
b8GlGl/b8Gl'1 
flSSEr:1BlER 

V1.4 

USER'S MANUAL 

SOFTWARE DYNAMICS 
2111 W. Crescent. SuiteG,. Anaheim, CA 92801 

SOFlWARE DYNAMICS @ COPVRIGHr 1977 





ASM 1.4 

REFERENCE MANUAL 

7th Printing 

COPYRIGHT (C) 1977 SOFTWARE DYNAMICS 



NOTICE 

This manual describes Software Dynamics' ASM version 1.4 family 
of 680x assemblers. Software Dynamics has carefully checked the 
information given in this manual, and" it is believed to be 
entirely reliable. However, no responsibility is assumed for 
inaccuracies. 

Software Dynamics reserves the right to change specifications 
without notice. 

********************************************************************** 
** This manual describes software which is a proprietary product ** 
** of Software Dynamics (SO). SO software is licensed for use on a ** 
** single copy per computer basis, and is covered by u.S copyright ** 
** laws. Unless a written exception is obtained from SO, the soft- ** 
** ware must be used only on the single computer whose unique, SD- ** 
** assigned serial number matches that for which the software was ** 
** purchased. Copying the software for any purpose other than ** 
** archival storage, or use of the software on other than the as- ** 
** signed serial numbered CPU is strictly prohibited. SO assumes ** 
** no liability regarding the use of the software. ** 
** Certain software programs and datafiles are delivered for use ** 
** in an encrypted format. The content of such programs and data ** 
** are considered to be a trade secret of SO. Attempts to break ** 
** the encryption method, publishing, copying or storage of such ** 
** a program or file in clean text form will be treated as theft of ** 
** a trade secr~t, and prosecuted as such. ** 
** POSSESSION OR USE OF THIS MANUAL OR THE SOFTWARE IT DESCRIBES ** 
** CONSTITUTES AGREEMENT BY THE USER TO THESE TERMS. ** 
********************************************************************** 

This manual and the software it describes are the copyrighted 
property of Software Dynamics. 



ASM REFERENCE MANUAL 6/01/83 

TABLE OF CONTENTS 

INTRODUCTION . . • . . . • • • . . . . . . • . • . • • 1 
ASM -- A SMART ASSEMBLER ON A LITTLE MACHINE • . . . 1 
NOTATION DEFINITION . • • . • . . . 2 
GENERAL DISCUSSION . ••...•. • • . . • • • 3 

SOURCE FILE FORMAT . . . • .. .•. • • • . · 4 
LINE FORMAT . . . • •. .•• . • • • • 5 
LABEL FIELD (OR LF) .•...•.•.. • • • • 6 
COMMAND FIELD (OR CF) ••. .•• • . · 6 
ARGUMENT FIELD (OR AF) • . • . . . • . · 6 
COMMENT FIELD . . • . • • . . . . . . . . · 6 
SOURCE LINE NUMBERS . • . . .. ....•. • • 7 

EXPRESSIONS . . . . . . . . . . 9 
VALUES . . . . .. ..•.....•. • 9 

MANIFEST VALUES . . . . . . . • . . . . . 10 
DECIMAL NUMBERS • •. ... • 10 
BINARY NUMBERS . . . . . . . .. . 11 
OCTAL NUMBERS . • . . . . . . 11 
HEXADECIMAL NUMBERS . • . . . • . . . . 12 
CHARACTER VALUES . ..... . . . . . • . 13 

IMPLICIT VALUES . . . • . . . . . . . . .• . 14 
THE "*" VALUE . . . . ......•• 14 
THE II * I.. VALUE . . • . . . . . . . . . • • . • 14 
SYMBOLS . . . . . • • • . • . 15 

RESERVED SYMBOLS . . . • • . . . • . . 16 
PRE-DEFINED SYMBOLS ... . . • 16 
FORWARD REFERENCES . . . • .. .. 16 

COMPUTATION. . . . . . . • . • ••• 17 
MONADIC OPERATORS . .• ...• . 17 
DYADIC OPERATORS .. ...•. 18 
COMPLEX EXPRESSIONS • • • . • •. .... 23 
OPERATOR HEIRARCHY . . . . . . . . • •• . 23 
PARENTHESES . . .. •.. ••..•. 24 

LINE PROCESSING . . . · . . . 25 

6800/6801 MACHINE INSTRUCTION LINES . . . . . • • . • . 26 
INHERENT MODE OPCODES . . . •• ....••.. 28 
REGISTER-REGISTER MODE . . . . . . . • . 28 
DIRECT MODE . . . . . • . . • . . . . • • • 29 
EXTENDED MODE . . . . . . • • • . • . • 30 
EXTENDED INDIRECT MODE . • . . . . . • . 30 
INDEXED MODE . . . . . . . . . •. .•• 31 
ZERO OFFSET INDEXED MODE . • • • . • . . . . . . . . 31 
8-BIT CONSTANT OFFSET INDEXED MODE . . . • . . . . . 32 
AUTO INCREMENT/DECREMENT INDEXED MODE . . . . . . . 33 
RELAT IVE MODE . . . . . • .• .... :. . 34 
IMMEDIATE MODE . . • . . • • . . .. ... . 34 
OPCODE MNEMONICS RECOGNIZED . • . . .• . 35 

Copyright (C) 1977 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 

6809 MACHINE INSTRUCTION LINES • • . • • •. • 
INHERENT MODE . . • • • 

• • • • • 41 
• • • • • 43 

REGISTER-REGISTER MODE • • • • • • • 
DIRECT MODE • • • • • • 
EXTENDED MODE • . • . • • • 
EXTENDED INDIRECT MODE . . • • 

• • 43 
44 

• • • • • 45 

• 45 
INDEXED MODE • • • • • • • • • • • • • • • • . • 46 
ZERO OFFSET INDEXED MODE • • • • • 
5-, 8-, AND 16-BIT CONSTANT 

• 46 

OFFSET INDEXED MODE . . • • • . • . . . • • 47 
PROGRAM COUNTER RELATIVE (INDEXED) MODE . •. . 48 
ACCUMULATOR OFFSET INDEXED MODE • • • •• ••• 49 
AUTO INCREMENT/DECREMENT INDEXED MODE . • •. . 49 
RELATIVE MODE • . . •• ••• ••.•... 50 
IMMEDIATE MODE . . . . • • • • . • • . 50 
STACK MODE . • . • • .. •.. . 51 
OPCODE MNEMONICS RECOGNIZED . •• .•..••. 52 

DIRECTIVES 

SYMBOL DEFINITION DIRECTIVES . • • , 
EQUATE (EQU) • . • • . . • • . • . 
IMPLICIT EQUATE (EQU) •.•••. 
SET • • • • • • • ~ • • • • • • • • • 

DATA GENERATION DIRECTIVES 
FORM CONSTANT BYTE . . . 
RESERVE MEMORY BYTES . . 
FORM DOUBLE BYTE CONSTANT . . . 
FORM CONSTANT CHARACTERS . • 
FORM FLOATING POINT NUMBERS 
IMPLICIT DATA STATEMENT 
SET LOCATION COUNTER . . 
SET DATA PAGE REGISTER . 

• • . . 58 

• • • . 59 
. • . 59 

• 59 
• • 61 

. . • 63 
· . . . . 63 
· • • • • 64 
· . . . . 65 

• • • • • • 66 
· 68 

69 
• • • • • 71 

· 71 

CONDITIONAL ASSEMBLY DIRECTIVES • . . • • . . . . • 72 
SIMPLE CONDITIONAL ASSEMBLY • • • • 73 

· . . . . 73 
· . . . . 73 

• • • • • • • 74 

ALTERNATIVE ASSEMBLY • . . • • • • . • 
NESTED CONDITIONAL ASSEMBLY . • • • . 
MORE COMPLICATED CONDITIONAL ASSEMBLY 
MULTI-CASE CONDITIONAL ASSEMBLY . . . 
CONDTIONAL ASSEMBLY ON UNDEFINED SYMBOLS 
CONDITIONAL ASSEMBLY ON DEFINED SYMBOLS 

• • . • . 75 
• • • • 76 

• •• • 76 

Copyright (C) 1977 Software Dynamicl 



ASM REFERENCE MANUAL 6/01/83 

FULL DESCRIPTION OF CONDITIONAL ASSEMBLY COMMANDS . . . 77 
THE "IF" DIRECTIVE . • • • • . •• . 79 
CLOSE CONDITIONAL ASSEMBLY BLOCK . • • • . • • • • • 79 
CONDITIONAL ASSEMBLY WITH CHECK . .. ..•.. 79 
IF SYMBOL NOT DEF INED • • . . . .. ....•. 80 
IF SYMBOL DEFINED . . • • . . . . . . . . .• . 80 
THE ELSE DIRECTIVE • • • • . . . . .. • 81 
CONDITIONAL ELSE . . . • . . . • . . . . . • 81 
CASE CONDITIONAL ASSEMBLY . . . . . .. .•.• 82 

SINGLE LINE ITERATIVE ASSEMBLY • 83 

ASSEMBLY CONTROL DIRECTIVES . . . . . . • • • • • • • • 84 
• • • • • • 84 
· . . . . . 85 

TERMINATE SOURCE FILE . • . 
SELECT ASSEMBLY OPTIONS • • • • 
THE OPT STATEMENT . • . 
THE INCLUDE STATEMENT . .• ...• 

· . . . 88 
· . . . . . 88 

LISTING CONTROL AND FORMATTING · . . . . . . . . 90 
PAGE HEADING FORMAT • . . • • . 
LINE LISTING FORMAT . . . •. .. . 
PRINT CONTROL CARDS . . . .. .. . 
TURN LISTING ON/OFF . . • • • . 
SET TITLE AND EJECT PAGE . . . . . . • . 
SET SUBTITLE AND EJECT PAGE . . . . 

. . 91 
• • • • 92 

· . . . . . 93 
• • • • 93 

• • •• 94 
• • • • 95 

SET NAME . . . . . .. .....•.. . . . . . 95 
SPACE LISTING N LINES . . . . . • 
SET LISTING TABS • .. .... 
PRINT SKIPPED RECORDS . . . 
PRINT GENERATED DATA . ... 
PRINT CONDITIONAL ASSEMBLY COMMANDS 

• •• 96 
· . . . . . . . . 96 
· . . . . 97 

• • • • • • • • 97 
. . . . . . . . 98 

OPERATING ASM . . . . . . . • . . 99 
STARTING ASM • • • • . . • • . . . . . . .. .. 99 
OPERATOR INPUT LINES . . • • . . .• .••••. 100 
ERROR MESSAGES . . .. ....... • . 103 
SYMBOL TABLE DUMP FORMAT . . •. ........ 105 
ERROR LINE SUMMARY FORMAT • . . . • . . . . 106 
MEMORY USAGE . . . . . . •. ....•.•..• 106 

APPENDICES 

APPENDIX A -- ASM DIRECTIVES 
WHICH DISALLOW FORWARD REFERENCES • 107 

APPENDIX B ASCII CHARACTER SET . · 108 

APPENDIX C I/O ERROR MESSAGES · 109 

APPENDIX D 680C COMPATIBILITY 
INSTRUCTION SET . . • . . . • • . • . . • • . • • • 110 

Copyright (C) 1977 Software Dynamics 





ASM REFERENCE MANUAL 6/01/83 
SECTION I: INTRODUCTION 

SOFTWARE DYNAMICS 
ASM -- 6800/6809 MICROPROCESSOR ASSEMBLY LANGUAGE 

INTRODUCTION 

ASM A SMART ASSEMBLER ON A LITTLE MACHINE 

ASM is a sophisticated family of assemblers for 6800, 6801 and 
6809 microprocessors, and is intended for operation under the 
SDOS operating system. 

There are four such assemblers: 

ASM6800.680, assembling 6800/6801 code and executing on a 
6800 system 

ASM6800.689, assembling 6800/6801 code and executing on a 
6809 system 

ASM6809.680, assembling 6809 code and executing on a 6800 
system 

ASM6809.689, assembling 6809 code and executing on a 6809 
system 

These assemblers are powerful, highly flexible 
tools. They are fast. Most important, they are 
professionals with the professional user in-mind. 

development 
designed by 

Significant features include: 

--Multi-level conditional assembly. 
unrivalled in the industry. 

--Multi-level INCLUDE files. 

--Extensive listing format control. 

ASM's facilities are 

--Big-assembler computational power due to extensive operator 
set. 

--Big-assembler performance due 
lookup. 

to hash-coded symbol table 

--Symbol table dumps sorted by name and by value; unused symbols 
are flagged. 

--Big-assembler error diagnosis. Readable error messages are 
produced on the listing; error lines are always listed; and a 
special summary at the end of the assembly tells you which 
lines had errors. 

--680C coding style allows code to work on 6800, 6801 or 6809 by 
simply reassembling. 

Copyright (C) 1977 1 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION I: INTRODUCTION 

NOTATION DEFINITION 

When introducing a construct or command, the following notation 
will be used to describe its allowable syntax. 

--Graphic characters (e.g., +, /, -) and symbols printed in upper 
case denote strings of characters which must be present exactly 
as written in the manual. Example: 

,X 
denotes the string ",X". 

--Symbols written in angle brackets denote a class of possible 
inputs. For example, 

<NUMBER> 
denotes any string whioh conforms to ASM's definition of a 
number. Hence, the string 

345 
would qualify. 

--Curly brackets are used to denote that a certain item is 
optional. 

{, xl 
indicates that the string ",X" may occur, but need not. 

Ranges of possibilities of which one must be chosen are denoted 
by listing the alternatives vertically. 

X 
,X 
<EXP'>, X 

indicates that either 
",X" must be present. 
written as 

or 

X 
{<EXP>},X 

{ {< EXP > 1 , } X 

"X",",X", 
Note that 

or an expression followed by 
this could also have been 

--Finally, ellipsis (" ••• ") are used to indicate the possibility 
of indefinite repetition when embedded in text. For example, 

<EXP> { , <EXP> .•. } 
iQdicates that a series of one or more expressions separated by 
commas is acceptable. Ellipsis on a line by itself represents 
some indefinite sequence of source lines. For example: 

line I 

line n 
indicates that some sequence of lines exists between line 1 and 
line n. 

Copyright (C) 1977 2 Software Dynamic 



ASM REFERENCE MANUAL 6/01/83 
SECTION I: INTRODUCTION 

GENERAL DISCUSSION 

All assemblers in the ASM family have all the properties 
described in this manual, unless specifically indicated. For the 
most part, differences between the assemblers are limited to the 
instruction set intended for assembly by ASM. 

This manual assumes that the reader knows the M6800/M6801 and/or 
the M6809 machine instruction set. It is a manual on the use of 
the assembler. It is not, nor is it intended to be, a tutorial 
on the instruction set for these microprocessors. 

To use ASM, the programmer first prepares a "source" dis.k file. 
This can be done by using EDIT or SEDIT under SDOS. Then ASM 
is invoked, and given the name of the source file to be 
assembled, and names of listing and binary object files to be 
produced. 

ASM is a two-pass assembler. That is, the entire source file is 
read twice. On the first pass through the source file, all 
assembly errors are suppressed, and certain operations (like 
producing a listing or binary) are not performed. This pass is 
performed primarily to assign symbols their values. 

At the end of the first pass, all symbols should be defined; ASM 
rewinds the source file, and processes it again. This time it 
produces a listing file and a binary file, according to the 
userls directions. 

Copyright (C) 1977 3 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION II: SOURCE FILE FORMAT 

SOURCE FILE FORMAT 

ASM places very few restrictions on the format of the source 
file. Its only requirements are: 

1) Source lines must be terminated with carriage returns. 

2) Nulls may not be significant characters in the file; they 
will always be ignored. 

3) If the file is divided up into "forms" using 
characters, the form-feeds must immediately 
carriage-return. 

form-feed 
follow a 

All other ASCII characters are legal and will be printed in the 
listing without complaint. Control characters (with the 
exception of tab) will always be printed as 11"11 followed by an 
appropriate letter. For example, control-A will be listed as 
II" A" • 

The tab character is treated somewhat differently. If it appears 
as part of a character string, -it will be listed as ""1"; 
otherwise it will cause one or more blanks to be output, until 
the print carriage is positioned at a tab stop or is past the 
last tab stop. Tabs may be adjusted by the user via the TABS 
directive. 

A form-feed character that does not follow a carriage return will 
always be treated like any other ASCII control character. 

Copyright (C) 1977 4 Software Dynamic~ 



ASM REFERENCE MANUAL 6/01/83 
SECTION II: SOURCE FILE FORMAT 

LINE FORMAT 

ASM has a free-format line syntax. Fields may begin in any 
column and are separated from one another (or "de.limited") by 
blanks or tabs. Each field may be broken into subfields, each 
subfie1d being separated from the next by commas. 

Some consequences of ASM's line syntax are: 

--Blank lines may be freely inserted to format the listirg as 
desired. 

--Comment lines may be specified 
column 1 or with a series of 
comment. Examples: 

either 
blanks, 

with a star ("*II) in 
a semicolon and the 

* THIS IS A COMMENT LINE. THE "*11 IS IN COLUMN 1. 
THIS IS ALSO A COMMENT LINE. 

THIS IS A COMMENT LINE, TOO. 
; ANY NUMBER OF BLANKS CAN PRECEDE 11;". 

--Blank or tab characters not embedded in a string ALWAYS 
terminate a field. In particular, this means that a comma 
should not usually be followed by a blank, as one would 
ordinarily do when typing. Also, this means that blanks may 
not be inserted in the middle of an expression. 

--Consecutive blanks or tabs are treated as a single blank. 

Copyright (C) 1977 5 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION II: SOURCE FILE FORMAT 

A line consists of the following parts, any of which may 
absent. The scanning of a line is always stopped by a 
(semi-colon) character encountered outside a text string. 

be ..... 
I 

1) LABEL FIELD (or LF). The label field, if non-null, must 
begin in the first column of the line. (see "Line Numbers", 
below for exception). This field is generally used to 
specify symbols whose values are to be changed or determined 
by the command given on the same line. If the label field 
begins with an asterisk, the entire line is treated as a 
comment. It will be listed but otherwise ignored. 

2) COMMAND FIELD (or CF). The command field is the second field 
of the line. This field is examined by ASM in order to 
determine how to process the line. If the command field is 
absent, ASM will treat the line as an implicit EQU * if a 
label is present, otherwise the line will be treated as a 
comment. 

3) ARGUMENT FIELD (or AF). The argument field is the third 
field of the line. It contains all arguments needed by the 
command. For an argument field to be present, there must 
also be a command field. Example: 

LDAA AF 
I I 
I > ARGUMENT FIELD 
> COMMAND FIELD 

4) COMMENT FIELD. Any portion of the line which is not scanned 
for a given command, or which is separated from the rest of 
the line by a semicolon, is treated as commentary. It is 
listed but otherwise ignored (but note that this, is not the 
case when the semicolon is part of or delimits a string. See 
discussions of FCC, TITLE directives.) 

Copyright (C) 1977 6 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION II: SOURCE FILE FORMAT 

SOURCE LINE NUMBERS 

ASM can accept files containing line numbers at 
each line, as long as the user alerts ASM 
directive. 

the beginning of 
via the "WITH" 

If line 
modified 
fashion. 

numbers are present in the file, the line format is 
somewhat. Line numbers are handled in the following 

1) Any string of zero or more digits or periods which starts 
a line will be listed but otherwise ignored. 

2) If the next character is a blank or a tab, it will also 
be ignored. 

3) The next character in the file will be the first 
significant character of the line. 

4) No error checking is done with respect to line numbers. 

Copyright (C) 1977 7 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION II: SOURCE FILE FORMAT 

Examples: (Note that <TAB> represents the ASCII tab character. 
Assume that ASM has been directed to expect line numbers.) 

409.17 <TAB> LABEL <TAB> LDAA <TAB> FROG 
\----------/ \---/ \--/ \--/ 

LINE # LF CF AF 

409.l7LABEL <TAB> LDAA <TAB> FROG 
\----/\---/ \--/ \--/ 

LN # LF CF AF 

Because of the definition of the line number format, rather 
unexpected things can happen: 

409.17 <TAB> LDAA <TAB> FROG 
\----------/ \--/ \--/ 

LINE # LF CF 

In the above ~xample, the LDAA is erroneously treated as a label. 
The prpper way to enter the line is: 

409.17 <TAB> <TAB> LDAA <TAB> FROG 
\----------/ I \--/ \--/ 

LINE # I CF AF 
(NO LF) 

Note that the line number can be absent: 

<TAB> LABEL <TAB> LDAA <TAB> FROG 
\---/ \---/ \--/ \--/ 

LN # LF CF AF 

The moral is, be careful with line numbers. 

Copyright (C) 1977 8 Software Dynamic~ 



ASM REFERENCE MANUAL 6/01/83 
SECTION III: EXPRESSIONS 

EXPRESSIONS 

ASM provides the user with the 
computations at assembly 
represents a significant step 
Motorola-standard assemblers. 
as well as parenthetical 
subexpressions. 

ability 
time. 

beyond 
Many 

and 

to perform sophisticated 
ASM expression handling 

the capabilities provided by 
more operators are handled, 

heirarchical grouping of 

These extensions do not represent a burned bridge between ASM and 
Motorola standard assemblers; in fact, ASM can be directed via 
the "WITH" command to supress heirarchical considerations and 
evaluate operators from left to right; thus sources currently in 
development using Motorola-standard assemblers can be shifted to 
ASM without difficulty. 

VALUES 

Numeric values can be specified in expressions in two ways: 
manifestly and implicitly. All values share certain attributes: 

--They are all sixteen-bit quantities. 

--They are usually considered as two's complement signed numbers, 
where the most-significant bit is the sign of the number: 
positive if reset, negative if set. 

--Certain operators treat the values as 16-bit unsigned 
quantities, in particular the multiply and divide group. 

:opyright (C) 1977 9 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION III: EXPRESSIONS 

l~ANIFEST VALUES 

IIManifest values" are those values which are entirely 
self-defining; that is, the text of the manifest value completely 
specifies the value to be used. This section describes the 
various manifest constants and their variations. 

DECIMAL NUMBERS 

The simplest manifest value 
represented by a string of 
notation. 

<DIGIT> { <DIGIT> ••• } 

is a 
decimal 

decimal number. The value is 
digits, in ordinary base-10 

If the value specified exceeds 65535, IIOverflow" is reported. If 
a letter is detected in the middle of a number, "Illegal Digit" 
is reported. 

Examples: 

346 
000443 
00000001 
10000000 
l139A4 

Copyright (C) 1977 

(Many Leading Zeroes is OK) 
(But this is too big "Overflow" is reported) 
(Also illegal -- bad digit) 

10 Software Dynamic 



ASM REFERENCE MANUAL 6/01/83 
SECTION III: EXPRESSIONS 

BINARY NUMBERS 

Numbers may be specified in bases other than base ten. Binary 
(base two) numbers are represented as follows: 

% <B-DIGIT> { <B-DIGIT> ... } 
<B-DIGIT> { <B-DIGIT> ... } B 

<B-DIGIT> must be either 10 1 or Ill. If a digit outside this 
range is seen, "Illega1 Digit" is reported. If the assembled 
value exceeds 65535, "Overf10w" is reported. 

Examples: 

%10110 
10110B 
%111000111000111000 
0102l0B 

(Binary repesentation of 22 base 10) 
(Same thing using suffixed form) 
(Too big -- causes "overflow") 
(Illegal -- "2" is not a binary digit) 

Lower case qualifiers are also accepted: 

%10llb (Same as %10llB) 

OCTAL NUMBERS 

Numbers may be specified in base eight, "octal notation." Such 
numbers have the form: 

@ <O-DIGIT> { <a-DIGIT> ... } 
<a-DIGIT> { <a-DIGIT> } 0 (The letter "oh") 
<a-DIGIT> { <O-DIGIT> •.. } Q 

<a-DIGIT> may be any of the digits "0" through "7"; if "8" or "9" 
are seen, II Illegal Digit" is reported. If the yalue exceeds 
65535, "Overflow" is reported. 

Examples: 

@26 
260 
26Q 
@759 
@3777777 

(Octal representation of 22, base ten) 
(The same, using suffix form) 
(Alternate suffix form) 
(Illegal -- 19 1 is not an octal digit) 
(Too big -- loverf10w" is reported) 

Note that lower case qualifiers are also accepted: 

026q 
730 

Copyright (C) 1977 11 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION III: EXPRESSIONS 

HEXADECIMAL NUMBERS 

Numbers may be specified in base 16, so-called "hexadecimal 
notation." Each digit represents a number from 0 to 15; the 
digits 10 through 15 are represented by the letters "A" through 
"F". There are two forms: 

$ <HEXDIGIT> { <HEXDIGIT> .•. } 
<DIGIT> { <HEXDIGIT> •.. } H 

A suffix-form hexadecimal value MAY NOT begin with one of the hex 
digits "A" through "F". Numbers whose first significant digit is 
"A" through "F" must have a leading zero (see examples). 

If a letter that is not between "A" and 
Digit" is reported. If the value exceeds 
reported. 

"F" is seen, "Illegal 
$FFFF, "Overflow" is 

Examples: 

$16 
16H 
0AEH 
AEH 
$EG 
$FFFE3 

(Hex representation of 22, base 10) 
(Suffix form of same number) 
(Suffix form of $AE) 
(Invalid this is a symbol) 
(Invalid "G" is not a hex digit) 
(Invalid too big for 16 bits. Overflow reported) 

Lower case digits and qualifiers are accepted: 

0aeh 
$f7f 

Copyright (C) 1977 12 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION III: EXPRESSIONS 

CHARACTER VALUES 

A value may be specified in terms of the ASCII code of an input 
character. Such values have the following form: 

, <CHARACTER> 

The "'" is a single quote character, ASCII $27. <CHARACTER> may 
be any character except carriage-return (subject to the 
restrictions mentioned in the section on "Source File Format"). 
If the character is a tab, it will be listed as 11 .... 1" for improved 
readability; hence the only time one will see "'" followed by a 
blank in a listing is when the quoted character actually is a 
blank. 

The value used will be the 7-bit 
with zeroes extended to fill the 9 
value. 

ASCII value of the character, 
most-significant bits of the 

Examples: 

'A 

' .... 1 
'<CR> 

Copyright (C) 1977 

(Specifies the value 65, base 10) 
(Specifies the value 32, i.e. quoted blank) 
(Specifies the value 9) 
(Invalid -- "illegal string" is reported) 

13 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION III: EXPRESSIONS 

IMPLICIT VALUES 

Obviously, manifest values would not be very 
themselves. An important feature of any assembler is 
to represent values symbolically. The user thus gains 
to manipulate values without having to know what 
values are. 

THE "*" VALUE 

useful by 
the ability 
the ability 
the actual 

ASM provides a special kind of implicit value -- the address that 
the next byte stored into memory will occupy. This value is 
called the LOCATION COUNTER. Whenever a star ("*") takes the 
place of a value in an expression, ASM substitutes the current 
value of the location counter. This value can be used like any 
other valuei it is never a forward reference. At the beginning 
of each pass, "*" has the value zero. 

"*" does not neccessarily remain the same throughout the 
processing of a statement (for example, see FDB directive). But 
on most statements, particularly all machine language 
instructions, it remains constant until all expressions on that 
line have been evaluated. 

THE 1'1 * 1 II VALUE 

ASM for 6809 provides a second type of instruction counter, the 
location of the start of the next instruction. Whenever the 
star-apostrophe appears ("*1") within an instruction operand, it 
will yield the value of the following instruction's opcode byte. 
If the star-apostrophe appears in a non-instruction line, its 
value is identical with star ("*"). 

Examples: 

A 

FOB 
#*' 
SET 

*' 
*1 

iSame as * 
:Same as * 
iSame as * 

The reason for this special implicit value is it represents the 
PC (program counter) value that is used in PC relative addressing 
modes. 

Example: 

LOA QQQ_* I, PC :Relative reference to loc QQQ 

Copyright (C) 1977 14 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION III: EXPRESSIONS 

SYMBOLS 

Symbols in ASM consist of a letter, a colon (":") or a period 
(".II), followed by a string of letters, digits, colons, periods, 
dollar signs ("$"), percent signs ("%") or at signs ("@"). A 
symbol may be of any length; however only the first thirty-two 
are used to distinguish one symbol from another. 

Lower-case letters which appear in symbols are considered by ASM 
to be the same character as their upper-case equivalent. They 
will appear in lower case on the listing, but will match 
upper-case versions of the same letters. 

The following are symbols: 

QRS 
qrs (The same as QRS -- lower-case matches upper-case) 
L34 
A 
.BEGIN.WITH.DOT.LONGER.THAN.THIRTY 
.BEGIN.WITH. DOT. LONGER. THAN. THIRTY. TWO 

(ASM treats the last two as the same symbol) 
.BEGIN.WITH. DOT. LONGER. THAN. FIFTEEN 

(This symbol is different from both the above) 

The following are NOT symbols: 

$DOLLAR (Does not begin with letter, colon or period) 

Copyright (C) 1977 15 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION III: EXPRESSIONS 

RESERVED SYMBOLS 

ASM has no "reserved symbols", however, some symbols have special 
interpretation in certain contexts. For 6800/6801 ASM, these 
symbols are nAil, "B", "D", "S", and "X". For 6809 ASM the 
symbols "A", "B", liD", "X", "Y", "S", "U", "CC", "DP", "PC" and 
"PCR" can have special interpretations. (See "Machine 
Instruction Lines" for details.) 

PRE-DEFINED SYMBOLS 

ASM has three pre-defined symbols: 

M6800 
M6801 
M6809 

The purpose of these symbols is to support the 680C "concept", 
permitting conditional assembly dependent on the target CPU. For 
more information, see "Appendix D". 

For the ASM6800 with 6801 option disabled (no use of WITH M680l 
directive), the symbol M6800 has the value 1, and M680l and M6809 
have the value 0. For ASM6800 with 6801 option enabled (WITH 
M680l directive used), the symbol M680l has the value 1 and M6800 
and M6809 have the value 0. ASM6809 has M6809 equal to 1 with 
M6800 and M680l equal to 0. 

FORWARD REFERENCES 

A symbol may with some restrictions ,be used before it is defined. 
Such a use is called a FORWARD REFERENCE. In general, a forward 
reference may be used in any context that will allow ASM to 
allocate the same number of bytes at the same locations in pass 
one and pass two. 

See Appendix A for a list of ASM directives which do not allow 
forward references. 

Copyright (C) 1977 16 Software Dynamic: 



ASM REFERENCE MANUAL 6/01/83 
SECTION III: EXPRESSIONS 

COMPUTATION 

Manifest and implicit values can be combined and operated upon at 
assembly time to produce new values. This is done by means of 
operators. ASM provides an extensive range of computational 
functions. These functions are divided into two categories: 
Monadic operators, which operate on one value to produce a 
result; and Dyadic Operators, which combine two values to produce 
a third. 

MONADIC OPERATORS 

+<A> 
Monadic plus does nothing. Its usual use is for clarity. 

+1 ==> 1 
+0 ==> 0 

-<A> 
Monadic minus computes the two's complement of its argument. 

-1 ==> $FFFF 
-0 ==> 0 

+\<A> 
Monadic backslash computes the one's complement of its argument. 

\1 ==> $FFFE 
\0 ==> $FFFF 

&<A> 
Monadic ampersand computes the logical 
ASM considers any zero or negative value 
any positive non-zero value is "true". 

&1 ==> 0 
&0 ==> 1 
&17 ==> 0 
&(-1) ==> 1 

Copyright (C) 1977 17 

inverse of its argument. 
to be logically ttfalse"; 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION III: EXPRESSIONS 

DYADIC OPERATORS 

<A>+<B> 
Dyadic plus computes the arithmetic sum of its two arguments. No 
check is made for overflow. 

3+2 ==> 5 
$FA00+$100 ==> $FB00 
$105+$FFFF ==> $104 {No overflow is reported} 

<A>-<B> 
Dyadic minus computes the two's complement arithmetic difference 
of its arguments. No overflow check is made. 

3-2 ==> 1 
$FA00-$100 ==> $F900 
$105-$FFFF ==> $106 

<A>*<B> 
Dyadic star multiplies its arguments together as sixteen-bit 
unsigned quantities. If the result cannot be represented as a 
sixteen bit unsigned number, "Overflow" is reported. 

3*2 ==> 6 
$7000*2 ==> $E000 {No overflow} 

{Overflow} $FE00*2 ==> $FC00 

<A>/<B> 
Slash computes the quotient 
are treated as sixteen-bit, 
"Overflow" is reported, and 

3/2 ==> 
307/5 ==> 
$FE00/$100 ==> 
$170C/0 ==> 

Copyright {C} 1977 

of <A> divided by <B>. The arguments 
unsigned quantities. If <B> is zero, 
the result is zero. 

1 {Integer division} 
61 
$FE 
o {Overflow} 

18 Software Dynamic 



ASM REFERENCE MANUAL 6/01/83 
SECTION III: EXPRESSIONS 

<A>//<B> 
Doubleslash computes the Covered Quotient of <A> and <B>. Covered 
Quotient is defined as «A>+<B>-l)/<B>. This operator is useful 
in computing the number of <B>-byte units needed to hold <A> 
bytes. For example, if PROGSIZE is the number of bytes in a 
program, and SECTSIZE is the number of bytes in a disk sector, 
PROGSIZE//SECTSIZE is the number of disk sectors required to 
store that program. 

3//2 
307//5 
$FE00//$100 
$170C//0 
$FF03//$100 

<A>\<B> 

==> 
==> 
==> 
==> 
==> 

Dyadic backs lash computes 
3\2 ==> 
307\5 ==> 
$FE00\$100 ==> 
$170C\0 ==> 
$FF03\$l00 ==> 

<A>##<B> 

2 
62 
$FE 
o 
$100 

(Overflow) 
(Note that this works even 
though $FF03+$100-l exceeds 
16 bits) 

the remainder of <A> divided by <B>. 
1 
2 
o 
o (Overflow) 
3 

Doublehash performs a logical-shift operation. If <B> is 
positive, the result is <A> shifted left <B> bit places, with 
zeroes shifted into the least-significant bits. If <B> is 
negative, the result is <A> shifted right <B> bit places, with 
zeroes shifted into the most-significant bits. If <B> is zero, 
the result is <A>. 

Bang 

3##2 
$FE##8 
$FE00##-8 
12345##16 

<A>1<B> 
computes the 
211 ==> 
014 ==> 
712 ==> 

Copyright (C) 1977 

==> 
==> 
==> 
==> 

bitwise 
3 
4 
7 

$C 
$FE00 
$FE 
o 

logical-inclusive-or of its arguments. 

19 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION III: EXPRESSIONS 

<A>&<B> 
Dyadic ampersand 
arguments. 

2&1 ==> 
0&4 ==> 
7&2 ==> 

<A>ll<B> 

computes 

o 
o 
2 

the -bitwise logical-and of its 

Doublebang computes the 
arguments. It is defined 

bitwise logical-exclusive-or 
as «A>&\<B»I{<B>&\<A». 

of its 

2111 ==> 3 
0114 ==> 4 
7112 ==> 5 

<A>=<B> 
Equal compares its arguments and returns 1 if they are equal, 0 
otherwise. 

3=3 ==> 1 
3=4 ==> 0 

<A>#<B> 
Hash compares its arguments and returns 0 if they are equal, 1 
otherwise. 

3#3 ==> 0 
3#4 ==> 1 

Copyright (C) 1977 20 Software Dynamic 



ASM REFERENCE MANUAL 6/01/83 
SECTION III: EXPRESSIONS 

<A> > <B> 
Greater compares 
left argument is 

its arguments as signed numbers; returns 1 if 
greater than the right argument, 0 otherwise. 

3>3 ==> 
3>4 ==> 
4>3 ==> 
$FFFE>0 ==> 
0>$FFFE ==> 

(Note that $FFFE 

<A> >= <B> 
<A> => <B> 

o 
o 
1 
o 
1 

is interpreted here as -2.) 

Greater-equal is like Greater, but returns 1 if <A> is greater 
than or equal to <B>. 

3>=3 ==> 1 
3>=4 ==> 0 
4>=3 ==> 1 
$FFFE>=0 ==> 0 
0>=$FFFE ==> 1 

($FFFE is interpreted here as -2.) 

<A> < <B> 
Less is like Greater, but returns 1 if <A> is less than <B>, 0 
otherwise. 

3<3 ==> 
3<4 ==> 
4<3 ==> 
$FFFE<0 ==> 
0<$FFFE ==> 

($FFFE is interpreted here 

<A> <= <B> 
<A> =< <B> 

o 
1 
o 
1 
o 

as -2.) 

Less-equal is like Greater, but returns 1 if <A> is less than or 
equal to <B>, 0 otherwise. 

3<=3 ==> 1 
3<=4 ==> 1 
4<=3 ==> 0 
$FFFE<=0 ==> 1 
0<=$FFFE ==> 0 

($FFFE is interpreted here as -2.) 

Copyright (C) 1977 21 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION III: EXPRESSIONS 

<A> » <B> 
Logical-greater compares its arguments as UNSIGNED 
returns I if <A> is greater than <B>, otherwise 0. 

3»3 ==> 0 
3»4 ==> 0 
4»3 ==> I 
$FFFE»0 ==> I 
0»$FFFE ==> 0 

($FFFE is interpreted here as 65534.) 

<A> >/ <B> 

numbers; it 

Logical-greater-equal is like Logical-greater, but returns I if 
<A> is greater than or equal to <B>, 0 otherwise. 

3>/3 ==> I 
3>/4 ==> 0 
4>/3 ==> I 
$FFFE>/0 ==> I 
0>/$FFFE ==> 0 

($FFFE is interpreted here as 65534.) 

<A> « <B> 
Logical-less is like Logical-greater, but returns I if <A> is 
less than <B>, otherwise 0. 

3«3 ==> 0 
3«4 ==> I 
4«3 ==> 0 
$FFFE«0 ==> 0 
0«$FFFE ==> 1 

($FFFE is interpreted here as 65534.) 

<A> \< <B> 
Logical-Iess-equal is like Logical-greater, but returns I if <A> 
is less than or equal to <B>, otherwise 0. 

3\<3 ==> I 
3\<4 ==> I 
4\<3 ==> 0 
$FFFE\<0 ==> 0 
0\<$FFFE ==> I 

($FFFE is interpreted here as 65534.) 

Copyright (C) 1977 22 Software Dynami< 



ASM REFERENCE MANUAL 6/01/83 
SECTION III: EXPRESSIONS 

COMPLEX EXPRESSIONS 

ASM allows the user to create complex expressions involving many 
operators. In such expressions, the problem arises of order of 
computation. ASM provides two methods of specifying this order. 

OPERATOR HIERARCHY 

Unless otherwise instructed (via the "WITH" directive or the use 
of parentheses), ASM evaluates expressions using an 
operator-precedence algorithm; the order of evaluation, though 
generally left-to-right, can be modified according to which 
operators are used. In order to determine whether an operator 
gets to be evaluated, ASM looks at the operators which follow 
that operator in the expression. If the next operator gets to go 
first, ASM performs that operator and uses the result as the 
right argument to this operator -- but not before checking the 
operator-after-next, and so on. The ordering decision is made as 
follows: 

1) The first operators performed will be monadic operators, from 
right to left. 

--SYM <==> -(-SYM) 
-\4 <==> -(\4). 

2) The next operator performed will be double-hash (shift). 
A##-3 <==> A##(-3) 

3) The next operators performed will be *, /, // and \, going 
from left to right across the expression. 

A*B/5 <==> (A*B)/5 
A/5##4 <==> A/(5##4) 
A/B*2 <==> (A/B)*2 

4) The next operators performed will be dyadic + and again 
from left to right. 

A+3-B <==> (A+3)-B 
A-3+B <==> (A-3)+B 
A-B-C <==> (A-B)-C 
A-B*4 <==> A-(B*4) 

5) The next operators evaluated will be the relational operators: 
= , # , <, < = , = < , >, > = , = >, < <, \ <, > >, and > / • 

3*A<B <==> (3*A) <B 
4##2«5/A+2 <==> (4##2)«({5/A)+2) 
B>3*A <==> B>(3*A) 
A<B<C <==> (A<B)<C 

6) Last come the logical operators: 1, &, and 11. 
A<B&C=D+2 <==> (A<B)&{C={D+2» 
A>B1C#D11D<0 <==> ({A>B)1{C#D»1J(D<0) 

Copyright (C) 1977 23 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION III: EXPRESSIONS 

PARENTHESES 

As implied in the above descriptions, parentheses can be used to 
specify explicitly the order of evaluation of a given expression. 
Parentheses must always be matched; that is, for every left 
parenthesis there must be one and only one corresspondng right 
parenthesis. A failure here will result in a "Syntax Error" for 
the line containing the expression. 

Parentheses may be nested to any level. 

They may be used even if WITH MCM has been specified. 

Copyright (C) 1977 24 Software Dynamic 



ASM REFERENCE MANUAL 6/01/83 
SECTION IV: LINE PROCESSING 

LINE PROCESSING 

ASM follows these rules when processing a line: 

1) If the first character of the Label field is a star ("*"), the 
line is treated as a comment. It is listed but otherwise 
ignored. 

* 
* 

This is a comment 
Ignore me. 

2) If the command field consists of a single symbol it is looked 
up in the list of opcodes (see sections on "Machine 
Instruction Lines" for lists of opcodes accepted). If found, 
the line is treated as a machine instruction line. 

LOX 3 
TSX 
CLV 
PUL A 

All of these 
are machine instruction lines 
by rule (2). 

3) If the command field is not an opcode symbol, then the symbol 
is checked in the list of ASM directives. If found, the line 
is treated as a directive line. 

J EQU 17 This is a directive by rule (4) 
PAGE So is this 
ORG $47 As is this 

4) Any line which does not qualify under rules (2), or (3) is 
processed as an implicit data statement (see below). 

LDAC #34 This is an implicit data statement 
3,4*17 So is this 
(TSX) So is this 

Copyright (C) 1977 25 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION V: 6800/6801 MACHINE INSTRUCTION LINES 

6800/6801 MACHINE INSTRUCTION LINES 

The major function of an assembler is the translation of 
symbolically specified machine instructions into a form directly 
understandable by the target computer. This section describes 
instructions translated by ASM6800, and presumes knowledge of the 
6800/6801 instruction set, which can be found in the Motorola 
MC6801 Programming Manual. ASM is fully, compatible with 'the 
Motorola 6800 standard assembler syntax, with several useful 
extensions. 

--6801 opcodes are assembled if enabled by use of a WITH M680l 
directive. 6800 equivalent instructions are assembled for 6801 
instructions if a WITH M680l directive is not given. 

--Many 6809 assembly mnemonics and address modes are supported. 
This considerably simplifies construction of programs that will 
run on either processor, depending on which assembler is used. 
See section on M680C. 

--Special set of opcodes to allow coding to work on 6800, 6801 
and 6809. These opcodes are called 680C opcodes (See Appendix 
D). Many "convenience" instructions are included in 680C, 
which act as logical extensions to the '00/'09 instruction set, 
such as double register shifts, 16 bit memory increments, and 
decrements, etc. 

--Automatic long branching. Short branches that are out-of-range 
will be assembled as a branch on complementary conditions 
around a JMP to the destination if the destination expression 
contains no forward references. 

--Multiple labels are allowed, separated by commas. All labels 
present on an opcode line will be equated to the location 
counter, "*", before the rest of the line is processed. 

--Two new inherent-addressing mode opcodes are defined, SKI and 
SK2 (Skip 1 and Skip 2). These opcodes can be used to cause 
the CPU to skip one or two bytes before executing the next 
instruction, changing only the condition code flags. These 
opcodes will work on all standard 6800/6801 CPUSi they are 
really the opcode bytes of Bit A, Immediate and Compare X, 
Immediate instructions. Note that use of these instructions is 
NOT generally portable from 6800 to 6809 and vice versa. 

--A, B, D, S, and X may be used as ordinary symbols as long as 
they are distinguishable from their use as register 
designators. 

Copyright (C) 1977 26 Software Dynamic, 



ASM REFERENCE MANUAL 6/01/83 
SECTION V: 6800/6801 MACHINE INSTRUCTION LINES 

ASM processes each machine instruction line as follows: all 
labels are first equated to the location counter, '*'i then the 
opcode specified is inspected tq determine which operand 
addressing modes are legal. Finally, the operand field is 
scanned for an appropriate addressing mode specification. The 
opcode is combined with the specified addressing mode to generate 
the object code corresponding to the desired instruction. 

Many opcodes (LOA, STAA STX, SUBD, etc.) include a register 
specification (A, B, 0, X, or S) as the last letter of the opcode 
mnemonic. 

There are several operand modes for 6800/6801 instructions. A 
given instruction that is recognized by ASM will have one or more 
modes as legal forms (some opcodes require no operand 
specification whatsoever). The syntax of each of these modes is 
discussed in the following pages. A few examples of each mode 
will be given. A table of instruction mnemonics and their modes 
can be found at the end of this section. 

Throughout this section, the notation " <expr> "means any 
expression, "EA=" means Effective Address, and "(" <expr> ")" to 
the right of "EA=" means lithe contents of <expr>". 

Copyright (C) 1977 27 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION V: 6800/6801 MACHINE INSTRUCTION LINES 

INHERENT MODE 

Inherent Mode opcodes need no 
argument field is ignored. For 
be left blank. 

operand specifications. The 
portability purposes, it should 

Syntax: 

Examples: 

<opcode> 

RTI 
DES 
CLRA 
PSHD 

REGISTER-REGISTER MODE 

:Return from Interrupt 
:S:=S-l 
:A-Reg:;::0 
:Pushes A and B 

Register-Register Mode addresses source and destination 
registers. This mode is used only for TFR A,B and TFR B,A 6809 
equivalent instructions. See M680C description. 

Syntax: 
<opcode> <reg>, <reg> 

Examples: 

TFR A,B 
Tfr b,a 

Copyright (C) 1977 28 Software Dynamic 



ASM REFERENCE MANUAL 6/01/83 
SECTION V: 6800/6801 MACHINE INSTRUCTION LINES 

DIRECT MODE 

Direct Mode is used to address a location in the range $0000 
through $00FF. The 8 bits of operand embedded in the instruction 
form the lower 8-bits of the 16-bit memory reference address 
while the upper 8-bits of the address are implicitly zero. If an 
instruction operand address evaluates within the range $0000 to 
$00FF, ASM automatically generates Direct Mode memory reference 
if appropriate for that instruction. 

Direct references may be forced with a n<" prefix. Use of this 
prefix prevents any default to the Extended Mode addressing. An 
error is generated if the effective address does not map into the 
range $0000 to $00FF. Use of the n<" prefix is illegal with 
opcodes that only allow extended mode addressing. 

Syntax: 

Example: 

A 
B 

Copyright (C) 1977 

<opcode> 

EQU 
EQU 

SUBB 
INC 
ADDB 
LDA 
ROR 

$10 
$123 

A 
B 
<A 
<B 
<A 

{<prefix>}<exp> 

iGenerated: 
iDirect reference to loc $10 
iExtended reference to loc $123 
iDirect reference to loc $10 
iDirect ref to loc $123 WITH ERROR 
iExtended reference WITH ERROR 

29 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION V: 6800/6801 MACHINE INSTRUCTION LINES 

EXTENDED MODE 

Extended mode addresses memory with a l6-bit address embedded in 
the instruction. Any location in the memory space can be 
referenced with this mode. Extended mode may be forced by use of 
the ">" prefix. Certain 6800/6801 instructions can only use 
Extended modes to directly reference memory. Instructions whose 
operand evaluates to an address in the range $0100 to $FFFF, or 
which are extended-mode only instructions are assembled with an 
extended address mode. 

Syntax: 

Example: 

AA 
BB 

<opcode> 

EQU 
EQU 
LDAA 

STA 
ROR 

EXTENDED INDIRECT MODE 

$10 
$1234 
>AA 

BB 
AA 

{<prefix>}<exp> 

i">" was required to produce 
iextended mode addressing 
iExtended addressing 
iAlways generates extended mode 

Extended Indirect Mode addresses memory 
embedded in the instruction to retrieve 
address. This mode is indicated by "[" 
operand field. 

using 
the 

"]" 

a l6-bit address 
effective l6-bit 

surrounding the 

Syntax: 

<opcode> [<exp>] 

Whenever indirect mode is encountered, ASM6800 substitutes the 
following: 

LDX 
<opcode> 

<exp> 
0,X 

Note that use of indirect addressing destroys the contents of the 
X register. This is an extension of M6800 assembly code and is 
supported for M680C. 

Example: 

LDD [PNTR] iLoad $1234 from loc QQ 

PNTR FDB QQ 

QQ $1234 

Copyright (C) 1977 30 Software Dynamic: 



ASM REFERENCE MANUAL 6/01/83 
SECTION V: 6800/6801 MACHINE INSTRUCTION LINES 

INDEXED MODE 

Indexed mode addressing forms an effective address equal to the 
sum of an offset value and the contents of an index register. 

There are several types of indexing that may be specified to ASM: 

Zero offset 
8-bit offset 
Pre-decrement 
Post-increment 

All the above permit indirect addressing, specified by enclosing 
the operand field in "[" "J" S • 

Indexed Mode always involves one of the following inde~ register 
notations: 

General syntax: 
<opcode> 

,X 
,S 

Index register X 
System stack pointer 

([}{{--}{<expr>},<indexreg>{++}(J} 

Whenever indirect mode is encountered, ASM6800 substitutes the 
following: 

LDX 
<opcode> 

<expr> 
0,X 

Note that use of indirect addressing destroys the contents of the 
X register. If the index register specified is S, then a TSX 
instruction is inserted, and the instruction treated as though ,X 
had been written instead. 

ZERO OFFSET INDEXED MODE 

This mode is also known as a register indirect addressing. The 
effective address is equal to the contents of the specified index 
register. This form generates a zero offset byte for a 
conventional 8 bit constant offset indexed mode. 

Index Registers: X, S 

Syntax: 

Examples: 

~opyright (C) 1977 

<opcode> 
<opcode> 

LDA 
LDB 

,X 
[,SJ 

,<reg> 
[,<reg>J 

iEA = (X) 

i(register indirect) 
i(indirect register indirect) 

i EA. = (( S + 1 ) ) 

31 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION V: 6800/6801 MACHINE INSTRUCTION LINES 

8-BIT CONSTANT OFFSET INDEXED MODE 

Constant offset indexing forms an effective address equal to a 
constant plus the contents of an index register. The constant is 
embedded in the instruction. The constant must be in the range 0 
to 255. 

Index Registers: X, S 

Syntax: 

Examples: 

)pyright (C) 1977 

<opcode> 
<opcode> 

SUBA 
DEC 
ADDD 

2,X 
[61,5J 
[CAT,XJ 

<expr>,<reg> 
[<expr>,<reg>J 

;EA = 
iEA = 
;EA = 

32 

;constant offset 
;indirect constant offset 

(X)+5 
«5)+1+61) 
( (X)+CAT) 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION V: 6800/6801 MACHINE INSTRUCTION LINES 

AUTO INCREMENT/DECREMENT INDEXED MODE 

Index registers on the M6809 may be automatically stepped by +1, 
+2, -1 and -2 bytes. ASM6800 simulates this for M680C. 
Increments are done AFTER the memory reference and hence 
annotated FOLLOWING the index register (i.e., X++); the effective 
address is the original contents of the index register. 
Decrements are done PRIOR to the memory reference and hence 
annotated PRECEEDING the index register {i.e., --Y)i the 
effective address is the contents of the index register after it 
is decremented. Indirection is permitted, but only with the 
double stepped forms C++, --). 

Index Registers: X, S 

Syntax: 

<opcode> 
<opcode> 
<opcode> 
<opcode> 
<opcode> 
<opcode> 

,<reg>+ 
, <reg>++ 
,-<reg> 
,--<reg> 
[,<reg>++] 
[,--<reg>] 

ASM6800 substitutes for each of the above: 

<opcode> 
IN<reg> 

<opcode> 
IN<reg> 

IN<reg> 
DE<reg> 
<opcode> 

DE<reg> 
DE<reg> 
<opcode> 

, <reg> i <reg>+ 

,<reg> <reg>++ 

,<reg> i-<reg> 

i--<reg> 

,<reg> 

Indirect mode is treated as described previously. 

Examples: 

Copyright (C) 1977 

LDA 
STA 
LDD 
STX 
LDX 

,X+ 
, -S 
,X++ 
, -y 
[,S++] 

iEA={X) \ X=X+l 
iY=Y-l \ EA={Y) 
iEA=(X) \ X=X+2 
iY=Y-2 \ EA={Y) 
iEA=«Y)+2) \ Y=Y+2 

33 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION V: 6800/6801 MACHINE INSTRUCTION LINES 

RELATIVE MODE 

The branch (Bxx and LBxx) class of instructions use this mode. 
There are two offset sizes used in relative mode, 8 and 16 bits. 
The 8 bit form is invoked with instruction mnemonics of the form 
"BxX" and the 16 bit with ILBxx". The effective address is equal 
to the address of the next instruction plus the value of the 
(sign-extended) constant offset embedded in the instruction. The 
"LBxx" form generates 2 M6800 instructions: a conditional branch 
on the opposite condition around a JMP extended to the 
destination. 

Syntax: 

Bxx 
LBxx 

Examples: 

<expr> 
<expr> 

BRA 
LBCC 

BLIMP 
ZEPPELIN 

NOTE: If the 8-bit form (IBxX") is requested and the <expr> 
expression is evaluable on Pass 1 to a destination that 
is out of range, ASM will substitute the l6-bit 
(IILBxX") form. 

IMMEDIATE MODE 

Many 6800 instructions use a constant embedded in the instruction 
rather than an operand in a memory location separate from the 
instruction. This is designated "immediate" mode. The size of 
an immediate operand is determined by the instruction, not the 
operand; some instructions use 16 bit immediate operands while 
others use 8 bit immediate operands. The notation "#<expr>" is 
used to specify an immediate operand; if only 8 bits are required 
by the instruction, the expression value must be in the range 
-128 to 255 or an error will result. 

Syntax: 

Examples: 

Copyright (C) 1977 

<opcode> 

ADDA 
SUBD 
LDS 

SUBB 
SBCA 

#<expr> 

#1 
#$4071 
#BUFFER+2 

#BUFFER\256 
#BUFFER/256 

34 

; adds 1 to A register 

same general effect as 
SUBD #BUFFER 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION V: 6800/6801 MACHINE INSTRUCTION LINES 

OPCODE MNEMONICS RECOGNIZED BY ASM6800 

This table lists all the opcode mnemonics recognized by ASM6800. 
The operand modes accepted by ASM for each of the opcodes are 
marked in the table. Additionally, there are notations, comments 
and opcode mnemonic classifications. The notations will show 
expansions if the mnemonic causes alternative code or multiple 
machine instructions to be generated. The opcode classes are as 
follows: 

6800 

6801 

6809 

680C 

6800 standard mnemonic. 

- 6801 standard 
substituted if 
time. 

mnemonic. 6800 instructions are 
WITH M6801 is not specified at assembly 

6809 only mnemonic. 
instructions. 

Generates equivalent 6801 

- 680C mnemonic; supported in the 680C instruction, set. 
One or more 6801 instructions may be substituted. 
Memory reference instructions are limited to a 
restricted subset of the 6809 indexed addressing forms. 
See Appendix D for more detail. 

*OPERAND MODE KEY: 

IDX=INDEXED 
INH=INHERENT 

Copyright (C) 1977 

EXT=EXTENDED 
BRA=BRANCH 

DIR=DIRECT 
PSH=PUSH/PULL 

35 

IMM=IMMEDIATE 
R/R=REG/REG 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION V: 6800/6801 MACHINE INSTRUCTION LINES 

OPCODE 
OPCODE OPERAND MODE* CLASS NOTES AND COMMENTS 

I E D I I B P R 
D X I M N R S / 
X T R M H A H R 

ABA · · X · 6800 
ABX · · · · X · 6801 See Footnote #1 
ADCA X X X X 6800 
ADCB X X X X · · · · 6800 
ADCD X X X X · · · · 680C ADCB arg+1 \ ADCA arg 
ADDA X X X X · · · · 6800 
ADDB X X X X 6800 
ADDD X X X X 6801 ADDB arg+1 \ ADCA arg 
ANDA X X X X · · · · 6800 
ANDB X X X X · · · · 6800 
ANDD X X X X 6800 ANDB arg+1 \ ANDA arg 
ASL X X · · · · 6800 
ASLA · · · · X · 6800 
ASLB · · · · X · 6800 
ASLD · · · · X · 6801 ASLB \ ASLA 
ASR X X 6800 
ASRA · · · · X · 6800 
ASRB · · · · X · 6800 
ASRD · · X · 680C ASRA \ RORB 
BCC · X 6800 
BCS · · · · · X 6800 
BEQ · X · · 6800 
BEQD · · · X 680C BNE xxx \ TSTA \ xxx BEQ arg 
BGE · ,. · X · · 6800 
BGT · X 6800 
BHI · · · · · X · · 6800 
BHS · · · X · · 6800 
BITA X X X X · · · · 6800 
BITB X X X X 6800 
BLE · X 6800 
BLO · · · · · X 6800 
BLS · · · · · X 6800 
BLT · · · · · X 6800 
BMI · · · · · X 6800 
BNE · · · · · X 6800 
BNED · · · · · X 680C BEQ xxx \ TSTA \ xxx BNE arg 
BPL · · · X 6800 
BRA · · · X · · 6800 
BRN · · · · · X 6801 NOP \ NOP 
BSR · · · · · X 6800 
BVC · · · X · · 6800 
BVS · · · X · · 6800 

Copyright (C) 1977 36 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION V: 6800/6801 MACHINE INSTRUCTION LINES 

OPCODE 
OPCODE OPERAND MODE* CLASS NOTES AND COMMENTS 

I E D I I B P R 
D X I M N R S / 
X T R M H A H R 

CBA · · · · X · 6800 
CLC · · · · X · 6800 
CLI · · · · X · · · 6800 
CLR X X · · · · · · 6800 
CLRA · · · · X · · · 6800 
CLRB · · · · X · 6800 
CLV · · · · X · 6800 
CMPA X X X X · · · · 6800 
CMPB X X X X · · · · 6800 
CMPD X X X X · · · · 680C See Footnote 2 
CMPX X X X X · 6809 CPX 
COM X X · · · · 6800 
COMA X · 6800 
COMB X · 6800 
COMD · · · · X · 680C COMB \ COMA 
CPX X X X X · · · · 6800 
DAA · · X · 6800 
DEC X X 6800 
DECA · · · · X · 6800 
DECB X · · · 6800 
DECD X X X · 680C See Footnote 3 
DES · · X · 6800 
DEX X · 6800 
EORA X X X X · · · · 6800 
EORB X X X X 6800 
EORD X X X X · · · · 680C EORB arg+1 \ EORA arg 
ERRORRTS · · · · X · 680C SEC \ RTS 
INC X X · 6800 
INCA · · · · X · 6800 
INCB · · X · 6800 
INCD X X X · 680C See Footnote 4 
INS · · X · 6800 
INX · · · · X · 6800 

Copyright (C) 1977 37 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION V: 6800/6801 MACHINE INSTRUCTION LINES 

OPCODE 
OPCODE OPERAND MODE* CLASS NOTES AND COMMENTS 

I E D I I B P R 
D X I M N R S / 
X T R M H A H R 

JMP X X. 6800 
JSR X X X. 6800 
LBCC · X . · 680C BCS xxx \ JMP arg \ xxx 
LBes · · · · · X . · 680C Bce xxx \ JMP arg \ xxx 
LBEQ · · · · · X 680C BNE xxx \ JMP arg \ xxx 
LBGE · X · · 680C BLT xxx \ JMP arg \ xxx 
LBGT · · · · · X 680C BLG xxx \ JMP arg \ xxx 
LBHI · · · · · X 680e BLS xxx \ JMP arg \ xxx 
LBHS · · · · · X 680C BLO xxx \ JMP arg \ xxx 
LBLE • X 680C BGT xxx \ JMP arg \ xxx 
LBLO · · · · · X 680e BHS xxx \ JMP arg \ xxx 
LBLS · · · · · X 680C BHI xxx \ JMP arg \ xxx ... 
LBLT · · · · · X 680C BGE xxx \ JMP arg \ xxx 
LBMI · · · · · X 680C BPL xxx \ JMP arg \ xxx 
LBNE · · · · · X 680C BEQ xxx \ JMP arg \ xxx 
LBRA · X · · 680C JMP xxx 
LBVC · X · · 680C BVS xxx \ JMP arg \ xxx 
LBVS • X · · 680C BVS xxx \ JMP arg \ xxx 
LDA X X X X · · · · 6800 LDAA arg 
LDAA X X X X 6800 
LDAB X X X X 6800 
LDB X X X X · · · · 6800 LDAB arg 
LDD X X X X · · · · 6801 LDAB arg+1 \ LDAA arg 
LDS X X X X · · · · 6800 
LDX X X X X · · 6800 
LEAS X · · · · · 680e RPT arg \ INS 
LEAX X · · · · · 6800 RPT arg \ INX 
LSL X X · 6800 ASL arg 
LSLA · · · · X . 6800 ASLA 
LSLB · · · · X · 6800 ASLB 
LSLD · · · · X · · · 680e ASLB \ ROLA 
LSR X X · · · · · · 6800 
LSRA · · · · X . 6800 
LSRB · · · · X • 6800 
LSRD · · · · X . 680C LSRA \ RORB 

:opyright (e) 1977 38 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION V: 6800/6801 MACHINE INSTRUCTION LINES 

OPCODE 
OPCODE OPERAND MODE* CLASS NOTES AND COMMENTS 

I E D I I B P R 
D X I M N R S / 
X T R M H A H R 

MUL · · · · X · 6801 JSR MUL6809 
NEG X X · · · · · · 6800 
NEGA · · · · X · 6800 
NEGB · · · · X · 6800 
NEGD · · · · X · · · 680C NEGA \ NEGB \ SBCA #0 
NOP · · · · X · 6800 
OKRTS · · X · 680C CLC \ RTS 
ORA X X X X 6800 ORA 
ORAA X X X X · 6800 
ORAB X X X X · · · · 6800 
ORB X X X X · · · · 6800 ORB 
ORD X X X X · · · · 680C ORB arg+1 \ ORA arg 
PSHA · · · · X · X · 6800 
PSHB · · · · X · X · 6800 
PSHD · · · · X · X · 680C PSHB \ PSHA 
PSHX · · · · X · X · 6801 See Footnote 5 
PULA · · · · X · X · 6800 
PULB · · · · X · X · 6800 
PULD · · · · X · X · 680C PULA \ PULB 
PULX · · · · X · X · 6801 TSX \ LDX 0,X \ INS \ INS 
ROL X X · · · 6800 
ROLA · · X · 6800 
ROLB · · X · 6800 
ROLD · · · · X · 680C ROLB \ ROLA 
ROR X X · · · · 6800 
RORA · · · · X · 6800 
RORB · · · · X · 6800 
RORD · · X · 680C RORA \ RORB 
RTI · · · · X · 6800 
RTS · · · · X · 6800 
SBA · · · · X · 6800 
SBCA X X X X · · · · 6800 
SBCB X X X X 6800 
SBCD X X X X · · · · 680C SBCB arg+1 \ SBCA arg 
SEC · · X · 6800 

Copyright (C) 1977 39 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION V: 6800/6801 MACHINE INSTRUCTION LINES 

OPCODE 
OPCODE OPRAND MODE* CLASS NOTES AND COMMENTS 

I E D I I B P R 
D X I M N R S / 
X T R M H A H R 

SEI X · 6800 
SEV X · 6800 
STA X X X . 6800 STAA arg 
STAA X X X · 6800 
STAB X X X · 6800 
STB X X X . 6800 STAB arg 
STD X X X . 6801 STAB arg+1 \ STAA arg 
STS X X X · 6800 
STX X X X · · · · · 6800 
SUBA X X X X · · 6800 
SUBB X X X X · · · · 6800 
SUBD X X X X • · · · 6801 SUBB arg+1 \ SBCA arg 
SWI · · · · X · 6800 
TAB X · 6800 
TAP X · · · 6800 
TBA X · · · 6800 
TDS · · · · X · 680C STD TEMPX \ LDS TEMPX 
TDX · · X · 680C TFR D,X 
TFR · · · · · X 680C TAB or TBA 
TPA X · 6800 
TSD X · 680C TSX \ TXD 
TST X X · · · · 6800 
TSTA · · X · 6800 
TSTB · · · · X · · · 6800 
TSTD · · · · X. 680C SUBD #$0000 
TSX X · 6800 
TXD · · · · X · 680C STX TEMPX \ LDD TEMPX 
TXS · · · · X. 6800 
WAI · · · · X · 6800 

Footnote 1: STAB TEMPX+1\ADDB TEMPX+1\STAB TEMPX+1\ 
LDAB TEMPX \ ADCB #0\STAB TEMPX\LDX TEMPX 

Footnote 2: CMPB arg+1 \ BNE xxx \ CMPA arg \ xxx ... 

Footnote 3: TST arg+1 \ BNE xxx \ DEC arg \ xxx DEC arg+1 

Footnote 4: INC arg+1 \ BNE xxx \ INC arg \ xxx 

Footnote 5: STX TEMPX \ LDAB TEMP+1 \ PSHB \ LDAB TEMPX \ PSHB 

Copyright (C) 1977 40 Software Dynamic: 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

6809 MACHINE INSTRUCTION LINES 

The major function of an assembler is the translation of 
symbolically specified machine instructions into a form directly 
understandable by the target computer. This section presumes 
knowledge of the 6809 instruction set, which can be found in the 
Motorola MC6809 Programming Manual. ASM is fully compatible with 
the Motorola 6809 standard assembler syntax, with several useful 
extensions. 

--All M6800/M6801 Opcodes are accepted and generate equivalent 
6809 code. 

--Special set of opcodes to allow coding to work on 6800, 6801 
and 6809. These opcodes are called 680C opcodes (See Appendix 
D). Many "convenience" instructions are included in 680C, 
which act as logical extensions to the 100/ 109 instruction set, 
such as double register shifts, 16 bit memory increments, and 
decrements, etc. 

--Automatic long branching. Short branches that are out-of-range 
will be assembled as long branches if the destination 
expression contains no forward references. 

--Special offset prefix "«11 to force 5 bit offset form. 

--Multiple labels are allowed, separated by commas. All labels 
present on an opcode line will be equated to the location 
counter, 11*11, before the rest of the line is processed. 

--A, B, D, S, X, U, CC, DP, PC, and PCR may be used as ordinary 
symbols as long as they are distinguishable from their use as 
register designators. 

Copyright (C) 1977 41 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

ASM processes each machine instruction line as follows: all 
labels are first equated to the location counter, '*1; then the 
opcode specified is inspected to determine which operand 
addressing modes are legal. Finally, the operand field is 
scanned for an appropriate addr,essing mode specification. The 
opcode is combined with the specified addressing mode to generate 
the object code corresponding to the desired instruction. 

Many opcodes (LOA, STX, 
specification (A, B, 0, X, 
opcode mnemonic. 

CMPD, etc.) include a register 
Y, U, or S) as the last letter of the 

There are several operand modes for 6809 instructions. A given 
instruction will have one or more modes as legal forms (some 
opcodes require no operand specification whatsoever). The syntax 
of each of these modes is discussed in the following pages. A 
few examples of each mode will be given. A table of instruction 
mnemonics and their modes is given at the end of this section. 

Throughout this section, the notation n<expr>" means any 
expression, "EA=" means Effective Address, and "(" ")" to the 
right of "EA=n means lithe contents of ". 

Copyright (C) 1977 42 Software Dynamic: 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

INHERENT MODE 

Inherent Mode opcodes need no 
argument field is ignored. For 
be left blank. 

operand specifications. The 
portability purposes, it should 

Syntax: 

Examples: 

<opcode> 

RTI 
MUL 
CLRA 

REGISTER-REGISTER MODE 

iReturn from Interrupt 
i(A-Reg)*(B-Reg) 
i A-Reg:=0 

Register-Register Mode addresses source 
registers. The registers come in two sizes, 
Only registers of like sizes may be addressed 
mode may only be used with TFR or EXG opcodes. 

and destination 
8-bit and 16-bit. 

together. This 

Syntax: 

16-bit Registers 

X (X index reg) 
Y (Y index reg) 
U (User Stack Pointer) 
S (System Stack Pointer) 
PC (Program Counter) 
D (A+B register)' 

8-bit Registers 

A (A-reg) 
B (B-reg) 
CC (Condition Codes) 
DP (Data Page Register) 

<opcode> <reg>, <reg> 

Examples: 

Copyright (C) 1977 

TFR 
EXG 
Tfr 

X,Y 
A,B 
X,A iIllegal: X&A not same size 

43 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

DIRECT MODE 

Direct Mode is used to address a location in the 256 byte memory 
"page" designated by the contents of the DPR (Data Page 
Register). The 8 bits of operand embedded in the instruction 
form the lower 8-bits of the l6-bit memory reference address 
while the upper 8-bits of the address are supplied by the DPR. 
ASM must be informed what contents to assume in the DPR. This is 
done via the SETDPR directive (see Directives section). If an 
instruction operand address evaluates within the DPR page bounds, 
ASM automatically generates Direct Mode memory reference. 

Direct references may be forced with a "<" prefix. Use of this 
prefix prevents any default to the Extended Mode addressing. If 
the effective address does not map into the Data Page as 
specified by the last SETDPR directive, an error is generated. 

Syntax: 

Example: 

A 
B 
C 

<opcode> 

EQU 
EQU 
EQU 
SETDPR 

CLR 
INC 
DEC 
ROR 
ASL 
TST 

$10 
$123 
$456 
$100 

A 
B 
C 
<A 
<B 
<C 

{<prefix>}<exp> 

iPAGE 1 ($100-$lFF) 
;Generated: 
;Extended reference to loc $10 
;Direct reference to loc $123 
iExtended reference to $456 
;Direct reference to loc $110 WITH 
;Direct reference to loc $123 
;Direct reference to loc $156 WITH 

Note: The programmer is responsible for insuring that the value 
in the DPR during program' execution matches the (SETDPR 
value)/$100. 

ERROR 

ERROR 

Copyright (C) 1977 44 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

EXTENDED MODE 

Extended mode addresses memory with a 16-bit address embedded in 
the instruction. Any location in the memory space can be 
referenced with this mode. Extended mode may be forced by use of 
the 11>11 prefix. 

Syntax: 

Example: 

AA 
BB 

<opcode> 

EQU 
EQU 
SETDPR 
LDA 

STA 

EXTENDED INDIRECT MODE 

$10 
$1234 
$00 
>AA 

BB 

{<prefix>}<exp> 

i(Defau1t DPR setting) 
;11>11 was required to produce 
;extended mode addressing 
iExtended addressing 

Extended Indirect Mode addresses memory 
embedded in the instruction to retrieve 
address. This mode is indicated by 11[11 
operand field. 

using 
the 

IIJ" 

a 16-bit address 
effective 16-bit 
surrounding the 

Syntax: 
<opcode> [<exp>J 

Example: 

LDD [PNTRJ iLoad $1234 from loc QQ 

PNTR FDB QQ 

QQ $1234 

Copyright (C) 1977 45 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

INDEXED MODEJ 

Indexed mode addressing forms an effective address e~ual to the 
sum of an offset value and the contents of an index register. 

There are many types of indexing that may be specified to ASM: 

Zero offset 
5-bit offset 
8-bit offset 
l6-bit offset 
A-Reg offset 
B-Reg offset 
D-Reg offset 
Pre-decrement 
Post-increment 

All the above except 5-bit offset permit indirect addressing, 
specified by enclosing the operand field in "[" "J" S • 

Indexed Mode always involves one of the following index register 
notations: 

General syntax: 
<opcode> 

,X 
,Y 
, S 
,U 
, PC 
,PCR 

ZERO OFFSET INDEXED MODE 

Index register X 
Index register Y 
System stack pointer 
User stack pointer 
Program Counter 
Special form of ,PC for easy relative 
addressing (See section on PC relative 
addressing that follows) 

{<prefix>}{[}{{--}{<expr>},<indexreg>{++}{J} 

This mode is also known as a register indirect addressing. The 
effective address is equal to the contents of the specified index 
register. Zero Offset Indexed Mode is the shortest and fastest 
M6809 form for addressing via a register. 

Index Registers: X, Y, U, S 

Syntax: 

Examples: 

Copyright (C) 1977 

<opcode> 
<opcode> 

LDA 
LDB 

,X 
[, YJ 

,<reg> 
[,<reg>J 

;EA = (X) 
i EA = «y» 

46 

; (register indirect) 
i(indirect register indirect) 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

5-BIT, 8-BIT AND 16-BIT CONSTANT OFFSET INDEXED MODES 

Constant offset indexing forms an effective address equal to a 
constant plus the contents of an index register. The constant is 
embedded in the instr'uction. The constant may be posi ti ve or 
negative. 

There are several sizes of constant offsets available on the 
M6809. Notationally their invocations are identical. ASM 
attempts to assemble the shortest form. The limitations of the 
two-pass assembly technique force ASM to assume worst-case, 
16-bit offset, for those offset expressions containing forward 
references. Prefix notations are provided to allow the 
programmer to force the offset size (5, 8 or 16 bits), even in 
the presence of a forward reference. 

Index Registers: X, Y, U, S, PC 

Syntax: 

Examples: 

Special operand 

Examples: 

Copyright (C) 1977 

<opcode> 
<opcode> 

SUBA 
DEC 
STY 
LEAX 
ADDD 
LDD 
STD 

<prefix><expr>,<reg> ;constant offse" 
[<prefix><expr>, <reg>] 
iindirect constant offset (Illegal for 1 

2, X iEA = (X)+5 
[-61,Y] iEA = «Y)-6I) 
27083,U iEA = (U)+27083 
DOG,S iEA = (S)+DOG 
[CAT,Y] iEA = ( (Y)+CAT) 
FRED-*·,PC iEA = FRED = PC+offset to FRED 
[JOE-*iPC] iEA = (JOE) = (PC+offset to JOE: 

prefix notations: 

« force 5-bit offset (illegal with indirection) 
< force 8-bit offset 
> force 16-bit offset 

ORB 
SUBB 
LDA 

«BUGOUT,U 
> [FAROUT,X] 
<WAYOUT,Y 

47 

iAssumes BUGOUT fits in 5 bits 
iForces offset to 16 bits 
iAssumes WAYOUT fits in 8 bits 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

Notes: 

1. PC indexing does not have a 5-bit offset form. This 
means « ••• ,PC and « ••• ,PCR are illegal. 

2. There is no 5-bit offset indirect form. 
«[ ••• ] is illegal. 

This means 

3. If the offset expression has no forward references and 
evaluates to zero during Pass I, then the zero offset 
form will be substituted. The zero offset form saves 
one machine cycle over the 5-bit offset form. 

Example: 

BACKWARD 
LDA 
STA 

FORWARD EQU 

EQU 
BACKWARD, X 
FORWARD,Y 
o 

jGenerates "LDA ,X" 
jGenerates "STA >0,Y" 

Notice that the FORWARD reference generated a 16-bit 
offset. This is because in ASM Pass I, the value of 
FORWARD was not known and the worst case was assumed. 

PROGRAM COUNTER RELATIVE (INDEXED) MODE 

This is a special form of constant offset indexing from the 
program counter. It is an alternate to the form " ... ,PC". The 
section "IMPLICIT VALUES" describes the *' value as being the 
location of the NEXT instruction. This is the implicit value of 
the PC during the execution of any instruction. If only the 
",PC" form were available, PC relative addressing would usually 
be "<destination>-*',PC". Program Counter Relative notation 
produces the same result from "<destination>,PCR". Indirection 
is permitted in this mode. The prefixes "<" and ">" are valid. 

Syntax: 

Examples: 

Copyright (C) 1977 

<opcode> 
<opcode> 

ORA 
ADDD 
JMP 
JSR 

<expr>,PCR 
[<expr>,PCR] 

MASK,PCR 
VALX,PCR 
<THERE,PCR 
>[BEEP,PCR] 

48 

jEA=MASK 
jEA=VALX 
jForce 8-bit offset 
jForce 16-bits and indirection 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

ACCUMULATOR OFFSET INDEXED MODE 

Offsets on the M6809 may be specified to be the contents of an 
accumulator. The effective address is formed by 2 1 s complement 
addition of the accumulator contents, sign extended to 16 bits, 
and the index regi~ter contents. Indirection may be applied to 
this indexing mode. 

Index Registers: X, Y, U, S 

Offset Accumulators: A, B, D 

Syntax: 

Examples: 

<opcode> 
<opcode> 

LDA 
CLR 
LDD 

B,X 
[A,Y] 
D,U 

<acc>,<reg> 
[<acc>,<reg>] 

iEA 
iEA 
iEA 

= 
= 
= 

(B)+(X) 
«A)+(Y) ) 
(D)+(U) 

AUTO INCREMENT/DECREMENT INDEXED MODE 

Index registers on the M6809 may be automatically stepped by +1, 
+2, -1 and -2 bytes. Increments are done AFTER the memory 
reference and hence annotated FOLLOWING the index register (i.e., 
X++)i the effective address is the original contents of the index 
register. Decrements are done PRIOR to the memory reference and 
hence annotated PRECEEDING the index register (i.e., --Y)i the 
effective address is the contents of the index register after it 
is decremented. Indirection is permitted, but only with the 
double stepped forms (++, --). 

Syntax: 

Examples: 

Copyright (C) 1977 

<opcode> 
<opcode> 
<opcode> 
<opcode> 
<opcode> 
<opcode> 

LDA 
STA 
LDD 
STX 
LDX 

,X+ 
,-Y 
,X++ 
,-Y 
[, Y++] 

,<reg>+ 
,<reg>++ 
,-<reg> 
,--<reg> 
[,<reg>++] 
[,--<reg>] 

iEA=(X) \ X=X+1 
iY=Y-1 \ EA=(Y) 
iEA=(X) \ X=X+2 
iY=Y-2 \ EA=(Y) 
iEA=«Y)+2) \ Y=Y+2 

49 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

RELATIVE MODE 

The branch (Bxx and LBxx) class of instructions use this mode. 
There are two offset sizes used in relative mode, 8 and 16 bits. 
The 8 bit form is invoked with instruction mnemonics of the form 
"Bxx" and the 16 bit with "LBxx". The effective address is equal 
to the address of the next instruction plus the value of the 
(sign-extended) constant offset embedded in the instruction. 

Syntax: 

Bxx 
LBxx 

Examples: 

<expr> 
<expr> 

BRA 
LBCC 

BLIMP 
ZEPPELIN 

NOTE: If the 8-bit form ("Bxx") is requested and the <expr> 
expression is evaluable on Pass 1 to a destination that 
is out of range, ASM will substitute the l6-bit 
("LBxX") form. 

IMMEDIATE MODE 

Many 6809 instructions use a constant embedded in the instruction 
rather than an operand in a memory location separate from the 
instruction. This is designated "immediate" mode. The size of 
an immediate operand is determined by the instruction, not the 
operand; some instructions use 16 bit immediate operands while 
others use 8 bit immediate operands. The notation "#<expr>" is 
used to specify an immediate operand; if only 8 bits are required 
by the instruction, the expression value must be in the range 
-128 to 255 or an error will result. 

Syntax: 

Examples: 

Copyright (C) 1977 

<opcode> 

ADDA 
CMPD 
LOY 

SUBB 
SBCA 

#<expr> 

#1 
#$4071 
#BUFFER+2 

#BUFFER\256 
#BUFFER/256 

50 

adds 1 to A register 

same general effect 
as SUBD #BUFFER 

Software Dynamic~ 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

STACK MODE 

This mode may only be used with PSHS, PSHU, PULS, and PULU 
instructions. The operands in this mode are registers to be 
pushed or pulled from a stack (user or system). The operand 
field consists of a sequence of register names separated by 
commas or a single immediate mode expression. The ordering of 
registers is arbitrary since the order of PUSH/PULL is fixed. 
Mention of a register name sets the appropriate corresponding bit 
in the postbyte of the instruction. If an immediate expression 
is used, the lower 8 bits of the expression are used as the post 
byte. The immediate form has the advantage of allowing register 
groups to be symbolically named. 

Registers: PC, S, U, Y, X, DP, B, A, 0, CC 

Syntax: 

Examples: 

<opcode> 
<opcode> 

PSHU 
PULS 

<reg>, •.• , <reg> 
#<expr> 

PC,S,D,DP 
#STKFRAME STKFRAME is some register subset 

NOTE: The use of the "0" register is equivalent to II A"B tI 
• 

:opyright (C) 1977 51 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

OPCODE MNEMONICS RECOGNIZED BY ASM6809 

This table lists all the opcode mnemonics recognized by the 
·ASM6809. The operand modes accepted by ASM for each of the 
opcodes are marked in the table. Additionally, there are 
notations, comments and opcode mnemonic classifications. The 
notations will show expansions if the mnemonic causes an 
alternative code or multiple machine instructions to be 
generated. The opcode classes are as follows: 

6809 

6800 

6809 (Motorola) standard mnemonic. 
conventional 6809 instruction. 

Generates 

6800 standard mnemonic which has an exact 
counterpart. The 6809 counterpart is generated. 

a 

6809 

6800EQ - 6800 equivalent mnemonic; there is no exact 6809 
counterpart. Notes and comments will show the 6809 
instruction sequence substituted. The sequence is as 
close to functionally equivalent to the 6800 mnemonic as 
possible. 

680C - 680C mnemonic; supported in the 680C 
One or more 6809 instructions may 
Memory reference instructions are 
restricted subset of the 6809 indexed 
See Appendix D for more detail. 

*OPERAND MODE KEY: 

IDX=INDEXED 
INH=INHERENT 

Copyright (C) 1977 

EXT=EXTENDED 
BRA=BRANCH 

52 

DIR=DIRECT 
PSH=PUSH/PULL 

instruction set. 
be substituted. 
limited to a 

addressing forms. 

IMM=IMMEDIATE 
R/R=REG/REG 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

OPCODE 
OPCODE OPERAND MODE* CLASS NOTES AND COMMENTS 

I E D I I B P R 
D X I M N R S / 
X T R M H A H R 

ABA · · X · 6800EQ/680C PSHS B\ ADDA ,8+ 
ABX · · · · X · 6809/680C 
ADCA X X X X · · · · 6809/6800 
ADCB X X X X · 6809/6800 
ADCD X X X X · · · · 680C ADCB arg+l \ADCA arg 
ADDA X X X X · · · · 6809/6800 
ADDB X X X X · 6809/6800 
ADDD X X X X · 6809/680C 
ANDA X X X X · · · · 6809/6800 
ANDB X X X X · · · · 6809/6800 
ANDC · X · · 6809 Alternative for ANDCC 
ANDCC · X · · · · 6809 
ANDD X X X X · · · · 680C ANDB arg+1 \ANDA arg 
ASL X X X · · · · · 6809/6800 
ASLA · · · · X · 6809/6800 
ASLB · · · · X · 6809/6800 
ASLD · · · · X • 680C ASLB \ ASLA 
ASR · · · · X . 6809/6800 
ASRA X • 6809/6800 
ASRB · · · · X · 6809/6800 
ASRD · · · · X · 680C ASRA \ RORB 
BCC · · · · · X 6809/6800 
BCS · X 6809/6800 
BEQ · · · · · X 6809/6800 
BEQD · · · · · X 680C 
BGE · · · · · X 6809/6800 
BHI · · · · · X 6809/6800 
BHS · · · · · X 6809/6800 
BITA X X X X . 6809/6800 
BITB X X X X · 6809/6800 
BLE · · · · · X 6809/6800 
BLO · · · · · X · · 6809/6800 
BLS · · · · · X 6809/6800 
BLT · · · X 6809/6800 
BMI · · · · · X 6809/6800 
BNE · · · · · X 6809/6800 
BNED · · · · · X 680C 
BPL · · · · · X 6809/6800 
BRA · · · · · X 6809/6800 
BRN · · · · · X 6809 
BSR · · · · · X 6809/6800 
BVC · · · · · X 6809/6800 
BVS · · · · · X 6809/6800 

Copyright (C) 1977 53 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

OPCODE 
OPCODE OPERAND MODE* CLASS NOTES AND COMMENTS 

I E D I I B P R 
D X I M N R S / 
X T R M H A H R 

CBA · · · · X • 6800EQ/680C PSHS B\CMPA ,S+ 
CLC · · · · _X · 6800EQ ANDCC #$FE 
eLI · · · · X · 6800EQ ANDCC #$EF 
CLR X X X · · · 6809/6800 
CLRA · · · · X · · · 6809/6800 
CLRB · · X · 6809/6800 
CLV · · · · X · 6800EQ ANDCC #$FD 
CMPA X X X X · · · · 6809/6800 
CMPB X X X X · · · · 6809/6800 
CMPD X X X X · · · · 6809/680C 
CMPS X X X X · · · · 6809 
CMPU X X X X · · · · 6809 
CMPX X X X X · · · · 6809/6800 
CMPY X X X X · · · · 6809 
COM X X X · 6809/6800 
COMA · · X · 6809/6800 
COMB · · X • 6809/6800 
COMD · · · · X · 680C COMB \ COMA 
CPX X x x X · · · · 680EQ CMPX 
CWAI · · · X · · · · 6809 
DM · · X · 6809/6800 
DEC X X X · · · · · 6809/6800 
DECA · · · · x · 6809/6800 
DECB · · X · 6809/6800 
DECD X X X · 680C See Footnote 1 
DES X · 680EQ LEAS -l,S 
DEX · · · · X · 680EQ LEAX -l,X 
EORA X X X X · · · · 6809/6800 
EORB X X X X · · · · 6809/6800 
EORD X X X X . · · · 680C EORB arg+l \ EORA arg 
ERRORRTS · · X · 680C ORCC #1 \ RTS 
EXG · · · · · · · X 6809 
INC X X X · · · 6809/6800 
INCA X · 6809/6800 
INCB X · 6809/6800 
INCD X X X · · · · · 680C See Footnote 2 
INS X · 680EQ LEAS 1,S 
INX · · · · X · 680EQ LEAX 1,X 

Copyright (C) 1977 54 Software Dynamic 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

OPCODE 
OPCODE OPERAND MODE* CLASS NOTES AND COMMENTS 

I E D I I B P R 
D X I M N R S / 
X T R M H A H R 

JMP X X X · · · · · 6809/6800/680C 
JSR X X X · · · · · 6809/6800/680C 
LBCC · · · · · X · · 6809/680C 
LBCS · · · · · X · · 6809/680C 
LBEQ · X · · 6809/680C 
LBGE · X 6809/680C 
LBGT · · · · · X · · 6809/680C 
LBHI · · · · · X · · 6809/680C 
LBHS · · · · · X · · 6809/680C 
LBLE · · · X. · 6809/680C 
LBLO · · · · · X • · 6809/680C 
LBLS · · · · · X. · 6809/680C 
LBLT · · · · · X · .. 6809/680C 
LBMI · · · · · X · · 6809/680C 
LBNE · · · · · X · · 6809/680C 
LBRA · · · · · X • · 6809 
LBRN · · · · · X . · 6809 
LBSR · · · · · X · · 6809 
LBVC · · · · · X 6809/680C 
LBVS · · · X 6809/680C 
LDA X X X X · 6809/680C 
LDAA X X X X · · · · 6800EQ LDA 
LDAB X X X X · 6800EQ LDB 
LDB X X X X · 6809/680C 
LDD X X X X · 6809/680C 
LDS X X X X · 6809/680C 
LDU X X X X · · · · 6809 
LDX X X X X · · · · 6809/6800 
LDY X X X X · 6809 
LEAS X · 6809/680C 
LEAU X · · · · · 6809 
LEAX X · · · · · 6809/680C 
LEAY X · 6809 
LSL X X X · · · · · 6809/6800 
LSLA · · · · X · · · 6809/6800 
LSLB · · · · X · 6809/6800 
LSLD · · · · X · · · 680C ASLB \ ROLA 
LSR X X X · · · · · 6809/6800 
LSRA · · · · X · 6809/6800 
LSRB · · · · X . 6809/6800 
LSRD · · · · X · · · 6809/680C LSRA \ RORB 

Copyright (C) 1977 55 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

OPCODE 
OPCODE OPERAND MODE* CLASS NOTES AND COMMENTS 

I E D I I B P R 
D X I M N R S / 
X T R M H A H R 

MUL X · 6809/680C 
NEG X X X · · · 6809/6800 
NEGA · · · .X · 6809/6800 
NEGB X · 6809/6800 
NEGD X · 680C NEGA \ NEGB \ SBCA #0 
NOP · · · · X · 6809/6800 
OKRTS · · · · X · 680C ANDCC #$FE \ RTS 
ORA X X X X · · · · 6809/680C 
ORAA X X'X X · · · · 6800EQ ORA 
ORAB X X X X · · · · 6800EQ ORB 
ORB X X X X · · · · 6809/680C 
ORCC · · • X · · · · 6809 
ORD X X X X · · · · 680C ORB arg+1 \ ORA arg 
PSHA · · X · 6800EQ PSHS A 
PSHB · · · · X · 6800EQ PSHS B 
PSHD · · · · X · 680C PSHS D 
PSHS · · · · X · X · 6809 
PSHU · · · · X · X · 6809 
PSHX · · · · X · 680C PSHS X 
PULA · · · · X · 6800EQ PULS A 
PULB · · X · 6800EQ PULS B 
PULD · · · · X · 6800EQ PULS D 
PULS · · .X · · X · 6809 
PULU · · · X · · X · 6809 
PULX · · · X · · · · 680C PULS X 
ROL X X X · 6809/6800 
ROLA · · · · X · 6809/6800 
ROLB · · · · X · 6809/6800 
ROLD · · · · X · 680C ROLB \ ROLA 
ROR X X X • 6809/6800 
RORA · · · · X · 6809/6800 
RORB · · · · X. 6809/6800 
RORD · · · · X • 680C RORA \ RORB 
RTI X · 6809/6800 
RTS · · · · X . 6809/6800 
SBA · · · · X · 6800EQ/680C PSHS B \ SUBA ,S+ 
SBCA X X X X · · · · 6809/6800 
SBCB X X X X · · · · 6809/6800 
SBCD X X X X · · · · 680C SBCB arg+1 \ SBCA arg 
SEC · · · · X. 6800EQ ORCC #$01 

Copyright (C) 1977 56 Software Dynamic~ 



ASM REFERENCE MANUAL 6/01/83 
SECTION VI: 6809 MACHINE INSTRUCTION LINES 

OPCODE 
OPCODE OPRAND MODE* CLASS NOTES AND COMMENTS 

I E D I I B P R 
D X I M N R S / 
X T R M H A H R 

SEI · · · · X · · · 6800EQ ORCC #$10 
SEV · · · · X · 6800EQ ORCC #$02 
SEX · · · · X · 6809 
STA X X X · 6809/680C 
STAA X X X · 6800EQ STA 
STAB X X X · · · · · 6800EQ STB 
STB X X X · · · · · 6809/680C 
STD X X X · 6809/680C 
STS X X X · 6809/6800 
STU X X X · · · · · 6809 
STX X X X · · · · · 6809/6800 
STY X X X · · · · · 6809 
SUBA X X X X · 6809/6800 
SUBB X X X X · · · · 6809/6800 
SUBD X X X X · · · · 6809/680C 
SWI · · · · X · 6809/6800 
SWI2 · · · · X · · · 6809 
SWI3 · · · · X · 6809 
SYNC · · X · 6809 
TAB · · · · X · 6800EQ TFR A,B \ TSTA 
TAP · · · · X · 6800EQ TFR A,CC 
TBA · · · · X · 6800EQ TFR B,A \ TSTA 
TDS · · · · X · 680C TFR D,S 
TDX · · · · X · 680C TFR D,X 
TFR · · · · · · · X 6809 
TPA · · · · X · 6800EQ TFR CC,A 
TSD · · · · X · · · 680C TFR S,D 
TST X X X · 6809/6800 
TSTA · · · · X · 6809/6800 
TSTB · · X · 6809/6800 
TSTD · · · · X · 680C SUBD #$0000 
TSX · · · · X · 6800EQ TFR S,X 
TXD · · · · X · 680C TFR X,D 
TXS · · · · X · 6800EQ TFR X, S 
WAI · · · · X · 6800EQ CWAI #$FF 

Footnote 1: TST arg+1\BNE xxx\DEC arg\xxx: DEC arg+1 

Footnote 2: INC arg+1\BNE xxx\INC arg\xxx: 

Copyright (C) 1977 57 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VII: DIRECTIVES 

DIRECTIVES 

Directives are used to control the action of ASM in ways not 
directly related to the generation of machine language opcodes. 
Throughout this section we will ~se the following notation to 
describe the syntax of directives. 

<LF> indicates a list of zero or more symbols separated by 
commas, occuring in the label field of the line. The list 
may begin with a comma, and consecutive commas are allowed. 
The exact syntax is: 

{ <SYMBOL>} {, { <SYMBOL> } ••• } 
If such a list of symbols is malformed, "Illegal Label" will 
be reported. 

<EXPLIST> indicates a list of expressions separated by commas. 
Consecutive commas, leading commas and trailing commas are 
allowed, and are interpreted as having a zero expression 
where an expression is missing. The exact definition of 
<EXPLIST> is: 

<EXP> 

Copyright (C) 1977 

, { <EXP> } ... } 
, { <EXP> } 

58 Software Dynamicl 



ASM REFERENCE MANUAL 6/01/83 
SECTION VII: DIRECTIVES 

SYMBOL DEFINITION DIRECTIVES 

Two commands are provided to allow users directly to assign a 
value to a symbol. 

EQUATE 

{<LF>} EQU <EXP> 

EQU directs ASM permanently to associate the value given as the 
argument with the symbols given in the label field. <EXP> may 
involve one level of forward reference; if it does, then the 
symbols specified in the label field will be treated as forward 
references throughout the assembly. 

--Any attempt to redefine the value of an EQUid symbol will be 
diagnosed as an error. 

--If no symbols are present in the label field, EQU merely 
evaluates the expression. This can be useful to display the 
value of a given expression in the listing. 

--If no expression is present, "Illegal Argument" is reported. 

IMPLICIT EQU: 

<LF> 

A label found in the label field, with a null command field, is 
treated as shorthand for 

<LF> EQU * 
This allows a notationally pretty method of placing very long 
labels in sequences of assembled machine instructions. 

Copyright (C) 1977 59 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VII: DIRECTIVES 

Examples: 

A,B EQU 10 
EQU A 

C EQU 
D EQU E 
E EQU $15 

LDAA E 

LDAA D 

I EQU 10 
I -EQU 99 

F EQU G 
G EQU H 
H EQU $10 

FCB F 

THIS I SAVE RYLONGLAB EL 

Copyright (C) 1977 

;Sets values of A and B to 10. 
iDisplays value of A 
iCauses "illegal argument" error 
iOne level of forward 
ireference is allowed. 
;This will generate a page-zero 
ireference, 2-bytes 
iThis will generate a long 
;reference, 3 bytes. 

iNote that once a symbol is EQUid, 
iit may not be redefined: this an errOl 

iThis is illegal ..• 

i It is diagnosed here. 

i Whose value is equated to * 

60 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VII: DIRECTIVES 

SET 

{<LF>} SET <EXP> 

SET is like EQU (see above) with one difference: symbols whose 
values have been defined by SET may later be redefined using SET. 
<EXP> may NOT involve a forward reference. 

SET and EQU are mutually exclusive. If a symbol is SET in its 
first definition, it may not later be EQUid: if a symbol is ~QUld 
first, it may not later be SET. Any violation of these rules 
will result in "Double Definition" being reported. 

--Like EQU, SET does not require that labels be present. If no 
symbols are present in the label field, SET is equivalent to 
EQU. Note that forward references cannot be displayed with 
SET. 

--If <EXP> involves a forward reference, "Illegal Value" is 
reported, and the value zero is used instead. 

--If no argument field 
reported. 

is present, "Illegal Argument" is 

--If an attempt to SET a symbol conflicts with another definition 
somewhere else in the assembly, "Double Definition" is 
reported. The first definition of the symbol is retained. 

Copyright (C) 1977 61 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VII: DIRECTIVES 

Examples: 

A 

A 

B 

B 

SET 

FDB 

SET 

FDB 

EQU 

SET 

10 

A 

20 

A 

$5 

$10 

;Value of A is 10 

;Generates $000A 

;Value of A is now 20 

;Generates $0014 

;The first definition applies. 

;"Double def" is reported both 
;here and above. 

Double-def does not prevent a symbol that was 
SET first from being SET later. 

C SET $7 
C EQU $9 ; Double def! 

FCB C ;Generates $07 
C SET $A 

FCB C ;Generates $0A 

D SET E ;This is illegal 
E EQU $15 ;D ends up set to zero. 

Copyright (C) 1977 62 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VII: DIRECTIVES 

DATA GENERATION DIRECTIVES 

Several methods of generating data are provided by ASM. 

FORM CONSTANT BYTE 

{<LF>} FCB { <EXPLIST> } 

FCB directs ASM to output a series of one-byte values to be 
loaded into memory starting at the current value of the location 
counter. Expressions may be of any typei however, their values 
must be between -$80 and $FF. 

--If labels are present, they are EQUid to the location counter 
before data generation begins. 

--Null expressions (i.e., contiguous commas) cause a zero value 
to be generated for that expression. No error is reported. 

--Each expression is output as 
This means that "*" will have 
expression across the line. 

soon as it has been evaluated. 
a different value in each 

Examples: 
FCB 10,12 iGenerates $0A followed by $0C. 

A,B FCB ;A and B are EQUid to * 
;one byte of $00 is output. 

FCB -3,7, 19 iNote that leading sign is OK. 
FCB , , , 3 iGenerates O,O,O,3 
FCB $105 iReports overflow, generates $O5 

FCB 3, iGenerates byte of 3, then byte of 0 

Copyright (C) 1977 63 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VII: DIRECTIVES 

RESERVE MEMORY BYTES 

{ <LF>} RMB <EXP> 

RMB directs ASM to reserve memory space without initializing its, 
contents. <EXP> is interpreted as a sixteen bit, positive 
integer. It may not be a forward reference. 

--Any labels present will be EQUid to the location counter before 
the RMB is processed. 

--If <EXP> is a forward reference, "Illegal Value" is reported, 
and the location counter is not moved. 

--If <EXP> is not present, "Illegal Argument" is reported, and 
the location counter is not moved. 

--The location counterls old value and the number of bytes 
reserved are listed. 

Examples: 

0000 0030 RMB $3~ ;Reserve $30 bytes 
0030' EQU * 

0030 0010 A RMB $10 A label 
0040 EQU * is EQUid to the 
0030 EQU A first byte of the reserved 

0040 0000 B RMB 0 Zero bytes can be reserved. 
0040 EQU B 

0040 0000 RMB C ;This is illegal!! 
*** Illegal Value. 

0040 C EQU * ;C was a forward reference. 

space. 

Copyright (C) 1977 64 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VII: DIRECTIVES 

FORM DOUBLE BYTE CONSTANT 

{<LF>} FDB { <EXPLIST> } 

FDB directs ASM to assemble the expressions given in the argument 
field into memory as two-byte values. The expressions may be of 
any type. 

--Each expression is output as soon as it has been evaluated. 
This means that "*" will have a different value in each 
expression across a given line. 

--If there are labels on the line, they will be EQUid to the 
location counter before the line is processed. 

--The most significant byte of each expression is output, 
followed by the least significant byte. 

--Null expressions are treated as zero values as for FCB: two 
bytes of zero will be output. 

--If more than 4 bytes are generated, only the first four are 
listed on the line with the statement. Additional lines are 
used to list all bytes after the fourth, and will be listed 
only if PGEN 1 has been specified. 

Examples: 

0000 0000 A,B FDB o :A, B are EQUid to * 
0000 EQU A 

0002 00020004 C FDB *,* :Note that *IS value changes 

0006 0000 FDB :Generates 2 bytes of zero 

0008 00000000 FDB , , , 3 :Generates 6 zero bytes, then $0003 
000C 00000003 

0010 04270000 FDB $427, :Note trailing zero 

pyright (C) 1977 65 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VII: DIRECTIVES 

FORM CONSTANT CHARACTERS 

{<LF>} FCC <DELIM> { <CHARACTER> .•. } <DELIM> 

FCC causes ASM to assemble the ASCII value of a string of 
characters into memory. 

The first character of the argument string is taken as the 
delimiter, and may be any character (except carriage-return). 
All characters between the delimiter and the second occurence of 
the delimiter character are assembled as the string; the most 
significant bit of each character will be zero. 

--If the line ends before a second occurence of the delimiter is 
found, "Illegal String" is reported, and the carriage return is 
treated as the end of the string. 

--A digit may be used as the delimiter of a string, provided that 
the string does not begin with a series of digits followed by a 
comma. 

--The string may contain any ASCII character with the exception 
of null and carriage return. This is an extension over the 
Motorola standard, which only allows characters whose values 
are between $20 and $5F. 

--Tabs contained in the string will be printed as "Altl. 

--Any labels present will be EQUid to the location counter before 
the line is processed. 

--The first four bytes generated by the FCC command will be 
listed on the line listing the source statement. Further bytes 
will be listed as for FCB and FOB. Note that if PGEN 1 has not 
been specified, only the first four bytes will be listed. 

To enhance portability to future SO assemblers, we strongly 
recommend use of II (double-:-quote) as the <DELIM> character. 

Copyright (C) 1977 66 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VII: DIRECTIVES 

Examples: 

0001 
0001 

0000 53545249 
0004 4E47 

000A 4E472020 
0000 

0006 4F4E4C59 K 
0013 

0019 09 

~opyright (C) 1977 

PCC 
PGEN 

FCC 

PGEN 
FCC 
EQU 

FCC 

1 
1 

"STRING" 

iSO we can see the PGEN 
iList everything, please. 

o iList only first 4 bytes. 
'Only 4 bytes listed' 
*-K But all here generated. 

/"I/ Look how nicely tabs get listed. 

67 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VII: DIRECTIVES 

FORM FLOATING POINT NUMBER 

{<LF>} FFC <floatingpointnumber> 

FFC (Form Floating Constant) causes ASM to convert the floating 
point number specified to its corresponding binary form and place 
the results into memory. Each floating point number is stored in 
the BASE 100 format used by the SD BASIC 1.4 Compiler; range is 
limited to 10**126. The syntax of numbers accepted is identical 
to forms accepted by the compiler. For more details, refer to the 
BASIC 1.4 manual. 

--Any labels present will be EQUid with the location counter 
before the line is processed. 

--Unreasonably large numbers will get an overflow error and ASMls 
version of infinity will be substituted. 

Examples: 

0000 00000000 4: FFC 0 
0004 0000 
0006 41010000 5: FFC 1 
000A 0000 
000C 4l030E0F 6: PI FFC 3.14159287 
0010 5C57 
0012 C10l0000 7: FFC -1 
0016 0000 
0018 530A0000 8: FFC lE37 
001C 0000 
001E 32624C36 9: FFC .000987654321E-25 
0022 200A 

Copyright (C) 1977 68 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VII: DIRECTIVES 

IMPLICIT DATA STATEMENT 

{<LF>} <EXPLIST> 

ASM allows the user to generate data without writing FDB or FCB 
statements. If the command field of a line cannot be interpreted 
as a machine language instruction or a directive, ASM will 
interpret the entire command field as a list of expressions whose 
values are to be assembled as data. 

Each expression will be assembled into one or two bytes, 
depending on its value. If an expression has a value between 0 
and $FF, it will be assembled into one byte. Otherwise it will 
be assembled into two bytes. 

These defaults can be overriden in the following ways: 

1) If the expression is preceded by a hash mark ("#"), the hash 
mark will be ignored, and the expression will be assembled 
into two bytes regardless of its value. 

2) If the expression is preceded by monadic plus or minus, the 
expression will be assembled into one byte regardless of 
value. The minus sign will have its usual effect. 

--Labels present on the line will be EQUid to the location 
counter before the statement is processed. 

--If an expression contains a forward reference or an undefined 
symbol, it will be assembled into two bytes unless a prefix of 
"+" or "_" is present. 

--Each expression is output as soon as it has been 
This means that "*" will have a different value 
expression across the line. 

evaluated. 
for each 

Copyright (C) 1977 69 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VII: DIRECTIVES 

Examples: 

0000 07 
0001 0105 

0011 
0003 11 
0004 11 
0005 0011 

0000 
*** Illegal 

0007 009F 
0009 9F 

009F 
000A 9F 

3F01 
000B 3F01 

003F 
000D 3Fl132 

0010 FE 
0011 FFFE 
0013 FFFE 

0015 020002 

7 
$105 

EQU EQU 17 
+EQU 
(EQU) 
#EQU 
EQU 

Argument. 

Z 
+z 

Z EQU $9F 
Z 

SWI.GETC EQU $~F01 
SWI.GETC 

SWI. EQU $3F 
SWI.,Z,50 

-2 
(-2) 
#-2 

2,#2 

copyright (C) 1977 70 

;Generates one byte. 
;Generates two bytes. 

Define symbol called EQU, 
Generate the value like this, 
Like this, 
or like this, . But not like this! ! I 

;Generates 2 bytes as forward ref, . Unless qualified. I 

;Define Z, 
; Now it generates one byte. 

; This feature can be very useful. 
;Generates SWI followed by code. 

;Generates SWI followed by stuff 

;Note: minus sign forces 1 byte 
;Brackets cause default; 
;Hash ensures two bytes. 

;Note: all EXPs can be prefixed 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VII: DIRECTIVES 

SET LOCATION COUNTER 

{<LF>} ORG <EXP> 

ORG directs ASM to set the location counter to the value given as 
thee argument. <EXP> is interpreted as a sixteen-bit unsigned 
value, and may not involve a forward reference. 

--Any labels will be EQU'd to the NEW location counter. 

--If <EXP> is a forward reference, "Illegal Value" is reported, 
and the location counter is not changed. 

--The value of the location counter will be listed. 

Examples: 

0010 ORG $10 iNew loc. is listed. 

0020 I ORG $20 iLabels are EQU'd .•. 
0020 EQU I . ..• After the ORG. I 

0020 ORG J iI11egal: J is forward ref. 
*** Illegal Value. 
0020 0020 FDB * iNote that the ORG 

0100 J EQU $100 . wasn't performed. I 

SET DATA PAGE REGISTER 

{<LF>} SETDPR <EXP> 

SETDPR directs ASM to assume the DP (Data Page) register has the 
value <EXP>/$100 (the upper 8-bits of the 16-bit value <EXP» 
when attempting to generate Direct Mode addresses. This 
pseudo-op is only available in the 6809 assembler. The default 
value selected at the start of each assembly pass is 0. 

--Any labels will be ignored. 

--If <EXP> is a forward reference, "Illegal Value" is reported, 
and the assumed value for the DP is set to zero. 

--The address of the page to which DP is set is listed. 

Examples: 

1F00 ORG $lF00 
0100 SETDPR $123 iNew DP page address listed 

0000 SETDPR J iILLEGAL-- J is forward reference 
*** Illegal Value 

J FDB 0 

Copyright (C) 1977 71 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VIII: CONDITIONAL ASSEMBLY DIRECTIVES 

CONDITIONAL ASSEMBLY DIRECTIVES 

ASM supports a powerful set of conditional assembly commands. 
These commands allow great flexibility in system generation and 
maintenance especially when multiple configuration or options are 
needed in a program. 

Conditional assembly essentially allows the assembly of only 
selected portions of the source; portions not assembled are 
treated effectively as comments. Selection of the desired 
portions can be specified at assembly time; see "Operator Input 
Lines". 

General features of ASM conditional assembly are: 

--Conditional assembly commands may be nested up to a total of 
255 levels. 

--Source security is enhanced by listing options that can 
suppress included files, skipped lines and conditional assembly 
lines. 

--Conditional assembly commands are highly consistent: all blocks 
are terminated by FIN, and all clauses within blocks are 
separated by ELSE or ELSEIF, depending on function desired. 

It should be noted that labels specified on conditional assembly 
commands are completely ignored. 

It should also be noted 
FORBIDDEN as arguments 
(exception: see IFUND and 
which contains a forward 
reported, and zero will be 

that forward references are STRICTLY 
to conditional assembly commands 

IFDEF). If an expression is evaluated 
reference, "Illegal Value" will be 
used as a value. 

The following is intended to illustrate use 
assembly. Details may be found under the full 
conditional assembly. 

of conditional 
description of 

Copyright (C) 1977 72 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VIII: CONDITIONAL ASSEMBLY DIRECTIVES 

SIMPLE CONDITIONAL ASSEMBLY: 

IF <EXP> 

FIN 

The expression is evaluated. If it is "true", i.e., positive and 
non-zero, the lines between the IF and the FIN are assembled; 
otherwise they are skipped. 

ALTERNATIVE ASSEMBLY 

IF <EXP> 

ELSE 

FIN 

The expression is evaluated. If "true", the lines between the IF 
and the ELSE are executed. If "false", the lines between the 
ELSE and the FIN are assembled. 

NESTED CONDITIONAL ASSEMBLY 

IF <EXPl> 

IF <EXP2> 

FIN 

FIN 

The first expression <EXPl> is evaluated. If "false", all lines 
up to the second FIN are skipped. If "true", lines up to the 
second IF are assembled, and <EXP2} is evaluated. If "true", the 
lines in the inner block are assembled; if "false", they are 
skipped. Then the lines from the first FIN to the second FIN are 
assembled. 

Copyright (C) 1977 73 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VIII: CONDITIONAL ASSEMBLY DIRECTIVES 

MORE COMPLICATED CONDITIONAL ASSEMBLY 

IF <EXP1> 

ELSEIF <EXP2> 

ELSEIF <EXP3> 

ELSE 

FIN 

The ELSEIF directive is designed 
multiple alternatives without having 
blocks. Instead of writing, 

IF <EXPl> 

ELSE 
IF <EXP2> 

ELSE 

FIN 
FIN 

one can write, 

IF <EXPl> 

ELSEIF <EXP2> 

ELSE 

FIN 

to 
to 

allow the user to have 
nest conditional assembly 

which both is clearer and mlnlmizes the possibility of forgetting 
a FIN. If <EXP1> is "true", then the lines up to the first 
ELSEIF are assembled, and the remaining lines (up to the FIN) are 
skipped. 

If <EXPl> is "false", then the lines up to the first ELSEIF are 
skipped. If <EXP2> is "true", then the block of lines between 
the first and second ELSEIFs is assembled, and the remainder of 
the lines (up to the FIN) are skipped. 

This process of skipping to the next ELSEIF continues until 
either a ELSE command is encountered or an ELSEIF is encountered 
with a "true" expression. In either case, all lines up to the 
next ELSE, ELSEIF or FIN are assembled. ASM then skips to the 
FIN which closes this block. 

Copyright (C) 1977 74 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VIII: CONDITIONAL ASSEMBLY DIRECTIVES 

MULTI-CASE CONDITIONAL ASSEMBLY 

CASE <EXP> 

ELSE 

ELSE 

ELSE 

FIN 

If <EXP> is negative, all lines are skipped to the FIN. 

Otherwise, the n-th block of lines is selected to be assembled, 
and all others are skipped. If <EXP> is zero, the lines between 
the CASE and the first ELSE is assembled; if <EXP> is one, the 
lines between the first and second ELSE is assembled; and so on. 
If <EXP> is greater than the number of ELSE lines in this CASE 
block, none of the lines are assembled. 

Copyright (C) 1977 75 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VIII: CONDITIONAL ASSEMBLY DIRECTIVES 

CONDITIONAL ASSEMBLY ON UNDEFINED SYMBOLS 

IFUND <SYMBOL> 

ELSE 

FIN 

If the symbol given as an argument is undefined or a forward 
reference, the block of lines between IFUND and ELSE is 
assembledi otherwise the block of lines between ELSE and FIN are 
assembled. The ELSE portion is optional. 

This form of the IF directive can be extremely useful for 
supplying default values to symbols used in controlling system 
generation. When combined with console input (see "Using ASM", 
below), it allows certain parameters to be changable at assembly 
time, without requiring that they be explicitly specified. 

Example: 

IFUND 
BUFSIZE EQU 

FIN 

BUFSIZE iBUFSIZE will be 
17 i EQU'd to 17 only 

; if it isn't already defined. 

CONDITIONAL ASSEMBLY ON DEFINED SYMBOLS 

IFDEF <SYMBOL> 

ELSE 

FIN 

This form of the IF directive is the logical opposite of IFUND. 

If the symbol given as an argument is defined and not a forward 
reference, the block of lines between IFUND and ELSE are 
assembled; otherwise, the block of lines between ELSE and FIN are 
assembled. The ELSE portion is optional. 

Example: 

IFDEF 
BUFFER RMB 

FIN 

Copyright (C) 1977 

BUFFERSIZE 
BUFFERSIZE 

76 

;This defines BUFFER 
; only if BUFFERSIZE is defined 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VIII: CONDITIONAL ASSEMBLY DIRECTIVES 

FULL DESCRIPTION OF CONDITIONAL ASSEMBLY COMMANDS 

In this section we present a rigorous description of the 
conditional assembly commands. This section may be skipped by 
those who do not need to know the exact details of conditional 
assembly in ASM. 

ASM has five states with respect to conditional as&embly. 
command will have a different interpretation in each'of the 
states. These states are: 

Each 
five 

STATE 1 No conditional assembly blocks are being processed. 
This is the initial state of ASM. 

STATE 2 -- Lines are being 
assembly block. 

assembled within a conditional 

STATE 3 -- Lines are being skipped to the next matching ELSE or 
ELSEIF. 

STATE 4 -- Lines are being skipped to the next matching FIN, 
i.e., to the end of this conditional assembly block. 

STATE 5 -- Lines are being skipped to the n-th matching ELSE. 

State one needs no special description. Lines are read and 
processed unconditionally. When a conditional assembly command 
is encountered in state 1, ASM switches to one of the other four 
states, depending on the command and its arguments. 

State 2 is similar to state 1. Lines are read and processed 
unconditionally. Unlike state 1, ELSE, ELSEIF and FIN commands 
are valid. If an ELSE or ELSEIF command is encountered, ASM 
enters state 4, skipping to the next matching FIN. FIN commands 
are ignored unless the FIN closes the outermost conditional 
assembly block; in this case, ASM switches to state 1. 

State 3 skips lines. Lines are read and ignored unless they are 
one of the conditional assembly directives. If a nested 
conditional assembly block is encountered, all lines contained in 
that block are unconditionally skipped. If a FIN is encountered, 
we go to states 1 or 2 as appropriate. If an ELSE is encountered 
ASM switches to state 2. If an ELSEIF is encountered, then its 
argument is evaluated. If "true", ASM switches to state 2, 
otherwise it remains in state 3. 

State 4 is like state 3; the difference is that ELSE and ELSEIF 
commands are skipped. The only directive that will get ASM out 
of state 4 is FIN. 

Copyright (C) 1977 77 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VIII: CONDITIONAL ASSEMBLY DIRECTIVES 

State 5 is like state 3, but is used to process CASE blocks. 
When state 5 is entered, an internal counter records the number 
of ELSE or ELSEIF lines to be skipped. Lines are processed as 
for state 4, but when an ELSE or ELSEIF is encountered, the 
counter is decremented. If the counter then has the value one, 
ASM switches unconditionally to state 3. An unmatched FIN 
terminates the CASE block, and ASM switches to state 1. 

In the following discussion of the individual directives, the 
operation of each directive in each state will be described. 

Again, note that conditional assembly commands do not allow 
argument expressions involving forward references. 

Copyright (C) 1977 78 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VIII: CONDITIONAL ASSEMBLY DIRECTIVES 

THE "IF" DIRECTIVE 

IF <EXP> 

IF is the basic conditional assembly command in ASM. 

STATE 1: <EXP> is evaluated. If false (<exp> is zero or 
negative), ASM transfers to state 3, and skips to an 
ELSE, ELSEIF or FIN. If true (<exp> is positive and non 
zero), state 2 is entered. 

STATE 2: Exactly like state 1 -- except that if this IF would 
open the 255-th nested conditional assembly block, 
"Nesting Error" is reported and the IF is ignored. 

STATE 3: ASM unconditionally skips all lines contained in the 
conditional assembly block which this IF opens. 

STATE 4: Same as state 3. 

STATE 5: Same as state 3. 

CLOSE CONDITIONAL ASSEMBLY BLOCK 

FIN 

FIN marks the end of the most recently opened conditional 
assembly block. 

STATE 1: "Nesting Error" is reported. 

STATES 2, 3, 4 and 5: ASM returns to the state it was in when it 
encountered the line that opened this block. 

CONDITIONAL ASSEMBLY WITH CHECK 

DO <EXP> 

DO's operation is in all cases 
restriction that the value of <EXP> 
any negative value. 

Copyright (C) 1977 79 

like IF, with the added 
is restricted to be +1, 0 or 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VIII: CONDITIONAL ASSEMBLY DIRECTIVES 

IF SYMBOL NOT DEFINED 

IFUND <SYMBOL> 

IFUND causes ASM to check the symbol given 
the symbol given is undefined, the effect is 
is defined, the effect is that of IF 0. 

as the argument. If 
that of IF 1: if it 

From IFUND's point of view, <SYMBOL> is undefined if it is either 
truly undefined or a forward reference. 

STATE 1: If the argument is not solely a symbol, "Illegal 
Argument" is reported, and ASM switches to state 3. If 
the argument is solely a symbol, and the symbol is 
either a forward reference or undefined, ASM switches to 
state two; otherwise it switches to state 3. 

STATE 2: Like state 1, with the additional checks described for 
IF, state 2. 

STATE 3: Same as IF. 

STATE 4: Same as IF. 

STATE 5: Same as IF. 

IF SYMBOL DEFINED 

IFDEF <SYMBOL> 

IFDEF causes ASM to check the symbol given as the argument. If 
the symbol given is defined, the effect is that of IF 1: if it is 
undefined, the effect is that of IF 0. 

From IFDEF's point of view, <SYMBOL> is' undefined if it is either 
truly undefined or a forward reference. 

STATE 1: If the argument is not solely a symbol, "Illegal 
Argument" is reported, and ASM switches to state 3. If 
the argument is solely a symbol, and the symbol is not a 
forward reference and is defined, ASM switches to state 
two; otherwise it switches to state 3. 

STATE 2: Like state 1, with the additional checks described for 
IF, state 2. 

STATE 3: Same as IF. 

STATE 4: Same as IF. 

STATE 5: Same as IF. 

Copyright (C) 1977 80 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VIII: CONDITIONAL ASSEMBLY DIRECTIVES 

THE ELSE DIRECTIVE 

ELSE 

The ELSE directive serves to separate groups of lines within a 
conditional assembly block into clauses. 

STATE 1: "Nesting Error" is reported; no other action is taken. 

STATE 2: ASM unconditionally changes to state 4, and skips the 
remaining lines in this conditional assembly block. 

STATE 3: ASM unconditionally changes to state 2, and begins 
assembling lines. 

STATE 4: The directive is ignored. 

STATE 5: The case counter is decremented. If its value is now 1, 
ASM switches to state 3; otherwise it remains in state 
5. 

CONDITIONAL ELSE 

ELSEIF <EXP> 

The ELSEIF directive is designed to allow the user to have 
multiple alternatives without having to nest conditional assembly 
blocks. ELSEIF is legal anywhere an ELSE is, although in CASE 
blocks it should be used with caution, as its misuse can lead to 
difficult code to read. 

STATE 1: "Nesting Error" is reported; no other action is taken. 

STATE 2: Exactly like ELSE. 

STATE 3: It is this state which distinguishes ELSEIF from ELSE. 
<EXP> is evaluated, and if "true" (positive and 
non-zero) ASM switches to state 2. Otherwise ASM 
remains in state 3. 

STATE 4: Same as ELSE. 

STATE 5: Same as ELSE. 

Copyright (C) 1977 81 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VIII: CONDITIONAL ASSEMBLY DIRECTIVES 

CASE CONDITIONAL ASSEMBLY 

CASE <EXP> 

The CASE directive causes ASM to select one of the subsequent 
ELSE-clauses to be assembled. 

STATE 1: <EXP> is evaluated. If negative, ASM switches to state 
4, and skips all lines in this block. If zero, it 
switches to state 2, and processes the lines up to the 
first ELSE. If +1, it switches to state 3, and skips to 
the first ELSE. Otherwise, it enters state 5, and skips 
to the n-th ELSE-clause. 

STATE 2: Like state 1, with the additional checks described in 
IF, state 2. 

STATE 3: All lines in the conditional assembly block opened by 
the CASE are skipped. 

STATE 4: Like state 3. 

STATE 5: Like state 3. 

Copyright (C) 1977 82 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION VIII: CONDITIONAL ASSEMBLY DIRECTIVES 

SINGLE LINE ITERATIVE ASSEMBLY 

«LF>} RPT <EXP> 

RPT causes ASM to assemble the next source line zero or more 
times. If <EXP> is zero or negative, the next line is skipped. 
If <EXP> is positive, the next line is repeated as many times as 
specified. <EXP> may not involve a forward reference. 

--Any labels present will be EQUid to the location counter before 
the line is processed. 

--The target 
directives: 

CASE 
IF 

of the RPT may 

DO 
IFDEF 

ELSE 
IFUND 

not be any of the following 

ELSEIF END FIN 
MON RPT 

If such a line is discovered as a target of an RPT, "Nesting 
Error" is reported, and the line is always processed once. 

--Comment lines encountered between the RPT and the next 
non-comment line will be printed and ignored, NOT repeated. 

--If <EXP> involves a forward reference, "Illegal Value" is 
reported, and the effect is 

RPT 0 

--INCLUDE can be the target of a RPT only if the repeat count is 
o or 1. 

Example: 

0004 
0000 00 
0001 00 
0002 00 
0003 00, 
0004 00 

0000 

0008 
0005 01 
0006 02 
0007 04 
0008 08 
0009 10 
000A 20 
000B 40 
000C 80 

Copyright (C) 1977 

AB RPT 
FCB 

EQU 

5 
o 

AB 

Generate 5 bytes of zero: 
And EQUs AB to beginning of bloc} 

iNote that AB has right value 

* Generate ascending powers of 2 in 1 byte table: 
TBL RPT 8 

FCB l##(*-TBL) 

83 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION IX: ASSEMBLY CONTROL DIRECTIVES 

ASSEMBLY CONTROL DIRECTIVES 

ASM provides several commands which control various aspects of 
its operation. 

TERMINATE SOURCE FILE 

END 
END <expr> 
MON 

The END (or MON) directive informs ASM that there are no more 
source lines to be assembled. When encountered during pass one, 
it causes ASM to rewind the source file, open the binary and 
listing files, reprocess the saved operator-input lines (see 
"Using ASM"), and then process the source file. When encountered 
during pass 2, it causes ASM to print summaries as requested on 
the WITH command, to close the source, binary and listing files, 
and then to exit. 

The following summaries may be printed at the end of pass two: 

--Symbol table sorted by name and by value 

--Line numbers on which errors were detected. 

--Number of errors detected. 

The last two items will also be printed on the console device. 

END or MON need not be present at the end of a source file. If 
none is found, ASM will supply an END statement. 

END statements accept an optional start address expression in the 
AF field. The expression must evaluate on Pass 2 to a non-zero 
value. If INCLUDE files are in use, END statements in INCLUDE'd 
files may set the start address. Multiple ENDs may set the start 
address if they all evaluate to the same value. Differing values 
will cause an error. The first value set will prevail. 

NOTE: Start addresses of 0 are illegal. This is because the 
object format uses 0 to indicate NO start address. 

Copyright (C) 1977 84 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION IX: ASSEMBLY CONTROL DIRECTIVES 

SELECT ASSEMBLY OPTIONS 

WITH <OPTION> , <OPTION> ... } 

The WITH command provides control over miscellaneous features of 
ASM. It is intended to be input by the operator at the start of 
the assembly (see "Using ASM"), but may also be included in the 
source file. The options in effect at any time are the result of 
the last WITH command encountered; options not specified are not 
affected. The options in effect at the beginning of the s~cond 
pass are the options in effect at the end of the first pass. 

The following options are specified by default: 

NMCM 
NLN 
NLF 
WI=132 
DE=66 
DMP 
EL 
LST 
DO 

Options and their meanings are: 

MCM 

NMCM 

M6801 

"Motorola compatible". Forces dyadic operators to 
be evaluated strictly left-to-right. This option 
should be selected when assembling files originally 
prepared for assembly by ~-1otorola standard 
assemblers. Parentheses are still available for 
overriding Motorola precedence. 

"Not Motorola compatible". Causes dyadic operators 
to be evaluated in the usual, heirarchial order. 
This is the default mode of operation. 

Accepted only by 
instructions are 
such. If this 

6801 specific 
instructions and 
substituted in 

IlAssemble M6801 instructions." 
ASM6800. Tells ASM that M6801 
valid and should be assembled as 
option is not enabled, all 
instructions are treated as M680C 
6800 equivalent instructions are 
their place. 

Copyright (C) 1977 85 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION IX: ASSEMBLY CONTROL DIRECTIVES 

LN 

NLN 

LF 

NLF 

WI=<EXP> 

DE=<EXP> 

"Line numbers". Informs ASM that there are source 
line numbers present in the file. See "Source Line 
Numbers" for a description of how source line 
numbers are processed. 

"No line numbers". 
numbers in the file. 
operation. 

Tells ASM not 
This is the 

to expect line 
default mode of 

"Line feeds". Informs ASM that extraneous line 
feeds are present in the source file, and are to be 
ignored. This option should be specified for all 
files prepared on systems which use CR/LF or LF/CR 
as line separators. If specified, all line feeds 
encounterd in the source file will be completely 
ignored: they will not even be listed. 

II No line feeds". Informs ASM that line feed 
characters encountered in the file have no special 
significance. This is the default mode of 
operation. Files prepared with editors which use CR 
alone to separate lines should be processed in this 
mode. 

"Set listing device page width". Tells ASM how many 
physical columns there are on the listing device. 
Any line that is longer than <EXP> characters long 
(including assembler generated information such as 
the output data in the left portion of the page) 
will be truncated. The default width for a printing 
device is the page width established by the SDOS SET 
command; for a disk file, it is defaulted to 132. 

"Set listing device page depth". Tells ASM how many 
physical lines there are on a page. This 
information is used to control pagination. The 
default depth for a printing device is the page 
depth established by the snos SET command; for a 
disk file, the default depth is 66. A depth 
specification of less than 13 causes continuous form 
listing (no page headers except the first). 

Copyright (C) 1977 86 Software Dynamics 



ASM REFERENCE MANUAL ~/0l/83 
SECTION IX: ASSEMBLY CONTROL DIRECTIVES 

DMP 

NDMP 

EL 

NEL 

LST 

NLST 

DO 

NDO 

"Dump symbol table". Requests that a symbol table 
dump be produced on the listing device at the end of 
the assembly, sorted by name and by value. 

"No dump of symbol table." prevents a symbol table 
dump. 

"Save error line numbers". Requests that a summary 
be printed at the end of the assembly on the listing 
device, detailing which lines had errors. Each 
error line saved requires six bytes of memory; if 
there is no room to save an error line number, no 
notification is given to the user, and the list of 
lines at the end of the assembly may not be 
complete. However, this situation will only arise 
when ASM has run out of space in the symbol table, 
which will cause notification of space problems. 

"No error line numbers". Prevents ASM from saving 
or reporting error line numbers. 

"Produce listing". Tells ASM to produce a full 
listing of the assembled source file. Does not imply 
DMP. 

"No listing, please". Tells ASM not to produce a 
full listing of the assembled source file on the 
listing device. Note that LIST I occurring in the 
source will NOT override this option; note also that 
any lines on which errors are detected will be 
listed anyway. This option does not prevent DMP, 
nor does it imply NDMP. 

"Diagnostic output on console". Tells ASM to copy 
error lines and error messages to the console. 

"No diagnostic output on console". Tells ASM not to 
copy error lines and messages to the console. This 
option should be used when a listing is being 
produced on the console device. Otherwise the 
output may have intermixed listing and error 
messages. 

Copyright (C) 1977 87 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION IX: ASSEMBLY CONTROL DIRECTIVES 

THE OPT STATEMENT 

OPT <CHAR> .•. 

The OPT command is provided only for compatibility with Motorola 
source files. The argument field is totally ignored and none of 
the Motorola specific options are supported. Assembly control 
directives are specified to ASM via the WITH command. 

THE INCLUDE STATEMENT 

INCLUDE <FILE NAME> 

The INCLUDE command allows the inclusion of whole source files as 
part of the assembly. An INCLUDE'd file is assembled as though 
its contents were actually substituted for the INCLUDE statement. 
An INCLUDE'd file may also contain INCLUDE directives. INCLUDE 
files may be nested in this fashion to a depth of 16 levels. 

Common uses for INCLUDE are: 

--Inclusion of SDOSUSERDEFS to define SDOS symbols. 

--Sharing of common code between several assemblies. 

--Breaking up of huge source files to reasonable size files. 

The <FILENAME> must be a valid SDOS file name; it is written as 
though it were a symbol name. 

Example: 

INCLUDE SDOSUSERDEFS.ASM 

INCLUDE D3:DATATABLES.SRC 

Copyright (C) 1977 88 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION IX: ASSEMBLY CONTROL DIRECTIVES 

INCLUDE supports recursion. This means that by use of 
conditional assembly and recursion, "looping" for multiple copies 
of a file is possible to the maximum include depth. 

Example: 

File A: 

N 
F 

File FACTORIAL: 

F 
N 

SET 
SET 

10 
1 

INCLUDE FACTORIAL 
FDB F iGen word with Factorial 
END 

IF N 
FDB 
SET 
SET 
INCLUDE 
FIN 
END 

N 
F*N 

iGenerate word with a factor 
iCompute Factorial 

N-l 
FACTORIAL 

When file "A" is assembled it will cause FDB's with values 10 
down to 1 and 101 to be generated. 

END statements 
used, they may 
detail). 

are optional in INCLUDE files. 
specify a start address. (See 

When 
END 

they are 
for more 

INCLUDE statements may be the target of RPT statements if the 
count is 0 or 1. Any other count will produce a "nesting error". 
Thus a RPT may be used for conditional INCLUDEs. 

Copyright (C) 1977 89 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION IX: ASSEMBLY CONTROL DIRECTIVES 

LISTING CONTROL AND FORMATTING 

ASM has an range of listing formatting options, allowing the 
professional user great flexibility in generating listings which 
will also serve as documentation. 

It is important to understand two underlying design goals of the 
listing portion of ASM: 

--Any line which is determined to be in 
unconditionally be sent to the listing device, 
the various listing control options. Such lines 
sent to the console device, unless supressed by 
lines will be printed on the console exactly as 
the listing. 

error will 
regardless of 
will also be 

WITH NDO. The 
formatted for 

--If WITH NLST was specified (see "Assembly Control"), then ONLY 
error lines will be listed. In particular, the LIST directive 
cannot override the NLST option; LIST was designed to be used 
in formatting listings as they are produced. 

--At no time will a totally blank page be printed. Consecutive 
page-eject commands, or spacing operations which cross multiple 
page boundaries will never cause more than one page to be 
ejected; and if encountered at the top of a clean page, they 
will be ignored. 

--There are three listing on/off directives which control whether 
output goes to the LO (Listing Output). They are listed below 
in order of decreasing dominance. 

Copyright (C) 1977 

WITH 
WITH 
LIST 

LST 
NLST 

90 Software Dynamic~ 



ASM REFERENCE MANUAL 6/01/83 
SECTION IX: ASSEMBLY CONTROL DIRECTIVES 

PAGE HEADING FORMAT 

In the following discussions it will be important to 
the various fields of the page header are, and what 
called. 

know what 
they are 

-----------------------------------> 
I -----------------------------> 
I , , 
I 
I 
I , 

I 
I , , , , , 

------------------------> 
I , 
I 
I , 
I 
0000 

----------------> 
I 
I 
I 
I 

<NAME> 

----> 
I 
I 

ASM 1.4: 
<DATE/TIME>; 
<SRC FILE>' 

Page Ii Form 1 
<TITLE> 
<SUBTITLE> 

I , , , 
, I , , , , 
, I 
, I 
, I 
, I 

, , , , , , , , 

I , , 
I 
---> 

------------> 

-----------------------> 
I 
I 

----------------------------> 
---------------------------------> 

Copyright (C) 1977 91 

Name of Assembler. 
Version of Assembler. 
PC at Time of Page 
Eject 

Program Name From 
"Name" Command. 

Program Title From 
"Title" Command. 

Program Subtitle From 
"Page" Command. 

Count of Control-Lis 
Encountered So Far 
in file. Useful 
when using Editors 
based on .... L. 

Page Number, this 
listing. 

Date/Time in SDOS 
System Format. 

Source File Being 
Processed When Page 
Throw Occurred. 

Software Dynamics 



I 
ASM REFERENCE MANUAL 6/01/83 
SECTION IX: ASSEMBLY CONTROL DIRECTIVES 

LINE LISTING FORMAT 

ASM uses several formats when listing a line. Lines which 
generate data will be listed in the following form. 

PPPP DDDDDDDD NNNN: TTTTTTTT .•.. 
VVVV NNNN: TTTTTTTT •..• 

PPPP NNNN: TTTTTTTT ••.. 
*S* NNNN: TTTTTTTT ..•. 

NNNN: TTTTTTTT •... 
PPPP VVVV NNNN: TTTTTTTT •... 

The first form is used when a line generates data. PPPP is the 
first location that the data will be loaded into; DDDDDDDD are 
the data bytes. Up to four bytes may be displayed on a given 
line. NNNN is the line number; this field is reset to 1 whenever 
a form-separator is encountered in the source, and incremented 
for every line read. TTTTTTT is the text of the source line, 
with tab characters expanded according to the tab stops currently 
in effect (specified by TABS). 

The second form is used for lines containing directives that do 
not generate data but do have a numeric result of some kind. 
VVVV is the value field, and generally is used to display the 
value of the directive's argument. 

The third form is used to list lines containing an ORG command. 
PPPP is the new value of the location counter. 

The fourth form is used to list lines that 
conditional assembly commands. "*S*" 
field. 

were skipped due to 
is printed in the value 

The fifth form is used to list comment lines, and lines which do 
not have any value per see 

The sixth form is used to list lines containing RMB commands. 
PPPP is the value of the location counter at the beginning of the 
reserved block, and VVVV is the number of bytes in the block. 

Copyright (C) 1977 92 Software Dynamicf 



ASM REFERENCE MANUAL 6/01/83 
SECTION IX: ASSEMBLY CONTROL DIRECTIVES 

PRINT CONTROL CARDS 

PCC <EXP> 

PCC instructs ASM as to whether listing control commands are to 
be printed on the listing. If <EXP> is false, subsequent control
commands will not be printed in the listing. If <EXP> is true, 
subsequent control commands will be printed in the listing. 

--PCC is always printed. 

--The default at start of assembly is PCC 0. 

TURN LISTING ON/OFF 

LIST <EXP> 

LIST instructs ASM as to whether subsequent records are to be 
included in the listing. If <EXP> is true, subsequent lines will 
be listed; if false, subsequent lines will not be listed. 

--LIST has no effect unless a listing is being produced (WITH LST 
specified). 

--PCC controls whether LIST is listed. 

--<EXP> may be a forward reference. 

--LIST 1 in an INCLUDE'd file will affect the listing of the file 
containing the INCLUDE directive. 

Copyright (C) 1977 93 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION IX: ASSEMBLY CONTROL DIRECTIVES 

SET TITLE AND EJECT PAGE 

TITLE Ii} { <STRING OF CHARACTERS> } 

TITLE directs ASM to eject a page before printing the next line 
·of the listing. If any non-blank characters occur in the 

argument field, the title field in the page header is changed 
before the page is ejected. If no non-blank characters appear, 
the title is not changed. 

--If a semicolon appears as the first non-blank character after 
the "TITLE" command, it will be ignored, but the title field 
will be set to whatever characters remain on the line. Thus, a 
null title may be set by writing 

TITLE i 

--The first title specified in pass one will be used as the 
initial value of the title field at the start of the listing in 
Pass Two. 

--PCC controls whether TITLE is listed. 

--If LIST 0 is in effect, the page eject is not issued. However, 
the title will be changed if a new title was specified. 

--If PCC 0 has been specified, then TITLE followed by PAGE will 
set both the title and the subtitle; only one page will be 
ejected. 

Copyright (C) 1977 94 Software Dynamic~ 



ASM REFERENCE MANUAL 6/01/83 
SECTION IX: ASSEMBLY CONTROL DIRECTIVES 

SET SUBTITLE AND EJECT PAGE 

PAGE {:} { <CHARACTERS> } 

The PAGE directive is identical in function to TITLE, except that 
it changes the subtitle field of the page header rather than the 
title field. As with TITLE, the first subtitle encountered in 
pass one will be used as the initial subtitle of the listing. 

SET NAME 

NAME 
N~ 

{;} { <CHARACTERS> } 

The NAME directive is similar to the TITLE directive, with the 
following differences. 

--The name field in the page header is affected. 

--PCC has no control over the listing of NAME. 

--NAME does not eject a page. 

The following differences between the Motorola standard and ASM 
should be noted: 

--NAME need not be the first statement in a file. 

--More than one NAME directive is permitted. 

--No restrictions are placed on the possible contents of the name 
field. 

Copyright (C) 1977 95 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION IX: ASSEMBLY CONTROL DIRECTIVES 

SPACE LISTING N LINES 

SPACE 
SPC 

{<EXP>} 

SPACE directs ASM to insert <EXP> blank lines before printing the 
next line of the listing. If <EXP> is negative, no lines are 
spaced; if <EXP> is zero or missing, one line is spaced. 

--PCC controls whether SPACE is listed. 

--If listed, the SPACE command is listed after the spacing 
operation has been performed. 

--In no case will SPACE cause more spaces to be inserted than 
remain on the current page. 

--If LIST 0 is in effect, no action is taken, although the 
expression is evaluated. 

SET LISTING TABS 

TABS <EXPLIST> 

TABS allows the user to tell ASM how tabs are to be expanded. 
Each <EXP> specifies a column number relative to the first column 
of the source line, which is numbered 1. No <EXP> may be less 
than 2 or greater that 234. No more than eight tab stops may be 
specified. 

--The default values for tabs are 9, 17, 25, 
eight columns. 

33 and 41: every 

--The tabs must be specified in ascending order. 

--If any argument to a TABS directive is erroneous, the tabs are 
reset to their default values. 

--PCC controls whether the TABS command is listed. 

--At least one <EXP> must be present, and null expressions are 
NOT allowed. 

Copyright (C) 1977 96 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION IX: ASSEMBLY CONTROL DIRECTIVES 

PRINT SKIPPED RECORDS 

PSR <EXP> 

The PSR directive allows the user to specify whether records 
skipped due to conditional assembly commands are to be listed. 
<EXP> is evaluatedi if false, then skipped records are not to be 
included in the listingi if true, skipped records are to be 
included in the listing, marked by "*8*" printed in the data 
field of the listing. 

This command can be especially useful when preparing listings of 
software for release to the users of the software. Code not 
relevant to the particular system generated can be easily omitted 
from the listing. 

--PCC controls whether the P8R command is listed. 

--The default is PSR 1. 

PRINT GENERATED DATA 

PGEN <EXP> 

The PGEN directive is used to tell A8M whether all data generated 
is to be included in the listing. The expression is evaluatedi 
if false, only the first four bytes of data will be listed. If 
true, all data will be listed, with additional lines included on 
the listing if necessary. 

--PCC controls the listing of the PGEN directive. 

--The default is PGEN 0. 

Examples: 

0001 
0001 

0000 01020304 
0004 05060708 
0008 09 

0000 
0009 01020304 Ll 

0009 

Copyright (C) 1977 

PCC 
PGEN 

FCB 

PGEN 
FCB 
EQU 

1 
I 

i80 we can see the PGEN 
iSO we can see everything. 

1,2,3,4,5,6,7,8,9 

o iSO we only see first part. 
1,2,3,4,5,6,7,8,9 
*-L1 iIt really got generated. 

97 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION IX: ASSEMBLY CONTROL DIRECTIVES 

PRINT CONDITIONAL ASSEMBLY COMMANDS 

PCA <EXP> 

The PCA directive is used to tell ASM whether to list conditional 
assembly command lines. The expression is evaluated; if false, 
subsequent conditional assembly commands will not be listed. If 
true, subsequent conditional assembly commands will be listed. 

--The default is PCA 1 

'~PCA controls the listing of the followi~g commands. 
DO ELSE ELSEIF FIN 
IF IFUND RPT 

--If a conditional assembly command is being skipped, it will be 
listed only if PCA 1 and PSR 1 are both in effect. 

--PCC controls the listing of PCA commands. 

Copyright (C) 1977 98 Software Dynamic~ 



ASM REFERENCE MANUAL 6/01/83 
SECTION X: OPERATING ASM 

OPERATING ASM 

To use ASM, one must first construct a source file containing the 
text of the assembly language program to be assembled. Under 
SDOS, this can be accomplished using the context editor (EDIT) or 
the screen editor (SEDIT). Description of the use of these 
editors is beyond the scope of this manual. 

Once the assembler has started, two kinds of reactions are 
possible: reactions based upon activities by SDOS on behalf of 
the assembler (such as opening files, printing on the printer, 
asking for keyboard data entry, etc.) and actions by the 
assembler. Interactions with and reactions of SDOS are beyond 
the scope of this manual: it is assumed the operator is familiar 
with the SDOS command interpreter, line editing conventions, and 
how to deal with errors (for more information, refer to the SDOS 
manual). See Appendix C for a list of some SDOS related error 
messages that can be reported while using ASM, and their 
meanings. This manual covers only responses and actions of ASM 
itself. 

STARTING ASM 

Once the source 
invoked. This 
typing its name 
then entering 
itself: 

.ASM 

file has been constructed, the assembler must be 
is accomplished in the SDOS conventional way, by 
while at the SDOS command interpreter prompt: and 
carriage return. ASM will respond by identifying 

Software Dynamics ASM/680d, Version 1.4r 

"d" will be "0" if this assembler produces 6800 or 6801 object, 
and "9" if the assembler produces 6809 object code. ur" is the 
revision letter of ASM. 

It will then print 

Source File= 

and wait for input. Enter the name of the file which is to be 
assembled, followed by a carriage return. If a bad file name is 
entered, or the file cannot be found or opened, the prompt is 
typed again, and file name entry is again requested. 

Copyr~ght (C) 1977 99 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION X: OPERATING ASM 

After the source file has been successfully opened, the following 
message will be printed: 

Listing File= 

If a listing is to be produced, the name of the file or device 
which is to receive the listing should be entered. Otherwise an 
empty line, indicating "No listing desired", should be entered. 
If ASM cannot create the file, an error message is printed and 
the prompt is issued again. 

When the listing file has been established, 
message will be printed: 

Binary File= 

the following 

If a binary object file is to be produced, the name of the file 
which is to receive the binary must be entered, otherwise an 
empty line, indicating "no object file desired", must be entered. 
If ASM cannot create the file, an error message will be printed 
and the prompt will be reissued. 

OPERATOR INPUT LINES 

At this point, all files that need to be opened have been. ASM 
then issues the following prompt: 

> 

and waits for input. The user now has the option of entering as 
many valid ASM source lines as desired. The assembler will save 
them in internal scratch storage and process them at the 
beginning of each pass (as though they were attached to the front 
of the source file). This mode can be terminated by inputting an 
empty line. At that point, the assembler will enter pass one and 
begin assembling the user's program. 

These operator input lines are typically used for two purposes: 
to enter WITH directives, to establish overall listing or options 
selection, or to enter EQUate directives to specify values for 
configuration symbols used by conditional assembly directives 
embedded in the source file. 

It is convenient sometimes to build an SDOS "DO" file that 
invokes ASM, sets up source, listig and object files, and then 
specifies (as operator input lines) a specific set of 
configuration parameters for the program being assembled. The DO 
file then "represents" a particular configuration of ,the 
assembled program, and can be used to easily regenerate that 
configuration. Other DO files would represent other 
configurations. 

Copyright (C) 1977 100 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION X: OPERATING ASM 

Examples of use: 

1) The following procedure allows the user to assemble a simple 
program typed in from the console. 

ASM VERSION l.x / xxxx 
SOURCE FILE=CONSOLE: 
LISTING FILE=MYLIST 
BINARY FILE=MYBIN 
> ORG $100 
> LDX #$FE00 
>Ll CLR 0,X 

• > INX 
> CPX #$FEFF 
> BNE Ll 
> RTS 
> END 

The program will be assembled, and a listing produced. Note 
that operator input was terminated not by an empty line, but 
by ASM discovering the END directive. 

2) Assemble a file called "PROCESS.ASM", generate no listing and 
no binary. This can be useful when checking for errors. (The 
file name extension tI.ASM II is used purely by conventioni any 
valid SDOS filename can be used here). 

ASM VERSION l.x / xxxx 
SOURCE FILE=PROCESS.ASM 
LISTING FILE= 
BINARY FILE= 
> 

3) Assemble IIPROCESS.ASM II , generate no listing, but do generate a 
symbol table dump in on the printer device. The listing 
format used will match the printer's width and depth as 
specified by the SET program. 

ASM VERSION 1.x / xxxx 
SOURCE FILE=PROCESS.ASM 
LISTING FILE=LPT: 
BINARY FILE= 
> WITH NLST,DMP 
> 

Copyright (C) 1977 101 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION X: OPERATING ASM 

4) Assemble "PROCESS.ASM", 
"PROCESS.LPT" and specify 
default used with files. 

generate a listing in file 
listing page sizes, overriding the 

ASM VERSION l.x / xxxx 
SOURCE FILE=PROCESS.ASM 
LISTING FILE=PROCESS.LPT 
BINARY FILE= 
> WITH WI=105,DE=51 
> 

5) Assemble "PROCESS.ASM", generate listing as before, generate 
binary, specify listing format, and define certain symbols 
that control conditional assembly of PROCESS. 

ASM VERSION l.x / xxxx 
SOURCE FILE=PROCESS.ASM 
LISTING FILE=PROCESS.LPT 
BINARY FILE=PROCESS.BIN 
> WITH WI=105,DE=51 
>MEMSIZE EQU $4000 
>PROGBASE EQU $1000 
>USEFLOPPY EQU 1 
> 

Copyright (C) 1977 102 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION X: OPERATING ASM 

ERROR MESSAGES 

If an error is detected while processing a source file, the 
following actions are taken: 

--The line and the error messages are listed on the console, 
unless WITH NDO was specified. A printed error message 
refers to the line printed immediately preceding it. 

--The line and the error messages are listed on the listing 
device if one was specified. 

The following error messages can be reported: 

*** Double Definition. 
The line contains an attempt to define a symbol whose value 
is also defined elsewhere. Only the first definition is 
honored. 

*** End of Source File Encountered. 

*** 

*** 

*** 

*** 

*** 

The end of the source file was encountered before an END 
command was seen. 

Illegal Argument. 
A bad argument field was detected. Examples: 

Y EQU 
ORG 

Illegal Digit. 
Indicates the presence of a malformed number. 

34F 
Examples: 

$lHJ 
%LMN 

Illegal Label. 
An illegal label was detected. 
contains a non-symbol, or a label 
without a command. 

Illegal String. 
Indicates an attempt to define 
carriage return. 

Illegal Value. 

a 

Either the label field 
was specified on a line 

string that included a 

Usually indicates that a forward reference was present where 
forward references are not allowed (see appendix A). 

*** Impossible forced reference «< or <). 
Use of "«" with ",PC .. , ",PCR" or "[ ••• J" or "<" used with 
DPR value not correctly set. 

*** INCLUDE file not found. 
INCLUDE file was not found. INCLUDE was ignored. 

Copyright (C) 1977 103 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION X: OPERATING ASM 

*** 

*** 

*** 

*** 

*** 

Input Line Too Long 
Input line was too 
processing. 

Nesting Error. 

long and was truncated prior to 

The line violates 
Possibilities are: 

some rule regarding condtional assembly. 

--ELSE, ELSEIF or FIN encountered when no conditional 
assembly block was open. 

--IF, CASE, IFUND or DO encountered that 
conditional assembly commands to be nested 
deep. 

would cause 
more than 255 

--The argument of an RPT command was a command which cannot 
be RPT'd. 

Out of Memory. 
Indicates that there was no room to enter a new symbol into 
the symbol table. Assembly continues, but the symbol will 
remain undefined throughout the assembly. No more error line 
numbers will be saved. 

Phase Error. 
Indicates that the assembler has been asked to give a symbol 
a different value in pass two than it was given in pass one. 
Usually caused by "Out of Memory.1I 

Register Field Missing 
Indicates that a machine instruction which requires 
register was written with an undecipherable register field. 

a 

*** Start address =0 or does not match other end(s). 

*** 

*** 

*** 

Start address specified has value zero (illegal under SDOS) 
or multiple ENDs specified differing start addresses 
(Multiple ENDS are possible when INCLUDE is used). 

Syntax Error. 
A malformed expression or 
Examples: 

3+ 
( 
3?7 
ADDB 

Undefined Symbol. 

O,S+ 

addressing 

The line contains a symbol that was 
occur with symbols which involve more 
forward reference. 

Use of Doubly-defined Symbol. 

mode was encountered. 

not defined. 
than one 

This can 
level of 

The line contains a use of a'doubly-defined symbol. 

Copyright (C) 1977 104 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION X: OPERATING ASM 

SYMBOL TABLE DUMP FORMAT 

This section describes the format of ASM symbol table dumps. The 
symbol table is dumped sorted by name and by value, using a 
common format for the symbol entries: 

Qname/0l23 
I I I 
I I -----> 
I I 
I I 
I I 
I ----------> 
I 
------------> 

Copyright (C) 1977 

This field contains the symbol1s 
value. If the symbol is undefined, 
this field is 11****11. 

This field contains the symbol1s name. 

This field contains a qualifier 
which gives additional 
information about the symbol. 

Possibilities are: 
11*11 Indicates unused symbol. 
11+11 Indicates doubly-defined symbol. 
Blank indicates none of the above. 

105 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION X: OPERATING ASM 

ERROR LINE SUMMARY FORMAT 

At the end of pass two, after the symbol 
print out a list of lines on which errors 
the list has the following format: 

ffff-llll 

table dump, ASM will 
occurred. Each item in 

"ffff" specifies the Form number that contained the line, as 
printed in the Form field of the page header. "1111 11 specifies 
the line within that form which was in error, as listed in the 
line number field of the listing. This is especially useful when 
using EDIT 1.1, as the offending line can easily be found by 
telling the editor to do a "EBfilename\ffffEYllllJ II

, which goes 
to the ffffth form, llllth line. 

MEMORY USAGE AND SIZING CONSIDERATIONS 

ASM dynamically allocates memory at runtime for the following 
kinds of data: 

--User-defined symbols require at least 7 bytes of storage. The 
amount used by a given symbol will be 

6 + LEN(SYM) 
where LEN(SYM) is the number of characters in the symbol name. 
Only the first thirty-two characters of a symbol name are 
saved. 

--Operator-input lines require an amount of space that varies 
with the length of the line. The formula is: 

3 + LEN(LINE) 
where LEN (LINE) is the number of bytes in the line, including 
carriage return. 

--Saved error line numbers require 6 bytes of space each. 

ASM will automatically use all the memory between the end of ASM 
and the top of the user space (see SDOS manual). 

It is recommended that ASM be run on a system with at least 16K 
bytes of user space. This will allow approximately 4K bytes of 
usable space for ASM runtime tables. 

Copyright (C) 1977 106 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION XI: APPENDIX A - ASM DIRECTIVES WHICH DISALLOW FWD REF 

APPENDIX A -- ASM Directives which Disallow Forward References: 

The following directive's will not allow the user to use forward 
references in their argument lists: 

CASE 
DO 
ELSEIF 
IF 
ORG 
PCA 
PCC 
PGEN 
PSR 
RMB 
RPT 
SET 
SETDPR 
SPACE 
TABS 

Copyright (C) 1977 107 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION XII: APPENDIX B - ASCII CHARACTER SET 

APPENDIX B -- ASCII Character Set 

$00 $10' $20' $30 $40 $50 $60 $70 
---+--------+-------+------+-------+-------+-------+-------4-------+ 
$0' NUL DLE' BLANK' 0 ,@ P'" P , 
$1' SOH DCl I 1 I 1 I A Q' a I q I 
$2 I STX DC2 I II , 2 I B R b' r I 

$3' ETX DC3' # , 3 I C S c' s I 
$4 I EOT DC4 I $ I 4 'D T d' t I 

$5 I ENQ NAK I % I 5 lEU e I u I 

$6 lACK SYN I & I 6 I F V f I v I 

$7' BEL ETB I • I 7 'G W 9 I w I 

$8' BS CAN' ( , 8 I H X h I x I 

$9' TAB EM') I 9 I I Y i I y I 
$A I LF SUB' * I I J Z j I z I 

$B I VT ESC I + I ; I K { k I { I 

$C I FF FS I I < I L \ l' I I 

$D' CR GS I I = 1M} rn I } I 

$E I SO RS I . , > I N ~ n I I 

$F I SI US I / , ? I 0 0 I RO I 

---+--------+------+-------+-------+-------+---~---+-------+-------+ 

Copyright (C) 1977 108 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION XIII: APPENDIX C - I/O ERROR MESSAGES 

APPENDIX C -- Common I/O Error Messages 

ERROR 

1011 
1015 
1023 
1034 

MEANING 

Can't find file 
Disk space exhausted 
File name doesn't start with A-Z or $ 
Illegal Device operation requested 

Error 1034 generally indicates that an output-only device has 
been specified as the source file, or that an input-only device 
has been specified as the listing or binary file. 

Copyright (C) 1977 109 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION XIV: APPENDIX D - 680C COMPATIBILITY INSTRUCTION SET 

APPENDIX D - 680C Compatibility Instruction Set 

The 680C is an imaginary processor whose instruction set includes 
most of the 6800, 6801, 6802, and 6803 instruction sets (the 
exceptions are those instructions dealing with processor 
context). Many of the 6809 functions are supported by the 680C. 
In addition, the 680C instruction set includes some instructions 
which don't exist on any of the real 680x processors, but 
implement frequently-used code sequences. Note: the 6805 is NOT 
covered by 680C. 

The value of the 680C is that code written using its instruction 
set will execute on any of the 680x processors, although more 
efficiently on some than on others. This means that some 
features of the more advanced processors may be used, while 
preserving backward compatibility with earlier processors through 
emulation of the advanced instructions. 

The ASM6800 and A9M6809 assemblers both accept 680C instructions. 
ASM6809, of course, also accepts the balance of the 6809 
instruction set. The emulation feature of the 680C assembler is a 
two-edged sword: on the one hand, it offers a consistent 
instruction set across the family of 680x processors; on the 
other hand, emulated instructions often have side-effects of 
which the coder should be aware. Overall, the value gained from 
a consistent instruction set outweighs the constraints introduced 
by the emulation of instructions. 

In certain cases, the emulation constraints are untenable. The 
coder then has recourse to conditional assembly: 

IF M6800 

ELSEIF M6801 

ELSEIF M6809 

FIN 

to produce code sequences optimized for a particular processor. 

Note that the meaning of a 680C istruction is the intersection of 
the meanings of the implementations of the 680C instruction on 
all processors; this generally means that many 680C instructions 
leave the condition code bits in an undefined state. Other side 
effects are also possible, such as damage to X register contents 
or the memory location TEMPX. 

Copyright (C) 1977 110 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION XIV: APPENDIX D - 680C COMPATIBILITY INSTRUCTION SET 

The 680C' instruction set includes nearly all of the 6800/6801 
instructions, a good portion of the 6809 instruction set (replete 
with many of the more popular addressing modes), and a few new 
instructions added, due to popular demand. 

First, all 6800 instructions except the following are included in 
680C: 

TAP TPA WAI 

The following 6801 instructions are included in 680C (thus 
allowing their use on the 6800): 

ABX ADDD ASLD BHS BLO 
LDD LSLD LSRD MUL PSHX 
PULX STD SUBD 

The entire set of 6809 long conditional branches (except LBRN) 
are included in 680C. 

For the instructions 

ADCD 
EORD 
ORA 
STB 

ADDD 
INCD 
ORB 
STD 

ANDD 
LDA 
ORD 
SUBD 

CMPD 
LDB 
SBCD 

DECD 
LDD 
STA 

most of the 6809 addressing modes may be used. The ones that may 
not be used are: 

accumulator-offset indexed 

program counter relative 

indexing using registers U, Y, PC or PCR 

Additional limitations are: 

constant offsets may be positive only, and must be in 
the range $00 - $FF 

auto post-increment is not allowed in the indirect 
addressing mode 

Copyright (C) 1977 III Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION XIV: APPENDIX D - 680C COMPATIBILITY INSTRUCTION SET 

The following 6809 instructions are implemented in a limited 
fashion: 

LEAX k,X 
LEAS k,S 

where -16 <= k <=15. Note that the destination and index 
registers must be the same for each instance of the instruction. 

The 6809 instructions 

TFR A,B 
TFR B,A 

are allowed. No other TFR class instruction is allowed. Note 
that 680C TFR leaves the CC bits (except carry) undefined. TAB 
and TBA can be used if setting the CC bits is desired, but TFR is 
faster otherwise. 

Copyright (C) 1977 112 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION XIV: APPENDIX D - 680C COMPATIBILITY INSTRUCTION SET 

The 6809 instruction CMPD, subject to the addressing 
conditional branch restrictions above, is included in 680C. 
the instructions 

BEQ LBEQ BNE LBNE Bec 
LBCC BCS LBCS BHI LBHI 
BLS LBLS BLO LBLO BHS 
LBHS 

may immediately follow the CMPD instruction. 

The instructions 

JMP JSR 

and 
Only 

are allowed, but cannot have auto post-increment of any kind, in 
any addressing mode. 

The following 6809 instructions are not allowed. All 
instructions using the U or Y registers are implicit members of 
this list: 

ANDCC 
LBRN 
PULS 
SYNC 

Copyright (C) 1977 

BRN 
LBSR 
PULU 

CMPS 
ORCC 
SEX 

CWAI 
PSHS 
SWI2 

113 

EXG 
PSHU 
SWI3 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION XIV: APPENDIX D - 680C COMPATIBILITY INSTRUCTION SET 

Instructions peculiar to the 680C (and their equivalent 
expansions) are: 

NEGD COMD 
NEGA COMB 
NEGB COMA 
SBCA #0 

ORD EORD 
ORAB arg+1 EORB arg+1 
ORAA arg EORA arg 

INCD arg DECD arg 
INC arg+1 TST arg+1 
BNE x BNE x 
INC arg DEC arg 

x: x: DEC arg+1 

OKRTS ERRORTS 
CLC SEC 
RTS RTS 

ROLD RORD 
ROLB RORA 
ROLA RORB 

TDX TXD 
STAA TEMPA STX TEMPX 
STAB TEMPB LDAA TEMPA 
LDX TEMPX LDAB TEMPB 

TDS TSD 
TDX TSX 
TXS TXD 

ASRD SBCD arg 
ASRA SBCB arg+1 
RORB SBCA arg 

ADCD arg ANDD arg 
ADCB arg+1 ANDB arg+1 
ADCA arg ANDA arg 

BNED arg BEQD arg 
IF \M6809 IF \M6809 
BNE arg BNE x 
TSTB TSTB 
FIN FIN 
BNE arg BEQ arg 

x: 

PULD PSHD 
PULA PSHB 
PULB PSHA 

Copyright (C) 1977 114 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION XIV: APPENDIX D - 680C COMPATIBILITY INSTRUCTION SET 

TSTD TSTD 
TSTB 6800/6801 SUBD #0 6809 
BNE *+3 
TSTA 

NOTE: The instructions BEQD and BNED may be used only 
immediately following: 

ORD EORD ADDD SUBD ADCD 
SBCD LDD STD ASLD ROLD 
COMD NEGD ANDD 

Side effects to watch for using 680C: 

The side effects should be "obvious" if careful thought is given 
to the problem of making 680C code work on any of the 680x 
processors. 

The contents of the X register will be undefined after execution 
of a 680C instruction that uses S as an index register (except 
LEAS), or uses indirection (11[" "J") in an addressing mode. 

Use of auto-increment in an instruction leaves the condition 
codes in an undefined state. 

The MUL instruction will alter the location TEMPX (**). 

The PSHX instruction will alter the B register and the location 
TEMPX (**). 

The TXD instruction will alter location TEMPX (**). 

The ABX instruction will alter the B register and the location 
TEMPX (**). 

The TDX instruction will alter location TEMPX (**). 

The CPX instruction will alter the carry condition. 

The TFR instruction will alter all arithmetic conditions, except 
carry. 

The memory locations $00 - $18 do not exist on the 680C, as this 
would be incompatible with the 6801. 

Double-register instruction operations are not indivisible with 
respect to interrupts. 

(**) These instructions should NEVER be used in interrupt service 
routines. The instruction sequence interrupted may use TEMPX. 

Copyright (C) 1977 115 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION XIV: APPENDIX D - 680C COMPATIBILITY INSTRUCTION SET 

Sample 680C code (works on 6800, 6801 and/or 6809:) 

* Search BUFFER in blocks of 4 for word TARGET 
SEARCHBUFFER 

LDD WORD ; Note we can do this on 68001 
LDX #BUFFEREND+2 

SEARCHBUFFERLOOP 
LEAX 
CMPX 
BEQ 
CMPD 
BNE 
RTS 

SEARCHBUFFERFAIL 
ERRORRTS 

-2,X 
#BUFFERBASE ;buffer searched? 
SEARCHBUFFERFAIL ;b/ yes, didn1t find it 
,--X ; CMPD ,X+++ would destroy CC bits 
SEARCHBUFFERLOOP ; note use of BNE, not BNED here! 

assent: carry is reset 

; signal fail: exit with carry set 

Copyright (C) 1977 116 Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
SECTION XIV: APPENDIX D - 680C COMPATIBILITY INSTRUCTION SET 

NOTE: When the target processor of an assembly is a 6800, the 
MUL instruction is emulated by emitting a 

JSR MUL6809 

instruction. The user is responsible for supplying that 
code -- preferably using conditional assembly: 

IF M6800 

* MUL6809 Subroutine to simulate 6809 style 
* "MUL" instruction 
* 
MUL6809 STAA TEMPA Save multiplicand 

RORB Look at first multiplier bit 
BCS *+3 B/ 1st bit is one! 
CLRA 1st mu1t. bit is 0, set part. prod. 
LSRA Perform multiply iteration 
RORB 
BCC *+4 
ADD A TEMPA 
RORA 
RORB 
Bec *+4 
ADDA TEMPA 
RORA 
RORB 
BCC *+4 
ADDA TEMPA 
RORA 
RORB 
BCC *+4 
ADDA TEMPA 
RORA 
RORB 
BCC *+4 
ADDA TEMPA 
RORA 
RORB 
BCC *+4 
ADDA TEMPA 
RORA 
RORB 
BCC *+4 
ADDA TEMPA 
RORA 
RORB 
RTS 
FIN 

Copyright (C) 1977 117 Software Dynamics 



( 



ASM REFERENCE MANUAL 6/01/83 
INDEX 

&<A> 

* 
*' 
+<A> 
+\<A> 
-<A> 

17 
63,65,69 

48 
17 
17 
17 

2 
16-Bit Offset, 6809 47 
5-Bit Offset, 6809 47 
6800/6801 26 
6801 85 
6809 26 
680C 1,16,26,28,30,33,35,52~85,110 
8-Bit Offset, 6800 32 
8-Bit Offset, 6809 47 
<A> < <B> 21 
<A> « <B> 22 
<A> <= <B> 21 
<A> =< <B> 21 
<A> => <B> 21 
<A> > <B> 21 
<A> >/ <B> 22 
<A> >= <B> 21 
<A> » <B> 22 
<A> \< <B> 22 
<A>ll<B> 20 
<A>l<B> 19 
<A>##<B> 19 
<A>#<B> 20 
<A>&<B> 20 
<A>*<B> 18 
<A>+<B> 18 
<A>-<B> 18 
<A>//<B> 19 
<A>/<B> 18 
<A>=<B> 20 
<A>\<B> 19 
AF 6 
ASCII 4,13,66 
ASCII Character Set 108 
ASM6800 26 
Accumulator Offset, 6809 49 
Add 18 
Addressing Mode 27,42 
Addressing, 680C III 
Addressing, 8-Bit Offset 6800 32 
Addressing, Accumulator 6809 49 
Addressing, Auto-Decrement 6809 49 
Addressing, Auto-Decrement, 6800 33 
Addressing, Auto-Increment 6809 49 
Addressing, Auto-Increment, 6800 33 

Copyright (C) 1977 ~oftware Dynamics 



ASM REFERENCE MANUAL 6/01/83 
INDEX 

Direct 6800 
Direct 6809 
Extended 6800 
Extended 6809 

29 
44,71 

30 
45 

Addressing, 
Addressing, 
Addressing, 
Addressing, 
Addressing, 
Addressing, 
Addressing, 
Addressing, 
Addressing, 
Addressing, 
Addressing, 
Addressing, 
Addressing, 
Addressing, 
Addressing, 
Addressing, 
Addressing, 
Addressing, 
Addressing, 
Addressing, 
Ampersand 

Extended Indirect 6800 
Extended Indirect 6809 
Immediate 6800 
Immediate 6809 

30 
45 
34 
50 
31 Indexed 6800 

Indexed 6809 
Inherent 6800 
Inherent 6809 
PCR 6809 
Register 6800 
Register 6809 
Relative 6800 
Relative 6809 
Stack 6809 

46,47 
28 
43 
48 
28 
43 
34 
50 
51 

Zero Offset 6800 
Zero Offset 6809 

31 
46 

Angle Brackets 
Argument Field 
Arithmetic 
Assembly Control 
Asterisk 
Auto-Decrement, 
Auto-Decrement, 
Auto-Increment, 
Auto-Increment, 
BASIC 
Backs1ash 
Bang 
Binary File 
Binary Numbers 
Binary Operators 
Blank Lines 
Branch 
Branches, Long 
Branches, Short 
CASE 
CF 
Carriage Return 
Character 
Character String 
Character Values 
Characters 
Comma 
Command Field 
Comment 
Comment Field 

Copyright (C) 1917 

Directives 

6800 
6809 
6800 
6809 

17,20 
2 

6,28,43,88,94 
17 
84 

6 
33 
49 
33 
49 
68 

17,19 
19 

100 
11 

17,18 
5 

34,50 
26 
26 

75,82,83,107 
6 
4 

66 
66 
13 
13 

5,26,58,63 
6,25,59,69 

25 
6 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
INDEX 

Comment Line 
Complement 
Computation 
Conditional Assembly 
Conditional Assembly, Details 
Conditional Assembly, General 
Consecutive Blank 
Control Characters 
Covered Quotient 

5,83 
17 

9,17 
16,98 

77 
72 

5 
4 

19 
Curly Brackets 
DE=<EXP> 
PMP 
DO 

2 
86 
87 

79,83,87,98,107 
Data Generation 
Decimal Numbers 
Delimited 

Directives 63 

Direct Mode, 6800 
Direct Mode, 6809 
Directive 
Directives 
Divide 
Doub1eslash 
Dyadic Operators 
EDIT 
EL 

10 
5 

29 
44,71 

25 
58 

18,19 
19 

17,18 
3,99 

87 
ELSE 
ELSEIF 

72,73,74,75,81,83,98 
72,74,81,83,98,107 

83,84,89 
6,59,61,63,64,65,66,68,69,71,83,100 
Implicit 59 

43 

END 
EQU 
EQU, 
EXG 
Ellipsis 
Encryption .im 1 
Equal 
Error Line Summary Format 
Error Lines 
Error Messages 
Errors, I/O 
Exclamation Point 
Exclusive-Or 
Expression 
Expression Evaluation Order 
Expressions 
Expressions, * 
Expressions, *' 
Expressions, Arithmetic 
Expressions, Binary 
Expressions, Boolean 
Expressions, Character 
Expressions, Forward References 
Expressions, Hexadecimal 
Expressions, Implicit Value 

Copyright (C) 1977 

2 

20 
106 

87,106 
103 
109 

19 
20 

5 
9 

9,23 
14 
14 
18 
11 
20 
13 
16 
12 
14 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
INDEX 

Expressions, Operators 
Expressions, Parentheses 
Expressions, Precedence 
Expressions, Relational 
Expressions, Special Symbols 
Expressions, Symbols 
Expressions, Values 
Extended Indirect Mode, 6800 
Extended Indirect Mode, 6809 
Extended Mode 
Extended Mode, 6800 
Extended Mode, 6809 
Extensions 
FALSE 
FCB 
FCC 
FDB 
FFC 

17 
24 
23 
20 
14 
15 
10 
30 
45 
44 

29,30 
45 
26 
17 

63,69 
6,66 

14,65,69 
68 

FIN 
Field, Argument 
Field, Command 
Field, Comment 
Field, Label 
Fields 

72,73,75,79,83,98 
6 
6 
6 
6 
5 

Floating Point 
Form-Feed 
Forward Reference 

Greater 
Greater Equal 
Hash 
Hash Mark 
Hexadecimal Numbers 
I/O Errors 
IF 
IFDEF 
IFUND 
INCLUDE 
Immediate Mode, 6800 
Immediate Mode, 6809 
Implicit Data 

68 
4 

14,16,26,59,61,64,72 
83,107 
21,22 
21,22 

19 
69 
12 

109 
73,79,83,98,107 

72,76,80,83 
72,76,80,83,98 

Implicit Data Generation 
Implicit Values 
Inclusive-Or 

83,84,88,93 
34 
50 
25 
69 
14 
19 
31 
46 

Indexed Mode, 6800 
Indexed Mode, 6809 
Indirect Mode 
Inherent Mode 6800 
Inherent Mode, 6809 
Instruction Mnemonics, 6800 
Instruction Mnemonics, 6809 
Iterative Assembly 

Copyright (C) 1977 

30,45 
28 
43 
27 
42 
83 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
INDEX 

LF 
LIST 
LN 
LO 
LST 
Label Field 
Labels 
Less 
Less Equal 
Line Format 
Line Listing Format 
Line Numbers 
Line Processing 
Listing 

6,58,86 
93,96 

86 
90 
87 

6,58,59,61 
26,27,42 

21,22 
21,22 
5,6,7 

92 
7,8,86 

25,27,42 
87 
90 

100 
86 
86 

Listing Control 
Listing File 
Listing, Depth 
Listing, Width 
Location Counter 
Logical Inverse 
Long Branches 
M6800 

14,26,27,42,63,83 
17 
26 
16 

M6801 
M6809 
M680C (see 680C) 
MCM 
MON 
Machine Instruction Line 
Machine Instruction Line, 
Machine Instruction Line, 
Manifest Constants 
Manifest Values 
Memory 
Minus 
Monadic Minus 
Monadic Operators 
Monadic Plus 
Motorola 
Multiply 
NAM 
NAME 
NDMP 
NDO 
NEL 
NLF 
NLN 
NLST 
NMCM 
Negate 
Next Instruction Address 

Copyright (C) 1977 

6800/6801 
6809 

16,85 
16 
26 
85 

83,84 
25 
26 
41 
10 
10 

106 
17,18 

69 
17 
69 

9,26,85,88,95 
117 

95 
95 
87 
87 
87 
86 
86 
87 
85 
17 
14 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
INDEX 

Not Equal 20 
Notation 2,27,34,35,42,50,52,58 

11 
10 

Numbers, Binary 
Numbers, Decimal 
Numbers, Hexadecimal 
Numbers, Octal 
Numeric Values 
OPT 
ORG 
Octal Numbers 
Opcode 
Opcode Mnemonics, 6800 
Opcode Mnemonics, 6809 
Opcodes 
Operation of ASM 
Operator Input Lines 
Operator Precedence 
Operators 
Options 
Or 
Order 
PAGE 
PC 

of Evaluation 

12 
11 

9 
88 

71,107 
11 

27,42 
35 
52 
25 
99 

100 
9,23,85 
9,17,~3 

72,85 
19 
23 
95 
14 

PCA 
PCC 
PGEN 
PSHS 
PSHU 

98,107 
93,94,95,96,97,98,107 

97,107 
51 
51 

PSR 
PULS 
PULU 
Page Heading Format 
Parentheses 
Pass One 
Pass Two 
Plus 
Pre-Defined Symbols 
Prefix 
Prefix, < 6800 
Prefix, < 6809 
Prefix, > 6800 
Prefix, > 6809 

97,107 
51 
51 
91 

9,24 
3,16,84,85,94 
3,16,84,85,94 

17,18 
16 

29,30,45,48 
29 

44,48 
30 

45,48 
Program Counter Relative, 6809 
Push/Pop, 6809 

14,48 
51 

11,12 
13 
64 

107 

Qualifiers 
Quote Character 
RMB 
RMP 
RPT 
Redefinition 
Register 

Copyright (C) 1977 

83,89,98,107 
61 

27,42 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
INDEX 

Register, 6809 
Register-Register Mode 
Relational Operators 
Relative Mode, 6800 
Relative Mode, 6809 
Remainder 
Reserved Symbols 
SDOS 
SEDIT 
SET 
SET, SDOS 
SETDPR 
SKI 
SK2 
SPACE 
SPC 
Select Assembly Options 
Semicolon 
Shift 
Short Branches 
Side Effects, 680C 
Signed Numbers 
Size 
Skipped Records 
Slash 
Source File 
Source File Format 
Source Line Format 
Stack Addressing, 6809 
Stack Mode, 6809 
Star 
Star-Apostrophe 
Start Address 
String 
Subfie1d 
Subtract 
Symbol Definition Directives 
Symbol Syntax 
Symbol Table 
Symbol Table Format 
Symbol, A 
Symbol, B 
Symbol, CC 
Symbol, D 
Symbol, DP 
Symbol, Default Value 
Symbol, M6800 
Symbol, M6801 
Symbol, M6809 
Symbol, PC 
Symbol, PCR 

Copyright (C) 1977 

43 
28 
20 
34 
50 
19 
16 

1,3 
3,99 

61,107 
86,101 

44,71,107 
26 
26 

96,107 
96 
85 

5,6,94 
19 
26 

115 
9 

106 
97 
18 

3,4,99 
4 

5,6,7 
51 
51 

14,18,25 
14 

84,89 
66 

5 
18 
59 
15 
87 

105 
16 
16 
16 
16 
16 
76 
16 
16 
16 
16 
16 

Software Dynamics 



ASM REFERENCE MANUAL 6/01/83 
INDEX 

Symbol, S 
Symbol, U 
Symbol, X 
Symbolic Values 
Symbols 
Symbols, Pre-Defined 
Symbols, Reserved 
Syntax 
TABS 
TFR 
TITLE 
TRUE 
Tab 
Times 
Tutorial 
Two-Pass 
Unsigned Numbers 
Values 
Values, Character 
Values, Implicit 
Values, Manifest 
Values, Symbolic 
WI=<EXP> 
WITH 
Zero Offset, 6800 
Zero Offset, 6809 
[ ], 6800 
[ ], 6809 

Copyright (C) 1977 

16 
16 
16 
14 

15,26,106 
16 
16 

2,5,27,42,58 
92,96,107 

28,43,112,115 
6,94,95 

17 
4,5,66 

18 
3 
3 
9 
9 

13 
14 
10 
14 
86 

7,9,24,84,85,90,100 
31 
46 
30 
45 

Software Dynamics 


