μ PD70008/A 8-BIT CMOS MICROPROCESSORS

Description

The μ PD70008 and μ PD70008A are power saving, high performance, general purpose 8-bit microprocessor. It is a CMOS-process part with a standby mode that greatly reduces power consumption.

Features

High performance μ PD780 instruction setInstruction cycle:$1 \mu \mathrm{~s}$ at $4 \mathrm{MHz}(\mu \mathrm{PD} 70008, \mu \mathrm{PD} 70008 \mathrm{~A}-4)$
$0.66 \mu \mathrm{~S}$ at $6 \mathrm{MHz}(\mu \mathrm{PD} 70008 \mathrm{~A}-6)$Direct addressing of up to 64 K bytes of memory
Memory refresh functionInterrupt functions:

- Maskable external interrupt (INT)
- Nonmaskable external interrupt (NMI)
\square Low-power standby mode (HALT)CMOS standby mode (HALT)
Single power supply

Ordering Information

Part Number	Package Type	Max Frequency of Operation
μ PD70008C	40 -pin plastic DIP	4 MHz
μ PD70008AC-4	40 -pin plastic DIP	4 MHz
μ PD70008AC- 6	40 -pin plastic DIP	6 MHz
μ PD70008AG-4	44 -pin plastic miniflat	4 MHz
μ PD70008AG- 6	44 -pin plastic miniflat	6 MHz
μ PD70008AL- 6	44 -pin PLCC	6 MHz

Absolute Maximum Ratings

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Power supply voltage, V_{DD}	-0.3 V to +7 V
Input voltage, V_{IN}	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Output voltage, V_{0}	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating temperature, $\mathrm{T}_{\mathrm{OPT}}$	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
μ PD70008	$-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mu \mathrm{PD} 70008 \mathrm{~A}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of the specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin Configurations

40-Pin Plastic DIP

44-Pin Plastic Miniflat

Pin Identification

40-Pin Plastic DIP

No.	Symbol	Function
1-5	$\mathrm{A}_{11}-\mathrm{A}_{15}$	Address bus, high bits, outputs
6	CLK	Clock input
7-10	$\mathrm{D}_{3}-\mathrm{D}_{6}$	Data bus, bits 3-6, inputs / outputs
11	$\mathrm{V}_{\text {DD }}$	Power supply
12	D_{2}	Datra bus, bit 2, input/output
13	D_{7}	Data bus, bit 7, input / output
14, 15	$\mathrm{D}_{0}, \mathrm{D}_{1}$	Data bus, bits 0, 1 , inputs/outputs
16	$\overline{\mathrm{NT}}$	Interrupt input
17	NM1	Nonmaskable interrupt input
18	HALT	Halt / standby mode output
19	$\overline{\text { MREO }}$	Memory request output
20	$\overline{\text { ORQ }}$	$1 / 0$ request output
21	$\overline{\mathrm{RD}}$	Read strobe output
22	\bar{W}	Write strobe output
23	BUSAK	Bus acknowledge output
24	WAIT	Wait input
25	$\overline{\text { BUSRQ }}$	Bus request input
26	RESET	Reset input
27	$\overline{\mathrm{M1}}$	Machine cycle 1 output
28	$\overline{\text { RFSH }}$	Refresh request output
29	GND	Ground
30-40	$\mathrm{A}_{0}-\mathrm{A}_{10}$	Address bus, low bits, outputs

Pin Functions

$\mathrm{A}_{15}-\mathrm{A}_{0}$ (Address Bus)

These three-state output pins form a 16 -bit address bus for addressing memory or peripheral devices. The address bus enters the high impedance state when bus acknowledge is active. In the standby mode, these pins output high- or low-level signals.

$D_{7}-D_{0}$ (Data Bus)

These three-state pins form an 8 -bit bidirectional data bus. On this bus data is transferred between the μ PD70008/A and memory or peripheral devices. This bus enters the high impedance state when bus acknowledge is active. In the standby mode, these pins are high-level.

$\overline{\text { INT }}$ (Interrupt)

This pin is an active-low interrupt input which can be masked by software. $\overline{\mathrm{NMI}}$ has a lower priority than $\overline{\mathrm{NMI}}$ and $\overline{B U S R Q}$. INT releases the standby mode.

44-Pin Plastic Miniflat

No.	Symbol	Function
40-44	$\mathrm{A}_{11}-\mathrm{A}_{15}$	Address bus, high bits, outputs
1	CLK	Clock input
2-5	$\mathrm{D}_{3}-\mathrm{D}_{6}$	Data bus, bits 3-6, inputs /outputs
6	$V_{D D}$	Power supply
7	D_{2}	Datra bus, bit 2, input / output
8	D_{7}	Data bus, bit 7, input / output
9-10	$\mathrm{D}_{0}, \mathrm{D}_{1}$	Data bus, bits 0,1 , inputs / outputs
12	INT	Interrupt input
13	$\overline{\mathrm{NMI}}$	Nonmaskable interrupt input
14	$\overline{\text { HALT }}$	Halt / standby mode output
15	MREQ	Memory request output
16	$\overline{\text { IORO }}$	/ / 0 request output
18	$\overline{\mathrm{RD}}$	Read strobe output
19	\bar{W}	Write strobe output
20	BUSAK	Bus acknowledge output
21	WAIT	Wait input
22	$\overline{\text { BUSROQ }}$	Bus request input
23	$\overline{\text { RESET }}$	Reset input
24	M1	Machine cycle 1 output
25	$\overline{\text { RFSH }}$	Refresh request output
26	GND	Ground
28-32, 34-38	$\mathrm{A}_{0}-\mathrm{A}_{10}$	Address bus, low bits, outputs
17	IC	Internally connected
11, 33, 39	NC	Not connected

$\overline{\mathrm{NMI}}$ (Nonmaskable Interrupt)

This pin inputs an interrupt which is not maskable by software. $\overline{\mathrm{NMI}}$ is active-low in the μ PD70008, and is falling edge triggered in the μ PD70008A. $\overline{\text { NMI }}$ has a higher priority than $\overline{\mathrm{NT}}$, but a lower priority than $\overline{\mathrm{BUSRQ}}$ and RESET. NMI releases the standby mode.

$\overline{\text { MREQ }}$ (Memory Request)

This three-state pin is an active-low output. The μ PD70008/A asserts MREQ to indicate that the information on the address bus is a memory address. This pin enters the high impedance state when bus acknowledge is active. MREQ is inactive (high) in the standby mode.

Pin Functions (cont)

$\overline{\text { IORQ (IIO Request) }}$

This three-state pin is an active-low output. The μ PD70008/A asserts IORQ to indicate that the information on the address bus is a peripheral device address. IORQ is also asserted during a maskable interrupt service to request the interrupting device to output its interrupt vector to the data bus. This pin enters the high impedance state when bus acknowledge is active. $\overline{\text { IORQ }}$ is inactive (high) in the standby mode.

$\overline{\mathbf{R D}}$ (Read Strobe)

This three-state active-low output provides a read strobe for the memory and peripheral devices. The pin enters the high impedance state when the bus acknowledge is active. $\overline{\mathrm{RD}}$ is inactive (high) in the standby mode.

$\overline{\text { WR }}$ (Write Strobe)

This three-state active-low output provides a write strobe for the memory and peripheral devices. This pin enters the high impedance state when bus acknowledge is active. $\bar{W} \bar{R}$ is inactive (high) in the standby mode.

$\overline{B U S R Q}$ (Bus Request)

This is an active-low input. Peripheral devices assert $\overline{B U S R Q}$ to request the μ PD70008/A to release control of the address bus ($\left.A_{15}-A_{0}\right)$, data bus ($\mathrm{D}_{7}-\mathrm{D}_{0}$) and control bus ($\overline{\mathrm{MREQ}}, \overline{\mathrm{IORQ}}, \overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$) and assert bus acknowledge. $\overline{B U S R Q}$ has a higher priority than either $\overline{I N T}$ or $\overline{\mathrm{NMI}}$, but is lower in priority than RESET. $\overline{\mathrm{BUSRQ}}$ will temporarily suspend the standby mode. The μ PD70008/ A leaves standby mode when $\overline{B U S R Q}$ is asserted, but returns to the standby mode when $\overline{B U S R} \bar{Q}$ is released.

$\overline{B U S A K}$ (Bus Acknowledge)

This active-low output indicates that the data bus ($\mathrm{D}_{7}-\mathrm{D}_{0}$), address bus ($\mathrm{A}_{15}-\mathrm{A}_{0}$), and control bus (MREQ, IORQ, $\overline{R D}$ and $\overline{W R}$) have entered the high impedance state. This releases the buses from CPU control and makes them available to the peripheral devices for data exchange. This state cannot be released by $\overline{\mathrm{NM}}$ or $\overline{\mathrm{NT}}$, but responds only to $\overline{\operatorname{RESET}}$ or the release of $\overline{\mathrm{BUSRQ}}$.

$\overline{\text { HALT }}$ (Halt/Standby Mode)

This active-low output is asserted after the halt command has been executed and indicates that the μ PD70008/A has entered the standby mode.

WAIT (Wait)

This pin is an active-low input. Memory and peripheral devices assert this signal to increase read or write access time. When WAIT is asserted, the μ PD70008/A inserts wait states (TW) into the machine cycle until WAIT is released.

$\overline{\text { RESET }}$ (Reset)

This active-low input is used to reset the μ PD70008/A. The standby mode is released on Reset. Reset has the highest priority.

$$
\overline{\mathrm{NTT}}<\overline{\mathrm{NMI}}<\overline{\mathrm{BUSRQ}}<\overline{\mathrm{RESET}}
$$

$\overline{\text { RFSH }}$ (Refresh Request)

This pin is an active-low output. The μ PD70008/A asserts RFSH to trigger the external memory refresh operation. When RFSH is low, the lower seven bits of the address bus ($A_{6}-A_{0}$) are a refresh address. This pin is inactive (high) in the standby mode.

$\overline{\text { M1 (Machine Cycle 1) }}$

This pin is an active-low output. When $\overline{\mathrm{M} 1}$ is asserted, it indicates that the μ PD70008/A is in the opcode fetch cycle, $\overline{\mathrm{M} 1}$.

CLK (Clock)

This pin is the system clock input.

$V_{D D}$ (Power Supply)

This pin is the +5 V power supply input.

GND (Ground)

This pin is the ground pin.

Block Dlagram

DC Characteristics

μ PD70008: $\mathrm{T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mu \mathrm{PD} 70008 \mathrm{~A}: \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$,
$V_{D D}=+5 \mathrm{~V} \pm 10 \%$

Parametor	Symbol	Limits		Unit	$\begin{gathered} \text { Tost } \\ \text { Conditions } \end{gathered}$
		Min Typ	Max		
Input voltage high	V_{HH}	2.2	$V_{D D}$	V	$\begin{aligned} & \text { Except CLK, } \\ & \frac{\text { RESET }}{} \\ & \hline \text {. } \end{aligned}$
	$\overline{V_{H 2}}$	$V_{D D}-0.6$	$\mathrm{V}_{\mathrm{DE}}+0.3$	V	CLK, $\overline{\text { RESET }}$
Input voltage low	$\mathrm{V}_{\text {IL1 }}$	-0.3	0.8	V	$\begin{aligned} & \text { Except CLK, } \\ & \frac{\text { RESET }}{} \end{aligned}$
	$V_{\text {IL2 }}$	-0.3	0.45	V	CLK, $\overline{\text { RESET }}$
Output voltage high	V_{OH}	2.4		V	$\mathrm{I}_{\text {OH }}=-400 \mu \mathrm{~A}$
Output voltage low	$\mathrm{V}_{0 \mathrm{~L}}$		0.4	V	$\mathrm{I}_{0 \mathrm{~L}}=2.5 \mathrm{~mA}$
Input leakage current high	${ }^{\text {LIIH }}$		10	$\mu \mathrm{A}$	$V_{l}=V_{D D}$
Input leakage current low	ILLL		-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$
Output leakage current high	\% LOH		10	$\mu \mathrm{A}$	$V_{0}=V_{D D}$
Output leakage current low	LoL		-10	$\mu \mathrm{A}$	$\mathrm{V}_{0}=0 \mathrm{~V}$

Paramoter	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Supply current (Note 1) μ PD70008						
	ID01		10	30	mA	$\mathrm{t}_{\text {CYK }}=0.25 \mu \mathrm{~S}$
	$\mathrm{I}_{\mathrm{D} 2}$		500		$\mu \mathrm{A}$	$\mathrm{t}_{\mathrm{CYK}}=0.25 \mu \mathrm{~s}$
μ PD70008A-4	ID01		9	20	mA	${ }^{\text {CrYK }}=0.25 \mu \mathrm{~S}$
	${ }^{1002}$		80	240	$\mu \mathrm{A}$	$\mathrm{t}_{\text {CYK }}=0.25 \mu \mathrm{~s}$
- PD70008A-6	IDD1		14	30	mA	${ }_{\text {t }}^{\text {CYK }}$ = $=0.165 \mu \mathrm{~s}$
	$\mathrm{I}_{\mathrm{DD} 2}$		120	360	$\mu \mathrm{A}$	${ }_{\text {C }}^{\text {CYK }}$ = $=0.165 \mu \mathrm{~S}$

Note:

(1) I_{DD} is normal operating current.
$\mathrm{l}_{\mathrm{DD} 2}$ is standby mode current.

Capacitance
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{MHz}$

		Limits				Test Conditions
Parameter	Symbol	Min	TyP	Max	Unit	
CLK input capacitance	C_{K}		35	pF	(Note 1)	
Input capacitance	C_{l}		5	pF	(Note 1)	
Output capacitance	C_{0}		10	pF	(Nate 1)	
I/0 capacitance C_{10}		10	pF	(Note 1)		

AC Test Points

Note:

(1) All unmeasured pins returned to 0 V .

AC Characteristics

$\mu \mathrm{PD} 70008: \mathrm{T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mu \mathrm{PD} 70008 \mathrm{~A}: \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

Signal	Parametor	Symbol	Limits				Unit	Test Conditions
			μ PD70008/A-4		μ PD70008A.6			
			Min	Max	Min	Max		
CLK	Clock period	${ }_{\text {t }}^{\text {CYK }}$	0.25	(Note 1)	0.165	(Note 8)	$\mu \mathrm{S}$	
	Clock pulse width high	${ }_{\text {t }}^{\text {KKH }}$	0.11	200	0.065	200	$\mu \mathrm{S}$	
	Clock pulse width low	$\mathrm{t}_{\text {KKL }}$	110	2000	65	2000	ns	
	Clock pulse rise and tall time	$\mathrm{t}_{\text {KR }}$: $\mathrm{KFF}^{\text {I }}$		30		20	ns	
$\overline{A_{15}-A_{0}}$	Address output delay	${ }_{\text {t }}{ }_{\text {KKA }}$		110		90	ns	$C_{L}=100 \mathrm{pF}$
	Address delay to fioat	$\mathrm{t}_{\text {FKA }}$		90		80	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	Address stable prior to $\overline{\mathrm{MRE}}$. memory cycle	tsam $^{\text {S }}$	(Note 2)		(Note 9)		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	Address stable prior to $\overline{\text { QRQ }}$ in I/ 0 cycle	${ }^{\text {t }}$ S ${ }^{\text {I }}$	${ }_{\text {t }}^{\text {CYK }}$-70		(Note 10)		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	Address stable from $\overline{\mathrm{RD}}, \overline{\mathrm{Wh}}$, IORQ, MREQ	thra	(Note 3)		(Nate 11)		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	$\overline{\text { Addrass stable from }} \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ during float	$\mathrm{t}_{\text {fCA }}$	(Note 4)		(Note 12)		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\mathrm{D}_{7}-\mathrm{D}_{0}$	Data output delay			180		130	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	Delay to float during write cycle	$\mathrm{t}_{\text {FKD }}$		90		80	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	Data setup time to CLK during $\overline{\mathrm{M} 1}$ cycle	${ }_{\text {tsDKR }}$	35		30		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	Data setup time to CLK during M2 to M5 cycles	${ }_{\text {tsdef }}$	50		40		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	Data stable prior to $\overline{W R}$ (memory cycle)	${ }^{\text {tsMDW }}$	${ }^{\text {t CYK }} 170$		(Note 13)		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	Data stable prior to $\overline{\mathrm{WR}}$ (I/O cycle)	${ }_{\text {tilow }}$	$\mathrm{t}_{\mathrm{KKL}}+\mathrm{t}_{\mathrm{KR}}-170$		(Note 14)		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	Data stable from $\bar{W} \bar{T}$	$\mathrm{t}_{\mathrm{FCD}}$	(Note 5)		(Note 15)		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\overline{\overline{W R}}$	$\overline{\text { WR }}$ delay from CLK \uparrow to $\overline{\text { WR }}$ low	$\mathrm{t}_{\text {dKRWL }}$		65		60	ns	
	$\overline{\text { WR }}$ delay from CLK \downarrow to $\overline{\text { WR }}$ low	$\mathrm{t}_{\text {DKFWL }}$		80		70	ns	
	$\overline{\text { WR }}$ delay from CLK \downarrow to $\overline{\text { WR }}$ high	takFwh		80		70	ns	
	$\overline{\text { WR }}$ low pulse width	$\mathrm{t}_{\text {wVL }}$	${ }^{\text {ctyk }}$ - 30		(Note 18)		ns	
$\overline{\overline{M 1}}$	$\overline{\mathrm{Mi}}$ delay from CLK \uparrow to $\overline{\mathrm{M1}}$ low	$\mathrm{t}_{\text {CKM } 12}$		100		80	ns	$C_{L}=100 \mathrm{pF}$
	$\overline{\mathrm{M1}}$ delay from CLK \uparrow to $\overline{\mathrm{M} 1} \mathrm{high}$	$\mathrm{t}_{\text {DKM }}$ (${ }^{\text {d }}$		100		80	ns	$C_{L}=100 \mathrm{pF}$

AC Characteristics (cont)

μ PD70008: $\mathrm{T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mu \mathrm{PD} 70008 \mathrm{~A}: \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$

Signal	Parametor	Symbol	Limits				Unit	Test Conditions
			μ PD700081A-4		μ PD70008A-6			
			Min	Max	Min	Max		
$\overline{\text { RFSH }}$	$\overline{\mathrm{RFSH}}$ delay from CLK \uparrow to $\overline{\mathrm{RFSH}}$ low	$\mathrm{t}_{\text {DKRFL }}$		130		110	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	$\overline{\text { AFSH }}$ delay from CLK \uparrow to $\overline{\text { RFSH }}$ high	$\mathrm{t}_{\text {DKRFH }}$		120		100	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
WAIT	WAIT setup time to CLK \downarrow	$\mathrm{t}_{\text {SWTK }}$	70		60		ns	
HALT	$\widehat{\text { HALT }}$ delay from CLK \downarrow	$\mathrm{t}_{\text {DKHT }}$		300		260	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
INT	INT setup time to CLK \uparrow	$\mathrm{t}_{\text {SITK }}$	80		70		ns	
$\overline{\overline{N M I}}$	$\overline{\text { NMI low pulse width }}$	$\mathrm{t}_{\mathrm{NNL}}$	80		70		ns	
BUSRO	BUSRO setup time to CLK \downarrow	${ }_{\text {tsbak }}$	50		50		ns	
$\overline{\text { BUSAK }}$	$\overline{\text { BUSAK }}$ delay from CLK \uparrow to BUSAK Iow	tokrba		100		90	ns	$C_{L}=100 \mathrm{pF}$
	$\overline{\text { BUSAK }}$ delay from CLK \downarrow to BUSAK high	$\mathrm{t}_{\text {DKFBA }}$		100		90	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
RESET	$\overline{\text { RESET }}$ selup to CLK	tsRSK	60		60		ns	
Other	Delay to fioat (MREQ, $\overline{\text { IORQ, }} \overline{\text { RD }}$, WR)	$\mathrm{t}_{\text {FKC }}$		80		70	ns	
	$\overline{\overline{\mathrm{MI}}}$ stable prior to $\overline{\overline{0 R O}}$ (interrupt acknowledge)	${ }_{\text {tsM11 }}$	(Note 7)		(Note 19)		ns	
	Hold time for setup time	${ }_{\text {H }}$	0		0		ns	
$\overline{\text { MREQ }}$	$\overline{\text { MREQ }}$ delay from CLK \downarrow to $\overline{\text { MREQ }}$ low	${ }_{\text {IJKFML }}$		85		70	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	$\overline{\overline{M R E Q}}$ delay from CLK \uparrow to $\overline{\text { MREQ }}$ high	tokRM		85		70	ns	$C_{L}=100 \mathrm{pF}$
	$\overline{\overline{M R E Q}}$ delay from CLK $\downarrow \overline{\text { MREQ }}$ high	$\mathrm{t}_{\text {OKFMH }}$		85		70	ns	$C_{L}=100 \mathrm{pF}$
	Pulse width MREQ low	$\mathrm{t}_{\text {MML }}$	${ }_{\text {t }}^{\text {CYK }}$ - 30		(Note 16)		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	Pulse width MREQ high	$\mathrm{t}_{\text {MM }}$	(Note 6)		(Note 17)		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\overline{\overline{\mathrm{ORR}}}$	$\overline{\text { IORQ }}$ delay from CLK \dagger to $\overline{\mathrm{ORRQ}}$ low	tokRIL		75		65	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	$\overline{\overline{\mathrm{ORO}}}$ delay from CLK \downarrow to $\overline{\mathrm{IORQ}}$ low	${ }^{\text {DKFIL }}$		85		70	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	$\overline{\overline{1 O R O}}$ delay from CLK \uparrow to $\overline{\text { IिRRQ }}$ high	$\mathrm{I}_{\text {OKRIH }}$		85		70	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	$\overline{\overline{10 R Q}}$ delay from CLK \downarrow to $\overline{\text { IORQ }}$ high	10KFIH		85		70	ns	$G_{L}=100 \mathrm{pF}$
$\overline{\overline{R D}}$	$\overline{\mathrm{RD}}$ delay from CLK \uparrow to $\overline{\mathrm{RD}}$ low	$1{ }_{\text {DKRRL }}$		85		70	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
		tokRFL		95		80	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	$\overline{\overline{R D}}$ delay from CLK \uparrow to $\overline{\mathrm{RD}}$ high	tokRrH		85		70	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
	$\overline{\overline{A D}}$ delay from CLK \downarrow to $\overline{\text { AD }}$ high	tokFRH		85		70	ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

Note:

(1) $t_{C Y K}=t_{K K H}+t_{K K L}+t_{K R}+t_{K F}$
(2) $t_{\text {SAM }}=t_{\text {KKH }}+t_{\text {KF }}-65$
(3) $t_{H R A}=t_{K K L}+t_{H R}-50$
(4) $t_{F C A}=t_{K K L}+t_{K R}-45$
(5) $t_{F C D}=t_{K K L}+t_{K R}-70$
(6) $t_{M M H}=t_{K K H}+t_{K F}-20$
(7) $\mathrm{t}_{\mathrm{SM11}}=2 \mathrm{t}_{\mathrm{CYK}}+\mathrm{t}_{\text {KKH }}+\mathrm{t}_{\mathrm{KF}}-65$
(8) $t_{\text {CYK }}=t_{K K H}+t_{K K L}+t_{K R}+t_{K F}$
(9) $\mathrm{t}_{\mathrm{SAM}}=\mathrm{t}_{\mathrm{KKH}}+\mathrm{t}_{\mathrm{KF}}-50$
(10) $\mathrm{t}_{\mathrm{SAI}}=\mathrm{t}_{\mathrm{CYK}}-55$
(11) $t_{\text {HRA }}=t_{K K L}+t_{K R}-50$
(12) $t_{\text {FCA }}=t_{K K L}+t_{K R}-40$
(13) $\mathrm{t}_{\text {SMDW }}=\mathrm{t}_{\text {CYK }}-140$
(14) $t_{\text {SIOW }}=t_{K K L}+t_{K R}-140$
(15) $t_{F C D}=t_{K K L}+t_{K R}-55$
(16) $\mathrm{t}_{\mathrm{MML}}=\mathrm{t}_{\mathrm{CYK}}-30$
(17) $\mathrm{t}_{\mathrm{MMH}}=\mathrm{t}_{\mathrm{KKH}}+\mathrm{t}_{\mathrm{KF}}-20$
(18) $t_{W W L}=t_{C Y K}-30$
(19) $\mathrm{t}_{\mathrm{SM} 11}=2 \mathrm{t}_{\mathrm{CYK}}+\mathrm{t}_{\mathrm{KKH}}+\mathrm{t}_{\mathrm{KF}}-50$

Timing Waveforms

Register Configuration

Program Counter (PC)

The 16-bit program counter contains the address of the next instruction to be fetched and executed. It is set to 0000 H at reset.

Stack Pointer (SP)

The 16-bit stack pointer stores the first address of the portion of main memory used as a LIFO stack. SP is decremented when a CALL or PUSH is executed, or when an interrupt occurs. It is incremented when a RET, POP, or interrupt return is executed.

Index Registers (IX, IY)

These two 16-bit registers are used to perform indexed addressing.

Accumulators (A, \mathbf{A}^{\prime})

The μ PD70008/A has two 8-bit accumulators: the main accumulator (A) which is used to perform arithmetic and logic operations, and an alternate accumulator (A^{\prime}). The contents of the main and alternate accumulators can be exchanged using the ($E X$) instruction. The alternate accumulator can be used for background operation, or to save the data in the main accumulator when an interrupt is processed.

Flag Registers ($\mathbf{F}, \mathrm{F}^{\prime}$)

The μ PD70008/A has two 8-bit flag registers: main (F) and alternate (F^{\prime}) of the format shown in figure 1. The main flag register (F) has the status flags resulting from normal operation. The contents of the main and alternate registers can be exchanged using the exchange (EX) instruction. The aiternate (F^{\prime}) register can be used for background operation, or to save the state of the main flag register when an interrupt is processed.

Figure 1. Flag Register Format

General Purpose Registers

The μ PD70008/A has twelve 8 -bit general purpose registers: six main registers (B, C, D, E, H, and L) and six alternate registers ($B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, H^{\prime}$, and L^{\prime}). Each register can be used individually as an 8 -bit register, or can be used in pairs as 16 -bit registers $\left(B C, B^{\prime} C^{\prime}, D E, D^{\prime} E^{\prime}, H L\right.$, and $\left.\mathrm{H}^{\prime} \mathrm{L}^{\prime}\right)$.

The main registers are used when instructions are executed normally. The contents of the main and alternate registers are exchanged using the EX instruction. The alternate registers may be used for background operation or to save the contents of the main registers when an interrupt is processed.

Interrupt Page Address Register (I)

This 8 -bit register is used to generate addresses in maskable interrupt mode 2. See figure 2. These addresses are used with externally input data to reference an interrupt start address table.
This register is cleared to 00 H at reset.
Figure 2. Interrupt Reference Address

Memory Refresh Register (R)

This 7-bit register retains the refresh address for the external dynamic memory. The contents of this register are automatically incremented in each opcode fetch (M1) cycle. The contents of this register are output on the lower 7 bits of the address bus ($\mathrm{A}_{6}-\mathrm{A}_{0}$).

This register is cleared to 00 H at reset.

Timing

This section describes read and write timing for memory and I/O devices in connection with CPU operation timing. A single clock cycle (from one leading edge to the next) is defined as one timing state. The nth state is represented as Tn . A single instruction consists of two to six machine cycles. A single machine cycle requires three to six timing states. The nth machine cycle is represented as Mn .
Table 1 lists the number of states normally required by each cycle.

Table 1. Timing States per Cycle

Cycle	Number of States per Machine Cycle
Opcode fetch	4
Memory read	3
Memory write	3
$1 / 0$ read	4
$1 / 0$ write	4

The four states for I/O read and write include a single wait state (TM). The μ PD70008/A inserts one wait state in every I/O read or write. Slower external devices may assert the WAIT signal to request longer read and write access times. This time will be added to the original number of clock states. The WAIT signal is monitored on the trailing edge of clock state T2. If WAIT is asserted, a wait state (TW) is generated. The μ PD70008/A continues to monitor WAIT on the clock's trailing edge, and supplies additional wait states a long as that signal is asserted. When WAIT is released the μ PD70008/A proceeds to the T 3 state.

Figure 3. Opcode Fetch Cycle

Opcode Fetch Cycle

The first machine cycle of each instruction, M1, is the opcode fetch cycle. See figure 3. The opcode is fetched from memory during the first half of this cycle, and the dynamic memory is refreshed during the latter half.
The memory outputs the opcode to the data bus when $\overline{M R E Q}, \overline{R D}$, or $\overline{M 1}$ is asserted. It is then read into the CPU at the leading edge of clock state T 3 .

The CPU outputs a refresh address onto $A_{6}-A_{0}$ during T3. It is applied to the dynamic memory when RFSH or $\overline{M R E Q}$ are asserted.

Memory Read Cycle

The memory contents are read out to the data bus when $\overline{\mathrm{MREQ}}$ or $\overline{\mathrm{RD}}$ is asserted. The $\mu \mathrm{PD} 70008 / \mathrm{A}$ reads data from the data bus on the trailing edge of T 3 . See figure 4.

Memory Write Cycle

Write data is output to the data bus between the last half of state T1 of the current machine cycle and the first half of state T 1 of the next cycle. It is written to memory when WR or $\overline{M R E Q}$ is asserted. See figure 5.

Figure 4. Memory Read Cycle

Figure 5. Memory Write Cycle

I/O Read Cycle

The contents of an I/O device are read out to the data bus when $\overline{\text { ORQ }}$ or $\overline{\text { RD }}$ is asserted. The μ PD70008/A reads the data bus on the trailing edge of the $T 3$ clock state. See figure 6 . To compensate for $1 / O$ devices with longer access times, the μ PD70008/A generates one wait state (TW) regardless of the condition of the WAIT signal. To extend the access time, the CPU must detect the WAIT signal asserted at the falling edge of TW.

I/O Write Cycle

Write data is output to the data bus between the last half of state T1 of the current machine cycle and the first half of T 1 of the next machine cycle. It is written to an I/O device when IORQ or WR is asserted. As in the I/O read cycle, one wait state is automatically inserted in the I/ O write cycle. See figure 7. The WAIT signal is used to insert additional wait states in the I/O write cycle in exactly the same way as in the read cycle.

Figure 6. I/O Read Cycle

Figure 7. I/O Write Cycle

Bus Request State

The bus request causes the μ PD70008/A address bus ($\mathrm{A}_{15}-\mathrm{A}_{0}$), data bus ($\mathrm{D}_{7}-\mathrm{D}_{0}$), and control bus (MREQ, $\overline{\mathrm{ORQ}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$) pins to enter the high impedance state.This makes the buses available to external devices for DMA access.

The bus request state is controlled by the bus request ($\overline{B U S R Q}$) signal. See figure 8. The μ PD70008/A detects BUSRQ at the rising edge of the last state of each machine cycle. If it is active (low) the μ PD70008/A does not move on the next machine cycle, but enters the bus request state. The $\mu \mathrm{PD} 70008 / \mathrm{A}$ asserts BUSAK to indicate that the BUSRQ signal has been received, and the three buses have entered the high impedance state.
$\overline{B U S R Q}$ is checked at the rising edge of all clock states. When it becomes inactive the μ PD70008/A leaves the bus request state, and proceeds to the next cycle.
BUSRQ temporarily suspends the standby mode. When BUSRQ is asserted, the μ PD70008/A leaves the standby mode and enters the bus request state. When BUSRQ is released the μ PD70008/A returns to the standby mode.
Interrupts are disabled during the bus request state.

Interrupts

The μ PD70008/A has two types of interrupt: maskable (INT) and nonmaskable (NMI). The nonmaskable interrupt request cannot be masked by software. It will be acknowledged unless the μ PD70008/A is in the bus
request state. The maskable interrupt can be masked by software. It is controlled by setting or resetting the interrupt enable flip-flop (IFF) using the El or DI instructions. INT has a lower priority than the nonmaskable interrupt. The maskable interrupt will therefore not be acknowledged if there is a nonmaskable interrupt, or if the $\mu \mathrm{PD} 70008 / \mathrm{A}$ is in the bus request state.

$$
\overline{\mathrm{NTI}}<\overline{\mathrm{NMI}}<\overline{\mathrm{BUSRQ}}<\overline{\mathrm{RESET}}
$$

Nonmaskable Interrupt Operation

The falling edge of $\overline{\mathrm{NMI}}$ always sets the nonmaskable interrupt flip-flop. The μ PD70008/A checks the flip-flop at the rising edge of the last clock state of an instruction. If it is set, the $\mu \mathrm{PD} 70008 / \mathrm{A}$ transfers control to the nonmaskable interrupt service routine. The interrupt process starts at the opcode fetch cycle, (M1, 5 states) but the opcode fetched at this point is ignored. The contents of the PC are stored on the stack in the next two machine cycles (M2, 3 states and M3, 3 states). At the same time, the address 0066 H is loaded into the PC, and the state of the interrupt enable flip-flop is saved to an exclusive flip-flop. The entire interrupt routine requires 3 machine cycles (11 states). The contents of the PC and IFF are restored by the execution of the RETN instruction at the end of the interrupt procedure.

Figure 8. Bus Request State

Maskable Interrupt Operation

Maskable interrupts are processed in three modes. In each mode, the INT signal is detected at the rising edge of the last clock state of each instruction. The M1 instruction specifies which mode is to be used.
Mode 0 . In this mode, the data placed on the bus by the interrupting device is treated as an instruction. It is fetched in the opcode fetch cycle (M1, 7 states) and executed. The instruction used in this mode is usually a CALL (3 bytes) or RST (1 byte).
If a 1-byte RST instruction is executed, the contents of the PC are saved to the stack. A fixed address specified by the opcode is loaded into the PC during the next M2 (3 states) and M3 (3 states). The execution of this interrupt requires 3 machine cycles or 13 states.

If a 3-byte CALL instruction is executed, the second and third bytes are fetched during the M2 and M3 cycles (3 states each). During M4 and M5 (3 states each), the contents of the PC are saved to the stack and the second and third bytes of the CALL instruction are loaded into the PC. This interrupt requires 5 machine cyces and a total of 19 clock states.

Mode 1. In this mode, the data fetched during M1 (7 states) is ignored, and the μ PD70008/A proceeds to the next cycle. During the M2 and M3 machine cycles (3 states each), the contents of the PC are saved to the stack and replaced by the interrupt address 0038 H . This interrupt requires 3 machine cycles or 13 states.

Mode 2. In this mode, the data fetched from the interrupting device and the contents of the interrupt page register (I) are used to reference an interrupt start address table. Program execution jumps to the 16 -bit address referenced by the table. See figure 9 . The data is fetched during the opcode fetch cycle (M1, 7 states). During M2 and M3 (3 states each) the contents of the PC are saved to the stack. During the M4 and M5 cycles, (3 states each) the table is referenced and the contents of the table location are loaded into the PC. This interrupt requires 5 machine cycles or 19 states.

Standby Mode

The μ PD70008/A is provided with a standby mode (HALT). In the standby mode, power consumption is approximately 2% of normal operating power consumption. The standby mode is set by executing the HALT instruction.

In the standby mode, the state of the μ PD70008/A is retained. The contents of all registers and the state of all flags are retained as well. Clock signals are supplied only to indispensable circuits in the μ PD70008/A to minimize power consumption.

Figure 9. Interrupt Address Table

External operations such as memory access and memory refresh are not performed in the standby mode.

Table 2 shows the state of each output pin in the standby mode.

Table 2. Standby Mode

Pin	Status
Data bus	High level, pulled up through internal
$\mathrm{D}_{7}-\mathrm{D}_{0}$	resistance
Address bus	High or low level signals
$\mathrm{A}_{15}-\mathrm{A}_{0}$	
$\overline{\text { Control bus }} \overline{\text { RD }}, \overline{\mathrm{WR}}, \overline{\text { MRE }}, \overline{\operatorname{IORQ}, \overline{M 1}}$	High level (inactive)
$\overline{\overline{\text { RFSH}}}$	
$\overline{\mathrm{HALT}}$	High level (inactive)

The standby mode is released when a reset or an interrupt occurs. The standby mode is temporarily suspended by a bus request, but not released.

RESET in Standby Mode

When the RESET signal becomes active (low) the standby mode is released and a normal reset is performed.

$\overline{\mathrm{NMI}}$ in Standby Mode

When the $\overline{N M I}$ signal is asserted (low) the standby mode is released and normal nonmaskable interrupt processing is performed. The interrupt is not performed in the bus request state.

INT in Standby Mode

When the $\overline{\mathrm{NT}}$ signal is asserted (low) the standby mode is released. If the interrupt is enabled, normal interrupt processing is performed. If the interrupt is disabled, execution resumes at the instruction following the HALT instruction.

$\overline{B U S R Q}$ in Standby Mode

The BUSRQ signal is detected at the rising edge of each clock in the standby mode. If the $\overline{B U S R Q}$ signal is active (low) the μ PD70008/A leaves the standby mode, and enters the bus request state. When $\overline{B U S R Q}$ is released, the standby mode is resumed. The standby mode is not released by the $\overline{B U S R Q}$ signal.

RESET

The RESET signal must be asserted (low) for over 3 clock cycles to be recognized. The following steps are the reset initialization process:

- The program counter (PC) is cleared to 0000 H .
- The interrupt enable flip-flop (IFF) is reset to 0 , disabling maskable interrupts. The interrupt mode is set to 0 .
- The interrupt page address register (I) is cleared to 00 H .
- The memory refresh register (R) is cleared to 00 H .
- The address bus ($\mathrm{A}_{15}-\mathrm{A}_{0}$) and data bus ($\mathrm{D}_{7}-\mathrm{D}_{0}$) are set to high impedance.
- All control outputs are set in their inactive state.
- The standby mode is released.

The following registers are undefined at reset:
Stack pointer (SP)
Accumulators ($\mathrm{A}, \mathrm{A}^{\prime}$)
Flag registers ($\mathbf{F}, \mathrm{F}^{\prime}$)
General purpose registers
(B, $\left.B^{\prime}, C, C^{\prime}, D, D^{\prime}, E, E^{\prime}, H, H^{\prime}, L, L^{\prime}\right)$
Index registers (IX,IY)
When $\overline{R E S E T}$ is released the program will begin execution from location 0000 H .

Instruction Set

Each operand should be written in the operand column of an instruction according to the description in table 3. Capital letters are keywords and should be written as they appear.

Table 3. Operand Description

Indontifier	Description
addr	16-bit immediate data or label
faddr	$00 \mathrm{H}, 08 \mathrm{H}, 10 \mathrm{H}, 18 \mathrm{H}, 20 \mathrm{H}, 28 \mathrm{H}, 30 \mathrm{H}, 38 \mathrm{H}$ immediate data or label
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3 -bit immediate data or label (bit specification of 8 -bit register / memory)
d	8-bit displacament (signed 2's complement)
r	A, B, C, D, E, H, L
r'	$A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, H^{\prime}, L^{\prime}$
rp	BC, DE, HL, AF
rp1	BC, DE, HL, SP
rp2	BC, DE, IX, SP
rp3	BC, DE, IY, SP
e	Displacement for relative jump (signed 2's complement)

Selection of Register and Condition

pp	49		pl	ts, dd	P2	pp	rp3	π
BC	00		BC	00	BC	00	BC	00
DE	01		DE	01	DE	01	DE	01
HL	10		HL	10	IX	10	IY	10
AF	11		SP	11	SP	11	SP	11
r, r^{\prime}		$\mathbf{r}, \mathbf{r}^{\prime}$		bh	b		faddr	t
B ${ }^{\prime}$		000		0	000		00H	000
C^{\prime}		001		1	001		08H	001
D ${ }^{\prime}$		010		2	010		10H	010
E E'		011		3	011		18H	011
HH^{+}		100		4	100		20 H	100
LL'		101		5	101		28 H	101
				6	110		3 OH	110
				7	111		38 H	111

Flag Operation

(Blank): Flag not affected
0 : Flag reset
1: Flag set
X: Flag affected according to result of operation
U: Flag unknown

Structure of Instruction Byte for Addressing

Byte	Op Code	Byte		
	Op Code	Op Code	Displacement	
	Op Code	Op Code	Displacement	Op Code
or (IX +d), Byte	Op Code	Op Code	Displacement	Byte
of Wordt	Op Code	WordL	WordH	
	Op Code	Op Code	WordL	Wordh
Addr	Op Code	Addrı	Addr H	
-	Op Code	0-2		
				83-003898A

Mnemenic	Operands	Operation	Operation Code																Mo. of Clocks	No. of Bytes	Flags					
			7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0			S	2	H	PIV	N	c
Sixteen-Bit Transfer Instructions																										
LD	rp1, (word)	$\begin{aligned} & \left.r p 1_{\mathrm{H}} \leftarrow \text { (word }+1\right), \\ & \left.r p 1_{\mathrm{L}} \leftarrow \text { (word }\right) \end{aligned}$	1	1	1	0	1	1	0	1	0	1	d	d	1	0	1	1	20	4						
	IX, (word)	$\begin{aligned} & 1 X_{\mathrm{H}} \leftarrow(\text { word }+1), \\ & 1 X_{\mathrm{L}}-(\text { word }) \\ & \hline \end{aligned}$	1	1	0	1	1	1	0	1	0	0	1	0	1	0	1	0	20	4						
	IY, (word)	$\begin{aligned} & \mid Y_{H}-(\text { word }+1), \\ & I Y_{L}-(\text { word }) \end{aligned}$	1	1	1	1	1	1	0	1	0	0	1	0	1	0	1	0	20	4						
	(word), HL	$\begin{aligned} & (\text { word }+1) \leftarrow \mathrm{H}, \\ & (\text { word })-\mathrm{L} \end{aligned}$	0	0	1	0	0	0	1	0									16	3						
	(word), rp1	$\begin{aligned} & \text { (word }+1)-r p_{H}, \\ & \text { (word) } \leftarrow r p 1_{L} \end{aligned}$	1	1	1	0	1	1	0	1	0	1	d	d	0	0	1	1	20	4						
	(word), IX	$\begin{aligned} & \text { (woord }+1) \leftarrow \mid X_{H}, \\ & \text { (word) } \leftarrow \mid X_{L} \end{aligned}$	1	1	0	1	1	1	0	1	0	0	1	0	0	0	1	0	20	4						
	(word), IY	$\begin{aligned} & \text { (word }+1) \leftarrow I Y_{H}, \\ & \text { (word) }-I Y_{L} \end{aligned}$	1	1	1	1	1	1	0	1	0	0	1	0	0	0	1	0	20	4						
	SP, HL	SP - HL	1	1	1	1	1	0	0	1									6	1						
	SP, IX	$S P-1 X$	1	1	0	1	1	1	0	1	1	1	1	1	1	0	0	1	10	2						
	SP. IY	$S P \leftarrow I Y$	1	1	1	1	1	1	0	1	1	1	1	1	1	0	0	1	10	2						
PUSH	rp	$\begin{aligned} & (S P-1) \leftarrow r P_{L} \\ & (S P-2) \leftarrow P_{H}, \\ & S P \leftarrow S P-2 \end{aligned}$	1	1	9	a	0	1	0	1									11	1						
	IX	$\begin{aligned} & (S P-1) \leftarrow \mid X_{L}, \\ & (S P-2) \leftarrow \mid X_{H}, \\ & S P \leftarrow S P-2 \end{aligned}$	1	1	0	1	1	1	0	1	1	1	1	0	0	1	0	1	15	2						
	IY	$\begin{aligned} & (S P-1)-I Y_{L}, \\ & (S P-2) \leftarrow \mid Y_{H} \\ & S P-S P-2 \end{aligned}$	1	1	1	1	1	1	0	1	1	1	1	0	0	1	0	1	15	2						
$\overline{\text { POP }}$	rp	$\begin{aligned} & \mathrm{PPL} \leftarrow(S P), \\ & P_{\mathrm{H}} \leftarrow(S P+1), \\ & S P \leftarrow S P=2 \end{aligned}$	1	1	q	q	0	0	0	1									10	1						
	IX	$\begin{aligned} & \mid X_{L} \leftarrow(S P), \\ & I X_{H} \leftarrow(S P+1), \\ & S P \leftarrow S P+2 \end{aligned}$	1	1	0	1	1	1	0	1	1	1	1	0	0	0	0	1	14	2						
	IY	$\begin{aligned} & T Y_{L}-(S P), \\ & I Y_{H}-(S P+1), \\ & S P=S P+2 \end{aligned}$	1	1	1	1	1	1	0	1	1	1	1	0	0	0	0	1	14	2						

Mnemonic	Operands	Operation	Operation Code																No. of Clocks	No. of Bytes	Fiags					
			7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0			S	2	H	PIV	N	C
Data Conversion Instructions																										
EX	DE, HL	$\mathrm{DE} \leftrightarrow \mathrm{HL}$	1	1	1	0	1	0	1	\dagger									4	1						
	AF, AF'	$A \leftrightarrow A^{\prime}, F \leftrightarrow F^{\prime}$	0	0	0	0	1	0	0	0									4	1						
EXX		$\begin{aligned} & \mathrm{BC} \leftrightarrow \mathrm{BC}^{\prime} \\ & \mathrm{DE} \leftrightarrow \mathrm{DE} \mathrm{E}^{\prime}, \mathrm{HL} \leftrightarrow H L^{\prime} \end{aligned}$	1	1	0	1	1	0	0	1									4	1						
EX	(SP), HL	$\begin{aligned} & (S P) \leftrightarrow L_{1} \\ & (S P+1) \leftrightarrow H, \\ & S P \rightarrow S P+2 \end{aligned}$	1	1	1	0	0	0	1	1									19	1						
	(SP), 1 X	$\begin{aligned} & (S P) \leftrightarrow \mid X_{L} \\ & (S P+1) \leftrightarrow \mid X_{H}, \\ & S P \rightarrow S P+2 \end{aligned}$	1	1	0	1	1	1	0	1	1	1	1	0	0	0	1	1	23	2						
	(SP), M	$\begin{aligned} & (S P) \leftrightarrow \mid Y_{L}, \\ & (S P+1) \leftrightarrow I Y_{H}, \\ & S P \leftarrow S P+2 \end{aligned}$	1	1	1	1	1	1	0	1	1	1	1	0	0	0	1	1	23	2						
Block Transfer Instructions																										
LDI		$\begin{aligned} & (D E) \leftarrow(H L), \\ & D E \leftarrow D E+1, \\ & H L \leftarrow H L+1, \\ & B C \leftarrow B C-1 \end{aligned}$	1	1	1	0	1	1	0	1	1	0	1	0	0	0	0	0	16	2			0	X	0	
LDIR		$\begin{aligned} & (D E) \leftarrow(H L), \\ & D E \leftarrow D E+1, \\ & H L-H L+1, \\ & B C-B C-1, \\ & \text { End if } B C=0 \end{aligned}$	1	1	1	0	1	1	0	1	1	0	1	1	0	0	0	0	21/16(1)	2			0	0	0	
LDD		$\begin{aligned} & (D E) \leftarrow(H L) \\ & D E \leftarrow D E-1, \\ & H L \leftarrow H L-1 \\ & B C-B C-1 \end{aligned}$	1	1	1	0	1	1	0	1	1	0	1	0	1	0	0	0	16	2			0	x	0	
LDDR		$\begin{aligned} & (D E)-(H L), \\ & D E \leftarrow D E-1, \\ & H L \leftarrow H L-1, \\ & B C \leftarrow B C-1, \\ & \text { End if } B C=0 \end{aligned}$	1	1	1	0	1	1	0	1	1	0	1	1	1	0	0	0	21/16(1)	2			0	0	0	
Block Search Instructions																										
CPI		$\begin{aligned} & A-(H L), \\ & H L \leftarrow H L+1, \\ & B C \leftarrow B C-1 \end{aligned}$	1	1	1	0	1	1	0	1	1	0	1	0	0	0	0	1	16	2	X	x	x	X	1	
CPIR		$\begin{aligned} & A-(H L), \\ & H L-H L+1, \\ & B C \leftarrow B C-1, \\ & \text { End if } A=(H L) \text { or } B C=0 \end{aligned}$	1	1	1	0	1	1	0	1	1	0	1	1	0	0	0	1	21/16(2)	2	x	x	x	x	1	

Instruction Set (cont)

Eight-Bit Logical Operation Instructions

										rat	C								No. of	No. of				ags		
Mnemonic	Operands	Operation	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	Clocks	Bytes	5	2	H	PIV	N	6
Eight-Bit Logical Operation Instructions (cont)																										
CP	A, ${ }^{\text {a }}$	A-r	1	0	1	1	1		Γ										4	\dagger	x	x	x	V	1	x
	A, byte	A - byte	1	1	1	1	1	1	1	0									7	2	x	x	x	V	1	x
	A, (HL)	A - (HL)	1	0	1	1	1	1	1	0									7	1	X	x	x	V	1	x
	A, (IX + d)	A- (IX + disp $)$	1	1	0	1	1	1	0	1	1	0	1	1	1	1	1	0	19	3	x	x	x	V	1	x
	disp																									
	$\overline{A,}(1 Y+d)$	A-($\mathrm{Y}+\mathrm{disp}$)	1	1	1	1		1	0	1	1	0	1	1	1	1	1	0	19	3	x	X	x	V	1	x
							pp																			
Eight-Bit Increment / Decrement Instructions																										
INC	r	$r * r+1$	0	0		r		1	0	0									4	1	x	x	X	V	0	
	(HL)	$(\mathrm{HL})-(\mathrm{HL})+1$	0	0	1	1	0	1	0	0									11	1	x	x	x	V	0	
	($\mathrm{XX}+\mathrm{d}$)	$(I X+\operatorname{disp})-(\mathrm{IX}+\operatorname{disp})+1$	1	1	0	1	1	1	0	1	0	0	1	1	0	1	0	0	23	3	x	X	X	V	0	
	disp																									
	$(I Y+d)$	$(I Y+$ disp $)-(\mathrm{IX}+$ disp $)+1$	1	1	1	1	1	1	0	1	0	0	1	1	0	1	0	0	23	3	x	X	x	V	0	
							sp																			
$\overline{\mathrm{DEC}}$	「	$r-m-1$	0	0		$\stackrel{1}{1}$		1	0	1									4	1	x	x	x	V	1	
	(HL)	$(\mathrm{HL})-(\mathrm{HL})-1$	0	0	1	1	0	1	0	1									11	1	x	x	x	V	1	
	($\mathrm{XX}+\mathrm{d}$)	$(\mathrm{IX}+$ disp $) \leftarrow(\mathrm{IX}+$ disp $)-1$	1	1	0	1	1	1	0	1	0	0	1	1	0	1	0	1	23	3	X	x	X	V	1	
	disp																									
	(IY+d)	$(\mathrm{I} Y+\operatorname{disp}) \leftarrow(\mathrm{I} Y+\operatorname{disp})-1$	1	1	1	1	1	1	0	1	0	0	1	1	0	1	0	1	23	3	x	X	x	V	1	
	- disp																									
Sixteen-Bit Arithmetic Operation Instructions																										
ADD	$\mathrm{HL}, \mathrm{rp} 1$	$\mathrm{HL} \leftarrow \mathrm{HL}+\mathrm{rp1}$	0	0	5	s	1	0	0	1									11	1			U		0	x
ADC	HL, rp 1	$\mathrm{HL} \sim \mathrm{HL}+\mathrm{rp1}+\mathrm{CY}$	1	1	1	0	1	1	0	1	0	1	S	S	1	0	1	0	15	2	x	x	U	V	0	x
SBC	HL, rp1	$\mathrm{HL}-\mathrm{HL}-\mathrm{rpl}-\mathrm{CY}$	1	1	1	0	1	1	0	1	0	1	S	S	0	0	1	0	15	2	x	x	U	V	1	x
ADD	$\underline{\mathrm{X}, \mathrm{rp} 2}$	$\mathrm{IX}-\mathrm{IX}+\mathrm{rp2}$	1	1	0	1	1	1	0	1	0	0	p	p	1	0	0	1	15	2			U		0	x
	TY, rp3	$I Y-I Y+r p 3$	1	1	1	1	1	1	0	1	0	0	「	r	1	0	0	1	15	2			U		0	X
Sixteen-Bit Increment / Decrement Instructions																										
INC	$\mathrm{rp1}$	$r p \mid-r p 1+1$	0	0	s	s	0	0	1	1									6	1						
	IX	$I X-I X+1$	1	1	0	1	1	1	0	1	0	0	1	0	0	0	1	1	10	2						
	IY	$I Y \leftarrow I Y+1$	1	1	1	1	1	1	0	1	0	0	1	0	0	0	1	1	10	2						
DEC	rp1	$p p 1 \leftarrow r p \mid-1$	0	0	S	S	1	0	1	1									6	1						
	IX	IX - IX - 1	1	1	0	1	1	1	0	1	0	0	1	0	1	0	1	1	10	2						
	IY	$I Y-I Y-1$	1	1	1	1	1	1	0	1	0	0	1	0	1	0	1	1	10	2						

Instruction Set (cont)

			Operation Code																No. of Clocks	No. of Bytos	Flags					
Mnemenic	Operands	Operation	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0			s	2	H	P/V	N	c
Accumulator Operation Instructions																										
DAA		Decimal adjust accumulator	0	0	1	0	0	1	1	1									4	1	x	x	x	P		x
CPL		$\bar{A} \sim \overline{\mathrm{~A}}$	0	0	1	0	1	1	1	1									4	1			1		1	
NEG		$A \sim \bar{A}+1$	1	1	1	0	1	1	0	1	0	1	0	0	0	1	0	0	8	2	x	x	x	v	1	x
$\overline{\text { CCF }}$		$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$	0	0	1	1	1	1	1	1									4	1			U		0	x
SCF		$C Y \leftarrow 1$	0	0	1	1	0	1	1	1									4	1			0		0	1
Rotata Instructions																										
RLCA			0	0	0	0	0	1	1	1									4	1			0		0	x
RLA			0	0	0	1	0	1	1	1									4	1			0		0	x
RRCA			0	0	0	0	1	1	1	1									4	1			0		0	x
RRA			0	0	0	1	1	1	1	1									4	1			0	0	x	
RLC	「		1	1	0	0	1	0	1	1	0	0	0	0	0		r		8	2	x	x	0	P	0	x
	(HL)		1	1	0	0	1	0	1	1	0	0	0	0	0	1	1	0	15	2	x	x	0	P	0	x
	($\mathrm{X}+\mathrm{d}$)		1	1	0	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4	x	x	0	P	0	x
							sp				0	0	0	0	0	1	1	0								
	($\bar{Y}+\mathrm{d})$	r, (HL), (IX + disp), (IV + disp)	1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4	x	x	0	P	0	x
							pp				0	0	0	0	0	1	1	0								
$\overline{\mathrm{RL}}$	r		1	1	0	0	1	0	1	1	0	0	0	1	0		r		8	2	x	x	0	P	0	x
	(HL)		1	1	0	0	1	0	1	1	0	0	0	1	0	1	1	0	15	2	X	x	0	P	0	x
	$(\mathrm{X}+\mathrm{d})$		1	1	0	1	1	1	0	1	1	1	0	1	1	0	1	1	23	4	x	X	0	P	0	x
							sp				0	0	0	1	0	1	1	0								
	($\bar{Y}+\mathrm{d})$	$\mathrm{r}_{1}(\mathrm{HL}),(\mathrm{IX}+$ disp $),(\mathrm{Y}+$ disp $)$	1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4	x	x	0	P	0	x
											0	0	0	1	0	1	1	0								
RRC	r		1	1	0	0	1	0	1	1	0	0	0	0	1		「		8	2	x	x	0	P	0	x
	(HL)		1	1	0	0	1	0	1	1	0	0	0	0	1	1	1	0	15	2	x	\times	0	P	0	x
	($\mathrm{X}+\mathrm{d}$)		1	1	0	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4	x	x	0	P	0	x
							p				0	0	0	0	1	1	1	0								
	$\overline{(Y+d)}$	r, (HL), (IX + disp), (Y + + disp)	1	1	1	1	1	1	0	1	1	1	0	0	1	0	1	1	23	4	x	x	0	P	0	x
											0	0	0	0	1	1	1	0								

Mnomonic	Operands	Operation	Operation Code																No. of Clocks	No. of Bytes	Flags					
			7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0			5	2	H	PIV	N	6
Jump Instructions (cont)																										
JR	e	$P C \leftarrow P C+e$	0	0	0	1	1	0	0	0									12	2						
	NZ, e	If $Z=0, P C \leftarrow P C+e$	0	0	1	0	0	0	0	0									12/7(3)	2						
	Z, e	$1+Z=1, P C \leftarrow P C+e$	0	0	1	0	1	0	0	0									12/7(3)	2						
	NC, e	- If $\mathrm{C}=0, \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{e}$	0	0	1	1	0	0	0	0									12/7(3)	2						
	C, e	If $\mathrm{C}=1, \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{e}$	0	0	1	1	1	0	0	0									12/7(3)	2						
JP	(HL)	$\mathrm{PC} \leftarrow \mathrm{HL}$	1	1	1	0	1	0	0	1									4	1						
	(IX)	$\mathrm{PC} \leftarrow \mathrm{IX}$	1	1	0	1	1	1	0	1	1	1	1	0	1	0	0	1	8	2						
	(IY)	PC -IY	1	1	1	1	1	1	0	1	1	1	1	0	1	0	0	1	8	2						
DJNZ	e	$\begin{aligned} & B \leftarrow B-1 ; \\ & \text { if } B \neq 0, P C \leftarrow P C+e \end{aligned}$	0	0	0	1	0	0	0	0									8/13(4)	2						
Call Instructions																										
CALL	addr	$\begin{aligned} & (S P-1) \leftarrow \mathrm{PC}_{H}, \\ & (S P-2) \leftarrow P C_{L}, \\ & S P \leftarrow S P-2, \\ & P C \leftarrow \text { addr } \end{aligned}$	1	1	0	0	1	1	0	1									17	3						
	NZ, addr	$\begin{aligned} & \text { If conditions met, }(S P-1) \leftarrow \\ & P C_{H}, \\ & (S P-2) \leftarrow P C_{L}, S P \leftarrow S P-2, \\ & P C-\text { addr } \end{aligned}$	1	1	0	0	0	1	0	0									17/10(5)	3						
	Z, addr	$\begin{aligned} & \text { If conditions met, }(S P-1) \leftarrow \\ & P C_{H}, \\ & (S P-2) \leftarrow P C_{L}, S P \leftarrow S P-2, \\ & P C \leftarrow \text { addr } \end{aligned}$	1	1	0	0	1	1	0	0									17/10(5)	3						
	NC, addr	$\begin{aligned} & \text { If conditions met, }(S P-1) \leftarrow \\ & P_{H}, \\ & (S P-2) \leftarrow P C_{L}, S P \leftarrow S P-2, \\ & P C \leftarrow \text { addr } \end{aligned}$	1	1	0	1	0	1	0	0									17/10(5)	3						
	C, addr	$\begin{aligned} & \text { If conditions met, }(S P-1) \leftarrow \\ & P_{H}, \\ & (S P-2) \leftarrow P C_{L}, S P-S P-2, \\ & P C-a d d r \end{aligned}$	1	1	0	1	1	1	0	0									17/10(5)	3						
	PO, addr	$\begin{aligned} & \text { If conditions met, }(S P-1) \leftarrow \\ & P C_{H}, \\ & (S P-2) \leftarrow P C_{L}, S P \leftarrow S P-2, \\ & P C-\text { addr } \end{aligned}$	1	1	1	0	0	1	0	0									17/10(5)	3						

Mnomente	Operands	Operation	Operation Code																No. of Clocks	No. of Bytes	Flags					
			1	8	5	4	3	2	1	0	7	6	5	4	3	2	1	0			5	2	H	P/V	N	c
Call Instructions (cont)																										
CALL	PE, addr	$\begin{aligned} & \text { If conditions met, }(S P-1) \leftarrow \\ & P C_{H}, \\ & (S P-2) \leftarrow P C_{L}, S P-S P-2, \\ & P C \leftarrow \text { addr } \end{aligned}$	1	1	1	0	1	1	0	0									17/10(5)	3						
	P, addr	$\begin{aligned} & \text { If conditions met, }(S P-1) \leftarrow \\ & P C_{H}, \\ & (S P-2) \leftarrow P_{L}, S P-S P-2, \\ & P C-\text { addr } \end{aligned}$	1	1	1	1	0	1	0	0									17/10(5)	3						
	M, addr	$\begin{aligned} & \text { If conditions met, }(S P-1) \leftarrow \\ & P_{H} \text {. } \\ & (S P-2) \leftarrow P C_{L}, S P \leftarrow S P-2, \\ & P C \leftarrow \text { addr } \end{aligned}$	1	1	1	1	1	1	0	0									17/10(5)	3						
RST	faddr	$\begin{aligned} & (S P-1)-P C_{H},(S P-2) \leftarrow \\ & P C_{L}, S P \leftarrow S P-2, P C_{H} \leftarrow 0, \\ & P C_{L}-\text { faddr } \end{aligned}$	1	1		t		1	1	1									11	1						
Meturn Instructions																										
RET		$\begin{aligned} & P C_{L} \leftarrow(S P), P C_{H} \leftarrow(S P+1), \\ & S P \leftarrow S P+2 \end{aligned}$	1	1	0	0	1	0	0	1									10	1						
	NZ	$\begin{aligned} & \text { If conditions met, } P C_{L}-(S P), \\ & P C_{H}-(S P+1), S P-S P+2 \end{aligned}$	1	1	0	0	0	0	0	0									11/5(6)	1						
	Z	If conditions met, $P C_{L}<(S P)$, $P C_{H} \leftarrow(S P+1), S P \leftarrow S P+2$	1	1	0	0	1	0	0	0									11/5(6)	1						
	NC	If conditions met, $\mathrm{PC}_{\mathrm{L}} \longleftarrow$ (SP), $P C_{H}-(S P+1), S P \leftarrow S P+2$	1	1	0	1	0	0	0	0									11/5(6)	1						
	C	If conditions met, $P C_{L} \leftarrow(S P)$, $\mathrm{PC}_{\mathrm{H}}-(\mathrm{SP}+1), \mathrm{SP}-\mathrm{SP}+2$	1	1	0	1	1	0	0	0									11/5(6)	1						
	PO	$\begin{aligned} & \text { If conditions met, } P C_{L} \leftarrow(S P), \\ & P C_{H}-(S P+1), S P \leftarrow S P+2 \end{aligned}$	1	1	1	0	0	0	0	0									11/5(6)	1						
	PE	$\begin{aligned} & \text { If conditions met, } P C_{L} \leftarrow(S P), \\ & P C_{H}-(S P+1), S P \leftarrow S P+2 \end{aligned}$	1	1	1	0	1	0	0	0									11/5(6)	1						
	P	If conditions met, $P C_{L}-(S P)$, $P C_{H}-(S P+1), S P-S P+2$	1	1	1	1	0	0	0	0									11/5(6)	1						
	M	If conditions met, $P C_{L}-(S P)$, $P C_{H}-(S P+1), S P-S P+2$	1	1	1	1	1	0	0	0									11/5(6)	1						
RETI		Return from interrupt	1	1	1	0	1	1	0	1	0	1	0	0	1	1	0	1	14	2						
RETN		Return from interrupt, nonmaskable	1	1	1	0	1	1	0	1	0	1	0	0	0	1	0	1	14	2						

			Operation Code																No. of Clocks	No. of Bytes	Flags						
Mnemonic	Operands	Operation	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0			S	z	H	PIV	\boldsymbol{n}	$\underline{6}$	
Return Instructions (cont)																											
IN	A, byte	$\begin{aligned} & A-\text { (byte) }, \\ & A_{7}-A_{0}-\text { byte }, \\ & A_{15}-A_{B}-\text { byte } \end{aligned}$	1	1	0	1	1	0	1	1									11	2							
	r. (C)	$\begin{aligned} & r \leftarrow(C), A_{7}-A_{0} \leftarrow C, \\ & A_{15}-A_{8} \leftarrow B \end{aligned}$	1	1	1	0	1	1	0	1	0	1		「		0	0	0	12	2	X	X	X	P	0		
\|N			$\begin{aligned} & (H L)-(C), B-B-1, \\ & H L-H L+1, A_{7}-A_{0}-C, \\ & A_{15}-A_{B}<B \end{aligned}$	1	1	1	0	1	1	0	1	1	0	1	0	0	0	1	0	16	2	J	x	U	U	1	
IND		$\begin{aligned} & (H L) \leftarrow(C), B \leftarrow B-1, \\ & H L \leftarrow H L-1, A_{7}-A_{0} \leftarrow C, \\ & A_{15}-A_{8} \leftarrow B \end{aligned}$	1	1	1	0	1	1	0	1	1	0	1	0	1	0	1	0	16	2	U	x	U	U	1		
INIR		$\begin{aligned} & (H L) \leftarrow(C), B \leftarrow B-1, \\ & H L-H L+1, A_{7}-A_{0} \leftarrow C \\ & A_{15}-A_{8} \leftarrow B, \text { End if } B=0 \end{aligned}$	1	1	1	0	1	1	0	1	1	0	1	1	0	0	1	0	21/16(7)	2	U	1	U	U	1		
INDR		$\begin{aligned} & (\mathrm{HL}) \leftarrow(\mathrm{C}), \mathrm{B} \leftarrow \mathrm{~B}-1, \\ & \mathrm{HL} \leftarrow \mathrm{HL}-1, \mathrm{~A}_{7}-\mathrm{A}_{0} \leftarrow C, \\ & \mathrm{~A}_{15}-\mathrm{A}_{8} \leftarrow \mathrm{~B}, \text { End if } \mathrm{B}=0 \end{aligned}$	1	1	1	0	1	1	0	1	1	0	1	1	1	0	1	0	21/16(7)	2	U	1	U	U	1		
OUT	byte, A	$\begin{aligned} & \text { (byte) }-A_{1} A_{7}-A_{0} \leftarrow \text { byte }, \\ & A_{15}-A_{8}-B \end{aligned}$	1	1	0	1	0	0	1	1									11	2							
	(C), r	$(C) \leftarrow r, A_{7}-A_{0} \leftarrow C$, $\mathrm{A}_{15}-\mathrm{A}_{8} \leftarrow \mathrm{~B}$	1	1	1	0	1	1	0	1	0	1		1		0	0	1	12	2							
OUTI		$\begin{aligned} & (C)-(H L), B-B-1, \\ & H L-H L+1, A_{7}-A_{0}-C, \\ & A_{15}-A_{8}-B \end{aligned}$	1	1	1	0	1	1	0	1	1	0	1	0	0	0	1	1	16	2	U	x	U	U	1		
OUTD		$\begin{aligned} & (C) \leftarrow(H L), B \leftarrow B-1, \\ & H L-H L-1, A_{7}-A_{0} \leftarrow C, \\ & A_{15}-A_{8} \leftarrow B \end{aligned}$	1	1	1	0	1	1	0	1	1	0	1	0	1	0	1	1	16	2	U	x	U	U	1		
OUTIR		$\begin{aligned} & (C) \leftarrow(H L), B \leftarrow B-1_{1} \\ & H L \leftarrow H L+1, A_{7}-A_{0} \leftarrow C, \\ & A_{15}-A_{8} \leftarrow B \text {, End if } B=0 \end{aligned}$	1	1	1	0	1	1	0	1	1	0	1	1	0	0	1	1	21/16(7)	2	U	1	U	U	1		
OUTDR		$\begin{aligned} & (C) \leftarrow(H L), B \leftarrow B-1, \\ & H L \leftarrow H L-1, A_{7}-A_{0} \leftarrow C, \\ & A_{15}-A_{8}-B, E n d \text { if } B=0 \end{aligned}$	1	1	1	0	1	1	0	1	1	0	1	1	1	0	1	1	16	2	U	1	U	U	1		

Mnemonle	Operands	Operation	Operation Code																No. of Clocks	No. of Bytes	Flags					
			7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0			5	2	H	PIV	N	c
CPU Control Instructions																										
NOP		No operation	0	0	0	0	0	0	0	0									4	1						
HALT		Halt	0	1	1	1	0	1	1	0									4	1						
DI		Disable interrupts (IFF - 0)	1	1	1	1	0	0	1	1									4	1						
El		Enable interrupts (IFF - 1)	1	1	1	1	1	0	1	1									4	1						
IM	0	Set interrupt mode 0	1	1	1	0	1	1	0	1	0	1	0	0	0	1	1	0	8	2						
	1	Set interrupt mode 1	1	1	1	0	1	1	0	1	0	1	0	1	0	1	1	0	8	2						
	2	Set interrupt mode 2	1	1	1	0	1	1	0	1	0	1	0	1	1	1	1	0	8	2						

Note:

(1) 21 if $\mathrm{BC} \neq 0$, 16 if $\mathrm{BC}=0$
(2) 21 if $B C \neq 0$ and $A \neq(H L), 16$ if $B C=0$ or $A=(H L)$
(3) 12 if condition is met, 7 if not
(4) 8 if $\mathrm{B}=0,13$ if $\mathrm{B} \neq 0$
(5) 17 if condition is met, 10 if not
(6) 11 if condition is met, 5 if not
(7) 21 if $\mathrm{B}=0,16$ if $\mathrm{B} \neq 0$

