William A. Barrett
John D. Couch

COMPILER CONSTRUCTION:
THEORY AND PRACTICE

COMPILER CONSTRUCTION Theory and Practice

COMPILER CONSTRUCTION
Theory and Practice

WILLIAM A. BARRETT
JOHN D. COUCH

Composition Typothetae and William A. Barrett

Acquisition Editor Alan W. Lowe
Project Editor Jay Schauer
Technical Art Blakely Graphics

©1979 Science Research Associates, Inc. All rights reserved.

Printed in the United States of America.

Library of Congress Cataloging in Publication Data

Barrett, William A
Compiler construction.

Bibliography: p.

Includes index.

1. Compiling (Electronic computers) I. Couch,
John D., joint author. II. Title.
QA76.6.B367 001.6'425 78-26183
ISBN 0-574-21160-8

10 9 87 654321

FOREWORD by Harold Stone

Compiler Construction: Theory and Practice is exactly what the title promises.
It is an excellent mix of the mathematical foundations of compilers and the
practical considerations required in ‘developing high guality compilers for
commercial release. The level of discussion is suitable for college juniors and
seniors. The material is readily digested because all of the mathematical pre-
requisites are included in the book, and they are exposed in a highly palatable
fashion.

One of the strengths of the book is that algorithms are normally discussed
in high-level Pascal-like language that brings out the structure and flow of
the algorithms with great clarity in contrast to similar descriptions in flow-
chart language or automation operations used by some earlier texts in the
area. The authors do a particularly commendable job on the practical aspects
of code generation, code optimization, and syntax error handling, all three of
which are still “black arts” by comparison to the topic of parsing where
theory and practice have largely merged.

Here is a book that the professional compiler writer can use to create better
language translators, that the computer scientist and engineer can use to gain
an understanding and appreciation of the process of language translation
that is part of his interface with the computer, and that the student can use to
further his knowledge of the capabilities of computers and methods for
harnessing the power of the computer.

FOREWORD by W. M. McKeeman

The art of translating programming languages has, in many ways, come of
age. From its beginnings in Fortran and Algol and hundreds of other lan-
guages, we find the concept of high-level languages well established and the
construction of translators routine.

Such progress exists because of the highly developed craft of compiler
writers to whom the tools of the trade are well-known and regularly applied.
There are few places where that rich craft is recorded altogether in a way
that is understandable and immediately applicable. To provide such a source
is the purpose served by the following text.

The reader must be a programmer. The terminology comes from that
field, and the insights necessary to understand the material do so as well.
Assuming that background, the reader should find here the world of auto-
matic translation opening up—from the formalities of language description
to the tough details of machine code generation. It is a fascinating subject
and well worth the intellectual effort of study.

vi

PREFACE

Compiler Construction: Theory and Practice is intended as a one- or two-
semester course in the fundamentals of compiler construction and/or lan-
guage translation. It is designed especially for students with some program-
ming and computer systems background. A strong background in discrete
mathematics is helpful, but not required.

This text treats:

e Grammars, trees, and parsing fundamentals.

e Finite-state automata—their relation to regular grammars and regular
expressions, their systematic generation, their reduction to minimal
form, their representations, and their application to compilers.

e Top-down parsing— principles, LL(k) grammars, LL(1) and recursive-
descent parsers.

e Bottom-up parsing— principles, precedence parsers, and the LR(k)
parser.

e Syntax-directed translation—principles and application to translation.

e Symbol tables and operations—principles, scope rules, type rules,
static representation of PL/I, Cobol, and Pascal structures. Efficient
name table access methods.

e Run-time machine models—to support recursive procedure calls,
block structure parameter passing, data space allocation, and data
access.

e Practical machine systems—a review of three commercial machine
systems and their application as a target machine. Details of loader
design, support of partial compilation, relocation, recursive calls, etc.

e Optimization—efficient register allocation, constant folding, recog-
nition of common subexpressions, and introduction to data-flow
analysis.

e Error recovery—recovering from syntax, scanner and semantic errors,
with special attention paid to LR(k) recovery, use of forward move,
and experimental studies of recovery.

The Authors

The authors have both academic and industrial experience in compiler con-
struction. William Barrett taught courses in introductory computer systems
and compiler construction at Lehigh University, Bethlehem, Pennsylvania,

vii

viii Preface

before accepting a staff position in software development at Hewlett-Packard,
Cupertino, California. He is currently responsible for a systems program-
ming language. Its compiler incorporates a number of advanced features
described in this textbook. John Couch taught compiler construction at
San Jose State University for several years. Formerly responsible for systems
software development at Hewlett-Packard, including several compiler proj-
ects, he is now Director of Product Development for Apple Computer Co.,
Cupertino, California.

As teachers, the authors believe that some language theory is an essential
part of compiler construction. However, much of language theory is irrele-
vant to compiler construction. This text should help bridge the gap between
theory and practice.

The authors also believe that a balance should be struck between parsing
and code synthesis, and between top-down and bottom-up methods. Although
most of the synthesis material in this text pertains to bottom-up parsing,
both parsing approaches are given approximately equal treatment. Many
of the synthesis considerations are applicable to either parsing approach.

Features

Along with basic core material, this text contains source material that has
been collected in one book for the first time, and original material found
nowhere else.

The first three chapters present a core treatment of grammars, trees,
parsing, and finite state automata. We have included only enough language
theory and automata theory to understand parsers and compilers. We have
omitted such topics as Turing machines and compurtability. Enough auto-
maton theory is presented to make it possible to develop the commonly
used top-down and bottom-up parsers, and to prove that they perform as
claimed. We believe that, with the formal descriptions, proofs, extensive
discussions, and the many examples of machines and machine traces, a student
will be able to understand how a parser works, and will also be able to
understand professional literature in programming languages for additional
information.

Chapter 3 discusses finite state automata, their relation to regular gram-
mars and regular expressions, and their reduction to minimal form. As an
application, lexical analysis is discussed briefly. A designer must be aware
that some languages, such as Fortran, pose difficult lexical problems. Such
problems are discussed in some detail. ‘

The remaining chapters contain much original material. An extensive
discussion of recursive descent parsers will be found in Chapter 5. We not
only describe this commonly used patsing method, but also develop an
automatic generator and the conditions under which the parser operates
correctly.

Preface |x

The LR(k) parsing methods, which are recently being incorporated into
some commercial compiler systems, are discussed in considerable detail in
Chapter 6. Methods of reducing the size of the stored LR tables and of esti-
mating the size of the tables are also given. Parser reductions based on special
grammar properties are described in some detail.

The organization of a symbol table for single and multiple pass compilers
with multiple block levels is given in Chapter 8. Efficient access methods
are also described there. We show how to organize a symbol table for PL/I
structures and Pascal types, and how to resolve partially specified names.

Run-time data structures are dealt with in Chapter 9. We develop a special
machine system that can be used to implement Algol, Fortran, Pascal, and
many other languages. This system, or its equivalent, must be emulated or
simulated in order to support various features of these languages. The im-
portant issues of procedure calls, parameter passing, blocks, and array and
structure access are dealt with in considerable detail. The material on the
efficient access of multi-dimensional arrays and structures should be of par-
ticular interest.

Three specific machine architectures and their supporting system con-
ventions are described in some detail in Chapter 10: the HP 3000, CDC 6400,
and the IBM 360. The HP 3000 system is described at length. However,
the principles of loader table design and machine architecture, exemplified
in the HP 3000, are applicable to any system. In particular, we show how
procedures can be independently compiled and brought together later by a
loader to form a complete program.

Optimization issues are dealt with in Chapter 11. We have followed a
modern school of thought in this area—that of constructing a directed acyclic
graph of a program segment, then performing various reductions on that
graph. We consider the multi-register allocation problem at some length,
following the work of Aho and others in this field. Finally, we develop the
fundamental notions of flow analysis, which can be used to reduce code and
to detect subtle programmer errors during compilation.

The book ends with a chapter on error recovery. We classify program
errors, then deal at some length with the problem of patching over a syntax
error in a free-form language. We give different methods of dealing with
syntax errors and discuss their effect on semantic issues. We summarize the
results of some error recovery experiments.

Designing a Compiler Course

For a one-semester course, some portions of this text should be covered in
detail; other sections should be approached tangentially. To concentrate on
basic matters in one semester, Chapters 1-4 and 6—9 provide a solid ground-
ing in grammars, top-down and bottom-up parsers, syntax-directed trans-
lation, symbol table issues, and static and dynamic data structures. We sug-

X Preface

gest skipping Chapter 5, on precedence methods, and Chapters 10 through 12.

For a two-semester course, use Chapters 1-7 and Chapter 12 for the first
semester, then 8-11 for the second semester. These chapters should be
augmented with additional outside material or a class project. Many sug-
gestions for projects are contained in exercises in these chapters. If the course
is being taught for the first time, a useful project would be a top-down or
bottom-up parser generator, based on the algorithms given in the text. This
generator can then be used in subsequent years as a tool for practice in
designing grammars and in writing compilers.

A simulator of the system described in Chapter 8 and a compiler that
generates code for this system would also be instructive projects.

Acknowledgements

We wish to thank Frank DeRemer, Harold Stone, and Bill McKeeman for
many helpful criticisms and a detailed reading of the manuscript; Richard
Page of Hewlett-Packard for simulating the AOC machine and correcting
potential errors; Steve Glanville for his criticism and for permission to use
his thesis material; Tom Pennello for permission to use his thesis material;
George Miller of the University of California for classroom testing this text;
and Fred Clegg, and Tom Whitney for their patience, encouragement, and
understanding,

We wish to thank Hewlett-Packard for allowing us to use their computer
systems for manuscript preparation. We thank Control Data Corporation,
IBM, and Hewlett-Packard for permission to create illustrations based on
their technical manuals.

Finally, we thank our wives who supported us, despite the fact that we
were around the house much less than they (and we) would have liked,
through the many long hours spent working on “The Book.”

CONTENTS

Foreword by Harold Stone v
Foreword by W. M. McKeeman v
Preface 773

1. Introduction 1
1.1. Translators 1
1.2. Why write a compiler? 2
1.3. The cost of a compiler 6
1.4. The compiling process 7.
1.5. Translator issues 11
2. Introduction to language theory 15
2.1. Language elements 15
2.1.1. Tokens and alphabets 15
2.1.2. Strings 16
2.2. Generative grammars and languages 17
2.2.1. Terminals and nonterminals 18
2.2.2. Production rules and grammars 19
2.2.3. Classes of grammars 20
2.2.4. Sentential forms and language definition 26
2.2.5. Production trees and syntax trees 28
2.2.6. Canonical derivations 40
2.2.7. Ambiguity 43
2.3. Introduction to parsing 46
2.3.1. Top-down and bottom-up parsing 46
2.3.2. Backtracking 50
2.3.3. A deterministic top-down parser 58
2.3.4. A deterministic bottom-up parser 60
2.4. Bibliographical notes 62
3. Finite-state machines 63
3.1. Formal definitions 67
3.2. Transformation of a NDFSA to a DFSA 75
3.2.1. Empty cycle detection and removal 76
3.2.2. Removal of empty transitions 77

xi

xii

Contents

3.3.

3.4.
3.5.

3.6.

3.7.

3.8.

3.9.

3.2.3. Transformation from nondeterministic
to deterministic

3.24. Accessible states

Machine equivalence

3.3.1. Definitions

3.3.2. Reduction

3.3.3. A systematic reduction method

Regular grammars and FSA

Regular expressions and FSA

3.5.1. Definitions

3.5.2. Regular expression identities

3.5.3. Correspondence to FSA

3.5.4. Regular expression of a regular grammar

FSA representations

3.6.1. Sparse array tables

3.6.2. Table reductions

3.6.3. Sparse array representation of a FSA

3.6.4. Program representation of a FSA

Applications of FSA

3.7.1. Recognition of literals

3.7.2. Lexical analysis

Some FSA theorems and their proofs

3.8.1. Equivalence of empty cycle states

3.8.2. Equivalence through removal of empty moves

3.8.3. Equivalence on the NDFSA to
DFSA transformation

3.8.4. The pairs table reduction algorithm

Bibliographical notes

Top-down parsing

4.1.
4.2.

4.3.

44.

4.5.

Nondeterministic push-down automata

LL(k) grammars

4.2.1. Definitions

4.2.2. Some properties

Deterministic LL(1) parser

4.3.1. LL(1) selector table

4.3.2. LIL(1) grammar transformations

Recursive descent parsers

4.4.1. Construction and validation

4.4.2. Extended grammars

4.4.3. Construction and validation from
extended grammar

Bibliographical notes

82
85
88
88
90
94
97
100
100
103
104
111

114

114
117
117
120
122
122
124
132
132
132

134
134
136

137

137
148
148
149
155
156
160
161
167
176

178
192

5. Bottom-up parsing and precedence parsers

7.

5.1.
5.2.

5.3.

Nondeterministic bottom-up parsing
Precedence parsing

5.2.1. Relations

5.2.2. Boolean matrix sum and product
5.2.3. Viable prefix

5.2.4. Precedence pairs

5.2.5. Precedence relations

5.2.6. Simple precedence grammar
5.2.7. Wirth-Weber relations

5.2.8. Other precedence parsers
Bibliographical notes

Bottom-up LR(k) parsers

6.1.

6.2.

6.3.
6.4.
6.5.
6.6.

LR(k) grammars and parsers

6.1.1. LR(k) grammars

6.1.2. An LR(1) parser

6.1.3. LR(0) parser construction
6.1.4. Resolution of inadequate states
LR(k) parsers

6.2.1. Canonical LR(1) parsing tables
6.2.2. A canonical parser

6.2.3. Table reductions

6.24. LALR(1)tables

Augmented grammars

Size of LR(k) tables

Comparison of parsing methods
Bibliographical notes

Syntax-directed translation

7.1.

7.2
7.3.
7.4.
7.5.

7.6.

General principles

7.1.1. Definitions

7.1.2. Tree transformations

Simple SDTS and top-down transducers

Simple postfix SDTS and bottom-up transducers

A general transducer

String transducers and their limitations
7.5.1. String translators

7.5.2. Abstract-syntax tree construction

7.5.3. A practical bottom-up synthesis system

Bibliographical notes

Contents

xiii

193

193
199
201
202
205
205
206
206
212
218
223

224

224
224
225
235
246
252
254
255
260
268
269
273
275
278

279

279
280
282
284
289
295
299
299
303
308
319

Xiv Contents

8. Static representations of data objects

8.1.
8.2.

8.3.

8.4.

8.5.

Symbols and declarations

General organization of a symbol table

8.2.1. Scope of names

8.2.2. Names and attributes

Data objects and their static representation

8.3.1. Primitive objects

8.3.2. Types

8.3.3. Structures
8.3.3.1. Array objects
8.3.3.2. PL/I structures
8.3.3.3. Pascal structures

String tables and their access

8.4.1. Linear access

8.4.2. Binary access

8.4.3. Tree access

8.4.4. Hash access

8.4.5. Comparison of access methods

Bibliographical notes

9. Run-time machine structures

9.1.
9.2.

9.3.
9.4.
9.5.
9.6.

9.7.

9.8.

Introduction

Run-time structures for Algol-like languages
9.2.1. Arithmetic and logical expressions
9.2.2. Assignment statements

9.2.3. Conditionals

Stack and heap allocation

Input-output

Blocks and storage allocation

Procedures and recursion

9.6.1. Procedures and the free variable problem
9.6.2 Textual addresses

9.6.3. Block entry and exit

9.6.4. The static display chain

9.6.5. The display revisited

9.6.6. Labels and GOTO’s

Arrays

9.7.1. Packed arrays

9.7.2. Array access through matrix pointers
9.7.3. Dynamic arrays and redimensioning
9.74. Pascal data structures

9.7.5. Pascal data object access

Typed procedures and procedure parameters

320

321
323
324
329
333
334
337
342
344
347
352
361
363
364
366
368
372
375

376

376
377
379
382
384
386
388
388
393
397
401
403
407
411
413
418
418
425
429
431
434
437

10.

9.9.

9.10.

Contents

9.8.1. The procedure copy rule (PCR)

and call by name
9.8.2. Call by value (CBV)
9.8.3. More about free variables
9.8.4. Fortran parameter-passing rules
9.8.5. Implementation of CBV and typed procedures
9.8.6. Typed procedure return value
9.8.7. Implementation of CBN procedure parameters
9.8.8. Implementation of CBN label parameters
9.8.9. Summary of procedure parameter mechanisms
9.8.10. Call by name of implementation
9.8.11. CBYV versus CBN
Summary of AOC instructions
Bibliographical notes

Obiject code and machine architectures

10.1.
10.2.
10.3.
10.4.
10.5.

10.6.

Introduction

Intermediate languages

The pros and cons of intermediate languages

Machine architectures

The Hewlett-Packard 3000

10.5.1. Data formats

10.5.2. Memory and register organization

10.5.3. Memory reference instruction format

10.5.4. Indirection and indexing

10.5.5. Stack configuration during program execution

10.5.6. Stack marker, procedure calls, and exits

10.5.7. Instructions

10.5.8. Allocation of memory space for OWN and
outer block variables

10.5.9. Partial compilation and segmentation

10.5.10. The USL file structure

10.5.11. Procedure compilation and USL linkage

10.5.12. Primary DB header

10.5.13. Secondary DB/OWN initial values header

10.5.14. Procedure call header

10.5.15. OWN variable pointer correction header

10.5.16. Procedure local variables

10.5.17. Branches and constants

10.5.18. Conclusions

The Control Data 6000 computer system

10.6.1. Registers and arithmetic

10.6.2. Instruction format

10.6.3. The register set operations

XV

438
439
441
442
443
445

446
448

228

450
454
460
460
453

465

465
466
470
473
475
475
476
478
479
482
482
487

493
493
494
496
497
498
499
501
501
503
507
511
513
515
516

Xvi

11.

Contents

10.6.4. Arithmetic and logical operatioyns

.10.6.5. Branches

10.6.6. Other operations

10.6.7. Procedure parameters in a Fortran
implementation '

10.6.8. Arithmetic expressions

10.6.9. Saving and restoring registers

10.6.10. Relocatable linking and partial compilation

10.6.11. A Pascal implementation

10.6.12. Summary

10.7. The IBM System/360
10.7.1. Instructions
10.7.2. An instruction example
10.7.3. Procedures and program relocation
10.7.4. Save areas
10.7.5. Object modules
10.7.6. Addressing
10.7.7. Object module design
10.7.8. Register allocation
10.7.9. Summary
10.8. A generalized code generator
10.8.1. Table construction
10.8.2. Experimental results
10.9. Bibliographical notes
Optimization
11.1. Machine-dependent optimizations
11.2. Machine-independent optimizations
11.2.1. Expression (AST) optimizations
11.2.2. Flattening
11.3. Optimal AST evaluation for a multiregister machine
11.3.1. 'The machine
11.3.2. Tree labeling
11.3.3. Optimal code generation
11.3.4. Discussion
11.3.,5. Commutative operators
11.3.6. Associative and commutative operators
11.4. Code improvement over a sequence of statements

11.4.1. Blocks

517
518
520

520
521
522
523
524
525
527
529
531
534
535
536
538
539
541
542
543
547
549
550

551

553
553
556
557
562
563
564
565
567
570
571
572
573

Contents Xvii

11.4.2. Variables and their domains 574

11.4.3. Equivalent and normal blocks ' 575

11.4.4. Representation of a block as a (DAG) 576

11.4.5. Value of a DAG 577

11.4.6. Common subexpression identification 578

11.4.7. Use of associativity and commutativity 579

11.4.8. DAG reduction 580

11.4.9. DAG evaluation 581
11.4.10. Register assignment and code generation 584

11.5. Data flow analysis 587
11.5.1. Definitions 588

11.5.2. The basic data flow analysis method 594

11.5.3. Intervals 596

11.5.4. Higher order intervals 597

11.5.5. Use and live information 599

11.5.6. 'The interval-based reach algorithm 600

11.5.7. Applications of data flow information 603

11.6. Bibliographical notes 605
12. Error recovery 607
12.1. Introduction 607
12.2. Semantic errors 611
12.3. Syntax etrors 613
12.3.1. General methods 614

12.3.2. Diagnosis of a syntax error 614

12.3.3. Patching a syntax error 615

12.3.4. Semantics operations in error recovery 618

12.35. A bounded-range error recovery strategy 618

12.3.6. Variations on the bounded-range strategy 620

12.3.7. Forward move 621
12.3.8. Correction strategies with a forward move 623

12.3.9. Empirical study of error recovery 628
12.3.10. Recovery in a recursive descent compiler 636

12.4. Bibliographical notes 637
Annotated bibliography 639

Index 655

CHAPTER 1

INTRODUCTION

1.1. Translators

A transiator accepts a source program and transforms it into an odject
program. The source program is a member of a source language and the object
program is a member of an object language. Both languages are artificial,
inasmuch as they are designed for a digital computer, as opposed to a natural
language like English or German.

Each program expresses some algorithm. We are primarily interested in
those translations for which the source and object algorithms are identical.
For example, a Fortran program should yield the same results for a given
input regardless of the machine language to which it is translated. Those
results should be as expected from the specification of the Fortran language
and the algorithm as expressed in Fortran.

Artificial translation is rapidly becoming a mathematical discipline, while
natural translation remains rather more an art. Yet the two are somewhat
akin. Any student of foreign languages knows that one language cannot be
translated to another by simply substituting words. A human translator must
first grasp the precise meaning of each source sentence, then compose an
equivalent sentence in the object language. So it is with artificial translators.
A source program must first be analyzed to uncover its underlying meaning
and structure; this process is called parsing. Then a number of transforma-
tions on the structure are performed, ultimately ending in the object program.

For a given source language, the translation may be carried to several
different levels of completeness: to assembly code, to machine code, or to
execution. Assembly code 'is a sequence of mnemonic instructions and
symbolic address references; it is a member of an assembly language, and must
be translated into machine code by yet another translator called an assembler.
Assembly language usually has a very simple structure with a fixed format—a
program location field, an instruction field, and an address field. Each line of
assembly code usually translates to one machine instruction. There are no
nested statements, arithmetic expressions, or procedures as in Fortran or
Algol.

Machine code is a sequence of binary machine instructions that require
little or no modification in order to be executed.

An interpreter accepts a source program, translates it into some intermedi-
ate data structure, then executes the algorithm by carrying out each operation
given in the intermediate structure. An interpreter is considerably less
efficient than a compiler, because it carries the burden of intermediate
structure analysis as well as execution. However, a program can be rapidly

2 Compiler Construction: Theory and Practice

developed with an interpreter, since its test can follow its modification so
rapidly.

The advantage of a compiler is that it generates an efficient, short,
executable program. It demands fairly heavy computer resources while
compiling, but when executing, only those resources needed by the executing
program are required. The disadvantage of a compiler is the lag time between
writing a program and executing it.

An interpreter as an algorithm is very similar to a compiler. The analysis of
the source statements and bookkeeping for identifiers and literals are tasks
common to interpreters and compilers. We shall therefore not be concerned
with the differences between an interpreter and a compiler in this textbook.

A compiler or an interpreter is itself a program written in some language,
called the ost language. We therefore see that three languages are involved in
a compiler— source, object, and host. These are often three different
languages. A Fortran compiler that runs on an IBM 360 might be written in
PL/I, and generate machine code for a 1401. A compiler that generates code
for its host machine is called self-resident; if, in addition, it is written in its
own source language, it is self-compiling. If it generates code for a machine
other than the host, it is called a cross compiler.

1.2. Why Write a Compiler?

A programming language is designed and a compiler written for it for only
one reason—to make it easier for human beings to get a computer to carry out
aclass of tasks. If it were possible for us to rapidly translate a task description
into the long lists of binary numbers that a computer expects as its instruction
list, with no errors, then programming languages and compilers would be
unnecessary. Unfortunately, human beings make mistakes. They are unable
to cope with a big list of binary numbers, and their time is valuable compared
to machine time. A computer is well suited to clerical tasks and can handle
them cheaply and accurately. One task that a computer can be expected to
perform is assisting us in programming itself.

Here are some of the services that a compiler should provide for its user:

1. Evaluate symbolic references to instructions and instruction locations.
Consider branches. At the machine level, a branch might look like this in
16-bit octal code:

location contents
037663 024433

On an HP 2100 minicomputer, the number 024433 is interpreted as a
direct branch to location 433. (The “024” is the instruction and the “433” is
the address.) -

Now it is unreasonable to expect anyone to remember the rather
complicated pattern of bits that make up a branch instruction, nor those of the

1 Introduction 3

dozens of other instructions offered on a typical small computer. It is
therefore better to assign a mnemonic name such as JMP to each instruction.
Then the same branch might be written

location contents

037663 JMP 433

This change reads better than the 024433, yet now requires some kind of
translator, one which can interpret the characters in “JMP” and turn them
into the “024” of the JMP instruction on a 2100. The other instructions may
similarly be given mnemonic codes. A simple program might then look like
this:

location contents comment

(start) O LDX 7 {Load index register, address 7}
LDA 7,X {Load accumulator, indexed}
DSZ {Decrement X and skip if zero}
JMP 6 {Go to location 6}
ADA 10,X {Add location 10, indexed,

to accumulator}
5 JMP 2 {Go to location 2}

BN =

6 HLT {Stop}

7 4 {Data needed by the program}
10 16

11 32

12 176

13 24

This program can now be read by someone familiar with the 2100 instruction
set. The intention of the programmer was to add up the list of four numbers
in locations 10 through 13. However, the program doesn’t do that; it simply
loads 24 in the accumulator register, then halts. There are several errors; a
correct program is given below:

location contents

0 LDX 6
1 LDA 17X
2 ADA 6,X
3 DSZ

4 JMP 2
5

6

7

HLT
3
16
10 32
11 176
12 24

4 Compiler Construction: Theory and Practice

Now these errors would be obvious only to someone with considerable
experience in 2100 assembly language coding. Yet this is quite a simple
algorithm. How many errors are likely to be introduced in the assembly-
language coding of a large data base manager or of an operating system?

Notice that lots of things have changed between the two programs. The
most painful change is the removal of one instruction, which has caused a
shift in the locations of the variables and all the instructions past the deleted
one. In other words, every instruction referring to one of the shifted constants
must be changed. One simple change in a long list of instructions can require
many changes throughout the program.

The burden of finding and changing lots of instructions can be removed as
a human activity and shifted to a computer by introducing symbolic location
names. Any location that must be referred to in an instruction is assigned a
symbolic name; then only names need appear in instructions. The assembler
must then determine the location of each label and fix the instructions
accordingly. The sample program then might look like this:

LDX L1
LDA 12X
L4: ADA L1.X
DSz
JMP L4
HLT
LI1: 3
L2: 16
32
176
24

Symbolic labels carry several unexpected bonuses. The absolute locations
have disappeared, which means that our program may now be placed
anywhere within some other program; the assembler will work out the
locations. Only those locations that must be referenced are labeled; however,
the label associated with some instruction may be hard to find in a large
listing. The assembler may check that every symbol appears as a label exactly
once in the program.

2. Constants should be converted to internal form by a compiler. Modern
computers can handle a variety of internal data forms, for example,
multiple-precision integers, floating-point (real) numbers, packed decimal
numbers, strings, etc. No human being should be expected to perform the
required conversion to internal form; there is also no valid reason why a
programmer should even have to know the internal form.

3. Special control structures may be devised that read better than the
primitive instructions of an assembler. For example, the sample program
might read as follows in Algol:

1 Introduction 5

INTEGER ARRAY A(4):=(16, 32, 176, 24);
INTEGER I, SUM;

SUM := 0;
FORI:= 0 UNTIL 3 DO SUM := SUM + A(I);

Although this is somewhat more wordy than the assembly language form, it is
certainly easier to understand. The data variables are clearly deciared
separately from the algorithm that operates upon them, and the one-line FOR
statement expresses the desired operation very clearly.

If a concise description of an algorithm is the most desirable feature of a
programming language, then the language APL probably takes top honors.
The above algorithm to add the four numbers 16, 32, 176, and 24 is written
this way in APL:

SUM <« + /(16 32 176 24)

4. Programs written in any of several common high-level languages are
often transportable. By this, we mean that a program written in, say, Fortran,
can be compiled and executed with few changes on any of several different
computers, despite differences in internal architecture and instruction set.
When software is transportable, a computer user with a large program library
may change computers without incurring a heavy software development cost.
Programs written in assembly language for one computer are worthless on
any other computer. Computers also become obsolete, and the assembly
language programs written for them become worthless.

5. Assembly language programs are much more likely to contain subtle
errors than the same programs written in a high-level language. There are
several reasons for this: assembly language is hard to read except by an expert
very well versed in the machine; assembly language programs are “unstruc-
tured,” i.e., there are no control structures to guide coding and reading; it
takes many more assembly language instructions to achieve the same effect as
a suitable high-level language statement; and a machine instruction often has
many subtle side-effects to trap an unsophisticated programmer, e.g., a
condition code or carry bit may be set or cleared and an index register value
may be altered. A modern high-level programming language and its compiler
should protect the programmer from many such error-causing complications.

6. A high-level language lends itself to the division of the labor of a
software task. A programming team can agree on the properties of certain
procedures or macros, then go their separate ways to write and check out their
part of the whole task. This principle also applies to a sophisticated
assembler, but more agreements need to be reached on programming
conventions among the team during the design phase.

7. A modern high-level language will engender good programming style.
For example, an IF-THEN-ELSE construct forces a programmer to

6 Compiler Construction: Theory and Practice

consider both alternatives of an IF test; a failure to deal with one cries out
from the printed page. In assembly language, it is often difficult to find the
two alternatives of a branching test, and it is easy to obscure one of the two.
The compiler can be made to check array bounds, so that during testing, any
instance of an out-of-range index can be detected and subsequently analyzed.
Good programming style also means that someone else can read and
understand the program without a lot of analysis.

8. A number of high-level languages are rather simple in structure and can
easily be learned by someone with little or no computer background. For
example, Basic is used extensively in some grade schools. Such languages
make computer services accessible to people who would otherwise never
consider using them.

These are some of the major advantages prov1ded by a high-level
programming language and a compiler for it. There are many others. All
these result in an appreciable increase in engineering efficiency in the writing,
maintenance, and modification of software.

1.3. The Cost of a Compiler

The development of a compiler is a major software effort. Depending on
the complexity of the language and the target machine, as little as three
man-months or as much as thirty man-years may be required to write and
debug a compiler. The most complex compiler ever written was probably
PL/T for the IBM 360. PL/I is an extraordinarily rich language, containing
not only several file access methods, but a large set of data types and
operations.

Another cost is a certain loss of machine efficiency for a program written in
a high-level language compared to the same algorithm written by a skilled
programmer using assembly language. A high-level language imposes certain
constraints upon a programmer in its forms of control structures, limited data
types, etc., which do not exist in assembly language. This loss of efficiency is
particularly severe for a high-level language that is not particularly well
suited to its target machine. Thus Algo] and PL/I are rather well suited to a
stack architecture. A multiregister machine, such as the 360, generally
requires elaborate optimization techniques in order that a compiler can
compete with an assembler in number of words of code and execution time.
The optimization phase of compiler design for a machine poorly suited to the
language can double the compiler cost and size.

A compiler’s ihefﬁciency in generating executable code is paid for upon
each use of the code. If that cost is deemed too high, several alternatives can
be chosen, among them recoding in another language, or coding portions of
the software in assembly language. Often an inefficiency in a programming
system stems from a poor choice of algorithm, or a poor peripheral device
access strategy, rather than from an inherent inefficiency in the compiler.

1 Introduction 7

1.4. The Compiling Process

The major operations in a compiler are illustrated in figure 1.1. The
process begins with a source file at the top of the figure, and ends with
optimized object code at the bottom. Our description in this section will
necessarily be highly simplified; many special problems in a real compiler
system will be overlooked in this review.

Source

Records File records
—_—

—

access

1
— 1

O0O0000O0= Character 4__—‘|

manipulator

N

w

Characters

> Scanner > 000

A
/\ Tokens
-~

Parser <

Abstract

syntax /\ \

tree
5 A
Reduced
/\

Optimizer tree

; \

A

Raw [7777 '
object [/ //, Code :
code 277 generator
7
Peep hole > 7 A Optimized '
optimizer L/ /] object
code

Figure 1.1. Major operations in a compiler.

8 Compiler Construction: Theory and Practice

A compiler is based on a sequence of transformations that preserve the
operational meaning of a program, but not necessarily all the information in
it, nor even the exact sequence of operations requested (or thought to be
requested) in the source program.

The nature of the system upon which the compiler resides has a strong
influence on the design of a compiler. Most computers have a severely limited
“fast” memory (semiconductor or magnetic core), but extensive “mass”
memory (disk, drum, magnetic tape). A compiler is often expected to process
very large source programs, so that only a relatively small portion of the
source can be actively under process at any one time. A compiler must usually
be such that only the least information necessary be retained in fast memory,
and such that most of the compilation is sequential in character—object code
or some intermediate structures will be emitted as additional source is read.

Not all translators fit this pattern, nor must a compiler be strictly sequential
on all systems. A system with virtual memory, for example, has unlimited
memory available, in effect, so that sequential processing is less important.
An interpreter usually has to carry all of the source, symbol tables, and
program along during editing and execution; however, they need not
necessarily all be in fast memory.

Compilation begins with some source form, shown in figure 1.1 as a file. Of
course, source can originate in any of a variety of forms, such as punched
cards, paper tape, a terminal, and magnetic tape. Their access is quite
different, but the differences are usually of little or no concern to the compiler
writer. File access (box 1) is generalized in most operating systems, so that the
particular form of source is of no consequence. The compiler therefore first
sees some sequence of source records, emitted by box 1.

In some languages, source record boundaries are important as statement
delimiters (e.g., Fortran or Basic). In others, source boundaries are of no
consequence. Hence a compiler will likely contain a section that accepts
source records and emits a sequence of characters, box 2. This section may
well detect and remove comments and special control commands that have
nothing to do with the source language. If the language specification is such
that blanks are ignored, then blanks would be suppressed by the character
manipulator, box 2. However, this is not always easy. In Fortran, blanks are
crucial in some contexts but not in others, and the necessary distinctions are
sometimes difficult.

The character sequence is next subdivided into a sequence of tokens by a
scanner or screener, box 3. A token may be a single character, or some special
sequence of characters. The scanner may be responsible for skipping
comments and blanks, if necessary. Examples of tokens are identifiers (names
assigned to variables, statement labels, etc.), quoted strings, numbers, and
special character sequences, such as “:=" in Algol.

Boxes 2 and 3 are sometimes called a lexical analyzer. They must be
tailored to the language and the grammatical description of the language

1 Introduction 9

chosen by the compiler implementors. For example, the Fortran source
record

6 DOI =4,X *(Y—16) ,16

would be translated by a lexical analyzer into the token sequence:

The token sequence emitted by the lexical analyzer is next processed by a
parser, box 4, whose task is to determine the underlying structure or
“meaning” of the program. Until the parser is reached, the tokens have been
collected with little or no regard to their position within the program as a
whole. The parser considers the context of each token and classifies groups of
tokens into larger entities such as declarations, statements, and control
structures. The product of the parser is usually an abstract syntax tree. (An
example of an abstract syntax tree for the Fortran DO statement is given in
figure 1.2.) A tree is a very useful representation of a program or program
segment, inasmuch as it facilitates several subsequent transformations
designed to minimize the number of machine instructions needed to carry out
the required operations.

The abstract syntax tree may next be subjected to a number of optimiza-
tions through a tree optimizer, box 5. The result is some reduced tree,
possibly rearranged to suit the needs of the machine architecture. Examples
of optimization possible at this level include: constant expression evaluation,
use of commutativity, associativity, and distributivity of certain operators to
collect constant expressions together, detection of common subexpressions,
or rearrangement to suit a particular architecture.

The reduced tree may then be transformed into a sequence of raw object
code by a code generator, box 6. The object code may be of several different

10 Compiler Construction: Theory and Practice

{DO statement

{Variable> {Constant) {Expressiony> {Constant>

|

| 4 * 16
{Variable) —
LN
X {Variable> {Constant>
|
Y 16

Figure 1.2. Abstract syntax tree for the Fortran statement DO |=4, X+(Y—16), 16

kinds, depending on the purpose of the compiler: (1) it may be machine code
for some particular target machine, or (2) it may be a special intermediate file
designed to be further processed by a loader, or (3) it may be specially
designed intermediate code that must be further translated by another system
into machine code or a loader structure.

Finally, the raw object code may be subjected to further optimizations by a
peep-hole optimizer, box 7. Such an optimizer examines short sequences of
code and determines whether, in certain cases, a sequence can be replaced by a
shorter equivalent sequence. For example, the sequence

STOR A; {copy accumulator to location A}
LOAD "A; {copy location to accumulator}

could be reduced by removing the LOAD instruction. This sequence can
easily occur if the STOR represents the end of one statement and LOAD the
beginning of another. As another example, the sequence

1 Introduction 11

LOAD A;
ADD =1;{add constant 1 to accumulator}
STOR A; :

might be replaced by a single instruction,
INCM A; {increment contents of location A}

on a machine containing such an instruction. Such optimizations can
appreciably reduce the number of emitted instructions.

Other operations not shown in figure 1.1 include string table management
and error recovery. The string table contains a copy of each identifier
appearing in the program. It is usually linked to an attribute table, so that
properties assigned to some identifier can be made available throughout the
compilation process. The string table and attribute table together are called a
symbol table. The attributes of an identifier might include:

- How it was declared, (e.g. REAL, ARRAY).
« Its dimensions, if an array.
- The number of storage elements required for it.

« Its location in memory.

An error recovery system is usually attached to the parser, box 4, and takes
control when a syntax error in the source program is detected. Its purpose is
to diagnose the error and attempt some kind of recovery, so that the
subsequent source input need not be discarded. The error recovery system
may, for example, decide to insert some tokens, or discard some input tokens
in an attempt to patch over the offending section of source.

1.5. Translator Issues

Often a very simple compiler can be made by omitting all the optimization
steps, even the tree-building step. Many compilers generate machine code
directly through the parse steps, using a variety of heuristic methods to
achieve the translation.

A compiler might translate a source language to another closely-related
intermediate language, or to symbolic assembly code. The latter can then be
translated by some existing compiler or assembler to machine code. Many of
the functions of a full compiler can thus be omitted, considerably reducing
the compiler development task. However, such a compiler will likely neither
be very efficient nor generate particularly efficient object code.

A compiler that generates an intermediate language could be used with
several different machines. Of course, a translator from intermediate lan-

12 Compiler Construction: Theory and Practice

guage to each machine’s code is also needed, but these are often easier to write
than several different complete compilers. For example, a translator from
Pascal to PCODE has been used to implement Pascal on several different
machines. In some of the implementations, PCODE is interpreted, rather
than translated.

The steps outlined in figure 1.1 may be carried out in one or several passes.
A pass in general is some scan through either the source records, or through
some translation of the source. A practical multipass compiler requires
sufficient temporary memory to hold the intermediate translation; this could
be any read/write medium. The intermediate structures may well be much
larger than the final machine code, and in any case, during compilation, the
machine’s memory must be shared with the compiler program and the
compiler’s data areas.

In a one-pass compiler, the different sections of the compiler represented in
figure 1.1 appear as different procedures in one large compiler program.
Whenever a point in some process is complete, a procedure may be called that
accomplishes the next step. For example, the parser may be the primary
“driver” for the compiler, i.e., the main program, first called. It might then
call the lexical analyzer to deliver one token; the lexical analyzer in turn may
call a file handler to deliver one record, etc. The parser in turn might then call
atree-builder as the various parts of a source statement are analyzed. The tree
could be built in one of several different ways, but when enough is completed,
a tree optimizer might be called, then it calls the code emitters. In such a
system, all of the steps of figure 1.1 are repeatedly performed as the compiler
scans the source text, and code is emitted in short segments that correspond to
segments of source text.

In a multipass compiler, each of the steps in figure 1.1 might be a separate
pass. In practice, some groups of steps are combined, for example, it is
feasible to construct a sequence of abstract syntax trees in one pass, then
devote subsequent passes to reducing or transforming the tree. The tree itself
can either be stored as a linked-list data structure, or represented in some
linear form, such as reverse Polish.

The principle advantage of a multipass compiler is its ability to collect
information that can be used to efficiently allocate storage for variables and
emit instructions, information that is often difficult to obtain in one pass.
Some optimizations require several scans over a major source program
module. The principle disadvantage is that it is only applicable to a computer
system with sufficient intermediate storage. Small computer systems that
have very poor or slow intermediate storage (e.g. paper tape) are therefore
poor candidates for a multipass compiler.

Summary

A compiler, as a translator of one language to another, can be organized in a
variety of ways, depending on the source language, the target language, the

1 Introduction 13

degree of optimization desired, the time available to develop the compiler,
and its future value. A characteristic of nearly every compiler is a means of
translating source records into a sequence of tokens (characteristic of the
language), parsing this sequence to yield a syntax tree, and then transforming
the tree to yield the object program. Alternatively, it is usually possible to
bypass tree building, and simply emit code directly from the parsing system.
Modern practice seems to favor tree construction and multiple passes,
because they facilitate a number of optimizations, modularize the compiler
design, and are often more efficient than the alternatives.

For Discussion

1. Choose some assembler you are familiar with and make a list of the
services that it provides its users. How valuable are each of these services? Are
there services that it could provide, but fails to?

2. Consider two or three high-level programming languages that you are
familiar with and discuss those features that you feel are most valuable to a
programmer. Also discuss features that you would most like to see added to
the language.

3. How desirable is brevity in a programming language? (Compare Cobol
and APL, for example.) Discuss the merits and demerits of extreme brevity.

4. What do you feel should be uppermost in the design of a “good”
programming language among the following characteristics? How much does
your choice depend on the application or the user community? Which
desirable features are likely to conflict with each other?

(a) Ease of grasping the program’s algorithm, upon reading the program.
(b) Ease of learning the programming language for the first time.
(c) Protection against coding errors, to the degree possible in a language.

(d) Ability to use any feature supported by the target machine, as needed, in
order to obtain the most efficient execution.

(e) Convenience to the keypunch or terminal operator.

(f) The number of different operations available in the language.

(g) Immediate line-by-line syntax checking while preparing the program.

(h) A large number of operations.

(i) Conciseness of expression. (Compare APL and Cobol.)

5. Suppose that you are given an assignment of writing a compiler for some
language to be implemented on a machine equipped with a symbolic

assembler and a Fortran compiler. Discuss in general terms your strategy,
given each of the following objectives:

(2) The compiler may implement only selected features of the language L
(your choice) and may be very inefficient, but must be finished as soon as
possible.

14 Compiler Construction: Theory and Practice

{(b) The compiler must implement the complete language, mady generate
inefficient code, but must run as efficiently as possible and require as little
memory space as possible. (It will be used for short student programs that
will likely be executed only once).

(¢) The compiler may be as large as you have time and patience to develop
it and may be inefficient as a program, but must generate the most efficient
code possible for the target machine.

(d) The compiler may generate inefficient code and be inefficient as a
program, but must later be transformed into a compiler for another target
machine with minimum effort.

CHAPTER 2

INTRODUCTION TO LANGUAGE THEORY

2.1. Language Elements

- The elements of a language are its alphabet, its grammar, and its semantics.
The alphabet is a finite set of tokens of which sentences in the language are
composed. The grammar is a set of structural rules defining the legal contexts
of tokens in sentences. The semantics is a set of rules that define the
operational effect of any program written in the language when translated and
executed on some machine. This and the next four chapters deal principally
with grammars and translation apart from semantics.

Sentences in English are constructed from the set of characters consisting
of the letters, digits, space, and punctuation marks. These characters are
composed into words through the aid of spelling rules and a dictionary, and
then words are composed into sentences through the aid of grammatical rules.

A computer program may similarly be constructed from a sequence of
characters drawn from the computer’s character set. Such a sequence may be
composed into tokens (corresponding to English words) and the tokens
composed into sentences through a grammar. The principal difference
between English and a programming language is that the grammatical and
spelling rules for English are very complicated and have many exceptions and
ambiguities, while the corresponding rules for a programming language are
concise, highly structured, have few (if any) special cases, and (hopefully) no
amibiguities.

In this chapter, we will develop the notions of alphabets, strings in an
alphabet, generative grammar systems, and the problem of parsing a sentence.
Parsing is the process by which we determine the specific grammar rule
applications that yield a given sentence; it corresponds roughly to determin-
ing the structure of an English sentence.

2.1.1.Tokens and Alphabets

An alphabet is a finite set of tokens, fixed at the time of definition of the
source language. Every source program consists of some sequence of tokens
drawn from the alphabet of the source language.

The alphabet of a programming language could be a set of keyboard
characters; each letter, each blank, each digit, and special symbol is a distinct
token, and it is possible to define useful programming languages on such an
alphabet.

15

16 Compiler Construction: Theory and Practice

More often, certain easily recognizable sequences of characters are
collected together to form the tokens of the language. For example, in Algol
60, the characters “:” and “=" when written together in that order “:="
represent one token which is used for assignments. In Fortran, the character
sequence DO usually represents a special token that initiates a loop structure.
The task of assembling a sequence of source characters into tokens comprises
that part of a compiler called the scanner or lexical analyzer. That task may be
simple or difficult; the end result in any case is to yield a sequence of tokens
for the benefit of the language structural analysis that is to follow.

Examples of alphabets:

1. The Fortran character set, which contains the 26 letters, the ten digits,
and the special symbols + — * /., () = $’:, a total of 48 characters. Every
Fortran program may therefore be considered as one long string of
characters. For practical reasons, the end of a Fortran statement and a blank
may also be considered characters, and are important as language elements.
The end of a Fortran program, or end-of-file, may also be considered a
character in the alphabet, bringing the alphabet to 51 characters.

2. The set of Fortran special names, identifiers, constants, and special
symbols. In this alphabet, special names such as DO, IF, and READ are
separate tokens, distinct from names invented by the programmer. Similarly,
a number is considered a token. A name invented by a programmer (an
identifier) is considered an element of the alphabet.

The symbol = will be used to designate an alphabet. Mathematically, = is a
set of objects. Lower case letters near the beginning of the English alphabet,
€.g., a, b, ¢, d, will usually represent members of =.

2.1.2. Strings

A string is a sequence of elements drawn from an alphabet. The set of all
strings of length one or more consisting of members of = will be designated
2. Thus if an alphabet = consists of the characters #, 4, %, and -+, written:

S ={#,4,% +}
then each of these strings is a member of 2+:

#
4444 # H# %+
+# #4

+++

There are, of course, many other possible members.

2 Introduction to Language Theory 17

The length of a string is the number of characters in the string, written:
[FORTRAN]| = length of the string “FORTRAN” = 7

Thus 4444 # #%+| is 8, | #| is 1, etc.

Lowercase letters near the end of the alphabet, e.g. W, X, y, will be used to
represent strings.

A string whose length is zero is called the empty string, written .

Two strings, w and x, may be connected together to form a single new
string, wx. This operation is called concatenation. Either of the strings may
consist of a single character, multiple characters, or the empty string.
Concatenation is an implied operation and as such has no special symbol. The
concatenation of an empty string with any other string x results in x; that is:

€&X =X
Xe = X
Xey = Xy

Note that if strings x and y are each members of 2+, then the string xy is
also a member of 2+.

Although the empty string “disappears” when concatenated with any other
string, it could be a member of any set of strings. In particular, the set 2* is
the set S+ together with the empty string, which can be written using the set
union operator U as:

Sk =3+ U (¢

In terms of compilers, an empty string corresponds to a source program
containing no tokens. In practice, such a program must be followed by an
end-of-file indicator. The compiler then can conclude that the program is an
empty string by detecting the end-of-file as the first token.

An empty string is not the same as an empty set & . A set may consist only
of the empty string; such a set is not empty. An empty set contains nothing,
not even an empty string. Again, there is a correspondence of these concepts
in a compiler. A compiler may accept an empty string by noticing an
end-of-file marker. A compiler that accepts an empty set will reject every
input including an empty input and will then halt regardless of the input
source.

2.2. Generative Grammars and Languages
A language is some subset of =* , where = is its alphabet. This definition is

much too broad to be of any practical use. If the alphabet consists of the
English characters, then 2* contains the text of all the books in the world, but

18 Compiler Construction: Theory and Practice

also contains whatever happens to be pecked out by a monkey at a
typewriter. 2* includes meaningful sentences of value to a reader, but also
includes random sequences of characters.

A language may also be finite or infinite. If a language is infinite, there
cannot be a bound on the maximum length of a string in the language. If there
were such a bound, then because the alphabet is finite, there is a finite number
of arrangements of the tokens in the finite-length strings.

To be useful, a language must contain structure. There must be a
reasonably small set of rules that govern the manner in which the tokens of =
may be organized into strings in the language. We call the set of rules that
define a legal class of strings a grammar.

For example, telephone numbers in the United States have a certain
structure familiar to everyone—an area code, an office number, a party
number, and an extension, for example:

(212) 438-7021 X643

Some of these components may not appear in a phone number; if there are no
extensions or the area code is understood, they may be omitted. Also some
telephone systems permit dialing only the party number. We can represent a
phone number by the structure

<Carea code> <<office> < party> < extension>>

Each of these has a structure of its own. The area code is commonly written in
parentheses, e.g., (212), so we see that the structure <<area code>> has the
structure '

(<three-digit number>)
and in turn, this structure <three-digit number> has the structure
<digit> <digit> <digit>
Finally, each <digit> has one of the forms 0, 1,2, ..., 9.

The overall structure of a phone number can be seen as a set of structures,
each of which provides a more detailed description of the number. The
“smallest” components are the members of the phone number alphabet,
consisting of the digits, dashes, parentheses, and “X”.

2.2.1. Terminals and nonterminals

A terminal is any member of 2, and is therefore a synonym for token. A
nonterminal stands for some set of strings in =* , but is not itself in 3.
Nonterminals are used in a language’s structural rules. For a given grammar,
there will be a finite set of nonterminals; this set will usually be designated N.
A symbol is a terminal or a nonterminal.

2 Introduction to Language Theory 19

In the telephone number structure example given above, each of the names

<Carea code>
<office>
< party >
< extension™>>

are nonterminals. We could equally well use single characters as nonter-
minals, and shall do so frequently. For most of the simple example grammars
in this text, we will use capital letters near the beginning of the English
alphabet to designate a particular nonterminal, e.g. A, B, C. A capital letter
near the end of the English alphabet, e.g. X, Y, Z, will generally stand for an
“arbitrary” nonterminal.

For large grammars, we will need more than 26 nonterminals, and will
therefore fabricate special nonterminal names. The convention of using < >
to designate a nonterminal is used widely to define programming languages.
The nonterminals <<area code>> and < office>> are examples of this
convention.

2.2.2. Production Rules and Grammars
A production rule, or production for short, has the general form
X—y

where x and y are strings in the terminal and nonterminal sets of a given
grammar. The y may the empty string, but x cannot be. Productions are used
in a special subclass of grammars called replacement systems. Essentially, in
such a system, we can generate other strings in the language by starting with a
string of the form

WXZ

then applying a production of the form x — y to yield a new string

wyzZ

We have effectively replaced x in the string wxz by y, through a given
production x — y. The y is called a simple phrase of wyz. The replacement
step wxz to wyz is called a derivation step, and we say that wxz derives Wyz.

Eventually, given enough such replacements and productions, we could
end up with a string of terminal symbols. However, we haven’t yet specified
‘where wxz came from, nor have we restricted the productions x — y in any
way.

If we could start with any string at all, and then commence with
replacement rules, we would really have failed to define a language. One
possibility is “no replacement,” so such a strategy leads to a language

20 Compiler Construction: Theory and Practice

consisting of =* again. We therefore need some uniquely specified starting
string. We may in fact choose one nonterminal as the starting string, rather
than some other string w, without loss of generality, since we can always add a
production of the form S — w to a grammar whose starting string is w.

Next we need some precise way of knowing when to stop a sequence of
derivations. We choose to stop when we obtain a string that contains no
nonterminals; the nonterminals after all are subject to further reduction. This
feature implies two other important properties that a grammar should satisfy:
(1) the nonterminal and terminal sets are disjoint. If a token is both terminal
and nonterminal, it is not clear whether to stop the derivation or not.)
Every production rule must contain at least one nonterminal in its left
member, ie., given a production y — X, y must contain at least one
nonterminal. If both properties are satisfied by the grammar, then no further
derivations are possible once we have an all-terminal string,

We conclude that a grammar is a four-tuple (2, N, P, S), where = is a
terminal alphabet, N is a nonterminal alphabet, = and N are disjoint, P is a set
of productions of the form y — x, where y and x are in (N U 2)*,andy
contains at least one element in N, and S is a designated start symbol in N.

Such a grammar is called a phrase-structure grammar. :

2.2.3. Classes of Grammars

Chomsky [1965] distinguished four general classes of grammars. The most
general class, the unrestricted grammars, is'not phrase-structured. The other
three classes are phrase-structured. They are the context-sensitive, context-free
and right-linear grammars.

The most general phrase-structured class is the context-sensitive grammar.
In this class, each production has the form

X->y

where x and y are members of (N U)* , x contains at least one member of
N, and [x| < |y|. Note that the latter requirement implies that y cannot be
empty. An example of a context-sensitive grammar is

Gl = ({S> Bs C}a {aa b: C}: P> S})
where the productions P are

1. S— aSBC
. S— abC
. CB— BC
bB — bb
bC — be
.cC—cc

o Ve WN

2 Introduction to Language Theory 21

Let us develop a set of replacements in this grammar. Since S is the
designated starting string, we look for a production with S as its left member.
Either of the first two will do:

S — aSBC

so that aSBC is a new string. Now in string aSBC, we can only use another S
rule; let’s choose the second one:

aSBC becomes aabCBC
Here, the third or fifth rule may be chosen; let us choose the third:
aabCBC becomes aabBCC
Continuing, we find the following sequence of replacements:
aabbCC

aabbcC

aabbcc

We end up with all terminals, so this is the end of the possible replacements.
We could reach a string for which no production can apply. For example,
in the string aabCBC, if we choose the fifth rule instead of the third, we obtain
aabcBC, and we find that no rule can be applied to this string. The
consequence of such a failure to, obtain a terminal string is simply that we
must try other possibilities until we find those that yield terminal strings.

Exercises

1. Derive the strings

abc
aaabbbccc

inG,:({S,B,C},{a,b,c}, P, 8), where P = {S— aSBC, S — abC, CB
— BC, bB— bb, bC — bc, cC — cc}.
2. Show informally that the strings

abbc
aabc
abcc

cannot be derived in G,.

3. From Exercises 1 and 2, frame a conjecture regarding the kind of strings
derivable in G,, and attempt an informal proof of your conjecture.

22 Compiler Construction: Theory and Practice

4. Derive a context-sensitive grammar for strings of 0’s and 1’s such that
the number of 0’s and 1’s is equal.

Context-Free Grammars

The next most general class of grammars is one that we shall be studying in
most of this text—the class of context-free grammars. In a context-free
grammar, or CFG, each production has the form x — y, where x is a member
of N, and y is any string in (N U Z)* . Note that y may be the empty string,
hence any context-free grammar with a rule A — ¢ cannot be context-sensi-
tive; the latter class does not permit such a rule.

An example of a context-free grammar is one that we shall be using
repeatedly, an arithmetic expression grammar G

N = {E,T,F},S={+,*,()a},S = E,and P = the set

.ESE+ T
E—-T
T—-Tx*F
T—F
F—a

AN T

Here, the nonterminal set is clearly {E, T, F }» the terminal set is { +, *, (,),
a}, and the start symbol is E. We may obtain a typical expression by applying
the replacement rules, as before:

E derives E + T, using the first rule

E + T derives T + T, using the second rule
T + T derives F + T, using the fourth rule
F + T derives a + T, using the last rule

a + T derives a + F, using the fourth rule
a + F derives a + a, using the last rule

Many other examples of derived terminal strings in this grammar may be
obtained.

Whenever a grammar has several productions with the same left member,
we will sometimes use the symbol | which stands for alternation. Thus the
two rules E— E+T and E — T may also be written

E—E+T|T

2 Introduction to Language Theory 23

Exercises
1. Derive the following strings in G,:

a*a+a
(a+a)*xa
((2)

axa*a
2. Show informally that the following strings cannot be derived in Gy:
ax+a
a+aa
(@
3. Show informally that in Gy;:

(2) Any string of the form (... (a)...) can be derived, where the number
of left parentheses is equal to the number of right parentheses.

(b) Any string of the form a+a+a+a+. . .+a can be derived.
(c) The pairs *+, + +, **, and +* can never appear in a derivation.

(d) The pair aa can never appear in a derivation.

4. Show informally that each of the nonterminals in G, can derive an
arbitrarily long terminal string.

5. Give an example of a simple grammar containing a nonterminal that
cannot derive any terminal string, i.e., where every derived string
contains some nonterminal.

6. Construct a context-free grammar for telephone numbers, along the
line introduced in section 2.2.

7. Write a context-free grammar for the following language. The notation
17 stands for a sequence of n 1’s.

017010 wheren = 0

Examples of strings in this language are: 000, 01010, 0110110.

24 Compiler Construction: Theory and Practice

8. Write a context-free grammar that specifies the set of decimal literals
that may be written in Fortran. Examples of these literals are

—-215
0.25
3.7E—-6
SE7

6E6
100.E+3

Note that E or a decimal point is sufficient to specify a decimal number.
If neither is present, then the number is considered fixed point.

9. Given the grammar G = ({A, B, C,D}, {x,y}, P, A), where P is the set
of productions

A—- B|D

B — BCC | x
C— yx

D — xCyD | xy

show that x, Xy, xyxyx, and xyxyxyxyxy but none of xyx, xyxy, and
Xyxyxyx are derivable from A.

Right-Linear Grammars

If each production in P has the form A— xB or A— x, where A and B are
in N and x is in 2* , the grammar is said to be right-linear.

The right-linear grammars are clearly a subset of the context-free
grammars. An example of a right-linear grammar is the following grammar
Gy; it defines a set of ternary fixed point numbers, with an optional plus or
minus sign:

V- N| +N| —-N
N->0|1]2
N — ON | IN | 2N

Two other grammars related to the right-linear grammar are the left-linear
and the regular grammar. A left-linear grammar has productions in P of the
form A — Bx or A — x, where A, B, and x have the above meanings. A
regular grammar is such that every production in P, with the exception of S
—> € (8 is the start symbol) is of the form A — aB or A — a, where a is in 3.
Further, if S — €is in the grammar, then S does not appear on the right of anty
production.

2 Introduction to Language Theory 25

An example of a regular grammar here defines the fixed point decimal
numbers with a decimal point. The “d” stands for a decimal digit:

S—> dB| +A| —A| G

A—-dB | .G

B—-dB| H|d

G - dH

H—>dH|d
Exercises

1. Derive the following strings in G,:

220
—12
+2

2. Show informally that the following strings cannot be derived in G,:

4
2—0
3+

3. Show informally that G, can derive arbitrarily long strings. What
property of the grammar makes this possible?

4. Give a left-linear grammar that expresses the same set of terminal
strings as G,.

Significance of the Grammar Classification

These grammar classifications are to some extent arbitrary. One may
define many variations on the basic patterns given. However, these particular
definitions lead to particularly simple classes of sentence recognizing
machines or automata.

An automaton, for our purposes, is some system with a finite description
(but not necessarily containing a finite number of parts) that can accept some
string of terminal symbols, given a grammar, and that can determine whether
the string can be derived in the grammar. '

The process of finding a derivation, given a grammar and a terminal string
supposedly derivable in the grammar, is called parsing, and an automaton
capable of parsing is called a parser. A parsing automaton is clearly of value in
a compiler. A grammar is a concise, yet accurate description of some

26 Compiler Construction: Theory and Practice

language; it expresses the class of structures that we want in the language.
However, so far we see only how to construct legal strings in the language.
We need to solve the opposite problem: given some string, to determine if it is
legal. We also need to go farther than that; we must determine the sequence of
productions needed to obtain the string.

Now each of the three phrase-structured grammar classes has a fairly
simple yet powerful automaton associated with it:

1. The right-linear grammars can be recognized by a finite-state automa-
ton, which consists merely of a finite set of states and a set of transitions
between pairs of states. Each transition is associated with some terminal
symbol. We shall define finite-state automata more completely in the next
chapter.

2. The context-free grammars are accepted by a finite-state automaton
controlling a push-down stack, with certain simple rules governing the
operations. The push-down stack is the only element that can be indefinitely
large. However, only a finite group of top stack members are ever referenced
in the finite description of this automaton.

3. The context-sensitive grammars are accepted by a two-way, linear
bounded automaton, which is essentially a Turing machine whose tape is not
permitted to grow longer than the input string.

Of these three, only the first two will be dealt with at length in this
textbook. It turns out that the class of context-free grammars is sufficiently
powerful to encompass most of the features of nearly every common
programming language. Those features which are not covered by a context-
free grammar are not in practice covered by a context-sensitive grammar,
either, but require special extensions to the recognizing automaton.

2.2.4. Sentential Forms and Language Definition
Recall that in one derivation step, we transform a string
WXz
into a string
wyzZ
given a production X — y in the grammar. We represent a derivation step by
the symbol =,

WXZ = WyZ
Each of the strings wxz and wyz are called sentential forms, provided that we
started with the start symbol S of the grammar and obtained wxz through a

sequence of derivation steps.
A sequence of one or more derivation steps is indicated by

—+

2 Introduction to Language Theory 27

- For example, in grammar G, we have
E=E+T=E+T+T=T4+T+T
hence we may write
E=+T+T+T

Here, since E is the start symbol, the string T+ T + T is a sentential form in
G-

A sentential form consisting only of terminals is called a sentence. Clearly,
if we have

S = (some sentence)

then we have obtained, or derived a member of the language defined by the
grammar. We may put this in set notation as follows.
Given a grammar G =(N, 2, P, S), then L(G), the language defined by G, is

L(G) = {x|xeZ*,and S="*x}

The form {x| C} is read: “the set of all x’s such that condition C holds.” L(G)
is then the set of all strings x such that x is terminal and x can be derived from
the start symbol S.

This definition holds for any of the three language classes context-sensi-
tive, context-free, and right-linear.

Under this definition, L(G) may consist of the null set, or it may consist of
one or more terminal strings, possibly including the empty string. For
example, consider the grammars Gy, and G, as follows:

Gg = ({8}, {e}, {S— ¢}, 5)
Go = ({S}, {¢}, {S— S}, 8)

In neither case is the production set empty (it could be, incidentally).
However, in the first case, we have a language consisting of one string, the
empty string. Such a language might be accepted by a compiler that notices
that a source program contains nothing, and then halts (or in practice, goes on
to the next source program in a job sequence).

In the second case, G, the only production just yields another S and can
never yield a terminal string. Nor can it yield the empty string; we need some
way for S =+ e to do that. We conclude that the language of G is empty (&),
and is different from the language of Gg.

Sometimes it is useful to refer to a derivation of “zero” steps. This just
means “no step”; the sentential form is left unchanged. We indicate a
derivation of zero or more steps by the symbol =* .

28 Compiler Construction: Theory and Practice

Exercises

1. Show that the following are sentential forms in Gy

(E+a)
a-+T*a
(E)*a

2. Given a grammar with an empty production set, is its language empty?

3. Cana grammar have an empty nonterminal set? An empty terminal set?
A terminal set consisting only of the empty string? If so, what can be
said of the grammar’s language in each case?

2.2.5. Production Trees and Syntax Trees

Recall that a tree is useful as an intermediate representation of a program or
aportion of a program. It is also useful as a means of representing a derivation
of some sentence in a context-free language, or of representing the produc-
tions of a CFG.

A free is an abstract representation of a certain connectedness among a set
of objects. The objects are called nodes and the connections among them are
called directed edges. A tree may be constructed of distinct objects by the
following recursive process:

1. One distinguished node is called the start node. Let N designate a start
node; N is a tree.

2. Given any node N of a tree T with no out-directed edges. We may
construct another tree T’ from T by adding one or more nodes N, N,, . . .,
N (not already in T) to T, and connecting each of these to node N by an edge
directed from N to the node. The nodes N, N,, . . ., Nyare called the children
or immediate descendants of N, and N is called the parent or immediate
ancestor of the nodes N;, N,, ..., N,. The nodes N, . .., N, are siblings of
each other.

Every tree has exactly one node with no indirected edges called the root
node. A node with no outdirected edge is called a leaf or terminal node. Every
tree has at least one terminal node that may also be the root. A node with at
least one outdirected edge is called an internal node. A path is any set of nodes
ny, Ny, . .. , 0y such that one edge connects n; to n; ., in that order, for all i such
that 1 =i <k

The length of some path containing n nodes is n—1. For the sake of
generality, we consider one node as a path of length zero.

Given any node N, there is a unique path from the root to that node. If its
length is L, then node N is said to be at level L in the tree.

2 Introduction to Language Theory 29

There is no path that connects a node to itself. A tree is said to be acyclic for
this reason, however, there are acyclic graphs that are not trees.

The height of a tree is the maximum level in the tree, hence the length of the
longest path. This longest path must extend from the root to some leaf node.

We will generally draw our trees upside down, with the root node at the
top. figure 2.1 shows a tree with its parts labeled.

A tree may be embedded in a plane with each node a distinct point and no
two edges crossing. The tree definition suggests how this can be done.

Each node N of a tree is the root of another tree, sometimes called a subiree
rooted in N.

A tree embedded in a plane can be ordered in several different ways. The
scheme we shall most often use is called a preorder, or left-to-right natural
order, illustrated in figure 2.2. We obtain a preorder by imagining the tree
surrounded by a directed circle, with the direction counterclockwise (figure
2.3). Then let the circle collapse around the tree, so that by following its path
we contact every edge twice, once on one side and once on the other. We then
order the nodes by assigning 1 to the root and the successive integers to the
nodes when first touched by the collapsed circle.

A postorder is obtained by following the same procedure as a preorder,
except that successive integers are assigned to the nodes when last touched by
the collapsed circle.

Any tree can be represented in a linear memory space by a set of nodes,
each of which contains two pointers: to its child and to its right sibling. Since
either or both of these may not exist, a special pointer called a #:/ pointer is
needed, that indicates this fact. Such a pointer system also imposes an
ordering on the children. However, it is difficult to find the parent node of a
* given tree node N with this system; it is necessary to examine all the nodes in
the tree starting with the root until we find that node one of whose children is
N.

In order to locate a parent node rapidly, we may either add another pointer
to each node, pointing to its parent, or set the right sibling pointer of each
right-most sibling to point to its parent. The latter kind of tree is shown in
figure 2.4. We need only some mark on the right-most sibling to indicate that
its right sibling pointer points to the parent, not to its right sibling.

A Pascal data structure for such a tree is the following:

type TREENODE: record CHILD, SIBLING: 1 TREENODE;
PARENT: Boolean
end

The symbol 1 means that CHILD and SIBLING are pointers to a data
structure of type TREENODE. If PARENT is TRUE, then SIBLING is
the right-most sibling, and it points to its parent. The links in figure 2.4
clearly are in preorder.

30 Compiler Construction: Theory and Practice

e e ,Em.u? -

o ;“i e -

- . - ;Mm f - - .

. . . - ;,;h, - m = »mﬁﬁws«.y -
- ,.&“.ﬁ% . - ?n o . . - -
. Tfa - s,: . «Jﬁa . ;@ﬂwa@%ﬁ

ww%ﬁw? . i»,fm%: . km - - mw,wmmw,&

o - iﬂ, - w:ww

e . m«&ww.:z - . . m

Wwp ‘mw%. - m@ éﬁ u\ﬁﬁ? ?mkf{

1:»: 7 .NE.« - éﬁ,\q«

‘mﬂméé%:‘: - .
- :ﬂ{%«fu
.;nm\.m. ww(- w

See

,;&:»_mm -

. . B -\ -
?: - ﬁn,y?»,,\, mﬂn‘»ﬁﬁ e ,‘_F 38:,? &.ﬁ ,,%ux&i, - - - amwm,
“w »2 33. A«r 41» < ..y su.s - ﬁ.u @m%ﬂ;@nﬂw J,.m, o
,?a .«ﬁ«.uw_mwi Mm.« H&&;ﬁ,?{ - x - .3.,

i»??, e
. . Jm&&,
~

,ﬁ - \

\’aﬂ)
-

aaaw«ww -

Sk
ﬁ»“%ff‘iﬁ‘\“m
S
-

wuft - -
1,1 - fi 41; - a

5

%ﬁ

-

r:‘ai

«v&w

.é«.ﬂ, -
m.rw g6y -
. Sy -

o
.
o

‘m‘;_;,:‘;x s
-
s
.

-
Ew%a;
.

- .

- :ﬁuﬁ ;m .%w -
N . . =

o uu o . é%mq, o a

m.w\mﬁ,m.«, u\?%‘ =

.
M‘?(

Qé,és
o
;;a

,x
.
z‘:"iéwa

.

. ».%Eﬁﬂ_ r .
. ~ .

\».:.%

i

-
o

“,:s& - . . v w;a:m

@;ﬁﬁmﬂr o oo o
«wnww.mmwn«mﬁ«&x - - o .
. ww »émﬁ.‘.

-

. »wﬁ? .
o %%“x

"‘«»

;mﬂw%ww% o ol o . Lxﬁmm

-
-

,“m
-
-
o
.

.

~ mn;qmm»,,@«mmrﬂ,?,ra
. =

. wky »y?.
ﬁ.“fw :f: -

. .
o . ,ﬁ.n:

ma “

s*}

-

o

.
.
'-%é:’»

.
kﬁ!«

ﬂw« }»_

-

e
-

-

=
~e

- .m °

-
-

-

.
“«}fé'

(wm«ﬂnm

;.%m»

.mﬁ,
-

o

-

é,,aa.« a

Preorder.

Figure 2.2

| tree.

Ica

A typ

igure 2.1

F

2 Introduction to Language Theory 31

Figure 2.3. Obtaining preorder.

A tree node is said to be decorated when it carries some information in
addition to its connectness. We may attach any sort of data to a node. In
practice, we simply add more cells to each of the node elements shown in
figure 2.4. For example, a cell may contain some simple data element or a
pointer to some other data structure.

Exercises

1. The terminology of tree structures is obviously borrowed from certain
properties of the plant phylum. If the root system of a plant must be
included, is there a correspondence of the plant’s components to a tree?
Why not?

2. Consider the biblical injunction, “No man can serve two masters”
(Matt. 6:24). If this applies to a business organization, would the

32 Compiler Construction: Theory and Practice

Root — | 1

| _»
X
2 5 6
| .- > I o—————————»XI Ne
2 X .
3 4 7
| -~— - I Xl]
X X A
Father
¥ 8 9
(R.)Brother | . >><| ¢
Son X X

Figure 2.4. A simple pointer representation of the tree of figure 2.2.

organization correspond to a tree? What other conditions (if any) are
needed?

3. Show that a tree must be acyclic, from its recursive definition.

4. Write a Pascal program that traverses a tree in preorder, given the
pointer structure definition above.

Derivation Tree

A derivation tree displays the derivation of some sentential form in a
grammar. Each node of a derivation is associated with a single terminal or
nonterminal. A node associated with a terminal has no children. A node
associated with a nonterminal may or may not have a set of children. Let N be
anode associated with a nonterminal A, and suppose it has children. Then the
children of N are associated with the symbols x,, X,, . . . , X,, where

A->x X, ...X,

is a production in G.

2 Introduction to Language Theory 33

Figure 2.5. A derivation tree in grammar G,,.

Consider grammar G,, given previously. A typical derivation tree in G, is
shown in figure 2.5, rooted in the nonterminal element T. Its leaves, read in
preorder, comprise the string

ax(E)

The string comprising the leaves of some derivation tree, in preorder, is
called the frontier of the tree.

It is easy to show that the frontier of a derivation tree rooted in some token
A is derivable from A in the tree’s grammar.

We prove this by induction on the height of the tree.

Basis step. Let the height be 0. We then have A =* A in a derivation of zero
steps, by definition of such a derivation.

Inductive step. Let the height be h, and consider some tree T of height
h+ 1. Let N be the root of T. Since h>>0, N must have at least one child. By
the construction process of T, there is a production

A-—>aa,...a

where A is associated with N and g; is associated with the i-th child of N. Now
each of the i subtrees has a maximum height h, hence by the inductive
hypothesis has a frontier f; derivable from the token a;. It should be clear that

34 Compiler Construction: Theory and Practice

the frontier of T is the left-to-right concatenation of the frontiers f}, f,, . . .,
f,. But also

aa,..., =>7ff,...f

Hence the frontier of T is derivable from the root token of T. QED.

The converse is also true. Given some derivation A =* w in a grammar G,
we can always construct a derivation tree rooted in A with frontier w. The
proof is left to the reader.

A picturesque way of looking at a derivation tree is to imagine that we have
lots of tree dominoes, like the ones shown in figure 2.6. Each domino
represents a production in the given grammar, and each part that carries a
nonterminal is keyed so that it will only fit another domino with a matching
key. The edges in each domino are made of rubber bands so that we may
spread them apart as needed. We may start with any piece and build a tree
downward from it. The terminal symbol parts cannot be connected to
anything.

We assume that we have plenty of copies of each domino, so that we never
run out of any one kind of domino.

A complete derivation tree for a grammar G = (N, Z, P, S) is such that its
root node is associated with S and its frontier is a terminal string. The frontier
is clearly a sentence in the language L(G). We shall normally assume that a
derivation tree is complete, unless otherwise stated. A derivation tree may
otherwise have a root node other than S, or its frontier may contain a
nonterminal.

Exercises

1. Construct complete derivation trees for each of the following strings in
L(G,):

(a)+a
a*(a+a)
((a))

2. Show that, given some derivation A =* w in a grammar G, there exists
a derivation tree rooted in A whose frontier is w.

3. Can a derivation tree for a derivation in a context-sensitive grammar
always be constructed? Why not? Give an example grammar and

discuss.

4. Characterize informally the derivation tree of a right-linear grammar.

2 Introduction to Language Theory 35

fopedcratsra
¢« L Co(C¢ (¢

Figure 2.6. Tree dominoes for grammar G,.

36 Compiler Construction: Theory and Practice

5. Figure 2.7 is a derivation tree for a sentence in some context-free
grammar G = {N, =, P, S} for which the productions and symbols are
not known.

(a) What is the frontier of the tree?
(b) What symbols are necessarily in N?
(c) What symbols are necessarily in =?

(d) What productions are necessarily in P?

Syntax Trees

A syntax tree is a display of all of the productions in some grammar G. It
contains two kinds of nodes, a production or P node and a token or T node.
The root is a T node, and every path down from the root contains alternating
P and T nodes.

A T node is associated with a terminal or nonterminal token A. It has
children if A is nonterminal, and these are all the productions of the form A
— w. The children of a T node are P nodes.

A P node is associated with some production A — w. Its children are the
tokens in w, and these are T nodes.

Figure 2.8 shows a syntax tree for grammar G,. T nodes are indicated by
circles and P nodes by squares.

It should be clear that this defines an infinitely large tree; we can always add
more nodes. However, we generally choose to consider a finite syntax tree in
which each production appears exactly once. We build such a tree by starting
with the root T node associated with the start symbol. We then add a
production to the tree somewhere only if it does not already exist in the tree.
The production consists of a P node and its T-node children. The tree’s
frontier then consists of T nodes.

An abbreviated represention for a syntax tree is shown in figure 2.9. Here,
the P nodes have become vertical lines with horizontal branches, and the T
nodes are simply the tokens of the production right part. This structure lends
itself to a simple mechanical printing of a syntax tree from a set of
productions.

A syntax tree may be transformed into a directed acyclic graph, called a
syntax graph by adding directed edges as follows:

Given a nonterminal T node N with no children—it has no children
because the productions normally connected to it appear elsewhere in the
tree—add a directed edge from N to that T node associated with the same
nonterminal symbol that does have a set of children.

Figure 2.10 shows G, represented as a syntax graph. We have simply
added directed edges from nodes E, T, and F to their defining nodes in the
tree of figure 2.9.

2 Introduction to Language Theory 37
S
Vv

* Y S VA \

T

€

Figure 2.7. An example derivation tree.

38 Compiler Construction: Theory and Practice

P Node

. E—E+T

T—T*F
T—F
. F—(E)
. F—a

Pus w2

Figure 2.8. A production tree for grammar G,.

A syntax graph is a useful and practical representation of a grammar.
Cohen and Gotlieb (Cohen [1970]) show how sentences in a language may be
generated or parsed by means of very simple procedures that interpret a
syntax graph.

Semantic operations in a compiler must often be performed at just the right
point during the sentence analysis. The operation is keyed by a particular
production rule, and a syntax graph or tree enables us to easily determine the
appropriate production rule for some operation.

2 Introduction to Language Theory 39

— E+T

Figure 2.9. A finite production tree for grammar G,.

Figure 2.10. A syntax graph for grammar G,.

Exercises

1. Consider a finite syntax tree constructed indefinitely far, but such that
each T node has exactly one or zero children, and the leaves are T nodes.
Show that its frontier is a sentential form. .

2. Outline an algorithm that can accept a context-free grammar as input

40 Compiler Construction: Theory and Practice

and print its syntax tree in the form of figure 2.9. How might you deal
with a finite page width and length?

3. A nonterminal X in a grammar G is said to be useless if and only if no
terminal string can be derived from X. Develop an algorithm that
identifies all useless nonterminals. (Hint—focus on the “useful” nonter-
minals; build a set of useful nonterminals; these either derive a terminal
string or a string consisting of terminals and useful nonterminals in one
step.) Give an algorithm for eliminating useless nonterminals from a
grammar that preserves the grammar’s language.

4. A nonterminal X is said to naccessible if and only if no sentential form
contains X. Develop an algorithm that identifies the inaccessible
nonterminals and an algorithm for their elimination from the grammar.

5. Given a grammar G, possibly containing empty productions, find a
transformation to an equivalent grammar G’ such that G’contains at
most one empty production, S'—e¢, where S’ is the start symbol of G’.

6. Given a grammar G, possibly containing single productions (of the
form A—B, where A and B are nonterminals), find a transformation to
an equivalent grammar G’ such that G’ contains no single productions.

(Remark: The transformations of exercises 3 to 6 are important in reducing a
grammar so that it is amenable to a precedence parsing method.)

2.2.6. Canonical Derivations

In general, a derivation step requires two kinds of choices to be made. We
may have more than one nonterminal symbol in our sentential form, and for
each nonterminal symbol, there usually is more than one production that may
be used for the replacement.

For example, in grammar G,, we can derive T*F as follows:

E=T= TxF

Now in the sentential form T*F, we may next replace either the T or the F.
There is also more than one production with T as the left member (and with F
as the left member).

The first kind of choice, that of which nonterminal to replace, has no effect
on the class of sentence strings that can be derived from the start symbol. We
may state this property as follows:

2 Introduction to Language Theory 41

Given a sentential form xXyYz, where X and Y are in N, that can derive a
sentence w through the derivation steps:

xXyYz = xryYz =* w
then there exists a derivation
xXyYz = xXysz =>* w

and conversely.
_Proof: In the derivation

xXyYz = xryYz =* w
Y must be replaced somewhere. At that point we will have a sentential form
x'r'y’sz
where Y=s5,x =* X, r =*r, y =* y’ and z =* z’. We also know that
XTy'sz =>*w
We may therefore reorganize the derivation as follows:

xXyYz = xXysz = xrysz =* x'1'y’'sz’ =* w

The converse is easily proven in a similar way. QED

This independence of the order of selection of nonterminals is a property
of context-free grammars, but not of context-sensitive grammars. In a
context-free grammar, each nonterminal can be expanded into some terminal
string independently of its neighbors, and its expanded string essentially
“pushes aside” its neighbors without interfering with their order in any way.
Hence it doesn’t matter which of several nonterminals in a sentential form are
selected next for a derivation step.

We would like to have a standard derivation order, however, and each of
the parsing methods to be introduced later has an inherent derivation order.
Whenever we impose some ordering rule for the selection of the next
nonterminal to replace in a sentential form, we have a canonical derivation.
The two most common rules are left-most and right-most. In a left-most
derivation, the left-most nonterminal in each sentential form is selected for
the next replacement. In a right-most derivation, the right-most nonterminal
is selected.

A top-down parse of some sentence, scanning from left-to-right through
the sentence, corresponds to a left-most derivation. A bottom-up parse,
scanning from left-to-right, corresponds to a right-most derivation in reverse
order, i.e., the parser works from the sentence to the start symbol.

For example, in figure 2.11, we have effectively worked out the partial
left-most derivation

42 Compiler Construction: Theory and Practice

Figure 2.11. Top-down derivation tree construction.

E=E+T=>T+T=F+T=a+T

The remaining parse task is clearly T =+ (a*a) . The next derivation step
must invoke the production T — F, to yield

a+T= a+F

In figure 2.12, we have effectively worked out the partial right-most
derivation

E+ (F*a) = E+(a*a) = T+ (a*a) = F +(a*a) = a+(a*a)

A bottom-up parser has developed this in backward order, starting with
a+(axa) and ending (so far) with E+(Fxa). The next parse step should
invoke production T — F on the right-most F, so that we will have the
derivation step

E+(T*a) = E+(Fxa)

Note that this is consistent with a right-most derivation.

Exercises

1. Give right-most and left-most derivations for each of the following
strings in G:

ax(E) . {see figure 2.5}
(a+a)*a
a+((2))

2 Introduction to Language Theory 43

a + (a * a)

Figure 2.12. Bottom-up derivation tree construction.

2. Give yet another canonical derivation rule and illustrate a derivation in
G, using your rule.

3. A left-most and a right-most derivation of some sentence w has the
same derivation tree. Why?

2.2.7. Ambiguity

Suppose that we have a grammar and a sentence w for which two different
derivation trees exist. By “different” we mean that the structure or the node
labeling is different in some respect. We then say that the grammar is
ambiguous. If no sentence has more than one derivation tree, we say that the
grammar is unambiguous.

An ambiguous grammar is not a particularly desirable basis for a
programming language. The meaning of a sentence lies mostly in its
structure, as determined by the structure of its derivation tree, and not just in
the set of symbols that comprise it. If there are two different derivation trees
for some sentence, then it is possible that two different meanings can be
attributed to the sentence.

English is full of ambiguous sentences, owing to the possibility of many
words serving in different ways. For example,

44 Compiler Construction: Theory and Practice

“Time flies like an arrow.”

can be interpreted in at least three ways: as an observation on the passage of
time, as a command to compare the timing of flies with the timing of an
arrow, or as a statement on the preferences of “time flies,” whatever they are.

Similarly, a context free grammar may be ambiguous. For example, the
grammar

E—- E + E
E— E *E
E— a

derives exactly the same sentences as G, yet is an ambiguous grammar.
Figure 2.13 shows two different derivation trees for the sentence

a-ax*a

Now we can show that if two different derivation trees for some sentence
exist, then there must also be two different canonical derivations for the
sentence as well, and conversely. Thus in figure 2.13, we have the two
different left-most derivations

E—=E+E=at+E= a+E+E= a+ta*E = a+a*xa

and E = E*E = E4+E+E = a+E+E = a+a*xE = a+ta*a

We could similarly demonstrate two different right-most derivations.
We offer a left-most derivation proof of this assertion; a right-most proof is
similar. '

Theorem: Two or more distinct derivation trees for some sentence w exist if
and only if two or more distinct left-most derivations exist for w.

Proof—“if” part. We have two distinct left-most derivations. The two agree
exactly until some derivation step, in which the left-most nonterminal is
replaced by one string in one and another string in the other, e.g.,

S=TuXv= uxv=>*w

or S=>tuXv= uwx'v=*w

where x and x' are different. Now consider the two derivation trees
corresponding to these derivations. They may obviously be constructed
top-down by following the derivation steps. The two trees are identical until
the nonterminal node X is reached; its children are the string x in one tree and
¥’ in the other. Yet when the construction process is complete, both trees have
the frontier w. QED

2 Introduction to Language Theory 45

Grammar: E—E+E

E—ExE
E—~(E)
E—a
E E
E + E E = E
a a
E * E E + E
a a a a

(a) (b)

Figure 2.13. Two different derivation trees for the sentence a+axa, through the
ambiguous grammar given,

“Only if” part. Consider two different derivation trees T and T’with the
same frontier w, rooted in S, and with the same grammar. We walk down
through both trees (in preorder) starting at their root node, and continue as
long as we find agreement, stopping on the first difference.

This tree walk is the same as the top-down construction process corre-
sponding to a left-most derivation. If we are at some node N in T and it agrees
with the corresponding node in T”, then we consider the productions rooted
in N and N'. If these fail to agree, we stop on node N. If they agree, then we
compare each of the children, in preorder. We start the walk on the root node,
and continue until the difference is found.

Now in the walk process, we have also generated two sequences of
productions, corresponding to left-most derivations of the trees’ frontiers.
The sequences will agree until the tree difference is found, then there will be
two different derivation steps, e.g.,

For tree T, we have

S=*uXv= uxv=*w

and for tree T”, we have

S=*uXv=ux'v=a*w

46 Compiler Construction: Theory and Practice

where the derivation S =* uXv corresponds to that portion of the tree walk
just before the tree difference at node X is detected. QED

A language is said to be ambiguous if ho unambiguous grammar exists for
it. Note that a given language may have more than one grammar that
describes it; some of these grammars may be ambiguous and others not.
However, if one unambiguous grammar for a language can be found, then the
language is unambiguous.

Animportant result in language theory states that there exists no algorithm
that can accept an arbitrary context-free grammar and determine that it is
either ambiguous or unambiguous. However, there éxist algorithins that can
return one of the results: {unambiguous, don’t know}. These tutn out to be
parser constructor algorithms. :

Exercises
These two exercises refer to the grammar E->E+E | E+E | a

1. Three different derivation trees for the sentence a--a*a-+a exist.
Display them.

2. Suppose that ADD is emitted whenever production E — E+E is used
in a left-most derivation, and MPY whenever E — E*E is used.
“LOAD a” is emitted whenever E — a is used. Give the emitted code
for the trees of figure 2.13, and discuss their significance.

2.3. Introduction to Parsing

A parser or parsing automaton is some system that is capable of
constructing the derivation of any sentence in some language L(G) based ori a
grammar G. We are primarily interested only in parsers for right-linear and
context-free grammars. ,

A parser may also be viewed as some mechanism for the construction of a
derivation tree. However, we almost never actually construct a derivation tree
in a practical compiler; instead the parsing algorithm makes use of a
push-down stack and a finite state machine control.

Let us first look at parsing as a tree construction process.

2.3.1. Top-Down and Bottom-Up Parsing

The problem of structural analysis, or parsing, in a compiler may be seen as
the problem of constructing a derivation tree, given a grammar and a sentence
in the language. The sentence must form the frontier of the tree, and the tree
will be rooted in the grammar’s start symbol.

2 Introduction to Language Theory 47

This is a nontrivial problem. Let us consider grammar G,, whose
productions are

E-E+ T
E-T
T—->T=*F
T - F
F—>a

Then consider the sentence:
(ax(at+a)+a

Several different approaches may be taken. One might begin at the start
symbol E and work downward toward the desired frontier. Many guesses are
usually needed, and it will be found that a wrong guess somewhere in the
process will usually result in an impossible situation. For example, figure 2.14
shows a partially constructed tree that appears reasonable, but in the end
cannot possibly be right. Several mistakes were made in its construction. We
still have to fit “a+a” into the inner parentheses, and have “+a” left over.
We have found a partial tree for a sentence like (a*(a)), but it will not do for
the sentence (a*(a+-a))+a.

If we start at the bottom and work up, we also find ourselves making a
number of guesses. It is certainly clear that every token “a” must be fitted to
an F, since only one rule exists for that. It is also clear that somehow the left
and right parentheses must be fitted into the production F — (E), since only
that production contains parentheses. However, it is by no means clear (even
with some practice) just how to fit these ideas together into a systematic plan
for constructing a derivation tree.

In fact, a number of systematic derivation contruction methods have been
discovered in recent years. We shall consider four of the most common and
powerful of these in Chapters 4 and 5. These parsing methods fall into two
broad classes—top-down and bottom-up. (A new parsing method, called
left-corner, is an interesting blend of these two; see Rosenkrantz [1970a] and
Demers [1976]).

Each of these methods reduces to the unit operation: “Determine a
derivation step.” Each may scan a sentence from right to left or from left to
right. Now a sentence based in some grammar may be easily parsed from left
to right, but with difficulty from right to left. It happens that most common
programming languages are easily parsed from left to right, and furthermore,
algebraic operations are usually performed in that order, by convention. We
therefore confine our discussion to a left-to-right sentence scan.

Let us first consider the top-down, left-to-right parsing problem. A typical
situation is shown in figure 2.11, for grammar G,.. We have already decided
on the productions

48 Compiler Construction: Theory and Practice

Figure 2.14. A bad guess for a derivation tree for sentence (ax(a+a)) +a; top-down
construction. The shaded parts cannot be incorporated in the tree.

E—- E+T
E—>T
T—> F
F - a

and have accounted for the first two symbols a+ of the sentence a+(a*a).
The left-most exposed nonterminal in the tree is T, therefore the parsing
decision problem at this point may be stated:

2 Introduction to Language Theory 49

Which of the productions { T — F, T — T+F} should be connected to the
exposed T node, given the partially constructed tree and the remaining input
sentence (a*a)?

If we are somehow able to make the correct decision, given the information
shown, each time, then we can repeat this operation again and again, until the
tree is completely constructed. We would like to make each decision correctly
by means of an algorithm, so that it will never be necessary to throw away our
work and start over again. We also need some assurance, given any grammar,
that we can find an algorithm and that it will work correctly for all the
sentences in the grammar’s language.

There are more considerations. What if it is possible to construct more
than one derivation tree for some sentence? How can we be sure that the
parsing method will reject sentences that are not in the language? These
questions will be resolved when we study the top-down and bottom-up
parsers in chapters 4 and 5.

Now let us consider the bottom-up parsing problem. Here we work from
the given sentence upward toward the start symbol, in a left-to-right manner.
We attempt to build a tree upward as far as we can before connecting
productions to more sentence tokens. A partially constructed tree for
grammar G, and the sentence “a-+(axa)” is shown in figure 2.12. We have
decided that the productions

F—a
T—>F
E—-T

F— a

apply to the parsing process so far, and ask what the next production must be.
It appears to be a more difficult decision than for a top-down parser—there are
more possibilities. Should we go on to the next “a” token and apply another F
— a? Or should we extend the F tree through a production like T — F? We
can limit the choices somewhat by looking at the production right parts that
can conceivably apply somewhere in the exposed tree, but in general, this still
yields more choices than we can deal with.

However, we can still state the bottom-up parsing decision problem as .
follows:

Given a set of derivation trees (a tree may be an isolated terminal symbol or
some tree rooted in a nonterminal), determine the production whose right
member fits the left-most set of roots of the trees, and that “belongs” in the
final derivation tree.

Neither the top-down nor the bottom-up parsing problem has a trivial or
obvious solution. It is significant that these problems were not solved in a
general way until about fifteen years after their statement.

50 Compiler Construction: Theory and Practice

2.3.2. Backtracking

The parsing problem can be seen as one of managing a sequence of choices
in such a way as to find a set of choices that leads to a solution. For example, in
figure 2.11, we have two choices of next production to be attached to the T
node, T— T=F or T— F. Neither of these contains “(”, “a” or *)”. Although
T — Tx*F contains “*”, which we will need, it turns out that this choice is a
poor one; the derivation tree cannot be finished if T — T*F is used at this
point. .

One approach to parsing is the general problem-solving method of
backtracking. Let us first define the backtracking method in general, then
show how it can be applied to top-down parsing.

Backtracking can be applied to any computation with these properties:

1. There exists a starting point and a goal.

2. The goal may be reached by starting at the starting point and following
some path consisting of defined operations separated by nodes. At each
node, some arbitrary choice among a finite set must be made. An
operation leading from one node to another can either succeed or fail.
We say the computation blocks if an operation fails.

3. Depending on the sequence of choices made, the computation will
either reach its goal or block on some operation. If the computation
blocks, we must back up one node and try another of the set of choices.

A backtracking machine will systematically explore all the choices and
continue until either the goal is reached, or all the possible choices have been
exhausted and lead to blocks. Unfortunately, the computation may continue
forever. We need, in every application, some proof that the number of
operations is bounded. We shall see that certain grammars will cause a
backtracking parser to run forever on certain input strings.

There may also be more than one path to the goal. The path first found
depends on the order in which the choices associated with the nodes are tried.
An ambiguous grammar will yield a backtracking machine with multiple
paths to the goal.

Let M be a generalized backtracking machine that contains a read/write
tape used as a stack. Each cell of the tape will carry a state and a choice. Also,
M manages the backtracking computation process by providing a systematic
means of backing up and restarting when the process blocks.

The process will consist of a sequence of computations based on some
algorithm, separated by choice points. At each choice point, a record is made
on M’s tape of the current state of the computation, and the particular choice
made at that choice point. Each choice set must be finite and ordered in some

2 Introduction to Language Theory 51

way so that it is always apparent, given a state and some choice, whether there
is another untested choice.
The backtracking system then has these three moves:

1. A forward move from some state just recorded, using the particular
choice selected by M. This will continue until: the machine blocks (step
2), it reaches its goal (halt), or it reaches another choice point {step 3).

™

A backtrack move, initiated by a block. Here, we consult the last-writ-
ten M cell. If another choice exists in that state, we select it, record it, set
the system to the state recorded in the cell, and do a forward move (step
1). If no more choices exist in that state, we remove the top cell from the
tape. If the tape is empty, we halt (failure to reach goal). If the tape is not
empty, we start again on step 2.

3. A choice move. Here we have reached a point at which some choice must
be made. A new cell is added to the end of the tape containing the
current system state and an initial choice (the first of the ordered finite
set of choices available in this state). Then go to step 1.

We start the machine in step 3, by assuming that every backtracking
process has an initial choice step.

In any machine application, we must show that the process will always halt
in a bounded number of moves, otherwise we do not have an algorithm.

Application to Parsing a Context-Free Grammar

Let us apply our machine to the top-down parsing of a sentence in a
context-free grammar. We have an input string a, a, . . . a, of finite length. We
also assume that we are building a derivation tree that will be accessible
throughout the calculation. The tape will contain references to nodes in this
tree.

At any point in the parse, the state of the system is the partial tree
constructed so far, which incidentally includes the current position in the
input string. We could conceivably just record the entire tree built so far on a
tape cell, along with the particular choice of production made for the
left-most exposed nonterminal node. However, such a move would be
incredibly inefficient. We can accomplish the same result by storing only the
two items: (1) current left-most exposed tree node, and (2) a production
choice compatible with that node.

Step 1: The forward move. ~On a forward move, we have just chosen a
production. We therefore attach it to the tree and examine the situation. Let
the production be

‘52 Compiler Construction: Theory and Practice

A—>xX,...%,

If x, is a nonterminal, we have reached another choice point, based on x,, and
therefore go to step 3. Otherwise, X, must match the left-most exposed input
character. If it fails to match, we block and retreat to the backtrack move step
2. Each of the tokens x,, x,, . . . , X, are similarly examined, until we either
match all of them or we find the left-most nonterminal.

Suppose all of them match. We then search the partially constructed tree
for a left-most exposed node. (This procedure will require an algorithm for
moving up to the parent, seeing if it has any exposed right siblings, etc., the
details of which will not concern us here). If a left-most exposed node exists,
and is nonterminal, go to step 3 (a choice of production is needed).

If a left-most exposed node exists and is terminal, it must match the
left-most exposed input token. On a failure to match, go to step 2 (backtrack).
On a match success, continue matching.

Finally, suppose that no left-most exposed node exists. Now either the
input string is completely attached to the tree or not. If it is attached, then we
halt and report “success”. Otherwise, we block and go to step 2.

Step 2: The backtrack move. On any backtrack move, we must discard a
portion of the partially complete tree and try another production at the
left-most exposed nonterminal node. We need the two items of information
in a tape cell: the left-most exposed nonterminal node and the particular
production chosen for it. Given the node, we can delete the subtree hanging
from it and determine the input string position. Given the production choice,
we can decide if another production choice exists. If it does, take it, record it,
and go to step 1. If another choice does not exist, go to step 2 again.

Step 3: The choice move. The choice move is easy: we record the current
left-most exposed nonterminal tree node, then select and record a production
compatible with that node; it should be the first of an ordered set of
compatible productions. (If the exposed node is associated with nonterminal
A, then the compatible productions are all those with the form A — w.)

Example. A grammar for which the backtracking system will work is the
following (we shall later demonstrate two other ways to parse sentences
derivable in this grammar). This grammar describes decimal numbers
(containing a decimal point) with an optional sign.

Grammar G; =({V, S, R, N}, { +, —, ., d, L}, P, V), where P is

1. V> SRL {L is a stop symbol}
2. S— +

2 Introduction to Language Theory 53

S » —

S— € {e is the empty string}
R— dAN {d is a decimal digit}
R — dN.N

N — dN

N — ¢

O N oW

Consider the input string:
+.dd.L

A complete trace is shown in figure 2.15. There are no backups required for
this string until the state shown in part (f) is reached. In trying the first choice
(N — dN) for the exposed node 9, we find that “d” and the next symbol L
fail to match, hence we must back up. The top cell says node 9 was given
production 7 previously. Production 8 (N —) is still available, so we try it
and find that we can match the remaining exposed node (the token _L) and
exhaust the input string.

Exercises

1. Trace the backtracking system on the strings
ddd.L
— ddL
2. Show that the backtracking system cannot accept either of the strings
d—1
- +1
3. Consider the following ambiguous grammar:

S - E L
E — aEE | ¢

and its backtracking parser. Trace its behavior on the string
aal

Discuss informally the factors influencing its choice of several possible
parses.

Limitations of Backtracking

This system will succeed if and only if no left-recursive derivation in the
basis grammar exists. A left-recursive derivation is such that

54 Compiler Construction: Theory and Practice

Partial tree

©

+.ddL

+.ddl

Tape
N?de
(a) (1q)
Production
(11
(b)
(1,1)(2,2)
(o)
(1,1)(2,2)(4,5)
(d)

Figure 2.15. Trace of a top-down backtracking parse of astring “++.dd L " in grammar G,.

ot | 5| ed] dL

2 Introduction to Language Theory 55

(1,1)(2,2)(4,5)(7,7) 0

) @& O
(e) @
|

[| 5+ [od] od] 4

()
L3+ l . l od I Bdl 1 Conflict
Back-up
(1,1)(2,2)(4,5)
(7,7)(7,7)(9,8)
(8)

Success |3+| 5°|6d l od | ¢ l 10ll

56 Compiler Construction: Theory and Practice

A=tAw

for some nonterminal A. We shall not prove this; however, we can easily show

that a left-recursion will cause a system failure. Consider grammar G, and the

partial tree of figure 2.11. We have two productions compatible with the

left-most exposed fiode T: T — F and T — T=F. Note that the latter

production is left-recursive. If we choose T — T*F, we end up with another

tree with the same exposed input string and the left-most exposed node T.
The system will again choose T — T*F (assuming this is the first choice), etc.

The tree and the backup tape will continue to grow indefinitely, with no

progress in scanning the input string.

We might argue that the trouble lies in choosing T — T*F first. Why not
arrange the productions so that left-recursive productions are chosen after the
others? This choice seems to work in figure 2.11. We can add T — F to the
tree and can continue nicely for awhile. In fact, by placing the left-recursive
productions last among the choices, we can parse every string in the language
L(Gy).

However, this is not good enough. A parser must also be able to detect and
report errors in syntax, i.e., it must be able to determine that some strings are
not in the language. For example, suppose that in figure 2.11, the left-most
exposed input string element were “+” instead of “(”. We have a string that is
obviously not in the language, and there is therefore no subtree that can be
attached to the node T that will match a “x”. What will the backtracking
system do? It will attempt all possibilities. The T — F choice will eventually
be found to fail (after many trials and errors), hence the choice T — T*F will
be attempted. This choice, too, must fail because we eventually must get the
same exposed input string and exposed nonterminal node as before and the
system will run forever. We conclude that with a left-recursive production in
the grammar, there are strings for which the system will never halt.

Aho [1972] shows that the backtracking system will never fail if the
grammar is not left-recursive.

Time Bound

It can be shown (Aho [1972], chapter 4) that a parse of a string of length
n=1 for a non-left-recursive grammar will require no more than c®
operations. The c is some constant, > 1, that is characteristic of the grammar.
This is a “best” bound, to the extent that we restrict the grammar in no way
other than requiring that it be non-left-recursive.

Indeed, there exist grammars that cause the backtracking system to spend a

2 Introduction to Language Theory 57

time proportional to an exponential of the length of the input. For example,
consider

S — 8§

S —> ¢

which derives sequences of ¢’s. If Y(n) is the number of partial left parses
consistent with string w = cccc . . . ¢, where |w| = n, then Y(n) is certainly
greater than 2" (Aho [1972]).

This grammar causes the backtracking parser to construct and discard
every possible partial tree before reaching its goal.

The behavior of any backtracking parser upon encountering a syntax error
is also exponential in character. Since every possible partial tree consistent
with the input string up to the position of the error must result in a block, the
parser constructs and discards all of them. For a reasonably large grammar
and strings of practical length, the time spent in such analysis is enormous.

We conclude that a backtracking parser system is impractical. We shall see
that backtracking is unnecessary for a large class of grammars. There also
exist more powerful generalized parsing methods (e.g., Earley [1968], also
described in Aho [1972], chapter 4) that not only will parse any context-free
grammar but do so with a better time bound than any backtracking system.

Exercises

1. Trace the backtracking parser for G, on the invalid string
akx |

far enough to show that it will never halt. Use the left-recursive
productions last.

2. Trace the backtracking parser on the grammar
S—cSS | €
for strings

C
CcC
ccc

and discuss the parsing pattern it exhibits.

58 Compiler Construction: Theory and Practice

2.3.3. A Deterministic Top-Down Parser

The backtracking parser of section 2.3.1 is said to be nondeterministic. That
is, given a choice at some node in the partially constructed tree, it simply
makes an arbitrary choice and prepares for the possibility (the very likely
possibility!) that its choice will be wrong.

Suppose that we had some way of making the correct choice each time. For
a top-down parser, we have some information in the exposed input string that
could be used to make the correct choice. For example, in figure 2.11, the
exposed input string is (a*a), and this should be sufficient to determine that
the correct choice of a T production is T — F. We can then conceive of a
large table such that each row is associated with a nonterminal node and each
column with some legal input string. The table will then tell us which of
several possible productions to choose for the next top-down move.

Unfortunately, such a table would be infinitely large—for interesting
grammars, the number of possible unexposed input strings is infinite. For a
practical compiler, we need a finite table.

Suppose instead we settle for a table such that every column contains only
one input token, the left-most exposed string token, or next token. We clearly
have potentially useful information in the rest of the exposed input string, but
we can’t use more than a finite amount of it anyway.

We still require that our table (now finite) fix a production choice for every
possible situation. This requirement imposes a restriction on the basis
grammar. It is possible to build such a table for some grammars and not for
others.

Let us again consider grammar G,, introduced in the previous section.

Grammar G; = ({V,S,R,N}, {+, —, ., d, L}, P, V), where P is:

V —» SRL {1 is a stop symbol}
S — +

S —» —

S—> ¢ {e is the empty string}
R —» dN {d is a decimal digit}
R — dN.N

N — dN

N - €

PN W

A top-down, one-symbol parsing table can be constructed for this
grammar, by methods described in chapter 4. It is given in figure 2.16. Each
row corresponds to a possible exposed left-most nonterminal node in the
partially constructed tree. Each column corresponds to the next token. The
entries are either a production number (1 through 8) or an X. The X means
that there must be a syntax error; there is no way that a derivation based on

6

the exposed nonterminal can match that token. For example, with token .

2 Introduction to Language Theory 59

Next token
+ - 1
Left-most v 1 1 1 1 X
X

Exposed 5 2 3 4 4
Nonterminal R X X 5 6 X
N X X 8 7 8

Figure 2.16. A top-down LL(1) parsing table for grammar G;.

and nonterminal S, the table says that production 4 (S — e) is the appropriate
one to attach to the tree.

We can illustrate a parse without drawing a lot of trees. All we really need is
the frontier of the partially constructed tree and the remainder of the input
string. Thus figure 2.11 has the frontier a+ T and the remaining string (a*a).

Given these two strings, we apply the table to the left-most nonterminal in
the frontier and the first token of the remaining string, which yields a
replacement string w. If the first tokens in w are terminal tokens, they must
either match the tokens in the input string or else a syntax error exists. If they
match, we drop the matched tokens before applying the table again.

Let us trace the process with the string —ddd.dd.L.

Frontier = Remaining Input Production
\% —ddd.dd L 1

SR L —ddd.dd L 3

—RL —ddd.dd L (match, drop “—”)
RL ddd.dd L 6

dN.N.L ddd.dd.L (match)
N.N_L dd.dd L 7

dN.NL dd.dd.L (match)
N.N_L d.dd_L 7

dN.NL dddl (match)
N.N_L dd L 8

NL ddL (match)
NL dd_L 7

dN_L dd_L (match)
NL dLl 7

dN_L di (match)
NL 1 8

L 1 (match and halt)

60 Compiler Construction: Theory and Practice

We stop and report “success” when both the tree frontier and the input list
are empty. Other possibilities exist on input strings that are not in the
language; for these the machine must report “failure.” We require that every
input string be terminated with the special symbol L, and that this symbol
not appear elsewhere in the input.

It can be shown that this parsing process has a time bound linear with the
length of the input string, obviously a vast improvement over the backtrack-
ing approach of the previous section. However, we have paid for this time
improvement with a certain restriction in the class of grammars that are
amenable to this approach.

This parsing system is called an LL(1) parser, and was first described in
Rosenkrantz [1970]. It has been used as the basis of several compilers, for
example, see Lewis [1968]. “LL” means “Left-to-right, Left-most.” The “1”
refers to the single input symbol used to resolve the production choice. We
could also use 2, 3, . . . symbols, yielding an LL(2), LL(3), . . . parser.

Exercise

1. Trace the parser of figure 2.16 on the strings

ddd.L
ddd L
—dl
—.+dL {illegal}
dd+ L1 {illegal}
dd.L {illegal}

2.3.4. A Deterministic Bottom-up Parser

The bottom-up parsing problem seems more difficult than the top-down
problem. There are more choices that must be made. Not only must we
somehow select a production, but we must decide on the part of the partially
completed tree that it applies to. Nevertheless, we can often construct a
systematic deterministic bottom-up parser with no backtracking.

Let us begin with a definition: the skyline of a sequence of bottom-up
parsing trees (see figure 2.12 for an example) is the left-to-right sequence of
their roots. The skyline will always be a right-most sentential form, provided
that the input string is a sentence in the language. For example, in figure 2.12,
the skyline is E +(Fxa), derivable from S by a right-most derivation.

Now we can introduce the bottom-up parsing machine, called an LR(1)
parser. “LR” means “Left-to-right, Right-most”; the “1” refers to the

2 Introduction to Language Theory 61

parser’s need to examine at most one symbol in the input string past its
current parsing point.

The parsing machine is shown in figure 2.17. It consists of a set of states
(the circles) connected by transitions. Two kinds of transition appear: a read
transition and a lookahead transition. The lookahead transitions are indicated
by braces {. . .}. Note that the transitions are on the tokens in the terminal and
nonterminal alphabets of the grammar G,.

The states 1 through 8 (marked with a #) are called apply states. In an
apply state, the associated production can be attached to the right-most
exposed tree skyline. The states 9 through 17 call for a read or a lookahead
transition.

We apply this machine to some partial tree skyline, starting with the start
state 9 and continuing until we hit an apply state. On each read transition, we
match the current skyline token against a transition token, then move to the
next token and state. On each lookahead transition, we match the current
skyline token against a transition token, and move to the next state, but do not
move on in the skyline. A lookahead transition may carry more than one
token. For example, in state 9, token “.” or “d” is acceptable as a lookahead
transition to state 4.

In an apply state, we have some production A — w indicated by the
machine. The string w must then fit that part of the skyline we have just
scanned. Notice that the machine “spells out” the string w upon falling into
an apply state, associated with A — w.

As in the top-down parsing machine, we do not need to draw a lot of trees
to illustrate the process. We need only show the skyline string. The initial -

Start S ~ R 1 |
9 > :O————> —
Q (10) 1 #1 V=SRL
. d d d
NG S O OaaE
F— #7 N—dN
—df»@——‘d___/ N {.1}
) L—> #8 N—¢
— #5 R—.dN
+ : -—>{l} #8 N—¢
——» #2 S—+ N d
(15 ——(17)
- N
> #35— (-} > #6 R—dN.N
L— #8 N—¢ {1}
L— #8 N—¢
{.d}

L——» #4 S5—¢

Figure 2.17. A bottom-up parsing machine for grammar G,.

62 Compiler Construction: Theory and Practice

skyline string is the input sentence, and the final, or halt, state is upon
applying production # 1, V— SR_L in the machine; the skyline will consist
only of the start symbol V.

Let us trace this parsing machine with the input string ddd.dd L

Skyline State Path Production
ddd.dd L 9 4, S — €
Sddd.dd L 9, 10, 13, 16, 16 8, N — ¢
SdddN.dd L 9, 10, 13, 16, 16 7, N - dN
SddN.dd L 9, 10, 13, 16 7, N —- dN
SdN.dd L 9, 10, 13, 15, 17, 16, 16 8 N — ¢
SdN.ddN _L 9, 10, 13, 15, 17, 16, 16 7, N — dN
SAN.AN L 9, 10, 13, 15, 17, 16 7, N - dN
SAN.N_L 9, 10, 13, 15, 17 6, R - dN.N
SR_L 9, 10, 11 I, Vo SRL
\% (halt)

It should be clear that we have reproduced a right-most derivation of the
sentence, in reverse order.

A syntax error is detected in this machine whenever we cannot find a
transition from some state that matches the next input symbol. For example,
if we reach state 12 and fail to see a “d” symbol, then there must be a syntax
error at that point, and the input string cannot be in the language L(G,).

We shall further discuss bottom-up parsing in chapter 5.

Exercise

1. Trace the parser of figure 2.17 on the strings

ddd_L
ddd L
—dl
—.+dL {illegal}
dd+ L {illegal}
dd.L {illegal}

2.4. Bibliographical notes

Some early papers on grammars and generating systems are found in
Chomsky [1956]. A survey paper with additional references is Chomsky
[1963]. The notation used for grammars and derivations is from Chomsky
[1959]. References for most of the remaining material in this chapter may be
found in the notes for the subsequent chapters.

CHAPTER 3

FINITE STATE MACHINES

A large digital system cannot be designed through a detailed electrical
analysis of all its circuits. There are just too many components and the
electrical circuit laws are too difficult to solve. The system as a whole can only
be understood by a model that simplifies the system. One such model is the
finite-state machine. In this model, a digital system is viewed as one that
moves in discrete steps from one state to another. Each transition is
determined by the state it currently is in, along with a set of inputs. In the
transition, the machine may also output some discrete set of values.

A state in a digital hardware system is defined by some finite set of signal
voltages, interpreted in a discrete manner (usually /igh or low). A state in a
software system might be defined by the set of values of the storage registers,
including the current position in the stored program.

The finite state machine model has many applications. Every digital
computer system is conceptually a finite state machine, albeit one with a vast
number of states. Many seemingly difficult language recognition problems
yield to a finite state machine synthesis. Many computer subsystems, such as
peripheral device controllers, tape formatters, etc., are first designed as finite
state machines that are then transformed into their logic circuit equivalents.

We shall examine in detail only one class of finite state machines—the
so-called incompletely specified no-output machines. These are particularly
useful as language recognizers. We shall see that the class of finite state
machines, or finite state automata, (FSA for short) is equivalent in recogni-
tion power to the class of regular grammars, and also to a special class of
language generators called regular expressions. Many simple programming
languages can be recognized by FSA.

An Example FSA

Before we formally define a finite-state machine, let us examine one that
will serve as an example for the formal descriptions to come, figure 3.1. This
‘machine recognizes a language consisting of the signed or unsigned decimal
numbers.

An FSA consists of a set of states, transitions among the states, and an input
string scanned by a read head. The read head starts at the left-most string
token and moves to the right as the FSA moves from state to state.

The circles containing letters represent states. At any one time, the
machine is in exactly one state. The state S is a start state. The machine is

63

64 Compiler Construction: Theory and Practice

placed in this state initially. The states B and H are called kalf or accepting
states, and are so indicated by the double circles.

The arrows connecting the states represent state transitions. Each one is
labeled with a member of the alphabet of the language recognized by the
machine. For this machine, the alphabet consists of four tokens:

{d’ +> > }

where d represents one of the decimal digits 0, 1, 2, ..., 9.

As each token in the input string is scanned, the machine moves from state
to state, according to the tokens on the arrows. For example, if the first token
is “+”, then the first transition is from S to A. Then if the next token is a
decimal point, “.”, the second transition is from A to G.

The FSA continues with its transitions until it either finishes the string, i.c.,
scans all the tokens, or it encounters a token that has no transition associated
with it. If it scans the string and ends in a halt state (B or H), the string is said
to be accepted. On the other hand, if it scans the string, but fails to end in a halt
state, or if it is unable to scan the string because of a failure to find a matching
transition on some token, then the machine fails to accept the string, and is
said to block. :

The FSA of figure 3.1 is incompletely specified, i.e., some states have no
transitions on some tokens. For instance, state A has no transitions on “+” or
« »

The FSA of figure 3.1 is designed to accept those strings in the form of a
signed or unsigned decimal number and only those strings. For example, it
will accept these strings:

—15.
75.38
+.002
000001
+34.76

but will not accept these strings:

~75+
+17-56
3.14
000.1

Now consider the specific string “+34.76”, which is accepted by the
machine of figure 3.1. The transitions are

S to A on token “+”
A to B on token “3” (a digit d)

3 Finite State Machines 65

Read head

\/

+ d d . d | Input string

Figure 3.1. A finite-state automaton.

B to B on token “4”
B to H on token *“.”
H to H on token “7”
H to H on token “6”

Since H is a halt state, and we have succeeded in scanning the entire string, the
machine accepts “+34.76”.

Now consider the string “+ 17 —56”, which will not be accepted by the
machine. The transitions are

S to A on token “+7”
A to B on token “1”
B to B on token “7”

At this point the scan must end, since there is no transition from state B on
token “—”, There is only one transition on “—”, from state S; however, it is
of no value now because the machine is not in state S. State B is a halt state,
but the input list must also be completely scanned, and it has not been. Hence
the machine fails to recognize “+ 17—56”; it blocks on the “—".

66 Compiler Construction: Theory and Practice

Finally, consider the string “+.” that will not be accepted. The transitions
are

S to A on token “-+7”
A to G on token “”

The FSA has scanned the entire string, but has ended in state G, which is not
a halt state. Hence the machine has failed to recognize the string “+-.”.

The value of such a machine in a computer system should be obvious—it
provides a logically sound way to test input strings for membership in some
language, that is, it serves as a syntax checker.

An FSA has many more applications. For example, we may associate an
output string with each transition; we would then have a simple translator.
We may also associate some general operation with each transition; such an
FSA could then serve as a basis for a class of algorithms or as a machine
controller, etc.

Exercises

1. Show that the FSA of figure 3.1 accepts these strings:

75.38
—15.
00000001
.000005

but not these:

+17-56
—-75+
3. .14
.00.1

2. Suppose that only state H is a halt state in the machine of figure 3.1.
Describe the language of the FSA informally.

3. Suppose that only state B is a halt state. Using the definition of
acceptance above, what is the significance of an input string that leads to
state H? Is state H of any value to the FSA as a language recognizer?
Show informally that it may be removed. What other state can also be
removed? What language is recognized by the resulting machine?

3 Finite State Machines 67

4. Extend the machine of figure 3.1 to accept decimal numbers with an
exponent field, e.g.,

+3.7E+6

3.1. Formal definitions

We now provide a more formal definition of a FSA, one that will be useful
in exploring its properties. A deterministic finite-state automaton, or DFSA, is
a five-tuple M = (Q, =, §, qg, F), where

1. Q is a finite set of states.

2. Z is a finite set of permissible input tokens, i.e., the alphabet of the
machine.

3. § is a partial function that maps a state and an input token to another
state, called the state transition function.

4. q, is a designated state in Q, called the iznitial or start state of the FSA,

5. F is a subset of Q, consisting of at least one final state.

The FSA operates through a sequence of moves. Each move is dictated by
the present state and the next input token to be scanned by the machine. The
move consists of scanning the next input token, and simultaneously transfer-
ring from a “current” state to a “next” state (which may be the same as the
current state). A move may be made only if the § function permits it to be
made; the current state and the next token must map to another state through
the § function.

For example, consider the FSA of figure 3.1. Its state set Q = {S, A, B, G,
H}, q, is S, its halt set F = {B, H}, its alphabet ¥={+, —, d, .}, and its
mapping function is:

&S, +) = A
&S, —) = A
&5,) =G
8S,d) = B
&A, d) = B
8A,) = G
8B, d) = B
8B,.) = H
&G, d) = H

H

68 Compiler Construction: Theory and Practice

For example, the function § maps state A and token “.” to G. This
corresponds to the transition A to G under “” in figure 3.1. The state
transition function does not map all possible states and tokens to states; those
state-token pairs that are not mapped are not permitted as automaton moves.

Transition Function as a Table

The transition function for a FSA may be expressed as a table. The input
tokens are listed along the top and the states along the left side (figure 3.2).
The table contains the mapping 8(P, a), where P (a state) defines a row and “a”
(a token) defines a column. A blank entry means that 8 is undefined for that
state and input.

Configurations

Suppose that a FSA has completed a number of moves in a string. To
predict its future behavior, we need only know the remainder of the input
string, starting with the next token, and the current state. These two items of
information provide a complete description of the FSA at a particular point in
a particular application, and will be called a configuration. A configuration
will be designated (q, w), where q is a state and w is the string remaining to be
scanned.

The configuration (go, W), where q,, is the start state and w is any string to
be accepted or rejected by the automaton is called an initial configuration. A
configuration (q, €), where ¢ is the empty string, is called a final configuration,
provided that q is in F, the set of halt states.

A move of the machine (designated “H) connects one configuration to
another. We have

(9, aw) - (q’, w) if and only if “a” is in =, w is in =* , and q'= &(q, a).

which means that given a machine in state q, with the input string “aw” (“a” is
the first token and “w” is the rest of the string), one move results in state q’
and string “w”. The token “a” has been scanned by the move, leaving the rest
of the string “w”. The move is only possible if the state transition function §
yields a state q’ for the current state q and input token “a”.

A sequence of moves of the machine may be designated —* or —+. The +
means “one or more moves,” and the * means “zero or more moves”. A zero
move results in no change in state and no scan of the input string. The
sequence H* is called the tranmsitive closure of -, and F* is called the
reflextve transitive closure of .

With this notation, we may succinctly define the language L(M) recog-
nized by a FSA M;

L(M) = {w € 2* | (q, W) I * (g, €) for some q in F}

3 Finite State Machines 69

Input token

A G B
States H B
G H

©) H

Figure 3.2. Finite-state automaton of figure 3.1 as a table, expressing the transition
function 4.

which means that the language L(M) is the set of strings w such that the FSA
can begin in start state g, scan through string w, and end in a halt state when
the string is completely scanned.

Exercise

Describe the acceptance of the string +.002 by the FSA of figure 3.1 as a
sequence of configurations, starting with (S, +.002) and ending with (q, ¢),
where q is in { B, H}.

Machine Equivalence

Two machines, M and M/, are said to be syntactically equivalent if they
recognize the same language, i.e., if L(M) = L(M’). The machines need not
have the same number of states, nor must the states carry the same state labels.
This definition is equivalent to the statement:

M and M’ are equivalent if and only if for every string x, M accepts x if and
only if M’ accepts x.

If a machine M can be transformed into a machine M’ by merely relabeling
its states, then M and M are said to be isomorphic. ‘

Afundamental theorem of FSA is that for every machine M, there exists an
equivalent machine M’ with a minimal number of states, and that every
machine M” with the same number of states as M’, and equivalent to M/,
must be isomorphic to M, i.e., M’ is structurally unique.

We shall expand upon this notion of equivalence later, and show how an
arbitrary machine can be reduced to minimal form.

70 Compiler Construction: Theory and Practice

Nondeterministic Finite-State Automata

An FSA is said to be deterministic when no choices are provided in any of
its moves. Every move is absolutely determined by the current state and the
next token, clearly a desirable machine for any implementation. A nondeter-
ministic FSA is such that some arbitrary choices are permitted in some of its
transitions. There are some states and input tokens for which more than one
transition may be taken. A number of concepts are easier to express
nondeterministically than deterministically. We shall also show that, given a
nondeterministic automaton, we can always systematically convert it into a
deterministic automaton that recognizes the same language.

A nondeterministic FSA, or NDFSA for short, is defined exactly as a
deterministic FSA, with two exceptions:

1. Some moves may involve a choice. This choice is represented by a state
transition function 8 that maps a state-next-token pair into a set of states. The
set may consist of a single state, in which case no choice is provided for that
particular state-next-token pair. However, in general some of the state-next-
token pairs map to two or more states. We therefore use the notation:

8(q, a) = {some set of states}

for a nondeterministic transition function.

2. Some moves may be made without scanning the next token. Such a move
is called an empty move, and may be included in the state transition function
by the notation

8(q, €) = {some set of states}

There may be one or more possible next states. An empty move may be
invoked (if it exists) even when the string has been completely scanned. In
this way, it may be possible to reach a halt state through one or more empty
moves from a non-halt state.

We say that a nondeterministic finite automaton accepts a string w if there
exists some sequence of moves, beginning with the start state and ending ina
halt state that scans the entire string. It is not necessary that each sequence of
choices leads to acceptance; only one sequence is necessary.

Figure 3.3 gives an example of a nondeterministic FSA. Its transition table
is figure 3,4. This machine happens to recognize the same language as the
FSA of figure 3.1. We shall prove this in due time. Note that it contains a
number of empty moves, S to A, A to E, etc. Also note that in state A, there
are three possible moves on token “d”. The machine may scan the “d” and
transfer to either B or C, or it may make an empty move to E and then scan
“d”.

Now consider the recognition of the string “—24.57” by the NDFSA of
figure 3.3. A correct choice would be the “ —” transition from the start state S
to A; the machine might also choose the empty transition to A. However, the

3 Finite State Machines 71

Figure 3.3. A non-deterministic machine equivalent to the machine in figure 3.1.

empty move results in a block, since there is no way to scan “—” once the
machine reaches state A.

When in A, a choice among three possible paths exists, to state B, C, or E.
Depending on the next token, any of the three may be possible moves.
However, a move along the upper path, through B, means that a decimal point
can never be scanned. An examination of the remaining two paths reveals that
either one is satisfactory for our example, and results in acceptance of the
string “—24.57”. Thus, the middle path yields the state sequence A, C, C, D,
D, D, F. Note again the nondeterminism of the final transition D to F. The
machine is in D when the last token (a digit) is read, but may continue to make
more empty moves to reach a final state (F).

Although it appears that a nondeterministic machine is more “loose” in its
recognition capability, this is not really the case. We challenge the reader to
find a string recognized by the automaton of figure 3.3 that is not recognized
by the automaton of figure 3.1. The two automata are equivalent.

Exercises

1. Find a sequence of accepting moves for each of the following strings in
the NDFSA of figure 3.3:

+.004
56.3
—334

72 Compiler Construction: Theory and Practice

Input Symbols

8 + - . d €
S A A A
A B,C E
B B F
C D C
States D D F
E G E
®
G H
H H F

Figure 3.4. Tabular form of the non-deterministic finite automaton of figure 3.3.

2. Show that each of the following strings cannot be accepted by the
NDFSA of figure 3.3, by exploring all the possible move sequences:

+0.0.
—2.43
.02

3. Consider the NDFSA of figure 3.3, but with one of the three paths
starting with A removed (there are three such machines). Discuss the
three languages informally.

4. Design a simple NDFSA such that the acceptance of a string of finite
length can be made in an indefinitely large number of moves.

3 Finite State Machines 73

A Backtracking Machine Model for a NDFSA

A nondeterministic FSA can be modeled by a backtracking system of the
sort described in section 2.3.2. We do not propose implementing a FSA in
this fashion; we merely present the model as another means of viewing a
nondeterministic automaton.

Recall that a backtracking problem-solving system has three kinds of
moves: a forward move, a backtracking move and a chotce move. For a
NDFSA, we may make each state transition a choice move, for the sake of
generality, whether a state in fact has any choices or not. The backtracking
move is invoked on any failure to accept the string. The forward move is
simply a transition to the next state, scanning a string character in the process.
The input string will be scanned left-to-right by a read head, however, the
read head is permitted to move backward in a backtracking move.

The backtracking system tape T will have cells containing the state
number, the position of the input token on the input list, and the particular
state transition adopted, figure 3.5.

Initially, the tape T is empty and positioned at its left-most end; the
machine M is in the start state; and the read head is positioned at the left-most
token of the input list.

Upon leaving any state Q in a forward move, a cell on tape T is written.

If M blocks, the tape T is backed up cell by cell, until a cell is found such
that an alternative move is found. The read head of M is then set to the
position indicated by the cell, the state of M is set, the alternative move is
made, and the cell is replaced by a new cell characteristic of the new move.

This process is repeated until one of two things happens:

1. The tape T is backed up to the first cell, and this cell indicates that no
alternative moves exist. In this case, the input string is not in the
machine’s language.

2. The machine M ultimately reaches a halt state, and the input string has
been completely scanned. In this case, the input string has been accepted
by M. Tape T contains a record of the moves.

Now consider the NDFSA in figure 3.5, and let the transitions in each state
be ordered from top to bottom in a clockwise sense. Thus transition “d” from
A to B is labeled 1, transition d from A to C is labeled 2, and the empty
transition from A to E is labeled 3. We also need string positions; let these be
1, 2, and 3, respectively:

74 Compiler Construction: Theory and Practice

- 3 | . % Input list

Current symbol: .

/\ Current state: B

One cell
—— e ——
(s [1l2TAaJ2T1]8]2 2] SSTAPET
State —! —_—
Input position———— Choice Empty

Figure 3.5. Backtracking machine M and its tape T, shown in one configuration. Input
string: “—3.".

Let us trace some of the moves of the system for the above string. Initially,
T is empty.

The first move from state S must be on the minus transition, 2, (first choice)
so the first cell reads (S, 1, 2). The next move involves a digit “3” in position
2, from state A. We have three possible moves: to state B, to state C, or to state
E. We take the first one, creating the cell (A, 2, 1). Tape T now reads (S, 1, 2)
(A, 2, 1). The next move, from state B, calls for a decimal point. Although
there is no such transition from B, the empty move to F may be taken. This
yields the tape (S, 1, 2) (A, 2, 1) (B, 2, 2). Note that the input string position is
unchanged. Figure 3.5 shows a snapshot of machine M, its input string, and
the tape T at this point in the process.

We now find machine M in state F, with no more possible moves, and the
input list incompletely read—which is not an acceptance condition, hence we
must back up tape T and examine other alternatives. The last cell, (B,2,2),
offers no hope, since there are no other moves out of B on the last token “.”.

3 Finite State Machines 75

The next-to-last cell, (A,2,1), does provide another alternative. The cell
indicates that the machine M chose the A to B transition on token “3”. We
can also move to C on this token, hence we do so, yielding the modified tape:
S, 1,2) (A, 2,2).

We now find the machine M in state C, with token “.”. Clearly, the move
from C to D (number 2 by the ordering scheme) is legal and yields the tape (S,
1,2) (A, 2,2) (G, 3, 2), with machine M in state D. The input list is now fully
scanned; however, the empty move to F is legal, yielding acceptance and the
final tape T = (S, 1, 2) (A, 2, 2) (G, 3, 2) (D, 3, 2).

As we shall see, it is never necessary to implement a nondeterministic finite
automaton with a backtracking tape, because a nondeterministic finite
automaton can always be transformed into an equivalent deterministic finite
automaton. A deterministic automaton never needs to back up. If it blocks on
atoken, there exist no choices that have been made arbitrarily in its previous
moves, and the block is therefore sufficient proof that the string is not in the
machine’s language.

Exercises

1. Trace the acceptance of the following strings through the backtracking
system, figure 3.5: '

—.16
3.6
9.

2. Show that the following strings fail to be accepted by tracing the
backtracking system:

3.

3. Show that the backtracking system will fail if an empty move cycle
exists in the machine M, through an example. An empty move cycle is a
sequence of transitions from some state A back to A, all with empty
moves. Why will the system fail?

4. Show that the system will always terminate on a finite input string if no
empty move cycle exists in the FSA.

3.2. Transformation of a NDFSA to a DFSA

The transformation of a NDFSA to a DFSA is accomplished by the
following steps: (1) detection and removal of empty move cycles, (2) removal

76 Compiler Construction: Theory and Practice

of the remaining empty moves, and (3) transformation into a deterministic
FSA.

3.2.1. Empty Cycle Detection and Removal

An empty move cycle is a sequence of empty transitions that begins with
some state A and ends in state A. All the states in such a cycle are clearly
equivalent, since we may get from any one of them to any other on any input
token, without changing the read-head position.

An empty move cycle may be eliminated by merging their states. A set of
states is merged by giving them all a common name. This has the effect of
causing a transition into or out of any one of the empty cycle states to
effectively be a transition associated with all of the states. If any one of the
merged states is'a halt state, the newly named state must also be a halt state.

Example

Figure 3.6 shows a machine with several empty cycles, ACD, etc. The
ACD empty cycle may be collapsed by merging states A, C, and D. This
merger yields figure 3.7, in which the ACED empty cycle has become the
cycle AE. Collapsing this one yields the machine of figure 3.8, which contains
no empty cycles.

Empty move cycles are detected and removed by the following algorithm.

Algorithm 3.1. Empty cycle removal

Let each state carry a mark in the set {0,1}. Mark 1 indicates that the state
has been considered. Initially, every state carries mark O (not considered).

C

Figure 3.6. A finite-state automaton with several empty cycles.

3 Finite State Machines 77

Figure 3.7. The finite-state automaton of figure 3.6 with the ACD empty cycle
removed by merging states A, C, and D.

1. Choose any state p with mark 0. We then construct a tree whose nodes
are states. Its root is p, and the children of any state q are those states for
which an empty move from q exists. The construction of any path is
terminated on a node with no empty moves, or on a node q’ such that ¢’
appears anywhere else in the tree (whether on that path or not). The tree is
obviously finite, since it can contain at most as many nodes as there are states.

2. If node p appears twice in the tree, once as the root and again on some
node N, then the path from the root to N represents the states on an empty
cycle. Merge these states, and return to step 1. (Note that p remains
unmarked).

3. If node p appears exactly once in the tree, as the root, then there are no
empty cycles containing p. Mark p (1) and go to step 1.

The number of steps in this algorithm is clearly finite, and it is easy to show
that at its conclusion, the machine M contains no empty cycles.

Exercise

Construct such a tree for the FSA of figure 3.6 and for each of the states B
and C.

3.2.2. Removal of Empty Transitions

Once all the empty cycles have been eliminated, the remaining noncyclic

Figure 3.8. The finite-state automaton of figure 3.7 with all empty cycles removed by
merging states.

78 Compiler Construction: Theory and Practice

empty moves may be removed. Consider some state p in machine M, with
empty moves to states q;, 4y, Js» - - - (figure 3.9). This part of machine M is
expressed by the transition function

8>)={q1q-- -}

Now each of the states q;, g, . . . have transitions (in general) to other states
I, I . .. o0 tokens a;, a,, Some of the r states may be q states or the p
state, and some of the tokens a;, a,, . . . may be empty. However, no transition
from p through q to itself can consist only of empty transitions.

Clearly, the empty move from p to g, can be eliminated if we add to p’s
moves the moves:

ptor,ona;, and

ptor, on a,.

The idea is that if M can reach r, from p on an empty move and then on a,,
then an equivalent move is from p to r; on a,directly.

Figure 3.9. A state p with empty moves to states q, q,, ...

3 Finite State Machines 79

Similarly, the empty move from p to q, may be eliminated by adding the
moves

ptor,ona,,
ptor,ona,, and

ptorson as.

One more operation must be performed: If q is a halt state and an empty
miove from p to q exists, then p must be added to the set of halt states upon
removing the empty move. We observe that if the input string is completely
scanned whén M is in state p, then M may move to q on no token and accept
the string. If the empty move to q is removed, then this would no longer be
possible; heiice p must become a halt state.

The algorithm for this process follows.

Algorithm 3.2. Removal of empty transitions

Given an empty transition p to q on i.e., q is a member of 8(p, €). Set 8(p,
€) = @, and add r to 8(p, a), for every a and r such that r is in 8(q, a). If g isin
F, then p ntust be added to F.

This algorithm may result in one or more new empty transitions from p to
some state r, and will therefore have to be repeated. However, it must
ultimately end with no empty transitions from p, given that machine M
contains no empty cycles. The argument is essentially that n repetitions of
this algorithm involve state p, and a sequence of states 1y, r,, etc., each of
which must be distinct. If the r’s were not distinct and different from p, then
there must exist an empty cycle, a contradiction.

For example, consider figure 3.3. Although there are no empty cycles, there
are five empty moves. Consider the empty move from H to F. There are no
moves from F in this machine. However, since F is a halt state, H must
become a halt state. Similarly, the empty moves from B to F and from D to F
may be removed by making B and D halt states. We end up with a machine
with four halt states B, D, H, and F. Since F can no longer be reached from
the start state, state F is called an inaccessible state. Thete is no point in
keeping inaccessible states, so machine M looks like figure 3.10 after
removing these three empty moves and state F.

Next consider the empty move from S to A in figure 3.10. The rule is that
we replace it with three new transitions from S to B, C, and E. Since A is not
in the halt set, S is not added to the halt set. The result is the machine of figure
3.11, which still has two empty moves. One of them camte from the empty
move A to E. (Trust us—the reduction process is not caught in an infinite
loop.)

80 Compiler Construction: Theory and Practice

Start state: S
Halt states: B,D,H

Figure 3.10. The finite-state automaton of figure 3.3 with the empty moves to F
removed.

Figure 3.11. The finite-state automaton of figure 3.10 with the S to A empty moves
removed.

3 Finite State Machines 81

Consider next the empty move from A to E. Its removal means that state A
picks up transitions to E on “d” and to G on “.”. Finally, the removal of the
empty move from S to E means that state S picks up transitions to E on “d”
and to G on “.”. The final machine M’, free of empty moves, is shown in
figure 3.12.

Removal of Empty Meves Using a Transition Table

A more systematic way of empty move reduction is through use of the table
representation for the FSA. We first identify every state with an empty move
to a halt state. When one is found, it is marked as a halt state. Considering
figure 3.4, states B, D, and H have empty moves to F. Hence they can be
circled, yielding figure 3.13. There are no other states that need be marked as
halt states, since there are no empty moves to B, D, or H.

Now consider the empty move from state A to state E, figure 3.13. For
token “+7”, 8(E, +) has no members. Hence 8(A, +) remains empty.
Similarly for token “-”. For token “.”, §(E, .) contains state G. Hence, we add
state G to 8(A, .). In the same manner, for token “d”, state E is added to 8(A,
d). Figure 3.14 shows the resulting “A” row.

This operation is continued for every state with an outgoing empty
transition, until no further additions to the table can be made. When this
point is reached, all the empty moves may be dropped by crossing out the
empty move column. Thus in figure 3.13, nothing is added to the table by the

d d

Figure 3.12. The finite-state automaton of figure 3.11-with all empty moves removed.

82 Compiler Construction: Theory and Practice

Input symbols

) + - d €
S A A A
A B,C E
5
C D’ C
States @ D F
E G E
®
G H
@ H F

Figure 3.13. Tabular form of the non-deterministic finite-state automaton of figure
3.5, with the halt states marked.

empty moves from B, D, and H to F, since F is empty anyway. However, the
S row is expanded by the A row’s states because of the empty transition from
S to A. The final table, representing a FSA free of empty moves, is given in
figure 3.14.

3.2.3. Transformation from Nondeterministic to Deterministic

The machine of figure 3.12 (or figure 3.14) is still nondeterministic. For
example, there are three transitions from state A on a “d”. Removal of the
empty moves has not changed this situation; indeed, it has aggravated it.

The remaining nondeterministic moves of an NDFSA with no empty
moves stems from one or more states with several moves on the same token
possible. There are two such states in figure 3.12, S and A. We can resolve the
choices in these states by calling each set of states a new state; the new state
then will be the merger of its component states. Thus we create a new state
“BCE” which will receive the merger of the transitions from states B, C, and
E. We are in a sense deferring the choice on token “d” and state S by
introducing a new target state “BCE”.

The general method is defined in algorithm 3.3, as follows:

3 Finite State Machines 83

Algorithm 3.3. Converting a NDFSA M into an equivalent DFSA M’

-1. The states of M’ consist of sets of states of M. That is, if A, C, and F are
states in M, then {A}, {C}, {F}, {A,C}, {G,F}, {A,F}, {A, G, F} are states
in M’. Since it is unusual to think of a set of states as a state, we change our
notation slightly by using brackets [] instead of braces { } to represent a state
in M’. Then [A,C] is the name of a state in M’, where A and C are states in M.

Although there are many possible sets of states of M, the maximum
number is finite; indeed, if there are n states in M, then the largest possible
number of states in M’ is (2® - 1). This can obviously be a very large number.
Fortunately, most of the states in M’ are inaccessible and need never appear in
the reduction process.

2.If Pis a halt state in M, then every state [.. ., P, . ..] containing P in M" is
a halt state in M.

3. If S is the start state in M, then [S] is the start state in M.

4. Let [Py, P,y ..., P,] be a state in M. Then consider all the transition
functions

Input symbols

1) + - . d €
S A A G B,C,E A
A G B,C,E E
B F
C D C
States @ D F
E G E
®
G H
® T

Figure 3.14. Empty move removal. The e column may be deleted.

84 Compiler Construction: Theory and Practice

8(Py, a), 8(P,, a); . . . » 8(Pp2)

on some token “a” in M. We then construct a new transition function § in M’
as follows:

(@) Let§(P),a) U 8(Pyp,a) U ... U 8(Pp,a) = {Qy, Qy,. .- Q). That is, we
collect all of the states to which the states P,, P,. . . , P, transfer on token “a”,
and call these Q,, Q,,..., Q.. '

(b) Thenset &'([P, P,,...,P,],a) = [Q;,Q, ..., Q,]. Note that this is
a deterministic transition function, since the M’ state [P}, P,, ..., P,] on
token “a” transfers to exactly one state [Q;, Q,, . - . , Q,]-

5. Step (4) is repeated for every state in M’ and every transition token “a”.

This algorithm looks formidable, but in fact it is quite easy, particularly
when carried out on a state table, as we shall see.

Tabular Reduction of a NDFSA to a DFSA

Consider figure 3.14. Its FSA may be transformed into a DFSA through
row operations similar to those used for removal of the empty moves. The
nondeterminism of figure 3.14 is accounted for by a multiple state set in the S
and A rows, in the “d” column. According to algorithm 3.4, we need a new
state [B, C, E] in M/, since the set {B, C, E} appears in a transition in M. Let
us therefore add such a state to the table. The transitions from the new state
[B, C, E] consist:

« For token “+”, of NULL, since neither of the states B, C, or E has a
transition on token “--”.

s For token “—”, of NULL.

» For token “.”, of a transition to state [D, GJ, since D is reached from C on
token “.”

>, and G is reached from E on token “.”.

« For token “d”, of a transition to state [B, C, E], since B goes to B on “d”,
C goes to C on “d”, and E goes to E on “d”.

Thus the new row for state [B, C, E] appears as shown in figure 3.15. Since
the new state [B, C, E] contains a halt state (B) in M, it is marked as a halt state
in M.

In the process, we have introduced another state, [D, G]. This is a halt
state. Its development in the table leads to the definition of another halt state,
[D, H]. The algorithm ends on state [D, H}, since every state appearing in the
table is defined as some row in the table. The final DFSA is in figure 3.16.

Algorithm 3.3 generates a machine M’ from a machine M, such that M and
M’ are equivalent. A proof of this assertion will be given later in the chapter,
after we have defined equivalence more formally.

3 Finite State Machines 85

Input symbols

8 + - . d
S A A G B,C,E
A G B,C,E
0
C : D C
States @ D
E G E
®
G H
® '
D,G B,C,E New states

Figure 3.15. New composite state {B,C,E} created.

3.2.4. Accessible States

Some of the states in figure 3.16 cannot be reached from the start state, for
example, state B. We may therefore delete all the inaccessible states from the
DFSA, by using the following algorithm, which should be self-evident:

Algorithm 3.4 Detection of accessible states in a DFSA

1. Mark the start state S.

2. Given any marked state P, mark every state Q such that a transition
from P to Q on some input token exists.

3. Repeat step (2) until no more states can be marked.

Upon completing algorithm 3.4, every nonmarked state is inaccessible
from the start state, and may therefore be discarded.

Algorithm 3.4 applied to figure 3.16 shows that states B, C, D, E, and Fare
inaccessible. What happened to them? State F served only one purpose in the
machine of figure 3.13—that of providing a halt state. But we have marked

86 Compiler Construction: Theory and Practice

Input symbols

8 + - . d

S A A G {B,C,E}

A G - {BCE}
°
C D C
States @ D
E G E
G H
® "

{D.G} {BCE}

New
{ D’H} states
o]

Figure 3.16. Completion of new state creation.

several accessible states in figure 3.16 as halt states, and they got that way
through empty transitions to F. Hence F “lives on” in its presence in some
other states.

State B, to examine another one, survives in the composite state [B, C, E],

3 Finite State Machines 87

similarly, C and E. State D survives in the composite states [D, G] and [D, H].
So while they are gone, they have left their mark on the FSA.
The DFSA, with its inaccessible states removed, is shown in figure 3.17.

Exercise

1. Reduce the following NDFSA to a DFSA, and remove the inaccessible

states:
input token
8 |+ () = . €
S | A C
A |D D B
B |A B C E
C |D F A
D | E B
E | C F D F
Fx | B
(the = indicates a halt state).
Input symbols
b + - . d
S A A G B,C,E
A G B,C,E
G H
States @ H
D,G B,C,E

Figure 3.17. Inaccessible states removed.

88 Compiler Construction: Theory and Practice

3.3. Machine Equivalence

We have until now used the notion of machine equivalence without much
development. Two machines M and M’ are equivalent if they accept the same
language. That definition has sufficed thus far. We now develop the concept
of equivalence more formally, and will arrive at an an algorithm for reducing
the number of states in a finite-state automaton to the least possible. The
reduction method will also enable us to decide whether two seemingly
different finite-state machines are in fact equivalent. The general notion of
language acceptance is not practical, since we can seldom try all possible
strings on both machines and test their acceptances.

The reduction of a machine to the fewest possible states is obviously of
economic value. Among other things, it will reduce the task of designing
semantic actions for the machine to a minimum.

3.3.1. Definitions

We start by defining the k-equivalence between two states P in M and P’
in M/, where k is some integer, k=0 and M and M’ may be the same machine.

State P in M and state P’ in M’ are said to be k-equivalent if, for every
string x of length k or less, machine M in state P accepts x if and only if
machine M’ in state P’ accepts x.

If states P and P’ are not k-equivalent, then they are said to be
k-distinguishable; there is then some string x of length k or less, such that
either: (1) machine M in state P accepts x, but machine M’ in state P’ does not,
or (2) machine M’ in state P’accepts x, but machine M in state P does not.

Two states P and P’ are said to be equivalent if they are k-equivalent for all
k.

A machine M is said to be reduced if no state in its state set is inaccessible
and no two distinct states are equivalent.

A pair of equivalent states P and Q in a machine M may be merged by
changing the name “Q” to “P” everywhere, without affecting the language
recognlzed by the machine.

Let px Q denote k-equivalence of states P and Q i ina FSA M. Obv1ously
P £ P,and by the symmetry of the definition, if P = Q, then Q = X P. The
k-equivalence is an example of a relation, and any relation that satisfies these
two properties is said to be symmetric and reflextve.

The k-equivalence relation is also transitive: If P = Q and Q £ R, then P

“R.Itis easy to show that k-equivalence is transmve Let x be any string of
length k or less that is accepted instate P. Thenif P £ Q, it 1s also.accepted in
state Q. If Q £ R, it is also accepted by state R. Hence P £ R.

Any relation that is symmetric, reflexive, and transitive is called an

equivalence relation. A fundamental property of an equivalence relation, and

3 Finite State Machines 89

one that we shall exploit in reducing a FSA to its minimal form, is the
following:

An equivalence relation R upon a finite set of objects S partitions S into
disjoint subsets, such that any two members of any subset are equivalent to
each other, and no two members of different subsets are equivalent to each
other.

This assertion may be proven by first considering how a set S is divided
into subsets by an equivalence relation. Let the members of Sbe a,, a,, . . . ,a,.
Then we create a sequence of subsets S,, S,, . . . of S as follows. Each of S,, S,,
...is initially empty. S, is created by placing a, into it, then including a copy
of every other member of S that is equivalent to a,. Note that by symmetry
and transitivity, these must be equivalent to each other. When S, is
completed, there may or may not be some members of S-S, left over. Suppose
there are some members of S-S;; call these b,, b,, . .., b,. We then start a new
subset S, by placing b, in it, then adding all the members of S that are
equivalent to b,. The interesting question is whether there can be a state that
belongs to both S; and S,. Suppose there were; let it be called Q. Then by
transitivity and reflexivity, Q must be equivalent to a,, because it is in S,, and
also to b,, because it is in S,. But then by transitivity a, is equivalent to b,. We
are led to a contradiction, since b; was specifically one of the states left out of
set S; when we first collected together the states equivalent to a,. Hence set S,
and S, must be disjoint. A similar argument applies to sets S, S,, etc. '

Now suppose that we have somehow partitioned the state set of a FSA by
k-equivalence. What is the nature of the partition induced by (k+ 1)-equiva-
lence? The answer is that a (k+ 1)-equivalence is a refinement of a
k-equivalence. By refinement, we mean either that the partition of a
(k+ 1)-equivalence is exactly the same as that of a k-equivalence or that some
of the subsets in the k-equivalence have become further subdivided. The
boundaries between the subsets of a partition are not changed by a
refinement; rather, additional boundaries are introduced.

Refinement may be illustrated as follows. Suppose we have a set S of states
A, B, ...,], in a machine M, and they are partitioned as follows:

S ={A,D, I} {B,C} {E,F,G, H} {]}

Note that each state appears exactly once and belongs to exactly one subset. A
refinement of this partition might be the following example:

{A}{D,1} {B, C} {E, F} {G, H} {]}

When at least one subset of a partition is subdivided in a refinement, the
refinement is called proper. The above example is a proper refinement.
The following partition is NOT a refinement of the partition S:

{A,B,D} (I, C} (E,]} (G, H} {F)

90 Compiler Construction: Theory and Practice

Although there are more subsets, states I and C have become members of a
common subset, whereas in S they were in disjoint subsets.

We now prove our assertion: that a (k+ 1)-equivalence induces a refine-
ment on the partition induced by a k-equivalence. We need only show that a
pair of states P and Q that were disjoint in the k-equivalence partition S
remain disjoint in the (k+ 1)-equivalence partition S’.

To prove this assertion, recall that P and Q are disjoint in S because there
exists some string x of length k or less that distinguishes these two states. But
this string is also of length (k+1) or less, consequently P and Q must be
disjoint in §'.

3.3.2. Reduction

We are at last in a position to reduce a FSA to its minimal form in a
systematic manner. We need only these observations, which should be
evident from the preceding discussion:

1. The 0-equivalent partition of the state set of a machine M is {F},
{Q-F}. That is, the 0-equivalent partition consists of the halt states and the
non-halt states. These must be in separate partitions because the machine is in
either an accepting or a rejecting state, depending on which state it is in, for a
string of length 0.

2. As a partition is refined by identifying distinguishable states, eventually
there must be a (k+ 1)-equivalence partition which is exactly the same as the
k-equivalence partition. This reasoning follows because the state set is finite,
and there are therefore a limited number of times a boundary can be
introduced into a partition. For this k, the k-equivalent states must be
equivalent (with no string length restriction), since no further refinement is
possible. This partition is (k+ 1)-equivalent, (k +2)-equivalent, etc. There-
fore each subset of this partition is a set of equivalent states.

3. A partition is refined by noting whether two states in the same subset can
be distinguished by some single input token. For example, suppose P and Q
belong to the same subset in a k-equivalent partition, and we find (by
examining the state transitions), that P goes to P’ and Q goes to Q" on some
token “b”. If P’ and Q’ are in different partitions, then they are distinguish-
able; consequently P and Q must be distinguishable and belong in different
subsets in.the (k+ 1)-equivalent partition. The two states may also be
distinguished if one of them possesses a transition on some token, while the
other does not. A nonexistent transition on a state P and token “b” means that
the machine cannot scan string “b” in state P. If state Q has a transition on
token “b” while P does not, then P and Q are distinguishable and belong in
different subsets of the partition.

Summarizing, we begin with the two-fold partition of halt and non-halt
states. Then we induce refinements on these by looking for single tokens that
can distinguish two members of a subset. When no further refinements can be
made, the machine has been reduced to minimal form.

3 Finite State Machines 91

Example. Consider the DFSA whose state transition table is given in figure
3.18.

The initial partition, on halt and nonhalt states, is
{A,B,C,D} {E, F}

We now attempt to refine this partition by looking for tokens that can
distinguish pairs of states within either of the subsets.

Consider the pair (A,B). State B has a transition (to C) on “a”, but A does
not; hence these states belong in different subsets.

Next consider the pair (A,C). Again, C has a transition on “a”, but A does
not; hence, these belong in different subsets. Note that these conclusions do
not prove that B and C belong in different subsets; hence, we must also con-
sider pair (B, C). '

States B and C have transitions on each of the three tokens. On token “0”,
they both transfer to E, on token “1”, they both transfer to D, hence neither of
these tokens serves to distinguish them. On token “a”, state B goes to C and
state C goes to B. Since B and C are in the same partition, token “a” also fails
to distinguish them. We conclude that B and C belong in a common subset in
the next partition.

Next consider states A and D, both clearly distinguishable. Also, since D
has only one transition (on token “0”), it is distinguishable from B and C.
Hence D belongs in its own partition.

3 0 1 a
A B C

B E D C
C E D B
D F

® b
®

Figure 3.18. A machine to be reduced.

92 Compiler Construction: Theory and Practice

Finally, consider states E and F. State E has a transition on “1” not
possessed by F, hence this pair is distinguishable.
Our 1-equivalent partition therefore looks like this:

{A} {B, C} (D} {E} {F}

There is only one subset that is a potential candidate for a partition, the {B,
C} pair. A glance at the table shows that this partition cannot be refined.
Hence these two states must be equivalent. The reduced machine has five
states. State C may be renamed “B” wherever it appears. The reduced
machine is in figure 3.19.

Another Example. Consider the decimal number machine in figure 3.17. Its
initial partition is

(S, A, G} {H, BCE, DG, DH}

States S, A, and G are clearly distinguishable. Similarly, state BCE belongs in
its own partition. However, what about H, DG, and DH? They all transfer to
a common subset on token “d”, whether in this partition or the next one. The
final partition is then:

(S} {A} {G} {BCE} {H, DG, DH)}

and the triplet subset cannot be further partitioned. Hence the final machine
has five states, with two halt states, as shown in figure 3.20, which may be
compared with figure 3.1; these two machines are clearly isomorphic.

) 0 1 a
A B B

B E D B
D F

®
®

Figure 3.19. Machine of figure 3.18 reduced.

3 Finite State Machines 93

Figure 3.20. The machine of figure 3.12 made deterministic and reduced.

Summary

Recall that we asserted that the machine of figure 3.1 was equivalent to the
nondeterministic machine of figure 3.3. We have now demonstrated that
assertion, through the following machine transformation steps. These steps
provide a systematic way to construct a program to recognize an important
class of languages.

« Removal of empty move cycles (if any).

« Removal of empty moves.

« Removal of nondeterminism.

 Removal of inaccessible states.

« Reduction by identifying and merging equivalent states.

Since this process may be applied systematically to any FSA, and we have
assurance that it will always yield a machine with the minimum number of
states, it is possible to determine whether two different-appearing machines
are in fact equivalent. We merely reduce each of them by the above process,
then test them for isomorphism. We leave the matter of testing isomorphism
for an exercise.

94 Compiler Construction: Theory and Practice

Exercises

1. Reduce the following FSA:

state input
0 1

A B C
B E F
C A A
D F E
E D F
F D E

2. Show that if two states P and Q are k-distinguishable for k=0 then they
are (k+ 1)-distinguishable.

3. A machine M has n states. Give a bound for the largest k such that some
pair of states is (k — 1)-distinguishable but k-equivalent.

4. Develop an algorithm that tests two reduced machines M and M’ for
isomorphism.

5. Develop an algorithm that tests two nonreduced machines M and M’
for equivalence. Note: The obvious approach is to reduce each of them,
then apply the solution to exercise 4. Is there a more direct approach?

3.3.3. A Systematic Reduction Method

Several systematic tabular methods for machine reduction exist. We
describe one that can be programmed easily on any computer, called the pazrs
table method.

A pairs table contains a pair of states or a null at the intersection of each row
and column. Each column is associated with an input token. Each row is
associated with a feasible state-pair. The reduction consists of two algorithms,
one that builds a pairs table for the nonreduced deterministic FSA and one
that marks certain rows. At the conclusion of the second algorithm, each row
that is not marked is associated with a pair of equivalent states; each row that
is marked is associated with a pair of distinguishable (nonequivalent) states.
Furthermore, all the equivalent states appear as unmarked state-pairs in the
final table. '

A feasible state-pair is a pair of states that conceivably could be equivalent
upon a cursory examination of the FSA transition table. More precisely, a
state-pair (p,q) is 2 member of the feasible state-pair set if (1) {p, q} is a subset
of either F or Q-F, i.e., both are halt states or both are non-halt states, and 2
for every input token “a”, 8(p, a) is @ if and only if 8(q, a) is . '

3 Finite State Machines 95

By selecting only those state-pairs that satisfy these two conditions, we
eliminate from further consideration all those pairs of states that are
obviously distinguishable, e.g. (1) a halt state is distinguishable from a
non-halt state, and (2) a state with a transition on some symbol is
distinguishable from another without a transition on that symbol.

For example, consider figure 3.17. The state-pair (S, A) is not a feasible
state-pair, because S has a transition to A on token “+”, while A does not.
The state-pair (G, H) is not feasible because H is a halt state, while G is not.

Thus the set of feasible state-pairs for the machine of figure 3.17 consists of
the set:

{(H, DG), (H, DH), (DG, DH))

None of the other state-pairs are feasible. Since this machine is rather trivial
under the reduction algorithm, we choose a more interesting machine, given
in figure 3.21. For this machine, the set of feasible pairs includes all the
internal combinations of the sets: ' '

(1,3}, (2,5, 7}, {4}, and {6}

Input

) a b c
1 2 5
2 3 4 1
3 5 2

States @ 3 2 1
5 1 4 1
6 1 1
7 3 6 3

Figure 3.21. Another machine to be reduced.

96 Compiler Construction: Theory and Practice

Thus the feasible pairs are

{1,3},{2,5},{2,7}, {57}

States 4 and 6 do not appear in any feasible pairs, since they they are
distinguishable from all the other states.

We now describe the pairs table construction. Given a pair (p, q) associated
with a row, then the table entry for token “a” is the pair (p’, q'), where p’ =
&(p, a), and " = &(q, a). That is, we simply list the pair of states to which (p,
q) transfers on each of the input tokens. Note that by the feasible pair
selection process, only those states either possessing or not possessing such
transitions are in the pairs table; hence we will get either a new state-pair or a
null entry. Also, the machine is deterministic, which means that (p, a) and
(g, a) contain at most one state each.

The resulting pairs table for the machine in figure 3.21 is shown in figure
3.22(a).

A pair is unordered, e.g., the pair (2, 5) is equivalent to the pair (5, 2). To
facilitate the recognition of such equivalences, the members of each pair are
written in numeric order in figure 3.22. Thus the states (1, 3) actually transfer
to (5, 2) on token “b”; however, the state-pair (5, 2) is written (2, 5). By the
same reasoning, if a pair (2, 5) appears in the feasible state-pair list, we do not
include (5, 2).

(a) Unmarked Input
a b c
(1,3) (2,5) (2,5)
Feasible 5) (1,3) (4,4) 1,1)
state
pairs (2,7) (3,3) (4,6) 1,3)
(5,7) (1,3) (4,6) (1,3)
(b) Marked Input
' a b c
(1,3) (2,5) (2,5)
Feasible (2,5) (1,3) (4,4) (1,1
state
pairs v (2,7) (3,3) (4,6) 1,3)
v (5,7) (1,3) (4,6) (1,3)

Figure 3.22. Pairs table for machine of figure 3.21.

3 Finite State Machines 97

The next operation is marking those state-pairs that are distinguishable.
This is the marking rule: A state-pair in the set of feasible state-pairs is
marked if there exists a transition to a state-pair (p, q) such that (1) p and q are
different, and (2) (p, q) is either marked or not among the feasible state-pairs.

This operation is repeated until no more state-pairs can be marked. Thus in
figure 3.22, state-pair (1, 3) transfers to state-pair (2, 5) on both tokens “a”
and “b”; (2, 5) is in the feasible state-pair set and is unmarked, hence (1, 3)
is not marked.

Consider the pair (2, 5), the second row, which has transitions to pairs (1,
3), (4, 4),and (1, 1). The transitions to (4, 4) and (1, 1) do not call for marking,
nor does the transition to (1, 3), since (4, 4) and (1, 1) are singlet pairs, and (1,
3) is in the table, unmarked.

Pair (2, 7) is marked, however, since there is a transition to pair (4, 6), on
token “b”, and (4, 6) is not in the table. Similarly, pair (5, 7) is marked.

Repeating the operation on pairs (1, 3) and (2, 5), we find that they still are
not marked, since (2, 7) and (5, 7) are not among the state-pairs to which they
transfer. Hence we conclude that these two pairs remain unmarked, and are
therefore the equivalent state-pairs.

The pairs algorithm therefore indicates that the equivalent state-sets of the
machine in figure 3.21 are:

(1,3}, {2,5}, {4}, {6}, (7}
Exercises

1. Reduce the following FSA by the pairs table method:

state input

g O we
(oRoRes I Neslo B =
eslies sl dics W@ N Mo

2. Show that the members of each feasible state-pair are 1-equivalent.

3.4. Regular Grammars and FSA

Regular grammars and finite-state automata have a very close correspond-
ence. Given any FSA, a regular grammar may be constructed from it whose
language is identical to that of the FSA, and given any regular grammar, an
FSA may be constructed from it whose language is identical to that of the

98 Compiler Construction: Theory and Practice

grammar. We give the constructions for these assertions, with examples. The
proofs are elementary.

FSA from a Regular Grammar

Recall that a regular grammar G = (N, =, P, S) has productions in the set P
of the form

A — aB where B € N, and a € =
"A—> b where b € 3

Given a grammar G, we construct a NDFSA M = (Q, =, 8, g,, F) as
follows:

The states of M are associated with the nonterminals of G, except for one
additional state q' not in N. The halt-state set F is {q'}. The state q, is
associated with the start token S in G. Then for every production A — aB in
G, we add state B to the transition set 8(a, A). For every production A — b in
G, we add state q’ to the transition set 8(b, A).

Note that the alphabets of M and G are identical, and that M may be
nondeterministic.

For example, consider the simple grammar G,, with productions:

S— + N
S—- — N
S—>dN
S—>d
N-dN
N->d

The language of this grammar will be recognized as the signed dec1mal
numbers, where “d” is a decimal digit.

The machine M will contain the states {S, N, F}, where F is a new halt
state.

Then the transitions of M are defined by the following transition function:

8S, +) = N
5S, —) = N
S, d) = N
S, d) = F
5N, d) = N
3N, d) = F

The moves of M in recognizing a string x mimic the derivation of x in the
g 3 g . g 3 .
grammar. For example, consider the string “~-313”, or “~-ddd” as it appears in
the grammar. The moves are

3 Finite State Machines 99

S to N on “—7,
N to N on “d”,
N to N on “d”,
N to F on “d”.

The derivation is
S= —N= —dN= —ddN = —ddd
We leave a proof that L(G) = L(M) to the reader.

FSA to a Regular Grammar

Given a FSA M, a regular grammar G may be constructed from M, such
that L(M) = L(G), as follows. Let M be deterministic. Let G = (N, 2, P, S),
where N, the nonterminals, correspond to the machine states Q, the alphabets
of G and M are identical, S corresponds to the start state of the machine, and
the productions in P are constructed as follows:

. If §(A, a) = B, then include production A— aB in P.

. If (A, a) = B, where B is in the halt set F, then include production A —
ainP.

The resulting grammar is clearly regular. Again, machine M mimics a
derivation in G for some string x. We leave a proof that L(M) = L(G) to the
reader.

Exercises

1. Construct a regular grammar for the FSA of figure 3.21, for the reduced
FSA.

2. Construct an FSA for the regular grammar G, given below. Reduce it
and discuss the language L(G) informally.

A— OB | ID
B 0B | 1C| 1
C— lE| OD
D— 0D | IE | 1
E— IC| 0B

F— 0C|1G |0
G — 1E| OF | 1

3. Show that if a string x can be derived in a grammar G, then it is accepted
by the FSA M constructed as above. (Hint—show by induction on the
derivation length).

100 Compiler Construction: Theory and Practice

3.5. Regular Expressions and FSA

A regular expression is a compact way of representing a regular language.
In addition to string elements, a regular expression uses three basic
operations, concatenation, alternation, and closure. We have introduced each
of these operations previously, in a less formal manner.

3.5.1. Definitions

Concatenation is an associative, noncommutative binary operation. The
token for concatenation is juxtaposition, e.g., if E, and E, are two regular
expressions, then E, E, is the concatenation of the two. If E, and E, denote
the sets of strings S, and S,, respectively, then E,E, denotes the set

S={uv|ueS, andveS,}

Another way to express E,E, is: Choose any string “u” in the set denoted by
E;; choose any string “v” in the set denoted by E,; then the concatenated
string “uv” is in E,E,. Also, any string in E,E, can be divided into a “u”
prefix and a “v” suffix, where “u” is in the set denoted by E, and “v” in the set
derioted by E,.

Alternation is an associative, commutative binary operation, represented
by the symbol | or +. If E; and E, are two regular expressions, denoting the
sets of strings S, and S, then E, | E, is a regular expression denoting S, U S,,
the union of S, and S,. We have introduced alternation previously; it is
commonly used in the BNF representation of production rules.

Closure is a unary operation. If E is a regular expression denoting some set
of strings S, then {E} is a regular expression, called the closure of E, and
represents the set of all possible strings formed by choosing members of S and
concatenating them, together with the empty string e. Thus the closure {E} of
aregular expression E is a compact way of writing the infinitely large regular
expression

Closure may also be defined by the following set expression:
{E} = {xY|xeEand Ye{E} } U {¢}

This definition may appear circular, since the closure operation which is
being defined appears in its own definition. Therefore let us explore this
matter briefly. By the definition, the empty string € is in {E}, which means
that Y can be e within the definition and, by the first half of the union, all those
x’s in E are also in {E}. In other words, {E} contains E | e. Thus Y may
contain anything in E | € and, by the first half of the union, all those xY’s such
that x is in E are in {E}; therefore {E} contains EE | E | ¢, etc.

3 Finite State Machines 101

Closure may also be represented by the token * following the expression to
be closed, thus E* = {E}. If E consists of more than one token, it must be
enclosed in parentheses when this notation is used.

Recall that we earlier stated that =* represents the set of strings in the
alphabet =. This statement is clearly consistent with the definition of closure.

Parentheses may be used freely in regular expressions as needed to keep the
relative ordering of the operations clear. Closure is represented by a
parenthesis structure { } and does not require any precedence rule; it operates
on the expression contained therein. By convention, concatenation has a
higher precedence than alternation, therefore the regular expression

abjcde
is interpreted
(ab)|(cde)

Closure represented by * has a higher precedence than either concatenation
or alternation. Thus

a| bc*
is interpreted

@1 (bE*)

The elements of a regular expression are the tokens of an alphabet 2, the
empty token ¢, and the null set &. A null-set regular expression denotes an
empty set, containing neither € nor any strings. The regular expression ¢
denotes a string set containing only the empty string.

The symbols for alternation, closure, etc. are called metasymbols and cannot
be in the alphabet of the regular language. Of course, parentheses appear in
many common languages, so that any practical implementation must deal
with a potential conflict of metasymbols and the language alphabet. A choice
of metasymbols might be provided, or a special quote character might be used
to delimit alphabet symbols.

A Context-Free Grammar for Regular Expressions

The language of regular expressions is expressed by the following
context-free grammar G, = (N, 2, P, R), where

N={RGCLE2Z={+,6){},a},and
the production set P is
R—- R+ C (alternation)

R— C
C—-CL (concatenation)

102 Compiler Construction: Theory and Practice

C— L

L- (R) (parenthesizing)

L—> {R} (closure)

L— a (any token in the regular language)
L->e (empty string)

This grammar expresses the precedence of the operations, as well as the
structural rules for regular expression formation. In the following discussion,
we shall assume that any regular expression may be parsed and a derivation
tree created for it.

Examples of Regular Expressions
The regular expression
(+1=19d{d}

represents the set of (possibly) signed numbers, where d represents the set of
digits. This expression may be interpreted in English as follows:

E consists of a choice of “+,” “—,” or empty (¢) followed by a single digit,
followed by any number (including zero) of digits.

The regular expression

(+ | = [¢ (d{d}.{d}[{d}.d{d}) ((B(+ | — [©)d{d}))

represents a floating point number. To see this, let us divide the expression
into three parts as follows:

(+ | = | o@d{d}.{d}|{d}.d{d}) ((E(+ | — |o) d{d}))
I II I11

Then part I represents an optional sign. Part II is the mantissa. It must
contain a decimal point and at least one digit ahead or behind the decimal
point. Part ITI represents an optional exponent, signaled by an “E” followed
by an optional sign and at least one digit.

Note the use of precedence of concatenation over alternation in part II.

Exercises

1. Describe informally the languages of each of the following regular
expressions and give some examples of strings in each one:

(A + {B})ABB
00{01+10+11} + 11{01+ 1000}
(a+b){a+b+0}b

3 Finite State Machines 103

2. Construct a regular expression that represents:

(a) A sequence of 0’ and I’s such that the combination 11 appears
exactly once.

(b) Arithmetic expressions containing binary +, —, *, /, unary —, and
one level of parenthesis nesting.

{c) The set of Cobol identifiers, consisting of a sequence of letters, digits,
and underline (), starting with a letter.

3.5.2. Regular Expression Identities

Regular expressions satisfy a number of identities, which may be used to
reduce the complexity of a regular expression or to prove that two regular
expressions represent the same language. Unfortunately, there seems to be no
systematic procedure for transforming regular expressions into standard
forms, as in ordinary algebra or trigonometiy.

Let A, B, and C be regular expressions. Then the following identities hold:

M A+B=B+ A (commutivity of alternation)
2 (B} = ¢ (closure of an empty set is the null string)
By A+ B+C=@A+B)+C (associativity of
alternation)

4) AB C) = (A BC (associativity of concatenation)
5) AB+C) =AB + AC (distributivity of
_ concatenation over alternation)

6) Ae=€¢A =A (identity of concatenation)
7 2 E=EQ =0 (zero of concatenation)

® (E) = E + (E)

©) {{E}} = {E}
(10) E+ @ =E (identity of alternation)

Most of these follow directly from the corresponding properties of the string
sets represented by the regular expression. For example, the “+> operator
corresponds to a set union, which satisfies commutivity and associativity.
Similarly, concatenation can easily be shown to be associative.

Identity 2 follows immediately from the definition of closure— regardless
of what (if anything) is in a set E, {E} contains e.

Identity 8 follows immediately from the observation that every string in E
is also in {E}, hence the union of these two is exactly {E}.

104 Compiler Construction: Theory and Practice

Exercises

1. Show that the following are identities through use of the ten identities
listed previously.

E(E} = (EJEE

E(e + {(E)E) = (E)E

B(A + AA) = BAA + BA
{({A}B}} = {A + B}

2. Prove each of the ten identities through the use of the equivalent set
definitions.

3.5.3. Correspondence to FSA

We now demonstrate that, for every regular expression E denoting some
language L(E), there exists a FSA M such that L(M) = L(E). The
construction of the machine is particularly useful, since it is often more
convenient to represent a language as a regular expression than as a FSA. We
therefore need a systematic way to construct a recognizer for the language of a
regular expression.

The machine we construct will be nondeterministic, in general, but may be
reduced to a minimal deterministic machine by the methods of the previous
sections.

The basic idea of the transformation is simple. We conceive a FSA that
contains a start state S and one halt state F. Somehow, it recognizes a regular
expression E, as diagrammed in figure 3.23(a). The square box containing
“E” represents a set of states and transitions between states S and F.

Now suppose that E is the empty set &. Since & is an empty language,
which contains neither any string nor ¢, the only possible machine for & is the
isolated S and F states, figure 3.23(b). This machine refuses to accept any
string, including the empty string, since it can never reach the halt state.

Next suppose that E is the empty string . A recognizing machine for this
language is shown in figure 3.23(c), which permits one transition—an empty
move from S to F. This machine clearly exactly accepts the empty string. A
string of length > 0 is rejected, since there are no other moves from either S
or F.

If E is an alphabet token “a”, the machine of figure 3.23(d) exactly
recognizes a string consisting of that token.

Now we consider some more sophisticated machines. If E is a parenthe-
sized expression, E = (E’), a recognizer machine for E is clearly a recognizer
for E.

3 Finite State Machines 105

General
@ OS g '@ machine
(Null) Empty
& —) ©
€ _ Empty
(©) OS '@ string
a = ‘ Alphabet
(d) _’@ '@ symbol
(e) % E1 _—>®_> E2 __> Concatenation
C-E1E2
E1
() @ Alternation
E-E1|E2
E2
(8) Closure
E={F'}

Figure 3.23. Generation of a non-deterministic finite-state automaton from the
components of a regular expression.

106 Compiler Construction: Theory and Practice

- Consider the concatenation E of two expressions, E1 and E2. A recognizer
for E clearly must recognize E1, then E2, in that order. Such a machine is
shown in figure 3.23(e).

An alternation expression E = E, | E, is recognized exactly by the machine
of figure 3.23(f). Recall that the set of strings represented by E, | E, is the
union of the sets represented by E, and E,. Now let machine M, recognize E,
and M, recognize E,. Then consider a string x in E. The string x must be in
E, orinE, (it could belong to both, of course). If in E, , then the upper path of
figure 3.23(f) yields a recognition; if in E,, then the lower path of figure
3.23(f) yields a recognition. No strings other than those in the union of
L(M,) and L(M,) are in the composite machine; any string recognized by the
composite would have to be recognized in the upper or lower path, therefore
by either M, or M,.

Finally, a closure expression E = {E'} is recognized exactly by the
machine of figure 3.23(g). The empty moves are needed when these machine
segments are combined to form a complete recognizer for some regular
expression. Machine (g) clearly recognizes the empty string (two empty
moves, S to A, A to F), and one or more concatenations of the strings in E’.
Thus a string consisting of n members (n=0) of the regular expression E’may
be recognized by the empty move from S to A, n moves from A to itself
through the machine for E’, followed by the move from A to F.

Figure 3.23 essentially outlines the rules by which a complete machine for
an arbitrary regular expression may be built from its parts. The construction
operations are effectively guided by the derivation tree for the regular
expression, and may be done bottom-up or top-down. The top-down process
will be be illustrated for an example. Then a top-down procedure will be
given.

Consider the regular expression

E = (4] — |e)d{d}

which displays all the operations and tokens of regular expressions except the
2 set, which should never appear within a regular expression anyway. ‘

A simplified tree for this expression is given in figure 3.24. It is essentially
the derivation tree with the single productions and parenthesis nodes
removed.

Atthe root level, E consists of a concatenation of two pieces, which we shall
call E, and E,:

E = E E,

where E; = (+ | — |¢) and E, = d{d}. Thus the first machine looks like
figure 3.25(a). We have introduced a new intermediate state, A.

The transition from S to A is an alternation of + with (— | €), as shown in
figure 3.24. The single transition is therefore split into two, one for “+”, the
other for “(— | €)”. The latter in turn splits into one for “— > and one for “¢”.

3 Finite State Machines 107

Root

@ Concatenation (binary)

@ Alternation (binary)

@ Closure (unary)

Expression: (+|-|e)d{d}
Figure 3.24. The regular expression “'(+|—| €)d{d}" as a tree.

The resulting machine is shown in figure 3.25(b).

Turning to the machine between states A and F, we see that it is another
concatenation, of “d” with “{d}”. The machine of figure 3.25(c) is the result,
containing another new state, B.

The last machine is between states B and F and is a closure machine. The
final NDFSA for the regular expression is therefore shown in figure 3.25(d).
As it turns out, neither of the e-moves between states B and F are necessary in
this machine; however, there is no harm in keeping them, since they will be
eliminated and the machine reduced to minimal form by the methods
previously described.

We now give a recursive procedure FSM(EXPR, P, Q), which, when given
a regular expression EXPR, an initial state P = S, and a final state Q = F,
yields a set of states and a transition function for a machine (nondeterministic
in general) whose language is that of the regular expression. The final
machine has one halt state, F.

We use a Pascal-like notation for the procedure. The operator “=" is an
equality comparison; operator “:="" means the left side’s value is replaced by
the value of the right-side expression. Lowercase words represent keywords,
and uppercase words represent variables and arguments. The “U” is the set
union operation. A comment starts with { and ends with }. The vari-
able 8 represents the tabular representation of the transition function.
Thus

108 Compiler Construction: Theory and Practice

SING MUELI did -®

(b) e“ did} @

Figure 3.25. Development of a finite-state automaton from the regular expression
“(+[=led{d}.

(R, A):= 8(R, A) U {Q}

means that state Q is added to the set §(R,A).

procedure FSM(EXPR, P, Q);

begin

if EXPR = @ then return;

if EXPR = ¢ then

begin
8P, ¢ := 8P, ¢ U {Q};
return;

end;

if EXPR = a ¢ Z, then

begin
5P, 3) := 8P, 8) U {Q};
return;

end;

if EXPR = (X) then

begin

call FSM(X, P, Q);

3 Finite State Machines 109

return;

end;

if EXPR = X Y then {concatenation}
begin

create a new state A;

call FSM(X, P, A);

call FSM(Y, A, Q)

return;

end;

if EXPR = X | Y then {alternation}
begin

call FSM(X, P, Q);

call FSM(Y, P, Q);

return;

if EXPR = {X} then {closure}
begin

create a new state A;

call FSM(e, P, A);

call FSM(X, A, A);

call FSM(e, A, Q);

return;
end;
end;
Example. LetEXPR = (+ | — | ¢)d{d}. Then we call FSM(EXPR, S, F). S

will be the start state and F the (only) halt state of the final machine for
EXPR. The following is a trace of the calls of FSM, the actions taken, and the
returns. The periods “. . .” indicate the depth of nesting in the recursive calls.

call FSM((+ | — | 9d{d}’ S, F);

. create a new state: R;

.call FSM(‘(+ | — | €5 S, Ry);
.call FSM(‘“+ | — | €, S, R});

. call FSM(‘+’, S, R));

R

S, +) 1= &S, +) U (R}
. return;

call FSM(‘= | ¢, S, R,)

. call FSM(‘=, S, R));

LB,) = 88) U {Ry);

. . return;

110 Compiler Construction: Theory and Practice

.. .. call FSM(¢, S, R));
..... 8, € := 86, ¢ U {R;};
.. .. return;
. return;
. return;
. return;
. call FSM(‘d{d}’, R,, F);
. create a new state: R,;
. call FSM(‘d’, R, R,);
.o R, d) i= 8RRy, d) U {R,);
. . return;
. call FSM(*{d}’, R,, F);
. create a new state: Rj;
. call FSM(‘¢, R,, R;);
v 0Ry,) 1= B8R,y € U {R3);
. return;
. call FSM(‘d, R,, R;);
oo B(R,, di=8(Ry, d) U {Ry)5
. . return;
. call FSM(¢, R,, F);
... 0R, €)= 8(R,y, €0 U {F);
. return;
. return;
. return;
. return;

The result of this FSM call is the transition function shown graphically in
figure 3.25(d).

Exercises
1. Show that the regular expression
(+] — | 9 (d(d) | d{d).{d) | {d}.d{d})
yields the FSA of figure 3.3.

2. Add an exponent part to the expression of the previous expression,
develop its FSA and reduce it.

3. Define data structures for procedure FSM in Pascal and develop a
complete program around it. Assume that a reduced tree structure for
the regular expression is available, similar to that in figure 3.24. (The
next chapters deal with the problem of parsing a regular expression and
generating a reduiced tree from the parse).

3 Finite State Machines 111

3.5.4. Regular Expression of a Reguiar Grammar

We first observe that a given regular language has many representations in
regular expressions, and that it is not easy to reduce a given regular
expression to some minimal form. The method given below always yields a
valid regular expression, but it may be larger than another one that also
represents the same language. We know of no systematic reduction process
for regular expressions similar to those useful in ordinary algebra.

We first introduce the concept of a regular expression equation, which
contains regular expressions and variables X[1], X[2], etc., that stand for
some unknown regular expression. These resemble linear equations and are
written in standard form as follows:

X[1] = a[1,0] + a[1,1] X[1] + a[1,2] X[2] + ... + a[L,n] X[n]

X[2] = a[2,0] + a[2,1] X[1] + a[2:2] X[2] + ... -+ a[2,n] X[n]

X[n] = a[n,0] + a[n,1] X[1] + a[n,2] X[2] + ...+ a[n,n] X[n]

Each of the coefficients a[i,j] is a regular expression in general, but contains no
variables.

Note that a set of productions in a regular grammar may be represented asa
set of regular expression equations. For example, the regular grammar

S — 0A
S - 1B
S—- 0
S—> 1
A — 0S
A - 1B
A—> 1
B — 0A
B — 1S

B— ¢

may be written as a set of three regular expression equations in the three
unknowns, S, A, and B, as follows:

S = (0+1) +0A + 1B G.1)
A=1+0S+ 1B (32)
B=c+ 1S+ 0A (33)

Thus, the first four productions are equivalent to

112 Compiler Construction: Theory and Practice

S—0A[1B|0]1

which may be written, using “+” for the alternation “|” and “=" for “~”,
as:

S =0+1+0A+1B

We then observe that if it is somehow possible to solve a system of
equations for the variable S, the solution being a regular expression in the
alphabet, we will have a regular expression representing the language of the
underlying grammar.

We first need a solution for the equation

S=aS+b (3.4)

where “a” and “b” are regular expressions in the alphabet and possibly in the
other variables. Note that any regular expression equation in any variable S
may be written in this form.

A solution for this equation is

S = {a}b

[73%2)
a

or S = a* b, using the alternate notation.

To prove this, consider the substitution of {a}b for S in equation (3.4):

{a}b =a{a}b + b (3.5)
Factor the right side, yielding

{a}b = (a{a} + &b

Now {a} = a{a} + ¢, since ¢ is in both sides, “a” is in both sides, and any
string in {a}, other than “a” or ¢, is in {a} and in a{a}. Hence Eq. (3.5) is an
identity, and {a}b is a solution of Eq. (3.4).

We will not show that {a}b is in some sense a complete solution of Eg.
(34). Now there are solutions to (3.4) that are not in {a}b, if “a” contains the
empty string. Indeed, {a}(b+-c) is a solution to (3.4), where c represents any
set of strings whatsoever, if “a” contains the empty string. However, it turns
out that {a}b, called the minimal fixed point of Eq. (3.4), is sufficient to
generate an equivalent regular expression.

Now we can solve a general system of equations for the start token S. We
illustrate the method using Eqgs. (3.1) to (3.3) given above. The general
method should be clear from this example; a more rigorous treatment is given
in Aho[1972].

We start with some equation other than the S equation, for example, the B
equation, Eq. (3.3). If this had the form

B=aB+b

3 Finite State Machines 113

we would first transform it into the equation
B = {a}b

which eliminates B from the right-hand side. Since the right side of (3.3) does
not contain B, this step is unnecessary.

The regular expression obtained for B, which is just Eq. (3.3), may now be
substituted into the other equations. The resulting equations are then free of
variable B. The result of this substitution in the set (3.1) and (3.2) is

A=1+0S + I(e +1S + 0A)
=1+ (0 + 11)S + 10A (3.5)
S=(0+ 1)+ 0A + 1(c + 1S + 0A)

=0+ 1)+ (0 + 10)A + 118 (39)

We have made use of some of the identities in the second step in each case.
For example, in the A equation,

1 4+ 0S + 1(e+1S+0A) = 1 + 0S + le + 11S + 10A

=14+1+0S+11S+10A=1+(0 + 11)S + 10A

in Eq. (3.5).
We next rewrite Eq. (3.5) in the form A = aA + b:
A=10A+ (1 + (0 + 11)S) 3.7
which has the minimal fixed point solution:
A = {10}(1 + (0 + 11)S) (3.8)

Substituting this solution into the remaining S equation yields:
S = (0+1+(0+10){10}1) + ((0+10){10}(0+11)+11)S (3.9)
after some rearrangement and factoring. It has the fixed-point solution

S = {(0+10){10}(0+11)+ 11}(0+14+(0+10)(10}1) ~ (3.10)

which should be a regular expression equivalent to the original regular
grammar given above. As a check, it would be wise to construct an automaton
from Eq. (3.10), reduce it, and verify that its regular grammar agrees with the
original grammar. It is clearly not obvious that Eq. (3.10) reflects our
grammar, nor is it clear whether a shorter expression can be found for S.
Different expressions result, depending on which variables are eliminated
first, and it may pay to do the reduction in different ways to see if a shorter
expression can be obtained.

114 Compiler Construction: Theory and Practice

Exercises

1. Transform the FSA of figure 3.25(d) into a regular grammar, then into a
regular expression. Can you show that the result is equivalent to (+ | —
| €)d{d}? (Note: Empty moves must be removed first.)

2. Solve the following set of regular expression equations:

A= ({0}+DA + B
‘B =11 + 0A + 11C
C=¢+ A

3. Show that {a}(b+-c)isasolution of S = aS-b if “a” contains ¢, and “c”
is any string whatever.

3.6. FSA Representations

A deterministic FSA may be embedded in a computer program in either of
two ways—as a set of tables which are interpreted by a general purpose
program, or as a specially constructed program that represents the machine.
The table approach is usually superior to the program approach for large
automata in memory and in reliability. The table interpreter need be written
only once for any machine whatever, and usually a machine table requires less
storage space than the equivalent program instructions. However, interpre-
tation of a table demands more running time. Therefore, if minimal run-time
without regard to storage space is wanted, a program approach is better. If
minimal storage space is wanted, then the table approach is better.

Interpreted Tables

A FSA table is based on its transition table. Usually, semantic actions on
certain transitions are also needed, hence each transition should carry an
additional table entry that specifies a semantic action.

FSA tables are generally sparse. By this we mean that most of the table
entries are empty. For a large machine, over 90 percent of the table may
consist of empty entries. We therefore have an opportunity to construct a set
of tables that specify only the useful entries, omitting the empty entries. We
now describe how this might be done.

3.6.1. Sparse Array Tables

The fundamental idea of a sparse array table system is rather simple,
although the implementation looks complicated. We collect all the non-

3 Finite State Machines 115

NULL table entries together in order into one linear array, called VALUEA.
Let its size be T; this is the total number of non-NULL entries in the original
table. Then we create another array of size T. It carries one of the index
values associated with the values in VALUEA, say the J indices. Call this
array INDEX]J. Now suppose the value V (non-NULL) is in the original
array at position (I,]), and shows up in the VALUEA array at index K. Then
INDEX]J(K) =].

We now need a guide to the I index values in VALUEA and INDEX], and
it is provided by two other smaller arrays, INDEXT and NUMBEROF].
Given an index I, INDEXI(I) is the VALUEA and INDEX] index of the list
found in row I of the original matrix. NUMBEROF](I) is the number of
values in that list.

For example, consider the following matrix A(L]J):

T 112345
|

DN = |
(SN
~J

10

We first list its values in the array VALUEA, working left-to-right then
down:

VALUEA

15
9
3
7
5

10

Next, we add the associated INDEX] values:

O\Ul»hu)l\)v—-w

VALUEA INDEX]

15
9
3
7
5

10

BN U1~ S W

116 Compiler Construction: Theory and Practice

The last tables are INDEXI and NUMBEROF], as follows:

I | INDEXI | NUMBEROF]
1] 1 | 2
2 | 3 | 2
3 |5 | 1
4 | 6 |1

Then, to find A(2, 5), we enter INDEXI(2) and NUMBEROF](2),
yielding 3 and 2, respectively. Then enter INDEX](3) and search the list for
at most 2 items; these are 1 and 5. Since 5 matches J in A(J,]), the associated
VALUEA is 7, which is A(2, 5).

The algorithm is expressed by the following Pascal procedure, that returns
the value A(l, J), given the array declarations described above:

function A(l, J: integer): integer;
begin
var K: integer;

it NUMBEROFJ(I)=0 then A:=0 ({indicates empty}
else
begin
for K:=INDEXI(I) until
INDEX(I)+ NUMBEROF]J(I) do
begin
if J=INDEX]J(K) then
begin
A:=VALUEA(K);
return
end
end;
A:=0
end
end

Suppose an array A has the dimensions (M, N), and it contains T useful
(nonempty) elements. Then a two-dimensional array would require M X N
entries, while the reduced sparse matrix system defined above would contain
2(M+T) entries. There is a considerable saving in storage space with the
sparse scheme for large M and N, and T much smaller than M X N. For
example, if M=20, N=100, and T=20, then MXN = 2000, while
2(M + T) = 80, a reduction in table size of 25 to 1. Furthermore, the
NUMBEROFT array usually consists of fairly small numbers, which may
possibly be compacted in memory as bytes, which the direct storage of an
array A requires M X N units of whatever storage is required for the A values.

3 Finite State Machines 117

Clearly, either of the dimensions in A(J, J) may be chosen for the INDEXI
table. The sizes of the INDEX] and VALUEA tables are not affected by the
choice, but the INDEXI and NUMBEROF] tables are. The index (I or])
with the least cardinality should therefore be selected for the INDEXI and
NUMBEROFT table index.

3.6.2. Table Reductions

The NUMBEROF] table is often unnecessary. If INDEXI is arranged in
monotonic increasing order, we may infer the NUMBEROF] value from
two consecutive INDEXI values. That is,

NUMBEROF](I) = INDEXI(I+1) — INDEXI(I)

which is valid for all but the largest I. We therefore need one more entry in
INDEXI, for index 5, and the NUMBEROF] table may be dispensed with.
The resulting INDEXI table from the previous example then looks like this:

I | INDEXI
1] 1
2 |3
3 | 5
4 | 6
5 | 7

The INDEX] list may also be arranged in monotonic increasing order.
The storage space required for it may be reduced appreciably in one of two
ways. Suppose the smallest unit of storage is an element whose maximum
value is V. Then the state table may be listed as actual states, until the state
number exceeds V. At that point, all of the subsequent numbers are reduced
by V, and started over. A special marker is needed to indicate the “breaks” in
the table, and the table search algorithm must be organized to reflect this
change.

Another way to reduce the INDEX] list is to record only the positive
increments from one state to the next. Except for the first state, which could
be a fairly large number, most of the subsequent states are likely to be small
numbers. This plan breaks down if the table contains a few large increments.

3.6.3. Sparse Array Representation of a FSA

A FSA is clearly expressed by its transition function, which is just a
two-dimensional array, 8(p, a). Following the guidelines given above, we
should choose the least dimension. Usually the token set is smaller than the
state set, particularly if letters can be lumped together into one token and
numbers can be lumped together into one token, for transition purposes.

118 Compiler Construction: Theory and Practice

Then the total number of tokens may be a few dozen at most. The number of
states can be much larger, and depends on the complexity of the machine’s
language.

We also need some way to indicate semantic actions and whether the
machine may halt in a given state. We are therefore led to the following set of
tables for a general FSA:

READX, size = number of tokens. For a token I, READX(I) is an index
into the STATE table.

STATE, size = number of transitions. Let K =READX(I), for an input
token I, and N=(READX(I + 1)— READX(I)). Then the list STATE(K),
STATE(K+1),. .., STATE(K+N—