

PART 0:

PART 1:

(
'

SSB DISK SYSTEM REFERENCE MANUAL

INSTALLATION INSTRUCTIONS. •

UNPACKING••••••••••••••••••••• • • • • • • • • • • • • • • •

HARDWARE REQUIREMENTS •••• .
MINIMUM CLOCK FREUUENCY •••••••••••••••
'110 INSTALL IN YOUR SYSTEM ••••••
A WORD ABGuT DISK LRIVES•••••••••••••••••• ...
WHICH VERSION OF DOS68 TO USE •••••••• • • • • • • • •

PROBLEMS IN BOO'I'ING DOS 6 8 ••••••••••••••••••••

OPERATING DOS68 ••• .
INTRODUCTION ••••••••••••••
COMMAND DESCRIPTIONS•••••••••••••••••••••••••

RESIDENT COMMAND DESCRIPTIONS ••••••••••••
EXIT •••••••••••••••••••••••••••••••••
C L0SE ••••••••••••••••••••••••••••••••
GET ••••••••••••••••••••••••••••••••••
RUN ••••••••••••••••••••••••••••••••••

TRANSIENT COMMAND DESCRIPTIONS •••••••••••
LIST •••••••••••••••••••••••••••••••••
SAVE •••••••••••••••••••••••••••••••••
GE'I'H •••••••••••••••••••••••••••••••••
DELETE •••••••••••••••••••••••••••• • ••
RENAME •••••••••••••••••••••••••••••••
APPEND•••••••••••••••••••••••••••••••
PRil~'11

••••••••••••••••••••••••••••••••

COPY •••••••••••••••••••••••••••••••••
soc ••••••••••••••••••••••••••••••••••
LINK ••••••••••••••••••• • • • • • • • • • • • • • •
INS'l'AL ••••••••••••••••••••••••••••• • •
REMOVE ••••••••••••••••••••••••••••• • •
FIND •••••••••••••••••••••••••••••••••
VIEW •••••••••••••
ASYS •••••••••••••••••••••••••••••••••

DOS68 COMMAND ERROR MESSAGES•••••••••••••••••

BOOTING DOS68 •••••••

WRITE PROTECT ••••

DISK FORMATTING ••••••••• .
CREATING NEW DISKS•••••••••••••••••••••• •••••

DOS68 VERSION 4 MEMORY MAP•••••••••••••••••••

DOS68 AT HIGHER MEMORY ADDRESSES •••••••••••••

0-1

0-1

0-1

0-1

0-2.

0-2

0-3

0-3

1-1

1-1

1-2

1-3
1-3
1-3
1-3
1-3

1-4
1-4
1-5
1-5
1-5
1-5
1-6
1-6
1-6
1-8
1-9
1-9
1-9
1-H>
1-10
1-11

1-11

1-13

1-13

1-14

1-15

1-17

1-18

PART 2: DOS68 SYSTEM PROGRAMMER'S GUIDE•••••••••••••••••• 2-1

INTRODUCTION •••••••••••••••••••••••••••••••••

MONITOR SYSTEM•••••••••••••••••••••••••••••••

MONITOR JUMP TABLE•••••••••••••••••••••••
ZCOLDS•••••••••••••••••••••••••••••••
ZWARMS •••••••••••••••••••••••••••••••
OUTEEE•••••••••••••••••••••••••••••••
INEEE ••••••••••••••••••••••••••••••• •
ZMON •••••••••••••••••••••••••••••••••
ZFLSPC•••••••••••••••••••••••••••••••
ZGCHAR•••••••••••••••••••••••••••••••
ZGNCHR •••••••••••••••••••••••••••••••
ZANCHK•••••••••••••••••••••••••••••••
ZDIE •••••••••••••••••••••••••••••••••
ZGETHN•••••••••••••••••••••••••••••••
ZADDX ••••••••••••••••••••••••••••••••
ZODTST•••••••••••••••••••••••••••••••
ZTYPDE•••••••••••••••••••••••••••••••
ZOUTHX •••••••••••••••••••••••••••••••
ZOUTHA •••••••••••••••••••••••••••••••
ZLINEI •••••••••••••••••••••••••••••••

USER COMMAND TABLE•••••••••••••••••••••••

CREATING TRANSIENT MONITOR COMMANDS ••••••

DOS68 WITH MONITORS OTHER THAN MIKBUG ••••

NOTES ON MODIFYING DOS68 OR TRANSIENTS •••

DFM68 SYSTEM•••••••••••••••••••••••••••••••••

INTRODUCTION •••••••••••••••••••••••••••••

DFM STRUCTURE••••••••••••••••••••••••••••

USING DFM••••••••••••••••••••••••••••••••

FILE TYPES•••••••••••••••••••••••••••••••
SEQUENTIAL FILE OVERVIEW •••••••••••••
RANDOM FILE OVERVIEW•••••••••••••••••

FILE CONTROL BLOCK FORMAT ••••••••••••••••

DISK FILE DIRECTORY••••••••••••••••••••••

INITIALIZING ENTRY POINT (ODFM) ••••••••••

DFM CLOSING ENTRY POINT••••••••••••••••••

I/0 SERVICE REQUEST ENTRY POINT ••••••••••
QFREE: REPORT FREE SPACE •••••••••••••
QS04W: OPEN SEQUENTIAL FILE FOR WRITE
QSWRIT: WRITE TO A SEQUENTIAL FILE •••
QSWC: CLOSE A SEyUENTIAL WRITE FILE ••

2-1

2-1

2-1
2-2
2-2
2-2
2-2
2-2
2-">
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-4
2-4
2-4
2-4

2-6

2-7

2-8

2-8

2-9

2-9

2-9

2-10

2-HJ
2-10
2-10

2-10

2-13

2-13

2-14

2-14
2-14
2-14
2-15
2-15

(/

()

(

QS04R: OPEN FOR SEQUENTIAL READ ••••••
QSREAD: READ FROM A SEQUENTIAL FILE ••
QSRC: CLOSE A SEQUENTIAL READ FILE •••
QDEL: D~LETE A FILE ••••••••••••••••••
QREN: RENAME A FILE ••••••••••••••••••
QAPP: APPENDING TWO FILES ••••••••••••
QDIRI: DIRECTORY READ SETUP ••••••••••
QDIR'I': DIRECTORY 'I'RANSFER ••••••••••••
QRAFC: READ ACTIVE FCB CHAIN •••••••••
yLOGD: LOGGING A SYSTEM DRIVE ••••••••
QLOGE: EXAMINE SYSTEM DISK LOG •••••••
QSSR: SINGLE SECTOR READ •••••••••••••
QSSW: SINGLE SECTOR WRITE ••••••••••••
QCRF: CREATE RANDOM FILE •••••••••••••
QORF: OPEN A RANDOM FILE •••••••••••••
QPRF: POSITION RANDOM FILE •••••••••••
QRRF AND QWRF: RANDOM READ A~D WRITE.
QCLSRF: CLOSE A RANDOM FILE ••••••••••
XRBHW: HIGHEST BYTE WRITTEN ••••••••••
QERF: EXPAND A RANDOM FILE •••••••••••

USING THE DISK FILE MANAGEMENT SYSTEM ••••
HOW TO READ FROM A SEQUENTIAL FILE •••
HOW TO WRITE A SEQUENTIAL FILE •••••••
BCW TO USE A RANDOM FILE •••••••••••••

2-15
2-15
2-1!)
2-16
2-16
2-16
2-16
2-16
2-17
2-17
2-17
2-17
2-17
2-18
2-18
2-19
2-19
2-20
2-20
2-20

2-21
2-21
2-23
2-24

PART 3: BFD-68 SYSTEM HARDWARE••••••••••••••••••••••••••• 3-1

P FlE FACE • 3 -1

BOOT AND I/O ROUTINES•••••••••••••••••••••••• 3-1

DISK CONTROL................................. 3-1

FD1771B-01 CONTROL••••••••••••••••••••••••••• 3-1

Rufil. • 3-1

~ISK INTERFACE DESCRIPTION ••••••••••••••••••• 3-2

WRITE ENABL~••••••••••••••••••••••••••••• 3-3

REGISTER SELECT•••••••••••••••••••••••••• 3-3

READ ENABLE•••••••••••••••••••••••••••••• 3-3

HEAD LOAD TIMING••••••••••••••••••••••••• 3-3

CISK INTERFACE SIGNALS••••••••••••••••••••••••••• 3-4

DISK SELECT•••••••••••••••••••••••••••••••••• 3-4

Sl~E SELECT•••••••••••••••••••••••••••••••••• 3-4

MOTOR or~..................................... 3-4

WRITE DATA••••••••••••••••••••••••••••••••••• 3-4

WRITE GATE••••••••••••••••••••••••••••••••••• 3-4

STEP•••••••••••••••••••••,•••••••••••••••••••• 3-5

DIRECTION •••••••••••••••••••••••••••••••••••• 3-5

TRACK ee..................................... 3-5

WRITE PROTECT•••••••••••••••••••••••••••••••• 3-5

READ DATA••••••••••••••••••••••••••••••••••••
\

INDEX PULSE••••••••••••••••••••••••••••••••••

INSTALLING ADDITIONAL DRIVES•••••••••••••••••••••

DISKETTE REQUIRMENTS•••••••••••••••••••••••••••••

ADJUSTMENTS FOR 5" OR 8" DRIVES••••••••••••••••••

3-5

3-6

3-6

3-7

PART 4: GENERAL INFORMATION.............................. 4-1

LIMITED WARRANTEE•••••••••••••••••••••••••••• 4-1

REPAIR POLICY•••••••••••••••••••••••••••••••• 4-2

SOFTWARE LICENSE••••••••••••••••••••••••••••• 4-2

SYSTEM ACCESSORIES••••••••••••••••••••••••••• 4-3

USER GROUP INFORMATION ••••••••••••••••••••••• 4-4

APPENDICES:

APPENDIX A: DFM68 FUNCTION CODES•••••••••••••••• A-1

APPENDIX B: FILE TYPE AND FILE STATUS CODES ••••• B-1

APPENDIX C: DFM ERROR CODES••••••••••••••••••••• C-1

APPENDIX D: SCHEMATICS•••••••••••••••••••••••••• D-1

APPENDIX E: CONTROLLER PART LOCATION •••••••••••• E-1

APPENDIX F: CORES PATCHES••••••••••••••••••••••• F-1

(

PAR~ 0: INSTALLATION INSTRUCTIONS

UNPACKING

Carefully remove the disk system from its shipping container.
Remove the disk controller board. Remove the protective packing
material wrapped around the board. Inspect both disk system and
controller board for any shipping damage. Any damage should be
reported to the shipping agent.

HARDWARE REQUIREMENTS

In order to use your aisk system you will need:

1. An operational SS-50 BUS 6800 computer or its functional
equivalent. The system should contain:
a) 4K of RAM memory at $7000 to run DOS68 Version 3, or 6K of

RAM at ~6&b~ for DOS68 Version 4.
b) Nothing that would interfere with the controller PROM at

$8~20 or PIA at $9FFC.
A source of 115 volts AC power. I

~.

MINIMUM CLOCK FRE~UENCY

The minimum processor clock frequency for operation of the
minifloppy systems is 0.85 MHz. For the 8" systems, the minimum
clock frequency is 1.65 MHz. Most 6800 computers now in use
operate with a clock frequency near 1.0 MHz. Thus, unless you
are using one of the SSB Chieftain Series of 2 MHz processors,
you may have to modify your computer to operate at a higher clock
frequency when using an 8" disk system. This is easily done and
results in your programs all running nearly twice as fast.

If you are converting an existing 1
frequency is recommended. Most
circuits supplied with your 1
satisfactorily at 1.8 MHz. If you
all the 6800 series components are
which is guaranteed to operate
replaced by a 68B00, a 6820 or 6821

MHz system, a 1.8 MHz clock
likely the MOS integrated

MHz system will operate
experience problems, however,
available in a "B" series
at 2 MHz. The 6800 may be
by a 68821 etc.

NOTE: The SwTP MP-16 will not operate above approximately 1.05
MHz because of the method used to refresh its dynamic memory
chips. The SSB M-16A uses static memory and every board is
tested at 2 MHz. If you have a MP-16, check with your local
dealer to determine his policy on a trade-in allowance towards a
M-16A.

The SWTP MP-A CPU board may be converted to 1.8 MHz operation as
follows:

(1) Cut the trace between pin 5 of IC-20 and pins 12 and 13 of
IC-19.

(2) Connect a jumper from pin 3 of IC-20 to pins 12 and 13 of
IC-19.

0-1

SSB DISK SYSTEM MANUAL

The SWTP MP-A2 board may be modified for 1.8 MHz operation by
changing capacitor C-1 to approximately 30 pf. The exact value (
should be determined experimentally and a low temperature , ·
coefficient capacitor should be used to minimize frequency change
caused by changes in operating temperature.

TO INSTALL IN YOUR SYSTEM

1. MAKE SURE ALL POWER IS REMOVED FROM THE COMPUTER SYSTEM.
2. Read the hardware requirements section of the installation

instructions and make certain your system has not been
modified to be incompatible with the SSB disk system.

3. Install the controller card in any of the large slots so that
the component side faces forward.

4. Install the disk interface cable. (Use J-2 for 5" systems or
J-3 for 8" systems). When adding additional drives, refer to
the section on "Installing Additional Drives".

5. Apply power to the disk system by plugging it into the 115
volt power source and pressing the power switch. The power
switch is on the front panel of the BFD-68 and on the rear
panel of the LFD-68 and DFD-68.

6. Power may now be reapplied to the computer.

111 CAUTION 111
Never turn power on or off to the disk system
or to the computer to which the disk system
is attached while a diskette is installed in
any of the drive units. During power on or
off, a false write could occur which may
destroy the data stored on the diskette.

11! IMPORTANT 111
Read the limited warrantee and software
license information in this manual prior to
using the system.

This completes the hardware installation. To get the software
going, read the section "BOOTING DOS68".

A WORD ABOUT DISK DRIVES

Smoke Signal Broadcasting uses two types of -minifloppy drives in
the disk system: Shugart Associates SA400 drives and
Microperipherals Inc. B51 drives. These drives are functionally
equivalent but have two diferences. One is physical; The SA400
has a different front panel from the B51. Both operate
essentially the same. Diskettes are inserted into the drives
with the label facing the left side of the system. The edge of
the diskette with the long oval cutout should be the first edge (
of the diskette to enter the drive. The other difference has to
do with the speed at which at which the stepper motor moves the
head. For the SA400, it takes about 40 milliseconds per step; the
B51 takes about 12 milliseconds. Consequently, the interface

0-2

SSB DISK SYSTEM MANUAL

using MFI drives will not work with the SA400 drives due to the
faster stepping speed. However, the BSl drives will work with an
interface using the SA400 drives.

Shugart Associates SA800 drives are used in the single sided 8"
disk systems and SA850 arives are used in the double sided 8"
systems. The controller supplied with any 8" system will operate
with both the SA800 and SA850 without modification.

WHICH 00868 TO USE

The disks supplied with the disk system contain two versions of
DOSbb. Version 3 is the default version and uses the same disk
file management system and monitor as earlier versions but is
supplied with more transient commands. Version 4 is the new
version of DOS68 which handles random files and requires more
memory space. To use version 4 you should use the LINK command
to link to DOS68.4X, where X is the latest version number listed
in the directory.

'this manual describes LOS68 version 4; however, with the
exception of references to random access files, the operating
instructions are nearly identical.

DOS68 version 4 is assembled to use the $6000 and $7000 memory
blocks. A version using $A000 and ~B000, and a version using
$C000 ana $0000 are available as options from Smoke Signal
Droadcasting.

PROBLEMS IN BOOTING 00868

If you cannot get DOS68 to boot in, you may have nardware
problems. Some commonly encountered problems are:

1. The head loads and unloads without DOS68 printing its banner.
This may be due to no memory at $7~00. Read the section on
hardware requirements.

2. Disk seems to be working, but no results. 'I'wo possibilites:
a) Since all the !Cs are in sockets, some may have been
dislodged in shipping. 'I'o make sure, push in all the !Cs and
try again.
b) The head carriage assembly on the disk drive may have been
stuck or dislodged during shipping. To free it, power down
the disk system and, with the eraser end of the pencil or a
finger, move the head assembly back and forth to make sure it
is free. Then position the carriage so that the stylus is in
the groove on the stepper motor cam. Then try booting the
system again. This problem is confined to SA400 drive disk
system systems.

3. DOS68 works but every character is printed on the terminal
twice. See the section "Using DOS68 with monitors other than
MIKBUG".

0-3

(

PART 1: OPERATING DOS68 VERSION 4

INTRODUCTION

DOS68 is a disk oriented monitor for use with Smoke Signal
Broadcasting's disk systems.

Most DOS68 commands are implemented as transient programs. This
means that the routine to process the command is not resident in
memory, but rather is loaded into memory when it is needed to be
executed. This facility allows two things: 1) the resident
monitor is smaller because all the routines are not present in
memory, and 2) the user is easily able to implement new monitor
commands without modification to the monitor.

In addition, in the calling of transient monitor commands, the
users of multi-disk systems have the ability to specify that the
transient command is to be found on a specific disk drive. This
feature is particularly useful when debugging new monitors with
transient commands with names which conflict with the old
system's names. The disk number is specified by preceeding the
command name with the disk number followed by a colon, ':'. For
example, 2:LIST,l will retrieve the LIST command processor
from disk drive 2 to list the directory for drive 1.

DOS68 is supplied with the following commands:

*
*

*
*

COMMAND
NAME

LIST
SAVE
GET
GETH
RUN
DELETE
RENAME
APPEND
PRINT
COPY
SDC
LINK
IN STAL
REMOVE
FIND
VIEW
CLOSE
EXIT
ASYS
FORMAT

FUNCTION

List the disk file directory
Save memory into a file
Load a binary object file into memory
Load a hex formatted object file
load a file into memory and begin execution
Remove a file from a disk
Change the name of a file
Merges two files together to form one file
Print the contents of a file
Allows files to be copied from disk to disk
Single disk drive copy
Set up information to boot the monitor
Convert object file to a command file
Convert a command file to an object file
Type load address information
Type contents of an editor text file
Close all open files
Exit to other resident monitor
Assign system disk
Format a blank disk

(* indicates a memory resident command)

1-1

SSB DISK SYSTEM MANUAL

In the command descriptions to follow, the following conventions
are used: (_

The disk drive unit numbers are 0, 1, 2 and 3.

Angle brackets, < >, are used to enclose a string of
characters to indicate that the string indicates one item.
For example: <UNIT NUMBER> is used below to represent the
disk unit number for a file.

If a field in a command is optional, the optional portion is
bracketed in square brackets. For example: [,<UNIT NUMBER>]
means that the comma followed by a unit number is optional.

Many files require the specification of a file; <FILE SPEC>
will be used as an abbreviation for the following:

[<UNIT NUMBER>:]<FILE NAME>[.<EXTENSION>]

where <FILE NAME> may be one to six alphanumeric dharacters
and <EXTENSION> may be up to three alphanumerics.

Some legal file specifications might be:

!:FILE.ONE
ABC.I
FNAME
0:FILE.ONE

A file called "FILE.ONE~ on unit number 1
A file called "ABC.I" assumed to be on unit 0
A file called "FNAME" assumed to be on unit 0
Note that 0:FILE.ONE is differerit file from
!:FILE.ONE

COMMAND DESCRIPTIONS

DOS68 indicates its readiness to accept a new command by typing
an ampersand, "&", on the terminal. At this time a new command
line may be entered •

. Commands given to DOS68 are entered on a line input basis. This
means that the entire line is typed in before DOS68 begins to
process it. Using such line input gives the user a chance to
easily correct typing errors or to completely cancel the line
before DOS68 starts any processing. The previously entered
character can be deleted by using CONTROL 0 or SHIFT 0 (back
arrow). DOS68 will echo all deleted characters enclosing them in
backslashes, "\". CONTROL U or CONTROL X can used to delete the
entire line; DOS68 will echo AU OR AX and do a carriage return
line feed and be ready for a new command (a new prompt charcter
is not issued).

NOTE: DOS68 assumes that the character input routine 1 for the
terminal does not automatically echo the character. Thus, while
the user is typing a command, the input routine within DOS68
supresses the usual automatic echo used by the MIKBUG (TM
Motorola) ROM. Using DOS68 with ROM monitors other than MIKBUG
may result in having characters double echoed to the terminal.
For this problem see the section "USING DOS68 WITH ROM MONITORS
OTHER THAN MIKBUG".

1-2

·-.

(

SSB DISK SYSTEM MANUAL

RESIDENT COMMAND DESCRIPTIO~S

This section describes those DOS68 commands which are memory
resident. It is not possible to specify a disk unit number for
retrieving these commands since these commands are not transient
commands.

EXIT &EXIT

The exit command returns control to the resident ROM monitor.
The exit is made by using a jump table entry whose address is
specified in the "DOS68 MEMORY MAP" table. The address of the
ROM monitor entry point can be changed by changing this table
entry.

CLOSE &CLOSE

The close command attempts to close any currently open disk
files. (NOTE: DOS68 automatically performs the CLOSE function
upon entry to DOS68 and after execution of each monitor command.)

GET &GET,<FILE SPEC>[,<OFFSET>]

(The GET command loads the file specified into memory and returns
to the monitor. <OFFSET> is an optional hex value which when
entered is added to the load address of the ftle.

Load the file "GOING" from disk 0
For example:

&GET,GOING
&GET,l:XYZ
&GET,PROG.REL,1000

RUN

Load the file "XYZ" into memory from disk 1
Load "PROG.REL" $1000 locations above
the default load address

&RUN,<FILE SPEC>[,<OFFSET>]

The RUN command performs the same function as the GET command
except that if a transfer address was given when the file was
saved, this address will be transferred to once the file has been
loaded. NOTE: the RUN command has the same optional offset load
capability as the GET command. The offset will also be added
into the transfer address. It is the us~r's responsibility to
know if a file can be run when loaded.with an offset.

EXAMPLES:
&RUN,2:GAME.l
&RUN,l:PROG.REL,1000

Run the file "GAME.I" on disk 2
Load with a $1000 offset and
run "PROG.REL"

1-3

SSB DISK SYSTEM MANUAL

TRANSIENT COMMAND DESCRIPTIONS

This section describes the transient commands supplied with
DOS68. DOS68 can be told to search a specific disk for any of the
following commands by preceeding the command name with a unit
specifier such as "l:" to indicate unit 1.

LIST &LIST[,<UNIT>[,$]]

The LIST command types the contents of the directory for the disk
unit number specified. The "disk directory• is the list of file
names contained on a given disk. If no unit is specified, unit
zero is assumed.

Examples:
&LIST
&LIST,0
&LIST,2

List directory of disk 0
List directory of disk 0
List directory of disk 2

The format of the directory listing is as follows:

&LIST,2
FILE NAME SB EB NB FS
ABC .1 8042 8043 0002 0200
FILE .TWO 8044 8049 0006 0200

AVAILABLE SECTOR COUNT: 026C

The file names are under the heading "FILE NAME" followed by
information about the file. "SB" is the starting disk address of
the file, "EB" is the ending disk address for the file, "NB" is
the number of blocks being used by the file, and "FS" is the file
status. The first two hex digits are the file type (e.g. 02 for
a sequential file and 04 for a random file). The second two hex
digits are the file status and are non-zero only when the file is
active (i.e. non-zero indicates the disk linkages are in a
questionable state from the file not being closed properly).

Disk addresses are given by a four digit hex number. The first
two digits are the track number beginning with $80 representing
track 0. The second two digits are the sector number beginning
with $40 representing sector 0. The number of sectors available
to be used is given in hexadecimal on the last line of the
listing.

The LIST command may also be used to list the directory of the
monitor transient commands resident on disk. The command file
names are listed by following the unit number by a '$' parameter.

For example:
&LIST,0,$
FILE NAME SB EB NB FS
SAVE .$ 8042 8044 0003 0200.
DELETE.$ 8045 8046 0002 0200
RENAME.$ 8047 8048 0002 0200

1-4

(

(

(

SSB DISK SYSTEM MANUAL

The above files with the extension of '$' are examples of some
transient commands available to the monitor.

SAVE &SAVE,<FILE>,<SA>,<EA>[,<TA>[,$]

The region of memory specified as starting at <SA> through
location <EA>, inclusive, is saved in binary format into the file
specified. <TA> is an optional starting address for use by the
run command. if <TA> is not specified, no transfer address is
written to the file. The SAVE command may also be used to save
transient monitor commands by using the '$' parameter.

For example:
&SAVE,l:MEMOR~.LOW,0,1000 $0 thru $1000 is saved into a file

called "MEMORY.LOW" on disk 1
&SAVE,2:CMD,7080,7180,7080,$ A transient command file is

saved on disk 2.

NOTE: Command files must not have an extension on the file name
when saved.

GETH &GETH,<FILE SPEC>[,<OFFSET>]

The GETH command is used for loading the object files created by
using "CORES" (the coresident assembler/editor package). See the
description of the "GET" command.

DELETE &DELETE,<FILE SPEC>[,$]

The DELETE command removes the specified file from the directory
of the unit specified. The sectors used by the file now become
available for reuse. No disk repacking is never required when
files are deleted. The delete command may also be used to delete
monitor transient command files from the disk by following the
name of the command by a '$' parameter.

Examples:

&DELETE,AB.123
&DELETE,2:FILE.ONE

&DELETE,l:RENAME,$

RENAME

This deletes file "AB.123" from disk 0
This deletes a file called "FILE.ONE" from
the directory of disk unit 2

This deletes from disk 1 the transient command
file for the rename command.

&RENAME,<THIS>,<THAT>[,$]

The RENAME command changes the name of "THIS" file to "THAT".

For example:
&RENAME,FILE.ONE,FILE.l On disk 0 the file "FILE.ONE" is

renamed to "FILE.I"

1-5

SSB DISK SYSTEM MANUAL

&RENAME,2:THIS,THAT On disk 2, the file "THIS" is renamed
to "THAT" (

'"'. ;

&RENAME,LIST,LI,$

APPEND

On disk 0, renames the command file
"LIST.$" to "LI.$"

&APPEND,<THIS FILE>,<THAT FILE>

The APPEND command allows two files to be merged into one file.
The file specified by <THIS FILE> is appended to <THAT FILE>
where both files are assumed to reside on the disk specified by the
file specification of <THAT FILE>. Once appended, the file name of
<THIS FILE> is removed from the disk directory.

FOR EXAMPLE:
&APPEND,FILE.ONE,2:FILE.TWO

This causes the file "FILE.ONE" on disk two to be appended to
file "FILE.TWO" on disk two.

PRINT &PRINT,<FILESPEC>[,<LINE COUNT>]

The PRINT command prints the contents of the specified file on
the terminal. If the optional line count is not specified, the
entire file is listed without pausing. If the number of lines is (
supplied, the file is listed until that number of line feed
characters occurs at which time the listing pauses until a key on
the terminal is struck. If the key is a carriage return
character the listing is terminated, otherwise, the listing
continues until another set of lines has been printed. The PRINT
command will list any non-command file, including binary files
which will appear as a string of odd characters ·and control
characters.

COPY ©,<FROM>,<TO>

The COPY command provides a means for copying files.
the general command form:

©,<FROM>,<TO>[<SWITCHES>]

COPY has

Where <FROM> specifies the source of information to be copied,
<TO> specifies the destination, and <SWITCHES> represents the
specification of various options.

Either <FROM> or <TO> may reference "$"-files (e.g. LIST.$), and
either may be an ambiguous file specification. An ambiguous file
reference uses the characters "?" and "*" as part of the file
name to reference a family of files as opposed to a specific file
reference. "?" is a wild-card character which is used to mean (
"any character in this position". "*" is a wild card field which
when used in a file reference means "treat this field as if it
were filled with "?"s.

1-6

SSB DISK SYSTEM MANUAL

Examples:

* * means all files

*.OBJ means all files with an extension of "OBJ"

SAM. * means all files with a file name of "SAM"

*.$ means all command (i.e. $-sign) files

A?????.HEX means all files with an extension of "HEX"
where the file name starts with the letter

Z?.* means all files where the file name is two
characters long and starts with "Z"

NOTE: "l:" is treated the same as "l:*.*"

"A"

The function of the COPY command is to copy all files specified
by <FROM> to files specified by <TO>. The only restrictions as
to what may be done are restrictions of common sense. For
example: ©,l:*.$,2:ABC makes no sense since this tries t~
copy all command files on drive 1 to a single file, ABC, on drive
2.

©,l:*.OBJ,2:*.HEX- is a valid statement which says to copy
all files on drive 1 with an extension of "OBJ" to drive 2, but -
in the process changing "OBJ" to "HEX" for each file copied.

©,l:A?????.*,2:Z?????.* says to copy all files on drive 1
which start with the letter "A" to drive 2 while changing the "A"
to a "Z".

© l:?A????.* 2:?Z????.* says to copy all files from drive 1
which have an "A" as the second letter to drive 2 while changing

·the second letter to a "Z".

COPY has one feature which is dependent upon the fact that COPY
assumes that an ACIA is being used for the terminal I/O. This
feature is a Control-C abort. After each file is copied, COPY
checks to see if a character has been entered from the terminal.
If a character has been entered, the character is checked for
being control-C. If it is control-C, an abort message is
printed, and the copy is terminated.

Users still forced to live with MIKBUG's PIA for serial I/O will
have to patch out this feature by setting memory locations $107
and $108 to $00,$00 rather than the address of the ACIA. COPY is
saved on disk with a starting address of $100, and ending address
which is the contents of memory locations $109 and $10A, and a
transfer address of $104.

1-7

SSB DISK SYSTEM MANUAL

<SWITCHES> represents the specification of 1 or more of the (
following options: .-

"/NV"

"/C II

"/L=n"

"/P"

No Verify. The default mode of operation is to verify
all files copied by reading back the output file and
comparing it to the input file data.

Confirm. COPY will _print the file name of the next file
to be copied and then wait for the operator to say yes
("Y") or no ("N") to the copying of that file when the
confirm option is specified.

Memory limit. The memory limit option is used to limit
the amount of memory used by COPY. COPY normally
assumes that 16K of RAM starting at 0 is available for
use. The "n" specified represents the high order digit
of the next 4K of memory NOT available for use by copy
(the default is /L=4). "n" may be the numbers 1 through
7 for 4 through 28K.

Partial. The partial option forces COPY to copy as much
possible of a file which has a read error preventing the
entire file from being read. Otherwise, the remainder
of the last buffer read will not be written when the
read error occurs.

Examples of specifying switches:

© 0: l:/L=7
Use all 28K for buffer to copy all of disk 0 to disk 1

©,0:,l:/L=7/P/NV/C
Use all 28K for buffer to copy all of disk e to disk 1,
without performing verification, but copying as much of
the file as possible while asking for confirmation on
each file to be copied.

©,*.$,l:,/C/L=2
Use SK as buffer to copy all command files from disk 0
to 1 with confirmation

NOTE: The number of switches specified and the order in which
they are specified is not important.

soc &SDC,<FILE SPEC>[,$]

The soc (single drive copy) command allows users of single disk
drive systems to copy files from one disk to another disk by
reading the entire file into memory, prompting the operator to
change the disk, and then writing the memory image to the new
disk. Thus the user is limited to copy files which will fit into
memory.

The SDC command assumes that the user has 16K of RAM origined at
0, and that the disk drive in the system is unit zero.

1-8

(

(

SSB DISK SYSTEM MANUAL

LINK &LINK,<FILE SPEC>

The LINK command tells the bootstrapping routine which program to
load and run when the rom bootstrap routine is executed.

For example: &LINK,MON causes the linkages on the disk in
drive zero to be set up such that the file "MON" will be run when
this disk is booted in. &LINK,2:NEWMON similiarly links the
boot on disk two to "NEWMON". In this case, in order to then
boot "NEWMON", you must move the disk with "NEWMON" on it down to
drive zero before the ROM boot is executed.

IN STAL &INSTAL,<OBJ FILE>[,<CMD NAME>]

INSTAL is a command which renames an executable file (that is, a
file with a transfer address) to a "$" file.

General command format:

&INSTAL,<EXECUTABLE FILE SPEC>[,<COMMAND NAME>]

The name of the command remains the same as the 6 character file
name of the original file unless the optional 6 character command
name is specified.

The advantage of this command is that a command file may now be
SAVEd in separate files (non-$ files), appended together to form
the final file, and then INSTALled as a "$" file.

Examples:

1) &SAVE l:PART.1,100,200
&SAVE l:PART.2,500,600,100
&APPEND l:PART.2,l:PART.l
&INSTAL l:PART.l,MYCMD

save first memory range
save second memory range
append the parts together
install the file as a command
called "MYCMD"

Note: the above is equivalent to:
&SAVE MYCMD,100,600,100,$
except that less disk space is used by the
"INSTAL" method since the range 201 through 4FF
is not saved on the disk when not actually needed.

2) &INSTAL,2:PROG.BIN on disk 2, rename PROG.BIN
to PROG.$

NOTE: INSTAL and REMOVE perform inverse functions of each other.

REMOVE &REMOVE,<COMMAND>[,<OBJ FILE>]

REMOVE is a command which renames a transient command file (a "$"
file) to a non-$ file. The effect of a REMOVE command is to
change the "$" extension to a blank extension unless the optional
<NEW FILE NAME> is specified.

1-9

SSB DISK SYSTEM MANUAL

General command format:

&REMOVE,<TRANSIENT FILE NAME>[,<NEW FILE NAME>]

Examples:

&REMOVE LIST is the equivalent to the illegal
command &RENAME LIST.$,LIST

&REMOVE,ASMB,OLDASM.BIN
is the equivalent to the illegal
command &RENAME,ASMB.$,OLDASM.BIN

NOTE: REMOVE and INSTALL perform the inverse function of each
other.

FIND &FIND,<FILE NAME>[,$]

FIND is command used to determine where an object file would load
and what its transfer address would be.

General command format:

&FIND,<OBJECT FILE SPEC>[,$]

(_

Where <OBJECT FILE SPEC> specifies an object file in the binary (
record format used by the "SAVE" command and the SA-1 assembler
(NOT the format used by CORES). If the object file is a command
file, indicate so by following the command name by a ",$".

Example: Find out where FIND loads.

&FIND,FIND,$
LOADS FROM 0100 THRU 0267

TRANSFER ADD = 0106

WARNING: FIND.$ is slightly too large to load in the transient
command area and so was origined to $100.

VIEW &VIEW,<FILE NAME>[,<LINE COUNT>]

VIEW is a command for typing the contents of an editor text file.
An optional line count is provided for CRT users and if
specified will cause the typeout to pause every <LINE COUNT>
number of lines.

General command format:

&VIEW,<FILE NAME>[,<LINE COUNT>]

If <LINE COUNT>, a hex number, is zero or not specified, the
entire file will be typed without pausing. In responce to a
pause, a carriage return will terminate the listing; all other
characters will cause the listing to continue.

1-10

(

(

SSB DISK SYSTEM MANUAL

LINK &LINK,<FILE SPEC>

The LINK command tells the bootstrapping routine which program to
load and run when the rom bootstrap routine is executed.

For example: &LINK,MON causes the linkages on the disk in
drive zero to be set up such that the file "MON" will be run when
this disk is booted in. &LINK,2:NEWMON similiarly links the
boot on disk two to "NEWMON". In this case, in order to then
boot "NEWMON", you must move the disk with "NEWMON" on it down to
drive zero before the ROM boot is executed.

IN STAL &INSTAL,<OBJ FILE>[,<CMD NAME>]

INSTAL is a command which renames an executable file (that is, a
file with a transfer address) to a "$" file.

General command format:

&INSTAL,<EXECUTABLE FILE SPEC>[,<COMMAND NAME>]

The name of the command remains the same as the 6 character file
name of the original file unless the optional 6 character command
name is specified.

The advantage of this command is that a command file may now be
SAVEd in separate files (non-$ files), appended together to form
the final file, and then INSTALled as a "$" file.

Examples:

1) &SAVE l:PART.1,100,200
&SAVE l:PART.2,500,600,100
&APPEND l:PART.2,l:PART.l
&INSTAL l:PART.l,MYCMD

save first memory range
save second memory range
append the parts together
install the file as a command
called "MYCMD"

Note: the above is equivalent to:
&SAVE MYCMD,100,600,100,$
except that less disk space is used by the
"INSTAL" method since the range 201 through 4FF
is not saved on the disk when not actually needed.

2) &INSTAL,2:PROG.BIN on disk 2, rename PROG.BIN
to PROG.$

NOTE: INSTAL and REMOVE perform inverse functions of each other.

REMOVE &REMOVE,<COMMAND>[,<OBJ FILE>]

REMOVE is a command which renames a transient command file (a "$"
file) to a non-$ file. The effect of a REMOVE command is to
change the "$" extension to a blank extension unless the optional
<NEW FILE NAME> is specified.

1-9

SSB DISK SYS~EM MANUAL

General command format:

&REMOVE,<TRANSIENT FILE NAME>[,<NEW FILE NAME>]

Examples:

&REMOVE LIST is the equivalent to the illegal
command &RENAME LIST.$,LIST

&REMOVE,ASMB,OLDASM.BIN
is the equivalent to the illegal
command &RENAME,ASMB.$,OLDASM.BIN

NOTE: REMOVE and INSTALL perform the inverse function of each
other.

FIND &FIND,<FILE NAME>[,$]

FIND is command used to determine where an object file would load
and what its transfer address would be.

General command format:

&FIND,<OBJECT FILE SPEC>[,$]

(

Where <OBJECT FILE SPEC> spec!f ies an objdecthfile i
1
n the bibna

1
ry (

record format used by the "SAVE command an t e SA- assem er
(NOT the format used by CORES). If the object file is a command
file, indicate so by following the command name by a ",$".

Example: Find out where FIND loads.

&FIND, FIND,$
LOADS FROM 0100 THRU 0267

TRANSFER ADD = 0106

WARNING: FIND.$ is slightly too large to load in the transient
command area and so was origined to $100.

VIEW &VIEW,<FILE NAME>[,<LINE COUNT>]

VIEW is a command for typing the contents of an editor text file.
An optional line count is provided for CRT users and if
specified will cause the typeout to pause every <LINE COUNT>
number of lines.

General command format:

&VIEW,<FILE NAME>[,<LINE COUNT>]

If <LINE COUNT>, a hex number, is zero or not specified, the
entire file will be typed without pausing. In responce to a
pause, a carriage return will terminate the listing1 all other
characters will cause the listing to continue.

1-10

(

SSB DISK SYSTEM MANUAL

ASYS &ASYS,[<UNIT NUMBER>]

The ASYS command allows users of DOS68 Version 4 to assign the
system drive (the drive on which DOS68 expects to find system
overlay files).

To determine which drive the system is currently assigned to,
type:

&ASYS

The ASYS command will respond with:

SYSTEM ASSIGNED TO DRIVE n:

where "n" corresponds to the disk drive number. To assign the
system to another unit, type:

&ASYS,n

where, again, "n" corresponds to the drive number to which the
system is to be assigned. ASYS will respond with the same
message shown to indicate the new drive assignment.

DOS68 COMMAND ERROR MESSAGES

DOS68 prints only its prompt character unless an error condition
occurs. The following are error messages which can be generated
by DOS68:

ILL CMD
DOS68 does not understand the format of the command entered.
Try again.

ILL FILE SPEC
A file name was entered incorrectly.
again.

ILL UNIT i

Try typing the line

An invalid unit number has been entered. The only valid unit
numbers are 0, 1, 2 and 3.

ILL VALUE
An invalid digit was encountered in a hexadecimal number.
Check the value and try again.

NO TA
No transfer address was found on the transient command or
file to be RUN. The file has been loaded but DOS68 does not
know where to begin execution.

RUN DENIED
The requested transient command file could not be found.
Therefore, the RUN is denied since no file was loaded.

1-11

SSB DISK SYSTEM MANUAL

CS ERR: XXXX (
A checksum error has occured during the loading of the file. . _
XXXX is the address of the object record being loaded. The
file has been written on (most likely by someone trying to
patch the file). The file should be deleted and replaced
with a backup copy.

CLOSE ERR: XXXX
DOS68 has attempted to close a file left open by some program
but the information in the File Control Block (FCB) needed to
determine how to close the file is not valid, thus, DFM68
cannot close the file. This is usually caused by a program
corrupting the contents of the FCB. The only cure for this
error is too cold start DOS68 (it may be advisable to reboot
DOS68 since part of DOS68 may also have been corrupted by the
offending program).

1-12

(

(_

(

SSB DISK SYSTEM MANUAL

BOOTING DOS68

The initial loading of software into a computer with little or no
permanently resident software involves a process called
bootstrapping. Bootstrapping is the use of a typically small,
dumb program to load a larger, smarter loader which in turn can
load the desired program (usually the monitor).

The ROM supplied on the interface board contains a booting
routine capable of reading in sector zero of track zero on disk
drive zero and transferring to the routine read in. The content
of this sector is initialized by the disk formatting program to
contain a program capable of loading the monitor.

Thus to load DOS68, the user must use MIKBUG (TM Motorola) or
some other method of transferring to location $8020. This will
cause DOS68 to be brought in off the disk and executed. Booting
in this manner is referred to as "COLD STARTING" because all
monitor and disk file manager temporaries are initialized. It is
possible to "WARM START" the monitor, that is, to reload the
monitor without initializing everything by instead transferring
to the ROM at location $8023.

NOTE 1: For new disks to know what file to boot in when using
the ROM resident booting routine, the monitor must have been
"LINKED" (see the "LINK" command). "LINKING" the disk is a
process whereby the booting routine is told what file to load and
run when the disk is booted. Also, note that the COPY command
does NOT transfer linking information.

NOTE 2: The ROM supplied with the controller board utilizes
memory locations $7000 through $707F and the boot program
additionally uses locations $7F80 through $7FFF when boot
loading. This is true even if the program being booted does not
reside in the $7000 range.

WRITE PROTECT

The BFD-68 is provided with a write protect feature. Each 5"
diskette has a small rectangular cutout on one edge. Covering
the cutout with a piece of tape will protect the diskette from an
accidental write. An attempt to execute any command that would
write to the diskette will return an error message (error EDWP
for version 4 DOS and error EDW for version 3 DOS).

1-13

SSB DISK SYSTEM MANUAL
L 0 ft);.. ~ Fii"• M () > !) 0 T. () 0 / IJ._

()II B TO 01n;;..

DISK FORMATTING ilr".rJ~F(r~. ltht- O!<X) &FORMAT[,<FORMAT PARAMETERS>]

FORMAT is a command for the initialization of blank diskettes for (
use with DOS68. FORMAT must be used to prepare every disk to be
used by DOS68. FORMAT is invoked by either of the following two
monitor commands:

&FORMAT,<Format Parameters>

&FORMAT (er)
FMT:

or

The first command will cause FORMAT to perform the functions
specified by the parameters - after which control will return to
DOS68. The second command format·will cause FORMAT to prompt the
operator for new commands. Entering a Carriage Return
immediately after any prompt will return control to DOS68. (This
second command format saves having to reload FORMAT if it is to
be used to format more than one disk).

The general format of the commands following the "FMT:" prompt is
as follows:

[<unit >]/[<options>]

If a unit number is not entered, FORMAT will assume drive 0. If
a unit number is supplied, it must be one of the numbers e, 1, 2
or 3. Options, if used, are of the form: /<option>/<option>.

OPTION SYMBOL
i
?
F
Q

D
s
8
5

FUNCTION
Print the options currently in effect
Print a summary of available options
Fast Mode; do not verify
Quiet Mode; do not print track or bad
sector messages during verification
Format a double sided disk
Format a single sided disk
Format an 8" disk
Format a 5" disk

The options D, s, 8 and 5 have default values corresponding to
the type of disk on which FORMAT is distributed and normally need
not be changed. The F and Q options may be turned off by
preceeding the command symbol by a minus sign. (-F means do not
use Fast Mode).

Options remain in effect until either FORMAT is terminated or the
option is overridden. For example: /-F overrides /F and vice
versa. To determine what the defaults are type "&FORMAT/#".

There are certain errors which are considered fatal by FORMAT.
The printout of these messages are preceeded by "FE: ". Fatal
errors cause the current process to be aborted. Such a fatal
error might be:

FE: BOOT ERROR: XX

which means the sector for the boot program is bad. "XX"

1-14

(

(

I
~

SSB DISK SYSTEM MANUAL

represents a hardware error code which indicates the cause of the
error.

Upon completion, the formatter types the message:

FORMATTING COMPLETE. XXXX YYYY ZZZZ

Where:

xx xx
YYYY
zzzz

Is the first sector available for use,
Is the last sector available for use, and
Is the count, in hex, of available sectors

Only a few seconds are required to actually format the disk. The
remainder of the time is spent checking each sector of the disk
to verify that each has no dropouts.

Sectors which fail the verification procedure are eliminated from
the disk file structure at this time to prevent their subsequent
usage.

-- ----·-· ·-~--·
FORMAT asks two questions of the operator to prevent accidentally
formatting a wrong disk:

ARE YOU SURE YOU WAiJT TO FORMAT ON DRIVE n?.
Where "n" should correspond to the unit number the operator
desires to format on. · P~spond with •y• and a carriage return if
this is the desired drive number. Any other entry will abort the
formatter. If "Y" is entered, FORMAT will then ask:

HONEST?
Enter "H" followed by a carriage return if this, honestly, is the
intended drive.

CREATING NEW DISKS

This section describes how to build backup disks.

It should be noted that it is not necessary to have a copy of the
DOS68 operating system on every disk used by DOS68. it is only
necessary to have the system present on the disk from which the
system is to be boot loaded.

STEP 1: FORMAT A DISK

The first step in building a new disk is to format a new disk.
DOS68 is supplied with a command called "FORMAT". FORMAT is a
program which initializes blank soft sectored diskettes (see the
section on formatting new disks).

STEP 2: COPY ALL DESIRED FILES TO THE NEW DISK.

SINGLE DRIVE SYSTEMS

To copy files between diskettes on a single drive disk system, a
transient monitor command called "SDC" (Single Disk Copy) has
been provided. SDC allows for the reading of a file into memory,
giving the operator time to change diskettes, and writing the

1-15

SSB DISK SYSTEM MANUAL

file back out to the new disk
description of "SDC").

(see the transient command

Repeatedly use soc to copy all desired files from the old disk to
the new disk.

Single disk system owners using DOS68 Version 4 will have to use
Version 3 to copy "DFM680.??l" over to the new disk before being
able to use version 4 to copy other sequential files to the new
disk. Version 3 must be used because "DFM689.??l" contains
version 4's sequential file write close program which version 4
cannot use until the file has been closed on the new disk.
Similarly, to copy random access files, DFM689.??3 must first be
copied to the new disk. (??refers to the DFM revision number).

MULTIPLE DRIVE SYSTEMS

On multiple drive systems the transient monitor command "COPY" is
used to copy files from disk to disk.

Assuming the newly formatted disk is in drive zero and the old
system disk is in drive one, the following command will copy all
the files from disk one to disk zero:

&!:COPY 1: 0:

NOTE: PREPARING SYSTEM DISKS

If the disk being prepared is to be used to boot from a cold or
warm start, the disk must contain a copy of DOS68 and the disk
must be "LINKED" by executing the following monitor command:

&LINK,DOS68.4X (Assuming the new disk is in drive zero)
("X" is the latest revision number)

(the LINK command serves to tell the booting program which file
is to be loaded and executed when the ROM booting routine is
used.)

1-16

(

(

(

SSB DISK SYSTEM MANUAL

DOS68 VERSION 4 MEMORY MAP

$7000 - $707F

$7080 - $727F

$7280 - $777F

$7780 - $7FFF
$6800 - $6FFF

$7F80 - $7FFF

Used by ROM to load system boot from disk
later reused by monitor for stack area
and line input buffer

Transient Command Area (TCA)
(It is recommended that future transient
commands be located $6080 to allow for
future monitor expansion.)

Monitor program area

DFM program area
more DFM and future monitor space
(may expand downward if insufficient room) •

I/O buffer for ROM boot routine

1-17

SSB DISK SYSTEM MANUAL

DOS68 AT HIGHER MEMORY ADDRESSES

A disk with DOS68 Version 4 located at either $C000 through $DFFF
or $A000 through $BFFF is available from Smoke Signal
Broadcasting. This will allow the user to have the entire lower
32K available for user programs, except during boot operations.
The boot routine will use $7000 through $707F and $7F80 through
$7FFF while it loads the monitor into the higher addressing
region. After loading the monitor, the entire $7000 block is
available to the user.

No change to the CPU card is needed to locate memory in the
higher addresses1 however, the SWTPC 4K or 8K memory cards will
not locate in that area without modification. The user, desiring
to use DOS68 at the higher addresses is responsible for modifying
his memory card to properly operate at that location. If the
memory is to be located at $A000 the on board RAM will need to be
disabled.

The Smoke Signal Broadcasting M-16A 16K memory board may be
switch selected to occupy $A000 through $DFFF and, thus, can
provide the memory required to operate DOS68 at the higher
addresses. When the M-16A is used at that location, a simple
modification to the SWTPC CPU card is required. Modification
instructions are given in the M-16A manual. No modifications are
required to the SWTPC A2 card1 however, the on board RAM at $A000
must be switched off.

When using the higher addressed versions of DOS68, all programs
which access the monitor or DFM in the $6000 through $7FFF area
should be changed to access corresponding locations in the higher
addresses.

HIGH DOS USERS

For those of you converting from the standard DOS to the high
address versions of DOS, two files have been supplied to make
your job easier. The two files are patches to the editor (SE-1)
and assembler (SA-1) to work with the high DOS.

On the $A000 - $BFFF disk:

REMOVE,EDIT
APPEND,EAP.PAT,EDIT
INSTAL,EDIT
REMOVE,ASMB
APPEND,AAP.PAT,ASMB
INSTAL,ASMB

(

()

will patch the editor and assembler. (This example assumes all
files are on drive 0). On the $C000 - $DFFF disk use the same
proceedure except substitute: (

ECP.PAT in place of EAP.PAT and
ACP.PAT in place of AAP.PAT.

1-18

PART 2: DOS68 SYSTEM PROGRAMMER'S GUIDE

INTRODUCTION

The Smoke Signal Broadcasting disk operating system, DOS68,
consist~ of two distinct programs:

(1) The monitor portion (TMON), and
(2) The Disk File Management portion (DFM68).

DFM68 is strictly a disk file handling system and can be used
independently of the monitor portion of DOS68 when the user
wishes to manipulate disk files.

The monitor portion of DOS68 handles all other functions of DOS68
not handled by DFM68.

The following sections provide the necessary interfacing
information for the user to be able to make use of the functions
available through DOS68.

MONITOR SYSTEM

This section describes the user interface to the DOS68 monitor.

MONITOR JUMP TABLE

The first portion of the monitor contains a jump table for
accessing several commonly used routines which are present within
the monitor. The layout for the table is as follows:

ENTRY
ADDR
$7280
$7283
$7286
$7289
$728C

$7291
$7294
$7297
$729A
$7290
$72A0
$72A3
$72A6
$72A9
$72AC
$72AF
$72B2
$72BS

ENTRY
NAME
ZCOLDS
ZWARMS
OUTEEE
INEEE
ZMON

FUNCTION
Monitor cold start
Monitor warm start
Character output routine
Character input routine
JMP to ROM monitor

ZFLSPC Get a file specification
ZGCHAR Get current character from the line buffer
ZGNCHR Get the next character from the line buffer
ZANCHK Check for alphanumeric
ZDIE Print command string, error message, and exit
ZGETHN Get a hex value from the line buffer
ZADDX Add the B register to the index
ZOUTST Print a string
ZTYPDE Type the disk error message
ZOUTHX Print a byte in hex
ZOUTHA Print an address in hex
(Unused)
ZLINEI Input edited line from the terminal

2-1

SSB DISK SYSTEM MANUAL

ZCOLDS - Monitor cold start

This entry to DOS68 resets the processor's stack and all internal
status of both the monitor and DFM. The banner:

DOS68 VX.YR

is printed on the terminal where VX.YR represents the version
number. DOS68 then proceeds to do a warm start.

ZWARMS - Monitor warm start

This entry to DOS68 resets the processor's stack, sets $A048 to
the address of 'ZWARMS' for subsequent restarting, closes any
files that may have been left open, and then prompts the operator
for a new command by typing an ampersand, '&'.

OUTEEE - Character output to the control terminal

This JMP is used for all output to the user's terminal.
is set to use "OUTEEE" at $E1Dl within the resident ROM.
assumed that the output routine preserves the B register
X register but not necessarily the A register (the data
output).

INEEE - Character input from the control terminal

This JMP
It is

and the
to be

This JMP is used for all input from the user's control terminal.
This JMP is set to use "INEEE", $ElAC, within the resident ROM.
It is assumed that the B and X registers are preserved and that
the character input is returned in the A register.

DOS68 assumes that INEEE does not automatically echo input back
to the terminal. See description of 'ZLINEI'.

ZMON - Jump to ROM monitor

The monitor "EXIT" command uses this jump to give control to some
other resident monitor. This jump is set to $E0E3 to cause entry
into the resident ROM.

ZFLSPC - Get a file specification

"FILE SPEC" is a routine which is used to pick up a unit number
and file name from the input buffer in the form:

[<UNIT NUMBER>:]<FILE NAME>[.<EXTENSION>]

The line buffer pointer is assumed to be pointing to the
delimiter of the previous field. To use ZFLSPC, the X register
must contain the address of a File Control Block (FCB) in which
the unit and file name is to be put (see FCB format

2-2

(I

(

SSB DISK SYSTEM MANUAL

desc;ripti,on)'• .NOTE:· ZFLSPC clears the FCB starting at FCB+0
thrQugh,·(FCB+$2!Lbe·fore picking up the file specification.

ZFLSPG ·.i~t.ui:na .with the carry set if an error occurs. If no
error occurs, the FCB will have the properly set up unit and file
name and the A register will return with the delimiting character
of the file name.

No registers are preserved. The line buffer pointer is left
poil)ting to :·t;:pe de1imiting character.

ZGCHA.R ..:. Get ·current character

This routine returns the character currently being pointed to by
the line input buffer pointer.

Whe~· .. ::contrp:~ ;is Lgive:n to a transient program, the buffer pointer
is poJn~tin9:;~t.o., ... the. delimiter of the command name.

C· :: ! • ~.

NOTE: When using the line input routine, this routine must not be
called until either ZGNCHR, ZFLPSC, or ZGETHN has been used
because the line buffer pointer is initialized to point to the
character preceding the line buffer.

'•

ZGNCHR - Get the next character

This routine advances the line buffer pointer by one and returns
the character being pointed to. Once a ~arriage return character
is returned, the pointer will no longer b& ~dvanced and carriage
returns ,will be, re.tur;ned with each call.'

,. ' .. ~ . ~.- . • - • j. ~ -~ ; " ~-.: ,. , • • • . • \ • ·- . , - ~·' '

·, i -? ' '. ! I~":

ZANCHK - Alphanumeric check

The character in the A register is checked for being 0-9 or A-Z.
If the character is not one of these characters, the carry bit
will .be :$et ,on "tebt;ir,.n. . '!')le ::, A:, .B, and ~ , registers are not
af f e;cled.~'.-\ :,,:: .. :':'. \ -.·:'.' , . ,:, " . "

';"?>•.... ·'

This routine prints the contents of the line buffer to the left
of the line buffer pointer, followed by i? •, followed by the
text ._of an~ .er~.9r,me9~age '. point,ed by th~ X register (pr int ing
stops· ~P.e.n.·;·a·:.· r.iut.~.: .. '.f.~ :t9und·. in~ the error.,me.ssage). After printing
the error message~ control w'ill return to the monitor through the
warm start entry.

' ' • ;¥,. '.4-·. • •, -'.·.

This. rou,t·i{le refurns. the: value of. a HEX number found in the line
buffe~. ·; 'zG~TH,.(.·~:ta~(si by:~ p()ing a ZGNCHR and continues to collect
hex digits up~JJ,a ppn-~lpl'lal')umeric is found. Upon return, the

2-3

SSB DISK SYSTEM MANUAL

line buffer pointer is left pointing to the delimiting character,
thhe value ~s returned ~s ~ 16 bit value in the X register, and if (_
t e carry is not set, indicating no error occured, the A register
will contain the terminating character, and the B register will
be non-zero if any hex digits were found.

ZADDX - Add the B register to the index register

The value in the B register is added into the value in the X
register and the result is returned in the X register. The A
register is not affected, and the B register will contain the low
order sum.

ZOUTST - Output a string

The character string pointed to by the X register is output to
the terminal. The output stops when a null, $00, is encountered.
The X register is left pointing to the null upon return.

ZTYPDE - Type disk error

This routine is used to print the message "DISK ERROR: XX". The
X register is assumed to be pointing to an FCB whose error status
will be printed as the "XX". (

ZOUTHX Output a byte in hex

This routine prints two hex digits corresponding to the byte of
memory pointed to by the X register. The A register is
destroyed1 the B and X registers are unchanged.

ZOUTHA - Type two bytes in hex

This routine prints four hex digits corresponding to the t~o
bytes of memory pointed to by the X register. The A register is
destroyed, the B register is preserved, and the X register is
returned advanced by one to point to the low order value printed.

ZLINEI - Line input routine

This routine accepts a line of data from the terminal. The
following characters have special meaning to the input routine:

CARRIAGE RETURN: Terminates the input
CONTROL u AND CONTROL X: Restart line input
CONTROL O AND SHIFT 0: Delete the previous input character

The edited information is put into the line input buffer and the
buffer pointer is reset to point to the character position
preceding the line buffer. A carriage return line feed pair is
echoed upon ·receipt the carriage return ending the input.

2-4

·,·

SSB DISK SYSTEM MANUAL

NOTE: The automatic echo feature of the MIKBUG serial I/O PIA is
inhibited during the line input routine and re-enabled upon exit.
This is done upon entry to ZLINEI by:

LOA A
STA A

#$3C
$8007

Auto-echo is re-enabled at the ZLINEI exit approximately 35 bytes
later:

LOA A
STA A

#$34
$8007

If a ROM monitor other than MIKBUG is to be used, refer to the
section "USING MONITORS OTHER THAN MIKBUG".

2-5

SSB DISK SYSTEM MANUAL

USER COMMAND TABLE

When a command line is processed by DOS68, the monitor resident
command table is checked first. If the command is not found,
then the user command table is checked. If the command is still
not found, the disk directory is checked for the command. If
still not found, "RUN DENIED" is output to the terminal.

At memory locations ~728F and $7290 are two locations which are
normally zero indicating that there are no user resident commands
present in memory. If these locations are not zero they are
assumed to be the address of the user command table.

The format of the user command table is as follows:

START FCB
FCB

FDB
FCC
FCB

ORG
FDB

5
2

CMDADR
/MYCMD/
0

$728F
START

Length of command (must be 1 - 6)
Minimum number of characters which
Must be entered by the operator
for a match
Address of user command
Text of command name
0 means end of table
(table may contain any number of
entries)

Tell DOS68 about this table

In the above example, DOS68 will transfer to location 'CMDADR' if
the operator types in any one of the following:

MY
MYC
MYCM
MYCMD

When control is passed to the user command, the input line buffer
pointer is left pointing to the character delimiting the command
name so that the user may request the monitor to pick up
parameters from the command line (see the monitor jump table
descriptions).

The user should exit his command processor by doing a jump to the
monitor warm start entry point.

2-6

<

(

(

(

(

SSB DISK SYSTEM MANUAL

CREATING TRANSIEN'I' MOld'l'OR COMMANDS

The file "SAVE.BLD" contains a program to facilitate the creating
of new transient monitor commands.

Since the monitor 'SAVE' command is a transient program, it
cannot be used to save a new transient routine (if the new
routine resides in the Transient Command Area) since the SAVE
command itself will be called into the Transient Command Area
(TCA) destroying the program to be saved. Hence, 'SAVE.BLD' is a
resident version of the transient SAVE command.

SAVE.BLD lo~ds at memory location $0400 by the GET command and is
approximately 512 bytes in length. When loaded, the monitor will
recognize the command "SAVE" as a resident command which
functions identically as the transient save . command. The new
transient program can be loaded into the TCA and saved using the
resident save command. To release the resident save command, it
is necessary to zero the two byte long resident command table
extension pointer located at locations $728F and $7290 (or to
return it to the address of the beginning of the user command
table described in the previous section).

USING DOS68 WITH ROM MONITORS OTHER THAN MIKBUG

DOS68 can be used with ROM.monitors other than MIKBUG with little
difficulty. There are only four pieces of information DOS68
needs to know about the resident monitor:

These are:
1) Where to enter the ROM monitor on the "EXIT" command,
2) Where the character output routine is located,
3) Where the character input routine is located, and
4) If necessary, how to prevent the character input routine from
automatically echoing input characters back to the output.

The first three pieces of information are changed by changing the
monitor jump table addresses described previously. Suppressing
the input echo requires a little more work.

DOS68 is configured to run with MIKBUG and as such automatic echo
is suppressed by storing $3C into location $8007 and is restored
by storing $34 into location $8007. This code is found in ZLINEI
by following the jump table entry to the ZLINEI routine and
looking for the code sequence 86 3C B7 80 07 and changing this as
needed to turn off the echo. The echo is restored by the
instruction sequence 86 34 B7 80 07.

2-7

SSB DISK SYSTEM MANUAL

If using SMARTBUG or SW!BUG, DOS68 will double echo characters
entered fro• the terminal. The following proceedure will correct
this situations

1) Boot DOS68 into mem~ry by jumping to $8828.

2) Type the following dommand:

APPBHD,SBP,DOS68.XX where XX is the version
number of DOS68 to be changed.

3) Bit RESET on the computer.

4) Again, boot DOS68 by jumping to $8828.

Input characters should now echo correctly.
is correct for SMARTBUG users. If using
•strrr• for •ser• in step 2.

NOTES ON MODIFYING DOS68 OR TRANSIENTS

The above proceedure
SWTBOG, substitute

Executable object files are stored on the disk in a binary record
format. Thia implies that if it is desired to patch an object
file (such as DOS68 or the transient commands) the user should
load the program into memory, make the changes, and then write a
new file out to the disk. The user can directly modify the disk c·
only if the checksum for the record being changed is also
updated. In order to be able to do this the user must first read
and understand the Motorola MINIBUG-II binary object record
format since this is the format used by DOS68.

An alternative method of patching an object file is to append to
the file a file containing object records which load the patches
into place. When the object file is loaded, the original file
will be loaded, the patches will be loaded, and once the end of
file baa been reached, DOS68 will then transfer to the starting
address.

2-8

SSB DISK SYSTEM MANUAL

DFM68 SYSTEM

This section is directed toward how to use DFM68 and how to
interpret the disk structure used.

INTRODUCTION

DFM68 is a disk file management program written for Motorola 6800
based microcomputers using Smoke Signal Broadcasting's disk
controller.

DFM68 provides the interface between user programs and the disk
hardware by maintaining the information necessary to allow the
user to transmit data to and from disk files on a
character-by-character basis.

By providing this interface, the user program need not be
concerned with:

1) The actual mechanics of reading and writing the disk,
2) what files are on the disk and where they are located,
3) Allocating and de-allocating of disk space.

The user need only be concerned with:

1) The name of the file to be operated upon,
2) The operation to perform (e.g., read or write)
3) The physical drive upon which the file resides.

DFM STRUCTURE

The user need not be concerned with the internal structure of DFM
other than to understand its effect upon the operation of the
system. To the user, DFM consists of three parts:

1) The kernel
The kernel portion of DFM interfaces user re9uests with the
appropr~ate function processor. The kernel is always present
in memory and contains common subroutines used by several
request processors.

2) The resident function handlers.
The frequently used function processors, and certain special
function processors, are kept in memory for faster access.

3) The non-resident function handlers.
Infrequently used function processors are kept in three
system files on the system disk. These three files are
expected to exist on the currently "logged" system drive (see
QLOGD and QLOGE functions; also see Appendix A for the system
file names and which functions they contain). The system
files need not be present on all disks; the system files need
only be present on the current system drive when one of the
functions they contain is to be used.

2-9

SSB DISK SYSTEM MANUAL

USING DPM

All requests for services are communicated to DFM by means of a
file control block (FCB). The FCB is a table in RAM memory which
contains information such as the file name, operation to perform,
unit number of disk for the file, and the disk I/O buffer space.

In order to operate on a file the file must must be "OPENED".
Opening the file establishes the linkages to be able to transfer
data to or from the file. Subsequent data transfers are then
made by passing a byte of data through the A register. After all
data transfers are complete, the file must be •cLOSED". Closing
the file updates all information on the disk regarding the file.

FILE TYPES

DFM supports sequential and random access file structures. Each
file type has two subtypes. A sequential file may be either a
binary file or an ASCII text file. Random access files may be
either byte addressable or record addressable.

SEQUENTIAL FILE OVERVIEW

The two types of sequential files are binary and ASCII text. DFM

(

makes no assumptions as to the file's contents in binary mode and (
treats the file as a stream of 8-bit bytes. In ASCII text mode,
however, DFM assumes that all characters are 7-bit ASCII
characters and DFM will provide transparent blank compression
thereby possibly reducing the overall file size for a typical
text file.

RANDOM FILE OVERVIEW

The two types of random files are byte addressable and record
addressable. These two types exist to facilitate the access of
data depending upon the application program.

Random files are treated as an ordered collection of bytes. In
byte mode, the user can specify which byte of the file is be
operated upon next by suppling a byte address (a number from e to
one less than the file size). In record mode, the user specifies
which fixed length record is to be operated upon next.

FILE CONTROL BLOCK FORMAT

This section describes the entries within the File Control Block
(FCB) used to access disk files and to communicate with DFM.

The FCB is a table 166 ($A6) bytes in length for sequential files (
and 329 ($148) bytes in length for random access files. ~

The user must allocate one FCB for each file being operated on at
any one moment. There is no restriction upon how many FCBs may

2-1e

SSB DISK SYSTEM MANUAL

be in use at any time thus allowing the user to operate on as
many files as desired from within any single program.

The format of the FCB for sequential files is as follows:

NAME
XFC
XES
XUN
XFN

XFT
~FS

XFSU

XLSU

xsuc

XNFP

XBI
XCT
xcs

XNT
XNS
XPT
XPS
XSOD

LOCATION USAGE FCB+0 =F-u_n_c~t-i_o_n __ c_o_d~e------------------~
FCB+l Error status returned to caller
FCB+2 Unit number for operation
FCB+3 1st character of file name
FCB+4 2nd character
FCB+S 3rd character
FCB+6 4th character
FCB+7 5th character
FCB+B 6th character of file name
FCB+9 1st character of the file extension
FCB+l0 2nd character of the extension
FCB+ll 3rd character of the extension
FCB+l2 File type
FCB+l3 File status
FCB+l4 Track i of first sector used by the file
FCB+l5 Sector t of the first sector used by the file
FCB+l6 Track I of the last sector used by the file
FCB+l7 Sector I of the last sector used by the file
FCB+l8 High order count of sectors used by the file
FCB+l9 Low order count of the sectors used by the file
FCB+2e Reserved
FCB+21 "
FCB+22 "
FCB+23 "
FCB+24 "
FCB+25 "
FCB+2,6 "
FCB+27 High order address of next FCB in active FCB chain
FCB+28 Low order address of next FCB in active FCB chain
FCB+29 Index into data buffer
FCB+30 Track I of current sector on disk
FCB+30 Sector I of the current sector on the disk
FCB+32 Reserved
FCB+33 "
FCB+34 "
FCB+35 "
FCB+36 "
FCB+37 "
(Disk I/O buffer begins with the next byte)
FCB+38 Track of next sector in the file
FCB+39 Sector of the next secotr in the file
FCB+40 Track of previous sector in the file
FCB+41 Sector of the previous sector in the file
FCB+42 - FCB+l65 Data portion of disk sector

The FCB entries from FCB+3 through FCB+26 are the exact entries
to be found in the disk file directory.

2-11

SSB DISK SYSTEM MANUAL

The format of the FCB for random files is as follows:

NAME
XFC
XES
XUN
XFN

XFT
XFS
XFSU

XLSU

xsuc

XRFS

XRHBW

XNFP

XRBA

XRIM

XRID

LOCATION
FCB+S
FCB+l
FCB+2
FCB+3 ...
FCB+ll
FCB+l2
FCB+l3
FCB+l4
FCB+lS
FCB+l6
FCB+l7
FCB+l8
FCB+l9
FCB+20
FCB+21
FCB+22
FCB+23
FCB+24
FCB+25

+26
FCB+27

+28
FCB+29

+39
+31

FCB+32

FCB+33

USAGE
Function code (See note 1)
Error status
Unit number
File name

(Last character of file name)
File type
File status
First sector used (track number)
First sector used (sector number)
Last sector used (track number)
Last sector used (sector number)
High order count of sectors used by file
Low order count of sectors used by file
Random file size high (See note 2)
Random file size middle
Random file size low
Highest byte written high (See note 2)
Highest byte written middle
Highest byte written low
Reserved
Address of next active FCB
(low order address)
Random file byte address high (See note 2)

" " n " middle
n " " " low

Random file increment mode
(Also called XRIF during random file creation)
Random file initialization data constant

(The remainder of the FCB is to be used only by DFM)

FCB+319 Last byte of FCB

NOTE 1: The random and sequential file FCBs are identical in
function in bytes FCB+0 through FCB+l9.

NOTE 2: In byte mode these three bytes are treated as one 24-bit
binary logical byte number. In record mode, the bigh and middle
order bytes are used as a 16-bit record number and the low order
byte is a e through 255 byte offset within the record. This note
applies ·to both file size (XRFS) and byte address (XRBA).

2-12

(

(

SSB DISK SYSTEM MANUAL

DISK FILE DIRECTORY

The directory of files present on the disk begins in sector 1 of
track zero. The format of the directory is as follows:

BYTE
-0--
1
2
3

USAGE
Track i of next directory block (e if end of directory)
Sector # of next directory block
Track # of previous directory block
Sector # of previous directory block

The four bytes above are then followed by five File Information
Blocks (FIBs). A FIB is the information contained in the FCB
entries from FCB+3 through FCB+26 with one exception in the case
of the first directory block.

The first directory block (track 0 sector 1) only describes four
files. The first FIB is used to point to the start and end of
the list of available sectors on the disk. The format of this
first FIB is as follows:

BYTE
-4--
5 - 14
15
16
17
18
19
20

USAGE
MUST BE $FF
Don't cares ($FF)
Next available block track number
Next available block sector number
Last available block track number
Last available block sector number
High order count,of available sectors
Low order count of available sectors

INTERFACING TO DFM

There are three entry points into DFM681 they are:

1) The DFM68 initialization entry point
2) The DFM68 closing entry point
3) The DFM68 I/O service request entry point

These three entry points correspond to three "JMP" instructions
located in the first nine bytes of DFM68 (see the memory map for
specific addresses).

INITIALIZATION ENTRY POINT (ODFM)

DFM68 must be initialized before it can be used. Initializing
DFM basically tells DFM that there are no files currently in use.

The entry point to initialize DFM is the first of the three jumps
located in the beginning of DFM. There are no errors associated
with initializing DFM since no disk operations are performed and
since the function of this call is to reset all internal status
flags within DFM68. Initializing DFM also logs drive 0 as as the
system drive (see the QLOGD function description).

2-13

SSB DISK SYSTEM MANUAL

DFM CLOSING ENTRY POINT (CDFM)

When no further use is to be made of DFM68, DFM should be
"closed". Closing DFM serves to close any open files which may
not have been closed.

DFM is closed by calling the second of the three jumps located in
the beginning of DFM. Errors are reported as follows: a "BNE"
will branch if an error occured. If an error occured, the error
type is returned in the A register (see the Appendix C for the
error types), the error number will be returned in the B
register, and on type 1 and 3 errors, the X register will be
pointing to the FCB which is in error.

I/O SERVICE REQUEST ENTRY POINT (DFM)

All service requests made to DFM are handled by calling the third
of the three jumps located in the beginning of DFM.

Information regarding the functions to be performed by DFM are
passed to DFM in the FCB. The address of the FCB is loaded in
the X register when DFM is called. All registers are preserved
by the call unless data is returned to the caller. The condition
codes are not preserved; Upon return from DFM, a •eNE" will
branch if an error occurred. If an error occurs, the error
status byte in the FCB will contain the error code, otherwise, (
the error status byte will be zero.

The following is a desciption of the actions of the various
functions available through DFM. The function and error code
values can be found in the appendices.

QFREE: REPORT FREE SPACE

DFM68 will return the count of available sectors for the disk
drive requested in the FCB. The high order binary count will be
returned in the A register and the low order count in the B
register.

QS04W: OPEN A SEQUENTIAL FILE FOR WRITE

DFM68 creates the .file to be written by the name specified in the
FCB. An error will occur if the file already exists (a file
cannot be automatically overwritten). The caller must specify
the file name, unit number, and file type. If the file type
(XFT) contains the code for a compressed (i.e. ASCII) text file
(a file type of FTCS; See appendix for file type codes) then DFM
will perform blank compression otherwise the file will default to
the binary sequential file type. WARNING: set only those bits in
the file type byte (XFT) which are specified in Appendix B (the (
other bits are will be used in future versions of DOS68). \

2-14

SSB DISK SYSTEM MANUAL

QSWRIT: WRITE TO A SEQUENTIAL FILE

The byte of data passed in the A register is written to the file
specified in the FCB used to open the file.

QSWC: CLOSE A SEQUENTIAL WRITE FILE

The file specified in the FCB is closed. That is, the last
buffer of data is written to the file and the directory entry for
the file is updated. If the last buffer is not full, it will be
padded with nulls. When the file is read back, an end-of-file
condition will not occur until the last character of the last
buffer has been read.

QS04R: OPEN A SEQUENTIAL FILE FOR READ

The file specified in the FCB is opened for read. The caller
need not worry whether the file being read is a compressed ASCII
file or whether the file is a binary file. DFM will
automatically expand the blanks which it compressed when the file
was written if the file was written in the compressed mode. The
caller need only supply the unit number and file name to open the
file. The caller may examine the lower four bits of the file
type (XFT) byte after the file has been sucessfully openned if it
desired to know whether the file was written in the compressed
mode.

QSREAD: READ FROM A FILE

The next byte is read from the file specified in the FCB and
returned to the caller in the A register. Note that the nulls
padding the last block of the file wiil be returned to the caller
as if they were originally written to the file. DFM will not
inform the caller of an end-of-file condition until the last byte
has been read from the last block. Thus, it is advised to ignore
nulls in text files and nulls following records in object files.

Also, note that it is not necessary to write a special
end-of-file character out to a disk file. By examining the error
status returned by DFM it is possible to determine the
end-of-file by continued reading from the file until DFM returns
an end-of-file error status code (see appendix of error status
codes).

QSRC: CLOSE A SEQUENTIAL READ FILE

DFM releases the linkages to the file being read. The FCB is now
free to used for another file.

2-15

SSS DISK SYSTEM MANUAL

QDEL: DELETE A FILE

The file specified in the FCB is deleted from the disk directory·
and the sectors used by the file return to the list of available
sectors. The same function code is used to delete both random
and sequential files.

QREN: RENAME A FILE

The file specified in te FCB will be renamed to the new file name
specified in FCB+45 through FCB+53 unless the new file name
consists of all nulls (00). The remaining bytes in the FIB will
be changed to the contents of FCB+54 through FCB+68 unless FCB+54
(the new file name XFT) is zero. If the new file name is null
and FCB+54 is zero, then the RENAME FUNCTION will not change the
existing FIB on the disk, but will copy it into the FCB in the
usual place (FCB+3 through FCB+26) effectively implementing a
"LOOKUP" function.

The same function code will rename both random and sequential
files.

QAPP: APPENDING TWO FILES

The file whose name is specified in bytes FCB+45 through FCB+53
is appended to the file specified in the FCB and is then deleted
from the disk directory. Both files are assumed to reside on the
disk drive specified in FCB+XUN. The nulls filling the unused
portion of the last block of the first file remain (i.e., the
files are not compressed together).

Random files are not allowed to be appended to other random files
or to sequential files.

QDIRI: DIRECTORY READ SETUP

This command causes DFM to open the disk directory specified in
FCB+XUN. Subsequent calls using the directory transfer code are
then used to to pick up one File Information Block (FIB) at a
time until an end-of-file condition occurs.

QDIRT: DIRECTORY TRANSFER

The directory transfer command is used to retrieve a file name
at a time from the directory. This function may only used
following a directory setup command or following another
directory transfer command, otherwise unpredictable results will
occur. The transfer command causes the next active FIB entry to
be copied from the directory into bytes FCB+3 through FCB+26 (see (.
directory format description). .

2-16

(

SSB DISK SYSTEM MANUAL

QRAFC: READ ACTIVE FCB CHAIN

The QRAFC command provides the user with a means of locating the
FCBs that DFM considers to be "active". "Active" can be though
of as meaning containing valid status information for accessing a
file.

The caller places an ordinal number in FCB+XFN and calls DFM.
DFM will return the FCB address in bytes FCB+XFN+0 and FCB+XFN+l.
If the ordinal is 0 then DFM returns the first FCB address in the
active FCB list1 if the ordinal is 1 then DFM returns the second,
and so forth. DFM will return an address of zero if the ordinal
exceeds the number of active FCBs or if there are no active FCBs.
This function is not available in DOS revisions below 4.0.

QLOGD: LOGGING A SYSTEM DRIVE

DFM must be told on which disk to expect to find its three
overlay files if the drive is to be other than drive 0. On
calling ODFM, DFM logs drive 0 as the default system drive. If
it is desired to change the system drive, the user may do so be
calling DFM with the contents of FCB+XUN equal to the new system
drive number. This function is not available in DOS revisions
below 4.0.

QLOGE: EXAMINE SYSTEM DISK LOG

The user can determine which drive is the logged in as the system
drive by the QLOGE function. The QLODE function will return the
system drive number in in FCB+XUN. This function is not
available in DOS revisions below 4.0.

QSSR: SINGLE SECTOR READ

The single sector read command causes a specified sector to be
read from the disk and placed in the FCB data buffer. NOTE: A
166 ($A6) byte FCB must used with this command.

The track number and sector number to be read is placed in bytes
FCB+Je (XCT) ~nd FCB+31 (XCS) respectively1 the track number must
be a value between e and 34 and the sector number a value between
e and 17.

NOTE: The error code returned from this command is the actual
value read back from the WO 1771 chip with the least significant
bit being used to indicate a seek error in which case the error
bits reflect the type I command error bits.

QSSW: SINGLE SECTOR WRITE

The single sector write is the counter part of the single sector
read command (see above descripton).

2-17

SSB DISK SYSTEM MANUAL

WARNING: Single sector I/O allows any sector to be read or
written. It is up to the user to kn~ what he is modifying. (

QCRF: CREATING A RANDOM FILE

Random files differ from sequential files in that random files
are created by a separate request to DFM other than the request
to open the file, and that random files are of fixed size
specified by the caller at the time of creation.

To create a random file the user must supply the following
information:

1) The unit number on which to create the file is place in
FCB+XUN.
2) The name of the file is supplied in FCB+XFN and follows the
usual DFM file naming rules.
3) The file type is supplied in FCB+XFT and must be either FTRB
or FTRR (see appendix B for values of file type codes). The file
type will determine whether file positioning will be specified in
the byte mode (FTRB) or the record mode (FTRR).
4) The size of the file to be created must be specified in the
three bytes starting with FCB+XRFS. If FCB+XFT contains FTRB
then the user must supply a three byte binary number representing
the desired number of bytes to be in the file. If FCB+XFT
contains FTRR then the first two bytes must specify the number of
records desired and the third byte must be the record size (1 to
255 characters).
5) The data initialization flag (FCB+XRIF) must be non-zero to
force the initialization of the files contents to the value
contained in FCB+XRID. If FCB+XRIF is zero then the contents of
the file are indeterminant.

From this information, DFM allocates the file space and builds
the structure used to rapidly access the random data file.

NOTE: The random file is not left in an "OPEN" state.
(open random file) file command must be used in order to
upon the file.

QORF: OPEN A RANDOM FILE

The QORF
operate

In order to read or write a random file the file must be opened
by this command (QORF). To open the file the user must supply
the unit number on which to find the file and the file name. DFM
will handle the byte or record mode addressing depending upon the
file type information found in the directory for the file. Be
aware that the random file may now be read or written and that
random files require the use of a 320 ($140) byte long FCB.

(

The file is opened positionep to byte e (or record e byte 0) and (
the byte pointer increment mode is set to auto-incrementing.' \.

The byte pointer incrementing mode (XRIM) determines what happens
to the byte position within the file when a byte is read from or

2-18

SSB DISK SYSTEM MANUAL

written to the file. If XRIM is positive then the file pointer
will be incremented after the next read or write so that the next
byte of the file will be operated upon next. If XRIM is zero
then the byte pointer is not modified following reads or writes.
If XRIM is negative then the byte pointer is decremented after
the byte is read or written.

Each time DFM's byte pointer is automatically incremented or
decremented, DFM will update the contents of XRBA, the random
file byte address (and it will update it corresponding to the
file type, either record mode or byte mode). Thus, by reading
XRBA the user can tell where DFM is positioned within the file.

QPRF: POSITIONING A RANDOM FILE

The current position within the random file can be altered by the
OPRF, position random file, command. The caller sets up the byte
address, XRBA, to· either the byte or record position, depending
upon the file type, and then calls DFM to position the file. An
end-of-file error (EEOF) will be returned if the byte address
does not fall within the file size and the file pointer will not
be modified.

Note that in a record addressable file, the position command can
be used to position into the middle of a record by setting the
third byte of XRBA non-zero to indicate which byte of the record
to position to.

Also, note that positioning a file will not cause the disk head
to move. Movement of the disk head is postponed until a disk
read or write in required.

QRRF and QWRF: READING AND WRITING A RANDOM FILE

Read (QRRF) and write (QWRF) function identically with the
exception of the direction of the data flow and so will both be
covered in this description.

The data to be read or written will be passed in the A register
on calling or returning from DFM. The byte position of the file
to be operated upon corresponds to the cuurent byte address
(XRBA). WARNING: If the user changes the contents of XRBA, the
user must notify DFM of this change by using the position command
to tell DFM to position to the new byte location.

DFM will adjust the current file byte position, and XRBA, as
specified by the contents of the increment mode flag XRIM. XRIM
positive means auto-increment, XRIM zero means non_incrementing,
and XRIM negative means auto-decrementing.

2-19

SSB DISK SYSTEM MANUAL

QCLSRF: CLOSING A RANDOM FILE

Random access files must be closed by the QCLSRF command when the
user is finished with the file. Closing the random file will
force the last record to be written out if the file has been
written to and then the FCB will be released so that it may be
reused.

XRHBW: HIGHEST BYTE WRITTEN

DFM68 keeps track of the highest byte written within a random
access file. This address is kept in the directory entry for the
file in bytes 20 through 22 of the FIB (Bytes 23 through 25 of
the FCB). These bytes contain the value needed to position the
file to the highest addressed byte within the file that has
previously been written. Note that, for record mode files, bytes
20 and 21 will contain the record number which contains the
highest byte written and byte 22 will contain the byte offset
into the record for the highest byte written.

During file creation, XRBHW is set to $FF, $FF, $FF to indicate
that nothing has been written to the file. As with all other FIB
contents, XRBHW is available in the FCB while the file is open.

QERF: RANDOM FILE EXPANSION

DFM68 Version 4 contains a convenient means for expanding a
random access file once it has been created. The function code
is named QERF and its value is $1C. To expand the size of a
random file, the programmer must supply the following
information:

1) FCB+XUN must contain the unit number on which the
file exists.

2) FCB+XFN must contain the name of the file to be
expanded.

3) The new file size (not the amount of expansion) must
be in XRBA (normally the file byte address). The new
file size follows the same restrictions as creating a new
file except that the record size need not be specified
for a record mode file.

4) FCB+XRIF may be set non-zero if it is desired to have
the newly allocated disk sectors initialized to a value
passed in in FCB+XRID. Note that the previously unused
bytes of the last data sector of the original file remain
initialized as determined during the file creation, not
as during expansion.

From this information, DFM68 allocates the required disk space to
the file. The data in the original file is not modified in any
manner.

2-28

(

(

(

SSB DISK SYSTEM MANUAL

USING THE DISK FILE MANAGEMENT SYSTEM (DFM)

DFM is that portion of DOSb8 which relates to the usage of disk
files. This section is provided as an introduction as how to use
DFM to read and write disk files.

It is recommended that the reader first read through the
descriptions of the functions provided by DFM. Then, after
having read this section, read through several of the monitor
transient command listings to see how the information presented
below is implemented in practice.

HOW TO READ FROM A SEQUENTIAL FILE

Reading from a file is done in three steps:

1) Opening the file for read
2) Reading from the file
3) Closing the file

1) Opening the file sets up the software linkages within DFM to
enable the user to then request data be transfered from the file.

In order to open a file the user must reserve a 166 byte table in
his program. This table is referred to as a File Control Block
(FCB) • The FCB is a table in which the pointers to the file being
accessed are kept.

To read a file the user must fill in three entries in the FCB.
these three entries are: a) the unit number on which to find the
file, b) the name of the file, and c) the operation to perform on
the file.

The function code to open the file for read is put in the first
byte of the FCB. The unit number on which the file is to be
found is put in the third byte of the table (the unit number may
bee, 1, 2 or 3). The nine bytes following the unit number are
used to designate the file name. The first six bytes are treated
as the file name while the last three are treated as the file
extension.

The first portion of the FCB then looks like:

FCB+0 (XFC)
FCB+l (XES)
FCB+2 (XUN)
FCB+3 (XFN)
FCB+4

FCB+8
FCB+9
FCB+l0

Operation code
Error code returned to the user
Unit number
File name (1st character)

File extension (1st character)

File extension (last character)

To actually open the file, load the X register with the address
of the first byte of FCB and call DFM. Upon return, a "BNE" will

2-21

SSB DISK SYSTEM MANUAL

branch if an error occured. If an error occurs at any time the
non-zero code will be returned in the 2nd byte of the FCB. The c·
simplest manner in which to handle errors is to request DFM to -
close all open files. This is done by calling "CDFM", the DFM
closing entry point. See the description of this entry point to
DFM for further details. Thus the following section of code
represents how one would open a file for read:

ODFM
CDFM
DFM

FILOPN

EQU
EQU
EQU

LDX
LDA A

STA A
JSR
BEQ
JSR

JSR
JMP

LOA A

$7780
$7783
$7786

fFCB
fQS04R

XFC,X
DFM
FILOPN
ZTYPDE

CDFM
ZWARMS

IQSREAD

STA A XFC,X

Open DFM entry point
CLOSE DFM entry
DFM service request entry

Load the address of the FCB
Load the value of the "open for read"
function code
(see the appendices for the function
code values)
Store the function code in the FCB
Ask DFM to open the file
Branch if no error ocured
Ask the monitor to
type "DISK ERROR: XX"
Ask DFM to close all files
Restart the monitor

Change to function code to read from
the file

* WE ARE NOW READY TO READ DATA FROM THE FILE

2) To read a byte from the file, load the X register with the
address of the FCB and call DFM. DFM will return the next byte
from the file in the A register. If an error occurs a "BNE" will
branch if an error occured (end-of-file is treated as an error
condition also). The following section of code may be used to
read from a file:

LOX fFCB Point to the FCB
JSR DFM Ask DFM to read a byte
BEQ READOK BRA if no error occured

* IF DESIRED, "LDA A XES,X" HERE WILL PICK UP THE ERROR CODE
* SO THAT THE PROGRAM MAY DETERMINE WHAT TO DO WITH THIS
* SPECIFIC ERROR.

JSR ZTYPDE

JSR
JMP

READOK EQU

CDFM
ZWARMS

*

Ask the monitor to type
"DISK ERROR: XX"
Ask DFM to close any open files
Restart the monitor

At this point a byte has been
READ FROM THE FILE AND IS
in the A register.

3) After all the data has been read from the file, the file must
be closed. Closing the file releases the FCB from its role as
table of pointers to the file. Closing the file is accomplished
as follows:

2-22

(

CLSOK

LDX #FCB
LDA A #QSRC
STA A XFC,X
JSR DFM
BEQ CL SOK

JSR ZTYPDE

JSR CDFM
JMP ZWARMS

EQU *

SSB DISK SYSTEM MANUAL

Point to the FCB
Set the function code to "Read Close"
Save the function code
Ask DFM to close the file
Branch if the file was sucessfully
closed
Tell the monitor to type the disk
error code
Ask DFM to close any open files
Restart the monitor

At this point the file is closed

HOW TO WRITE (CREATE) A FILE

Writing a file folI.ows the identical sequence of operations as
reading from a file with the following exceptions:

1) When opening the file, the function code is "QS04W" to open
the file for write instead of "OS04R".

2) "QSWRIT" is used in place of "OSREAD" when perparing the
file to be written.

3) When data is to be written to the file, the data must be in
the A register when DFM is called.

4) When closing the file, "OSWC" is used instead of "QSRC".

(see the appendices for the function code values)

2-23

SSB DISK SYSTEM MANUAL

HOW TO USE A RANDOM ACCESS FILE

1) Creating a random access file.

The follow segment of code illustrates the creation of a
byte mode random access file.

DMF
XRFS
XRIF
XRID

EQU
EQU
EQU
EQU

$7786
2e
32
33

DFM service request entry
Of fest into FCB to file size
Offset into FCB to initialization flag
Offset to initializtion constant

* WE'LL ASSUME THAT THE FCB ALREADY CONTAINS THE
* FILE NAME AND UNIT NUMBER

LDX tseee set low order 16 bits of file size
STX FCB+XRFS+l

(

CLR FCB+XRFS clear the 8 high order bits of file size
LDX IFCB
LOA A #FTRB
STA A XFT,X
LOA A fl
STA A XRIF,X
CLR XRID,X
LOA A #QCRF
STA A XFC,X

set up the file type (byte or record)

set flag to force file contents
to be initialized
initialize all bytes to e
set up command for DFM

JSR DFM ask DFM to create the file
BNE ERROR branch if an error occured

* THE FILE HAS BEEN CREATED

ERROR JSR ZTYPDE
CDFM
ZWARMS

type an error message
JSR
JMP

close any files which might be open
exit to the monitor

2) Opening a· random access file

The following code segment will open a random access file
either to be read or written:

*AGAIN WE'LL ASSUME THE FCB CONTAINDS THE FILE
* NAME AND UNIT NUMBER

LDX f FCB
LDA A IQORF set up command for DFM
STA A XFC,X
JSR DFM ask DFM to open the file
BEQ OK the file is ready to be accessed

* MAY WISH TO PERFORM SOME SORT OF ERROR RECOVERY AS ABOVE
* AT THIS POINT

3) Reading and Writing random access files

The following code segment will position the file to byte
4eee and write "ABC" to the file.

XRBA EQU

LOX
CLR

29

fFCB
XRBA,X

Offset to the byte address

point to FCB used to open the file
high order address = e

2-24

(

SSB DISK SYSTEM MANUAL

LDA A 14000/256 mid order byte address
LOA B i49'Je low order byte address
STA A XRBA+l,X
STA B XRBA+2,X
LOA A iQPRF set up command to position the file
STA A XFC,X
JSR DFM position the file
BEQ POK branch if positioned OK

PER JSR ZTYPDE give an error message
JSR DFM and quit
JMP ZWARMS

POK LOA A iQWRF perpare write function code
STA A XFC,X
LOA A i 'A
JSR DFM write a byte
BNE PER
LOA A i'B
JSR DFM
BNE PER
LOA A i'C
JSR DFM
BNE PER

* THE THREE BYTES HAVE BEEN WRITTEN

To read from the file, QWRF is replaced with QRRF and DFM
will return the byte read in the A register.

2-25

"--'/

.PART ~: DISK SYSTEM HARDWARE

PREFACE

This section describes the characteristics of the SSB floppy disk
interface. This interface allows users of the SWTPC 6800 micro
computer system to easily interface up to four SA400/SA450 5"
disk drives or four SA800/SA850 8" disk drives.

BOOT AND I/O ROUTINES

To facilitate disk I/O a ROM has been provided on the disk
interface board. The ROM contains all necessary I/O routines to
read, write, seek, step and restore the disk drives. In
addition, a disk boot routine has been included in the ROM.

DISK CONTROL

Disk control is achieved by the use of the Western Digital
FD1771B-01 floppy disk controller IC. This IC controls
read/write format, head step, seeking, and checks the write
protect status of the disk. The read/write format can be
programmed to many formats including IBM 3740 format. CRC
generation and checking are also performed within the FD1771B-01
IC. Additional information on programming the floppy disk
controller chip may be found in the Western Digital FD1771B-01
product guide.

FD1771B-01 CONTROL

All communications between the host system and the FD1771B-01 IC
are through a 6821 PIA. Control line functions of the FD1771B-01
are handled by the A-PORT and other programmable control
input/output pins of the PIA. Data to and from the floppy disk
chip is transmitted through the B-PORT of the PIA.

ROM

The ROM located at US provides 512x8 bits of information for the
user. The ROM addressing is decoded to use all unused addresses
in the I/O page between $8020 and $83FF. The 9324 decoder U7
provides high order address decoding. Use of unused areas of the
I/O page is achieved by requiring address bit 5 ·to be true to
enable the ROM. Address bits 0-4 of the ROM are driven by
address lines 0-4. Address bits 5-8 are driven by address lines
6-9. The figure below illustrates the interleaving of I/O and
ROM addresses.

3-1

SSB DISK SYSTEM MANUAL

ROM MEMORY MAP

$ 000
(_

USED BY I/O
80tF

020
USED BY ROM

USED BY I/O
805F

$83AO
USED.BY ROM

USED BY I/O

USED BY ROM
$83FF

The above figure shows I/O memory illustrated as pages of 32
words. When bit 5 is a 0, that 32 word page is used as I/O (
locations. When bit 5 is a 1 that page is decoded by the ROM as
one of its addresses and the particular byte of information
required is placed on the system data buss.

DISK INTERFACE DESCRIPTION

Address decoding for the 6821 PIA is provided for by NAND gate
Ul9 and the 9324 decoder, U6. The 74LS30 8-input NAND gate Ul9
generates the non-programmable address decoding of the address
bits A5-Al2 at Ul9-8 to the CS2- input at Ul8 pin 23. Register
selection within the PIA is controlled by address lines A0 and Al
at Ul8 pins 36 and 35.

The PIA data inputs (UlS,26-33) are tied directly to the the
negative true system data buss. Care must be exercised in
programming the PIA as the PIA expects to see positive true data
at the system port. All control functions sent to the PIA should
first be complemented by the controlling program. All control
information received from the PIA should be interpreted as
negative true data by the receiving program. the DAL- lines of
the FD1771B-01 IC are tied to the B-PORT of the PIA at
018(10-17). Data to and from the FD1771B-01 on the DAL lines is
defined as negative true data. As data is not inverted through
the PIA, it is not necessary to invert data from or to the {
FD1771B-01 as is required with the control registers of the PIA. \
Data exchange between the PIA and FD1771B-01 are controlled by
the following control lines:

3-2

SSB DISK SYSTEM MANUAL/

WRITE ENABLE

CB2 of the PIA is used to strobe inform~tion from the 6821 into
the FD1771B-01. CRB bits 3-5 should be programmed to '101'. In
this mode CB2 is cleared on the positive transition of the first
'E' pulse following a write 'B' data register operation and set
high on the positive transition of the next 'E' pulse. During
write operations the read flip-flop, U25, must be disabled by
programming A-PORT bits 6 and 7 to 1 and 0 respectively.

REGISTER SELECT

A-PORT bits 0 and 1 drive the register select .lines of the floppy
disk controller chip. PA0 drives address line A0 and PAl drives
address line Al.

READ ENABLE

Reading information from the FDC is controlled by its read enable
input at Ul7-4. This input is driven by the read enable
flip-flop U25-6. Flip-flop 025 is used in two modes. Mode one
is used when reading control registers in the FD1771B-01. Mode
two is used when reading data from the disk. In mode one PA6
(018-8) is programmed to '0'. PA6 low forces 025-6 to the low
state thereby enabling information from selected register onto
the DAL lines (Ul7,7-14). this information can then be read in
on the B-PORT of the PIA. In mode two PA6 and PA7 (Ul8-8,9) are
programmed to 'l's. When DRQ (017-38) comes true and PA7 is true
flip-flop 025 will be set on the positive transition on the 1 Mhz
clock (025-12). DRQ is also tied to the CA2 input of the PIA
(018-39). This programmable pin is programmed as an input
triggered by a positive transition (CRA bits 3-5 =110). On the
positive transition of DRQ, IRQA at 018-38 will be set low (IRQA
reflects the status of the bit set by the positive transition at
input CA2(Ul8-39)). The IRQA output is used to drive the K input
for read enable flip-flop 025. As long as IRQA remains active
low 025 will not be allowed to reset. U25 setting causes a byte
of data from the floppy disk to be placed on the DAL lines
(017-7,14). When the processor detects CRA bit 6 set it can then
read the byte of data on the DAL lines though the B-port data
register. After the processor has read the data from the B-PORT
the flag in the A-PORT control register is cleared by reading the
A-PORT data register. Reading the A-PORT data register also
deactivates IRQA. This allows 025 to reset thereby preparing the
floppy disk chip for the next byte of data from the disk.

HEAD LOAD TIMING

Head load time of the SA400 minifloppy is approximately 75
milliseconds. The 9602 oneshot (09) provides the delay signal
required for proper operation of the FD1771B-01. The time delay
generated prevents the floppy disk controller from reading or
writing before the head has had time to settle.

3-3

SSB DISK SYSTEM MANUAL

DISK INTERFACE SIGNALS

DISK SELECT

During operation one of four disks may be selected at any one
time. Disk select is co~trolled by PIA A-Port bits 4 and s.
These lines are connected to a 74LS13S (Ul4-l,2) which decodes
the signals to select one of four drives. The disk select lines
are buffered by the 7417 buffer located at U22. U22 provides the
required drive capability needed to drive the disk interface
buss.

SIDE SELECT

PIA Port A Bit 3 is buffered by UlS and provides the side-select
output for use in double sided disk systems.

MOTOR ON

The motors on S" drives are turned on as soon as the disk is
selected and will stay on as long as the disk system is accessed.
US is wired as a retriggerable one-shot and has a perriod of
approximately 38 seconds. After the last head load, Ul6-2 goes

()

high which reverse biases Dl, allowing US to time ouut. Ul-5 is (·,
an inverting buffer used to drive the MON- line of the SA4ee
drive. s• drives use AC motors designed for continuous duty and
operate at all times for fastest disk access. ,

One-shot U9 is used to provide a motor start delay and a head
load delay. The motor start delay is disabled by US-3 if the
motor is already running.

WRITE DATA

The Write Data signal at Ul7-31 is buffered and inverted by
023-12. Write data on the disk interface buss is negative true
data '(WR DATA-) •

WRITE GATE

The Write Gate signal at 017-30 is buffered and inverted by
U23-9. Write gatte (WR GATE-) along with WR DATA- controls writing
of data to the selected disk.

3-4

(

SSB DISK SYSTEM MANUAL

STEP

The step pulse at'ul7-15 is buffered to the disk interface buss
by U23-2 (STEP-). The step output provides the step instruction
to the disk at a controlled rate. The step rate is progrrammed by
the user. For the SA400 the'step rate should be programmed to 40
msec per step. For additional information on step rates see the
Western Digital FD1771B-01 product guide available from Western
Digital.

DIRECTION

The direction output of the FD1771B-01 (Ul7-16) is buffered by
023-5 (DIR-). For step-in (towards the disk hub) the direction
line will be high. For step-out the direction line will be low
(this level will be reversed on the buss).

TRACK 00

The TRACK 00 status of the selected disk is buffered by U24-2 and
is ANDed to HEAD LOAD from the WD1771-l (Ul7-28). This signal
"fakes" the WD1771-l into thinking it is on track 00. This
allows the system to respond faster after a reset or on power up.

WRITE PROTECT

Write protect (WRT PROT-) is buffered by U24. Resistor R26
provides the required pullup. · The write protect line reflects
the status of the currently active disk. If the write protect
hole in the disk is covered the write protect line will be low.
The buffered write protect line U24-ll drives 017-36. Before
doing any write operations the write protect line is sampled. If
the line is low the write operations will be aborted by the
controller chip.

READ DATA

READ DATA- is buffered by NAND gate 03-(1,2). It is then sent
through a one-shot to shape the signal. From here there are two
options: Option 1) is to use the external data separator, and
option 2) is to use the data separator internal to the FD1771-l.
The FDC board is configured to operate with the external data
separator. The internal separator may be selected by cutting
both traces labeled J-12 and inserting jumpers at both locations
labeled J-13. The difference between the two separators is one
of resolution; The external separator is better at rejecting
jitter from an SA400, and thus it is recommended that the
external data separator be used.

The external data separator consists of IC'S Ul, 02, 03, U4, Ull,
and Ul6. The separator works by generating "windows" through
which data and clock pulses are gated from read DATA- to the
FD1771-l. The synchronization of the separator to the incoming

3-5

SSB DISK SYSTEM MANUAL

data is done by retriggerable one-shot Ull, associated gates, and (.. --
flipflops. The one-shot timing is controlled by potentiometers
Rl8 and Rl9 which are set at the factory and should not be
adjusted in the field.

INDEX PULSE

The index pulse is buffered by AND gate U24-9,10 (INDEX PULSE-).
Pullup is provided by resistor R25. The buffered index pulse
signal at U24-8 drives Ul7-35. This signal provides
sychronization information for the floppy disk chip.

INSTALLING ADDITIONAL DRIVES

Additional minifloppy disk drives may be installed in the field.
To install a second or third drive, proceed as follows:

1) Locate the drive select jumpers located in a dip socket on the
top corner of the board on the disk drive.

2) The jumpers are cut as shown in the table below for SA400
drives:

DRIVE CUT REMOVE
e MX, DS2, DS3
1 MX, DSl, DS3 RESISTOR PACK 760-3-Rl50 OHM
2* MX, DSl, DS2 RESISTOR PACK 76e-3-R1Se OHM

The jumpers are cut as shown in the table below for BSl drives:

DRIVE CUT REMOVE

" DS2, DS3, MUX, HM
1 DSl, DS3, MUX, HM RESISTOR PACK 76e-3-Rl50 OHM
2* DSl, DS2, MUX, HM RESISTOR PACK 76e-3-Rl58 OHM

* A fourth drive (accessed as unit 13) may be installed on J4 by
jumpering it the same as unit fl on J2. Or, drives e and 1 may
be connected to J2 and 2 and 3 connected to J4. In that case,
the drives on J4 should be jumpered the same as the drives on J2.

NOTE: The resistor pack is removed from all drives except the
drive which is on the end of the ribbon cable connecting to the
controller (normally this is drive zero).

To install additional SASee drives, the jumper on the back of the
SASee printed circuit board near the cable edge connector should
be moved as shown below:

DRIVE

e
1
2
3

MOVE JUMPER TO

DSl
DS2
DS3
DS4

3-6

(

(

SSB DISK SYSTEM MANUAL

DISKETTE REQUIREMENTS

The Smoke Signal Broadcasting disk systems use standard size
media with one index hole. For maximum flexibility in adapting
our system to special user requirements, we use a soft-sectored
disk format. Thus, diskettes designed for the specialized
requirements of hard- sectored systems such as the Northstar
which use multiple index holes will not work with the our disk
systems. If you inadvertently try to format a multiple index
hole diskette, the formatting program will report a very large
number of "bad sectors".

ADJUSTMENTS FOR 5" OR 8" DRIVES

The BFD-68 controller board can be used with either 5" or 8"
drives, but not both. The proper PC jumpers are installed at the
factory and the data separator timing adjusted for the type of
drive shipped with the system. It is recommended that
modifications required to make the controller operate with a
different size disk drive than supplied with original system be
made at the factory.

3-7

::l -- Ct.PJl'fcnt:b ~£Q ·
111 e sflcCI r 1 c-:A

AJil;; /I) [tf'64T/~<:r

''/c f(

p 'f ~o,t./..OW/'116- /"ILC /lfl'/JH-3 .3 C

rHe r1'-G (i.e.)
c lfeif~ # ..z

1
• 'o:;1'1/?f'S. /?'!£ /c ''

(

o .< 1 NI' iJT " e/l/7Cf-r. 41'/PIG- ·r<>< co,,,,&o P'E ~· r /;
(tfel1T€ .pf :2; ?i C"9/ '/c ,,

3 01 Tt; /J 'b M 6 ss '7 ;3 '-€ ;f' ,qi\/ b o "" (u:.)
c ;?E-1"'1 TC +r; "i3Y1C' nwb/ 1(:/0690 ,,

I

/tUl'"'T "e ~If&!> /JbhRC:S5

Re S7iJ f c ~ I /fb'i>l1,l

(t.c)

TO /)dS 7/t.J () Jt> • 1' (
I /ti>~ (

I

(

PART 4: GENERAL I.NFORMATION

LIMITED WARRANTEE

Smoke Signal Broadcasting guarantees (to the original purchaser)
its disk system hardware for a period of 90 days from date of

, purchase. Smoke Signal Broadcasting will, at its option, repair
or replace any disk system with a hardware defect returned to it
postpaid within 90 days from date of purchase, provided that, in
its opinion, the defect was not caused by. improper handling or
improper connection to the host computer or a malfunction of the
host computer. Shipping charges for return of the repaired unit
to the purchaser shall be paid be Smoke Signal Broadcasting. The
liability of Smoke Signal Broadcasting is specifically limited to
repair or replacement of the hardware and shall not extend to
consequential or incidental damages suffered by the user; nor,
shall Smoke Signal Broadcasting be liable for any representation
as to the suitability of the its disk systems to any particular
user application unless such representation is in writing and
signed by an officer of Smoke Signal Broadcasting.

In the event of a problem during the warrantee period:
1) We suggest that you call first and explain your problem.

Technical personnel are available from 9 AM to 5 PM local
California time at (213) 462-5652. Many times problems can
be solved quickly over the phone, thus, saving you time.

2) If it is necessary to return your unit for repair, send it
to:

Smoke Signal Broadcasting
6304 Yucca Street
Hollywood, CA 90028

3) Be sure that the unit is packed adequately and that a brief
explanation of the problem is enclosed with the unit.

4) Be sure to include your return address and a phone number
where you can be reached during business hours.

Some states do not permit the limitation or exclusion of
incidental or consequential damages. In those states this
limited warrantee is not valid and the system is sold AS IS. See
our repair policy.

While in the interest of good customer relations, Smoke Signal
Broadcasting will attempt to correct any software errors brought
to its attention, the software is provided AS IS without
warrantee.

This warrantee is in lieu of all other warrantees expressed or
implied.

4-1

SSB DISK SYSTEM MANUAL

REPAIR POLICY

In most cases, repairs will be made within 7 days of receipt. No
charge will normally be made for repairs to units returned to us
within 98 days of purchase even in states where the limited
warrantee does not apply. This should be construed only as a
statement of policy and not as a guarantee or legal obligation to
make such repairs.

After 98 days from date of purchase, repairs will be made
according to a flat rate repair schedule unless the unit has been
subject to physical damage or connected to improper voltages.
The current charge for repairs to a disk system is $95.18. You
pay the shipping charges to us, we pay the return charges. If
outside the United States, these provisions do not apply and you
should contact us for instructions. Generally, you will be
referred to a repair facility in your country since customs
clearance charges run about $118. This is in addition to
shipping charges.

SOFTWARE LICENSE

The purchaser of a disk system purchases, in addition to the
hardware, a license for the limited use of the DOS-68 software

(

supplied with the system. This license allows the purchaser to (
use the software on any disk system manufactured by Smoke Signal
Broadcasting and to make copies of the software for use on any
disk system manufactured by Smoke Signal Broadcasting. Use of
the software on any other disk s¥stem or the copying of the
software for any other use is a violation of this license unless
specific written approval for other uses has been obtained from
an officer of Smoke Signal Broadcasting.

4-2

I
\

SSB DISK SYSTEM MANUAL

SYSTEM ACCESSORIES

The following accessories for the BFD-68 are available from Smoke
Signal Broadcasting. Normally these items are kept in stock and
are available for immediate delivery.

Additional 5" single-sided disk drive

Additional 5" double-sided disk drive

Additional 8" single-sided disk drive

Additional 8" double-sided disk drive

5" single-sided blank diskettes (Box of HJ)

5" double-sided blank diskettes (Box of 10)

8" single-sided blank diskettes (Box of 10)

8" double-sided blank diskettes (Box of 10)

Cooling fan

DOS-68 program source listings (transient
command and monitor listings. DFM listing
not available)

BASIC compiler
This BASIC is a comprehensive business
oriented basic for serious BASIC users

BASIC compiler manual

SE-1 Text Editing system (diskette)

SA-1 Mnemonic Assembler (diskette)

SE-1/ SA-1 Editor/Assembler combination

TP-1 Text Processor (diskette)

TD-1 Trace-Disassembler (cassette)
(add $5.95 for diskette)

SG-1 Source Generator (cassette)
(add $5.95 for diskette)

(diskette)

SG-1 is a disassembler which reconstructs
source files which can be directly assembled
or edited.

Prices subject to change without notice.

$ 355.00

$ 450.00

$ 580.00

$ 755.00

$ 50.00

$ 70.00

$ 60.00

$ 90.00

$ 18.00

$ 30.00

$ 325.00

$ 10.00

$ 29.00

$ 29.00

$ 53.00

$ 39.95

$ 19.95

$ 24.95

Delivery of double sided disk drives subject to delay.

4-3

SSB DISK SYSTEM MANUAL

USER GROUP INFORMATION

Smoke Signal Broadcasting operates a 68ee program users group.
Purchase of a SSB disk system and return of the warrantee
registration form entitles the user to a one year membership to
the users group. the purpose of the group is to provide a
low-cost program exchange service to group members. we do not
intend the users group to become a prof it center for Smoke Signal
Broadcasting, however, we will attempt to recover the direct
expenses of program duplication, advertising of the user's group
and of employees assigned to user group projects.

To help us meet the goal of a low cost program exchange service,
we would appreciate the contribution of all types of programs for
68ee based systems - not necessarily disk based systems.

We are particularly interested in additional transient commands
for our disk systems. If everyone will share with us the
programs they have created to make the operation of their disk
~ystem more convenient to them, it will quickly enhance the value
of all our systems.

It is hoped that shorter programs, See bytes or so, will be
contributed without charge. For longer programs, where the
contributor needs to recover some of his development costs, a
royalty will be paid. Large general purpose programs (BASIC,

(

FORTRAN, editors, etc) will be extensively advertised to insure c·
wide distribution, low cost to the user, and reasonable
compensation to the program author.

We believe that the SSB disk systems are by far the best disk
systems available to the microcomputer user today. Your support
of the users group will enable us to provide evolutionary changes
to the system that will keep it the leader in microcomputer disk
systems.

4-4

(

(

APPENDIX A

CODE
NUMBER

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
lC
2e
21
22
23
24
25
26
27
28

SSB DISK SYSTEM MANUAL

DFM68 FUNCTION CODES

CODE
NAME MEANING

--------~~~~~~--~--~------~~~~ QFREE *Report amount of free space on a disc
QS04W Open a file for write (create a file)
QSWRIT *Write data to a file
QSWC Close a file open for write
QS04R *Open a file for reading
QSREAD *Read from a file
QSRC *CLose a read file
QDEL Delete a file
QREN Rename a file
QAPP Append two files
QDIRI *Open a disc directory
QDIRT *Retrieve a file name from the directory
(reserved)
QRAFC *Read Active FCB chain
(reserved)
(reserved)

QLOGD *Login a new system disc
QLOGE *Examine logged in drive number
QSSR *Single sector read
QSSW *Single sector write
QERF Expand random file
QCRF Create random file
QORF Open random file
QPRF *Position random file
QRRF *Read random file
QWRF *Write random ·file
QCLSRF Close random file
(reserved)
(reserved)
(reserved)

* means the function processor is memory resident.

The non-resident functions are kept in three files as follows:

FILE FUNCTIONS
DFM680.??l QS04W

QSWC
DFM680.??2 QDEL

QREN
QAPP

DFM680.??3 QCRF
QORF
QCLSRF
QERF

where ?? represents the revision number of DFM

A-1

!f'eG~Jfb lfbi;/?e~S;tf BL€

~JL. E A/l'lmC:/

S1/f1nlG-Ex'~ ,,
~If

r1L €- /llAtnt?' j I(:= f' ~, f

C/f-T "//f-== '' c/J/ Alt.1m.i (lfcU>'fbS) C4T ' 1

)

(lfccolfbS Ct>AJ/f!f1n/S #oF /?etclf'bS "t>£S/4Eb)

/!;;YTCf Ct;A)lli/J/S # or 8Y7l:S 1.N 6Y/U1 /'f'£c.<Jlfh)

(

(

(

SSB DISK SYSTEM MANUAL

APPENDIX B

FILE TYPE CODES

The following table enumerates the file type codes. These are
the only valid file type codes which can appear in the lower four
bits of the file type (XFT) in both FCBs and FIBs.

NAME
FTCS
FTSQ

FTRB
FTRR

VALUE
1
2
3
4
5

6-7
8-15

TYPE
Sequential compressed ASCII text
Binary sequential
(reserved)
Byte mode random access
Record mode random
(reserved)
(unused)

FILE STATUS CODES

The following table enumerates the file status codes. These are
the only valid file status codes which can appear in the lower
four bits of the file status (XFS) in both FCBs and FIBs:

NAME
FANA
FASR
FASW
FARA

VALUE
0
1
2
4

TYPE
Not active
Sequential read status
Sequential write status
Random access status

B-1

APPENDIX C

ERROR
NUMBER

$1en
$02
$03
$04
$05
$06
$07
$08
$09
$0A
$0B
$0C
$0D
$0E
$0F
$10
$11
$12
$13
$14
$15
$20
$21
$22

ERROR
NUMBER

01XX

02XX

03XX

04XX

05XX

ERROR
NAME
EIFC
EFE
EFIB
EFB
ENSF
EEOF
EDF
EIF
EIFN
EFS
EITS
EIUN

EDR
EDW
EIFT
ENER
EWP
EDP
EFSE
EDWP
ENSD
ESFF
ECSS

SSB DISK SYSTEM MANUAL

DFM ERROR CODES

MEANING
Invalid DFM function code
File exists
Master file directory error
File is in use
No such file exists
End of file
DISC full
Invalid file control block (FCB) address
Illegal file name
File status error
Invalid Ti or St on QSSR or QSSW
Invalid unit number (only 0, 1, and 2 allowed)
(unused, better left alone)
Disc read error
Disc write error
Illegal file type
Not enough room to create file
File is write protected
File is delete protected
Random file siz·e error (size=0 or is too large
Disc is write protected
Non-system disc in logged drive
System file format error (should not occur)
Checksum error on system file

MONITOR CLOSE COMMAND ERROR CODES

MEANING
Illegal file activity, i.e. the file is not open
for sequential read, sequential write, or random ace~

XX = file status

(UNUSED)

File closing error
XX = Closing error code (see DFM error codes)

Read error on free chain descriptor
XX = error status from the 1771

'

Write error on the free chain descriptor
XX = error status from the 1771

C-1

...

"" IOk •5V + 5V +SY I "'
A2& R2' R24
150 150 150 •23
A A A

24

.. , l"-------''>!!• ~'!...' __ j....j:::ii~'.f!.__J-C>.
•• J2-24
.. ... J2-0 " 30 J>-40 ii"iiGAT£

_..---.L .----... .. I iiii.>EiPU"l J3·20 J4·24 Joi-I 1.ur:mm:t:=
3

l'-----''!iJ4 ., J2-20 ~ I - -~ 23 TRACK 00 J3·43 2 J4-20

J4·U

M 2

~

!

24

D7 .ll-4S g: :,::~~ 2~
D4 ,,n-411 28
03 Jl-47 29

g~ ~=::::::: ~ 18
oe .n-s~O:: 32 &ezo

I " - I 35
RIW .11-10 36

"

+ 12Y Jl·/9 IU +IZV

..'.

17

P I ff'·~, II ,
10

3

~
l

12
~
!.
1. BFD!7TH

.. ,
"" !OK

~

--
}!.

"

L . ..,
"

-- r
"
"

l
I l·· 15011.

--c>J3-22 READY

(5/0)

JP13

"'" __ I
' 15 ~

"" ' " I
7417

~ v
7417 ,--C> .;2-10 050
I'-..• ---4----C;>J3-:26

3 13 13 12-

'

14 12 7417 z J2·14

. '"
I

, . .u!! I ,.,, .
.••• "" ~ J3-32-

r IC. 22 t:g,_.,, 053

1J .. v

-" I
I

.,,

l+--+--~--~--<•+•v
C5 Cl

C>Jl·!B HLD .,,

J)-10 zetMON ... ti ~18 -
________r:gJ2-1& MON

.
J4-lll

,. " *""
+5'

®---Eg' 7438 J2·!2

J3-14ii'EL
J4·J2

JI· 24 r·1
..

1 J·'•'~ GND LSH
~ SMOKE SIGNAL BROADCASTING -12v _ 12v .11-rc1r..------;:~;,;-r- i..,- BNO ,,11. 250---

,11• HO--

L..._ ---- . I :=T 3 - --=:__:_J

•• I:: .-'47?' I ·-· .. ·~ ~
LOGIC DIAGRAM, CONTllOLLER BO

BF0-6B REV A 07738

tlJ
I

J4

1 1
J3

JPM JP11
I I
I I
I I
I I

--

18

J2

1 1 1 @;
-o . " •

-~~EJ~OEJ XI ~~ !
---- Cea• g

----~fkr---....

~JP18- El n

Rll--- El El 21 i
C)c21 • ...

"' I"" "' I JP7 C1
Cl n ~JP4 n ~JPI .:.

... _

., - ---
- +

-- CJ- Qc2
Rl-c:J-
Dl-c::J- Q"Ci
•1-c:J- oo+8c•

Cl c4 Cl

0 y ~-y 13 •"'· • I JPI ~JPIO .,

~

~

Ocio "' Q t] <

5

1 50

TOP

J1

I
j

'·n
~
~

~
t'1
t'1
tlJ
~

ttj

>
~
1-3
en
t'1
0
n
>
1-3
H
0

,IZ
i

,.,
"O
ta
l:IJ z:
0
~

tlJ

en
en

°' 0
H
en
~

en
t<
en
1-3
tlJ
3:

~ z
c:
>
t'1

SSB DISK SYSTEM MANUAL

APPENIX F

CORES PATCHES

Load the SWTPC co-resident editor and assembler from cassette
tape. Our version contained a 1B7C in locations 00FE and 00FF.
type "GET, CORES.PAT". Now type "SAVE,CORES,FE,1D7A,100. to
run, type "RUN, CORES". CORES will operate in the same fashion
as before except that when "SAVE" or "LOAD" is typed followed by
a carriage return, the system will prompt with "DOR OTHER?". if
you wish to save or load from the disc, type "D". Any other
character will cause the unit to save or load from cassette. If
you type "D", the system will ask for a filename and then save or
load to that file.

When running the assembler, the program will ask for an output
filename and will create a file on disc in hex format. The
source program must contain an "OPT O" statement or an output
file will not be created. When you want to load that file into
memory, type "GETH,FILENAME". Then exit to MIKBUG and go to the
beginning of the program in the normal MIKBUG manner. remember,
the file created by the assembler is in hex format and takes
twice the normal amount of disc space. If the assembled program
is a finished program that you expect to keep and use often, you
may wish to load it into memory with the GETH command and then
save it in binary form using the SAVE command.

F-1

