a Recursive Descent Parser. Figure 4.5 displays a recursive
descent parser for an arithmetic grammar containing the four arithmetic
operations. It consists of three procedures, EXPR, TERM, and FACT, and a
Boolean variable FLAG. These procedures make use of a variable CHAR­
ACTER, which contains the next character in the input list, and a procedure
NEXTCHAR, which fetches the next character. The input identifiers are
assumed to be letters.

The procedures EXPR, TERM, and FACT must be recursive; that is,
their return addresses must be stacked. Since they have no local variables or
call parameters, nothing else need be stacked.

The task of procedure EXPR is to examine the input string beginning with
the current symbol CHARACTER, and attempt to scan an arithmetic
expression, where an expression consists of a term or a list of terms separated
by the operators + and -. The task of procedure TERM is to identify a
term, where a tenn is a factor or a list of factors separated by the operators *

4 Top-Down Parsing 163

1 procedure EXPR; {recognizes expressions in add/subtract operators}
2 begin
3 TERM;
4 if not FLAG then return;
5 while FLAG do
6 begin
7 if CHARACTER = '+' then
8 begin
9 NEXTCHAR;

10 TERM
11 end
12 else
13 if CHARACTER = '-' then
14 begin
15 NEXT CHAR;
16 TERM
17 end
18 else FLAG: = FALSE
19 end;
20 FLAG: = TRUE;
21 return
22 end; (procedure EXPR)

24 procedure TERM; {recognizes expressions in * and /}
25 begin
26 FACT;
27 if not FLAG then return;
28 while FLAG do
29 begin
30 if CHARACTER = '*' then
31 begin
32 NEXTCHAR;
33 FACT
34 end
35 else
36 if CHARACTER = '/' then
37 begin
38 NEXTCHAR;
39 FACT
40 end
41 else FLAG: = FALSE-

Figure 4.5. A recursive descent compiler for a simple arithmetic grammar, essentially
Go extended with all four arithmetic operations.

164 Compiler Construction: Theory' and Practice

42 end;
43 FLAG: = TRUE;
44 return
45 end; {procedure TERM}

47 procedure FACT; {recognizes operands and parenthesized
expressions}

48 begin
49 if CHARACTER> = tA' and CHARACTER < = tz' then
50 begin
51 NEXTCHAR;
52 FLAG: = TRUE
53 end
54 else
55 if CHARACTER = '(' then
56 begin
57 NEXTCHAR:
58 EXPR;
59 if not FLAG then return;
60 if CHARACTER = t)' then
61 begin
62 NEXTCHAR;
63 FLAG: = TRUE
64 end
65 else FLAG: = FALSE;
66 end
67 else FLAG: = FALSE;
68 return
69 end {procedure FACT}

Figure 4.5. (cant'd,)

and /. The task of FACT is to identify a factor, where a factor is a
parenthesized expression or an identifier. Each of these moves the read head
as far as possible, considering the form it is asked to identify, possibly making
no move at all. The variable FLAG is set to TRUE if a match was possible,
such that the read head moved, and set to FALSE if a match was not possible.
The state of the FLAG upon emerging from a call on any of these procedures
then indicates whether another alternative should be tested, or a syntax error
has occurred, or whether the recognition was successful to this point.

An input string is parsed by setting CHARACTER to its first character,
then calling EXPR. Procedure EXPR calls the other procedures and these
may end up calling EXPR again recursively. Eventually, EXPR terminates

4 Top-Down Parsing 165

with FLAG set to TRUE ifthe string is an expression and FALSE otherwise.
A termination with FLAG=FALSE is such that CHARACTER is the first
character in error in the input string.

It is not obvious that these procedures operate correctly. We shall discuss
this point later. For now, consider the string A*(B-C). A trace of the calls
and operations within the procedures for this string is given in figure 4.6.

In the trace, EXPR first calls TERM, which first calls FACT. FACT then
examines whether the first character is "(" or LETTER. An expression may
only begin with one of them. Ifone or the other is seen, the next character is
fetched by a CALL NEXTCHAR, which also deposits it in CHARACTER,
and FLAG is set TRUE. Program control then returns to line 27 in
procedure TERM.

TERM next sees if a "*" or a "I" is in CHARACTER. These symbols are
legal after LETTER, but are not the only legal operators; so are "+" and
"_". It happens that "*" is seen next. Thus TERM scans "*", advances past
it (line 34), and calls FACT again.

The read head is now positioned at CHARACTER="(". On "(", FACT
calls EXPR and then looks for a")". A failure to find EXPR, then ")" is a
syntax error.

EXPR is therefore launched on the string "B - C)". It will scan the
"B - C" portion, but will return on the ")". Note that it reports TRUE to the
calling program FACT, line 58, so that the ")" will next be scanned.

Eventually, the input string is exhausted. It first happens in FACT, when
the ")" is scanned. Technically, CHARACTER should contain 1- when the
end of the input string is reached, so that the remaining tasks will yield valid
results. The result is an "unwinding" ofthe recursive calls, with the end result
a return from EXPR with FLAG = TRUE.

Exercises

1. Trace the following strings through the program of figure 4.5, and
indicate whether they are valid or invalid.

(A)
A+B*C
A++B
-C

2. Why is FLAG set to TRUE near the end of the EXPR routine?

3. What is the purpose of the WHILE loop in EXPR and TERM?

166 Compiler Construction: Theory and Practice

Remaining
String Procedure FLAG Line Comment
..............---__----_-__----------.. -.... --._--------------

A*(B-C) EXPR 2 Enter procedure EXPR
EXPR 3 Call TERM
· TERM 26 Call FACT
.. FACT 49 CHARACTER is LETTER

*(B-C) .. FACT TRUE 52 Input advanced, FLAG
set TRUE

.. FACT TRUE 68 Return from FACT
to TERM

· TERM TRUE 27 Return point in TERM
· TERM TRUE 28 Start WHILE-DO loop
· TERM TRUE 30 CHARACTER is tt*"

(B-C) · TERM TRUE 33 Call FACT
.. FACT TRUE 49 CHARACTER is not

LETTER
.. FACT TRUE 55 CHARACTER is tt("

B-C) .. FACT TRUE 58 Call EXPR
· .. EXPR TRUE 3 Into EXPR, call TERM
.... TERM TRUE 26 Into TERM, call FACT

-C) · FACT TRUE 52 CHARACTER is LETTER
.... TERM TRUE 28 Start WHILE-DO
.... TERM FALSE 41 CHARACTER is neither

tt*" nor (II"
.... TERM TRUE 43 But that's OK
· .. EXPR TRUE 5 Start WHILE-DO
· .. EXPR TRUE 7 CHARACTER is not (1+"

· .. EXPR TRUE 13 CHARACTER is (1-"

C) · .. EXPR TRUE 16 Call TERM
.... TERM TRUE 26 Call FACT
· FACT TRUE 49 CHARACTER is LETTER
.... TERM TRUE 28 Back to TERM, start

WHILE-DO
.... TERM FALSE 41 Tests for tt*", "I" failed
.... TERM TRUE 43 But that's OK
· .. EXPR TRUE 5 Another WHILE-DO try
· .. EXPR FALSE 18 Failed this time
· .. EXPR TRUE 20 But that's OK
.. FACT TRUE 59 Where we left off

in FACT
.. FACT TRUE 60 Character is tt)"
.. FACT TRUE ~8 Returns TRUE
· TERM TRUE 28 Try another WHILE-DO

· T~RM FALSE 41 Failed
· TERM TRUE 43 But that's OK
EXPR TRUE 5 Try another WHILE-DO
EXPR FALSE 18 Didn't work
EXPR TRUE 20 But that's OK

Figure 4.6. Trace of program of figure 4.5 for the string "A*(B-C)".

4 Top-Down Parsing 167

4. Suppose code is emitted upon scanning the operators" +", "*", etc., as
in the following table. What kind of target machine would support the
emitted code? Give some examples ofexpressions and the emitted code.

operator emitted instruction

+ ADD
SUB

* MPY

/ DIV
letter LOAD letter

5. Extend the program of figure 4.5 to include replacement statements of
the form

<variable>

4.4.1. Construction and Validation

< expression>

We shall now show that a recursive descent parser can be constructed
automatically from any context-free grammar. Unfortunately, it will not
necessarily recognize the grammar's language, and may possibly recognize no
language at all by getting into an endless loop. We must therefore develop a
condition that a grainmar yield a valid parser, and this requirement will turn
out to be exactly the LL(l) condition for a grammar.

Construction

Let G = {N, L, P, S} be a context-free grammar. We construct a
recursive-descent parser M from G as follows:

1. F or each nonterminal symbol A in N, construct a recursive type Boolean
procedure A, with no formal parameters ot local variables.

2. Let FLAG be a global logical variable, whose value is TRUE or
FALSE.

3. Consider procedure A, for some nonterminal A, and the set of A
productions:

168 Compiler Construction: Theory and Practice

Each of the strings WI' w2, etc. will become separate programs with one entry
point and one exit point. Then procedure A is written as follows:

procedure A: boolean;
begin

(program for WI);

if FLAG then return(TRUE)
else
(program for w2);

if FLAG then return(TRUE)
else
(program for w3);

(program for wn);

return(FLAG)
end

(Note: We return the value of a typed procedure through the RETURN
statement. This is not a Pascal convention, but one that we find useful for
discussion purposes here).

4. The program for a right member w of some production depends on
whether w is empty or not, and if not, the sequence of terminal and
nonterminal symbols of which it is comprised.

(a) If w is empty, and the procedure name is A, then the program for w is
written:

FLAG:=MEMBER(CHARACTER, FOLLOW(A»

where CHARACTER is the character currently under the read head,
FOLLOW(A) is the FOLLOW set for A, and MEMBER is a Boolean
procedure that returns TRUE if CHARACTER is in FOLLOW(A) and
FALSE otherwise.

(b) Let w = aI a2a3•••ar , where the ~ are terminal or nonterminal symbols
and r2: 1. Then the program for w is written:

if MATCH(aI) then
begin

FLAG: = TRUE;
if not MATCH(a2) then ERROR;
if not MATCH(a3) then ERROR;

4 Top-Down Parsing 169

if not MATCH(~) then ERROR
end
else FLAG:=FALSE

where MATCH(X) depends on whether X is a terminal or a nonterminal
symbol. If X is nonterminal, then MATCH(X) is simply X, i.e. a call of
procedure X. If X is terminal, then MATCH(X) is a function call
COMPARE(X), where function COMPARE is:

procedure COMPARE(X: char): boolean;
begin

if X=CHARACTER then
begin

NEXTCHAR;
return(TRUE)

end
else return(FALSE)

end

Procedure NEXTCHAR fetches the next character, placing it in variable
CHARACTER. Some special symbol must be used to indicate the end of the
string, disjoint from the alphabet set.

ERROR is an error routine; when called, the machine will block and a
syntax error is reported at the position of the read head in the input string.

5. Given some input string z. The parser is invoked by setting the read head
to the left-most symbol of z, placing it in CHARACTER, then calling
procedure S, which corresponds to the start symbol in G. Then if the
grammar Gis LL(l), procedure S returns TRUE ifz is in L(G) and FALSE
otherwise.

Example. Consider the productions

E" -? T' E"
E" -? €

which appear in the LL(1) grammar given in figure 4.3. They may be
converted to the function E" given below, by following the above rules:

170 Compiler Construction: Theory and Practice

procedure E": boolean;
begin

if T' then
begin

FLAG: = TRUE;
if not E" then ERROR

end
else FLAG: = FALSE;
if FLAG then return(TRUE)
else
FLAG:=MEMBER(CHARACTER, FOLLOW(E"));
return(FLAG)

end

Now consider the productions

F~a

F ~ (E)

which also appear in figure 4.3. These may be converted to the procedure F
given below:

procedure F: boolean;
begin

if COMPARE("a") then
begin

FLAG: = TRUE
end
else FLAG:=FALSE;

if FLAG then return(TRUE)
else
if COMPARE("(") then
begin

FLAG: = TRUE;
if not E then ERROR;
if not COMPARE(")") then ERROR

end
else FLAG:=FALSE;
retum(FLAG)

end

These procedures are more complicated than they need to be. They may
easily be rewritten to improve their form and efficiency. It is also possible to

4 Top-Down Parsing 171

devise a more elaborate constructor algorithm that examines larger contexts
in the extended grammar derivation tree, and to choose more appropriate
control structures for the parser. Despite these objections, this construction is
useful as a means of proving correctness and demonstrating the relation of
recursive descent to LL(I) parsers. It will be less easy to do for the extended
recursive descent system described later.

Exercises

1. Finish the parser based on figure 4.3, and implement it on some
computer. Try a variety of valid and invalid strings.

2. Construct an equivalent LL(l) grammar for the following context-free
grammar and construct a recursive descent parser from it (the goal
symbol is < stmt >):

<stmt> ::= EXEC
I BEGIN <decl-list> ; <stmt-list> END

<stmt-list> ::= <stmt-list> ; <stmt>
I <stmt>

<decl-list> :: = <decl-list> ; DECL
I DECL

3. Construct a parser for the grammar

S --? Abc I aAcb
A--?€lbiC

We have shown earlier that this grammar is not LL(1). Find a string for
which the parser fails and determine just why and how the parser fails.

Grammar Validation

The following two examples show that the parser constructed from a
grammar may fail. Neither grammar given below is LL(l), but the two
gramm,ars illustrate the two kinds of failure that a recursive descent parser
will exhibit for a non-LL(l) grammar.

Failure Example 1. Consider the grammar

S --? SO I 1

172 Compiler Construction: Theory and Practice

which yields strings in the regular expression 1{O}. The parser constructed
for this grammar consists of a single procedure, as follows:

procedure S: boolean;
begin

if S then
begin

FLAG: =TRUE;
if not COMPARE("O") then ERROR

end
else FLAG: =FALSE;
if FLAG then return(TRUE)

else
if COMPARE("1") then
begin

FLAG: =TRUE
end

else FLAG: = FALSE;
return(FLAG)

end

By tracing the procedure for a simple example, e.g., the string "10", we
soon encounter a problem. Upon calling S, S immediately calls itse1f1 There is
no movement of the read head or any conditional testing. These calls will
continue until the return address stack space is exhausted in the computer,
causing a failure of the parser regardless of the input string.

It is clear from the grammar that the difficulty lies in the left-recursive
production S~ so. It is also clear that any left-recursion, whether simple or
not, will cause a failure of the system on some input string.

This difficulty cannot be cured by reordering the productions, i.e., writing
the grammar

S ~ 1 I SO

to yield the following program, which scans the leading "I" nicely, but then
fails to scan any subsequent "O"s. Furthermore, given any string whose first
symbol is not "1", the program again falls into an endless sequence of
recursive calls with no movement of the read head:

procedure S: boolean;
begin

if COMPARE("I") then
begin

FLAG: = TRUE

4 Top-Down Parsing 173

end
else FLAG: = FALSE;
if FLAG then return(TRUE)
else
if S then
begin

FLAG: =TRUE;
if not COMPARE("O") then ERROR

end
else FLAG: =FALSE;
return(FLAG)

end

Failure Example 2. The following grammar also yields a parser which fails
to recognize the grammar's language:

S~A.-L

A~ B I C
B~aC

C ~ a a

This language consists of the two strings "aa~" and "aaa.-L". Note that this
grammar contains no left-recursive productions. The reader is invited to
construct the parsers for this grammar G 2 and also for a grammar G 2" in
which the second production is

N ow consider these parsers, P2 and P2', respectively. Given the string "aa.-L"
in P2, procedure S is called, which calls A. A calls B (since B is written first in
the alternation, it will be called first). Procedure B accepts the first character
"a", then calls C. However, C expects two more characters "aa", but rather
sees only "a.-L". It therefore fails, setting the flag FALSE, which is reported
back to B. Then B reports FALSE to A, which then calls C as the other
alternative. Again, C reports failure, since it expects "aa" and sees "a.-L". The
failure ofA is reported to S, which reports failure for the string. We therefore
have a failure to accept a string in the language defined by the grammar.

An examination of the cause of this failure reveals that B should back up
the read head on a failure. It scanned "a" before calling C and finding that C
was in trouble. Rather than blindly reporting failure, it would seem that B
should attempt to restore the read head position and try another alternative
before reporting failure. Unfortunately, a read head backup cannot be

174 Compiler Construction: Theory and Practice

confined. to one or two operations in general, but must be part of a general
backtracking system.

We therefore conclude that the parser fails for grammar G2• Let us see if it
also fails for grammar G/, in which the A productions are

This time, consider the input string "aaa-l. ". Procedure. S first calls A, which
calls C first. C accepts the suffix "aa", and reports TRUE to A, which reports
TRUE to S. However, S now expects " -l. ", but sees "a" instead. It therefore
fails.

Here, we see that the difficulty lies in procedure S; it gave up too soon.
Rather than report an=error, it should tell procedure A to try another
alternative, if it had an~left. However, this again requires a generalized
backtracking sy·stem. Recall, from chapter 2, that a general backtracking
system requires an exponential time to parse certain sentences, or to detect a
syntax error, and is therefore impractical.

Recursive Descent Validation

In this section, we show that if the grammar is LL(I), then the recursive
descent parser will recognize exactly the language of its basis grammar.

We assert that, if the grammar G is LL(I), then:

1. Every procedure A will halt in finite time on any input string.

2. If S ~* xAy ~ xwy, then procedure A will accept w within the input
list wy. By accept we mean that A will return TRUE, having advanced
the read head exactly through string w.

3. If procedure A accepts a string w, and Iwl > 0, then A ~* win G.

4. If procedure A accepts the empty string with the input string y (without
moving the read head, of course), then there exists an empty production
A~ € in G, and a derivation S ~* xAz~ xz such that FIRST(y) is in
FIRST(z).

Corollary. If these four assertions are true, then it dearly follows that
procedure S (where S is the grammar's start symbol) accepts exactly the
language L(G) ifG is LL(I). Exact acceptance requires that S reports TRUE
~nd exactly scans every string in the language, and also that S reports FALSE
or calls ERROR on every string not in the language.

We first show property I, by showing that A returns in a finite number of
operations.

4 Top-Down Parsing 175

Note first that no procedure contains an internal loop. There are simply
alternative tests involving COMPARE operations, FOLLOW operations
and calls on other procedures, and a finite number of these exist. We may
therefore count a procedure call as an operation. Now a procedure A may call
as many as n - I other procedures without any movement of the read head,
where n is the number of nonterminals in the grammar. If it calls n
procedures, then one of these must be A, and this implies the existence of a
derivation A~* A..., and G cannot be LL(1). Each of these n - 1 calls may
call at most n-2 procedures, etc., yielding at most (n-l)! =
(n-l)x(n-2)X ... x2 calls without moving the read head. Upon
exhausting these calls, the read head must move, or A returns, or else ERROR
is called.

We see that in at most (n - I)! calls, procedure A must complete its
operations. (In practice, A completes its task in a much smaller number of
calls. It requires a time proportional to the length of the string it scans). QED

,Now consider property 2. Let string w be such that S =9* xAy =9* xwy.
We shall show that function A accepts w within xwy by induction on the
number of derivation steps in A =9 * w. Let the first step be

A=:::;. XIXI ... Xn =:::;.* wIWZ ••• Wn

where Xl =:::;.* wI' Xz =:::;.* Wz' etc., and A~ XIXZ ••• Xn is in P.
If n=O, then this is an empty production, A ~ E. Since W=E is within a
sentential form xwy, CHARACTER is in FIRST(y) and is in the FOL­
LOW(A) set, since xAy is· a sentential forni. Therefore function A returns
TRUE without moving the read head.

If Xl is a terminal symbol, then Xl = WI = CHARACTER. Some
COMPARE operation in A will succeed; furthermore, since G is LL(I), there
can be exactly one such CaMPARE function for this symbol Xl' Also if this
COMPARE must compete with some function call B for acceptance of a
string beginning with WI' B must return false. IfB returned TRUE, it would
imply the existence of a derivation

B =:::;.* WI'"

by the inductive hypothesis, and it further implies, by the way the function A
is constructed, that A =:::;. B... =:::;. * WI' .. and also A =:::;. WI' .. directly, which is
a violation of the LL(1) condition. We therefore. conclude that there must
exist exactly one COMPARE test for WI' and that no competing procedure
call can succeed. If a FOLLOW test exists, bythe LL(1) condition, it cannot
succeed either, else there would be a conflict between FaLLOW(A) and A~

WI" '.'
If Xl is a nonterminal symbol, then there must be a CALL Xl among the

alternatives in the.A procedure. Given that w is derivable from A, and WI
derivable from xl' by the inductive hypothesis, CALL Xl must accept string
WI' reporting TRUE.

176 Compiler Construction: Theory and Practice

Once the first element Xl is identified-it must be identified by one of the
alternatives in procedure A-the remaining elements X2, X3' ••• ,Xu must be
scanned by COMPARE or CALL operations, else an ERROR results. A
COMPARE will scan a character; the CALL Xi' by the inductive hypothesis,
will scan string Wi and report TRVE. Therefore A accepts w in the context of
the sentential form xwy. QED

Next suppose that Iwl >0, and that A accepts w through some alternative
based on a production A ~ Xl X2 • • • Xu, where the Xi are terminal or
nonterminal (property 3.) Now each of the Xi must accept a portion of w, by
the inductive hypothesis, either through a COMPARE, a FOLLOW, or a
procedure call operation, within A. Also the successful operations each move
the read head through °or more positions in w, in the order Xl' X2, ••• Xu.

Therefore by the inductive hypothesis Xl ===*>* wI' X2 ===*>* w2, ... Xu ===*>* Wu '

where w = W IW2 •.• Wu • Therefore A ===*>* w.
Consider property 4. Assume that A accepts some string w where Iwl =0.

Then w had to be accepted with no movement of the read head. This requires
either an immediate acceptance through the FOLLOW test, or a sequence of
calls culminating in a successful FOLLOW test. Suppose the former. Then
CHARACTER is matched against some member of FOLLOW(A), which
implies a derivation

S ===*>* xAy ===*> xy

where CHARACTER is also in FIRST(y).
Now suppose that w = € is accepted through some chain of calls. By

induction on the number of procedure calls required to accept w, given that
calls on procedures B, C, ... ,M are required in that order to accept w, then
there must exist a production A~ BC M and the derivation

A===*> BC M ===*>* €

QED

4.4.2. Extended Grammars

The construction process given in the previous section is not an effective
substitute for an LL(l) table-driven parser. It requires a transformation of a
production set in general in order to obtain an equivalent LL(l) production
set, and once this is done, there is no advantage in writing a recursive descent
program for the production set.

By using an extended grammar, a more aesthetically satisfying recursive
descent parser may be automatically constructed. However, such a parser
may also fail to recognize the language defined by the grammar and requires
validation. The validation rules are more complicated to express, and require
a set of tree structures. We shall develop the parser generation process and
discuss validation without attempting proofs of the algorithms employed.

4 Top-Down Parsing 177

An extended grammar consists ofa set ofextended productions of the form

A~w

where w is an extended structure (as next defined) and A is a nonterminal; for
each nonterminal A, there is exactly one such production in the grammar.

An extended structure is a string consisting of terminals, nonterminals, and
the meta-symbols I, (,), [,], {, and} as follows:

• E (the empty string) is an extended structure.

• If x E ~ (i.e., a terminal symbol), then x is an extended structure.

· If X E N (i.e., a nonterminal symbol), then X is an extended structure.

· If S is an extended structure, then each of the following are extended
structures:

(S), meaning S itself.
{ S }, closure, meaning zero or more concatenations of S.
[S], option,· meaning zero or one occurrence of S.

• If S1 and S2 are extended structures, then each of the following are
extended structures:

Sl 1 S2' alternation, meaning a choice of Sl or S2'
Sl S2' concatenation, with the usual meaning.

It is clear from the above structure rules that the right member w of each
extended production A~ w is a regular expression, except that both terminal
and nonterminal symbols are employed in the expression. We have also
introduced a new unary operator, option.

Example. Grammar Go may be written as an extended grammar as follows.
The productions E~ T, E~ E + T, and E~ E - T define a structure for
E that looks like this:

E~T{(+I-)T}

That is, any expression consists of a term followed by any number of + term
or - term elements, including none. Note that E no longer appears in the
right-hand part of the extended production.

An equivalent way of expressing these productions is

E~T{(+T)I(-T)}

The equivalence is apparent from the distributive law of concatenation over
alternation.

178 Compiler Construction: Theory and Practice

Similarly, the productions T ~ F, T ~ T * F, T ~ T / F define a
structure for T that looks like this:

T~F{(*I/)F}

Finally, the productions F ~ (E) and F ~ a define the structure:

F~ lp E rp I a

where lp and rp stand for the terminal symbols "(" and ")", respectively.
Since "(" and ")" are metasymbols, we cannot permit these as terminal
symbols.

We therefore have the extended grammar Go':

E~T{(+ I-)T}
T~F{(*I/)F}

F ~ lp E rp I a

4.4.3. Construction and Validation from an Extended Grammar

Given an extended grammar G = (N, ~, P, S), we may construct a
recursive descent parser from it by following the plan given in figure 4.7.

In using figure 4.7, an extended structure is best represented by a tree,
containing concatenation, alternation, closure, and option internal nodes, along
with terminal and nonterminal leaf nodes. Figure 4.7 then specifies the
recursive descent program components developed from such a tree in a
preorder scan. For example, the structure

T{(+ I -)T}

is decomposed as follows:

• the concatenation of T with "{(+ I -)T}".

• the closure "{(+ I -)T}" of "(+ I -)T".

• the concatenation of "(+ I -)" with T.

• the parenthesized structure "+ I "

• the alternation of + with -.

The corresponding tree structure is given in figure 4.8.
The concatenation of T with "{(+ I -)T}" yields the program:

(program for T);
if FLAG then
begin

(program for "{ (+ I -)T}")
end

4 Top-Down Parsing 179

For each production A - w

Construct a recursive procedure as follows:

procedure A;
begin

(program based on structure w)
end

For a nonterminal structure X

Construct the procedure call:

X (e.g. call procedure X)

For a parenthesized structure (w)

Construct the program sequence:

(program for w)

For an option [w]

Construct the program sequence:

(program based on w);
FLAG: = TRUE;

For a terminal symbol structure U a"

Construct the statement:

if CHARACTER = ta' then
begin

NEXTCHAR; (get the next character)
FLAG: = TRUE

end else FLAG: = FALSE

For a concatenation structure w1 w2

Construct the program sequence:

(program for w1);
if FLAG then
begin

(program for w2)
end

Figure 4.7. Construction rules for a recursive descent parser, based on an extended
grammar representation of the language.

180 Compiler Construction: Theory and Practice

For a closure structure { w }

Construct the program sequence:

FLAG: = TRUE;
while FLAG do
begin

(program based on w)
end;
FLAG: = TRUE;

For an alternation structure w1 I w2

Construct the program sequence:

(program based on w1);
if not FLAG then
begin

(program based on w2)
end

Figure 4.7. (cant'd.)

It in turn expands into the program:

T; {call procedure T}
if FLAG then
begin

FLAG: =TRUE;
while FLAG do
begin

(program for "(+ I -)T")
end;
FLAG: = TRUE

end

The program for "(+ I -)T" is, at the outermost level, a concatenation, and,
further down, an alternation of two terminal symbols:

(program for "+ I -");
if FLAG then
begin

T
end

4 Top-Down Parsing 181

T

Concatenation

+
Figure 4.8. Tree for extended grammar structure T{(+ I -)T}.

Finally, the program for" + I -" is:

if CHARACTER="+" then
begin

NEXTCHAR;
FLAG: = TRUE

end else FLAG: = FALSE;

if not FLAG then
begin

if CHARACTER ="-" then
begin

NEXTCHAR;
FLAG: = TRUE

end else FLAG: = FALSE
end

Putting all these together yields the program:

T',
if FLAG then

182 Compiler Construction: Theory and Practice

begin
FLAG: =TRUE;
while FLAG do
begin

if CHARACTER="+" then
begin

NEXTCHAR;
FLAG: = TRUE

end else FLAG: =FALSE;
if not FLAG then
begin

if CHARACTER="-" then
begin

NEXTCHAR;
FLAG: = TRUE

end else FLAG: =FALSE
end;
if FLAG then
begin

T
end

end;
FLAG: = TRUE

end

We need only embed the preceding statements in the procedure block:

procedure E: boolean;
begin

(above program)
end

and we have a procedure that is equivalent to the EXPR procedure in figure
4.5. Its arrangement is slightly different, but the recognition logic is the same.

Finding FIRST and FOLLOW Sets for an Extended Grammar

A parser constructed from an extended grammar by the rules of figure 4.7
mayor may not recognize the language of the grammar. In general, it will if
the grammar is LL(1). However, we must formulate a more general LL(1)
condition for an extended grammar. We can do so most convenIently if the
grainmar is represented as a set of trees, one tree for each nonterminal. The
necessary tree structure is defined by the following rules:

4 Top-Down Parsjng 183

1. For every nonterminal A in an extended grammar, construct a syntax
tree. The root node will carry symbol A. The internal nodes other than the
root will carry the grammar operations for alternation, concatenation, closure
an~ option. The leaf nodes will carry a terminal or nonterminal symbol of the
grammar or {. Each tree represents a production in the extended grammar. A
set of trees for grammar Go' is given in figure 4.9. The symbols {., *, @, I}
represent concatenation, closure, option, and alternation, respectively.

2. Each node will also carry two lists of terminal symbols, representing
FIRST and FOLLOW associated with the node.

3. Construct a FIRST list for each node N as follows:

(a) If node N is associated with the nonterminal A, then locate the tree
rooted in A; let its root node be R, and add the list FIRST(R) to FIRST(N),
and add FIRST(N) to FIRST(R). This rule ensures that every node
associated with a nonterminal symbol A, including a root node, carries the
saqle list of FIRST symbols.

(b) IfN is associated with the tree root R, then add FIRST(CHILD(R» to
FIRST(N).

(c) IfN is associated with (or a terminal symbol x, then FIRST(N) = {{}
or. {x}, respectively.

(d) If N is associated with a closure, or an option, then add
FIRST(CHILD(N» to FIRST(N), and add (to FIRST(N).

(e) If N is associated with a concatenation, then add

FIRST(FIRST(LEFTCHILD(N» FIRST(RIGHTCHILD(N»)
to FIRST(N). LEFTCHILD(N) is the left child node, and RIGHT­
CHILP(N) is the right child node of N.

(f) If N is associated with an alternation, then add

FIRST(LEFTCHILD(N» U FIRST(RIGHTCHILD(N»

to FIRST(N).

4. Repeat step 3 until no more symbols can be added to any of the FIRST
lists. A finite number of operations is required to reach that point. since the
trees are finite and there are a finite number of symbols that may appear in any
of the lists.

5. Construct the FOLLOW list for each node N as follows:

(a) If N is the root node, associated with a nonterminal A, then add
FOLLOW(V) to FOLLQW(N) for each node V in each of the trees
associated with the nonterminal A, and add FOLLOW(V) to FOLLOW(N).
This rule ensure~ that every node associated with some nonterminal A carries
the same FOLLOW list.

\

(b) If N is associated with the grammar's goal symbol S, add { to

184 Compiler Construction: Theory and Practice

Figure 4.9. Syntax trees for grammar Go',

FOLLOW(N), and to the FOLLOW lists of all other nodes associated with
S.

In the remaining rules, let F = PARENT(N), where N is not the root
node:

(c) If F is a concatenation node, and N = LEFTCHILD(F), then add

FIRST(FIRST(RIGHTCHILD(F)) FOLLOW(F))

to FOLLOW(N).

4 Top-Down Parsing 185

(d) In all other cases, add FOLLOW(F) to FOLLOW(N).

6. Rule 5 is repeated until no more additions to the FOLLOW lists can be
made.

The meaning of FIRST(X Y), where X and Y are lists, is

FIRST(X Y) = (X - {€}) U Y
=X

Discussion

if € is in X, or
if € is not in X.

We shall not attempt a complete justification of these rules. That would
require more development of extended derivations and extended sentential
forms, etc. However, the notion of FIRST and FOLLOW is essentially that
developed for simple grammars, except that both are lists of terminal
symbols. A FIRST list is the set of all symbols that appear first in a sentence
derivable from that node.

For example, ifnode N is an alternation, then its FIRST list should include
FIRST(L) and FIRST(R), where Land R are its children, since a sentence
derivable from N includes sentences derivable from L and from R. Similarly,
if N is a concatenation, with children Land R, then the sentences of N are
derivable from sentences of the form XY, where X is derivable from Land Y
from R. Clearly, FIRST(N) includes FIRST(XY) = FIRST(L FIRST(R»).

Ifnode N is a closure or option, then its FIRST includes FIRST(C), where
C is its child, but also includes €, since these structures may derive the empty
string.

If node N is a terminal symbol, then clearly FIRST(N) contains only that
symbol.

Finally, if node N is a nonterminal, it may be a root node, in which case
FIRST(N) includes FIRST(C), where C is its child. We also ensure that all
the nodes associated with a given nonterminal carry the same FIRST lists.

The FOLLOW rules essentially state that € follows a goal symbol, and that
FOLLOW lists propagate downward through the tree, except to left children
of concatenation nodes. The FOLLOW set of a left child N of a concatena­
tion is the FIRST list of N's right sibling, and if this list contains €, also
includes the FOLLOW ofN's right sibling. Any FOLLOW members found
for some nonterminal node V are copied to all the other nodes associated with
V.

For example, consider the set of trees representing the extended grammar
G '·o·

E ~ T { (+ I -) T}
T ~ F { (* I /) F}
F ~ lp E rp I a

186 Compiler Construction: Theory and Practice

The syntax trees for Go' are shown in figure 4.9.
Figure 4.10 shows the same trees decorated with the FIRST lists. These

lists were constructed from rule 3 above. A convenient place to start is some
terminal node, for example lp, rp, or "a" in the F tree, using rule 3(c). The
concatenation nodes in tree F clearly carry lp by rule 3(e) and the observation
that the left children do not contain €. The alternation node in tree F carries
the union of the FIRST lists of its children, "a" and lp, by rule 3(f), and F
carries its child's FIRST list by rule 3(b). The F list may now be entered in
the other trees, in particular the T tree, which is similarly built up.

A partial FOLLOW list for the trees of figure 4.9 are shown in figure 4.11.
For these, it is convenient to begin by adding € to the goal symbol nodes E,
then looking for concatenation nodes in which the right child is terminal or
contains a nonempty FOLLOW list. Any additions to a FOLLOW list must
then be propagated down the tree by rule 5(d). Thus the left T node in the E
tree carries { +, -, €} since these are in the FIRST set of its right sibling, a
closure node. Similarly, {*, I, €} are in the FOLLOW list of the left F node in
the T tree. Since { is in FOLLOW for E, it propagates down the E tree along
its right. It cannot propagate to the left child of a concatenation node,
however. Similarly, the set {+, -, €} associated with any T node is
propagated down the right side of the T tree, and eventually is added to the
FOLLOW set ofF. (We have not yet added to F the {*, I} symbols found in
the left node of the T tree.) Then the set { +, -, €} found for F so far is also
propagated down the F tree. However, these do not decorate the E node, since
a concatenation node lies two levels above it.

Through repetitive applications of rule (5), the final FOLLOW lists
appear as shown in figure 4.12. Note that the terminal nodes are also
decorated. As a check on our work, these lists appear to be reasonable in terms
ofthe known contexts ofarithmetic operators. Any symbol in {*, I, +, -, € }

can follow an operand, as is clear from the following examples:

ala a+a a-a a

Similarly, either symbol in {a, (} can follow any of the arithmetic operators
{ +, -, *, I} as is clear from these examples:

a*a a+(a-a)

Finally, a right parenthesis may be followed by any symbol in {*, I, +, -, {,
)} as is clear from the following examples:

(a)*a (a)/a (a)+a (a)-a (a+a) «a+a»

The FOLLOW lists for the nonterminal symbols are less obvious; these lists
and the lists for the internal nodes depend strongly on the grammar.

Parser Validation

A recursive descent parser constructed from an extended grammar. is valid
if the following two conditions on the syntax trees of the grammar are met:

4 Top-Down Parsing 187

Figure 4.10. FIRST lists of the trees of figure 4.9.

1. For every closure or option node N,

FIRST(FIRST(CHILD(N)) FOLLOW(N)) n FOLLOW(N) = 0.

2. For every alternation node N,

FIRST(FIRST(LEFTCHILD(N)) FOLLOW(N)) n

FIRST(FIRST(RIGHTCHILD(N)) FOLLOW(N) = 0

We shall not attempt a formal proof of these assertions, but will discuss

188 Compiler Construction: Theory and Practice

Figure 4.11. Partial FOLLOW lists for the trees of figure 4.9.

them informally. Note that these conditions are similar to the LL(l)
conditions for a simple grammar. In an extended grammar, if the recursive
descent parser fails to accept some input string, it will fail through either
accepting some portion of the wrong alternative or by accepting a portion ofa
closure or option when the following string should instead have been
accepted.

Rule 2 above guarantees that the parser can never choose the wrong
alternative upon examining the next input symbol, since a pair of alternatives
can only derive strings starting with disjoint symbols.

Rule 1 guarantees that when the parser attempts to recognize a closure or
option, a following string cannot carry a conflicting FIRST symbol. That is,

4 Top-Down Parsing 189

*,/,E,+,-,RP F

+,-,E,RP

--'- r DO
I ,-,t, 1'\.1

*, /,E,
+,-,RP

*,/,E,+,-,RP

*,/,E,+,-,RP

*,/,E, +, -, RP

Figure 4.12. Complete FOLLOW lists for the trees of figure 4.9.

consider the form

...{X}y

Rule I guarantees that the strings derivable from x cannot contain any leading
symbol in common with the strings derivable from y. As a special case, x must
not be able to derive an empty string E, since then the parser cannot possibly
determine whether a closure operation on E is required or not. This case is
covered by the rule, since if M (in the rule) can derive E, then FIRST(M
FOLLOW(N)) includes FOLLOW(N). Hence, if the parser attempts to
accept a string derivable from x, and succeeds on the first symbol, then it
cannot succeed on any first symbol in a string derivable from y. Also, if the

190 Compiler Construction: Theory and Practice

parser can scan a first symbol in a string derivable from y, then it mu~t fail to
accept any string in x, by failing on the first symbol in x.

ConsIder the decorated trees of Figs. 4.10 and 4.12. The alternation nodes
in all three trees clearly satisfy the second condition, for example, in the E
tree, the alternation node's left child carries {+} and its right child carries
{ - }. Similarly, in the F tree, the children of the alternation node carry the
disjoint sets {(} and {a}.

The FIRST set of the child of the closure node in the E tree is { +, - },
while the FOLLOW set of the closure node is {€,)}. Similarly, the closure
node in the T tree satisfies the validation condition. We conclude that a
recursive descent parser constructed from these trees will correctly recognize
the langu~ge of its extended grammar, which is essentially the parser given in
figure 4.5.

Extended Grammar Represented as FSA

The structures in the right members of the productions of an extended
gramm~ have the form of a regular expression, except that the machine
transitions may be terminal or nonterminal transitions, and we will have a
family of machines. Let us explore this matter further.

Construct a reduced DFSA for each of the right members of the extended
productions in some grammar G. We will then have a machine M(A) for
every nonterminal A in the grammar. Assume that the grammar is LL(1), i.e.,
it satisfies the validation conditions given in the previous section. Then we
embed the machine in a recursive procedure as follows:

procedure A;
begin

var STATE: integer; {the current state}
STATE: = 0; {the start state}
{program to execute machine M(A)}
FLAG:=if SUCCESS then TRUE else FALSE;
return

end

The variable STATE is a local variable and is therefore stacked upon calling
any other procedure, then unstacked upon returning from it. STATE
indicates the state of machine M(A), which may be organized as a program or
as an interpreted table. If organized as a table, then only one interpretative
procedure for all the machines need be utilized, provided that it too, is
recursive.

The machine transitions are of two kinds: a terminal transition, and a
nonterminal transition. A terminal transition results in accepting the present
symbol in the machine's present state, or reporting failure. If the terminal is

4 Top-Down Parsing 191

accepted, the read head is advanced one symbol; otherwise it is not moved.
On a nonterrp.inal transition, the machine simply calls another machine by

sta,cking its state and calling the appropriate procedure. The called machine
either reports success or failure. If success, then this machine may continue,
otherwise it must report failure. . .

A given machine continues until it must report failure or until it has
reached a halt ~tate and is uqable to scan the next symbol; in this latter case it
may report success.

The value of this approach lies in the attractiveness of an extended
grammar in describing a language. For example, an extended grammar is
closely related to a syntax graph, with which a number ofcomputer languages
are defined. The size of the parser system wi111ikely be considerably smaller
than if it were coded as a recursive descent system. However, it may be more
difficult to attach semantic operations to the machine transitions, since tp.ese
may no longer pe Clearly related to the extended grammar structure
operations.

4.5. BibliograpJ1ical Notes

LL(k) grammars were first defined by Lewis and Stearns (Lewis [1968D.
The theory ofLL(k) grammars and their relation to deterministic parsers was
extensively developed by Rosenkrantz and Stearns (Rosenkrantz [1970bD.
Other papers on LL(k) grammar theory are Aho [1972a], vol. I, chapters 5
and 8; Kurki-Sl1onio [1969], and Griffiths [1974b]. Recursive descent parsers
and compiler ~ystems have been considered by a large number of authors.
They form the basis of many so-called compiler-writer systems. A represen­
tative set of papers is Irons [1961], Metcalfe [1964], Feldman [1968], Gries
[1971] (chapter 4), Aho [1972a] (vol. I, chapter 6), Griffiths [1974c], and
Wirth [1976c]. .

CHAPTER 5

BOTTOM-UP PARSING AND
PRECEDENCE PARSERS

A bottom-up parser reconstructs a right-most derivation in reverse,
conceptually starting with a sentence in the language and ending with the goal
symbol. We have previously examined bottom-up parsing as a tree-building
process. The key to the process is the identification of the handle in any given
right-most sentential form and a production that belongs with the handle in
that form.

A bottom-up parser can always be constructed for a context-free grammar.
It consists, as for the top-down parser, of an input list, a finite control, and a
push-down stack. In general, it is nondeterministic, and there mayor may not
exist a lookahead system through which a deterministic parser may be
constructed. There also exist grammars for which no deterministic parser can
be constructed.

There are two broad classes of deterministic bottom-up parsers- the
so-called precedence parsers and the LR(k) parsers. Of these two, the LR(k)
parsers are considerably more powerful; they accept a much larger class of
grammars. The LR(k) grammars also include all the LL(k) grammars, and
constitute the largest class of deterministic grammars with left-to-right
parsing and a k-symbollookahead. Consequently, given any context-free
grammar, it is more likely to have an LR(k) parser than any other.

A bottom-up parser appears to be more complicated than a top-down
parser. The parsing theory is somewhat more difficult to follow than for a
top-down parser, and the semantic operations seem to be less 0 bvious. We can
combat this feeling only by studying a complete compiler system. We shall
present not only the bottom-up parsing theory and system, but a generalized
semantics system as well, with enough rules so that anyone should be able to
design a complete compiler from a set of objectives. Bottom-up semantics
may be used with any bottom-up parsing method. The parser need only
produce an ordered list of production numbers.

5.1. Nondeterministic Bottom-up Parsing

A bottom-up, nondeterministic parser differs from a top-down, nondeter­
ministic parser in two respects:

I. The stack is more conveniently oriented with its top on its right end.
The stack then holds some left suffix of a sentential form at any given

193

194 Compiler Construction: Theory and Practice

time. The handle will appear on the top of the stack just before an apply
action.

2. The push-down automaton is extended by permitting a string of zero or
more symbols to be popped from the stack in one operation. Recall that
in a top-down PDA, it was never necessary to pop more than one
symbol.

3. ANDPA constructed from a grammar will have two states. Recall that a
top-down automaton contained only one state. However, the added
state is used only to provide an elegant halt condition.

An extended PDA is a 7-tuple P = (Q, 2:, H, 8, qo' 1.-, F), where:

• Q is a set of states.

• 2: is a finite input alphabet (the tokens of the language).

• H is a finite stack alphabet.

• 8 is afinite mapping from a 3-tuple in Q' X H* X (2: U {t:}) to the finite
subsets of Q X H* .

• qo is a start state in Q.

• 1.- is an initial stack symbol, in H.

• F is a set of halt states.

Except for 8, this PDA is exactly like the top-down automaton introduced
earlier. In this PDA, the mapping function 8 considers the present state (in
Q), but it may consider the symbol under the read head, and it may consider a
string of 0 or more tokens on the top of the stack. In any case, 8 is finite; it
must be representable as a finite table. Through 8, the state, a top-of-stack
string,and the next input token are mapped (in one move) to a new state and
the stack top string is replaced by another string.

A configuration is written as follows. The stack top is at the right end of the
stack:

(state, stack, input list)

Then a move is defined as a transformation of one configuration into another,
as follows:

(p, zx, bw) f- (q, zy, w)

where b €~ u {€}, x, y, and z are in H* ,w €~* ,and where

8(p, x, b) contains (q, y)

The PDA is nondeterministic if some 8(p, x, b) contains more than one pair, or
in other ways, e.g., through an empty x or b. .

5 Bottom-Up Parsing and Precedence Parsers 195

As before, the language defined by P, denoted L(P), is the set

{w I (qo' Zo' w) I- * (q, x, €) for some q in F and x in H* }

Note that the stack need not be empty to halt, and that the PDA is defined in
such a way that it may make additional moves after its stack is empty.

Equivalence of Extended PDA's and Context-Free Languages

As before, we may define an extended PDA that recognizes the language of
any context-free grammar. However, this one can reasonably be said to
operate by handle recognition and replacement, making it a bottom-up
parser.

Let (N, L, P, S) be a context-free grammar G. Then we construct an
extended PDA R such that L(R) = L(G) as follows:

1. R will have two states, {q, r}.

2. R's input alphabet is ~.

3. The stack alphabet H consists of NUL U {-1}.

4. The initial stack symbol is -1.

5. The initial state is q, and the halt set F = {r}.

6. The mapping 8 is defined as follows:

(a) Shift rule: For every terminal symbol b in L, {(q, b)} is a member of
8(q, €, b). These moves have the effect of shifting terminal symbols
from the input source into the stack top. For example, the
configuration (q, x, bw) would go to the configuration (q, xb, w) in
such a move.

(b) Apply or reduce rule: For every production A~ w in P, 8(q, w, €)
contains (q, A). These moves have the effect of taking a handle w on
the stack top and reducing it to a nonterminal symbol A. Thus, a
configuration (q, xw, u) would go to (q, xA, u) in such a move.

(c) Halt rule: 8(q, -1 S, €) contains (r, E), where S is the start symbol. This
move can only occur once for a given parse and results in a halt. Note
that it requires a stack containing only "-1S",since there is no way
for any stack symbols to appear beneath the -1.

Such a parser is sometimes called a shift-reduce parser, since most of its
moves are based on (6a) or (6b).

196 Compiler Construction: Theory and Practice

An Example. Consider the arithmetic grammar Go' given below.

E~ E+T
E~ T
T ~ T*F
T~F

F ~ (E)
F~a

The PDA mapping for this grammar is then as follows:

8(q, E, a) = {(q, an
8(q, E, +) = {(q, +)}
8(q, E, *) = {(q, *n
8(q, E, "(") = {(q, "(")}
8(q, E, ")") = {(q, ")")}

8(q, E+ T, E) = {(q, En
8(q, T, E) = {(q, En
8(q, T*F, E) = {(q, Tn
8(q, F, E) = {(q, Tn
8(q, (E), E) = {(q, F)}
8(q, a, E) = {(q, F)}

8(q, ..LE, E) = {(r, En

from rule 6(a)

from rule 6(b)

from rule 6(c)

Although none of the mapping functions contains more than one pair, it is
clear that the PDA is nondeterministic. The first set of five rulesJ11ay be
applied at any time, to shift another input symbol into the stack. Similarly,
there may be opportunities to apply more than one of the second group of
transitions. For example, with T*F on the stack top, the string T*F may be
reduced to T, or F may be reduced to T.

Despite the great number of possible sequences of moves, the PDA
recognizes exactly the language L(G). Most of the moves for a given string
end in blind alleys.

Consider the string "a*a + a". Only the following sequence of moves can
reach the halt state:

1. (q,..L, a*a+a) ~

2. (q, ..La, *a+a) ~

3. (q, ..LF, *a+a) ~

4. (q,..LT, *a+a) ~

5. (q,..L T*, a+a) ~

6. (q,..L T*a, +a) ~

7. (q,..L T*F, +a) ~

8. (q,..LT, + a) ~

5 Bottom-Up Parsing and Precedence Parsers 197

9. (q, ..lE, +a) f-
lO. (q, ..lE+, a) f-
11. (q,..lE + a, f) f-
12. (q, ..lE+F, f) f-
13. (q,..lE + T, f) f-
14. (q, ..lE, f) f-
15. (r, f, f)

Now consider the seventh configuration, (q, ..l T*F, + a). It is possible to
apply a shift rule to this, yielding (q, ..l T*F +, a). However, no rule provides
for reducing a stack with "+" on top, so we must again shift, yielding (q,
..lT*F +a, f). At this point, we may reduce "a" to F, yielding (q, ..l T*F*F,
f), and then reduce F to T and T to E, yielding (q, ..l T*F*E, f). However, we
are at the end of the line for this particular sequence of moves. No further
reductions or shifts are possible, and we have failed to reach the configuration
(q, ..lE, f) that permits a halt. There have also been no other possible moves.
We choose this example to illustrate the central point-this PDA recognizes
exactly the language defined by the grammar G. A proof follows.

Proof: We prove a somewhat strong result, which can easily be seen to
imply that the PDA language and L(G) are equivalent:

Lemma 5.1. S ==*>* xAy ==*> + zy if and only if (q, ..l, zy) f- * (q, ..lxA, y),
where the derivation is right-most. A is a nonterminal.

The "only if" part may be proven by induction on the number of steps n in
the second sequence ofderivations. The lemma states that, given a right-most
sentential form xAy, in which A is the right-most nonterminal, and such that
xA derives a terminal string z, then the PDA must be able to accept string z
through shifts and reduces, and reach a stack that contains xA. The string y is
unimportant, except within the inductive assertion of the proof.

For n =1, string x must be empty, and a production A~ z exists, where z is
a terminal string. There clearly exist a sequence of shift moves for the
terminal string z, yielding the moves:

(q, ..l, zy) f- * (q, ..lz, y)

Note that z may also be empty. Then the stack top z may be reduced to A by
the PDA construction rules, yielding the result

(q, ..lz, y) f- (q, ..lA, y)

which was to be proven, for the basis.
Now suppose the lemma true for any number ofderivation steps less than n

and that xAy ==*> + zy in n steps. The second sequence of derivations begins
with

/

198 Compiler Construction: Theory and Practice

xAy =? xwy =?* zy

where A~ w is a production. Clearly, xw =? * z in less than n derivation steps.
Now xw may consist solely of terminals, which reduces this to the case n =1.
Hence suppose xw contains at least one nonterminal, say B; we also let B be
the right-most nonterminal in xw, without loss of generality; then

xw = rBs

where s is a terminal string. We now have

S =?* xAy =? xwy = r~sy =?* zy = usy,

since the terminal z must contain s as a suffix. But by the inductive hypothesis,

(q, 1-, zy) = (q, 1-, usy) ~ * (q, 1-rB, sy)

Then by some shifting rules,

(q, 1-rB, sy) ~ * (q, 1-rBs, y)

Next, since rBs = xw,

(q, 1-xw, y) ~ (q, 1-xA, y)

QED.
A proof of the "if' part is left for an exercise.

Exercises

1. Construct a bottom-up NDPA for the following grammar Go':

E~ E +E I E*E I a I (E)

This grammar is ambiguous. Demonstrate that its NDPA will accept
the string a+a*a by either of the two derivations for it in Go'.

2. Complete the proof of lemma 5.1.

Deterministic Bottom-up Parsing

The PDA constructed from a grammar G described in the last section is
nondeterministic for several reasons:

1. A shift rule can always be applied as long as there exist remaining
symbols in the input list.

2. Although a reduction rule can only be applied when the top of a stack
string matches a right part of some production, there may be several

5 Bottom-Up Parsing and Precedence Parsers 199

different productions whose right parts match a stack top string. Thus,
for a stack top string xy, any production A ~ y might be applied
through a reduction rule to yield xA. Note that the length of y is not
defined by the PDA.

3. As a special case of point 2, an empty production A.~ E could
conceivably be applied at any time, since it requires no stack top match
at all. The mapping associated with such a production is 8(q, E, t:)
contains (q, A), i.e., rionterminal A is pushed onto the stack.

There are two commonly used bottom-up, determInistic PDA-the
precedence parsers and the LR(k) parsers. Each of them has a number of
variations that may be employed to increase its power or to reduce its size.

5.2. Precedence Parsing

A precedence parser identifies the handle within a right-most sentential
form without identifying the production. A simple precedence parser asso­
ciates one of the three relations, "<", ">", or "=" with each pair ofadjacent
tokens in a sentential form. For a suitable grammar, the handle always
becomes delimited between "<" and ">", and within it, "=" applies to the
pairs. Finally, in the string preceding the handle, ."<" or "==" applies, but
not ">". The handle may therefore be identified by scanning a sentential
form from left to right until ">" is seen, then from right to left until "<" is
seen.

A typical precedence table is given in figure 5.1, for a simple grammar G2 :

E.~ E - TIT
T~(E)la

Every sentence is preceded and followed by a special symbol "-.L", in order
that the first and last pairs have a meaningful precedence relation. The table
offigure 5.1 contains one entry for which two relations hold: {(, E} is in both
of the relations "<" and "=". This is called a conflict and means that the
parser is nondeterministic.

For example, in grammar G2' within the sentential form -.L ((E - T») -.L, the
adjacent pairs carry the following precedence symbols:

-.L ««:::;E= - =T» ...

since E - T is the handle of this sentential form. The ":::;" conflict for
{(, E} indicates that "(E- T" could be a handle; however, this fits no
production right part and therefore cannot be a handle.

The pairs in the string past the handle are not important, since the object is

200 Compiler Construction: Theory and Practice

Right

a E T 1

< <

< < :; <

> > >

Left a > > >

E >

T > > >

1 < < < <

G2 : E~ E - TIT
T~(E)la

Figure 5.1. Simple precedence relation table for grammar G21 shown.

to delimit the handle. Once the handle is reduced by applying a production (in
this case, E~ E +T), a new sentential form is obtained, and its handle may
similarly be found.

Although this appears to be an impossibly weak system, it is sufficiently
powerful to parse (with a few special problems) most common programming
languages, such as Algol, Fortran, and Basic. We shall therefore develop
simple precedence in more detail.

A parsing table can be systematically constructed from a basis grammar. If
the parsing table is free of conflicts, and no two productions have the same
right member, then the grammar is a simple precedence grammar, and the
precedence parser will work correctly. If conflicts exist, it may be possible to
extend the precedence relations to include more than one symbol, or it may be
possible to resolve the conflicts by modifying the ·parsing method slightly.
Otherwise, the grammar is either ambiguous or unsuitable as a basis for a
precedence parser.

Exercises

1. Find the handle in each of the following sentential forms, using the
precedence table, figure 5.1:

5 Bottom-Up Parsing and Precedence Parsers 201

..l(E)a..l

..l«a-a»..l

..IT..l

..l(E- T)..l

2. Show that each of the strings in exercise 1 are sentential forms by (a)
displaying a derivation, and (b) by reducing the handle, finding the next
handle, etc., until ..lE..l is obtained. Resolve the "(, E" conflict in favor
of the longest handle.

3. What happens upon parsing each of the following strings using figure
5.1? Are these sentential forms in G 2?

..l(-a)..l

..lE)..l

5.2.1. Relations

In order to discuss the precedence parsers in more detail, we need some
background development.

A relation on two sets P and Q is some set of ordered pairs (x, y) such that x
is in P and y is in Q. We may write

xRy

to indicate that the ordered pair (x, y) is in relation R. We may also write: y E

R(x). An example of a relation is equality on pairs of integers; I = J is true if
the integer I is the same as J and false otherwise. The members of the integer
equality relation are (1, 1), (2, 2), Another example of a relation is the set
ofproductions in a grammar G; P is a subset of ordered pairs drawn from the
sets N (nonterminals) and (N U L)* . This relation is indicated "~".

A relation R is said to be transitive if (A, B) in R and (B, C) in R imply that
(A, C) is in R, which may also be written:

if (A R Band B R C) then ARC

A relation R is said to be reflexive if, for every A in R, (A, A) is in R. A
relation R is said to be symmetric if (A, B) in R implies that (B, A) is in R.

A relation may be expressed as a matrix consisting of Boolean O's and 1'so A
"1" indicates that the corresponding row and column variables constitute a
pair that is in the relation, and a "0" indicates a pair that is not in the relation.

The Boolean matrix for a symmetricrela:tion is diagonally symmetric, i.e.,
an element at (i, j) in the matrix is equal to the element at (j, i). The matrix for
a reflexive relation contains all l's along its diagonal.

202 Compiler Construction: Theory and Practice

The transitive completion of a relation R, denoted R+, is defined as:

1. RisinR+.

2. If the pairs (A, B) and (B, C) are in R+, then (A, C) is in R+.

It can be seen that the inclusion of one pair through rule (2) may precipitate
the inclusion of other pairs. The inclusion process must eventually terminate
if R is a finite set.

The reflexive transitive completion of a relation R, denoted R* is the union
of R+ and every pair (x, x) such that "x" is in R.

5.2.2. Boolean Matrix Sum and Product

We pointed out in the previous section that a relation can be expressed as a
Boolean matrix. Sum and product operations on two matrices are convenient
in constructing precedence tables.

The Boolean sum P = R V S of two compatible matrices Rand S is
defined by

p(i, j) = r(i, j) V s(i, j) for all (i, D.
The Boolean product P = R 1\ S of two square Boolean matrices Rand S

is defined as follows, where r(i, j) is a member of R, sO, k) is a member of S,
p(i, k) is in P, and the rank of the matrices is n:

p(i, k)
n

V (r(i, j) 1\ sO, k))
;=1

The Boolean product is analogous to the algebraic product of matrices,
except that a Boolean matrix contains only O's and l's. The product matrix
element (i, k) is found by multiplying row i of matrix r by column k of matrix
s; a bit-by-bit Boolean product is formed, and the resulting bit is the logical
OR of these products.

An example Boolean matrix product is given in figure 5.2.

(a) (b) (c)

Figure 5.2. Boolean matrix product illustrated

5 Bottom-Up Parsing and Precedence Parsers 203

Matrix Product and Transitive Completion of a Relation

Now the interesting result: the transitive completion ofa relation R may be
found by repeatedly replacing R by R V (R 1\ R). We will develop a
convenient and fast method of constructing precedence tables for a grammar
on a digital computer.

This result is a consequence of the following theorem:

Theorem 5.1. Let X and Y be two square Boolean matrices representing the
relations Rand S, respectively. Then the pair (A, B) is in the product relation
X 1\ Y if and only if there exists an element C such that (A, C) is in Rand (C,
B) is in S.

Proof: The "if' part carries the postulate that C exists. Then matrix X has a
"1" at the intersection of row "A" and column "C", and matrix Y has a "1" at
the intersection of row "C" and column "B". Then the product matrix carries
a "1" in row A, column B, and (A, B) is therefore in the product relation.

For the "only if' part, suppose the pair (A, B) is in the product matrix X Y.
From the matrix product formula, there must be some row k in Y and column
k in X such that there is a "1" at column i in Y and row j in X, otherwise the
union could not be "1" for i=A and j =B. But this implies that (A, C) is in R
and (C, D) is in S, for some C. QED

Warshall's Algorithm

Warshall [1962] found a fast means of computing the transitive completion
B+ of a relation B. His algorithm is expressed by the following Pascal
program, where B is some given square Boolean matrix. Matrix B is
tranformed into its transitive completion.

var I, J, K, N: integer; {N is the rank of the matrix B}
type BOOLMAT = array [1..N, l..N] of Boolean;
var B: BOOLMAT;

for I: =1 to N do
for J:= I to N do

if B[J, I] =TRUE then
for K: = I to N do

B[J, K]: = B[J, K] V B[I, K];

Exercises

I. Consider the set of all living people in a monogamous society that
forbids divorce. Classify each of the following relations on the pairs
{A, B}as reflexive, symmetric, and/or transitive:

204 Compiler Construction: Theory and Practice

(a) A is an ancestor of B

(b) A is the mother of B

(c) A is a cousin of B

(d) (A is a father of B) or (A is a son of B)

(e) A lives in the same house as B

(f) A is married if and only if B is married

(g) A is single if B is single

(h) A is married if and only if B is single

2. Given a relation R expressed as a Boolean matrix, e.g,

var B: array [1..N, l..N] of boolean

Write Pascal procedures that:

(a) Determine if R is reflexive.

(b) Determine if R is symmetric.

(c) Determine if R is transitive.

3. Consider a finite set of cities C with some interconnecting roads, and let
relation R be defined by: "A R B if and only if there exists a road from A
to B that passes through no other city." (Some of the roads are
one-way). What is the significance of:

(a) R is reflexive.

(b) R is symmetric.

(c) R is transitive.

(d) The transitive completion of R.

Also explain how each of the following sets can be generated:

5 Bottom-Up Parsing and Precedence Parsers 205

(e) Trap cities, that can be entered but not left,

(f) Exit cities, that can be left but not entered,

(g) The largest subsets C' of C such that every city in C' can be reached
from every other city in C'.

5.2.3. Viable Prefix

A viable prefix is some prefix of a right-most sentential form that may
include the handle, but no symbols past the handle. Thus if xhy is a
right-most sentential form, such that h is the handle, then a viable prefix of
xhy is any string r such that xh = rs, where s may be empty.

5.2.4. Precedence Pairs

An (m, n) precedence pair, where m and n are integers ;::: 0, is a pair of
strings (x, y) such that Ixl = m, IYI = n, xy is a substring of a right-most
sentential form, and x lies wholly within a viable prefix. Note that string y
may be within a viable prefix, or may lie partially or wholly within the
following string. Since we demand that x have exactly the length m, and y the
length n, we prefix every sentential form with m special symbols 1.-, and
suffix every sentential form with n special symbols.

For example, consider the sentential form ((E- T» in grammar G2, figure
5.1, and let (m, n) = (2, I). Then we rewrite the form as 1.-1.-((E - T»l.- so
that it is always possible to define a (2,1) precedence pair. Within this form,
since E - T is the handle, the viable prefixes and (2, 1) precedence pairs are as
follows.

Viable prefixes:

€

(
((
((E
((E­
((E-T

(2, I) precedence pairs:

{ -.L -l, (}, {-l (, (}, {((, E}, {(E, - }, {E-, T}, { - T,)}

206 Compiler Construction: Theory and Practice

5.2.5. Precedence Relations

An (m, n) precedence relation is a relation on the set of (m, n) precedence
pairs defined on the right-most sentential forms within a grammar G. The
three relations (<, >, =)are defined as follows:

1. A pair (x, y) is in the ">" relation if and only if Ixl = m, Iyl = n, and
there exists some sentential form rhs such that ux = rh and yv = S, and h is
the handle, (r and s are assumed to include the necessary prefixes -.L -.L -.L .. and
suffixes -.L -.L -.L ...). That.is, (x, y) marks the boundary position between the
end of the handle h and the beginning of the following string s. However, x
may include h, or h may include x. Note that y is a terminal string. The three
dots "..." stand for "any string including empty".

2. A pair (x, y) is in the "=" relation if and only if Ixl = m,IYI = n, and
there exists some sentential form rhs such that ux = rh' and yv = h"s, where
the handle h is h'h", and neither h' nor h" is empty. That is, (x,y) marks a
position within a handle, so that at least one tail symbol of x is in the handle
and at least one head symbol of y is in the handle. Note that if the handle
length is 1 or less, no "=" pair is defined for the handle.

3. A pair (x, y) is in the "<" relation if and only if Ixl = m,IYI = n, and
there exists some sentential form rhs such that h is the handle, ux = r arid yv
= hs. That is, the pair (x, y) marks the beginning of the handle, such that the
head of y is the head of the handle, and the tail of x is the tail of the string
preceding the handle.

4. For every symbol X such that S~ *X..., the pair (-.L ... -.L, X) is in <.
For every symbol X such that S~ * ...X, the pair (X, -.L . . . -.L) is in >.
These special relation members are needed to cover the leading and trailing
-.L special symbols added to sentences. S is the start symbol.

5.2.6. Simple Precedence Grammar

If the grammar is such that no two productions have the same right
member, then the grammar is said to be uniquely invertible. As we have seen,
the precedence relations only identify the handle of a sentential form; they do
not specify the production associated with that handle. Hence a precedence
parser can be constructed for a grammar only if the grammar is uniquely
invertible.

A grammar is said to be (m, n) simple precedence if and only if the relations
"<", ">" and "=" are pairwise disjoint, and the grammar is uniquely
invertible.

Example. Consider the simple grammar G 2:

5 Bottom'-Up Parsing and Precedence Parsers 207

Note that Gz is uniquely invertibie. The (1, 1) precedence relations "<",
">", and " = " are given in figure 5.1. We shall discuss systematic methods of
generating such a table later. Let us first consider a short derivation to
demonstrate that the precedence relations do in fact enable us to determinis­
tical1y parse a sentence bottom-up. Consider the string (a- a)~a,which is in
the language L(Gz). The first group of relations, based on the table, are

-.1«<a>- ...

(The table indicates that the pairs { -.1, (} and {(, a} are in the relation <, and
that {a, - } is in ». The handle is clearly "a", which can only be reduced to
T. The reduction yields a new sentential form

-.1«<T>- ...

which indicates that T is to be reduced to E, yielding

-.1 «<E= - <a» ...

(The table contains a (<, =) conflict for the pair {(, E}. We shall deal with
this matter next. For now, we select tht; correct choice by a nondeterministic
oracle.) Note that although an "=" haS"appeared, the handle is "a", delimited
by "< ... >", which indicates a reduction of "a" to T, yielding

-.1 «<E= - =T» ...

The handle here is E ~T, which reduces to E. The next few steps are:

-.1«=E=» - ... -.1

-.1<T>- ... -.1

-.1<E=-<a>-.1

-.1<E=-=T>-.1

-.1 <E>-.1

This terminal sentential form consists of the goal symbol bracketed by the
special delimiter symbols -.1 . . . -.1.

Now let us examine the precedence table itself in the light of these
definitions of a (1, 1) precedence relation. Each of the three relations may be
determined (in theory at least) by examining all the possible right-most
sentential forms. Unfortunately, there are usually an infinite number of them,
so that this is hardly practical. Nevertheless, here are some derivations that
bring out some of the table entries:

• -.1E-.1 => -.1T -.1, therefore {-.1, T} is in < and {T, -.1} is in >.

208 Compiler Construction: Theory and Practice

• l.-El.- ~ l.-E- T 1.-, therefore {1.-, E} is in <, {E, -} is in =, and
{-, T} is in =.

• 1.-T 1.- ~ l.-(E)l.-, therefore {1.-, (} is in <, {(, E} and {E,)} are in
=, and {(, 1.-} is in >.

• 1.-T 1.- ~ l.-al.-, therefore {1.-, a} is in <, and {a, 1.-} in >.
• l.-E- T 1.- ~ l.-E-al.-, therefore {-, a} is in <.

Exercises

1. Find derivations in Gzthat bring out the remaining precedence pairs of
figure 5.1.

2. Consider grammar G2' Show that the pairs ("(", -) and (a, E) cannot be
in any ofthe three relations. Show that (- , a) cannot be in "= " or ">".
Hint: study the production tree for G 2 •

3. Design efficient Pascal data structures and an algorithm for a prece­
dence parser. The parser should return apply production numbers,
given an input string, and halt on a syntax error.

Blank Entries

What about the blank entries in a precedence table? They apparently mean
that the associated pair cannot appear and that therefore any symbol pair
showing up in a parse that maps to a blank entry must be because of a syntax
error. But how can we prove that a given entry is truly blank? We can be quite
ingenious in finding sentential forms to fill in various table values, but we can
never be quite sure that we have found them all. We therefore need a more
systematic approach to precedence table generation than simply looking at
various sentential forms. We take up this matter in section 5.2.7.

Three Theorems on Precedence Relations

Theorem 5.2. No grammar containing an empty production can be a
precedence grammar.

Proof: Suppose a grammar G contains an empty rule, A~ E. Then some
derivation

S ~ * xuAvy ~ xuvy ~ * ...
exists, where u and v are terminal or nonterminal symbols (not strings). Now
the handle of the form xuvy is an empty string between u and v. By the

5 Bottom-Up Parsing and Precedence Parsers 209

precedence relation definitions therefore, u < v and u > v, which creates a
precedence conflict. QED

Theorem 5.3. Given any right-most sentential form xhy, where h is the
handle, in a simple precedence grammar G, then either < or = holds
between every pair within x.

Proof: Let xhy = ruvs, where u and v are some (m, n) precedence pair, and
ru is contained in x. Thus (u, v) marks a boundary between symbols in x, or
between x and the handle.

Consider the partial derivation tree T for the sentential form ruvs, and the
nodes Nu and Ny. Nu is associated with the right-most symbol in u, and Ny
with the left-most symbol in v. Then consider the upward paths in T from Nu

and Ny; these must intersect in some node NB associated with nonterminal B.

Suppose first that NB is not the parent ofNu • There is then a subtree rooted
in a child of NB with a height of at least 1. It therefore contains the handle,
contradicting the premise that the handle of ruvs is in vs. Therefore NB is the
parent of Nu .

IfNB is also the parent of Ny, we see that the pair (u, v) is in "=". IfNB is
not a parent of Ny, it is nevertheless an ancestor. We then have a right-most
derivation of the form

S ~* ... B ... ~ ... uV ... ~* ... uV' ... ~ ... uv ...

and by the precedence definitions, we see that (u, v) is in <.
Theorem 5.3 implies that a sentential form may be scanned from left to

right through the string that precedes the handle. If the grammar is simple
precedence, then only "<" or "=" applies between the pairs of this prefix
string, and the scan may continue until the handle is found; it is delimited by
">" on its right end. Note that the fundamental precedence rule 3 does not
specify precedence relations between the pairs in the string preceding the
handle, and it might have turned out that some of these could be in ">" or in
no precedence relation. Either case would be fatal to the prefix scanning
operation. We now have assurance that the prefix scanning will work
properly.

Theorem 5.4 Let -.l lliW -.l n be accepted by an (m, n) precedence parser.
Then w is a right-most sentential form in G.

Proof: This theorem assures us that an (m, n) precedence parser accepts
only strings in L(G). It should be obvious from the previous discussion that a
string in L(G) is accepted by a (m, n) precedence parser, since the (m, n)

210 Compiler Construction: Theory and Practice

precedence relations are set up in such a way as to always recognize the
handle.

We prove this by induction on the number of steps in the reduction
process. For 0 steps, we mUst have 1-mSl.- ll, where S is the start symbol,
obviously a sentential form. Therefore assume the theorem true for all steps
less than some k.

Let 1.- mw1.- II be accepted in k steps, and consider the first step in which the
parser identifies the string h within w such that:

1.- mx < y1 = Y2 = . . . = Yr > Z 1.- II

where h = y1Y2 ••• Yl' Here, x and/or z may be empty, and r may be equal to 1.
In any case, the parser must see the relation">" somewhere prior to or at the
terminating 1.- ll. Then, working backward through w from this point, marked
by the end string z, it looks for the first "<", marked by the prefix x. In
between, the relation"=" must apply. If"<" and then">" are not found in
that order, the string w is not accepted by the parser.

Now the string y so found must also be the right-hand part of some
production A~ Yfor acceptance; the nonterminal A is also unique because
the grammar is uniquely invertible. The "=" relation applies among the
members of some production right part, and the parser permits a reduction
only ify matches a production right part. Hence the parser produces the new
string 1.-mxAzl.- ll, which it accepts and which, by the inductive hypothesis, is
a right-most sentential form or

S~ * xAz

but A ~ y, hence S ~ + xyz = w, which shows that w is a right-most
sentential form. QED

Theorem 5.4 may also be stated: Ifa sentence w is not in L(G), then it is not
accepted by the precedence parser. This error detection ability is obviously
important, since we expect a parser to detect syntax errors as well as to
analyze correct sentences. How are errors detected? The parser may
encounter a precedence pair with an empty entry in its table, i.e., a pair (x, y)
not in any of the three relations. It is also conceivable that it may isolate a
string between "<" and ">" within some sentence that fails to match a
production right member. We now give a simple example of a precedence
grammar and a sentence which can only be rejected by a failure to match a
delimited string to a production right part:

S ~ A I B
A ~ abc
B ~ b cd

It is easy to show that the (1, 1) precedence table is as follows:

5 Bottom-Up Parsing and Precedence Parsers 211

la be dABS-.l

a
b
c >
d >
A >
B >
S >
-.l « «<

so that there are no conflicts; the grammar is (I, I) simple precedence.
However, consider the string "abed". The parser reaches this configuration:

-.l<a=b=c=d>-.l

which indicates that "abed" is the handle, but it fails to match any of the
production right parts. Furthermore, the string "abc" probably should have
been reduced to A, yet the parser continued past it and failed to detect an error
until the -.l was seen. (It is easy to construct grammars similar to this one in
which the parser continues an arbitrary number of symbols past an error
point).

Summary

Consider a precedence parser for a grammar G, with a table free of
conflicts. Then:

1. Given a sentential form in the language L(G), the parser will accept the
sentential form, reconstructing a right-most, bottom-up parse.

2. Given some sentence not in L(G), the parser must ultimately fail to
accept the sentence; however, it may fail either:

(a) by finding a symbol pair not in any of the relations <, =, or >, or

(b) by failing to match the left-most string delimited by "< ... >" with
the right part of any production.

It is the possibility of failing through case 2(b) that makes a precedence
parser less desirable than an LR(k) parser, since it implies that a precedence
parser may continue far past a reasonable error point before discovering an
error. Nevertheless, much of this "weakness" depends on how one regards a
sentence in error. A program with a syntax error should be rejected; no
compiler that attempts to "read" the programmer's mind should be fully

212 Compiler Construction: Theory and Practice

trusted. The important question is not whether an error is detected early or
late; it is whether the parser can somehow patch over the error and continue
parsing in a reasonable manner, so that there is a fairly good chance of
detecting other syntax errors. The patching over process is one form oferror
recovery. Error recovery issues are discussed in chapter 12.

5.2.7. Wirth-Weber Relations

The definitions of a precedence relation given in section 5.2.5 are not
particularly useful as a means of obtaining the relations, since they are
expressed in terms of the (usually) infinite set of sentential forms rather than
the finite set ofproductions. We may restate the relations in an equivalent, but
more useful form, called the Wirth- Weber (1, 1) precedence relations:

1. The relation> is always defined on a pair (X, a), where "a" is a terminal
symbol, since the symbol immediately to the right of any handle must
be terminal. We say that X > a, or (X, a) is in > if, for some production
A~ xBYy in P, B =;>+ •••X and Y =;>* a....

2. A pair of symbols (X, Y) is in = if there exists a production A~ ...XY.
. . in P. Note that X and Y may be terminal or nonterminal symbols.

3. A pair of symbols (X, Y) is in < if there exists a production A~ xXBy
in P such that B =;> + Y....

Equivalence Proof We now show that the Wirth-Weber relations are
equivalent to the (1, 1) precedence relations given in section 5.2.5.

Consider the = relation first. Since a handle is always the right member of
some production rule, it follows immediately that the (1, 1) precedence
relation "=" is equivalent to the Wirth-Weber "=" relation.

Next consider the < relation, and let (X, Y) be in < by the Wirth-Weber
rules; then there exists a right-most derivation

S =;>* uAv =;> uxXByv =;>+ uxXYwyv

Here B =;>+ Yw, and Yw is the handle of uxXYwyv. Then by the (1, 1)
precedence relation (3), (X, Y) must be in <.

Now suppose that (X, Y) is in < by the (1, 1) precedence relations. Then
there exists a sentential form rhs such that h is the handle, X is the tail symbol
of r, and Y the head symbol ofh. Now this form has a derivation tree in which
X and Yare leaf symbols (they may be nonterminal symbols). The upward
paths from X and Y must intersect in some nonterminal symbol A, and A is
associated with some productionA~ w. Now X must be in w; that is, A is X's
parent. Otherwise, X is derived from a nonterminal in w, and a handle would
have to exist in r, contradicting the assumption that h is the handle in rhs.

5 Bottom-Up Parsing and Precedence Parsers 213

Now Y cannot be in w, since the handle must be derived from Y... in the A
production, not simply be a right part of it. These considerations, put
together, imply the Wirth-Weber relation 3, namely, that X must be in a
production A~ xXBy, and B ~+ Y....

Finally, consider the > relation. Given the Wirth-Weber relation 1,
and production A~ xBYy such that B ~ +...X and Y ~*a..., then the
string ... X derived from B is a handle at some point in a derivation, and is
followed by the terminal symbol "a". Therefore (X, a) is in the (1, 1) prece­
dence relation. Then suppose that the sentential form rhs exists, where h is
the handle, and let "a" be the first symbol in s and X the last symbol in h. Con­
sider the derivation tree for this sentential form and paths up the tree from the
leaf nodes X and "a". These paths must converge first on some nonterminal
node A, associated with a production A ~ xBYy, where the X path goes
through B and the "a" path goes through (or is) Y. By arguments similar to
those given for the < relation, B must derive ...X in at least one step, other­
wise ...X = h is not a handle. However, Y may be "a" or may derive "a...",
which implies the Wirth-Weber relation ">". QED

Using the Wirth-Weber Relations

The Wirth-Weber relations are valuable in constructing a precedence table
since they focus upon the productions and not upon sentential forms.
However, we also need some relations that yield derived first and last
symbols. We express them as relations in order to develop the simple
precedence relations as matrix products.

LAST+

(A LAST+ X) if and only if (A ~+ ...X)

This relation defines the set of trailing symbols, terminal and nonterminal,
derivable from A in one or more steps.

FIRST*

(A FIRST* X) if and only if (A ~* X...)

This relation defines the set of leading symbols, terminal or nonterminal,
derivable from A in zero or more steps.

TFIRST*

(A TFIRST* x) if and only if (A ~ * x... and x E: ~)

Symbol x is a member of the set of leading terminal symbols that can be
derived from A, including A itself, if A is terminal.

214 Compiler Construction: Theory and Practice

TRANSPOSE

TRANSPOSE(M) is the transpose of matrix M, i.e., an element in row i
and column j is moved to row j, column i, for all i and j.

Then the Wirth-Weber relations may be concisely defined in terms of the
products of certain relations as follows (3 means there exists):

• The = relation is found by inspection of the production set;

x = Y if and only if there exists a production P~ uXYv

• The relation < is equivalent to

{ (R, S) I (3 A, B)(A~ ..RB.. and B~+ S...) }, which is equivalent to

{(R, S)I (3 B)(R = B) and (B FIRST+ S)}

Therefore < is equivalent to (=)(FIRST+), viewed as a Boolean matrix
product of (=) and (FIRST+).

• The relation > is

{(R, a) I (3 A, B, C)(A~ ...BC..., B ~+ ...R, C ~* a..,and a { ~)}

Now A~ ..BC.. is equivalent to B= C, B ~+ ..R is equivalent to B
LAST+ R, and C ~* a... to C TFIRST* a. Therefore

R> a is (R (TRANSPOSE(LAST+»B) /\ (B=C) /\ (C FIRST* a)

hence

> is equivalel1t to (TRANSPOSE(LAST+»(=)(TFIRST*),

viewed as a product of Boolean matrices.

The special symbols ..1 placed at the beginning and end of a sentence
require special attention. The correct treatment is

1. Define a new nonterminal, G, and a new production

where S is the grammar start symbol. Make G the new start symbol.

2. Include (..1, S) and (S, ..i) in the = relation.

3. Include..l in FIRST(G} and ..1 in LAST(G).

Now when the < and> relations are developed by matrix products, a
conflict between > and = will be found in (S, ..l). This conflict is spurious,

5 Bottom-Up Parsing and Precedence Parsers 215

and one that the parser will never be concerned about. Delete the = part of it.
Also a conflict between < and = will be found in (1-, S); delete the = part.
Any other conflicts are real and must be dealt with. These two arise because
we placed (S, 1-) and (1-, S) in =, and we need to do so in order to develop <
and > for the other symbols and 1-. However, S derives other strings, which
means that (1-, S) will show up in < and (S, 1-) will show up in >. The
parser must halt when the sentential form 1-S1- is found.

Exampie Figure 5.3 gives a worked-out example for a simple grammar, G2,

containing a binary"-" and parenthesizing. The basis grammar G2 is given
in figure 5.1.

Figure 5.3(a) shows the = relation, easily found by inspection of the
production set. The pairs {E, 1-} and {1-, E} are in the relation because of
the first production, {E, -} and {-, T} are in because of the second
production, and {(, E} and {E,)} are in because of the fourth production.

Figure 5.3(b) gives the FIRST relation, easily found from the productions
by· inspection. Thus {G, 1-} is in FIRST because of the first production;
hence G FIRST 1- is true, etc.

The transitive completion of FIRST is given in figure 5.2(c).
The reflexive transitive completion FIRST* of FIRST is given in figure

5.3(d). It is simply matrix (c) with the diagonal filled in with l's.
The relation TFIRST* , which is all the members of FIRST* such that the

second member of each pair is terminal, is given in (e).
Figure 5.3(f) gives the LAST relation. Thus {T,)} is in LAST because of

the production T ~ (E), etc.
The transitive completion of LAST is given in (g), and the transpose of

LAST+ is given in (h). This transpose is needed to form the> relation,
which is the product of three matrices, figure 5.3(k).

The < relation is developed in figure 5.3(i) as the product ofthe = relation
and the FIRST+ relation.

Finally, the complete precedence table, which is a summary of tables (a),
(i), and (k), is given in (1). Except for the goal symbol row and column, it
agrees with figure 5.1. We don't need to include a row and column for the goal
symbol since the precedence parser halts on the stack contents 1-G 1- .

The (<, =) conflict in {1-, E} and the (>, =) conflict in {E, 1-} should
be replaced by < and> respectively, removing the spurious = relation
membership for these two pairs.

Direct Use of the Wirth-Weber Relations

The use of Boolean multiplication is well suited to a machine computation
of an operator prec,edence table. It is not, however, at all suited to a
pencil-and-paper cOJ;nputation. The Wirth-Weber relations may be used to
determine an operatqr precedence table for a small grammar directly. We still

216 Compiler Construction: Theoryand Practice

- () a E T G 1
- 1
(1
)

a
E 1 1 1
T
G

1 1

(a) =

- () a E T G 1
-

(

)
a
E 1 1 1 1
T 1 1
G 1
1 1

(c) FI RST +

- () a E T G 1
- 1
(1
) 1
a 1
E 1 1
T 1 1
G 1
1 1

(e) TFIRST*

- () a E T G 1
-

(
)

a
E 1 1
T 1 1
G 1
1 1

(b) FIRST

- () a E T G 1
- 1
(1
) 1
a 1
E 1 1 1 1
T 1 1 1
G 1 1
1 1 1

(d) FIRST*

- () a E T G 1
-

(

)

a
E 1
T 1 1
G 1
1

(f) LAST

Figure 5.3. Development of the precedence table for grammar G11 using Boolean
matrix operations.

5 Bottom-Up Parsing and Precedence Parsers 217

- () a E T G 1
-

(

)

a
E 1 1 1
T 1 1

--- --I----
G 1

1

- () a E T G 1
- ",
(

,,
)

,
1 1,

a " 1 1

E
,,

T 1 ' ,
G

,,
1 1 "

(g) LAST + (h) TRANSPOSE (LAST +)

- () a E T G 1

- 1 1
(1 1 1 1
)

a
E 1

T
G
1 1 1 1 1

- () a E T G 1
-

(

) 1 1 1
a 1 1 1

E
T 1 1 1

G
1

(i) <== (=) (FIRST +) (j) TRANSPOSE (LAST +)) (=)))

- () a E T G 1
-

(

) 1 1 1
a 1 1 1

E
T

G 1 1 1
1

- () a E T G 1
- < < < =
(< < <8 <
) > > >
a > > >
E = = (9
T > > >

G
1 < <0<\.:J

(k) > == (TRANSPOSE (LAST +)) (I) Complete precedence table
(=) (TFI RST*)

Figure 5.3. (cant/d.)

218 Compiler Construction: Theory and Practice

need the functions TFIRST* , LAST+, and LAST* for each of the
nonterminal symbols. Since there cannot be any empty productions, these are
particularly easy to determine by inspection.

The = relation is easily found by inspection.
The < relation may be systematically found by finding all the occurrences

of any symbol X followed by a nonterminal B in the right member of a
production; let such a production beA~ xXBy. Then we include all the pairs
(X, Y), where B FIRST+ Y, i.e., Y is in the FIRST+ set of nonterminal B.

The> relation may be systematically determined by finding all occur­
rences of a nonterminal B followed by any other symbol Y in a production.
Then we take every symbol X such that B LAST+ X and every symbol x such
that Y TFIRST* x and add (X, x) to >.

For example, consider grammar G2, and the> relation. We find from the
productions that we should consider the pairs:

B Y

E -.L from the first production G ~ -.L E-.L
E from the second production E ~ E - T
E from the fourth production T ~ (E)

The relation E LAST+ X is valid for X = {T,), a}, and the symbols "x" are
just {-L, -,)}, hence the > relation must contain the pairs drawn from {T,),
a} X {-L, -,)}, and these are shown in figure 5.3(1).

Exercises

1. Use the Wirth-Weber relations directly to derive figure 5.1. from
grammar G 2•

2. Construct a (1, 1) precedence table for grammar Go' using the
Wirth-Weber relations.

3. Write a Pascal program that generates a (1, 1) precedence table, given a
grammar in suitable form. Begin by devising a suitable data structure to
represent the grammar and other needed tables.

5.2.8. Other Precedence Parsers

A grammar is a simple precedence grammar if it is uniquely invertible and
its simple precedence table contains no conflicts. As we have seen, even the
simple grammar G} exhibits a conflict. As a' grammar grows in complexity,
more conflicts are likely to appear, and they may increase in severity.

5 Bottom-Up Parsing and Precedence Parsers 219

The conflicts found in Glare between < and =. When such conflicts only
are found, they create a certain problem in locating the left-most end of a
handle, but do not affect the identification of the right-most end. It is often
possible to unambiguously fix the handle by some simple rule, such as "match
the longest possible production right-hand member" when a conflict is seen.
When it is possible to so identify a handle despite a (<, =) conflict, we say
that the grammar is a weak precedence grammar.

A conflict with > is much more serious; it means that the precedence table
cannot deterministically locate the end of the handle. However, it may be
possible to transform the grammar to remove the conflict or to consider a
larger (m, n) in the precedence table.

A larger (m, n) than (1, I) is impractical if the entire precedence table must
be based on such strings. The size of an (m, n) table grows very rapidly with
m and n, since it must consider a large number of possible combinations of m
characters and n characters.

McKeeman, Horning, and Wortman [1970] proposed a secondary prece­
dence table that applies only when the primary (1, 1) table contains a conflict
in relation >. The secondary table is a (2, 1) table, which they find is
sufficient to resolve most of the conflicts remaining in common programming
grammars. Since the (2, 1) table need only consider the class of strings
associated with the (1, 1) precedence pair found at the conflict, it need not be
large. We shall not further consider the interesting question of deriving a
secondary table, as the matter is thoroughly discussed in their text. Such a
parser as this is called a mixed strategy precedence or MSP parser.

An operator precedence parser is constructed by considering precedence
relations among terminal symbols only. The word "operator" arose through
the consideration of grammars in which most of the terminals were in fact
algebraic operators; operator precedence works rather nicely for them. Many
compilers use operator precedence for arithmetic expressions and recursive
descent for the other structures.

The construction of an operator precedence parser table is exactly like that
for a simple precedence table, except that the nonterminals are ignored within
the productions when looking for pairs of symbols. Grammar Go is a classic
example of an operator precedence grammar. Its operator precedence
relations are given in the following table:

I (a * + ...L

) > > > >
a > > > >
* < < > > > >
+ < < < > > >
(< < < <
...L < < < <

220 Compiler Construction: Theory and Practice

For example, "(" = ")" is obtained from the production F ~ (E), by
ignoring E. The relation member "a" > " +" is obtained from the
production E~ E +T and LAST(E) contains "a". The precedence relations
are generated essentially as before, except that the FIRST* and LAST*
relations are redefined as follows:

• X FIRST* a if and only if X ~ * xay and x is empty or consists only of
nonterminals.

• X LAST* a if and only if X ~* xay and y is empty or consists only of
nonterminals.

That is, we examine the sentential forms derivable from X, and ignore
leading (in the case of FIRST*) or trailing (in the case of LAST*)
nonterminals, picking out only the terminal symbols.

It is remarkable that algebraic expressions can be reduced to such a simple
set of rules as conveyed by an operator precedence table. Such a table in fact
conveys the popular notion of the strength or hierarchy of operators in a
programming language. Precedence is a useful way of explaining to a
neophyte programmer the ordering relations among various operators. For
example, he may be told in a programming manual that "* has higher
precedence than +". This means that a "*" production will be reduced prior
to a "+" production, causing a multiply to be emitted first, whether "*"
precedes or follows "+".

Now consider two operators with equal precedence, say + and -. The
"equal" precedence means (in program terms) that the left-most of two
operators are applied first, regardless of which kind it is. In parsing terms, the
left-most production is reduced first.

In terms of productions, two operators, "@" and "#", have equal
precedence if they are part of productions associated with the same left
member:

E~E@T

E~E#T

E~ T

On the other hand, an operator "@" has higher precedence than "#" if it is
derivable from a production containing "#", e.g.,

E~E#T

E~ T

T~* .. @ ..

5 Bottom-Up Parsing and Precedence Parsers 221

This production set is such that the T production containing "@H will be
reduced prior to the E~ E # T production.

In this way, it is possible to design a grammar that contains any desired
precedence or ordering relationship among its operators and other functions.

Exercises

1. Verify the operator precedence table given for grammar Go.

2. Trace an operator precedence parse in Go for the following input
strings:

a + (a*a)
a*a*((a) + a)

3. Examine the problem of identifying the handle and detecting syntax
errors through failure to identify the handle, for an operator precedence
parser.

4. Write an operator precedence parser in Pascal.

5. Sometimes a precedence table is such that we can assign a positive
integer f(t) to each token t, where f(t) is such that

f(a) < feb) if and only if a < b
f(a) feb) if and only if a b
f(a) > feb) if and only if a > b

How useful is f in a parser? Devise an algorithm that determines if
function f exists, and apply it to the operator precedence table for Go.

6. Design a grammar for a replacement statement language that contains
these binary operators:

+-*/tANDOR:=

and parenthesizing. The precedences are

highest AND
OR
t
* / {* and / have equal precedence}
+ {+ and - have equal precedence}

lowest '-

Also t and: = are to associate from right to left; all the other operators
are to associate from left to right.

222 Compiler Construction: Theory and Practice

7. Consider the following productions in a grammar G:

s ~ yAy I Cq
A~ Az B
B ~ tqz B
C ~ Ct v

Is G a simple precedence grammar? If so, show that it satisfies the
Wirth-Weber conqitions. If not, how does it fail? Can you transform
the grammar into an equivalent simple precedence grammar?

8. A string expression < sexp>, is defined by the following set of
prodpctions:

<sexp> ::= <sexp> : L I <cexp> I <cexp>
<cexp> ::= <cexp> * <prim> I <prim>
<prim> ::= <literal> I (<sexp>)
<literal> :: = L <literal> I €

L is any letter. This grammar may be transformed into an operator
grammar. How? What are the precedence relations among the terminal
symbols of the grammar?

9. In many languages, the logical operators AND, OR and NOT and the
arithmetic operators "+", "*", "I", "-", unary "-", are allowed to be
mixed. For example, the assignment

a=aANDb+c

is a valid assignment statement; it means the bit-by-bit AND of the
variables a and b is to be interpreted as some number and added to c.
Construct a grammar that includes these operators, such that an
arithmetic operator has a higher precedence than any logical operation,
AND and OR have equal precedence, and AND and OR defer to NOT.
Develop the operator precedence table systematically for your grammar
and demonstrate that these precedence relations in fact pertain.

5 Bottom-Up Parsing and Precedence Parsers 223

5.3. Bibliographical Notes

The idea ofusing adjacent operators to control a recognizer was introduced
intuitively by Pedis [1956]. It eventually became apparent that operator
precedence was closely related to the language structure as expressed by its
context-free grammar. Paul [1962] essentially s9lved a class of recognition
problems in his thesis; his work did not become known in the U.S. for several
years, however. Floyd's paper on operator precedence [1963] then became the
first rigorous treatment of the problem of mechanically generating a parser
given a context-free grammar. Wirth and Weber (Wirth [1966]) generalized
Floyd's ideas into simple and weak precedel1ce.

224 Compiler Construction: Theory and Practice

CHAPTER 6

BOTTOM-UP LR(K) PARSERS

6.1. LR(k) Grammars and Parsers

The LR(k)parsers comprise a family of bottom-up parsers that come as
close to idea11eft-to-right parsers as is theoretically possible. An LR(k) parser
not only identifies a handle but also the production associated with the handle,
with no additional decisions required of the rest of the compiler. Further­
more, it takes as much information as it possibly can from the portion of the
program preceding and including the handle (the viable prefix). The only
limitation is that it may examine at most k tokens in the input list past the
handle.

An LR(k) parser for a grammar can always be constructed if any
deterministic bottom-up parser for the grammar, limited to a k-symbo1
lookahead, can be constructed. This means that the largest class of grammars
are covered by an LR(k) parser. Furthermore, an LR(k) parser covers every
top-down LL(k) parser and can accept grammars not accepted by an LL(k)
parser.

6.1.1. LR(k) Grammars

Let G be some grammar with start symbol S and consider a right-most
derivation of a terminal string w in the grammar:

S =:::;> WI =:::;> w2 =:::;> ... =:::;> w

Now consider a typical step in the derivation, as follows:

uAv=:::;> uxv

where A~ x is the production used in this step, and uxv is one of the Wi or w
itself.

We say that G is LR(k) if,for every such derivation and derivation step, the
production A~ x can be inferred by scanning ux and (at most) the first k
symbols ofv. Note that since A is the right-most nontermina1 in uAv, v must
be a terminal string.

Given that G is LR(k), we have several useful properties that make possible
the development of a deterministic bottom-up parser:

6 Bottom-Up LR(k) Parsers 225

1. The parser will know when to cease scanning a given sentential form
uxv, i.e., it can detect the boundary between x and v.

2. The parser will be able to identify the handle x.

3. The parser will be able to uniquely select the production A~ x that
corresponds to the handle and to this sentential form. It happens that a
grammar can be LR(k) and yet have several productions A~ x, B~ x,
etc. with the same right member.

4. The parser will know when to halt.

As a totally impractical means of constructing a parser for an LR(k)
grammar, we might somehow construct a large table that can map every
string of the form uxv', where v' is a k-symbol head of v, to a production A~
x. Unfortunately, for most grammars, the table would have to be of infinite
size, since the strings u can be indefinitely long. (However, the strings xv'
comprise a finite set.) We need a finite table for a practical compiler.

Knuth [1965] has shown that the set of all viable prefixes of right-most
sentential forms can be recognized by a finite state automaton. This FSA can
be used as the control machine in an LR(k) parser.

We first define an LR(l) parser. The "I" means that at most one token past
the viable prefix will have to be examined in order to make any parsing
decision. For most grammars, this token, called a lookahead token, is needed
only for certain parsing decisions.

There are several different ways of constructing an LR(1) parser (or LR(k)
in general), but every such parser operates the same way. The different
construction means are classified as SLR(k), SLALR(k), LR(k), and
LALR(k). The difference in the parser (if any) appears in the number of states
and the size of a set of lookahead tokens when a k-symbol lookahead is
required.

Each of the construction methods can be generalized to a k-symbol
lookahead, although we shall develop only the case k=1 in depth.

6.1.2. An LR(l) Parser

An LR(1) parser consists of an input list, a stack, and a finite control,
essentially as required of any parser for a context-free grammar. The finite
control in an LR(l) parser has a fairly large number of states. In a rough
sense, the states keep track of vital information in the viable prefix.

Figure 6.1 shows an example finite-state control for grammar Go. Notice
that this machine contains transitions on both terminal symbols (a, +, *, (,),
..i), and on nonterminal symbols(E, T, F, G). The parsing principle is quite
simple-the finite control recognizes the viable prefix of any right-most
sentential form, and falls into a state that uniquely identifies a production
exactly when the handle is finished.

Three kinds of states exist in the machine of figure 6.1, read states,
lookahead states, and apply states. In a read state, the parser must accept the

226 Compiler Construction: Theory and Practice

HALT

G

F

5

T-F

Apply (2)
G - El CD

F - (E)

E-T

4 T-T*F

Read ~O

Look Ahead D -~O

Figure 6.1. Complete LALR(1) parser for grammar Goo

next token in the input list, shifting it to its stack, then move to some new
state associated with the token. The read states in figure 6.1 are 8, 9, 10, 11,
12,13, and 14. In a 100kahead state, the machine "looks at" the next token, in
order to make a state transition, but does not shift it into the stack. The
100kahead states in figure 6.1 are 16 and 17. In an apply state, a production is
indicated whose right member will be on top of the stack (it is the handle) and
should be replaced by the left member of the production. At this point, the
original sentential form has been scanned just past its handle, and the state is
associated with a production.

6 Bottom-Up LR(k) Parsers 227

The stack will contain the handle and the string preceding the handle upon
falling into an apply state. Upon the reduction, the stack followed by the
remaining input string comprises the next sentential form subject to a
reduction. Therefore, conceptually, we .construct a new input list consisting
of the stack followed by the remainder of the old input list, and start over
again. The apply states in figure 6.1 are numbered 1 through 7 and
correspond to the production numbers.

In one cycle of the system, a right-most sentential form xwy is transformed
into another one, xAy, such that

S =* * xAy =* xwy (right-most)

Example. Let us trace the machine of figure 6.1 with a sentence,
"a+(a*a)..L". (A ..L is added to every sentential form to provide a uniform
lookahead and halting symbol). The start state is number 8, and it indicates a
transition on "a" to state 7, an apply state. The machine configuration at this
point is like this:

stack: a

remainder of input list: + (a*a)..L

State 7 indicates a reduction with the production F ~ a, hence the new
machine configuration is

stack: F

remainder of input list: + (a*a)..L

These two strings together comprise the next-to-last sentential form in a
right-most derivation of "a + (a*a)..L", i.e.,

G =* * F + (a*a)..L =* a+(a*a)..L

One cycle ofthe machine's operation is now complete. In the next cycle, we
have the sentential form "F + (a*a)..L ", and we start over in state 8. This time,
the indicated transition on F is to state 5, another apply state, which then
yields the sentential form

T + (a*a)..L

upon reduction. Then starting over with this in state 8, we are first led to the
lookahead state 16 on symbol T. In this state, we should transfer to state 3,
since" + " is a legal symbol along that transition path. The" + " is not shifted
into the stack, however, which means that the apply state 3 operates on T and
yields the next sentential form:

E+(a*a)..L

228 Compiler Construction: Theory and Practice

When we start over again, the machine indicates a move on E to state 9,
then on "+" to state 12, then on "(" to state 11, and finally on "a" to state 7.
State 7 indicates that the handle is "a" and is to be reduced to F:

is the resulting sentential form.
Figure 6.2 summarizes the complete parsing process on the string

"a+(a*a)l.-". (We have numbered the variables "a" to distinguish them; the
machine makes no such distinction.) It can be seen from the apply column in
figure 6.2, which gives the indicated productions to be applied in each cycle,
that the machine reconstructs a right-most parse of the sentence, in reverse
order, but of course does so through a left-to-right scan.

The parsing process ends upon a move from the start state 8 to halt, which
occurs on the goal symbol G. It may sometimes happen that a lookahead is
required on a goal symbol move; but there must always be some halt state that
indicates that the parse is successful.

The parser also rejects every invalid sentence, i.e., a sentence not in the
language L(Go)' Furthermore, it does so on the very first illegal symbol. Such
an error detection must occur in a lookahead or a read state, never in an apply
state, since these must accept or reject the next input symbol from the input
list. When the parser is in some read or lookahead state, it can only accept a
certain subset of the language's alphabet. For example, if in state 11, the
parser may only accept one of the terminal tokens {a, (,)} next in the input
list. (The nonterminal tokens don't count for error detection; why not?)
Failure to see one of these must be a syntax error and may be so immediately
reported.

The problem of dealing with an error will be discussed at greater depth in
chapter 12. For now, we discuss a number of reductions on the parser
operations and table sizes.

Parser Reduction

We first discuss a reduction in machine operations, making use of a
push-down stackto achieve this. The stack will contain state numbers, which
correspond to the symbols in a viable prefix of a sentential form.

Note first from figure 6.1 that every state has associated with it exactly one
incoming symbol. For example, state 5 is associated with the in-symbol F,
state 11 with "(", etc. This property is true for every LR(1) incremental
parser, as we shall see upon defining the construction process. (It is not true in
general for an arbitrary finite state machine.) We can therefore replace the
symbols in the viable prefix of some sentential form by states with which they
are associated (however, note that a given symbol may be the in-symbol of
more than one state, e.g., E is an in-symbol for states 9 and 14). The list of
states is effectively the states passed through during the scan of the sentential

6 Bottom-Up LR(k) Parsers 229

Input string = a1 + (a2 * a3) .l-

States Apply Stack Input

8,7 F - a1 F + (a2 * a3)1
8, 5 T-F T + (a 2 * a3)1
8, 16, 3 E-T E + (a 2 * a3)1
8, 9, 12, 11, 7 F - a2 E + (F * a3)1
8, 9, 12, 11, 5 T-F E + (T * a3)1

~ ~ 1~ 11, 1~ 1~ 1~ 7 F - a3 E+ (T * F)1

8, 9, 12, 11, 16, 10, 13, 4 T - T * F E + (T)1

8, 9, 12, 11, 16, 3 E-T E + (E)1

8, 9, 12, 11, 14, 6 F - (E) E + F 1

8, 9, 12, 5 T-F E+T 1

8, 9, 12, 17, 2 E-E+T E 1

8, 9, 1 G - E1 G
8, HALT HALT

Figure 6.2. Trace of LALR(1) parser of figure 6.1 for input a+(Ma)-.l.

form. For example, consider the sentential form "E+((a))", in which the
handle is "a". Upon scanning "a", the stack will contain states 8, 9,12,11, and
7.

The right parentheses are not associated with states, since they are not yet
part of a viable prefix.. Upon reducing the handle, "a", to F, since this is
indicated by state 7, we have the stack 8, 9, 12, 11, 5, which corresponds to the
sentential form "E+ ((F))". We may view the correspondence of stack states
and the viable prefix symbols as follows:

E8 +9 (12 (11 F5))

Note that the state number (11) just preceding the handle (F) has not changed;
it cannot, since it is associated with a symbol in the viable prefix preceding the
handle. Clearly, we do not need to rescan the entire sentential form upon each
reduction; it is only necessary to pick up at the state just preceding the handle.
The states associated with the handle are popped, a new nonterminal is
pushed, and a transition is made that depends on the state just below the
handle.

The apply operation suggests another reduction. One nonterminal token is
pushed in an apply, then the next state is determined by the (former)
top-of-stack state and this nonterminal. We may therefore construct a table
that maps a production number and the top-of-stack state (found after
popping the number of states required by the apply) into a next state. With

230 Compiler Construction: Theory and Practice

such a table and operation, we no longer need any of the nonterminal moves
in the read table.

Representation of the Parser as Tables

An efficient representation for an LR(1) parser consists of four tables and
an interpreter. Three of these are shown in figure 6.3; the fourth table is a
push-state table, and is unnecessary for the parser of figure 6.1.

The convention for this parser is that the stack contains every state except
the "present" state.

The READ table yields a next state number, given a current state and a
next symbol. The rule for entering the READ table is that the state must lie
between 8 and 15, inclusive; then the next symbol is read and scanned; then
the old state is pushed onto the stack. Note that we push the state we just left,
not the one entered. A blank entry is a syntax error; errors are detected on the
left-most symbol that cannot be a part of any sentential form.

The LOOKAHEAD table applies to the 100kahead states 16 and 17; it is
organized in a manner similar to the READ table, except that it is not
necessary to list all the possible symbols involved in a given lookahead; hence
the "else" column. We enter the table with a lookahead state and some next
symbol in the input list. If the symbol is not found in the main body, then the
"else" state is taken. The lookahead symbol is not scanned; eventually it will
be scanned in a read state, at which time a possible syntax error will be
detected.

The APPLY-GOTO table is actually two tables, entered py the state
number 1 to 7, figure 6.3. The state number will always also be the production
number. The second column in figure 6.3 (pop) is the number of symbols to
pop from the stack before pushing another state number; this number is one
less than the number of symbols in the right part of a production, except for
an empty production, for which the pop number would be zero.

The GOTO portion of the APPLY-GOTO table contains the nonterminal
transitions in the LR(1) parser machi~e of figure 6.1. Recall that upon
identifying the handle (on top of the stack), the apply operation pops the
handle and pushes a nonterminal symbol. Since we wish the stack to contain
states, not symbols, and this is the only operation in which nonterminal
symbols are pushed, we instead examine the state on the stack top just after
the handle is popped. There must be a transition on this state and on the
pushed nonterminal to some other state. The GOTO table contains the next
state associated with the production state and the top-of-stack state. For
example, suppose the machine falls into state 2. Then the POP column says
that 2 states are to be popped. The top-of-stack state may then be 11 or some
other state. If 11, then we go to state 14; if some other state, then we go to
state 9. State 11 is left on the stack.

The GOTO table is obtained directly from the nonterminal transitions in

6 Bottom-Up LR(k) Parsers 231

Read table for Go
1. Read
2. Push old state

Symbol

State 1 + * () a

8 11 7

9 1 12

10 13

11 11 7

12 11 7
13 11 7
14 12 6

15 13

Lookahead Table
1. Look ahead

State 1 + * () a Else

16 10 3

17 15 2

Apply - Goto Table
1. Apply production
2. Pop stack
3. Go to

Go to

State Pop 11 12 13 Else Production

1 1 halt G - El

2 2 14 9 E-E+T

3 0 14 9 E-+T

4 2 17 16 T - T * F

5 0 17 16 T-F

6 2 4 5 F - (E)

7 0 4 5 F-a

Figure 6.3. LALR(1) parser in table form.

figure 6.1 and reduced by lumping together the most popular top-of-stack
state into an ELSE column, for each apply state. For example, states 2 and 3
both call for pushing the nonterminal E, therefore the E transitions in figure
6.1 belong in the GOTO table; these are

232 Compiler Construction: Theory and Practice

8 to 9,
11 to 14

The "11 to 14" transition is given directly, while the "8 to 9" transition is in
the ELSE column. Similarly, for the apply states 6 and 7, the transitions on F
are wanted; these are

8 to 5,
12 to 5,
11 to 5,
13 to 4

Since the most popular destination state is 5, the top-of-stack states 8, 11, and
12 are included in the ELSE column, while the "13 to 4" transition is
specifically included.

In summary, the APPLY-GOTO table is entered with a state number that
corresponds to a production. The right part of that production is on the stack
top, and some semantic action may be taken at this point in the parse. After
the semantic operations are complete, the stack is popped off the number of
symbols in the POP column, and the stack top state P is used to enter the
GOTO table for the current production, to yield a new state.

If the grammar contains any empty productions, a PUSH table is needed.
Consider an APPLY state in the incremental parser for an empty production,
and recall that the current state is not on the stack top (the previous state is).
We therefore need another table called a PUSH table that maps an empty
production apply state (the current state) to a next state. The stack is
unaffected.

Example Parse with the Tables

Let us parse the string "a*(a+ a)-.l" with the aid of figure 6.3. The start
state is 8. Since 8 is a read state, we enter the READ table and scan symbol "a"
in the input list; the table says the next state is 7. (See the first row in figure
6.4.) State 8 is pushed onto the stack.

State 7 is an APPLY state. Production 7 is F ~ a. Upon entering the
APPLY table, it indicates a pop of zero states; the stack top is 8, hence the
GOTO table indicates the next state is 5; the stack contains only 8 at this
point.

State 5 is also an APPLY state, with a zero pop, production T~ F, and the
next state is 16.

State 16 is a 100kahead state. The next symbol in the input list is "*", so the
LOOKAHEAD table indicates the next state is 10. The stack still contains
only 8, and only the first symbol, "a", has been scanned in the input list.

6 Bottom-Up LR(k) Parsers 233

The remainder of the parsing operation is given in figure 6.4. The parsing
ends upon entering state 1, which is associated with the goal production G~
El.-. State 8 remains on the stack at this point.

Further Table Reduction

The tables in figure 6.3 may be reduced by using the sparse matrix
techniques discussed in chapter 2, and exploiting identical rows in the
original tables. For example, the READ table of figure 6.3 may be
compressed to the following tables:

Trace of a * (a + a)1

State Operation Input Pop Push Stack Goto

8

7

5

16

10

13

11

7

5

16

3

14

12

7

5

17

2

14

6

4

16

3

9

1

R

A

A

L

R

R

R

A

A

L

A

R

R

A

A

L

A

R

A

A

L

A

R

A

a

*
*

a

+

+
a

1

1

o
o

o
o

o

°o
2

2

2

o

1

8

10

13

11

14

12

14

9

8

8

8

8

8, 10

8, 10, 13

8, 10, 13, 11

"

"
8, 10, 13, 11, 14

8,10, 13, 11, 14,12

8, 10, 13, 11

8, 10, 13, 11, 14

8, 10, 13

8

8

8

8,9

8

7

5

16

10

13

11

7

5

16

3

14

12

7

5

17

2

14

6

4

16

3

9

1

halt

Figure 6.4. Trace of LALR(1) parser tables of figure 6.3 for input a*(a+a)..l.

234 Compiler Construction: Theory and Practice

S N Size

8 1 2
9 3 2

10 5 1
11 1 2
12 1 2
13 1 2
14 6 2
15 5 1

N Symbol Destination

1 11
2 a 7
3 l- 1
4 + 12
5 * 13
6 + 12
7) 6

For example, given read state 14, N is 6 and "size" is 2; the legal symbols and
destination states are therefore in the second table starting at index N =6,
running for 2 items; on "+" the next state is 12 and on ")" the next state is 6.
Note that we have also compressed the similar rows 8, 11, 12, and 13 in the
READ table into rows 1 and 2 of the reduced table. This kind of compression
implies that the N values in the first table will not necessarily be monotonic
increasing; we therefore also need the "size" column.

The lookahead and apply tables may similarly be compressed.

Exercises

1. Trace the parser of figure 6.1 on the strings

(a + «a * a)))l­
a * a * al-
a * * al-
a + a)l-

2. Trace the parser of figure 6.3 on the strings of exercise 1.

3. Write an LR(1) parser in Pascal that interprets a set of tables similar to
those in figure 6.3. Make it "semantic" driven, so that each call on a

6 Bottom-Up lR(k) Parsers 235

parser procedure returns a production number; it in turn calls a scanner
that returns the next token on each call.

6.1.3. LR(O) Parser Construction

We shall now describe a construction algorithm for an LR(O) machine.
Such a machine will, in the absence of conflicts, parse sentences without ever
requiring a lookahead. It will become the basis for the SLR(k) and SLALR(k)
parsers.

The construction of an LR(k) machine will be defined in section 6.2. An
alternative construction method for an LR(k) machine is described in section
6.3.

In this construction, each machine state is associated with a set of items,
where an item is a production carrying a position marker. The rules for
constructing the item-set corresponding to some state, and for starting new
states, are reasonably simple and lend themselves to a machine implementa­
tion. The resulting parser machine is also in minimal form when the process
is complete.

Recall that a viable prefix is a prefix of some right-most sentential form that
includes no symbols past the handle of the form. We will place much
emphasis on a viable prefix for one simple reason: the LR parser finite state
machine recognizes viable prefixes, and at the same time a viable prefix is
connected with a sentential form. It therefore serves as a kind of conceptual
link between derivations (which involve sentential forms) and the LR parsing
automaton.

Now consider an arbitrary state P in the complete LR machine, and the set
(usually infinite in size) ofviable prefixes associated with that state P. A viable
prefix w is associated with state P if and only if the machine accepts w upon
falling into state P. It should be clear that a given viable prefix can be
associated with only one state, because we demand that the machine be
deterministic. (We have not yet shown that it is finite.)

We say that two viable prefixes belong to the same LR equivalence class if
they are associated with the same state.

The association of viable prefixes with states is an interesting thought, but
not very useful, since each state may have an infinite number of viable
prefixes associated with it. For example, all of the following viable prefixes in
grammar Go are associated with state 12:

E+
(E+
«E+
T*(E+
T*«E+
(E+(E+

236 Compiler Construction: Theory and Practice

It is easy to find many more. We need only trace through the states starting at
state 8 and ending at state 12. The loop on "(" in state 11 can be traversed any
number of times, yielding another left parenthesis each time, as can the loop
through 12-11-14. We obviously need to find some finite set that can be
associated with each state.

Such a finite set is a set of items. An item is a marked production enclosed in
brackets, i.e.,

[A~ x. y]

is an item if A~ xy is a production in G. Here, either x or y or both may be
empty.

An item [A~ x . y] is said to be valid for some viable prefix ux if and only
if some right-most derivation

S ~* uAv ~ uxyv

exists. Note that xy is the handle of the sentential form uxyv, and that v is a
terminal string. The mark "." in an item associated with some viable prefix
indicates that this point in the production marks the end of the viable prefix.

There are in general many items valid for a given viable prefix, although
the number must be finite. There can only be a finite number of items
altogether, since they consist of a finite number of mark positions in a finite
number of productions.

Now consider some state P in the finite state control for an LR parser. State
P is associated with some set ofviable prefixes, and therefore with some finite
set of items valid for those viable prefixes. We propose to identify and
distinguish the states in the finite control of the parser by constructing the set
of valid items associated with each of the states.

For example, consider the machine of figure 6.1, and state 12. A list of
some viable prefixes associated with state 12 is given above. We now
construct a set of valid items associated with state 12.

Because state 12 is entered upon scanning "+", the item [E~ E + . T]
must be associated with state 12. Although this is the only possible item in
which the mark can follow" +", as required by the in-symbol of state 12, this
is not the only item associated with state 12. The following are, too:

[T ~ .F]
[T ~ .T*F]
[F ~ .(E)]
[F ~ .a]

To show this association, note that the viable prefix

E+

6 Bottom-Up lR(k) Parsers 237

is part of a sentential form

E+T

with the derivation

E=9 E+T=9 E+F

and therefore the item [T~ .F] is valid for the viable prefix "E + ". (From
the definition given earlier, in this instance we have S = E, u = E +, x = E, Y
= F, v = E).

Similarly, the derivation

E=9 E+T=9 E+T*F

shows that the item [T~ .T*F] is valid for the viable prefix "E+".

Item-Set Construction

We now see how a finite set of items and a (possibly) infinite set of viable
prefixes may be associated with each state in the LR control automation. We
next need to develop rules for building the item-sets and from them, the states
and transitions of the LR automaton. The following rules do just that. We
shall in due time show that they are correct and make each aspect of them
apparent.

The three construction rules for an LR(O) control automaton are called the
start, the completion, and the read operations, respectively, and are as follows:

The Start Operation. If S is the start symbol of the grammar, and S~ w is
some production, then item [S~ .w] is associated with the start state.

This operation is needed to get the construction process started. The other
three assume that some states and items associated with the states already
exist. The start state may eventually have several items in it.

The Completion Operation. If [A~ x. Xy] is an item in some state P, then
every item of the form [X~ .z] must be induded in state P. Note that X must
be a nonterminal symbol, and this rule must be repeated until no more new
items can be added to the state.

The Read Operation. Let X be a terminal or nonterminal symbol in an item
[A~ x.Xy] associated with some state P. Then [A~ xX.y] is associated with
a state Q (possibly the same as P), and a transition

P to Q on symbol X

exists.
We call this a read operation, since it becomes a READ action in the final

parser if X is a terminal symbol. When X is a nonterminal symbol, we have
seen that a transition on X becomes part of the APPLY action, following the
replacement of the handle on the stack top by that nonterminal symbol.

238 Compiler Construction: Theory and Practice

Parser Construction

These three operations are all that are needed to generate a finite control for
an LR{O) parser, such as the one in figure 6.1; except for lookahead states. We
shall see why lookahead states are necessary and how they are constructed
shortly. For now, let lIS summarize the cOIlstruction of the finite state system
as implied by the three operations just given.

1. Giv~ the start state a number, and use the start operation to put one item
into it. Then use the completion operation repeatedly if necessary, to get
more items into this state. In completing a state, we look for a nonterminal
symbol X that follows the mark ".", and then add items of the form [X~ .w]
to the state, where X ~ w is a production. Eventually; this completion
operation has to end.

2. We now. have one state, consisting of a set of items. It will not be any
different in principle than any other state constructed by this process, so we
consider it a general state.

3. Use the read operation to start one or more new states, based on the
present state. The idea is to look for items of the form [A~ x.Xy], i.e., items
in which some symbol X follows the mark, then build a new state from the
item [A~ xX.y], i.e., the mark "moved past" the symbol X. This new state
incidentally must also contain all the other items from the old state In.which
this symbol X follows the mark. For example, if the old state contains the two
items

[E ~ E+.T]
[E ~ .T]

(among others), then the new state must contain (at least) the items

[E ~ E+T.]
[E ~ T.]

Let the old state be P and the new state be Q. Then we know that the finite
state machine in the LR parser will have the transition P to Q on X. This fact
explains why we carryover into state Qall the items in which X follows the
mark.

The "new" state may in fact be exactiy like some other state previously
constructed. We can tell whether two states are equivalent by examining the
list of items associated with them. If the two lists are identical, when
completed, then the two states must be equivalent. In this way, the
state-building process must eventually terminate, since there can only be a
finite number of distinguishable sets of items. Eventually, we have to
construct a state that is identical to some state previously constructed.

6 Bottom-Up LR(k) Parsers 239

It is not rt~cessary to compare all the items in two states to Judge their
equivalence. We need compare only the core items; these are the items that are
initially placed in a state through the read or start operation. Usually, they
have some symbol preceding the mark, but they may not if empty
productions exist in the grammar.

4. Complete the new state started in step 3 by applying the completion
operation repeatedly.

5. Repeat steps 3 and 4 until no more new states are obtained.

An Example. Let us apply the construction to grammar Go; the yield should
be the finite-,-state machine in figure 6.1. We shall indulge in a bit of
sleight-of-hand in assigning numbers to the states, since we know in advance
that the first eight states are associated with completed items for the eight
productions in Go. There is no reason to number the states one particular way
or another, except that we already have introduced the finite control for the
parser (figure 6.1), and it is less confusing to adopt the state numbers used
there.

The productions of Go are:

1. G ~ E-.l
2. E ~ E+T
3. E ~ T
4. T ~ T*F
5. T ~ F
6. F ~ (E)
7. F ~ a

The production numbers 1 to 7 will be apply state numbers. We assign the
next number, 8, to the start state, which initially contains the item [G ~
.E-.l]. Now this item can be completed, by adding to state 8 all the items
associated with E productions: [E~ .E + T], [E~ .T]. The second of these
in turn leads to a further completion operation, bringing the items [T ~
.T*F] and [T~ .F] into state 8. Finally, the last item calls for a completion
with the items [F~ .(E)] and [F~ .a]. This operation yields the set of items
in state 8, as follows:

8. [G ~ .E-.l]
[E ~ .E+T]
[E ~ .T]
[T ~ .T*F]
[T ~ .F]
[F ~ .(E)]
[F ---,) .a]

240 Compiler Construction: Theory and Practice

We now apply the read operation to these items. The first two items, with E
following the mark, yield a new state, 9, and a transition (8 to 9 on E). The
next two items yield state 10, and a transition (8 to 10 on T). The next item
([T~ .F]) yields state 5 and a transition (8 to 5 on F). Finally the last two
items yield states 11 and 7, with transitions on "(" and "a", respectively. Each
of these states must be worked on by the completion and read rules, yielding
new states, etc. Let us therefore continue with state 9.

State 9 arises from the two items [G~ .El.-] and [E~ .E+ T]. The read
operation requires moving the mark past the E symbol, hence state 9 is
initialized with the core set

9. [G ~ E.l.-]
[E ~ E.+T]

This set is complete, since there are no nonterminal symbols following a mark
in either item. The read operation applied to this set yields states 1 (for the
first item), with the transition (9 to 1on 1.-), and state 12 (for the second item),
with the transition (9 to 12 on "+ ").

State 1 therefore stems from the first item in 9 and looks like this:

1. [G ~ El.-.]

No completion or read operations are possible. This kind of item, with the
mark at the end of the production, is called a completed item and is normally
associated with a reduction, or apply state.

Another apply state obtained from state 8 is state 7:

7. [F ~ a.]

We next show the complete state set when the completion and read
operations are carried out to the bitter end. We have added the state
transitions to the right of the production, in the form (transition symbol, next
state):

8. [G ~ .El.-]
[E ~ .E+T]
[E ~ .T]
[T ~ .T*F]
[T ~ .F]
[F ~ .(E)]
[F ~ .a]

(E, 9)
(E, 9)
(T, 10)
(T, 10)
(F, 5)
((, 11)
(a, 7)

6 Bottom-Up lR(k) Parsers 241

9. [G ~ E.1..] (1.., 1)
[E ~ E.+T] (+, 12)

10. [E ~ T.]
[T ~ T.*F] (*, 13)

11. [F ~ (.E)] (E, 14)
[E ~ .E+T] (E, 14)
[E ~ .T] (T, 10)
[T ~ .T*F] (T, 10)
[T ~ .F] (F, 5)
[F ~ .(E)] ((, 11)
[F ~ .a] (a, 7)

12. [E ~ E+.T] (T, 15)
[T ~ .T*F] (T, 15)
[T ~ .F] (F, 5)
[F ~ .(E)] ((, 11)
[F ~ .a] (a, 7)

13. [T ~ T*.F] (F, 4)
[F ~ .(E)] ((, 11)
[F ~ .a] (a, 7)

14. [F ~ (E.)] (), 6)
[E ~ E.+T] (+, 12)

15. [E ~ E+T.]
[T ~ T.*F] (*, 13)

The first seven states correspond to the set of completed productions:

1. [G ~ E1...]
2. [E ~ E+T.]
3. [E ~ T.]
4. [T ~ T*F.]
5. [T ~ F.]
6. [F ~ (E).]
7. [F ~ a.]

242 Compiler Construction: Theory and Practice

We now have enough of the finite state controller for a comparison with
figure 6.1. Only the state transitions and an indication of the parse states need
surVIve.

Unfortunately, we have a problem with this grammar. Although we would
like to assign state 2 to the item [E~ E +T.], we see that it in fact appears
with another item in state 15. Similarly, the item [E~ T.] should be alone in
state 3, but appears in state 10 with another non-completed item, [T ~
T.*F]. What are we to make of this situation?

Consider state 10, which contains the item [E~ T.] and the item [T~
T.*F]. When the finite control reaches this state on some sentential form,
there may be two possible moves. The completed item [E~ T.] essentially
says that the parser should reduce the T on the stack top to E. On the other
hand, the item [T~ T.*F] essentially says, "Don't reduce the stack top, shift
token * (if seen) into the stack". For example, the sentential form "T*a" leads
to just such an indecision. We cannot have it both ways, and we don't want the
parser to be nondeterministic, so something must be done to make a
deterministic decision at this point.

Inadequate States

State lOis called an inadequate or inconsistent state. In general an
inadequate state is any state containing both a completed item (of the form [A
~ w.]) and any other item. Such a state represents a conflict in a parsing
decision, in the same way that a conflict in an operator precedence table
represents a potential difficulty in parsing some string. The conflict arises
from the grammar. There are grammars for which no LR conflict arises, and
others that produce one or more conflicts.

There is no easier way to determine in advance of an item-set construction
whether a given grammar will create a conflict. We must simply forge ahead
into constructing the state sets and discover the conflicts as they arise. The
resolution of inadequate states will be discussed in section 6.1.4.

If the LR states contain no inadequate states, the grammar is said to be
LR(O). We are then also sure that the grammar is unambiguous. We shall not
prove this result, but it should be apparent from the deterministic character of
the parsing machine that results from the state set construction. Ofcourse, we
have not yet shown that the parsing machine accepts exactly those sentential
forms in the source grammar. We shall prove this assertion next.

Exercise

1. Construct the LR state sets for the following grammar G 3 :

6 Bottom-Up LR(k) Parsers 243

prog ~ block
block ~ BEGIN decls stmts END
block ~ stmt
decls ~ E

decls ~ decls D ;
stmts ~ stmts ; stmt
stmts ~ stmt
stmt ~ block
stmt ~ S

Identify its inadequate states. Check the parser by tracing some strings
in L(G3) and some strings not in L(G3).

Construction Correctness Proof

A proofofcorrectness ofthe parser system defined above will establish that
the finite state machine constructed (hereafter simply called "the machine")
recognizes exactly the class of viable prefixes of right-most sentential forms.
The proof is in two parts. We first show that the items within any state are
exactly consistent with the class of viable prefixes for that state. Then we can
show that the machine recognizes viable prefixes exactly.

The machine mayor may not contain inadequate states. The proofs
essentially deal only with read and apply states, and even these are not
distinguished as such. We merely consider a machine that can accept a
left-most sentential form up to, but not past, its handle, i.e., a viable prefix.

We need a few definitions first.
Recall that an item [A~ x . y] is said to be valid for some viable prefix ux if

and only if some right-most derivation

S ==;'>* uAv ==;'> uxyv

exists.
A string w is said to be associated with or valid for some state P in the

machine if and only if the machine falls into state P upon scanning w.
An item is said to be valid for some state P in the machine if and only if it is

valid for some viable prefix w associated with state P.
Now we may state and prove the first part of the construction correctness.

Lemma 5.2. Every state P contains all and only the items valid for P.

Proof: "Only the" Part. Let [A ~ x.y] be in P through the construction
process, and assume that it was placed in P through k + 1 steps of the process.
We assume the lemma true for k' :=:; k steps.

244 Compiler Construction: Theory and Practice

If X = €, and P "* S, then this item got into P through a completion
operation through some other item, [B ~ .Az], also in P. By the inductive
hypothesis, this item is valid for P, hence there must be a viable prefix u and a
derivation

S ~* uBv ~ uAzv ~ uyzv

Therefore [A~ .y] is also valid for P since viable prefix u is.
Ifx = € and P = S, then k may be 1, so that we have item [S~ .y], which is

clearly valid for the start state. For k> 1 and P=S, we have item [A~ .y],
which is valid for the start state by an argument similar to that in the
preceding paragraph.

For nonempty x, the item [A~ x.y] has the form [A~ rX.y], where IXI =
1. It can only be in state P because an item [A~ r.Xy] exists in some other
state R, with a transition (R to P on X). Now [A~ r.Xy] is valid for some
viable prefix ur, valid for R, by the inductive hypothesis, through a derivation

S ~* uAz ~ urXyz

But this also shows that [A~ rX.y] is valid for the viable prefix urX. Finally,
ifur is valid for state R, and a transition (R to P on X) exists, then urX is valid
for P. Therefore [A~ rX.y] is valid fo~ P. QED

Proof: "All the" Part. Consider any viable prefix w valid for state P. We use
induction on the length of w.

For Iwl = 0, P must be the start state So' (There are no empty moves from
So to any other state). But So contains at least one item [So ~ .u] which is
valid for the empty viable prefix.

Now let Iwl = k+ 1, and assume the lemma true for all strings w of length
k or less. String w has the form

w = xX

where IXI = 1 and X is in (N U ~). With w valid for P, we have the
derivation

S~* wy = xXy

Consider the step in which X was introduced through a production:

S ~* rAz ~ rsXtz ~* rsXy

where rs = x, tz~ *y, and A~ sXt. This derivation shows that [A~ s.Xt] is
valid for w = xX = rsX, hence for P. Is this item in P? Note that [A~ s.Xt]
is valid for viable prefix x; since xX is valid for P, then there must be a state R
for which x is valid, with a transition (R to P on X). However, the inductive

6 Bottom-Up LR(k) Parsers 245

hypothesis implies [A~ s.Xt] must be in R, therefore by the construction,
[A~ sX.t] is in P. We have shown that every state contains all the items valid
for it. QED

The Main Theorem

We now turn to the principal theorem:

Theorem 5.5. The machine M (constructed as above) recognizes exactly the
class of viable prefixes of grammar G.

An immediate consequence of this theorem is that M will serve as a
(possibly) nondeterministic bottom-up parser for sentences in G. It will be
deterministic if there are no inadequate states; in that case, the handle of any
sentential form will be identified by falling into an apply state containing a
single completed item [A~ w.]. If there are inadequate states, then each of
these represents a nondeterminism which must be resolved by lookahead
methods to be developed later.

Proof: (M recognizes every viable prefix in G.) First, let w be some viable
prefix in G; then we have

s =;.* wv (right-most)

Let v be terminal, without loss of generality. We prove by induction on the
number of derivation steps that M recognizes w.

For zero steps, the start state clearly recognizes the class of empty viable
prefixes. Therefore, consider a (k+I)-step derivation,

s =;. * uAv' =;. uxv'

where A is such that w is some prefix of ux. If w is a prefix of u, then by the
inductive hypothesis, M recognizes u and therefore w. Hence let w be a prefix
of ux but not u. Let x = Xl X2 ... Xuy, where each of the Xi are of length I,
such that

and m ::; n. We then have

S =;.* uAv' =;. u Xl X2 ... Xn Yv'

Now u is accepted by M by falling into some state Po for which u is valid, by
induction. The derivation shows that [A~ ,XI X2 ... Xu y] is valid for u, and
by lemma 5.2, must be in Po. Then by the construction process, there must be
a sequence of states PI' P2' ... Pn associated with items and viable prefixes as
follows:

246 Compiler Construction: Theory and Practice

• PI with [A~ X1,X2X3 •••~ y] and uX I .

• P2 with [A~ X1X2,X3 ••• Xny] and UX1X2•

But this construction also shows that M accepts UX1X2 ••• Xm = w. QED

Proof: (M recognizes only viable prefixes in G.) Let w be a string accepted
by M. By induction on Iwi, we have:

For jwj = 0, M accepts w in the start state, and the empty string is a viable
prefix in every grammar.

For Iwl = k + 1, consider the next-to-last move of M, from some state R to
P on some symbol X:

w = rX

By induction, r is a viable prefix valid for R. Also because of the transition (R
to P on X), and lemma 5.2, every item valid for R is in R. There must
therefore be an item of the form [A~ x.Xy] in R such that a derivation

S =:::;.* uAz =:::;. uxXyz

exists, with ux = r. But this derivation also shows that uxX = w is a viable
prefix and therefore valid for state P. QED

Finiteness of Machine States

We have not required that the number of states in M be finite in these
proofs, only that they be countable (induction requires the countable
property). The proofs establish a correspondence between the states, the set
of items constructed for them, and the (usually infinite) set of viable prefixes
in the grammar. However, the state set must be finite, since there are a finite
number of possible ways of constructing item sets. We have therefore also
indirectly shown that the set of viable prefixes in some grammar are
recognized by a finite state automaton.

6.1.4. Resolution of Inadequate States

We now return to the problem of the inadequate states that can arise in the
construction of an LR parsing machine. We can deal with these in one of
several different ways, as follows:

6 Bottom-Up LR(k) Parsers 247

1. Discard the LR(O) construction and attempt the construction of an
LR(k) machine, first for k = 1, then k = 2, etc. We shall define the construction
ofan LR(k) machine later. We note here only that the size of each state set and
the number of states increases exponentially with k, so that the construction is
practical only for small k or a small grammar.

2. A full LR(k) construction can be compromised in the interests of
reducing the number of states and state-set size by merging certain states.
The result, if successful, is identification of the lookahead set for every
inadequate state, as well as generation of the LR machine. This technique
yields a so-called LALR(k) parser. We shall discuss LR(k) construction in
section 6.2.

3. The LR(O) machine itself can be used to inferlookahead sets for the
inadequate states. A common algorithm used for the purpose is given next.
Essentially, we may infer k-token lookaheads by backtracking the LR(O)
machirle from an inadequate state. We call such a resolution an SLALR(k)
machine.

4. The lookaheads may be determined by computing the FOLLOW sets
for the nontermina1left member of the production in the inadequate state.
When this is done, we have an SLR(k) resolution.

These resolution approaches are ranked in order of decreasing strength.
Thus there ate grammars that yield to an SLALR treatment, but not an
LALR, etc. Nevertheless, even the SLR(k) resolution approach is sufficiently
powerful to be useful for practical grammars and is the easiest to implement.

SLR stands for "simple LR", and was first reported by DeRemer [1971].
LALR stands for "lookahead LR", and is described in Aho and Johnson
[1974].

We defer the two LR(k) resolutions (for k>O) until a later section, as it
requires considerable development. We must first introduce a more general
definition of a state-set item and a more general construction system.

SlALR(1) Resolution

The inadequate states may be resolved by computing a set of lookaheads
associated with transitions in the LR(O) machine, using the machine
transitions themselves. Although weaker than a merged-state LR(k) parser, it
is more powerful than an SLR(k) resolution. As usual, we consider only k = 1.

1. Let P be some inadequate state in an LR(O) machine. It therefore
contains at least one completed item in addition to some others of any kind.

248 Compiler Construction: Theory and Practice

2. For each completed item in P, create a new state P' and a set of lookahead
transitions (as yet unlabeled with symbols) from P to P'. Associate the
completed item with P', removing it from P. A lookahead transition is similar
to a read transition, except that the read head is not moved.

Figure 6.5 illustrates steps 1 and 2. State 12 has two read transitions, on T
and on F, to states 15 and 17, respectively. It is also associated with the
completed items [F~ .] and [E~ ET.]. Then steps 1 and 2 result in figure
6.5(b), in which new states 12' and 12" are created to accept the completed
items. The labels L 1 and L2 represent a set of lookahead symbols (yet to be
determined) for the new states.

We now have only apply states, each containing a single completed item,
and read states, each possessing only read or lookahead transitions to other
states. Although this machine is not exactly the same as that shown in figure
6.1, it may readily be transformed into it.

We next associate a lookahead set, consisting of terminal symbols, with
each transition as follows.

3. The lookahead set for a terminal read transition is the symbol associated
with the transition.

4. Consider a nonterminal read transition T to some state P. Its lookahead
set is the union of the lookahead sets into P (if P is an apply state) or the
transitions out of P (if P is a read state).

5. Let R be an apply state with productionA~ w, and let Qbe a state with
a lookahead transition Q' to R. Let peR) be the set of read states in M such

(a) Before

[E - ET.]

(b) After

F
I----I~ 17

__~2~ F-.

--~~~ E- ET.

Figure 6.5. Splitting an inadequate state.

6 Bottom-Up LR(k) Parsers 249

that for each X in P(R), configuration (X, w) t- * (Q, €) t- (R, €). That is, we
find all the states X such that the machine can accept w by starting from X and
ending in R, by passing through Q.

Now there must be a transition T from X on the nonterminal symbol A (A
is part of the production associated with R). This transition is guaranteed by
the construction process. Add the lookahead set L(T) associated with T to the
set L(Q'), for every X.

6. Steps 4 and 5 are repeated until no additions to any lookahead set can be
made anywhere in the machine. At that point, the lookahead transitions into
the apply state carry the desired SLALR(1) lookahead sets.

Example Construction. The following grammar generates an LR(O) ma­
chine with several inadequate states:

1. S ~ E1-
2. E ~ E;T
3. E ~ T
4. T ~ Ta
5. T ~ €

The LR machine for this grammar is shown in figure 6.6. It contains four
inadequate states, 6, 8, 9, and 10. Lookahead transitions to apply states have
been added in the figure, as demanded by steps 1 and 2 in the SLALR(1)
algorithm.

Steps 4 and 5 are repeatedly applied to yield the decorated machine of
figure 6.7. A suitable starting point is the E transition (6,7). By step 4, this
transition has the lookahead set {1- ;}, from the transitions from state 7.
Similarly, the T transitions (6,8) and (9,10) both include the set {a}.
Eventually, these transitions will also pick up the lookahead sets from the
transitions (10,2) and (8,3), but they are empty so far.

Step 5 applied to state 2 causes this state to pick up the symbols associated
with the E transition (6,7), since only state 6 (through 7,9, 10,2) leads to state
2 on the string "E;T". These symbols {1- ;} are then associated with the
transition (10,2), and also with transition (9,10).

States 5 and 5' are both associated with the production T ~ €, and
eventually become a single state in the final machine. However, the
transitions into them are distinct. It can happen that the trace-back caused by
step 5 can yield different lookahead sets for the two states, and therefore
different lookahead sets for the transitions. The same state may therefore be
accessed by different lookahead transitions.

We find that this grammar is SLALR(1). The test is whether the lookahead
sets and the terminal read sets from each state are pair-wise disjoint, and they
are for this machine. The lookahead sets we developed for the nonterminal
transitions are not considered in the test.

250 Compiler Construction: Theory and Practice

Start

----~T- t

----~ E- T

T - Ta

\
\
\

\
\

\
\

'0 E - E;T

Figure 6.6. LR machine for an example grammar. The grammar productions are
attached to states in the machine.

SLR(1) Resolution

Recall that a state P is inadequate if it contains a completed item [A~ w.]
and some other item, of any kind. The presence of [A~ w.] in a state P means
that there is some set of derivations of the form

S~*xAy~ xwy

such that the LR(O) machine accepts xw by falling into state P. Clearly, the set
L= FIRST1(y FOLLOW1(S)) is the desired lookahead set for this item in P.
However, L is a subset of FOLLOW1(A), dearly. The latter set is easy to
determine, and if the use of FOLLOW is sufficient to resolve every
inadequate state (it often is), then we have an SLR(1) resolution. A resolution
of inadequate states in an LR(O) machine using FOLLOWk would be an
SLR(k) resolution.

For example, consider the machine of figure 6.1, with the items developed
as above. State lOis inadequate, since it contains the two items

6 Bottom-Up LR(k) Parsers 251

Start
(a1;LI7\
----~0 T - E

(1;)

)\

7. ~~~~~~ E- T

1, a

(a1;)

(2) 9 -~® 0 T-Ta

5- El (ar;) T-'j
®,,

'\(1;)

\CD E - E;T

Figure 6.7. Machine of figure 6.6 decorated with lookahead sets.

[E ~ T.]
[T ~ T.*F]

The set FOLLOW(E) is 0, +, .-L}, as is easily shown from the grammar.
(See chapter 4 for a complete discussion.) This set does not contain symbol
"*", hence state 10 may be resolved by a one symbollookahead. It is shown in
figure 6.1 as a new state, 16, with two lookahead transitions to states 10 and 3.

Similarly, state 15, which contains the items

[E ~ E+T.]
[T ~ T.*F]

may also be resolved with the same FOLLOW(E) set. It is shown in figure
6.1 as a new state, 17, with lookahead transitions to states 2 and 15.

The use of the FOLLOW function mayor may not resolve an inadequate
state. If it fails, the grammar may still be SLALR(1), LALR(1) or LR(1).
Essentially, the FOLLOW function yields all the symbols that can follow
some nonterminal A in a sentential form. It makes no distinctions based on
the particular inadequate state that we are interested in. The FOLLOW

252 Compiler Construction: Theory and Practice

function therefore tends to yield a larger set of lookahead symbols in general
than can actually exist for that nonterminal in that state.

Exercises

1. Consider the grammar G 3

S' ~ S
S ~ Aa I dAb I dca I cb
A~c

of Abo and Ullman (Abo [1972]). Show that it is SLALR(l) but not
SLR(l).

2. Devise an efficient data structure in Pascal for a set of productions and
the item-sets. For example, an item may be characterized by the number
pair (i, j), where i is a production number and j is the mark position
within the pair. What else might be added for the sake of an efficient
LR(O) state set determination? Sketch the operations required for a
general purpose parser generator.

6.2. LR(k) Parsers

We now describe a more general means of constructing an LR(k) parser
and also introduce the concept of canonical tables and a canonical parser.
These are useful in obtaining several important reductions in parser tables
and are also referred to in many papers on LR(k) systems.

An LR(k) item is a marked production and a terminal string w in ~ * .The
length Iwi is at most k, and w is called a lookahead string. We denote such an
item by:

[A ~ x.y, w]

The marked production A~ x.y is called the core of the item. Several items
with the same core may be combined through the notation

[A ~ x.y, {ul' u2, ... Un}]

which stands for the set of items

6 Bottom-Up lR(k) Parsers 253

[A ~ x.y, u l]

[A ~ x.y, u2]

[A ~ x.y, Uu]

We are interested in a subset of all possible items. In particular, we will be
constructing sets of items in such a way that for each item of the form [1...-7
x.y, u], there exists some right-most derivation of the form

S =::;>* rAst =::;> rxyst =::;>* r'x'ut

where

rx =::;>* r'x' and

ys =::;>* u

As a rationale for this form of item, consider a bottom-up LR(k) parser with
rxy in the stack and ut next in the input list. String u is clearly a k-symbol
lookahead, and among the productions that are potential candidates for the
parse so far, A~ xy is certainly one. If this production is next to be reduced,
the lookahead string u, along with the current state, will indicate production
A~xy.

We see that by carrying along a lookahead string in the items when the
parser state set is constructed, we will automatically have the necessary
lookahead strings available. A k-symbollookahead will be used on both read
and reduce actions, for the sake of generality. This lookahead will always
appear in an item-set as the lookahead string. It can be shown that anLR(k)
constructor accepts the broadest class ofgrammars, larger than the SLR(k) or
SLALR(k) constructors described earlier.

The LR(k) item-set construction proceeds in three steps as follows:

1. Initial state construction:

(a) If S~ w is a production, then add [S ~ .w, E] to the initial state.
Symbol S is the grammar's start symbol.

(b) If [A~ .Bx, w] is in the initial state, and B~ y is a production, then
add all the items of the form [B~ .y, z] to the initial state, where z is in
the set FIRSTk(XW). Of course, this is added to the set only if it is not
already there. We repeat this step until no more items can be added to
the initial state.

254 Compiler Construction: Theory and Practice

2. Starting a new state: Let [A~ r.Xy, w] be an item in some state P,
where X is a terminal or nonterminal token. We locate every item in
state P such that X follows the mark ".", then start a new state Q with
these items, but with the mark moved past X. Thus item [A~ r.Xy, w]
will become item [A~ rX.y, w] in state Q. The set pf items so used to
start state Q is called the core set of Q.

The core set of Q may be identical to the core set of some other state Q'
already constructed. If so, states Q and Q' are equivalent and may be
merged. By merging such states, we guarantee that the construction
process will terminate in a finite number of steps.

A transition from P to Q on X will be part ofthe LR(k) parser, thanks to
this operation.

3. Closing a new state: For every item of the form [A~ x.By, w] in a state
Q, and for every production B~ z, we add to Q all the items of the form
[B ~ .z, u], where u is in the set FIRSTk(yw). This step is repeated
until no more items can be added to Q. Mter step 1 is finished, steps 2
and 3 are repeated alternately, in that order, until no more new states can
be constructed or closed.

As before, some states will carry completed items, of the form [A~ X., w].
For them, a reduction is indicated in that state, with the production A~ X.

Now there will in general be several items in that state of the form [A~ X.,

...]. We therefore have a set oflookahead strings W such that the reduction is
permitted only if the next k (or less) tokens in the input list is among the set
W. The lookaheads may also be used to resolve .one of several possible
reductions or to resolve a conflict between a reduction and one or more read
operations.

It can be shown that the grammar is LR(k) if and only if the following
condition is met by the state set constructed as above:

For every state P containing an item of the form [A~ X., w], there exists
no other item of the form [B~ y.z, w] in P.

6.2.1. Canonical LR(1) Parsing Tables

For the sake of ease of comprehension, we specialize k to 1 in most of the
following arguments. The extension to k> 1 is relatively straightforward, but
tends to clutter up the notation.

A canonical LR(l) parser is a pair of functions f and g representing a finite
control for a push-down automaton, as follows:

6 Bottom-Up LR(k) Parsers 255

Functionf The actionfunctionfmaps a pair {T, Y}, where T is a table
name and Y is a member of ~ U {€} into one of the following:

• APPLY n, where n is a production number.

• SHIFT, abbreviated "S".

• ACCEPT,i.e., "halt", abbreviated "A".

• ERROR, abbreviated "X".

The APPLY action will appear in the table as the production number. Thus
an action table entry will be a production number, S, A, or X. We shall later
introduce another entry, "@", that will mean inaccessible.

Each table T is associated with one state P generated in the LR(1)
construction process. Then for every completed item of the form [A~ x., w]
in state P, we set f(T, w) = n, where n is the number of the production A~ x.
For every item of the form [B~ u.xv, w] in state P, where Ixl = 1, and x is a
terminal token, we set f(T, w) = S, i.e., shift. If item [G~ x., w] appears in
state P, where G is the grammar's goal symbol, we set f(T,w) = A, i.e., accept.
All other f entries for table T are set to X, i.e., error (although not all these can
necessarily be reached with some input string).

Function g. The goto function g maps a pair {T, Y}, where T is a table
name and Y is a member ofN U ~ U {€} into

• A table name T' Qr

• ERROR, abbreviated "X".

Now table T is associated with some state P in the construction process.
For every item of the form [A~ U.xv, w] in that state, where Ixl = 1, we set
g(T, w) = T', where table T' is associated with a state Qcontaining the item
[A~ ux.v, w], at?-d such that a transition from P to Qon symbol x exists. Note
that such items cause shift to be entered in the appropriate column of the f
function, ifx is terminal. Here, however, x may be terminal or nonterminal.
All other g entries in table Tare ERROR.

6.2.2. A Canonical Parser

An LR(1) parser based on the functions f and g consists of a finite control
(represented by the following Pascal program) and a stack containing table
names. Let TO be an initial table that corresponds to the initial state
constrllcted. The parser may then 'be described by the following program.
The functions in the program are explained through comments.

var X: char; {an input token}

256 Compiler Construction: Theory and Practice

START: PUSH(To); {push the initial table name in the stack}
X:=NEXTTOKEN;

{variable X gets the next token}

while rv f(TOS, X) = "A" do
{TOS is the table on the top of the stack. We continue

this algorithm until the accept condition is found}
begin {accept state not reached if we enter this block}

if f(TOS, X) = "S" then
begin {a shift operation is wanted}

PUSH(g(TOS,X)); {push the table indicated by the
goto table, based on token X}

X:=NEXTTOKEN; {get the next token}
end

else
if f(TOS, X) = reduce n then {n is a production number}
begin {a reduce operation is wanted}

APPLY(n); {indicate to the rest of the compiler that
production n is next to be applied}

POP(RIGHTMEMLEN(n));
{pop as many elements from the
stack as tokens in the right member of
production n}

PUSH(g(TOS, LEFTMEM(n)))
{some table name was exposed
through the previous POP operation; this is
used in the g function, along with the
nonterminal left member associated with
production n, to push another table name}

end
else ERROR {syntax error}

end

The simplicity of this parser speaks for itself. We see from the reduce
operation that the g function must contain mappings associated with
nonterminal tokens in general. The shift operation implies that a g-mapping
associated with terminal tokens is needed. When the end of the input list is
reached, there may be several reduce moves left or some error indication; we
therefore see that the action function f must include the empty string E: in its
qomain. Note that this parserdoes not require a special termination token.

6 Bottom-Up LR(k) Parsers 257

Example. Let us construct an LR(l) canonical parser for grammar Go' as
follows:

1. E~ E+T
2. E ~ T
3. T ~ T*F
4. T ~ F
5. F ~ (E)
6. F ~ a

We need the FIRSTl sets for the nonterminals, as follows:

nonterminal v

E
T
F

(a
(a
(a

The initial state 0 contains the items [~.E+T, E] and [~.T, E], through
construction rule l(a). The completion rule on item [~.E+ T, E] implies
that each of the following items must be included in state 0:

[~.E+ T,+], from FIRSTl(+ T)
[~.T, +], from production ~T
[T~.T*F,+], from production T~T*F
[T~.F,+], from production T~F
[T~.T*F,*], from item [T~.T*F,+] and FIRSTl(*F +)

Sixteen items eventually appear in state o. This state and the remaining states
in the complete LR(1) state set are given below. The core items are marked
">".

State Item Lookaheads Go to state

o

1

2

> ~.E+T E + 1
> ~.T E + 2

T~.T*F E + * 2
T~.F E + * 3
F~.(E) E + * 5
F~.a E + * 4

> ~E.+T E + 6

> ~T. E + reduce (2)
> T~T.*F E + * 7

258 Compiler Construction: Theory and Practice

3 > T--')F. € + * reduce (4)

4 > F--')a. € + * reduce (6)

5 > F--,)(.E) € + * 8
~.E+T, + 8
~.T + 9
T--').T*F + * 9
T--').F + * 10
F--').(E) + * 12
F--').a + * 11

6 > ~E+.T € + 13
T--').T*F € + * 13
T--').F € + * 3
F--').(E) € + * 5
F--').a € + * 4

7 > T--')T*.F € + * 14
F--').(E) € + * 5
F--').a € + * 4

8 > F--')(E.) € + * 15
> ~E.+T + 16

9 >~T. + reduce (2)
> T--')T.*F + * 17

10 > T--')F. + * reduce (4)

11 > F--')a. + * reduce (6)

12 > F--')(.E) + * 18
~.E+T + 18
~.T + 9
T--').T*F + * 9
T--').F + * 10
F--').(E) + * 12
F--').a + * 11

13 > ~E+T. € + reduce (1)
> T--')T.*F € + * 7

14 > T--')T*F. € + * reduce (3)

6 Bottom-Up lR(k) Parsers 259

15 > F---?(E). € + * reduce (5)

16 > ~E+.T) + 19
T---?T*F) + * 19
T---?F) + * 10
F---?(E)) + * 12
F---?a) + * 11

17 > T---?T*.F + * 20
F---?(E) + * 12
F---?a + * 11

18 > F---?(E.) + * 21
> ~E.+T + 16

19 > ~E+T.) + reduce (1)
> T---?T.*F) + * 17

20 > T---?T*F. + * reduce (3)

21 > F---?(E).) + * reduce (5)

The canonical tables found from these state-sets are as follows:

action, f goto, g

a + * (€ E T F a + *

0 S X X S X X 1 2 3 4 X X 5 X
1 X S X X X A X X X X 6 X X X
2 X 2 S X X 2 X X X X X 7 X X
3 X 4 4 X X 4 X X X X X X X X
4 X 6 6 X X 6 X X X X X X X X
5 S X X S""X X 8 9 10 11 X X 12 X
6 S X X S X X X 13 3 4 ,X X 5 X
7 S X X S X X X X 14 4 X X 5 X
8 X S X X S X X X X X 16 X X 15
9 X 2 S X 2 X X X X X X 17 X X

10 X 4 4 X 4 X X X X X X X X X
11 X 6 6 X 6 X X X X X X X X X
12 S X X S X X 18 9 10 11 X X 12 X
13 X 1 S X X 1 X X X ,X X 7 X X

260 Compiler Construction: Theory and Practice

action, f goto, g

a + * { E T F a + *

14 X 3 3 X X 3 X X X X X X X X
15 X 5 5 X X 5 X X X X X X X X
16 S X X S X X X 19 10 11 X X 12 X
17 S X X S X X X X 20 11 X X 12 X
18 X S X X S X X X X X 16 X X 21
19 X 1 S X 1 X X X X X X 17 X X

20 X 3 3 X 3 X X X X X X X X X
21 X 5 5 X 5 X X X X X X X X X

The following is a trace of the LR(1) parser for the string "a+ a*a":

stack X (next token) input action

° a +a*a S
0,4 + a*a 6 F~a

0,3 + a*a 4 T~F

0,2 + a*a 2 ~T

0,1 + a*a S
0,1,6 a *a S
0,1,6,4 * a 6 F~a

0,1,6,3 * a 4 T~F

0,1,6,13 * a S
0,1,6,13,7 a { S
0,1,6,13,7,4 { 6 F~a

0,1,6,13,7,14 { 3 T~T*F

0,1,6,13 { 1 ~E+T

0,1 € A (accept)

6.2.3. Table Reductions

We shall now explore several kinds of reductions that may be made on a set
of canonical LR(I) tables. (These reductions also apply to canonical LR(k)
tables for k> 1. An LR(k) table maps a string of length k to reduce, shift, etc.)

The following discussion will be based on the canonical parser given
earlier in this section.

The general strategy is to first identify those entries that are inaccessible.
They will be some of the "X" entries, which will be marked "@". Since these
entries can never be reached on scanning any input string (whether in the
language or not), they can in fact be made anything at all. We can then
redefine them in an attempt to reduce the number of tables.

6 Bottom-Up LR(k) Parsers 261

One reduction can be made through errorpostponement. Here we look for X
entries in the f table such that, when replaced by some reduce, permits the
merger of two or more states without affecting the detection of the error
ultimately. Essentially, we allow some more spurious reduce operations,
rather than report the syntax error immediately, but require that at some
future point in the parse the error associated with the next token will be
detected and reported. We will not allow some sequence of reduce operations
to end in a state that can accept the next error token.

Another reduction is possible through the removal of transitions connected
to single productions. A single production has the form A~B, where B is a
nonterminal. Usually, single productions require no ~ction on the part of the
rest of the compiler; for example, in building the abstract syntax tree, those
nodes associated with a production A~ B need not be added. The result of
removing state transitions associated with single productions is often a sizable
reduction in the canonical table, and a concomitant improvement in parser
speed.

Each of these reductions will in general yield some new canonical table set
containing inaccessible states or pairs of equivalent states. The inaccessible
states may be discarded and the equivalent states merged. When the reduced
canonical table is obtained, it may easily be transformed into a set of packed
sparse matrix tables, an example of which is given in figure 6.3.

Identification of Inaccessible Entries

Here, we wish to identify every X entry in a canonical table that can never
be reached.

We first demand that a syntax error be detected as early as possible. The
canonical parser algorithm clearly does this by inspecting f(T, h), where his
the next input token and T is the current table (or state). Iff(T, h) is neither
accept, shift nor reduce, then it reports an error. We say that token h is an
error token; the string w preceding h is such that there exists a set of strings wy
in the language accepted by the parser, but h is not FIRST1(y) for any y.

Since the parser will always first detect an error in the f table, it follows that
none of the X entries in the g table are accessible, and each of these may
therefore be changed to "@".

Now let us examine the X entries in the f table. Let T be a table and h some
token, such that f(T, h)=X. The parser clearly will be able to access f(T, h)
only if one of these conditions holds: (1) T is the initial table TO, or (2) there
is some table T' and token h' such that f(T', h')=shift and g(T', h') =T.

Case (1) applies upon first entering the parser. Table T is the initial table,
and the algorithm must be prepared to report error on any possible first token.

Case (2) says that f(T, h) can be accessed if table T can be reached after

262 Compiler Construction: Theory and Practice

some shift operation. If table T can only be reached after a reduce operation,
and the next token is an error token, the error will be detected before the
reduce operation is begun, through some X entry in the f table.

We therefore keep every X entry in the Totable. We then follow every shift
entry in the action table through its goto table; if a shift action ends in a
transfer to table T, then we must keep every X entry in the action part of table
T.

Note that the action part of a table T will carry X entries or "@" entries; no
mixture of the two is possible.

Example. Consider the tables for Go given previously. All the X entries in
the goto table may be changed to "@". All the X entries in the action table TO
must be retained. However, all the X entries in the action tables
1,2,3,8,9,10,13,14,18, 19, and 20 may be changed to "@", since none of these
tables is the target of a shift action. For example, table 1 appears in only one
place in g, as g(O,E); it is not the target of a shift. Similarly, table 2 only
appears in g(O,T). On the other hand, table 5 appears as g(O,"("), and
f(O,"(")=shift, so table 5 must contain X entries.

Postponement of Error Checking

Consider tables 15 and 21 for Go:

action, f goto, g

a + * E: E T F a + *
15 X 5 5 X X 5 X X X X X X X X
21 X 5 5 X 5 X X X X X X X X X

These two tables are clearly equivalent, except for the ")" and "E:" columns
in the action part. Suppose we changed these into the following tables:

action, f goto, g

a + *) E: E T F a + * (

15 X 5 5 X 5 5 X X X X X X X X
21 X 5 5 X 5 5 X X X X X X X X

We have changed the parser so that in certain circumstances, some reduce
operations will be permitted that otherwise would be considered an error.
Eventually, however, the error must be detected, and must not lead to an "@"
in an f-table. We must therefore examine the consequences of each such
change of X to reduce n.

6 Bottom-Up LR(k) Parsers 263

Let us therefore consider a set of tables ST that are equivalent except for
some X entries in the action part that we would like to change into reduce
operations. We need an algorithm that will test whether we can safely do this,
and that will indicate other necessary changes (e.g. "@" entries that must
become X). Note first that X and "@" entries in the set ST may be considered
the same; we can always change "@" entries back to X as needed. In what
follows, assume that every such change is made; "@"'s are changed to X's as
needed, and some X's in f are changed to reduces. (We must later retract all
this, if the test for its permissibility is negative.)

Consider one such table entry in table T, with an entry f(T, h)=X that we
would like to change to reduce n, where production n is A~w. In the
reduction, Iwi table names are dropped from the stack, exposing some table
T'. We must next consider geT', h). If this is "@", we can change the "@" to
X, to catch the error there. However, geT', h) may be some table T". We must
then examine f(T", h); this must either be error or another reduce, e.g., reduce
m. If the latter, the search must continue deeper. If the search leads to some
table T 3 such that f(T3, h) = shift, then the change off(T, h) from X to reduce
n cannot be made.

Further development of this reduction algorithm will lead to a difficult
combinatorial problem, the optimal selection of subsets of tables that can be
made equivaleilt under this transformation. Suppose that we find that soine
subset S' is equivalent under error postponement. Its equivalence is in general
the result of some modifications elsewhere in the table (some changes of "@"
to X), and they must be preserved upon the next equivalence consideration.
The problem is that one set of tables S' may not be equivalent unless some
other set S" is similarly shown to be equivalent, or a set S'cannot be
equivalent if S" is made equivalent. We see that in general, an optimal
reduction can only be made if all possible combinations are tested with the
objective of finding the least final table set.

A nearly optimal approach is the following:

Step 1. Identify those subsets of tables that are candidates for an
equivalence reduction. These must necessarily be disjoint. Order the subsets
in order of decreasing size, and apply step 2 to them in that order.

Step 2. Given a subset, make the necessary changes in its tables for an error
postponement equivalence and test the validity of the transformation. Make
whatever other changes are necessary. Each of these changes must be
revocable. If the test is positive, fix the changes, merge the states, and apply
step 2 to the next state subset. If the test is negative, revoke all the changes
and apply step 2 to the next state subset.

In this algorithm, we have no assurance that an optimal solution will be
found. It is conceivable that a merger of a set of three states will preclude

264 Compiler Construction: Theory and Practice

mergers of several subsequent sets of two states each.

The NEXT Function

A critical step in this algorithm is the identification of that set of tables that
can appear just below some handle in the stack. Let this set be designated
NEXT(T, i), where T is a top-of-stack table and i is a production in f(T, h)
for some token h. Let production i be A~w, where w = w1WZ...wn • Then
table T'will be in NEXT(T, i) if and only if a goto sequence of the following
kind exists:

geT', WI) = T 1;
geT!' wz) = T z;

This sequence follows from the property of an LR parser that its
finite-state machine (represented by the goto tables) will accept the viable
prefix of a right-most sentential form, and the correspondence of the tables
(or states) on the stack to the terminal and nonterminal symbols of the viable
prefix.

Now the error postponement algorithm can be given in more detail:

1. Identify a set of tables P that are candidates for error postponement.
These tables will agree, except for conflicts between "@", X, and reduce n.

2. Among the tables P, change each @ to X and each X to reduce n as
needed in order that they all agree. Let production n be A~w. Then there
must not exist a path in the goto table from TO to T on a suffix of W; all paths
from the initial table must either spell w fully, or spell some string w' whose
suffix is w. This condition guarantees that the stack will contain enough states
to permit a reduction. For every change of X to a reduce n, perform step 3.

3. Given a change of some X to a reduce n in f(T,h) (table T, token h), then
repeat step 4 for every table T' in NEXT(T,n), where n is the production
number in step 2 above.

4. Given a table T' and token h from step 3. The value of geT', h) may be a
table T", "@", or X. If "@", change it to X to catch the error. f(T', h) will be
either "@", X, shift, or reduce m. If "@", change "@" to X. Ifshift, the set P
cannot be merged; halt. If reduce m, table T' may be in set P and m = n; if so,
ignore it, otherwise setP cannot be merged; halt.

6 Bottom-Up LR(k) Parsers 265

If the algorithm halts agreeably in step 4, then the set P can be merged as
indicated in step 2.

Example. Consider tables 15 and 21 in the canonical parser for Go. We are
interested in changing f(15, ")") to 5 and f(21,"€") to 5. Production 5 is
F~(E), and an examination of the g table shows that tables 0, 6, and 7 will
lead to f(15, ")") on the handle "(E)"; NEXT(15, 5)= {0,6,7}. In every case,
f(T',")")=X, where T' is in NEXT(15, 5), so this appears safe. (No "@"
entry in g need be changed, incidentally).

Next consider changing f(21,€) to 5. (The € means that the parser has
reached the end of the input list). Now NEXT(21,5)={5, 12, 16, 17} from
the g table. Again, in every case, f(T',€)=X, and no "@" entry in a g table
need be changed. We therefore conclude that tables 15 and 21 may be safely
merged through error postponement.

Removal of Single Production Transitions

Consider the single production E ~ T in grammar Go' and a derivation

E=>T=>T*F

for example. Since the reduce step associated with E => T rarely (if ever) is
needed as a semantics action step, we would like to transform the canonical
parsing tables such that the derivation is effectively

E => T*F

The result is fewer parser operations and a smaller table.
Typical programming language grammars contain many such productions.

They generally appear in the definition of the expression operators, and there
are as many single productions as there are precedence hierarchy levels in the
language. A parenthesized expression often calls for a long sequence of single
production reduction steps. We would clearly like to be able to remove as
many single production reduction steps as possible.

Suppose, then, that the action corresponding to a productionA~B is to be
eliminated from the canonical tables; we want no reduce step on this
production to ever appear. Any pair of steps of the form

xAy => xBy => xwy

where~w is some production is to be effectively replaced by

xAy => xwy

during parsing.
We examine every table T' containing a reduce p action, where production

266 Compiler Construction: Theory and Practice

P is A~B. Let T" be a table in NEXT(T',p). Then table T" can be removed
only if, for all tokens h:

{ 1. f(T',h) = f(T",h)
or 2. One of f(T',h), f(T",h) is @
or 3. f(T',h) = reduce p}

and

{ 4. g(T',h) = g(T", h)
or 5. One of g(T',h), g(T",h) is @ }

If this condition holds, then we can eliminate table T" by setting f(T',
h):=f(T", h) if f(T', h)=@, and by setting g(T', h):=g(T", h) if g(T',
h)=@. Then every reference to T" can be changed into a reference to T',
throughout the table set.

Note: (1) When T" is removed from the table, NEXT will be affected in
general. It must be recomputed for each such reduction. (2) The algorithm
will fail if some nonterminal derives only the empty string. (3) The algorithm
will fail if some single production A~C, where C is not B, also exists.

Condition (2) is rather stringent; useful programming languages often
contain one or more nonterminals that only derive the empty string. (They
are useful as place markers for certain semantic steps). Condition (3) is less
likely.

The removal of these restrictions requires a more elaborate algorithm.
Soisalon-Soininen [1977] gives a bibliography of work on this problem and a
general solution.

Equivalence

Consider a set of canonical tables, possibly containing @ entries, which
may have been subjected to one or more of the above reductions. We may
then perform an equivalence reduction along the lines described in chapter 3.
Let the set of canonical tables be partitioned into their k-equivalence classes
(k is an arbitrary integer, not the "k" of LR(k)). We then refine the partition
to yield a (k+ 1)-equivalence partition as follows:

Let tables T and T' belong to one of the k-equivalence sets P. Then T and
T' belong to the same (k + 1)-equivalence set if, for every token h:

{ f(T, h) = f(T', h), or one of f(T, h), f(T', h) = @}

and

{ g(T, h) and g(T', h) are both in P, or one of g(T, h), g(T', h) = @}

6 Bottom-Up LR(k) Parsers 267

Refinement should be repeated until no proper refinement is obtained.
Then each partition represents an equivalence class of tables. Each such class
may be merged as follows:

Let T=T', i.e., both belong to the same equivalence class. We eliminate
T', retaining T, as follows:

1. If f(T, h) =@ for some token h, then set f(T, h): = f(T', h). Note that
f(T', h) may also be @.

2. If geT, h) = @ for some token h, then set geT, h): = geT', h).

3. Replace T' by T everywhere in the canonical tables.

4. Delete table T'.

The initial partition might as well be the single set consisting of the
complete set of tables. The first pass through the equivalence reduction will
usually yield many I-equivalent sets, and a typical grammar will require no
more than two or three passes.

Exercises

1. Construct a set of LR(I) canonical tables for the grammar

G~S

S~bD

S ~ E e
D~ D d
D~€

E ~ E s
E~s

E~S

Identify the inaccessible table entries, identify states that can be merged
through error postponement, states that can be merged by removing the
parsing actions associated with the two single productions, and finally
identify the equivalent state sets.

2. Develop an algorithm that accepts an LR(1) canonical table set and
yields READ, LOOKAHEAD, APPLY, and PUSH tables, with "else"
default columns in the LOOKAHEAD and APPLY tables.

3. Write a Pascal program that constructs a set ofLR(I) canonical tables.
For practical grammars, a large number of LR(I) tables will be
generated. Develop efficient means of storing and manipulating the
state sets through a mass storage medium (disk or drum).

268 Compiler Construction: Theory and Practice

6.2.4. LALR(l) Tables

A set of LALR(1) tables may be constructed from the set ofLR(1) tables as
follows:

Recall that an LR(k) item has the form

[A~ x.y, w]

where A~xy is a production and w is a lookahead string, consisting of
terminal tokens. The portion A~x.y of the item is called the core of the item.
Now two items are said to belong to the same LALR(k) parser state if they
have the same core. We essentially ignore the lookahead string w in forming a
state. In doing so, we arrive at the same state set as in an LR(O) construction,
but the items will carry lookahead set information derived from the LR(k)
construction process. The lookahead sets may then be used to resolve any
inadequate states.

For example, consider the LR(I) construction for grammar Go given
previously. Its states may be merged as follows to yield a set of LALR(I)
states:

(0), (1), (2, 9), (3,10), (4, 11), (5, 12), (6,16), (7, 17), (8,18), (13, 19), (14, 20),
(15,21).

The resulting FSA is isomorphic to the LR(O) machine given in section 6.1. It
has two inadequate states (ignoring the lookaheads), the merged states (2,9)
and (13,19). However, these are easily resolved through the LR(1) lookahead
strings carried into the merger. Thus the merged state (2,9) has the following
set of items:

(2,9) > [~T., € +)]
> [T~T.*F, € + *]

reduce (2)
7

The second item clearly applies on a lookahead set {*}, since token "*"
follows the mark. The first item applies on a lookahead set {€, +,)}. Since the
two lookahead sets are disjoint, the state is resolvable.

An LALR(k) resolution is more powerful in general than either an SLR(k)
or an SLALR(k) resolution; i.e., there exist grammars that are resolvable by
LALR(k), but not SLALR(k) or SLR(k), and there exists no grammar
resolvable by either SLALR(k) or SLR(k) and not LALR(k).

As a practical matter, the construction of an LR(I) item set requires a very
large memory, compared to an LR(O) item set. Most practical LALR(I)
constructors therefore merge core-items as they are generated. Unfortu­
nately, the lookaheads are also merged and the construction is thereby
weakened. Pager [1977] discusses this problem in depth and gives a general
merging algorithm that preserves as much lookahead information as possible,

6 Bottom-Up LR(k) Parsers 269

without demanding as much storage capacity as an LR(1) constructor would.
In Pager's algorithm, the question of state inadequacy is examined when the

r merger of a pair of states is being considered. The merger is allowed if an
inadequacy is not thereby created and disallowed otherwise. Now such a state
merger in general requires further work in that state and in all other states that
have been derived from it; Pager's algorithm deals with the problem of fixing
up the items that must change in response to the merger. The method is
complicated and the reader is referred to his paper for further details.

6.3. Augmented Grammars

An alternative way of generating an LR(O) finite-state machine is through
an augmented grammar, derived frofu a context-free grammar G, by the
following algorithm:

1. Suppose there are n productions in the grammar. We then create a new
set of symbols not already in the grammar, # i, where 1 S; i S; n. We
thus have a unique symbol for each production.

2. Create a set of new symbols that correspond to the nonterminals in G,
i.e., if A is a nonterminal in G, then create a new symbol A'.

3. Construct a new regular grammar G' from G, as follows:

(a) For every productionA~ win G, with index i, add A'~ w #i to
grammar G'. (A' corresponds to A).

(b) For every nonterminal B in a right-part of a production A~ xBy,
add production A'~ x B' to grammar G'. (A' corresponds to A, and B'
to B.)

4. The nonterminals of G' are the symbols A', B', ... that correspond to the
nonterminals A, B, ... of G.

5. The terminals of G' are all the remaining symbols-the unmarked
nonterminals of G, the terminals of G, and the special symbols #i.

6. Augment G with a special start symbol S" and a production S"~ S'.

We now clearly have a regular grammar. Each of the productions are of the
form

A~x

A~ yB
where x is a terminal string, or
where y is a terminal string or empty, and B IS

a nonterminal symbol.

A finite-state machine can clearly be constructed for this grammar, by

270 Compiler Construction: Theory and Practice

methods described in chapter 3. Furthermore, any FSA can be transformed
into a deterministic FSA. What properties does the deterministic FSA have?
Some reflection will reveal that:

1. The states will correspond to subsets of the nonterminals in G'.

2. The start state wIll correspond to state S".

3. The halt states will be entered upon scanning one of the special # i
symbols, since only these productions in the regular grammar end in a
terminal symbol.

4. Given some sentence in the language L(G'), the machine will of course
accept the sentence by falling into a halt state upon scanning the
sentence.

5. Now the sentences of L(G') are viable prefixes of sentential forms in G.
(We shall prove this shortly.) Therefore our FsA appears to be exactly
the LR machine that we wish-it will scan a right-most sentential form
uxv, with x the handle, and will find a # i transition precisely upon
scanning the viable prefix ux; the # i will indicate the correct
production to apply. However, there is no guarantee that #i will be the
only transition from the state reached upon scanning ux. If there is
another transition, then we contend the grammar G is not LR(O); the
grammar G is LR(O) if and only if for every state S with an out-going
"#" transition, there are no other out-going transitions.

Example Consider grammar Go. The augmented grammar Go' is given
below:

S" ~ E'
E'~E+T#1

E' ~ E + T'
E' ~ E' {trivial productions may be dropped}
E' ~ T #2
E' ~ T'
T' ~ T + F #3
T' ~ T + F'
T' ~ F #4
T' ~ F'
F' ~ (E) #5
F' ~ (E'
F' ~ a #6

The FSA given in figure 6.1 (aside from the lookahead states) may be
derived from this regular grammar (left as an exercise).

6 Bottom-Up lR(k) Parsers 271

Let us now show that the viable prefix of a sentential form (augmented by a
i symbol) is derivable in G'. As an example, consider the right-most
sentential form

E+(E)*a

in Go. The viable prefix "E + (E) # 5" is derivable in G' as follows:

S" =* E' =* E + T' =* E + F' =* E + (E) # 5

The FSA based on G' will move through a sequence of states associated with
the string "E + (E)", and the next state will then carry a transition on symbol
#5. In figure 6.1, the state sequence is 8, 9, 12, 11, 14,6. State 6 is associated
with production number 5, F -,) (E), and will therefore carry an out-going
transition on symbol #5 in the FSA derived from G'.
, We may compare the derivation of E + (E)*a in G with the G' derivation

given above:

E =* E+ T =* E+ T*F =* E+ T*a =* E+F*a =* E+(E)*a

Note that the second and third steps are bypassed in the G'derivation through
the production T' -,) F'.

Correspondence of G to G'

We now state and prove the theorem we asserted:

Theorem 5.1. A string "u x # i" is derivable in grammar G' if and only if
"uxv" is a right-most sentential form in grammar G, and x is its handle.

Proof: "If" Part. We prove this part by induction on the number of
derivation steps for uxv. For 0 steps, the sentential form in G is S, and S' is
trivially derivable from S" in G'.

For n steps, consider the last step:

uAv =* uxv

By induction, the handle ofuAv (wherever it is), augmented by some #i, is
derivable in G'. Now the handle ofuAv cannot lie entirely in u, since if it did,
it wouid reduce to a nonterminal B to the left ofA, violating the right-most
derivation condition. Therefore the handle of uAv must include A or lie to
right ofA. (Note that the handle may be empty; the preceding sentence is true
nevertheless). We then have two cases, as follows:

CASE 1.

u' B v' =* u' r A s v' = u A v =* u x v in G.

272 Compiler Construction: Theory and Practice

Here the handle ofuAv includes A. Let production ~rAs be number j. By
induction, we have

S" =:::;. * u' B' =:::;. u' r A s # j in G'

But then we also have the production B'~ rA' in G', yielding

S" =:::;. * u' B' =:::;. u' r A' =:::;. u' r x # i

where A~x is production number i.

CASE 2.

u ArB v' =:::;. u A r s v' = u A v =:::;. u x v

Here the handle ofuxv is in v. Again, let production ~s be number j and
production A~x be number i. By induction we have

S" =:::;. * u ArB' =:::;. u A r s # j in G'

In this derivation, there had to be a step that introduced A through a
production

C'~gAh

i.e.,

S" =:::;. * u' g A h h' in G'

By the nature of the derivations in G', h' must be empty and h contains a
nonterminal in G'; the string u'gA is therefore uA. We also have an
alternative production

C'~ g A'

in G', hence

S" =:::;. * u A' =:::;. u x # i.

QED
Proof of the only if part is left to an exercise.

LR(k) Augmented Grammar

Knuth [1965] develops a similar algorithm for the general case LR(k).
Essentially, the nonterminals of G' are of the form [A; x] where A is a
nonterminal in G, Ixl =k, and x is terminal and derivable from the string yv in
a right-most sentential form uyv, where

S =:::;.* uAv =:::;. uyv

The productions in G are then transformed into productions in G'through

6 Bottom-Up lR(k) Parsers 273

the use ofthese special nonterminals and also through the special symbols # i,
in a manner similar to the above.

The grammar so obtained is a regular grammar, and can be shown to derive
viable prefixes, together with the k-symbollookahead. The FSA accepts a
viable prefix and k symbols past it, then is in a state with a # i out-directed
transition, where i indicates the production associated with the handle of the
viable prefix.

Write an augmented grammar for the context-free grammar

G~S

S~bD

S ~ E e
D~ D d
D~€

E ~ E s
E~s

E~S

then construct a reduced finite state machine from the augmented regular
grammar.

6.4. Size of LR(k) Tables

Purdom [1974] gives a number of statistical formulas that yield the size of
an LALR(I) parser reasonably accurately, without having to construct the
parser. His study is based on 84 grammars, 65 of which had 15 or less
terminals and nonterminals and the remaining 19 of which contained more
than 15.

He found that the number of states S is a linear function of the grammar
size G, as follows

S = bG + a

where

a = .02 ± .45

and

b = .5949 ± .0048

The number of transitions T is a linear function of a sum Q:

274 Compiler Construction: Theory and Practice

T = b'Q + a',

where

a' = 3.4 ± 2.9

and

b' = .9867 ± .0069

The small tolerances indicate that the number of states and transitions can
be rather accurately estimated from the grammar. The grammar size G is the
sum of the lengths (in tokens) of the right sides of the productions, plus the
number of productions. Thus G is 18 for grammar Go.

The sum Q is more complicated to determine. We begin with the grammar,
and augment each production with the special token # i, where i is the
production number. Then we represent the grammar as a set of trees. Each
tree is defined on a nonterminal and contains all the augmented productions
for that nonterminal. Any two productions of the forms

A~ xy
A~ xz

are represented by a common path from the root A that spells out the
common prefix x. The suffixes y and z then are separate subtrees rooted in the
right-most token of x. Thus, for the augmented grammar

S~E-l #1
E ~ E + T #2
E~ T #3
T ~ F t T #4
T~ F #5
F ~ a #6
F ~ (E) #7

we have the trees shown in figure 6.8. Note that the tree edges are labeled with
the production right-side symbols. The nodes are labeled with integer counts,
determined as follows.

The count associated with a tree node is the size of the set {FIRST1(A1),
FIRST1(A2), ••• FIRSTI(~)}'where the transitions out of node N are
labeled AI' A2, •••, An. Thus in figure 6.8, the root node of the E tree has
cardinality 5, since the union of the sets FIRST1(E) and FIRST1(T) is the set
{E, T, F, a, (}, ofcardinality 5. The leaf nodes of the trees carry count 0, since
they have no children.

Finally, the count Q is the sum of all the node counts for the production
trees, less the counts for the root nodes, plus the count for the start root. Thus

(5) (E) (T)

6 Bottom-Up LR(k) Parsers 275

(F)

(5)

1

o

4

o

5

1

1

o

Figure 6.8. Production trees for Purdom's parser transition estimate.

we count only the start node root and all the remaining nonroot nodes. In
figure 6.8, Q =29.

Purdom's estimate for the number of transitions in this grammar is
therefore T =31.0. (The actual number of transitions is 30.) The estimated
number of states S= 12.51, and the actual number is 13.

6.5. Comparison of Parsing Methods

The various parsing methods developed in this and the preceding chapters
have important differences that have a direct bearing on the ease of
construction of a viable production set, the construction of suitable seman­
tics, the memory required for the parser, and the execution speed of the
parser.

Generality

The LR(k) grammars and languages cover both the LL(k) and precedence
grammars and languages. Thus, given an arbitrary grammar, the chances are
greater that a LR(k) parser can be constructed for it than any other. Of LL(k)
and the precedence grammars, little can be said. There are LL(1) grammars
that are not simple (1,1) precedence and vice versa.

If we consider the class of extended grammars and their relation to
recursive descent parsers, we find that a relatively straightforward extended
grammar can be constructed for every language described by an LR(1) simple

276 Compiler Construction: Theory and Practice

grammar. Indeed, all the common programming languages have been
implemented by recursive descent compilers, and such a compiler may be
based on an extended grammar as we have seen. However, it is not clear that
the LR(l) languages are equivalent to the I-symbol extended grammar,
recursive descent languages.

Recall that a non-LL(1) grammar can often be transformed into an LL(1)
grammar. The practical consequence of such transformations is that an LL(1)
parser has been constructed for several common languages, e.g., Algol (Lewis
and Rosenkrantz [1971D. However, the transformed grammar invariably
contains many more productions than an equivalent LR(1) grammar. The
transformation is also not amenable to an algorithmic method, so that errors
can be introduced into a given source grammar.

Of all the source grammar representations, the most easily understood is
probably the extended grammar. Each right part is a regular expression and
has a FSA representation that corresponds to a syntax graph of the language.
One therefore has a very direct relationship between a very commonly used
form of language definition and the basis grammar for an automatic parser
generator.

Parser Size

Each of the parsers can be represented as a set of interpreted tables. Of all
the parsing methods, the LALR parser tables are invariably smallest. For
example, LaLonde [1971] gives the following comparative table sizes (in
bytes) for four languages, and three different parsers: MSP, mixed-strategy
precedence; WWSP, Wirth-Weber simple precedence; and LALR:

Grammar
MSP

Productions bytes
WWSP
bytes

LALR
bytes

XPL
EULER
EULER-II
ALGOL60

109
120
100
173

3274
3922
3017

>6800t

*
4321
3204

>6100*

1250
1606
1276
2821

* Not a WWSP grammar
t Not a MSP grammar

Comparative studies of LL(1) and LALR(1) parsers are not available,
although there is reason to believe that they require comparable table space.
The net space required by a recursive descent parser is, in our experience,
about twice that required for an equivalent LALR parser.

6 Bottom-Up LR(k) Parsers 277

Empirical Speed Comparisons

The comparison of parsing speed is subject to many variables only some of
which depend directly on the parsing algorithm. Most modern computer
systems employ a virtual memory, code segmentation, data segmentation, or
some combination thereof. In such a system, only certain portions of the data
or code is in fast memory at any instant; the bulk of the data and code is in
auxiliary slow memory, e.g., a disk or drum. The execution speed of any
program therefore depends critically upon such factors as (1) the amount of
fast memory available, (2) the efficiency of the memory manager, (3) the
access time of disk, and (4) the working set of the algorithm, that is, the
amount of code and data that should be resident in fast memory for high
performance.

An LALR or LL table-driven parser tends to require a rather large
working set. It is difficult to choose a subset of the tables and code that would
permit the parsing of a section of a program; in general, all the tables and the
entire parsing algorithm are needed many times during the parsing of almost
any source statement.

On the other hand, the working set of a recursive descent parser (not table
driven) tends to be relatively small. The parsing of some statement may
invoke relatively few procedures out of the entire set comprising the parser.
For example, those procedures designed to parse the declarations would
never be called while parsing the executable statements.

The semantic operations of a recursive descent compiler are often part of
the parsing procedures. This practice tends to keep the working set small
during compilation. The semantic operations of a table-directed parser must
be separate from the tables, which means that the tables are of no value during
code generation and vice versa.

Unfortunately, an empirical study of these matters has never been
reported. Although the memory requirement for the LALR tables is smaller
than for a recursive descent parser, it is by no means clear that an
LALR-based compiler will be superior in overall performance.

LaLonde reports some performance comparisons for an MSP and an
LALR parser for several grammars, as follows:

Program Records Tokens Reductions MSP secs LALR secs

Compactify 77 439 1,262 0.84 0.52
LCS 3,322 17,369 58,707 28.86 15.88
XCOM 4,241 24,390 66,108 45.35 25.11
DOSYS 7,291 29,334 81,581 55.58 30.49

These results indicate a substantially greater efficiency for the LALR

278 Compiler Construction: Theory and Practice

parser. It is not immediately obvious just why this should be. The MSP
parser uses fast indexing into a precedence matrix, based on two tokens, while
the LALR parser must scan a list of tokens determined by its READ state.
However, upon a reduction decision, the MSP parser must then scan a table
ofproduction right parts, comparing them with the stack contents, in order to
determine the production, while the LALR parser yields the next production
as part of the same function that locates the end of the handle. This latter
saving apparently outweighs the cost of searching a READ state table.

6.6. Bibliographical Notes

The LR(k) parsing system is generally attributed to Knuth [1965], in
which both the item-set construction and the augmented grammar construc­
tion are presented, with arguments for their correctness. He also proved that
the LR(k) grammars are the largest class that can be deterministically parsed
left-to-right with a k-symbollookahead. Despite the significance of these
results, very little additional work on LR parsers was done until more
recently.

The SLR(k) resolution is from DeRemer [1969] and [1971]. The
SLALR(k) resolution was first reported by LaLonde [1971a]. The LALR(k)
system was first proposed by Anderson, Eve, and Horning (Anderson [1973]);
it and the SLR(k) system seem to be the LR systems of choice for the known
LR parser generators.

The optimizations of canonical LR(k) tables are from Aho [1972].

CHAPTER 7

SYNTAX-DIRECTED TRANSLATION

We are conceptually at the midpoint of our subject. We have developed
mechanisms for recognizing the structure of sentences written in the source
programming language. The end result of this process of lexical analysis and
parsing is a sequence ofproductions that constitute a bottom-up or top-down
parse of the input. We may also view the end result (so far) as a derivation
tree.

We have seen how a source string can be subdivides:! and analyzed
qccording to an underlying context-free grammar and transformed into a
structure (a derivation tree), in terms of which the underlying meaning of an
input sentence can be defined.

We must now develop tools for the construction of the translation or object
sentence. The output of any compiler can be viewed as a sentence in some
object or target language, whether the object be another high-level program­
ming language, symbolic assembly language, or sequences of binary machine
instructions.

The general task of accepting the tree structure created by a parser and
generating from it the object sentence (or code) is called the synthesis or
sern,antics phase of a compiler. The synthesis phase can be conceptually
subdivided into a number of reasonably distinct· subtasks, as described in
chapter 1, namely: collection and distribution of attributes of the data objects
found in the abstract-syntax tree, optimization on the tree, allocation of data
objeCt space, and code generation.

7.1. General Principles

A syntax-directed translation scheme, or SDTS, specifies a source language,
a target language, and rules for the translation of any string in the source
language into a target string. The IVIes of an SDTS are production rules,~

extended to include translation forms. No mechanism for the translation of
source to target is implied by the SDTS definitions, although we shall see that
the translation can easily be achieved.

279

280 Compiler Construction: Theory and Practice

As a conceptual model, the SDTS provides a good framework for
understanding some of the underlying principles of translation. An imple­
mentation of an SDTS is a string translator, but of a limited kind. The SDTS
model does not contain provisions for collecting and distributing attributes,
and without attributes a translator is of little practical use. Nevertheless,
certain ordering properties stem from the SDTS model, and these are of
considerable value in planning an attribute system for a complete compiler.

We shall first define the SDTS model and explore some of its properties. A
general implementation will be presented. The chapter ends with the
development of a general purpose translator system that can serve as the
framework of a practical bottom-up compiler.

7.1.1. Definitions

A syntax-directed translation scheme, is a 5-tuple consisting of

1. A finite input alphabet ~, comprising the symbols of the source
language.

2. A finite set N of nonterminal symbols used in a context-free grammar to
define the input language.

3. A finite output alphabet A, containing symbols that will appear in the
translation or output string.

4. A finite set of rules R of the form A ----7- W, y, to be defined later.

5. A start symbol S in N with the same meaning and use as in the definition
of a context-free grammar.

A rule in R of the form

A----7- W, Y

is such that "w" consists of a string of terminals and nonterminals, just as in a
context-free grammar, and "y" is a string of symbols from N and ~. The
symbol A is in N. Furthermore, there must be a one-to-one association of
nonterminals in "w" with the nonterminals in "y". The string "w" is called
the source element and the string "y" is called the translation element of this
rule.

The 4-tuple (N, ~, P, S), where P is a set of rules of the form A ----7- w, and
A ----7- W, Yis a rule in R, is called the underlying source grammar of T. That is,
we obtain the underlying source grammar by stripping the translation
element from the rules and discarding the output alphabet.

There is also an underlying target grammar, obtained by removing the
source element from each production and discarding the input alphabet.

For example, consider the SDTS Sl = ({E, T, A}, {a, b, c, +, -, [,]},
{ADD, SUB, NEG, x, y, z}, R, E), where R consists of the set of translation
rules

7 Syntax-Directed Translation 281

1. E~ E + T, T E ADD
2. E~ E - T, E T SUB
3. E~ - T, T NEG
4. E~ T, T
5. T~ [E], E
6. T~ A,A
7. A~ a, x
8. A~ b, y
9. A~ c, z

The underlying source grammar of Sl is

E ~ E+T I E-T I -T I T
T ~ [E] I A
A~alblc

A translation form is a pair of strings (u, v), such that "u" is a sentential
form of the underlying grammar of an SDTS and "v" is a translation
consisting of elements drawn from Nand 2:.

A translation form is defined as follows:

1. (S, S) is a translation form, and the two S's are said to be associated. Also,
S is the start symbol of the SDTS.

2. If (a A b, a' A b') is a translation form, and the two A's are associated;
further ifA~ g, g' is a rule in R, then (a g b, a' g' b') is also a translation
form. The association ofnonterminals in g to those in g' must be carried
into the translation form exactly as it is in the rule.

The notation

(a A b, a' A b') => (a g b, a' g' b')

expresses the transformation of one translation form into another.
We see that the first part of the translation form is exactly a sentential form

of the underlying CFG grammar; the second part is an associated translation,
a sentential form of the underlying target grammar.

The translation defined by an SDTS T, is the set of pairs

{(x, y) I (S, S) =>* (x, y), x (2:* , and y (Ll* }

which is clearly analogous to the definition of a language in a context-free
grammar given in chapter 2.

Example. Consider the input string

-[a+c]-b

282 Compiler Construction: Theory and Practice

that is derivable in the underlying grammar of SI as follows:

E ~ ET ~ -T-T ~ -[E]-T ~ -[E+T]-T
~ -[T+T]-T ~ -[A+T]-T ~ -[a+T]-T
~ + -[a+c]-b

The derivation tree for this string is shown in figure 7.1(a).
Now the translation for this string is given below. We have introduced

subscripts on certain nonterminals in the translation forms as needed to
indicate the association between the input and output nonterminals. Thus two
T's appear in the second translation form; they are distinguished by the
subscripts 1 and 2.

(E, E) ~ (E- T, E T SUB)
~ (-TI-Tz' T 1 NEG Tz SUB)
~ (- [E] - T, E NEG T SUB)
~ (- [E+ T I] - Tz' T I E ADD NEG Tz SUB)
~+ (-[A+TI]-Tz' T I A ADD NEG Tz SUB)
~ (-[a+TI]-Tz, T I x ADD NEG T z SUB)
~+ (-[a+c]-T, z x ADD NEG T SUB)
~+ (-[a+c]-b, z x ADD NEG y SUB)

The translation of " - [a + c] - b" in the SDTS T is therefore:

z x ADD NEG y SUB

We evidently have a translator for some simple arithmetic expressions to a
postfix notation, with the twist that pairs of addition operands are in­
terchanged in the output string.

We have introduced some lexical operations in this grammar, through the
last three translation rules: A ~ a, x I b, y I c, z, in order to clarify the
translation process. Of course, a set of identifiers will appear as one terminal
symbol in a practical compiler and be distinguished by the lexical analyzer.

7.1.2. Tree Transformations

A tree interpretation of the syntax-directed translation process is shown in
figure 7.1. Part (a) of this figure shows the derivation tree for the string
" - [a + c] - b" in the underlying grammar of T. The translation can be
viewed as a transformation of this tree into another tree, the transformation
consisting of (1) removing the terminal nodes, (2) permuting the children of
each interior node according to the appropriate translation rule, and (3)
adding terminal nodes that correspond to the translation terminal set ~.

Thus figure 7.1.(b) shows the derivation tree in (a) with the terminal nodes
removed. In this step, it is possible that two different productions can appear
to be the same. For example, the productions

7 Syntax-Directed Translation 283

E

/ ~
E T

/~ ~
T A

/ ~ ~
[E] b

/~
E + T

T

A

a

Figure 7.1 (a). Derivation tree for - [a+ c] - b.

E~ -T and
E~ T

A

c

look the same in the tree after the terminal nodes are removed. We therefore
label each node with a production number.

In figure 7.1 (c), the children ofeach node have been permuted according to
the translation rules and the terminal output symbols have been added. Note
that the children ofeach interior node now are exactly a translation element of
some translation rille. For example, the children of node 1E were originally

E+T

The translation rule is

284 Compiler Construction: Theory and Practice

Production ---3E
number

1 E

/~

Figure 7.1(b). Derivation tree of figure 7.1 (a) with terminal nodes removed.

E ---') E + T, T E ADD

hence the children of this node become

TEADD

T and E stand for a pair of subtrees that "move" with the permutation; this
movement causes the string "z" to appear first in the translation although its
corresponding source symbol "c" appears second in the source string.

The completed translation tree, figure 7.1(c) may now be scanned in
left-to-right natural order to yield the translation string

z x ADD NEG YSUB

It is clear that the resulting translation string is independent of the order in
which the translation is performed. Thus a bottom-up (right-most) or
top-down (left-most) translation will yield the same translation string.

7 Syntax-Directed Translation 285

NEG

y

Translation is:
z x ADD NEG YSUB

x

Figure 7.1(c). Derivation tree of figure 7.1 (b) with nodes permuted and translation
elements added, according to translation scheme.

Ambiguity

If the source grammar of a SDTS is ambiguous, then two or more
derivation trees exist for some source string. Clearly, each of these derivation
trees will yield a unique translation tree, however the two translations will in
general be different.

We say that an SDTS is ambiguous if its source grammar is ambiguous and
is unambiguous otherwise. It is clear that the addition of translation elements
to a grammar cannot introduce or remove an ambiguity. However, it is
possible that a translation can be unique despite a source grammar ambiguity;
for example, if the translation element is identical to the source element, than
every translation is unique despite an ambiguous source grammar.

286 Compiler Construction: Theory and Practice

Exercises

1. Develop a derivation and translation for the string

-c+[-b-a]

in SDTS Sl'

2. Prove that if the underlying source grammar G of an SDTS is
unambiguous, then the translation string of any source string in L(G) is
unique.

3. Given ap SDTS S, how mayan inverse SDTS S' be defined? (If S
translates a string "w" into "w"', then S' translates "w'" into "w".)

7.2. Simple SOTS and Top-Down Transducers

A SDTS is said to be simple if the order of the nonterminals in the
translation part of each rule is the same as the order of the nonterminals in the
source part. For example, a rule

S~ Sl + S2' S2 Sl ADD

in a SDTS T causes T to be nonsimple.
A simple SDTS is such that no permutation of the derivation tree nodes is

required for the translation. We have only removal of the source string
terminals and insertion of the translation string terminals.

The significance of a simple SDTS for a top-down parser is expressed in
the following theorem:

Theorem 7.1. If T = (N,.~, ~, R, S) is a simple SDTS whose underlying
grammar is LL(k), then there exists a top-down deterministic push-down
transducer that accepts any string in the input language of T and whose yield
is the corresponding output string.

A push-down transducer (PDT) is analogous to the push-down automaton
of chapter 4, except that it is permitted to emit a string of finite length (the
translated output) upon each move. We define a push-down transducer P as
follows:

A configuration of P is a 4-tuple (q, x, y, z),where q is a state in its finite
control, x is the remaining input list yet to be scanned, y is a stack, and z is an
output string emitted so far up to this point. Then in one move, we have

(q, ax, Yy', z) \- (r, x, gy', zz')

7 Syntax-Directed Translation 287

where there exists a machine rule

8(q, a, Y) contains (r, g, z')

That is, given state q, with input symbol a, and stack top symbol Y, the
machine is permitted to move to state r; in this move, the input symbol a is
discarded, Y on the stack top is replaced by g, and the string z' is emitted as
output.

Then we say that w is an output for x if (qo' x, Zo, €) f- * (q, €, u, w) for some
state q and stack string u. State qois the initial state and Zo is the initial stack
contents; € is the empty string. We say that P halts by empty stack if u = € is a
halting condition; alternatively, P halts by final state if q is a member of a
defined set of halt states F, a subset of the machine's state set. These
definitions are analogous to those of the PDA's defined in chapters 4 and 5.

We say that the PDT P is deterministic when both of the following
conditions are met:

1. For all states q, strings a, and stacks Z, 8(q, a, Z) contains at most one
element.

2. If 8(q, €, Z) is not null, then no symbol "a" exists such that 8(q, a, Z) is
not null. That is,'there must be no conflict between an empty and a
nonempty move for some state and stack.

We may now describe the construction of a PDT P, given a SDTS T,
where the underlying grammar ofT is LL(I), such that P: (1) accepts every
string in the underlying grammar ofT, and (2) emits exactly the translation in
Tofevery such string. The general case ofLL(k), k> 1, is discussed in L~wis

[1968].
Recall, from chapter 4, that the top-down LL(1) recognizer has two kinds

of move:

1. An apply move, in which a nonterminal A on the stack top is replaced by
a string "w", where A~ w is some production rule. This operation is
made deterministic through a selection table based on the stack top
nonterminal A and the next input symbol.

2. A matching move, in which a terminal symbol "a" on the stack top is
matched against the next input symbol. In a matching move, the stack
top symbol is removed and the read head is advanced one symbol. A
failure to match must be a syntax error.

Now a PDT operates as follows:

1. In an apply move, with a noqterminal A on the stack top, we know that a
production A~ w is involved, from the deterministic selector table. Let the
translation rule in R be

A~w,z

288 Compiler Construction: Theory and Practice

where

and

Z = bo BI b i B2 b2 ••• Bk bk

The Bi·are nonterminals, the ~ are input alphabet strings (or empty), the bi
are output alphabet strings (or empty), and k~O. Note that this translation
rille is "simple."

We assume that the input and output alphabet symbols are distinguishable.
Then A is replaced on the stack top by the composite string

bo ao BI b i al B2 ••• Bk bk ak

with bo on the stack top.

2. If the symbol on the stack top is a member of the output alphabet, then it
is removed and emitted as output.

3. Ifthe symbol on the stack top is a member of the input alphabet, then it is
matched against the input string (syntax error otherwise), it is removed from
the stack, and the read head is advanced one position.

Example. Consider the simple SDTS

S~IS2S,xSySz

S ~ 0, w

Note that We do not need to superscript the S's, since the SDTS is simple.
The underlying grammar is obviously LL(1). We shall define the push-down
tranducer and trace its operation for an example input string.

The transducer:

1. On stack top S, if the input symbol is

(a) "I" then pop "s" and push "xlSy2Sz"

(b) "0" then pop "s" and push "wO"

2. On stack top in {x, y, z, w}, emit the stack top as output.

3. On stack top in {O, 1, 2}, match against the next input symbol.

A machine trace for sentence 1102020:

Operation Remaining input Output Stack

Initially 1102020 S
la 1102020 xlSy2Sz
2 1102020 x ISy2Sz
3 102020 Sy2Sz

7 Syntax-Directed Translation 289

la 102020
2 102020
3 02020
Ib 02020
2 02020
3 2020
2 2020
3 020
Ib 020
2 020
3 20
2 20
3 0
Ib 0
2 0
3 E:

2 E:

xlSy2Szy2Sz
X ISy2Szy2Sz

Sy2Szy2Sz
wOy2Szy2Sz

w Oy2Szy2Sz
y2Szy2Sz

Y 2Szy2Sz
Szy2Sz
wOzy2Sz

w Ozy2Sz
zy2Sz

zy 2Sz
Sz
wOz

w Oz
z

z rE:

The output string is therefore "xxwywzywz". Note that the transducer
accepts by empty stack.

Ifwe did not have an LL(1) selector table, we would have a nondetermin­
istic PDA. We have seen in chapter 4 that a PDA that accepts any context-free
grammar can be constructed. We need only extend the notion of nondeter­
minism to a transducer, and this is easily done. Let acceptance of an input
string mean that some set of choices based on stack top symbols eventually
leads to an empty stack and input list. Then the emitted output is a
translation.

If the underlying grammar is ambiguous, then no deterministic PDT
exists, although a nondeterministic PDT exists; there may then exist more
than one translation for one or more input strings.

If the underlying grammar is LL(1) then it is unambiguous, and there is
exactly one translation for every acceptable input string.

The determinism of an LL(1) transducer means that the output can be
immediately printed or punched on each move; it need not be saved on some
erasable tape until the entire parse is complete. Output can also be generated
as soon as a production is identified; the translator need not sustain output
until the entire right part of the production is completely associated with the
input list. Ofcourse, it obtains this predictive ability through the one-symbol
lookahead-the next symbol in the input list must be an infallible guide to the
production rule about to come up, or else the grammar is not LL(1).

Among other things, determinism means that an entry in a symbol table
could be made at the beginning, in the middle, or at the end of a production.
Although we technically are discussing string-to-string translators, certain
output string elements can in fact carry other kinds of operations, such as:

290 Compiler Construction: Theory and Practice

"enter the preceding identifier in a symbol table," or "turn off the compiler
listing flag," etc. Such actions may be difficult or impossible to undo and must
also be performed at the right time in the compilation. Such timing questions
can be resolved for a LL(1) push-down transducer through a study of the
production tree structure and the position of the action in some production.

Exercises

1. Trace the above transducer for the string 1021020.

2. Show that the PDT emits a correct translation for any acceptable input
string.

3. Write a Pascal LL(I) translator. The program should include suitable
data structure definitions.

7.3. Simple Postfix SDTS and Bottom-Up Transducers

A SDTS is said to be simple postfix if it is simple, and, in addition, every
translation rule has the form

A~ ao Bl al B2 a2 ••• Bk ak , Bl B2••• Bk w

That is, no translation terminals may appear in the translation element except
as the right-most string "w". The significance of a simple postfix SDTS is
expressed in the following theorem:

Theorem 7.2. For every simple postfix SDTS whose underlying grammar is
LR(k), there exists a deterministic LR(k) push-down transducer that (1)
accepts every sentence derivable in the underlying grammar and (2) emits as
output the translation of that sentence.

Recall from chapter 6 that the LR(k) parser has three actions, selected by a
current state and a next symbol, as follows:

1. READ action: the next input symbol must be among the terminal
symbols associated with this state; if so, then advance the read head,
push the next state S' and go to state S'.

2. APPL Yaction: the stack top contains a set of states associated with the
handle ofsome production i. The production number is specified by this
state. Pop the states corresponding to the handle, push a state S'
determined from the exposed stack top state and the GOTO table, then
go to state S'.

7 Syntax-Directed Translation 291

3. ACCEPT action: a goal-symbol production has just been reduced, and
the stack contains one state corresponding to the goal symbol. Halt,
with an indication that the input string is accepted. (We assume that the
goal symbol never appears in the right-hand part of any production.)

These operations are directed by a finite-state control, with one or more
states, that is permitted to examine as many as k symbols in the input in
determining its action.

This machine may be easily transformed into a postfix transducer, by
adding the following operation to the APPLY rule:

Emit the terminal portion of the translation element associated with
rule i.

We leave machine traces and a proof of theorem 7.2 to the exercises.
Theorem 7.2 has an important converse, as follows:

Theorem 7.3. There are unambiguous simple SDT's with an underlying
LR(k) grammar that cannot be translated by any deterministic push-down
automaton. (Note that this theorem has no LL(k) counterpart.)

This theorem emphasizes the importance of the postfix condition. For
example, consider the SDTS T with the rules

S ~ Sa, xS
S ~ Sb, yS
S ~ €, €

These rules are simple, but not postfix. It is easy to show that the underlying
grammar is LR(I); however, no deterministic push-down transducer can be
devised that will correctly translate its input language. Intuitively, it is
necessary to emit an "x" or a "y" before the transducer can determine which
of the three productions applies. Let us go through an example.

Consider the string "ba", which translates to "xy" (see figure 7.2.) A trace
of the LR(I) machine apply states looks like this:

Stack Input List Production

€

Sb
Sa

ba
a
€

S ~ €

S ~ Sb
S ~ Sa

To emit the required string "xy", the machine must somehow predict that
production S~ Sa will eventually appear. What it in fact reports as apply
states are the other two productions first.

292 Compiler Construction: Theory and Practice

1. S--Sa,x5

2. S -- Sb, yS

3. S -- E, E

S

/\
S a

/\
S b

I

Input
"ba"

S

/\
x S

/\
y S

I

Output
It xy"

Figure 7.2. Translation of a string "ba" in a non-postfix simple syntax-directed
translation scheme.

Now a top-down automaton could conceivably emit an "x" first, based on
its start state and the first k input symbols. The top-down derivation of "ba"
begins with S ~ Sa; and "x" could therefore be emitted. However, this
grammar is not LL(k) for any k; it contains left-recursive productions. This
means that, for whatever k we choose, there is a string in the source language
that will require a lookahead of at least k+ I in order to determine the next
production in a top-down manner. We conclude that no deterministic
transducer exists for this SDTS; the information that it needs in order to emit
a translation can be arbitrarily far ahead in the input string.

It would appear that a simple postfix SDTS is more restrictive than a
simple nonpostfix SDTS, and that a top-down SDTS is therefore somehow
more powerful than a bottom-up SDTS. Such is not the case; this view
overlooks the possibility of modifying the grammar in order to achieve the
effect, if not the substance, of a simple nonpostfix SDTS.

Suppose that we want a translation output y within a translation element:

A~ xz,Xy Z

where the rule A~ xz, XZ is simple postfix and Z is nonempty. We may then
consider the pair of productions

A ~ x y' z, X y' z'
y' ~ €, Y

Note that both productions are simple postfix. If the underlying source

7 Syntax-Directed Translation 293

grammar is still LR(k) with this change, then a bottom-up deterministic
transducer will generate the desired translation. If the grammar is no longer
LR(k), then it can be shown that the original grammar is not LL(k).

Another way to transform the productions is as follows:

A~X'z,X'Z

X'~x,Xy

Here, we have assigned the string "x" to a new production, permitting the
postfix translation Xy; the A production then becomes postfix as well.

The restriction to "simple" in both the bottom-up and top-down trans­
ducers is also easily removed by a system based on the SDTS transducers, as
we shall see in section 7.4. Essentially, we may simply generate derivation
trees (or better, abstract-syntax trees) and then rearrange the nodes internally
as needed to achieve the necessary non-simple translation. Such a scheme
may be limited in practice by the amount of random access storage space
available for the trees; however, most modern computer systems are free of
such limitations.

Examples. Consider grammar Go augmented with postfix translation ele­
ments given below:

E ~ E + T , E T ADD
E ~ T, T~
T ~ T * F, T F MPY
T -4 F, F
F ~ A, A LOAD
F~(E),E

A~Aa,a

A ~ a, a

This SDTS is clearly simple postfix. A translation of the expression

aa * (aaa + a)

is easily shown to be

aa LOAD aaa LOAD a LOAD ADD MPY

and is exactly that required by a postfix stack machine. The LOAD operation
operates upon the preceding identifier. If we wish LOAD to operate on the
following identifier instead, we may modify one of the F productions as
follows:

Instead ofproduction F~ A, A LOAD, we introduce the two productions

F~LA,LA

L ~ E:, LOAD

294 Compiler Construction: Theory and Practice

The LOAD will clearly then precede its identifier. The grammar is still
LR(l); the reduce operation for the empty production L~ € can be inferred
from a one-symbollookahead of the following iqentifier.

The translation of aa*(aaa+a) will then be

LOAD aa LOAD aaa LOAD a ADD MPY
?

As another example, consider the common control statement

S~ if E then S else S

where E is an expression and S is a statement. In this form, a simple postfix
translator can only generate evaluation code for E, then evaluate the two
statements S. Only when both of these ar~ complete is it known that an
if-then-else control statement is being parse~. But such a statement requires
the emission of a conditional branch instruction between the E and the first S,
and an unconditional branch instruction between the two S's. How might this
be done?

One solution is to partition this production into three productions:

S ~ I else S
I ~ T then S
T ~ if E

Clearly, the three put together are equivalent to the original production.
However, by so separating the three productions, we may generate a simple
postfix translation as follows:

S~ I else S,
I~ TthenS,
T ~ ifE,

IS; L2:
T S ; BR L2; L 1 :
E; BRF Ll

Here, "BR L2" means "branch to the statement labe1d L2." "BRF L 1"
means "branch to L 1 if the stack-top expression is FALSE, otherwise
continue. Delete the stacktop in any case."

The semicolons will appear as separators in the translation strings.
Then the statement

if a then S1 else S2

would translate to

LOAD a;
BRF Ll;
Sl;
BR L2;

7 Syntax-Directed Translation 295

Ll: S2;
L2:

Here, L2 marks whatever statement follows the if-then-else.
Given the same if-then-else structure, we may achieve the same output by

introducing productions for the "then" and "else" keywords, e.g.

S~ifEHSLS,

H~ then,
L~ else,

EHS L S; L2:
; BR L2; Li:
; L2:

The effect of the added productions is clearly to bring out some translation
strings at the desired point in the parsing of the whole statement.

Finally, empty productions may be used:

S~ if E then H S else L S ,
H~€,

L~€,

EHS L S; L2:
; BR L2; Ll:
;L2 :

These three translation schemes are equivalent and are LR(1), assuming that
the remainder of the grammar is reasonable.

As an example of one limitation of a simple postfix SDTS, consider a
function call, with the underlying source grammar:

F~A(L)

L ~ L; E
L~ E
A~ A a
A~a

The call parameter list L consists of parameters E separated by semicolons.
The usual separator is a comma, but we are using a comma as a metasymbol.

For discussion purposes, we would like the procedure call to appear at the
end of the code for the procedure parameters; this is how procedures are
called on many (but not all) machines. However, the procedure name appears
first in the syntax. We therefore need a nonsimple transducer if the call and
the call name is to appear after the actual parameter coding.

However, a postfix call may be acceptable on certain machines, and is easily
generated by the simple postfix grammar:

296 Compiler Construction: Theory and Practice

F ~ A (L) , A L CALL
L~L;E,LE

L ~ E, E
A~Aa,Aa

A ~ a, a

Then the function call

aa(a, aaa + aaaa)

will translate to

aa; LOAD a; LOAD aaa; LOAD aaaa; ADD; CALL

and the CALL operates on the very first identifier, aa. Nothing can be done
using a simple SDTS to emit the procedure name "aa" after its CALL.

7.4. A General Transducer

A simple SDTS can be implemented by a push-down stack automaton,
augmented with a translation string emitter, as we have shown in the
preceding two sections. A non-simple SDTS is easily implemented by
constructing a rearranged tree for the translation string as part of the parsing
stack operations. When the parse is complete, the translation tree may be
scanned in natural order to yield the translation string. Of course, the
resulting machine is no longer a PDA.

The system presented in the following algorithm assumes that the base
grammar is LR(k). However, the extension to any base grammar or to other
parsers is trivial.

Let M be a translation machine that carries two stacks, one the usual LR(k)
viable prefix stack (the parse stack) and the other a stack of translation
subtrees (the translation stack). During the parsing process, each translation
subtree will correspond to a nonterminal in the parse stack, and will represent
a translation tree valid for that nonterminal and the derivations that
previously stemmed from it. The translation stack will carry the roots of
translation trees. Each nonterminal in the parse stack corresponds to a root in
the translation stack.

Machine M has the actions READ, APPLY, and ACCEPT as follows.
(The ERROR action in an LR parser is of no special interest just now.)

1. READ: The next input symbol is shifted into the parse stack. The
translation stack is unaffected. A terminal in the parse stack does not
have a corresponding translation stack element.

2. APPL y. Suppose we have the translation rule

7 Syntax-Directed Translation 297

Remove the string "ao Al ... Am am" from the parse stack, but not the
associated subtrees (yet). The translation stack is associated with trees
rooted in the Ai' Remove these trees from the translation stack and
permute them according to the translation rule; they now correspond to
the Bi. Create a new tree root N' and new tree leaves for the translation
elements Wi and arrange these two sets of trees as the children of the new
node N'. Now push N' into the translation stack.

At the end of the APPLY step we have a new subtree rooted in N'. The
children of N' consist of leav@s and subtrees, corresponding to the
elements of the translation part of the rule, i.e., to Wo BI WI ... Bmwm.
The Bi have been obtained from the translation stack and the Wi have
been newly created.

3. ACCEPT: The tree associated with start symbol S in the parse stack is
the translation tree. It may be scanned in left-to-right natural order to
yield the translation string.

This translator is illustrated in figure 7.3 for the nonsimple SDTS

1. S ~ aSA , OAS
2. S ~ b , 1
3. A ~ bAS , 1SA
4. A ~ a ,0

and the input string "abbab". The underlying grammar is SLR(I). Only the
apply steps are shown. For example, just before the first apply action, the
stack contains "ab" and the input is "bab". Rule 2, when applied, causes "b"
on the stack top to be replaced by "S", linked to a son"1". String "ba" then is
shifted into the stack in preparation for the next apply action.

Just before the last apply step, the parse stack contains aSA and the
translation rule is

S~ aSA,OAS

A new leaf is created for the 0 ofthe translation element, and the A and S trees
are interchanged. The stack top trees are replaced by a tree representing the
translation subtree corresponding S, in this case, the complete translation
tree. This tree may clearly be scanned from left to right to yield the
translation string "01101".

A practical tree structure suited to this algorithm is illustrated in figures 7.4
and 7.5. Each translation stack element is a pointer to a tree stack that in turn
carries a mark, a token and a child within each element. The children of some
node are arranged contiguously in the tree stack, and only the right-most
child carries a mark, indicating that it is the last child. If a tree node N is the
root ofa subtree, then N carries a child pointer, otherwise its child pointer cell
is empty.

298 Compiler Construction: Theory and Practice

Stack

~
00
~
00 0

Input

bab

b

Rule

2:5 - b,1

4:A - a,D

2:S - b,1

3:A - bAS,1SA

Translation
tree

1:S - a5A,OA5

(Accept)

Figure 7.3. Translation by tree construction. Only the apply steps are shown.

Thus, in figure 7.4, the tree rooted in S has the children "GAS", in tree stack
nodes 6, 7, and 8. Node 7 is the root of a subtree in which level I is "lSA".
Figure 7.5 shows the tree structure represented by figure 7.4.

An empty leaf node must be specially denoted by a null token, since a leaf

7 Syntax-Directed Translation 299

Translation stack

0 1 2 3 4 5 6 7 8

Mark vi vi vi vi vi
Token 0 1 S A 1 0 A S

Child 0 1 2 5

Top
of

stack

Figure 7.4. A compact representation of the tree of figure 7.4.

must occupy at least one cell to carry a mark.
This representation is easily generated during translation, since all the

children of some node can be allocated at once in the same APPLY operation
and may therefore be contiguously arranged without any movement of nodes
in the stack.

We may therefore modify the tree building algorithm as follows:
Introduce a third stack of three elements each: a mark, a token, and a child

pointer; call it the tree stack. We really don't need the token, but we shall
eventually want to use it to associate more information with the translation
tree. Then modify the APPLY step as follows:

2. APPL y:. Given the translation rule

S

/
o A---S

/ ~1
1 ---- S ---- A

o

Figure 7.5. Schematic form of the tree of figure 7.4.

300 Compiler Construction: Theory and Practice

the translation stack will contain pointers to subtrees corresponding to
AI' A2, ••• , Am· Augment the tree stack with sufficient elements to
contain all the symbols in the translation part W o B} ... Bm wm. Mark
the top of the tree stack. Set the pointers associated with the Wi to null.
Set the pointer associated with a node Bi to the pointer in the translation
stack corresponding to Aj , where Aj is associated with Bi in the
translation rule. Finally, remove the top m elements from the transla­
tion stack, and replace it with a pointer to the left-most new element in
the tree stack.

Exercises

1. Devise a simple postfix SDTS for each of the following structures. V is
a variable, E is an expression, S is a statement, and L is a statement label.

S .. - while E do S
S .. - for V:=E until E do S
S .. - L: S
S .. - case E SL endcase
SL :: = SL ; SIS {statement list}

2. Write a Pascal program that implements the apply step of the general
transducer given in the previous section.

3. Devise data structures to facilitate a table-driven PDT that generates a
translation tree.

4. State an SDTS implementation for an LL(l) source grammar, based on
a tree builder.

7.5. String Transducers and Their Limitations

We have seen how an SDTS transducer can be applied as a string-to-string
translator. Such a translator has certain practical applications, especially if
extended by incorporating symbol table functions and some simple arithme­
tic. Some compilers are essentially string translators, from a high-level source
language to symbolic assembly language for a machine. The advantage of
writing such a compiler is its very low cost. The translator can be written as
an SDTS and interpreted by a simple general purpose system.

We have also seen that an SDTS transducer can be used to construct a
translation tree directly (section 7.4). We may modify that algorithm and
generate an abbreviated tree, called an abstract-syntax tree; this notion will be
expanded upon in section 7.5.2.

7 Syntax-Directed Translation 301

Finally, rather than simply emit a string, certain string tokens or all the
tokens can be interpreted as synthesis actions.

7.5.1. String Translators

Let us assume that a general SDTS transducer is available, such as that
described in section 7.4. What sorts of translations can be achieved and what
are its limitations?

A great deal of literature exists on translator writing systems, or compiler­
compilers, e.g., Feldman [1968] or, more recently, Griffiths [1974c]. A
translator writing system, or TWS for short, often contains a string translator
as its core, but is augmented by a variety of other needed functions.

Roughly speaking, a string translator can accept any source language
defined by a context-free grammar, preferably LR(I), and emit a translation
defined by the SDTS structure. The translation language may bear scant
resemblance to the source language. Metcalfe [1964], for example, illustrates
a translator of some simple English sentences to German, an operation that
requires some rearrangement of sentence structure.

Unfortunately, the problem of language translation is not so easily solved.
Natural languages are not context-free, nor are the common computer
artificial languages. Both require some auxiliary mechanisms, in the form of a
symbol table or a dictionary, at least, to achieve a reasonable translation.

Let us examine some of the translation needs that cannot be satisfied by a
pure string translator.

Data Types

Data variables are usually typed, e.g.,

var I: integer; var R: real;

The effect of 13uch statements is to associate one or more attributes with the
identifiers I and R, as well as allocate space for them. Now a variable
reference, such as:

R:=I+ 1;

usually requires knowledge of the variable types to generate correct code.
Thus knowing that I is type "integer" and R is type "real," a compiler might
generate the assembly code

LOAD I
LOAD =1
ADD
FLT
STD R

{fetch variable I to top of stack}
{push a 1 into stack}
{e.g., integer add}
{convert to real}
{store double value on stack top in R; the "float"
converts from a single to a double value}

302 Compiler Construction: Theory and Practice

for a stack machine. The choice of each instruction in this sequence depends
on the types of the two variables.

Typing is achieved through a token table mechanism, and without some
extensions to a string translator, we cannot hope to generate suitable
translation sequences that consider variable typing.

However, typing can be bypassed in one of these ways:

1. The language may have only one type, for example, "real," so that every
operation is determined only by the algebra and not the variables.

2. The machine representation of a data item may contain a data type
descriptor along with the data item. Then all the necessary conversions
and choice of the appropriate operation becomes a machine function
and not a compiler function. For example, a single generic "add"
instruction might be interpreted by the machine as a "real" add, an
"integer" add, etc., depending on the operand descriptor.

3. The translation may be to a high level language that supports the
features of the simpler language. The syntax may be different, but if the
object language contains all the features and semantics of the source
language, then a straightforward string translation is feasible.

However, variable typing occurs in most programming languages, and
must usually be dealt with.

Array Dimensions

Consider an array declared as follows:

array X[0:25, 0:35] : real;

A reference to this array of the form X[I, J] may require knowledge of one or
the other dimensions, depending on the storage conventions for multidimen­
sioned arrays in the target machine system. For example, the array may be
stored in rows in one long linear array. An offset N of the form

N:=36*J +1;

must then be computed for the reference X[I, J]; the "36" is the second
dimension plus 1 (because of zero basing). Again, a simple string translator
cannot supply the "36" without some help.

Nevertheless, there are ways:

1. Given an array declaration, a string translator can create a constant
declaration, by making up new names based on the old ones, e.g.

source: array X[0:25, 0:36] of real;

object: array X[(25-0+ 1)*(36-0+ 1)] of real;
const #XO=35-0+ 1;

7 Syntax-Directed Translation 303

Then the new name # XO can be used in a variable reference of the form
X(J, I) in place of the needed dimensional factor 36:

N:= #XO*J +1;

However, this approach to array indexing supposes that the object
language translator can support a class of manufactured names and
constant expression structures, which is seldom the case.

2. An array might be supported by a dope vector at run-time that is
associated with the array elements and that contains the array dimen­
sions. Then an array reference can be handled by a call to some general
purpose procedure that accepts the indices I and J and a reference to the
dope vector.

3. A multidimensioned array could be accessed through a transfer vector
system. Consider a reference to X[I, J] again, and let there be a vector of
36 pointers (corresponding to the 36 possible Jvalues). Each of the 36
pointers points to an I vector, e.g., one slice of the array. Then a fetch of
X[I, J] could be coded without knowing the J dimension: indirect
through V(J), then indexed by I. For some machine architectures, this
kind of array access may be considerably more efficient than one based
on a calculation of a linear array index.

Despite these solutions. to array indexing, there is really no practical
alternative to a symbol table system.

Branches and Procedure Calls

A string translator can only organize branches and procedure calls
symbolically; without arithmetic or a token table, it cannot fix any program
addresses. Furthermore, a string translator cannot ascertain whether a given
branch label or procedure name has appeared more than once, so that an error
of this kind cannot be reported until the object translation occurs.

Parameter Passing

The parameters of a procedure are usually of several different kinds
(reference, value, name, etc.). Thus the generated code for the actual
parameters depends on the declarations of the formal parameters. This
dependency is another area ofdeficiency of a simple string translator-it must
somehow generate object· strings for actual parameters that are acceptable
regardless of the declarations of the corresponding formal parameters, which
may be impossible to do.

Some languages, such as Fortran, have only one passing mechanism
-reference. In that case, a string translator can generate acceptable code.

In any case, an error in the number of actual parameters cannot be detected
until the object is translated.

304 Compiler Construction: Theory and Practice

If a function call and an array reference appear syntactically the same, the
object language of a string translator must be indifferent to the two. Thus in
the Fortran statement

Y = XCI, J)

the XCI, J) could be an array reference or a function call. The two cases are
distinguished through a prior declaration of X as an array or a function. A
symbol table is necessary to associate such an attribute with each identifier.

7.5.2. Abstract-Syntax Tree Construction

An abstract-syntax tree or AST is a condensed tree representation of some
language structure. It contains only that information needed for the
remaining transformations or reductions of the structure. Any language
structure can potentially be represented as an AST, e.g., expressions, control
statements, input or output statements, and declarations.

An AST can serve as an intermediate structure in a partitionable compiler.
The compiler system that generates it might be one distinct piece of software,
and the system. that interprets it and generates code from it may be another
distinct piece. By so partitioning the compiler software for different
languages, a given code generation piece might be used with different AST
generation pieces. Of course, the code generation piece must accept any AST
that any of the AST generators can construct, which will increase its
complexity.

We shall see that code generation and certain optimizations are facilitated
by an AST representation.

Consider grammar Go:

E~E+T

E~ T
T~ T * F
T~F

F ~ (E)
F~a

The derivation tree for even simple expressions is rather large. For
example, the expression "a*(a + a)" has the derivation tree shown in figure
7.6. This tree has 7leafnodes and 11 interior nodes, yet the expression itself
contains only two operators and three operands. Why all the complexity?

Most of the complexity arises from the form of the grammar. Every
derivation step is reflected in a tree node, yet many of the derivation steps are
merely to provide a suitable precedence for the operators + and * and to
cause operations inside parentheses to be performed before those outside.

We can reduce the derivation tree to an AST by first removing all the tree
links associated with the single productions, i.e., E~ T, T ~ F, and F~a.

They serve a purpose in the derivation process, but no useful role in the final
structure.

7 Syntax-Directed Translation 305

E

T

/~
T * F

/ /~
F E)

/ /~
a E + T

/
T F

/
a

F

/
a

Figure 7.6. Derivation tree in Go for a simple expression a*(a+a).

Next, the tree nodes containing the operators * and + can be reduced to a
single node containing only the operator. We clearly no longer have a
derivation tree, but so far have not lost any structural information either. At
this point, our reduced tree looks like figure 7.7. It still says that the addition
must be done first, then the multiplication. What about the parentheses? If we
collapse the parenthesis production F ~ (E) will the operator ordering
established by the parentheses be lost? The answer is no-the "a" node inside
the parentheses came from a sequence of derivation steps that have already
provided for the precedence of the + operator inside the parentheses over the
* outside. We arrive at the AST in figure 7.8. .

This tree is also the abstract-syntax tree for the expressions
a*«a) + a)
a*(a+(a))
(a*(a+a))

306 Compiler Construction: Theory and Practice

*

/~
a F

/I~
(+)

/~
a a

Figure 7.7. Derivation tree of figure 7.6 reduced by collapsing single productions and
operator productions.

as should be obvious. Each of these is mathematically equivalent; we
conclude that an abstract-syntax tree for an expression is a kind of canonical
form for an equivalence class of expressions. However, the AST equivalence
class is not complete, for it does not take into account commutativity or
associativity of the operators + and *. Consequently, the following
expressions, although mathematically equivalent, yield different AST's:

a*b + c,
c + b*a,
c + a*b, etc.

We can easily generate an AST directly by some simple changes in the
SDTS implementation. I'nstead of generating a complete translation tree, we
simply generate an AST by pointer mechanisms similar to those in section
7.4. A grammar and the corresponding tree translation elements are
illustrated in figure 7.9.

For a bottom-up parser, the rules in figure 7.9 can be understood as
follows. Consider the E~ E +T rule. When E +T appears as the handle on
the top of the parser stack, there will be two subtrees connected to the E and
the T elements. (Nothing is connected to the "+".) The translation rule

*

+
/~

a

/~
a

Figure 7.8. Abstract-syntax tree fOr expression a*(a+a).

a

Rule

7 Syntax-Directed Translation 307

Translation tree

E-E+T

E-T

E

T

T

T - T * F ==>
T-F ==>
F - (E) ==>
F-a ==>

~
T F

F

E

a

Figure 7.9. Direct generation of an abstract-syntax tree from grammar Go and its
parser.

effectively says: "Create a new node, labeled '+', and give it two sons - the E
and T subtrees. We now have a new tree rooted in the '+' node; attach it to
the E that replaces E and T on the stack."

The translation rule E~ T effectively is applied as follows. When T is the
handle, it is attached to some subtree; merely attach this subtree to the E that
replaces T in the stack.

Finally, the translation rule F~ (E) calls for attaching the E subtree to the
element F on the stack, and the rule F ~ a calls for attaching the terminal
token "a" as a tree consisting of one node to the element F in the stack.

When the "accept" state is reached, we will have the AST attached to the
start token on the stack top.

The general form of an AST is a tree whose interior nodes are operators
and whose leaves are simple variables or constants. The operators may be of
any variety, unary, binary, or n-ary. For example, an array reference can be
represented by the AST shown in figure 7.10, where X is a multidimensional
variable, and el' ez' ... , eu represent expression AST's for the indices; the
reference in source form would look like this:

X(el' ez' ... , eu)
A procedure call AST would be identical in form, except that the operator

would be different, of course, and a different class of actual parameters might
be permitted by the language.

An AST can represent control structures and declarations as well. For
example, a CASE statement can be modeled as an AST as shown in figure

308 Compiler Construction: Theory and Practice

x

Figure 7.10. An array reference or procedure call abstract-syntax tree.

7.11. The nodes labeled "case statement" can all be the children of the CASE
node, or can form a parent-child chain as shown, the last one with a nil
right-most child.

Considerable freedom in the definition of an AST exists. However, an
AST should satisfy several properties:

1. Each interior node must carry an operator with uniquely defined
properties, e.g., number, kind, and ordering of children.

T
case-statement

label 1\"-
~

-:lo..---
3 T case-statement

label /\'
~

5 gT S3

CA5E e OF
3: 51;
5: 52;
9: 53

END;

Figure 7.11. A CASE statement expressed asan abstract-syntax tree.

7 Syntax-birected Translation 309

2. Every operator should carry some semantics and nOt just be a "place
holder." The test is whether it can be removed without losing
information in some way.

3. An operator usually arises through some production with either an
empty right member or more than one right member token. A single
production almost invariably contributes nothing to the AST con­
struction. This rule is not absolute, but is a reasonable guideline in
designing an AST and linking it into a translation scheme.

Exercises

1. Write a set of productions for a case statement such that the component
statements must carry one label each. Then devise an AST generator for
your set.

2. Devise suitable data structures through which a table-driven, AST­
generating, bottom-up SDTS can be designed. State the table-inter­
preting algorithm.

7.5.3. A Practical Bottom-Up Synthesis System

Figure 7.12 shows a set of three push-down stacks that can serve as the
basis of a general purpose, bottom-up synthesis system. Each of the stacks
grows downward, i.e., the "top-of-stack" is the bottom element.

Stack STATE is the usual LR(k) push-down stack. It contains state

State Point Info

...
E

2

+ 1

}

0 E data structu re
T

t } T data structure

}New Edata

~ structure

E - E+ T

I ~ ~ ~
New 2 1 0

Figure 7.12. A generalized bottom-up translation system with stacks.

310 Compiler Construction: Theory and Practice

numbers used in the parsing p:t:"ocess. On an APPLY step; the topmost set of
state numbers corresponds to the handle. We show an APPLY of production
E~ E+ T in figure 7.12.

Stack POINT contains pointers to an information stack INFO. Each
element in POINT corresponds to an element in STATE. Most of the
terminal elements and some of the nonterminal elements have an.empty data
structure in INFO, for example, the terminal token" + ", which points to the
same element as the nontermihal "T". Since some terminal elements carry
information (e.g., identifiers), the POINT stack will correspond exactly to
the STATE stack.

In addition to the three stacks, one cell for a pointer NEW is provided.
Figure 7.12 shows the state of the system just before an APPLY operation

is executed. Symbols E and T correspond to two data structures in INFO,
pointed to by POINT[2] and POINT[O], respectively. An empty area for a
"new" E (corresponding to the left part of the rule E ~ E + T) has been
provided on the INFO stack top, and pointer NEW is assigned to it.

We may now perform some sort of operation on the old E and T data
structures, either modifying them, or using them to construct a new data
structure. There are three general end results of such operations, illustrated in
the next three figures.

Figure 7.13 shows a PASS. The new data area and all but the deepest in the
stack of the old areas are dropped. Two elements are dropped from the
POINT and STATE stack in the example. Note that POINT[O] continues to
point to the same structure as before. This operation is useful for single
productions of the form A~ B, requiring no action. It can be seen that the
data structure associated with B is simply "passed along" to A. Of course, the
data carried by the E structure may be modified.

Figure 7.14 shows a KEEP. Here, we keep the old data structures and the
new one (presumably filled with useful information by this time). However,

State Point Info

E t=jmmQ~

PASS: All but the } E (old)
bottom-most INFO
data space dropped. ::}
Useful for single pro- I! T (old)-dropped
duction and for ~ ~

simple modification to !!}
one existing data ~' i New E-dropped

New- I Istru ctu re. L J

Figure 7.13. The PASS operation (see figure 7.12).

State Point

7 Syntax-Directed Translation 311

Info

KEEP: New Estruc­
ture kept, along with
existing old ones.

E t:=1------g
t-----l

} Old E
/-------1

} Old T

I-------l

~'----_----'} New E

Figure 7.14. The KEEP operation (see figure 7.12).

the old pointers in POINT are lost and replaced by the NEW pointer to the
new one. This operation is useful in building a tree structure on the stack. The
new E structure could carry an operator (e.g., "+" in this example) and
pointers to the old E and T structures. Note that we have an opportunity to
rearrange the old E and T children of the new parent node E.

Figure 7.15 shows a REPLACE. Here, information in the old data
structures is used to construct a new one, but then the old structures are
discarded by "sliding" the new structure into their pl,ace. The old pointers in
POINT are discarded and replaced by a pointer to the new structure. The net
effect is the same as a KEEP, except that useless old information is removed
from INFO, releasing space for new information.

The use of REPLACE implies that the replacement information must be

State Point Info

ECjmm~~t-------l }New E

I
I
I
I

:
I I
f------------~
I I
I I

~:l
~ L J

REPLACE: New E area kept, but old areas removed and stack reduced.

Figure 7.15. The REPLACE operation (see figure 7.12).

312 Compiler Construction: Theory and Practice

built in some temporary space while the existing space is being accessed; then
the temporary space is moved into INFO.

Fortunately, REPLACE is unnecessary in many languages. Suppose that
the grammar contains a nonterminal N such that N's data structure is empty,
~nd the datil structure of every nonterminal X that can precede N in the stack
is also empty. Then the INFO stack may simply be reset on any production
N~w, and no special attempt to reclaim space need ever be made. For
example, in F9rtran or Basic, the INFO stack may be cleared at the end of
every logical line (a line with its continuations). In Algol, the INFO stack
might be cleared at the end of every statement or declaration.

Of course, the STATE stack cannot be reset in Algol; it will contain
essenti~l informaTion regarding the blocks.

Organization of a Synthesis System

We may now describe the organization ofa synthesis system for a compiler
as follows:

1. Design a qat'!. structure for each of the grammar's tokens, terminal and
nonterminal. (Many of these will be empty.) Each structure will occupy
a certain number of words or bytes in INFO. Some may occupy a
variable number, however, the system can be more efficient if each
structure has a fixed length.

For example, if the scanner recognizes each identifier as a unit (i.e., the
grammar contains <identifier> as a terminal token), then the data
structure for <identifier> might be:

type IDENT=record LENGTH: integer;
NAME: array[1..15] of char

end

As another example, suppose the grammar contained a production

<array-spec> :: = array [<number> : <number>] of ...

(to simplify a Pascal structure), where the two <number> elements are
also nonterminals returned by the scanner as numbers. Then a suitable
data structure for <array-spec> might be:

type ARRAYSPEC = record LOWER: integer;
UPPER: integer

end

2. Upon an APPLY, the pointers in POINT will correspond to certain
data structures in the INFO stack. Pascal provides no direct means of

7 Syntax-Directed Translation 313

associating a POINT pointer with a type, but we may get around that
by statements of the following kind:

var SO: t EXPR;
SO: =POINT[O];

{new pointer to an EXPR type}
{pointer now given a value}

(The second statement requires a Pascal compiler extension.) Similarly,
pointer NEW must be associated with the data structure of the left part
of the production rule. We could devise a system that performs such
pointer assignments automatically, or simply do it as needed as part of
each apply action.

3. We next design a synthesis operation for each production. The nature of
the operation is usually clear from the data structures involved, and
what we wish to accomplish at the moment at which that particular
production is involved in the bottom-up parse.

For example, each of the productions E---? E+ T, T ---? T*F will call for
adding a node to an AST being built in INFO. A production ofthe form

<statement> ::= <identifier> := <expr>

will call for evaluation (through code emission or interpretation) of the
<expr> AST, and then emitting a "STOR <identifier>" instruction.

4. At the end ofthe synthesis operation, one of the three operations KEEP,
REPLACE, or PASS is selected.

The parser will manage the STATE and POINT stacks. A parser SHIFT
step may require the introduction of a terminal token data structure into
INFO; this structure must therefore be supplied by the scanner and written
into INFO.

Example. Let us build an AST with this system for the grammar G 1 given
below:

1. E---?E+T
2. E ---? E - T
3. E ---? T {unary minus}
4. E ---? T
5. T ---? T * F
6. T ---? T / F
7. T ---? F
8. F ---? (E)
9. F ---? <ident>

314 Compiler Construction: Theory and Practice

10. F ~ <ident> (E)
11. F ~ <const>

{an indexed reference}
{a decimal number}

Grammar G 1 is clearly an extension of Go to include subtraction, division,
vnary minus, identifiers, and indexed identifier references.

We need only one data structure, an EXPR type with several cases as
follows:

type EXPR = record case CODE: set of (binop, unop, var,
inxvar, const) of

binop: (OPERATOR: set of (add, sub, mit, div);
LEFT: jEXPR;
RIGHT: j EXPR);

unop: (CHILD: jEXPR); {only one unary operator: -}

var: (SYMPNTR: jSYMTAB); {pointer to token table}

inxvar: (SYMPNTR: jSYMTAB;
INDEX: j EXPR);

const: (CONSTVAL: integer)
end

The apply operations for each production may now be written as follows.
We have written out specific assignments to the pointers SI, S2, etc.,
corresponding to the POINT stack contents. This could have been done
automatically before each apply operation.

Production 1: E ~ E + T

with NEW do
begin {NEW assumed set to top of INFO stack}

CODE: = binop;
OPERATOR: = add;
LEFT: = POINT[2];
RIGHT:=POINT[O]; {pointers to the left and right

expressions}
end;
KEEP; {this builds upon existing structures}

Production 2: E ~ E - T

Same as production 1, except "sub" instead of "add."

7 Syntax-Directed Translation 315

Production 3: E ~ - T

with NEW do
begin

CODE:=unop;
CHILD: = POINT[O]; {pointer to T part}

end;
KEEP;

Production 4: E ~ T

PASS; {amounts to a do-nothing}

Production 5: T ~ T * F

Same as production 1, except "mit" instead of "add."

Production 6: T ~ T / F

Same as production 1, except "div" instead of "add."

Production 7: T ~ F

PASS;

Production 8: T ~ (E)

with NEW do
begin

POINT[2]: = POINT[I];

Production 9: F ~ <ident>

with NEW do
begin

CODE:=var;
SYMPNTR: = FETCH(POINT[O]);

REPLACE; {essentially a PASS, except that we want a
pointer to the E, not to the left parenthesis}

end;

316 Compiler Construction: Theory and Practice

{FETCH is a token table function. It locates the
identifier pointed to by POINT[O] and returns a
pointer to its attributes. Hence we have effectively
attached the attributes of the identifier to the
data structure being built. Failure to find the
identifier is an error condition that we shall not
deal with here.}

end;
REPLACE; {we don't need the identifier name anymore}

Production 10: F ~ <ident> (E)

with NEW do
begin

CODE: = inxvar;
SYMPNTR := FETCH(POINT[3]); {the <ident> has index 3}
INDEX := POINT[I];

end;
KEEP; {keep the new one and previous ones}

Production 11: F ~ <const>

type C = CONSTANT: integer;
var P : jC; {pointer to type C}

with NEW do
begin

CODE:=const;
P:=POINT[O];
CONSTVAL:=Pj.CONSTANT; {fetch the constant value

from INFO} end;
REPLACE; {don't need the old constant anymore}

Figure 7.16 shows the structure of INFO upon parsing the expression
Il(X-15)+IM2. POINT[O] points to a binary ADD node, with left child
II(X-15) and right child 1M2. The 1M2 node is a "variable" node, pointing
to the attributes of1M2 in the token table. The left child node 11(X- 15) is an
"inxvar" node, etc. We clearly have an AST, and the identifier attribute
association has been made.

Evaluation of an AST

Now suppose that the AST is evaluated by some tree-walking or
transforming automaton. The evaluation yields a block of output code, and

Point Info

7 Syntax-Directed Translation 317

Symtab
(attributes)

o

r-+---+~ bin 0 p
SUB

L----+----+l~1 bin 0 p
ADD

(left)
(right)

Figure 7.16. Appearance of the generalized translation system (see figure 7.12) after
translation of the expression 11 (X -15) + 1M2.

we then no longer need the tree. The evaluation and removal of the tree is
triggered by some other production containing E in its right part, demanding
evaluation, e.g.,

S~V:=E

a replacement statement. Ofcourse, the "V" is some variable and corresponds
to some variable type such as

type VARTYPE:
record case: set of {simple, inx} of

simple: (SYMPNTR: tSYMTAB);
inx: (SYMPNTR: tSYMTAB;

INDEX: t EXPR)
end

We let the "S" data structure be empty, so that upon completing this
production, the INFO stack will be emptied as well. The following program
illustrates a recursive top-down AST evaluator. It generates stack code. The
target machine has a separate index register whose value is first developed on
the stack, then placed in the index register by STAX. The instruction LA is a
"load address"; it determines the address of the following operand and pushes

318 Compiler Construction: Theory and Practice

it. TOS refers to the stack top; TOS - 1 to the operand just below the stack
top operand.

var S2=j VARTYPE; {pointer to VARTYPE}
S2: =POINT[2];

if S2j.CODE = inx then
begin· {left member is indexed variable}

EVALUATE(S2j.INDEX); {get index value on stack}
EMIT('STAX;'); {code to push into X register}
EMIT('LA ');
EMIT(S2j.SYMPNTR.ADDR); {address connected to vari­

able}
EMIT(',X;'); {indexed, and dosing semicolon}

end
else
begin {simple variable}

EMIT('LA ');
EMIT(S2j.SYMPNTR.ADDR); {address connnected to vari­

able}
EMIT(';'); {the dosing semicolon}

end;

EVALUATE(POINT[O)); {evaluate right member expression}
EMIT('STOR TOS-I,I;'); {do the store through stack label}
EMIT('DEL;'); {drop the label left on stack}
REPLACE; {empty replaces all the stuff used in these

productions}

Exercises

1. Develop a set of productions, a set of data structures and apply actions
to generate an AST of the form shown in figure 7.10, for an array
reference or procedure call. Note that the "A-ref' node has an indefinite
number of children. It must therefore be written on the INFO stack
after each of the expansion trees eI, e2, ... are written. Hint: write
right-recursive productions for the expression list, and examine the
sequence of bottom-up apply actions for such productions.

2. Develop productions and data structures for a CASE statement whose
AST h~s the form shown in figure 7.11.

3. Consiqer the AST evaluator given at the end of section 7.5.3.

7 Syntax-Directed Translation 319

(a) pive the AST and the emitted assemble code for each of the
following replacement statements:

A := B + 3*(C - D);

X[I-n:= Y[K] - 15;

(b) Note that the address of the left-hand member of a replacement
statement is pushed in the run-til'11e stack before the right-hand
member is evaluated. Suppose instead the index of the left-hand
member could be evaluated after the right-hand member is evalu­
ated. How could this be done?

(c) Instead of pushing the address of R in a nonindexed replacement
statement R := E, it would be more efficient to simply emit "STOR
R" after evaluating E. Show how to modify the evaluator program to
do this.

4. Develop a system that builds a linear linked list of INFO elements,
given (a) right-recursive productions and (b) left-recursive productions.
What is the order of the linked list relative to the order of the source list
in each case?

7.6. Bibliographic Notes

The notion of an SDTS was first formalized by Lewis and Stearns (Lewis
[1968]). The top-down and bottom-up transducers are adapted from Abo and
Ullman (Abo [1972a]), chapter 3. A general discussion of tree generation and
tree transformations may be found in DeRemer [1974a].

A great deal of literature exists on automatic translator writing systems. An
old, but comprehen~ive, review is in Feldman and Gries' paper (Feldman
[1968]). A more recent survey is given by Griffiths [1974c]. Specific
synt~x-directed translators are qescribed in Koster [1974], Brooker and
Morris (Brooker [1963]), and Metcalfe [1964].

CHAPTER 8

STATIC REPRESENTATIONS OF
DATA OBJECTS

Every common programming language permits a programmer to invent
names for the entities that he wishes to have the computer manipulate when
his program is executed. Properties may be assigned to his names through
special language forms called declarations. These properties can then be used
to define a particular ~lfiSS of operations for the named entities. For example,
an addition operator "+" can be used for a variety of different kinds of
addition-real, vector, fixed point-by assigning a type to its operands
through declarations. In this way, a few operators can be used for a large
number of related mathematical operations, increasing the power and clarity
of the language.

Some languages permit rather arbitrary aggregates of data to be associated
with a single name, for example, a matrix, a tree, or a linked list. The elements
of the aggregate can be accessed through various devices, such as indexing or
the use of composite names.

This chapter deals with the static association of user-defined names with
attributes. By static, we mean those associations that the compiler must keep
track of, as opposed to those that must exist when the compiled program is
executed. There are several aspects to static name association:

• Names will appear in the source more or less at random. Their
association with a set of attributes requires some means of efficiently
locating a particular name in a table.

• Several languages provide static scoping ofuser names through blocks. A
name will be useful only within its block. The same name may appear in
different blocks, but will represent different entities.

• A compiler may operate through one or several passes through the source
or through an abstract syntax tree generated on the first pass. In general,
the attributes of the user names are needed in all the passes.

• If the source code is free of errors, the names are no longer needed once
their attributes have been established and linked to the AST. However,
the compiler must be prepared to deal with source errors,and error
messages are often enhanced by including appropriate names.

320

8 Static Representations of Data Objects 321

8.1. Symbols, Declarations and Uses

Different kinds of symbols appear in most source languages. There are
symbols such as +, *, (,) that carry at most one or two specific, fixed
meanings in the language. There are strings of characters that represent
constants, such as quoted strings and numbers, called literals. Finally, there is'
a class of user-defined names, called identifiers that carry no inherent
meaning, but rather are assigned meaning through their context within the
source program.

An identifier is typically a string starting with a letter and containing only
letters and digits. It may have a bounded length (one to seven characters in
Fortran, for example), or unbounded. The strings in the source that comprise
identifiers are usually distinguished by a lexical analyzer. As we have seen in
chapter 3, the task ofdistinguishing identifiers from reserved words in certain
languages is not easy.

An identifier can be associated with any of a number of entities in a
programming language, for example:

• As a reference to some data area. The area may contain a simple fixed
datum or several data associated in some fashion.

• As a component of a composite name. The composite name may refer to a
data area, but the components refer only to some subset of the data area.
Composite names consist of a sequence of identifiers separated by some
special separator symbol, e.g. COMPANY_PAYROLL in Cobol.

• As a reference to a statement location in a program, i.e., a statement label.
We shall use the term label in this sense hereafter.

• As a procedure name.

• As a macro name.

• As a procedure or macro parameter.

• As a file, or a program, or a device connected to an input-output port of
the computer.

8.1.1. Attributes, References and Declarations

The set of meanings associated with an identifier is called its attributes.
Some examples of attributes are:

• Whether the identifier represents data, a procedure, a statement label, a
file, a macro, etc.

• If it represents a datum, which of several possible kinds of values it may
take on, its location, and its links to related data.

322 Compiler Construction: Theory and Practice

. If it represents a procedure, the location of the procedure, the number
and kinds of its parameters, whether it is user or system defined, whether
it can be called by a user or not, etc.

• If it represents a file, the characteristics of the file-;-record size, whether
fixed or variable length, whether sequential, random access, etc.

Clearly, attributes require some kind ofclassification scheme, as each of the
different kinds of identifiers in the language require a different form of
attribute specification. The number of attributes may also depend on more
than one declaration.

The compiler data structure that associates identifiers with their attributes
is called a symbol table. Often the identifiers are carried in a separate table
called a name table, with the attributes in a separate table called an attribute
table. We shall see that in most cases, the symbol table and its associated
abstract syntax tree (AST) can be carried in a single push-down stack.

A statement whose principal purpose is to assign attributes to some
identifier is called a declaration. An identifier is said to be declared when it has
appeared in a declaration. An identifier is said to be referenced or used in a
statement in which it appears, but in which no attributes are added to the
identifier's attribute set. Sometimes, an appearance of an identifier is both a
declaration and a use. For example, the Fortran statement

SAM = 1+1
in which I appears for the first time in the source, is both a declaration and a
use of I. Under the Fortran rules, identifiers beginning with I, J, K, L, M, or
N are assumed to be simple integer variables, unless there is a preceding
declaration to the contrary.

In general, a declaration usually causes no object code to be emitted, except
possibly to allocate space for data. A reference is usually associated with some
generated object code. Of course, a macro name reference results in the
generation of an expansion source string and may not be acsociated with any
object code generation.

An identifier that only appears in declarations and is never referenced is
useless-it need never appear at all. An identifier that appears in two or more
conflicting declarations in the same static scope is said to be multiply declared.
An identifier that appears in a reference, bet never in a declaration is said to be
undeclared. Whether undeclared identifiers are permitted depends on the
language-Fortran permits a class of undeclared identifiers, while Pascal does
not.

All the declarations of some identifier must usually precede any reference
of the identifier. There is no particular implementation reason for this
language policy, as a multi-pass compiler can deal with declarations and
references in any order. However, it is good programming style to group the
declarations together in a section of the source program that precedes all the

8 Static Representations of Data Objects 323

executable statements. When declarations must precede references, the
compiler can generate completed object code in one pass, except for forward
branches.

8.2. Scope of Identifiers

Every identifier possesses a region of validity within the source program,
called its static scope of definition. An identifier is available within its scope
and unavailable outside its scope. A reference to some datum through its
identifier is valid only if the reference lies within the identifier's scope.

The languages Fortran and Basic have very simple scope rules-the scope
of any identifier is an entire program or procedure, and a procedure cannot be
nested within another procedure.

In a block-structured language, the scope ofan identifier is that of the block
in which it is declared. However, the same identifier can be declared several
times within the same block without conflict. The scope rules may be
expressed as:

1. A block is a sequence of source with the structure HEAD DECLS
STMTS TAIL where HEAD may be the keyword BEGIN or a procedure
declaration head, DECLS are some declarations, STMTS are executable
statements, and TAIL is usually the keyword END.

2. Two blocks A and B must be disjoint, or one must be contained in the
other. Ifblock A is contained in B, A must be among the DECLS or STMTS
of B. Block A is then said to be nested in block B, and block B is said to cover
block A.

3. An identifier declared in DECLS in a block A is available throughout
block A, with the exception noted in (4) below. It is not available outside
block A.

4. An identifier may be declared in a block A and also in a block B nested in
A. The same identifier then represents two different objects. They are best
distinguished by renaming the B object for each appearance of the identifier
in block B. In any case, the A object is unavailable within block B.

5. The same identifier may be declared in two disjoint blocks A and B, and
represent different objects. As in (4) above, we may rename the B object to
eliminate confusion. Clearly, the A object is available only in block A and the
B object only in block B.

These scope rules are of considerable value to programmers. A new block
of source may simply be inserted into an existing program. Ifnew temporary
variables are needed in the new block, they may be declared within the block
without any concern that one of their names may have already been used in a
covering or disjoint block.

324 Compiler Construction: Theory and Practice

8.2.1. Single and Multiple Pass Compilers

A compiler is said to be single-pass if the object code can be fully generated
in one scan of the source. It is said to be multi-pass if two or more scans of the
source, or a source representation, are needed.

A single pass compiler almost always requires one or more tables or jixup
lists to achieve its translation. A common problem encountered in a single
pass compiler is the resolution of branches. A forward branch instruction
must be emitted to the object code list before its target location is known.
When the target location is found, the instructions must then be adjusted.
Sometimes the adjustment is done by a loader, just before the program is
executed; the loader then provides some of the services of a two pass
compiler. Otherwise, the compiler must carry a list of instructions that are to
be adjusted or "fixed up" when certain statements are located.

A mUlti-pass compiler can build a symbol table and an AST on the first
pass, then scan through the AST one or more times to resolve any code or
data locations before emitting object code. Some multi-pass compilers
actually scan the source a second time, performing all the lexical analysis and
SYmbol table lookups on each pass.

The principal advantage of multiple passes is that each pass can concen­
trate on just a few aspects of the compilation process. Each pass requires a
fairly small program, but one that is substantially different from those of the
other passes. A single pass compiler requires only one scan of the source, but
must invoke all its translation algorithms and code fixups repeatedly
throughout the single source scan.

The combination of multiple passes and block structuring requires a fairly
elaborate symbol table structure. We shall examine three general cases-the
"single scope" case which can serve for single or multiple passes, the "single

I pass, multiple scope" case, and the "multiple pass, multiple scope" case.

Single Scope Symbol Table

The symbol table and AST for a language with a single scope of variable
names can be carried in one push-down stack, as indicated in figure 8.1. The
attributes and names can be carried in a single data element. The same
identifier cannot be declared twice, so that names and attributes carry a
one-to-one association.

A name declaration requires a search for the name in the symbol table; if
already present, we have a multiply declared name-an error or not,
depending on the language. A reference also calls for a search to determine its
attributes. The AST can be built with pointers as needed to the identifier
attributes. Names are entered before any AST references can be built.

8 Static Representations of Data Objects 325

Growth

D
I SYMP I t

r , ...-----

I...---- .. HARRY

Attributes

~ ------ •
...----f-. SAM

I
Attributes

\a ------ •
IX1 MIKE

I
Attributes

..

-I ASTP I

Symbol
Table

~

AST

Figure 8.1. A single scope symbol table and abstract-syntax tree (AST). The AST and
symbol table can be part of one push-down stack.

Single-pass, Multiple Scope Symbol Table

Again, the names, their attributes, and the AST can ~hare one push-down
stack. With multiple scopes, the s~me identifier can be associated with several
different sets of attributes. Some identifiers such as I or N tend to appear
again and again in a program~ We can therefore achieve some economy of
stack space by writing a given identifier in the stack only once, and then
referring to it by pointers in the attribute entries. Figure 8.2 shows two scope
levels with six data objects and four identifiers currently active. The
corresponding program might be the following:

326 Compiler Construction: Theory and Practice

BEGIN
var SAM, FRED, MARY: integer;

BEGIN
var FRED, SAM, BILL: integer;
{Symbol table illustrated for this scope}

END;
END;

The rules for constructing and maintaining this symbol table-AST
structure are as follows:

Scope entry. Upon entering a new scope (a BEGIN or PROCEDURE), the
stack top is marked (the horizontal dashed line in figure 8.2). This provides
demarcations to separate the scopes in the stack.

Scope exit. Upon leaving a scope (through an END), the stack is popped to
the top-most mark. The pointers SYMP and ASTP, to the top symbol and
the AST root, respectively, are adjusted by following the element linkages
down into the stack to just below the mark.

Declaration. Upon a new identifier declaration, a search is made for the
name through the attribute pointer chain, starting at the SYMP attribute
(stack top). The search should continue to the bottom of the stack, in order to
share identifiers, however, the identifier is considered to be multiply defined
only' if it is found connected to an attribute above the topmost mark. If the
identifier is not found, it must be added to the stack. In any case, a new
attribute element is also added to the top of the stack.

Reference. Upon a reference of an existing identifier, a search is made for
the name through the attribute elements, st~rting with SYMP. The search
ends on the first matching identifier, although other attribute elements deeper
in the stack may also point to the same identifier (they must be in covering
scopes.) A reference usually results in someaddition to the AST; the SYMP
pointer is clearly available for this purpose. '

At the end of a block, all tp.e attributes, identifiers, and the AST portion
associated with the block may be discarded. Of course, this is not done until
the AST has been scanned, the block's code emitted, a symbol table map
printed, etc.

8 Static Representations of Data Objects 327

I
BILL

Level 1 L-J

Growth

I MARY [__~ .---_--,'

Level 0

Names Attributes AST

Figure 8.2. A single-pass multiple scope symbol table and AST, with name-sharing.
All three structures can share one stack.

Multiple Pass, Multiple Scope Symbol Table

A multiple pass, multiple scope symbol table takes the form shown in
figure 8.3. A common name table, with eacl?- name appearing exactly once can
be used as in figure 8.2. However, the attribute fields must be organized as a
tree, and carried through all the passes. The name table, attribute tree, and

328 Compiler Construction: Theory and Practice

AST are built in the first pass. Nothing is discarded at a block end, although
some names and attributes might be written to secondary storage to conserve
primary storage space.

On the second and subsequent passes, the AST is scanned, and its links to
the attributes are used. The name table is unimportant, except as a resource in
case program errors are found.

The tree of figure 8.3 corresponds to the following program:

BEGIN
var aI, a2;
BEGIN

var a3, a4;
BEGIN

var as, a6, a7;
END;
BEGIN

var a8, a9;
END

END;
BEGIN

var alO, all;
BEGIN

var a12, a13, a14;
{SYMP pointer effective here}

END
END

END;

The attribute tree, name table, and AST may be part of one push-down
stack; however, if we choose to discard the name table at the end of the first
pass~ it must be in a separate stack. A simple mark in the stack is inadequate as
a scope delimiter. We need a mark positiori in each attribute element. In
general~ SYMP will be NIL or will point to some attribute element, The
chain from SYMP down to the stack bottom will then represent a currently
active set of identifiers from the innermost nested block to the outermost
block. SYMP will move around the tree structure as we move from block to
block in the source.

The rules for constructing the attribute tree on the first pass are as follows:

Block entry. Mark the attribute node pointed to by SYMP, then prepare to
create a new son of that node.

Block exit. Move pointer SYMP down through the attributes associated
with the current level until a marked attribute is found. Note-pointer SYMP
may already point to a marked node.

level 21

,
level 1 {

level 0 {

a7

8 Static Representations of Data Objects 329

{use of LBL}

{declaration of LBL}

Figure 8.3. A multiple-pass, multiple scope symbol table. The attributes form a tree,
with pointers to each other and to a name table. The AST points to the
attributes. The structure can be built in one stack.

Declaration. A declaration calls for a new attribute element, to be linked to
that pointed to by SYMP. The identifier search is along the tree path from
SYMP to the stack bottom, following the attribute chains into the stack. Each
attribute element points to some name in a name table (not shown in figure
8.3). A name is multiply declared if found in the current level, but not
otherwise. The search should continue to the bottom of the stack if names are
to be shared.

Reference. A reference calls for a search along the path from SYMP to the
bottom of the stack. The identifier is undeclared if not found somewhere in
the tree path.

On the second and subsequent passes, the AST is simply scanned through
the links established in the first pass. SYMP is unnecessary.

8.2.2. Algol Statement Labels

In Algol 60, a label is considered declared when it appears as a statement
label. Thus a use of a label can precede its declaration. Every other entity
must be declared prior to its first use. For example, the following is a legal
block in Algol 60:

begin
go to LBL;
1:=1+ 15;

LBL: 1:=1+ 1;
end;

330 Compiler Construction: Theory and Practice

The usual scope rules apply to labels-the scope of a label is the innermost
block that contains the declaration. Thus in the above program segment,
LBL is unavailable outside the begin-end pair.

In order to handle Algol labels, we assign one of the following three
attributes to each statement label:

D: declared only (no reference)
RU: referenced at least once, but undeclared
R: declared, and referenced at least once

State D applies to a label that has appeared as a statement label, but not yet in
a GO TO. State RU applies to a label that has appeared in a GO TO, but not
as a statement label. State R applies to a label that has appeared both ways.
These three states permit the compiler to establish, at the end of a block, that:

• A label has appeared exactly once as a statement label

• A label has appeared at least once in a GOTO

The first condition is essential-if it does not hold, an error exists, and should
be reported. A label appearing in the symbol table but not as a statement label
implies that it has appeared in a GO TO, and that GO TO has no branch
target. A label appearing more than once as a statement label is multiply
defined.

If the second condition does not hold, a label has appeared only as a
statement label, not in a GO TO, and may therefore be removed from the
source. Failure of the second condition should be brought to the attention of
the programmer, as he apparently had something in mind when he labeled the
statement.

We can then implement the label states as follows:

Block entry. Mark the attribute stack as usual.
Block exit. Scan the current stack scope for the attributes RU and D. A "D"

attribute can be considered a warning, but the "RU" attribute is an error.
(However, there is a complication as we shall see in the next section.)

Statement label. If the label is not in the symbol table, then enter it with
attribute D. If it is in the symbol table, it must be a label with attribute RU, R,
or D. If R or D, we have a multiply declared label-an error. If RU, this
appearance is legal, and the attribute must be changed to R.

Reference. Here, the label has appeared in a GO TO. If the label is not in
the symbol table, then enter it with attribute RU. If it is in the symbol table, it
must be a label with attribute RU, R, or D. Any of these is legal, however,
attribute D is changed to R, while attributes RU and R are unchanged.

These rules apply only on the first pass. On subsequent passes, every label
will be marked "R" in an error-free program. Its associated location will be

8 Static Representations of Data Objects 331

known only in terms of some node position in the AST. Eventually, the AST
will be reduced to minimal form and code will be emitted. Only then will the
absolute object code locations of the statement labels be known.

A Complication with Algol Statement Labels

Under the Algol scope rules, a GO TO in some block can refer to a
statement label anywhere within a covering block, so that a transfer from
within some nesting level can occur to outside the block.

Now consider the following program:

{1} begin {start of block B1}
{2} begin {start of block B2}
{3} go to Ll;

{4} end; {end of block B2}
{5} Ll:.
{6} end; {end of block Bl}

Upon encountering statement 3, containing the first appearance of the
statement label Ll, Ll must go into the symbol table. In the absence (so far)
ofany other information, it would be placed in the block B2 scope. Now at the
end of block B2 (statement 4), the declaration of L 1 has not yet appeared.
Under Algol scope rules, the label need not be in block B2-it can be in some
covering block. This causes a certain problem for the compiler upon reaching
statement 4. An extension to the block exit mechanism is needed to deal with
this situation.

Clearly, the needed extension is some means of moving the Ll attribute
from the block B2 scope into the block B1 scope. This may have to be
repeated at the end ofblock B1, if the label L 1 has not yet been declared, until
the end of the program is reached, if necessary. Only then may the compiler
conclude that label Ll is undeclared. In this way, label Ll is "handed down"
through the covering blocks until its declaring block is found, or until the end
of the program is reached.

Moving an attribute from one scope into another is fairly easy in a
single-pass compiler. In figure 8.2, when the end of a block is reached, that
block's attributes are discarded. Instead of discarding the undeclared labels,
they may simply be kept in the stack, and the stack mark moved to cover
them.

In a multi-pass compiler, attribute movement can only be achieved by
organizing all the attributes as linked lists. In figure 83, the attributes of each
block are shown as contiguous, but they must in fact be linked by pointers.

332 Compiler Construction: Theory and Practice

Then the "movement" of an attribute from one block to a covering block is a
matter of changing a few pointers. We leave the details to an exercise.

Exercises

1. Sketch a single-pass and a multiple-pass symbol table for the following
multiple scope program. Show the table structure at the end of each
block, just before the block exit occurs.

begin
var ED, SAM;
begin

var MIKE,MARY,SAM;
end;
begin

var ED,MIKE;
begin

var SAM,BILL;
end;
begin

var AL,MARY;
end;

end;
var SAM,BILL;

end;

2. In the multi-pass, multiple scope symbol table structure of figure 8.3,
are reverse links between the attribute .elements needed?

3. Consider Fortran data declarations. An identifier may appear in several
different declarations in any order without err<;>r, as follows:

• an EQUIVALENCE declaration

• in a COMMON declaration

• in a type declaration, e.g. INTEGER SAM,FRED(15)

• in an ARRAY declaration, e.g. ARRAY MIKE(250)

• in aDATA declaration

Furthermore, if an identifier is dimensioned in a type declaration, it
should not appear at all in an ARRAY; if it appears in an ARRAY
declaration and in a type declaration, it should be dimensioned in only

8 Static Representations of Data Objects 333

the ARRAY declaration. Give a set of attributes and rules for dealing
with Fortran data identifiers. Hint-construct a·finite state automaton
that describes all legal declarations for an identifier.

4. Show informally that the symbol table structures illustrated in figures
8.2 and 8.3 gua.rantee that (l) an identifier declared in some block is
available only within that block, and that (2) an identifier I declared in
block A is unavailable in a nested block B, if I is also declared in B.

5. Suppose that a multiple pass compiler were to be implemented using the
structure of figure 8.2. The multiple passes are only through the current
scope. That is, as soon as a block end is reached, several more passes
through the AST associated with that block are made to finish the
compilation. Then the current block's symbol table can be deleted.
Could such a system be made to work? Would there be any advantage, if
so, over a single pass system?

6. In the single pass scheme of figure 8.2, the names are separated from
their attributes in order to reduce the storage for the identifier strings.
Suppose that name sharing is not attempted-a name could then be part
ofits attribute structure. The advantage of this is that a pointer from the
attribute to the name is not needed; the disadvantage is that the same
name may appear multiple times in the stack. Let an average name
length be N bytes, and· a pointer be 2 bytes. How much name sharing
must occur in order for separated names to require less space than
names associated with their attributes?

8.3. Data Objects and Their Static Representation

A data object is some entity associated with a name that comes into
existence when the program that contains it is executed. It is carried by some
memory field for the duration of its life, and it is operated upon by various
program instructions. A given object may carry a variety of different values
during execution and may reside in physically different sections ofmemory at
different times. Its key property is continuity; its value is preserved between
accesses and is only changed through some assignment statement in the
program. Its life mayor may not end when the program control passes out of
its identifier's scope. Some data objects are created initially and survive for
the life of the program, while others survive only while program control
remains in the static scope of its identifier.

A data object has an externai and an internal structure. Externally, its
structure is defined by its language declaration-e.g. REAL or BYTE
ARRAY. Internally, it is some field of binary information in memory,

334 Compiler Construction: Theory and Practice

possibly scattered about in the available memory space.
To a compiler, a data object is an entr:yina symbol table. It possessesa set

of attributes, and they may include a prescription of its location in memory
during execution. The operations on a data object implied by the source
language are. partially determined· by its attributes and result in a certain
sequence of emitted code that, when executed, affect the memory cells
assigned to the data object.

The treatment of the data object associated with an identifier. depends on
the attributes assigned to the object through its declaration. In most computer
systems, the internal form of every data object is some sequence of binary
digits which provides no clue as to its purpose. It is the task of the compiler to
associate meaning with every data object and to guarantee that the specifica­
tions of the program with respect to the data object are faithfully reflected in
the sequence of machine code being generated;

8.3.1. Primitive Objects

A primitive data object is an object that is normally treated as a unit by the
operations of the language. It usually cannot be subdivided by any operation,
and in many modern languages, the intebnalstructure of the primitive objects
is undefined.

Each data object is internally encoded in some manner that depends on the
objeCt machine system and the programming language system. For example,
the 16-bit binary number

1110010100000010 or (octal) 162402

can be interpreted in any of the following ways on an HP3000 computer:

1. As the memory reference instruction STB Q+2, I (store a byte on the
top of stack into a location marked by an indirect address located 2
words relative to the Q register).

2. As the "integer" - 6910 (decimal form).

3. As the "logical" 58626 (decimal form).

4. As an indirect address, pointing to a location 6910 words offset from the
contents of the program register, "PB".

5; As the pair of bytes (8 bit data objects) 345 (octal) and 2. These bytes
may be interpreted as the ASCII characters "c" and "STX", e.g;, lower
case letter "c" and the special character "STX".

One of these interpretations is selected during execution by an operation
on the data. Thus the STB interpretation holds when that word is fetched into
the instruction register and executed.

If the word is fetched and loaded in a data register, and then an "integer
add" operation is executed, it is effectively interpreted as an "integer." If the

8 Static Representations of Data Objects 335

operation is a "logical multiply," then it is interpreted as a "logical," and so
forth.

Every computer has a set of definitions of the primitive data objects upon
which its instruction set is designed to operate. Matching the computer
operations and data objects to those required by a source language is
sometiffies troublesome. For the sake of efficiency, as many of the machine
operations as possible should be used for source language operations; if a
difference in specification exists, then the language operation must be
simulated by a procedure call or a sequence of machine operations. For most
common languages, the common machine operations and language opera­
tions are arithmetic in character, making a match possible. However,
different machines use different word lengths and representations, which
affect the maximum range of numeric values. Some idea of the variety of
number representation may be gained from the following examples.

1. On the IBM 1620, numbers are represented as a string of characters,
representing decimal digits. Special marks are included for the repre­
sentation of floating point numbers, signs, and the end of a number,
since numbers may be of different lengths.

2. On the IBM 360, numbers may be represented in a variety of forms.
There is a set ofbinary integer forms, 16 and 32 bits in length, short and
long binary floating point numbers, and two decimal numbers (packed
and unpacked). A small positive integer may be represented as a byte.

3. On the CDC 6000 series, only floating-point numbers 60 bits long are
handled by the instruction set. The format is interesting, as there are
representations for "infinity" andfor "undefined." Integer arithmetic is
done with the floating-point hardware. The number format is l's
complement, rather than the usual 2's complement.

The representation of characters as an internal code is similarly nonstan­
dard among the computer manufacturers. IBM has used EBCDIC, many
smaller manufacturers use ASCII, and CDC uses its own kind of 6-bit
character code, called display code, for character representation. Even within
one manufacturer and one standard code, some variations are found, for
example, ASCII has different versions to reflect differences in foreign
languages.

Printers, terminals, and other character-oriented devices also exhibit
coding variations, even within a single manufacturer's product line.

Now consider the source language. What are its specifications with regard
to its primitive data objects? Let us consider some example source specifica­
tions.

1. ANS FORTRAN (Campbell [1976]) says this of the "integer type" and
"real type":

336 Compiler Construction: Theory and Practice

"An integer datum is always an exact representation of an integer value. It
may assume a positive, negative, or zero value. It may assume only an integral
value. An integer datum has one noncharacter storage unit in a storage
sequence. A real datum is a processor approximation to the value of a real
number. It may assume a positive, negative, or zero value. A real datum has
one noncharacter storage unit in a storage sequence."

Of characters, the Fortran standard states "a character datum is a string of
characters," and that "a character datum has one character storage unit in a
storage sequence for each character in the string." The internal form of a
character is left unspecified. The standard only addresses the issue of
connectedness of a set of characters that constitutes a string.

2. In Algol 60 (Naur [1963]), three primitive objects (integer, real,
Boolean) are provided. Very little is said about them except that integers and
reals may be positive or negative numbers, and that Booleans may only
assume the values TRUE and FALSE.

3. Pascal recognizes four primitive objects: integer, real, char, and Boolean.
The report says of integer, for example, only that "it is an element of the
implementation-defined subset of whole numbers."

We see that the structure of the primitive data objects are not specified in
these languages. Each of these languagec is intended to be implemented on a
variety of computers. The languages are also such that the internal details of
primitive objects are not essential to an algorithm and should not be. If
nothing in a program depends on the implementation details, then the
program can very likely be transported to several quite different computer
systems.

However, a compiler is implemented on some machine and has a particular
object machine. It is usually desirable that the compiler, too, be as nearly
machine-independent as possible, though it cannot entirely be so. The
characteristics of primitive data objects enter a compiler in two ways: (1)
some choice of data type must be made to handle conversion of source
language constants, and (2) some section of the compiler must deal with
conversion (if any) from a compiler "internal" form of constant to the object
machine data form. Both these tasks clearly should be relegated to a few
low-level procedures that can be easily modified if necessary for the sake of
portability. The bulk of the compiler algorithm should be indifferent to the
internal representation details demanded by anyone host machine.

The permissible ranges of primitive data objects are subject to several
limits: (1) those imposed by the source language (usually there are none), (2)
those imposed by the compiler implementation (there should be none), and
(3) those imposed by the object machine. Of these limitations, the last is the
most crucial for performance. As many operations as feasible should exploit
the machine hardware provided for the purpose, and these operations may
function slightly differently on different machines.

8 Static Representations of Data Objects 337

Some languages provide means of specifying minimum number ranges or
number properties. In Algol 68, a program may be preceded by a standard
prefix that contains a minimum set of specifications that must be met by the
operators and data objects of the program. An Algol 68 compiler for some
target machine is expected to check this specification set against the target
machine and report any difficulty in meeting the specification.

In Pascal, numeric data may be specified with a range, e.g.,

var day: 1..31; month: 1..12; year: 0..2000

The judicious use of a range, rather than just "integer," can overcome
potential problems with numeric ranges and also make possible reductions in
the size of the data structures.

In PL/1, the user may specify a base (decimal or binary), a scale (number of
places by which a decimal point is assumed shifted), a precision (number of
significant digits), and a mode (type). All of these ranges may be specified in a
declaration, and the compiler is expected to select a target machine data
object that meets or exceeds the source specification, and to perform whatever
special operations that are necessary to make the machine data object
operations conform to the source specifications.

Fortran provides no number range specification. Worse, standard Fortran
permits quite general equivalences of one data object to another, e.g.,

DOUBLE D;
REAL R;
EQUIVALENCE (D, R);

With these, the data space associated with the double D and the real Rare
shared. Clearly, a determined (or naive) programmer can access the internal
structure of a REAL (very machine dependent) in an otherwise high;-leve1
program.

8.3.2. Types

A type is a means within the source language of assigning a set ofattributes
to a data object. Most languages provide a set of standard primitive types, and
some permit the user to organize a set of types and then to assign a type name
to that set.

The assignment of a type to a data object is made through its declaration.
Typing provides several benefits of considerable value:

1. The user often has a choice of more than one applicable type. He may
thenchoose one that represents the best compromise between a needed
range and memory economy.

338 Compiler Construction: Theory and Practice

2. A few operator symbols can represent a large number ofoperations. For
example, the symbol "+" can represent the addition of a large variety
of numeric objects, including pairs of differently typed objects. The
specific operation implied by a "+" then depends on the types of its
operands.

3. The compiler can provide a strong guarantee of operation integrity
through the use of internal data conversions, warning messages, or error
messages.

A strongly.;.typed language is one in which a typing of every object is
required and is rigorously enforced. A compiler for such a language will
never permit an object of some type to be operated upon as though it had
another type, without an explicit command in the source language, or without
a conversion.

The controls provided through data object typing are defeated if any of the
following language features exist and are used:

1. Equivalences. An equivalence permits some target machine data object
field to be shared among two or more objects, with possibly different types.

In Fortran, an equivalence can be created through the EQUIVALENCE
statement or through the COMMON statement. Two different data objects
thereby share a common data space. An equivalence of a Fortran REAL and
an INTEGER will clearly permit some kind of access of the bits in the REAL
as though they represented an INTEGER instead, without numeric conver­
sion. Any program that exploits such a capability must have been written with
a particular implementation in mind and is not transportable.

2. Binary operations on nonbinary types. For example, if the language
permits a shift or a bit-by-bit logical operation on a real number, the real can
be altered or accessed in ways that depend on its internal representation.

3. The use of characters or other nonarithmetic objects in arithmetic
contexts. For example, the conversion of a string of digit characters to its
equivalent numeric value requires a translation of each digit character to its
equivalent value. It is best that this be done through a collation function, e.g.,
the Pascal function ord(c). The function ord(c) returns an ordinal collation
index for a character c, which is not necessarily the internal code for the
character but which represents its alphabetic or numeric ordering.

4. Passing a data object by reference to a procedure call, when its type and
the type of the corresponding formal object differ, without also passing type
conversion information. Without conversion information, such a parameter
pass can only be treated as an equivalence by the compiler.

5. Use of assembly language intermixed with the high level language.

8 Static Representations of Data Objects 339

Assembly language enforces no typing rules, and can be used to defeat any
compiler system, but at the cost of total nonportability.

6. Writing a file with one format specification and reading it with another.
The only protection against this possibility lies in a file label that carries type
specifications for the file and a source language that permits only labeled files
to be written or read.

7. Use of illegally large or small array indices to access some memory area
not assigned to the array by its declaration. This very bad practice is in fact
possible with most compilers, because array bounds checking can only be
done with additional code, degrading performance. The deliberate use of an
illegal array index must be condemned for any but the most primitive,
machine-level programs. It presupposes that the adjacently accessed data
areas will remain in place in the source, that anyone modifying the source
code will understand and respect the practice, and finally that all future
versions of the compiler will continue to allocate data object space in exactly
the way the programmer expected. These suppositions are rarely true.

8. Uncontrolled use ofpointers. A pointer is effectively a memory address.
Its address value may be altered during execution and then used to access the
information it points to. Pointers are valuable in assembly language, but have
not found their way into many high-level languages, because of the difficulty
of controlling their use.

Pascal is a notable exception since a pointer is always typed. It can only be
declared in association with some type. When it is set, it may only be caused
to point to a data object of its own type. Then when the pointer is used
indirectly (i.e., to access the data object to which it points), the compiler and
the programmer have confidence that the typing rules are not violated.

Type Conversion

A typical problem that arises in typed languages is mixed-mode type
conversion, illustrated by the following Fortran example:

C = 1+ J*(RjD)

where I and Jare type INTEGER, C is type COMPLEX, R is type REAL,
and D is type DOUBLE PRECISION (floating point). The Fortran
conversion rules are essentially expressed by a type hierarchy as follows:

COMPLEX> DOUBLE> REAL> INTEGER

This means that, given an operation on data objects of two types (t1' t2),

that type t with the higher hierarchy is chosen as the type of the operation.
The data object with the lower type is first converted to type t, the operation
is performed in type t, and the resulting expression is considered to be of
type t.

340 Compiler Construction: Theory and Practice

The type hierarchy in Fortran reflects an ordering imposed by the domains
of the various types. Although the Fortran specification says only that an
INTEGER or REAL datum has "one noncharacter storage unit," and that a
DOUBLE PRECISION or COMPLEX have "two noncharacter storage
units" in consecutive order, it is reasonable to suppose that on most
implementations,

• Every INTEGER value can be represented by some REAL, perhaps
with some loss of precision for large integers.

• Every REAL value can be accurately represented by some DOUBLE.

• Every DOUBLE can be represented by some COMPLEX, perhaps with
some loss of precision.

The hierarchy therefore provides a reasonable assurance that any binary
operation allowed by the Fortran language will yield a valid result, although
with some loss of precision in certain cases.

One binary operation is prohibited-between a DOUBLE-type and a
COMPLEX-type data object.

The hierarchy is applied to each binary operation as it appears in an
abstract-syntax tree as follows:

Let h(t) be the hierarchy index of a type t, as expressed by the table:

type t h(t)

INTEGER 1
REAL 2
DOUBLE PRECISION 3
COMPLEX 4

When the AST is constructed for some expression, each leaf is tagged with
h(t), where t is the type associated with the leaf. Then each operator node N is
tagged with index h' = MAX(hp h2), where hI and h2 are the hierarchy
indices of N's children. .

For example, a node with a DOUBLE child and an INTEGER child
would be marked DOUBLE.

The tree operations implied by these typing rules are of a bottom-up
character; we say that the attributes for any node are synthesized from its
descendant attributes. Clearly, the necessary node types can be constructed
while the AST is being built by a bottom-up parser, assuming, of course, that
all the leaf attributes are known during the expression parse (they are in most
languages.)

An assignment statement in Fortran has somewhat different typing rules.
Given the statement

v=e

8 Static Representations of Data Objects 341

a conversion from the "e" type to the "v" type is to be automatically
generated by the compiler. A conversion is specified for every pair of types.
The conversion from a smaller to a larger hierarchy (e.g., INTEGER to
DOUBLE) preserves arithmetic value, though with some loss of precision in
certain cases. However, those conversions from a larger to a smaller hierarchy
may result in overflow or other undesirable side-effects.

Conversion is easily added to the AST in preparation for code generation.
We merely add a unary conversion node between every pair of linked nodes
of different type. This is most conveniently done during the bottom-up type
decoration of the tree nodes. The assignment node is given the type of its left
member, so that a conversion node (if required) will appear between the
assignment node and its right member.

The assignment statement given above therefore yields the AST shown in
figure 8.4, which carries four conversions. All the binary operations in the
right-hand expression are performed in double precision, because of the
structure of the expression. If the "*,, were to be replaced by a "-", then the
1+ Jwould be performed in integer mode and converted to double precision
for the subtraction.

The Fortran standard rules illustrate a typing system used in several
languages. Other typing systems have been defined for special languages. For
example, a Fortran implementation on a CDC 6000 series system has the
following typing rule for expressions:

c C C D-C

o I-D

o D

Figure 8.4. A typed AST, with conversions added, for the Fortran assignment
statement C= I+J*(RjD). The notation R-? D means "real-to-double
conversion."

342 Compiler Construction: Theory and Practice

Every operation covered by a pair of parentheses, or every operation of an
open expression, is performed in the same type. That type is hierarchically
the largest of the types in the set of operands associated with the operators.

A pair of operations is said to be covered by a parenthesis pair if the
parentheses are matched, and they are either not separated by any parentheses
or are separated by a matching pair of parentheses. An open expression is one
not enclosed by any parentheses.

Thus in the following expression all the + operators are executed in type
REAL:

(I + 1 - (R*I) +'I)

The REAL expression in the inner parentheses causes all the 1 operations to
be performed in type REAL.

We leave as an exercise the construction of a type-decorated AST with
inserted conversions for these typing rules.

Exercises

1. Construct a typed AST for each of the following Fortran assignment
statements. I, R, D, and C refer to data objects of thefour Fortran types.
Which of them contains a typing error?

R I*C - COMPLEX(Djl)
C I*C + IjR*(D+R)
D R + (1*(1-1))
1 = C + C - I*Rjl + R

2. Give an algorithm for the construction of a type-decorated AST for the
CDC 6000 Fortran rules. Notice that parentheses disappear in the
AST-what can be done to retain their influence on the node typing?

3. Give an example of an expression that will evaluate differently under
ANS Fortran and CDC Fortran typing rules.

8.3.3. Structures

User-defined structures provide powerful means of organizing algorithms.
The design and expression of a suitable data structure is as important as the
design and expression of the program statements.

A structure is any assemblage of primitive data objects organized in such a
manner as to facilitate the coding of some algorithm. As a program might be
structured through the use of if-then-else or while-do statements and

8 Static Representations of Data Objects 343

begin-end blocks, so might data be similarly organized. An optimally clear
and concise program results from the balanced use of control and data
structures.

The most primitive assemblage of data is probably the one-dimensional
array, or vector. An array permits the selection of anyone object of a set by
means of an integer index. Each of the array elements have the same type and
are normally arranged in contiguous memory locations. Whether an array
must be' arranged contiguously depends on the language. Fortran permits
rather general equivalences, hence the arrangement of array elements in
memory is an important language specification. PL/I guarantees contiguity
only if the array is part of a "structure" and not otherwise.

An obvious extension of an array is a multidimensioned array, or matrix. At
one time, Fortran permitted matrices with no more than three dimensions. In
Fortran IV, an array may carry any number of dimensions. Algol 60 permits
arrays of any number of dimensions, as does Pascal and PLII.

Arrays may be statically or dynamically dimensioned. A statically dimen­
sioned array carries bounds fixed at compile time. A dynamically dimen­
sioned array carries bounds that may be dynamically adjusted when control
passes through its declaration, or when a special allocate statement is
executed. Dynamic arrays are usually more costly to implement than static
arrays, but permit greater control over the use of memory resources and
greater flexibility in programming..

A more general data structure is the PLII structure, which is a a tree of data
objects. Each ofthe objects is a tree leaf and may be accessed through a special
name convention from the root down. The nodes may be arrays. The purpose
of a PL/I structure, beyond documentation (the separate pieces could just as
well be declared separately), is to collect disparate data objects together in a
contiguous section ofmemory and to permit all or some of the data objects in
a PL/I structure to be accessed as a unit through one name reference.

Another form of data structure is the Pascal user-defined type. Here, a data
structure may be given a name without an accompanying allocation of data
objects. That name may then be used in its own structure, or in other
structures, and will ultimately represent some set of data objects. For
example, a type that contains its own name can express a quite general
directed graph in a compact form.

The issues of data structuring as they apply to compiler design are these:

1. How might a data structure's static properties be represented internally
as a symbol table structure?

2. Given a reference to some data object, perhaps a member of some
structure, how can its symbol table entry be located? As we shall see,
this is not a trivial problem for PL/I and Cobol.

3. How might a data structure be represented at run-time?

344 Compiler Construction: Theory and Practice

4. Given a data structure's representation, how is a data object best
accessed?

5. If the data structure is dynamic, what run-time representations and
access mechanisms are required? Several different kinds of dynamic
structures have been proposed in different languages, and they require
rather different run-time representations.

We shall deal with the static issues (1,2) in this section, and deal with some
of the dynamic issues (3,4,5) in the next chapter.

8.3.3.1. Array Objects

The most common aggregate of primitive data objects is the array. Arrays
are accessed through some base address and one or more integer indices.
Whether an array is physically in contiguous memory is important in
Fortran, but not in Algol, Pascal, or PL/I. It is usually only necessary that a
mapping from a set of indices to a unique element exists. However, we shall
develop two access methods; the first requires contiguity, and the second
requires contiguity only of each slice of a multidimensional array.

An array may be static or dynamic. A static array has a set of bounds fixed
at compile time. These bounds are carried in the symbol table as part of the
array's attributes, and used to generate code to compute an effective index for
every reference. We shall deal only with static arrays here. Dynamic arrays
are treated in chapter 9.

Suppose an array is dimensioned

and we have a reference

A[el' e2, e3]

The b j and Uj are compiler constants. The ej are expressions to be computed at
run-time in general. Now the integer values of el' e2, and e3 must be within
the dimensions, i.e.,

b3 ::::; e3 ::::; u3

A reasonable compiler assumption i~ that these constraints are always met. If
desired, the compiler may emit additional run-time code to check each of the
array reference indices el' e2, e3against the required limits.

The array A may be mapped into linear memory in several different ways.
We present two here, suitable for static arrays, and a third, for a dynamic
array, in the next chapter.

8 Static Representations of Data Objects 345

Linear Mapping. The array A may be mapped onto a contiguous linear
memory space in increasing order as follows:

A[bl' b2, b3]

A[bl' b2, b3 + 1]

A[bl' b2, u3]

A[bl' b2 + 1, b3]

A[bl' b2 + 1, b3 + 1]

A[bl' u2' u3]

A[bl + 1, b2, b3]

Let the address of the first of these be denoted B. Then the offset X of any
other element, with indices el' e2, e3, is clearly

X = n3 *n2*(el -bl) + n3*(e2 -b2) + e3 -b3

where

n2 = u2 - b2 + 1, and
n3 =u3 - b3 + 1.

Note that nl =u1 - bl + 1 is unnecessary and that X may be rewritten as

The last term is a compile-time constant, while the first two must be
evaluated·at run-time. This expression for X suggests that we should

1. Create a fictitious "base" address

2. On a compiler reference, compute an index

(two additions and two multiplications).

346 Compiler Construction: Theory and Practice

3. Access the element as

<operation> B', X'

i.e., an indexed reference through a base address B'.

The generalization of this scheme to any number of dimensions should be
clear.

The symbol table attributes associated with A are also clear-we need only
the fictitious base address B' and the parameters n2, n3 •

Exercises

1. Generalize the linear access scheme to n dimensions, where n 2: I.

2. Matrix elements are usually accessed in a loop, with index values
incremented in unit steps on each pass through the loop. Discuss
informally some optimizations that could profitably be applied to such
loops. For a case study, consider Warshall's algorithm given in chapter
5, or matrix multiplication.

3. Suppose the target machine is a stack machine. Design instructions that
carry out as much of the array access as possible, leaving a minimum to
be executed by compiler-generated instructions. Are fewer instructions
required?

4. Discuss array bounds checking at two levels-(a) each index must be in
range of its own dimensions, and (b) the final referenced datum must be
in range of the A matrix values. Are there sound reasons for preferring
the first despite its obviously higher cost?

5. Suppose that indexing arithmetic is limited to a finite word size, e.g. 12
bits. Discuss the problem of trapping all illegal indexing operations at
compile time, given various kinds of lower and upper dimension limits.
Is it possible that every dimension and reference is within range of the
number size, but that some intermediate result is out of range?

6. Suppose one or more of the index expressions ei are compiler constants.
How might the number of operations required to produce an indexed
reference be reduced?

Matrix Pointers. Another way of accessing a multidimensioned array is
through a system of matrix pointers. For example, consider a two-dimen­
sional array

var X: array [O..m, O..n] of integer;

8 Static Representations of Data Objects 347

We construct a vector V of size m+ 1, containing pointers. Each pointer is
directed to a different row (second dimension) of the two-dimensional array.
Then the access of an element Z[i, j] is a matter of fetching V(i), which points
to an array slice, then indexing into this slice through index j. On certain
machines, this combined operation can be very fast-we only need a set of
index registers and a special operation that steps the machine through the
pointer arrays to the final data array element.

The fetching of Z[i, j] might appear as follows in stack machine code:

LOAD i; {evaluate first index}
STAX; {move value to index register; TOS is deleted}
LOAD V,X; {fetch pointer to the i'th slice}
LOAD j; {evaluate second index}
STAX; {move to the index register}
LOAD TOS,I,X; {fetch the value indirectly through

pointer on stack and index j}

Exercises

1. Develop a formula for the memory space required for an array of n
dimensions d1, d2, ••• , dn. Assume that each pointer requires one unit of
storage and that each data element requires b units of storage. Then
express the percentage overhead required for the pointers and show that
this relative overhead decreases to zero as the dimensions increase. (The
parameter b is usually 1 or 2.)

2. Discuss the relative efficiency of the matrix pointer and linear access
methods, with and without optimizations. Examine a specific algorithm,
e.g., Warshall's algorithm or matrix multiplication.

3. Assume the target machine is a stack machine. Design high-level
instructions to retrieve and store a data object organized by matrix
pointers. Should a pointer have any special flags, e.g., indirection?

8.3.3.2. PLjl Structures

Several modern languages provide means of declaring collections of data
organized -as lists and/or trees. One of the earlier aggregrate declaration
forms is the PL/I structure, illustrated next. (Cobol has a similar structure
definition.)

DECL 1 PAYROLL(75),
2 NAME,

3 LAST CHARACTER(12),

348 Compiler Construction: Theory and Practice

53 FIRST CHARACTER(8),
3 MIDDLECHARACTER(I),

2 PAY_NO CHARACTER(5),
2 HRS,

3 REGULAR FIXED DECIMAL(2),
3 OVTIM FIXED DECIMAL(2),

2 RATE,
3 STRATE FIXED DECIMAL(3,2),
3 OVRTIM FIXED DECIMAL(3,2);

This structure defines a payroll file for a firm with 75 employees. We have a
static tree structure with the leaves: LAST, FIRST, MIDDLE, PAY_NO,
REGULAR, OVTIM, STRATE, and OVRTIM. The remaining names are
internal nodes. Each of the leaves is an elementary data object or an array.
Each of the interior nodes can be an array, and if so, means that its subtree is
replicated in memory by as many elements as specified in the array
dimension.

The integer prefixes define the level number; the syntax does not otherwise
fix the tree level numbers.

A data element is accessed through a composite name, e.g.,

PAYROLL(15).HRS.OVTIM

or

PAYROLL(P).NAME.LAST(X)

The latter name designates character X of the last name of employee P.
A set of data objects may also be accessed through the name of some

internal node in the structure. For example, PAYROLL(2).NAME stands
for the set of three data objects LAST, FIRST, and MIDDLE of the second
employee. '

The name

NAME.HRS

is illegal; the two parts NAME and HRS are drawn from the same level.
PL/I permits abbreviating a structure element name, by omitting any of its

components, provided that the specified data object is unambiguously
designated. Abbreviation poses an interesting and nontrivial problem of
symbol table access, and poses a need of detecting ambiguous name
references, which we shall deal with shortly. Array indices may also be moved
to the right, but may not be reordered or omitted. Because of index
movement, every array reference must carry an index. For example,

PAYROLL.NAME.LAST(P)(X)

and

8 Static Representations of Data Objects 349

LAST(P)(X)

are also legal representations for the name PAYROLL(P).NAME.LAST(X)

The remaining features in the PL/I PAYROLL structure given above are
attributes of the leaf node data object:

• CHARACTER(l2) is an array of 12 characters.

• DECIMAL(2) is a decimal number with 2 significant places, e.g., any
number in the range 00-99.

• DECIMAL(3, 2) is a decimal number with a decimal fraction, 3 digits
ahead of and 2 behind the decimal point, e.g., 345.67.

A picture of part of this structure as it might appear in memory at runtime
is given in figure 8.5. Only one of the 75 PAYROLL subtrees (the one for
index 5) is broken out and completely displayed. For example,

PAYROLL(5).HRS.REGULAR

has the value 40 according to this structure.
PLII Name Scanner. A PL/I structure name may be completely or

partially specified. Any partial specification (consisting of only some of the
names along a path from a root to the data object leaf) is legal if a unique data
object is thereby specified.

A name in PLII, whether partial or full, is considered ambiguous only if, as

PAYROLL

1 5 6 74

NAME PAY_NO HRS RATE

I I 32~571 ~ ~
LAST FIRST MIDDLE REGULAR OVTIM STRATE OVRTIM

ISMiTH IrrtJ ~ ~ ~ IOO4~ ~--- -- -..-
CHARACTER (8) DECIMAL (2) DECIMAL (3,2)

Figure 8.5. A PLjl structure displayed as it is organized at run-time.

350 Compiler Construction: Theory and Practice

a full name, it refers to two or more data objects. (Note that a "data object"
may be a set of primitive objects in a structure.) If some name N can refer to
two different obj~cts, as a full name for one object A and as a partial name for
~other object B, then it is assumed to refer to object A, that is, a full name
overrides any possible partial names.

It is also possible that the structures of a PL/I program are such that some
data objects cannot be unambiguously accessed. If no reference to one of
these data objects exists in the program, then the structures are acceptable,
despite their inherent ambiguity. We see that any structure is permissible per
se; however, each of the name references must be examined for possible
ambiguities.

A clever solution to this name abbreviation problem was proposed by
Gates and Poplawski (Gates [1973]). It is an interesting application of
finite-state automaton methods.

A FSA is constructed with these properties:

1. Each transition is on a primitive name that appears somewhere in a
PL/I declaration. For example, NAME is a primitive name in the
structure example given above.

2. The halt states indicate either legal or illegal composite symbols. An
illegal composite name is ambiguous-it could refer to two or more
different data objects, possibly in different structures.

The construction of the FSA is along the following lines. Details and a
worked-out example may be found in Gates' paper; also see Abrahams [1974]
for additional remarks. Knuth [1968] also gives a Cobol name resolution
algorithm.

1. Construct a list of partial names. Each of these is a composite name
formed by starting at the root of some structure and following a path part way
toward a leaf. Each name contains at least one primitive name. The full names
are in this list.

2. Associate a state with each name in the list. Add a unique start state.
3. Each transition in the FSA is on a primitive name. Each sequence of

transitions beginning with the start state and ending in a halt state must spell
out a fully qualified name. For example, if a full name is A.B.C, then there
will be a sequence of transitions:

from on name to

S A A
A B A.B
"A.B C A.B.C

Thus recognition of the full name A.B.C ends in the state associated with that
name.

8 Static Representations of Data Objects 351

Clearly, if no ambiguities exist and all names are fully specified, this
machine will accept the structure names of the language. However, these
conditions are not always met.

4. To deal with partial names, we consider one path P in the machine from
the start state S to a halt state. Add all the possible transitions permitted by
the following rules:

(a) A transition from state Q to R will be added if a directed path P' from
Q to R already exists, and if P' is in P.

(b) A transition to a state with nameX will carry the primitive name X.

Also make every state other than S a "new" halt state.
5. We have constructed a machine that is possibly nondeterministic.

Resolve its nondeterminism by introducing composite states. Assign new
numbers to the composite states. These states are to be distinguished from the
existing states.

6. Repeat steps 4 and 5 for all the machine paths to yield a new
deterministic FSA. It will have "old" halt states and "new" halt states. The
"new" halt states represent sets of old andjor new states. This machine will
accept any abbreviated composite name compatible with the declared
structures. If it ends in a "new" halt state, the name may be ambiguous; there
could be two or more distinct data that could be so designated (see rule 7).
If it ends in an "old" halt state, the name is unambiguous; furthermore, the
state is associated with the complete data object name.

7. A "new" halt state represents an ambiguous name if it contains two or
more legal full names.

Of course, if no transition on some primitive name exists in the machine,
then the composite name cannot be a part of any data structure and is thereby
illegal.

Exercises

1. Construct an FSA for the following PLjI structure. Which partial
name references are ambiguous? Which are illegal?

DECL 1 A,
2 B,

3 C BINARY,
3 D BINARY,

2 C,
3 D,

4 E BINARY;

352 Compiler Construction: Theory and Practice

2. Write a grammar for PL/I structures, at least the level and name parts.
The primitive type specifications are complicated and may be omitted
or generalized. Then assume that space for the structure is allocated in
linear, contiguous memory. Develop an algorithm for computing the
offset of any data object, and finally an algorithm for accessing any data
object, given the necessary indices.

8.3.3.3. Pascal Structures

In Pascal, structures are created through the use of statements called type
declarations. A type declaration specifies a data structure, but does not
allocate memory space for it. There are several forms, but the one we are
interested is

type T record Sl : T 1;

S2 T 2;

S3 T 3;

end

The Si are called selectors. The Ti are either other type identifiers or data
object declarations, e.g., a simple object or an array. An array of elements of
type Z is written thus:

array [3..9] of Z

The data structure represented by the type T is shown in figure 8.6.

Figure 8.6. Compile-time data structure of a general Pascal RECORD declaration. T
and Tj stand for type names, and the Sj are selector names.

8 Static Representations of Data Objects 353

Let us illustrate the Pascal convention with an example, and then we shall
describe the kind of compile-time structures needed. This example defines a
personnel data structure for Consolidated Widgets, Inc., or "CONSWID­
GET" for short. The officers of the company enjoy their own section of the
data structure, but share their VITA with all the other personnel. Note that it
is necessary to define a given kind of data structure only once; it may be
shared by any other structure as needed.

type NAMEPART = array[1..20] of char;

type NAME = array [1..3] of NAMEPART;

type STREETADDRESS = record STREETNUM integer;
STREETNAME : NAME

end;

type VITA record NAME : NAME;
AGE: integer;
SS : array[1..3] of integer;
SALARY : integer;

end;

type 0 FFICER = record TITLE = (pres, vp, secy, treas,
boardmember, boardchairman);
VITAE: VITA

end;

type ADDRESS record STREET : STREETADDRESS;
POBOX: integer;
APT : integer;
CITY: NAME;
ZIP : integer

end;

type COMPANY =
record NAME: NAME; {the two NAMEs mean

different things-this sort of
name conflict is legal}

HDQTRS : ADDRESS;
OFFICERS: array[1..N] of OFFICER;
PERSONNEL: array[1..M] of VITA

end;

So far, no data space will be allocated for any of this structure. The
following Pascal declarations create data spaces corresponding to the
designated type:

354 Compiler Construction: Theory and Practice

var PERSONNELFILE : PERSONNEL;
{creates a data object of personnel vitae}

var COMPANY: CONSWIDGET;
{creates a data object of an entire company,

Consolidated Widgets, Inc.}

var LEONARD : VITA;
{creates a data object with name, age, social

security number, etc.}

An example of a LEONARD data object is shown in figure 8.7. It consists
of three NAMEPARTs, each an array of 20 characters, an integer AGE, an
array of three integers SS and an integer SALARY.

It is clear that the "COMPANY" type structure, when expanded, is quite
large, yet its description and its manipulation (as we shall see) can be very
concise.

A reference to a Pascal data object is through a composite name, similar to
that used in PLjI. For example, LEONARD's last name is accessed by

LEONARD.NAME[3][1]

where the I subscript indicates the specific character in the name. Pascal has

LEONARD

*vita

Figure 8.7. Example run-time data structure for a VITA structure.

8 Static Representations of Data Objects 355

no operations on a set of primitive data objects, as does PLII and Cobol.
Every name must refer to a primitive object.

The pair of subscripts [3][1] may also be written [3, I]. However, the
subscripts may not be moved to the right; we shall see why not shortly.

The names may be abbreviated, but not in quite the same way that PLII
permits. Pascal provides a structured means of supplying partial names, the
with statement. An example follows.

with LEONARD do
begin

var I,J: integer;
for I: =1 until 3 do
begin

J:= 1;
while NAME[I, J] < > ' , do
begin

print(NAME[I, TI);
J:=J+ 1

end;
print(' ');

end
end

The two occurrences of NAME in this program are effectively preceded by
"LEONARD." We shall see that this is more than just a convenience for the
programmer, it can also reduce code and execution time if several operations
on the elementary data objects appear in the "with" block.

The general form of a "with" block is:

with <name-list> do
begin

end;

<name-list> ::= <name-list> , <composite-name>
:: = <composite-name>

The composite names in the <name-list> may contain indexing or
whatever, including indices computed during execution. Thus in the
CONSWIDGET data structure a legal "with" block is

with CONSWIDGET.OFFICERS[X+3]. VITAE do
begin

356 Compiler Construction: Theory and Practice

NAME: =
SS .-

end;

Pascal "with" blocks may also be nested, and an inner one may particularize a
variable name heading started by an outer one, e.g.,

with CONSWIDGET do
begin

with OFFICERS[X+3] do
begin

with VITAE do
begin

end
end

end

Pascal Type Symbol Table Structure. We now discuss the data structures
internal to a Pascal (or similar) compiler that will support the "type" and
"with" structures.

A starting point is the so-called "type structure," illustrated in figure 8.8.
for the CONSWIDGET type given earlier. This is a directed acyclic graph
(DAG) decorated with a set of attributes as shown. Each of the type names is
marked with an asterisk (*); these names will not appear in a composite name.
An elementary data object type is marked with a dagger (t). An array of
objects or types is indicated by an "array" node, for example,

array [1..3]

The linkage in figure 8.8 clearly reflects this set of type declarations, and it
can be constructed through productions and DAG-building semantics on the
productions by methods discussed in chapter 7. We shall see that each of these
links is necessary, including the link from the right-most child of a type node
to its parent.

8 Static Representations of Data Objects 357

t primitive object
*type name

~*company~

name -.. hqtrs.-.. officers -.. personnel

",;;me 31 j "",/, 01 ,,~ml
*n7epart address /iC, I.

array 11 .. 201 title --.. vitae

J / ~
t char t{ pres} *vita

.v.
p

. /~
name -.. age -.. SS -.. salary

/ ~ X
tinteger array [1 .. 31 tinteger

~
tinteger

street -"'pobox~ apt -.. city -.. zip

t \ \ t
*street address tinteger tinteger tinteger

/ "street num -... street name

t
tinteger

Figure 8.8. The compile-time structure for the COMPANY type structure.

The size of this structure is proportional to the number of statements in the
type declarations; there is no expansion of data arrays, etc.

In addition to the links shown, there will also be a set of links from an
access system to each of the simple names, to facilitate the rapid locqtion of a
given name.

We have several instances of identifiers with two or more uses, e.g.,
NAME. Pascal permits duplicate name use provided that no ambiguity
exists. This feature causes some trouble in searching for names, especially in a
"with" block, which we shall discuss later.

Inside a "with" block, a with list will be nonempty. Its form is shown in
figure 8.9, simply a linear, linked list of nodes that indicate "type" nodes in
the type structure.

The "with" list shown in figure 8.9 corresponds to the nested "with"
blocks:

with CONSWIDGET do {creates the "*company" node}
begin

358 Compiler Construction: Theory and Practice

with HQTRS.STREET do {creates the
"*streetaddress" node}

begin
{with list has the form figure 8.9 here}

end;
{drop the "*streetaddress" node here}

end
{empty the with list here}

Note that the new "with" list nodes are added at the top level and are
removed last-in, first-out.

Now consider the problem of locating a composite name in the symbol
table structure. Suppose first that a fully qualified name is given, e.g.

CONSWIDGET.HQTRS.STREET.STREETNAME[2, 5]

We need locate only CONSWIDGET through the name access system,
making sure that we locate a data name, not some other kind. That entry
should point into the type structure, and we simply follow through the
structure by comparing selector names only. In the process, we note array
dimensions. Eventually, this process must lead to an elementary object.

Suppose instead that we are inside the·· inner "with" block given above,
covering the head CONSWIDGET.HQTRS.STREET, and we are con­
fronted with the variable name

STREETNAME[2, 5]

with list

*street address

~
*company

Figure 8.9. An example WITH list.

8 Static Representations of Data Objects 359

The name access system can locate a STREETNAME (maybe several, if we
kept looking); we find that STREETNAME is not a data name, but a selector
name. We know its location in some type structure, and as a selector, it must
have a "type" parent. We locate the parent, using the reverse link from the
right-most sibling to the parent, and the sibling links shown in figure 8.8.
This process yields the type name "*STREETADDRESS". We then search
the "with" list for the pointer value of "*STREETADDRESS" and of course
find it in the topmost cell (see figure 8.9).

If we had instead the partially qualified name

OFFICERS[5].TITLE

then the second node in the "with" list would match the type pointer
"*COMPANY".

Now Pascal permits name conflicts. We must therefore alter our strategy
somewhat. If the above search of the "with" list fails to yield a match, then we
may be looking at the wrong identifier in a name chain, i.e., we could be
looking at a selector or type name that conflicts with some other valid name.
We therefore must repeat the search process with the next matching name in a
name chain, until we either find a sensible fit or the chain is exhausted.

With list construction. We construct the "with" list by adding a new node
for every "with" list name. Now the "with" names are composite in general,
but are incomplete. They may have a missing prefix (because we are in the
scope of some covering "with" block) or a missing suffix (to be supplied by
names in the block).

We therefore use the given strategy for each "with" list name, except that
we work down into the type structure only as far as the name reaches. The last
member of each name will be some selector; that selector must point to a type
name, possibly through an array node, or else the name is in error. A pointer
to that type name is then placed in the ''with'' list.

For example, consider the inner "with" name in the example:

with CONSWIDGET do {creates the "*company" node}
begin

with HQTRS.STREET do {creates the
"*streetaddress" node}

begin

end;
end

360 Compiler Construction: Theory and Practice

The name "HQTRS" is a selector name, whose parent is "*COMPANY".
The "with" list contains one node for "*COMPANY", indicating that the
front end of this name is covered. We may then continue down the type
structure, ending on the STREET selector node; this node points to
"*STREETADDRESS", which is what must be entered in the "with" list.

Exercises

1. Construct the type structure for the following set of Pascal types and
variables:

type ALFA=array [1..10] of char;
STATUS = set of (married, widowed, divorced, single);
DATE=record MO:(jan, feb, mar, apr, may, jun, july,

aug, sept, oct, nov, dec);
DAY: 1..31
YEAR: integer

end;
PERSON = record

NAME: record FIRST, LAST:a1fa end;
S5: integer;
SEX: (male, female);
BIRTH: DATE;
DEPDTS: integer;

end;
end;

2. Discuss implementation of a Pascal type structure and "with" list from
productions. Could these be constructed in one stack?

3. Given the CONSWIDGET structure, show the "with" list at the inner
block (~) of the following program segment:

with CONSWIDGET do
begin

with OFFICERS[N], HQTRS.POBOX do
begin

end
end

Give examples of legal names at· this inner level.

8 Static Representations of Data Objects 361

4. Are ambiguous Pascal names possible? Give some reasonable defini­
tions, and develop an algorithm for checking for ambiguous name
references. Note that partially qualified names are not permitted and
that a primitive data object must always be specified; Pascal contains no
operations on a set of primitive objects.

8Q40 String Tables and Their Access

A string table is some storage system that provides for the efficient insertion
and retrieval of identifiers (the strings.)

We shall present four rather different search methods. These have
applications other than in compilers, for example, data base systems and sort
systems. Of the four, the hash access method seems to be the method ofchoice
for compilers since it is demonstrably the most efficient for the table sizes
encountered in typical programming languages.

These access methods have certain properties in common, illustrated in
figure 8.10 for the linear method. Three stacks are maintained, a scope stack
that keeps track of the identifier domains and a pointer stack that carries links
to the identijierstack.

Two identical names in different scopes may be entered twice or once in the
identifier stack, depending on whether one is interested in minimum
identifier stack size or minimum access time. In order to share name space, it
is necessary to search the entire name table, not just the current scope, on'
entering a new name. It is also necessary to maintain an additional pointer to
the identifier table in the stope stack, in order to reduce the identifier stack
correctly at the end of a block.

Identical names in different scopes are rare, hence it is probably not worth
the additional search time to attempt to share names. We shall assume that
names are not shared in the remaining discussion.

Upon entering a new block, a pointer table top-of-stack (TOS) index is
pushed in the scope table. This action effectively "marks" the name table
stack.

Upon leaving a block, the TOS scope table index is used to reduce the
pointer stack, and the resulting pointer stack TOS index is used to reduce the
name table. If the names from this scope are needed later (in a multipass
compiler), they may be transferred to secondary storage before reducing the
stacks.

Upon a declaration, a search is made in the current scope (as defined by the
pointer stack TOS and the scope TOS index) for the name. If the search
succeeds, we either have additional attributes for an existing name or a
multiply-declared name. If the search fails, the name is pushed in the
identifier stack and a pointer to it pushed in the pointer stack.

362 Compiler Construction: Theory and Practice

Tables

Scope Pointer Identifier

Growth
direction

.-+-----I~I Mo
I--------l

1

2

3

4

begin
var M,A,X: ...

begin
var V,U: ...

end
end

Source
program

Figure 8.10. Linear name table-access method.

Upon a reference, a search is made in the entire table for the name, using
the pointer stack indices. The search is conducted from the pointer stack
TOS inward and stops on the first match or the bottom of the stack. If the
name is not in the table, we may have an implicit declaration (as in Fortran) or
an undeclared identifier. By stopping on the first match and by searching from
TOS down, we locate that name most recently declared, hence the one
declared in the innermost block.

The total declaration time tn for a program will be different than the total
reference time tR for the following reasons:

1. The current scope is being built in the declarations, while it is
essentially complete for references. (The truth of this assertion depends
on the language. Weare assuming Algol declaration rules for our
discussion).

8 Static Representations of Data Objects 363

2. If the source program is free of declaration errors, an identifier will not
be in the table for a declaration search, but will be in the table for a
reference search.

3. A reference search may span the entire table, while a declaration search
spans only the current scope. This search scope makes little difference
in a language with only one block level, but makes considerable
difference in a block-structured language. The difference is also
influenced by the usage patterns of identifiers. The most heavily used
identifiers are usually locals, and the next most heavily used identifiers
are globals (block level 0).

4. A given identifier is declared once, but may be referenced several times
in its block.

In order to make reasonably meaningful comparisons among the name
access methods, we will develop "decl" and "ref' average times separately
and make reasonable assumptions about the remaining factors. In section
8.4.5, the net access times of the four methods are compared. It is shown there
that the hash access method is measurably superior to the others in access
time. However, it requires somewhat more memory space than the others.

8.4.1. Linear Access

This method, the simplest of the four access methods, is illustrated in
figure 8.10. On a declaration, a new name is simply pushed into the identifier
table, and its index pushed in the pointer table. The names are clearly
unordered, so that a search requires a comparison with each of the names in
some region of the pointer table.

On a declaration, a search through the entire present scope is usually made.
If the scope contains n names on the search, then the search time is

kn

where k is some unit comparison time. On each declaration, another name is
added to the table, increasing n. If N' names are declared, then the net
declaration time for one block is

N'
tD = L ki

i= 1
kN'(N' - 1)/2

The net reference time per block depends on the total number of active
identifiers N in the table and on the usage pattern. Let us assume that
references are distributed uniformly among the covering blocks and the
current block. We know only that N ~ N'and that each referenced identifier
will be in the table (very nearly-barring programs with a large number of
undeclared identifiers.) The average access time per identifier will be

364 Compiler Construction: Theory and Practice

kN/2

since we need scan only halfway through the table to find a given identifier
(some will be near the top, some near the bottom ofthe identifier stack.)

We also need the average number of references per declaration b; then
given N' identifiers in the block, we have bN' references total, for a net
reference time per block of

tR = kbNN'/2

The block entry and block exit times are both small and independent of the
number of identifiers.

If a sorted symbol table listing is required at the end of a block, the sort
may be applied to the current scope of the pointer stack. A "shell sort"
requires n(log2 n) operations to sort n items, hence a net time

kN'(log2 N')

is required for the sort.

8.4.2. Binary Access

Suppose we are in the kitchen and wish to eat a cake, but learn that there is a
needle in it. The cake knife is in the kitchen and can't be moved, and a metal
detector is in the garage and mustn't be brought to the kitchen. The detector
says only whether or not metal is in a piece of cake; it doesn't have the
resolution to locate it.

An optimal approach is to cut the cake in half and take one half to the
detector. It indicates whether the needle is in this half or the other. We eat the
half without the needle and cut the remaining half in half, etc. On each trip to
the garage, we eat another half ofthe remaining cake and can eventually eat all
of it - the successive divisions will reduce the cake down to the needle itself. If
the cake conceptually consists of N pieces the size of a needle, then we need
only (log2 N) divisions to complete the process. This method is obviously a
sizable improvement over a linear search, which would require cutting the
cake into N pieces and taking each piece to the metal detector.

A binary search for a new identifier starts at the middle ofsome region of
the pointer table (initially the center of the table.) A comparison with the
center identifier then indicates which of the two halves should be considered
for the next region. If N identifiers exist in the table, then (log2 N)
comparisons are needed to locate an identifier.

The binary access method is illustrated in figure 8.11. Each new identifier
is pushed in the identifier stack as usual. Identifiers are not shared, hence a
given name may appear more than once in the identifier stack.

The pointer stack contains indices to the identifier stack as usual; however,
it is arranged so that at all times, the names are sorted as seen through the
pointer stack. Duplicate names carry adjacent pointers. The scope stack

8 Static Representations of Data Objects 365

Scope Pointer Identifier

Figure 8.11. Binary name table-access method.

points to the identifier stack, not to the pointer stack; the latter does not have
clearly delimited scope boundaries.

On a block entry, the current identifier TOS index is pushed in the scope
table. The cost of this operation is small.

On a block exit, the pointer table must be purged of references to
identifiers in the block being left, and then the pointer table must be
compressed, which can be done efficiently in one scan of the pointer table.
The scan moves pointers downward in the table, discarding those that belong
in the current scope. Note that identifier comparisons (relatively expensive)
are not involved in this operation.

A declaration requires a search followed by a sorted insertion. The
insertion requires moving half the pointer table down, on the average, to
make room for the new entry. Its location is clear from the search result. The
move operation per item inserted is

a+k'n/2

where "a" is some move overhead time and k' is the time per unit move. Many
computers have a fast move instruction that can carry out this operation, so
that "a" and k' will be fairly small numbers.

The net time for a set of N declarations is then

N
~ (a+k'n/2)

n=1
aN + k'N(N -1)/4

366 Compiler Construction: Theory and Practice

which must be added to the search and comparison times for the declarations,
given by

Search time
N

k(L (login) + 1» 'V kN(log2(N)+ 1)
n=l

On a reference, a search ofthe whole table must again be carried out. Now a
reference match will be found before the search narrows down to one pointer.
The net reference time is therefore approximately

tR 'V kN'(log2(N'»/2

Although the reference time is proportional to the unit comparison time k,
it increases much more slowly with N' than for the linear search method and
will be smaller, unless blocks are typically small and global references
infrequent.

The search algorithm should examine the neighborhood of a "found"
identifier for other identical identifiers and choose that one in the most local
scope. This selection can be made systematic by arranging that the most
recently entered identifier have the greatest index of a set of identical ones,
rather than just any appropriate index. Then on the search, there must be an
added search toward larger indices to find the most recently entered
identifier.

A sorted symbol table report obviously requires no sort upon a block exit.
However, the pointer table must be completely scanned, and only those
identifiers within the current block selected through the use of the scope table
and the identifier table indices.

8.4.3. Tree Access

Figure 8.12 illustrates the tree access method. On a declaration, a new
identifier is pushed into the identifier stack as usual. Then a new tree node is
created, consisting of a "left" and a "right" pointer pair, along with an
identifier pointer element. The left and right tables constitute a binary tree
description. Each node either has no children, a left child, a right child, or
both; (indicates no child. In placing a new identifier in the tree, we compare
the new one with the existing ones, then walk down the tree starting at the
root. We place the new node iIi the first available child position. At each node,
we move left if the new identifier is lower in collation order than the node and
to the right otherwise.

For example, consider a new identifier B. Then B < M so we move left and

8 Static Representations of Data Objects 367

Root Left ~ight Pointer Identifier Scope

The tree: M

/~
A X

/~
u y

Figure 8.12. Binary tree name table-access method.

compare B with A. Now B > A, and A has no right child, so B goes into A's
right child position. The new B entry has empty left and right children.

The average declaration time is k(log2N), plus a small time to add the four
table entries. We do not have to move a list of pointers as we. did with the·
binary method, so we appear to have a tiine improvement. However, k is
somewhat larger for this time than for the binary search method, s~nce a
binary tree will never be completely balanced, which increases the average
access time. In the binary search, the searching is always balanced.

The average use time is k(log2 N)/2; an identifier will be found halfway
down the tree 011 the average.

The entry time is negligible; we merely add another item to the scope table.
The exit time is significant. We must walk through the tree and locate

every node that points to an out-of-scope identifier (an identifier about to be
dropped); this node must be changed to "empty." Then the identifier, left,
right, arid pointer stacks may be cut back.

A sorted symbol table is generated by sorting a portion of the pointer table.
Alternatively, a left-to-right tree walk yields a sorted list-those identifiers
not in the current scope are ignored.

As in the binary search method, some rule must be established to
distinguish identical identifiers in different scopes, e.g. always placed to the
left of an existing one. Then in the search, given a match, the comparisons
should continue down the left side until a mismatch is found; the last
matching one is that most recently entered.

368 Compiler Construction: Theory and Practice

8.4.4. Hash Access
f

The hash access method is illustrated in figure 8.13. A hash function is
defined on the class of identifiers; this function maps every identifier into an
integer between I and h, where h is a fixed hash table size. Thus in the figure,
X maps to 2, M and A map to 4, and Y and U map to 6. It is not essential that
the hash function map every identifier to a distinct integer (indeed this is
impossible if the number of identifiers is greater than h), but it should provide
a reasonably random and uniform mapping. We call the hash function value
for some identifier its hash code.

Given the hash code of an identifier, we enter the hash table directly
through the hash code as an index and search for the identifier along a chain; if
the identifer is in the table, it must be along that chain. We enter each
identifier at the head of its hash code chain. Note that a declaration search
need go down a chain only until the present scope is left. For a reference
search, a chain must be followed to its end, if necessary, since an identifier
may be in any scope.

Hash Chain Pointer Identifier Scope

The hash chai ns:

1

2

3

4

5

6

Figure 8.13. Hash name table-access method.

8 Static Representations of Data Objects 369

A chain table is shown in figure 8.13 to hold chain pointers; {stands for the
end of a chain.

For example, identifiers M and A hash to the same code, 4. Identifier M is
entered first, by pushing it into the identifier stack. Corresponding entries are
pushed in the pointer and chain stacks; the new chain index is 1, so the hash
table entry is moved to the chain table (empty) and t4e hash table entry is set
to 1. Eventually, the A is encountered. Repeating this process, we move the
hash table entry to the new chain table entry (index 2) and place 2 in the hash
table.

The configuration after all five identifiers have been entered is shown in the
figure.

The declaration time for a name is kNIh. On the average, each hash chain
contains Nih names from the current scope, and we must search one of them
completely to establish that the name is missing.

The use time is kN'/(2h), since on the average we hit the identifier halfway
down a chain. Note that these times are essentially linear search times,
reduced by a factor of h, the number of hash buckets.

Some overhead is incurred in computing the hash function, but it can be
kept small by using a simple hash algorithm.

The entry time is negligible. The exit time is appreciable. We must search
down all chains of the hash table entries, and re1ink the chains to the previous
scope names. However, since the names are encountered last-in first-out, only
the present scope name chain entries are scanned. Those deeper in the chains
can be ignored.

The block exit time can be reduced through one of the following schemes:

1. Push a copy of the hash table into the scope stack on block entry, in
addition to the TOS indices of the chain and pointer and identifier
stacks. Then on exit, the hash table may be restored without a chain
search.

2. Maintain a hash table stack, and start a new hash table, initially empty,
on block entry. On block exit, it may simply be discarded. However, a
reference search must then work through each of the stacked hash
tables. No special time penalty is paid for this search, however, since
each of the chains is smaller by the number of hash tables, on the
average, and each of the tables is easily entered through the common
hash code.

3. Add a set of pointers through the table entries that constitutes a linked
list of entries that must be at the top of the hash chains upon block exit.
This is a rather expensive approach, since a pointer cell is needed for
each hash table cell and entry.

The names are not sorted in this scheme, so a sort algorithm must be
applied to the pointer table to list the symbols alphabetically.

370 Compiler Construction: Theory and Practice

Bounded Table Hash Access

Sometimes we can guarantee that the number of symbols entered are less
than or equal to h. Ifso, we don't need the overflow table; we can simply apply
a rehash algorithm repeatedly until we find an empty cell in the hash table.
Morris [1968] has shown that this algorithm is superior in performance to a
hash chain method.

This method is useful for tables with a fixed number of entries, e.g., a table
of reserved words for a compiler or a table of assembler mnemonics.
However, it is usually unnecessary to maintain two distinct name tables-the
reserved names can be accessed by the same algorithm as user identifiers.
Their reserved status can be inferred from their position in the table.

An optimal strategy for such a symbol table, from Morris, is expressed by
the following Pascal program:

var C,R: integer;
var IDENT: array [1..n] of char; {identifier}
var HASHTAB: array [O..h] of integer; {hash table}

procedure RAND: integer;
begin

R: = (R*5)mod(h*4); {h is hash table size}
return(R/4)

end;

{the hash access algorithm starts here}

C: = HASHIT(IDENT); {returns a hash code}

while HASHTAB(C)<>NULL do
begin {something in this hash chain}

if NAMETAB(HASHTAB(C))=IDENT then return(TRUE);
{found if match is found}

C: = (C+RAND)mod(h); {try another hash code}
end;
return(FALSE) {not found}

The average number of probes required to locate an item known to be in
the table is

E = 1 + (N/(h-N+ 1)) rv l/(l-a)

where h is the hash table size, N is the number of items in the table, and a =
N/h is called the load factor. Some sample values of E:

8 Static Representations of Data Objects 371

Load Factor a E

0.1 1.11
0.5 2
0.75 4
0.90 10

A reasonable load factor is 0.75; 25 percent of the table is wasted, but an
average of only four probes is needed to locate a name.

Hash Functions

We now consider the problem of a suitable hash function. We need a
simple algorithm that will map a class of commonly used identifiers as
uniformly as possible into an interval l ..h, where the hash table contains h
buckets. Let us consider a simple function, and evaluate its hash behavior:

C:= FIRST +LAST +LENGTH-m

where FIRST and LAST are the numeric forms of the first and last
characters of the identifier and LENGTH is its length. The parameter "m" is
a constant, defined as follows.

Suppose the characters are ASCII 7-bit coded and consist of 1 to 15 letters
and digits, starting with a letter. The ASCII codes are:

"A" = 65, "B" = 66, ... "Z" = 90, "0" = 48, "1" = 49, ... "9" = 57.

Now let S=FIRST + LAST + LENGTH. The least S is 115, for the
identifier "AO" (A single letter identifier would have a larger S, since the letter
is added in twice). The largest S is 195, for the identifier
"ZXXXXXXXXXXXXXZ" (the X's may be anything). We therefore set
m = 114. The largest useful h is then (195 - 114) = 81. The class of identifiers
can clearly fill the hash code interval 1..81, so that no hash table cells will go
completely unused.

An experiment with a program containing 623 identifiers and a hash table
with 81 buckets yielded the following summary statistics:

Chain Length L Number of Chains with Length L

o
0/4
5/9
10/14
15/19
20/24
25/27
>27

24
41

9
9

12
6
3
o

372 Compiler Construction: Theory and Practice

The net cost of accessing the 623 identifiers through the hash chain system
was 9417 name comparisons. Now the average chain length is 7.7 names
(623/81), so that the 5 to 9 chain length range should predominate. Instead,
we find that almost half the chains carry less than 5 names, and several chains
carry more than 25 names. Clearly, something is wrong with this hash
function.

We clearly cannot leave an identifier hash function to chance. We may end
up with many of the cells unused or a group of cells much more heavily used
than others.

Knuth [1973] showed that an effective hash function on some key K is
simply a modulo h division or multiplication. The key K must be some
integer, possibly formed from a few characters in the identifier by concaten­
ation. Then

h(K) = KmodM

where M should be a prime number yields a reasonably random hash code.
Values of M which divide rk+a, or rk-a, where k and a are small numbers
and r is the radix of the alphabetic character set (usually 64, 256, or 100,
depending on the machine), should be avoided.

Suppose we have 32-bit integer arithmetic. Then we can form K from the
identifier string ao a1 ... ~ by the following algorithm:

var D: double integer;

if n>4 then D: = [ao' al' ~-1' ~]

{formed by concatenating the
first two and the last two characters}

else D: =[blank, blank, . . ., ao' . . ., ~]

{left-most blank fill}

The following table shows the r.esults of an experiment with this same
program, containing 623 identifiers but using a Knuth hash function:

Chain Length L Number of Chains with Length L

o
0/4
5/9
10/14
15/19
>19

o
9

54
17
1
o

Clearly, the chain lengths are more uniform. The net access cost is 5,794,
about half that for the hash function above. The dominant chain length is
closer to the expected average, 7.7, and there are no unused or unusually
large chains.

8 Static Representations of Data Objects 373

8.4.5. Comparison of Access Methods

The four access methods described may be compared through their
required space or time. In comparing space, we note that all four require the
same identifier, scope, and pointer space. We therefore compare the space
required in addition to this:

• Linear: 0

• Binary: 0

• Tree: 2*N, where N = number of table symbols

• Hash: h+N

A comparison of access times is somewhat more difficult. We have
previously developed formulas for entry, exit, declaration and reference (use)
times. These formulas are summarized in the next table.

Summary of Access Times

Entry Exit Declaration Use

Linear 10 10 25*N'*(N'-1) 25*N*N

Binary 10 16*N 25*N*(log(N)-1) 25*N*log(N)
+5*N +k'*N*(N -1)/2

Tree 10 8*N 35*N *(log(N) - 1) 35*N*log(N)

Hash 10 8*N' 25*N'*(N'-1)/h 25*N*N/h

Each of the table entries represents some net access time, in arbitrary units,
for a typical program block. Here N is the number of identifier declarations in
the block, and N' the number of identifier references. Parameter h is the
number ofhash buckets. The remaining factors have all been estimated, based
on our experience. For example, the use time for tree access is simIlar to that
for a binary sort, except that the factor (35) is larger because of tree
imbalance. The binary sort exit time is larger than a tree exit time on account
of the pointer table compression required.

We next fold these time estimates into the following set of frequencies,
. given by McKeeman [1974b]. These apparently are based on experience with

a number of XPL (block-structured) programs:

£1, entry f2, exit

10 10

f4, use

700

374 Compiler Construction: Theory and Practice

We then may compute an average unit access time, through the following
averaging formula:

Time=(fl*entry + f2*exit + f3*decl + f4*use)/(fl +f2+f3+f4)

We assume that N' = N/5, i.e., for every identifier declared in the current
scope, there are four others in covering scopes in the symbol table. (This
number 5 may be too large for an average program, but it doesn't affect our
conclusions much.)

We also assume that the number of hash buckets h is 100.
The graph in figure 8.14 shows the net time as a function of N in the range

1 through 360. The hash table must be nearly full at N = 360, yet the hash
method remains superior to the others far beyond this N. In fact, the hash and
binary methods have about the same time at N = 1200: binary is 288, hash is

5r-------,-----,-----,-------,...---,

4t----------j---,f-----+------+----/

Tree

L~-=::::::~~d;;~=======:t::=~ EH~a~s_'2hJo

2t--------+I'-------+---

Access
ti me 3 t------------l~f____---__t_-----_+--_1

(relative
units)

100 200

Table size, N

300 360

Figure 8.14. Comparative access times for the four access methods, linear, tree,
binary and hash, as a function of table size.

8 Static Representations of Data Objects 375

279. At N =1200, the average hash chain is 12 symbols long, requiring about
12 comparisons. However, 1200 is approximately 210, so the binary method
also requires about 11 comparisons.

For N> 1200, the binary method is the most efficient; however, the
efficiency of the hash method increases with the number of hash buckets h, so
that a larger h might be justified for such a large string table.

The tree method is consistently poorer than the binary method; note that it
also requires more storage. The linear access is orders of magnitude more
costly in time than any of the other three. At only 100 symbols, linear access
requires 100 times the search time as hash access. (This factor of 100 is the
number of hash buckets.)

Summary of access methods

The most efficient access method, by time comparison, is the hash access
method. It requires a function that maps an identifier into a finite range of
integers 1 to h in a uniform manner. The hash code resulting from the
mapping is then used to isolate the identifier to one of h separate linear chains
of identifiers. The desired identifier is found by a linear search along that
chain. Although the binary and tree search methods result in a sorted table,
convenient for a symbol table listing, this apparent advantage is outweighed
by the larger overhead in declaration and reference times.

8.5. Bibliographical Notes

The use of symbol tables in computer systems appears to have ample
precedent. access methods, with detailed examples, are given by McKeeman
[1974b]. Knuth [1968], vol. 1, chapter 2, contains a treatment of symbol table
tree structures suitable for PLjI or Cobol names. Knuth [1973] discusses
searching and hashing at length.

A formal symbol table and attribute system of considerable power and
generality, called property grammars have been recently defined by Stearns
and Lewis (Stearns [1969]). A good review of property grammars, with
examples, is given in Aho [1972a], vol. 2, chapter 10; Aho also develops
statistical formulas for the evaluation of the efficiency of the hash table search
method.

CHAPTER 9

RUN-TIME MACHINE STRUCTURES

9.1. Introduction

In the last chapter, we developed symbol table structures that the compiler
should maintain as a means ofkeeping track of (1) the attributes of the various
data objects that will appear in code at run-time and (2) information related to
the blocks and procedures of the source program. We now need to describe
run-time structures which entails the allocation of variable space and
mechanisms for dealing with procedure calls, parameter passing, and variable
access.

We can develop a system of run-time structures without resorting to
coding details of any particular machine by developing a minimal set of
instructions for a fictitious machine that supports the data structure and
procedure mechanisms required for Algol 60, Pascal, and PL/I. Embedded in
these instructions is a subset that can support Fortran or Basic. Given an
Algol-like language, those machine features that suit that language can be
selected from this machine and perhaps simplified or modified to suit the
desired language properties.

In each of the above languages the dimensions of vector or matrix data
objects may be dynamically altered, though in rather different ways in the
different languages.

A more general dynamic data allocation system is required in languages
such as APL and Lisp, where data may be allocated and restructured "on the
fly" as it appears in various executable expressions. Data objects are never
declared as such in APL; their characteristics are inferred from operations
that set their values. We shall not discuss data allocation for APL and Lisp,
although certain of the ideas expressed in this chapter are applicable to
interpreters of these languages.

The fictitious machine instructions developed in this chapter are suffi­
ciently well defined that a simulation program can be written in any common
programming language. We suggest that such a simulator be written and used
to study the machine operations developed in this chapter.

376

9 Run-Time Machine Structures 377

9.2. Run-Time Structures for Algol-Like Languages

We now develop a run-time stack machine system that can support
essentially all of the features of Algol 60, Pascal, and PL/I.

This machine, called the AOC machine (for Algol Object Code), we owe to
Randell and Russell (Randell [1964]), with revisions by James Morris and the
authors. Its mechanism focuses on the important problems of variable scope
conventions, nested procedure declarations, allocation and assignment of
memory space to variables, access of variables, indexed variable conventions,
and procedure call conventions.

The AOC machine has a linear sequential data memory with locations
addressed by h, h + 1, ... , -1, 0, 1, ... , s - 1, s, each of which can hold a
numeric value (an integer or a real) or a truth value (TRUE or FALSE). The
portion of data memory accessed by negative locations is called the heap, and
the remaining portion is called the stack. The data memory is regarded as an
infinite two-way tape; the locations may extend arbitrarily far in either the
positive or negative direction during execution of a program. The largest
positive location in use during execution is denoted by s and the most
negative location by h. Both the heap and the stack are initially empty, hence
initially h = 0 and s = - 1.

The AOC machine also contains a finite linear sequential program memory
with locations addressed by 0, 1, 2, ... , n. The contents of this memory and
its size cannot be changed during execution. The program memory is initially
loaded with program instructions and thereupon remains fixed until the end
of the program. Location 0 is the first executable instruction. No data is
located in the program memory. Although it could be used to hold constant
data, difficulties in accessing such data through an address label would
thereby be created.

We shall not be concerned about the number of bits per word, or possible
packing of multiple elements per word. We shall also not be concerned about
allocation and assignment of physical memory to the data and program
memories. We assume that sufficient memory space is always available to
support whatever program or operations are required of the AOC machine.

The contents of cell j in data memory is denoted by C(j). The notation

CO) ~ x

means "store the value x in location j." The notation

C(j) ~ a,b,c

is equivalent to the set of commands

C(j) ~ a; j ~ j + 1;

CO) ~ b; j ~ j + 1;

CO) ~ c; j ~ j + 1;

378 Compiler Construction: Theory and Practice

i.e., the set a,b,c are stored in consecutive locations in memory. Then the
notation

x,y,z ~ C(j)

is equivalent to

z~ C(j); j ~ j - 1;

Y~ C(j); j ~ j - 1;

x ~ C(j); j~ j - 1;

so that when the list (a,b,c) is stored and later restored in (x,y,z), x
corresponds to a, y to b, etc.

The contents of cell i in program memory is denoted PB(i). Since program
memory is read-only, only operations of the form

x~ PB(i)

are legal. In fact, the function PB(i) will only be required in the master
execution procedure, described later.

If i<O or i>n then PB(i) = "HALT". The master execution program
may access PB(n+ 1), but no instruction outside the range 0 :::; i :::; n should
ever be executed in a valid program.

The program memory is fixed at compile time, in principle at least. An
implementation may defer some operations on the program memory to just
prior to execution of the program. However, no alterations in program
memory are permitted during execution.

There is also another small independent memory called the display. Its
cells are numbered O,1,2,...,b and always holds certain addresses of the data
memory. Here, "b" is the largest display index, and will vary during
execution. The display is designated D, e.g.,

D(3) ~ 7

C(5) ~ D(6) + 2

are possible operations. The display will track the current depth of nesting in
nested procedures or blocks, so that the maximum b is the largest depth of
nesting found in a source program. Wirth found that b MAX = 3 was sufficient
for a Pascal compiler (Wirth [1971a]), so that the display size can be quite
small indeed. We shall also see that a copy of the display must be kept in the
data memory, and is always accessible, so that as it turns out, the display is
needed only for the sake of efficiency and clarity.

The machine also has four special registers for the variables i, s, h, and b.
The overall operation of the AOC machine is described by the master

execution program below. Initially, data memory is empty, b = s = - 1, and
h = i = 0. The program memory is loaded with instructions, and then

9 Run-Time Machine Structures ·379

execution of the instructions begins at location O. The program will expand
and contract the data memory and display through its instructions and will
stop upon encountering the HALT instruction.

{AOC machine master execution program}
var INS: integer;
LOAD(program);
s:= -1;
h:=O;
b:= -1;
i:=O;
INS: =PB(i); {first instruction}
while INS ::j::: 'HALT' do
begin

i:=i+ 1;
EXECUTE(INS); {execute the instruction}

{Note: Execution of INS may change i}
INS: =PB(i) {fetch the next instruction}

end;

The description ofthe individual instructions and their rationale constitute
the rest of this chapter. The memory and register structures of the AOe
machine are shown in figure 9.1.

A complete list of the instructions and their effect is given in section 9.9;
they represent an instruction set for full Algol support. We shall evolve
toward that set by starting with fairly simple definitions, then expanding
them as the need arises.

We shall see that these are powerful instructions, despite their apparent
simplicity. They are also easily implemented in any of several different ways,
namely:

1. Build a machine according to the specification of these notes, perhaps
through a combination of hard wired logic and microprogramming.

2. Write an interpreter for the instructions. This interpreter might be a
program that executes Snobol instructions on a CDC 6400, or an
assembly language interpreter implemented on a microprocessor.

3. Write a program to translate AOC into machine code for some machine.

4. Write a set of macros that generate machine code in assembly language.

9.2.1. Arithmetic and Logical Expressions

An expression like

A + B/7 - 3*D

380 Compiler Construction: Theory and Practice

Stack

}
Not yet
allocated

2
1-----......

1
o

-1

-2
1-------1

D(b)
D(b-1)

Display

Heap

}
Not yet
allocated

n-1

I i I
I ...

2

1

0

Program

Figure 9.1. Memory and registers of the Algol object code (AGC) machine.

can easily be evaluated by a stack machine, as we have seen in chapter 7. A
bottom-up or top-down compiler can simply emit stack load instructions on
each variable and appropriate stack operations on each operator, as they are
encountered in the parsing process. We are thus led to the following AOC
arithmetic instructions:

LC n: Load constant n
s ~ s+1
C(s) ~ n {s marks the stack top}

9 Run-Time Machine Structures 381

LV a: Load value contained in address a
s ~ s+1
C(s) ~ C(a)

(Note: For the moment, an address is simply an integer. Eventually, an
address will become more complicated.)

ADD: Arithmetic addition
C(s-l) ~ C(s-l) + C(s)
s ~ s-1

SUB: Arithmetic subtraction
C(s-l) ~ C(s-l) - C(s)
s ~ s-1

MULT: Arithmetic multiplication
C(s-l) ~ C(s-l) * C(s)
s ~ s-1

DIV: Arithmetic division
C(s-l) ~ C(s-l) / C(s)
s ~ s-1

Assume that A, B, and D in the expression A+ B/7 - 3*D are stored in
locations -102, 120, and 200, respectively, and that s = 300. Then the
following instruction sequence will compute the expression's value, leave it in
location 301 and leave s= 301:

LV
LV
LC
DIV
ADD
LC
LV
MULT
SUB

-102 {A}
120 {B}
7

3
200 {D}

The following instructions provide more arithmetic and logical capability:

NEG: Negate
C(s) ~ -C(s)

NOT: Logical complement
(defined only for C(s) = TRUE or FALSE)

C(s) ~ if C(s)=TRUE then FALSE
else TRUE

382 Compiler Construction: Theory and Practice

EQ: Equal
C(s-I) ~ if C(s-I)=C(s) then TRUE

else FALSE
s ~ s-I

EQ compares the top two stack values as integers and replaces them by a
single Boolean value.

LS: Less then
C(s-I) ~ if C(s-I) < C(s) then TRUE

else FALSE
s ~ s-I

AND: Logical and
C(s-I) ~ if C(s-I)=TRUE and C(s)=TRUE

then TRUE else FALSE
s ~ s-I

The AND operation compares the top two stack values as Boolean variables
and replaces them with a TRUE or FALSE, according to the usual meaning
of logical AND. The operations AND and OR are only defined if the top two
stack elements are in the set {TRUE, FALSE}.

OR: LogicaL or
C(s-I) ~ if C(s-I)=TRUE or C(s)=TRUE

then TRUE else FALSE
s ~ s-I

9.2.2. Assignment Statements

The statement

A:= B+ I

is supposed to calculate the value of B+ I, then set the cell assigned to A with
the result. We introduce the instruction STD to accomplish this end:

STD a: Store direct in a
C(a) ~ C(s)
s ~ s-I

Then the statement A: = B+ I is executed by the instruction sequence

LV B
LC I
ADD
STD A

9 Run-Time Machine Structures 383

We also must support access of indexed variables, e.g., A[I], where the
address of A[I] is (address of A)+C(I). Recall that instructions may not be
changed, so we cannot just change a STD A during execution of the program.
We need instead a set of instructions LA, ST, and CONT as follows:

LA a: Load Address a
s ~ s+l
C(s) ~ a

This appears to be just like LC. However, as we add language features,
addresses will get more complicated and LA and LC will differ.

ST: Store
C(C(s-I» ~ C(s)
s ~ s-2

ST expects an address in C(s - I). It stores C(s) into that address.

CONT: indirection
C(s) ~ C(C(s»

CONT expects an address on the stack top and replaces it with the value in
that address.

An assignment statement of the form

A[I] := B[J] + I

can then be coded as:

LA A {Load address of A, for the sake of
the ST later}

LV I
ADD {address of A[I] now on stack}
LA B
LV J
ADD {address of B[J] now on stack}
CONT {value of B[J] now on stack}
Le' I
ADD {B[J] + I value is in C(s),

address of A[I] is in C(s - I)}
ST

Exercise

Write AOC code for the following statements:

384 Compiler Construction: Theory and Practice

A:=B*C - D*E + 75
B:=F AND (D OR E)
X[I+ 15]:= - Y/X[I-5]

9.2.3. Conditionals

There are several kinds of conditional constructs In the Algol-like
languages:

1. Conditional expressions such as

if A=O then 1 else IIA

2. "One-armed" conditional statements such as

if B then B := FALSE;

3. "Two-armed" conditional statements such as

if B then A := 1 else D := 1;

4. Loop conditional statements such as

while A < 15 do A := A+ 1;

These and other conditionals may be handled by the following two
instructions:

JP 1: Jump to location 1
i ~ 1

Recall that i is the instruction register; it contains the location of the next
instruction to be executed.

JIF 1: Jump to 1 if top of stack is FALSE
if C(s) = FALSE then i ~ 1
s ~ s-1

Note that we "fall into" the instruction following the JIF if the top of stack
contains TRUE. In any case, the Boolean value on the stack top is removed.

Let us now translate the Algol control statements given above into AOe
code sequences.

1. The expression

if A= 0 then 1 else IIA

9 Run-Time Machine Structures 385

is translated as:

LV A
LC 0
EQ {TRUE or FALSE is left in C(s)}
JIF Ll
LC 1 {The THEN part}
JP L2

Ll LC 1
LV A {The ELSE part}
DIV

L2

We use symbolic names L land L2 to denote locations to simplify the
discussion. When the program is loaded, of course, the Ll in the "JIF Ll"
must be set to the location of the "LC 1" instruction when it is found later on.

2. The statement

ifB then B:=FALSE

is translated as:

LV B
JIF Ll
LC FALSE
STD B

Ll

3. The statement

if B then A:= 1 else D:= 1

becomes:

LV B
JIF Ll
LC 1
STDA
JP L2

Ll LC 1
STDD

L2

4. Finally, the loop statement

386 Compiler Construction: Theory and Practice

while A<15 do A:=A+I

becomes

LI LV A
LC IS
SUB
NOT
JIF L2
LA A
LV A
LC I
ADD
ST
JP LI

L2

Of course, we can also translate simple GOTO statements using the JP
instruction. For example, the nonterminating Algol program

M: A:=A+I;
goto M;

may be translated to

L LA A
LV A
LC I
ADD
ST
JP L

9.3. Stack and Heap Allocation

Most of the Algol-like languages provide for dynamic allocation of
memory. The allocation can occur in one of two ways as follows:

I. Space is allocated upon entering a block and encountering a declaration.
The upper and lower limits of an array declaration may depend on
run-time variables. The allocated space may not be changed within the
scope of the block and vanishes upon leaving the block.

2. Space is allocated upon executing some run-time function or is the
result ofa declaration (with new dimensions) ofan existing OWN array.

9 Run-Time Machine Structures 387

Space for arrays oftype (1) can be allocated from the stack. Space for arrays
of type (2) require the heap and a memory manager, as we shall explain in
greater detail later.

For now, we introduce three instructions that facilitate the dynamic
allocation of stack and heap space:

INCS: Increment stack pointer (C(s) 2:: 0)
C(s+C(s» ~ s;
s ~ s+C(s)

This expects a positive count N on the stack top. It allocates N words, and
leaves the address of the allocated space on the stack top. The address may
then be deposited somewhere, to form an array base address.

INCS n: Increment stack pointer (n 2:: 0)
s ~ s+n+l

This form of INCS simply allocates a fixed number of words, n. No address is
left on the stack top. Since n is known to the compiler, the addressing
operations related to this INCS are compiler operations. The two forms of
INCS could be combined through a rule that if n=O in INCS n, the stack
count is the top value on the stack.

DECH: Decrement heap pointer
h ~ h - C(s)
C(s) ~ h

This modifies the heap memory extent (in either direction) by the number of
words found on the stack top. The new h is returned and replaces the count
word. This would be the address of an allocated heap array if C(s) > 0
initially.

DECH n: Decrement heap by n words
h ~ h-n
s ~ s+1
C(s) ~ h

This decrements the heap pointer by n words, and pushes the current heap
bottom on the stack.

DECS: Decrement stack (C(s) 2:: 0)
s ~ s - C(s) - 1

This decrements the stack pointer by the number of words left on the stack
top.

388 Compiler Construction: Theory and Practice

DECS n: Decrement stack (n :2: 0)
s ~ s-n

This decrements the stack pointer by n words.

9.4. Input-Output

The Algol 60 report contains no I/O definitions. However, we may easily
add two primitive I/O operations. These are similar to those defined in
Pascal:

• READ: A parameterless procedure which returns an integer read from
some input tape as its value and also causes the tape read head to advance
one position.

• PRINT: The value on the top of the stack is printed on an output tape or
other medium, then removed from the stack top.

We conceive of input as a sequence of numbers on some input tape, and
output as an endless tape, written one number at a time. Very little
imagination is required to change the printing and reading mechanisms to
accept characters, which, after all, can be considered special number codes.

Then

PRINT(READ)

prints the next input number on the output medium.

The AOC instructions for I/O are

READ: Read number from input
s ~ s+1
C(s) ~ the next number on the tape
(Tape input pointer moved one position.)

PRINT: Print top of stack onto tape
Print C(s) on the output medium
s ~ s-1
(Tape pointer moved one position.)

We need one last instruction (for now), HALT, which simply stops the
computer.

9.5. Blocks and Storage Allocation

We have not yet discussed allocation of variables to the memory. The
easiest plan is simply to allocate variables in stack addresses 0, 1,2,

9 Run-Time Machine Structures 389

This simple plan effectively gives us a Fortran machine, since in Fortran,
each variable is given a fixed, permanent location in memory. However, in
Algol, it is possible to declare some variables in the middle of a program, use
them for awhile, then let them "go away"; such variables are said to have a
limited scope (the region between their declaration and "letting them go"),
and may not be accessible outside their scope. The advantage of the Algol
system is two-fold: memory may be reused for different local variables, and
the same name may be used in different scopes without conflict.

For example, the following Algol program reads three numbers and prints
the first two in the same order as read, or the reverse order, depending on the
sign of the third number.

begin integer A, B; {start of scope I}
A := READ;
B := READ;
if READ < 0 then
begin integer T; {start of scope 2}

T:= A;
A := B;
B := T;

end; {end of scope 2}
PRINT(A);
PRINT(B);

end {end of scope I}

The variable T is valid only within the scope 2; variables A and B are valid
anywhere within scope 1. Variable T is only needed as a temporary for the
interchange of A and B.

The range of use of variables is governed by the Algol renaming rule:

Algol Renaming Rule (TRR). Ifall the occurrences ofan identifier declared at
the beginning ofa block are replaced by a new identifier which does not occur
anywhere within the block, the meaning of the program does not change.

Note that the occurrence of the identifier in the declaration must be changed
as well. For example, the program

begin integer X;
X := 1;
begin integer X;

X := 2;
end;
PRINT(X);

end

390 Compiler Construction: Theory and Practice

is equivalent, by TRR, to

begin integer X;
X:= 1;
begin integer Y;

Y := 2;
end;
PRINT(X);

end

The point of TRR is that it leaves no doubt that this program prints"1", not
"2". Another way of looking at TRR is that variable X in the first program
statement is "suspended" by the inner block declaration of X; its value is
picked up again at the end of the inner block. TRR clearly demands two
different cells to be assigned to the two variables X and Y in the second
program statement.

Now let us sketch a Fortran-style allocation system. To translate a
program:

1. Use TRR so that every identifier has exactly one declaration. Let there
be m different identifiers after this is done.

2. Translate the program (putting the first instruction in location 0) using
the identifiers for addresses. Let the program translate into n AOC
instructions.

3. Associate the m identifiers with locations 0, 1, 2, . . . , m - 1 in data
memory. Then replace the identifiers in the instructions with their
associated locations.

4. The first program instruction will be:

INCSm

to allocate m words for the variables.

The translation of the reversal program (above) by this procedure would
then be: '

o INCS 3
1 LA 0
2 READ
3 ST
4 LA 1
5 READ
6 ST
7 READ

{space for the three variables}
{variable A}

{variable B}

9 Run-Time Machine Structures 391

8 LC 0
9 LS

10 JIF 20
11 LA 2 {variable T}
12 LV 0 {variable A}
13 ST
14 LA 0 {variable A}
15 LV 1 {variable B}
16 ST
17 LA 1
18 LV 2
19 ST
20 LV 0
21 PRINT
22 LV 1
23 PRINT
24 HALT

Ifwe wanted to conserve data space, we could permit some of the variables
to share the same space. Two variables can share the same data memory space
if they are never simultaneously active and are both local. (Fortran variables
cannot be shared.) Thus consider

begin integer X;

begin integer a,b,c;

end;

begin integer d,e,f,g;

end;

end

392 Compiler Construction: Theory and Practice

The two sets of variables {a,b,c} and {d,e,f,g} are never active at the same
time. They are also undefined upon entry to a block, so three of them could
share the same storage locations. Then the above program would require only
five storage locations:

• One for x in the outer block.

• Four for {x,a,b,c} in the first inner block.

• Five for {x,d,e,f,g} in the second inner block.

This Fortran-style scheme breaks down if recursive procedures are
permitted in the language.

Exercises

1. Translate the following Algol program segment into an AOC instruc­
tion sequence:

integer I, J, K, L, M;
J:= 15;
1:=0;
M:=3;
while I < READ do
begin

M:'=M+l;
J:=J +1;
if J>20 then J:=O

end

2. Write an AOC code sequence that will allocate space for a one-dimen­
sional array (size n words) and fill it with zeroes. Consider two cases: (a)
where n is a compile-time constant, and (b) where n is obtained by first
evaluating some expression at run-time.

3. Suppose that several one-dimensional arrays are wanted, each of whose
dimensions are evaluated during execution upon entering some block.
How would they be allocated in the stack? Is it possible to write access
instructions for them in AOC code, as developed so far? How might the
array elements be accessed? Recall that the instructions cannot be
altered at run-time.

4. Write an AOC program that reads a list of numbers terminated by - 1,
then counts and reports the number of O's, 1's, 2's, .., , n's found. (Here n
is the first number in the list, and the list contains only nonnegative
integers, except for the terminating - 1.)

9 Run-Time Machine Structures 393

5. Sketch an algorithm that allocates data space for variables and
fixed-dimension arrays for a block-structured Algol 60 program, with
maximum data space sharing.

6. Develop AOC code sequences to support a REPEAT UNTIL struc­
ture, as in Pascal.

7. Develop AOC code sequences to support a Pascal labeled CASE
statement. Are any new instructions needed? If so, define them.

9.6. Procedures and Recursion

One or more procedures in Algol may be declared at the beginning of any
block. A procedure declaration consists of two parts, a heading and a body. Its
heading will be (for now) simply the key word PROCEDURE followed by
its name and a semicolon. Its body may be any statement and most often is a
block. Like other variables, a procedure name is known and may be called
anywhere within the block in which it is declared; it is unknown outside that
block. It is also known within its own block, hence may call itself.

Procedure semantics are governed by the procedure copy rule:

Procedure Copy Rule (TPCR). The effect ofa procedure call shall be as ifthe
body of the procedure were to replace the calling statement, then be executed.
(Some complications will be brought out later.)

We may regard the copying as being done while the program is being
executed by a machine which executes Algol programs directly, with no
translation. For this simple case, the copying could be done at any time, even
before the program starts.

Consider the following program, which prints the numbers on its input
tape in reverse order:

begin procedure REV; {procedure body beginning}
begin integer X;

X := READ;
if rv(X=O) then REV;
PRINT(X)

end; {end of the procedure body}

REV; {The procedure call}
end

Let us trace the execution of this program in a symbolic way. We shall do
so by simply writing out the program steps that have been executed, and
placing an arrow before the statement that is about to be executed. A variable
may be defined, indicated: "X = 6", or may be undefined, indicated: "X = ?".

394 Compiler Construction: Theory and Practice

The first executable statement in the reverse program above is the call REV.
Let the input tape contain the numbers 5, 6, O. Then shortly after the first
call, we have

begin procedure REV;
begin integer X;

X := READ;
if rv(X=O) then REV;
PRINT(X)

end;

begin {Copy of procedure REV}
integer X I = 5;
Xl := READ;

~ if rv(XI=O) then REV;

It is clear that we need another copy of REV at the point ofcall; TPCR and
TRR must be applied again, yielding:

begin procedure REV;
begin integer X;

X := READ;
if rv(X=O) then REV;
PRINT(X)

end;

begin {Copy of procedure REV}
integer X I = 6;
Xl := READ;
if rv (Xl = 0) then

begin {Second copy of REV}
integer X2 = 6;
X2 := READ;

~ if rv (X2 = 0) then REV;

One more copy will do the trick. Note that we have introduced two
variables, Xl and X2, and are about to introduce a third variable X3.

begin procedure REV;
begin integer X;

X := READ;
if rv(X=O) then REV;
PRINT(X)

end;

9 Run-Time Machine Structures 395

begin {Copy of procedure REV}
integer Xl = 5;
Xl := READ;
if rv (Xl = 0) then

begin {Second copy of REV}
integer X2 = 6;
X2 := READ;
if rv (X2 = 0) then

begin {Third copy of REV}
integer X3 = 0;
X3 := READ;

~ if rv(X3=0) then REV;

The zero returned by READ this time indicates an end of tape. The "if'
test on rv (X3 = 0) fails, so another copy is not needed. We can then unravel
the recursive calls, by writing in the remaining statements of the procedure
REV:

begin procedure REV;
begin integer X;

X := READ;
if rv(X=O) then REV;
PRINT(X)

end;
begin integer Xl = 5; {Copy of REV}

Xl := READ;
if rv(XI =0) then
begin {Second copy of REV}

integer X2 = 6;
X2 := READ;
if rv(X2=0) then
begin integer X3 = 0; {Third copy}

X3 := READ;
if rv (X3 = 0) then REV;
PRINT(X3) {"O" is printed}

end;
PRINT(X2) {"6" is printed}

end;
PRINT(XI) {"5" is printed}

end;
end

396 Compiler Construction: Theory and Practice

Notice that REV contains an error; we really don't want to print the
end-of-list indicator O. The procedure should read:

procedure REV;
begin integer)(;

)(:= READ;
if rv ()(= 0) then
begin REV;

PRINT(){)
end

end

The point of all this tracing is that a recursive procedure may generate
many more distinct variables, or rather, activations of variables, than appear
in the source program. Thus){l,){2,){3, ... must be treated as distinct and
therefore require separate storage. If the same storage location were used for
each activation, the program would simply print a series of N + 1 zeroes
instead of the intended reversed sequence.

The AOC machine must therefore be prepared to supply an arbitrarily
large amount of storage for a running program to accommodate recursive
procedures. The data stack in AOC is exactly right for this, and it is easy to
see why. The lifetimes of successive activations ofany variable will be nested
in time as the program runs. For example, we need the storage for)(2 after we
need it for)(1, and we shall cease needing it before we cease needing it for)(1.
Clearly, a last-in-first-out stack for variables is appropriate.

Our first variable allocation scheme is based upon this observation. We
shall arrange that when a block is entered, the previous values of all its local
variables will be saved on the top of the current stack. When the procedure
exits the old values will be "uncovered" and therefore restored, as the
s-pointer is reset to its value before the call.

It is obviously expensive to make a complete copy of a procedure on each
run-time call. We shall therefore write the return address on the stack, upon
the call. Then we can return at the end to the location indicated by the stack
value. If this were not saved on the stack, a recursive call would destroy the
return address of the previous call.

We therefore need the following instructions for a procedure call and exit:

CP 1: Call procedure at location 1
s ~ s+1
C(s) ~ i {the present location}
i ~ 1 {jump to the procedure} "

RTN: Return
i ~ C(s) {the saved return address}
s ~ s-1

9 Run-Time Machine Structures 397

The stacking and unstacking of local values can be done by an appropriate
sequence of LV's at the block beginning and STD's at its end. We shall
develop a more comprehensive plan later.

The above reversal program may then be translated as follows:

0 LC 0 {space for X}
1 BR S {branch around procedure code}
2 R LV X {save the old value}
3 READ
4 STD X
5 LV X
6 LC 0
7 EQ
8 NOT
9 JIF L

10 CP R
11 L LV X
12 PRINT
13 STD X {restore the old value}
14 RTN
15 S CP R
16 HALT

Let the input tape contain {5, 6, O}. Then the stack would appear as in
figure 9.2 after the indicated instructions have been executed.

Each successive call of R reserves two locations for the return address (RA)
and the previous value of X (shown as XO, Xl, X2 in the figure). The return
address word is called an activation record or stack marker. We shall later add
more words to the stack marker, to support procedure calls in a more
sophisticated manner.

A tentative block translation rule is therefore:

Translate each block independently, allocating space for its variables and
its stack marker.

9.6.1. Procedures and the Free Variable Problem

There is an inconsistency between TRR and TPCR as they are presently
formulated, and it is called the free variable problem. A free variable is a
variable referenced in a procedure body but not local to the procedure. That
is, it is declared outside the procedure block, but is in a block containing the
procedure. For example, variable B in the following program is a ftee variable
relative to procedure P:

398 Compiler Construction: Theory and Practice

Instructions executed Stack

o

1,15,2

3,4,5

6,7,8,9, 10

s-~o XO
16 RA
o

s-~o XO
- 16 RA

3 X

S-§11 RA
o XO

16 RA
3

2,3

4,5,6,7,8,9, 10

s-

S-

6
3

11
0

16
3

11
3

11
0

16
6

X1
RA
XO
RA

RA
X1
RA
XO
RA

Figure 9.2. Trace of AGe machines through execution of a program with a recursive
procedure REV.

Instructions executed

9 Run-Time Machine Structures 399

Stack

2, 3, 4, 5, 6, 7, 8

9, 11

12, 13
(Print "0")

s-

s-

s-

FALSE
6

11
3

11

0
16
0

0
6

11

3
11

0
16
0

11
3

11
0

16
6

X2
RA
X1
RA
XO
RA
X

14,11,12,13
(Print "0")

Figure 9.2. (cant/d.)

S-~1~.
16
3

400 Compiler Construction: Theory and Practice

Instructions executed Stack

14, 11, 12, 13
(print "3")

14, 16 (Halt)

Figure 9.2. (cant'd.)

begin integer B;
procedure P;
begin B:=5
end;
B:=20;
begin integer B;

B := 7;
P;
print(B)

end;
print(B)

end

s-~

s-I-ol

Using TPCR we can arrive at the following program state:

begin integer B = 20;

procedure P;
begin B := 5
end;

B := 20;
begin integer B= 7;

B := 7;
~ begin B:=5

end;
print(B)

On the other hand, if we first apply TRR to the second use of B, and proceed
as before we arrive at this state:

9 Run-Time Machine Structures 401

begin integer B = 20;
procedure P;
begin B := 5
end;
B := 20;
begin integer B1 7;

B1 := 7;
~ begin B:=5

end;
print(B1)

The only difference is that the inner block declares B1, not B. It should be
clear that the first simulation will print 5, 20, while the second will print 7, 5.
TRR has been violated in the first simulation. Our implementation of this
procedure as it stands will mimic the first, rather than the second simulation.
Why this happens is not hard to see. When procedure P is called, its variable
environment consists of the second B (B 1), and this environment is not
changed by the call mechanism. However, as the procedure appears in the
source, its variable environment should consist of the first B, not the second,
in order to preserve TRR. We see that a procedure call requires adjustments
to the variable environment of the stack.

We clearly must also resolve the inconsistency between TPCR and TRR.
We know that TRR is an important rule to have. It means that the writer of a
procedure need only pay attention to the variables within his procedure and
those in blocks that contain his procedure. He should not have to be
concerned with the many and varied variable environments of the procedure
calls. We therefore amend TPCR to require that it may not be applied until
all independently declared variables have been made distinct through TRR.

Even this change is not good enough; it seems to break down for recursive
procedures which seem to require application of TPCR first (to copy the
procedure), then TRR. The situation gets quite complicated (see Kanner, in
Rosen [1967], pages 228-252). We choose not to further develop the copying
rules, but rather embark upon a revision of the procedure calls, blocks, and
variable accessing instructions in order to preserve TRR.

9.6.2. Textual Addresses

We need a special naming system for variables in Algol programs. The
block level (BL) of a block is the number of blocks outside it. The outer block
therefore has BL = 0, theone immediately inside it has BL = 1, etc. The
textual address (TA) of a variable is a pair of integers [B,j], where B is the BL
of the block in which it was declared and j is an offset (measured in stack
words) from a stack marker corresponding to the block of level B. For

402 Compiler Construction: Theory and Practice

programs with only simple variables and fixed-size arrays, j can be deter­
mined at compile time. The offset j starts with °for the first variable. Block
level B is known by the compiler, so the T A of every variable can be fixed at
compile time.

For example, consider the program

begin integer A;
procedure P;
begin integer X,Y;

procedure Q;
begin integer Z;

Z := X;
X := X + A;
Y := X + Z

end;
X:= A;
A := A + 1;
Q

end;
A := 2;
P;
begin integer C;

C := A;
P;
print(C)

end
end

Then the T A's of the variables are as follows:

A [0,0] e.g., block 0, word °
X [1,0] e.g., block 1, word °
Y [1,1] e.g., block 1, word 1
Z [2,0]
C [1,0] Note: Same as X

TA's will be used, in conjunction with the display memory, to find the
locations of variables at run-time. The rule is relatively simple:

The address of the proper activation of a variable X with· T A = [B,j] is
D(B)+j.

Recall that D(B) is the contents of the B'th display register. The display
register will be used to keep track of the locations of the various variable

9 Run-Time Machine Structures 403

3r--+-~

2 1----,,'----1

11--_--,~

oL....-__---'

Display

s- Z

y

x

A

Stack

Figure 9.3. Stack containing (among other information) four local variables (A, X, V,
and Z), and the display pointers. On this run-time configuration, a
procedure at block level 2 is being executed.

domains in the stack. Those variables in block B will be in the stack relative to
D(B).

For example, while the statement Z:=X in the above program is being
executed, the display and stack will appear as in figure 9.3. This scheme
clearly permits other variables to be stored in the spaces between D(O), D(1),
and D(2).

We now redefine the addressing instructions as follows:

LV B,j: Load value
s ~ s+1
C(s) ~ C(D(B)+j)

LA B,j: Load address
s ~ s+1
C(s) ~ D(B)+j

STD B,j: Store direct
C(D(B)+j) ~ C(s)
s ~ s-1

9.6.3. Block Entry and Exit

We need another change in our implementation. Rather than stacking the
old values ofvariables when a block is entered (as before), we reserve space in

404 Compiler Construction: Theory and Practice

the stack for the new activations of variables whenever a block is entered. We
need two new operations for this, BE and EE. These operations will have to
be expanded later, but for now:

BE B,n: Block entry at level B, with n variables
D(B) ~ s+ 1 set up display element
s ~ s+n reserve n words

EB n: Exit block with n variables
s ~ s- n release n words

The compiler will always know the appropriate Band n values to use for these
instructions. Also note that the display-top variable b is not involved.

BE can be used instead of INCS n for most purposes. In Algol, arrays can
only be declared upon entering a block. If they have fixed dimensions, then
the total space needed for them and the simple variables can be worked out by
the compiler. All the space may then be allocated by a single BE instruction.

Arrays with variable dimensions (dimension determined at run-time) must
be allocated dynamically on the stack or in the heap through special AGC
instructions. However, a dope vector of fixed length can be allocated by the
compiler. A complete discussion of dynamic allocation is given later.

Example.

The translation of the above program is then:

BE 0,1 begin integer A {block 0, 1 word}
BR STRT {branch around procedure code}

procedure P
P BE 1,2 begin integer X,Y {block 1, 2 words}

BR PSTR {branch around procedure Q code}
Q BE 2,1 procedure Q begin integer z

LV 1,0 Z:= X
STD 2,0
LV 1,0 X:= X+A
LV 0,0
ADD
STD 1,0
LV 1,0 Y:=X+Z
LV 2,0
ADD
STD 1,1
EB 1 end
RTN

9 Run-Time Machine Structures 405

PSTR LV 0,0 X·- A {start of procedure P code}
STD 1,0
LV 0,0 A := A+1
LC 1
ADD
STD 0,0
CP Q Q

L3 EB 2 end
RTN

STRT LC 2 A·- 2 {start of outer block program}
STD 0,0
CP P P

L1 BE 1,1 begin integer C
LV 0,0 C .- A
STD 1,0
CP P P

L2 LV 1,0 print(C)
PRINT
EB 1 end
EB 1 end
HALT

This program will show a flaw in our design. Let us simulate it. Mter the
first call of P and execution of its BE, the display and stack appear as in figure
9.4.

Mter the call of Q and its BE operation, the display and stack appear as in
figure 9.5. Immediately after the Q return, the display and stack appear as in
figure 9.6.

The return from P just moves the s-pointer to A's location again. Mter the
block for C, P, and Qhave been entered again, the display and stack appear as

1

o

s-+ ?

~
?

L1
2

y

X
RA
A

Display Stack

Figure 9.4. A configuration during procedure execution (see text).

406 Compiler Construction: Theory and Practice

2
1

o

/
?

L3

~
2

L1

3

Z
RA
Y
X
RA
A

Display Stack

Figure 9.5. A configuration during procedure execution (see text).

in figure 9.7. Notice that there is no display entry pointing to C's location, as
is required by TRR from the environment of Q. Instead, the environment
seems to be that of the block containing Q's call, namely variables A, X, and
Y. Of course, C cahnot be accessed from within P, however, it should be
accessible from within Q, and it isn't.

Now Q stores A into what it thinks is C. However, the display is such that
A is actualiy stored into X. Mter procedures P and Q have run to completion
and returned, the instructions

LV 1,0
PRINT

will print the value of X, not C, as they were supposed to. The stack
configuration after exiting from Q and P is shown in figure 9.8. Register b is°
and most of the stack has been dropped.

2
1

o

v< 2
L3
7

~
5

L1
,;. 3

z

y

X

A

Display Stack

Figure 9.6. A configuration during procedure execution (see text).

9 Run-Time Machine Structures 407

s-

2t------I
1~__--1

o----..

Display

?
L3

?
3

L2
3
4

Stack

z

y

X

C

A

Figure 9.7. A configuration during procedure execution (see text).

2
1
o

~
3

L3
10

7

% L2

3
4

z

y

X

C

A

Display Stack

Figure 9.8. A configuration during procedure execution (see text).

The essential problem is that the display entries of a block are lost if a call
at block level m is to a procedure at block level n, where n < m. Such a call is
called an up-level call. We clearly must set the display correctly on an up-level
call to correspond to the environment of the called procedure (BL =n), then
reset it (to BL=m) upon exit.

9.6.4. The Static Display Chain

We shall keep a complete copy of the current display in the stack, as well as
previous ones which will be needed later, tucked away among the variables.
These copies are called static chains because they mirror the display, but are
not actively involved in addressing variables.

We shall also need register b, which always contains the BL of the block
whose code is executing; b also serves as a stack-top index for the display.

We shall arrange that the following is always true, for i = 1,2, ..., b:

C(D(i)-I) = D(i-I)

408 Compiler Construction: Theory and Practice

This relation is shown in figure 9.9 for b = 2. Note that the top display
element. D(b) is not in the stack and that the element i is just below the
location pointed to by D(i - 1). Also, C(D(O) - 1) can contain anything-this
word is never accessed by the display manipulation system.

Since BE is the only operation that changes the display, we assign it (and
EB) the task of building and maintaining the static chain.

BE n: Block Entry with n variables
C(s+ 1) ~ D(b) save static pointer
b ~ b + 1 increment block level
D(b) ~ s+2 set display element
s ~ s+n + 1 reserve storage

EB: Exit block
s ~ D(b)-2
b ~ b-l

reset s
decrement block level

Notice that since b is used, BE no longer needs its B parameter, and EB can
reset s without knowing how many variables were introduced.

In the absence of procedure calls, the block index b moves up and down in
an orderly fashion as blocks are entered and exited. An up-level procedure
call introduces a discontinuity: the block index b jumps downward by 1 or

b -+ 2 1---_+_---1

11--_----:>~

0'--__----1

Display

The static chain

Stack

Figure 9.9. The static chai n. Th is contai ns all the di splay information in the stack,
except the topmost cell D(b).

9 Run-Time Machine Structures 409

more. To allow RTN to reverse this jump, we must save additional
information on procedure entry, namely the values of b and D(b) at the time
of the call.

We therefore stack i (the return address), b, and D(b) on a call. This triple
ofquantities is called a transfer point (TP). In this context, we may think of it
as a sort of generalized return address. Now we define PE and redefine CP and
RTN.

CP 1: Call procedure at location 1
s ~ s+l
C(s) ~ D(b),b,i save TP
i ~ 1 transfer

PE B: Procedure entry, block level B
b ~ B adjust b

The block level B is the level of the block in which the procedure is
declared. Clearly, the compiler must save this in its symbol table associated
with the procedure.

RTN: Return
Go(s)
s ~ s-l

adjust display and transfer (sets i)
reset s

Go is a procedure that accepts a transfer point location and carries out the
transfer by resetting i, b, and the display. Go is given below:

procedure Go(t: integer);
begin {resets display}

var j: integer;

D(b),b,i := C(t); {unstack;
note that b is filled before D(b)}

j := b;
while j>O do
begin

D(j - 1): =C(D(j) - 1);
j:=j-1

end
end

Usually, only some of the display elements need to be reset. If b' is the
number of the smallest block which textually encloses the two points being
transferred between, then D(O), ..., D(b') are already correct and the b'

410 Compiler Construction: Theory and Practice

assignments in the loop of Go are redundant. One could therefore reduce the
number of repetitions of the loop.

The order ofthe instructions emitted is essential. On a procedure entry, the
rode should be:

PE B
BE n

On a procedure block end, the code should be:

EB
RTN

Let us now simulate the previous program in the light of our new
operations. The only modifications to the program are that the instructions
PE 0 and PE 1 should be inserted at the beginning of P and Q respectively,
since these are the levels at which P and Q were declared. Further, the block
levels can be dropped from the BE's and variable counts from the EB's.

After entering the block in which C is declared, the display/stack
configuration is as shown in figure 9.10. Just before the EB in Q is executed,
the configuration is as shown in figure 9.11. After execution of the EB and
RTN of Q and EB of P, the configuration is as shown in figure 9.12. After
executing the RTN of P, which restores the display, the configuration is as
shown in figure 9.13. We see that the 7 was properly stored in X, not C, and
that C's value of 3 is preserved through the calls.

Thus D(1) has been restored to its value from before the call. of P.
We have now completed our version of the procedure and block

operations. Although the example presented did not involve them, the
following features of Algol require this complicated implementation:

b-1
~------lo

Display Stack

c
SP

A

Figure 9.10. Use of the static display at run-time (see text).

9 Run-Time Machine Structures 411

b-2
t-----+-I

1
t-------1o
'---_---I

Display

s-

Stack

3 z
SP

Figure 9.11. Use of the static display at run-time (see text).

1. The renaming rille, which requires that the values of free variables of a
procedure are determined by the textual position of the procedure
declaration

2. Recursive procedures, which require more than one activation of the
same variable to coexist in general.

9.6.5. The Display Revisited

The display is actually redundant now, since the same information is
contained in the static chain. One may therefore consider omitting the display
in an implementation.

Wirth [1971a] found that three display registers were sufficient for his
Pascal compiler source, and their access frequencies are as follows:

D(O): 84.2%
D(l): 14.7%
D(2): 1.1%
D(3): Never used

412 Compiler Construction: Theory and Practice

7

10

b-1
~--~

o
Display

y

X
-;-----, SP

I----L--I~ } TP

C
SP
A

Stack

Figure 9.12. Use of the static display at run-time (see text).

This means that the Pascal compiler never exceeded a nesting level of 2 in its
procedures. However, Pascal is not fully block-structured; that is, a BEGIN
END pair cannot be used by itself to declare new variables, as in Algol 60,
PLjI, and Algol 68. In these languages, one might expect more nesting levels
to be used.

Given more nesting levels, it appears from Wirth's study and from other
observations that the most frequently accessed levels are the "b" level (most

1
b_OI-----t

Display Stack

c
SP
A
SP

Figure 9.13. Use of the static display at run-time (see text).

9 Run-Time Machine Structures 413

local) and the "0" level (global). These levels account for most of the variable
references. One can then justify a display consisting of just two registers, one
for global references and another for local references. The few intermediate
level references can be handled in either of two ways:

1. For every intermediate level reference, search down the static chain to
the appropriate level and access the data through the indicated stack
location.

2. Locate all intermediate level references in a first pass through a
procedure. Then generate local addresses to each variable referenced at
an intermediate level in the procedure (by following the static chain).
Every data reference then is either local direct, local indirect, or global.
Note that two passes are needed in this approach, since the stack
allocation of local indirect labels cannot be made in the middle of
expression evaluation, and a free variable can show up anywhere.

Of course, if the display is implemented in hardware, and the necessary
display manipulation in firmware, as in the Burroughs 5500, its overhead cost
in execution time and code is negligible.

9.6.6. Labels and GOlO's

Any statement in an Algol program may be labeled. The scope of the label
is the smallest textually enclosing block. A label is similar to a procedure in
branching, except that a branch to a label carries no parameters and no return
is expected. A branch B to some label L is legal only if the level of B is greater
than or equal to the level of L, just as for a procedure.

A GOTO must reset the i, b, and s pointers to the context of the label. We
must modify BE and EB once more to save the s pointer for this purpose. The
saved quantity is called the working pointer (WP).

BE n: Block Entry with n variables
C(s+ 1) ~ s+n+2 save WP
C(s+2) ~ D(b) save the static pointer
b ~ b+l
D(b) ~ s+3
s ~ s+n+2

EB: Exit block
s ~ D(b)-3
b ~ b-l

Now we define an operation analogous to PE, intended to precede any
branch to a label in a different block level:

414 Compiler Construction: Theory and Practice

LE B: Label entry in block at level B
b~B

s ~ C(D(b)-2)

Notice that LE is a "no operation" effectively if the branch and the label
are in the same block, hence could be omitted as an optimization in this case.
Also, when a branch is executed, the stack configuration is expected to be
exactly as it was upon entering the block containing the label, \yith no
additional words. This means that a branch within an expression ev~luation

(Algo168 permits such a thing) will cause any partial expression results on the
stack to be lost. Even'this loss is OK, inasmuch as branches are to complete
statements, not to points within expressions. '

An Algo160 FOR loop should be implemented by stacking the step size
and limit. A branch from within a FOR loop will lose this information, even
if the target of the branch is within the loop. For this reason, a BE-EB pair
should be executed just covering the loop code. Then a branch within the
FOR loop, or even out of the loop into some covering loop, will adjust the
stack properly.

The JP and JIF instructions from section 9.2.3 may still be used for the
GOTO statement.

Consider the following program:

begin integer A;
A:=O;
begin integer B;

procedure G;
begin B: = READ;

if B<O then goto ENDF;
A := A+B

end;
LOOP: G;
goto LOOP

end;
ENDF: PRINT(A)

end

Its translation is:

BE 1 begin integer A
LC ° A:=O
STD 0,0
BE I begin integer B
JP L2

9 Run-Time Machine Structures 415

G PE 1 procedure G
BE ° begin
READ B:=READ
STD 1,0
LV 1,0 if B<O then
LC °LS
JIF Ll
LE (\

v

JP E goto ENDF
Ll LV 0,0 A:=A+B

LV 1,0
ADD
STD 0,0
EB end
RTN

L2 CP G LOOP: G
LE 1

JP L2 go to LOOP
EB end

E LV 0,0 ENDF: PRINT(A)
PRINT
EB
HALT

Notes:

1. The first JP in the program allows us to write the translation of G in the
same relative position as its procedure declaration.

2. The BE-EB pair around G's translation could be omitted since no new
storage is needed.

3. The EB immediately before statement E is never executed.

Exercises

1. The instructions 'CP I and RTN cause a branch to some other program
memory location. Exactly how is this achieved?

2. Assign textual addresses to each of the variables' in the following
program, then translate it to AOC code:

416 Compiler Construction: Theory and Practice

begin integer A;
integer array B[5:9],

C[-3:2];
integer D,E;

procedure SAM;
begin integer B,C;

integer array X[O:15,3:7];

procedure ED;
begin integer array Q[3:9];

integer Z;
Z:=X[3,6];
B:=Z+l

end;

procedure MAX;
begin integer array B[O:5];

integer Y,Z;
Z:=B+ 1;
ED;

end;
B:=C+3;
if B<O then go to ENDP;
MAX;

end;
A: = B + C[B] + D - E;
SAM;

ENDP: end;

3. Assume that the display D is replaced by a single register Q that
effectively contains D(b) at all times. (Register b still exists.)

(a) Redefine each ofthe instructions that involve D and procedure Go, to
reflect this plan.

(b) Give an algorithm for up-level address references, assuming that
each reference requires a static chain sequential search.

4. One might suppose that procedure Go could be translated into AOC
instructions, and that it could operate using the display, stack, etc. Is
this so? If not, why not? Could it be written in a mixture of AOC
instructions· and "contents" notation, to operate on the current stack?

9 Run-Time Machine Structures 417

5. Show that LE is a "no-operation" if the branch and the label are in the
same block.

6. Given that some branch does not require an LE, can this fact always be
detected in a one-pass compiler? In a two-pass compiler?

7. Design instructions to implement an Algol FOR loop. The loop rules
form is

for < var > := < expr1> [step < expr2 >] until < expr3 >
do < statement>

The loop rules are

(a) The step size <expr2> may be positive or negative, but not zero. If
the step is omitted, a step size of + 1 is assumed.

(b) The <statement> cannot affect the step size or termination
condition <expr3>, but can affect the <var> value.

(c) The test of <var> value against the termination value <expr3> is
made before the <statement> is executed; thus the <statement>
may not be executed.

(d) The <statement> is executed on any iteration only if the current
values satisfy

SIGN«expr3» X I <expr3> - <var> I;::: 0

where SIGN(X) = if X > 0 then + 1 else -1, and where IXI = (if
X>O then X else - X).

(e) The <statement> may contain any Algol statement or block,
including other FOR loops.

8. Give a reasonable set of restrictions for branches into and out of FOR
loops (cf. exercise 8 above), and sketch a compiler algorithm to detect
such restrictions. What stack adjustments, if any, are needed on such
branches?

9. When are both a PE and a BE required on a procedure call? Give
examples of programs in which (a) only a PE is needed, and (b) only a
BE is needed upon entering some procedure or block.

10. Pascal permits the declaration of variables only upon a procedure
entry, not upon an arbitrary block entry (BEGIN END). Are separate
PE and BE instructions needed? If not, design a combined instruction.

418 Compiler Construction: Theory and Practice

9.7. Arrays

Arrays can be implemented in at least two different ways. The first ofthese,
packed arrays, conserves memory space at the expense ofelement access time.
The second, matrix pointer arrays, requires more memory space, but provides
a rapid access means.

Both systems require a dope vector that can be allocated by the compiler,
and assigned to a transfer point [B,j] ..The dope vector structure is the same
for both array access means and is shown in figure 9.14. It consists of 2n+ 1
words, where n is the number of array dimensions (the rank.) Although the
upper and lower limits of an array may be altered dynamically, its rank is
fixed at compile time.

9.7.1. Packed Arrays

Packed arrays are implemented through two new instructions, MAS and
AVA, as follows:

t
Increasing

s

[B,j] :

Stack top

A[u" u2,·" un]...
A [b, + 1, b2 ... bn],.. A[b" b2,"· bn]

...
In=un-bn+1

bn...
12 = U2 - b2 + 1

b2

I, = u, - b, + 1

b1

'--- f--e Array base address

Array data space

lather information

Array dope vector

Figure 9.14. Stack configuration upon completing allocation of a packed array
through procedure MAS. The array dope vector is given, then MAS
allocates the necessary space and sets the array base address in the dope
vector.

9 Run-Time Machine Structures 419

MAS B,j,n: Make array space.
[B,j] is the array base address,
n is the array rank.

MAS allocates space for the array from the stack, based on the size and
lower bound information given in the dope vector. The array base word
address is also filled in by MAS.

AVA n: Array Variable Address.

AVA will calculate the address of an array element, given its subscripts and
the array base word address arranged on the stack. AVA may also be used to
check that the given subscripts lie within the dimensioned range of the array.

Array allocation occurs in two steps as follows:

1. While scanning the declarations in the head of a block, the compiler
allocates space for the dope vector of each array. Code may be emitted to
generate the lower bound (bi) and size (Ii) information in the vector (see figure
9.14). The vector is arranged such that a pair (bi, Ii) may be computed and left
behind on the stack, while parsing a declaration, from left to right, to form a
dope vector. The textual address of the dope vector [B,j] and the rank n are
noted and kept as array attributes in the compiler's symbol table. No space is
allocated yet.

2. Mter all the declarations are scanned, MAS is called for each of the
arrays. The allocated space will depend on how the dope vector is filled in
during execution of the block-head code, hence the locations and size of the
array spaces (except the location of the first) will be unknown to the compiler.

In general, the dope vector and the allocated array space will be separated
by an unknown number of words. Only the dope vector transfer point is
known to the compiler.

Array space and the dope vector created for the array declaration

A[b1:Ul' b2:u2, ••• bn:Uu]

by MAS is shown in figure 9.14. For dimension i, bi is the least value that a
subscript may take and Ui is the greatest value that subscript i may take. These
may be expressions in general, containing variables previously declared and
defined.

An array's data space is allocated somewhere higher in the stack than its
dope vector. The array elements start with

A[bl' b2, ••• bn], A[b1 + 1, b2, ••• bn] •••

and end with

420 Compiler Construction: Theory and Practice

Note that the left-most index is the most rapidly varying one. We shall see
that this arrangement leads to an efficient implementation.

The array base word is needed to give the array a constant transfer point
despite the varying locations and sizes of the array elements. The base word is
filled in during execution of its MAS instruction.

For example, consider the program

begin integer N;
N: = READ; {dimension is variable}

begin integer I;
integer array A[1:N],

B[3:5,N + 1: N + 15];

This program translates to:

BE 1
READ
STD 0,0
BE 1

LC °
LC 1
LV 0,0

LC °
LC 3
LC 3
LV 0,0
LC 1
ADD
LV 0,0
LC 15
ADD

begin integer N;
N:=READ

begin integer I;
{"1" is the words needed for
variable I.
The dope vectors for A and B will be
constructed on the fly.
The textual addresses are:
I: [1,0],
dope vector A: [1,1],
dope vector B: [1,4] }

{dope vector A base address,
not· known yet}

{A lower limit}
{size, N}
{B base address, fixed up later}
{B lower limit, bd
{first dimension size, II}
{N}
1
{lower limit of B, b2 }

{N}

{upper limit, u2 }

9 Run-Time Machine Structures 421

LV 1,7 {lower limit}
SUB
LC 1
~I)I) {size, 12}
M~S 1,1,1 {allocate space for ~}

M~S 1,4,3 {allocate space for B}

TheM~S procedure is defined as follows. It requires the transfer point [B,
j] of the dope vector and the number of dimensions N. It then allocates space
for the array and sets the array base address in its dope vector.

procedure M~S(B, j, N: integer);
begin {make array space}

{[B, j] = T~ of dope vector,
N = array rank}

var I)V,T,I,X: integer;
{temporary variables}

I)V:=I)(B)+j; {absolute dope
vector address}

C(I)V): = s+ 1; {base address}
X:=I;
I)V:=I)V+2;

for 1:=0 until N -1 do
begin

X:=X*C(I)V);{1 1 X1 2 X ... X In}
I)V:=I)V +2

end;
s: = s+ X {the space allocation}

end

~S is designed to execute at run-time. However, it cannot use the data
stack of the user program without some changes. If M~S is called as a
procedure, a stack marker will be established, yielding a new stack top address
s. The array will be allocated using this new s, after the temporary variables of
~S have been allocated. Unfortunately, upon returning, all the allocated
space will disappear, through the way the procedure return works.

If it is necessary that M~S operate on the user stack, then (1) the base
address should be adjusted to reflect the known number ofwords added to the
stack by the M~S call, and (2) just after the stack space is allocated, the M~S
stack marker and its temporary variables should be moved to the top of the

422 Compiler Construction: Theory and Practice

allocated spClce, and D(B) adjusted. Then upon exit, the allocated space will in
fact be left behind in the stack as wanted, and all the traces of the MAS call
will have g()ne away.

Now consider the location of an array element:

A[ip i2, i3, ..., in)

This array element is stored in the stack location

(base location) + i1 - b1 + 11 *(i2 - b2 + 12*(i3 - b3 + ... + In-l *(in - bn)
... »

The AVA instruction expects the following list on the stack: ip i2, ... , in'
DVA, where DVA is on the stack top, and is the dope vector address. The
necessary code sequence to acces~ the array elements is therefore:

{evaluate i1}
{evaluate i2}

{evaluate in}
LA B,j {dope vector transfer address}
AVA n {n=array rank}

{array element address is
left on the stack}

The following procedure defines AVA. This, like MAS, needs some
modifications if it is to operate on the user stack. We leave the necessary
modifications to an exercise.

procedure AVA(N: integer);
begin {compute array element address

from stack information}
var T,U,I: integer;

T: = C(s); {dope vector address}
T:=T +2*N -1; {address of bn}
s: = s- 1; {drop transfer address

from stack}
U: = C(s) - C(T); {element offset for

one-dimensional array}
I:=N-l;

while 1>0 do
begin

s:=s-l;

9 Run-Time Machine Structures 423

T:=T-1;
U:= U*C(T) + C(s) - C(T -1);
T:=T-1;
I:=I~1

end;
C(s): = U + C(T - 1) {final element address}

end

In AVA, I is used as a Counter to step through the dbpe vector, T is an
address into the dope vector, and U is an element offset variable that becomes
the offset from the base address of the array at the end of the while-do. Some
optimizations of the while loop are suggested, since the dope vector elements
are needed in just the order that they appear, moving downward in the stack.

We leave as an exercise a proof that AVA correctly computes the array
element address.

Example

Here is a program and its translation that illustrates procedure AVA.

begin integer N,M;
N:=READ;
M: = READ;
begin integer array A[1:N],

B[O:M, N:20, N:M+N];
integer I,j;
I: = READ;
J: = READ;
A[I] := 1+ J;
B[J,19,I+3] A[J -1]

end
end

BE 2
READ
STD 0,0
READ
STD 0,1
BE 0

begin integer N,M
N: = READ;

M: = READ;

begin ... A[], B[], I, J;
{space will be allocated as we move along.
The final transfer points will be:
A d.v. 1,0
B d.v. 1,3
I 1,10
J I,ll}

424 Compiler Construction: Theory and Practice

base address for A
store base, b I = 1
fetches N, is in fact the wanted size
bottom of descriptor words for B

b I = °
fetch M

21-N

M+l

I+J

LC °
LC 1
LV 0,0

LC °
LC °
LV 0,1

LC °
SUB
LC 1
ADD ul

LV 0,0 b2

LC 20 u2

LV 0,0
SUB
LC 1
ADD u2 - b2 + 1
LV 0,0 b3 =N
LV 0,1
LV 0,0
ADD
LV 0,0
SUB
LC 1
ADD u3 - b3 + 1 = M+ 1
INCS2 space for I, J
MAS 1,0,1 create space for A
MAS 1,3,3 create space for B
READ I: = READ;
STD 1,10
READ
STD 1,11 J:=READ
LV 1,10 I
LV 1,0 array base word for A
AVA get address of A[I]
LV 1,10 I
LV 1,11 J
ADD
ST A[I]
LV 1,11 J
LC 19
LV 1,10 I
LC 3
ADD
LV 1,3 array base word for B

AVA
LV 1,11
LC 1
SUB
LV 1,0
AVA
CONT
ST
EB
EB
HALT

9 Run-Time Machine Structures 425

get address of B[...]

array base word for A
get address of A[J - 1]
get contents of A[J - 1]
B[J,19,I+3] := A[J -1]

9.7.2. Array Access Through Matrix Pointers

Given an array of rank n, we may organize the array access by constructing
pointer vectors in the stack, as well as allocating space for the array elements.
The determination of an array element address is much faster with pointer
vectors than through the index calculations of AVA above, if the rank is two
or more. If the rank is one, the two methods are essentially the same.

Let us begin with access. For rank n, and an array element of the form

A[il' i2, i3, •••, in]

we construct a dope vector exactly as before at the transfer point [B,j].
(However, the base address and allocation is handled by procedure MMAS,
given below.) Then the following code sequence is emitted:

LV B,; {this will be the
base address, less b I }

{evaluate i1}

ADD {end of one index}

CONT {for a second index}
{evaluate i2 }

ADD {end of second index}

CONT {for the nth index}
{evaluate in}
ADD {element address will be

on the stack}

The simplicity of this scheme speaks for itself. Instead of building a list of

426 Compiler Construction: Theory and Practice

indices, then calling AVA, the simple instructions CaNT (indirection) and
ADD are used to determine the address.

A conceptual diagram of this access scheme is given in figure 9.15. Only
one dope vector element, the base address, is needed. The base address of the
dope vector points to a fictitious memory location, b1 words below a vector of
11 pointers. Note that the first index il' must be at least bl' and is added to the
base address during access. Mter the first ADD, we therefore have the address
ofone of the 11 pointers. CaNT fetches its contents, and this is the address of
another fictitious memory location, b2 words below a vector of 12 words. At
the end of the access sequence, we have the address of an element.

A specific stack configuration for the declaration

var X: array [2:3, 3:2] of integer

with the dope vector X address 11 and the top ofstack address 20 upon calling
procedure MMAS, is shown in figure 9.16. The dope vector is in locations
11/15, the first (and only) matrix pointer vector is in locations 21/23, and the

Fictitious stack
space - never
accessed

[B,j]: L....-__---'

Figure 9.15. Conceptual stack configuration for matrix-pointer array access.

9 Run-Time Machine Structures 427

29 X [4,4]1------'"-..;......;0---..,
28 X [4,3]
27 I--X""":['-3,-4;:"""]--t

26 X [3,3]
25 t--:X~[""=-2,--:4~] --t

24 X [2,3]
23 1----:;..2-5-""-=-~::r-'

22 23
21 ~----=-21::----;'otIIl..

20
19
18
17
16
15
14 1---:------:----1

13
12 1---:-'-----1

X=[B,j]: 11

Figure 9.16. Actual stack configuration for matrix-pointer array access, just after
MMAS has allocated the necessary space and set up the pointers.

data elements are in locations 26/29. The configuration is exactly as MMAS,
given next, would generate.

Now let us define procedure MMAS. This sets the base address for an
array, allocates space for it, and sets the pointer vectors appropriately.

procedure MMAS(B, j, N: integer);
begin {make matrix array space.

[B, j]: dope vector
transfer address,

N: array rank}
var DV: integer;

procedure SETP(N,A,D: integer);
begin {set pointers}

var I: integer;

if N>O then
begin {return if N is zero}

for 1:=0 until C(D-I)-l do

428 Compiler Construction: Theory and Practice

begin
C(A+ I):=s+ 1-C(D);

{set one pointer}
s:=s+C(D+ 1); {allocate a

vector}
SETP(N -1, s-C(D+ 1)+ 1, D+2)

{then fill the vector}
end

end
end; {of procedure SETP}

DV: = D(B) + j; {absolute dope
vector address}

C(DV):=s+ 1-C(DV+ 1);
{base address, less offset bd

DV:=DV+1;
s: = s+ C(DV + 1); {space for a vector}
SETP(N -l,s-C(DV + 1)+ 1, DV+2)

{fill the space}
end {of procedure MMAS}

Procedure SETP is the key to understanding MMAS. When SETP is
called, it expects that a contiguous array of words, starting at address A, has
been allocated on the stack, but not filled. It also expects D to be the address
ofthe next dimension pair in the dope vector. The purpose of the FOR loop is
to fill this vector with the addresses of spaces that SETP is allocating. Note
that when N reaches 0, the space at address A is simply allocated and not
filled; this becomes data space.

If the FOR loop instructions are executed once or more times, each
iteration places one address in the vector. The address is the next available
stack location s + 1. Mter the address is placed, space is allocated for the
vector (or data) and SETP is called to fill it, based on the next dimension (at
location D + 2). The recursive calls of SETP effectively set up an entire
matrix ofpointers and array spaces before returning to set up the next pointer
in its list. At the end of a set of recursive calls is an allocation of uninitialized
array space. The maximum depth of recursive calls is r, the number of
dimensions of the array. However, the total number of calls is n 1 X n2 X ...
X 1\.-1' or 1 if r= 1. This of course can be a large number of calls. However,
MMAS is only called upon a declaration. Access of an array element is fast
inasmuch as no multiplications are needed.

MMAS will result in sets of data space and pointer vectors intermixed in
the stack in some fashion. It is obviously essential that array indices lies
within their declared bounds, otherwise data values will be treated as
pointers, or pointers will be overwritten with data. Clearly, array access can

9 Run-Time Machine Structures 429

be embellished with array bounds tests, although at some increase in access
code and execution time.

Procedures MMAS and SETP expect their parameters to be passed by
value. This means that a local copy of the parameter value is built on a stack.
The copy may therefore be used and modified without affecting the original
value. The FOR loop in procedure SETP must carry its limit value on a
stack, as well. Of course, the local variable I in SETP is stacked.

MMAS cannot be executed on the user stack without some modifications
to prevent loss of the allocated space and pointers upon return. We leave
details to an exercise.

9.7.3. Dynamic Arrays and Redimensioning

An Algol 60 variable may be designated OWN or be considered local by
default. A local array is allocated by one of the previous schemes upon
entering a new block and is deallocated upon exiting from the block.
Deallocation is automatic-as the stack top pointer s is simply reset to its
value upon entering the block. There are also no language features that
permit the dimensions of a local array to be changed within the block (at least
not in Algol or Pascal. However, PLjI permits arbitrary redimensioning of
type VARYING arrays at execution time). The dimel1sions may be arbitrary
expressions containing variables defined in some covering scope. Such a
dynamic array can be allocated from the stack by MAS or MMAS, operating
at run-time.

Now consider an OWN array. The values of an OWN array must be
preserved between an exit from its block through a subsequent re-entry into
the block. This alone means that an OWN array cannot be allocated on the
stack top; another data space, the heap, is needed for OWN variables and
arrays.

If the OWN array has dimensions that are fixed at compile time, the
compiler can simply allocate a group of words in the heap for the array. This
obviously applies to simple OWN variables as well. Unfortunately, the Algol
60 rules permit redimensioning OWN arrays. The redimensioning cannot
change the rank, but it can change the upper and lower limits. The change, of
course, occurs if any of the dimensions is a variable expression. The Algol 60
rules furthermore specify that upon such a redimensioning, the value ofevery
data element whose index set is valid under both the old and new dimensions
must be preserved. That is, if the array element

A[15,7,20]

carries valid indices under both the old and the new dimensions, then its value
must be preserved.

The new dimensions may be such that the overall array size is increased;

430 Compiler Construction: Theory and Practice

the new array will then not fit into the old allocated heap space. The old space
must be released to a pool of available. heap space, and new space must be
allocated. Ali the compatible data values must also be copied into the new
space.

If thertew data spacesize is less than the old, then the old data space can be
re-used, \vlth sonie space possibly left over, available for other uses. Data
values must in general be moved to new locations. The easiest way to move
the values is to firSt copy them toa temporary heap or stack space, then copy
them back irito their correct positions. However, Ingerman [1961] solved the
problem ofmoving the data values correctly in place, without requiring more
than a few temporary memory cells.

The dynamic allocation of new heap space and the discarding of existing
space calls for a memory management system for the heap in any practical
implementation. We have regarded the heap and stack space as infinite, but of
course in any implementation these spaces are limited by available memory
and by fixed address word sizes. A limitation on stack space is not necessarily
fatal to a program, since.stack space tends to be reclaimed; no corpses of
memory are left around. Heap space on the other hand will eventually consist
of large dead areas separated by live areas. When a memory limit on heap
space is reached, something should be done to make use of the dead areas; in
an attempt to keep the program going, at least until all the available heap
memory is filled with live data.

There is general agreement that the most efficient memory management
system for this application is on~Jn which new heap space is allocated from h
downward, as needed. When a heap memory limit is reached, the program is
interrupted, and the heap space is collapsed by collecting together all the live
areas. This process is calledgarbage collection. The garbage collector must be
able to determine the locations and sizes of each of the areaS and whether an
area is dead or live. It is sufficient to provide two pointers PREV'HEAP and
BACK'PNTR and a flag LIVE in each data area, assuming that new areas are
always allocated in the next heap area and are linked (with PREV'HEAP) in
the order last-allocated-first. Then the first pointer value is also one word
morethan the end ofthe data area containing the pointer. (The purpose of the
pointer BACK'PNTR will be clear in a moment.)·

Given such a chain, the garbage collector would first build a list of live
areas and their lengths on the stack by following the PREV'HEAP chain. It
would then move the live areas to the heap bottom, fixing their links
appropriately, in link order. Dead areas are thereby removed in this process.

The garbage collector must also update all references to the live areas. The
update can be managed by requiring that exactly one pointer to a live heap
area exist, on the stack. Let its location be P. We then need a pointer
BACK'PNTR in each heap data area to P, so that the garbage collector can
locate and adjust the pointer in P.

9 Run-Time Machine Structures 431

We see that each heap data area must therefore contain the following data
structure-the remainder of the area is available for the data.

var PREv'HEAP, BACK'PNTR: integer,
LIVE: Boolean;

Garbage collection can be implemented as a parallel process through a
system of semaphores. See Gries [1977], Steele [1975], and Dijkstra [1976a]
for details. Such an ilnplementation would be very efficient if an independent
processor could be dedicated to garbage collection. Those heap data areas not
currently in use can be moved into dead areas while other processing
continues concurrently.

9.7.4. Pascal Data Structures

We next consider the problem of allocation of Pascal data structures
through AOe operations. This problem is a kind of generalization of the
array access systems described in the previous section and in fact admits of
two access soludions, one with direct index calculations and another with
pointers.

These two kinds of structure organization are illustrated in Figs. 9.17 and
9.18. They correspond to the Pascal declarations

type NAMEPART=array [1. .20] of char;

type NAME=array [1. .3] of NAMEPART;

type VITA = record NAME: NAME;
AGE: integer;
SS: array [1. .3]

of integer;
SALARY: integer;

end;

var LEONARD: VITA;

Figure 9.17 shows a matrix pointer implementation of LEONARD. At
run-time, LEONARD is a pointer to a VITA list. VITA contains pointers to
NAME, AGE, SS, and SALARY. Access to some primitive object at the end
of a chain requires indirection, indexing, indirection, indexing, ... , just as for
array matrix pointers.

Figure 9.18 shows a packed implementation of LEONARD. Here the
required data areas are packed into a contiguous group of data memory
words, referenced by a textual address associated with LEONARD. The

432 Compiler Construction: Theory and Practice

18

507
32

8752

*namepart

1
1------1

2
1------1

3 1-- -'

.-+--------'---i~1
2
3

1--_---'

IlL~ARDI
*vita

o NAME
1 AGE
2 5.5.
3 SALARY

~~ ~~20B 20B
1 L
2 E
3 0

N

20

Figure 9.17. Run-time support structure for a Pascal VITA structure, using pointer
matrices.

necessary offset of some data element is in general an expression whose
operands are some combination of offsets within the structure and indices.
Since the indices are run-time variables in general, the offset must be
computed at run-time. Notice that a dope vector is unnecessary; each of the
data items in figure 9.18 has a position known to the compiler, because the
dynamic dimensioning of such structures is not supported in Pascal.

Let us begin with some observations that apply to Pascal data structures
(and Pascal only!):

1. Every declared type has a fixed size.

2. Every type appearing in a structure bears some offset from its ancestor
types, known at compile time. However, the offset depends on the
ancestor. Recall that a given type may appear in more than one
declaration and will therefore carry an offset that depends on the
declaration details.

3. A type is allocated space and assigned an address only upon an
appearance in a "var" or "constant" declaration. Until such an
appearance, a Pascal type is an abstract description of a certain
configuration of data.

We conclude from these observations that the compiler can assign a textual
address T and allocate space to each declared variable name, e.g., ED in

var ED: <some type name>;

9 Run-Time Machine Structures 433

However, the address of each component datum in ED must be worked out
on each reference. Only the variable ED can be assigned an address. The
components ofED in the symbol table type structure will in general be shared
by several different variables with different locations.

The mechanism ofdeveloping an address for a component of some variable
is given by the following algorithm.

1. The root name is the name declared in a VAR or CONST declaration. It
is assigned a transfer point [B,j] by the compiler. The next available
transfer point is [B,j + j'], where j' is the number ofwords needed for the
structure associated with the root name.

2. The size j' of a structure is determined by the compiler through a
bottom-up tree walk through its structure lists, as follows. Each element
in the structure carries a pair {S,D}; S is the size of the object and Dis
its offset relative to a related object.

(a) For a primitive data object, {S,D} = {size of the object, O}.

(b) For an array object, the child will carry the pair {S,D}. If the upper

r 45000 salary
8752

} 5.5.Increasing address 32

507
18 age

R
R
A
B

L

Leonard L namepart

I
W

Figure 9.18. Run-time support structure for a VITA structure, using packed
configuration.

434 Compiler Construction: Theory and Practice

and lower bounds of the array are U and L, then the array object will
carry the pair {S*(U-L+ 1),D-L}.

(c) For a RECORD node, with selectors S1' S2' ..., 'sn' and descendant
types T l' T 2' ..., Tn (e.g. figure 8.6), let selector sicarry the pair {Si'
Dd. ThenDl =0,D2=D1 +S1'D3 =D2 +S2,etc. Ingeneral,eachof
the Di except the first will change from their original value of O. Then
S for the record node will be Dn+ Sn' and D for the node will be O.

(d) For a variant node (CASE), each of the case fields will carry some
displacement S', where S' is the size of the CASE data object. The
displacement D of the variant node will be 0, and its size will be S'
plus the maximum ofthe sizes ofthe field sizes. Thus the variant type
structure is supported·by an allocated memory space sufficiently
large for the largest possible case.

For example, here are the TA's assigned to the components ofLEONARD
(cf. figure 8.8 and figure 9.18):

Component

LEONARD.NAMEPART(O)
LEONARD.AGE
LEONARD.SS(O)
LEONARD.SALARY

Offset j in T A [B,j]

o bytes
60
62 {an integer = 2 bytes}
68

The size of the LEONARD structure is 70 bytes.

9.7.5. Pascal Data Object Access

A structured data object is accessed by refining the base address [B,j] of its
root node. Now each of the primitive data objects in the structure will carry
some offset j' from the root address. However, because of array indexing, the
offset will in general be a run-time value. We propose a scheme for
determining j' for some data object described by a compound Pascal name.
The scheme will emit code that locates the item, and if the code evaluates to a
constant, then presumably the compiler will be able to identify this fact.

The emitted code might first be expressed as an AST of course, which
permits various optimizations and reductions.

Given the base address [B,j] of a data object, we then consider the path
downward through the type structure associated with the object (cf. section
8.3.3.3). Offset j is then altered as follows in passing through various nodes:

1. In passing through an array node with the index X (possibly an
expression), lower dimension L, and pair {S,D},

j:= j+S*(X-L)+D

9 Run-Time Machine Structures 435

Effectively, the array blocks of size S each begin at displacement D
relative to their father node.

2. In passing through a record selector node associated with the pair
{S,D},

j:= j+D

3. In passing through a variant node, with pair {S,D},

j:= j+D

When the data object at the end of the search path is reached, its transfer
point is [B,j].

For example, LEONARD.SS(2) in figure 9.18, with a packed structure on
byte boundaries and with 2-byte integers, will be accessed as follows:

• Let A' = byte address of the LEONARD structure.

• Then A' + 62 = byte address of the SS part of the structure (three
20-byte nameparts and one 2-byte age precedes this address)

• Then A' + 62 + 2*(2 - 1) = A' + 64 = byte address of LEON­
ARD.SS(2).

Dynamic Pascal Objects

A pointer in Pascal is associated with some data structure. If pointer P is
associatedwith type T, then P can only be set to point to a structure of type T.
New memory space can be allocated to a pointer P, through the function
new(P) This procedure allocates sufficient space (in the heap) for the type
associated with P and also sets P to point to it. The procedure new is useful for
building repeated data structures such as trees and lists.

We have already discussed the problem of dynamic allocation of memory
space in the heap. We need only discuss the access of a data object through a
pointer which is achieved essentially as follows:

LV P {contents of pointer, an address}
{evaluate offset of data object}
ADD
{address of data object is now on stack}

Exercises

1. Translate the following program to AOe code, using MAS. Give
another translation using MMAS:

436 Compiler Construction: Theory and Practice

begin integer X;
X: = READ;
begin integer N;

integer array A[O:X],
B[1:X,X+1:2*X];

N:=READ;
A[N + 1]: = B[READ, READ +X] +25

end
end

2. What modifications to AVA would provide run-time checking of array
bounds? Consider two kinds of check: an overall check that the final
addressed element is within the array somewhere, and a more particular
check that each index is within its dimension.

3. What modifications to the matrix access system are needed for run-time
checking of array bounds?

4. What modifications of AVA are needed for it to be called as any other
AOC procedure, using the data stack, display, etc., of the calling
procedure?

5. What modifications to MAS and MMAS are needed for these to operate
on the user stack?

6. In figure 9.16, show that each of the six X values are correctly accessed
through the access mechanism given.

7. Construct the stack configuration for the declaration

var X: array [2:2, 3:4, - 3: - 2] of integer

using MAS and MMAS. Let the dope vector reside at address 75 and
stack top address s= 123 upon calling MAS or MMAS.

8. Compare the performances of AVA and matrix pointer access for an
array of rank n. Assume that each memory fetch and store, that each
unary or binary stack operation (other than multiply) requires 1 time
unit, and that a multiply requires 5 time units.

9. Which requires more operations-MAS or MMAS? Does your answer
depend on the rank or on the array dimensions?

10. Write a heap garbage collector in Algol, Pascal, or AOC code. Could
this operate as a procedure on the user stack? When should it be
invoked? Assume that the system imposes an absolute upper bound on

9 Run-Time Machine Structures 437

Ihl. Are any new AOC instructions needed (i.e., in addition to those
already introduced)?

11. Show the stack configuration resulting from the Pascal variable

var ADDR: ADDRESS

(d. section 8.3.3.3), using packed accessing. Then give optimized AOe
code to compute the addresses of each of its constituents.

9.8. Typed Procedures and Procedure Parameters

Programs are much clearer, more precise in meaning, and easier to write
and maintain if the inputs and outputs of procedures are explicitly declared.
An Algol procedure declaration has the general form

<type> PROCEDURE <name>
(<fPI> , <fp2> , ... , <fpn>);
<VALUE fp declarations> ;
< specification fp declarations> ;

<procedure-body>

The <fpi>'s are simple identifiers, calledfonnal parameters, or FP's. Their
attributes are declared in the < VALUE fp declarations> and in the
<specification fp declarations>. The former list specifies those that are
passed by VALUE; all others are passed by name. The latter list specifies the
type (REAL, INTEGER, etc.) and whether an ARRAY or not.

The <procedure-body> is a block, consisting in general of a BEGIN­
END pair enclosing local declarations, more procedure declarations, and a
list of executable statements. Algol 60 also permits a single executable
statement, without a BEGIN-END pair, as a <procedure-body>.

The procedure <type> must appear if the procedure is to be used as a
function; this is the type of the returned value, REAL, INTEGER, etc. The
value ofa typed procedure is assigned-to within the <procedure-body> by a
statement of the form

<procedure name> .- < expression>

The parameters el' e2, etc. that appear in a call

<procedure name> (el' e2, ...)

438 Compiler Construction: Theory and Practice

are called actual parameters or AP's. A procedure call is handled roughly as
follows in the AOC machine:

1. If the procedure is typed, a word is allocated on the stack for its return
value. Upon a procedure exit, this word will be left in place, exactly as
needed for whatever expression evaluation was taking place at the
moment of the call.

2. For each of the actuai parameters, the compiler considers the relation of
the actual parameter to the corresponding formal parameter declara­
tions. Algol 60 permits passing parameters by value or by name. Other
parameter passing mechanisms have been proposed-we will consider
passing by reference later. The compiler must emit code that will cause a
value, an address, or something to be written on the stack for each actual
parameter.

3. Finally, the procedure is called through the CP instruction. The next
execution step is then the first line of the < procedure-body> code.
Within the procedure, the material previously written on the stack as
actual parameters is now viewed as associated with the formal parame­
ters. They are accessed through textual addresses of the form [B,j],
where j is negative. Upon an exit (RTN) from the procedure, this
material must be removed, leaving at most the procedure return value
on the stack. Adjustments to the display are also made, and the next
executed statement is the statement following the procedure call in the
calling instruction sequence.

Certain abstract rules govern the semantics of procedures and procedure
calls. These are the procedure copy rule (PCR), rules for call by value (CBV),
for call by name (CBN), and a typed procedure exit rule (TPER). These rules
specify the semantic effect of calls.

9.8.1. The Procedure Copy Rule PCR and Call by Name CRN

The execution of a (typed) procedure call

P(el' e2, •••, en)

is effectively (but riot in practice) carried out by:

1. Replacing the call by a copy of the body of the procedure declaration,
using TRR to avoid variable conflicts.

2. Replacing all occurrences (in the copy) of the formal parameters xl' X2' •

• •, Xn by the corresponding actual parameters enclosed in parentheses,
i.e., (e1), (e2), • • • Again, TRR is invoked to avoid variable name
conflicts.

These steps are taken before the actual parameters are evaluated. For
example, a simulation of the program

9 Run-Time Machine Structures 439

begin illteger A, B;
procedure Q(X,V); integer X,Y;
begin X:=Y*Y
end;
B:=3;
Q(A,B+6)

end

would lead to the program

begin integer A=?, B= 3;
procedure Q(X,Y); integer X,Y;
begin X:=Y*Y
end;
B:=3;
begin A: = (B + 6)*(B + 6) end

end

Thus the computation of B+ 6 would be delayed until the formal parameter
appears; it would also be done for each appearance, twice in this example. The
value of A is also changed by the procedure call.

It shOlI1d be obvious that a compiler cannot implement CBN by
substituting strings in the source....,.the specific substituti9n depends on which
of several possible procedure calls are being executed. Furthermore, the
S04fce has disappeared when the program is executed. We shall describe an
equivalent run~time system for implementing CBN in section 9.8.7.

9.8.2. Call by Value (CRV)

Call by value, or CBV, is defined by the following rule:

Value Paramet~rEvaluation Rule (VPER). A procedure declaration such as

procedure P(A,B,C); value A,C;
integer A,B,C;

begin ... end

is equivalent to

procedure P(A',B',C');
integer A', B', C';

begin integer A,C;
A: = A';
C:=C';
begin ... end

end

440 Compiler Construction: Theory and Practice

where A' and C' are new variables not appearing in "begin ... end".
The VPER is just a formal way of stating that CBV parameters are

evaluated at the time of the call and stored in new locations local to the
procedures. Only the local copies are affected by the procedure instructions.
An assignment to a CBV FP will change the local copy but not the AP outside
the assignment.

The following example illustrates VPER and TPER:

begin integer A;
integer procedure Sex); value X;

integer X;
begin S:=X+ 1 end;
A:=3;
PRINT(S(A*2))

end

and is equivalent, by VPER and TPER, to

begin integer A;
integer procedure S(X'); integer X';
begin integer X;

X:=X';
begin S:=X+ 1 end

end;
A:=3;
PRINT(S(A*2))

end

Through simulation by copying, we arrive at the next program state:

begin integer A= 3;
integer procedure Sex'); integer X';
begin integer X;

X:=X';
begin S:=X+ 1 end

end;
A:=3;
PRINT(begin integer X = 6;

X: = (A*2);
begin S:=X+ 1 end

end)
end

Of course, the "begin ... end" material within PRINT is syntactic nonsense

9 Run-Time Machine Structures 441

in Algol 60, but the spirit ofthe operations is clear. The application of TPER
then yields

begin integer A = 3;
integer procedure S(X'); integer X';
begin integer X;

X: =X';
begin S:=X+ I end

end;
A:=3;
PRINT(7)

end

9.8.3. More About Free Variables

Recall that we found it important to apply TRR before TPCR in
implementing procedure calls, in order to resolve the free variable problem.
We can illustrate another facet ofthe free variable problem with the following
example:

begin procedure G(X); integer' X;
begin integer I;

I:=X-I;
if X = 0 then PRINT(X)

else G(I)
end;
G(2)

end

Notice first that no applications of TRR are necessary, since the variables
are all distinct. In simulating this program with TPCR, we arrive at the state:

begin procedure G(X); integer X;
begin integer I;

I:=X-I;
if X = 0 then PRINT(X)

else G(I)
end;
begin integer I = I;

1:=2-1;
if 1=0 then PRINT(2)

~ else G(I)

442 Compiler Construction: Theory and Practice

If we apply TPCR again, but neglect TRR, we arrive at

begin procedure G(X); integer X;
begin integer I;

I:=X-l;
if X = 0 then PRINT(X)

else G(I)
end;
begin integer I = 1;

1:=2-1;
if 1=0 then PRINT(2)

else begin integer I = ?;
~ 1:=1-1;

if 1=0 ...

Whereas, using TRR to make the I's distinct, we get

begin procedure G(X); integer X;
begin integer I;

I:=X-l;
if X = 0 then PRINT(X)

else G(I)
end;
begin integer 1= 1;

1:=2-1;
if 1=0 then PRINT(2)

else begin integer 11 = ?;
~ 11:=1-1;

if 11 =0 then PRINT(I)
else G(ll)

The outcome clearly depends on applying TRR before TPCR. In the
former case, the outcome is undefined since I is undefined, whereas in the
latter case, "1" is printed.

9.8.4. Fortran Parameter-Passing Rules

The Fortran parameter-passing rules are neither CBV nor CBN, rather
something in-between, called call by reference, CBR. A reference (memory
address) is always passed. The reference will be a pointer to a variable, to an
indexed variable (pointer to the variable offset by the index value), to a
constant, or to some temporary assigned to the value of an actual parameter
expression; An actual parameter expression is first evaluated, then assigned to
a temporary memory location; the passed reference is to the temporary.

9 Run-Time Machine Structures 443

For the purposes of parameter passing, a variable or indexed variable is not
considered an expression.

We see that the rule for actual parameter expressions is CBV, while the rule
for other parameters is CBN. The constant rule is neither and depends on the
implementation in general. In some implementations, a temporary copy of
the constant is made and an address of that copy is passed. In others, the
address of the constant itself is passed. In the latter implementations, the
following program illustrates a run-time bug that yields a surprising and
dangerously unpredictable result:

SUBROUTINE MIKE(X)
X=6
END

MIKE(7)
PRINT(7)

Here, if only one "constant" 7 exists in memory, and its address is passed to
MIKE, the constant 7 is turned into a 6, and "6" is printed. However, there
might be several copies of 7, or a temporary might be assigned to 7, in which
case "7" would be printed. A Fortran compiler can protect a programmer to
some extent by making a temporary copy of the constant, then passing the
address of the copy. At least then the constant as seen outside the procedure
will not be changed by the procedure. However, something is wrong with the
programmer's concept of the procedure's application, and the compiler
cannot bring this to his attention.

9.8.5. Implementation of CRV and Typed Procedures

CBV is much easier to implement than CBN, so we shall consider it first.
Although CBV is defined in terms of CBN, We shall develop a direct
implementation that does not depend on CBN.

No new operations are required. We only need to modify RTN. The
general procedure call rule is simple: when an actual parameter is to be
stacked, evaluate it and leave its value behind on the stack. Within the called
procedure, the value is accessed by a negative offset (known to the compiler)
relative to the base of the stack marker (D(B)). Since the compiler will not
otherwise know the location of the stack marker base, we require that a BE
always be executed upon a procedure entry.

The stack marker then always contains five words as follows:

static pointer
display top
return address
working pointer
static pointer

D(b)
b
1

S+n+2
D(b)

(from CP)
(from CP)
(from CP)
(from BE n)
(from BE n)

444 Compiler Construction: Theory and Practice

(Note: PE changes b and comes between CP and BE. Hence the static pointers
are different in general. Thus sm = 5 in the following discussion.)

The return command RTN must remove the formal parameter material as
well as the stack marker, so we redefine the command as follows:

RTN m: Return from procedure
m = formal parameter words

Go(s) {reset the display}
s ~ s-m-sm {reset s; sm=marker size}

The actual parameters are evaluated from left to right, so that in the call

P(e1, e2, e3)

the value of e1 is deepest in the stack. This call yields the display and stack
configuration shown in figure 9.19.

The textual addresses (TA's) required in the procedure body, at block level
N, for the FP's corresponding to el' e2, and e3are

for e1: [N,-3-sm]
for e2: [N,-2-sm]
for e3 : [N,-l-sm]

In general, the T A for Xi in the procedure with the declaration

procedure P(xl' x2' •.•, Xi' ••• Xm); •••

is [N,i-m-sm]. Note that (i-m-sm) can be assigned by the compiler as
soon as the ")" of the formal parameter names is scanned. In practice,
different kinds of parameters may require different numbers of bytes each, so

11Stack
marker

Growth

13 }1--_12_~ Formal parameters
11

Display Stack

Figure 9.19. Stack configuration upon procedure call P(e1f e2f e3).

9 Run-Time Machine Structures 445

that the formal parameter declaration must be scanned before addresses can
be assigned to the formal parameters.

9.8.6. Typed Procedure Return Value

A typed procedure can be called as a stand-alone statement, or as part of an
expression, e.g.

P(5,Y); {statement form}
A: = 15 + P(5,Y); {expression form}

In either case, the compiler reserves one word on the stack, perhaps via LC 0,
before loading any parameters. Inside the procedure, any assignment to its
name is treated as an assignment to a variable with the T A [N, - m - sm - 1].
Upon an exit, the return value will be the only remaining object on the stack.
Furthermore, nothing in the stack deeper than the return value will be
affected by the procedure, except through specific up-level address references
in the procedure.

CRVexample

Consider the following program, introduced previously:

begin integer A;
integer procedure S(X); value X; integer X;
begin S:=X+ 1 end;
A:=3;
PRINT(S(A*2))

end

This program will translate to

S

L

BE 1 begin integer A;
JP L {to get around the procedure code}
PE ° integer procedure S(X);
BE ° begin
LV 1,-6 S:=X+l {sm=5}
LC 1
ADD
STD 1,-7 {return value}
EB end
RTN 1
LC 3 A:=3
STD 0,0

446 Compiler Construction: Theory and Practice

LC
LV
LC
MULT
CP
PRINT
EB
HALT

°0,0
2

S

{reserve return location}
A*2

S(A*2)
PRINT(S(A*2»

9.8.7. Implementation of eRN Procedure Parameters

A CBN parameter will be implemented by creating a procedure that can
evaluate the actual parameter, then passing a reference to the procedure. Such
a procedure is called a thunk, a name devised by P. Z. Ingerman.

For example,

begin integer procedure SUM(F,N);
value N; integer N;
integer procedure F;

begin integer I,S;
1:= 1; S:=O;

LOOP:
if I<N then
begin S: = S + F(I);

1:=1+ 1;
go to LOOP

end;
SUM:=S

end;
integer procedure SQ(X); value X;

integer X;
begin SQ:=X*X end;
PRINT(SUM(SQ,READ»

end

will print the sum of the squares of the integers returned by READ.

READ

i=l

To implement CBN procedure parameters we need two new operations:

9 Run-Time Machine Structures 447

LL 1: Load label 1 as a TP .
s ~ s+l
C(s) ~ D(b),b,l {recall the

packing notation}

CPV B,j: Call procedure as variable
s ~ s+l
C(s) ~ D(b),b,i {save TP}
Go(C(D(B)+j)) {then transfer}

Notice that CP can be regarded as a degenerate case of CPV in which the
display need not be restored because the call is within the block where the
procedure was declared, guaranteeing that the procedure's context is already
in the display.

Also notice that there are two transfer points involved here: the one being
created for event:ua1 use by RTN and the one being transferred to.

We pass a procedure narp.e by loading its transfer point. It is called by CPV
instead of CP.

The translation of the summation program given above is then

BE °JP L1
SUM PE 0

BE 2
LC 1
STD 1,0
LC °STD 1,1

LOOP LE 1
LV 1,0
LV 1,-6
LS
NOT
JIF L2
BE °LV 1,1
LC °LV 1,0
CPV 1;-7
ADD
STD 1,1
LV 1,0
LC 1

begin
{get around procedure code}
irlteger procedure SUM(F,N); .
begin integer I,S;
1:=1

S:=o

LOOP:
if I<N then

begin
S
{return value place}
1
Fa)

S:=S+F(I)
1:=1+ 1

448 Compiler Construction: Theory and Practice

L2

SQ

Ll

ADD
STD 1,0
JP LOOP
EB
LV 1,1
STD 1,-8
EB
RTN 2
PE 0
BE 0
LV 1,-6
LV 1,-6
MULT
STD 1,-7
RTN 1
EB
LC 0
LL SQ
READ
CP SUM
PRINT
EB
HALT

go to LOOP

SUM:=S

end

integer procedure SQ(X); . . .
begin
SQ:=X*X;

end
{return value for SUM}
{procedure label}

PRINT(SUM(SQ,READ))

9.8.8. Implementation of eRN Label Parameters

Algol 60 permits a statement label to be passed to a procedure. Such a label
can be used as an error exit, permitting the program to branch back through
several levels ofprocedure calls to some common point. By modern standards
of structured programming, this is not a desirable language feature, as it
means that no procedure call containing a label can be counted upon
returning to the statement following the procedure. However, the language
does require this feature, so let us see how a passed label can be implemented.

Here is an example:

begin integer procedure RECIP(X,E);
value X; integer X; label E;

begin if X = 0 then go to E;
RECIP:=l/X

end;
PRINT(RECIP(READ,ER) +

RECIP(READ,ER))
ER:

end

9 Run-Time Machine Structures 449

In this program, if either number read is zero the computation of the sum
of the reciprocals is cut short by the transfer to ER.

The implementation of label parameters goes much as procedure parame­
ters. We shall use LL and invent a new instruction

JPV B,j: Jump to variable at address B,j
Go(C(D(B) + j»

Once again, JP can be viewed as a degenerate case of JPV. Recall that
procedure Go reorganizes the display to correspond to the previous
environment, that associated with the branch target.

The translation of the above program then is

BE 0 begin
JP Ll

RECIP PE 0 integer procedure RECIP .
BE 0 begin
LV 1,-7 if X=O then
LC 0
EQ
JIF L2
JPV 1,-6 go to E

L2 LC 1 RECIP:=ljX
LV 1,-7
DIV
STD 1,-8
EB end
RTN 2

Ll LC 0 {return value for RECIP}
READ
LL ER
CP RECIP
LC 0
READ
LL ER
CP RECIP
ADD
PRINT PRINT(RECIP(READ,ER) + RECIP(READ,ER»

ER LE 0
EB
HALT

450 Compiler Construction: Theory and Practice

9.8.9. Summary of Procedure Parameter Mechanisms

The possible relationships of actual to formal parameters for Algol-like
languages are summarized in figure 9.20. Algol 60 supports only CBV and
CBN, while Fortran supports CBR. We have shown all three cases in the
figure for the sake of generality.

The actual parameter may be

1. A constant.

2. A variable name or indexed variable name.

3. An expression.

4. A procedure name.

By expression, we mean any expression other than a constant, a variable name,
or an indexed variable name, which fall under the first two categories. By
procedure name, we mean that the name of a procedure is passed, to be called
within the callee procedure, not a procedure intended to be called before
passing the parameter. A passed procedure name will never carry actual
parameters when it appears as an actual parameter.

The uses of the formal parameter may be classified as follows:

ACTUAL PARAMETER

F.P. Constant Variable Expression
Procedure

name

CBV Affects local copy

CBN ERROR*

CBR ERROR*

-------- ---------
Affects ERROR* ERROR
actual --------
parameter ERROR*
-------- --------- ---------
Variable Expression
evaluated evaluated
before before ERROR
call call
-------- ---------

Variable
assigned-to

Variable
fetched
only

CBV

CBR

CBN

Returns
constant
value

Variable
value at
fetch

Expression
evaluated
at fetch

Procedure (any)
call

*Difficult error to detect in general

ERROR Procedure
called

Figure 9.20. Procedure parameter passing cases, with call-by-value (CBV),
call-by-reference (CBR) and call-by-name (CBN).

9 Run-Time Machine Structures 451

1. As a variable that is assigned-to somewhere.

2. As a variable that is never assigned-to, but may be fetched.

3. As a procedure name to be called.

4. As an actual parameter to be passed to another procedure.

We shall deal with case 4 separately; in principle, this can always be resolved
to one of the other three if the called procedure is considered. Recursive calls
that only pass parameters around among each other are barred from
consideration.

Now the declarations for a formal parameter in Algol 60 provide the
following attributes:

1. Whether CBV or CBN (recall that CBR is not in Algo160),

2. Whether a procedure or not.

We can assume that the formal parameter attributes 'are known upon
analyzing any call. Note that "assigned-to" is not among the attributes; it can
only be determined through an analysis of the procedure statements.

For the sake of generality, we add the attribute REFERENCE to those
already in Algol 60, to indicate that the formal parameter is CBR. We can
then distinguish CBV, CBN, and CBR from the FP declarations.

Now consider passed procedure names (figure 9.20). A PROCEDURE
formal parameter can only be associated with a procedure name actual
parameter; any other actual parameter is a compile-time error and is easy to
detect. Also, any use of a PROCEDURE formal parameter other than as a
procedure call is illegal.

Next consider a constant actual parameter. A constant should not be
assigned-to, but may be fetched. In principle, the compiler can detect such
errors, but an elaborate mechanism is needed, as we shall see. For CBV,
"assigning-to" a constant merely means that the local copy of the constant is
altered; the actual parameter is unaffected. Such a use of a CBV formal
parameter is valuable, as a means of conserving local variable space. For
example, procedures MAS, SETP and MMAS (above) use this characteristic.

An expression's actual parameter also should not be assigned-to, but can be
fetched. Here, CBR and CBN are fundamentally different. In CBR, the
expression is evaluated just before the call, at the moment at which the actual
parameter is processed by the compiler. In CBN, the expression is not
evaluated before the call, but is evaluated afresh upon'each appearance of its
corresponding formal parameter within the called procedure. Clearly, a thunk
must be created by the compiler upon processing the actual parameter for
CBN. The thunk label is passed as the actual parameter, and the thunk is
called when the formal parameter reference is processed in the procedure.
The thunk will then evaluate the expression and return its value, as needed.

452 Compiler Construction: Theory and Practice

The CBN and CBR expression evaluation result can clearly be different.
For example, if the expression contains free variables, their value may be
changed by the callee between formal parameter references. Then CBN will
return different results on different references, whereas CBR will always
return the same result.

Of course, CBR can return different results on different references, but
only because a specific assignment. to that formal parameter was made, or
another CBR formal parameter carries the same address and was assigned-to.
The latter situation is called aliasing-two apparently different formal
parameters refer to the same data area. Aliasing is a fertile source of program
errors.

If the actual parameter is a simple gr indexed variable, then an assignment
to it within the callee procedure makes sense and is a useful operation.
However, again, CBR and CBN can yield different results, especially for an
indexed variable. The index is an expression in general, and in CBN the index
is evaluated on each reference. In CBR the index is evaluated before the call,
and the appropriate indexed variable address is passed; the index is thereupon
effectively fixed while the callee is active.

The following (nonsensical) program illustrates all the cases of figure 9.20.

begin
integer I,J,K;
integer array IA[0:15];
procedure Q(A,B,C,D);

value A; {A is CBV}
reference B; {B is CBR}
integer A,B,C; {C is CBN}
procedure D; {D is a procedure name}

begin
{variables assigned-to}

A:= 10; {OK in all cases}
B: = 10; {OK except for

constant or expression AP}
C:= 10; {OK except for

constant or expression AP}
D:= 10; {ERROR}

{variables fetched}

I: = A; {OK in all cases}
I: = B; {OK in all cases}
I: = C; {OK in all cases}
I:=D; {ERROR}

9 Run-Time Machine Structures 453

{variables called}

A; {ERROR}
B; {ERROR}
C; {ERROR}
D(I,I,I,Q) {OK, assuming the parameters

match the called procedure}

end;

{now we give some typical calls}

Q(5,5,5,5); {constants passed-3 errors}
* * t {*=hard to detect, t =easy to detect}

Q(I,I,I,I); {simple variables-one error}

t
Q(IA[I + J], IA[I + TI, IA[I + J], IA[I + J));

t {l error}

Q(I+ J, 1+ J, 1+ J, 1+ J); {3 errors}

* * t
Q(Q,Q,Q,Q); {procedure names-3 errors}

t t t
end

The errors marked * in figure 9.20 and in the above program are difficult to
detect in a one-pass compiler, but possible to detect in a two or more pass
compiler. These depend on detecting an assigned-to condition of a CBN or
CBR formal parameter, when the actual parameter is a constant or expres­
sion. In order to detect such an error upon processing a call, the attribute
"assigned-to" or "not assigned-to" must be associated with each CBN and
CBR formal parameter. The "assigned-to" attribute is set if either of the
following conditions is met:

1. The formal parameter is set somewhere within the procedure, i.e., as the
left member of an assignment, the target of a READ, etc.

2. The formal parameter is passed by reference or name to another
procedure, such that the corresponding formal parameter is "assigned­
to."

The first condition requires one pass to establish "assigned-to" for its
formal parameters. More passes are needed to check out the second condition
if the first is not met. For example, the following program requires three
passes to fully establish the "assigned-to" status for each of the formal
parameters:

454 Compiler Construction: Theory and Practice

begin
integer I;
proc~dure Ql(AI);
. integer AI; {AI: CBN}
begin

,Q2(Al);
end;

procedure Q2(A2);
integer A2;

~egin '
Q3(A2);

end; .

procedure Q3(A3);
integer A3;

begin'
~:=15

end;

Ql(l4);
Q 1(1+}); {each of these calls
. contains an error}

end

Note that the FP is CBN in each procedure. On the first pass, A3 only is
"assigned-to." On the second pass, because A2 is passed to Q3 by CBN, A2 is
"assigned-to." On the third pass, Al is found to be "assigned-to." Obviously,
programs qm be ?evised that will require an arbitrary number of passes to fix
the "assigned-to" status of all FP's.

A more practi~al strategy is to not attempt a compile-time check of these
errors, in the hope that they will be manifest at run-time. This is not in the
best interests of the user, but certainly simplifies the compiler.

9.8.10. Call by Name Implementation

Figure 9.20 illustrates a special problem with CBN-an effi~ientevaluation
approach seems to depend on the nature of the actual parameter. If the AP is a
constant, it may simply be loaded on the stack and fetched by a LD. If it is a
simple variable, the variable's address may be placed on the stack and
evaluated by the pair of instructions LA, CONT. However, an indexed
variable and'an expr~ssion require a thunk-they are to evaluated at the point
of fetch (or store, 'in th,e case of an indexed variable).

Now we canoot afford to provide three different mec11a~isms within a
procedure to deal with the three different AP cases. We n,eed one common

9 Run-Time Machine Structures 455

method to deal with all three in a uniform manner, and that has to be a thunk
in every case.

If a thunk is needed for an AP, the procedure caller will construct it-the
caller after all knows the character of the AP; In every case, the thunk should
return the address of something, since an address is needed for a variable that
is assigned-to. Then the callee need only call the thunk associated with the FP
and use the returned address in a standard way to either fetch the value or
store into a variable.

The thunk for a simple variable should return the address of the variable.
The thunk for an indexed variable should evaluate the index and return the
address of the indexed variable. The thunk for a constant should place the
constant in some addressable location (we discuss this later), and return the
address of that iocation. Finally, the thunk for an expression should evaluate
the expression, store the result in an addressable location, and return the
addTess of that location.

Now what location is appropriate for a constarit or expression temporary
value iil a thunk? If a temporary location is allocated by the thrtnk during its
execution, its address could be returned; however, the address will point to a
location above the stack top upon return, an illegal address in general.
Clearly, a temporary is needed just before the thunk call. We therefore must
adopt the thunk calling convention:

LC 0
LC 0
CPV ..

{word to receive the returned address}
{word to receive a temporary value, if any}

{thunk call}

Obviously, the two LC's can be combined into an INCS 2. Then if the
address is wanted from the thunk, the instruction

DECS 1

following the thunk call is appropriate.
If the value is wanted, we need a special instruction RAV as follows:

RAV: Replace address by value
C(s-l) ~ C(C(s-l»
s ~ 8-1

RAV uses the returned address in location s - 1 to fetch the value, replaces the
address by the value, then drops the stack top. This peculiar instruction
should only be used after a thunk call to obtain avalue.

Now some typical thunks might be written as follows, assuming the thunk
is written at block level 3 (the block level it is written in is immaterial, except
that during execution, its environment must be that of the caller setting it up):

456 Compiler Construction: Theory and Practice

{thunk for a constant c}
PE 3
BE 0 {no local variables, but b = 4 now}
LC c {load the constant}
STD 4, - 6 {value is just below stack marker}
LA 4,-6
STD 4, - 7 {address is below value field}
EB
RTN 0

{thunk for an expression A*B}
PE 3
BE 0
LV A {whatever A's textual address is}
LV B
MULT
STD 4,-6
LA 4,-6
STD 4,-7
EB
RTN 0

{thunk for an indexed variable X[I +J]}
PE 3
BE 0
LA X
LV I
LV J
ADD
ADD
STD 4,-7
LV 4,-7
CONT
STD 4,-6
EB
RTN 0

Since some of these instructions will always appear in a thunk definition,
they might be combined into single instructions, for the sake of efficiency.
For example, the combination

STD 4,-6
LA 4,-6
STD 4,-7

9 Run-Time Machine Structures 457

needs only the thunk block level (4). Also, the entry pair PE, BE and the exit
pair EB, RDN are standard for a thunk. Special thunk call instructions that
return either address or value could also be devised that combine some
functions of the above call sequences.

Example

The following example illustrates CBN and CBV for several kinds of
actual parameter and generation of the necessary thunks for CBN. Since CBR
is an obvious variation on CBV, we will not illustrate CBR.

begin integer A,B;
integer procedure INC(X,CHANGE);

value CHANGE; integer X;
boolean CHANGE;

begin INC:=X+ 1;
if CHANGE then X: = X + 1

end;
A: = INC(O,FALSE); {constant by name}
B:=INC(A,TRUE); {variable by name}
B:=INC(A*B,FALSE); {expression by name}
begin integer procedure INCA;

begin INCA:=INC(A,TRUE) end;
A: = INC(INCA,FALSE)

{procedure name passed}
end

end

The textual addresses of A,B,X and CHANGE are:

A: [0,0]
B: [0,1]
X: [1,-7]
CHANGE: [1,-6]

The TA of the return value of INC will then be [1,-8].
The translation of the previous program is given next.

INC

BE 2
JP Ll

PE °
BE °
INCS 2

begin integer A,B;
{branch around procedure code}
integer procedure INC(X,CHANGE);

{locations for thunk address, value}

458 Compiler Construction: Theory and Practice

CPV 1,-7 {call thunk for X}
DECS 1 {leave address behind}
LC 1
ADD
STD 1,-8 INC:=X+ 1
LV 1,-6
JIF L2 if CHANGE then
INCS 2 {thunk call for X again}
CPV 1,-7
DECS 1
INCS 2
CPV 1, - 7 {another thunk call for X}
RAV {value wanted this time}
LC 1
ADD
ST X:=X+1

L2 EB end
RTN 2

L1 LC ° {return .value cell}
LL TH1
JP L3

THI PE ° {start of thunk for constant o}
BE °LC ° {the constant}
STD 1,-6
LA 1,-6
STD 1,-7
EB
RTN °L3 LC FALSE
CP INC
STD 0,0 A: = INC(O,FALSE)
LC °LL TH2
JP L5

TH2 PE ° {start of thunk for variable A}
BE °LA 0,0
STD 1,-7
LV 1,-7
CONT
STD 1, - 7 {value mayor may not be wanted}
EB
RTN °

9 Run-Time Machine Structures 459

L5 LC TRUE
CP INC
STD 0,1 B:=INC(A,TRUE)
LC 0
LL TH3
JP L8

TH3 PE 0 {start of thunk for A*B}
BE 0
LV 0,0
LV 0,1
MULT
STD 1,-6
LA 1,-6
STD 1,-7
EB
RTN 0

L8 LC FALSE
CP INC
STD 0,1 B:=INC(A*B,FALSE)
BE 0 begin
JP LI0

INCA PE 1 integer procedure INCA;
BE 0
LC 0
LL TH2 {label of thunk for A}
LC TRUE
CP INC
STD 2,-7 INCA: = INC(A,TRUE)
EB end
RTN 0

LI0 LC 0
LL TH4
JP Lll

TH4 PE 1 {start of thunk for INCA}
BE 0
LC 0
CP INCA
STD 2,-7
LA 2,-6
STD 2,-7
EB
RTN 0 {end of INCA thunk}

Lll LC FALSE
CP INC

460 Compiler Construction: Theory and Practke

STD 0,0
EB
EB
HALT

A: =INC(INCA,FALSE)
end
end

9.8.11. CRV versus CRN

In the previous section, we contended that the callee (the called procedure)
should be ignorant ofthe nature of the AP's in any particular call. By the same
token, it seems desirable that the caller should also be ignorant of whether its
parameters are passed by value or by name. If the caller does know through a
required declaration of the procedure, well and good, but Algol 60 doesn't
require such a local declaration.

In order to achieve this kind of complete isolation of caller and callee­
neither knowing the conventions of the other-the caller must assume the
worst and always pass a thunk label. The callee must always expect a thunk
label. This label is obviously inefficient in stack space and execution time, but
is the price that must be paid for such isolation.

Because this general situation is so clumsy in implementation, most
modern languages do not support CBN.

Either CBR or CBV may be dropped to support quite general procedure
calls. In Fortran, only CBR is supported. Ifonly CBV is supported, a pointer
may be passed by value, effectively supporting CBR.

9.9. Summary of AOe Instructions

1. Stack manipulation instructions

LC c: Load constant
s ~ s+l
C(s) ~ c

LA B,j: Load address
s ~ s+l
C(s) ~ D(B)+j

LV B,j: Load value
s ~ s+l
C(8) ~ C(D(B)+j)

LL 1: Load label
s ~ 8+1
C(s) ~ D(b),b,l

9 Run-Time Machine Structures 461

STD B,j: Store direct
C(D(B)+j) ~ C(s)
s ~ s-1

ST: Store
C(C(s-I)) ~ C(s)
s ~ s-2

RAV: Replace address by value
C(s-l) ~ C(C(s-I))
s ~ s-1

CONT: Contents
C(s) ~ C(C(s))

INCS: Increment stack pointer (C(s) 2:: 0)
C(s+C(s)) ~ s;
s ~ s+C(s)

INCS n: Increment stack· pointer (n 2:: 0)
s ~ s+n+l

DECS: Decrement stack (C(s) 2:: 0)
s ~ s - C(s) - 1

DECS n: Decrement stack (n 2:: 0)
s ~ s-n

2. Expression computing instructions

ADD: C(s-l) ~ C(s-l) + C(s)
s ~ s-1

SUB: C(s-l) ~ C(s-l) - C(s)
s ~ s-1

MULT: C(s-l) ~ C(s-l) * C(s)
s ~ s-1

DIV: C(s-l) ~ C(s-l) / C(s)
s ~ s-1

NEG: C(s) ~ - C(s)

EQ: C(s-l) ~ if C(s-l) = C(s) then
TRUE else FALSE

s ~ s-1

LS: C(s-l) ~ if C(s-l) < C(s} then
TRUE else FALSE

s ~ s-1

462 Compiler Construction: Theory and Practice

GT: C(s-l) ~ if C(s...c..l). > C(s) then
TRUE else FALSE

s ~ s~l

NOT: C(s-l) ~ if C(s) = FALSE then
TRUE else FALSE

AND: C(s-l) ~ if C(s-l)=TRUE and
C(s)=FALSE then
TRUE else FALSE

s ~ 8-1

OR: C(s-l) ~ if C(s-l)=TRUE or
C(s)=FALSE then
TRUE else FALSE

s ~ s-l

3. Block instructions

BE n: Block entry
C(s+ 1) ~ s+n+2
C(s+2) ~ D(b)
b ~ b+l
D(b) ~ s+3
s ~ s+n+2

EB: Exit block
s ~ D(b)-3
b~b-'-l

4. Jump instructions

JP 1: Jump
i ~ 1

{save WP}
{save SP}

JIF 1: Jump if false
if C(s)=FALSE then i ~ 1
s ~ s-l

JPV B,j: Jump through variable
Go(C(D(B) + j»

{See section 9.6.4}

LE B: Label entry
b~B

s ~ C(D(b)-2)

5. Procedure instructions

9 Run-Time Machine Structures 463

CP 1: Call procedure
s ~ s+l
C(s) ('- D(b),b,i
i ~ 1

PE B: Procedure entry
b~B

RTN m: Return
Go(C{s» {see section 9.6.4}
s ~ s-m-sm

CPV B,j: Call procedure through variable
s ~ s+1
C(s-) ~ D(b),b,i
Go(C(D(B)+ j»

6. Input-output

READ: s ~ s+1
C(s) ~ next item on input; advance read head

PRINT: Print C(s)
s ~ s-l

HALT: Stop the machine

7. Array instructions

MAS B,j,n: Make array space
{see section 9.7.1}

AVA: Array variable address
{see sections 9.7.1, 9.7.2}

MMAS B,j,n: .Make matrix array space
{see section 9.7.2}

9.10. Bibliographical notes

Much of the material in this chapter is adapted from Randell and Russell
(Randell [1964]), who first defined a set of instructions for implementation of
Algol 60. Ingerman [1961] gives an algorithm for the rearrangement of an
owN array that is redimensioned in place. Sattley [1961] discusses space
allocation and dope vectors for Algol 60 local variables and arrays.

Bauer [1968] describes an Algol 60 implementation in some detail.
Berkeley [1964] describes Lisp implementation, of interest for the automatic

464 Compiler Construction: Theory and Practice

allocation of list elements and garbage collection of dead elements. Griffiths
[1974a] and Hill [1974] contain a\comprehensive review of run-time storage
management, with special attention to the management of Algol 68 data
structures.

Lee [1967] discusses some special addressing problems that arise in
Fortran compilers, in particular, allocation considering equivalences.
McKeeman [1970] contains complete source for the XPL compiler, a
derivative of Algol 60 designed for compiler and systems programming.

Concurrent garbage collection was first proposed by Steele [1975], and
later refined by Dijkstra [1976a] and Gries [1977].

Wirth [1971a] describes a Pascal implementation on a CDC 6000 system.
His implementation could be adapted to any computer system, however.
Wirth [1976c] also gives a complete compiler for a small language, written in
Pascal.

CHAPTER 10

OBJECT CODE AND
MACHINE ARCHITECTURES

10.1. Introduction

The object code of a compiler can take a variety of different forms: (1)
another high-level language, (2) a macro language intended for a macro
assembler, (3) a symbolic assembly language, (4) a special intermediate
language (IL), (5) relocatable loader tables, with symbolic code references,
(6) absolute loader tables, or (7) absolute machine code.

The object code sections of a compiler are, as a rule, more difficult and
complicated to design for the latter cases than for the former.

We will not discuss cases (1), (2), or (3) in this chapter. Such a compiler is
essentially a string processor and may often be implemented directly through
a SDTS as described in chapter 7. Much depends on the ability of the object
language to express the concepts of the source language. It may be necessary
to develop special algorithms in the compiler in order to get around any
limitations in the object language. For example, if the object language is
symbolic assembly language and the source is a block-structured language,
name conversions will be needed, since· most assemblers support only one
block level.

Some compilers generate a special intermediate language (IL) that can be
further translated to object code on two or more different machines. The
intermediate language is usually a simple translation of the abstract syntax
trees generated by the compiler. Certain optimizations can be performed
directly on an intermediate language, however, in general IL optimization is
difficult.

Most commercial compilers generate linking relocating loader tables.
Linking refers to a capability of connecting procedure calls with their

procedures, or variable references with their external declarations, after
compilation. This capability permits a user to compile only a few procedures
at a time and collect them all together later. The advantage of linking after
compiling is that a large program may be brought together in manageable
pieces, and errors may be repaired with a minimum ofcompilation. Without a
linking loader, the entire program must be compiled after even the slightest
source change.

465

466 Compiler Construction: Theory and Practice

Relocation refers to a capability of locating a program at an arbitrary
position in physical memory just before execution. Clearly, linking requires
relocation, since the procedures are generally assigned contiguous portions of
memory after compilation is complete. Relocation is essential in a multipro­
cessing system, so that several independent programs can be executed in a
time-shared manner without necessarily unloading and reloading memory for
each program. The distinct programs can be assigned to different regions of
memory, and the processor can then be rapidly switched from one program to
another.

In this chapter, we shall review some intermediate code structures, review
three machine architectures and their loader tables, and then close with a
description of a generalized code generator system. Some special optimiza­
tions for code generation, register allocation, and code improvement are
discussed in chapter 11.

10.2. Intermediate Languages

An intermediate language, or IL, usually consists of a relatively small
number of simple operations, combined to form a list semantically equivalent
to the source program. The operations are chosen to express the source
language needs completely, with as little redundancy as possible, and are
organized in a simple uniform manner. An IL is not intended to be written or
read by a person, and therefore needs no syntactic window-dressing.

Some common IL's are

• Quadruples (or quads).

• Triples.

• Postfix.

• Prefix.

A quad expresses a single unary or binary operation as follows:

<operation>, <operandI >, <operand2>, <result>

where the <operation> is applied to the two operands to yield the
<result>. The result and the operands are references to some attribute data
structure and may be declared program variables or temporary variables.
Some other section of the compiler is responsible for assigning physical
memory to the result and operands; indeed, some temporaries may be
assigned to registers and not to physical memory. The IL is then a sequential
list of quads.

For example, the expression A*B+C*D can be represented as the quad
sequence

*, A, B, T1
*, C, D, T2
+, T1, T2, T3

10 Object Code and Machine Architectures 467

{T1 is a temporary result}
{T2 is another temporary}
{expression result is T3}

Note that we assign temporary cell names as needed; a separate algorithm can
determine the number oftemporaries actually needed and assign registers and
memory.

A triple is essentially a quad, except that its result is referred to by the
location of the triple, rather than explicitly. Every triple is assumed to return
some result, and its result can be referred to in some later triple. The
advantage of triple notation is that explicit temporary names are unnecessary.
In triple notation, the expression A*B+C*D can be expressed as

(1) *, A, B
(2) *, C, D
(3) +, (1), (2)

Here, the (1) in the third triple refers to the result generated by the first triple.
Of course, a literal "1" must be distinguishable from a triple number.

Some examples of operations that can be expressed as a list of quads or
triples are

•. Arithmetic operations.

• Math functions.

• Assignments.

• Indexing.

• Comparisons (result is a truth value).

• Logical operators.

• Branches, conditional or unconditional.

• Conversion of real to integer, or vice versa.

• Begin or end a block.

• Procedure or function call.

• Allocation of array storage.

Declarations and control structures may also be translated to quads or
triples. A declaration may require space allocation and the fixing of an address
label on the stack. Control structures are usually broken into a sequence of
statements separated by branches. A case statement requires a few special)
quads to express a branching table.

Indexing for array or structure access can be handled by indexed "load" or
"assign" quads:

468 Compiler Construction: Theory and Practice

XL, A, I, T
XS, T, A, I

{indexed load; equivalent to T: = A[I]}
{indexed store: A[I] := T}

Then the statement C: = A[i,B[j]] can be translated to the quads

*, i, dl, Tl {dl is the first dimension for A}
XL, B, j, T2 {T2:= B[j]}
+, Tl, T2, T3 {T3 is final index for A}
XL, A, T3, T4 {T4 = A[i,B[j]] }
:=, T4, ,C {assignment is a unary operation}

Quads or triples can easily be generated from a binary tree. The tree is
scanned in· pre-order, and the internal nodes are numbered in the usual
left-to-right evaluation order. Each internal node N then translates to a triple
whose number is the node number, whose operation is the operator associated
with nodeN, and whose operands are node N's children. Thus the tree of
figure 10.1, for the expression A*B+C-D/E translates to the triple list

(1) *, A, B
(2) +, (1), C
(3) /, D, E
(4) -, (2), (3)

A source program can clearly be expressed as a list of quads or triples.
Some reductions on a list are possible without a knowledge of the target
machine architecture. For example, constant arithmetic may be subsumed by
noticing that certain quads perform constant arithmetic; their result may be
computed at compile time and substituted into those quads that require the
result. We shall discuss such optimizations in chapter 11.

The flow of control through a program can also be easily analyzed through
quads or triples; we need only scan the list, looking for branches. The control
flow can be traced without regard to the data values of the variables, provided
that the conditional branches are to a finite number of known, specified
locations, and also provided that no quad can be modified by a run-time
operation.

Some machine-dependent optimizations are also possible on quads, e.g.,
the so-called peep-hole optimizations. A peep-hole optimization examines a
short sequence of contiguous quads in an attempt to recognize certain
patterns that can be combined into a single quad with a special operation. For
example:

1. {+, I, 1, Tl}, {: =, Tl, , I} stems from I: = 1+1 and might be coded
INCM I.

10 Object Code and Machine Architectures 469

2. A STOR I from some register R, followed by a LOAD I, is fairly
common; the LOAD I can be replaced by no operation or by a
register-to-register copy.

3. An indexed reference with a constant index can sometimes be replaced
by a simple direct reference with an appropriate address.

Postfix and Prefix

The use ofpostfix or prefix notation is convenient as a linear representation
ofa tree structure. These are generated by a left-to-right natural order scan of
an abstract syntax tree. The leaf operands are written as they are encountered.
A prefix expression is obtained by emitting an operator (associated with an
internal node) upon first encountering it; a postfix expression is obtained by
emitting an operator upon last encountering it. Thus the tree of figure 10.1
can be expressed as

- + *ABC/DE

in prefix and as

AB*C+DE/-

in postfix.
No parentheses are required, unless an operator takes an indefinite number

of parameters; even then, the first operand of such an operator could be the
number of parameters expected.

Figure 10.1. An expression tree.

470 Compiler Construction: Theory and Practice

A postfix or prefix string is' not convenient for optimization purposes; it
must first be transformed into a quad or triple list or into a tree structure.

Exercises

1. Write the following Fortran statements as quads. Use the dimension
statements if necessary. Note that in Fortran, the least index corre­
sponding to some dimension is I.

DIMENSION X(16,25),Y(55);
X(3,7) = (1+ J+X(I,J)) * Y(5)
I = I*(J + Y(I+ 5))

2. Design triples to support indexed loads and stores, then write the
statements of exercise 1 in triple notation.

3. Design triples to support a procedure call with parameters. One triple
may be followed (or preceded) by a list of triples that specify the passed
parameter values. What can be done about the return value of a
procedure? How can call by value and call by reference be distin­
guished?

4. Sketch an algorithm that accepts a list of triples and then subsumes
constant arithmetic and identity operations (e.g., { + ,25,17} = 42, or
{*,O,(7)} = 0) wherever possible under commutativity but not under
associativity or distributivity. It should essentially scan the triple list in
execution order, evaluate those triples that represent constants or
identities, then substitute the results in later triples that require them,
evaluating them if possible, etc.

5. Sketch an algorithm that identifies useless triple operations. A useless
triple can be removed from the sequence without affecting the semantic
validity of the program.

10.3. The Pros and Cons of Intermediate Languages

An IL may be used in a compiler to facilitate optimization or compiler
transportability. The former objective will be discussed at length in the next
chapter. We shall see that the most convenient intermediate form is a tree or
directed acyclic graph. Let us therefore discuss the latter purpose.

Suppose that it were possible to design an IL that could support m

10 Object Code and Machine Architectures 471

different languages (e.g., Fortran, Basic, Algol). Further suppose that we wish
to implement each of these languages on n different target machines (e.g.,
IBM 360, HP 2100, DEC 10). Without an IL, mn compilers would be
require<.l, one for each language and each machine. Some of the software
could be shared among the compilers for a particular machine, but in general
each of these would be a separate project. Given an IL, on the other hand,
orJy m + n projects would be required-m projects to implement translators
from each of the source languages to IL and n projects to implement code
generators from the IL to the various target machines. Each compiler then
consists of a "front end" that translates source to IL, coupled to a "back end"
that translates IL to object code. The mn compilers are constructed (in
principle at h~ast) from the m +n components.

Unfortunately, languages and machines are of such diversity that such an
undertaking is likely to fail. From the language standpoint, two apparently
similar langllages are qften quite different in.detail and require special IL
structures to support' them. Let us examine just three languages, Basic,
Fortran and Algol, as possible candidates for a common IL:

1. The Basic data types are simple numerics, arrays, and strings. The
numeric type is usually represented as a floating-point number and is
printed as an integer if its fractional part is zero. The Basic strings carry
a~tring count or end of string indicator. Fortran supports several
different data types, but not string.' Algol supports reals and integers;
some Algol implementations also support characters and character
arrays. Clearly, an IL must contain memory allocation indicators for
each of these types, some of which are qsed in only one language.

2. The Algol block structuring a~d procedure call mechanisms are not
fully used in Fortran or Basic. Three parameter passing mechanisms
must be supported: call by value (Algol), call by reference (Basic and
Fortran), and call by name (Algol). These must be matrixed with the
data types in a rather complicated way-Basic strings are not passed by
value or by name, and Basic strings are not passed' in the same way as
Algol character strings. The Algol syst~m is the most general, but
would be inefficient for Fortran or Basic. Hence' the back end should
knowwhe¢.er a full Algol system is required or not.

3. Consider the. FaR statement (Algol). Comparable structures exist in
Basic and Fortran, but have different definitions. For example, the
Fortran DO statement is always executed once, regardless of the
parameter value viz-a-viz the limit, while the Algol FO:g. is tested
before a first execution. The Algol step size may also be negative, while
the Fortran step size can only be positive. .

4. Fortran provides a number of special features not found in either of the
other two languages: e.g., COMMON, statement functions, equiva-

472 Compiler Construction: Theory and Practice

lences, and special I/O condition keywords. The Fortran equivalence
imposes special conditions on the memory allocator that are not found
in any other language. We see that memory allocation is radically
different in the three languages.

5. Algol has no I/O conventions. Fortran and Basic do support I/O
conventions, and the two conventions are quite different. Clearly, a
common IL must effectively support two different I/O systems.

These examples of language differences should be sufficient to make our
central point: an IL that must support several languages must contain the
union set of all those language features, which will make the IL considerably
more complicated than it would be for anyone of the languages alone. Many
of the features must be identified as peculiar to one or another language
because of semantic differences. Some language features, particularly the
declaration, I/O, and block structuring conventions, require such specialized
treatment that there might as well be a different IL for each language.

Some problems arise in the design ofback ends with multiple machines and
one IL, but they are less severe than the multiple language problem. If the IL
is consistently designed, each of its operations can somehow be implemented
on a target machine of reasonable capability. Since the IL can in principle be
expressed as an abstract syntax tree, there is no reason that efficient code
could not be generated from a given IL for several different machines.

Nevertheless, certain optimization problems may occur. For example,
array indexing may be supported very efficiently by special mechanisms on
one computer but not another. If indexing is expressed by a sequence of
primitive triples, with dimension mUltiplication and addition, etc., it would
be difficult to recognize as an operation that could be efficiently performed on
one machine. On the other hand, if every such "high-level" operation has a
special notation in an IL, then each ofthe compiler back ends must effectively
take them into account, and their complexity will increase. The Cobol
language in particular requires a large number of special operations that are
directly supported in hardware on some machines and not on others.

Now suppose that an IL is designed with, say, three languages in mind.
When a fourth language is to be added to the IL at some later date, the
existing IL will likely have to be augmented with some new features. Then
each of the back ends must be extended to support the new IL features. This
incremental effort willlike1y be less than that needed for a new compiler, but
will not be insignificant either.

The design and implementation of an IL system is a cost in addition to
those incurred in a more conventional compiler design. High-level design
effort is often more costly than coding, since competent software designers
demand higher salaries than coders.

On the surface, an IL is best suited to a multipass compiler; however, it can
also be used in a one-pass or interactive compiler. In the latter case, the IL is

10 Object Code and Machine Architectures 473

simply a software data structure through which all the information must flow
in passing from source to object code.

We conclude that an IL may be practical for a few closely related languages
and several different target machines. When practical, its use promotes
transportability and reduced compiler writing costs, at the loss of some
compile-time and run-time efficiency.

10.4. Machine architectures

There are several advantages to a compiler that generates target machine
code directly, rather than through an IL. Such a compiler will usually be
more efficient and generate more efficient object code. Ofcourse, if a compiler
is funded by a computer manufacturer, the manufacturer obviously will be
interested only in its machines as target machines. A compiler that can
generate code for both its own and its competitor's machines is not likely to
be greeted with enthusiasm.

For whatever reason, many compilers are expected to generate instructions
tailored to a specific target machine, and that machine's architecture is often
not under control of the compiler writer. Of course, a back end of an IL is
tailored to a specific machine. We therefore direct our attention to some
issues in machine architecture and their relation to language translators.

A compiler that generates specific target machine code seldom generates
only that; usually, a set of loader tables must be generated. These tables
contain sequences of target machine instructions, but also carry information
needed to link separately compiled program segments together, or to relocate
the machine instructions after compilation. Relocation data is essential for
rnultiprogrammed target machines that do not handle relocation automati­
cally in its hardware. The IBM 360 is an example of a machine that requires
attention to relocation in its translators; the CDC 6400 and HP 3000 are
examples of machines that do not.

Certain features of a target machine system are of special interest to the
designer of the code generators of a compiler:

1. The loader table structure. Only by generating loader tables can the
resulting programs enjoy the advantages of relocation and partial
compilation.

2. The register and operating system conventions. The IBM 360 requires the
observance ofcertain conventions ofevery program to be executed in its
system. Failure to observe these conventions will result in bounds
violations or inability of the operating system to diagnose program
problems.

3. Data andprogram addressing. How are data and program accessed in the
system? Sometimes the addressing convention is very simple, e.g., the

474 Compiler Construction: Theory and Practice

CDC 6400, in which every memory reference instruction carries a full
I8-bit address field. In other machines, the addressing convention may
be rather complicated and may require special attention.As we have
seen for the AOC machine, effective addressing for an Algol-like
language requires a set of base registers (the display), instructions that
carry an offset from a selected base register, and optional indexing on
top of the base register contents and offset. Heap management and
access requires double indirection through address labels. Uniform
address labels whose nature can be inferred at run-time are very
desirable for procedure calls. When such features are missing in the
machine hardware, their equivalent must be organized through in-line
instruction sequences or procedure calls, often with a sizable loss in
performance.Fortran requires much less addressing structure than
Algol and can be efficiently supported on most machine architectures.
Of course, Fortran does not support recursive procedure calls, nested
blocks, or dynamically alterable arrays.

4. Completeness and uniformity of the instruction set. Suppose that the
system supports four data types. Are all four arithmetic operations
supported on all four data types? Are they supported in a uniform
manner, or are there special exceptions? Every exception to a general
rule requires special attention in some part of the compiler. An
operation that only applies to a subset of the class of data types will
often have to be supported through a run-time procedure or in-line code
sequence for the nonsupported types.

5. Special instructions. Often, the instruction set contains some instruc­
tions that are technically unnecessary for completeness but that can be
exploited for the sake of coding efficiency. An increment-memory
instruction is an example.

The designer of a code generator must be intimately familiar with the
machine's instruction set. If he is not familiar with the machine, he should
spend some time writing assembly language programs and studying the
instruction coding conventions and the system conventions. Instructions
sometimes have undesirable side-effects or may not perform exactly as
expected. Such seemingly minor considerations must be carefully examined
in the light of their use in the compiler.

We cannot possibly review all the known machine architectures and their
relation to compiler design; there are simply too many. Instead, we shall
review three machine architectures in some detail as case studies. These are
the Hewlett-Packard 3000, the Control Data 6000, and the International
Business Machines 360 systems. Of these, the HP-3000 will receive the most
attention; it is a stack machine that incorporates many of the AOC machine
notions and its architecture and loader supports partial compilation and
program relocation.

10 Object Code and Machine Architectures 475

The Control Data and IBM machines are examples of multiregister
machines. Neither machine supports a push-down stack directly in their
instruction set definitions as does the HP-3000, but both can support the
AOC machine features without much loss in performance.

Each of the three machines has certain deficiencies that create difficulties
for the designer of a code generator. We shall examine both the strengths and
weaknesses of each system only from the point of view of overall compiler
effectiveness. We do not claim that this is the only or the best basis for the
comparison of computer systems, The evaluation of computer system
performance must take many other factors into account and weigh them
against the initial and maintenance costs of the system.

10.5. The Hewlett-Packard HP-3000

The Hewlett-Packard 3000 series III computer contains several AOC
machine features in its instruction set. It is a general-purpose data processing
system, specifically for time-shared multiprogramming applications. It is
organized around a data stack and a separate instruction memory. Its basic
word size is 16 bits, and it is therefore considered a "minicomputer".
However, its instruction set contains many powerful arithmetic and stack
manipulation instructions, and its operating system provides sophisticated
file management and other services.

Since we are principally interested only in those aspects of the HP-3000
that are ofdirect concern to a compiler designer, we shall limit our discussion
to those features. Further information is given in the HP-3000 Computer
System Reference Manual.

10.5.1. Data formats

A variety of numeric data types are supported in the instruction set,
including complete arithmetic and 16-bit logical operations on 16-bit words,
fixed-point and floating-point arithmetic on 32-bit double words, and
arithmetic for a 64-bit floating-point number. Special instructions also
provide certain data conversions from one number form to another. Packed
decimal arithmetic is also supported. Because of the stack architecture,
essentially all the operations are performed on the top elements of the stack.
For example, a real multiply causes the floating-point number in locations
{s-l, s} to be multiplied by a floating-point number in {s-3,s-2}. The
two-word result replaces these four words on the stack.

The data types are indistinguishable at run-time, hence it is the compiler's
(or user's) responsibility to keep track of the various data types supported by
the source language and to emit the necessary conversion instructions.

Some half-word, or "byte" operations are also provided. Bytes may be

476 Compiler Construction: Theory and Practice

packed two per word, and arranged in arrays. We shall not discuss byte and
string operations or the special byte addressing modes available.

All the data types (except byte) must be stored on an even-byte boundary
(any 16-bit word boundary), owing to the addressing conventions of the
machine. The word "must" should be qualified, inasmuch as it is possible to
move an odd-byte variable from memory to an even-byte stack top location
for an operation, then back again; but such an operation adds considerably to
the operation time.

10.5.2. Memory and Register Organization

The machine's memory organization (figure 10.2) is similar to that of the
AOe machine. A program consists of one or more code segments; a code
segment contains one or more procedures. Only one code segment is active at
anyone time, although more inactive code segments belonging to the
program may also happen to reside in memory. Generally, inactive code
segments are kept in a program file in disk and are fetched as needed through
procedure calls.

A code segment is delimited by two registers, PB and PL (figure 10.2.) The
current instruction location is marked by register P. The system enforces the
restriction PB :::; P :::; PL and causes a program abort if this restriction is ever
violated.

One data segment is normally provided (figure 10.2), and is defined by the
following registers.

• DL: Data limit. Defines the least memory location.

• DB: Data base. Defines the "0" memory location. Negative locations are
toward DL and positive locations are toward Z. DB corresponds to
location 0 in the AOe machine, or D(O) in the AOe display.

• Z: Stack limit. Defines the largest memory location. This limit is
automatically adjusted by the operating system as needed.

• S: Logical top-of-stack. Defines the topmost stack word currently in use.
Many of the instructions either directly or indirectly affect S. However,
an attempted access of data memory greater than S or less than DL
results in a program abort.

• SM: Top-of-stack in memory. Of no concern to a user; the system carries
the top four stack elements in fast electronic registers that track the
memory contents. This register is used in that system. SM is not
accessable through the instruction set.

• Q: Stack marker. On a procedure call, the Q-register is set to point to the
new stack marker top. Register Q corresponds to D(b)-1 in the AOe
machine. There is no display register set.

A 16-bit index register is a~so provided for array indexing.

Code segment
pointing
registers

10 Object Code and Machine Architectures 477

Data segment
pointing
registers

CodeI ~ segment
PB Register n

(Program base)

IP Register~
(Program counter)

Data

I ~ segment
DL Register n
(Data limit)

IDB Register ~I---------l

(Data base)

IPL Register~L-- --'

(Program Limit)

Increasing
addresses

IQ Register ~I---------l
(Stack marker)

~ (Top-of-stack in memory)

~ { ISM Register~:J~~~~
~isplacement r-Sp~ih~~~-: '
- 0, 1, 2, 3, 4 L.

(Logical top-of-stack)

Z Register ~'-----_---I

(Stack limit)

Other CPU
registers I Index register I Status register I I Mask register

Figure 10.2. HP3000 memory organization and segment-pointing registers.

478 Compiler Construction: Theory and Practice

Address
mode

P + Relative
P - Relative

DB + Relative
Q + Relative
Q ~ Relative
5 - Relative

o
o
1
1
1
1

o ...-----Displacement 0:255-
1 Displacement 0:255-
o • Displacement 0:255-
1 0---Displacement 0:127-
1 1 0 --Displacement 0:63 -
1 1 1 --Displacement 0:6~ -

Code
segment

Data
segment

} 63

-
.....

DB + Relative

Q - Relative

Q + Relative

S - Relative

5

Q

DB

DL

} 255

}255 D
Increasing
addresses

P - Relative

------....

P + Relative

P

PB

PL Z

Figure 10.3. HP3000 memory direct addressing modes.

10.5.3. Memory reference instruction format

Twenty-one memory reference instructions are provided in the machine.
These have the general form shown in figure 10.3. Bits 6 through 15 of the
16-bit 'Yord are used for a direct memory reference, through one of the
registers P, D~, Q, or S. Bits 8 through 15 yield a word displacement field for
P and DB relative addresses. Bits 9 through 15 yield the displacement for Q+
relative, and bits 10 through 15 yield the displacement for Q- and·S -

10 Object Code and Machine Architectures 479

relative addresses. The directly addressable memory fields are. shown in the
lower part of figure 10.3.

The D:s + relative field is called primary DB. It is used for global or
outermost block va,riables. The primary DB addressing space is only 256
words, hence a large program with many global variables requires an
additional capability-indirection or indexing.

The Q - relative field is principally used for formal parameter references.
Its maximum size is 63 words, 4 of which are preempted by the stack marker.

The Q + relative field is used for local variables, at the innermost block
level. Its maximum size is 127 words.

The S~ relative addressing' can be used to access temporary cells whose
location is only known relative to the stack top. For example, the RAV
instruction in the AOe machine calls for a C(S --.,.. 1) access.

The P + and P- relative addressing modes are used in branch' and load
constant instructions. Access oflocatiolls gre'ater than 255 words distant from
the instruction requires indirection ot: indexing.

The maximum code.segment size is impQsed by the operating system, and
also by certain bi,tfields defined in the system; the upper size limit is 16,384
words. The maximum data segment size (Z - DL) is approximately 32,000
words. .

Several code and data segments may reside in physical memory simulta­
neously. All address references are relative to one of the registers shown in
figUre 10.3, hence their absolute location in memory is only of concern to the
operating system memory manager.

The code segment words are fixed before execution and cannot be changed
by a user program. Because of this property, a given code segment can be
shareq by more than one user in a multiprogramming environment, and a
code segment need never be written to disk, once it· is completed by the
c()mpiler, linker, and loader. (A copy already exist~ on disk.) A data segment,
however, must be written into a scratch area on disk upon transferring control
of the system to another user.

10.5.4. Indirection and Indexing

Because the range ofdirect addressing is so small, indirection and indexing
are provided for the memory access (MA) instructions. In general, bit 4 of the
instruetioll indicates indexing, and bit 5 indicates indirection. (There are a
few excep~ions.) Indirection is to only one level; the directcell may only point
to a data' cell, not' to another indirect cell. Indirection is ilhistratedin' figure
1004, in code and data space. For example,'LOAD Q+4,I causes a fetch of
the word in Q + 4' which happens to be 7. The 7 is DB relative, hence the
accessed data word is in DB+ 7. All indirect ~ell is a 16-bit Word, interpreted
as a. twos complement word count relative to DB. Hence, the negative
logttions toward DL can be accessed indirectly, as can all the stack area. The

480 Compiler Construction: Theory and Practice

CODE, Indirect
LOAD P+4, I LOAD P - 4, I

Indirect
cell

-
-7 J
-4 -3

J'-

.-

P

P

P

PL

PB

Indirect
cell

Increasing
address

DATA, Indirect

LOAD DB + 4,1 LOAD Q + 4,1
LOAD Q - 4,1 or

LOAD 5 - 4,1

~
Indirect

cell

/

1--

iJ
7

-4 7

)-
ct

-4 7

J--
-

DB +

Q

Q

5

5

DB

z

Indire
cell

:-

t

+7 ,

-
D+4 7

'-z

Q

Q

DB

Indirec
cell

DB

I- T
+4 7

+7 ,¥'

-z

DB

DB

DB

Figure 10.4. Examples of indirect addressing for HP3000.

maximum addressable indirect space is therefore DB ± 32,767. However,
the operating system limits the DL to Z size to approximately 32,000 words.

Indexing through the index register X provides an additional level of
memory access. Indexing always follows an indirection, if any, and is
illustrated in figure 10.5. For example, the instruction LOAD Q+4,I,X first
accesses word Q + 4, which contains 3; with C(X) =5, the data word at
DB+ 10 (octal) is accessed.

10 Object Code and Machine Architectures 481

We now see how a data space in excess of 256 words (or whatever) can be
allocated and accessed. If a global data area of(say) 500 words is needed for an
array, it may be located somewhere above DB (but below the lowest stack
marker) and accessed through an indirect word between DB and DB +255.
Similarly, local arrays may be allocated above Q somewhere and accessed
through an indirect word between Q+ 1 and Q+ 127.

Long branches can also be implemented by a short indirect branch through
a word in the program memory. An indirection through a word at P + 4 that
contains "3" refers to location P +7 (see figure 10.4). That is, the indirect cell
is relative to itself, just as the direct instruction displacement is relative to
itself.

Self-relative instructions and indirections mean that all of the code of a
procedure may be fixed by the compiler and need not be changed when the
procedure code is positioned arbitrarily within a code segment. (This
statement is not quite correct, as we shall see; e.g., procedure calls cannot be
fixed by the compiler.)

LDXI 5
LOAD DB + 4, X

LDXI 5
LOAD S -11, X

LDXI 5
LOAD Q + 4, I, X

X=5

Indirect
cell

z

Q

Q + 4 1--_::;...3_~

DB

(DB + 3)

DB + 10 ~__--I

t
X=5

t

-

11) ::::::::::[
4

-

-

S

z

S-

DB

(S -

X=5

z-"----__----'

DB

(DB+4)

DB +11 t------t

Increasing addresses

Figure 10.5. Examples of indirect and indexed addressing for HP3000.

482 Compiler Construction: Theory and Practice

10.5.5. Stack Configuration During Program Execution

Figure 10.6 illustrates a typical machine stack configuration during
execution. Primary and secondary DB (global data qrea) are organized and
initialized prior to execution. An initial stack marker is also placed by the
system, and an EXIT through that marker returns the program to control of
the operating system.

On a procedure call A, actual parameters are loaded on the stack prior to
the call. The call places another stack marker; this marker contains a reference
to the previous marker. Q points to the new marker. Local variables may then
be built up on the stack. If A calls procedure B, this process is repeated, etc.
Three procedures (A, B, and C) are currently active in figure 10.6, and control
currently resides in procedure C, called by B. Ofcourse, temporary storage is
available between the local variables of one procedure and the actual
parameters of the next call.

This machine automatically generates a stack marker, links it to the
previous marker, and sets Q, upon executing a PCAL (procedure call)
instruction. The PCAL also performs certain other useful services, as we
shall see. Upon executing an EXIT instruction, Q is reset to the previous
stack marker, and the stack is cut back.

10.5.6. Stack Marker, Procedure Calls and Exits

The stack marker is shown in figure 10.7. It carries the index register (X)
contents at the moment of call, a PB-re1ative return address, some status
information, a code segment number (more about that next), and a reference
to the previous marker ("Delta Q").

By writing C(X) in the stack marker and subsequently restoring it upon a
return, C(X) is effectively unchanged by a procedure call.

Among the status information is· "0", an arithmetic overflow bit, "C", an
arithmetic carry bit, and "CC", a condition code. The condition code CC may
carry one of three values 0, 1,2 (3 is not used). Code CC is set by a variety of
instructions, and is tested in one form of conditional branch.

We now show how the HP-3000 system handles procedure calls and exits.
Recall that all the code for some procedure resides in a code segment, that a
program may consist of several code segments, and that several procedures
may be placed in one segment.

The system permits procedures to be moved around from one code
segment to another without recompiling the procedures. This is an important
performance consideration, as we shall see, and is well worth the complicated
mechanism that makes it possible.

Every procedure call is made through a segment transfer table, or STT
(figure 10.8). One STT resides at the end of each code segment. It is a
directory to the procedures. There is one STT entry, a procedure label, for

10 Object Code and Machine Architectures 483

Increasing
addresses

}
Primary
(256)

} Secondary

}
Stack
marker

}
Stack
marker

}
Stack
marker

-
Global

1- ______ data --------
area

,,~
(
I
i

TemporaryI
I
I storageI
I
I
I
I
I
I Procedure parametersI
I
\,,,
,,1f

(
I TemporaryI
I storageI
I
I
I
I
I
I

Procedure parametersI
I
l ,,,

,/'
I
I
I TemporaryI
I
I storageI
I
I
I
I
I
I

Procedure parametersI
I,,,

Local variables

~------------------

Temporary
storage

-

-

Q

z

DB

First Q

Previous Q

Previous Q

t
Procedure A

Procedure B

l
{Allocations

due to calling
Procedure C

(
Allocations

local to
Procedure C

t

Figure 10.6. Typical stack configuration.

each procedure called in the segment. Different calls to the same procedure
share the same STT entry. The STT entries are indexed backwards in
memory, starting at the last word of their host code segment.

The peAL instruction carries an index N (1 < N < 255) into the STT
table. STT(O) carries the largest STT number, not a procedure label.

484 Compiler Construction: Theory and Practice

o

X Register contents

PB Relative return address for P reg

Q

Code segment #

Increasing addresses

Figure 10.7. Stack marker format.

A procedure label has two forms, depending on whether its procedure is in
its own code segment or not. Bit 0 specifies the form (see figure I0.9 for the
general format.) Bit I (uncallable bit) is used for protection of operating
systems procedures against nonprivileged calls, thus a 14-bit PB-re1ative
address is available for a procedure call. If the procedure being called is in this
code segment (local program), then the label carries its PB-relative entry
location; a transfer to that location, along with the usual stack marker
creation, etc., is made. In figure 10.8, the PCAL(4) in code segment 23 (path
5) is to a local procedure, whose label is in STT index 4. Thus control passes
to some code location in segment 23 (see path 6).

If the procedure is in some other code segment (external procedure), there
are two possibilities, shown by the PCAL(5) in code segment 23, to a
procedure in code segment 22. Segment 22 mayor may not currently reside
in memory. (It may have been overwritten by the memory manager in order
to provide space for other code or data memory segments.) This information .
is in a master table called the code segment table (CST). The CST is shared by
all users of the system and is strictly managed by the operating system. It is
accessed through a CST pointer in location 0 of absolute memory.

The CST entries are double words; their structure is shown in figure I0.9.
Bit A is set if the code segment is absent. When it is absent, the memory
manager must be called into service to allocate enough contiguous space for
the segment (the length field is part of the CST entry). When space is
available, an absolute disk address in the CST entry is accessed to load the
new code segment. The old segment is marked "inactive," hence its space
becomes available. When the new segment has been fully written to memory,
the system transfers control to the procedure entry point, and adjusts the

10 Object Code and Machine Architectures 485

Segment
transfer
table

Segment
transfer
table

®

easing
resses

DI CST pointer ~ location 0

CD

---C:~!!-~~--i Incr

I
0 add

I

Code: · I
I

segment I · I

· !
number i i

® Code segment 22

PB (b)22 PB (b)

·------------- ·23 PB (a) - '-- ·BEGIN -+- -
!------------

® END24 · @
® @ ··-------------

25 5

I I r~4 olulpB Ref. Add. -
I · I
I I
I · I 3
I · I
I I

2I I

1

212 0 Pl (b)

Seg 22 @ Code segment 23
-------------~-----------

STT#4 ~ PB (a)

PCAl (4)

PCAl (5)-~

BEGIN (j),
SST !

entry END
number

r--+8

® 7

6

5 11 SST# I SEG # ~

4 01 ulpB Ref. Add.

3

8) 2

1
'---0 LAST SST # = 8 Pl (a)

Figure 10.8. Procedure call and exit system.

486 Compiler Construction: Theory and Practice

Code segment table Doubleword

0 1 I 2 I 3 4 15 1 6 1 7 I 8 I 9 \10 I 11 112113 I 14 1 15

A MI T 1 R Length

Address

A Absence bit (= 1 if segment is absent)
M Mode bit (= 1 if priveleged mode)
T Trace bit (= 1 to call Trace routine)
R Reference bit (for statistical use by operating system, set to

1 when accessed)
Length This value times 4 (max = 16,380)

Addres~ Absolute memory address (for 'PB) or absolute disc address if
absent

Segment ~ransfer Table Words

Local program Label

o 1 1 2 I 3 I 4 I 5 I 61 7 I a ! 9 110 I 11 112113 114 1 15

lOU I Address

U Uncallable bit
Address PB relative, + only

External program label

-:OIl' 2 ' 3 I4 I 5 ' 617' 8 I 91 10 ' 11 '12113 '14 '151

[2] STT # ~ , SEG # ,

STT # STT entry number in target segment, maximum = 127
SEG # Target segment

Status Word

M Mode bit (= 1 for privileged mode)
I Interrupt ~nable (1)/disable (0), external
T Traps enable (1)/disable (0), user .
R Right Stack Opcode bit (pending = 1)
o Overflow bit
C CarrY,bjt

C(: Con9ition Code
Segment # currently elCecuting

Figure 10.9. Formats associated with code segments.

10 Object Code and Machine Architectures 487

CST entry appropriately. The ADDRESS field of tne CST entry is changed
to become the new code segment's memory address.

Since several procedures may reside in the same code segment, several
CST entries may be affected by the disk fetch operation.

In figure 10.9, the path followed by a call to an absent procedure starts with
the PCAL(5), then through paths 7, 8, 9, 10 and 11.

If the procedure is present in memory (through being left around, or
someone else's use of it), the CST entry so indicates this fact, and the
time-consuming process of fetching the segment from disk is obviated.

Note that an external procedure STT label (i.e. a procedure riot in this code
segment) carries an STT number in the target code segment as well as the
target segment number. Also note that the stack marker for the currently
executing procedure contains the caller's segment number, and the absolute
PB return location. Upon an exit; the caller's code segment might still be in
memory, or might have been overwritten, and therefore. must be replaced
from disk. Once in memory, the return transfer is easily made by using the
PB-relative return address and the CST number held in. the stack marker
(figure 10.7.)

Of course, upon switching code segments, the PB and PL registers
associated with the program must be changed and P set appropriately.

This entire algorithm is embedded in the PCAL and EXIT instructions of
the machine. The programmer need not be concerned with any of this
complicated mechanism. We discuss it, because it has an important beating
on the structure of the files that a language compiler for this system should
generate, the unsegmented library (USL) file.

10.5.7. Instructions

There are 13 instruction formats in this machine's architecture, six of
which are illustrated in figure 10.10. We shall consider only a· few of the
instructions, omitting those that are of interest only to an operating systems
programmer, those that are ofmarginal value in a compiler, and those that are
essentially repetitions of those presented. We thereby hope to provide some
flavor of the architecture of this machine.

Sixteen bits is a marginal instruction size for a machine of this sophistica­
tion. As we have seen, the MA (memory address) instructions have a severely
limited direct address range, and there cannot be very many ofthem, owing to
the smali op-code field. Nevertheless, a large number of operations and data
types can be supported through the stack architecture.. Stack operations
require no address field, only an operation; there can be many of them without
a correspondingly large instruction field for them.

The HP-3000 stack-ops are 6 bits each and may be packed two per word.
There are 64 of them, a few of which are defined next.

4 5 6 7 8 9 10 11 12 13 14 15

488 Compiler Construction: Theory and Practice

Stack
OpL..-.....L-----L_..L--..........---J'---I----L.._.L....-.....L-----L_..L--.......L..--I_....L...----L..--I

5 6 7 8 9 10 11 12 13 14 15

Shift

Stack op A

Sub-opcode 1

Stack op B

Shift
count

7 8 9 10 11 12 13 14 15
Unconditional

branch L..-.....L-----L_..L--.............,.........L......,--I----L..-,-.L....-.-L-----L_..L--.......L..---JI.....-....L...----L..--I

+/- P relative
Relative displacement

4 5 6 7 8 9 10 11 12 13 14 15

Conditional
branch

Immediate

Indirect
bit

Su b-opcode 2
or: 1 Sub-opcode 3

10 11 12 13 14 15

+/- P relative
Relative displacement

Immediate
operand

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Memory
address~

Memory Index Indirect Mode and
opcode bit bit displacement

Figure 10.10. Instruction formats.

• ADD, SUB, MPY, DIV are binary 16-bit 2's complement integer
operations with overflow. They ofcourse operate on the two top-of-stack
words, and replace them by one top-of-stack result word.

• LADD, LSUB, LMPY, LDIVare binary 16-bit 2's complement integer
operations with rollover, but no overflow.

10 Object Code and Machine Architectures 489

• DADD, DSUB are binary 32-bit 2's complement integer operations.
DMPY and DDIV are available, but are not stackops.

• FADD, FSUB, FMPY, FDIV are binary 32-bit floating-point opera­
tions.

• OR, XOR, AND are binary bit-by-bit logical operations on the top two
stack words.

• NOT complements the bits of the top stack word.

• NEG, DNEG, FNEG negates the TOS element-an integer, a double
integer, or a floating-point value.

• FLT converts the top integer into an arithmetically equivalent floating­
point 32-bit number.

• FIXR, FIXT converts the top 32-bit floating-point number to a 16-bit
integer. FIXR rounds the number, and FIXT truncates the fractional
part.

• CMP, LCMP, DCMP, FCMP compares the two TOS values (2
integers, 2 logical integers, 2 double integers, or 2 reals) arithmetically,
deletes them, and sets the condition code CC correspondingly. CC = 0
means A> B, CC =1 means A< B, and CC =2 means A= B, where B is
in (TOS) and A is in (TOS-I).

• ZERO pushes a I-word zero.

• DZRO pushes a 2-word zero.

• DEL deletes the top-of-stack (TOS) word.

• DDEL deletes a pair of TOS words.

• DELB deletes the word just under the TOS word.

• XCH exchanges the top two stack words.

• DUP duplicates the top word on the stack.

• DDUP duplicates the top word pair on the stack.

• CAB rotates the top three words on the stack. Ifthey are initially A, B, C,
with (TOS) = A, then CAB causes the order C, A, B.

• NOP, no operation, is used to pad a stackop to form a full instruction
word.

• INCX, DECX increments (decrements) the index register.

• ZROX clears the index register to O.

• STBX sets the index register to the word in (TOS - I), without affecting
the stack.

• STAX sets the index register to the word in TOS and deletes TOS.

• LDXA pushes the current value in the index register.

A branch to some instruction is always to a full word, hence any statement

490 Compiler Construction: Theory and Practice

to which a branch may occur cannot begin on an odd-position stackop. This is
a reasonable restriction, but one that can be bothersome to design into a
compiler.

The immediate instructions are listed below. Each of these carries a
eight-bit field containing an operand n, where O::;n::; 255.

• LDI n, push n on the stack.

• LDXI n, replace (X) by n.

• CMPI n, compare top TOS word to n, set condition code, delete TOS.

• ADDI n, add n to top TOS value.

• SUBI n, subtract n from top TOS value.

• MPYI n, multiply top TOS value by n.

• DIVI n, divide top TOS value by n.

• LDNI n, push - n on the stack.

• LDXN n, replace (X) by -no

• CMPN n, compare TOS word to - n, set condition code, delete TOS.

• ADDS n, allocate n words on the stack.

• SUBS n, remove n words from the stack. Note: if n = 0 in the ADDS or
SUBS instruction, the count is taken to be (TOS).

• ADXI n, add n to (X), replacing (X).

• SBXI n, subtract n from (X), replacing (X).

• ORI n, form logical bit-by-bit OR of nand (TOS), replacing TOS.
Leading 8 bits are taken to be zero.

• ANDI n, form logical bit-by-bit AND of nand (TOS), replacing TOS.

• XORI n, form logical bit-by-bit exclusive-or of nand (TOS), replacing
TOS.

These are expensive in instruction space, inasmuch as 8 bits are needed in
each one for the immediate operand. However, the bulk of the literals found
in common programs are small integers, and the immediate instructions
obviously improve the machine's performance when they can be used. Only
integer immediates are provided. All double-integer and floating-point
numbers must be stored somewhere and fetched through a MA instruction.
However, instructions and execution time can sometimes be reduced by using
an integer immediate instruction and converting the result to the desired type.

The memory address (MA) instructions are given below. The symbol "P"
means that the instruction supports P-relative addressing as well as DB, Q
and S relative addressing.

• LOAD (P) fetches a word and pushes it.

• TBA, MTBA, TBX, MTBX (P) are only P-relative instructions, used to
control a FOR-loop with integer index and an integer step size.

10 Object Code and Machine Architectures 491

• STOR pops the TOS word to memory.

• CMPM (P) compares the TOS word to a memory word, setting the
condition code and deleting TOS.

• ADDM (P) adds the memory word to TOS, result to TOS.

• SUBM (P) subtracts the memory word from TOS, result to TOS.

• MPYM (P) multiplies the memory word by TOS, result to TOS.

• INCM, DECM increments or decrements the memory word by 1. TOS
is unaffected.

• LDX (P) loads X with the memory word. TOS is unaffected.

• LDB loads a byte in memory to TOS. If indirect or indexed, this expects
a byte label and/or byte index offset.

• LDD (P) loads a double word to TOS.

• STB stores a byte in TOS to memory. If indirect or indexed, this expects
a byte label and/or byte index offset.

• STD stores a double word on TOS to memory.

• LRA (P) generates a one-word address and pushes it. The address points
to the datum specified by the address field, indirection and indexing. If
P-relative, LRA generates a PB-relative word address.

Although a stack machine really only needs LOAD, STOR, and branch
MA instructions, several more .are provided in the HP,..3000 for the sake of
program.efficiency. These are expensive instructions in terms of instruction
bit space; the mode and displacement use 10 bits, and indexing and
indirection use another 2 bits. This leaves only 4 bits for an operation code,
and of these sixteen combinations, four are needed for the non-MA
instructions. However, some doubling-up is possible. The STOR instruc­
tions cannot apply to P-relative addresses, so that bit 6 can be used to
distinguish two store instructions. Using this trick and some others, the
system designers have fit 21 distinct MA instructions in this group.

The LRA instruction is similar to the LA instruction in the AOC machine.
It may accept indirection and indexing and yields a DB or PB relative
address. A PB address on the stack is of limited value in this system; it is
needed only for certain operating systems functions and for certain high-level
vector operations that we shall not discuss.

The INCM and DECM MA instructions are valuable as optimizations. A
typical program may contain several statements of the form

1:=1+ 1
or

1:=1-1

and these are obviously translatable to INCM I and DECM I, respectively.

492 Compiler Construction: Theory and Practice

The LOAD and STOR instructions have counterparts in each of the other
data types, except LONG floating-point (four words). There is a LDB and
STB (for bytes), a LDD and STD (for double words). Unfortunately, the
long floating-point data type is not supported very effectively. Long
arithmetic is performed through three addresses on the stack-result, operand
1, operand 2. This arithmetic philosophy is fundamentally different from that
for the other data types and requires an elaborate compiler system to support.

The unconditional branch instruction BR (figure 10.10) can be indirect and
indexed, but since indirection precedes indexing, a BR Ll,I,X is essentially
useless. The branch reach is limited to P± 255. A larger branch reach must be
indirect, with the indirect word within the 255 word limit.

The conditional branch BCC (figure 10.10) is not indexable but may be
indirect. The bits GEL refer to the condition code possibilities greater-than
(G), equal (E), or less-than (L). The bits GEL may be set in any pattern to
select one of six possible conditional branch cases (the remaining two cases
yield a "never-branch" and an "always-branch" condition.) The reach of the
BCC is only P± 31. It turns out that a fairly large number of branches are
within this range of words. Those outside this range must be accessed
through an indirect word.

The condition code (CC) used in the BCC instruction are set by a variety of
arithmetic and stack top operations. CC is affected by some, but not all, the
instructions that influence the stack top. Note that the compare operations
have no other effect than setting CC. The use of a single CC register rather
than the stack top is a weakness in this architecture, but one that can be
surmounted if necessary; the CC and other status information can be pushed
if it must be saved and later used. Recall that in the Aoe machine, the result
of a comparison was a TRUE or FALSE pushed on the stack.

The shift instructions (figure 10.10) accept a 6-bit shift count, and the shift
count is added to (X), if the X bit is set. Single and double word shifts are
provided.

The PCAL and EXIT instructions have been discussed previously. Each
carries an 8-bit field, with value N (0::; N::; 255). Recall that N in the PCAL
refers to a word count from the end of the code segment backwards, and that
if N is zero, a procedure label is expected on the top of the stack. (It is for this
reason that index 0 in the STT is not used for a procedure label.) The EXIT
carries a count N ranging from 0 to 255; N is the number of words below the
stack marker that are to be deleted upon the return. Thus EXIT is used to
remove the formal parameters from the stack. It is the compiler's responsi­
bility to determine N in the EXIT. However, a compiler cannot determine N
in the PCAL, nor organize an STT.

The instruction LLBL causes a procedure label (copy of the STT entry) to
be loaded on the stack. Like the PCAL, it refers to the STT bottom-up
through a displacement N.

DL

10 Object Code and Machine Architectures 493

10.5.8. Allocation of Memory Space to OWN and Outer Block
Variables

OWN and outer block variables in an Algol-like language belong in some
data area that is unaffected by the procedure calls and exits. In the HP-3000, a
reasonable static OWN area is secondary DB, just below the initial stack
marker (figure 10.11). A dynamic OWN area and space for dynamically
allocated arrays (like PL/1 VARYING arrays) could be allocated in DL to
DB; however, we shall see that there are some problems with this in this
architecture.

Now the assignment of static OWN space can be made by the compiler
only if every one of the procedures utilizing OWN is compiled. A
fundamental premise of the HP-3000 system is that partial compilations
should be provided for every language for which it is feasible. This means
that any given compilation may be only of some of the procedures with
OWN; consequently, the compiler will not know how to assign OWN space.
This task is left to a program called a segmenter that does have complete
procedure information.

The system also provides for additions to primary DB and secondary DB
from different procedures. (However, this capability is not invoked in all the
supported languages.) Hence, in general, the initial stack configuration of
figure 10.11 is not determined by the compiler but through special tables
intended for the segmenter.

10.5.9. Partial Compilation and Segmentation

Partial compilation implies another capability that must be present in the
system-it should be possible for a procedure that has been previously

IAllocated dynamically
by run-time

program

'---_DB_J---..l--i} Primary DB

ISecond", DB

1-------1
} OWN - procedure Pl

I------i
} OWN - procedure P2

1-------1
} OWN - procedure P3

~~~} Initial stack marker

Figure 10.11. Stack configuration just before program execution.



494 Compiler Construction: Theory and Practice

compiled to be overwritten with a neW procedure without affectirig the others
already written. This capability should work whether the new pro~edure
contains more or less code, etc., than the new one. This is a useful capability,
iiias~tich as it significantly reduces the compilation time required t6 modify
one or two procedures in a set of several hundred in a large program.

Another very .desir~hie capability is arbitrary movement of procedures
from one code segment to another, a process called resegmentation. We have
seen that an external procedure.call can be very expensive....,...a disk access may
be needed, some memory manager work may be required, and lots of
bookkeeping is needed. Obviously, procedures that call each other very
frequently should be in the same code segment. It is desirable that
considerable freedom be. provided, after compilation,. to move them in the
interest of performance. This capability, in fact, is one of the major factors in
iniproving execution performance on this system;

To support these capabilities, an HP-3000. compiler generates a USL
(unsegmented library) file. The USL file essentially isolates procedures that
are teiltative1y assigned to code segments but that may be reassigned. T~e
procedures and their. calls have not yet been connected.. The USL file is
processed by the segmehter to yield a program file. The program file is
essentially a list of the code segments arid the initial data segment for the
program. Space for the STT entries is provided but rl9t yet filled in; these
tablesdm only be filled in just prior to execution. Finally, the program file is
processed by the linker to yield an execution file. The linker is invoked just
before execution. It assigns CST numbers, fixes up the STT's, and then
limriches the program into execution.

10.5.10. The USL File Structure

The USL file consists ofa set ofprocedure entries linked to headers, to each
other, and (through a chain) to segment entries. Figure 10.12 illustrates such a
file, containing three segmerit names, SEG1, SEG2 and SEG3, and four
procedures, PROC1, PROC2, PROC3, and PROC4. (This is a simplified
version of the actual HP-3000 USL file structure.)

There. are four linkage systems, indicated by the directed lines in figure
10.12.. The segment links start from a directory node through each of the
segment entries and end in a "0" pointer (the pointers are labeled S.L.) Each
segment entry must be active, and there cannot be more than one with a given
name. The segment names may be defined by the compiler, Or they may be
defined by the segmenter.

The hash links·are through each· of the entries (segment ot procedure);
designated H.L. in the.figure. These provide rapid access to any given name
in the file; the segmenter must connect procedure calls (in headers) to their
procedures (entries) by their names. A hash table scheme is used to locate



10 Object Code and Machine Architectures 495

Name--

Hash
Table

0...
...
...

0
0..

..

I
Directocy j ;;

S.L. \ •• //

/
I
I
I
I
I
I
\
\
I
I

J
/

......... Segment links (S.L.)

--- Hash links (H.L.)

-- Procedure links (P.L.)

------ Header links (H.L.)

o
~1
I 2

I
1~3
II 4

f ~5
1/6
II
V
I
I
\
\
\
\
\

"'-
....... _-'"

Figure 10.12. Unsegmented library (USL) file structure (simplified).



496 Compiler C~nstruction:Theory and Practice

entries and segments by name; a given name is translated through a hash
function into an index in the hash table. The hash chain from the table then
links every name in the file with that hash code.

The third set of links are procedure links, designated P.L. These form a
circular chain from a segment entry through every procedure entry intended
to be part of that code segment. A procedure entry may be marked inactive
(indicated by the open corner in the P.L. field), in which case it has effectively
been replaced by another active one (shaded corner) somewhere. More than
one procedure with the same name may exist in the USL file, but only one
may be active. (The system actually permits exceptions to this rule, for the
sake of having the same procedure code in several different code segments,
but a discussion would take us too far afield.)

Finally, each procedure entry is linked to a set of headers and a code block.
Some typical headers will be described later. They provide for certain
services that the compiler cannot directly provide such as initializing outer
block data space, specifying procedure calls, and fixing OWN data space. The
code block is a list of the instructions in the procedure.

A header block may consist of several headers. Several header blocks may
also be chained together.

It should be obvious that a procedure can be moved from one code segment
to another one by merely changing its procedure links. Everything else
associated with it is moved with it.

A segment entry is very simple. It only contains a name and several
pointers, nothing that would require a new compilation. Hence new ones may
be easily created by the segmenter.

The various entries and headers are held in one binary file, and are written
as though the file consisted of a single list of words.

10.5.11. Procedure Compilation and USL Linkage

The compiler has a number of. tasks to perform upon compiling one
procedure, in addition to generating a code sequence for it, as follows (see
figure 10.12).

1. Code and headers must be written to the USL file and their location
noted. In general, new code and headers are simply added to an existing
file by appending them.

2. At the end of a procedure, the hash chain for that procedure is searched
for any existing procedures with that name. Any existing ones are
marked inactive, but no attempt need be made to reclaim their space.

3. A new entry for the procedure is written to the file and connected to the
hash chain at its head. Note that this means that the most recently



10 Object Code and Machine Architectures 497

entered ones are the first noted by the segmenter in its sear€h for
procedure names. The hash table is then modified and updated.

4. The new procedure entry is linked into its procedure chain, again at the
head of the chain. For this, the compiler must know the segment in
which the new procedure belongs.

5. The headers belonging to the procedure are linked to the procedure
entry.

6. The directory contains certain information regarding the available and
unused space in the USL file; this information inust be updated by
rewriting the directory.

The compiler needs the following tables in memory:

• SEG: An image of the current segment entry.

• DIR: An image of the current directory.

• HASH: An image of the current hash tabl~.

• PROC: An image of the current procedure entry.

• HEADER BUFFER: A one-record buffer for headers and code.

The header buffer is essentially filled as headers or code are generated (only
one or the other at a time); when full, it is emitted to the USL file as a
complete record. At the end of a procedure, it must be flushed to disk. The
DIR and PROC tables are of course updated to reflect the written header and
code locations and lengths.

At a procedure end, PROC is written to disk and linked into its chains as
previously described. SEG is then updated on disk, by either replacing an
existing one or adding a new one into the seg and hash links. DIR and HASH
are then written to disk; these overwrite the previous ones.

By only updating the USL file in this manner at a procedure end, the USL
file is protected against some program error.or other serious malfunction in
the compiler. There shouldn't be any, but sometimes a user will abort the
compiler without thinking about its effect on the USL file. If tfie compiler is
aborted, or a procedure error is detected, no harm is done. Although header
information has been written, the file directory on disk is not aware of it, and
all the file links reflect a configuration in which the failing procedure has not
even been seen.

10.5.12. Primary DB Header

We now turn to the structure of certain of the USL headers. Their form is
rather arbitrary, but reflects a solution to the segmentation requirements
stated previously.

Every header has a common first word structure containing NW, the



498 Compiler Construction: Theory and Practice

number of words in the header, and a header type code. From these, the
length and the type of each header are known. (Note from figure 10.12 that
headers can either be arranged in a contiguous list or linked. We have not
shown certain details such as how the net length of a list is determined.)

The primary DB header, figure 10.13, specifies the arrangement of the first
255 words (or less) of DB. These may be absolute 'values or pointers into
secondary DB. Since the segmenter, not the compiler, fixes the location of
secondary DB, the values of the pointers cannot be set by the compiler; the
compiler can only set the relative offset into the secondary DB area.

The segmenter must be told which of the primary DB cells are absolute
values and which are pointers; that is the purpose of the array Vi' 0 ::; i ::;
N - I, where N primary words are specified. The value N can be inferred
from the number of words in the block NW.

If Vi = 0, then C(i) is unchanged; this would be an absolute value. If Vi =
2, then C(i) must be incremented by SDBA by the segmenter; SDBA is the
DB-relative origin of secondary DB.

The size of this header block is variable, but cannot be greater than 289
words because of the 256-word limit of primary DB.

10.5.13. Secondary DB/OWN Initial Values Header

Initial values for secondary DB or OWN can be specified by the header in
figure 10.14. Of course, some languages do not provide initialization as part

Header type (8)

J
8

INITIAL VALUES

NW: number of words

{
DO C(i) unchanged

Ui: 10 C(i) +- C(i) + SDBA
SDBA = origin of second DB

Figure 10.13. Primary DB header.



10 Object Code and Machine Architectures 499

Header type (4)

~
NW I 4

LD
Ie

INITIAL VALUES

Figure 10.14. Secondary DB and OWN initial values header.

of a declaration; in these, this header would be unnecessary. Also, in principle,
the compiler could generate special code executed prior to user code, to
initialize the desired data areas. However, the initialization information must
be stored somewhere, and it might as well be stored in the USL file as in code.

Parameter LD is a word displacement of the desired initialization data in
the secondary DB or OWN area, regarding the first of the area as having
displacement O. The segmenter must then write the initialization words in
DB+LD+SDBA, for DB, or DB+LD+OWNBA, for an OWN. SDBAis
the DB-relative address of secondary DB. OWNBA is the base address of an
OWN area assigned to this procedure.

IC is a repetition factor, and it is useful for initializing large arrays with a
repetitive sequence of values. For example, a large array might be initialized
to zeroes by setting IC to the array size and placing one 0 in the "initial
values" section.

10.5.14. Procedure Call Header

Figure 10.15 illustrates a procedure call header and its application. As we
have seen, a procedure is called through a PCAL instruction which expects a
STT index number as its operand. However, the STT is organized by the
segmenter, not the compiler. The STT's will of course change as procedures
are moved around among the segments after compilation, so that the compiler
has no idea where the procedures will be located, or the STT index for the
PCAL instruction.



500 Compiler Construction: Theory and Practice

Header type (1)

NW
PBA

NC
CHAR. 2
CHAR. 4

(a) Procedure call header

CHAR. 1
CHAR. 3

NW: number of words
in header

NC: number of
characters in
name

PBA: code - relative location
of a PCAl chain.

Header
6 1

PBA
6 P
R 0
C N
M

111" indicateS}
llBl

liD" indicates
PCAl

(b) Use of call header

o
Chain of
code locations

_~o be made
mto calls of
procedure
PROCNM

Figure 10.15. Procedure call header and its application.

The PCAL header contains a code-relative index PBA and the procedure
name. PBA points to a code location that must receive a PCAL (or LLBL,
depending on the sign bit setting). When the compiler writes the PCAL, it
places a pointer to another PCAL location. These therefore form a chain
pointing backward through the code, linking every PCAL and LLBL
associated with one procedure (figure lO.15(b».

When the file is processed by the segmenter, each word on this chain is
replaced by the appropriate PCAL or LLBL instruction to form a completed
procedure code list.

Of course, the segmenter locates the procedures through the USL file hash
system.



10 Object Code and Machine Architectures 501

10.5.15. OWN Variable Pointer Correction Header

Figure 10.16 shows a header that deals with another problem related to
OWN variables. Given that the location of OWN variables is fixed by the
segmenter, something in the run-time code must nevertheless be adjusted to
reflect the final location of some OWN variable. Now OWN variables are
accessed indirectly through a label that is written on the stack just after a
procedure call. The label is placed on the stack by copying some program
location; this location must therefore be corrected by the segmenter, once it
decides on the location of the OWN data area for that procedure.

PBA is the location in CODE of a word that must be offset by the location
of the OWN data area as fixed by the segmenter. See section 10.11 and the
discussion of section 10.5.8 for more details.

The code location PBA is therefore corrected by the segmenter as follows:

CODE(PBA):= CODE(PBA) + OWNBA

where OWNBA is the DB-relative OWN base address for this procedure.
Clearly, the compiler must write an offset of the variable in CODE(PBA).

10.5.16. Procedure Local Variables

As figure 10.3 shows, the direct addressing range for Q+n addresses is
limited to n < 128 words. By using indirection judiciously, thenumber of
words of local variables can be much greater than this.

Here is a simple local variable allocation rule.

1. Each simple single-word variable is assigned a direct access cell.

2. Each array variable and each multiword simple variable is assigned one
direct access cell to be used as an address, and as many indirect access
words (above Q) as needed.

This rule permits a procedure to have as many as 127 distihct local
variables, but they may carry more than 127 words total.

Since indirect addresses are relative to DB, not to themselves or Q, and the
location of Q will change from one call to the next, the addresses of local
arrays will have to be constructed during execution upon each procedure call.
The local variables are efficiently set up as follows:

Header type (3)

~
~ N_W_-P-B-A------JL..-__3__-1
Figure 10.16. OWN variable pointer correction.



502 Compiler Construction: Theory and Practice

1. Upon completion of the peAL for the procedure, Q and S point to the
same stack word, the top stack marker word. If. there are any array
variables or multiword simple variables, then the instruction

LRA Q+n

is emitted, where n is the Q-relative word address of the first variable.
The value of n will be known after all the local variables have been
scanned. This writes a DB-relative address label on the stack top.

2. For each array variable or multiword variable containing w words, the
instructions

DUP
ADDI w {or ADDM =w}

are emitted. These instructions provide another address on the stack,
pointing w words past the previous one.

3. If there are m words of simple variables that have not yet been ailocated,
and p words of arrays and multiword variables, then

ADDS m+p {or LOAD m+p; ADDS O}

is emitted.

This construction process can be expanded to provide for initialization of
some or all of the data spaces. Initialization values are best kept in the code
segment of the called procedure and moved to the stack.

Nothing need be done about the local variables upon an exit, as the EXIT
instruction effectively deletes all the local variables, the stack marker, and the
formal parameters by resetting S.

OWN variables are somewhat more bother. OWN variables must be
allocated in secondary DB (see figure 10.11). The most efficient approach is to
allocate primary DB space for simple variables or addresses of multiword
variables. These DB addresses are only known within the procedure
containing the OWN, of course. Unfortunately, primary DB space is limited
to 255 words, and this places a severe restriction on the maximum size of
programs that can be so supported.

A less efficient approach, but one that conserves primary DB, is to write the
OWN addresses on the stack upon entering a procedure. These addresses are
not known to the compiler if partial compilation is permitted, hence must be
assigned by the segmenter. The scheme makes use of the OWN va..riable



10 Object Code and Machine Architectures 503

pointer correction header (figure 10.16.) This USL header specifies a code
segment location that is to be adjusted to the secondary DB address of some
OWN variable. When the program is executed and the address of the OWN
variable is needed on the stack, the instruction

LOAD P-m {or LOAD P-m,I}

suffices to load an OWN address. Here, m is the displacement of the code
segment address relative to the LOAD instruction. (If the displacement
m>255, then an indirect PB label must be used to fetch the OWN word.)

10.5.17. Branches and Constants

Branches have a limited range because of the small number of bits in the
partial address field (see figure 10.10). The maximum range is P ± n, where
n =255 for an unconditional branch and n =31 for a conditional branch, and
where P is the location of the branch instruction. If a branch to an instruction
past this range must be coded, then an indirect address word is needed in
code; this word must not be executed as an instruction, of course.

Constants are also conveniently placed in a code segment. Three advan­
tages accrue thereby-the constant values cannot be inadvertantly altered
through a program error, they are always available (within the same segment
as the instruction), and they do not use up valuable DB addresses. Most of the
load instructions canbe used for PB-relative words, however, the range is
limited to ± 255 words relative to the instruction.

A disadvantage in locating constants in code on this machine is that they
cannot be passed by reference to a procedure; their address label in a code
segment is indistinguishable from a stack address label to the called
procedure. The· constant must first be loaded on the stack, then its stack
address passed,. It might as well be given a stack location to begin with in such
a case.

We clearly need an efficient algorithm for the allocation of PB space to
instructions and noninstructions (constants or indirect words). A sketch of a
scheme that yields optimal code allocation follows.

We pote first that because noninstructions will in general interrupt an
instruction sequence and will require a branch around them, we should (1)
accumulate a block of noninstructions, to mtnimize the number of branch­
arounds, (2) accumulate no more than 255 words in order to code a direct
branch-around, (3) exploit both P + and P - addressing, and (4) minimize
the number of indirect words required,.

The process requires two passes. On the first pass, two lists are prepared, a
CODE list, consisting only of executable instructions, and a fixup list FX,
consisting of blocks of two words each as follows (see figure 10.17)



504 Compiler Construction: Theory and Practice

LC: 1 if instruction refers to an
instruction label.

o if instruction refers to a constant.
POS: position of instruction in CODE list.
VALUE: the constant value if LC =0, or

the position of the
target instruction if LC = 1.

Every P-relative instruction in CODE is assigned an FX entry; the
instruction itself with an empty address field is placed in CODE. The FX
entries are in the same order as the CODE entries.

At the end of the first pass, we have completed a procedure. Every branch
target location is therefore known, and the FX table will therefore be
complete.

The second pass is through the FX-CODE list. On this pass, the CODE
list will be partitioned into blocks of at least 510 words each. (We assume that
all instruction reaches are 255 words, for simplicity.) Between each instruc­
tion block will be a dump area DUMP of constants and indirect cells. The
general idea is that every P-relative instruction will be able to either reach its
target directly or through an indirect cell in a neighboring dump area ahead of
or behind the instruction. The target may be another instruction or a dump
area word.

LC

VALUE

FX

POS

Code

LOAD P+O

ADDS 15

LOAD Q-15

LDD P + 0

SrD Q + 3

LRA Q + 4,1

LOAD P+O

P+O

Figure 10.17. Code and fixup list, FX. FX contains an entry for every P-relative
instruction in CODE.



10 Object Code and Machine Architectures 505

The partitioning, assignment ofdump words, and fixup of instructions will
occur in one general fixup operation. The nature ofthe operation is suggested
by figure 10.18. At a critical point in the fixup, a list of fixed-up instructions
and dumps are in a list FCODE, preceding po. The locations of the
instructions up to address PO are fixed and known, however, a block of
instructions INST(i) preceding PO remains to be fixed up, a dump area
DUMP(i) has yet to be determined, and there is some group of instructions
BINST(i) whose position is unknown.

The first fixup task, given the situation of figure 10.18, is to determine the
size of the DUMP(i) area. We do this by scanning the region of FX that
corresponds to INST(i) and BINST(i). Since PO is fixed and known, the size

I
Known

locations

po:

Unknown
locations

P1:

F CODE

-----

- -
r---

~-~

-f+-

l+-

-r+-

r- -f+-

'---
- -

D
Increasing
addresses

INST (i)

DUMP(i)

BINST (i)

INST (i +1)

Figure 10.18. Config·uration upon beginning to fix DUMP(i) area. We look for
constants and instructions that require an indirect word within regions
INST(i) and BINST(i); these will be placed in DUMP(i).



506 Compiler Construction: Theory and Practice

ofBINST(i) will be 255 words; no instruction located farther than 255 words
past DUMP(i) can reach DUMP(i) directly, hence is irrelevant.

Words are placed in DUMP(i) in the order in which they are encountered
in the FX table for the FCODE block i. This ordering facilitates the reach
situation, since the first instructions in INST(i) will access the first words in
DUMP(i), and the last instructions in BINST(i) will access the last words in
DUMP(i).

Every constant must be placed in DUMP, however, a multiply referenced
constant need only be placed once, provided that each of the references can
reach it. Since shared constants are rare, a reasonable plan is to enter every
constant as encountered to establish an initial size for DUMP, D.

We next add those indirect words that are essential for branching. To do
this, we identify a branch instruction with the maximum reach (given the
current DUMP size), which can be achieved through a scan of the FX table
for region i. That instruction can either be fixed up with a direct reference or
will require a DUMP cell. If it can be fixed up, then all the other instructions
can also be fixed up, and no more DUMP words will be needed. If the
instruction cannot be directly fixed up, then it needs a DUMP word, and the
next largest reach must be found. Instructions that can share an indirect
DUMP word with a preceding one can be ignored.

In searching FX for a maximum reach instruction, every location
LOC>PO and position POS> =PO must be augmented by the current
DUMP size D; the required reach R is clearly

R:=ABS((if LOC>PO then LOC+D else LOC) - (if POS>PO then
POS + D else POS))

If R>255, and an existing word in DUMP cannot be used, then a new
DUMP word is need: D:=D+ 1.

Once the DUMP(i) area is known, the instructions in INST(i) can be fixed
up from FX information, the DUMP(i) area can be emitted, and the
BINST(i) instructions can be located and fixed up; these will take us as far as
location PI. The remaining FX table must also be adjusted to account for the
DUMP area size; this is done by adding the dump size D to every VALUE
and POS found greater than or equal to PO.

We now must establish the next PO position. We start with the next FX
entry not yet dealt with. If it is a forward or reverse branch with a target
within its reach, the instruction is fixed up and we continue the FX table scan.
Otherwise, the instruction will require a DUMP word, and we therefore use
it as the origin ofthe INST(i + 1) area. The end of the INST(i + 1) area, PO, is
255 words farther on, and the position PI is 511 words farther on. (Some
allowance must be made for the branch around the dump area). We are then in
a position to repeat the above process.

We see that the overall effect of this algorithm is the clustering of dump



10 Object Code and Machine Architectures 507

blocks, minimizing their size, and maximizing their separation. The al­
gorithm becomes considerably more complicated if the two different
P-re1ative instruction reaches (31 and 255) are both taken into account. We
have also assumed that every constant is a single word. Multiword constants
are probably best left to the end of the code and accessed indirectly; however,
this is a suboptimal approach in general. Multiword constants could
conceivably be placed in dump areas, but the fixup algorithm would become
more complex.

10.5.18. Conclusions

It should be apparent that a compiler for this machine must do much more
than simply generate a sequence of stack operations for expressions and
assignment statements, that is, if partial compilation or resegmentation after
compilation is deemed desirable. If neither of these is wanted, then the
compiler could generate an absolute loader file and perform its own
procedure linkage, STT generation, etc.

In particular, the compiler must generate the USL file structure illustrated
in figure 10.12, and be prepared to increment an existing USL file with new
information. Certain problems exist with this USL file that introduce
compiler difficulties as follows:

1. CODE should be partitioned among several linked blocks rather than
appear in one contiguous block in the file. Now it happens that during
compilation, code and headers will have to be emitted in an intermixed
fashion in general. This means that one or the other must be written to a
temporary file or memory area and later copied to the USL file.

2. The initialization header (figure 10.13) has a maximum NW of 1023
words because of its 10 bit field. However, the system can support many
more words in a DB or OWN array (up to the limit of 32,000 total for
the stack). Therefore, the initialization header generator must be
prepared to partition an initialization block for some array into pieces of
1023 words each at most. Furthermore, even a 1023 word header will
either require a large memory buffer or must be constructed "on the fly"
by sending individual words to a general-purpose header writer.

3. Only one code segment with a given name is permitted on the segment
chain, yet several procedures with the same name can appear on the
procedure chain. This means that these two entries must be handled in a
different fashion. It would be better to treat code segments exactly the
same as procedure segments.

These are obviously minor design complaints, and they might have been
corrected when the USL structure was designed. However, this structure is



508 Compiler Construction: Theory and Practice

used by several language compilers, and it is impractical to change it. The key
point is that the compiler designer must clearly understand the USL rules and
provide for its design quirks.

Upon examining the 3000 machine architecture, we find a number of other
quibbles that force complications on the compilers as follows:

1. The HP-3000 instruction set is incomplete. For example, memory-ref­
erence arithmetic instructions are provided for ADD, SUB and MPY,
but not DIV. Also, these instructions are applicable only to integer
arithmetic. An optimization to take advantage of them clearly must be
accompanied by tests for these conditions.As another example, al­
though long data types are defined and provided for through stack-op
instructions (not given here), the instructions expect three addresses on
the stack top. This convention is fundamentally different from that of
the other data types and obviously requires a special compiler algorithm
to support. For one thing, the problem of temporaries crops up. It
might be best to simulate the stack-value approach by first allocating
stack top space for the two variables, then load their addresses, then
execute the instruction.The conversion instructions are also incom­
plete; however, any conversion can be made with a combination of one,
two, or three stackop instructions.

2. The architecture requires three kinds of address labels: a data memory
word label, a data memory byte label, and a PB-relative code label. A
word label carries a DB-relative word position, a byte label carries a
DB-relative byte position, and a PB-relative label carries a PB-relative
word position. These are each carried in one 16-bit word and cannot be
distinguished at run-time. They can only be distinguished at compile
time. Furthermore, a PB-relative label is of no use when passed to a
procedure in a different code segment, as no mechanism for accessing
the words of the caller's code segment exists, and, of course, the caller's
code segment number is lost. The two kinds of data labels, along with
the need to organize some arrays through indirect labels, greatly
complicates the handling of equivalences.For example, consider an
array passed by reference to a procedure. If the actual parameter is a
byte array, then the formal parameter should be, too, and a byte label
must be passed. Otherwise, a word label should be passed. Clearly, full
knowledge of the formal parameter declarations is needed when the
procedure call is coded.

3. Only one Q register is available. As we have seen in chapter 9, it would
be desirable to have a display for block-structured languages. However,
the missing display can easily be compensated for in this architecture.
We have two options in dealing with up-level addressing: follow the



10 Object Code and Machine Architectures 509

static chain to obtain each reference, or follow the chain and write
address labels in the local data space. The former is less efficent, while
the latter requires two passes of a procedure, one to identify all the
up-level calls in the main body of the procedure and a second to
generate the code for the necessary address labels.

4. Only one level of indirection is provided. This is a serious handicap in
dealing with dynamic arrays. As we have seen in chapter 9, two
indirections are needed for the management of a dynamic array
space.One might suppose that the following code sequence could be
used for a dynamic array address fetch:

LOAD Q+n,I {load a label}
LDD S,I,X {then load the variable-a double word}

However, this operation now yields a label on the stack underneath the
variable that must be removed. That is not too bad; the instructions

CAB, DEL

achieve that.The real problem is that it would be desirable to be able to
pass dynamic arrays by reference to procedures just as nondynamic
arrays are passed. The called procedure needs one uniform way of
dealing with them, and this must ofnecessity be a double indirection for
every such array which is clearly inefficient for nondynamic arrays.The
only effective solution to this problem is a tag bit on indirect words that
effectively says, "I am pointing to another label". This tag is lacking in
the 3000, and would be impossible for the manufacturer to add as an
architectural extension.

5. Different instructions have different direct address spans. (There are
four different effective spans, 255, 127, 63, and 31.) These differences
complicate the compiler systems that must keep track of direct
addressing limits. The two different P-relative spans (31 and 255)
complicate the compiler algorithms that must determine how to place
indirect words among the code.

6. The restriction that non-byte variables must be aligned on word
boundaries is a problem in such languages as Cobol and Fortran that
permit a more general alignment. In Cobol the alignment problems
arise through file access; the language permits detailed specification of
the location of variables in a file record, and this specification can
require alignment of a double-word data variable on an odd byte
boundary, for example.In Fortran, alignment problems arise through
the EQUIVALENCE statement.



510 Compiler Construction: Theory and Practice

7. The very small number of directly addressable cells available means
that special techniques are required to support large programs. For
example, many Fortran subprograms contain more than 127 variables.
Such programs could not be supported on this architecture if the rule is
"one variable per primary word." A way around this limitation is to
allocate primary words for variables and pointers, until only one
primary word is left. It then is a pointer to an array containing all the
remaining data. The compiler must keep track of the offset of the
remaining data in this array and use the index register to access data.

8. The code segment size limitation is a restriction on the size ofthe largest
procedure or main progr~ that can be compiled. This restriction can
only be lifted by partitioning a large procedure into several smaller
ones. Although such a partitioning is conceivably possible automati­
cally through a data flow analysis, in practice only the program. writer
can do it effectively.

Despite these technical difficulties, it is relatively easy to design a compiler
for this architecture. The stack-based arithmetic and procedure control
system, and the separation of code and data segments facilitate block-struc­
tured languages with recursive procedure calls. Indeed, the systems pro­
gramming language, designed to access all the machine features efficiently, is
a modified version of Algol 60.

Exercises

1. What determines the maximum size of a code segment, other than the
.stated operating system constraint? What determines the maximum size
of a data segment?

2. A procedure may be arbitrarily located within a code segment. Only
procedure calls peAL and load label instructions LLBL need be
adjusted by the segmenter in the process. Explain why.

3. Why is a data indirect word DB-relative, rather than Q - or S-relative?
(Hint-consider a procedure parameter passed by reference.)

4. Describe how parameters can be passed by value, by reference, and by
name in a procedure call. How can a procedure name be passed and later
called within the called procedure?

5. Given an Pascal-type procedure declaration, sketch an algorithm th~t

assigns addresses to the formal and local variables.

6. Design an HP-3000 code sequence that writes an up-level address on
the top ofstack. This code could be used in addition to the local variable
stack setup upon entering a procedure.



10 Object Code and Machine Architectures 511

7. Write a procedure that walks through a binary tree located somewhere
in DL to S. The procedure may be recursive. Each tree node consists of
two words representing the DB-relative address of the left and the right
son node, respectively. A word containing octal 100,000 marks a leaf
node. First write the procedure in Algol or Pascal notation, then
translate it into HP-3000 assembly language.

8. Indirect words may refer either to bytes or to words. A byte label is the
position in bytes relative to the left-most byte in DBO. Given that local
declarations may contain both word data types and byte data types,
sketch an algorithm that efficiently organizes the stack for the local
variables of a procedure. Assume that the local declarations are either
simple integers, bytes, fixed integer arrays or fixed byte arrays.

9. Pascal dynamic structures can be organized in DL to DB space on the
HP-3000 without the use of double indirection by the following
scheme. Each structure is of fixed size, since it is associated with some
data type; it is linked under program control to others through pointers
saved in the structure. The compiler should then make a list of the
different word sizes needed for the dynamic types found in the program,
and organize a linked list for each size. Each list will contain some
"used" and some "spare" entries in general. A new request can be
serviced by allocating one of the spare entries or by allocating a new list
element. An entry can be discarded by returning it to the "spare" status.
In this way, garbage collection is never needed, and the entries need
never be moved, once activated. Sketch an algorithm to support such
dynamic structures.

10. Construct a flowchart or design a set of procedures that support
procedure calls and exits on the HP-3000. Define the necessary
services required of the memory manager and disk file manager.

10.6. The Control Data 6000 Computer System

The Control Data Corporation (CDC) 6000 series is a large, general
purpose, data processing system, intended particularly for scientific comput­
ing. A major emphasis in its design was placed on fast floating-point
arithmetic, almost to the exclusion of string and decimal operations. The
Cybernet 7600 systems are also based on the 6000 architecture, but contain a
set of string and decimal instructions.

This particular system is of interest for two reasons: (1) the central
processor architecture is a good example of a multiregister system with a
relatively simple instruction set, and (2) Nicklaus Wirth found that Pascal
was fairly easy to implement with the 6000 registers and operations.



512 Compiler Construction: Theory and Practice

The 6000 system consists of three major components-a central processor
(CP) unit (two in a 6500 system); a large, fast central memory; and ten
identical peripheral processor units (PP's.) Each of the peripheral processors
has its own small memory and special instruction set. The central processor
has direct access only to central memory. It communicates with the PP's
through messages left in central memory, otherwise it and the PP's operate
asynchronously during program execution.

The PP's can communicate with the system's data channels and main
memory. They can also cause the CP to switch tasks through a special
instruction called an exchange jump. The PP's are only used for operating
systems function, and the CP is essentially only used for user program
execution. However, some operating system functions are performed by the
CP as special tasks, and all input-output operations must pass through the
PP's.

This system is intended for multitasking and multiprogramming. Main
memory consists of60-bit words, with 131,072 words maximum in a system.
It may be partitioned into a number of independent contiguous program
areas by the operating system memory manager. Not all of the memory is
available for a user, however. Some is preempted for the operating system.
Data and instructions share the same program space, although a language
compiler may of course distinguish the two through software conventions.

Each partition of main memory is controlled through two machine
registers, RA and FL (figure 10.19.) RA fixes the base of a program area;
every memory reference instruction address is relative to RA. FL fixes the
field length. Any attempted access of main memory below RA (possible
through an address roll-over) or above RA +FL results in a program abort.
FL may be adjusted dynamically through an operating system procedure call.

During time-shared operation of the system, a user program area may be
moved to and from mass storage (disk) under control of the operating system.
Since there is no distinction between fixed instruction memory and variable
data memory, all ofthe program area is assumed variable, and must be written
to disk whenever the memory manager decides to put that job to rest for a
while.

An overlay facility is also provided by the operating system to accom­
modate programs larger than 131,000 words, or to partition a large program
into smaller program blocks. However, it is only semiautomatic and requires
careful planning on the part of its users.

The central processing unit consists ofa set of 24 data registers, a set ofone
or more instruction registers, and an arithmetic section (figure 10.20). The
6400 and 6500 systems have one instruction register and one arithmetic unit;
the 6600 system has an 8-word instruction register queue and ten arithmetic
functional units. The 6600 was designed to improve CP performance through
parallel processing of arithmetic operations and through providing several
instructions in a fast register set. Otherwise, the instruction sets of the three
6000 CPs are identical.



10 Object Code and Machine Architectures 513

Memory map

000 000

First location
in program area

/
ABSOLUTE RELATIVE
MEMORY MEMORY AAADDRESS ADDRESS

RA p=o TIProgram areaRA + P P < FL

RA + FL P = FL

Some arbitrary
location in
program area

Last location + 1
in program area

Figure 10.19. CDC6000 main memory organization. Area for one process is RA
through RA + FL.

10.6.1. Registers and Arithmetic

An arithmetic or logical operation can only be performed on an operand (or
operands) in registers (figure 10.20.) Most of the arithmetic operations use
the eight X registers, 60 bits each. The A and B registers are principally used
for simple address calculations.

Only full addresses (18 bits) are used in instructions; there are no partial
addresses to contend with.

The A registers are coupled to the X registers in an interesting way. Any
value deposited in register Ai, where 1 :::; i :::; 5, causes the contents of
memory location Ai to be copied into register Xi. Any address deposited in
register Aj, where 6 :::; j :::; 7, causes the contents of register Xj to be written
to memory location Aj. (The new value of Ai or Aj is used as the memory
address).



514 Compiler Construction: Theory and Practice

Operands

x Operand
(60 bit)

XO

I
X1
X2

.----------... X3

X4
X5

..----_R_e_su_l_ts_ { X6
X7

Arithmetic
section

(unified in
6400 + 6500,

10 functional
units in 6600)

A Address
(18 bit)

AO
A1

Operands A2
A3Central

memory Addresses A4

A5
Results { A6

Addresses A7
'------,------'

B increment
(18 bit)

BO
B1
B2
B3
B4
B5
B6
B7

Instruction
word register

(11 in
6400 + 6500,
8-word stack

in 6600)

Instructions

Figure 10.20. CDC6000 register and memory organization.

This X-register loading feature is the principal means the CP has of
communicating with main memory.

Register BO contains zero permanently. Any value stored in BO disappears,
and any reference to BO is equivalent to a reference to zero.

Registers AO and XO are unconnected; no memory access with XO occurs



10 Object Code and Machine Architectures 515

when AO is loaded. AO can carry any 18-bit value, and XO any 60-bit value.
The B registers playa prominent role as address offsets in the instructions.

They are essentially index registers.

10.6.2. Instruction Format

The CP instructions are either 15 or 30 bits in length. They are normally
packed 2, 3, or4 to a 60-bit word in memory. A NOP instruction (15 bits) is
provided for padding, when full packing is impossible. See figure 10.21.

Branches are to the left-most instruction of a 60-bit full word, not to some
15- or 30-bit internal boundary. For this reason, the compilers and
assemblers must be sure that a branch target is the left-most instruction in a
word.

INSTRUCTION FORMATS

f m i

Instruction
combination

in central
memory

15 Bits

60 Bits

14-.­

Operation
code

Result
register
(1 of 8)

1st Operand
Register

(1 of 8)

2nd Operand
Register
(1 of 8)

0illIJ
30 OIJ

I 30

~I

DIIill 30

29 ____

Operation
code

K

18

o
30 Bits

Result
register
(1 of 8)

1st Operand
Register
(1 of 8)

2nd Operand

Figure 10.21. CDC6000 instruction formats.



t
516 Compiler Construction: Theory and Practice

The 15-bit instrUction format carries five fields of 3 bits each, f, m, i, j, k.
Fields f and m comprise a 6-bit operation code, and fields i, j, and k are
register indices in general (there are certain exceptions). The most common
IS-bit instruction is a binary operation on two registers j and k, with the result
appearing in register i.

The 30-bit instruction format carries an operation code (6 bits), a result
register index (3 bits), an operand register index (3 bits), and a full memory
operand address K (18 bits).

Every instruction with a "K" reference is 30 bits; all other instructions are
15 bits.

The registers are fully symmetrkal, aside from the special A register
feature that also accesses memory. Any two registers (whether the same or
different registers) can be the operands, and the result can be returned in any
of the operand registers. The system copies the source register contents into
temporary work registers to perform the necessary operations and then writes
the result to the destination register.

10.6.3. The Register Set Operations

The general format of a register set operation is below. There are two
forms, an "S" form and a "B" form. (COMPASS mnemonics will be used in
this discussion, to avoid entanglement with octal instruction codes. COM­
PASS is the 6000-series assembler.)

{
BKk (15 bit) }

(30 bit)

BXi Xj

The S form can be used to set any of the A, B or X registers with a sum or
difference of {A, B, X} and {B, K}. The S form instructions are complete
with one exception: Xj - Bk is not provided. Recall that K designates an
arbitrary 18-bit address, relative to the program origin RA. Also recall that
any SAi (for 1:::; i:::; 7) carries a memory access side effect, affecting register Xi
or a memory word.

The B form copies one X register to another, e.g.,

BX3 X4

copies register X4's contents to register X3; X4 is unaffected. When an X
register is set with an S-form instruction, only the least significant 18 bits are
set; the most significant bits are zeroed.



10 Object Code and Machine Architectures 517

Some examples of set instructions are:

SBI B3+B4 {sum of C(B3), C(B4)
replaces C(B1)}

SA2 B2-750 {C(B2)-750 replaces
replaces C(A2); then C(X2)
is written to memory address
C(A2)}

SXO XO+20 {C(XO) is replaced by C(XO)+20,
least 18 bits only}

10.6.4. Arithmetic and logical operations

Most of the arithmetic and logical operations are performed among the X
registers. The general format, in COMPASS form is given below. These are
all 15-bit instructions.

F
I
D Xi
B
R

Here, F means "floating-point", I means "integer", D means "double
precision", R means rounded floating-point, and B means Boolean. The
operator + means "add" for the arithmetic operations and logical OR for
Boolean. Binary operator "-" means "subtract" for the arithmetics and
exclusive-OR for Boolean. Unary operator "-" means "negate" for the
arithmetics and logical complement (NOT) for Boolean. Operator "*" means
"multiply" for the arithmetics and logical AND for Boolean. Operator "/"
means "divide" and is legal only for arithmetic oerations.

The 60-bit numbers can be interpreted in different ways in this system, but
the arithmetic units are essentially structured around a floating-point number
representation. This representation contains a sign bit, an II-bit biased
exponent and a 48-bit integer coefficient. Double precision arithmetic is
performed with two of these, such that one represents the most significant 48
bits of a value and the other the least significant 48 bits.

The real number representation includes special representations of +(X),

-(X), and "indefinite." Infinity is obtained whenever a floating-point
operation yields a result outside the maximum range of number representa­
tion. "Indefinite" is obtained through a mathematically ambiguous operation,
e.g., % or (X) -(X). Once such special values are obtained, the arithmetic
units can continue to operate on them through the usual arithmetic rules. For



518 Compiler Construction: Theory and Practice

example, 00 +n yields 00, "indefinite"*n yields "indefinite", etc., where n is
any finite value. Conditional tests on the infinite and indefinite number forms
are also provided.

Rounded ("R") or truncated ("F") single-precision' floating-point opera­
tions may be selected.

The integer instructions (e.g., IXI X2 + X3) interpret a 60-bit operand as a
ones-complement integer. Unfortunately, the machine provides no means of
testing overflow on an integer operation, and only integer addition and
subtraction are provided. Integer multiplication and division require con­
version to floating-point first. Accurate integer division requires several
instructions, inasmuch as special attention must be paid to fixing the result
correctly.

In ones-complement number representation, the negation of some positive
binary number n is formed by complementing every bit. Thus - 1 is
represented as

11111..;110

As a consequence, there are two representations for zero,

00000...000
and

11111...111

Another consequence of this representation is that the least significant bit is 0
for an even positive number and for an odd negative number. Thus an
even-odd test based only the least significant bit would fail.

The Boolean operations are the usual bit-by-bit AND, OR, exclusive-or
(XOR), and complement (NOT).

Some examples of operati()n instructions:

FX3 X3*X5
BX4 -X6
RX7 XljX3

10.6.5. Branches

{product of C(X3) and C(X5) to C(X3)}
{complement of C(X6) to C(X4)}
{rounded quotient C(Xl)jC(X3) to

C(X7)}

A variety of branch operations are provided as follows. The unconditional
branch JP is the only branch whose target can be indexed through a B
register. Otherwise, the branch target is address K. The conditional branches
ZR, NZ, etc., test the contents of Xj, then branch to location K if the test is
satisfied. . .



JP Bi+K

ZR
NZ
PL
NG Xi,K
IR
OR
DF
ID

RJ K

Here,

10 Object Code and Machine Architectures 519

unconditional jump to (Bi+K)

conditional jump to (K),
based on Xi

conditional jump to (K),
based on Bi relative to Bj.

return jump to (K)

ZR: Register is zero.
NZ: Register is nonzero.
PL: Register is positive or zero.
NG: Register is negative and nonzero.
IR: Register is in range, i.e., not infinity.
OR: Register is out of range, i.e., +00 or -00.

DF: Register is defined.
ID: Register is indefinite.
EQ: Two registers are equal.
NE: Two registers are not equal.
GE: Left register ;::: right register contents.
LT: Left register < right register.

Note that two branches are needed to test for "negative or iero" or
"positive and nonzero."

A pair of B registers may be compared with the EQ, NE, GE, and LT
instructions. For example,

NE B3,B5,150

causes a branch to 150 if C(B3) * C(B5). It turns out that this instruction
form can be used as an unconditional branch and is faster than the JP, e.g.,



520 Compiler Construction: Theory and Practice

EQ BO,BO,K

unconditionally branches to K.
The return jump, RJ, is useful for Fortran-style, nonrecursive subroutine

calls. The mechanism is shown in figure 10.22. Consider the instruction

RJ K

in location L. When executed, it writes the instruction

JP L+I

in location K, then branches to location K + 1. Location K should contain the
first instruction of the subroutine. An exit from the subroutine is achieved by
a branch to location K; this branch returns control to location L + 1, just
following the RJ instruction.

We use the term "subroutine call" to describe this process, since RJ is
totally unsuitable for recursive procedure calls in a block-structured lan­
guage. A recursive subroutine call using RJ would destroy a previous JP
stored in the dedicated memory location. The RJ instruction is not indexable,
nor is it capable of storing a location in a register or stack. Its use also renders
code nonreenterable; a section of code cannot be used by more than one
process at a time.

10.6.6. Other operations

The 6000 system contains several other instruction formats not discussed
here. These include shift, normalization, packing, unpacking, ones count, and
mask formation instructions. These are of value for number conversion and
bit-field logical operations.

10.6.7. Procedure Parameters in a Fortran Implementation

Since recursive subroutine calls are forbidden in Fortran, it is sufficient to
allocate registers or memory at compile time for the subroutine local
variables and formal parameters. Parameters are always passed by reference,
so a list of I8-bit addresses would be sufficient as formal parameters.

The Fortran convention on the 6000 series is to use registers B1 to B6 for
the addresses of the first sixparameters. The A and X registers are assumed to
contain garbage upon entering a subroutine, may be used freely within the
subroutine, and need not be restored upon an exit.

If a subroutine contains more than six parameters, the addresses of the
extra parameters are written to memory locations just preceding the target of
the RJ instruction that calls the subroutine. The arrangement is shown in
figure 10.23.



10 Object Code and Machine Architectures 521

Exit

Subroutine call

}
Subrouti~e
entry pomt

Fr RJ K I Nap I Nap

! I
II Return

~lK: G) JP L +1 I Nap I Nap

Return
A

JP K I Nap I Nap

Ca

Figure 10.22. Return jump RJ instruction operation.

A typed subroutine returns its value in one ofthe X registers. No address of
the return is necessary.

10.6.8. Arithmetic Expressions

Arithmetic expression evaluation requires a small stack of temporary
locations; these could be allocated from the X-register set and memory for the
purpose. We can then conceive ofa general purpose register allocation system



522 Compiler Construction: Theory and Practice

Address (parm 7)
Address (parm 8)
Address (parm 9) Parameter

addresses

Address (parm n)
Entry point RJ target

Code
subroutine
code and
data

0
Addr (parm 1)
Addr (parm 2)

··
•

Addr (parm 6)
(not used)

80
81 Data
82
83
84
85
86
87

Figure 10.23. Fortran subroutine parameter passing conventions (simplified).

that manages all seven of the X registers. The allocator is of course
complicated by the three different roles played by the sets {XO}, {XI ... X5},
{X6, X7}. In general, the allocator must attempt to keep variables and
temporaries in X-registers as much as possible in the interest of efficiency, yet
deal with register allocation by storing some results in order to make room for
others. Ofcourse, the instruction form BXi Xj facilitates its housekeeping; an
X register can always be stored with two I5-bit instructions provided that X6
or X7 (and A6 or A7) is free.

Chapter 11 discusses some register allocation systems that might be
applied to this architecture.

10.6.9. Saving and Restoring Registers

The 6000 system has an interesting deficiency-it is very difficult for a user
program to save (and later restore) the contents of all the registers. In saving



10 Object Code and Machine Architectures 523

the registers, the essential problem is how A6 (or A7) can first be saved
without losing vital information. The problem can be solved, but requires a
large number of instructions. The key to its solution is a series of 18
operations. Each operation consists of a conditional branch based on the sign
ofXl (say), that conditionally causes an RJ and a left shift of Xl. The RJ's are
used to leave a trail of "marks" in memory that indicate whether the sign was
oor 1. Mter 18 such operations, enough room is left in X 1 for A6, and from
there on, the rest is easy.

The difficulty of saving and restoring all the registers implies that a
complete stack emulation is impractical; at least one register will have to
"float." In practice, most of the 6000 software is coded with the convention
that the caller of a subroutine is responsible for saving important register
contents. A subroutine call will destroy any or all register values in general.

Of course, the machine status, including all register contents, is saved
through the exchange jump (EXJ) instruction. However, this instruction can
only be executed by a peripheral processor, and is only invoked when control
of the CP is transferred to another process. EXJ is not available to a user.

10.6.10. Relocatable Linking and Partial Compilation

In Fortran, each subroutine in a set comprising a program is separately
compilable in the 6000 ~ystem. In practice, small programs can be compiled
so rapidly and cheaply that partial compilation is not often used. However,
the capability exists and deserves some discussion.

The Fortran compiler arranges that every subroutine reside in a contigu­
ous block of words (figure 10.23). The block begins with parameter space (if
more than six parameters are needed), then a word for the RJ target, and then
the subroutine code and data space. (Actually, a parameter count and the
subroutine name are also present, for the sake of the loader.) Since all memory
references are full 18-bit addresses, all the data can be collected at the end of
the block, so that the instructions need not be interrupted by data.

The compiler prepares each subroutine block in the general form shown in
figure 10.23, and generates code under the assumption that the block begins
in location O. It then prepares tables for the relocatable loader that specifies

1. The name of this subroutine.

2. The entry point location (target word for a calling RJ).

3. The location of every memory reference instruction (containing a K
field) in the block. The location must include a position code specifying
the position of the instruction in the word.

4. The name associated with every subroutine call and a pointer to the call.
The RJ instructions associated with one subroutine are linked together.
The system is similar to that in the HP-3000 system (figure 10.15).



524 Compiler Construction: Theory and Practice

The loader must adjust each ofthe K-reference instructions by the offset of
the subroutine block within the program block. Also, every subroutine call
(an RJ somewhere) must be fixed to point to the target subroutine.

Since partial addresses and indirect words are not needed, these loader
operations are quite straight-forward and efficient. Of course, loading need
only be done once after a compilation. The loaded program block can be
saved and executed with no setup time at all.

10.6.11. A Pascal Implementation

Wirth [1971] describes an implementation of Pascal on the 6000 system.
He found that several of the 6000 features can be exploited to yield an
efficient implementation of this block-structured language supporting recur­
sive and nested procedures.

Wirth's Pascal compiler generates absolute code (it uses the relocatable
loader in a trivial way). The RJ instruction is never used, because it fails to
support recursive procedure calls. The allocated memory program area is
divided among the program, the stack, and the heap. Of course, these three
comprise one program area to the operating system, with lower bound RA
and extent FL.

The registers Xl to X5 are used as a stack to hold intermediate results
during the evaluation of expressions. Wirth found that Xl was used 75% of
the time, but X5 only 0.02% of the time, out of the 7927 compiled
instructions that assign values to one of these registers. This means that very
few expressions require more than 5 intermediate results. The Pascal
compiler in fact declares a user error if more than 5 intermediate results are
needed in some expression. Removal ofthis restriction through assignment of
memory temporaries could be done, but would add to the compiler's
complexity and yield a marginal benefit. Registers X6 and X7 are used to
store results in operand fields in the stack or heap.

Registers BI to B4 are used for the display (see chapter 9). These provide
four nesting levels, of which only three are required for the Pascal compiler.
Since new local variables can only be introduced by declaring a new
procedure in Pascal, the compiler has at most three static procedure nesting
levels.

The use of a B register as a display is especially attractive on the 6000. The
set instruction form

SAi Bj+K

is useful for fetching or storing local variables, and the form

SAi Bj-K



10 Object Code and Machine Architectures 525

is useful for fetching or storing formal parameter values. Parameters passed
by reference, or pointers, can be accessed through an SAi Bj - K instruction,
followed by an SAi Xi instruction.

Indexing through the display is achieved through the following sequence
of instructions:

{evaluate index in register Xi}
SB5 Xi ± K {K is the parameter

offset from display}
SAi Xi + Bk {Bk is the display}

The last instruction replaces the index in Xi by the data value.
A procedure call is implemented essentially as discussed in chapter 9,

except that Pascal supports neither call-by-name, nor branch label parame­
ters. The necessary words to be written to the stack by the PE and BE
operations are then only the dynamic link (procedure return address) and the
static link. A 60-bit word can carry up to three address labels, so that a
one-word stack marker is feasible.

Since the compiler generates absolute code, each of the procedure's
addresses is known at compile time. The dynamic link can be written in two
instructions as follows, where K is the return address and K' + Bj is the stack
location to which the address is to be written:

SX6 BO+K·
SA6 Bj+K'

{writes K to X6}
{written to the stack}

The powerset type in Pascal provides a set membership facility for a finite
set. The membership of some set element in a set S can be represented by a 1
or 0 bit in position Ci in a word assigned to that element. Then the machine's
bit-parallel logical instructions ("and" for intersection, "or" for union, "not"
for set inverse) can be used for set operations. A test for set membership is
equivalent to a word shift followed by a sign-bit test. Wirth's compiler
restricts the number of set elements to 60, but this is again a restriction that
could be lifted through some additional work.

10.6.12. Summary

The major defects of the 6000 system for Pascal (or any other Algol-like
language implementation, for that matter) are

1. The absence of a jump instruction that deposits the current processor
status in a general register or in a register designated stack location.

2. The absence.of logical shift operations. (All the shifts are arithmetic.
They propagate the sign bit on a right shift, or left-circular on a left



526 Compiler Construction: Theory and Practice

shift.) A true logical shift would be desirable for the set membership
test.

3. The use of one's complement arithmetic with two representations of
zero. (Zero is either all zeroes or all ones).

4. The failure to indicate overflow in integer arithmetic and the different
arithmetic magnitudes of the various integer instructions.

5. The absence of character-handling operations, needed in languages
such as Snobol, Cobol, and RPG. Character-handling operations ate
supplied in the CDC Cybernet 7600 systems.

Apart from these defects, the 6000 system is among the most powerful and
fast computer systems in existence and is unparalleled in the execution of
large, floating-point, scientific programs. The simplicity and generality of its
instruction set makes possible relatively simple compilers. However, op­
timization of the use of its register sets is a difficult problem, especially in this
system, considering the memory access properties of registers Al to A7.

Exercises

1. Describe in greater detail an implementation of PE, BE, EB and a
procedure call, using the Pascal conventions and the 6000 instruction
set. Assume that a packed stack marker is not necessary.

2. Develop systems for the allocation and access of local variables in a
Pascal system, both static and dynamic.

3. Define the Fortran subroutine structure in more detail, and give a loader
algorithm in Pascal.

4. Write a Compass (6000 assembler) subroutine that performs integer
division, and yields the quotient and the remainder, for positive
integers. (Access to a Compass manual and the 6400 reference manual
would be helpful.)

5. Sketch an algorithm that lifts the restriction that an expression
evaluation may invoke at most five temporary values.

6. Sketch an algorithm that lifts the restriction that at most five nesting
levels are permitted. Note: Assume that B6 and B7 are needed as general
purpose registers.

7. Examine the problem ofsaving and restoring all the registers. (Access to
the complete instruction set would be helpful in this exercise. However,
you may assume that the machine contains left and right arithmetic and
circular shifts on the X registers.)

8. Given that only the field length FL may be altered during execution,



10 Object Code and Machine Architectures 527

discuss the problem of dynamic allocation of memory for a Pascal
compiler that requires a stack and a heap on this system.

10.7. The IBM Systemj360

The IBM System/360 is actually a set of compatible computer systems,
covering a wide range of price and performance. The internal performa.ll.Ce
range between the largest and the smallest 360 system is approximately 50:1
for scientific computation and approximately 15:I for commercial process­
ing.

System compatibility is achieved through a common instruction set and
virtual memory in all models. In the smaller models, some of the instructions
are performed through software, and large programs generate considerable
disk access.

Each system is based on a single CPU that has access to main memory and
I/O channels. We will not be concerned with I/O access, as most of that is
handled by the operating system, and may be set up with standard macros.

The CPU is time-shared between operating system and user operations,
with operating system and I/O channel operations receiving higher priority
in general.

Multiple CPU's can be interconnected and can access the same memory.
Multiple CPU's can be used in a multiprogrammer system by assigning each
one to a different task through a scheduler. The tasks may be part of one large
program or separate user programs, but must function asynchronously.

A CPU contains 16 general purpose registers of 32 bits each, and four
floating-point registers of 64 bits each. These are interconnected through
system control to the main storage, which can consist of as much as 16.5
million bytes.

The 16 general registers are designated 0, 1, ... , 15, and the four
floating-point registers are designated 0,2,4,6. Although the same codes are
used for the two sets of registers, different instructions are provided for
loading and storing from the two different register sets and for operations on
the register contents.

Long (64-bit) and short (32-bit) floating-point arithmetic is provided, with
packing and unpacking operations. A full set of arithmetic operations on both
forms is provided.

Integers may be fullword (32 bits) or halfword (16 bits). All fixed-point
arithmetic is 32-bit twos complement, however. All 16-bit arithmetic is
performed with 32-bit registers by setting carry and overflow indicators
relative to the least significant 16 bits.

Instructions are also provided to process decimal data, in the form of
packed 4-bit binary-coded-decimal characters, or zoned 8-bit characters. The



528 Compiler Construction: Theory and Practice

operands for decimal data reside in memory; the instructions carry addresses
of the left-most operand bytes.

Data in memory is subject to alignment restrictions, as shown in figure
10.24. Main memory is byte organized; every address is a byte address. A
halfword must be aligned on an even byte boundary, a fullword on an even
halfword boundary, and a double word on an even fullword boundary. These
restrictions apply to all the memory reference instructions. The alignment
restrictions can only be broken through byte move instructions that can move
a non-byte entity between an even and an odd location in memory.

A special 64-bit status register PSW carries several fields of machine status
information, including the next instruction address, overflow, and carry
indicators, and a condition code. The condition code is a 2-bit field in PSW
that is set by various arithmetic operations and sensed by a set of conditional
branch instructions. The code value 0, 1, 2, or 3 depends in a specific manner
upon the instruction that affects it. Its interpretation through a conditional
branch instruction is by a 4-bit field in the branch instruction; the bits
correspond to codes 0, 1, 2, and 3, and the branch is taken if the bit
corresponding to the current condition code is set. For example, if the
condition code is 2, then any branch instruction bit pattern of the form XXIX
causes a branch.

Program interrupts are possible as a result of certain operations, such as
fixed- or floating-point overflow, or an address bounds violation. When a
program interrupt occurs, the current instruction execution is suspended and
an operating system service routine is called. Overflow interrupts may be

Low-order 4 bits of binary address

~ 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010
,...-

'" '" '" '"
Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte

,
'"

,

Halfword Halfword Halfword Halfword Halfword
\

"
~ Word Word Word

\,

~ Double Word Double Word
\

"
Figure 10.24. Data fields and alignment in memory for IBM 360.



10 Object Code and Machine Architectures 529

brought under user control, if desired, through mechanisms that we shall not
discuss.

10.7.1. Instructions

The five 360 instruction formats are illustrated in figure 10.25. Instructions
are I, 2, or 3 halfwords in length, depending on the op code, and must be
aligned on halfword boundaries in memory. Memory is shared between
instructions and data in any desired manner.

An operation code occupies the first 8 bits of every instruction.. The
remainder of the instruction designates one or more registers (R, B, X), and
possibly one or two address displacements (D). The SI format carries an 8-bit
immediate operand (12). The SS format carries one or two length operands, L
or (Ll, L2). The SS format is used for memory operands, e.g., decimal
arithmetic, byte moves, and byte string comparisons.

A "0" as an index or base register designation means that no register is used
in that part of an address calculation. However, register 0 can carry a data
value and be accessed by instructions that refer to the register's contents as
data rather than as an address component.

Scalar nondecimal operations are between two registers, or between a
register and a memory location. The RR instruction format (figure 10.25)
always specifies a register-to-register binary operation. Thus

OP RI,R2

for a binary operation OP is equivalent to

C(RI) ~ C(Rl) OP C(R2)

The RX format specifies a register-to-memory operation in general; it is
written symbolically as

OP RI,D2(X2,B2)

The first operand is C(R I). The second operand is

C(D2+ C(X2) + C(B2))

Here, C(X2) = 0 ifX2=0, and C(B2)=0 ifB2=0. That is, the contents ofX2
and B2 are added to the displacement D2 to form an absolute memory address
of the second operand. Although the functions of X2 and B2 in this
instruction are interchangeable, X2 is usually considered the index register, in
the sense that it might be used to access an array element, and B2 is



530 Compiler Construction: Theory and Practice

First halfword
Bytel: Byte 2

Second halfword Third halfword

, ,, ,
Register Reg'ister

Operand 1 Operand 2---.---IOp Code I R1 I R2 IRR Format
10 7,8 1112 1511 , ,
I , ,, , ,
: Register! Address
! Operand 1 I Operand 2

, ---
Address
Operand 2

IOp Code I R1 I X2 B2 I O2
:0 718 1112 15:161920

l : :
:, Register Register
, Operand 1 Operand 3
I ..------.

31

Address
Operand 1

I Op Code I R1 I R3 I B2 I
,0 7'8 11 12 15116 1920, , I
, , I, , ,
: lrmmediate:
! !Operand!
1

31',
:
I

Address I AddressI

Operand 1
,

Operand 2,
I

0 1 B2 O2
31

1920

L...IO~p_C_o_d_e....1I_~12:'-----I-_B....;1~__0_1.!....-_---I1 51 Format

10 71
8

, :
: Length
: Operand 1 Operand 2

, ------

Figure 10.25. The five basic instruction formats for IBM 360.

considered a base register. The base register is needed to specify the loading
origin of the program and cannot be used as a second index register.

The displacement D2 provides relative addressing up to 4095 .bytes (the
displacement field is 12 bits) beyond the base and index register address. Each
of the three address components are treated as positive numbers. However,
address arithmetic is performed without regard to overflow, so that the effect
of negative indexing is achieved by regarding the index register as a positive
or negative twos-complement 24-bit number. For example, ifC(B2) = 43000,
D2= 1600, and C(X2) carries the (hexadecimal) value FFFFFFFC the
effective address is 43000+ 1600 - 4, since C(X2) represents - 4 in twos
complement form.

The effective address must lie within a memory partition assigned to a user,



10 Object Code and Machine Architectures 531

or else an interrupt will occur. This provision protects one task in memory
against an unauthorized access of its memory by another task. Only certain
operating system procedures have unrestricted access to all the system's
memory. Protection is achieved by dividing main storage into pages of 2048
bytes each, and by associating a 5-bit key with each page. A user's right of
access to storage is identified by a 4-bit protection key. Access to some storage
location is only granted when the user's protection key matches the storage
page key. A violation causes the instruction to be suppressed or terminated
and execution to be altered by an interrupt.

When a task is initiated or resumed, the memory protection keys are all set
to delimit a section of memory for the task; usually, the task is permitted to
access only one contiguous partition of memory for reading or writing of
data. The memory partition assigned to the task is determined when the task
is initialized and is frozen in location until it is completed. However, the
partition may be rolled out and later rolled in asynchronously by the
operating system for the sake of overall system scheduling needs.

10.7.2. An instruction sample

A few of the 360 instructions are described below. A complete instruction
set may be found in any of several references and in the IBM Systemj360
Principles of Operation manual.

Register Load

LR Rl, R2 Load
L Rl,D2(X2,B2)

The second operand is placed in the first operand location. The second
operand and the condition code are unchanged.

LH Rl,D2(X2,B2) Load Halfword

The halfword second operand is placed in the first operand location. The
second operand is expanded to a full-word by propagating the sign-bit value
through the upper l6-bit field.

The LH instruction copies a halfword (16 bits) in memory specified by D2,
X2, B2 to register Rl. The halfword operand is expanded to form a full 32-bit
twos-complement arithmetic operand by propagating the sign bit into the 16
high-order bit positions. The condition code is unaffected, but an addressing
interrupt may occur.



532 Compiler Construction: Theory and Practice

LTR Rl,R2 Load and Test

The second operand is placed in the first operand location, and the sign and
magnitude of the second operand determine the condition code. The second
operand is not changed. The resulting condition code is: If result is zero, then
O. If result is <0 then 1. If result is >0 then 2.

The LTR instruction is identical to the LR instruction, except that the
condition code is set according to the sign and magnitude of the operand, as
indicated in the figure.

Other LOAD instructions

Twenty-two LOAD instructions are provided in all, for all the fixed- and
floating-point data types provided in the system. Some provide negation or
complementation during the copy. Thus the LPSW, load program status
word) instruction loads the system's 32-bit status word PSW into a selected
register. The LA instruction loads the 32-bit address of the operand into the
designated register. The LM instruction loads a group of the general registers
from a contiguous group of memory locations. The LM instI1lction and its
complement STM facilitate saving and restoring the general registers. One
byte can be loaded or stored through the IC or STC instructions respectively.
IC is not a true load instruction, as it only changes the least significant byte in
the register; the most significant bytes are unaffected.

No LOAD instructions are provided for decimal operands, inasmuch as
these have variable lengths and are operated upon directly in memory by SS
instructions. Of course, parts of a decimal operand can be loaded or stored
through the byte and word load/store instructions.

Fixed- and Floating-point Arithmetic

AR Rl,R2 Add
A Rl,D2(X2,B2)

The second operand is added to the first operand, and the sum is placed in
the first operand location. Addition is 32-bit 2's complement. The condition
code is set: if sum is zero then CC=0; if sum is < 0 then CC = 1; if sum is > 0
then CC = 2; if overflow then CC = 3.

The AR and A instructions are typical of the arithmetic instructions:
subtraction, multiplication and division ofall the fixed and floating-point data
have similar instruction forms.

Comparisons

CR Rl,R2 Compare
C Rl,D2(X2,B2)



10 Object Code and Machine Architectures 533

The first operand is compared with the second operand, and the result
determines the setting of the condition code. Operands are regarded as 32-bit
signed 2's complement integers. If the operands are equal then CC=0; if first
operand is low then CC = 1; if first operand is high then CC = 2.

The compare instructions CR and C specify two operands, but only set the
condition code. The operands are unaffected. An addressing interruption is
possible on C.

BCR Ml,R2 Branch on Condition
BC Ml,D2(X2,B2)

The updated instruction address is replaced by the branch address if the
state of the condition code is as specified by M 1; otherwise, normal
instruction sequencing proceeds. The branch address is specified by the
second operand R2, or D2+(X2)+(B2). The Ml field is used as a four-bit
mask; each bit corresponds, from left to right, to one of the four possible
condition codes. When all four M 1 bits are set, the branch becomes
unconditional; when all four are clear, the instruction is a no-operation.

For example, if the current condition code is 2 and the mask carries the
binary value 0010, then the condition is satisfied and the branch occurs. The
branch address is either in register R2, for BCR, or is specified by the usual
set (D2, X2, B2), for BC.

A program interruption will occur on the next instruction, if its location is
outside the range of accessible memory.

Subroutine Call

BALR Rl,R2 Branch and Link
BAL Rl,D2(X2,B2)

The rightmost 32 bits of the PSW (program status word), including the
updated instruction address, are stored as link information in the general
register specified by Rl. Subsequently, the instruction address is replaced by
the branch address. If the R2 field contains zero, the link information is stored
without branching.

These are useful for subroutine calls and for setting a program address in a
base register. The right-most 32 bits of the PSW will carry the byte address
of the next instruction (following BALR or BAL) when it is loaded, hence
register Rl will be loaded with a "return address". The branch target is
specified by the contents of register R2, for BALR, or the set (D2, X2, R2),
for BAL. As usual, an address interrupt will occur on the next instruction if it
lies outside accessible memory.



534 Compiler Construction: Theory and Practice

~

Other Instructions

The few instructions defined above should provide some flavor of the
System/360 architecture. There are 142 instructions altogether. These cover
arithmetic, comparisons and conversions of all the data types. There are in
addition logical operations (OR, AND, XOR, NOT, shifts) on the fixed­
point types, several kinds of moves, some I/O, and some special edit
instructions to facilitate business report writing.

~ince our concern is primarily with register and addressing conventions,
we shall not define more instructions.

10.7.3. Procedures and program relocation

Procedures may be independently compiled and later linked together. A
compiler prepares a file called an object module for each procedure. A set of
object modules are then linked by a linking loader to form a load module. A
load module can then be assigned and written to a region of memory just
before execution by the absolute loader. A load module may require a few
adjustments, as we shall see, or not, depending on the source program
requirements.

Two kinds of relocation will occur in general, and they are handled by the
linking loader and the absolute loader.

The linking loader brings together several object modules into a single load
module. In general, there will be many subroutine call instructions and

. memory addresses that must be adjusted to conform to the locations assigned
to the subroutines comprising the module. The linking loader cannot
necessarily make all the adjustments needed for relocation, and therefore
must prepare a special relocation table for the absolute loader.

The absolute loader accepts a load module and positions it somewhere in
memory. It must adjust certain address constants to reflect the memory
position to which the program has been assigned; these constants are listed in
a table prepared for it by the linking loader.

Relocation is achieved in two ways-through a base register convention, and
through adjustments to address constants. A base register is a designated
register (usually number 13) that contains the absolute loading address of the
program in memory. Every memory reference instruction must contain a
base register component, so that every reference will be correctly made
during execution. Failure to specify a base register on some instruction or
failure to establish or maintain the relocation in a base register will cause a
bounds violation or other program failure during execution.

An address constant is some memory fullword that contains the absolute
program loading location as a component. Such addresses must be adjusted
by the absolute loader just prior to execution. As we shall see, address
constants are an important part of 360 run-time structures.



10 Object Code and Machine Architectures 535

10.7.4. Save Areas

Every program module that will pass control to some operating system
control program and back again must provide a save area. A save area is
comparable to the stack marker in the AOe machine and is a contiguous
block of 18 fullwords. It "belongs" to the calling program, not to the callee,
yet the callee uses it to save registers. Figure 10.26 shows a save area
belonging to a procedure Y, called by procedure X. When Y calls a procedure
Z, Z fills Y's save area.

The save area contains 15 fullwords for the general registers 0 to 12, 14 to
15, a fullword for the address of the previous save area, a fullword for the
address of the next save area, and a fullword used by PLjI.

The address of a caller's save area is passed in register 13. The callee then
bears the responsibility for filling the save area, and restoring the register
contents upon an exit. The register set 0 to 12, 14 to 15 can be saved (restored)
by a single STM (LM) instruction.

Recursive or reenterable programs require allocation of a new save area
upon each call and its deallocation upon return. Otherwise the save area may
be a fixed 'component of a program data space.

The forward and backward chains through save areas facilitates debugging
and abort analysis; the chain provides useful information regarding the
procedure call nesting, the entry and exit parameters, and return addresses.

Register 14 is assumed to carry the return address upon a procedure call.
Register 15 is assumed to carry the entry point address of the called

-4 bytes --

Stored by initial entry code

Stored by program Y

Stored by program Z,
if it calls subroutines

ues on leaving program Y,
ed by program Z.

Subprogram I---
epilogue address

Program X save I---
area address

Program Z save I---
area address

Register 14
Register 15
Register 0

Val
stor

Register 12

+8

+12
+16

+20

+72

Save area of Y

+4

Figure 10.26. A save area.



536 Compiler Construction: Theory and Practice

procedure. Registers 0 and 1 are generally used to pass the address of a
parameter list to the called program. These and register 13 are called linkage
registers. Although the machine architecture requires no special register use
conventions, the operating system control programs, debug and dump
systems, and the system macros do depend on these conventions.

Upon a return from a procedure, the registers must in general be restored
to their state upon entry. However, register 15 can be used to return a return
code, useful in indicating any unusual conditions or errors found during
execution ofthe procedure. A return code of zero is interpreted by the system
as "no errors-nothing unusual". Any other code can be used, but of course
should be documented. Registers 0 and 1need not be restored; recall that they
were used to pass parameter information to the procedure. Register 14
contained the return address upon entering the procedure, so the return is
effected by a BR 14, executed after restoring register 14.

10.7.5. Object Modules

A compiler prepares an object module for each procedure in general. An
object module consists of three tables-ESD (External Symbol Dictionary),
TXT (Text), and RLD (Relocation and Linkage Directory).

The TXT table is a list of fullwords to be initially written to memory.
Instructions, constants, initialized, and uninitialized data are specified
through a TXT table. Some of these fullwords must later be modifed by the
linking loader and by the absolute loader. An initial loading address of 0 is
assumed by the compiler.

The ESD table contains every symbol defined in this segment that must be
referenced externally, and every symbol defined elsewhere that is referenced
in this module. Three kinds of ESD entry are needed as follows:

Symbol Type

RESULT SD
SUM ER
COMP LD

Location Meaning

56 Module definition
864 External reference
270 Local definition

RESULT is a name given to the module being constructed, and it is useful
as an entry point location definition (in this case, the first executable location
is 56) and as a name for use in a symbolic loader map. The 360 loader will
support multiple entry points into a given module, so there could be several
of these.

The address ofSUM is needed in location 864, however SUM is externally
defined. The loader must therefore determine the address of SUM and fill
location 864 with it. The ER type may also be used for calls of external
procedures; a procedure is called on the 360 by loading register 14 with its



10 Object Code and Machine Architectures 537

address (from memory, where it was set up by an ER entry in the ESD table),
then executing BR 14 (actually BCR 0,14).

COMP is defined locally, but its address is needed externally.
The RLD table is used exclusively for address constants appearing in the

program segment. Recall that an address constant is some memory word
whose value depends on the location of this program or some external
program. For example,

DC A(PG1 - PBX4 + SAM -14 +FRED +17)

might appear in an assembly language program. The mnemonic DC means
define constant, and A( ... ) means "address of ( ... )". Here, the constants 14
and 17 would be combined by the assembler. This constant would then
appear as a "3" in some location, say 374. Then four RLD entries, one each
for PG1, PBXX, SAM and FRED, would be generated, all referring to
location 374.

The RLD table contains the following information:

• The location and length of each address constant that must be modified.

• The external symbol by which the address constant must be modified.

• The modification (addition or subtraction).

Several RLD entries may refer to the same address constant. Each of them
causes some modification to the constant-an addition or subtraction of an
externally defined address. Thus the above DC would result in a DC 3 in the
TXT table, and four RLD table entries for PG1, PBXX, SAM, and FRED.

An address constant as seen by the absolute loader will then be one of the
following:

1. Absolute. Will occur if addresses in an address expression appear in
pairs, one added, the other subtracted. The absolute loading location of
the load module will therefore not affect the address constant.

2. Simple relocatable. Will occur if all but one of the address expressions
appear in additive-subtractive pairs, and the one left over is an additive
address. The absolute loading address of the load module must be added
to the address constant by the absolute loader.

3. Compound relocatable. Will occur if the absolute loading address of the
load module must be added to the address constant twice or more, or
subtracted once or more times.

Clearly, the absolute loader need not be informed of case 1 at all-the
linking loader was able to resolve the address constant completely. Case 2 is
very common, and requires one RLD entry. Case 3 is likely to occur only in
unusual assembly language programs; it requires more than one RLD entry.



538 Compiler Construction: Theory and Practice

10.7.6. Addressing

The 360 memory reference instruction carries a base register, an index
register and a displacement (see figure 10.25). Now the displacement field is
relatively small, 0 to 4095 bytes. Ifa procedure carries more than 4096 bytes
ofdata, then parts of that data cannot be accessed through a single fixed base
register alone.

A solution to data addressing, when more than 4096 bytes of data must be
accessed, is illustrated in figure 10.27. Here, data resides in some contiguous
block of memory. Simple variables are grouped together, followed by arrays
and other indexed structures. Another section of memory is dedicated to a
base table, which contains address constants that point into various regions of

MEMORY

10
11
12

I

J
Base table K

ARRAY X

.' .

ARRAYY~

Registers -
--

D ARRAY Z

Increasing
Addresses ARRAY

.. '

T
~ 4096 Bytes

> 4096 Bytes

~ 4096 Bytes

~

Figure 10.27. Base table and use of base registers to access data.



10 Object Code and Machine Architectures 539

data memory. For example, the first base table entry might be a pointer to the
first data cell. This base address, when placed in a register, can then serve to
access any data element or array whose first location is less than 4096 bytes
from the base address. Thus variables I, J, K, and all of array X (X can be any
size) are accessible through the first base table address.

Subsequent base table entries are addresses of data memory farther than
4095 bytes from the previous one. Thus, if array Y is the first data area
located more than 4095 bytes from variable I, then a base table element must
be allocated to point to it. Here, Y can again be of any size, since a 32-bit
register is available for indexing from the base table address.

For example, if registers 10, 11, and 12 are available as data base registers,
then at anyone time, each of these will in general point somewhere into data
memory. If some data memory element is needed that cannot be reached from
one of the registers 10 to 12, then one of these must first be replaced by a base
table element.

The optimum assignment of registers to base addresses is clearly an
interesting and difficult problem. For a very small program, some or all of the
variable values themselves may be carried in registers, obviating many
memory references. A larger (but not too much larger) program would permit
one data base register through which all data accesses are possible. A still
larger program requires a base table and dynamic setting of the base registers
from the base table.

10.7.7. Object Module Design

It is best to establish an overall design of the object module and
conventions for the use of the registers before anything else in a compiler is
designed. We shall outline the design of the Fortran IV (G) compiler released
by IBM in the late 1960's. We shall not describe the parsing and other
algorithms in detail, but will look at some of the conventions of data
allocation and code generation used in this system.

The arrangement of the program module, as generated by an absolute
loader for one Fortran subroutine, is given below.

Heading (entry point)
Save area
Base table
Branch table
EQUIVALENCE variables
Scalar variables
Arrays
Subprogram argument lists
Subprogram addresses
NAMELIST tables



540 Compiler Construction: Theory and Practice

Literal constants (except those used in
DATA and PAUSE statements)

FORMAT statements
Temporary storage and constants
Program text

To a compiler, the program module is a TXT file. It must be modified by the
linking and absolute loaders prior to execution.

Control passes into the first word of the program module. Some preamble
instructions are in the heading. Among other things, the heading code sets
general register 13 and saves all the registers.

The save area and the base table have been described above. The base table
will contain absolute addresses during execution, and must therefore be
adjusted by both loaders prior to execution.

The branch table contains absolute branch addresses, one for each branch
target. Each branch target is assigned a fullword in the branch table, and a
branch is then executed by loading a register R from this table, then executing
BCR O,R. The use of a branch table facilitates compilation in one pass
without fixup; the branch instructions may be emitted in final form as they are
encountered, and the branch targets may be entered in the branch table in
suitable form as they are encountered.

The next three tables (equivalence variables, scalar variables, and arrays)
carry the subroutine data. The equivalence variables are not dimensioned. An
average Fortran subroutine will not have too many simple variables and
nondimensioned equivalenced variables, so that these two tables can usually
be accessed through one base register. The array table may require more base
registers, as suggested by figure 10.27.

The next table (subprogram argument lists) carries the addresses of the
arguments for all subprograms called by this subroutine. If N different
subroutines are called, then there- are N lists in this table, one list for each
subroutine. Upon calling a subroutine, its address list is first prepared, then
the address of its address list is passed in general register 1. The called
subroutine can then access its parameters indirectly through register 1.

The next table (subprogram addresses) contains one entry for each
subroutine called by this module; the entry holds the subroutine address, as
supplied by the linking loader.

The namelist table is used for the NAMELIST feature provided in this
Fortran version. NAMELIST is a Fortran feature for the symbolic access of
program input/output file data.

Literal constants are held in the next table. These are sharable; if a "20"
appears as an arithmetic constant in several places in the subroutine, it only
appears once in this table.

The FORMAT statements appearing in the subroutine are coded in a



10 Object Code and Machine Architectures 541

condensed form and placed in the next table. FORMAT is used by a run-time
program to control the form of input and output, and its conversion to/from
internal form. The run-time program interprets a list of characters in the
FORMAT table.

The last data table consists of memory cells allocated for intermediate
results and other constants. Registers are used as much as possible for
intermediate results, for obvious efficiency reasons. However, only four
registers are available as accumulators for intermediate values, because of
other register uses. This data area provides intermediate result storage for any
surplus beyond four values.

The program instructions occupies the last program module area. The first
entries are occupied by statement functions, if any, with a branch around
these to the first program instruction.

10.7.8. Register Allocation

The four floating-point registers are used as needed as floating-point
accumulators. The sixteen general registers are allocated as follows:

Registers 0, 2, 3 are used as accumulators. Recall that register 0 cannot be
used as an address register in an instruction. These registers are saved in a
subroutine call and can therefore hold intermediate results preserved in a call.

Register 1 is used as an accumulator within a subroutine, but also to pass
the address of the argument list when calling a subroutine.

Registers 4 to 7 contain index values as needed for reference to array
variables, where the subscripts are linear functions of DO variables and the
array does not have variable dimensions. The Fortran IV (G) compiler
provides some optimizations for array indexing in DO statements; an array
index that is incremented by a constant amount on each iteration of the DO
loop is carried in one of these registers and incremented by the amount on
each iteration with one instruction.

Registers 8 and 9 contain index values as required for references to array
variables, where the subscripts are of the form x ± c, where x is a non
DO-controlled variable and c is a constant.

Register 9 contains index values as needed for nonlinear subscripts, not
covered by the one of the above cases. The motive for distinguishing these
three cases appears to be to subdivide the array indexing-DO loop cases for
optimization.

Registers 10 to 12 contain base addresses loaded from the base table (see
figure 10.27). If the subroutine has more than three base table entries, these
registers must be dynamically changed, otherwise they may be initially
loaded from the base table and never changed.

Register 13 contains the address of the object module save area, following
the system conventions outlined previously. It is also useful as a base table



542 Compiler Construction: Theory and Practice

address reference, since the base table follows the save area.
Register 14 contains the return address for subprograms and the address of

branch target instructions during the execution of branches.
Register 15 contains the entry point address for subprograms as they are

called by this program module.

10.7.9. Summary

The 360 system architecture is based on a set of 16 general purpose
registers and a set of register-register or register-memory data operations. A
typical memory reference instruction carries a displacement and two register
references. The displacement is limited to 4095 bytes, one of the registers
depends on the absolute program loading address fixed just prior to
execution, and the remaining register can be used for array indexing.

A compiler generates an object module, consisting of a TXT file containing
instructions, constants and partially fixed-up addresses, an ESD table that
specifies symbolic information for linkage to other object modules, and an
RLD table that specifies how addresses are to be fixed up by the loaders. The
nature of the machine is such that a program module must remain in the
memory partition to which it was assigned throughout its execution..

For maximum run-time efficiency, the allocation of registers as array
indices, base registers and data registers, and their dynamic assignment as
such is important. Data access usually requires a base address table containing
addresses into selected locations in data memory. The base addresses are
separated by at least 4096 bytes, since any location within that range can be
accessed through the base address and a displacement in the instruction.

Subroutine calls are governed by system conventions in which every
subroutine must provide a save area, whose address is passed in register 13.
The called subroutine is expected to save all but register 13 (but none of the
floating-point registers), and restore these upon return. Other save area
entries facilitate debugging and the tracing of subroutine calls upon an
abnormal program termination. The save area system can be adapted to
recursive procedure calls by dynamically allocating a new save area on each
call and deallocating it upon a return.

The 360 system is probably the most widely used computer system in the
world, despite certain shortcomings as a time-shared mUltiprogramming
system. Its architecture has also been copied in non-IBM machines (e.g.,
Interdata and Amdahl), in order to exploit 360 software. It will undoubtedly
continue to be among the major computer systems in the world for many
years.



10 Object Code and Machine Architectures 543

Exercises

1. How suitable is the IBM 360 architecture as an AOC machine
simulator? Sketch a plan for support of a stack, variable addressing and
procedure calls that exploit the machine's registers and addressing
modes. Your system must be relocatable, or it will not be executable on
a time-sharing 360.

2. When a 360 program begins execution, it is assigned to a memory
partition that cannot be changed during its execution. Why not? What
conventions must be satisfied by every program in order that the system
could move programs about in memory arbitrarily during execution?

3. A save area is part of the caller's code, but the callee fills the save area to
save registers, and later accesses it to restore the registers before
returning. Is this a reasonable plan? Why or why not?

4. Compare the object module system for the IBM/360 with the USL
structure for the HP-3000. What differences are dictated by the
architectural differences? In what ways· are the capabilities different?

5. Sketch an algorithm for the assignment of a limited number of registers
as memory data pointers (see figure 10.27 and the associated discussion)
and their management during. execution. Strive for a reasonably
effi:cient run-time implementation.

6. Sketch a Pascal system similar to Wirth's scheme for the CDC 6400 that
exploits the 360 architecture. Impose whatever reasonable limitations
on procedure nesting depth or expression temporaries, etc., that seem
reasonable; however, avoid any limitation on the maximum size of a
program if possible.

7. What changes would you make in the 360 architecture that would better
suit the machine for time-sharing purposes? For the support of
block-structured languages? For the support of Fortran?

10.8. A Generalized Code Generator

As the preceding machine examples indicate, the generation of code for
some target machine by a compiler can require highly specialized algorithms
tailored to the particular target machine. A number of alternative approaches
to compiler construction have been proposed that attempt either to generalize
code generation or to isolate the machine peculiarities in some fashion, in
order to reduce the effort required to implement languages on more than one
target machine.



544 Compiler Construction: theory and Practice

A promising approach to more abstract code generation has recently been
reported by Glanville and Graham (Glanville [1978]). It does not deal with
all the issues of machine dependence and machine idioms, but does represent
a significant contribution to the problem of selecting a suitable sequence of
object code instructions, given an abstract syntax tree. The method has the
virtues of generality and correctness. The target machine instruction set is
represented as a table, and if the table is correct, the generator will either
block or generate correct code.

The method requires an abstract syntax tree (AST) and a syntax-directed
translation scheme (SDTS) as input. The SDTS is a description of the
machine's instruction set and the arithmetic operations expressed in prefix
notation. The AST is first translated to prefix by scanning its nodes in
preorder. The prefix form of the AST may then be parsed by a modified LR
parser, to yield a sequence of SDTS production numbers; the output
sequence then represents the desired object code instruction sequence.

The SDTS underlying grammar will in general be ambiguous. This means
that a deterministic LR parser can only be constructed by arbitrarily
resolving its inadequate states in favor of one reduction or another, or a push
action. It is essential that an arbitrary resolution of an inadequate state not
result in a machine block on some input string. We shall develop necessary
conditions on the SDTS that the machine not block.

The resolution of an inadequate state that provides two or more reduction
possibilities should in general be toward the largest of the possible produc­
tions. As a result, the system selects instructions that encode the largest parts
of the AST and therefore minimizes the number of generated instructions.
Although the method cannot be proven to yield optimal code, some
experiments have shown that the quality of its generated code is very good,
with no attempt to improve the code quality by any special means.

The method does not directly deal with questions of register allocation,
base register movement, etc. These matters should be handled with auxiliary
algorithms that can interact with or accept code generated by this generalized
system.

Example

A small set of machine instructions that have the general form of an SDTS
grammar (chapter 7) is given below.

1. r.2 .. - (+t+k.l r.l r.2) "add r.2,k.l,r.l";
2. r.l .. - (+r.lt+k.l r.2) "add r.l,k.l,r.2";
3. r.l .. - (+tk.l r.l) "add r.l,k.l";
4. r.l .. - (+r.ljk.l) "add r.l,k.l";
5. r.l .. - (+r.l r.2) "add r.l,r.2";
6. r.2 .. - (+r.l r.2) "add r.2,r.l";



10 Object Code and Machine Architectures 545

7. A .. -
8. A .. -
9. A

10. A .. ­
II. A .. -
12. r.2
13. r.2 .. -
14. r.2
15, r,2 ,,-
16. r.l
17. r.l

(:=t+k.1 r.l r.2)
(:= +k.l r.l r.2)
(: = tk.l r.l)
(:=k.l r.l)
(:=r.l r.2)

(t+k.1 r.l)
(+k.l r.l)
(+r.l k.l)
(ir ,l)
(tk.1)
(k.l)

"store r.2,*k.l,r.l";
"store r.2, k.l, r.l";
"store r.l,*k.l";
"store r.l,k.l";
"store r.2,r.l";
"load r.2,k. l,r. 1";
"load r.l,=k.l,r.l";
"load r.2, = k. 1,r.1";
"load r.2,*r.l";
"load r.l,k.1";
"load r.l, = k.l";

The symbol to the left of ":: =" represents the destination of the result of a
unit computation, and the prefix expression to its right describes the
computation. The parentheses are metasymbols introduced for readability.
Symbol Aindicates that there is no resulting register value; the instruction is
executed solely for its side effects.

Symbol "r" represents a general purpose register, and "k" denotes a literal
constant, typically an address offset. The store operator is ": =" and the
contents operator is t. The symbols r.l, r.2, k.l, etc. are SDTS nonterminals.
If r.l appears in the left member of a translation rule, then it corresponds to
r.1 in the right member. Symbols r.1 and r.2 then possibly represent distinct
registers. Thus the first ADD instruction (rule 1) adds the value in the
memory location designated by k.l and the contents of register r.l, leaving
the result in register r.2.

Commutativity of operations is explicitly indicated by separate translation
rules, e.g., rules 3 and 4.

Semantic restrictions can be imposed during the parsing process on
instruction descriptions, permitting a greater number of special instructions
to be incorporated in the translation rules. A single syntactic instruction
pattern may then correspond to more than one instruction sequence. Thus
two identical patterns (e.g., add r.l,r.2 and add r.2,r.l) could appear because
ofcommutativity. Also one instruction could be a special case ofanother (e.g.,
"inc r.l" and "add r.l,k.l").

The source language must first be reduced to an intermediate representa­
tion (IR) that is a sentence in the underlying grammar of the instruction set
SDTS. The IR may be generated from an AST by scanning it in preorder to
yield a prefix expression. For example, the statement

A:=B+C

might translate to the IR expression

:= + k.a r.7 + t + k.b t r.7 t k.c

where a,b,c designate constants and r.7 is a local base register. In this



546 Compiler Construction: Theory and Practice

translation, we have obviously assigned memory to the variables A, B, and C,
so that the AST translation will appear in register notation.

The translation of an IR sentence to a sequence of machine instructions is
carried out by an LR(I)-like deterministic parser. The parser is constructed
from the target machine description, replacing Aby X and adding rules S~
Z, Z~ ZX I € to the grammar.

The code-emitting semantics implied by the SDTS translation rules are
handled essentially as described in chapter 7. For example, when a shift is
performed with the input symbol r standing for a register, the specific register
represented by that r is pushed onto the semantic stack. Then when a reduce is
done, the semantic information necessary to generate a final machine
instruction is available in the semantics stack.

The instruction to be used when a reduce action contains more than one
instruction (inadequate state) is picked by a simple heuristic. Instructions are
ordered by the table constructor into a "best instruction first" sequence. At
code generation time, the instructions in the set for a specific reduce action are
tested in that order until one is found that is semantically compatible with the
information in the semantics stack. Since all instructions in a reduce set have
the same instruction pattern, the cheapest instructions (according to some
cost criteria) are tested first. It is possible for some instruction in the reduce
action state to not be selected, owing to semantics restrictions. For example,
an "add immediate" could be chosen if the immediate constant is sufficiently
small, otherwise, a more general (and more costly) instruction must be
selected.

Register allocation must occur as a subtask to the parsing action. Mter an
instruction pattern has been semantically verified, and the result is non-A, and
if the result register is not semantically linked to some other register in the
instruction pattern, then the register allocator will be requested to provide a
free register ofthe appropriate class, marking it "used". If the result register r
is semantically linked to a register in the instruction pattern, then r must be
used as the target register and marked "used". Recall that the result register is
always one of the operand registers in the IBM 360 architecture, but need not
be in the CDC 6000 architecture.

As an example of a generated code sequence, the input expression

:= + k.a r.7 + t + k.b t r.7 t k.c

yields the code sequence

LOAD rl,r7
LOAD r2,c
ADD r2,b,r1
STORE r2,a,r7

using the SDTS given above. (This example is worked out in detail in
Glanville's paper.)



10 Object Code and Machine Architectures 547

10.8.1. Table Construction

The table constructor first treats the underlying grammar as a context-free
grammar and constructs the set of LR(O) states, ignoring inadequate states for
the moment. There will be numerous inadequate states in general, and they
will arise both from finite lookahead and from grammar ambiguity. The
construction algorithm seeks to resolve these conflicts in favor of short
instruction sequences-shift-reduce conflicts are resolved in favor of shifting.
For the most part, more powerful instructions are used as more of an
expression is shifted into the stack before an instruction covers it. Reduce­
reduce conflicts are often resolved by the semantic restrictions; if not, the
longest instruction is used. The parser clearly must be capable of identifying
reduce-reduce conflicts during parsing and refer their resolution to a semantic
resolver. In resolving shift-reduce conflicts, SLR(I ) lookahead information is
used to ensure that reduce actions are included where needed.

Given a general context-free grammar, the conflict-resolution rules would
not necessarily yield a recognizer for the entire language generated by the
grammar. However, the construction is language-preserving for uniform
instruction sets, defined as follows.

Uniform Instruction Set

Let L designate the vocabulary of the instruction set description. An
instruction set is said to be uniform if it satisfies the condition:

Any left (right) operand ofa binary operator b is a valid left (right) operand
of b in any prefix expression of ~* containing b. Any operand of a unary
operator u is a valid operand ofu in any prefix expression of~* containing u.
An instruction set is uniform if its description is uniform.

The essential idea ofuniformity is that the operands of an operator must be
valid independent of their context.

For example, consider the SnTS given above. The operands of := are all
either registers (rules 10, 11) or special cases of registers (rules 7,8,9). The
operands ofthe left-most + in rules 1 to 6,13,14 are all either registers (rules
5,6) or prefix expressions that become registers by rules 12, 16, or 17. Since a
register is an argument of t (by rule 15) and of + (by rule 5), the arguments
of the other occurrences of + and t represent special cases (i.e., ambiguities).
Thus whenever: =, +, and t occur, their operands are any prefix expressions
corresponding to registers.

An example of an instruction set that is not uniform is

r ::= (+ t k k)
r ::= (+ k t k)
A ::= (:= r r)

Here, k is a valid first operand of + only if the second operand is tk and
vice-versa.



548 Compiler Construction: Theory and Practice

Glanville shows how the uniformity condition can be verified by the parser
constructor algorithm.

Given uniformity, an SLR(l) code generator can be constructed that can
be shown to fail to reach its ACCEPT state in only one of the following two
cases:

1. The code generator loops infinitely.

2. The input IR is not syntactically within the sequence of prefix
expressions described by the instruction set.

Looping can occur through a recursive sequence of single production
reductions, e.g., A~B~C~ ...~A, which can occur in practice if simple
register-to-register moves are permitted. The potential of looping is easily
tested in the finite state control and can be broken by a kind of "state-split­
ting" of certain of the generated states.

We need to consider the possibility of blocking-which would correspond
to a syntax error if the input source were not generated internally from an
AST.

The reduce action generates code by checking the semantic qualifications
of the matched instruction pattern against the semantic qualifications
indicated on the stack. If the set of instructions associated with a given reduce
action are all semantically constrained, it is possible that none of the
instructions will be compatible with the semantics on the stack. In this case,
the code generator is said to semantically block. Semantic blocking can be
avoided by the use of a default list of short instructions that contain no
semantic restrictions and that together compute the desired expression. For
example, consider a memory add-to-add instruction

madd k.2,k.l

This instruction can be encoded as the translation rules

A:= (: = k.l + i k.l i k.2), "madd k.l,k.2"

A:= (:= k.l + i k.2 i k.l), "madd k.2,k.l"

The basic instruction pattern is ": = k + i k i k". If this pattern occurs in the
IR, but the constants associated with each of the three k's are distinct, then the
instruction cannot be used. The cure to this problem is to introduce new
instructions with the patterns

r ::= i k
r ::= + i k r
A ::= := k r

that could be issued instead, simulating a non-restricted memory-to-memory
add. The code generation could then proceed with these as though the longer
instruction had been issued.



10 Object Code and Machine Architectures 549

Glanville's table constructor constructs default instruction lists for all
reduce actions having no semantically unrestricted instructions. The lists are
obtained by simulating the action of the coder using as input the right hand
side of the semantically restricted instruction and using onlv those instruc­
tions that are shorter than the one under consideration.

In the presence of semantically restricted instruction patterns (ofwhich the
table constructor has no knowledge), the code generator will choose one of a
list of instructions in its reduce action. Assuming that this list has already
been sorted by the table constructor, the instructions will be tested
sequentially until one is found that is semantically compatible. In the event
that no instruction is acceptable, a default list of substitutable instructions
must be provided to implement that computation.

There are several classes of semantic restrictions that may have to be
satisfied. Constants in the IR input may have to be equal to specific values,
such as a I in an increment instruction, and logical registers may have to be
equivalent to specific, actual registers. Multiple occurrences of a symbol in
any class may have to refer to the same value or register. If the result is to
appear in a register, then there must not be any references to the value in that
register outside ofthat instruction pattern. Such references could exist only if
some sort of common subexpression elimination has been done (see chapter
11). Finally, any additional semantic restrictions required to properly
describe a particular target computer may be added to the code generator.
The proof of correctness only requires that a default instruction Qr list of
instructions be available for each semantically restricted instruction, so that it
will always be possible to generate code.

Glanville shows that if looping and semantic blocking are eliminated by
the extensions described above, and if the instruction description accurately
describes the target machine, then the code generator produces correct code
for all well-formed input.

The input IR is well-fonned if

1. The input is a sequence of prefix expressions.

2. The operators and operands of the IR are from the same set as the
operators and operands of the instructions and have the same meaning.

3. The sequence of prefix expressions is valid; that is, it is in the language
generated or described by the instruction set.

Condition (3) must, of course, be checked by the implementor. The
implementor can either prove that the routines generating the IR meet
specification I or provide a simple routine to test the input to the code
generator. It turns out that if the instruction set is uniform, condition 3 is also
relatively easy to check.

10.8.2. Experimental Results

Several target computer descriptions, including the IBM 370 and the
PDP-ll were input to a table constructor implemented in Pascal. Pascal



550 Compiler Construction: Theory and Practice

programs were manually translated into IR and input to the code generator.
The PDP-II code quaJity is competitive with the compiler "C" (Kernighan
[1978]), yet uses no prior or post optimizations at all. Since the code generator
produces assembly code, any postoptimizer can be used to further improve
the code. On the PDP-II, some improvement can be obtained by exploiting
short jump instructions and keeping track of register contents, for example.
Similar results were found for the 370 code generator.

10.9. Bibliographical Notes

A good review ofthe uses ofquads and triples in compiler construction and
code improvement is given in Gries' text, "Compiler Construction for
Digital Computers", Gries [1971], especially chapters 11, 13, 17, and 18.
General reviews ofcode generation and the relation of machines to languages
aregiven in four articles by Waite [1974a,b,c,d,e]. Poole [1974] discusses
some compiler portability issues, including the use of intermediate languages
and standard abstract machine descriptions.

Most of the material on the HP-3000, the CDC 6000 and the IBM
System/360 is derived from manufacturer's manuals. The following is a
minimum list:

• HP-3000 Computer System Reference Manual, part no. 03000-90019,
Hewlett-Packard. Co., 1501 Page Mill Rd., Palo Alto, CA., 94304.

• Control Data 6400/6500/6600 Computer Systems Reference Manual,
Pub. No. 60100000, Control Data Corporation, 8100 34th Ave. So.,
Minneapolis, Minn. 55420.

• IBM System/360 Pri~ciples of Operation, Form A22-6821-3, IBM
Corporation, Customer Manuals, Dept. B98, PO Box 390, Poughkeep-
sie, N.Y., 12602. .

• IBM System/360 Operating System Assembler Language, Form C28­
6514-4.

• IBM System/360 Supervisor and Data Management Services, Form
C28-6646':'2.

• IBM System/360 Operating System FORTRAN IV(G) Compiler
Program Logic Manual, Form GY28-6638-1.

In addition, any technical library will contain textbooks on System/360
principles and programming. A good introductory treatment of the 360
architecture, assembler, loader conventions and macro processor is Don­
ovan's text "Systems Programming", Donovan [1972].

Wirth's implementation of Pascal on the CDC 6400 is in his paper, "The
Design of a Pascal Compiler," Wirth [1971a]. Glanville and Graham's work
on ageneralIzed code generator is in Glanville [1977].

AnAlgol 60 implementation on theIBM 360 is described in Bauer [1968].



CHAPTER 11

OPllMIZAliON

The term optimization in a compiler is applied to any special algorithm
designed to yield more efficient object code than would be obtained by a
simple, straight-forward code generator. An optimization may replace a
simple coding algorithm by a more sophisticated one, or it may be a.n
operation on some compiler data structure that transfornis the structure into
an equivalent but more efficient one.

The goals of optimization are the reduction of execution time and the
reduction of code and data space. These two objectives are often found
(unfortunately) to conflict. For example, execution time can often be reduced
to some extent by adding more instructions. Thus a procedure call might be
replaced by its code, thereby saving the execution time required to call a
procedure. Ideally, a compiler user should be able to specify whether he
wishes a minimum number of instructions or a minimum execution time,
however this is seldom possible. Usually, some compromise is possible, and
often a reduction in amount of code also results in a reduction of execution
time as well.

Optimization is usually desirable because a simple code generator may fail
to fully exploit the algebraic properties of the source language, or the full
potential of the target machine's instruction set. For example, a direct
translation of a statement like

A:= I+B+6;

would emit two additions. An optimization that exploits associativity of
addition would reduce the translation to one addition. Also, a statement of the
form

1:=1+ 1;

is very common in source programs. A general translation on a stack machine
would yield the code

LOAD I;
LOAD =1;
ADD;
STOR I;

551



552 Compiler Construction: Theory and Practice

Now many machines have "increment memory" instructions, so that the
statement I: =I + 1 could be translated into

INCM I;

instead.

An optimization may be classified as machine-dependent or machine­
independent.

Machine-dependent optimizations stem from special machine properties
that can be exploited to reduce the amount of code or execution time.

Machine-independent optimizations depend only on arithmetic properties
of the operations in the language and not on peculiarities of the target
machine. Some common machine-independent optimizations are

• Constant arithmetic subsumption or folding, i.e., operations on constant
expressions performed by the compiler rather than emitted as code.

• Identification and removal of identity or null operations. e.g., adding
zero, multiplying by 1.

• Rearrangement of expression trees, exploiting commutativity, associa­
tivity or distributivity ofcertain operators, with the objective of reducing
the number of operations.

• Identification of common subexpressions, for possible one-time evalua­
tion.

• Elimination of useless or unreachable code.

• Movement of code from inside a loop to outside the loop, possibly
changing its form to preserve the program semantics.

,These are listed roughly in order of increasing complexity of their
algorithms. Thus (1) and (2) are relatively easy to implement on an AST, (3)
and (4) are somewhat harder, and (5) requires a control flow analysis of the
loop statements.

We shall not attempt to develop or even classify all the possible
optimizations. Nor will we present a systematic approach to optimization.
We will discuss some of the most commonly used optimizations in sufficient
detail for them to be useful in most compilers. Beyond that, the reader must
refer to the voluminous literature on the subject.



110ptimization 553

11.1. Machine-dependent Optimizations

The nature of a machine-dependent optimization depends heavily on the
target machine and the source language. A machine-dependent optimization
may be applied to the AST by identifying special subtrees that happen to fit a
machine feature, or it may be applied to an object code sequence. Still other
optimizations deal with register and memory allocation and arrange that data
appear in the appropriate registers in a reasonably optimal manner.

Some examples of machine-dependent optimizations are

1. Register allocation. In a typical computer, the most efficiently accessed
memory is the most scarce resource (e.g., one or a few arithmetic
registers, or the top-of-stack registers). The least efficiently accessed
memory is the most plentiful (e.g., solid state memory, disk, drum, or
tape). Most operations can be performed only on data in registers, and
the consequent movement of data between registers and mass memory
is a bookkeeping maneuver that contributes nothing directly to the
computation. Hence the allocation of the scarce resources to achieve
high efficiency in program execution is an important optimization.

2. Special machine features. Some common machine features (or idioms~ a
term first applied by Hall [1974]) that can potentially be exploited
include: immediate instructions (a value is part of the instruction),
incrementation (a memory location can be incremented by some
constant), use of indexing or indirection, vector operations, etc.

3. Data intermixed with instructions. On many machines, data can be more
efficiently accessed if it is intermixed with the instruction sequence.
Some optimal arrangement of instructions and data therefore exists.

11.2. Machine-independent Optimizations

These optimizations are based on the mathematical properties of a
sequence of source statements. An optimization essentially amounts to an
analysis of the overall purpose of the statement sequence, then finding an
equivalent sequence that will translate to the least amount of code.

Thus constant arithmetic can always be done by the compiler, rather than
by emitting instructions to perform the arithmetic during execution. Arith­
metic properties of the operations may also be exploited in the search for
minimal code; their use might uncover some additional constant arithmetic,
or some common subexpressions.



554 Compiler Construction: Theory and Practice

Whether an arithmetic property may be exploited depends on the
specification of the language. If the language quite clearly specifies that all
operations are to be performed from left to right in exactly the sequence
dictated by the form of the expression, then arithmetic optimization is clearly
limited. On the other hand,many modern languages specify that the
operations may be performed in any order consistent with the arithmetic
meaning of the expression.

Of the several arithmetic properties of the real numbers, the identity and
null properties can always be exploited to reduce emitted code. Commuta­
tivity and associativity are very useful in subsuming constants, in identifying
common subexpressions, and in optimizing register allocation. Distributivity
is potentially useful in constant subsumption and subexpression recognition,
but is difficult to exploit in a general way. The language may prohibit the use
of distributivity for optimization-it may require that a parenthesized
expression be performed first and not under any circumstances distributed
among outer operations.

Computer arithmetic technically fails to satisfy any of the three properties
of commutativity, associativity and distributivity, as the following three
examples indicate:

Failure of Commutativity

Consider the statement

I:=I+F(A);

where F(A) is a function call that happens to change the value of I as a side
effect. (I must be in a domain that is accessible to the function F.) On a stack
machine, in the order shown, the emitted code might be

LOAD I;
LOAD A;
CALL F;
ADD;

STaR I;

{current value}
{the parameter for the function call}

{the change in I does not affect the copy
previously written on the stack}

In commuted order, we would have instead:

LOAD A;
CALL F;
LOAD I; {the new value}
ADD;
STaR I; {a different reSUlt}



11 Optimization 555

This side effect of the function call stems from an undesirable property of
functions in several common languages, their ability to access and modify
variables that appear with them in arithmetic expressions. For this reason,
certain modern languages restrict functions to access only those variables
local to the function call. Then this side effect could not exist; the compiler
would be able to determine from the replacement statement alone whether the
function could affect any other variables.

Failure of Associativity

Consider the following statements implemented on a machine with integer
arithmetic in the range - 32768 through 32767 (16-bit twos complement
integers):

1:=30000;
J:=20000;
K:=21000;
1:=1-J+K;

If the last statement is executed in left-to-right order, the result 31000 is
obtained without overflow. However, if the statement were instead

I:=I+K- J;

then the addition would overflow before the subtraction is performed.
Here, if the language specification permits associativity for the sake of

optimization, the programmer is at fault in not considering the possibility of
overflow.

Failure of Distributivity

Consider the following example:

r:= 15;
J:=4000;
K:=3000;
I:=I*(] -K);

The last statement, if performed in the order indicated by the parenthesizing,
will yield 15000 without overflow. However, the distributive equivalent

will overflow twice.



556 Compiler Construction: Theory and Practice

Other sources of failure of computer arithmetic to satisfy mathematical
properties stem from (1) integer division, where the fractional part is
truncated to yield the largest integer less than the quotient, and (2)
floating-point subtraction, where the two numbers are very nearly alike; the
result will likely have lost all significance.

Despite these difficulties, algebraic optimization is often provided by a
compiler for those languages that permit it. Where optimization is provided,
the programmer must be alert to the potential failure of his coded algorithm;
the optimizing compiler may generate a somewhat different algorithm than
he coded.

11.2.1. Expression AST Optimizations

Some arithmetic optimizations are most effectively performed on an
abstract-syntax tree for an arithmetic expression. Let us consider some of
these, for a set of operations that includes the four binary arithmetic
operations and unary minus. A similar principle applies to binary and unary
logical operations.

The easiest optimizations are those based on the identity and null
properties of0 and 1. We need only inspect the environment ofa constant 0 or
1 in the AST and apply one of the operations indicated in figure 11.1. Here, T
stands for some subtree of arithmetic expressions. These obviously express
the identities

O+T T+O T
T-O T
O-T -T
O*T T*O = 0
OfT 0 {however, % is undefined}
T /0 00 (or overflow)
1*T T* 1 = T /1 = T

Such expressions are not likely to be written directly by a knowledgeable
programmer, but frequently arise through the use ofmacros with parameters.
Without compiler optimization, the macro definition must contain many
special tests in order to yield reasonably optimal code.

Constant evaluation is facilitated by a rearrangement of the AST designed
to bring constants together. For example, the expression

4*5+1-6

has the AST shown in figure 11.2. In this form, only the 4*5 evaluation is
possible. However, associativity may be applied to the + and - to yield the
AST shown in figure 11.3; the multiplication and subtraction may then be



11 Optimization 557

+
/\ ~
a T

-

I\~
T a

-

/\ =}
a T

+
T /\ ~ T

T a

T

(unary minus) ,

T

* *
/\ ~ a /\
a T T a

/ /

/\ ~co /\
a T t T a

(overflow)

~O

=} T

*
/ \ ~ T

1 T

*
/\

T 1
=? T

/

/\
T 1

=}T

Figure 11.1. Abstract-syntax tree (AST) optimizations based on arithmetic properties
of 0 and 1.

performed to yield the the tree for 14+1. A general application of
commutativity and associativity in an AST is called flattening.

11.2.2. Flattening

In general, a set ofconnected + and - nodes may be collected into a single
node with more than two children; the result is to flatten an AST. The
flattened tree then facilitates the recognition of optimizations through
associativity and commutativity.

An addition cluster of nodes in an AST is a set of nodes A such that (1)
every member of A is in { +, -}, and (2) the set A forms a tree. Then a
cluster A may be reduced to a single node by applying the transformations
shown in figure 11.4. For example, a binary - node can be replaced by a



558 Compiler Construction: Theory and Practice

/~
+ 6

/~
* I

/~
4 5

Figure 11.2. AST for an expression 4*5+ 1-6.

binary + node by negating the second child of the - node. The overall effect
of the transformations of figure 11.4 is to obtain as large a cluster of + nodes
near the top ofa tree as possible, with unary - nodes pushed down as much as
possible.

A cluster of * artd I nodes can be formed through similar transformations.
A binary division AlB can be replaced by A*( liB), provided that the division
is performed in floating-point and not fixed-point.

Once a cluster of additions or multiplications is identified, the AST may be
flattened by merging each cluster into a single node, with several children.
Thus the expression

A*B*C/D + E*F - D*A

has the flattened tree shown in figure 11.5. The multiple children of some +
or * node may then be rearranged in any manner to achieve an optimization.
For example, the constant children can be placed to the right (or left) of
variable children and subsumed into a single constant node.

Parenthesized expressions must be protected (in most languages) from
cluster merging. Thus the tree for A+ (B +C) cannot be flattened into a

+

/~
I

~/ ~
* 6

/~
4 5

+

~/~
14

Figure 11.3. Associativity of {+,- } applied to AST of figure 11.2.



/~
A B

I
+

/~
A B

I

/~
A B

I

I
A

11 Optimization 559

+

/~
A

I
B

+

/~

I I
A B

+

/~
B

I
A

A

Figure 11.4. Transformations applied prior to flattening an AST for binary operations
{+,- }.

single + node. A node representing a parenthesized expression must
therefore carry a mark that prevents its merger into a cluster.

Flattening is also useful for single-register machine coding. In such a
machine, a binary arithmetic operation applies to an accumulator register A
and some memory location M; the result is left in A. Initially, A must be
loaded from memory. Some expressions require temporary memory cells T l'

T 2' .••• Thus the replacement statement

W:=R+S+ U*V;

would be coded without optimization as:

LOAD
ADD
STaR

R; {value of R to accumulator}
S; {add S to accumulator}
T 1; {R+S must be saved to do

the multiplication}



560 Compiler Construction: Theory and Practice

A

*

DD

*

/+~
*

/I~ /\
ABC E F

/\
Figure 11.5. A flattened AST for the expression A*B*C/D + E*F - D*A.

LOAD
MPY
STOR
LOAD
ADD
STOR

U;
V;
T2;

T 1;

T2;

W; {9 instructions, 2 temporaries needed}

The flattened AST for this expression is shown in figure 11.6. For optimal
single-register code, the * subtree should be the leftmost sibling of the +
node, as indicated in figure 11.7. Then the single-register code for the tree of
figure 11.7 is:

u v

Figure 11.6. Flattened AST for statement W:= R+S+ U*V.



110ptimization 561

Figure 11.7. AST of figure 11.6 rearranged for optimal single-register code.

LOAD
MPY
ADD
ADD
STaR

U;
V;
R;
S;
W; {5 instructions, no temporaries}

A reasonable optimization rule is therefore: (1) transform binary subtrac­
tion and binary floating-point division nodes into binary addition and
multiplication nodes, in order to produce as many clusters as possible, (2)
merge the clusters, (3) arrange constant siblings of some cluster node to the
right and complicated trees to the left. (We shall develop a more complete
optimal algorithm later.)

Exercises

1. Design an algorithm that identifies clusters in an arithmetic AST and
flattens them. Assume floating-point arithmetic only,

2. Discuss the possibilities of optimization of each of the following
operations:

(a) A t B {exponentiation}

(b) if L then A else B {selection of A or B, depending on L}

(c) case I of Nl: A; N2: B; N3: C; ... Ni: Z; end; {multi-
way selection of an expression}



562 Compiler Construction: Theory and Practice

3. Design an algorithm that identifies and reduces an AST containing
identity and null operations, e.g.,

O*X, O+X, I*X, X/I, X-X, etc.

4. Show that commutativity and associativity can yield no improvement in
the number of instructions for a single expression tree, on a pure stack
machine with an unlimited number of registers. A pure stack machine
has an unlimited stack and the instruction set:

LOAD n
STaR n
ADD
SUB
MPY
DIV

{C(n) ~ C(tos); tos = address of stack top}
{C(tos) ~ C(n)}
{C(tos-l)+C(tos~C(tos-l); tos:=tos-l}
{C(tos-l)-C(tos~C(tos-l);tos:=tos-l}
{C(tos-l)*C(tos~C(tos-l);tos:=tos-l}
{C(tos-l)/C(tos~C(tos-l);tos:=tos-l}

5. Suppose that, in addition to the instructions given in exercise 4, a stack
machine has some memory reference instructions that operate between
a memory location and the stack top. Would it be possible to optimize
evaluation of an expression tree using these memory reference instruc­
tions? If so, give some examples. The additional instructions would
have the form:

ADDM n {tos + C(n) ~ tos}
SUBM n {tos - C(n) ~ tos}
MPYM n {tos * C(n) ~ tos}
DIVM n {tos / C(n) ~ tos}

11.3. Optimal AST Evaluation for a Multiregister Machine

The reported work in code optimization can be divided into two general
classes: the class of code-improvement methods and the class of provably
optimal methods. The latter class is much smaller than the former, undoubt­
edly because it is relatively easy to develop a heuristic method that, when it
applies, improves the efficiency ofthe emitted code; it is much harder to prove
that some general algorithm yields a code sequence that is absolutely
minimal. Indeed, several important optimization questions are either unde­
cidable or can only be solved by an algorithm of exponential complexity, a
so-called NP-complete algorithm [Aho 1974b]. In the face of undecidability



11 Optimization 563

or an NP-complete problem, heuristic code-improvement represents the only
practical approach to an optimization.

One of the few optimal code generation algorithms is from Meyers [1965]
and Nakata [1967], as expressed and analyzed by Sethi and Ullman (Sethi
[1970]). This algorithm generates optimal code from a binary expression tree,
for a multiregister machine. Three variations on the basic algorithm are
developed, one that assumes that no operation is commutative or associative,
a second that assumes that some operations are commutative, and a third that
assumes that some are both commutative and associative.

It is important to note that Sethi's work does not address the problem of
expression tree optimization, where the tree contains common subexpres­
sions or of a set of expression trees that might be partially merged. These
questions will be examined later.

11.3.1. The Machine

The commands permitted by the Meyers-Nakata-Sethi algorithm are of
four types, for a machine with an unlimited amount of general memory and
NR 2: 1 general purpose registers:

LOAD M,R: Copy contents of memory cell M to register R.

STOR M,R: Copy contents of register R to memory cell M.

OP Rl,M,R2: Perform a binary operation OP (non-commutative in
general) on register Rl and memory M, the result to
replace contents of register R2. Neither Rl nor M is
changed by the operation, unless Rl =R2.

OP Rl,R2,R3: Perform a binary operation on registers Rl and R2, the
result to replace contents of register R3. Any two or three
of the registers may be the same. The contents of Rl and
R2 are unchanged, unless one or both is register R3.

Note that a binary operation OP Rl,M,R2 does not have a counterpart OP
M,Rl,R2. For example, the machine may have a subtraction operation
R - M, but no "reverse" subtraction M - R. This restriction exists in many
commercially available computers, and is therefore a realistic one to consider.
If both operations exist, then every operator could be treated as though it
were commutative.

Let us assume that the tree's value will be left in a register. Then some trees
will require no STaRs; there will be sufficient registers to hold all
intermediate values. However, no matter how large NR is, there are trees that
will require some STORs of intermediate results. The problem is to identify
those leaf nodes that must be LOADed, those that must be stored, and the
order of performing all the operations. Every operator node in the tree will



564 Compiler Construction: Theory and Practice

require one 0 P instruction regardless of the manner of loading operands and
storing results, so that a minimal solution is one with the fewest LOAD and
STOR instructions.

Considering the number of degrees of freedom possible, it is remarkable
that an algorithm that finds the minimal code sequence in a reasonable time
exists. We shall see later that if common subexpression optimization is also
desired, then no algorithm that finds a minimal code sequence in a reasonable
time exists-any such algorithm will require an exponential time complexity
to find an optimal solution.

11.3.2. Tree labeling

We begin with an algorithm that decorates each node N of the expression
tree with the integer quantity LABEL(N). This quantity will represent the
number of registers needed to evaluate the subtree rooted in N without any
STOR instructions. The algorithm invokes several tree functions explained
in the comments.

procedure TREELABEL(N: integer): integer;
{a recursive procedure that accepts a
node N and returns a label for the node}

begin
if LEAF(N) then

{LEAF(N) is true if N has no
children}

if N :j:. ROOT then {ROOT = AST tree root}
return(if N = LEFTCHILD(PARENT(N)) then 1 else 0)

{PARENT(N) is the parent of node N;
LEFTCHILD(N) is the left child of N}

else return(1) {tree consists of one node}
else

begin {N has children}
var L 1, L2: integer; {two temporary labels}

Ll: =TREELABEL(LEFTCHILD(N));
L2: =TREELABEL(RIGHTCHILD(N));

{get the labels of the child subtrees}
return(if L 1=L2 then L 1+ 1 .else

MAX(Ll,L2)) {maximum of the two labels}
end

end {of procedure}

TREELABEL is a bottom-up algorithm; the label for some node can be
determined only if it is a leaf node or if the labels for its children are known.



110ptimization 565

Suppose that a node N is a leafnode. If a left leaf, then we need one register
to hold its value in order to perform its parent operation. If a right leaf, its
parent operation can be performed from memory, requiring no register. Of
course, the left subtree of an operation with a right child leaf will require at
least one register.

Now suppose that node N is an internal node. Let its child subtrees carry
labels L I (left) and L2 (right). If L 1=L2, then an equal number of registers
are required to evaluate each of the subtrees; note that in this case Ll and L2
must be at least 1. VJ!e need one more register to carry out the operation of
node N, to hold the value of the left subtree while the right subtree is being
evaluated, or vice versa, hence the label for N is L I + I. If L I -=I- L2, then at
least one register is available for one of the subtrees (the one with the lesser
label); no additional registers are needed to evaluate node N, hence L(N) =
MAX(L I,L2).

11.3.3. Optimal code generation

We now introduce an optimal code generation algorithm, procedure
EVALUATE. This is a top-down algorithm that operates on an expression
tree decorated with the labels developed in the TREELABEL procedure
above. It requires some more functions as follows:

EMITLOAD(M,R): Emits a LOAD instruction, LOAD M,R.

EMITSTOR(M,R): Emits a STOR instruction, STOR M,R.

EMITOP(OP,RI,S,R2): Emits a binary operation OP RI,S,R2; OP is the
operation, Rl and R2 are registers, and S is a or a
memory location.

OPeN): This is the operator associated with node N. (N must be an
internal node.)

LABEL(N): The label associated with node N, an integer, as determined
by TREELABEL.

MEMLOC(N): The memory location associated with node N; N must be
a leaf node. We assume that every leaf node is associated
with a memory location; no variable is already in a
register.

ALLOCATE: A typed procedure that returns a temporary memory
location. Temporary locations are needed when the regis­
ter set cannot hold all the intermediate tree values.

RELEASE(T): Returns a temporary location T to a pool. Those in the
pool may subsequently be used for other intermediate
results.



566 Compiler Construction: Theory and Practice

Now the code emitting algorithm is as follows. The comments {A}, {B}
indicate sections of the algorithm that will be expanded upon in the next
section.

procedure EVALUATE(N, M: integer);
{N is a subtree root node.
M is the first of a set of registers

available for the evaluation of the
subtree rooted in N; the available
registers are M, M + 1, . . . ,
where the machine contains NR
registers. Initially, EVALUATE is
called with N = ROOT and M = 1. The
result of an EVALUATE call is the
value of the subtree N left in
register N}

begin
if LABEL(N) = 1 then
begin

if LEAF(N) then
begin {N must be a left child}

{A} EMITLOAD(MEMLOC(N), M)
{a left leaf must be LOADed}
end

else
begin {the right child must be a leaf}

{B} EVALUATE(LEFTCHILD(N), M);
EMITOP(OP(N), M,

MEMLOC(RIGHTCHILD(N)), M)
end

end
else

begin {LABEL(N) > 1 here;
N must have children}

var Nl, N2, Ll, L2: integer;

Nl: = LEFTCHILD(N);
N2: = RiGHTCHILD(N);
Ll:=LABEL(Nl);
L2: = LABEL(N2);

if MIN(L I,L2) 2:: NR then
begin

var T: integer;



110ptimization 567

{C} EVALVATE(N2, M); {evaluate right child}
T: =ALLOCATE; {allocate a cell}
EMITSTOR(T,M); {register M put away}
EVALVATE(Nl,M);
EMITOP(OP(N),M,T,M);
RELEASE(T) {T no longer needed}

end
else

if Ll -=I- L2 then
{D} begin {Note: MIN(Ll,L2) < NR here}

if Ll > L2 then
Nl :=: N2; {exchange Nl, N2; now

Nl is the node with the least label}
if MIN(Ll,L2) > 0 then
begin

EVALVATE(N2,M);
EVALVATE(Nl,M+ 1);
if Ll <L2 then
EMITOP(OP(N),M + 1,M,M)

else EMITOP(OP(N),M,M + I,M);
end

else
begin {lesser of Ll, L2 is O}

EVALVATE(LEFTCHILD(N),M);
EMITOP(OP(N), M, RIGHTCHILD(N),M);

{N's right child must be a leaf}
end

end
else

{E} begin {Ll = L2 and Ll < NR}
EVALVATE(Nl, M);
EVALVATE(N2, M+ 1);
EMITOP(OP(N),M,M + I,M)

end
end {of procedure}

11.3.4. Discussion

Section {A} deals with the case of a leaf node N with label 1. N must be a
left child of its parent. No operation has its left operand in memory, so we
must load the value of N. We use the next available register M for this
purpose.



568 Compiler Construction: Theory and Practice

In section {B}, the right child of N must be a leaf; the label of N cannot be
I otlierwise. We can evaluate the left child of N with registers M, M + 1, ... ,
NR av~iHlble, and the operation of node N can then be done with no
additional registers.

In section {C}, both children of N require more registers than are
avai1abl~. We must therefore allocate a temporary cell T and use it to save
register M. We then evaluate the right subtree and save the result. When the
left subtree is evaluated, its result will be in register M, ready for the
operation 0 P(N). Mter the operation, the temporary cell T is no longer
required. Note that in the Pascal procedure, T is a local variable and is
therefore preserved in the recursive calls.

In section {D}, one of the labels (Ll, L2) is less than NR. This means that
at least one register is available for the operation OP(N). A special case arises
if the lesser label is zero; it must be the label of the right child, a leaf node. We
can therefore evaluate the left subtree with registers M, M + I, ... available
and then operate directly on the register M and the right child leaf.

If the lesser label is not zero in section {D}, we evaluate that subtree with
the lesser label first, then the subtree with the greater label. The former result
is left in M and the latter in M+ 1. Finally, the operation OP(N) is a
register-register operation, with the result in register M.

In section {E}, the subtree labels are equal and less than NR. We therefore
have an available register for the operation, which will be a register-register
operation.

Example. Consider the expression tree of figure 11.8. The nodes are named

Figure 11.8. An example expression tree labelled with the minimum number of
registers required to evaluate each subtree.



11 Optimization 569

nl' n2, ••• nB , and carry labels ranging from 0 through 3. The leafnodes carry
operands a, b, c, . . . , g. The tree represents the expression
(a-b*c)+(d*e/(f+ g».

For example, the root node carries label 3 since its children each carry label
2. Node n3 carries label 2 since its children carry labels 1 and 2 respectively.

We may trace the recursive calls of EVALUATE as follows, for a machine
with NR=2 registers, RI and R2:

EVALUATE(nl' I) yields the calls and code:
EVALUATE(n3, I);
STaR Tl'RI;
EVALUATE(n2, I);
ADD RI,Tl'RI;

EVALUATE(n3, I) yields the calls and code:
EVALUATE(n7, I);
EVALUATE(n6, 2);
MPY R2,RI,RI;

etc. (See Exercise I)
When all the EVALUATE calls are traced, the following code sequence is

found:

LOAD e,RI; {load operand e}
LOAD f,R2;
ADD R2,g,R2; {e.g., C(R2) + g ~ C(R2)}
DIV RI,R2,RI;
LOAD d,R2;
MPY R2,RI,RI;
STaR Tl'RI;
LOAD a,RI;
LOAD b,R2;
MPY R2,c,R2;
SUB RI,R2,RI;
ADD RI,Tl'RI; {result left in register RI}

Since the tree carries a maximum label 3, at least one temporary location is
needed in any code sequence.

Exercises

I. Complete the list of EVALUATE calls and verify the code sequence
given above.



570 Compiler Construction: Theory and Practice

2. Develop optimal code sequences for machines with NR= 1and NR=3,
for the AST of figure 11.8.

3. Prove that EVALUATE evaluates a tree with no stores when as many
registers as the label of the root node are available. (Hint: Is the label of
the root node the largest of any of the tree labels?)

4. A minor node is a leaf node that is the left child of its parent. Show that
the number of LOAD's in an evaluation program must be at least equal
to the number of minor nodes in the expression tree.

5. A major node is an internal node, both of whose children have LABEL
values greater than or equal to NR, the number of registers in the
machine. Show that the number of STORs in an evaluation program is
at least equal to the number of major nodes in the tree.

6. Prove that EVALUATE generates an optimal code sequence. Hint: Use
examples 4 and 5 above, and prove the following.two lemmas:

Lemma 1. The number of stores generated by EVALUATE is equal to
the number of major nodes in the tree.

Lemma 2. The number of loads generated by EVALUATE is equal to
the number of minor nodes in the tree.

11.3.5. Commutative Operators

When a commutative operator is present in an expression tree, we have an
opportunity to interchange its children with the objective of reducing the
number of loads or stores. Considering Lemmas 1 and 2 in exercise 6 above,
we see that the number of stores is unaffected by such an interchange.
However, the number of loads can be reduced, if the number of minor nodes
is thereby reduced. Clearly, those commutative operators that carry a leaf left
child and a nonleaf right child are candidates for child interchange, and the
interchange will reduce the number of loads. We therefore have the rule:

Commutative Operator Reduction Rule. For every node N such that: (1)
OpeN) is commutative, and (2) LEAF(LEFTCHILD(N», and (3)
'V LEAF(RIGHTCHILD(N», do: interchange (LEFTCHILD(N),
RIGHTCHILD(N».

The resulting tree will yield an optimal code sequence under algorithm
EVALUATE.

For example, the tree of figure 11.8 is transformed into the tree of figure
11.9 through an interchange of the subtrees rooted in nodes n6 and n7• We
thereby reduce the code sequence by one LOAD.



11 Optimization 571

Figure 11.9. Commutative optimization of tree of figure 11.8.

11.3.6. Associative and Commutative Operators

Associativity by itself is of little value in reducing the number of loads and
stores in a code sequence; however, the combination of associativity and
commutativity (A-C) is of value.

We use the notion of a cluster developed earlier. A cluster is a set of A-C
nodes associated with the same operator that forms a maximal. tree. When
some clusters exist, the tree may be reorganized in any fashion by rearranging
the subtrees of any cluster.

The labeling rules for an associative tree are slightly different than those
expressed in TREELABEL. The children of every node are first arranged in
decreasing label sequence from left to right (the left most child has the largest
label). Let L} and Lz be the labels of the two left most children of some node
N. Then LABEL(N) = L} if L} > Lz' and L} + 1 if L} = Lz.

Given such a labeled associative tree and any cluster node N in such a tree,
e.g., figure 11.10(a), we then transform the cluster subtree into the binary
subtree shown in figure 11.IO(b), with root N'. This transformation is made
on every associative cluster node. The resulting tree then yields a minimal
code sequence under the EVALUATE algorithm.



572 Compiler Construction: Theory and Practice

Figure 11.10. Transformation of an associative tree into an optimal binary tree.

Exercises

1. Construct a tree for the expression

and apply the associative-commutative transformations described
above. Generate the minimal code sequence for the expression.

2. Show that the associative-commutative transformation yields a mini­
mum code sequence.

11.4. Code Improvement over a Sequence of Statements

The generation of optimal code for a single expression is hardly worth
while in an average program. Knuth [1971], in a study of a large sample of
FORTRAN programs, found that of all the assignment statements in his
sample, 68% were a simple replacement of the form A=B, with no arithmetic
operators and 13% were of the form A= A op B, with the first operand on the
right the same as the replacement variable. Hence only 19% have a more
complex structure, most of which apparently involve very few operators.

Ofthe variables, 58% were not indexed, 30.5% had a single index, 9.5% had
2 and only 1% had 3 indices (the maximum number under the Fortran in use
at Stanford and Lockheed, the sources of the test programs).

An optimization for expression trees only will probably have little effect on
the efficiency of a typical program. Usually few statements will have an



110ptimization 573

expression tree large enough for the algorithm of the preceding section to
yield an improvement. Of course, these expressions might reside in a
frequently executed section of the program, magnifying their importance to
the program's performance.

The prospect of eliminating common subexpressions and register assign­
ment over a sequence of assignment statements, called a block, is more
promising.

Knuth also studied the improvement that would result from different levels
of optimization. At the lowest level, blocks were considered for constant
subsumption, rearrangement and redundancy elimination. A reasonable
register allocation strategy was also employed. At a second level, the flow of
control among blocks was also considered to achieve global constant
subsumption and rearrangement and some strength and frequency .reduction.
Improvements were found at each level, the second yielding somewhat
greater relative improvement (40% increase and 170% increase over the raw
non-optimized code, respectively). A further improvement could be made by
exploiting idioms for the IBM System/360 system, other than its basic
multiregister organization.

Code can be improved in a sequence of statements in several ways: a larger
field of expressions is available for identifying common subexpressions;
register allocation (for a multiregister machine, at least) can be improved; and
loop-invariant expressions cail be moved outside a loop.

None of these is possible without the development of methods for
determining the status of all the program variables at anyone point..For
example, the value of a variable may by undefined at certain locations in the
program, then defined later. A given definition will hold through some
sequence of statements, then be replaced by another definition. Finally, a
variable may become dead after some reference, i.e., it is no longer used after
the reference. The status of the variables obviously influences register
allocation and the identification of common subexpressions and of loop
invariants.

We see that development is needed along three lines. We need: (1) a more
general optimization plan for a block, that can identify common subexpres­
sions and allocate registers efficiently, (2) an analysis of program control flow
and its effect on the status ofeach variable, and (3) the exploitation ofvariable
status in intra-block as well as inter-block optimization.

11.4.1. Blocks

A block consists of a sequence ofassignment statements SI' S2' ... , Sb that
are executed in that order, and such that control can only pass into the first
statement, from anyone statement to its successor, and out of the last
statement. No program branch may enter the block except to its first
statement.



574 Compiler Construction: Theory and Practice

Each statement is a simple assignment of the form

C ('-- () B} B2 ••• Bn

where () is an n-ary operator, Bp B2, ••• , Bn are its operands, and C receives
the single scalar result of the operation. C is said to be defined by the
statement, and the Bi are said to be referenced or used.

This schema is sufficiently general to cover many common program
statements. A simple replacement statement of the form

X:= A+B*C

can be subdivided into a sequence of simple assignments by introducing a
temporary variable T:

T ('-- *, B, C

x ('-- +, A, T

A function call returns a single value; however, if some of its parameters
are called by reference or by name, then the possibility exists that they have
been defined. Such parameters may be marked defined by the null operation
DEF:

B ('-- DEF

indicates that B has been defined in some previous statement, such as a
function call:

R ('-- FN, PI' P2, ••• B, ... , Pr

An indexed replacement, e.g.,

B(X):= E

involves an assignment for X and then for B; however, since the compiler
cannot determine which of the vector of B variables has been defined, it can
only assume that anyone of them has been. An array variable is therefore
referenced or defined as a unit; the optimization algorithms cannot usually
distinguish the members of the vector.

A vector move statement is similarly treated. Thus in PL/I, if A and Bare
compatible structures, the statement

A=B

represents an assignment to. A of each of the components of B, and the
optimization algorithms must deal with structures A and B as units.

11.4.2. Variables and Their Domains

A variable is some value created at run-time by a definition that IS



11 Optimization 575

preserved until another definition or the end of the program is reached. A
variable is associated with some name, but a given name may represent
several different variables.

Thus in the following statements, one variable associated with X is marked
by the arrows (t):

x X + y.,
t
A '- X + 5;

t
X .- X - Y;

t

Note that the first reference and the last definition of X are not part of this
variable; they are part of another variable, one that happens to carry the same
name in these statements.

The domain of a variable is the set of all statements in the program that
includes the definition statement, every reference statement, and every
statement S such that a control path may pass from the definition through S to
some statement containing a variable reference. The variable is said to be live
at some statement if the statement is within its domain.

If the domain of a variable extends through the end of a block B, the
variable is called an output variable of B. If the domain includes any
statement passed through before reaching the beginning of the block, the
variable is an input variable of B. All other variables are local or temporarq
variables; their domains are contained within the block.

The input variables of a block can be identified-they have some reference
prior to ~ definition. Unfortunately, the output and local variables cannot be
distinguished from an examination of the block alone; it is necessary to
eXanU,ne th~ control paths that lead from the block. Certain local variables can
be identified: (1) the declared local variables, for a source language that
permits variables to be declared at the head of any block, and (2) temporaries
introduced through the reduction of arithmetic expressions to simple
assignment statements.

11.4.3. Equivalent and Normal Blocks

Two blocks are said to be equivalent if they carry the same sets of input and
output variables, and if, for every set ofvalues of input variables, the resulting
output variable values are the same upon execution of the block statements.
One of· the blocks may always be transformed into the other through a
sequence of four equivalence transformatiQns, as Aho [1974b] has shown.
The four transformations are



576 Compiler Construction: Theory and Practice

1. Removal of useless statements and variables.

2. Identification of two computations producing the same value (common
subexpressions).

3. Renaming of variables, e.g., temporary variables.

4. Interchange of two adjacent statements, under conditions that ensure
preservation of equivalence.

A nonnal block is such that every variable carries a unique name. Any
block can be transformed into an equivalent normal block by renaming
certain of the temporary or input variables. For example, consider the block

X:=A+B;
Y:=A-B;
X: = X*Y;
Y:=Y*X;

{second use of variable name X}
{second use of variable name Y}

The names X and Yare associated with more than one variable each in this
block; we therefore introduce new names X' and Y', to yield the following
equivalent normal block:

X:=A+B;
Y:=A-B;
X':=X*Y;
Y':=Y*X';

{beginning of second variable X'}
{beginning of second variable V'}

An input variable X must be renamed if a definition of X appears in the
block. An input variable that is also an output variable need not be renamed.
We adopt the convention that output variables will never be renamed.

Only normal blocks will be considered in the following sections.

11.4.4. Representation of a Block as a DAG

A normal block may be represented as a directed acyclic graph, or DAG, in
much the same way that an expression can be represented as a tree. A DAG
consists of a number of nodes connected by directed edges, such that no
directed path is closed. A DAG will have one or more root nodes, with no
indirected edges, and one or more leaves, with no outdirected edges. A node
with at least one outdireeted edge is an internal node. (The root nodes may be
internal nodes). We will be interested only in DAGs for which every root is
not a leaf.

Each node of a block DAG will be associated with a variable. In addition,
each internal node will be associated with an operation.

A DAG is constructed from a normal block as follows:



11 Optimization 577

1. The statements Sl' S2' ... , Sb of a block will be considered in that order.
Each statement will in general add nodes and edges to the block DAG.

2. Given a statement

we add a new leaf node for every variable Bi not already in the DAG. A
new node No for variable C and operation () is added to the DAG. Then
edges from node No to each node Bl' B2, ••• , Bn are added.For example,
consider the block

T ~ +, A, B
C ~ *, T, A
A ~ j, C, A
F ~ +, E, E
B ~ j, T, D

where {A, B, D, E} are input variables and {A, B, F} are output
variables. Since A and B are redefined in the block, we must rename the
corresponding input variables. The equivalent normal block is

T ~ +, A', B'
C ~ *, T, A'
A ~ j, C, A'
F ~ +, E, E
B ~ j, T, D

This block has the DAG shown in figure 11.11.

11.4.5. Value of a DAG

The value of a DAG is a set of values associated with its nodes. These
values are determined by the values associated with the input variables and a
DAG evaluation rule. Each node of a DAG is associated with a value,
computed by the following rule:

DAG Evaluation Rule. If the node is a leaf, it must be an input variable; its
value is therefore the value of that variable. If the node is internal, its value is
the result of its operator applied to its children's values.

An input node's value clearly cannot be determined until each of its



578 Compiler Construction: Theory and Practice

Figure 11.11. A directed acyclic graph (DAG) for the block {T ~ A' + B', C~ hA', A
~C/A', F~ E+E, B~ T/D}.

children's values are determined. Now each node represents a unique variable
because of block normality. Evaluation of some node results in fixing the
value of its associated variable; however, no other node evaluation can affect
that variable's value, hence every evaluation is uniquely determined, regard­
less of the order in which evaluation occurs. The DAG value is also clearly
the value returned by the block.

We are therefore free to explore DAG evaluations without regard to the
order in which the evaluations take place. Evaluation is subject only to the
constraint that a node can be evaluated only if all its children have been
previously evaluated.

Furthermore, all of the internal non-output nodes represent temporary
variables. These may be assigned to registers and never be allocated a
temporary memory location, for the sake ofefficiency, even though the source
program may have assigned a name to the variable.

11.4.6. Common Subexpression Identification

During construction of a DAG, the appearance of two subexpressions,
such that the second one need not be recomputed, is easily detected by a
minor change in the construction algorithm.

We first suppose that none of the block operators are commutative or
associative. (This restriction will be lifted later.) We are interested in
identifying a DAG node that represents a value that can be saved for use later
in the block. Such a node represents a subexpression that appears twice in the
block and that, in addition, will return the same value on its second
appearance.



11 Optimization 579

Weare therefore interested in a pair of assignment statements

Si: C ~ OB1B2 ••• Bn

Sk: C' ~ OB1B2 ••• Bn

such that none of the Bm (1 :::; m :::; n) are defined in any statement Sj where i
< j :::; k. That is, statement Sk will return the same value to C' as statement Si
returned to Conly ifnone of the referenced variables have been redefined in
the interim.

Now block normality guarantees that none of the Bi are redefined; if one
were, we then have a reference of that variable prior to its definition and its
name could not appear in both Si and Sk' The mere existence of the pair of
statements {Si' Sk} is sufficient to guarantee that C' will receive the same
value as C. In terms of the DAG being constructed, when statement Sk is
under consideration, each of the nodes Bl' B2, ••• , Bn will already be in the
DAG, and a one-level tree with a root associated with operator 0 and variable
C will exist. We need only look for this situation, and add variable C' to the
node that contains C.

We see that a node will carry more than one variable in this extension in
general.

11.4.7. Use of Associativity and Commutativity

Suppose that some of the operators are commutative and still others are
associative-commutative. We may identify common subexpressions that are
equivalent under these arithmetically invariant transformations by two
simple operations.

Before the DAG is built, the operands of every commutative operator are
arranged in some canonical order. For example, they may be arranged in
alphabetical order. Then when the DAG is built, a pair of commutatively
equivalent nodes will be identified as common subexpressions.

Mter the DAG is constructed, we search for associative clusters of nodes.
Two nodes P and Q belong to the same associative cluster if and only if: (1) an
edge from P to Q exists, (2) they carry the same associative operator, (3)
excluding P, Q has no ancestors, and (4) at most one of them carries an output
variable. If P and Q belong to the same cluster, they may be merged into a
single associative node with several children; the node's children may then be
rearranged in any order conducive to DAG or code reduction (e.g., constant
subsumption or register allocation.)

Should an associative transformation be applied during or after the DAG
construction? We don't know. If it is applied during construction, then an
expression C +B+A is merged into a cluster; this merger will then prevent
recognition of A+B, B +C, etc., later. If it is applied after construction, then
we need to search the DAG for equivalent, or partially equivalent clusters,



580 Compiler Construction: Theory and Practice

e.g., B + C + A will be one cluster and C +A + B will be another one; the two
,- could be merged, but will require some searching. On the whole, there is no

evidence that an associative transformation in a DAG is worthwhile as a
means ofdetecting common subexpressions. It is certainly worthwhile for the
subsumption of constants and for improving register allocation.

11.4.8. DAG Reduction

All of the temporary variables may be eliminated from the DAG, once
built, which will incidentally also remove any redundant operations. A node
may still carry more than one output variable. Ifit does, we have a situation in
which a single variable (i.e., one definitional value) is represented by more
than one name. A common name can clearly be assigned to these variables.

Finally, any root node that does not contain an output variable name may
be eliminated. Such a node represents a definition of a temporary variable that
is never referenced.

Example

Consider the block

v ~ A*B
T ~ A+C
C ~ B*D
X ~ V+C
Z ~ T-C
C ~ V+C

with the input set {A,B,C,D} and output set {C,V,Z} .
An equivalent normal block is

V ~ A*B
T ~ A+C"
C' ~ B*D
X ~ V+C'
Z ~ T-C'
C ~ V+C'

with the input set {A,B,C",D} and the output set {C,V,Z}.
The evaluation of V + C' is clearly redundant; the redundancy is detected

during the DAG construction. The final DAG is shown in figure 11.12. We
also see that X is useless; it appears in a root node, but is a temporary variable;
it is associated with node n4 • The local variables T and C' are associated with
nodes n2 and n3, respectively.



· 110ptimization 581

e"

-ns (Z)

D

Figure 11.12. A DAG for the block {V +--- A*B, T +--- A+ C", C' +--- B*D, X +--- V+ C', Z +--­

T-C', C +--- V+C'}.

11.4.9. DAG Evaluation

Let us assume binary operations only in the following discussion, for the
sake of simplicity. (This restriction is not hard to remove.) Also let us assume
that a multiregister machine as defined in section 11.3 is to be used for
evaluation of a DAG. This machine, it will be recalled, has LOAD and
STaR operations between a memory location and a register, and binary
operations between two registers or between a register and memory, the
result going to a register.

We would like an algorithm that, given any DAG, will generate optimal
code. Unfortunately, such an optimization is a large combinatorial prob­
lem-the computational complexity of any optimal algorithm increases
exponentially with the number of nodes (Abo [1977]). Even simpler target
machines, e.g., machines with one register or with an unlimited number of
registers, have no optimal algorithm of less than exponential complexity.

However, there are several heuristic algorithms for single and multiregister
machines; these algorithms are reviewed in Abo [1977]. Let us examine one
of them in some detail, suggested by Waite [1974b], called the top-down
greedy (TDG) algorithm.

The TDG algorithm builds a list L of internal nodes. This list, when used
in reverse, will yield a reasonably good node evaluation sequence for a
multiregister machine of the class described in section 11.3, containing NR
registers.



582 Compiler Construction: Theory and Practice

procedure TDGP(N, K: integer);
{N is a DAG node, K is the number of

available registers}
if (K ::; 1) and (N is an internal node

~l of vvhose parents
are on the list L) then

begin
Add (N) to list L;
TDGP(LEFTCHILD(N),K-1)
TDGP(RIGHTCHILD(N),K);

end;

{Novv the main program}

vvhile (not all internal nodes are
on the list L) do

(select art internal node N, all of
vvhose p~rents are on L, and
perform TDGP(N, NR));

The TDG algorithm begins by selecting some root node of the DAG (no
parents). Then TDGP vvill place it on the list L. TDGP vvill then pursue the
left branches of its current node, adding them to the list until some node is
found vvith a parent not on the list, or until no more registers are available. It
then pursues the right branches in the same vvay.

The selection ofa node could be influenced by some additional tests. Given
a set of possible nodes (i.e., none are on the list and all have no ancestors),
choose a node n vvhose left descendant n' is such that n is the only ancestor of
n' not on the list. If there is more than one such n, look at the left descendants
of n', etc. This strategy vvill yield a sequence of DAG nodes that tend to be
linked together; the number of temporary memory references vvill thereby be
minimized to the extent possible under such a simple approach.

Example

Consider a machine vvith NR=2 (tvvo registers) and the DAG of figure
11.13, vvith input variables A, B, C, D and output variables X and Y.

TDG yields the list

7, 5, 6, 3, 4, 1, 2

We then use this list in reverse, along vvith a reasonable register allocation
scheme{one is described later), to obtain the code sequence given belovv. The
follovving table indicates the node or variable currently in one of the tvvo
registers {R1, R2}.



11 Optimization 583

A B c D

Figure 11.13. An example DAG (see text).

contents of
RI R2

RI ~ A A
R2 ~ RI+C n2

RI ~ RI*B n1

TI ~ RI {temporary}
RI ~ RI*R2 n4

X ~ RI
RI ~ B B
RI ~ RI*D n3

R2 ~ R2-R3 n6

T6 ~ R2 {temporary}
R.2 ~ TI n1

RI ~ R2+RI ns
RI ~ RI+T6 n7
y ~ RI

Exercises

1. Construct a DAG for the block



584 Compiler Construction: Theory and Practice

X := A*(B +C);
Y := (B+C)jA;
X:= X-A;
B := XjY;
Y := A+B+C;

X and Yare the output variables; A, B, and C are input variables.

2. Show that a TDG list for the DAG of figure 11.12 is:

5,2,4, 1,3

Develop a code sequence for the list of exercise 2, for NR = 2. Can you
find a shorter sequence for some other list?

4. Let the reverse of a TDG list be np n2, ••• , nr , and let the nodes be
evaluated in that order. Show that when any node N is to be evaluated,
all of its children (if any) have been previously evaluated.

11.4.10. Register Assignment and Code Generation

Suppos~ that we are given an ordering of the internal nodes such as that
provided by the reverse of the list generated by TDG. We may then assign
registers and emit code by a heuristic algorithm similar to the following.

1. We maintain a list of assignments of registers to nodes. A register R is
assigned to a node N if, at that point in the code sequence, node N's value is
carried by register R. Initially, no register is assigned to any node. A register
is said to be available if it is not assigned to a node. We also assign a level
number to each node in the DAG; initially, this will be the number of parents
of the node. As operations are coded, the level numbers will be reduced to o.

2. Then the following procedure EMITNODE is executed for each node
N on the node list generated by TDG or some other algorithm:

procedure EMITNODE(N);
{N is a DAG node, all of whose

children have been evaluated}
begin

if (LEFTCHILD(N) value is held in register R) then
begin

if LEVEL(LEFTCHILD(N» = 1 then
begin {a level of I means that after this use, the

left child's register will be available}



11 Optimization 585

EMITOP(OP(N),R,VALUE(RIGHTCHILD(N)),R);
{the right child mayor may not be in a register;

either instruction form may be emitted}
ASSIGN(R,N) {assign R to node N}

end
else

begin {left child will be needed after this operation}
var b': integer; {declare a temporary}
R' := ALLOCATE; {get a register; it could be R}
EMITOP(OP(N),R,RIGHTCHILD(N),R');
ASSIGN(R',N)

end
end

else
begin {left child is not in a register}

var R: integer;
R := ALLOCATE; {allocate a register}
EMITLOAD(VALUE(LEFTCHILD(N)), R);

{load leftchild in register R}
ASSIGN(R,LEFTCHILD(N));
EMITN0 DE(N); {try again; left child is now in

a register}
return {cleanup was done on previous call}

end;
{begin some cleanup for node N}
if (N carries an output variable X) then

EMITSTOR(X, REGISTER(N)); {emit a store
to X from the register assigned to N}

DECRLEVEL(N) {adjust levels and release registers}
end;
procedure DECRLEVEL(N: integer);
begin

{this decrements the level numbers of the
children of node N. If the level of N or any of
its children is then 0, the corresponding registers
are released}

var NLC, NRC: integer; {temporary node numbers}

NLC: =LEFTCHILD(N);
NRC: =RIGHTCHILD(N);
LEVEL(NLC): =LEVEL(NLC) - 1;
LEVEL(NRC): = LEVEL(NRC) -1;
if LEVEL(NLC)=°then RELEASE(NLC);

{if a register or temporary is not assigned to node N,



586 Compiler Construction: Theory and Practice

RELEASE(N) does nothing; otherwise it makes
the register or temporary assigned to N available}

if LEVEL(NRC) =0 then RELEASE(NRC);
if LEVEL(N)=0 then RELEASE(N)

end;

procedure ALLOCATE: integer;
begin {allocates a register, returning its number}

if (any register R is available) then return(R)
else

begin
var T: integer;
T: =ALLOCATETEMP; {allocate temporary mem­

ory cell}
if (any register R is assigned to a node N such

that N is not a left descendant of any of
its ancestors) then

EMITSTOR(R, T) {save R in cell T}
else

begin {no reasonable basis for choice}
Choose any register R assigned to a node N;
EMITSTOR(R, T) {save R in cell T}

end;
ASSIGN(T,N); {temporary T assigned to node N}
return(R)

end
end

These procedures exploit several possibilities that can arise. If a register is
needed and one is available, then it is used. Ifa register is needed and none are
available, then we look for one assigned to a node that is only a right
descendant of its ancestors; such a node can later be accessed directly through
its temporary memory cell and need not be allocated a register. Barring these
possibilities, there is probably no good basis for a register choice.

The register allocator is responsible for saving the present contents of an
assigned register; that value will be needed later, since the register cannot be
assigned to a node at the end of an EMITNODE call if the level of the nod~

has fallen to zero.

Exercises

1. Generate a code sequence for the DAGs of Figs. 11.12 and 11.13 using
TDG and EMITNODE.

2. Show that EMITNODE emits correct code for a DAG, given a node
list. with the evaluation order property that a node is selected for
evaluation only if each of its children has been evaluated.



110ptimization 587

3. Discuss extensions to TDG and EMITNODE for n-ary operators, e.g.,
a function call, a MAX operator, etc. Can an n-ary operator be
transformed into a sequence of binary operators?

4. Devise data structures for a block, a DAG, and whatever else is needed
to implement a code generation system. Write Pascal procedures that
emit code for a given block, expressed as a sequence of binary
assignment operations.

5. Arbitrary choices are possible in both ALLOCATE and TDG. Where?
Suppose, as an optimizing strategy, that these choices are made through
a backtracking, nondeterministic machine. We can then generate all
possible equivalent code sequences and choose the shortest one. Show
that such a system must halt in finite time. Is this computationally
feasible? How would the number of operations vary with the size of the
DAG? (A measure of the size of a DAG might be the number of nodes).

11.5. Data Flow Analysis

In considering optimization of blocks, we need information regarding the
definition and use ofdata items that cannot be found by an examination of the
block alone. For example, we cannot distinguish output and temporary data
items; we need to know whether any reference to some data item wi11lie in a
control path leading from the block, uninterrupted by another definition. In
short, we cannot determine the domain of the block variables by information
in the block alone.

If we had a complete data flow analysis of a program, we could provide, in
addition to block optimization, some useful tests and other optimizations as
follows:

1. A sneak path, along which a reference to some data item is not preceded
by a definition, can be detected. The programmer should be made aware
of such paths, although the logic of the program may be such that the
path can never be completely followed to the reference point.

2. Redundant or useless code can be detected. A· redundant assignment
statement is one that is followed eventually by an identical one. A
useless assignment is one for which no subsequent reference exists.

3. Redundant or useless variables can often be detected. A redundant
variable is one for which another variable always carries the same value.
A useless variable is one for which only definitions and no references
exist. A redundant variable can only be detected under certain
circumstances; in general, it is not possible to determine from a static
analysis of a program whether two variables carry identical values.



588 Compiler Construction: Theory and Practice

4. Register allocations might be carried from one block into others, or
through a block, if it appears that some code savings might result.

5. Loop invariant variables can often be identified.

Data flow analysis is based upon a control flow graph. Given a program, its
flow graph G consists of a connected, directed graph (not necessarily acyclic)
having a single entry node 110. Graph G consists of a set of nodes N = {np n2,

... , nm }, representing blocks of instructions, and a set of edges E, connecting
pairs of nodes, that represent the branching paths between blocks.

Each block has one entry and one exit point and consists of the largest
sequence of program steps that can be so formed. A block might also consist
ofthe instructions of a set of blocks connected together in such a manner as to
contain only one entry and one exit point; we call such a block an extended
block.

The detailed nature of a branch decision is ignored in data flow analysis, as
are the details of the calculations within a block. The only information of
interest is (1) the possible branches, (2) the definitions of data items, and (3)
the uses of data items. It is entirely possible that the branching decisions in a
program are such that some paths can never be followed during execution;
however, for our purposes, we must assume that any directed path can be
followed during execution.

11.5.1. Definitions

A definition of a data item R is some statement that assigns a value to R,
replacing a previous assignment. A use of R is some statement that requires
the current value of R in a computation.

A locally available definition of a data item R in a block Bi is the last
definition of R appearing in that block. We denote the set of available
definitions for block Bi by DBi .

Any definition of an item R is said to kill all definitions of R that can reach
the block containing the definition. Any definition of a data item R that can
reach a block are preserved by the block if R is not defined in the block. The
set of all definitions in the program that are preserved in block Bi will be
denoted PBi .

A definition d in a block B1 is said to reach block B2 if both of these
conditions hold:

1. Definition d is locally available from Bp

2. Definition d is preserved on some directed path P from B1 to B2(but not
necessarily on all paths.) Path.P may be null.

The notion ofreaching is essentially that the value ofa data item X assigned
in block B1 can somehow get through to B2, without an intervening
redefinition of X. The set of definitions that reach a block Bi will be denoted
~.



110ptimization 589

A definition in a block B is said to be available at block B' if it is locally
available in :a and can reach B'. We denote the set of available definitions at a
block Bi by Ai'

A locally exposed use of a data item X in a block B is a use of X in B that is
not preceded in the block by a definition of X. A variable with a locally
exposed use in block B is an input variable of B.

A use of a data item X is upwards exposed in block B if it either is locally
exposed in B, or if there exists a path through B and to some other block B'
u~at does not contain a definition of X, and such that X is locally exposed in
B'. Here the notion is that some use of X in block B' can be the terminus of
some path running through a number of blocks, including a block B; that use
is then upwards exposed at B. The set of upwards exposed uses of a block Bi
will be expressed as a set Vi. Note that this set contains uses that appear in
block B and elsewhere in the program.
~ definition d is active or live at block Bi if d reaches Bi (i.e., d € Ri) and

there is an upwards exposed use at Biofthe data item defined by d. The set of
live definitions at block Biwill be denoted Li. Clearly,

Li=RinVi

The set intersection of Ri and Vi corresponds to the two requirements that
there be an upwards exposed use and that definition d reach block Bi.

Examples.

Consider the following block:

K:=3; {l}
J:=3*K; {2}
N:=J-2; {3}
J:=3*N; {4}
N:=J+6; {5}

The locally available definitions out of this block are those for J, K, and N,
lines 1,4, and 5. The definitions in lines 2 and 3 are killed by the subsequent
lines 4 and 5.

There are no locally exposed uses for this block; these uses would be input
variables, and there are none. If the first statement were

K:=J+N;

instead, then these uses of J and N would be locally exposed.
Now consider the following block:

K:= 17; { I}
J:=M+3; {2}
K:=J-M; {3}



590 Compiler Construction: Theory and Practk~

A definition of M preceding this block IS preserved by the block; there are
no definitions of M in it. If the program contains definitions for variables {A,
B, J, K, M}, then this block also preserves any definitions for A and B, but not
for Jand K.

Consider figure 11.14. A definition d (the assignment statement K: =17)
appears in block B}. There are no subsequent definitions of data item K iIi
blocks B} or B2 • We then say that definition d reaches block B3; whether it is
killed in block B3 is 'immateriaL There 'may also be other paths from B} to B3

along which definition d is killed; we only need one along which the definition
is preserved for d to reach B3• Block B} may also bethe same as block B3; we
then have a loop through which a definition in block B} can reach its own
block.

The definition d in block B} in figure 11.14 is locally available in B} and is
available in blocks B2 and B3•

Consider figure 1L15. A use u of K appears in block B3, through the
statement M: =K +3. If no definition of K appears prior to u in block B3 or
anywhere in blocks B} and B2, then use u is upwards exposed in all three of
these blocks.

Next, consider figure 11.16. We have a definition d of data item K in block
Bl' with no subsequent definition in Bl' B2, B3, or B4 • A use of K appears in
B4 • We then say that dis live in blocks B2, B3, and B4 • d has clearly reached
each of these blocks, and an upwards exposed use of K exists in each of them.
Again, the existence ofother paths or of definitions in other blocks not shown
in the figure is immateriaL

Finally, consider figure 11.17. We have several blocks, containing three
definitions and two uses of a variable X. All the control flow paths are shown.
We denote a definition of a data item X in a block i by Xi' Sets R j and L j for a
block j will consist ofdefinitions. Set V j for block j will consist of the one data
item X or be empty.

For example, consider block 3. Only the definition X2 can reach this block;
the definitions in blocks 6 and 7 cannot. Hence R3 consists of X2 • Set U 3

contains X, since a use of X appears in block 3 not preceded by a definition.
Finally, definition X2 is live in block 3; none of the other definitions are.

A complete table of reaches, upward exposed uses, and live definitions for
the graph of figure 11.17 is given below.

Block i I Live Defs. L i

1 0
2 0
3 X2
4 ~
5 X2
6 0
7 0



11 Optimization 591

·..
d: K: = 17

} No K definition
L.-_~_"""

/
L--_.,.-_~INo K definition

Definition d reaches block B3

Figure 11.14. Reach of a definition d to block 83 ,

B1

No K definition

No K definition

B3

D·. }No K definition
. M _ K 3 use of Ku. - +

Figure 11.15. Use u of K in 83 is upwards exposed in all three blocks 811 821 83 ,



592 Compiler CQnstruction: Theory and Practice

d: K: = 3 Definition of K

""'-----,~----'INo K definition

INo K definition

""'------.~----'

M: = K Use of K

Figure 11.16. Definition of K in block 81 is live in blocks 82 / 83 / 84 ,

Exercises

1. Consider the graph of figure 11.18, consisting of 7 blocks. There are
definitions of a data item X in blocks 5 and 7, and uses in blocks 2 and 4.
Determine the sets Ri , Vi' and L i for each block i, 1 ::; i ::; 7.

2. A Basic program carries a line number on each statement. If such a
program contains a computed GOTO statement of the form GO N,
where N· has been previously evaluated and must evaluate to a line
number during program execution, is it possible to construct a data flow
graph for the program? What form would it have?Similarly, consider a



110ptimization 593

Fortran program with a computed GOTO, but such that only some of
the statements carry line numbers.

3. Construct a flow graph for the statements of the following program and
construct the sets R, U, and L:

for G= 1 until NOOFGRAPHS -1 do
begin

if G>l then
begin

for 1=FIRSTEDGE(G) until LASTEDGE(G) do
begin

1

2

x = ••• Definition

3 4

... = X Use

6 5

X = ... Definition .. -= X Use

7

X = ••• Definition

Figure 11.17. A complete flow graph with some definitions and uses of variable X.



594 Compiler Construction: Theory and Practice

Figure 11.18. An example graph-see exercise 1.

PB(I) := P(CORRESEDGE(I));
DB(I) := REACH(CORRESHEAD(FROM(I)))

and PB(I)
or D(CORRESEDGE(I));

end;
for I:=FIRSTNODE(G) until LASTNODE(G) do
begin

UB(I): = USED(CORRESHEAD(I));
REACH(I): = REACH(CORRESHEAD(I));

end
end

end;
HEAD: =0;

(Note: There are no function calls in this program; all the subscripted
references are vector references).

11.5.2. The Basic Data Flow Analysis Method

It should be apparent that the determination ofthe various sets defined here



11 Optimization 595

can be made by first determining the local sets PB and DB for each block, then
exploring all the paths that lead into or out of each of the blocks and the
implications ofPB and DB on these paths. Unfortunately, path exploration in
a directed graph is often a computationally hard problem-the number of
operations tends to increase exponentially with the number of nodes in the
graph. It turns out that data flow analysis is not computationally hard,
provided that a graph reduction technique called interval ordering is used.
Interval ordering reduces the computational difficulty of flow analysis to one
requiring O(n log n) operations, where n is the number of nodes.

Let us first examine the basic method. It should be apparent that the set of
definitions that reach a block Bi is the union of the definitions available from
the nodes that are the immediate predecessors (the parents) of Bi . That is,

~=UAp

where the Ap are the available definitions of the blocks Bpthat are the parents
of block Bi.

Now the set of available definitions ~ for block Bi consists of all those
locally available definitions DBi, together with all those definitions in the
program that reach Bi (namely Ri) and that are preserved in Bi. That is,

These two set equations are sufficient to determine the sets~ and~ for all
the blocks Bi through a simple algorithm called the basic reach algorithm:

Basic Reach Algorithm

The inputs are the PBi and DBi for each block Bi in the control flow graph.
The outputs are ~ and ~for each block Bi .

1. Initialize all of the ~ and ~ to the null set.

2. Perform step 3 while there is no change in any ~ or Ai'

3. Apply the following two formulas in succession to the nodes of the
graph:

where the Ap are the available definitions of the blocks Bpthat are the
parents of block Bi.

Kildall [1973] has shown that the information in Ai and ~ does stabilize.
However, the rate with which the sets stabilize depends critically on the order
in which the nodes of the graph are examined; the process can be very time
consuming for a poor choice of node ordering.



596 Compiler Construction: Theory and Practice

Note that, to be useful, we must consider a program at least as large as a
typical procedure, and build definition and preservation sets for. all its
definitions and uses. We cannot arbitrarily restrict our interest to some subset
of the program. It is therefore important to develop an efficient method of
determining these sets.

11.5.3. Intervals

Given a node h, an interval 1(h) is the maximal, single entry subgraph in
which h is the only entry node and in which all closed paths contain h. The
unique interval node h is called the interval head or simply the header node.
An interval will consist of an ordered list of nodes; the ordering will be
determined by the next algorithm, and will be important in an improved
reach algorithm.

Interval Algorithm

1. Let H be a set of header nodes. Initially, let it contain node no' the
unique entry node of the flow graph.

2. For every node h € H, fix the interval list I(h) as follows:

(a) Put h in I(h) as the first element.

(b) Add to l(h) any node all of whose immediate predecessors are already
in I(h).

(c) Repeat step 2(b) until no more nodes can be added to I(h).

3. Add to H all nodes in G that are not already in H and that are not in I(h),
but that have immediate predecessors in I(h). Clearly, a node is added to
H the first time any, but not all, of its parents become members of an
interval.

4. Select the next unprocessed node in H and repeat steps 2, 3. Ifno more
unprocessed nodes exist in H, the procedure terminates.

The end result is a list of intervals l(h1), l(h2), ••• , that represents a
partition of the nodes of the flow graph.

Example.

Figure 11.19 illustrates the partitioning of a graph into intervals. Interval
1(1) consists of only one node 1, since its successor, node 2, has more than
node 1 as a parent; there is a path from node 7 to 2 as well as from node 1, and
node 7 is not in I(1). Interval 1(2) is begun with node 2, and again consists
only of that node. (Node 3 can be reached from node 6.) Interval 1(3) is begun
with node 3, then nodes 4 and 5 can be added, then 6. Node 7 cannot be added,
since a path from node 2, not in 1(3), exists. Finally, interval 1(7) consists of
nodes 7 and 8.



11 Optimization 597

Intervals

I (1) = 1
I (2) = 2
I (~) - ~ A C; 6\' ~ -~, ,,-, I
1(4) = 7,8

Figure 11.19. Partitioning a graph into intervals.

11.5.4. Higher order intervals

The intervals just determined from the original flow graph Gl can be
expressed as another graph G2. We construct G2 from the intervals of Gl by
merging the nodes within each iJ1terva1, and discarding all edges connecting
two nodes in the same interval. We thus obtai~ a second-order interval graph.
This, too, can be reduced by interval partitio~ing to obtain a third-order, a
fourth-order, etc. interval graph.

Eventually, a graph Gi is obtaiJ.1ed by interval analysis of a graph GH that
contains the same number of noq,es as Gi. If Gicontains one node, we say
that Gi is reducible; otherwise Gi is irreducible.

An example of an irreducible graph is given in figure 11.20. Here, 1(1)
consists of 1 alone, 1(2) consists of 2 alone, etc.

It is interesting that programs that consist only of structured control
statements (if-then-e1se, while-do, for, sequential statements) are reducible.
Irreducible graphs stem from programs with GOTO statements.

An irreducible graph can be spl# by replicating one or more nodes. For
example, ifnodes 3 and 4 are duplicated in figure 11.20, we obtain a reducible
graph, figure 11.21. Splitting is lI).fre1y an analysis technique; we are not
suggesting that the program code must be duplicated. It also turns out that



598 Compiler Construction: Theory and Practice

Figure 11.20. An irreducible graph.

even if a control flow graph is irreducible, the analysis that yields sets R and A
nevertheless terminates and correctly computes the sets. It will just take more
time than a reducible graph with a comparable number of nodes.

The details ofthe reach algorithm based on intervals may be found in Allen
and Cocke's paper (Allen [1976]). The general reach algorithm is in two
phases. In the first phase, two items of information are collected by working
through the interval graphs in the order Gl, G2, ... (the order in which they
were constructed) as follows:

1. The definitions defined in the interval and locally available from it.
They will become a DB set for the node representing the interval in the
next higher order graph.

2. The definitions preserved by the interval; they will become the PB sets
for the next higher order graph.

In the second phase, the graphs are worked through in the opposite order of
construction; the set of definitions reaching each node is thereby generated.

The essential property of an interval that reduces the length of the analysis
is that control that reaches any node within the interval must have passed
through the interval header. We say that the header dominates the nodes ofthe
interval for this reason. Furthermore, an interval I' that is the successor of an
interval I is such that control must pass from some node in I into the header of
I'. By considering the interval sets in their generation order, the number of
path combinations to be considered are minimized.

It is interesting that Knuth, in his empirical examination of a number of
Fortran programs (Knuth [1971]), found that over 90 percent of their control
flow graphs were reducible, which implies that a control flow analysis based



11 Optimization 599

on intervals will generally be quite efficient. An analysis of programs written
in a more structured language, such as Algol or Pascal would undoubtedly
yield an even higher percentage of reducible control flow graphs. An Algol or
Pascal program without GOTO statements would be reducible.

11.5.5. Use and Live Information

Given the upwards exposed use Vi and the definitions Ri that reach a block
Bi in a program, the live set can readily be determined. However, this set
contains only the data items that are live upon entry into a block. It is usually
more desirable to know those items that are live on each of the exit edges from
a block. For example, register allocation requires live information on exit
from a block, rather than on entrance. Rather than retain both entrance and
exit information, it is better to retain live information for edges and 'construct
the entry live data item sets as needed; the latter is the union of the former
over the entering edges.

We then need the set of definitions Ae available on each edge. Then for a
given edge e, incident into node i,

Le = Ae n Vi

The algorithm for generating the Vi sets for the graph nodes by the use of
the interval sets again requires two phases, the first in interval generation
order and the second in opposite order. The first phase can be a part of the
reach algorithm. The second phase, however, works backwards through the
nodes in each interval.

The upwards exposed uses from each interval is found in the first phase as
follows:

Figure 11.21. Splitting states 3 and 4 in the graph of figure 11.20.



600 Compiler Construction: Theory and Practice

1. Prior to processing each interval h, a set Uh is created and initialized to
the upwards exposed uses in that interval.

2. For each node i in the interval (i = 2,3, ... ), Uh is updated with the
locally exposed uses UBi in i that can be preserved along some path
from h to i, which is done by forming the set

where the union is over the sets Pp; Pp is the set of data items preserved
on input edge p to node i. Its computation is part of the basic reach
algorithm.

The complete algorithms and a procedure in PL/1 may be found in Allen
[1976].

11.5.6. The Interval-Based Reach Algorithm

Inputs

1. The ordered set of graphs (Gl, G2, ... , Gn) determined by interval
analysis.

2. The intervals in each graph with their nodes given in interval process
order.

3. The definitions defined and preserved on each edge in the first order
graph. These are expressed in the DB and PB sets.

Outputs

1. A set R of the definitions that reach each node.

2. A set A of the definitions available on each edge.

Phase I
1. For each gtaphGg in the order Gl, G2, ... , Gn-l, perform steps 2 and 3

that follow:

2. If the eurtent graph is not Gl then initialize the PB and DB sets for the
edges of the graph. PH arid DB are initialized by first identifying the edge in
~-l to which each edge in Gg corresponds (these will be interval exit edges).
Then, usirlg the information generated during step 3 for Gg-l, for each edge i
in~ ~ith corresponding exit edge x from interval with head h in Gg-l, set:

(a) PBi := Px, and
(b) DBi := (Rh n Px) U Dx
3. For each exit edge of each interval in Gg, determine P, the definitions

preserVed on some path through the interval to the exit, and D, the definitions
in the interval that may be available on the exit. These definitions are found
by finding P and D for each edge in the interval as follows:



110ptimization 601

(a) For each exit edge i of the header node:

Pi := PBi

Di := DBi

(b) For each exit edge i of each node j (j = 2, 3, ...) in interval order:

Pi := (U Pp ) n PBi

Di := ({U Dp ) n PBi) U DBi

where the union over Pp and Dp is for all p input edges to node j.
While processing an interval, determine the set of definitions Rh that can

reach the interval head h, from inside the interval by

Rh := U D1

for all interval edges I which enter h. If there are none set Rh to 0.
Between phases I and II, the R vector for the single node in the n'th order

derived graph is initiated: R I = 0 or whatever set of definitions is known to
reach the program from outside.

Phase II
1. For each graph Gg in the order Gn-I, ... , G2, GI, perform the following

steps 2 and 3.

2. For each node i in Gg+I form Rh : = Rh URi' where h is the head of the
interval in Gg which i represents in Gg+I.

3. For each interval process the nodes in interval order determining the
definitions reaching each node and available on each node exit edge as
follows:

(a) For each exit edge i of the header node h

Ai := (Rh n PBi) U DBi

(b) For each node j (j =2,3, ...) in interval order first form

Rj : = U Ap , for all input edges p to j

then for each· exit edge i of j form

Ai := (Rj n PBi) U DBi

Exercise

Consider the graph GI and its higher order interval graphs shown in
figure 11.22. There are two variables, X and Y, and three definitions Xl'
X 4, and Y3•



602 Compiler Construction: Theory and Practice

Figure 11.22. A graph and its higher-order intervals.

(a) Show that figure 11.23 expresses DB and PB for the graphs.

(b) Show that figure 11.24 expresses the reach and availability sets Rand
A after the second phase of the reach algorithm.

Edge DB PB
G1 1-2 X1 X4 Y3

2-3 0 X1 X4Y3
2-4 0 X1 X4 Y3
3-e1 Y3 X1 X4
4-2 X4 X1 Y3
4-e2 X4 X1 Y3

G2 1-5 X1 X4 Y3
5-e1 X4 Y3 X1 X4
5-e2 X4 Y3

G3 6-e1 X1 X4 Y3 0

6-e2 X1 X4 Y3

Figure 11.23. DB and PB for the graph of figu re 11.22.



11 Optimization 603

Node Reach Edge Available

G3 6 {} 6-e1 X1 X4 Y3
6-e2 X4

G2 1 {} 1-5 X1
5 X1 5-e1 X1 X4 Y3

5-e2 X4

G1 1 {} 1-2 X1
2 X1 X4 2-3 X1. X4
3 X1 X1 2-4 X1 X4
4 X1 X4 3-e1 X1 X4 Y3

4-2 X1 X4

4-e2 X1 X4

Figure 11.24. REACH and AVAILABILITY sets for the graph of figure 11.22.

11.5.7. Applications of Data Flow Information

We are now in a position to outline a number ofuseful optimizations based
on the information developed in a data flow analysis.

Useless definitions. A definition d is useless if the· value assigned to the data
variable X in d is never subsequently required by any reference. The
definition d may be removed with no effect on the program. Let d reside in a
block Bi • Now d will be useless if:

1. Definition d is live on the Bi block exit, i.e., d is in L i .

2. No upwards exposed use of d exists on exist from Bi .

Let V' be the union of the sets Le for each edge e leaving block Bi . If dis
not in V', then d is useless. Set V'is a useful set of definitions.

Uninitialized Variable Use. If a use u is upwards exposed in the "start"
block Bo' then a path from the program origin to u exists that does not contain
a definition ofthe use data variable. Clearly, a test for potentially uninitialized
variables in a program is that V o = 0. We say "potentially", because data
flow analysis does not consider the logic of program branching, and it may
happen that the path to the uninitialized variable use cannot be followed
during program execution.

Basic Block Input and Output Variables. An input variable X of a block B
is such that a use u of X appears in B, and u is upwards exposed in B. As we
have seen earlier, we do not need a data flow analysis to identify input
variables of a basic block.

An output variable X ofa basic block B must appear in B (use or definition)



604 Compiler Construction: Theory and Practice

and is live on exit from B. The live set of course derives from data flow
analysis.

Loop Code Movement. Suppose that a loop is identified, as indicated in
figure 11.25. Bland B2 are some collections of code with single entries and
exits; these are not necessarily basic blocks. B3 is a basic block containing a
statement S of interest. T is a test for loop exit, and contains only uses.
Statement S has the form

x ~ () YI Y2 ••• Yr

where () is an r-ary operation, the X receives the result, and the Yi are the
operands.

It is sometimes possible to move S from B3 into block B1 without affecting
the program. If this can be done, we will have one execution of S in the
optimized program for every n executions in the original program, where n is
the number of loop iterations. Let us develop necessary and sufficient
conditions for such a code movement.

S can be moved to the bottom of B1 only ifno reachable definitions of any
of the Yi or X exist in B2, other than in S. Since block B2 is not necessarily
basic, we need the results of a data flow analysis.

s = X -- (j yl' Y2' ... Yr

Figure 11.25. Code movement of a statement 5 from block B2 to block B1 0



11 Optimization 605

Clearly, all of the uses Ui (1 ::; i ::; r) corresponding to the operands Yi in S
must be in the upwards exposed use set U20fblock B2. They must also be live
at the block B2 exit. These conditions guarantee that no loop path can change
any of the Y variables.

The definition ofX instatement S must be live at block entry B2 (therefore
also at exit of B2) and at block entry B3. This requirement clearly precludes
any other definitions of X in B2 (except in S and unreachable definitions);
such a definition would either kill the S definition at block B2 exit or at block
B3 entry.

11.6. BibliographicNotes

Nakata [1967] and Meyers [1965] developed the optimal algorithm for the
generation of code from· an expression tree; their algorithm yields the
minimum number of registers for commutative operators only. Sethi and
Ullman (Sethi [1970]) restated their algorithm, and showed that it is optimal
for noncommUtative and nonassociative operators as well as commutative
and associative-commutative operators.

The notion ofcollecting complicated nodes to the left of simple nodes for a
machine with noncommutative instructions that operate between a register
and memory can be traced to an early paper by Floyd [1961].

The discussion of blocks, block statements, and renaming is principally
drawn from Aho [1972b]. A presentation similar to ours may be found in Aho
and Ullman (Aho [1972]), chapter 11.

The data flow analysis material may be found in Allen and Cocke's paper
(Allen [1976]).

Beatty [1974] describes an algorithm that assigns registers in a highly
optimal fashion, and he considers both the local domain of a block and its
globalenvironment.,.

Bruno and Sethi (Bruno [1976]) and Aho, Johnson, and Ullman (Aho
[1977b]) show that the problem of code optimization for a general class of
single and multiregister machines, given a DAG with common subexpression
subsumption, is NP-complete, i.e., has a computational complexity that is
exponential in the size of the DAG. The significance of this result is that
optimal solutions can be demonstrated only for rather small DAGs.

Cocke and Kennedy (Cocke [1977]) has given a simple algorithm that
performs reduction of operator strength by moving certain statements out of
a FOR loop. A general discussion of loop strength reduction, identification of
induction variables, etc. is given in Aho and Ullman (Aho [1972a]), chapter
11.





CHAPTER 12

ERROR RECOVERY

12.1. Introduction

Since the source for a compiler or interpreter is generally prepared by a
person, it is likely to contain errors. The compiler must therefore have a
reasonable mechanism for dealing with errors. A set of objectives of a
satisfactory error recovery system are

1. Report the error, indicating its location.

2. Diagnose the error, as an aid to its correction.

3. Recover from the error such that subsequent errors are detected and
spurious error reports are not generated.

We shall see that these objectives can be approached, but not completely
met. Objective (1) can always be met, provided that the error has not been
masked by the recovery from a preceding error. Objectives (2) and (3) are
rather difficult to meet. Effective diagnosis of syntax errors is difficult, and
most error recovery systems tend to generate spurious error reports after
recovery from some error.

The correction of an error, such that the corrected program will execute the
programmer's intended algorithm correctly, is not feasiple with the com­
monly used programming languages. It would only be feasible if the
program's algorithm were to be expressed in two different, but equivalent
ways. With only one statement of the algorithm, and that statement
erroneous, a compiler can only patch over the error sufficiently well that it can
continue to parse the remaining portion of the program.

The compiler cannot in general determine the error made oy the
programmer; it sees only an error symptom, some condition reached during
the parsing process such that the parse cannot continue. An error mayor may
not immediately produce an error symptom; however, every error symptom
is the result of some error. For example, the following Fortran statement
contains one too many left parentheses:

A = B * (C - (D*F)

t

607



608 Compiler Construction: Theory and Practice

The error symptom is a missing right parenthesis, detected at the end of the
line, as indicated by the arrow t. However, the error could be earlier in the
line; perhaps the programmer intended to write

A = B * (C - D*F)

and entered an extra left parenthesis by mistake. The compiler cannot correct
the error in general, it can only report an errOr symptom, and the symptom is
often several tokens past the error. We shall often use the term error to refer to
an error symptom.

Error Diagnosis

A reasonable error diagnosis would be an indication of the location of the
error, and a brief message indicating the kind of error encountered. Some
errors cannot be detected until the end of a block or progrmv; it is especially
important that these be clear, and that as much informatidh as possible be
provided by the compiler.

The error messages generated during a compilation may be collected and
reported at the end of the compilation, or may be interspersed with the source
listing. An interspersed listing may be the only possible choice if storage
capacity is limited. Otherwise, the choice is a matter of user preference.

If interspersed messages are used, each one should contain a reference to
the previous one, and a message at the end of the program should refer to the
last message. Otherwise, an isolated error message is easily overlooked or
hard to find in a large listing.

An error summary at the end of a listing is important in order for a
programmer to quickly determine whether his program is free of errors, and
if it is not, to be able to locate each of the errors.

kinds of Error

There are three major classes of error, depending on whether they are
detected in the leXical analyzer (possibly induding a macro generator), the
parser, or the semantic checking sections of the compiler. We shall call these
scanner, syntax and semantic errors, respectively. A fourth class might be
established for a developmental compiler: compiler errors or bugs, presum­
ably never seen by an ultimate user, but useful during development to warn of
compiler states that should not have occurred.

A scanner error results from some problem in identifying a token, or
reaching an end of fil~ in the middle of a token, or failure to open or read the
source file. A diagnostic message can say nothing about the error's meaning,
but must be confined to the specific source problem found. Recovery from a
scanner error is relatively simple: if the file end is found within a token,



12 Error Recovery 609

terminate the program. If an invalid character is found, reject it and start over
with the next token. Tokens that require some parsing, such as floating-point
number tokens, will require attention to syntax errors whose nature should be
clear from the state reached during the scan. (The scanner is a finite-state
automaton.)

An unclosed comment or quoted string cannot usually be detected by the
scanner; its effect must be detected by the parser.

For example, consider the following program fragment:

MOVE 'SAM'S FRIEND' TO BUFFER;
MOVE 'FREDDY AND MARY' TO BUFFER;

The quote mark just following SAM in the first line causes the two lines to be
divided into tokens as follows:

token: MOVE
string: SAM
tokens: S FRIEND
string: TO BUFFER; MOVE
tokens: FREDDY AND MARY
string: TO BUFFER;

(etc.)

The remaining program is inverted-quoted strings will be regarded as
program material and. the program material will be regarded as quoted
strings. The scanner will in general be unaware of this until an end of file or
end of record is detected inside a quoted string. However, the parser will be
reporting a large number of syntax errors.

A macro error usually cannot be detected until the compiler attempts to
parse it. Then a simple macro error is often magnified into a voluminous error
report.

A syntax error is detected by the parser in a READ operation. Some token
x, called the error token, is incompatible with the state of the parser at the
point at which x is to be scanned. In an LR(l) parser, x is detected in a read
state P such that no transition from P on token x exists. In an LL(1) parser, x
is detected through a mismatch between x and a terminal stack top token, or
through failure to accept x on a nonterminal stack top in the transition table.

Error recovery in line-oriented source can be very easy. Line-oriented
source is subdivided into lines, such that the parser may (for the most part)
start over from a known state on each line. Thus when a syntax error is
detected in some line, recovery is simply a matter of skipping the rest of the
line and starting over on the following line. Whether the source is
line-oriented or not depends on the language. Fortran, Basic and APL are
examples of line-oriented source. Algol, Pascal, and PLjI are not.



610 Compiler Construction: Theory and Practice

Line-oriented recovery doesn't always work properly. For example, in
Fortran, a line can contain several declarations. If some of these are skipped
because of a syntax error earlier in the line, a number of semantic errors will
likely ~e reported later in the program. Also, if a syntax error occurs in the
first statement of a subroutine, special attention must be paid to getting the
compiler into a state that will accept the subroutine statements.

Error recovery in free-form source, for example Algol or Pascal, is more
difficult. There are no distinctive line boundaries to aid recovery. However,
certain tokens such as semicolon or END could be used in a recovery. PL/I in
particular has the rule that every statement is terminated by a semicolon, and
the semicolon has no other purpose. Hence PL/I error recovery can be
achieved by skipping source through the next semicolon.

A better strategy for free-form languages is to attempt to patch the region
of the error, by dropping and/or inserting tokens such that the sentence is
brought into the language. We shall discuss such approaches in section 12.3.

A semantic error is any error symptom in a section of source that is free of
syntax errors. A semantic error is detected through some special test called
out in an APPLY action. Since the parse has been successful, the nature of the
error is usually very clear, and a specific diagnostic message can be easily
formulated. Section 12.2 contains more details.

Semantic errors arise out of a failure to describe a programming language
through its grammar alone. (However, some languages, notably APL and
Algol 68, are fully defined through their grammars.) For example, the
attributes of a declaration may have to satisfy some relation that would be
difficult or impossible to define in a context-free grammar, or the sizes of
certain literals may be restricted in some fashion.

Effect of an Error on the Compiler

Suppose that an error is detected in a source program. What changes in the
compiler should take place? The answer to this question depends on the kinds
of errors that are to be subsequently detected, and on the nature of the code
generation process.

A block-structured, free-form program containing an error cannot usually
be repaired by the compiler to the complete satisfaction of the programmer.
Any repair made by the compiler is for the purpose ofcontinuing to check for
errors, not to create a "correct" program. Hence, once an error is detected,
there is no point in carrying out any compiler operations beyond those needed
for further error detection.

One question in error recovery design is whether semantic checking should
continue after a syntax error. One important semantic check is for undeclared
and misused identifiers. Should these be suppressed upon the first error or
not? There are two schools of thought. If semantic checking is discontinued,
then semantic errors past a syntax error are unreported. Ifsemantic checking



12 Error Recovery 611

is continued, it often happens that the recovery from a syntax error will cause
the appearance of spurious semantic errors. Syntax error recovery in a
declaration is especially likely to cause spurious semantic error messages.

It is certainly much easier to design the compiler such that all code
generation and semantics checking stop upon the first syntax error. The
compiler will also run faster in its "syntax-checking" mode, being relieved of
an appreciable number of synthesis operations. Whether this will be
appreciated by a user is not clear.

Most commercial compilers provide a limited amount of semantic
checking, at least the checking that normally would be made in the pass in
which an error was found. Users ofcompilers seem to accept the possibility of
spurious error messages, particularly when the compiler reports the sort of
changes it made in the user program during error recovery. Serious errors
found in one pass of a multipass compiler are usually sufficient reason to end
the compilation on that pass. However, all the syntax errors are found on the
first pass. Since semantic errors are usually easy to repair, it is possible to
continue with all the passes, given no syntax errors in the first pass.

Some compilers are designed to make incremental adjustments to a code
file through partial compilation. For example, one procedure out of a set of
procedures may be selected for a recompilation. This approach to compila­
tion reduces compilation time during program development and facilitates
writing procedures in different languages that are intended for the same
program. Ifthis is the case, the compiler is given a code file that it may update,
but should not destroy. It is then important that, upon an error, the code file
be closed without destroying its validity. Otherwise, a complete compilation
to reconstruct the damaged code file would be required after each syntax error
recovery.

A more difficult requirement for a compiler can be expressed as follows:
Accept a code file and update it with the code for every procedure that can be
correctly compiled, but do not update it for procedures that contain errors.
Although this appears to be an impossible requirement, in fact it can be
achieved. Essentially, a decision is made at the end of a procedure whether to
update the code file or not. An error found in the procedure, or in a covering
procedure, is sufficient to not update the file. It is still possible to damage the
code file on certain kinds of syntax error, but our experience indicates that,
given a reasonable error recovery strategy, the file is rarely damaged. Clearly,
ifany procedure code has been written to the code file prior to detection of an
error, there must be some means of marking it invalid, or removing it.

12.2. Semantic Errors

A semantic error is any error detected in an APPLY operation on source
that is free of scanner or syntax errors. Semantic tests are usually necessary,



612 Compiler Construction: Theory and Practice

owing to the inadequacy of a context-free grammar to fully define the
language. Some examples of semantic tests required in Algol are:

• Consistency ofan identifier's attributes with its appearance in the source.
A statement label should not be used as an expression variable, a simple
vabiableshould not appear with an index, a non-typed procedure should
not appear as a function, etc.

• Matched appearances of identifiers. In a procedure declaration, the
formal parameters are first listed, then declared. Each declaration must
correspond to one of the names in the list and vice versa.

• Limitations imposed by an implementation on the sizes of arrays, or the
number of variables. These depend on the magnitude of various
constants.

• Overflow in numeric arithmetic performed by the compiler.

Semantic errors are very easy to diagnose accurately, since the nature ofthe
problem is apparent from the apply action. Recovery requires some attention
to the possible side-effects. In general, some simple action should be chosen
that removes the semantic problem with no undesirable side-effects.

An undefined identifier should be reported and then defined by entering it
in the symbol table. Although its attributes are not always clear from its
context, there is usually sufficient information that some broad default
attributes can be chosen. If necessary, that symbol table entry can simply be
marked "entered through error." Then any subsequent misuse of the
identifier will not be reported.

Identifier misuse occurs through the appearance of some declared iden­
tifier in a context that requires a different kind of declaration. For example, a
statement label in Algol 60 cannot be used as a data item; it does not stand for
a numeric value. When a misuse is detected, it is usually because of a multiple
use of the same identifier. It is best, we feel, to add the attribute "error" to the
identifier and to suppress further complaints centered on it.

A literal value found to be out of range can easily be adjusted to a default
compatible with its context.

The possibility of overflow during compilation must be considered in any
arithmetic operation involving source data. In order to frame a suitable
diagnostic message and to recover gracefully, each such operation in the
compiler must be identified and suitably protected. Overflow can occur
through the conversion ofnumber representations to internal values, through
constant folding, or through memory allocation that exceeds the bounds
of the internal integer representations. These occurrences clearly call for
different kinds of diagnostic messages and recovery strategies.



12 Error Recovery 613

12.3. Syntax Errors

A syntax error is detected by the parser upon encountering some token that
is incompatible with its current state and stack. We shall discuss error
recovery for an LR parser in some detail, although an error recovery strategy
can be deve10ped for any of the deterministic parsers discussed in chapters 4,
5, and 6.

Most error recovery systems assume that one of three kinds of error exist:
insertion, deletion, or substitution. An insertion error results from the
presence of a token in the source string that, if removed, would result in a
valid sentence. An insertion error is defined by the following valid and invalid
derivations:

'I..,(S~+ xty) but (S ~+ xy)

Here t represents the incorrectly inserted token. A deletion error results from
the inadvertent deletion of a token that is needed for syntactic validity:

'I..,(S ~+ xy) but tS~+ xty)

Here t is needed to transform xy into a sentence. A substitution error is such
that a change of one token into another will yield avalid sentence:

'I..,(S ~+ xty) but (S ~+ xuy)

Here a change of token t to u yields a sentence xuy.
Iran error is one of these three kinds, we say that the error is simple. If, in

addition, each pair of errors is separated by a fairly large number of tokens,
we say that the errors are sparse. Most errors found in practice are simple and
sparse.

Even if errors are sparse and simple, a parser cannot always determine
which of the three kinds oferror produced the error symptom. A substitution
or insertion error usually results in an error symptom at the error token;
however, the error symptom may also appear later. For example, a BEGIN
inserted between two statements would be interpreted as a new block opening
(assuming that a semicolon may be either a separator or a terminator of
statements). The error symptom of the inserted BEGIN will not appear lintil
much later in the program, when the absent END manifests itself. A deleted
token can at best result in an error symptom on the token following the
deletion; again, it is possible that severai additional tokens are scanned before
the error symptom is seen.

We see that an attempt to uncover the "real" error is usually impossible. At
best, given full knowledge of the remaining input list, an error recovery
strategy can indicate the least number of repairs to the source text that suffice
to bring the source into syntax.



614 Compiler Construction: Theory and Practice

12.3.1. General Methods

Suppose that a program is known to have at most one error somewhere, of
one of the three kinds above. Then the error can be identified in 0(n2 )

operations, where n is the number of tokens in the program. We simply try
each of the three error types in every possible token position, and parse the
resulting string. Given one out of n sentence tokens, there is one insertion
error, m replacement errors, and m deletion errors possible, where the
language contains m terminal tokens. An LR parse requires Kn operations,
for some fixed K, hence a single error repair (but not necessarily "the" error
repair) can be identified in K(l +m2)n2 operations.

If an unknown, but bounded, number of errors is known to exist, then the
previous strategy can be repeated with combinations of 2, 3, 4, ... , k errors,
where k is the upper bound on the number oferrors present. A minimal repair
set can then be identified in K«l +m2)n2)k operations, or roughly 0(n2k)

operations.
A strategy for unknown k might then be as follows. Let k= 1, and explore

single errors. If a single error repair is found that yields a sentence, then halt.
Otherwise, set k:=k+ 1, and search for k error repairs that yield a sentence.
Continue to increment k and search for a k-error repair on each failure. A
valid sentence must be found before k = n; however, if it must continue that
far, we have performed 0(n2n) operations.

We clearly need a more efficient means of repairing errors. The bound
0(n2n) is much too large for any program of practical size.

Aho and Peterson (Aho [1972c]) describe an algorithm that will parse any
input string to completion in a time proportional to the cube of the input
length, provided the string contains only insertion, replacement, or deletion
errors. Essentially, they show how error productions can be added to a
grammar G to yield a grammar G'that accepts any string in G's alphabet. A
sentence is then parsed through Earley's algorithm (Earley [1970]); this
algorithm will parse sentences in any context-free grammar in 0(n3)

operations. The parse may then be interpreted such that a minimum number
of error productions are used in the parse.

Aho and Peterson have therefore shown that minimal error recovery can be
achieved in 0(n3) operations. For large n, this is still much too large for
practical purposes. Their approach also requires a separate error parser, the
Earley parser. The Earley parser may also be used for the error-free parse, but
it is less efficient than an LR(1) parser in time and space.

12.3.2. Diagnosis of a Syntax Error

How meaningful can a syntax error diagnosis be to a programmer?
Consider an LR(1) parser at an error symptom. The stack contains
information about the previous history of the program, and the top-of-stack



12 Error Recovery 615

state is a read state that expects a certain set of terminal tokens next; the error
token is not among them.

The easiest diagnostic message to generate is a list of those tokens that are
next expected; if the error token were one of them, then the error would not
have occurred. For example, the message

ERROR IN LINE 19.000, COLUMN 13
A := WAS FOUND, BUT POSSIBILI­

TIES ARE: + - * / t . . .

is a reasonable syntax error message. The list of possibilities is easily
generated from the outsymbols of the read state in which the error was
detected.

The top-of-stack read state is of course associated with some configuration
of items as a result of the LR(I) parser construction (see chapter 6). It is
conceivable that the configurations could be studied with the objective of
generating an error message catalog tailored to the kinds of productions being
worked on. Unfortunately, this can be an extremely laborious task-a typical
grammer may yield over a thousand read states, each of which would have to
be manually studied by someone. Any change in the grammar would render
parts of the catalog useless, or at least require a reexamination of the messages
and configurations.

Another diagnostic strategy is to simply report what was done to correct
the error. The programmer is then often impressed by what the compiler is
attempting to do for him and may well overlook the fact that the compiler is
unable to provide a meaningful correction to the error symptom. If several
tokens must be dropped or some tokens must be inserted, such a report would
be useful to most users.

12.3.3. Patching a Syntax Error

At the point of an error symptom in a bottom-up LR parser, we have a
stack ofstates... , S2' Sl' So, with So on top, and a remaining input string xa1a2
... , where x is called the error token. The error token x and the top-of-stack
state So are such that So is a READ or LOOKAHEAD state, and x is
incompatible with that state. State So can only be a READ state if the
LOOKAHEAD tables are incomplete; see chapter 6 for details.

The error recovery system should arrive at a new state stack and input
string such that parsing may continue. The new state stack need not be related
to the old one at all; however, the new input string should be derived from the
old one by only changing the first n tokens, with n reasonably small. We call
such a modification to the state stack and input string a patch. A patch
therefore consists of some combination of the following operations:



616 Compiler Constr!Jction; Theory and Practice

1. peletion of one or more left-most tokens of the input string.

2. Insertion of one or more tokens as prefixes of the input string.

3. Removal of states in the stack.

4. Pushing one or more states onto the stack.

Now the state stack can only be modified into some stack that represents a
viable prefix in the language; failure to ensure this condition will result in a
catastrophic failure later in the parse. The easiest way ofensuring it is to only
pop states from the stack or to add a state to the stack top that is compatible
with the existing stack top. A new state Q to be pushed on the stack must be
such that a transition from the top-of-stack state P to Q exists in the complete
LR finite-state control. .

The state stack represents a condensed history of all of the source material
that has previously been parsed. It carries such information as the nesting in a
parenthesized structure, whether one or more procedures have been entered,
whether a declaration or an executable statement is being developed, etc. We
contend that such information is useful in error recovery. For example, if the
stack indicates that four BEGIN's have b~en seen so far, the chances are good
that the four matching END's will appear past an error symptom.

Scanner Feedback

As much as possible of the remaining input string should be retained in
order to provide some measure of syntax checking of the rest of the program.
That is the whole point of error recovery. If the recovery strategy is to reject
the rest of the string and to replace it with a string compatible with the state
stack, then we really don't need error recovery.

Now an LR(1) parser will require the scanning of at most one token past a
handle. A reasonable strategy that we shall develop in the next section is to
make use of this next token and the stack contents to devise a patch. As an
improvement, we may read several tokens past the error token, in an attempt
to arrive at a more effective patch. However, the use of more than one token
can introduce some difficulties if the scanner is dependent in any way upon
the result of any parser apply actions.

For example, the scanner may be expected to classify identifiers by some
criterion in order to return one of two or more token codes associated with
identifiers. The scanner might have several states that guide its lexical
decisions, the states being partially set by apply operations. Ifsuch is the case,
we say thatfeedback exists between the apply operations and the scanner. It is
very desirable that no feedback from the apply actions to the scanner exist.

If feedback exists, then the scanning of tokens past the error token is not
reliable. There will be·ho apply operations resulting from such a scan to guide
the scanning, and the token codes supplied by the scanner are lij{ely to be
incorrect.



12 Error Recovery 617

Feedback should be avoided in the design of a compiler, regardless of the
error recovery strategy or of the apparent need for it in the language. If
necessary, the scanner may be based on some automaton whose state
transitions are determined by the tokens scanned, in order to identify certain
special tokens without feedback.

Given a feedback-free scanner, it is relatively easy to scan several tokens in
the input string past the error token. These tokens may then be used either to
construct a patch that is compatible with these tokens or to discard more
L.11put tokens until a patch can be devised.

Terminal or State Insertion

Consider a choice between inserting a terminal token T or pushing a state
P. State P corresponds to some terminal or nonterminal token T'. If T' is
terminal, then pushing P is clearly equivalent to inserting T'. Suppose that T'
is nonterminal, and that pushing state P causes the parser to accept the next
input token, and of course that P is compatible with the stack-top state. We
then effectively have a sentential form

wST'xy

where wS represents the stack, with S the stack-top symbol, T' is the inserted
nonterminal, x the error token, and y the remaining input list. Now the next
derivation step must be of the form

wST'xy =? wSt'xy

where a production T'~ t' exists. If It'l = 1, we again see that an insertion of
t' is equivalent to pushing P; by inserting t', the LR(1) parser will reduce t' to
T', since t'must be the handle ofwSt'xy.

We conclude from this discussion that if a nonterminal T' can derive a
single terminal or nonterminal symbol, then any state whose insymbol is T'
need never be pushed on the stack during error recovery; it is sufficient to
insert one of the derived terminals. We need only consider pushing those
states P whose insymbol T' is such that T' derives either the empty string or
strings of length greater than 1.

A similar result holds for the insertion of terminal strings of length 1, with
1> 1. However, the number of possible string insertions grows exponentially
with the string length, and we feel that it is infeasible to consider the insertion
of more than one terminal token.

Now most terminal token data structures are empty, while many of the
nonterminal data structures are nonempty. Further, a simple default data
structure can always be selected for those terminals with a structure, while the
nonterminal data structures are often more complicated, perhaps requiring
links to the symbol table or to other structures. It is clearly desirable to reduce
the number of inserted nonterminals to a minimum. An inspection of the



618 Compiler Construction: Theory and Practice

grammar is sufficient to find those nonterminals for which no terminal
insertion is an equivalent substitute. It is then feasible to add special error
productions for each of these nonterminals, of the form T ~ x, where Ixl = 1
and x can be any terminal. The appearance of such a production can only
occur during error recovery, but can be exploited by the apply actions to
create a suitable data structure for T.

Given a grammar such that for every nonterminal T, a production of the
form T ~ x exists, with Ixl = 1, then nonterminal insertion as an error
recovery strategy is unnecessary. Only terminal insertion, state dropping, or
input token deletion is needed.

12.3.4. Semantics Operations in Error Recovery

Recall that an abstract-syntax tree (AST) is built as a linked list in a
semantics stack, and that the semantics stack is associated with the parser's
state stack (see chapter 7.) Now assume that some semantics operations are to
be continued through a syntax error recovery. It is obviously vital that the
integrity of the semantics stack structures be preserved through any error
recovery patch.

If states can be removed in a patch, then no forward links in the state stack
data structures should exist. That is, there should never be a pointer from
some structure in the stack to a structure closer to the stack top. All pointers,
if any, must be directed from the stack top inward.

If a state is pushed on the stack through a patch, then a data structure
compatible with that state should be pushed as well. The structure will
correspond in general to some terminal or nonterminal symbol in .the
grammar associated with the pushed state. If several kinds of structure are
possible, the least complicated should be chosen. If necessary, special "null"
structures might be devised in order to avoid difficulties in creating a suitable
data structure.

We see that every new pushed state should be associated with some data
structure valid for that state, and that pointers in a data structure should never
point to structures associated with states higher in the stack. If these rules are
rigidly adhered to, then the synthesis operations may be continued through an
error patch to whatever level seems desirable for effective semantic error
reporting.

12.3.5. A Bounded-Range Error Recovery Strategy

We first develop an error recovery system that does not require a lookahead
of more than one token in the input string. It is therefore suitable for a
compiler with feedback to the scanner.



12 Error Recovery 619

1. Upon encountering a syntax error, the stack will consist of the states

where So is the stack top state. Let X be the error token (next in the input list)
and let So be a READ state. Then X is not among the tokens in the transitions
from So. Set a flag ERFLAG that indicates that error recovery is in progress.
Make a copy of the stack for the sake of stack restoration. Set variable j: =0; j
will mark the current stack top. In the following steps, the operation "restore
the stack" will result in the stack

This is the original stack, less the top j states.

2. Terminal insertion. For every terminal T that is accepted by state Sj'
insert T before X in the input string and attempt to parse the input string
through token X (but not past X). If a T exists such that the parse is
successful, we have found a patch. Otherwise, restore the stack (after each
trial) and continue.

3. Nonterminal insertion. Let Sf be some state that is compatible with Sj.
(There exists a transition from Sj to Sf on a nonterminal in the complete LR
FSA.) Push Sf and attempt to parse X with the resulting stack. If an Sf exists
such that the parse is successful, we have found a patch. Otherwise, restore
the stack and continue.

4. Dropping a state. If j = n, go to step 5. Otherwise, set j: = j - 1. Attempt
to parse through X with the new stack. If successful, we have a patch.
Otherwise, restore the stack and go to step 2.

5. Bottom of stack. Here j=n. Set j=o. Restore the stack. Read the next
token, call it X, then go to step 2.

Upon finding a patch in the above algorithm, the stack should be restored
and ERFLAG reset. We know that the stack will represent a viable prefix,
and that a parse through the current next token X must succeed. Whether the
parse will succeed through subsequent tokens is unknown.

The nature of the patch depends on the order in which insertion tokens are
produced in steps 2 and 3. It may happen that several alternative patches are
possible with a given j and X; the algorithm simply accepts the first one that it
finds.

The nonterminal insertion operation 3 may be eliminated through the use
of error productions, as explained in section 12.3.3. Elimination of this step
eliminates considerable difficulty with the creation of a suitable semantics
stack structure associated with the nonterminal or, more accurately, places
their creation in the apply operations where they belong.



620 Compiler Construction: Theory and Practice

Discussion

We have found that the recovery with this simple strategy is not
particularly effective. There are several problems as follows:

• There is a tendency to remove more states from the stack than is really
necessary. Spurious error reports are often the result of removing too
many states from the stack.

• Often an inserted token is an unfortunate choice. For example, we found
that a relatively common syntax error caused the token CASE to be
inserted under this algorithm. The CASE statement is highly structured,
and the insertion of CASE is rarely needed, hence many subsequent
spurious errors were generated.

• The information in the input list past the error token X is not used. This
information could be used to more effectively select j or an insertion
token or to force more input scanning.

12.3.6. Variations on the Bounded-Range Strategy

Several variations on the bounded-range strategy can be devised to correct
some ofthe deficiencies given above. Ofthese, we have studied error recovery
based on the first two rather extensively. A discussion of the strategy's
effectiveness is given in section 12.3.9.

1. The tokens that may be inserted may be limited to a subset of the
grammar's alphabet. In addition, a limit may be placed on the degree to which
the stack can be reduced by dropping states. We find the following
guideliness to be effective.

(a) Select a set of tokens that should not be inserted. We feel that these
should be terminal tokens and that each one would, if it were to be inserted,
demand some subsequent structured form that is unlikely to be present in the
source. Candidates for the "don't insert" list are such keywords as PROCE­
DURE, IF, CASE, WHILE, VAR, to draw from Pascal as an example
language.

(b) Select a set of states S' such that if S' =Sj, then j will not be
decremented. State S' can best be chosen by selecting a set of tokens T' such
that the states S' are accessed by the members of T'. We feel that the members
of T' should be those terminals and nonterminals that represent the heads of
major structures in the language. Such tokens as PROCEDURE, CASE,
BEGIN, etc. are reasonable candidates for this list.

Once these two lists have been chosen, the error recovery strategy given
above is modified by permitting an insertion only of tokens not in the list (a)
and not reducing the stack below a state in the set S', list (b).



12 Error Recovery 621

These lists provide a means of tuning the recovery algorithm for a
particular language and its grammar. Effectively, they convey information to
the recovery algorithm regarding the kinds of errors that are expected in
practice. It is our opinion that certain kinds of error are difficult to correct
satisfactorily by whatever means. These usually stem from failure to note
critical keywords that introduce major program structures. If one of these
keywords is misspelled or absent, it is hard to imagine an error recovery
strategy that can infer that problem without a major analysis of the remaining
input list, especially if some other defective patch is compatible with the
information at hand (stack and following few tokens).

Given such a difficulty with critical keywords, it is reasonaql~ to conclude
that, if present, they are important recovery indicators, not to be discarded
lightly, and if absent, they should not be inserted.

2. As an improvement on variation (1), report a syntax or semantic error
only ifno error has been reporteg on the last m tokens, where m i§ some small
number. That is, if an en;pr is seen on a token ao in the string ~Oal ...ak'''' then
we report an error found at token. ak only if k>m. Note tha~ only error
reports are affected, not the recovery. This variation results in an improve­
ment, however, since the chances are good that an error found in the wake ofa
previous error is spurious and caused by poor recovery rather than a genuine
error. Since each error resets the token count, several sequential error reports
may be suppressed.

Of course, tb,js improvement inciffases the risk that a real error will go
unreported. .

3. If the compiler is feedback-free, accept a patch with the above error
recovery strategy only if the next m tokens in the input list are accepted,
where m» 1. By attempting to scan more·than one token in the input list, the
chances of finding a valid recovery are increased. Essentially, there are more
clues if more tokens are considered; the possible patches are more con­
strained. Of course, if no patch can be found, input tokens must be dropped.
Eventually, either the source is completely scanned or a patch is found.

This variation may be combined with (1) and (2) above, as an improve­
ment.

12.3.7. Forward Move

Given that the objective of error recovery is to continue parsing with a
minimum of subsequent spurious error reports and with' a maximum of
checking of the subsequent input text, it would appear that the input text past
the error point is of considerable importance to an effective error recovery
strategy.

We owe the notion of a forward move to Graham and Rhodes (Graham



622 Compiler Construction: Theory and Practice

[1975]), who studied error recovery in an operator precedence parser. A
forward move is essentially an attempt to reduce, through parsing actions, a
portion of the text following the error token before selecting a recovery
strategy. Those reductions are made that would have to be made in any parse.
A forward move reduces the number of trials needed for a feasible error
recovery solution and increases the forward context information needed for
an effective recovery.

With operator or simple precedence, a forward move is relatively simple.
The error token and the remaining input list is assumed to be some string to
be parsed, with the usual "start" token included as a prefix. Reductions are
then made as usual, halting when another error is found. Recall that an error is
detected through either a token pair that is not in the precedence table, or
through a handle that fails to match any production right member. The
forward move may also continue to the end of the input list.

Penelloi [1978] has developed a forward move algorithm suitable for use
with an LR(1) parser. In his scheme, an LR parse is begun just past the error
token (it could also just as well begin with the error token), with a special
parser called an error parser. Each state of the error parser represents a set of
states ofthe LR(1) parser. The initial state consists ofall those read states that
can accept the first input token of the remaining input list. The error parse
continues through read, lookahead, and apply actions, just as in an LR(1)
parser, except that every action must agree (in a sense to be described more
precisely next) and any apply action must be such that there are sufficient
states on the stack to support the action.

Let Q' represent a set of states in the error parser and T some token to be
next read. Then a transition in the error parser on (Q',T) is permitted only if
each ofthe states q' in Q' either (1) have no move on T or (2) those that show a
move agree in action. That is, if any of the Q' states call for a READ action,
then every state must either call for READ or for ERROR. (An ERROR
simply means that some state will be dropped from the state set on the move.)
Ifany ofthe Q' states call for a APPLY, then every state must either call for a
APPLY on the same production or for ERROR. If any of the Q' states are
ACCEPT, the forward move halts. Finally, if an APPLY move is indicated,
and there are insufficient states in the forward move stack to support the apply
action, the forward move halts.

A special stack is used for the forward move, initially containing only th~

state set accepting the first token. Given a READ action, a set of states
representing the successor states of the members of Q' on token T is pushed
on this stack. Given an APPLYaction such that sufficient states exist on the
stack to support the action, those states are popped and replaced by the
indicated apply set.

The action of the forward move is essentially to perform a number of
reductions of the input following the error token. It condenses the informa­
tion in the input list and can be used to devise a patch. It is possible that the



12 Error Recovery 623

forward move may continue to the end of the program and perform a large
number of reductions. It may also halt within one or two tokens, either due to
another syntax error, or for some other reason.

Consider a right-most derivation

S~*vAy~vwxy

where A~ wx is a production. vw is some viable prefix of the sentential form
vwxy. We say that z is a viable fragment of the viable prefix if z is a suffix of
vw. Further, we say that U is a derived viable fragment of the sentence suffix
zy if (1) U derives z, and (2) during a parse of any sentence ending in zy, at
some point the parser must reduce z to the viable fragment U.

Penello shows that his forward move yields a viable fragment U that
represents the largest possible subsequent input string. Let that string be z.
Then U ~+ Z is a derivation that must be made eventually by any parse.

12.3.8. Correction Strategies with a Forward Move

Pennello proposes a heuristic for error correction, given an existing state
stack and a forward move. It is a variation on the bounded-range error
correction strategy given in section 12.3.5. However, he can make effective
use of the forward move information by looking for a correction that
incorporates the states beyond the error point. This amounts to requiring that
any repaired configuration be parsable far beyond the error token. An
experimental evaluation of his scheme is given in 12.3.9.

Mickunas and Modry (Mickunas [1978]) propose reversing the parse
represented by the state stack in some cases in order to achieve an effective
patch. This involves much more than just dropping states-it must be
possible to reconstruct the parse steps in reverse and obtain some previous
stack. A parse reversal can only be achieved by maintaining a· complete
history of the parse, or by keeping on hand the tokenized input string, along
with input string positions in the stack. This information must be kept for any
parse, and represents a cost of compiling error-free as well as erroneous
source text. Parse reversal also carries significant semantic implications-the
semantic actions should also be reversed if the intention is to continue
semantic actions through an error recovery.

However, if a parse reversal is possible, their approach apparently yields a
good repair of a number of otherwise difficult syntax errors.

Their algorithm consists of two phases-a condensation phase and a
correction phase. The condensation phase is essentially a forward move. A set
of states S that can shift on the error token is determined, and a parse is made
of the remaining input string, using one of the states in S as a start state. A
forward move terminates in one oftwo ways: (1) an attempt is made to reduce



624 Compiler Construction: Theory and Practice

over the error point, or (2) another error occurs. In case 2, the parse
configuration is called a holding candidate, and is held for possible use when
other strategies fail. In case I, the configuration is called a correction
candidate.

At least one correction candidate will always be found- it may be the error
configuration itself. If several are found, they are independently examined.

The correction phase is a systematic recovery strategy that incorporates the
following unit operations:

• Insertion of a terminal token.

• Retreating the parse. By this, they mean reversing the parse represented
by the state stack to some former configuration

• Dropping a state representing a terminal token from the stack. If no
terminal token is on the stack top, then a parse must be reversed until one
is. When a state is dropped, the set of possible insertion tokens changes.

• Assigning a cost to each insertion and each stack deletion, and ac­
cumulating a total cost for some strategy path.

• Abandoning a strategy path when its cost exceeds a preset limit and
launching an alternative path.

· If all else fails, a holding candidate is selected, and the entire condensa­
tion-correction strategy is recursively invoked on it. Recall that a holding
candidate is generated when a second parsing error is encountered during
a forward move.

There are usually many different paths to follow, depending on the results
of the condensation phase and on the number of insertions that are found to
be compatible with some stack and the condensation states. A path is followed
until either a successful repair is found, or the net cost exceeds a preset
threshold. All the paths are followed, and a repair with least cost (if any) is
selected.

The correction phase will never drop the error token. If it succeeds in
finding a path involving one or more of the operations listed above it reports
success, and an effective recovery patch is found. If it fails, then tpe error
token must be dropped and new condensation and correction phases must be
launched.

This error recovery scheme was implemented on a small grammar
containing about 40 productions and 356 states. Some examples of recovery
follow.

Example 1.

The program segment

. . . READ A B[20] WRITE A; GOTO . . .



12 Error Recovery 625

should carry a semicolon just before the WRITE. The error configuration is

READ <input-list> <identifier> [ <expr> ]
? WRITE A; GOTO . . .

where "?" marks the error. The condensation phase produces one correction
candidate:

READ <input-list> <identifier> <expr>
? < statement> ; GOTO

associated with two possible reductions:

<statement> ::=G= <identifier> : <statement>
and

<statement-list> :: = <statement-list> <statement>

In the first case, no single insertion repair is possible, so the parse must be
reversed. Token "]" is dropped, <expr> is then expanded to "20", the "20"
is dropped, the "[" is dropped, and this path terminates due to excessive cost.
(Each insertion or deletion costs 2 units. A path is terminated when the net
cost exceeds 5 units.)

This leads to the second case. Here the insertion ";" provides a repair at a
cost of2.

Example 2.

The program segment

... X := Y : A := B ; GOTO ...

is repaired if the colon after Y is replaced with a semicolon or": =". The error
configuration is

< statement-list> < leftpart> < identifier>
? A : = B ; GOTO . . .

In order to see why this configuration is reached, a < leftpart> production
IS

<leftpart> ::= <identifier> : =

The characters ":" and "=" are considered separable for parsing purposes,
hence a missing "=" component of the expected ": =" has produced the
given error configuration.



626 Compiler Construction: Theory and Practice

The condensation phase produces two correction candidates:

< statement-list> < leftpart> < identifier>
? <assignment> ; GOTO ...

and
< statement-list> < leftpart> < identifier>

? <statement> ; GOTO ...

The first of these stems from an attempted reduction

<assignment> ::= <leftpart> <assignment>

and the second from two possible attempted reductions:

<statement> :: = IF <boolean-expr> THEN
<statement> ELSE <statement>

and
<statement> ::= <identifier> : <statement>

In the first of these, only the <statement> following the ELSE can
possibly be associated with the < statement> following the "?" in the
correction candidate. Recall that a forward move disregards the state stack
preceding the error point, hence has no basis for disregarding the obviously
complicated attempted reduction.

We therefore have three cases, one from the first correction candidate and
two from the second.

In the first case, the correction phase finds an insertion repairing the error
at a cost of 2 units.

In the second case, the correction phase quickly exceeds the threshold cost
with stack deletions. It effectively attempts to find an IF-THEN-ELSE
statement in the stack and its reversed parsing. Since no such statement exists,
this path can only drop states from the stack until the cost threshold is
exceeded.

In the third case, the correction phase backs over ":", backs over
<identifier>, expands <leftpart> to "<identifier> :="thendeletes "="
(at a cost of 2), to yield the repaired configuration

<statement-list> <identifier> : <identifier>
<statement> ; GOTO ...

Example 3

The program segment

... BEGIN X := Y ; Y Z WRITEXY;.



12 Error Recovery 627

requires either dropping the BEGIN or inserting "END ;" before the
terminating period. The reduction of this segment eventually yields the error
configuration

<statement-list> BEGIN <statement-list>
< statement> ; ? .

The condensation phase has only the period to work on; however this token
appears as part of the production

<program> :: = <declaration-list> <statement-list> .
It therefore selects this reduction, and yields a correction candidate identical
to the error configuration. The correction phase then fails to find a token
insertion (the grammar requires insertion of "END ;", not just "END".) It
therefore backs up over ";", <statement>, <statement-list>, and deletes
BEGIN, at a cost of2. (Backups and reverse parses carry no cost.) This yields
a repaired configuration

... <statement-list> <statement-list> <statement> .

The repaired configuration is not right-most canonical; the < statement­
list> productions are:

< statement-list>

Discussion

< statement-list>
< statement-list> < statement>

Mickunas' scheme appears to yield a very effective recovery in a number of
difficult error situations. However, it requires not only a forward move, but a
reversal of the parse in the stack. In addition, the repaired configuration will
not necessarily represent a right-most canonical sentential form. (See
example 3 above.) It is also not clear at what point a path should be
terminated. If the termination cost is set too high, then the number of cases to
examine expands voluminously; if set too low, the scheme will drop tokens
unnecessarily.

As we have seen, a forward move requires a pure syntax-one in which the
recognition of every token can be achieved by the scanner alone with
additional semantic information such as might be contained in a symbol table.
A parse reversal has more serious semantic implications. It may be simplest to
just abandon all semantic actions on the first syntax error, since the needed
repairs to the semantics stack are so difficult. Hewever, it then becomes
necessary to abandon all hope of checking for semantic errors after the
recovery is complete.



628 Compiler Construction: Theory and Practice

12.3.9. Empirical Study of Error Recovery

A realistic view of the error recovery problem is that an optimal solution
with a reasonable time bound is unlikely to be discovered in the near future.
Error recovery is now, and may continue to be, achieved by heuristic
methods, with less than optimal effectiveness.

Given this situation, the relative merit of two error recovery algorithms is
impossible to assess on theoretical grounds alone, assuming that reasonable
means are used to reduce the computational complexity of the methods.

Nevertheless, we would like a reasonably objective means of evaluating an
error recovery strategy, for the sake of selecting an error recovery strategy.
We propose an empirical measure of error recovery, based on the systematic
analysis of a "random" sample of programs, each containing one error.

There are of course a large number of random variables to consider. The
language and its grammar have an important influence on error recovery. The
kinds of errors that programmers typically make is also of interest. An
occasional poor error recovery is excusable if the strategy performs well on
the more frequent errors. For example, the use of a semicolon as a statement
terminator (i.e., just before an END or an ELSE) is a common error in Algol
60. A mispelling of PROCEDURE is less common, if for no other reason
than the infrequent appearance of the keyword PROCEDURE compared to
the semicolon. If a strategy recovers well from semicolon errors, but badly
from a misspelled PROCEDURE, then it is likely to be acceptable for all
practical purposes.

Finally, the error recovery method itself may require some tuning, for
example, in a weight function, or in the selection of "don't insert" tokens, etc.

We propose evaluating error recovery through an experiment with a large
number of programs. The programs need not be identical, but must contain
exactly one error each, preferably near the beginning of the source. If the
error recovery strategy reports exactly one error and recovers within one
token, ready to detect more errors, then it has performed satisfactorily. We
find instead that in many cases, two or more errors are reported because of a
nonoptimal error recovery, or that a large number of tokens are rejected. We
may then interpret the relative number ofsingle error reports and the number
of rejected tokens as a measure of effectiveness of the error recovery strategy.

We leave unresolved the issues of language, grammar, typical programs,
and typical program errors. Research is clearly needed in these areas. What
features of a language or grammar cause error recovery to be particularly
difficult? Given a language, what errors are most likely to be made by
programmers? We have no answers to these questions.

An Error Recovery Experiment

We now describe an experiment in error recovery in some detail, using the
bounded-range strategy described in section 12.3.5, with variations 1 and 2.



12 Error Recovery 629

In variation 2, a syntax error is reported only if no syntax error was found
within the last m tokens. Results are obtained with m=O (i.e., every error
reported) and m = 3 (report made only if no report in the last 3 tokens) and
compared.

A single program of 37 lines, called the basis program, was used for the
experiment. Seventy-five copies were made, and a single error was introduced
into each copy.

The error-free basis program is given below. It is written in a language
similar to Algol 60. This program contains some outer block declarations, a
procedure, some control structures, a procedure call, and several assignment
statements with expressions.

INTEGER I,J,K;
REAL CONSTANT ARRAY RCA:=(l5,17,29,30);
REAL ARRAY R(75);
PROCEDURE SAM(X,Y);

INTEGER X;
REAL ARRAY Y;

BEGIN
INTEGER L: = 16,M;
REAL ARRAY RA(18);
L:=25*M-RA/(I+ J);
X: = INTEGER(Y(3»;
IF X<25E6 THEN
BEGIN

L:=25;
X:=55

END
ELSE

BEGIN
L:= 15;
X:=50

END;
END;
CASE 1+ 15 OF
BEGIN
2: 1:=25;
5..9: J:=55;
ELSE: IF 1=5 THEN J:=65;
END;
WHILE J>O DO 1:=1+ 1;
SAM(J,R(3»;
I:=J:=25;
SAM(I,R);



630 Compiler Construction: Theory and Practice

K:=55;
K:=K+(I- 1);

The errors introduced into the 75 copies are classified as follows. This
classification is based on the modification made to the original source to yield
the defective source. In most cases, the error symptom could be interpreted in
more than one way, however:

• 10 misspelled keywords (BEIGN for BEGIN, IFF for IF, etc.).

• 1 interchange oftwo keywords.

• 32 token insertions.

• 18 token deletions

• 10 token substitutions

• 2 misspelled user identifiers

• 2 misplaced statements, i.e., a declaration appearing within executable
statements.

Here are two examples oferror recoveries, one "good" and another "bad."
These examples also illustrate a particular reporting scheme.

Example 1: A "Good" Recovery

10.000
11.000
12.000

o 1
o 1
6 1

INTEGER L:= 16,M;
REAL ARRAY RA(18);
L:=25*(M-RAj(I+ 1);

ERROR IN LINE 12.000
A ; WAS FOUND, BUT POSSIBILITIES ARE: )

STACK: <START> <DECL-LIST> ; <PROCEDURE-HEAD>
<PROC-FP-HEAD> <BEGIN> <LOCAL-DECLARATIONS>
<RREF> := <TERM> <MULOP> ( <EXPR>

TOKEN ) INSERTED
13.000 22 1 X: = INTEGER(Y(3»;
14.000, 30 1 IF X<25E6 THEN



12 Error Recovery 631

Background: From left to right in the first line is the edit line number
(10.000), location of the instruction (0), a BEGIN-END level count (1), and
the source line (INTEGER L:= 16,M;).

Line 12.000 contains the syntax error-a missing right parenthesis. The
error report given is easily generated from the LR(1) tables and the state
stack. The error token is the semicolon found at the end ofline 12. A number
of reductions and lookahead transitions have occurred, such that only a right
parenthesis is acceptable to the top-of-stack state, corresponding to the
nonterminal < EXPR> .

The stack is listed, for the sake of compiler development. It would be
meaningless to the average user and should be suppressed in released versions
of the compiler.

The recovery selected is exactly optimal-insertion of a right parenthesis.
Note that a terminal insertion with no stack reduction is attempted first; a
parse through the insertion and the following token (;) was successful, and a
viable solution has therefore been found.

Example 2: A "Poor" Recovery

14k200
15.000
16.000

30 1
35 1
35 1

IF X<25E6 THEN
BEING

L:=25;

ERROR IN LINE 16.000 OF MODULE SPLTEXT
BEING IS NOT DECLARED.

ERROR IN LINE 16.000 OF MODULE SPLTEXT
A <IDENTIFIER> WAS FOUND, BUT POSSIBILI­
TIES ARE: :=

SEE PAGE 0001, LINE 16.000 FOR PREVIOUS ERROR

STACK: <START> <DECL-LIST> ; <PROCEDURE-HEAD>
<PROC-FP-HEAD> <BEGIN> <LOCAL-DECLARATIONS>
<STLST> ; <IF-HEAD> <RREF>

TOKEN := INSERTED
17.000 41 1 X:=55
18.000 0 1 END
19.000 0 0 ELSE

ERROR IN LINE 19.000 OF MODULE SPLTEXT



632 Compiler Construction: Theory and Practice

A ELSE WAS FOUND, BUT POSSIBILITIES ARE: ;

SEE PAGE 0001, LINE 16.000 FOR PREVIOUS ERROR

STACK: <START> <DECL-LIST> ; <PROC-LIST>
TOKEN ELSE DROPPED

20.000 0 0 BEGIN
TOKEN; INSERTED

21.000 0 1 L:= 15;

ERROR IN LINE 21.000 OF MODULE SPLTEXT
L IS NOT DECLARED.

SEE PAGE 0001, LINE 19.000 FOR PREVIOUS ERROR

22.000 2 1 X: = 50

ERROR IN LINE 22.000 OF MODULE SPLTEXT
X IS NOT DECLARED.
SEE PAGE 0001, LINE 21.000 FOR PREVIOUS ERROR

23.000 4 1 END;
24.000 4 0 END;

ERROR IN LINE 24.000 OF MODULE SPLTEXT
A END WAS FOUND, BUT POSSIBILITIES ARE: <IDENTI­
FIER>

<PROC/SUBR-IDENTIFIER> ...

SEE PAGE 0001, LINE 22.000 FOR PREVIOUS ERROR

STACK: <START> <DECL-LIST> ; <PROC-
LIST> <XSTARTX>

<STLST> ;
TOKEN END DROPPED
TOKEN <PROC/SUBR-IDENTIFIER> INSERTED

25.000 5 0 CASE 1+ 15 OF
26.000 10 0 BEGIN
(Note: Parsing is successful from here on)

Here, a misspelled BEGIN triggered three syntax error reports and three
semantic error reports. The first report is a semantic report that BEING is
undeclared (line 15.000). Since BEING is not recognized as a reserved word,
the compiler assumed that it was an identifier.

This semantics report should have followed line 15 immediately. How-



12 Error Recovery 633

ever, no apply action was taken on BEING until a lookahead ofone token was
made. This lookahead required the next source record, and the source records
were printed as read. Thus line 16 was read, some reductions were made, and
eventually the semantic error associated with BEING was detected.

This kind ofmisdirected error message can be avoided by carrying a source
token position indicator in the semantics stack. Then an error associated with
some token can be accurately connected to a source line and token.

This semantics report is followed immediately by a syntax error report.
The stack indicates that an assignment statement, with BEING the left
member, was selected as a feasible recovery solution. This solution is valid
for the following line 16, "L: = 25"; multiple assignments of the form

A:=B:=C:=25

are legal in this language. So far, so good.
However, a BEGIN is missing in this program, and its absence is noted in

line 19, when an ELSE is found unconnected with the IF-THEN started in
line 14. Note that this connection could have been detected by a forward
move. The ELSE is dropped, and a semicolon is inserted to repair problems
related to the dropped ELSE.

Something else has happened-the absent BEGIN has effectively caused
the end of the procedure SAM in line 18. Then the local variables of SAM
become undeclared, resulting in two semantic errors (lines 21, 22).

Finally, the extra END in line 24 must be accounted for; the only viable
solution is to drop it, leaving a semicolon out of place. A dummy procedure
call (a legal statement) is inserted before the semicolon, and the remaining
program is thereby accepted without error symptoms.

Summary of Error Recovery Experiment

The performance of our error recovery strategy in the 75 programs is
summarized by the bar charts of figure 12.1. Each chart shows the fraction P
(ordinate) of programs that exhibited n error reports (abscissa), with n = 1, 2,
3,4, 5, and greater than 5. Charts (a) and (b) illustrate an error recovery in
which every error is reported, and charts (c) and (d) illustrate error recovery
with variation 2 (error report suppressed ifwithin 3 tokens of a previous error
symptom). Charts (a) and (c) are for syntax errors only, and charts (b) and (d)
are syntax and semantic errors. Every semantic error was reported, whether
near a previous one or not. If nearby semantic errors were suppressed, we
would expect some improvement in graph (d).

Graph (c) shows that the bounded-range strategy is quite effective, if only
syntax errors are considered. Over 80% of the recoveries were optimal (one
error symptom reported), and none of the recoveries reported more than 5
symptoms. If the semantic errors are also considered, the recovery is only
60% effective (graph (d)), and about 6% of the recoveries generated more than
5 symptoms.



634 Compiler Construction: Theory and Practice

(a) Syntax only (b) Syntax and semantics

100% 100%

80 80

60 ...- 60 Every
p p error

40 40 reported

20 20

0 -..J'"'"'"1- 0
012 3 4 5 75 o 1 2 3 4 5 75

n n

(c) Syntax only (d) Syntax and semantics

100% 100%

80 ...- 80 Syntax
report

60 60 suppressed

p p if < 3

40 40 tokens
from

20 20 previous

~
error

0 0
0 1 2 3 4 5 75 o 1 2 3 4 5 75

n n

Figure 12.1. Summary of error recovery experiment. P= percentage of programs with
n reports, n=number of error reports.

Very few input tokens are dropped in the average recovery, as indicated by
the distribution in figure 12.2. No tokens were rejected in about 57% of the
cases, and one token was dropped in 27% of the cases. In no case were more
than five tokens dropped. Thus 84% of the recoveries were effected by
dropping one or no tokens.

These results may be somewhat misleading, since the program chosen was
rather small. The recovery is sometimes very bad in a large program. For
example, an error in a long list of repeated constants or expressions
sometimes causes a cyclic recovery failure in which a large number of
spurious errors are reported or a large number of tokens are dropped.

Results of Pennello's Forward-Move Recovery Strategy

Pennello [1978] reports a similar experiment, on 70 Pascal programs. Each



12 Error Recovery 635

1OO%..--~-......-----.--....----,.--,

80

60

40

20

o
o 1 2 3 4 5

Figure 12.2. Distribution of tokens rejected during error recovery.

2 >2
o

20

40

80

60

.----r----r-,..--....., 100

Excellent ~ tIlGood~
Poor

Excellent

(a) Penello's criterion (b) Reported syntax errors

Figure 12.3. Error recovery based on Pennello's forward move algorithm-70 Pascal
programs studied.

of these programs is different, but contains one syntax error. They were
student programs, with student errors. His results are summarized in figure
12.3. Graph (a) represents Pennello's classification of recovery-"excellent,"
"good," "poor," and "unrepaired." The "excellent" and "good" categories



636 Compiler Construction: Theory and Practice

are in fact optimal recoveries-in every case the recovery generated just one
error report. The "poor" category generated two reports for a single error.
The "unrepaired" category are those in which no repair was selected, but the
remainder of the program was parsed through the forward move machine
rather than the parser. These rob the system of upper-level parsing, and
destroy the detection of subsequent errors.

We conclude that Pennello's system is somewhere between 60 and 90
percent effective, depending on how one regards the "unrepaired" errors.
However, these results are for syntax errors only. He does not state how many
of the "good" error recoveries would generate spurious semantic error
messages.

12.3.10. Recovery in a Recursive Descent Compiler

A recursive descent compiler is closely related to an LL(1) compiler, as we
have seen in chapter 4. The stack in a recursive descent compiler is hidden in
most implementations; it is the stack used to support recursive procedure
calls and local variable allocations. When the stack is so hidden, through the
medium of a language implementation, it is impossible to explore stack
cutbacks on a trial basis. However, trial parses on the existing stack can be
explored through special procedure calls.

Another constraint on error recovery exploration is the distributed nature
of the parser. There are no centralized tables that can be consulted in an
efficient attempt to find a patch; the parsing system is scattered through many
procedures related only by their calls.

Usually, only token deletions and a one-time procedure return is utilized
for error recovery. The compiler scans to some characteristic statement end
token (i.e., semicolon or END), then forces enough procedure returns to place
the system in a state that can accept the string following the statement end.
This state is usually some procedure that can accept statements or declara­
tions.

Although crude, this strategy is effective for languages with well-delimited
statements such as Fortran, PLjI, or Basic.

Exercises

1. A CASE statement in a certain language requires that every statement
in its field ofstatements carry at least one numeric label. The labels must
non conflict. Design an effective semantic error recovery system that
will not only report every possible error, but will never cause spurious
errors. A sample of such a CASE statement is the following:



12 Error Recovery 637

CASE <expr> OF
15..25: 28: <stmt>
13: 29: 3: <stmt>
7..8: <stmt>

ENDCASE

The pair of periods ".." indicates an inclusive range of labels. Thus
"15" 17:" is equivalent to "15:16:17:". Although the labels may be in
any order, it should be possible to detect missing labels and conflicts
immediately.

2. Carry out an error recovery experiment similar to that given in section
12.3.9 on a commercial Algol, PLjI, or Pascal compiler. What do you
conclude?

3. Rewrite the bounded..,.range recovery algorithm, using variation 3 and
no nonterminal insertions. Design suitable data structures for the
algorithm, showing that only the usual LR tables are needed, and write
the algorithm in a high-level language.

4. Spelling correction is sometimes proposed as an error recovery
alternative. Under what circumstances might spelling correction be a
useful strategy? What language properties facilitate spelling correction?
See Morgan [1970] for a popular spelling corrector.

12.4. Bibliographical Notes

The simplest recovery technique that is essentially language independent is
the so-called "panic" solution. When an error is detected, input tokens are
discarded until a special terminating symbol, such as ";" or "END" is seen.
Then the state stack is erased until a state compatible with this end token is
seen. Leinius [1970] reports a slightly more sophisticated version for an LR
parser; his is the first error recovery technique reported for an LR parser.
James [1972] describes an implementation of Leinius's method, with some
recovery statistics.

In a top-down compiler, the predictive nature of the compiler can be used
to insert one or more tokens. Irons [1963] describes such a system.

Levy [1975] and LaFrance [1971] proposed a nondeterministic recovery
system that carries out a set of parses, one for each of a set of possibilities.
Unfortunately, if this algorithm is carried out for more than a few steps, the
resulting computation becomes unreasonably large; as we have seen, such a
strategy has exponential complexity.



638 Compiler Construction: Theory and Practice

A minimal error correcting algorithm is given by Aho and Peterson (Aho
[1972c]), described earlier.

McGruther [1972] describes a syntax error recovery and correction system
that requires the grammar to be both LR and RL. (An RL grammar is such
that sentences can be parsed in reverse by an LR parser.) On detecting an
error, an RL parser is applied to the remaining string in reverse. The system
provides a strong base from which an error analysis may proceed. The
essential problem here is to locate particular key tokens past the error point
from which a reverse parse may begin; it is impractical to parse from the end
of a program back to the error point (that process can halt on another error
deeper in the program). The selection of key symbols is discussed at some
length; their selection appears to be language dependent.

Graham and Rhodes (Graham [1975]) describe a recovery method for
precedence parsers that consists of a forward move followed by a correction
step. The forward move performs a sequence of reductions on the input list
following the error token; they call this the condensation phase. Penello [1978]
describes a similar condensation step for an LR parser. Both authors give
strategies for the correction step.

Feyock and Lazarus [1976] describe a bottom-up system similar to the
bounded-range strategy described above. They propose only insertion,
deletion, replacement or interchange of terminal symbols as correction
strings. Possible strings are filtered in a number of ways, including semantics
checks, to yield a set ofviable solutions. If the set is nonempty, 6ne is selected
through some language-dependent heuristic tests. Their results are impres­
sive; they claim that thrashing is rarely seen.

Mickunas and Modry (Mickunas [1978]) describe an LR(l) recovery
system with a forward move and error region patching. Their approach is
described in section 12.3.8.



ANNOTATED BIBLIOGRAPHY

Abbreviations:
ACM: Association for Computing Machinery.
CA CM: Communications of the Association for Computing Machinery.
IEEE: Institute for Electrical and Electronic Engineers.
IRE: Institute for Radio Engineers.
JACM: Journal ofthe Association for Computing Machinery.
SIAM: Society of Industrial and Applied Mathematics

Abrahams [1974], P. W., "Some Remarks on Lookup of Structured Variables,"
CACM 17, (4) 209-210.
Comment on Gates [1973], on lookup of structured Cobol or PL/I variables,
pointing out an error in Gates' approach. Alternative methods are also presented
that solve the general problem.

Aho [1969a], A. V., J. D. Ullman, "Properties of Syntax Directed Translations," J
Computer and System Sciences 3, (3) 319-334.

Aho [1969b], A. V., J. D. Ullman, "Syntax Directed Translations and the Pushdown
Assembler," ]. Computer and System Sciences 3, (1) 37-56.
The pushdown assembler (PA) is a multitape stack machine. Given a syntax­
directed translator (SDT) with at most k variables on the right part of anyone
production, then the pushdown assembler requires k + 1 stacks. One stack
contains parsing states, and the other k contains strings arising from the
syntax-directed transduction. Hierarchy of translators is introduced, and it is
shown that the class of PA's is exactly the class of STD's. Rules for constructing
the finite contr?l for a given set of productions are given.

Aho [1971], A. V.~J. D. Ullman, "Translations on a Context Free Grammar," In!
and Control 19, 439-475.
Syntax-directed tr~nslation,. context-free grammars, parse trees, generalized
syntax-directed translators, bounds on translation, length relationships, tree
automata, conclusIons.

Aho [1972a], A. V., J.~. Ullman, The TheoryofParsing~ Translation~ and Compiling~

2 vols., Prentice~Hall,Englewood Cliffs, N.J.
Extensive theoretiC!!1 framework for languages, grammars, parsers, optimiza­
tion. (Vol. I) Math preliminaries, introduction to compiling, elements of
language theory, thepry of translations, general parsing methods, one-pass no
backtrack parsing, limited backtrack parsing algorithms. (Vol. II) Techniques
for parser optimization, theory of deterministic parsers, translation and code
generation, bookkeeping, code optimization. All with formal definitions and
many proofs.

Aho [1972b], 1).. V., J. D. Ullman, "Optimization of Straight Line Programs," SIAM
]. Comput. 1, (1) 1-19.
Provides a set of transformations on a sequence of statements into equivalent
sequences, then shows that optimization of a straight line sequence under
"reasonable" cost criteria can always be accomplished by applying a sequence of
these transformations in a prescribed order. Much of this material is also in Aho
[1972c].

639



640 Compiler Construction: Theory and Practice

Aho [1972c], A. V., T. G. Peterson, "A minimum distance error-correcting parser for
context-free languages," SIAM]. Comput. 1, (4) 305-312.
A grammar G for some context-free language is transformed into a grammar Gl
that accepts every sentence in the alphabet of G, by the addition of error
productions. A sentence containing one or more errors may be parsed through
an Earley parser (see Earley [1970]), and the minimum number of error
productions that generates a parse selected. The method operates in 0(n3) steps
at worst, where n is the number of tokens in the input sentence.

Aho [1974a], A. V.,S. C. Johnson, "LR Parsing," Computing Surveys 6, (2) 99-124.
Grammars, derivation trees, parsers, parser action and go-to tables, parser
construction, parsing ambiguous grammars, parser optimization, error recovery.
Very readable, with many examples and illustrations.

Aho [1974b], A. V., J. E. Hopcroft, J. D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Mass.

. Aho [1975], A. V., S. C. Johnson, J. D. Ullman, "Deterministic Parsing of
Ambiguous Grammars," CA CM 18, (8) 441-452
Generating an LR parser for an ambiguous expression grammar, then fixing the
table to reflect some desired associativity rules for the operators. Results in a
considerably smaller table than is otherwise the case.

Aho [1976], A. V., S. C. Johnson, "Optimal Code Generation for Expression Trees,"
JACM 23, (3) 488-501.
Algorithms for code generation from expression trees, with theorems.

Aho [1977a], A. V., S. C. Johnson, J. D. Ullman, "Code Generation for Machines
with Multiregister Operations," Fourth A CM Symposium on Principles of
Programming Languages, 21-28.
Some conclusions regarding register allocation in single and double length
results with even assignment for doubles, the problem of optimal allocation.

Aho [1977b], A. V., S. C. Johnson, J. D. Ullman, "Code Generation for Expressions
with Common Subexpressions," JACM 24, (1) 146-160.
Shows that the problem of generating optimal code for expressions containing
common subexpressions is computationally difficult, even for simple expres­
sions and simple machines. Some heuristics are given.

Alexander [1975], W. G., "Static and Dynamic Characteristics of XPL Programs,"
Computer, 41-46.
Statistics on 19 XPL programs-distributions of statements by type, parser
reductions, operators in expressions, numeric constants, instructional usage (360
target), branch distances.

Allen [1976], F. E., J. Cocke, "A Program Data Flow Analysis," CACM 19, (3)
137-147.
Static analysis methods leading to global data flow analysis. Algorithms given
that can determine all the definitions which can reach any node of the control
flow graph, and all the live definitions.

Anderson [1973], T., J. Eve, J. J., Horning, "Efficient LR(l) Parsers," Acta
Informatica 2, 12-39.

Aufenkamp [1957], D. D., F. E. Hohn, "Analysis of Sequential Machines," IRE
Trans. EC-6, 276-285.

Backus [1957], J. W., et al., "The FORTRAN Automatic Coding System," Proc.



Annotated Bibliography 641

Western Joint Computer Conference 11, 188-198.
The original definition of the Fortran language and the first automatic translator
of Fortran to IBM 704 machine code.

Bauer [1968], H., S. Becker, S. L. Graham, "ALGOL W Implementation,"
Unpublished paper, Stanford University, Stanford, Calif., Computer Science
Dept. CS98.
ALGOL W was designed by Wirth, is a simplified Algol 60 language. This
paper describes an IBM 360implementation, is rich in detail.

Bauer [1974], F. L., "Historical Remarks on Compiler Construction," in Lecture
Notes in Computer Science~ G. Goos and J. Hartmanis, Springer-Verlag, New
York, 603-621.
Classification of compiler methods and brief historical review of original work
and development.

Beatty [1974], J. c., "Register Assignment Algorithm for Generation of Highly
Optimized Object Code," IBM]. Res. Develop'J 20-39.
An algorithm that permits a high level of optimization at both local and global
levels. Finds appreciable improvement over a conventional production com­
piler. No attempt to assess implementation manpower costs or expected
improvements.

Berkeley [1964], E. c., D. G. Bobrow (eds.), The Programming Language LISP: Its
Operation and Applications~ The M.l.T. Press, Cambridge, Mass.
A collection of papers on Lisp: The programming system, styles of program­
ming, applications, implementation, many examples of programs. Among the
applications: techniques for automatically discovering interesting relations in
data; automation of inductive inference on sequences; machine checking of
mathematical proofs; an interpreter for string transformations; a language for an
incremental compiler.

Bertsch [1977], E., "The Storage Requirement in Precedence Parsing," CA CM 20,
(3) 192-194.
A short paper on the compression of precedence tables.

Bochmann [1976], G. V., "Semantic Evaluation from Left to Right," CACM 19, (2)
55-62.
Describes attribute grammars and their use for the definition of programming
languages and compilers. Emphasis on attribute conditions that can be fully
evaluated in a single pass over the abstract syntax tree.

Booth [1967], T. L., Sequential Machines and Automata Theory~ Wiley, New York.
A general text on finite-state automata. Complete theoretical development,
many examples, applications, practical methods and exercises.

Breuer [1969], M. A., "Generation of Optimal Code for Expressions via Factoriza­
tion," CACM 12, (6) 333-340.
A complete, but complicated algorithm for finding all factors of a set of
expressions to be compiled, then sequencing the operations to minimize the time
they need be in memory, then assigning temporary storage cells. Global optimal
results are not necessarily obtained.

Brooker [1963], R. A., D. Morris, "The Compiler-compiler," Ann. Reviews in Auto.
Programming~ 3, Pergamon, Elmsford, N.Y., 229-275.
The first compiler writing system, using a compressed notation, and recursive
descent technique.



642 Compiler Construction: Theory and Practice

Bruno [1976], J., R. Sethi, "Code Generation for a One-Register Machine," JACM
23, (3) 502-510.
Shows that generating the optimal code for a one-register machine is hard, i.e.,
in the same class as the traveling salesman problem.

Brzozowski [1962], J. A., "A Survey of Regular Expressions and Their Applica­
tions," IRE Trans. on Electronic Computers 11, (3) 324-335.
One of the early papers on finite-state automata, an exposition of ideas
developed by earlier authors. Collects notions of regular expressions, finite-state
automata and their transformation.

Campbell [1976], L.,etal., "Draft Proposed ANS FORTRAN," Sigplan Notices, 11,
(3).
Modern draft definition of standard Fortran, with syntax graphs, conventions,
semantic specifications.

Chomsky [1956], N., "Three Models for the Description of Language," IEEE Trans.
on Information Theory 2, (3) 113-124.
One of the three models in this paper is the phrase-structured grammar. This is
the first appearance of this model.

Cocke [1977], J., K. Kennedy, "An Algorithm for Reduction of Operator Strength,"
CA CM 20, (11) 850-856.
A simple algorithm that uses an indexed temporary table to perform reduction
of operator strength in strongly connected program flow regions. The strength
of a multiply in a loop can be reduced to an addition, if one of the factors is
constant.

Cohen [1970], D. J., C. C. Gotlieb, "A List Structure Form of Grammars for
Syntactic Analysis," Computing Surveys 2, (1) 65-82.
Syntax Graph, graph reductions, compilation from graphs, recursive/nonre­
cursive compilers, bottom-up parsing with reversed graph.

Conway [1963], M. E., "Design of a Separable Transition-Diagram Compiler,"
CA CM 6, (7) 396-408.
A Cobol compiler design. Accepts a Cobol subset, operates in small memory,
requires two working tapes plus a compiler tape. Use of coroutines as modules.

DeMorgan [1977], R. M., 1. D. Hill, B. A. Wichman, "A Supplement to the ALGOL
60 Revised Report," Sigplan Notices 12, (1) 52-66.
More clean-up on the Algol report.

DeRemer [1969], F. L., "Practical Translators for LR(k) Languages," Ph.D. thesis,
M.l.T., Cambridge, Mass.
Reviews, classifies LR(k) languages and parsers. Introduces SLR grammar (see
DeRemer [1971D.

DeRemer [1971], F. L., "Simple LR(k) Grammars," CACM 14, (7) 453-460.
First paper on SLR(k) grammars. These types are generated by an LR(O)
construction process, then use FOLLOW(k) sets to resolve inconsistent states.

DeRemer [1974a], F. L., "Transformational Grammars," in Lecture Notes in
Computer Science, G. Goos and J. Hartmanis, Springer-Verlag, New York,
121-145.
A case for language processing as a sequence of tree transformations. Lexical,
syntactical processing, standardization, flattening, subtree transformational
grammars, extension to regular expressions, example of PL/I declaration
defactoring.



Annotated Bibliography 643

DeRemer [1974b], F. L., "Review of Formalisms and Notation," in Lecture Notes in
Computer Science, G. Goos and J. Hartmanis, Springer-Verlag, New York,
37-56.
Concise review of formalisms. Rewriting systems, grammars, Chomsky
hierarchy, phrase structures, tree derivation, regular grammars and regular
expressions, parsing, parsing strategies, ambiguity, transduction grammars,
string-to-tree grammars, self-describing grammars.

DeRemer [1974c], F. L., "Lexical Analysis," in Lecture Notes in Computer Science,
G. Goos and J. Hartmanis, Springer-Verlag, New York, 109-120.
Le:llical terms - scanning; screening, characters, tokens, reserved symbols,
regularity. Scanner generation via LR construction, handwritten scanner, error
recovery, advisability of including conversion routines.

Demers [1975], A. J., "Elimination of Single Productions and Merging Nonterminal
Symbols of LR(l) Grammars," Computer Languages 1, 105-119.
Formal treatment of single production removal and merging to optimize LR(I)
parser tables, with proofs.

Demers [1977], A., "Generalized Left Corner Parsing," Fourth ACM Symposium on
Principles ofProgramming Languages, 170-182.
LC parsing is a combination of LL and LR. Demers develops a parsing machine
and demonstrates some minimal properties of the system that facilitate semantic
operations through an "anounce point" within each production; the announce
point is established by the system as near to the left end of the production
formula as possible.

Dijkstra [1976a], E. W. A Discipline of Programming, Prentice-Hall, Englewood
Cliffs, N.J.
Explores the thesis that a program should derive from a mathematical statement
of a problem in a natural way, thereby automatically resulting in a correct
program. Introduces a simple but powerful language suited to the task.
Semiformal treatment with many interesting examples.

Dijkstra [1976b], E. W., "On-the-fly garbage collection: an exercise in cooperation,"
Notes for the 1975 NATO Summer School on Language Hierarchies and
Interfaces, in Lecture Notes in Computer Science, Springer-Verlag, New York}
46.

Donovan [1972], J. J., Systems Programming, McGraw-Hill computer science series,
McGraw-Hill, New York.
An introduction to machine structure, machine language, assembly language,
assemblers, macros, loaders, programming languages, compilers, and operating
systems. IBM System/360 conventions used extensively. The author was
associated with project MAC at M.LT.

Earley [1970], J., "An Efficient Context-free Parsing Algorithm," Ph.D. thesis,
Carnegie-Mellon University, Pittsburgh, Pa. (1968). Also see CACM 13, (2)
94-102.
The general parser-capable of parsing any sentence in any CFG algorithmi­
cally. It runs in linear time for a large class of grammars, is bounded by N2 for
unambiguous grammars, and N3 otherwise. Shows that it is superior to the
top-down and bottom-up algorithms of Griffiths and Petrick by empirical
studies.

Evans [1964], A., Jr., "An ALGOL 60 Compiler," Ann. Review in Auto. Program­
ming. 4, Pergamon, Elmsford, N.Y., 87-124.



644 Compiler Construction: Theory and Practice

Feldman [1966], J. A., "A Formal Semantics for Computer Languages and
Application In a Compiler-Compiler," CACM 9, (1) 3-9.
A system that accepts a production language (Floyd) and a special semantics
language keyed to the production language, and yields a compiler. Has symbol
table operations and a set of mnemonics to identify kinds of expression/state­
ment under consideration.

Feldman [1968], J., D. Gries, "Translator Writing Systems," CACM 11, (2) 77-113.
Review paper on compiler writing systems. Syntax, syntax trees, grammar,
operator precedence, precedence, transition matrices, production language,
bounded context grammars, DPDA, LR(k), Tixier's recursive functions
of regular expressions. Semantics: TMG (top-down I-pass c writer), Meta,
Cogent, etc. Compiler-compilers: FSL, TGS, CC (Brooker-Morris). Meta­
assemblers and extendible compilers: Metaplan, Plasma, Xpop, Algol C, large
bibliography.

Feyock [1976], S., P. Lazarus, "Syntax-Directed Correction of Syntax" Software­
Practice and Experience, 6, 207-219.
An error correction method related to XPL bottom-up system, examples, graph
of compiler speed vs. error density.

Fischer [1977], C. N., D. R. Milton, S. B. Quiring, "An Efficient Insertion-Only
Error-Corrector for LL(I) Parsers," Fourth ACM Symposium on Principles of
Programming Languages, 97-103.
Defines a class of insert-correctable LL(1) languages, those for which any error
can be corrected by insertion of a suitable terminal string. System will so test a
grammar and generate a set of tables that provides optimal string insertion for
the correction of syntax errors. Examples.

Floyd [1961], R., "An Algorithm for Coding Efficient Arithmetic Operations,"
CACM 4,42-51.
Specialized method for dealing with arithmetic expression groups to reduce
code for single-register machine.

Floyd [1963], R. W., "Syntactic Analysis and Operator Precedence," JACM 10, (3)
316-333.
Landmark paper on operator precedence. Has an Algol 60 precedence matrix,
theory of operator precedence.

Floyd [1964], R. W., "Bounded Context Syntactic Analysis," CACM 7, (2) 62-67.
A bottom-up parsing method based on context analysis of production right
parts.

Gates [1973], G. W., David A. Poplawski, "A Simple Technique for Structured
Variable Lookup," CACM 16, (9) 561-565.
A method for the lookup of structured Cobol or PL/I variables is given. It also
checks legality of Cobol identifiers.

Gill [1962], A., Introduction to the Theory of Finite State Machines, McGraw-Hill,
New York.
An early text on finite-state automata. Discusses classes of automata, equiva­
lence, reduction and reduction algorithms. Semiformal treatment. (But no
treatment of regular expressions or regular grammars).

Ginsburg [1962], S., An Introduction to Mathematical Machine Theory, Addison­
Wesley, Reading, Mass.

Ginsburg [1966a], S., The Mathematical Theory of Context-Free Languages,
McGraw-Hill, New York.



Annotated Bibliography 645

The first general text on formal context-free language theory. Many general
theorems, most original to the author.

Ginsburg [1966b], S., S. Greibach, "Deterministic Context-Free Languages," Inj
and Control 9, (6) 620-648.

Glanville [1978], R. S., S. L. Graham, "A New Method for Compiler Code
Generation," Conference Record of the Fifth Annual A CM Symposium on
Principles ofProgramming Languages, 1978,231-240.
A construction algorithm for generating machine instructions from a prefix
translation of a suitable abstract syntax tree, based on a table representation of
the target machine. Conditions for correctness and normal termination of the
algorithm are given.

Graham [1975], S. L., S. P. Rhodes, "Practical Syntactic Error Recovery," CACM
18, (11) 639-650.
Error recovery for precedence parsers, experimental results from several
different grammars.

Gries [1971], D., Compiler Construction for Digital Computers, Wiley, New York.
A compiler construction textbook. Emphasis on practical methods: Algol
control structures and expressions. Reviews: grammars and languages, scanner,
top-down recognizers, simple precedence, other bottom-up recognizers, pro­
duction language, run-time storage organization, symbol table organization,
internal forms of the source, semantic routines introduction, semantics for Algol
constructs, storage allocation, error recovery, interpreters, code generation, code
optimization, macros, translator writing systems.

Gries [1977], D., "An exercise in proving parallel programs correct," CACM 20, (12)
921-930.
A parallel program correctness proof method, and its application to an
ort-the-fly garbage collector (cl Dijkstra [1976], Steele [1975].)

Griffiths [1974a], M., "Run-time Storage Management," in Lecture Notes in
Computer Science, G. Goos and J. Hartmanis, Springer-Verlag, New York,
195-221.
Classical storage allocation and access. Static allocation, dynamic allocation,
block linkage, display, stack compaction, parameter linking, labels/go to,
aggregates, lists, garbage collection, storage collapse, parallel processes.

Griffiths [1974b], M., "LL(I) Grammars and Analyzers," in Lecture Notes in
Computer Science, G. Goos and J. Hartmanis, Springer-Verlag, New York,
57-84.
Predictive Analysis, LL(I) conditions, decision algorithm, recursive descent
construction, grammar transformation, semantic insertion, LL(k) grammars,
practical results.

Griffiths [1974c], M., "Introduction to Compiler Compilers," in Lecture Notes in
Computer Science, G. Goos and J. Hartmanis, Springer-Verlag, New York,
356-365.
Brief review of compiler writing systems and current research.

Hall [1974], A. D., private communication, reported in Waite [1974b].

Harrison [1965], M. A. Introduction to Switching and Automata Theory, McGraw­
Hill, New York.

Harrison [1977], W., "A New Strategy for Code Generation-the General Purpose
Optimizing Compiler," Fourth A CM Symposium on Principles ofProgramming
Languages, 29-37.



646 Compiler Construction: Theory and Practice

Uses global flow analysis and an intermediate la.nguage of simple primitives to
achieve general optimization, regardless of source language form.

Hartmanis [1966], J., R. E. Stearns, Algebraic Structure of Sequential Machines,
Prentice-Hall, Englewood Cliffs, N.J.

Hill [1974], U., "Special Run-time Organization Techniques for Algol 68," in
Lecture Notes in Computer Science, G. Goos and J. Hartmanis, Springer-Verlag,
New York, 222-252. ,
Data storage and management required for Algol 68. Static, dynamic storage,
heaps, generative and interpretative handling, special data objects, slicing,
rowing, scope checking, scope of procedures, generation of local objects, blocks
and procedure calls, actual parameters, garbage collection.

Hoare [1969], C. A. R., An Axiomatic Basis for Computer Programming, CA CM 12,
576-581.
Definition and development of the Hoare axiomatic ptognlIIJ. correctness proof
method, e.g., Al (S) A2; Al and A2 are assertions regarding the state of a
program system, and S is some executable statement. Proof problem is to show
that Al implies A2, given execution of S.

Hoare [1973], C. A. R., N. Wirth, "An Axiomatic Definition of the Programming
Language PASCAL," Acta Infonnatica 2, 335-355.
Brief review of Hoare axiomatic approach, has Pascal statements expressed in
axiomatic form, Pascal syntax graphs.

Hopcroft [1969], J. E., J. D. Ullman, "Formal Languages and Their Relation to
Automata," Addison-Wesley, Reading, Mass. Text on formal language and
automata theory. Largely superseded by Aho [1972].

Horning [1974a], J. J., "What the Compiler Should Tell the User," in Lecture Notes
in Computer Science, G. Goos and J. Hartmanis, Springer-Verlag, New York,
525-548.
Normal output, reaction to errors, syntactic errors, other errors, error diagnosis.

Horning [1974b], J. J" "Structuring Compiler Development," in Lecture Notes in
Computer Science, G. Goos and J. Hartmanis, Springer-Verlag, New York,
498-513.
Goals of compiler development-correctness, availability, generality, adapt­
ability, helpfulness, efficiency. Trade-offs, processes in development: specifica­
tion, design, implementation, validation, evaluation, maintenance. Management
tools: project organization, information distribution and validation, program­
mer motivation. Technical tools: compiler compilers, standard designs, off­
the-shelf components, structured programs, appropriate languages.

Horning [1974c], J. J" "LR Grammars and Analysers," in Lecture Notes in Computer
Science, G. Goos and J. Hartmanis, Springer:::.Verlag, New York, 85-108.
Intuitive description, definitions of terms, interpreting LR tables, constructing
LR tables, representing LR tables, reduction for efficiency, properties of LR
grammars and analysers, some grammar modifications to obtain LR, gram­
marjlanguage inclusions.

Huffman [1954], D. A., "The Synthesis of Sequential Switching Networks," ].
Franklin Inst. 257, 161-190,275-303.

Ingerman [1961], P. Z., "Dynamic Declarations," CACM 4, (42) 59-60.
Algorithm for mapping an OWN array in which dimensions have been



Annotated Bibliography 647

changed- the nontrivial multidimension dynamic array problem is as dealt with
here.

Irons [1961], E. T., "A Syntax Directed Compiler for ALGOL 60," CACM 4, (42)
51-55. .

Irons [1963], E. T., "An Error-Correcting Parse Algorithm," CACM 6, (11)
669-673. A top-down error-correcting parsing system.

Iverson [1962], K., A Programming Language~ Wiley, New York.
The original book on APL. Defines the language and gives many examples of its
applications to broad areas of computing, e.g., mapping and permutations,
ordered trees, graph traversal, microprogramming, matrices, searching, sorting,
and the logical calculus.

James [1972], L. R., A Syntax Directed Error Recovery Method~ Tech. Report
CSRG-13, University of Toronto Press, Toronto.
Table-driven error recovery embedded in an LALR(I) parser. This method
drops stack states and input symbols, searches for an insertion or compatible
state; uses a 2-symbollookahead limit then 5-symbol lookahead in dire cases,
limits stack cutback through a fixed limit.

Johnson [1968], W. L., J. H. Porter, S. 1. Ackley, D. T. Ross, "Generation of
Efficient Lexical Processors Using Finite State Automatic Techniques,"
CACM 11, (12) 805-813.
Description of the AED RWORD system that accepts regular expressions and
generates a finite-state automaton to recognize the expression's language. Has
"escape hatches" to provide for unusual lexical constructs. Used in several
different compilers as a lexical analyzer.

Kildall [1973], G. A., "A Unified Approach to Global Program Optimization,"
A CM Symposium on Principles ofProgramming Languages~ 194-206.

Kleene [1952], S. c., Introduction to Metamathematics~ Van Nostrand Reinhold, New
York.

Kleene [1956], S. C., "Representation of Events in Nerve Nets," in C. Shannon and
J. McCarthy, Automaton Studies~ Princeton University Press, Princeton, N.].

Knuth [1965], D. E., "On the Translation of Languages from Left to Right,~' In! and
Control~ 8,607-639.
Original paper on LR(k) languages. Shows that LR(k) languages are equivalent
to the deterministic k-symbollookahead languages, gives two parser construc­
tion methods, and proves that the viable prefix set is a regular language.

Knuth [1968], D. E., Fundamental Algorithms~ Vol. 1 of The Art of Computer
Programming~ Addison-Wesley, Reading, Mass.

Knuth [1971], D. E., "An Empirical Study of FORTRAN Programs," Software-
Practice and Experience 1, 105-134. .

Kohavi [1971], Z., "Switching and Finite Automata Theory," McGraw-Hill, New
York.

Korenjak [1969], A. J., "A Practical Method for Constructing LR(k) Processors,"
CACM 12, (11),613-623.
Large grammar is partitioned into several smaller parts, each of which is parsed
independently; the mechanism of parser intercommunication and reporting is
developed.



648 Compiler Construction: Theory and Practice

Koster [1974], C. H. A., "Using the CDL Compiler-Compiler," in Lecture Notes in
Computer Science, G. Goos and J. Hartmanis, Springer-Verlag, New York,
366-426.
Detailed review of the CDL compiler writer, a top-down system with symbol
table manager system, macros, etc.

Kurki-Suonio [1969], "Notes on Top-Down Languages," BIT 9, 225-238.
A short paper on the properties of LL(k) languages and grammars.

LaFrance [1971], J. E., "Syntax Directed Error Recovery for Compilers," Ph.D.
. thesis, University of Illinois, Urbana, Computer Science Dept. ILLlAC IV

Doc. 249.

LaLonde [1971a], W. R, E. S. Lee, J. J. Horning, "An LALR(k) Parser Generator,"
Proc. IFIP Congress 71, TA-3, North-Holland Pub. Co., Netherlands, 153-157.
See LaLonde [1971b]. Amsterdam.

LaLonde [1971b], W. R, "An Efficient LALR Parser Generator," Tech. Report
CSRG-2, University of Toronto Press, Toronto.
Review of LR machines, introduction of LALR(I) parsing algorithm-this
finds lookahead sets for inconsistent states based on LR(O) machine and state
tracing. However, DeRemer has shown that LaLonde's system actually accepts a
subset of the LALR(I) languages.

Lampson [1977], B. W., et al., "Report on the Programming Language Euclid,"
Sigplan Notices 12, (2).
Euclid draws heavily upon Pascal for its structure and many of its features. The
intention is to express programs that are to be verified by formal methods.

Ledgard [1975], H. F., M. Marcotty, "A Genealogy of Control Structures," CACM
18, (11) 629-639.
Review and classification of known control structures, discussion of equivalence
and reducibility, hierarchy, examples, four general conclusions.

Lee [1967], J. A. N., Anatomy ofa Compiler, Reinhold, New York.

Leinius [1970], R "Error Detection and Recovery for Syntax-Directed Compiler
Systems," Ph.D. thesis, University of Wisconsin, Madison.
Mostly simple precedence error recovery treatment, one chapter on LR(k)
systems. Uses EULER as model language. Method requires additional states in
the LR(k) parser, created heuristically.

Levy [1975], J. P., "Automatic Correction of Syntax-Errors and Programming
Languages," Acta Informatica 4,271-292.
Formal models oferror correction. Notign oferror, global error correction, local
error correction, detailed error correction method for one language construct,
problems, practical error correction.

Lewis [1968], P. M., R E. Stearns, "Syntax-Directed Transduction," JACM 15, (3)
465-488.
Transduction grammars, relation to LR and LL grammars, machines.

Lewis [1971], P. M., D. J. Rosenkrantz, "An ALGOL Compiler Designed Using
Automata Theory," Proc. of the Polytechnic Inst. ofBrooklyn, New York, Sym­
posium on Computers and Automata, New York, 1971. Polytechnic Press of the
Polytechnic Institute ofBrooklyn; Distributors: Wiley-Interscience, New York.
75-87.



Annotated Bibliography 649

Loveman [1977], D. B., "Program Improvement by Source-to-Source Transforma­
tion," JACM 24, (1) 121-145.
User-provided assertions in an Algol program are shown to be valuable in
optimization.

Maley [1963], G. A., J. Earle, The Logic Design of Transistor Digital Computers:J
Prentice-Hall, Englewood Cliffs, N.J.

Marcotty [1976], M., H. F. Ledgard, G. V. Bochman., "A Sampler of Formal
Definitions," Computing Surveys 8, (2) 191-276.
Presentation of four well-known formal definition techniques: W-grammars,
production systems with an axiomatic approach to semantics, the Vienna
definition language, and attribute grammars. Each technique is described
tutorially and examples are given; then each is applied to define the same small
programming language.

Maurer [1975], W. D., T. G. Lewis, "Hash Table Methods," Computing Surveys 7,
(1) 5-19.
Hashing functions, collision, bucket overflow, alternatives to hashing. Limited
analysis of efficiency.

McCarthy [1960], J., "Recursive Functions of Symbolic Expressions and their
Computation by Machine," CACM 4, (4) 184-195.
The original paper on the mathematical basis of LISP. Five primitive recursive
functions are shown to form the basis of a complete programming language.
Interpretation of structures as directed graphs.

McCarthy [1962], J., et al.:J LISP 1.5 Programmer's Manua~ The M.LT. Press,
Cambridge, Mass.
A programmer's manual for LISP. Some examples, but best used as a reference
document.

McCluskey [1965a], E. J., Introduction to the Theory of Switching Circuits:J
McGraw-Hill, New York.

McCluskey [1965b], E. J., T. C. Bartee, A Survey of Switching Circuit Theory:J
McGraw-Hill, New York.

McCullough [1943], W. S., E. Pitts, "A Logical Calculus of the Ideas Immanent in
Nervous Activity," Bull. ofMath. Biophysics 5, 115-133.
An original paper on finite-state automata and their relation to regular
expressions.

McKeeman [1970], W. M., J. J. Horning, D. B. Wortman, A Compiler Generator:J
Prentice-Hall, Englewood Cliffs, N.J.
A text on compiler construction. Introduction to formalism, LR(k) and
precedence parsing. Emphasis on MSP (mixed strategy precedence) method.
Contains complete compiler generator programs in XPL and a definition of
XPL as a language.

McKeeman [1974a], W. M., "Compiler Construction," in Lecture Notes in Computer
Science/' G. Goos and J. Hartmanis, Springer-Verlag, New York, 1-36.
Broad informal review of compiler components. Definitions, source/target
language, implementation language, recursive descent compilers, modulariza­
tion, specification, feedback-free, vertical/horizontal fragmentation, transfor­
mations.



650 Compiler Construction: Theory and Practice

McKeeman [1974b], W. M., "Symbol Table Access," in Lecture Notes in Computer
Science, G. Goos and J. Hartmanis, Springer-Verlag, New York, 514-524.
Review of linear, sorted, tree, and hash symbol table access methods. Block­
structured symbol tables. Contains complete XPL programs and sample traces.
Hash functions, secondary stores, evaluation of access methods.

McKeeman [1974c], W. M., "Programming Language Design," in Lecture Notes in
Computer Science, G. Goos and J. Hartmanis, Springer-Verlag, New York,
514-524.
Who should or should not design languages? Design principles, models for
languages: street language, the Algol family.

McNaughton [1960], R, H. Yamada, "Regular expressions and State Graphs for
Automata," IRE Trans on Elect. Computers 9, (1) 39-47. Reprinted in R
Moore, Sequential Machines: Selected Papers, Addison-Wesley, Reading, Mass.,
(1964).
First paper giving algorithms for interconverting state graphs, regular expres­
sions. Deals with all possible regular expressions-union, intersection, comple­
ment, closure, concatenation. Theorems and proofs given.

Mealy [1955], G. H., "Method for Synthesizing Sequential Circuits," Bell System
Tech. ]. 34, 1054-1079.

Metcalfe [1964], H. H., "A Parameterized Compiler Based on Mechanical Linguis­
tics," Ann. Reviews in Auto. Programming 4, Pergamon Press, 125-165.
A descriptive paper on some recursive descent programming techniques, with
special mechanisms for semantic operations. Well suited to a top-down string
translator. Informal. Brief discussion of the validation problem (verifying
LL(1 )), but no solution.

Meyers [1965], W. }., "Optimization of Computer Code", unpublished memoran­
dum, G. E. Research Center, Schenectady, N.Y., 12 pages.

Mickunas [1976], M. D., R L. Lancaster, V. B. Schneider, "Transforming LR(k)
Grammars to LR(l), SLR(l), and (1,1) Bounded Right-Context Grammars,"
JACM 23, (3) 511-533.
Grammar transformation results and algorithms.

Minsky [1967], M., Computation: Finite and Infinite Machines, Prentice-Hall,
Englewood Cliffs, N.J.
Textbook on finite state automata. Many unusual and interesting examples and
side issues.

Moore [1956], E. F., "Gedanken-Experiments on Sequential Machines," in Au­
tomata Studies, Princeton University Press, Princeton, N.}., 129-153.

Morgan [1970], H. L., "Spelling Correction in System Programs," CACM 13,
90-94. A spelling correction algorithm and its applications.

Morris [1968], R. "Scatter Storage Techniques," CACM VII, (1),38-43.

Nakata [1967], Ikuo, "On Compiling Algorithms for Arithmetic Expressions,"
CA CM 10, (8) 492-494.

Naur [1963], P. (ed.), "Revised Report on the Algorithmic Language ALGOL 60,"
CACM 6, (1) 1-17.
The original Algol 60 definition.



Annotated Bibliography 651

Pager [1979], D. "A Practical General Method for Constructing LR(k) Parsers,"
Acta Informatica 7, 249-68.

Paul [1962], M., "Zur Struktur formaler Sprachen," Universitat Mainz, Dissertation
D77.

Paul [1962a], M., "A General Processor for Certain Formal Languages," Proc. ofthe
Symposium on Symbolic Languages in Data Processing) Rome, 1962. Also:
Gordon and Breach, New York, 1962,65-74.

Pennello [1978], T. l, F. DeRemer, "A Forward Move Algorithm for LR Error
Recovery," Fifth Annual ACiU Symposium on Principles of Programming
Languages) Jan. 23,241-254.
A "forward move" is useful in syntax error recovery. In a forward move, the text
past an error token is partially reduced in an attempt to develop information
useful in patching over the error. Pennello and DeRemer develop this for an LR
parser.

Perlis [1956], A. l, et al.) "Internal translator (IT), a Compiler for the 650," Carnegie
Institute of Technology, Computation Center, Pittsburgh. Also: Lincol Lab.
Div. 6, Doc. 6D-327.

Poole [1974], P.c., "Portable and Adaptable Compilers," in Lecture Notes in
Computer Science) G. Goos and J. Hartmanis, Springer-Verlag, New York,
427-497.
Survey of issues of transporting languages and compilers. Problems with
current compilers, standards. Survey of techniques: high-level language coding,
bootstrapping, language-machine interface, abstract machine modeling, Janus.
Case studies: AED, LSD, BCPL, Pascal, IBM Fortran G.

Purdom [1974], P., "The Size of LALR(1) Parsers," BIT 14,326-337.
Some statistical results enabling prediction of the size of LALR parser tables
from some simple grammar measures, based on a large set of grammars.

Randell [1964], B., L. l Russell, ALGOL 60 Implementation) Academic Press, New
York.
Contains a detailed machine model for ALGOL 60 implementation. Review of
nested block structure, procedure calls, parameter passing, branching, control
structures, etc.

Rosen [1967], S. (ed.), Programming Systems and Languages) McGraw-Hill, New
York.
An early collection of papers on languages, compilers, macros.

Rosen [1973], B. K., "Tree-Manipulating Systems and the Church-Rosser
Theorems," JACM 20, (1) 160-187.
Considers subtree replacement systems (RPS) and develops sufficient condi­
tions for the Church-Rosser property; indicates that the result of a set of subtree
replacements under some replacement system RPS is independent of the order
of the replacement. This property does not hold for all tree RPS. Applications to
recursive definitions, the lambda calculus and McCarthy's recursive calculus are
discussed.

Rosenkrantz [1970a], D. J., P. M. Lewis, "Deterministic Left-Corner Parsing,"
IEEE Can! Record 11th Annual Symposium on Switching and Automata
Theory) 139-152.
The original left-corner paper. See Demers [1977].

Rosenkrantz [1970b], D. J., R. E. Stearns, "Properties of Deterministic Top-Down



652 Compiler Construction: Theory and Practice

Grammars," In! and Control 17, 226-256.
Definitions, Test for LL(k), strong LL(k), e-rules, canonical push-down
automata, LL(k) hierarchy, equivalence decidability, properties.

Sammet [1969], J. E., Programming Languages: History and Fundamentals, Prentice­
Hall, Englewood Cliffs, N.J.
A catalog and brief introduction to the reported programming languages known
at that time.

Sammet [1976], J. E., "Roster of Programming Languages for 1974-5," CACM 19,
(12) 655-669.
A sorted list of 167 languages, each described by a dozen lines or so related to
availability, implementation, etc. Also see Sammet [1969].

Sattley [1961], K., "Allocation of Storage for Arrays in ALGOL 60," CACM 4, (42)
60-65.
General problem of dynamically allocating array space for ALGOL 60.

Sethi [1970], R., J. D. Ullman, "The Generation of Optimal Code for Arithmetic
Expressions," JACM 17, (4) 715-728.
Given: a machine with N ~ 1 general purpose registers, arithmetic instructions
that may operate between register/register or register/memory (e.g., IBM 360),
and arithmetic expressions. No optimization for common subexpressions. Then
two optimal register assignment algorithms are given: one in which no algebraic
properties are assumed and another in which certain operators are commutative
or both commutative and associative. These algorithms are shown to require a
minimal number of storage references in the evaluation and a minimal number
of instructions.

Shamir [1971], E., "Some Inherently Ambiguous Context-Free Languages," In!
and Control 18, 355-363.
Introduces a class of inherently ambiguous CFGs.

Sigplan [1973], "Proceedings of a Symposium on High-Level-Language Computer
Architecture," Sigplan Notices 8, (11).
Nineteen papers on this subject.

Sigplan [1974], "Proceedings of a Symposium on Very High Level Languages,"
Sigplan Notices 9, (4).
Fifteen papers on high-level languages.

Sigplan [1975a], "Programming Language Design," Sigplan Notices 10, (7).
Nine short papers on language design. Structured control, data types and
program correctness, extensibility, structured languages, abstract data types,
exception handling issues, cognitive psychology, and programming language
design.

Sigplan [1975b], "1975 International Conference on Reliable Software," Sigplan
Notices 10, (6).
Sixty-three papers in this area; three are related to languages and their influence
on reliable software.

Sigplan [1976], "Interface Meeting on Programming Systems in the Small Processor
Environment," Sigplan Notices 11, (4).
Twenty-four papers on this subject; four are related to programming languages
for small processors.

Soisalon-Soininen [1977], E., "Elimination ofSingle Productions from LR Parsers



Annotated Bibliography 653

in Conjunction with the Use of Default Reductions," Fourth A CM Symposium
on Principles of Programming Languages, 183-193.
Review of LR construction, development of method for elimination of single
production transitions, with concomitant reduction of table size.

Stearns [1967], R. E., "A Regularity Test for Pushdown Machines," In! and Control
11, (3) 323-340.
An algorithm for determining whether a given context-free grammar is regular.

Stearns [1969], R. E., P. M. Lewis, "Property Grammars and Table Machines," Inj
and Control 14,524-549.
Formal definition of an attribute system for context free grammars; attributes
are effectively attached to derivation tree nodes and used to control bindings and
legal derivations.

Steele [1975], G. L., Jr., "Multiprocessing compactifying garbage collection," ACM
18, (9) 495-508. On-the-fly garbage collector. Also see Dijkstra [1976] and
Gries [1977].

Tanenbaum [1976], A. S., "A Tutorial on ALGOL 68," Computing Surveys 8, (2)
155-190.
Very readable introduction to ALGOL 68, with many examples and good
discussion.

Van Wijngaarden [1969], A. (ed.), "Report on the Algorithmic Language ALGOL
68," Numerische Mathematik 14, 79-218.
Definition of ALGOL 68.

Waite [1974a], W. M., "Assembly and Linkage," in Lecture Notes in Computer
Science, G. Goos and J. Hartmanis, Springer-Verlag, New York, 333-355.
Model for assembly. Object and statement procedures, cross-referencing, back
chaining, storage constraints, two-pass assembly, the RESERVE expression
problem, partial assembly and linkage.

Waite [1974b], W. M., "Optimization," in Lecture Notes in Computer Science, G.
Goos and J. Hartmanis, Springer-Verlag, New York, 549-602.
Classification of techniques: transformations, regions, efficacy. Local optimiza­
tion: expression rearrangement, redundant code elimination, basic blocks.
Global optimization: redundancy and rearrangement, frequency and strength
reduction, global analysis.

Waite [1974c], W. M., "Relationship of Languages to Machines," in Lecture Notes in
Computer Science, G. Goos and J. Hartmanis, Springer-Verlag, New York,
170-194.
Considerations in selecting a suitable interface between a language and a target
machine. Data objects: encodings, interpretations, primitive/derived modes,
mode conversion, formation rules. Register structure, data access, aggregates,
procedures, procedure calls.

Waite [1974d]5\W, M., "Semantic Analysis," in Lecture Notes in Computer Science,
G.--Goosand J. Hartmanis, Springer-Verlag, New York, 157-169.
Discussion of what to do after abstract syntax tree is formed. Optimizing
transformations, attribute propagation, flattening through traversals. Postfix vs.
prefix. Operator identification and coercion, semantic ambiguity.

Waite [1974e], W. M., "Code Generation," in Lecture Notes in Computer Science, G.
Goos and J. Hartmanis, Springer-Verlag, New York, 302-332.



654 Compiler Construction: Theory and Practice

A model of code generation, based on Wilcox [1971]. Contains a transducer,
simulator. Handles common subexpression optimization.

Warshall [1962], S., "A Theorem on Boolean Matrices," JACM 9, (1) 11-12. A fast
algorithm for computing the transitive closure of a relation, along with a proof.
(Also proven in a different way in Aho [1972]).
Prefix- and p()stfix-translatable objects. Generator data structures, value de­
scriptors, register descriptors, instruction generation, primitive operations,
interpretative coding languages. Target of code generation is some assembly
language.

Whitney [1969a], G., "An Extended BNF for Specifying the Syntax of Declar&­
tions," AFIPS Spring Joint Computer Conference, 801-812.
Formal symbol table functions and grammar extensions, suitable for top-down
compiler system for block-structured grammar. Example language (MAL).

Whitney [1969b], G., "The Generation and Recognition Properties of Table
Languages," Information Processing 68, North-Holland, 388-394.
A formal paper on his table language generators, a table automaton, and five
closure properties.

Wirth [1966], N., H. Weber, "EULER: A GeneraFzation ofALGOL, and its Formal
Definition," Part 1, CACM 9, (1) 13-25; Part 2, CACM 9, (2) 1966, 89-99.
(Part 1) Elementary notation for algorithms, phrase structure grammar, simple
precedence, precedence matrix, higher-order precedence. (Part 2) Euler lan­
guage: precedence matrix and functions,. language definition, productions,
interpretation of operators, examples.

Wirth [1971a], N., "The Programming Language PASCAL," Acta Informatica 1,
35-63. - .
First published definition of Pascal, semiformal.

Wirth [1971b], N. "The design of a PASCAL compiler," Software-Practice and
Experience 1, 309-333.
A description pf the design of a PASCAL compiler for the CDC 6000 series,
including symbol table structure details, organization of the project, various
statistical results on instruction usage, nesting levels, etc. Most of the article is
applicable to a Pascal implementation on any machine.

Wirth [1976a], N., "Programming Languages: What to Demand and How to Assess
Them," Symposium on Software Engineering, Belfast. What language should do
for the user; a strong case for Pascal.

Wirth [1976b], N., "Professor C!everbyte's Visit to Heaven," private communica-.
tion.
A tongue-in-cheek tale of a heaven in which every possible feature of every
possible language is implemented in a colossal computer, with such a large
operating system that it breaks down 50 times per second (but recovers through
elaborate mechanisms).

Wirth [1976c], N., Algorithms + Data Structures = Programs, Prentice-Hall,
Englewoog Cliffs, N.}.
PASCAL textbook. Applications to data structures, files, sorting, recursive
algorithms, dynamic information structures, language structures and compilers.
Latter chapter contains a complete top-down definition of grammar and
construction of a compiler for a small language (PLIO), including transforma­
tion of syntax graphs into program structures, checking for validity, error
recovery, scanning, code generation for an Algol-class stack mas;hine.



INDEX

Aoe machine, 377
APPLY-GOTO table, in LR(l) parser, 230
AST (abstract syntax tree), 9

construction of, 304
AST evaluation, 316

with associative-commutative
operawrs, 571

with commutative operators, 570
optimal, 562

AVA, AOe procedure, 422
Absolute loader, IBM 360, 534
Acceptance

byPDA,138
string, in FSA, 64

Access methods
comparison of, 372
see qJso String table

Action function, of (LR(I) parser, 255
Activation record, in AOe machine, 397
Activ~ definition, 589
Acyclic graph, 28
Address constants, IBM 360, 534
Addressing, IBM 360, 538
Addressing modes, 473
Algol renaming rule, 389
Alignment, data, IBM 360, 528
Alphabet, 15
A1t~ration, 22

of regular expressions, 100
Ambiguity, 43

of LL(k) grammar, 149
Apply, in LR(I) parser, 61
Apply rule, in extended PDA, 195
Apply stflte, in LR(I) parser, 225
Arithmetic and logical operations,

CDC 6000, 517
Arithmetic expressions, CDC 6000, 521
Arithm~tic, IBM 360, 532
Arrays, 343

in AOe machine, 418
dynamic, redimeJ;lsioning, 429
linear mapping of, 345
matrix pointer access, 425
and matrix pointers, 346
multi-dimensional, 343
static, 344

Ass~rrible code, 1
Assembler, ·1
Asserpbly language, 1
Assignment statement, translated to

AOe code, 382
Association, static, 320

655

Associativity
and commutativity, use of in

optimization, 579
failure of, 555

Attribute, 321
table, 11, 322

Automaton, 25
deterministic finite-state, 67
finite-state, 26, 63
linear-bounded, 26
non-deterministic, finite-state, 10
parsing, 46
push-down, 137
stack, 137

Backtracking, 50
application to parsing, 51
applied to NDFSA, 73
limitations of, 53
time bound, 56

&~re~re~IBM%~~~~~~4

Base table, IBM 360, 538
Basic block input/output variables, 603
Basic reach algorithm, 595
Block, 323, 575

covering of, 323
as DAG, 576
equivalent, 575
in FSA, 64
nested,323
normal,575
PDA,139
of statements, 573
and storage allocation, AOe

machine, 388
Block entry and exit, in AOe

machine, 4Q3
Block level, 401
Bounded-range error recovery, 618

variations on, 620
Branch instructions, HP-3000, 492
Branches

CDC 6000, 518
IBM 360, 533

Branches and constants, HP-3000, 503

eBN (call by name), 438
implementation of, 454
label parameters, implementation

of, 448
procequre parameters, implementation

of,446



656 Compiler Construction: Theory and Practice

CBR (call by reference), 442
CBV (call by value), 439

implementation of, 443
CDC: see Control Data
CFG: see Grammar, context-free
CST (code segment table), 484
Canonical derivation: see

Derivation, canonical
Closure, of regular expressions, 100
Code

intermediate, 10
object, 9

Code generation, generalized, 543
Code generator, 9
Code improvement, 562, 572
Code segment table, HP-3000, 484
Comment scanner, 125
Comments, scanning of, 131
Commutativity, failure of, 554
Comparison instructions, IBM 360, 532
Compilation

partial, CDC 6000, 523
process, 7

Compiler, 2
cost of, 6
multi-pass, 324
recursive-descent, 143
single-pass, 324

Concatenation, 17
of regular expressions, 100

Condition code
HP 3000, 482, 492
IBM 360,528

Conditional statement, translated to AOC
code, 384

Configuration
of extended of PDA, 194
of FSA, 68
ofPDA,140

Conflict, in precedence relations, 199
Constants, 4
Control Data 6000, 511
Control flow graph, 588
Control structures, 4
Core items, in LR(O) parser

construction, 240
Counted string, recognition of, 127
Cross compiler, 2
Cycle, empty move, of FSA, 76

DAG (directed acyclic graph)
evaluation of, 581
reduction of, 580
value of, 577

DFSA: see Automaton, deterministic
finite-state

Data flow
analysis, 587, 594

applications of, 603
graph,597

Data formats, of HP-3000, 475
Data item, 588
Data object

access, in Pascal, 434
primitive, 334
static representations of, 322, 333

Data structure, in Pascal, 431
Declaration, 9, 320, 322
Decoration, of tree node, 31
Defined variable, 574
Delimiters, 127
Derivation

canonical, 41
left-most, 41
left-recursive, 53
right-most, 41

Derivation step: see Step, derivation
Determinism, of FSA, 70
Dimensions

dynamic array, 343
static array, 343

Display, in AOC machine, 378, 411
Distributivity, failure of, 555
Dope vector, for array, 418

Empty cycles, in FSA, 132
Empty move removal, in FSA, 132
Empty string, 17
Equation, regular expression, 111
Equivalence

of FSA, 68, 88
LR(l) parser states, 266

Error
correction of, 607
diagnosis of, 607
effect on compiler, 610

Error recovery, 11, 607
empirical study, 628
experiment in, 628
recursive descent, 635

Error report, 607
Error symptom, 607
Error token, 609
Execution, of AOC program, 379
Expression AST, optimization of, 556
Expressions, translated to AOC code, 379
Extended grammar, as FSA, 190
External symbol dictionary, IBM 360, 536

FIRST, for extended grammar, 183
FIRST relation, 213
FIRST set, 150
FOLLOW, for extended grammar, 183
FOLLOW set, 150
FSA (finite-state automaton)

applications of, 122



program representation of, 120
from a regular grammar, 98
sparse array representation of, 117

Feasible state-pair, of pairs table: see
Pairs table

Feedback, scanner, 616
File, intermediate, 10
Finite-state control, of PDA, 137
Fixup list, 324
Flattening, 557
Fortran, parameter-passing rules, 442
Forward move, 621

correction strategies with, 623
Free variables, 397,441
Function, state transition, 67

Go, operation in AOe machines, 409
Goto function, of LR(l) parser, 255
Grammar, 15, 18

arithmetic expression GO, 22
augmented, 269
augmented, for LR(k) parser, 272
classes of, 20
context-free, 20, 22
context-sensitive, 20
extended, 176
left-linear, 24
LL(k),148
LR(k),224
phase-structure, 20
regular, 24
right-linear, 20, 24
simple precedence, 206
uniquely invertible, 206
unrestricted, 20

Grammar transformation, LL(l), 160
Graph, syntax, 36

HP-3000, 475
Halt rule, in extended PDA, 195
Handle, 194, 195, 199
Hash access, bounded table, 370
Hash code, 368
Hash function, 368, 371
Header

OWN variable correction, HP-3000, 501
primary DB, HP-3000, 497
procedure call, HP-3OO0, 499
secondary DB initialization,

HP-3000, 498
Heap, in AOe machine, 377
Hewlett-Packard 3000, 475
Host language, 2

IBM Systemj360, 527
IL (intermediate language), 465, 466, 470
Identifier, 321

recognition of, 126

Index 657

Identifier stack, 361
Immediate instructions, HP-3000, 490
Inaccessible entries, of LR(l) parser, 261
Inadequate state

in LR(O) parser, 242
resolution of, 246

Incomplete specification, FSA, 64
Inconsistent state: see Inadequate state
Index register, IBM 360, 529
Indirection and indexing, HP-3OO0, 479
Input string, of PDA, 137
Input-output, AOe machine, 388
Instruction format, eDe 6000, 515
Instructions

HP-3000, 487
IBM 360, 529

Intermediate language, 465, 466, 470
Interpreter, 1
Interrupt, program, IBM 360, 528
Interval, 596

higher order, 597
Interval-based reach algorithm, 600
Interval head, 596
Interval ordering, 595
Isomorphism, of FSA, 69
Item

LR(k),252
in LR(O) parser construction, 235, 236

k-distinguishability, of FSA, 88
k-equivalence, of FSA, 88
Keywords, 126
Killed definition, 588

LALR(I) tables, construction of, 268
LAST relation, 213
LL(k) grammars, 148
LR(k) table size, 273
LR(O) parser construction, 235

proofs, 243
Labels and GOTO's, in Aoe

machine, 413
Labels, Algol statement, 329
Language, 18

ambiguous, 46
assembly: see Assembly language
elements, 15
of extended PDA, 195
of FSA, 68
of a grammar G, 27
host: see Host language
object: see Object language
ofPDA,140
source: see Source language
strongly-typed,338

Left-recursion and LL(k) grammar, 149
Lexical analyzer, 8, 124
Linker, HP-3000, 494



658 Compiler Construction: Theory and Practice

Linking, 465
CDC 6000, 523

Linking loader, IBM 360, 534
Literal conversion, 125
Literals, 122, 321
Live definition, 589
Live information, data flow, 599
Load instructions, IBM 360,531
Load module, IBM 360, 534
Loader tables, 465

structure, 473
Local variables, HP-3000, 501
Locally available definition, 588
Locally exposed use, 589
Lookahead, in LR(l) parser, 61
Lookahead state, in LR(l) parser, 225
Lookahead string, of LR(k) item, 252
Lookahead table, in LR(l) parser, 230
Loop code movement, 604

MAS, AOC procedure, 421
MMAS, AOC procedure, 427
MSP: see Precedence, mixed strategy
Machine

reduced,88
see also Automaton

Machine code, 1
Macro processor, 125
Matrix

relation as Boolean, 201
sum and product, 202
see also Array, multi-dimensional

Memory address instructions,
HP-3000, 490

Memory organization, HP-3000, 476
Memory reference instructions,

HP-3000,478
Memory space, allocation of,

HP-3000, 493
Merging, state, of FSA, 76
Metasymbols, in regular expressions, 101
Minimal fixed point, of regular expression

equation, 112
Move

empty, of FSA, 70
of extended PDA, 194
of FSA, 68
ofPDA,137

Multipass compilation, 12
Multiple declaration, 322

NDFSA
to DFSA reduction, 134
transformation to DFSA, 75
see also Automaton, nondeterministic

finite-state
NEW, Pascal function, 435
Natural order, 28
Nondeterministic FSA, 70

Nondeterministic, to deterministic, of
FSA,82

Nontermina1, 18
inaccessible, 40
LL(k),148
useless, 40

Number, as a token, recognition of, 126

OWN array, in Algol 60, 429
Object code, 7
Object language, 1
Object module

design of, IBM 360, 539
IBM 360,534

Object program, 1
Objects, dynamic Pascal, 435
One-pass compilation, 12
Operator

hierarchy of, 220
strength, 220

Optimization,9,551
machine-dependent, 553
machine-independent, 553
tree, 9

Optimizer, peep-hole, 10

PCAL, HP-3000, 482
PCR (procedure copy rule), 393, 438
PDA

configuration of, 140
and context-free languages, 143
extended, 194
extended, and CFG, 195
finite control of, 137
from a CFG, 143
language of, 140
matching move, 147
move, 137
replacement move, 147
see also Automaton, push-down

PDT (push-down transducer), 286
apply move of, 287
configuration of, 286
definition of, 286
halt conditions of, 287
matching move of, 287

PLjI
name scanner, 349
structure, 343, 347

PSW: (program status word), 528
PUSH table, in LR(1) parser, 232
Pairs table, 94

reduction method, 134
Parameter(s)

actual,438
formal,437
Fortran procedure, CDC 600, 520
of procedures, 437



Parser, 9, 25, 46
bottom-up, 193
canonical LR(l), 254
LL(k), 156
LL(l),60
LL(l), deterministic, 155
LR(k), 193, 252
LR(l), 60, 225
nondeterministic, 58
recursive descent, 161. See also Recursive

descent parser
shift-reduce, 195
simple precedence, 199

Parsing, 1, 15,25
bottom-up, left-to-right, 49
deterministic bottom-up, 198
left-corner, 47
nondeterministic bottom up, 193
top-down, 1eft-to-right, 47

Parsing methods, comparisons, 275
Partial compilation, HP-3000, 493
Partition

refinement of, 89
set, 89

Pascal
CDC 6000 implementation of, 524
structures, 352
user-defined type, 343

Passes, compilation, 12
Peep-hole optimization, 468
Phrase, simple, 19
Pointer stack, 361
Postfix, 469
Postorder, 28
Postponement of error checking, LR(l)

parser, 262
Precedence

equal, 220
higher, 220
mixed strategy, 219
operator, 219
weak,219
see also Parser, relation

Precedence pair, 205
Prefix, 469
Preorder, 28
Preserved definition, 588
Procedure(s)

AOC machine, 393
external, HP-3000, 484
typed, 437

Procedure calls and exits, HP-3000, 482
Procedure compilation and USL linkage,

HP-3000, 496
Procedure copy rule, 393, 438
Procedure label, HP-3000, 482
Procedure parameter mechanisms, 450
Production, 19

LL(k),148

Index 659

Production rule, 19
Program, object: see Object program
Program, source: see Source program
Program status word, IBM 360, 528
Push-down transducer, 286

Quad,466
Quoted string

recognition of, 127
scanning of, 131

READ table, in LR(l) parser, 230
Reached definition, 588
Read

in LR(l) parser, 61
Read head, of PDA, 137
Read state, in LR(l) parser, 225
Recursion and AOC machine, 393
Recursive descent, error recovery in, 635
Recursive descent parser, 161

construction, 167
from extended grammar, 178
failure of, 171
validation, 171, 174, 188

Reduction
of FSA, 88, 90
of LR(l) parser, 228, 260

Referenced variable, 574
Reference of identifier, 322
References, symbolic: see Symbolic

references
Refinement

proper, 89
see also Partition, refinement of

Reflexive transition closure, 68
Reflexive transitive completion, of

relation, 202
Register allocation, IBM 360, 541
Register assignment, 584
Register conventions, 473
Register save and restore, CDC 6000, 522
Register set operations, CDC 6000, 516
Registers,

and arithmetic, CDC 6000, 513
HP-3000, 476

Regular expressions, 100
context-free grammar for, 101
correspondence to FSA, 104
identities in, 103

Regular grammar
and FSA, 97
from an FSA, 99
regular expression of, 111

Rehash algorithm, 370
Relation, 201

equivalence, 88
precedence, 199, 206
reflexive, 88, 201
symmetric, 88, 201



660 Compiler Construction: Theory and Practice

Relation (cont'd)
transitive, 88, 201
transitive completion of, 202

Relocation, 466
CDC 6000, 523
IBM 360,534
and linkage directory, IBM 360, 536

Replacement system, 19
Representations

of FSA, 114
of LR(I) parser, 230

Resegmentation, HP-3000, 494
Rule, production: see Production rule

SDTS (syntax-directed translation
scheme), 279

ambiguity, 285
generalized, 296
output afphabet of, 280
simple, 286
simple postfix, 290
source element of, 280
source grammar of, 280
target grammar of, 280
translation defined by, 281
translation element of, 280
translation form, 281
tree transformations, 282

SLALR resolution, 247
SLR resolution, 251
STT (segment transfer table), 482
Save area, IBM 360, 535
Scanner, 8

error, 608
feedback, 616
for PL/l names, 349

Scope
of identifiers, 323
stack,361

Screener: see Scanner
Segment transfer table, HP-30oo, 482
Selectors, in Pascal types, 352
Selector table, LL(k), 155, 158
Self-compiling compiler, 2
Self-resident compiler, 2
Semantic error, 608, 610,611
Semantic operations, error recovery, 618
Semantics, 15

of compiler, 279
Sentence, 15,27

ambiguous, 43
unambiguous, 43

Sentential form, 26
Set, empty, 17
Sets, relation on, 201
Shift-reduce parser, 195
Shift rule, in extended PDA, 195

Single production transitions, removal of,
LR(I) parser, 265

Skyline, 60
Source file, 7, 124
Source language, 1
Source program, 1
Source records, 8

and characters, 125
Sparse array tables, 114
Stack

in AOC machine, 377
ofPDA,137

Stack and heap allocation, AOC
machine, 386

Stack configuration, HP-3000, 482
Stack machine, 377
Stack marker

HP-3OO0,482
in AOC machine, 397

Stack-ops, HP-3000, 487
Start state, in LR(I) parser, 61
State(s),

accessible, of FSA, 85
halt, in FSA, 64
inaccessible, of FSA, 79
initial or start, in FSA, 67
start, in FSA, 63

Statements, 9
Static chain, in AOC machine, 407
Static scope, 323
Step, derivation, 19
Stratification, 160
String(s), 16

empty,17
length of, 17

String table, 361
binary access of, 364
hash access of, 368
linear access of, 363
management of, 11
tree access of, 366

String transducers, limitations of, 300
String translators

and arrays, 302
branches and procedures, 303
and data typing, 301

Strong LL(k), 155
Structure(s)

control,9
data, 342
extended, 177
Pascal static, 352
program, 9
run-time, 377

Subexpression, common, identification
of,578

Subroutine call, IBM 360, 533



Subtree, 28
Symbol,18

start, 20
Symbol table, 11, 322

multi-pass, multi-scope, 327
for Pascal, 356
single-pass, multi-scope, 325
single-scope, 324

Symbolic locations, 4
Symbolic references, 2
Syntactic equivalence: see Equivalence
Syntax-directed translation scheme:

see SDTS
Syntax error, 608, 609, 613

diagnosis of, 614
patching of, 615

Syntax graph: see Graph, syntax
Syntax tree: see Tree, syntax
Synthesis system

bottom-up, 309
organization of, 312

Synthesis: see Semantics

TDG (top-down greedy) algorithm, 581
TFIRST relation, 213
TPCR: see Procedure copy rule
TRANSPOSE relation, 214
TRR: see Algol renaming rule
Terminal, 18
Text table, IBM 360, 536
Textual address, in AOC machine, 401
Thunk,446
Token assembler, 125
Tokens, 8, 15
Transfer point, in AOC machine, 409
Transitions

empty, of FSA, 77
empty, of FSA, removal, 79
state, in FSA, 64

Transitive closure, 68
Translator, 1

issues, 11
Transportable programs, 5
Tree, 28

children, 28
complete derivation, 34
derivation, 32
directed edges, 28
frontier of, 33
height of, 28

Index 661

immediate ancestor, 28
immediate descendants, 28
internal node, 28
leaf,28
left-to-right natural order, 28
level,28
nodes, 28
parent node, 28
path,28
reduced,9
root node, 28
siblings, 28
start node, 28
syntax, 36
terminal node, 28

Tree dominoes, 34
Triple, 467
Type conversion, 339
Typed procedures

implementation of, 443
return values of, 445

Types, 337

USL: see Unsegmented library
Uniform instruction set, 547
Uninitialized variables, 603
Unsegmented library

file, structure of, 494
IIP-3000,487,494

Up-level call, 407
Upwards exposed use, 589
Use information, data flow, 599
Use of identifier, 322
Used variable, 574
Useless definitions, 603
User names, 126

VPER (value parameter evaluation
rule),439

Variable, 574
Vector: see Array
Viable prefix, 205

WP(working pointer), 413
Warshall's algorithm, 203
Wirth-Weber precedence relations, 212

direct use of, 215
With list, Pascal, 359
With statement, in Pascal, 355
Working pointer~ in AOC machine, 413






	Foreword
	Foreword
	Preface
	Contents
	1. Introduction
	2. Introduction to language theory
	3. Finite state machines
	4. Top-down parsing
	5. Bottom-up parsing and precedence parsers
	6. Bottom-up LR(k) parsers
	7. Syntax-directed translation
	8. Static representations of data objects
	9. Run-time machine structures
	10. Object code and machine architectures
	11. Optimization
	12. Error recovery
	Annotated bibliography
	index

