
6809 DEBUGGER

USER'S MANUAL

1st Printing

COPYRIGHT (C) 1984 SOFTWARE DYNAMICS

NOTICE

This manual describes IDB09 Version 1.0. Software Dynamics has
carefully checked the information given in this manual, and it is
believed to be entirely reliable. However, no responsibility is
assumed for inaccuracies. Software Dynamics reserves the right
to change the specifications without notice.

**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**

This manual describes software which is a proprietary product
of Software Dynamics (SD). SD software is licensed for use on a
single copy per computer basis, and is covered by u.S copyright
laws. Unless a written exception is obtained from SD, the soft­
ware must be used only on the single computer whose unique, SD­
assigned serial number matches that for which the software was
purchased. Copying the software for any purpose other than
archival storage, or use of the software on other than the as­
signed serial numbered CPU is strictly prohibited. SD assumes
no liability regarding the use of the software.
Certain software programs and datafiles are delivered for use

**
**
**
**
**
**
**
**
**
**
**

in an encrypted format. The content of such programs and data
are considered to be a trade secret of SD. Attempts or suc- **
cess at breaking the encryption, publication of the results of
such attempts or successes, or copying, storage or use of such a
file in clear text form will be treated as theft of a trade sec­

**

**
**
**

ret, and prosecuted as such. **
POSSESSION OR USE OF THIS MANUAL OR THE SOFTWARE IT DESCRIBES **
CONSTITUTES AGREEMENT BY THE USER TO THESE TERMS. **

**

This manual and the software it describes are the copyrighted
property of Software Dynamics.

INTRODUCTION

OPERATION ..

COMMAND FORMAT

TABLE OF CONTENTS

VALUES ENTERED INTO THE DEBUGGER

SIGNIFICANCE

IDB COMMANDS

EXAMINE AND MODIFY COMMANDS

SETTING REGISTERS .

BREAKPOINT COMMANDS

EXECUTION COMMANDS

COMMAND SUMMARY . •

Copyright (C) 1984 SD

1

1

1

2

2

2

3

5

7

9

10

IDB09 6809 DEBUGGER USER'S MANUAL

INTRODUCTION

IDB is a small memory, stand-alone debugger for 6809
microprocessor systems. It is appropriate for debugging assembly
language object programs.

IDB allows the programmer to: display and change memory, to
display and change registers, and to set breakpoints.

This manual describes IDB Version 1.0.

NOTATION:

In the examples included in this manual, underlined characters
are typed by the operator. Comments to the right do not appear
as output of the debugger; all other printed data is typical
debugger output. Many of the examples use previous examples to
set up a known situation.

OPERATION

The debugger gains control automatically in some ROM-based
systems. Usually, control is initially passed to the debugger by
an SDOS DEBUG command or AD typed to SDOS (see SDOS Manual).

The programmer interacts with IDB via commands given at the
keyboard. IDB gives has no prompt but does dump the registers on
startup. IDB cheCKS command input character by character. If an
entry is incorrect, it is diagnosed immediately by a print-out of
"11" followed by a carriage-return. When a command error occurs
any opened location is closed. If a valid command is entered. IDS
executes the command and accepts another command.

All IDB commands and hexadecimal numbers can be entered in either
upper or lower case. In this manual only uppercase commands are
shown. A small letter immediately to the left of a command
represents a numeric value entered by the operator.

COMMAND FORMAT

All commmands to IDB fit one of the following forms:

C
nC
n;C

(No Parameter)
(Single Parameter)
(Single Parameter)

where n is a hex number up to ten digits depending upon the
command. <CR> is a carriage-return, <LF> is a line-feed and C is
a command character (letter. punctuation mark, <CR>, or <LF».
"i" is a semicolon and is a comma ..

Copyright (C) 1984 SD 1

IDB09 6809 DEBUGGER USER'S MANUAL

VALUES ENTERED INTO THE DEBUGGER

IDB accepts four formats for numbers:

Hex numbers, a string of hex letters or digits:
0A BC9 22 BD3FA9

(Period), meaning the address of the last opened
memory location, whether it is open now or not.
This is referred to as the open location marker.

* (asterisk), meaning the value that is displayed as
the P register contents on a register dump
(location of next instruction to execute).

'c (single quote, followed by any character), meaning
"the ASCII value of the character c". 'A is
equivalent to typing in 41 (hex); likewise, 'b =
hex 62.

SIGNIFICANCE

Numbers entered into lOB have significance (size in bytes) based
on the number of digits keyed in. This significance is used by
commands which store into memory.

1 or 2 digits gives 1 byte significance
3 or 4 digits gives 2 byte significance
5 or 6 digits gives 3 byte significance
7 or 8 digits gives 4 byte significance
9 or 10 digits gives 5 byte significance

(Period) has 2 bytes of significance
* (Asterisk) has 2 bytes of significance
'c has 1 byte of significance

IDB COMMANDS

lOB commands fall into the following categories:

Examine and Modify Memory
Set Register
Breakpoints
Execute

Copyr ight (C) 1984 SO 2

IDB09 6809 DEBUGGER USER'S MANUAL

Examine and Modify Commands

The examine and modify commands are used to display and/or change
memory locations and registers.

COMMAND OPERATION

n/ Open Location n
<LF> Display Next
n<LF> Deposit and Display Next
<CR> Close This Location
n<CR> Deposit and Close Location
? Display Registers

The n/ command is used to open location n and display its
content. "Opening a location" means to make it available for
examination and/or modification.

The <LF> (line-feed) command is used to advance the open
address and display the contents of the new location.
location address is bumped by one, and the next
displayed. <LF> is only valid when a location is open.

location
The open
byte is

The n<LF> command is used to deposit from one to five bytes. The
open location address is bumped by the significance of n. n<LF>
is only valid when a location is open.

The <CR> (carriage-return) command is used to close the currently
open location. The open location address is not advanced. <CR>
is a no-op when a location is not open.

The n<CR> command is used to deposit from one to five bytes into
the open location. The open location address is not advanced and
the location is closed. n<CR> is only valid when a location is
open.

The? Command is used to display the registers. This display is
referred to as a register dump elsewhere in this manual. In a
register dump, the contents of the registers follow the letter
naming that register. "z" refers to the page register.

Copyright (C) 1984 SD 3

IDB09 6809 DEBUGGER USER'S MANUAL

Examples:

1,0/FF 45<CR> DEPOSIT 45 OVER FF IN LOCATION 100
• 45 <LF> EXAMINE LOCATION 100, EXAMINE NEXT
:y 46 <LF> OPEN THE LAST LOCATION; EXAMINE NEXT.
0102/ ~D <LF> CHANGE VALUE AND EXAMINE NEXT.
~3608 39<CR> FIX INSTRUCTION AT P COUNTER
? DUMP REGISTERS
C=C0 A=01 B=FE Z=00 X=3031
Y=0000 U=C27D P=3005 S=4073

:opyright (C) 1984 SD 4

IDB09 6809 DEBUGGER USER'S MANUAL

SETTING REGISTERS

The following commands are used to change the contents of a
specific register by name.

COMMAND OPERATION

n;A Set A Register to n
nIB Set B Register to n
n;C Set C Register to n
nIX Set X Register to n
n;S Set S Register to n
nIP Set P Register to n
n;U Set U Register to n
n;Y Set Y Register to n
n;D Set D Register to n
n;Z Set Z register to n

The n;A nIB n;C n;Z commands set registers A B C Z respectively
to the rightmost byte of n.

The nIX n;S nIP n;U n;Y and n;D commands set registers X S P U Y
and D respectively to the rightmost two bytes of n. If a one
byte value is given. a leading zero byte is assumed.

When the stack pointer is set, IDB assumes that the value given,
minus 12. points to a interrupt context block (i.e .• n-12 points
to a condition code byte). The contents of this context block
are used as the values of the registers.

When IDB starts up. it allocates a 12 byte stack for the user's
context block.

Copyright (C) 1984 SD 5

IDB09 6809 DEBUGGER USER'S MANUAL

Examples:

l;A SET THE A REGISTER TO 01
FE;B SET THE B REGISTER TO FE
C0;C SET THE C REGISTER TO C0
-7--- SHOW REGISTERS
C=C0 A=01 B=FE Z=00 X=3031
¥=0000 U=C27D P=3005 S=4073
1234;A SET THE A REGISTER TO 34
T23456;B SET THE B REGISTER TO 56
7 SHOW REGISTERS
C=C0 A=34 B=56 Z=00 X=3031
¥=0000 U=0000 P=3005 S=4073
l;X SET X TO 0001
7 SHOW REGISTERS
C=C0 A=34 B=56 Z=00 X=0001
¥=0000 U=0000 P=3005 S=4073
1234;X SET X TO 1234
-7----- SHOW REGISTERS
C=C0 A=34 B=56 Z=00 X=1234
¥=0000 U=0000 P=3005 S=4073
FE;P SET P REGISTER TO 00FE
~00 LOOK AT LOCATION FE
fEY 00 2245<CR> MAKE IT AN INSTRUCTION
? SHOW REGISTERS
C=C0 A=34 B=56 Z=0D X=1234
¥=0000 U=0000 P=00FE S=4073

Caution: setting the stack pointer (S register) causes the
remaining registers to take on arbitrary new values according to
their positions in the context block pointed to by the new value
of the S register!

FE;S SET THE STACK POINTER TO 00FE
~ SHOW REGISTERS
C=F3 A=04 B=04 Z=0D X=9762
¥=0000 U=C27D P=0067 S=00FE

Copyright (C) 1984 SD 6

IDB09 6809 DEBUGGER USER'S MANUAL

BREAKPOINT COMMAND

"Breakpoints" are used to stop a program at a certain place so
that the state of the machine can be examined. The programmer
places a breakpoint in his program where he wishes; then he tells
IDB to run his program (see Execution Commands). When the program
hits a breakpoint, control is passed to IDB, which results in a
register dump. The programmer then can examine or change memory,
place a new breakpoint, start his program again or continue
execution from where it left off.

COMMAND OPERATION

nl Set Unconditional Breakpoint on Address n
01 Clear Breakpoint

An IDB breakpoint consists
instruction is "planted" at
control when encountered.

of a "JSR" instruction. The JSR
the breakpoint location to regain

Since a JSR takes three bytes, no breakpoint may be set within
two bytes of another breakpoint. Setting breakpoints in ROM
doesn't work. This may not be obvious since the breakpoints can't
be seen in the user's code while IDB is in the command input
mode. The breakpoint JSR instruction is not "planted" in the
user code. Execution is requested (see Execution Commands), For
example, if a breakpoint were set at location 200 (by entering
"2001"), examination of location 200 will still show the original
user code rather than IDB'S breakpoint JSR instruction.

Copyright (C) 1984 SD 7

IDB09 6809 DEBUGGER USER'S MANUAL

When the user's program is executing, and it encounters a
breakpoint JSR, then the breakpoint is "hit"; the breakpoint JSR
is removed,the original user code is restored and a register dump
is displayed. IDB then enters command input mode.

When a breakpoint hits, the next instruction to execute is the
one at the breakpoint address (the instruction at the breakpoint
has not yet been executed). Entering the G command on the
console after hitting the breakpoint will result in an immediate
breakpoint "hit" without having executed any instructions because
the P register still points to the breakpoint location. The
convenient way to continue from a breakpoint is to use the set
new breakpoint and proceed (nX) command.

Using a JSR instruction for a
peculiarities.

Example:

BRA Ll

L0
Ll

BEQ
LDAA

L3
#5

breakpoint causes some

Breakpointing on L0 is hazardous during realtime execution if the
"BRA Ll" is executed. The reason for this is that the breakpoint
JSR is planted at L0 and it will take up the first byte of Ll, so
that during realtime execution, Ll does not contain a "LDAA #5"
instruction I

Example:

BSR XYZ

Breakpointing the BSR is fatal when the RTS in subroutine XYZ is
executed because the third byte of the breakpoint JSR covers the
first byte of the instruction following the BSR. When the called
subroutine returns, the instruction will most likely be invalid,
and at the very least will cause unpredictable results.

The set breakpoint command (n!) is used to set the breakpoint on
a particular location.

Examples:

Hl0!
4852!

Copyxight (C) 1984 SD

SET BREAK AT LOCATION 100
SET BREAK AT 4852

8

IDB09 6809 DEBUGGER USER'S MANUAL

EXECUTION COMMANDS

The execution commands are used for proceeding from a breakpoint,
or restarting a program.

COMMAND OPERATION

G Start Realtime Execution (GO)
nG Set P Register and GO
nX Set Breakpoint at n and proceed

The G command is used to start realtime execution from the
current context block (the context block consists of all the
registers displayed by the "?" command). All of the registers
are loaded including the S register and control is transferred to
the user program. Instruction execution begins with the
instruction pointed to by the P register, and execution continues
in real time. If a breakpoint JSR is encountered, IDB will
regain control and give a register dump and enter command mode.

The nG command sets the P register in the context block to n,
then does a G command. If the significance of n is one, a
leading zero byte is assumed.

The nX command is used to continue realtime execution from a
breakpoint. It also sets a new breakpoint at location n.

Copyright (C) 1984 SD 9

IDB09 6809 DEBUGGER USER'S MANUAL

COMMAND SUMMARY

n/
<LF>
n<LF>
<CR>
n<CR>
?
n;A
n;B
n;C
n;D
n;X
n;U
n;Y
n;Z
n;S
n;P
n!
G
nG
nX

Open Location n and Display
Display Next
Deposit and Display Next
Close This Location
Deposit and Close Location
Display Registers, Current Instruction, and Last Opened Location
Set A Register to n
Set B Register to n
Set C Register to n
Set D Register to n
Set X Register to n
Set U Register to n
Set Y Register to n
Set Z Register to n
Set S Register to n
Set P Register to n
Set Breakpoint on Location n
Start Realtime Execution (GO)
Set P Register and GO
Set new breakpoint and GO to location in P register

20pyright (C) 1984 SD 10

