
IJfB-b8
IJ~SK f~lE BflS~L

COPYRIGHT ,< 1979
S'AOKF SIGNA L OROAOC/\STING

SSB BASIC TABLE OF CONTENTS

INTRODUCTION • • • • • • • • • •
LICENSE • • • • • • •
WARRANTEE INFORMATION
MODES OF EXECUTION
PROGRAM STATEMENTS • •

•
•
•

•

•

• • •
• • •
• • •

DATA FORMAT • • •
• NUMERIC VARIABLES

STRING VARIABLES •
STRING CONCATENATION
CONTROL FUNCTIONS •

BREAK • • •
LINE CANCEL
BACKSPACE •
REPEAT • • •
HALT ••••

BASIC COMMANDS • • •
LIST • • • •

• RUN
CONT •
NEW
TRACE

•

•

•

• •
• •
• •
• •

•
•
•

•
•
•
•
•
•
•
•
•

• • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

SIZE ••••••••• •
MON
DOS

•
•

•
•

• • •
• • •

• • • • •
• • • • •

PORT • • • • • • • • • •
FL I ST • • • • • • • •
FDEL • • • • • • • • • •
FREN • • • • • • • • • •

HOUSEKEEPING COMMANDS • • • • •
LINE • • • • • • •
DIGITS • • • • • • • • •
STRING • • • • • • • • •
BASE • • • • • • • • • •
HOME • • • • • •
SKIP • • • • • • • • • •
WAIT • • • • • • • • • •
RJUST • • • • • • • • •

SAVING AND LOADING BASIC PROGRAMS
SAVE • • • • • • • • •
LOAD • • • • • • • • • •
APPEND • • • • • • • • •
CHAIN
TSAVE
TLOAD
TPEND

•
•
•
•

•
•
•
•

• •
• •
• •
• •

• • • • •
• • • • • . - . • •
• • • • • ARITHMETIC OPERATORS • • • • • •

RELATIONAL OPERATORS • • • • • •
FUNCTIONS • • • • • • • • •

PEEK • • • • • • • • • •
PI •
RND
TAB
INT
ABS
SGN
POS
LEN

• • • • • • • • •
• • • • • • • • • •
• • • • • • •
• • • • • • • • • •

• • • • • • • •
• • • • • • • • •

• • • • • • • •
• • • • • • • • • •

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• .. • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

• • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • . . .
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

• • •
• • •
• • • •

• • •
• • • •
• • • •
• • • •

• • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • •
• • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • . ..
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

• •
• • • •
• • • •
• • • •
• • • •
• • • •

•

•
•
•

•

•

•

•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

1
1
1
2
3
4
4
4
4
5
5
5
5
5
6
6
6
6
7
7
7
7
7
8
8
8
8
8
9
9
9
9

10
HJ
10
10
HJ
10
11
11
11
11
11
11
12
13
13
14
14
14
14
14
15
15
15
15
15

ASC • • • • • • • • • •
CHR$ • • • • • • • • • • •
VAL • • • • • • • • • •
STR$ • • • • • • • • • • •
LEFT$ • • • • • • • • • •
RIGHT$ • • • • • • • • • •
MID$ • • • • • • • • • • •
!MOD • • • • • • • • • • •

TRANSCENDENTAL FUNCTIONS • • • •
USER • • • • • • • • • • • • • •
STATEMENTS • • • • • • • • • • •

POKE • • • • • • • • • • •
DIM • • • • • • • • • • •
REM • • • • • • • • • • •
DEF • • • • • • • • • •
DATA AND READ STATEMENTS •
RESTORE • • • • • • • •
LET • • • • • • • • • • •
FOR -- NEXT • • • • • • •
STOP • • • • • • • • • • •
END • • • • • • • • •
GOTO • • • • • • • • • • •
GOSUB AND RETURN • • • • •
ON N GOTO OR ON N GOSUB •
IF -- THEN • • • • • • • •

INPUT/OUTPUT STATEMENTS • • • • •
INPUT • • • • • • • • • •
PRINT • • • • • • • • • •
OPEN • • • • • • • • • •
CLOSE • • • • • • • • • •
READ • • • • • • • • • • •
RESTORE • • • • • • • • •
SCRATCH • • • • • • • • •
WRITE • • • • • • • • • •
STATUS • • • • • • • • • •

AUTO RUN • • • • • • • • • • • • •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

• •
• •
• •
• •
• • . , • . . .
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

APPENDIX A: QUICK BASIC REFERENCE • • ••• •
APPENDIX B: CHARACTER CONVERSION TABLE • • ••
APPENDIX C: MEMORY LOCATIONS USED BY BASIC ••
APPENDIX D: ERROR MESSAGES • . • • • • • • • • •
APPENDIX E: EXAMPLE OF USER FUNCTION • • • • •
APPENDIX F: PARTIAL SOURCE LISTING •••• • •
APPENDIX G: HOW TO REDUCE EXECUTION TIME •••
APPENDIX H: MEMORY USAGE IN BASIC • • • •• •
APPENDIX I: DEFAULT VALUES ON INITIALIZATION •
APPENDIX J: MODIFYING LOGICAL I/O BASIC'$ I/0

• • • 15
• • • 16
• • • 16
• • • 16
• • • 16
• • • 16
• • • 17
• • • 17
• • • 18.

• • • 18
• • • 19
• • • 19
• • • 19
• • • 19
• • • 20
• • • 20

• • • 20

• • • 21
• • • 21
• • • 22

• • • 22
• • • 22
• • • 23

• • • 23
• • • 24

• • • 24
• • • 24
• • • 25

• • • 25
• • • 26
• • • 26

• • • 26

• • • 27
• • • 28

• • • 28

• • • 29

• • • A-1
• • • B-1
• • • C-1
• • • D-1
• • • E-1
• • • F-1
• • • G-1
• • • H-1
• • • I-1
• • • J-1

SSB BASIC

INTRODUCTION

SSB's Disk File Handling BASIC, DFB-68, was written to conform
closely to the proposed ANSI standard, thus allowing the user to
run standard BASIC programs with few, if any, changes. In
addition, many new commands have been added to make programming
easier, and to keep your source code to a m1n1mum. SSB BASIC
supports many transcendental functions, allows programs and data
to be saved on disc, and implements file handling capability.

Complete documentation for input and outpurt~ .character routines is
provided so as to allow easy adaptation for special I/O features.

BASIC is distributed in three versions. These are named on the
disk as follows:

BASIC.$ for use with DOS68 in the $6099-$7FFF range
BASICA.$ for use with DOS68 in the $Aeee-$BFFF range
BASICC.$ for use with DOS68 in the $C090-$DFFF range

To run BASIC, simply put the disk containing BASIC into drive 0
and type BASIC followed by a carriage return. (This assumes you
are using DOS68 at $6000-$7FFF.)

LICENSE

The Smoke Signal BASIC, in all machine readable formats, and
written documentation accompanying them are copyrighted. The
purchase of SSB BASIC, or the purchase of a disc system with
which SSB BASIC is distributed without additional charge, conveys
to the purchaser a license to copy BASIC for his/her own use on
any disc system manufactured by Smoke Signal Broadcasting, and
not for sale or free distribution to others. No other license,
expressed or implied is granted.

WARRANTEE INFORMATION

The license to use SSB BASIC is sold AS IS without warrantee.
This warrantee is in lieu of all other warrantees expressed or
implied. Smoke Signal Broadcasting does not warrant the
suitability of BASIC for any particular user application and will
not be responsible for damages incidental to its use in a user
system.

-1-

SSB BASIC

MODES OF EXECUTION

BASIC has two modes of execution - the immediate (or direct) mode
and the program mode. In the program mode, BASIC executes a set
of instructions that has been stored prior to execution. In the
immediate mode, BASIC executes commands at the time they are
entered from the terminal.

The BASIC interpreter determines whether a statement is intended
for immediate execution or for storage as part of the program
solely on the basis of whether or not the statement was entered
with a line number. Statements having line numbers are stored
for later execution; those without line numbers are executed
immediately. Thus the line:

10 PRINT "SSB BASIC"

will produce no response at the terminal until the program is
executed. The line:

PRINT "SSB BASIC"

however, causes the terminal to respond immediately with:

SSB BASIC

By using statements without line numbers BASIC can be used as a
sophisticated calculator. For example,

PRINT (17*2.83)*(7/4)

will cause BASIC to immediately respond with:

89.14

Another use for immediate mode execution is as an aid in program
developement and debugging. Through the use of direct statement
execution, program variables can be read or altered, and the
program flow may be directly controlled.

-2-

SSB BASIC

PROGRAM STATEMENTS

A BASIC program is made of a series of program lines. Each line
must begin with a line number followed by one or more BASIC
statements and terminated with a carriage return. The following
are several rules that must be followed in writing a BASIC
program:

1. Every line must have a line number ranging between 1 and
9999. Line number 0 may not be used.

2. Line numbers are used by BASIC to arrange the program lines
sequentially. The program will be executed in order of
increasing line number regardless of the order in which they
where entered.

3. A line number may be used only once in any given program.

4. A previously entered line may be
re-entering the same line number along
line. Typing a line number followed
carriage return deletes that line.

changed by simply
with the corrected

immediately by a

s. Program lines need not be entered in numerical order because
BASIC will automatically put them in ascending order.

6. A line cannot contain more than 80 characters including
spaces.

7. Spaces are not processed by BASIC unless they are part of a
character string (i.e., enclosed in,quotation marks). The
use of spaces is optional. The line 10 LET A = 10 is
the same as the line 10LETA=l0. Spaces make the line more
readable, but take longer for the interperter to process and
consume more memory. Numbers may not contain imbedded
spaces.

8. Multiple statements on a single line are permitted and must
be separated by a colon ":". The statements are processed
from left to right. For example:

10 A=4: B=7: C=A+B: PRINT C

is equivalent to:

10 A=4
20 B=7
30 C=A+B
40 PRINT c

-3-

SSB BASIC

DATA FORMAT

The range of numbers that can be represented is 1.8 E-99 to
9.99999999 E+99 where E+99 represents 10 to the power 99.

Number are retained to an accuracy of nine decimal digits and are
internally truncated (last digit dropped) to fit this format.
Numbers may be entered and displayed in three formats: integer,
decimal, and exponential. For example:

1234 12.34 1234 E-2

NUMERIC VARIABLES

Variables are represented in a statement by any single alphabetic
character or any single alphabetic character followed by a number
0 through 9.

Examples: X, Y, Z, X3, QB

STRING VARIABLES

String
string
string
string
BASIC
STRING

variables may contain a maximum of 128 characters. A
length command is available which allows ,the maximum

length to be set at the beginning of the program. If the
length is not explicitly defined using the STRING command,
assumes a string length of 32 characters. Refer to the
command description for a detailed description of its use.

Examples of string variables: X$, Y$(7), Z$(3,2)

These string variables are all distinct from numeric variables
having the same name. For example, X=902, X$="POLLY", Y(5)=23,
and Y$(5}="CRACKERS" are all legal a_!!d may appear in the same
program.

STRING CONCATENATION

Strings may be concatenated (joined
concatenation symbol "+".

For example:

10 X$="SSB"
20 Y$=" BASIC"
30 Z$=X$ + Y$
40 PRINT Z$

Will print: SSB BASIC

-4-

together) using the

SSB BASIC

The total length of the strings to be concatenated may not exceed
the maximum string length either set by default or by the use of
the STRING command.

CONTROL FUNCTIONS

Control characters such as CONTROL C or CONTROL X are typed by
holding down the CTRL key while typing the specific letter.
Control characters are not displayed on the terminal but are
accepted by the computer. The control functions may be assigned
different characters more suitable to the user's system. Refer
to the appendices for specific details.

BREAK

Typing CONTROL C will cause BASIC to halt its current operation
and to respond with "BASIC#". BASIC will then accept additional
commands. CONTROL C may be used to stop a LIST operation which
is in progress before it is completed, ·or to halt the execution
of a program. If an MP-C card is being used as the terminal
interface, the user may have to hit CONTROL C several times
before the terminal will respond.

LINE CANCEL

Typing CONTROL X clears the current contents of the line buffer.
If an error is made while making any entry on the terminal,
either during program entry or data input during a program, this
character can be used to delete the line. The user may then
re-enter the line followed by a carriage return. Once a carriage
return has been entered, however, the CONTROL X will no longer
delete the line.

BACKSPACE

The CONTROL H (backspace) is used as a single character back
space function. When a character has been typed in error, either
during program entry or data input during a program, it may be
corrected by typing -the CONTROL H followed by the entry of the
correct character. You may backspace as many character positions
as necessary.

REPEAT

Typing CONTROL D will cause whatever is in BASIC'S input buffer
to be again used as a line of input. This feature works in the
immediate mode and its value is for the user to establish.

-s-

SSB BASIC

HALT

With some of the operating systems (SMARTBUG), typing the
character (Hex $7F) will cause processing to halt. This
to both commands used in the immediate mode and while a
is running. To continue processing type any character
rub-out or a CTL c.

BASIC COMMANDS

rub-out
applies
program
but a

It is possible to communicate with the computer in BASIC by
typing commands directly on the keyboard of the terminal. Also,
many statements can be executed directly using the direct mode of
operation described earlier. In addition, there are several
commands which may be used by the operator in order to list
programs, run programs, save or load programs, etc. When BASIC
is ready to recieve commands, "BASICf" will be displayed on the
terminal. After each entry, the system will prompt the operator
with a "#".

Commands are typed on the terminal without using statement
numbers. After the command has been executed, "BASIC#" will be
displayed indicating that BASIC is ready to receive another
command from the operator.

LIST

This command displays the lines of the current program on the
terminal. The lines are listed in ascending numerical order by
line number. A single line may be listed, or all lines within a
given range may be listed. For example:

RUN

LIST
LIST 30
LIST 30-100
LIST #4

List the entire program.
List only statement 30.
List statements 30 through 100.
List entire program on terminal/printer
connected to I/O Port #4.

Typing RUN, followed by a carriage return, causes the program
which is currently in memory to be ~xecuted . starting with the
lowest line numbered line. The RUN command resets all program
parameters and initializes all variables to zero.

-6-

SSB BASIC

CONT

The CONTinue command causes program execution to be resumed after
a STOP statement has been executed. If a program has been
interrupted using a "break" (control C) command, execution may be
resumed by typing CONT followed by a carriage return. This
command should not be used if a program error had been
encountered or if the program has beem changed. The program
parameters are not changed by this command.

This command causes the user program area and all variables and
pointers to be reset. The effect of this command is to erase all
traces of the previous program from memory in preparation for a
new program. The SSB identification and BASIC version number
will print, followed by "BASIC#".

TRACE

The TRACE feature is a useful debugging tool. Typing TRACE
causes BASIC to display to the terminal the line number of each
statement as it is executed. This allows the user to follow the
sequence in which the program is being executed. Typing TRACE
again returns the system to its normal mode of operation. The
TRACE command may be inserted anywhere in the program, or
executed in the direct mode.

SIZE

The SIZE command returns the following information to the control
port:

MON

AVAIL=(size of available memory in decimal)
PROG=(size of program in decimal)
VAR=(size of variable storage area)

This command causes the computer to return to the resident ROM
monitor in the·c~mputer syste-m. _In the case of MIKBUG this will
output a carriage return, line feed~ and the "*" prompt
character. If the program counter address (stored in $A048 and
$A049) is not altered, then typing "G" will restart BASIC leaving
the user's BASIC program intact. The MON command may be inserted
as a statement within a BASIC program.

-7-

SSB BASIC

The DOS command functions identically as MON except that control
is return to DOS68.

PORT

The command PORT = N defines the I/0 port which will serve as
the control port. N can be a constant, a variable, or an
expression. All messages, including BASIC's "BASIC#" will be
sent to the port assigned by the PORT command and the BASIC
program will expect all input from that port.

FLIST

BEWARE
If a port without a terminal is defined as
the control port, you will lose control of
your program. Breaks will always be accepted
from the control port.

The FLIST (file list) command allows the BASIC user to list the
file names stored in the disk directory without exiting to DOS68.
The format of this command is: FLIST [f<port number>] [,<unit
number>]. Typing FLIST alone lists the files stored on disk drive
0. FLIST 2 will list the file directory on disc 2. FLIST #4,1
will list the disc file directory for disk drive 1 on port 4.
FLIST will not list the transient commands found in the disk
directory.

FDEL

The FDEL (file delete) command allows the user to delete disc
files without exiting back to DOS68 to use the DELETE command.
The format of the FDEL command is: FDEL,<file list>.

FREN

The FREN (file rename) command functions just as the DOS68 RENAME
command does to change the name of a disc file. The command
format is: FREN,<old file name>,<new file name>.

-8-

SSB BASIC

HOUSEKEEPING COMMANDS

The following three commands, LINE, DIGITS, and STRING allow the
user to define the associated parameters. Once these commands
are used, the values assigned remain the same until the commands
are used again or BASIC is reload from the disc. LINE and DIGITS
can be used more than once during a program; STRING cannot.
Although these parameters have default values, the default values
are not asserted after each program. Once these commands are
used, the values remain in affect until they are explicity
changed.

The LINE command specifies the number of print positions in a
line. For example, LINE = 40 defines a line to be 40 characters
long. While printing, if the next position is within the last
25% of the line length and a space is printed, a carriage
return/line feed will be issued. This is done so that a number
or word will not be divided at the end of a print line. To
inhibit this function, just set the line length equal to more
than 125% of the actual desired line length. Setting the line
length to zero also disables this function.

DIGITS

This command is used to specify the number of digits to be
printed to the right of the decimal point. Any digits that
appear beyond the number specified will t,)e truncated. If there
are not enough digits to fill the giv•h length, zeros will be
used. DIGITS = 0 resets the system to the floating point mode.

STRING

Executing the command STRING = N will set the maximum string
length to N characters. BASIC will now reserve N bytes in memory
for all string variables -regardless of the actual number of
characters which are entered · for any particular variable. A
maximum of 128' characters is allowed. If the STRING command is
not used, BASIC will assume the default value of 32 characters.
The STRING command can be used only once during a program and, if
used, must appear before reference to any stri'ng variable is
made. For these reasons the user is advised to place the STRING
command at the very beginning of his program in a one-time-only
"housekeeping" type routine.

-9-

SSB BASIC

The command BASE=0 will cause array subscripts to begin with the
number 0. The command BASE=! will cause array subscripts to
begin with the number 1 which is the default value. To conform
to the proposed ANSI standard, the BASE command may be entered in
the format: OPTION BASE=.

HOME

The HOME command will send the home-up and clear-to-end-of-frame
sequence to the output device. Appendix F contains the location
of where this string is located to allow you to change this to be
compatable with your system.

The SKIP command is used to skip X print lines. SKIP eliminates
the need to use multiple PRINT statements. 'X' must be a decimal
value between 1 and 255. This command sends BASIC's carriage
return line feed sequence to the output device. Appendix F gives
the location of this sequence for your reference and
modification.

The WAIT command provides the user with an easy way to program
wait loops. 'X' is a decimal value between 1 and 255. The
length of time represented by the value 1 is dependent upon the
the speed of the user's processor (usually between .5 and .9
seconds). A WAIT loop can be interrupted by the BREAK command.

RJUST

The value of 'X' in the command RJUST=X is the number of print
positions to the left of the decimal point when printing a
number. Leading zeros in the field are printed as blanks.

SAVING AND LOADING BASIC PROGRAMS

SSB BASIC was written to allow for convenient use of the BFD-68
disc system. This section describes how to save and load
programs with the disc system. Also, cassette commands are
included to provide an easy transition to disc files.

-10-

SSB BASIC

SAVE

This command is used to save programs to disk. To save a file,
the user can type either SAVE "filename" or SAVE followed by a
carriage return. BASIC will prompt you for the file name if you
did not enter it.

This command is' used to load a program from disk. The format of
this command is the same as for SAVE.

APPEND

This command also loads programs into memory as does LOAD except
that the current contents of memory are not cleared out. The
program which is loaded is "appended" (added) to the end of the
program already in memory.

CHAIN

The CHAIN command allows one BASIC program to call another BASIC
program. The called program will automatically begin execution.
The format of the CHAIN command is the same as SAVE and LOAD. A
practical example of the use of the CHAIN command would be to
have a master program call various selected programs which chain
back to the master program after execution.

TSAVE

The TSAVE command allows the user to dump the current BASIC
program to cassette tape. The TSAVE command is similiar to the P
command of MIKBUG - punch on/off commands are automatically sent
to the recording device. The cassette interface can be used in
either a manual or automatic motor ·control mode. If in the
manual mode, the recorder should be turned on prior to pressing
carriage return, after typing ~ the TSAVE command. TSAVE will
output the entire BASIC source buffer onto the recording device.
The source buffer in memory is unchanged by the TSAVE command.

TSAVE allows a single letter file name to be entered in the
following format: TSAVE D or TSAVE i3 D. This letter will be
output to the tape ahead of the source program.

TLOAD

The TLOAD command allows for the entering of previously recorded
BASIC programs from cassette tape. The TLOAD command is similiar
to the L command of MIKBUG reader on/off commands are
automatically sent, and either manual or automatic motor control
can be used on the cassette interface. Typing TLOAD, followed by
a carriage return, will transfer the source program from tape to

-11-

SSB BASIC

the BASIC source buffer. The buffer is automatically cleared at
the beginning of a TLOAD command.

If TLOAD is used with the filename option (TLOAD D or TLOAD #3 D)
only a source program with that file name will be loaded. If a
file name was not specified, the first source program encountered
will be loaded.

TPEND

The TPEND command is identical to the TLOAD command except that
the current BASIC buffer is not cleared.

The TSAVE, TLOAD, and TPEND commands can all be used to work with
any port. If, for example, your cassette recording device is on
the ACIA port two, a TSAVE #2 command would be used.

NOTE: If your cassette interface does not have automatic motor
control, you will have to manually turn the motor on and off when
using the above commands.

-12-

SSB BASIC

ARITHMETIC OPERATORS

BASIC performs addition, subtraction, multiplication, division,
and exponentiation. Mathematical expressions are evaluated from
left to right using the following operator precedence.
Parentheses may be used to override this normal precedence of
operators.

1) Exponentiation
2) Negation
3) Multiplication and division
4) Addition and subtraction

The mathematical operators are symbolized as follows:

Exponentiation (up arrow character)
Negate (unary minus)

* Multiplication
I Division
+ Addition

Subtraction

No two mathematical operators may appear in sequence, and no
operator is ever assumed. For example:

HJ C = A++B
20 (A+2) (B-3) are not valid.

NOTE: Exponentiation with negative numbers will give
upredicatable result.

RELATIONAL OPERATORS

The following relational operators are used to compare two
values. They may be used to compare arithmetic expressions or
strings in an IF--THEN statement.

= Equal
<> Not equal .
< Less than
> Greater than
<= Less than or equal
>= Greater than or equal

Examples:

19 IF X = Y THEN 329
20 IF Q > R THEN PRINT Q
39 IF A >= z THEN GOSUB 188 : GOTb 299

-13-

SSB BASIC

FUNCTIONS

Functions are not to be confused with commands. Functions may be
used as expressions or as parts of expressions. Function
arguments must be enclosed between parentheses.

PEEK

PEEK(X) returns the decimal value contained in the memory
location specified by the decimal number x. For example, the
statement Z=PEEK(l94) will assign to Z the value of the
contents of memory location 194 (hex C2).

PI

PI returns the decimal value 3.14159265. It may be used in any
arithmetic expression. The PI function has no arguements.

RND(X) generates a set of uniformly distributed random numbers.
There are two ways in which RND can be used. 1) If X=0, then a
different random number between e and 1 will be returned each
time RND(X) is used. 2) If X is not e, then the same random
number will be returned each time RND(X) is used. If no argument
is used then X=0 is assumed. To yield random numbers within a
range other than 0 to 1 use the following:

10 PRINT ((J-I+l)*RND(0)+I)

where the range of numbers is to be I through J.

TAB

TAB(X) moves the print position to the Xth position to the right
of the left margin. If the print position is already to the
right of the Xth position then no action is taken. The left-hand
margin is print position fl. For example, to print A$ starting
in column 25:

220 PRINT TAB(25); A$

The following function illustrates how a table of values can be
printed with the right-hand column aligned:

100 DEF FNA(J) = LEN(STR$(INT(J)))
200 PRINT TAB(25-FNA(J));J

-14-

SSB BASIC

INT

INT(X) returns the greatest integer value which is less than x.
For example:

INT(8.9) returns 8
INT(-7.2) returns -8

ABS(X) returns the absolute value of the expression x. For
example:

§.§!!

ABS(6.27) returns 6.27
ABS(-6.27) returns 6.27

SGN(X) returns the sign (+ or -) of x. Examples:

SGN (2 • 3)
SGN(-2.3)
SGN (0)
SGN (-0)

returns 1
returns -1
returns 0
returns 0

This function returns the present column number of the print
head. In fact, POS is the inverse of tbe TAB function. For
example:

10 PRINT TAB(l); X;
20 IF POS = 71 THEN PRINT A$

LEN

LEN(X$) returns the number of characters currently in the string
represented by X$. Example:

LEN("EXAMPLE") returns 7

ASC

ASC(X$) returns the decimal ASCII numeric value of the first
ASCII character within the string. For example:

ASC ("?")
ASC ("A")
ASC ("ABC")

returns 63
returns 65
returns 65

-15-

SSB BASIC

CHR$(X) returns a single character string equivalent to the
decimal ASCII numeric value of x. CHR$ is the inverse of the ASC
function. Example:

VAL

CHR$(63) returns ?
CHR$(65) returns A

VAL(X$) returns the numeric constant equivalent to the string X$.
VAL is the inverse of the STR$ function. An error will occur if
X$ is non-numeric. Examples:

VAL("SE4") returns 5000
VAL("l7.8") returns 17.8

STR$(X) returns the string value of a numeric value. STR$ is the
inverse of the VAL function. Example:

10 LET G = 4918 + 2
20 LET M$ = STR$(G)

The variable M$ would contain "4920".

LEFT$

LEFT(X$,N) returns the string of characters from the left most to
the Nth character of X$. For example:

10 LET W$ = "BIG BROWN COW"
20 LET A$ = LEFT$(W$,5)

The variable A$ now contains the string "BIG B".

RIGHT$

RIGHT$(X$,N) returns a string of characters from the Nth position
to the left of the right most character through the right most
character. For example:

10 LET P$ = "BIG BROWN COW"
20 LET A$ = RIGHT$(P$,5)

The variable S$ now holds the string "N cow".

-16-

SSB BASIC

MID$

MID$(A$,X,Y) returns a string of characters from the string
variable A$ beginning with the Xth character from the left and
continuing for Y characters from that point. Y is optional. If
Y is not specified, then the string returned is from the Xth
character to the right of the beginning of the string through the
end of the string. For example:

10 LET P$ = "RED,BLUE,GREEN"
28 LET A$ = MID$(P$,3,ll)

The variable A$ now contains the string •o,BLUE,GRE"

IMOD

IMOD(X,Y) returns the integer remainder of dividing X by Y.

-17-

SSB BASIC

TRANSCENDENTAL FUNCTIONS

Accuracy for the following mathematical functions is retained to
seven significant digits. The accuracy of the seventh digit is
not guaranteed. The arguments of SIN, COS, and TAN are in
radians rather than degrees.

~

FUNCTION

SIN (X)
COS(X)
TAN (X)
ATAN(X)
LOG (X)
EXP(X)

SQR (X)

EXPLANATION

Returns the sine of X
Returns the cosine· of X
Returns the tangent of X
Returns the arctangent of X
Returns the natural logarithm of X
Returns 2.718282 (e) to the Xth power.
The inverse of LOG(X).
Returns the square root of x

The USER function is provided to allow the programmer to jump to
a user defined subroutine from a BASIC program. The statement
LET A = USER (X) transfers program control to a user written
machine language program. Program control branches to the memory
location pointed to by memory locations $28 and $29. x is a
numeric expression which is then stored in a 7-byte series
beginning at a memory location pointed to by $30 and $31. This
value may be modified by the user written machine language
program to act as a data output from the program or as an
indicator that something must be done. The user routine must
terminate with a $39 (RTS), thereby transferring control back to
the BASIC interperter. Additionally, X is now set equal to the
value stored in the seven byte series stored in memory locations
pointed to by $30 and $31.

When BASIC is loaded, memory locations $28 and $29 point a
location containing an RTS ($39) so that if the user function is
called it simply returns control to the BASIC interperter. You
must modify memory locations-· $28- and $29 using POKE or MON
command in order to take advantage of the USER function.

-18-

SSB BASIC

STATEMENTS

This section describes statements which can be used in BASIC
programs.

POKE

POKE(X,Y) stores the value of Y at location X (both X and Y are
decimal values). This allows the user to modify specific memory
locations during program execution. Extreme caution should be
taken while using this statement. It is very easy to
accidentally modify the BASIC interpreter itself which would
cause the program, the data, and the interpreter to be destroyed!

The DIM (dimension) statement allows the user to explicitly
define the size of an array. An array is a collection of
subscripted variables or strings. ,One and two dimensional arrays
are allowed with a maximum size of 256 X 256 elements. The DIM
statement initializes all elements within the array to zero.

An array can only be "dimensioned" once in a program, but need
not be dimensioned at all. If a subscripted variable is
encountered priQr to dimensioning, a default of 10 elements is
established for the array. Only the variables A - z followed a $
may be dimensioned for string arrays. The maximum dimension size
is 255 which will provide an array that has 256 variable
proisitons when BASE=0 and 255 positions when BASE=l. When
processing under BASE=0, there is always one (1) more position in
the array than the DIM size. ·

Examples:

REM
r

10 DIM X(30)

20 DIM Z(l2,3)
30 DIM A$ (155)

assigns 38 memory spaces to array X
(room for 38 numeric variables)
dimensions a 12 X 3 array for z
defines a 155 element string array
(room for 155 strings each of
maximum string length)

The REMark statement is a nonexecutable statement which gives the
user the ability to document his ptogram. By including remark
statements with the program source the listing becomes more
readable.

-19-

SSB BASIC

DEF

DEF FNA(X) allows the user to define his own functions. The
letter "A" can be any letter of the alphabet and the variable X
must be a non-subscripted variable. Once defined, the function
FNA(X) can be used anywhere in the program just like any other
BASIC functions. A function must be defined before a reference
is made to it.

DATA AND READ STATEMENTS

Data and read statements are used together to assign values to
variables within a program. Every time a data statement is
encountered, the values in the argument field are assigned
sequentially to the next available position of a data buffer.
All data statements, no matter where they occur in a program, are
combined into a continuous list.

READ statements cause values in the data buffer to be accessed
sequentially and assigned to the variables named in the READ
statement. They start with the first data element from the first
data statement, then the next element, and so on to the end of
the first data statement, and then to the first element of the
second data statement, etc. Each time a READ command is
encountered, it reads the next data value that has not been
assigned to a variable. If a READ is executed and the data
statements are out of data, an error is generated.

Numeric and string data may be intermixed. However, they must be
used in the appropriate order to assign the data to the
appropriate variables. DATA and READ statements may be placed
anywhere within the program.

String data need not be enclosed in quotes since the comma acts
as the delimiter. However, if the string contains a comma, then
it must be enclosed in quotes. For example:

10 DATA JANUARY,17,1973
20 DATA "SMITH, BOBBY",S
30 READ M$,D,Y,N$
40 READ A

The statements shown above are equivalent to the following:

10 LET M$ = "JANUARY"
20 LET D = 17
30 LET Y = 1973
40 LET N$ = "SMITH, BOBBY"
50 LET A = 5

-20-

SSB BASIC

RESTORE

The RESTORE statement causes the data buffer pointer (which is
advanced by execution of READ statements) to be reset to the
beginning of the data buffer. For example:

10 DATA ALVIN,17,KAREN,22
20 READ A$,A,B$,B
30 RESTORE
40 READ C$,C

is equivalent to:

10 LET A$ = "ALVIN" . A = 17 .
20 LET B$ = "KAREN" . B = 22 .
30 LET C$ = "ALVIN" . c = 17 .

LET

The LET statement is used to assign a value· to a variable. The
use of LET is optional unless the statement is being executed in
the immediate mode. In the immediate (or direct) mode, the LET
is required. For example, the statement LET B=l0e is the same
as the statement B=l00.

The equal sign does not mean equivalence as in mathematics, but
rather the replacement operator. It means: replace the value of
the variable name on the left with the value of the expression on
the right side of the equal sign. The expression on the right
can be a simple numeric value or an expression composed of
numerical values, variables, mathematical operators, or
functions.

FOR --- NEXT STATEMENTS

The following is the format of the FOR
statements:

10 FOR I = ••• TO ••• STEP •••
20
30
40 NEXT I

NEXT group of

The FOR NEXT statements are used together for setting up
program loops. A loop . causes the execution of one or more
statements for a specified number of times before exiting from
the loop. The variable in the FOR statement (shown above as "I")
is initially set to the value of the first expression.
Subsequently, the statements following the FOR are executed.

When the NEXT statement is encountered the STEP value is added to
the variable and program execution is resumed at the statement
following the FOR - TO statement. If the addition of the STEP
results in a sum greater than the expression that follows TO, the
NEXT instruction executed wi~l be the one following the NEXT

-21-

SSB BASIC

statement. If no STEP is specified, the value of 1 is assumed.
If the TO value is less than the initial value, the FOR - NEXT
loop will be executed only once. For example:

10 FOR K=l TO 3 STEP .S
20 PRINT K;
30 NEXT K
40 PRINT "DONE"

This example will print: 1 1.5 2 2.5 3 DONE

Although expressions are permitted for the initial, final, and
step values in the FOR statement, they will be evaluated only
once (the first time the loop is entered). The same index
variable cannot be used in two different loops if the loops are
nested together. When the statement after the NEXT statement is
executed, the variable is equal to the last value assigned, i.e.
the value which caused the loop to stop.

STOP

The STOP statement causes the program to halt execution. BASIC
returns to the command mode and prints "BASICt". The STOP
statement differs from the END statement in that it causes BASIC
to display the statement number where the program stopped. The
program can be restarted by executing a GOTO or a CONT command.
The message displayed is STOP XXXX where XXXX is the line number
where the program stopped. STOP is often used as a debugging
aid.

END

The END statement causes the program to stop executing. BASIC
returns to the·command mode and prints "BASICt". END may be used
more than once and need not used at all.

The GOTO statement is an unconditional branch which directs the
program flow to the statement number specified. Note that the
statement number may specified as being the contents of a ~umeric
variable or expression.
Examples of GOTO:

100 GOTO 10
200 LET L=500 : GOTO L
GOTO 1000 (direct mode execution)
GOTO !*100

-22-

SSB BASIC

GOSUB AND RETURN

The GOSUB statement causes the program to branch to a specified
statement number. It is assumed that this statement number is
the start of a subroutine. The sequence of statements which make
up the subroutine must be terminated with a RETURN statement in
order to send the program back to the statement following the
original GOSUB statement.

A subroutine is a sequence of instructions which need to be
executed more than once in a BASIC program. To use such a
sequence, a GOSUB instruction is employed. Upon completion of
the subroutine, control is returned statement following the GOSUB
by execution of the RETURN statement.

A subroutine may use a GOSUB to call another subroutine which in
turn may call another subroutine, and so on. This process is
referred to as "nesting". Subroutine nesting is limited to eight
levels.

Example of the use of GOSUB and RETURN:

10 T = 0
20 p = 3.50: GOSUB 100:
30 p = 5.00: GOSUB 100:
40 PRINT "TOTAL ",T
50 END
100 c = p * 1.06
110 T = T + c
120 RETURN

This program would output:

3.71
5.30
TOTAL 9.01

ON N GOTO OR ON N GOSUB

PRINT
PRINT

c
c

This statement causes the program to branch to a specified
statement number depending upon the value of N. N may be an
integer value or may be an expression. If it is an expression,
the expression will be evaluated, truncated to an integer, and
the program will then branch to the Nth statement number. For
example:

220 ON N GOTO 700,350,490,450

This means:
If N = 1 GOTO 790
If N = 2 GOTO 350
If N = 3 GOTO 490
If N = 4 GOTO 450
If N > 4 an error will result

-23-

SSB BASIC

IF --- THEN

The IF statement is used to control program execution depending
upon specified conditions. If the relational expression after
the IF is true, then the program performs the statement after the
THEN. If the conditional after the IF is false, program
execution continues with the statement on the next line after the
IF THEN statement. The statement after THEN may be just a
line number, which will cause program execution to GOTO the line
specified. All multiple statements on the sam~ line as an IF -
THEN will be executed if the relationship tested true.

For example:
19 IF A=S THEN GOSUB 109: GOTO 230

This statement will perform the GOSUB and then will GOTO 230 when
A is equal to s.

The logical operators "AND" and "OR" are not supported in this
version of BASIC but may be easily handled using the IF THEN
statement.

To perform:
IF A=B AND C=B THEN 180

use the following:
IF A=B IF C=D THEN 100

To perform the function:
IF A=B OR C=D THEN 100

use the following:
IF A=B THEN 100
IF C=D THEN 190

INPUT/OUTPUT STATEMENTS

Any INPUT or PRINT statement may be followed with an IN where N
is the I/O port number (9-7). N may be a constant, variable, or
an expression. If no port number is~specified, the control port
(port il) is assumed. If any instruction follows the port
number, it must be separated by a comma. For example:

730 INPUT #2, A$
229 PRINT #4, X, Y, Z

INPUT

The INPUT statement allows the user to enter either numerical or
string data on the terminal during program execution. For
example, statement 10 INPUT X allows one numeric value to be
entered. The statement 10 INPUT X$ allows one string value,
having up to the maximum number of characters as specified by the
string length command, to be entered. The values input are
assigned to the variables specified in the INPUT statement.

-24-

SSB BASIC

Multiple inputs can be entered by separating them by commas. If
the expected number of values are not entered, a "?" will be
generated. The statement 10 INPUT "ENTER VALUE",X will print
the message inside the quotes, then prompt with a "?", and wait
for the input of the variable requested.

When the program comes to an INPUT statement, a "?" is displayed
on the terminal. The program then waits for the user to respond
by entering the requested data followed by a carriage return.

If insufficient data is entered, the system then prompts the user
with another "?". If no data is entered, or a non-numeric
character is entered when a numeric variable is required, the
system will prompt the user with "RE-ENTER".

PRINT

The PRINT statement directs BASIC to print either the value of
the expression, literal values, string values, or text strings on
the terminal. The various forms of print requests may be
combined on a single statement and separated by commas or by
semi-colons. If the statement is terminated with a semicolon, the
line feed/ carriage return sequence (which is normally issued by
BASIC automatically at the end of each print statement) will be
suppressed and the next print statement will resume printing on
the same line where the last print left off.

Examples:
10 PRINT
20 PRINT

30 PRINT

40 PRINT
50 PRINT

60 PRINT

OPEN

A,B,C

A; B; c

"FOR SALE"
"TOTAL=";A

14,X

Skip a line
Print variables A, B, and C auto
matically tabbed into 16
character fields
Print A, B, and C with only
one space separating them
Print a message
Print the message followed by the
value of variable A
Print the value of X on I/O port 4

The command OPEN #(FLN),(FILE SPEC) is used to open a disc
file. The file number, (FLN), is an expression that must evaluate
to the range e through 9. The file specification, (FILE SPEC),
must be string variable or string -literal which supplies the file
name in standard DOS68 format.

The type of file access (read or write) will be determined by the
first usage of the file after opening. Before a BASIC program
can read input or write output to a file, the file must have
previously been opened by the OPEN statement.

Multiple files may be opened with the same OPEN statement by
using variables for (FLN) and (FILE SPEC) and repeating the
series of statements. For example:

-25-

SSB BASIC

10 INPUT "NUMBER OF FILES",F
20 FOR I = 1 TO F
30 INPUT "FILE NAME",F$
40 OPEN iI,F$
50 NEXT I

CLOSE

The command CLOSE f(FLN),f(FLN), ••• is for closing open files.
The file number may also be an expression as with OPEN. The
specified file number must have previously been opened by an OPEN
statement. Example:

100 CLOSE #1,#2

READ

The statement READ t(FLN),(VARIABLE LIST) is provided to
request data be read from a disk file. Input from a file is
taken an item at a time - as the program needs it. (VARIABLE
LIST) consists of one or more variables, either string or
numeric, separated by commas. If the receiving element is a
string variable, it will receive the data from the file up to the
maximum string length of 80 characters. The line input buffer
for a single item from a file is 80 characters.

A string item over 80 characters will be truncated, and if more
then 80 characters are contained in a single item of input, the
buffer input processing will be terminated.

If the receiving element is a numeric variable, the input is
scanned for a break character (a comma or a null) and that
portion of the input - up to the break character is then
processed by a validation routine which verifies the number as
being a valid numeric variable. If the number is invalid, Error
#3 (ILLEGAL CHARACTER) will occur.

RESTORE

The statement RESTORE l(FLN),#(FLN),... causes the files
associated with the list of file numbers to be repositioned to
the beginning of the file. Thus,-the data in the file may be
reread. Note that this statement functions for files just as the
RESTORE dscribed earlier functions for DATA statements. The file
number may be that of file which is open for reading (input) or
writing (output).

10 OPEN 11,"PART.MST" (Quotes are not required)
20 LET C = 5
30 READ fl,A
40 FOR I = 1 TO A
50 READ fl,B
60 PRINT B
70 NEXT I

-26-.

80 RESTORE il
90 LET C=C-1
100 IF C <> 0 THEN 30
110 CLOS,E #1
120 END

SSB BASIC

The above program causes File fl named "PART.MST" to be opened.
A counter (C) is set to 5 to keep track of the number of times we
go through the file. The first item is read in from the the file
and in expected to hold the number of items to follow. Data is
read and printed until the item limit is reached. The file is
then restored (rewound). The count, C, is decremented and if the
result is not 0 the process is repeated until the count does
become 0 in which case the file is closed and the program ended.

This example could be adapted to listing a file just created.
The RESTORE after the write sequence will close the file, rewind
the file, and open the file for reading.

SCRATCH FILE

The SCRATCH statement is used to remove an existing file from the
current disk directory and then re-enter it into the directory.
After the file is re-entered into the directory it is opened for
output (writing). The old file is lost from the disc and a new
file with the same name is prepared to receive data. A file that
has been opened for input (read) cannot be scratched until it is
closed and then reopened.

10 OPEN fl,"FILE.RND"
20 SCRATCH #1
30 FOR I=l TO 10
40 WRITE #l,RND(0)
50 NEXT I
60 RESTORE #1
70 READ fl,I
80 IF STATUS #1 = 6 THEN 110
90 PRINT I
100 GOTO 70
lHJ CLOSE #1
120 END

This program opens a file called "FILE.RND" and clears out all
existing data with the scratch command. Then it writes ten
random numbers to the file, closes_ it, and then re-opens the. file
for reading with the RESTORE statement. The random numbers are
read and printed until the end of file is encountered (STATUS =
6) at which time the file is closed and the program ends.

-27-

SSB BASIC

WRITE

The statement WRITE i(FLN),(VARIABLE LIST) allows the writing
of the data indicated in the variable list to a disc file. The
variable list may contain either string, or numeric variables,
separated by commas. An error will occur on the first execution
of the WRITE command if the file specified currently exists on
the disk. To insure the availability of the file write access,
use the SCRATCH command which will prepare the file to receive
the output.

STATUS

STATUS i(FLN) is a function allowing for monitoring of error
status of any specified file number. The status most often used
is the end-of-file (EOF) which has a value of 6. The status
number is that number returned by the disc file management
system. Refer to the BFD-68 SYSTEM MANUAL for other values. It
is a good idea to check the file status after a READ at least for
end of file. If STATUS of a file is checked after opening, but
prior to reading or writing, the absence or presence of the file
may be established without getting a Basic Error (if the file
were not there). A.STATUS of zero (9) means the file is there
and non-zero means not there.

-28-

SSB BASIC

AUTO RUN

It is possible for the user to save a copy of BASIC along with
the source of a BASIC program and RUN or call, as a transient
command, the saved file and have it immediately begin execution.
The transfer address for AUTO RUN is $0106, the first loaction to
save is $0000, and to determine the last address to save, examine
locations $0022 and $0023.

Thus, the steps to make an auto-run file are:

1) Load BASIC and create (or load in) the file to be auto-run.

2) Type DOS to exit to the operating system.

3) Use the resident ROM Monitor (MIKBUG, SMARTBUG, •••)
to examine locations $0022 and $0023.

4) Restart DOS68 by the warm start entry point
I

5) Type:
SAVE,<auto-run file name>,0,<contents of $22, and $23>,106

(To make the file a transient file, add ",$" following 106).

6) The auto-run file is now ready to run
RUN,<auto-run file name>

or
<auto-run file name> if the ",$• was used

If you append the auto-run file onto a copy of DOS68, then you
can have Basic come up running as part of your DOS BOOT.

-29-

APPENDIX A: QUICK BASIC REFERENCE

COMMANDS
(used in direct mode)

PORT
RUN

FUNCTIONS

PEEK
PI

STATEMENTS
(used in programs)

DATA
tDIM

APPEND
CONT
DOS
DIGITS
FLIST
*LINE
*LIST
LOAD
*MON
NEW

SAVE
*STRING

ABS
ASC
ATAN
CHR$

POS
RIGHT$

END
FOR-NEXT

ION GOSUB
#ON GOTO
#POKE
#PRINT

TLOAD
TPEND
*TRACE OFF
*TRACE ON
TSAVE

* commands that can
be used within a
program

DISK FILE COMMANDS:

cos
DEF
EXP
INT
LEFT$
LEN
LOG
MID$

RND
SGN
SIN
SQR
STR$
TAB
TAN
VAL

OPEN CLOSE RESTORE SCRATCH READ

MATHEMATICAL OPERATORS

*
I
+

Exponentiation
Negation
Multiplication
Division
Addition
Subtraction

PRECEDENCE OF OPERATORS

(1) Exponentiation
(2) Negation

IGOSUB
f GOTO
I IF-THEN
INPUT
iLET

READ
REM
RESTORE
RETURN
STOP
USER

t statements that can
be used in the direct
mode of execution

WRITE STATUS

RELATIONAL OPERATORS

= Equal
<> Not equal

< Less than
> Greater than

<= Less than or equal
>= Greater than or equal

(3) Mul~iplication or Division
(4) Addition or Subtraction

A-1

APPENDIX B: CHARACTER CONVERSION TABLE

ASCII CNTL HEX DEC ASCII HEX DEC ASCII HEX DEC
NUL @ 00 00 , 2C 44 x S8 88
SOH A 01 . 01 2D 4S y S9 89
STX B 02 02 • 2E 46 z SA 90
ETX c 03 03 I 2F 47 [SB 91
EOT D 04 04 0 30 48 \ SC 92
ENQ E 0S 0S 1 31 49 l SD 93
ACK F 06 06 2 32 S0 SE 94
BEL G 07 07 3 33 Sl SF 9S
BS H 08 08 4 34 S2 , 60 96
HT I 09 09 s 3S S3 a 61 97
LF J 0A 10 6 36 S4 b 62 98
VT K 0B 11 7 37 5S c 63 99
FF L 0C 12 8 38 S6 d 64 HJ0
CR M 0D 13 9 39 57 e 6S 101
so N 0E 14 3A SB f 66 102
SI 0 0F lS . 3B S9 9 67 103 ,
DLE p 10 16 < 3C 60 h 68 104
DCl Q 11 17 = 3D 61 i 69 10S
DC2 R 12 18 > 3E 62 j 6A 106
DC3 s 13 19 ? 3F 63 k 6B 107
DC4 T 14 .20 @ 40 64 1 6C 108
NAK u 15 21 A 41 65 m 6D 109
SYN v 16 22 B 42 66 n 6E 110
ETB w 17 23 c 43 67 0 6F 111
CAN x 18 24 D 44 68 p 70 112
EM y 19 25 E 45 69 q 71 113
SUB z lA 26 F 46 70 r 72 114
ESC [lB 27 G 47 71 s 73 115
FS \ lC 28 H 48 72 t 74 116
GS ! lD 29 I 49 73 u 75 117
RS lE 30 J 4A 74 v 76 118
us lF 31 K 4B 75 w 77 119
SP 20 32 L 4C 76 x 78 120
! 21 33 M 4D 77 y 79 121
n 22 34 N 4E 78 z 7A 122
23 35 0 4F 79 7B 123
$ 24 36 p 50 80 7C 124
% 25 37 Q 51 81 7D 125
& 26 38 R 52 82 7E 126
I 27 39 s 53 83 DEL 7F 127
(28 40· T 54 84
) 29 41 u 55 8S
* 2A 42 v S5 as
+ 2B 43 w 57 87

B-1

APPENDIX C:

8020 - 0021

0022 - 0023

0024 - 0025

0026 - 0027

0028 - 0029

0030 - 0031

0100

0103

0HJ6

0109 - 010A

010B

010C - 010D

010E - 010F

0110 - 0111

0112 - 0113

0114 - 013A

013B

013C

013D

013E

013F

MEMORY LOCATIONS USED BY BASIC

Contains the start of BASIC program (source)

Contains the next available memory location after
the BASIC program (source)

Contains the next available memory location after
the BASIC source program and any defined variables

Memory limit

Contains the pointer for USER

Contains the address of ·the present arithmetic
value in use during a USER call

Cold start address

warm start address

Auto-run address

Size of the BASIC interpreter

Number of the control port

Maximum memory size available for BASIC to use.

Address of home clear end-of-frame string

Address of ca,rriage returnline feed string

Address of ERROR routine (Error in ACCB)

RESERVED for future jump addresses

Line delete control character (CTL X)

Character delete control character (CTL H)

Character delete ECHO character (NULL)

BREAK control character (CTL C)

Jump Table

NOTE: The last 256 bytes of memory available are used as a
string expression buffer and for the machine stack.

A04A - A07F Part of this area is used by DOS68. See the DOS68
reference manual for the actual addresses used.

C-1

APPENDIX D: ERROR MESSAGES

The following is printed when an error occurs:

ERROR t ----- IN LINE # -----

The line number will be 0000 for errors in direct mode execution.

ERROR
91
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

MEANING
Maximum variable length exceeded (over 255)
Input error
Illegal character or variable
Missing ending " in print literal
Dimension error
Illegal arithmetic
Line number not found
Attempt to divide by 0
Maximum subroutine nesting exceeded (over 8 levels)
RETURN statement executed without a prior GOSUB
Illegal variable
Unrecognizable statement - also common disc command error
Parenthesis error
Memory full
Subscript error
Too many FOR-NEXT loops active (maximum is 8)
NEXT x statement without prior FOR X= •••
Nesting error in FOR-NEXT
Error in READ statement
Error in ON statement
Input overflow (more than 80 characters on input line)
Syntax error in DEF statement
FN function error. Either syntax error in FN or FN is not define
Error in STRING usage, or mixing of numeric and string variables
String buffer overflow, or string extract too long
Not used in Logical I/O Basic
VAL function error - string starts with a non-numeric character
Cannot take LOG of a negative number
Error message error
File number is not in range of e through 9
Unable to open file for write
Attempt to write to file not open for wr it.e
Unable to open file for read
Attempt to read from a file no-t open for read
Attempt to read data beyond end of file
Specified file failed to close
Specified file failed to delete
Disk Directory error
Disk unit (drive) number error
Diskname (FREN) error
Memory error

Error numbers 60-69 indicate that DFM (the disc file handler) has
detected an error in handling the file number corresponding to
the least significant digit of the number 40-49. DFM's own error
code will also be displayed (see the BFD-68 system manual for
value of the DFM error codes).

D-1

APPENDIX E:

0030

0028
0028 C0 00

C000

C000 7E C005

C003 00 00

C005 FF Cf2103
Cf2108 DE 30
C00A 6C 06
C00C FE Cf2103
Cf210F 39

*
*

EXAMPLE FOR USER FUNCTION

* THE FOLLOWING EXAMPLE OF HOW TO USE USER
* MULTIPLIES THE NUMBER 'X' GIVEN USER(X)
* BY TEN AND THEN RETURNS TO BASIC. NOTE HOW
* THE 'X' IS REFERENCED· IN THIS PROGRAM -
* THIS IS THE MOST COMMON MISUNDERSTANDING
* ON HOW USER WORKS.
*
*
UPOINT EQU $30 ADDR OF USER DATA
*

ORG $0028 ADDR OF POINTER TO USER PGM
FDB US TART SET UP POINTER TO USER PGM

*
ORG $C000

*
US TART JMP BEGIN
* * SAVE AREAS FOR USER PGM
*
I SAVE FDB 0
*
BEGIN STX !SAVE SAVE THE INDEX REGISTER

LDX UPOINT LOAD X W/ADDR OF USER DATA
INC 6,X INC THE EXPONENT BY 1
LDX I SAVE RESTORE THE INDEX REGISTER
RTS RETURN TO BASIC

*
END

E-1

APPENDIX F: PARTIAL SOURCE LISTING

8188
817S •
1176
8177 •

ORG $188

8188 BO 82A6 8178 BEGIN 3SR START
8183 Bl> 8C31 8179 JSR RSTART
8186 7E 8C8D 8188 JHP AUTO

8181 ...

COLD START
SOFT START
AUTO RUN

8189 28 73
8188 82
818C 68 88
818E ea BD
8118 93 BA
8112 80 2A

8182 BUFBAS FOB
8183 CNTPRT FCB
8184 "EM"A)(FOB
8185 HOMSTR FOB
8186 CRLFST FOB
1187 ERRPNT FOB
8188 •

SRCBEG
2

END OF BASIC & WORK AREAS
CONTROL PORT ., ...

HO"LJ:S
CRLF2
ERROR

MEMORY LI"IT - Y"E"AX FOR 00868.58
HOME/CLEAR EOF
CRAF STRJ:NG
ADOR OF ERROR RTN <I IN ACCB>

8114 43 8189 NOTICE FCC 'COPYRIGHT 1979 SMOKE SJ:GNAL BROAOCASTJ:NG'
8198 •

e13c ee 88 0191
014e ee •• e192
8144 08 88 8193

FDB
Fl>B
FDB

$8888,$8888 RESERVED FOR FUTURE
$88881$8888 JUMP ADDRESSES
$88881$8888

8148 18
8149 88
814A 88
8148 83

1194 ...
ei.95 DELINE FCB $18
1196 DELCHR FCB $88
8197 BSECHO FCB $88
8198 BRKCHR FCB $3
8199
8288

CTL)(
CTL H
NULL
CTL C

8281 • I~O DEFINITION TABLE - CONFIGURATION BYTE
8282 ...
8283 •Bl:Tll 7 6 s 4 3 2 I 1
8284 • I I
828S •HE)(88 48 28 ,. 88 84 I 82
8286
8287 •
8288 •
8289

CTL
TERM

RES
CAS

ltPC
P?A

PIA
IN

PIA STD X64
OUT PIA SER

•
81

)(16
SER

8218 • CONFG • 8 -> NON-STD I/O Cie.
8211

Video 80_.d - Graphics)

8212 • LOGICAL UNIT TABLE ENTRY ·
8213
8214 •
8215 •
8216 •
8217 •
8218 •
8219
8228

8 -> CONFIGURATION BYTE
1-2 ->ADDRESS OF.I/O OEYICE
3-S -) JUMP CHAR OUTPUT
6-8 -> JUMP CHAR INPUT
9-11 -> JU"P PORT %NZTJ:ALIZATION

814C 8221 LUTBLE EQU •
8222 •
8223 • LOGICAL UNIT II
8224 •

814C 81 822S LU8
8140 F7 E8 8226
814F 7E 81FC 8227
e1s2 7E eeec 922e
8155 7E 81AC 8229

8238 •

FCB
FDB
JttP
JMP
JMP

$81
$F7E8
CHROUT
CHRIN
:COIN IT

8231 • LOGICAL UNIT 11

8158 01
8232 •
8233 LU1 FCB $81

SSB BASIC REL 5.9

8159 F7 E4 8234
8158 7E 81FC 8235
81SE 7E 822C 8236
8161 7E 81AC 8237

8238 •

FOB
JMP
JHP
JMP

•F7E4
CHROUT
CHRIN
IOINIT

0239 • LOGICAL UNIT •e
8248 ...

8164 81 8241 LU2 FCB
8165 F7 ES 8242 CTLAOR FDB
8167 7E 72C1 8243 CTLOUT JMP
816A 7E 72C4 8244 CTLIN JMP
8160 7E 81AC 8245 JMP

8246 •

$81
$F7E8
ZPUTCH
ZGETCH
IOINIT

888 "NE"ON:tC ASSE"BLER PAGE es

CHGD TO YCPORT IF DOS68.S8
*** SEE NOTE BELOW
*** SEE NOTE BELOW

8247 ·• NOTE:
8248 ...
8249 •
eese •
8251 ...

TO HAYE BASIC'8 CONTROL PORT NOT USE
THE WIDTH, DEPTH, ETC. PARAMETERS THAT
YOU HAYE SET FOR l>08 - CHANGE THE 3UMP
AT CTLOUT TO COTO 'CHROUT' XN BASIC &
THE JUMP AT CTLl:N TO GOTO 'CHRIN'

eese
8253
8254 • LOGICAL UNIT •3
8255 •

8178 81 8256 LU3
8171 F7 EC 8257
8173 7E 81FC 8239
8176 7E 822C 8259
8179 7E 81AC 8268

8261 ...

FCB
FOB
JHP
JMP
JMP

$81
$F7EC
CHROUT
CHRJ:N
IOINIT

8262 • LOGICAL UNIT •4
8263 ...

817C 84 8264 LU4
8170 F7 Fl 8265
817F 7E 81FC 8266
8182 7E 822C 8267
8185 7E 81AC 8268

8269 ...

FCB
FDB
JMP
JMP
JMP

••• •F7F8
CHROUT
CHRIN
IOI NIT

8278 • LOGICAL UNIT IS
8271 ...

8188 84 8272 LUS
8189 F7 F4 8273
8188 7E 81FC 8274
818E 7£ 822C 8275
8191 7E 81AC 8276

8277 ...

FCB
FOB
JMP
J"P
JMP

••• •F7F4
CHROUT
CHRIN
XO I NIT

8278 • LOGICAL UNIT 16
8279 ...

8194 84 8288 LU6
8195 F7 F8 8281
8197 7E 81FC 8282
819A 7E 822C 8283
8190 7E 81AC 8284

8285 •

FCB
FDB
J"P
JMP
Jl1P

••• $F7F8
CHROUT
CHRIN
IO IN IT

8286 • LOGICAL UNIT 17
8287 ...

81A8 84 8288 LU7
81A1 F7 FC 8289
81A3 7£ 81FC 8298
81R6 7E e2ec 8291
81A9 7£ 81AC 8292

FCB
FDB
JMP
JMP
J.rP

••• SF7FC
CHROUT
CHRIN
IOINIT

8293 ----~-----------------~~---------------~~

SSS BASIC REL S.9 888 "NE"ONIC ASSEMBLER PACE 86

8294
829S • INITIALIZE I~O PORT AS SPECIFIED
8296

81AC DE 81 8297 IOINIT LOX LUPTRM
81AE E6 88 8298 LOA B CONFG,X
8188 EE 81 8299 LOX OPORT,X
8182 C4 9F 8388 AND B l$9F
8194 28 14 8381 B"I IOINTR
8186 27 12 8382 BEQ IOINTR
8188 CS 1C 8383 BIT B IX11188
81BA 26 8F 8384 BNE IOPIA
81BC 37 8385 PSH B
8180 BD 8F22 8386 JSR DELAYi
81C8 33 8387 PUL B
81C1 86 83 8388 LOA A 13
81C3 A7 88 8389 STA A e,x
81C5 86 14 8318 LDA A 1$14
91C7 18 8311 ABA
81C8 A7 88 8312 STA A e,x
81CA 39 8313 IOINTR RTS
81C8 CS 84 8314 IOPIA BIT B IX181
81CD 27 13 8315 BEQ IOPIAi
81CF 6F 81 8316 CLR 1,x
8101 6F 83 8317 CLR 3,X
8103 6F 88 8318 CLR e,x
8105 6F 82 8319 CLR 2,x
e101 63 88 8328 COM e,x
8109 86 3E 8321 LOA A l$3E
8108 A7 81 8322 STA A 1,x
8100 86 2E 8323 LOA A l$2E
81DF A7 83 8324 STA A 31X
81E1 39 8325 RTS
81E2 CS 88 8326 IOPIA1 BIT I IX1888
81E4 27 08 8327 BEQ IOPIA2
81E6 6F 81 8328 CLR 1,x
81E8 86 FF 8329 LOA A 1-1
81EA A7 88 8338 STA A e,~
81EC 86 3E 8331 LDA A lt3E
81EE A7 81 8332 STA A 11X
81F8 39 8333 RTS·
81F1 6F 81 8334 IOPIA2 CLR 1,x
81.F3 86 88 833S LOA A 18
81F5 A7 88 8336 STA A e,x
81F7 86 2E 8337 LOA A 1•2E
81F9 A7 81 8338 STA A i1M
81.FB 39 8339 RTS·.

·CLEAR NU BITS
CONTROL TER"
OTHER TYPE IO
PIA TYPE
YES

"ASTER CLEAR ACIA
WORD SELECT BITS
ADD OIYI~E SELECT

STD PIA
NO
INIT A AND B SIDES

OUT.PUT PIA
NO
SET PIA A FOR OUTPUT

SET PIA A FOR INPUT

8348 --~------~---~--~~~-~-~----:-~-~-~--~---~

11.FC 8i 7F
8iFE 27 16
8288 E6 88
8282 27 12
8284 EE 81
8286 cs ec
8288 26 80
828A CS 83
828C 27 88
828E E6 88

8341
8342 • 00 CHARACTER OUTPUT
8343
8344 CHROUT C"P A l$7F
834~ SEQ CHROR
8346 LDA B CONFC,X
8347 BEQ CHROR
8348 LDX OPORT1X
8349 BIT 8 IXS.188
8358 BNE OUTP:tA
8351 BIT B IX1.1
8352 BEQ CHROR
8353 LOA 8 8,M

NO OUTPUT REQ'D

PIA OUTPUT
YES
ACIA OUTPUT
NO
WAIT FOR TDRE

SSB BASIC REL !5.9 888 "NEMONZC A88E"BLER PACE 8?

82:l8 cs 82
821.2 2? FA
82:l4 A? 8:1.
82:1.6 39
821.7 8F
e21e A7 ee
821A C6 36
821C E7 81
821E C6 3E
8228 E7 8:1.
8222 96 DF
8224 86
822!5 E6 81
8227 2A FC

. ee29 A6 ee
eeee 39

822C E6 08
822E 27 2D
8230 EE 81
8232 cs :1.4
8234 26 :lS
8236 cs 03
8238 27 23
823A E6 88
823C 37
8230 24 FB
823F A6 81
8241 84 7F
8243 81 7F
8245 27 F3
8247 DE 81
8249 6E 83
8248 cs 04
0240 21 ea
824F E6 83
8251 2A FC
8253 A6 82
8255 28 Fl
8257 E6 81
8259 2A FC
82SB A6 88
82SD 39

83!54 BIT 8 e2
83SS BEQ •-4
8356 STA A :l.1M
83!5? CHROR RTS
83!58 OUTPIA SEI
8359 STA A e,x
8368 LDA I ••36
8361 STA 8 1,M
8362 LOA B l$3E
8363 STAB i1M
8364 LOA A INTRP
836!5 TAP
8366 LDA 8 i,X
8367 BPL •-2
8368 LDA A e,x
8369 RTS

OUT CHAR

LOCK INTERRUPTS
OUTPUT CHAR

RESTORE INTERRUPT STATE

WAIT FOR CHAR TRANSFER

CLEM INTR FLAG

8378 --------------------------~------~~~--~~
837:l
8372 • DO CHARACTER INPUT
8373
8374 CHRIN LOA B CONFQ,M
8375 BEQ CHRINR
8376 LDM OPORT,X
8377 BIT 8 IXS.8118
8378 BNE INPIA
8379 BIT 8 •X11
8388 BEQ CHRINR
8381 INACIA LOA 8 e,x
8382 ASR B
8383 ace INACIA
8384 LOA A 11M
838S AND R l$7F
8386 CMP A ••?F
8387 BEQ INACIA

I

1388 INECHO LDM LUPTRX
8389 JMP OFFOUT1X
8398 INPIA BIT B •x1ee
8391 BEQ INPIA2
8392 LDA B 3,M
8393 BPL •-2
8394 LOA A 2 .. M
839S BRA INECHO
8396 INPIA2 LDA B 1,x
8397 BPL INPIA2
8398 LOA A 81M
8399 CHRINR RTS

PIA INPUT
YES
ACIA INPUT
NO
WAIT FOR RORF

GET CHAR
"A81< PARITY
DEL CHAR
YES,GET NEXT
ECHO CHAR OUT - RTS FOR NO ECHO

STD PIA
NO
WAIT FOR INTR ON 8

READ B SIDE
ECHO CHAR
WAIT FOR INTR ON A

READ A SIDE
NO ECHO. INPUT ONLY

8488 ---~---~~---~--~---~-----------~---~----
8481

888 BASIC REL S.9 888 MNE"ONIC ASSE"8LER PAGE 88

8483 * PROCESS CHECK FOR BREAK
8484

82SE 37 848S BREAK PSH 8
825F 36 8486 PSH A
8260 OF 7F 8487 STX %0SAYM
8262 DE 83 8488 LOX LUBRKX
8264 E6 88 8489 LOA 8 CONFG1X
8266 EE 81 ·8418 LOX OPORT1X
8268 CS 37 8411 BIT 8 •X118~11
826A 27 1A 8412 BEQ 8REAK2
826C cs 83 8413 BIT B ex11
826E 26 18 8414 BNE 8REAK3
8278 CS 14 8415 BIT 8 eX~8188
8272 26 1E 8416 8NE 8REAK4
8274 CS 28 8417 BIT 8 eX188888
8276 26 28 8418 BNE BREAK7
8278 ee ec 8419 BRA BREAk2
827A DE 83 8428 BREAKI LOX LUBRKX
827C AD 86 8421 JSR OFFIN,X
827E 81 8148 8422 BREAK1 C"P A BRKCHR
8281 26 83 8423 BNE BREAK2
8283 7E 8C34 8424 JMP READY
8286 DE 7F 8425 8REAK2 LOX IOSAYX
8289 32 8426 PU~ A
8289 33 8427 PUL B
828A 39 9428 RTS
8288 E6 88 8429 BREAK3 LOA 8 e,x
8280 57 8438 ASR B
828E 24 F6 8431 BCC BREAK2
8290 28 E8 8432 BRA 8REAK8
8292 CS 84 8433 8REAK4 BIT B eX188
8294 27 86 8434 8EQ 8REAK6
8296 E6 83 &435 LOA B 3,X
8298 2A EC 8436 BREAKS BPL BREAK2
129A 28 DE 8437 BRA BREAK8
829C E6 81 8438 BREAK6 LOA 8 11X
829E 28 F8 8439 BRA BREAKS
82A8 E6 ee 8448 BREAl<7 LOA 8 8,)(
82A2 28 £2 8441 B"I 8REAk2
82A4 28 D4 8442 BRA BRE~~·

USE DEFAULT PORT ONLY

AC%A1PIA %NPUT,"PC
NO
ACJ:A
YES
P:CA INPUT
YES
MPC INPUT
YES
WRONG, CONFIGURATION TO BREAK
COTO INPUT PROCESSOR

BREAK CHAR?
NO
STOP CYCLING
RESTORE ANO CONT

ACIA PORT

STD PIA
NO
CHECK 8 SIDE

PIA INPUT ONLY
CHECK SIDE A
MPC PIA

GO .. INPUT, HOPE 11Il<BUG INEEE
8443 -~----~~-~---~----~--~--~---~--~--------
9444
844S * BASIC'S START-UP ROUTJ:NE ,
8446

82A6 86 8188 8447 START
82A9 97 98 8448
82AB 07 8449
82AC 97 OF 84S8
82AE 86 7388 84S1
e2e1 e1 se e4s2
8283 26 19 8493
8285 CE 8C34 84S4
8288 FF 7380 84S5
8299 FE 7317 8496
82BE FF 816S 8497
82C1 86 7382 8458
82C4 81 38 8459
e2c6 es 86 8468
e2c9 87 e18c 8461

LDA A CNTPRT
STA A CONSOL
TPA
STA A INTRP
LDA A Y"ONY
C"P A ••se
BNE START4
LDX •READY
STX YABRTY
LD)(YCPORT
STM CTLADR
LOA A Y"E"AX
CMP A eS38
BLO START4
STA A "ENtAM

CONTROL PORT•

SAYE PROC STATUS
DOS VERSION

J;;, IS :CT 00868. se
NO
BREAK RETURN ADDR
STORE %N D.08 BREAK ADDR
PARAttETER TABLE CTL PORT ADDR
SAYE IN PORT•2 3U"P TABLE
PARA"ETER TBL ME" LIMIT
"IN "EMORY REQO FOR BASIC

SAYE ZN BASIC'S "E""A>C

SSB BASIC REL 9.9 888 ttNEMONIC ASSEMBLER PAGE 89

eece 7F 8110 8462 CLR "E""AX+1 FORCE BOUNDARY
82CE BO 167F 8463 START4 JSR PORTCN INITIALIZE CTL PORT
8201 DE 81 8464 LOX LUPTR>C
8203 OF 83 8468 STX LUBRK>C
8205 7E 8BBS 8466 JMP NEW

8467 ...
---·-

8469 •
8478 * OUT HEX RTN
8471

eeoe A6 ee 8472 OUTH LOA A 8,)(
82DA 80 80 8473 BSR OUTHL
82DC A6 88 8474 LOA A e,,)(
82DE 88 847S IN)(
eeoF 28 ec 8476 BRA OUT HR

8477 •
82£1 80 F9 8478 OUT2HS BSR OUTH
82E3 80 F3 8479 BSR OUTH
82£5 86 28 8488 OUTSP LOA A HPAC£
82E7 28 8E 8481 BRA OUTCH

8482 •
82E9 44 8483 OUTHL LSR A
82EA 44 8484 LSR A
82E8 44 8489 LSR A
82EC 44 8'486 LSR A
82EO 84 8F 8487 OUTHR AND A ••F
82EF 88 38 8488 ADD A 1'8
82F1 81 39 8489 C"P A 1'9
82F3 23 82 8498 BLS OUTCH·
82F5 88 87 8491 ADD A 17

8492 •
8493 • OUTPUT CHAR RTN
8494 •

82F7 37 8-4-99 OUTCH PSH 8
82F8 36 8496 PSH A
82F9 BD 82SE 8497 JSR BREAK
82FC DF 7F 8498 ST>C IOSAYX
82FE DE 81 8499 LOX LUPTRX S.1.126
8388 AD 83 e5ee JSR OFFOUT,X
8382 28 82 8S81 BRA BREAK2

8S82 •
8583 • INPUT CHAR RTN
8584 •

8384 OF 7F eses INCH STM IOSAYM
8386 37 8986 PSH 8
8387 OE 8S. 8587 LO>C LUPTRM UVl6
8389 AO 86 8988 JSR OFFINJ >C
8388 36 8989 PSH A
838C 7E 827E 8S18 J"P BREAKS.

es:.u. •

APPENDIX G: HOW TO REDUCE EXECUTION TIME

1. Subscripted variables require considerable
non-subscripted ~ariables whenever possible.

time; use

2. The number of calculations involved in the transcendental
functions. (SIN, cos, TAN, ATAN, EXP, and LOG) make them
slow. Use these functions only when necessary.

3. BASIC searches for functions and subroutines in the source
file. Placing often called routines at the start of the
program will reduce BASIC 's search .time.

4. Variables are entered into the symbol table as they are
referenced. BASIC then searches the symbol table each time a
variable is used. Therefore, reference a frequently called
variable early in the source program so that it comes near
the front of the table.

s. Numeric constants are converted each time they are
encountered. If a constant is used often, it should be
assigned to a variable and the variable name used instead.

G-1

APPENDIX H: MEMORY USAGE IN BASIC

1. REM statements use space, so use them wisely.

2. Each non-subscripted numeric variable uses 8 bytes.

3. Each numeric array uses 6 bytes + 6 bytes for each element.

4. If the default string length of 32 characters is used, each
non-subscripted string variable uses 34 bytes and each
string array uses 6 bytes + 32 bytes for each element. Use
the STRING command to explicitly allocate the size you need.

s. An implicitly dimensioned variable creates a 10 X 10 array.
If you do not intend to use all 10 elements use the DIM
statement to explicitly allocate only the space you need.

6. Each BASIC line uses 2 bytes for the line number, 2 bytes
for the encoded key word, 1 byte for the line length, 1 byte
for the end of line terminator, plus 1 byte for each
character following the key word. Reduce memory space by
using as few spaces as possible.

7. Each file number opened takes 177 bytes. Reusing the same
file number (after the file closing) in subsequent OPEN
statements will save allocation of new space when the old
space is no longer required.

8 SSB BASIC checks to find out if it is running with DOS68
Version s. If it is, the value that is in MEMMAX (DOS
parameter table) is used for BASIC's memory limit. Since
BASIC must start its stack on a page boundary, only the high
order address byte is used. The low order byte in MEMMAX
will be ignored and BASIC will always use 00 as the low
order byte.

H-1

APPENDIX I: DEFAULT VALUES ON SYSTEM INITIALIZATION

The following table lists the default values of system parameters
that are set on system initialization or on executing the NEW,
LOAD, or CHAIN commands.

TRACE is turned off.

DIGITS is set to floating point mode.

RJUST is set to floating point mode.

STRING is set to 32.

BASE is set to 1.

LINE is set to 64.

I-1

APPENDIX J: MODIFYING LOGICAL I/O BASIC"S I/O

The new LOGICAL I/O drivers in SSB BASIC makes the basic
essentially self contained. All the BASICS reference $E0E3
(control) and $A008 (stack pointer) and the disk versions
reference the DOS -- these are the only external references.

The philosohy behind using logical I/0 is that the user may
easily modify the basic to interface to virtually any I/o· device
or to special machine language subroutines for features that are
not included in the basic. The easiest way to get data into or
out of basic is thru the I/0 routines. This way, all of basic's
edits are performed and data is normalized so that when
referenced later by the program there will not be problems
associated with invalid data (maybe bad data - but at least
syntactically correct!)

THE CONFIGURATION BYTE

The following is
configurations in basic:

a description of the available

$8X - Control terminal x may be 0, 1, 2, or 4. The control
terminal is not initialized. The ·x· will determined
the type of I/O that will perfromed.

$40 - UNUSED

$20 If the user is still using an MP-C type of I/O card with
either SWTBUG or MIKBUG the config byte should be set to
$A0 (ctl port & mp-c) for logical .unit 1 and the jumps to
CHROUT and CHRIN change to OUTEEE and INEEE.

$10 - Input only from a parallel device (either side of an MPL-A)

$08 - Output only to a parallel device (either side of an MPL-A)

$04 - Input (side b) and output (side a) on a parallel device.
this is the way basic used the parallel I/O ports in
the past.
basic used the parallel I/O ports in the past.

$02 - Serial I/O with X64 clock - thfs will select 110, 134.5
300, 4800, 9600 baud on the CHIEFTAIN microcomputers.

$01 - Serial I/O with a Xl6 clock as used in the SWTPC 6800
computer, and for the highest baud rates on the CHIEFTAIN.

$00 - Other - see table description for more information.

J-1

ADDRESS OF I/O DEVICE

Basic doesn't really care what address you assign to and I/O
device. There is no longer an ERROR 26 in Basic - if there isn't
an I/O device at the address you specify, you may lose control of
Basic - so be very careful when modifying the I/O addresses. For
the standard I/O types, Basic will assume a two byte location
ie. Basic supports Dual serial I/0 cards and also both sides of a
parallel card as individual I/O locations.

LOGICAL I/O JUMP TABLE

This is where you may use the ·ports' of. Basic for your own
routines. If you speecify $00 for the configurator byte - Basic
will do nothing in it's I/O routines, but all of the I/O jumps in
the jump table are made. Thus if you modify the jump table to go
to your own routines, you will be able to pass data to Basic
using INPUT or PRINT, etc, or just go execute some code that you
want exectued.

THE CONTROL PORT

With DOS68 Version 5, the control port address will be
picked up from the parameter table and will always be logical
port 2. If you are not using DOS68 Version 5, the control port
should be assigned to the port your operating system talks thru.
For SWTBUG, this is 1 and for SMARTBUG it is 2. There are two
locations that MUST be modified when changing the location of the
control port. The first is CNTPRT which is located at $010B
this is equal to the number of the port i.e., 1, 2, 3, 4 etc.
The other location is configuration byte of the logical unit
corresponding to the number that was put into CNTPRT.

MODIFYING AND SAVING BASIC

Prior to getting too involved in modifying Basic, the user
should establish the size of Basic. The starting address for all
verisons is $0100 and the transfer (execution beginning).address
is $0100. The easiest way of getting a 'safe' ending address is
to memory examine locations $0109 and $010A, which gives you the
ending address of Basic and work-areas. This is slightly greater
than what really needs to be saved, but not by much. To get the
exact location, SSB Disk users can "FIND' the Basic PRIOR to
loading it into memory - and take note of the address where the
load ends.

After knowing the starting, ending -and transfer addresses,
make your modifications and then re-save the Basic.

J-2

	000
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	A-01
	B-01
	C-01
	D-01
	E-01
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	G-01
	H-01
	I-01
	J-01
	J-02

