Graphics Library
Programming Guide

IRIS-40 Series

< SiliconGraphics
Computer Systems

Document number: 007-1210-020

Graphics Library
Programming Guide

Document Version 2.0

Document Number 007-1210-020

5/90

Technical Publications:
Scott Fisher
Melissa Heinrich

Engineering:

Kurt Akeley

Rolf van Widenfelt

George Kong

Herb Kuta \

" Dave Ratcliffe - —
Linda Roy
Gary Tarolli
Vince Uttley

© Copyright 1990, Silicon Graphics, Inc. - All rights reserved

This document contains proprietary and confidential information of Silicon Graphics,
Inc. The contents of this document may not be disclosed to third parties, copied or
duplicated in any form, in whole or in part, without the prior written permission of
Silicon Graphics, Inc.

Restricted Rights Legend

Use, duplication or disclosure of the technical data contained in this document by the
Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013,
and/or in similar or successor clauses in the FAR, or the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Graphics Library Programming Guide
Document Version 2.0
Document Number 007-1210-020

Silicon Graphics, Inc.
Mountain View, California

The words IRIS, IRIX, Geometry Link, Geometry Partners, Geometry Engine, and Geometry
Accelerator are trademarks of Silicon Graphics, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

Contents

1.

Controlling the Graphics Environmentc....ccoooeveieennen.e, 1-1
1.1 Initializing @ Program ..o e 1-5
1.2 Saving Global State AHMDULESccceeeeviiiiieccecrececre e, 1-10
Drawing ...cooiesiisiicenre sttt sre s e s e s s r e sr e s ns 2-1
2.1 High-Performance Drawing..........cccccccvvviiniiie e 2-3
211 POIYINGS oo 2-6
2.1.2 The Vertex SUbroutingc.occevvevreevieisinieeeiee e 2-7
2.1.3 CloSed LINES..ccciiiiiiiiiiieciie e 2-9
2.1.4 POINES ..o s 2-10
2.2 POIYGOMS .ottt ettt sttt 2-12
2.2.1 Point Sampled Polygons.......cccccvovvvvevinveieeseeesnasiiennens 2-17
2.2.2 MESNES...oiii ittt s 2-20
2.2.3 Quadrilateral Stripsoovv v 2-26
2.2.4 Controlling Polygon Renderingccceeevveveveieecveecnnene. 2-28
2.3 High-Level SUbroutings.........cccccvvvevvvie s, 2-30
2.3.1 ReCtangles ..o e 2-30
2.3.2 CICIES oottt st s s 2-33
2.3.3 ATCS ot 2-35
2.4 Old-Style Drawingcccueeeivireiin e s 2-38
2.4.1 Current Graphics PoSitioncccccvvvevivecvnin e, 2-39
2.4.2 POINES .ttt e 2-40
2.4.3 LINES ...ttt 2-41

2.5 LiNEStYleS ..o 2-45

2.5.1 Modifying the Linestyle Pattern............cccccevvivninnennnn. 2-45

2.6 PatterINS ..o 2-47

3. Characters and FONtS...........cccoceeiiiniriiienrccccicst s 3-1
3.1 Characters.....cocoooie et e 3-2
3.2 FONtS ..o et ere e e e e s saae e as 3-8
3.3 Font Query Subroutines..........cccccuvennnne errreere e 3-15

4. Display and Color Modes...........cccceviiiiiiiiini e 4-1
4.1 Color Display.....ccccueerveeeiriieciccie i 4-2
42 RGBMOUE coiiiieiiiiiieiieie ettt ettt 4-3
4.21 BRGBCOIOT ...ttt 4-6

4.3 Gouraud Shading.......ccccuerviriiiieeie e 4-7
4.4 Color Map MOde......cooeimniiiiiriiiiiciiiiciiie e 4-14
4.41 Shading in Color Map Mode.........cccevuviiiniieneniincienees 4-17

4.4.2 BINKING...cotiiiiriieneicie e e 4-20

45 Getting Color Informationcocevvierreciiiiiiiiniesiis 4-22
4.6 Onemap and Multimap Modes.........ccccovirrniiiiiins 4-23

4.8 Gamma CorreCtiON.....cueivie it 4-25

5. INput SUBIOULINESoeivveriiiriiine e 5-1
5.1 Polling and QUEUEING ...cccevverveereiiirirrire e e 5-4

5.2 Polling @ DeVICEovviriiierieiece e 5-5

5.3 The EVENt QUEUE......c..eovierririeeie et sttt st se e eie e 5—
5.4 SPecial DEVICEScovveeeeeieetirie vt e 5-13
5.4.1 Keyboard DeVICeScccoeuirviiriiiiiinie e 5-13

5.4.2 Window Manager DeviCes.........c.cccoevvniiniinciiniiniiniinnons 5-14

5.5 VAIUALOTS.o.eeeveerecreneeessesesense e s essssasasssses s s ss s ssssssnsssanen 5-15
5.5.1 TIMEIr DEVICES .ovveveeeieiieeeiie ettt s 5-15

5.5.2 CUISOr DEVICES ...coviiiicieieiiie ettt 5-15

5.5.3 GhOSt DEVICES ...vveviiereirieiiiiriiie et 5-16

5.6 Controlling Peripheral Input/Output Devices...........cccccecveeeriunnnnn. 5-16

5.7 Determining the Status of Video Options..........cccceeecrvvevevnnenn. 5-19

5.8 SpaceballTM DEVICEScovvviuieiiicee et 5-25

6. ANIMALION.....ccccii st esssn s s ae e e s s ae s e an e 6-1
6.1 Double BUFferingcccoviiiiiini e 6-1
6.2 Double Buffer Mode...........coccveeiiiiiiiiiiiieee e, 6-2

7. Coordinate Transformations..........cciceecnnieesenes 7-1
7.1 Coordinate SYSIEMSocciiiiiiieie et 7-2
7.2 Projection Transformations..........ccccoovvvviiiieeie v 7-4
7.3 Viewing Transformations..........ccccccovvviiininninie e 7-11
7.4 Modeling Transformationsccccveevvviiviieeee e ree s 7-18
7.5 Controlling the Order of Transformationscccccovvveeeieecnnes 7-23
7.5.1 Current Matrix Mode (MMmMOode)cooeeeeeeervriierie e, 7-23

7.5.2 Hierarchical Drawing with the Stack Matrix...........cc.c.cc..... 7-24

7.6 Viewports, Screenmasks, and ScrboXesccccoveeevveeecveennenns 7-32
7.7 Additional Clipping Planesccccceevevvvircerecie i 7-36
7.8 User-Defined Transformations.............ccccevverienreceeiesinse e, 7-38

8. Hidden Surface Removal.........coooiieciri s 8-1
8.1 Z-DUMEIING. ..o e s 8-2

8.2 Controlling z values e 8-7

8.3 Special features.........cocvviiiiiiiicrec e 8-9
8.3.1 Drawing into the z-Buffer...........ccccovviiniiicnie 8-9

8.3.2 Alternative COMPAriSONSoccevvueirvieieireirieereereeriee e 8-13

8.3.3 z-buffer Writemasksc..cooveevenieiiiivier e, 8-14

8.3.4 Stenciling on IRIS-4D/VGX Systemscccccovcvercevencnne 8-14

8.4 Eliminating Backfacing Polygons..........ccccmvicinnnncvcnnennceneee 8-22

8.5 Alpha COMPAriSONc.c.eecieiieeiiece e e 8-24
L= TR (o] 11 Vo 9-1
9.1 What is GL Lighting? ..ccuve e 9-1
9.2 Material Reflectancecovvevieviiiiiiie e 9-2
9.2.2 Specular Reflectancec.cocovviiiiieniiiinicnnnee e 9-3
9.2.3 Ambient Reflectancecccoocevvviiiiiinci e, 9-3

9.3 Setting Up GL Lighting ...veevveeeeiee e 9-4
9.3.1 Surface NOIMAISccviiieiii it 9-4
9.3.2 Setting Up Lighting Components..........cccovveeeeeirieernnne e, 9-6
9.4 Changing LIghting Settingsccovveeerereeresveecess s esses e 9-9
9.5 More Lighting FEatures........occeveiiiiiiiiiie e 9-11
9.5.1 Infinite LightS .oeeerree e 9-11
9.5.2 Infinite Viewpoint ... 9-11
9.5.3 Ambient Light and Emission..........cccccccevveene e 9-12
9.5.4 Non-Unit-Length Normalsccoccevviiniiin e, 9-12
9.6 Advanced Lighting Features.........ccccocvvvriniiniicnnnniiin e 9-13
9.6.1 AHENUALIONcovuviieiieeee e 9-13
9.6.2 SPOtHGhLS.....ooiueeeie e 9-15
9.6.3 Two-sided Lightingc.ocovvoieeeii s 9-16
9.6.4 Fast Updates to Material Properties........cccooeeveevnvcrnnneane. 9-18
9.6.5 Default SEttiNgS...ccvevvevvieeeie e 9-20
9.6.6 TranSPareNCYcccceeeerrrereiriieee e et e ine s 9-21
9.6.7 Lighting With Multiple Windowscccocvinnicininnnenne, 9-22
9.6.8 Restrictions on ModelView and Projection Matrices 9-22

9.7 Lighting Performance.........cccccvveieiiiiiiiiiie et 9-23
9.8 Color Map Lighting.....ccceceeiiiieiie et 9-24
9.9 Sample Lighting Programccccoveiirie e 9-26

—iv—

11.

12.

13.

10.1 PiXel FOrMAtScoeoeiieiiieeeec et 10-2
10.2 Pixel Sources and Destinationscceveveevevevvceceivceieeeeeeee, 10-3
10.3 Reading/Writing Pixels Efficiently e 10-4
10.4 USING PIXIMOTE....c.ccuiiiirierieietiiereeeerceer e 10-8
10.4.1 Shifting PiXelS........coeovirimnirierieeceeeeeeeeece e 10-8
10.4.2 EXpanding PiXelS.......ccccoerriiiiiieiecececeecceieeceeeee e 10-9
10.4.3 Adding PiXels.......c.cccoririimnniiieieseiee et 10-10
10.4.4 Pixels Destined for the z-Buffer.............cc..ccccovvveevenene. 10-10
10.4.5 Changing Pixel Fill Directionscc.ceeeevevevvvneenee. 10-11
10.4.6 Subimages within Imagesc.cc.coevveeveecevieee e 10-12
10.4.7 Packing and Unpacking Pixel Data............ccccovvevnen... 10-13
10.4.8 Order of Pixel Operations..............c.ccooevveeevveeesceen, 10-15
10.5 Old-Style Pixel ACCESS....cveuiviieiieeeeieieieeeeeeeee e, 10-16
Frame Buffers and Drawing Modes..........ccceeeirerisnsersrmseseesnsesensnns 11-1
11.1 Configuring Overlay and Underlay Bitplanes.................c.c......... 11-5
11.2 Drawing MOGES.........covereinreniinieecii ettt e 11-8
11.3 WIEMASKScovenieieeeee s 11-10
11.4 Cursor TEChNIQUESc.occoeiiiireeicceeee e 11-19
11.4.1 Cross-Hair CUIsOr.........c.ccccvueevumeeesece e, 11-22
Picking and SeleCtingccovervrierrenenecre s ssescssesesssesssssssene 12-1
12,1 PICKING oot 121
12.1.1 Using the Name StacK.........ccccoeeeveeiciceciececece e, 12-5
12.1.2 Defining the Picking Regionc.ccocovvvevioveveeeeeennn. 12-8
12.2 SeIECHNG...c.eivitiieceeereere et 12-13
(D=7 014l 01U - 1 o 13-1
13.1 DePth-CUBING....ccuve ittt 13-2
IRGBIaNGecouiiiiiieitie et 134

14, CUIVES aNd SUMACES....cocceereerincinnessssesmsenssessesssssssssnsssessesssssssnsas 14-1

15.

14.1 Non-Uniform Rational B-Splines (NURBS).............. e 14-1
14.1.1 What Are B-Spline Curves and Surfaces? 14-2
14.1.2 NURBS Interface OVerVIeW.............ccccvevreeeeveeeserererenn. 144
14.1.3 NURBS Surface Descriptionccoeceevevevevveveenees, 14-5
14.1.4 TrMMING oo e e e 14-9
NUIDSCUIVE ...ttt 14-12
14.1.5 Controlling Display Properties............ccooovevvvvvverarnnnnn. 14-14

14.2 Old Style Curves and SUrfaces...........c.c.cceeeeeeeveeeressernn. 14-15
14.2.1 OVEIVIEW ..o 14-15

14.3 Curve Mathematicsccocvvuiveeiieeeeiecee e, 14-16
14.3.1 Bezier CubiC CUIVEcovvevecececeeeceeeee e 14-18
14.3.2 Cardinal Spline Cubic CUIVEoccovvveeeeeeeeeeieeen 14-19
14.3.3 B-Spline CubiC CUIVEc.cvveveeeeieieeeeeeeeeeeeeeeeeeeen 14-22

14.4 Drawing CUIVESccoeivmriieiieee et 14-23

14.5 Drawing SUMaCES........ocvoveveuieiieeee oo 14-37

ANtANASINGcoieiicii e sess e sesnemenenas 15-1

15.1 Accurate SamPplingccoevueeeeeeeieeieceee e 15-2

15.2 BIeNiNgccoovoeeiiiieiiecee e 15-6

15.3 One-Pass Antialiasing—the Smooth Primitives...................... 15-11
15.3.1 High-Performance Antialiased Points—

PESMOOtN ..., 15-11
15.3.2 High-Performance Antialiased Lines—

HNESMOON ..., 15-17
15.3.3 High-Performance Antialiased Polygons—

POIYSMOOLN ... oo 15-25

15.4 Multipass Antialiasing with the Accumulation Buffer.............. 15-34

N
—_V—

16. Graphical ODJECtScccvcericciiirirer et 16-1
16.1 Defining an ObjJecCtccvviveiiieie e 16-2
16.2 USING ODJECES oot 16-6
16.3 Editing ODJECESocvveieieiiiii e 16-10

16.3.1 UsSing Tags ..cccovvvmeveerrnieecinieeens OO PPPPTP 16-11
16.3.2 Inserting, Deleting, and Replacing within Objects.......... 16-14
16.3.3 Managing Object MemOrycccoeeuveinnienniceicneee e 16-17
16.4 Mapping Screen Coordinates to Worldcoccevenieiicene. 16-18

B =TT [T T . 17-1
17.2 Feedback onthe Personal IRIS...........c..ooooiiiii e, 17-8
17.3 Feedback on IRIS-4D/VGX Systems.......cccceeevveenensieincenen 17-10
17.4 Additional Notes on Feedback.........c.cccocevivvinviininicnciiciiis 17-11

18. TOXIUIES ettt s s s s s s 18-1
18.1 Texture Coordinates—t, texgen, scrsubdivide.........coeceernenneen. 18-5
18.2 Texture Functions—texdef2d, texbind..........ccocoeeeiiviiieeeennens 18-10

18.2.1 Minification and Magnification Filtersccccoevvveevcneenn. 18-12
18.3 Texture Environments—tevdef, tevbind........c.cccoccovinvcennnn. 18-15
18.4 TextureProgramming HintS..........ccceriniiiiii i, 18-17

APPENDIX
A. Scope of GL Statementscccccvvveveeeeneniec s A-1

INDEXoeieieeerretneserssnmr s e e st ssrnrasesas seses s s ss s s sn e e same e an s s smsssnssns ananasnasnsnnans 1

—Vii—

List of Figures

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.

Figure 2-9.

Figure 2-10.
Figure 2—-11.
Figure 2-12.
Figure 2-13.

Figure 2-14.

Figure 3-1.
Figure 3-2.
Figure 4-1.
Figure 7-1.
Figure 7-2.

Figure 7-3.

Simple Convex Polygon ... e 2-14
Simple Concave Polygon ... 2-14
Another Simple Concave Polygon........ccccceciiiiiinins 2-15
Non-simple Polygoncccceviininiiceeeeevniecies 2-15
Another Non-simple Polygoncccccvvinninnnnni 2-15
“Bowtie” POIYGON ...cooveiiiii i 2-16
Non-Point Sampled Polygonscccccccveiiiiniiinnn, 2-18
Point Sampled Polygonsccccceveervineicincieiccee 2-18
Point Sampled POlygon..........cccccvvirciennnnnne e 2-19
Point Sampling Anomalycccocoveeviiiniiininien i 2-19
Simple Triangle Mesh.......cccoeiri i, 2-20
swaptmesh Exampleccovceiiiiinnine i 2-21
Another swaptmesh Examplecccoooeiinininnn. 2-22
ATCS oot 2-36
Gross and Fine ClippINg.....ccccoveveeveevininiininiiiesiens 34
defrasterfontccoo v 3-11
Shaded TrHaNGIE ...cc.vvevie e 4-8
Coordinate SyStEmMS......ccvvevciiiiiie e 7-3
The perspective Subroutingc..cccovvevvveiceeiicccininn, 7-7
The window Subrouting.........c.ccoeevveeiiininiiiiin 7-9

—iX—

Figure 7-4. . The ortho Subrouting.........c.cccecueevemrevcieniessee e 7-12

Figure 7-5. The polarview Subroutingcccccevevciiiniiiceninnenen 7-14
Figure 7-6. The lookat SUbroutingccceecvveveceie e 7-17
Figure 7-7. Modeling Commandsc..cooevreeieeninneinie e 7-19
Figure 7-8. The translate and rotate Subroutines...........cccocveneene. 7-22
Figure 8-1. Overlépping POIyQONS ..o 8-1
Figure 11-1. The writemask Subrouting..........cccoevvvvvviveeeiiicinn, 11-12
Figure 11-2. Sample CUrsors..........ccoceveiiiiiiinicicenceie e 11-20
FIQUIE 121, PICKING co..veceeeeeeeeeeee oo 12-3
Figure 16-1. Object Definition for a Simple Shape (Sphere) 164
Figure 16-2. Defining a Hierarchical Object (solarsystem) 16-8
Figure 16-3. Bounding BOXESccveiireeiiceerreneeeere et 16-9
Figure 17-1. Effects of Clipping on Feedbackcccecvireninnnnene 17-5

List of Tables

Table 1-1.

Table 1-2.

Table 1-3.

Table 1-4.

Table 2-1.

Table 2-2.

Table 2-3.

Table 2-4.

Table 2-5.

Table 2-6.

Table 2-7.

Table 2-8.

Table 2-9.

Table 3-1.

Table 4-1.

Table 4-2.

Table 5-1.

Table 5-2.

Table 5-3.

Table 5-4.

Initial Values of Global State Attributes......................... 1-2
Default Color Map Valuescccoooveveeeevveeeeeeeeeeee 1-5
Bitplane Availabilityccoooveeiiiiieieeeeeeecee e 1-7
System Types and Graphics Library Versions.............. 1-8
The Vertex Subroutingccocoovvvvvveieveercecece e, 2-7
The Rectangle Subroutingcccoceevveiiicneee e, 2-31
Screen Box Commandsc.coeeveeeeveevivceeenie, 2-33
The Circle Subrouting............cccccoovveeeevvviiciieeeeeee 2-33
The Arc Subroutingccccocevvieveceecee e, 2-37
The pnt SUBIOULINEccecvviiiiicecccee e, 2-40
The move and draw Subroutingsccceceveveeeevene. 2-41
The Filled Polygon Subroutines................ccocoevenne.... 2-42
The Polygon and Filled Polygon Subroutines 2-43
The cmov Subrouting ..o 3-2
The € SUbrouting..........ccoveiiie e, 4-5
Lowest Eight Values of Color Map............cccccoee.n....... 4-14
Class Ranges in the Device Domain...........ccccoeeveeven.... 5-2
INPUL ValUuAtorS ..o 5-2
INPUt BULONS ... 5-3
setvideo and getvideo Register Values..........cco........ 5-20

—Xj—

Table 5-5.

Table 5-6.

Table 6-1.

Table 8-1.

Table 8-2.

Table 15-1.

Table 17-1.

MONIOF TYPES ...eeeiieeee e e 5-22
Spaceball Input BUttonsc.ceeeveciieeccceeeeece e 5-25
Symbolic Values for getbuffer Statement..................... 6-9
Isetdepth Values for IRIS-4D Series Systems............... 8-7
zfunction Values for Personal IRISccccccoveiiicnnne 8-8
Blending Factorscccociiiiiineeeeeerece e 15-7
IRIS-4D/G/GT/GTX Feedback Data............cccevveenenen. 17-6

—xii—

Introduction

The Graphics Library™ (GL) is a set of graphics and utility routines that
provide high- and low-level support for graphics. This book is primarily
organized as a reference guide to the Graphics Library. Thus, similar
routines are grouped together, despite their complexity. Because you also
need to use this book as a tutorial, all complex topics are so indicated, and
can be skipped on the first reading. In addition, examples in later sections do
not use the advanced material unless they also are marked as advanced.

The goal of the first chapter is to give you enough information to write
simple graphics programs. By the end of the chapter, you will be able to
open a graphics window and draw a few simple figures of different colors.
The first chapter does not attempt to present all the details of the referenced
subroutines.

This book assumes that you are familiar with Silicon Graphics, Inc.’s,
operating system, IRIX™, and can create and edit files. If you are not
familiar with IRIX, see Getting Started with the IRIS-4D Workstation , or
see the Personal IRIS Owner’s Guide if you have a Personal IRIS™. This
book also assumes that you are sufficiently familiar with C to write a
program that prints “hello, world” to the console.

Throughout this book, the word “IRIS” designates all models of the
IRIS-4D™ Series of workstations, including the Personal IRIS. Where it is
necessary to differentiate among the various workstations, the applicable
product is called out by name.

Version 2.0 Introduction Intro-1

This book does not assume that you have a knowledge of computer graphics. (
However, if you are already familiar with the basic concepts of computer

graphics, you will find it easy to learn this particular implementation. To get

an introduction to these concepts, read a standard computer graphics text,

such as Newman and Sproull’s Principles of Interactive Computer Graphics,

or Foley and van Dam’s Fundamentals of Interactive Computer Graphics.

How This Manual Is Organized

This manual is organized so that new Graphics Library programmers can
read it from front to back, skipping over some of the more complex topics
until later. You should try to run as many of the example programs as you
can, so that you can see how the Graphics Library software functions.

Once you have tried the example programs or program segments, experiment (
with the Graphics Library functions to get the effects you want to use in your

own programs. In many cases, you might be able to manipulate the examples

in order to achieve the effects you want; in others, you will need to fit the

Graphics Library functions into the structure of your own programs. The

examples are general enough that you should be able to adapt them for your

own needs without restricting your own programs.

Remember, in the interest of space, many of the examples are only fragments
of a complete program. They presume that you have constructed the
necessary program framework required for complete compilation and
operation (such as the declaration of variables and the correct scoping of
local and global variables for parameter passing).

Intro-2 Graphics Library Programming Guide IRIS-4D Series

Once you have worked through the book, you might find it a useful addition
to the man pages in the Graphics Library Reference Manual. Though these
are excellent sources for quickly accessing information about individual
Graphics Library functions, this manual contains examples and other
contextual information that can help you, particularly if you are unfamiliar
with the overall concept (such as shading, curves, or window system
interaction) represented by the Graphics Library function that concerns you.

Introductory Example Program

All the examples contained in this manual can be found on-line in the
directory:

lusripeople/4Dgifts/examples/ glpg/ch<nn>
where nn represents the chapter number.

The first example is the following program, called green:
#include <gl/gl.h>

main ()

{
prefsize (400, 400);
winopen ("green") ;
color (GREEN) ;
clear();
sleep(10);
gexit ();
return 0;

Version 2.0 Introduction Intro-3

Compile the program using the compile line:

% cc green.c -1lgl_s =-lc_s -0 green
-1g1_s links the loader with the shared Graphics Library; -1c_s links with
the shared C library. These two options allow the same binary to run on all
IRIS-4D Series systems. The last command line option, -o, defines that the
output file uses the name green.
Run the program by typing:

% green
The window manager prompts you for the position of a window. Move the
mouse cursor to the location where you want the window to appear and click
any mouse button. A solid green window opens, remains visible for 10
seconds and then disappears.

Look at the program in detail. The first line,
#include <gl/gl.h> -

includes all the standard definitions for graphics. It must be included in
every graphics program. You must include gl/gl.h in green.c to get the
definition of "GREEN" in the call to color ().
The subroutine:

prefsize (400,400);
tells the window system that when a window is opened, it should be 400

pixels on a side. It doesn’t create a window—it just establishes the initial
size of the next window to be opened.

Intro-4 Graphics Library Programming Guide IRIS-4D Series

The call to winopen () actually creates the window and causes the window
manager to prompt you for the window’s location. Calling color () with an
argument of GREEN sets the drawing color for subsequent operations to the
value of the constant GREEN, defined in gl/gl.h. The call to cleaxr () fills the
window with the current drawing color. You set the drawing color for other
operations in the same manner: by calling color () with the color
specification you wish to use. Color specifications and other drawing
operations are described in detail elsewhere in the manual. The call to
gexit closes the window and tells the system that the process is finished
using graphics.

Version 2.0 Introduction Intro-5

1. Controlling the Graphics
Environment

This chapter introduces you to the graphics programming environment. It
describes how to manipulate the system’s global state attributes, that is, the
software and hardware environment

To program on the system, you need to:

+ initialize the Graphics Library

« terminate use of the Graphics Library

« query the availability of certain graphics capabilities

» change global state attributes

Initializing the Graphics Library means telling the system to activate the
graphics software and hardware environment in which a program will run.
Use winopen to initialize the Graphics Library.

The global state attributes are options that specify modes, line style, window
specifications, and hardware requirements. Unless you specify otherwise, the

global state attributes use their default values. (See Table 1-1 for the default
values of the global state attributes.)

Version 2.0 Controlling the Graphics Environment 1-1

1-2

Attribute

acsize
afunction
backbuffer
backface
blendfunction

. character position

clipplane
cmode

color
concave
curveprecision
depth range
depthcue
doublebuffer
drawmode
feedback mode
fogvertex
font
frontbuffer
frontface
full screen mode
glcompat

GLC_OLDPOLYGON
GLC_ZRANGEMAP

graphics position
linesmooth
linestyle
linewidth
lmcolor
lmbind
BACKMATERIAL
LIGHT»n
LMODEL
MATERIAL
logicop
lsrepeat
mapcolor

Initial Value

0

0

FALSE
FALSE
BF_ONE, BF_ZERO
undefined
CP_OFF
TRUE

0

FALSE
undefined
Zmin,Zmax***
FALSE
FALSE
NORMALDRAW
off

FG_OFF

0*

TRUE

FALSE

off

1

1 (B and G models)
0 (other models)
undefined
SML_OFF

0 (solid)

1

LMC_COLOR

[=R e i}

LO_SRC
1
no entries changed

Code**

G
AF_ALWAYS
A

A G
AV

< > >

A

Table 1-1. Initial Values of Global State Attributes

Graphics Library Programming Guide

IRIS-4D Series

Attribute Initial Value Code**
matrix
ModelView undefined
Projection undefined
Single ortho?2 matching window size
Texture undefined
mmode MSINGLE
multimap FALSE G
name stack empty
nmode NAUTO
normal vector undefined v
onemap TRUE G
overlay 2 G
patchbasis undefined
patchcurves undefined
patchprecision undefined
pattern 0 (solid) A
pick mode off
picksize 10x10
pixmode standard
pntsmooth SMP_OFF
polymode PYM_FILL
polysmooth PYSM_OFF
readsource SRC_AUTO
rectzoom 1.0,1.0
RGB color all components 0 AV
(when RGBmode is entered)
RGB shade range undefined
RGB writemask 0xFF (when RGB is AV
entered)
RGBmode FALSE GA
scrbox SB_RESET
scrmask set to size of window
scrsubdivide SS_OFF
select mode off
shade range 0,7,Zmin,Zmax***
shademodel GOURAUD A
singlebuffer TRUE G
stencil disabled
stensize 0 G

Table 1-1 (continued)

Version 2.0

. Initial Values of Global State Attributes

Controlling the Graphics Environment

1-4

Attribute

Initial Value Code**

swritemask
tevbind
texbind
texgen
underlay
viewport
writemask
zbuffer
zdraw
zfunction
zsource
zwritemask

all stencil planes enabled

0 (off)

0 (off)

TG_OFF

0 G
set to size of window

all bitplanes enabled A
FALSE

FALSE A
ZF_LEQUAL

ZSRC_DEPTH

all z-buffer planes

enabled

Table 1-1 (continued). Initial Values of Global State Attributes

Notes on table 1-1:

* Font 0 is a Helvetica-like font.

** Code: A—is pushed and popped on the attributes stack; G—takes

effect when gconfig is called; V—can be changed between bgn and
endcalls (bgnpoint, bgnline, bgnclosedline, bgnpolygon,
and bgntmesh)

***Zmin and Zmax are the minimum and maximum values that you
can store in the z-buffer. These depend on the graphics hardware and
are returned by getgdesc (GD_2ZMIN) and getgdesc(GD_ZMAX).

Graphics Library Programming Guide

IRIS-4D Series

1.1 Initializing a Program

The subroutines ginit and gbegin were used primarily in programs that
did not run under the window manager. On current systems, these
subroutines cause the window to occupy the entire screen. You might want
to use ginit or gbegin to run programs written for older systems or, if you
are a novice user, to run a program on the full screen to simplify the
programming process.

winopen

winopen initializes the hardware, allocates memory for symbol tables and
display list objects, and sets up default values for global state attributes (see
Table 1-1).

winopen must be called before you call most Graphics Library (GL)
routines. It performs the initialization functions listed in Table 1-1.
winopen makes no change to any color map value, however.

Index Name RGB Value
Red Green Blue

0 BLACK 0 0 0

1 RED 255 0 0

2 GREEN 0 255 0

3 YELLOW 255 255 0

4 BLUE 0 0 255
5 MAGENTA 255 0 255
6 CYAN 0 255 255
7 WHITE 255 255 255
all others unnamed unchanged

Table 1-2. Default Color Map Values

Version 2.0 Controlling the Graphics Environment 1-5

greset

greset retums the global state attributes to their initial values. You can call
greset at any time. Table 1-1 lists the global state attributes and their
default values.

greset initializes the first eight entries in the color map to the values shown
in Table 1-2. greset also sets up a 2-D orthographic projection
transformation that maps user-defined coordinates to the entire area of the
window (see Chapter 7, “Coordinate Transformations”).

void greset ()

gexit

gexit performs housekeeping functions associated with the termination of
graphics programming. It closes all windows and deletes display lists (see
Chapter 16, “Graphical Objects”) and other defined objects. It also turns off
any blinking initiated by the program.

void gexit ()

1-6 Graphics Library Programming Guide IRIS-4D Series

getplanes

getplanes retums the number of bitplanes that are available in the current
hardware and software configuration and drawing mode. For more

information, see Chapter 11, “Frame Buffers and Drawing Modes.” Table

1-3 lists the possible combinations. C stands for color map mode; X means

the configuration is not supported.

System Model

Mode Personal IRIS/G

RGB 8 12 24
RGB double X X 12
C 8 12 12
C double 4 12
C-multimap 8 8
C-multimap-double 4 8

24
24
12
12

GTB/GTXB/VGXB GT/GTX/VGX

32
32
12
12

Table 1-3. Bitplane Availability

long getplanes ()

getgdesc

getgdesc allows you to inquire about characteristics of the graphics system

and returns a description of part of the graphics system specified by its
parameter, inquiry. getgdesc returns the numeric value of the requested
characteristic, or -1 if it is invalid. You can call getgdesc at any time,

including before the first winopen.

The values it returns depend only on the hardware configuration. They are

are not affected by changes to software modes or software configuration.

long getgdesc (inquiry)
long inquiry;

Refer to the getdesc manual page for a complete list of the inquiries

supported by the current software release.

Version 2.0 Controlling the Graphics Environment

1-7

gversion

gversion returns information about the current graphics hardware and the
Graphics Library version. Its argument, v, expects a pointer to a location into
which gversion copies a null-terminated string. Reserve at least 12
characters at this location.

gversion fills the buffer pointed to by v with a null-terminated string that
specifies the graphics hardware type and the version number of the Graphics
Library on the system in question, according to the information contained in
Table 1-4. In the table, m and n represent the major and minor release
numbers, respectively, of the IRIX software release to which the current
Graphics Library belongs.

“Graphics Type) String Returned
BorG GLAD-m.n

GT or GTB GLADGT-m.n
GTX or GTXB GLADGTX-m.n
VGX GLADVGX-m.n
Personal IRIS GLADPI2-m.n
Personal IRIS with Turbo Graphics GILADPIT-m.n
Personal IRIS (early serial numbers) GLADPI-m.n

Table 1-4. System Types and Graphics Library Versions
You can call gversion before the first winopen.

Personal IRIS units with early serial numbers (see Table 1-4) do not support
the complete Personal IRIS graphics functionality.

long gversion (v)
String v;

Caution: Using gversion makes programs machine-specific. In almost
all cases, getgdesc is preferable to gversion.

1-8 Graphics Library Programming Guide IRIS-4D Series

glcompat

glcompat gives control over details of the compatibility between IRIS-4D
Series models. glcompat controls two compatibility modes. The first,
GLC_OLDPOLYGON, offers compatibility with old-style polygons (see
section 2.8, “Old-Style Drawing”). The second, GLC_ZRANGEMAP,
controls the state of z-range mapping mode.

The default value for GLC_OLDPOLYGON is TRUE—polygons are filled
and outlined. This means that polygons drawn with the new GL routines
have the same appearance as polygons drawn with the old GL routines. On
all systems except the IRIS-4D/B/G, the new (point-sampled) polygon
routines draw more quickly than the older outlined polygons. (See Chapter
2, “Drawing.”) For maximum performance in cases where compatibility
with older routines is not an issue, set GLC_OLDPOLYGON to FALSE.
This mode applies to each window in which it is asserted; it is ignored on
IRIS-4D/B/G systems.

The other glcompat mode, GLC_ZRANGEMAP, controls how z-buffer
range is mapped on a given system. (See Section 8.2, “Controlling z values,”
for more information on the z depth of various IRIS-4D Series systems.)
GLC_ZRANGEMAP can have either of two values: 0 or 1. When this mode
is 0, the domain of the z-range arguments to 1setdepth, 1RGBrange, and
lshaderange depends on the graphics hardware. The minimum is the value
returned by getgdesc (GD_zMIN) , and the maximum is the value returned
by getgdesc (GD_zMaX). When this mode is 1, these routines accept the
range 0x0 to Ox7FFFFF, and the range is mapped to whatever range the
graphics hardware supports. To maintain backwards compatibility, the
default range of GLC_ZRANGEMAP is 1 on IRIS-4D/B/G systems, and 0
on all other systems. This mode applies to each process in which it is
asserted. g

void glcompat (mode, value)
long mode, value;

Version 2.0 Controlling the Graphics Environment 1-9

1.2 Saving Global State Attributes

pushattributes and popattributes manipulate a defined list of global
state attributes. They operate on all attributes that are marked with an “A” in
Table 1-1.

pushattributes

pushattributes saves a portion of the current global state on a stack that
the system maintains.

void pushattributes ()

popattributes

popattributes restores the most recently saved values of the global state
attributes. If you attempt to pop an empty attributes stack, an error message

appears. (

void popattributes ()

1-10 Graphics Library Programming Guide IRIS-4D Series

2. Drawing

This chapter describes the Graphics Library subroutines that draw many of
the most basic and therefore most important geometric figures: points, lines,
polygons, rectangles, circles, arcs, and meshes. Being geometric, all these
figures can undergo three-dimensional transformations such as rotation and
translation, and can then be viewed in perspective.

This chapter does not cover more complicated geometric figures such as
curves and surfaces. Curves and surfaces are an advanced topic, and an
entire chapter (Chapter 14) has been reserved for them. Neither does this
chapter describe the Graphics Library subroutines for drawing things that are
not geometric figures—for example, character strings and pixel data. For a
discussion of the Graphics Library subroutines that handle text and fonts, see
Chapter 3. For a discussion of the Graphics Library subroutines for use with
pixel data, see Chapter 10.

In this chapter, the drawing subroutines are divided into three sections. The
first section deals with the primitive subroutines on which all the others are
based—points, lines, and polygons. These subroutines make up the high-
performance library and are tuned to the hardware architecture. Use these
subroutines when high performance is required. The second section
describes several useful higher level subroutines that draw common objects
such as rectangles, circles, and arcs. Finally, the third section covers the old-
style graphics subroutines, which are included in the current library for
compatibility. They are less efficient than the high-performance
subroutines, but appear extensively in code written for earlier products.

All the drawing subroutines in this chapter are affected by various attributes
that are discussed at length in later chapters. These attributes include color,
texture pattern, line style (stippling pattern), and many other things. For
example, if your program includes the line color (RED) ;, and you draw a
line, the line will be red. If you draw a polygon, the polygon will be red, and
so on, until you issue another color subroutine call. Similarly, if you set a
line style, it remains in effect until you set another.

Version 2.0 Drawing 21

The examples in this chapter use other subroutines from the Graphics Library
that are described in Chapter 1, “Controlling the Graphics Environment.”
Look over that chapter before beginning this one if you have not already
done so. '

2.1 High-Performance Drawing (

High-performance drawing provides the fastest way to draw primitive
graphical figures. Points, lines, and polygons are all described in terms of
vertices (sets of coordinates that identify points in space). A point is
described by a single vertex. A line segment is described by two vertices
indicating its endpoints. A polygon is described by a set of three or more
vertices indicating its corners.

To draw a graphical figure as efficiently as possible, use a series of vertex
subroutines surrounded by a pair of begin and end subroutines, which mark
the beginning and end of the figure. For example, the code to draw a set of
five points A, B, C, D, and E takes the form:

<beginning of point vertices>

<vertex A>

<vertex B> (f
<vertex C>

<vertex D>

<vertex E>
<end of point vertices>

If instead, you wanted to draw a polygon whose corners are the same five
points, the code would take the form:

<beginning of polygon vertices>
<vertex A>

<vertex B>

<vertex C>

<vertex D>

<vertex E>

<end of polygon vertices>

Only the bgn/end point sequence and the vertex subroutines outside of any (
bgn/end sequence leave the current graphics position defined. All other
high-performance primitives leave the current graphics position undefined.

2-2 Graphics Library Programming Guide IRIS-4D Series

Between any bgn/end pair, you can use only these commands: ¢, color,
cpack, lmbind, lmcolor, lmdef, n, RGBcolor, t, and v. lmbind and
1mdef can be used only to respecify materials and their properties.

This program clears a window to white, and then draws a pair of red lines
connecting its opposite corners.

#include <gl/gl.h>

long vertl[2] = {100, 100}; /* lower left corner */
long vert2([2] {100, 500}; /* upper left corner */
long vert3[2] {500, 500}; /* upper right corner */
long vert4[2] {500, 100}; /* lower right corner */

I

main ()
{
prefposition (100, 500, 100, 500);
winopen ("crisscross");
ortho2(99.5, 500.5, 99.5, 500.5);
color (WHITE) ;
clear (),
color (RED) ;
bgnline () ;
v2i(vertl);
v2i(vert3);
endline () ;
bgnline () ;
v2i(vert2);
v2i(vertd);
endline();
sleep(3);
gexit () ;
exit (0);

Version 2.0 Drawing

2-3

In this example, you declare four long arrays vertl, vert2, vert3, and vert4,
and assign values to all the elements of each array. prefposition defines
the next window as a square covering pixels 100 through 500 in both the x
and y directions. winopen then opens the window described by
prefposition and assigns it the name “crisscross.” ortho?2 sets up the
default coordinate system so that a point with coordinates (x, y) maps exactly
to the point on the screen that has the same coordinates. (The ortho2
command is discussed in Chapter 7.) color sets the window's color
property to white and clear () clears the window to the current value of the
window's color property, white.

The next four lines of code draw a line from (100, 100) to (500, 500)—the
lower-left corner to the upper-right comer. bgnline tells the system to
prepare to draw a line using the following vertices. v2i takes an array of
coordinates as its argument and creates a vertex at those coordinates.

The first v2i subroutine call after bgnline creates the first endpoint of the
line segment. The second v2i subroutine call after bgnline creates the
endpoint of the line segment and the system draws a line. The endline
subroutine call tells the system that it has all the vertices for the line. The
next four lines draw a line from (100, 500) to (500, 100), the lower-right
corner to the upper-left corner.

Finally, sleep (3) delays the program from exiting until three seconds pass;
the picture remains on the screen for three seconds.

2-4 Graphics Library Programming Guide IRIS-4D Series

2.1.1 Polylines

If more than two points are listed between bgnline and endline, each
point is connected to the next by a line. For example, the program below
draws an outlined green square in the center of the window.

#include <gl/gl.h>

long vertl[2]
long vert2[2] {200, 400};
long vert3[2] {400, 400};
long vert4([2] = {400, 200};

{200, 200};

main ()
{
prefposition (100, 500, 100, 500);
winopen ("greensquare") ;
ortho2(99.5, 500.5, 99.5, 500.5);
color (WHITE) ;
clear();
color (GREEN) ;
bgnline();
v2i(vertl);
v2i(vert2);
v2i(vert3);
v2i (vertd);
v2i(vertl);
endline () ;
sleep(3);
gexit () ;
exit (o) ;

Notice that the first vertex, v2i (vertl), isrepeated to close the series of
line segments.

A series of connected line segments is called a polyline. There are no

restrictions on a polyline—the segments can cross each other, vertices can be

reused, and if the vertices are defined in terms of three dimensions, you can

place them anywhere within three-dimensional space. In a three-dimensional
- space, the vertices need not all lie in the same plane.

Version 2.0 Drawing 2-5

2.1.2 The Vertex Subroutine

The previous examples use only one form of the vertex subroutine—a two-
dimensional version with 32-bit integer coordinates. The Graphics Library
contains 12 forms of the vertex subroutine. The coordinates can be short
integers (16 bits), long integers (32 bits), single-precision floating point
values (32 bits), and double-precision floating point values (64 bits). For
each of these types, there is a two-dimensional version, a three-dimensional
version, and a version that expects vertices expressed in homogeneous
coordinates (often referred to as a 4-D version because it takes four
parameters to define a point in a three-dimensional space). If you don't know
what homogeneous coordinates are, don't worry. Homogeneous coordinates
are an advanced topic that you can read more about in Newman and Sproull's
Principles of Interactive Computer Graphics.

The IRIS-4D Series converts all arguments to 32-bit floating point for
hardware calculations; consequently, only long integers in the range of -223

and 223-1 are converted correctly. Treat long integers as 24-bit
2s-complement numbers sign-extended to 32 bits.

The vertex subroutines all have the same pattern, as illustrated in Table 21

Argument Type 2-D 3-D 4-D
16-bit integer v2s v3s v4s
32-bit integer v2i v3i vdi
32-bit floating point v2f v3f v4f
64-bit floating point vad v3d v4d

Table 2-1. The Vertex Subroutine

tad

All forms of the vertex subroutine begin with the letter “v.” The second
character is “2”, “3”, or “4” indicating the number of dimensions, and the
final character is “s” for short integer, “i” for long integer, “f” for single-
precision floating point, and “d” for double-precision floating point.

2-6 Graphics Library Programming Guide IRIS-4D Series

The following program illustrates the use of some of the different vertex
subroutines. It draws exactly the same picture as the previous example
does—it just uses different versions of the vertex subroutine.

#include <gl/gl.h>

short vertl[3] {200, 200, 0};
long vert2[2] {200, 400};
float vert3[2] {400.0, 400.0};

double vert4[3] = {400.0, 200.0, 0.0};

main ()
{
prefsize (400, 400);
winopen ("greensquare2");
ortho2(99.5, 500.5, 99.5, 500.5);
color (WHITE) ;
clear();
color (GREEN) ;
bgnline () ;
v3s (vertl);
v2i(vert?2);
v2f (vert3);
v3d (vertd);
v3s (vertl);
endline () ;
sleep(10);
gexit ();
return 0;

}

Although it is unlikely that you would write a program like the one above, it
does illustrate two things:

« Within one geometric figure (in this case, a polyline), you can mix
different kinds of vertices together. In a typical application, all the vertices
would tend to have the same dimension and have the same form.

» In the Graphics Library, all geometric figures are three-dimensional and
the hardware treats them as such. Two-dimensional versions of the vertex
subroutines are actually shorthand for an equivalent three-dimensional
subroutine with the z coordinate set to zero.

Version 2.0 Drawing 2-7

2.1.3 Closed Lines

In the last two examples, the program drew a closed polyline—a line
segment connected the last point in the polyline to the first point in the
polyline. Since this is a fairly common operation, there is a pair of high-
performance subroutines to do it: bgnclosedline and endclosedline.

Tt_le'following code draws a regular n-gon (n-sided polygon) centered at the
origin:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <gl/gl.h>

main(argc, argv)
int argc;
char *argv[]:;
{
int n, 1i;
float vert[2];

if (argc !'= 2) {
fprintf (stderr, "Usage: n-gon <number of sides>\n");
return 1;

}
n = atoi(argv([l]);

prefsize (400, 400);

winopen ("n-gon");

ortho2(-1.5, 1.5, -1.5, 1.5);

color (WHITE) ;

clear();

color (RED) ;

bgnclosedline () ;

for (i = 0; i < n; i++) |
vert (0] = fcos(i * 2.0 * M PI / n);
vert[l] = fsin(i * 2.0 * M PI / n);
v2f (vert) ;

2-8 Graphics Library Programming Guide IRIS-4D Series

endclosedline () ;
sleep(10);
gexit();

return 0;

}

A couple of steps might need some explanation if you are not familiar with C
programming in an IRIX environment. The four lines that begin with the

if (argc != 2) { testto determine whether you typed a parameter
when you ran the program. In other words, if the compiled file were called
ngon, then you should run it as ngon 14 or ngon 24. The line that contains
“n = atoi(argv[1]) ;” converts the parameter from ASCII to integer n.
“atoi” stands for “ASCII to integer.”

The purpose of this example is to draw exactly one n-gon, so there is no real
penalty for computing the coordinates of the vertices between
bgnclosedline and endclosedline. Ifit were necessary to draw the
polygon over and over again, the calculated vertices should probably be
saved in an array. In real applications that draw objects repeatedly with
different viewing parameters, it is usually more efficient to save the
coordinates in arrays. You did not do this in the example because it was not
worth the effort to save the coordinates for a figure you wanted to draw only
once.

Version 2.0 Drawing 2-9

2.1.4 Points

The Graphics Library has two high-performance subroutines that allow you
to draw a set of points. To draw a set of unconnected points, enter a set of
vertices specified between bgnpoint and endpoint. The system draws
each vertex as a one-pixel point on the screen. Below is a sample program
that draws a set of unconnected points arranged in a square pattern. The
square is 20 pixels wide by 20 pixels high, and the points are spaced 10 (
pixels apart.

#include <gl/gl.h>

main ()

2-10

{

long vert[2];
int i, J;

prefsize (400, 400);
winopen ("pointpatch") ;
color (BLACK) ;

clear();

color (WHITE) ;

for (i = 0; 1 < 20; i++)

vert[0] = 100 + 10 * i;

bgnpoint () ;
for (j = 0; j < 20;

{

J++)
/* load the y coordinate */

/* load the x coordinate */ (j

{

vert[1l] = 100 + 10 * j;

v2i (vert) ;
}
endpoint () ;
}
sleep(10);
gexit () ;
return 0;

Graphics Library Programming Guide

/* draw the point */

IRIS-4D Series

2.2 Polygons

In the Graphics Library, a polygon is specified by a sequence of distinct
vertices: vl, v2,..., v, that all lie in a plane. You can define the boundary of
the polygon by connecting v/ to v2, v2 to v3, and so on, finally connecting va
back to vI. These connecting segments are called edges. The interior of the
polygon is the area inside this region bound by line segments. A polygon is
said to be simple if edges intersect only at their common vertices, i.e., the
edges cannot cross or touch each other.

A polygon is convex if the line segment joining any two points in the figure
is completely contained within the figure. Nonconvex polygons are
sometimes called concave. Algorithms that render only convex polygons are
much simpler than those that can render both convex and concave polygons.

The Graphics Library and hardware can correctly render any polygon if it is
simple, or if it consists of exactly four points. The special case of a bowtie
polygon (4-vertex nonsimple polygon) is handled in a hardware-specific
manner. The polygon appears either as a bowtie, or as a quadrilateral with a
segment missing from one edge (see Figure 2-6).

Some versions of the hardware automatically check for and draw concave
polygons correctly, but others do not. The function concave guarantees
that the system renders concave polygons correctly. On some hardware there
is a performance penalty when you use concave. If you intend to draw
concave polygons, use concave, even if your code is running on a machine
that automatically does the correct thing. There is a minor penalty for setting
the concave flag, but it makes the code portable to other Silicon Graphics
machines.

Version 2.0 Drawing 2-11

The IRIS draws a polygon as a filled area on the screen. It draws polygons
using the same basic syntax it uses for polylines and sets of points—a list of
vertex subroutines surrounded by bgnpolygon and endpolygon. For
example, the following program draws a filled blue hexagon on the screen:

#include <gl/gl.h>

float hexdata[6][2] = {
{20.0, 10.0},

{10.0, 30.0},
{20.0, 50.0},
{40.0, 50.0},
{50.0, 30.0},
{40.0, 10.0}

};

main ()

{
long 1i;

prefposition (100, 500, 100, 500);

winopen ("bluehex") ;

color (BLACK) ;

clear();

color (BLUE) ;

bgnpolygon () ;

for (1 =0; i < 6; i = i+1)
v2f (hexdata[il);

endpolygon () ;

sleep(3);

gexit () ;

exit (0);

}

Polygons must have fewer than 256 vertices. As it does with closed lines,
the Graphics Library software connects the first and the last point; you do not
need to repeat the first point.

2-12 Graphics Library Programming Guide IRIS-4D Series

A model for the procedure for drawing a polygon is:

1.
2.
3.

4.

Begin with a list of vertices.
Draw a line segment between each vertex and the preceding one.

On reaching the last vertex in the list, draw a line from that vertex to the
first vertex in the list.

Fill the area that this line circumscribes.

There are cases when this procedure does not generate a true polygon, but for
simple enclosed areas, this intuitive procedure is sufficient.

Figures 2—1 through 26 illustrate some examples of polygons. The heavy
black dots represent vertices and the lines represent edges. Figure 2—1 is a
convex and simple polygon. Figure 2-2 is a simple, but not convex polygon
(a line connecting interior points near the two lowest vertices would go
outside the polygon). Figure 2-3 is still simple, but again, not convex.

Figure 2—1. Simple Convex Polygon

Figure 2-2. Simple Concave Polygon

Version 2.0 Drawing 2-13

Figure 2-3. Another Simple Concave Polygon

Figures 2-4, 2-5, and 26 are not simple; Figure 2-6 illustrates a bowtie
polygon. The Graphics Library would correctly render the polygons in
Figures 2-1, 2-2, 2-3, and 2-6. The results of rendering Figures 2—4 and
2-5 are unpredictable.

Figure 2-4. Non-simple Polygon

Figure 2-5. Another Non-simple Polygon

2-14 Graphics Library Programming Guide IRIS-4D Series

\ Figure 2-6. “Bowtie” Polygon

Cgrtain distortion problems can arise when viewing a polygon. Sometimes
these distortions arise from floating point inaccuracies. But viewing
distortions can also arise if the vertices of the polygon were originally
specified in three dimensions, and then were transformed and projected to
two dimensions (the screen). The only unrecognizable distortion possible for
a true polygon (that is, a polygon whose vertices lie in a single plane) is to
view it edge on, in which case it collapses to a line (and is not drawn).

However, if the defining vertices for the polygon do not all lie in a plane, the
projected polygon on the two-dimensional screen might appear to have
duplicate vertices, or crossing edges. The system sometimes creates these
not-quite-true polygons when it uses a mesh of polygons to model a curved
surface. For most of the surface, the polygons formed by the mesh are nearly
flat (true) polygons. However, as the surface twists, the mesh must twist and
the view of the mesh might generate bowtie polygons. (This effect is most
noticeable at silhouette edges where the mesh curves around to the back of
the depicted object.)

The Graphics Library can render the bowties that arise from surface

approximating meshes. In most other circumstances, however, the Graphics
Library routines for generating polygons generate only true polygons.

Version 2.0 Drawing 2-15

2.2.1 Point Sampled Polygons

This section tells exactly which pixels are turned on when the system
displays a polygon. You can skip this section on first reading.

To represent a polygon on the screen, the system must turn on a set of pixels.
Given a set of coordinates for the vertices of a polygon, there is more than
one way to decide which pixels ought to be turned on. The new high-
performance subroutines draw point sampled polygons, while the older
subroutines (for example, polf, rect, circle) draw outlined point
sampled polygons. The older subroutines are described in Section 2.8, “Old-
Style Drawing.”

To illustrate the point sampling method and the reasons for using it, consider
drawing two rectangles: rectangle 1 has2 <=x <=5 and 1 <= y <=4,
rectangle 2 has 2 <= x <=5 and 4 <=y <= 6. What pixels should the system
turn on in both cases? The most obvious answer is shown in Figure 2—7.

If you draw a figure consisting of the two polygons in Figure 2-7, you would
expect them to fit together. Unfortunately, if you draw them both, the pixels
on the line y = 4 are drawn twice, once for each polygon. A similar problem
would occur if you try to abut a polygon to the right. Normally, this is not a
problem, but if the polygons represent a transparent surface, the duplicated
edge would be twice as dense, giving the entire surface a spiderweb-like
appearance.

Even if the surface is not transparent, there can still be undesired visual
effects. If you draw a checkerboard pattern with edges that overlap by
exactly one pixel and then redraw it in single buffer mode, the redrawing is
visible because the edges of the squares flicker from one color to the other,
even though the final second image is identical to the first. See Chapter 6,
“Animation,” for more about single buffer mode.

The system resolves these problems using point sampled polygons. The
model is this: ideal mathematical lines (no thickness) connect the vertices.
The system draws any pixel whose center lies inside the mathematically
precise polygon; it does not draw a pixel if its center lies outside the polygon.
Pixels whose centers lie exactly on the mathematical line segments or
vertices are filled in in a hardware-dependent manner that attempts to avoid
both multiple fills and gaps at the boundaries of adjacent polygons. All that
is guaranteed about this algorithm is that pixels on the left and bottom (and
not the right and top) of a screen-aligned rectangle drawn on exact pixel
centers are filled.

2-16 Graphics Library Programming Guide IRIS-4D Series

8 8
7 7
6 6
5 5
4 4
3 3
2 2
1 1
0 0
0123456 012345686

Figure 2-7. Non-Point Sampled Polygons

This definition effectively eliminates the duplication of pixels from the right
and top edges of the polygon, but adjacent polygons can fill those pixels.
Figure 2-8 shows point sampled versions of the two rectangles above.

8 8

7 7

; [T ee®
5 5

4 4 000
3 3

2 2

1 1

0 0

0123 45€¢6 0123456

Figure 2-8. Point Sampled Polygons

Another advantage of a point sampled polygon without an outline is that the
drawn area of the polygon is much closer to the actual mathematical area of
the polygon. In the examples above, the drawn areas correspond exactly to
the true areas of the polygons. In nonrectangular polygons, the drawn area of
the polygon cannot be exact, but the drawn area of the no-outline point
sampled polygon is closer to the true area of the polygon than the area drawn
by the older outlined model.

Figure 2-9 illustrates the pixels that would be turned on in a point sampled
representation of the polygon that connects the vertices (1,1) (1,4) (5,6) and
(5,1). The darkened pixels would be drawn. The pixels at (1, 4), (3, 5), (5,6),
(5,5), (54), (5,3), (5,2), and (5,1) all lie mathematically on the boundary of
the polygon but are not drawn because they are on the upper or right edge.

Version 2.0 Drawing 2-17

S = N WA Uiy Q9 ®

012345°€6
Figure 2-9. Point Sampled Polygon

As mathematic entities, lines have no thickness. However, to represent a line
on the screen, the system assumes a thickness of exactly one pixel. When
you scale an object composed of lines, the lines behave differently from
polygons. No matter how much a transformation magnifies or reduces an
object composed of lines, the representation of the line remains one pixel
thick. If a line is drawn around a point sampled polygon, it fills in the pixels
at the upper and right-hand edges. For compatibility, the older subroutines
such as polf, rect, circle, effectively do this, i.e., draw a line around
the point sampled version. See Section 2.8, “Old-Style Drawing,” for
information about the older subroutines.

Anomalies can occur in the display of very thin filled polygons. For
example, consider the point sampled rendition of the triangle connecting the
points (1,1), (2,3), and (12,7). Itis apparently riddled with holes, as
illustrated in Figure 2-10, but if adjacent polygons that share the vertices are
drawn, all the pixels are eventually filled.

2-18 Graphics Library Programming Guide IRIS-4D Series

(

@
Ja. [e
e

01234567289 101112

S = NW AUV Q

Figure 2-10. Point Sampling Anomaly

2.2.2 Meshes

This section covers an advanced topic; on the first reading, you can skip it. It
concerns the specification of geometric figures constructed entirely of
adjacent triangles, i.e., triangular meshes. Triangular meshes provide a very
efficient way to specify three-dimensional objects that are composed of
triangular faces.

A triangular mesh is a set of triangles formed from a series of points. In
Figure 2-11, the seven vertices form five triangles (123, 324, 345, 546, 567).
Points 1 and 7 appear in one triangle; points 2 and 6 appear in two triangles,
and all the rest appear in all three. In a longer sequence, a higher percentage
of the points would be used three times. If the mesh in Figure 2-11 is drawn
as five separate triangles, many of the points are transformed multiple times
(in fact, transformation to screen coordinates occurs 15 times, although there
are only 7 points). The triangular mesh primitive provides a more efficient
way to display sequences of triangles like those shown in Figure 2—-11.

2 4 6

Figure 2—11. Simple Triangle Mesh

Version 2.0 Drawing 2-19

Figure 2—-11 illustrates the simplest case. It uses the sequence {bgntmesh();
v(1); v(2); v(3); v(4); v(5); v(6); v(7); endtmesh();}, where v(i) stands for
any vertex subroutine with the coordinates of the i-th point. As a result, the
pipeline accepts (and transforms) points 1 and 2. When point 3 arrives, it is
transformed and the system draws the triangle 123. Then point 3 replaces
point 1 (so the pipeline now remembers points 2 and 3), and when point 4
arrives, triangle 324 is drawn, and point 4 replaces point 2.

This sequence continues. Each time a new point is sent, the system draws a (
triangle containing it and the two retained points. The oldest retained point is

then discarded, and is replaced by the new point. The sequence ends when
endtmesh is sent.

Figure 2—12 illustrates a more complex situation. The first six triangles (123,
234, 345, 456, 567, 678) could be drawn as before, but if nothing is done, the
arrival of point 9 would cause triangle 789 to be drawn, not triangle 689 as
desired. To draw meshes like the one in Figure 2—12, you must examine
more closely the mechanism the geometry hardware uses to retain points.

11 10 9

1 3 5 7
Figure 2-12. swaptmesh Example

The pipeline maintains two previous vertices together with a pointer that
points to one or the other of them while drawing a triangle mesh. When a
new vertex arrives, a triangle is drawn using all three vertices, and then the
new vertex replaces the one pointed to by the pointer. The pointer is then
changed to point to the other retained vertex. Thus if nothing special is done,
the discarded vertex alternates, drawing a picture like the one in Figure 2—13.

2-20 Graphics Library Programming Guide IRIS-4D Series

Below is an illustration of what happens internally to draw Figure 2—11.

Initial state: After vertex1: After vertex2:
P -> R1 = junki R1=vert1 P ->R1=vertl
R2 = junk2 P-> R2 = junk2 R2 = vert2

When vertex3 arrives, triangle 123 is drawn, and the state is:

R1 =vert3

P >R2 = vert2

The next few states are:

After drawing 324: After 345: After 546:
P -> R1 =vert3 R1 =vert5 P -> R1 =vert5
R2 = vert4 P > R2 = vert4 R2 = vert6
7 8
2 4
6 9
1 3 5

Figure 2-13. Another swaptmesh Example

Version 2.0 Drawing

2-21

The Graphics Library contains another subroutine, swaptmesh, whose only
effect is to swap the pointer to the other retained vertex. The following
sequence draws the mesh in Figure 2-13.

bgntmesh () ;
v(l);
v(2);
v(3);
v(4);
v(5);
v(6);
v(7);
swaptmesh () ;
v(8);
swaptmesh () ;
v(9); !'
swaptmesh() ;
v(10);
v(4);
v(ll);
endtmesh () ;

Here is what is happening internally:

After vertex7: After swaptmesh: After vertex8:
R1 = vert7 P -> R1 =vernt7 R1 = vert8
P -> R2 = vert6 R2 = vert6 P -> R2 = vert6
After swaptmesh: After vertex9: After swaptmesh:
P -> R1 =vert8 R1 =vert9 P -> R1 =vent9
R2 = vert6 P -> R2 = vert6 R2 = vert6
After vertex10: After vertex4: After vertex11:
R1 =vert10 P -> R1 =vert10 R1 = verti1
P -> R2 = vert6 R2 = vert4 P -> R2 = vert4

2-22 Graphics Library Programming Guide IRIS-4D Series

Without going into such detail, here is the sequence that would draw
Figure 2—-13:

bgntmesh () ;
v(l);
v(2);
v(3);
v(4);
v(5);
swaptmesh () ;
v(6);
v(7);
swaptmesh () ;
v (8);
v(9);
endtmesh () ;

The following sample program draws a three-dimensional octahedron (8-
sided regular polyhedron) using the mesh primitive. Since meshes in two
dimensions are of little use, the example is three-dimensional. Knowing how
to create a three-dimensional mesh is quite useful; however, it uses a number
of routines that are covered in later chapters including three-dimensional
rotations, hidden surface removal, smooth (double buffered) motion, and a
different color mode.

For the purpose of illustration, the following program defines a drawing
subroutine called drawoctahedron that uses the mesh subroutine.

The shademodel statement affects the behavior of triangular mesh in the
following ways:

* shademodel (FLAT) means that each triangle is filled with the color that
was current when the last vertex routine executed (this is called the
“provoking vertex”).

» shademodel (GOURAUD) means that each triangle‘ is Gouraud-shaded
using the colors assigned to all three vertices.

Version 2.0 Drawing 2-23

The cpack subroutines set vertex colors, so ignore them if you are studying
the program to understand the logic of mesh drawing. All the rotation and
hidden surface removal are handled in the main () routine. The calculations
of rotation angles simply cause the octahedron to tumble in an interesting
way.

#include <gl/gl.h>

float octdata[6][3] = {
{1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, 0.0, 1.0},
{-1.0, 0.0, 0.0},
{0.0, -1.0, 0.0},
{0.0, 0.0, -1.0}

}:

drawoctahedron ()

{
bgntmesh () ;

cpack (0x££0000) ; /* color blue */
v3f (octdata[0]) ;
cpack (0x00££00) ; /* color green */

v3f (octdatal[ll}l);

swaptmesh () ;

cpack (0x0000£f) ; /* color red */
v3f (octdata[2]);

swaptmesh () ;

cpack (Oxf£££00) ; /* color cyan */
v3f (octdata[4l);

swaptmesh () ;

cpack (Oxf£f££f) ; /* color white */
v3f (octdata[5]);

swaptmesh () ;

cpack (0x00££00) ; /* color green */
v3f (octdata[1]);

cpack (OX££00££) ; /* color magenta */
v3f (octdata[3]);

cpack (0x0000£€£) ; /* color red */

v3f (octdatal[2]);

swaptmesh () ;

cpack (Ox££££00) ; /* color cyan */
v3f (octdata[4]);

swaptmesh () ;

2-24 Graphics Library Programming Guide IRIS-4D Series

cpack (Oxfff££ff) ; /* color white */
v3f (octdata[5]);

swaptmesh () ;

cpack (0x00££00) ; /* color green */
v3f (octdata(l]);

endtmesh () ;

}
main ()
{
long iang, jang, kang;
long exitcounter;
prefposition (100, 500, 100, 500);
winopen ("octahedron") ;
ortho(-2.0, 2.0, -2.0, 2.0, -2.0, 2.0);
zbuffer (TRUE) ; /*hidden surfaces removed
with z buffer*/
doublebuffer(); /* for smooth motion */
RGBmode () ; /* direct color mode */
gconfig(); /* reconfigure for RGBmode and
doublebuffer */
for (exitcounter=0; exitcounter < 1000; exitcounter++)
{
pushmatrix () ; /*save viewing transformation*/
rotate(iang, 'x'); /*rotate by iang about x axis*/
rotate(jang, 'y'); /*rotate by jang about y axis*/
rotate (kang, 'z'); /*rotate by kang about z axis*/
iang += 10;
jang += 13;
if (iang + jang > 3000) kang += 17;
if (iang > 3600) iang -= 3600;
if (jang > 3600) jang -= 3600;
if (kang > 3600) kang —-= 3600;
cpack (0) ; /* color black */
clear();
zclear () ; /* clear the z buffer */
drawoctahedron () ;
swapbuffers () ; /* show completed drawing */
popmatrix(); /* restore viewing transformation */
}
}

Version 2.0 Drawing 2-25

2.2.3 Quadrilateral Strips

In addition to the triangular mesh, the Graphics Library also supports
quadrilateral strips. Quadrilateral strips are similar in many ways to
triangular meshes, but might be better suited for the representation of shapes
that are fundamentally quadrilateral rather than triangular in nature.

(\

bgnqstrip and endqstrip

bgngstrip and endgstrip interpret vertex (v) subroutines as quadrilateral
strip vertices.

void bgngstrip()

void endgstrip()
These two statements delimit a sequence of vertex commands that specify a
strip of connected quadrilaterals. The bgngstrip and endgstrip
commands must surround an even number of vertex commands that is four or
greater, and is unbounded. Filling results are undefined if these conditions
are not met. ‘

Vertices specified after bgngst rip and before endgstrip form a sequence
of quadrilaterals. You cannot alter the replacement algorithm, since there is
no quadrilateral equivalent to the swaptmesh command. For example, the
sequence:

bgngstrip ()
v3f (vert0)
v3f (vertl)
v3f (vert2)
v3f (vert3)
v3f (vertd)
v3f (vert5)
v3f (vert6)
v3f (vert7)

endgstrip ()

2-26 Graphics Library Programming Guide IRIS-4D Series

draws three quadrilaterals: (0,1,3,2), (2,3,5,4), and (4,5,7,6).

1--3--5--7
[

o
0--2--4--6

The system determines quadrilateral direction (for purposes of backface
elimination and two-sided lighting) for each quadrilateral as though each
quadrilateral were an independent polygon with vertex order (n, n+1, n+3,
n+2). Thus the three quadrilaterals in the example above are all backfacing,
because vertices (0,1,3,2), (2,3,5,4), and (4,5,7,6) all have clockwise screen
rotation. In the following example, however, quadrilaterals (0,1,3,2) and
(2,3,5,4) are backfacing, but quadrilateral (4,5,7,6) is frontfacing (its screen
rotation is counter-clockwise).

N — — W

Note that the vertex order required by quad strips matches the order required
for “equivalent” triangle meshes. Thus the first example vertex sequence
produces:

1--3--5--7
INCEN TN
FNE NN
0--2--4--6

when bounded by bgntmesh () and endtmesh () calls. In general,
quadrilateral data looks better when drawn with gst rip than with tmesh.
This is because Gouraud-shading calculations operate on the original
quadrilateral data, rather than on the decomposed triangles.

There is no maximum number of vertices that can be specified between

bgngstrip and endgstrip. If the number is odd, however, the result is
undefined.

Version 2.0 Drawing 2-27

Note: The IRIS-4D VGX graphics hardware uses vertex normals to
determine how to decompose quadrilaterals into triangles during scan
conversion. If you do not specify vertex normals, or (equivalently) if
the four vertices share the same normal, the selected decomposition
matches that of the equivalent triangle mesh.

2.24 Controlling Polygon Rendering : (

The polymode statement lets you spemfy how the system renders polygons.
This statement controls polygons created with triangular mesh or
quadrilateral strips as well as explicit polygons (that is, polygons created
inside a bgn/end loop). Note that this command does not affect the
transformation or clipping of polygon vertices. Only polygons generated by
arcf, cirf, polf, rectf, splf, bgn/end polygon, bgn/end tmesh,
bgn/end gstrip, and by the NURBS surface software are affected.

void polymode (mode)
long mode;

mode can be one of the following symbols:

PYM_POINT draw only points at each vertex | (
PYM_LINE draw lines from vertex to vertex.
PYM_FILL fill the polygon interior

PYM_HOLLOW fill only interior pixels at the boundaries

PYM_POINT and PYM_LINE draw points and lines consistent with all
applicable point and line modes. Thus antialiasing (pnt smooth and
linesmooth) as well as 1inewidth and linestipple are significant.
PYM_FILL is the standard fill operation that was previously the only option.

Polygons drawn in PYM_LINE mode clip differently frdm.clbsed lines: the.

PYM_LINE polygon always clips to a closed line, with ling segments- ;
generated along the edges of the clip planes, usually the viewport. (,

2-28 Graphics Library Programming Guide IRIS-4D Series

PYM_HOLLOW supports a special kind of polygon fill with the following
properties:

* Only pixels on the polygon edge are filled. These pixels form a single-
width line (regardless of the current linewidth) around the inner perimeter
of the polygon.

* Only pixels that would have been filled (PYM_FILL) are changed (i.e. the
outline does not extend beyond the exact polygon boundaries).

« Pixels that are changed take the exact color and depth values they would
have had the polygon been filled. :

Because their pixel depth values are exact, hollow polygons can be
composed with filled polygons accurately. Both hidden-line and scribed-
surface renderings can be done taking advantage of this fact.

Not all IRIS models support polymode. Use getgdesc with the
GD_POLYMODE argument to determine whether polymode is supported.
The IRIS-4D VGX requires special setup to support PYM_HOLLOW. Refer
to the manual page polymode(3G) for details.

Version 2.0 Drawing 2-29

2.3 High-Level Subroutines

Using the high-performance drawing subroutines described in the last
section, it is possible to draw any of the primitive geometric figures in the
Graphics Library (except curves and surfaces, which are covered in Chapter
14). However, because rectangles, circles, and arcs are drawn so often, the
Graphics Library provides subroutines to draw these objects.

In this section and the next, most of the subroutine names follow a pattern. If
the geometric figures they draw are filled (i.e., are polygons), the root name
has an fappended to it. There is no fif the figure is unfilled. For example,
rect draws a rectangular outline, while rectf draws a filled (solid)
rectangle. The arguments to the subroutines can be short integers (16 bits),
long integers (32 bits), or floating point numbers (32 bits). Floating point is
the default, but if the argument type is short integer, there is an s suffix. If
the argument type is a long integer, the subroutine name takes an i suffix. As
with the vertex subroutine, only long integers in the range of -223 and 223-1
are converted correctly. Treat long integers as 24-bit 2s-complement
numbers sign-extended to 32 bits.

For example, the rectangle subroutine has six forms: short integer filled, long
integer filled, floating point filled, short integer unfilled, long integer
unfilled, and floating point unfilled. The names for these six are,
respectively, rectfs, rectfi, rectf, rects, recti, and rect.

2-30 Graphics Library Programming Guide IRIS-4D Series

2.3.1 Rectangles

The Graphics Library provides two types of rectangle subroutines—filled
and unfilled. Filled rectangles are just rectangular polygons, and unfilled
rectangles are rectangular outlines. Only the x and y coordinates of the
corners of the rectangle are given, and the z coordinate is assumed to be zero.
The rectangle is assumed to be aligned with the x and y axes.

Table 2-2 lists the six different forms of the rectangle subroutine.

Filled Unfilled
16-bit integer rectfs rects
32-bit integer rectfi recti
32-bit float rectf rect

Table 2-2. The Rectangle Subroutine

The arguments to all six rectangle subroutines are the same: rect (x1, y1,
x2, y2). Thepoint (xI, yI)is one corner of the rectangle and (x2, y2) is
the opposite corner. Because the rectangle is assumed to be aligned with the
axes, the coordinates of the other corners would be (x/, y2) and (yI, x2).

Rectangles can undergo three-dimensional geometric transformations as
described in Chapter 7, and the resulting figure need not appear to be a
rectangle. (For example, imagine rotating the rectangle about the x axis so
that one end is farther from you and then viewing it in perspective. On the
screen, the rotated rectangle would appear to be a trapezoid.)

It is important to understand, however, that although rectangles created with
rect £ Orits variants can be transformed by the statements described in
Chapter 7, “Coordinate Transformations,” the z coordinates of such
rectangles (and circles, arcs, and other 2-D figures) remain zero, and the
apparent rotation or translation takes place because of manipulations to the
underlying transformation matrix. If you wish to build a composite of
different rectangular shapes (for instance, a 3-D cube) that is to be part of a
3-D model, the correct way is to use the 3-D drawing functions
bgnpolygon () and endpolygon ().

Version 2.0 Drawing 2-31

The following sample program draws a chess board with black and white
squares on a green background using the rectangle subroutine. In addition
(to demonstrate the unfilled rectangle subroutmes) there i isa red lme
outlining the board

#include»<gl/gi.h>

main ()

{
long i, 3;

prefposition (100, 500, 100, 500);
winopen ("chessboard") ;
color (GREEN) ;
clear();
for (1 = 0; i < 8; i = i+1)
for (j = 0; j < 8; j=3+1) {
if (odd(i+3))
color (WHITE);
else
color (BLACK) ;
rectfi (100 + i*25,
100 + j*25,
124 + 1*25),
. 124 + gx25) 7
}
color (RED) ;)
recti (97, 97, 302, 302);
sleep(3); o
gexit () ;
exit (0);

odd(n) /* returns 1 if n is odd;: 0 otherwise. */
long n;
{

return né&l;

2-32 Graphics Library Programming Guide IRIS-4D Series

Screen Boxes

Screen boxes are a subclass of rectangles. They are always 2-D only and are
always aligned with the screen coordinates. Two fast primitives exist in the
Graphics Library for drawing screen boxes: sbox and sboxf. As with rect
and rectf, the “f” signifies that the screen box is filled with the current
color and pattern. '

All screen box commands expect four arguments:

xI x coordinate of one corner of the box
yl y coordinate of one corner of the box
x2 xcoordinate of the opposite corner of the box

y2 y coordinate of the opposite corner of the box

The screen box drawing commands (Table 2-3) fill in the rectangle given
these diagonal corner coordinates. The sbox statements draw 2-D, screen-
aligned rectangles using the current color, writemask, and linestyle. The
sbox£ statements draw filled 2-D, screen-aligned rectangles using the
current color, writemask, and pattern.

Filled Unfilled

16-bit integer sboxfs sboxs
32-bit integer sboxfi sboxi

32-bit floating point sboxf sbox

Table 2-3. Screen Box Commands

You cannot use lighting, backfacing, depth-cueing, z-buffering, Gouraud
shading, or alpha blending with the sbox or sboxf commands.

Version 2.0 Drawing 2-33

2.3.2 Circles

Like rectangles, circles are two-dimensional figures, and lie in the x-y plane,
with z coordinates equal to zero. If they are viewed at an angle, circles
appear to be ellipses.

The arguments for the circle subroutines include the center point (x, y) and
the radius. Like rectangles, circles are either filled or unfilled, and the center
coordinates and radius are specified in integers, short integers, or floating
point numbers. Table 24 lists the six different circle subroutines.

Filled Unfilled

16-bit integer circfs circs
32-bit integer circfi circi
32-bit floating point circf circ

Table 2-4. The Circle Subroutine

The parameters to all six subroutines are the same: circ(x, y, radius).
Circles are drawn with 80 equally spaced vertices, either as a closed line (for
unfilled circles) or as a polygon (for filled circles). If your application draws
many tiny circles, it is a good idea to write a circle primitive that uses fewer
line segments, and that can therefore be drawn much more quickly. A
similar problem can arise for very large circles—if they are magnified
enough, you can easily see the individual straight line segments. However,
circles drawn with 80 segments look reasonably good over a wide range of
sizes.

2-34 Graphics Library Programming Guide IRIS-4D Series

The following sample program draws an archery target using filled circles:
#include <gl/gl.h>

main ()
{
prefposition (100, 500, 100, 500);
winopen ("bullseye") ;
ortho2(-1.0, 1.0, -1.0, 1.0);
color (BLACK) ;
clear ()
color (GREEN) ;
circf(0.0, 0.0, 0.9);
color (YELLOW) ;
circf(0.0, 0.0, 0.7);
color (BLUE) ;
circf (0.0, 0.0, 0.5);
color (CYAN) ;
circf (0.0, 0.0, 0.3);
color (RED) ;
circf (0.0, 0.0, 0.1);
sleep(3)
gexit ();
exit (0);

Version 2.0 Drawing 2-35

2.3.3 Arcs

Arcs are also two-dimensional figures, and like circles and rectangles, they
are assumed to lie in the plane z = 0. When viewed at an angle, arcs appear
to be segments of ellipses. Arcs can be either filled or unfilled. Unfilled arcs
are simply segments of circles, while filled arcs look like sections of pie

(Figure 2-14). (

Arcs are defined by a center (x, y), a radius, a starting angle, and an ending
angle. The angles are measured from the positive x axis in a
counterclockwise direction. Negative angles are measured clockwise. Both
angles are expressed as integers in tenths of degrees, so a 90-degree angle
would be expressed as 900.

An arc is always drawn counterclockwise from the starting angle to the
ending angle, so if startang =0 and endang = 100, a 10 degree arc would
be drawn. If the starting angle is 100 and ending angle is 0, a 350 degree arc
is drawn.

The circular portions of the arcs drawn are approximated by straight lines,

and a full 360- degree arc consists of 80 segments. If your application draws

many tiny arcs, it is a good idea to write an arcs primitive that uses fewer line
segments, and that can therefore be drawn much more quickly. A similar

problem can arise for very large arcs—if they are magnified enough, you can

easily see the individual straight line segments. However, arcs drawn with

80 segments look reasonably good over a wide range of sizes. (

2-36 Graphics Library Programming Guide IRIS-4D Series

@)

2 start

é\ \ g
y
X
arci(x,y,radius,startang,endang);
(b)

\ endang

\\

S start
y Y \I °

X

arcfi(x,y,radius,startang,endang);

A center point, radius, start angle, and end angle define
circular arcs. They are drawn counterclockwise in the x-y
plane, with angles measured from the x-axis.

Figure 2-14. Arcs

Version 2.0 Drawing 2-37

Arcs subroutines come in the same six forms as subroutines for circles and
rectangles (Table 2-5):

Filled Unfilled

16-bit integer arcfs arcs

32-bit integer arcfi arci
32-bit float arcf arc

Table 2-5. The Arc Subroutine

The order of arguments for all six subroutines is given by: arc(x, vy,

radius, startang, endang). The following sample program draws a
pie chart using filled arcs:

#include <gl/gl.h>

main ()

2-38

{

prefposition (100, 500, 100, 500);
winopen ("piechart");
ortho2(-1.0, 1.0, -1.0, 1.0);
color (BLACK) ;

clear () ;

color (RED) ;

arcf (0.0, 0.0, 0.9, O, 800);
color (GREEN) ;

arcf(0.0, 0.0, 0.9, 800, 1200);
color (YELLOW) ;

arcf(0.0, 0.0, 0.9, 1200, 2200);
color (MAGENTA) ;

arcf (0.0, 0.0, 0.9, 2200, 3400);
color (BLUE) ;

arcf(0.0, 0.0, 0.9, 3400, 0);
sleep (3)

gexit () ;

exit (0);

Graphics Library Programming Guide

IRIS-4D Series

2.4 Old-Style Drawing

The architecture of Silicon Graphics' earlier systems was tuned to a different
set of subroutines for drawing points, lines, and polygons. For compatibility,
all of the earlier subroutines are still in the Graphics Library. In most cases,
the internals of these earlier subroutines have been rewritten to use the new
high-performance subroutines. However, to guarantee that you get the
optimal performance of the new programs, use the subroutines described at
the beginning of this chapter.

Except for polygons, the figures drawn by the old-style subroutines are the
same as those drawn by the high-performance ones. For example, points are
drawn as a single pixel. However, the earlier subroutines did not draw point
sampled polygons. They effectively drew point sampled polygons with lines
connecting the vertices. For compatibility, the old polygon subroutines draw
point sampled polygons with an outline, so they appear exactly the way they
did before. For many polygons, the drawing time is increased when both the
polygon and its outline are drawn.

In most cases, absolute compatibility with the old polygon filling style is not
required, so there is a subroutine, glcompat (), that you can use to turn off
outlining for the old-style subroutines. You can significantly increase
polygon drawing performance for old code by turning off the compatibility
mode. glcompat () takes two arguments. The first is the compatibility
mode to be altered, and the second is the value to which it is set. To turn off
polygon outlining, use:

glcompat (GLC_OLDPOLYGON, O0);

The default GLC_OLDPOLYGON value is 1 (outlining is turned on).

Note that the subroutines that draw rectangles, circles, and arcs all actually
draw polygons, s0 glcompat can turn outlining off or on for all four of
these types of filled figures.

The naming conventions for the rest of the subroutines in this chapter are
similar to those used by the arc, circle, and rectangle subroutines. However,
since the remaining subroutines are usually three-dimensional, they come in
two-dimensional and three-dimensional versions. As with arc, circle, and
rectangle, the two-dimensional versions are assumed to lie in the plane z = 0,
but those figures can be transformed out of that plane by the various
transformation and viewing subroutines discussed in Chapter 7.

Version 2.0 Drawing 2-39

The naming convention assumes that most subroutines are three-dimensional,
so, for example, the point subroutine pnt is the three-dimensional version,
and pnt2 requires no z component to its arguments.

2.4.1 Current Graphics Position

In the new architecture, the graphical figures are sent together—a set of
points, a polyline, and a polygon are sent bracketed by a bgn<type>and an
end<type> subroutine. The rendering of the figure might not start until the
end<type> arrives.

In older systems, points were sent as individual subroutines, lines as a series
of move and draw subroutines, and polygons as a polygon move, followed by
polygon draw subroutines, and finally a polygon close subroutine.

Between the subroutines drawing polylines or polygons, the system
maintained a current graphics position. Each draw subroutine draws from the
current graphics position to the point specified by draw. The current
graphics position is then set to the new point.

Similarly, the current graphics position is used by polygon subroutines
discussed in the next sections.

getgpos

The system automatically maintains the current graphics position, so very
few applications need to access it directly, although getgpos returns the
current graphics position. Its arguments include four pointers to floating
point numbers in which the homogeneous coordinates of the current
transformed point are returned. The returned values are in clip coordinates
(see Section 7).

For compatibility, the current graphics position is maintained in exactly the
same way for all the graphics subroutines listed in the rest of this chapter.
All the graphics subroutines mentioned up to now do not depend on the
current graphics position, and in fact, leave it in an unpredictable state.

void getgpos (fx, fy, fz, fw)
Coord *fx, *fy, *fz, *fw;

2-40 Graphics Library Programming Guide IRIS-4D Series

2.4.2 Points

There are six versions of the point subroutine (Table 2—-6).

3-D

16-bit integer pnt2s

2-D
32-bit integer pnt2i
32-bit float pnt2

pnts
pnti

pnt

Table 2-6. The pnt Subroutine

The argument lists are: pnt2(x, y) and pnt(x, y, z). Inaddition to
drawing a point, pnt updates the current graphics position to its location.

The following program draws 100 points'in a square area of the window:

#include <gl/gl.h>
main ()
{

int i, 3j;

prefposition (100,

winopen ("pointsquare");

color (BLACK) ;
clear () ;
color (BLUE) ;

for (1 = 0; i < 10; i
for (j = 0; j < 10;
pnti(i*5, j*5,

sleep (3);
gexit () ;
exit (0) ;

Version 2.0

100, 500);

i+1)

J = j+1)
0);

Drawing 2-41

2.4.3 Lines

Lines can be drawn using two subroutines: move and draw.

‘The move subroutine sets the current graphics position to the specified
vertex, and draw draws from the current graphics position to the specified
point and then updates the current graphics position to that vertex. The
arguments and types of the move and draw subroutines are the same as for
the point subroutines. Table 2—7 is a complete list of the move and draw

subroutines.

2-D 3-D
16-bit integer move2s moves
32-bit integer move2i movei
32-bit float move2 move
16-bit integer draw2s draws
32-bit integer draw2i drawi
32-bit float draw2 draw

Table 2-7. The move and draw Subroutines

2-42 Graphics Library Programming Guide

IRIS-4D Series

This sample program draws the outline of a blue box on the screen using the
move and draw subroutines:

#include <gl/gl.h>

]

main ()

{
prefposition (100, 500, 100, 500);
winopen ("bluebox") ;
color (BLACK) ;
clear();
color (BLUE) ;
move2i (200, 200);
draw2i (200, 300);
draw2i (300, 300);
draw2i (300, 200);
draw2i (200, 200);
sleep (3);
gexit () ;
exit (0);

2.4.4 Polygons

The old-style subroutines that draw filled polygons corresponding to the
move and draw subroutines are pmv and pdr. Table 2-8 is a complete list
of the filled polygon subroutines.

2-D 3-D
16-bit integer pmv2s pmvs
32-bit integer pmv2i pmvi
32-bit float pmv2 pmv
16-bit integer pdr2s pdrs
32-bit integer pdr2i pdri
32-bit float pdr2 pdr

Table 2-8. The Filled Polygon Subroutines

Version 2.0 Drawing 2-43

A polygon is specified by a pmv to locate the first point on the boundary,
then a sequence of pdr subroutines for each additional vertex, and finally a
pclos to close and fill the polygon. The pclos subroutine has no
arguments; all the other subroutines take either two or three arguments of the
appropriate type.

The following sample program draws a filled blue polygon:
#include <gl/gl.h>

main ()

{
prefposition (100, 500, 100, 500);
winopen ("bluebox") ;
color (BLACK) ;
clear();
color (BLUE) ;
pmv2i (200, 200);
pdr2i (200, 300);
pdr2i (300, 300);
pdr2i (300, 200);
pclos () ;
sleep(3);
gexit () ;
exit (0);

}

Note that pclos connects back to the original starting point.
Finally, the Graphics Library has two sets of subroutines that take arrays of
vertex coordinates and draw filled and unfilled polygons. These subroutines

draw exactly the same figures as the move and draw (or polygon move and
polygon draw) subroutines, but they are often more convenient to use.

2-44 Graphics Library Programming Guide , IRIS-4D Series

Filled polygons are drawn by polf, and polygon outlines are drawn by
poly. Table 2-9 is a complete list of the polygon and filled polygon
subroutines.

2-D 3-D
16-bit integer poly2s polys
32-bit integer poly2i polyi
32-bit float poly2 poly
16-bit integer polf2s polfs
32-bit integer polf2i polfi
32-bit float polf2 polf

Table 2-9. The Polygon and Filled Polygon Subroutines

Both the polf and the poly subroutines take two arguments. The first
argument, 7, is the number of vertices in the polygon, and the second is a
two-dimensional array containing the coordinates.

This program draws a hexagon using polf :
#include <gl/gl.h>

long parray[6][2] = {{200,100}, {100,300}, {200,500},
{400,500}, {500,300}, {400,100}};

main ()

{
prefposition (100, 600, 100, 600);
winopen ("hexagon") ;
color (BLACK) ;
clear();
color (GREEN) ;
polf2i (6, parray):;
sleep(3);
gexit ();
exit (0);

Version 2.0 Drawing

2-45

2.5 Linestyles

Linestyle is the term used to describe the way the system draws lines on the

screen. It represents a 16-bit pattern on the screen. The system runs this

pattem repeatedly to determine which pixels in a 16-pixel line segment it

must color. For example, the linestyle OXFFFF draws a solid line; 0XFOFO

draws a dashed line; and 0x8888 draws a dotted line. The least significant bit (
of the pattern is the mask for the first pixel of the line and every sixteenth

pixel thereafter.

deflinestyle

deflinestyle defines a linestyle. Its arguments specify an index into a
table (n), which stores linestyles and a 16-bit linestyle pattern (Is). There are
216 possible linestyle patterns. By default, index O contains linestyle
OxFFFF, which draws solid lines. You cannot redefine the linestyle at index
0. k

To replace a linestyle, specify the index of the old linestyle in place of the
new one.

—

void deflinestyle(n, ls) (i
short n;
Linestyle ls;

setlinestyle

There is always a current linestyle; the system uses it to draw lines and to
outline rectangles, polygons, circles, and arcs. Linestyle O is the default
linestyle. Use setlinestyle to select another linestyle. Its argument,
index, is an index into the linestyle table built by calls to deflinestyle.

void setlinestyle (index)
short index;

2-46 Graphics Library Programming Guide IRIS-4D Series

2.5.1 Modifying the Linestyle Pattern

Two routines modify the application of the linestyle pattern: 1srepeat and
linewidth. You can get the current values for these attributes using
getstyle, getlsrepeat, and getlwidth.

Isrepeat

Use 1srepeat to create linestyles that are longer than 16 bits. 1srepeat
multiplies each bit in the pattern by factor. Consequently, each 0 in the
linestyle pattern becomes a series of factor x 0, and each 1 becomes a series
of factor x 1. For example, if the pattern is OXFEQO and factor=1, the
linestyle is nine bits off followed by seven bits on; f factor=3, the linestyle is
27 bits off followed by 21 bits on.

void lsrepeat (factor)
long factor;

linewidth

linewidth specifies the width of a line. The system measures the width in
pixels along the x axis or along the y axis. It defines the width of a line as the
number of pixels along the axis having the smallest difference between the
endpoints of the line.

void linewidth(n)

short n;

getistyle

getlstyle returns the index of the current linestyle.

long getlstyle()

Version 2.0 Drawing 2-47

getlsrepeat

getlsrepeat returns the factor (integer) by which the linestyle is multiplied
for patterns that are longer than 16 bits.

long getlsrepeat ()

getlwidth

getlwidth returns the current linewidth in pixels.

long getlwidth ()

2.6 Patterns

You can fill rectangles, polygons, and arcs with arbitrary patterns. A pattern

is an array of short integers that defines a rectangular pixel array. The

pattern controls which pixels the system colors when it draws filled (
polygons. The system aligns the pattern to the lower-left corner of the

screen, rather than to the filled shape, so that the pattern appears continuous

over large areas.

defpattern

defpattern defines patterns. Its arguments specify an index into a table of
patterns (n), a size (size), and an array of short integers (mask). A pattern can
be 16x16 or 32x32. The origin of the pattern is the lower-left corer of the
screen. You define the bottom row first. Specify each row of a 16x16
pattern with a single short; specify each row of a 32x32 pattern with two
shorts, first the left 16 bits, then the right. Bit 0 of each short is the rightmost
bit of its respective position in the row.

2-48 Graphics Library Programming Guide IRIS-4D Series

You cannot redefine the pattern at index 0.

void defpattern(n, size, mask)
short n, size;
short *mask;

setpattern

setpattern selects which defined pattern the system uses defpattern
provides an index that you use as the argument for setpattern. Pattern 0

is the default pattern.

void setpattern (index)
short index;

getpattern

getpattern returns the index of the current pattern.

long getpattern ()

Version 2.0

Drawing

2-49

3. Characters and Fonts

Chapter 2 describes how to draw geometric figures such as points, lines, and
polygons. This chapter tells one way to display textual information.

The IRIS-4D supports the rapid display of rasterized characters in multiple
fonts. The fonts can be fixed or variable pitch, and can come in different
point sizes. You can design and use your own fonts or make use of the
default fonts supplied with the system.

This chapter describes the subroutines that position and draw characters,
define fonts, and determine information about the currently defined font.

The NeWS™ font manager described in the 4Sight documentation offers a
more flexible way to display text in a program than the method presented in
this chapter. Since the NeWS font manager used by 4Sight is also supported
in the X Window System™ implementation on IRIS-4D Series systems, the
NeWS font manager provides compatibility with other window systems and
programs as well. (For information on the NeWS font manager, refer to the
4Sight User’s Guide, Volume I: Programming Guide.) The font information
in this chapter is provided for historical (as well as performance) reasons.

Version 2.0 Characters and Fonts 3-1

3.1 Characters

Use cmov and charstr to draw text. cmov determines where the system
draws text on the screen, and charstr draws a string of characters.

The character string is drawn in the current font, which, by default, is a fixed-
width sans-serif font 9 pixels wide. Strings drawn with raster fonts are not
scaled; unless special care is taken, when a labeled object shrinks as it moves
away from the viewer, for example, the label stays the same size. Similarly,
no matter what rotation is in effect, the character string maintains the same
orientation (horizontal for any standard font), because fonts are defined in 2-
D, with respect to the raster display, and scaling, rotating, or translating such
2-D primitives has no meaning in a 3-D context.

cmov

The current character position determines where the system draws text on the
screen. cmov moves the current character position to a specified point (as
move sets the current line drawing position). x,y, and zare integers, shorts,
or real numbers in 2D or 3D that specify a point in world coordinates. cmov
transforms the world coordinates into window coordinates, which becomes
the new character position. cmov does not affect the current graphics
position.

The current character position is transformed in exactly the same way as a
vertex. If, for example, it is clipped out by the current viewing
transformation, the current character position is set to invalid, and any
character strings that are drawn do not appear. cmov does not draw
anything—it simply sets the character position where drawing will occur
when charstr is issued.

2-D 3-D
short integer cmov2s cmovs
long integer cmov2i cmovi
float cmov2 cmov

Table 3-1. The cmov Subroutine

3-2 Graphics Library Programming Guide IRIS-4D Series

The argument lists are: cmov2 (x, y) and cmov (x, y, z).

Note that character position includes z values as well as x and y values.
Because of this, you can z-buffer and depthcue characters.

charstr

charstr draws a string of raster characters. The origin of the first character
in the string is the current character position. After the system draws the
string, it updates the current character position to the pixel to the right of the
last character in the string. Character strings are null-terminated in C. The
text string is drawn in the current font and color.

void charstr(str)
String str;

If the origin of a character string lies outside the viewport, no characters in
the string are drawn. If the origin is inside the viewport, the characters are
individually clipped to the screenmask. When the viewport is larger than the
screenmask, character strings that begin inside the viewport are clipped to the
screenmask. This process is called fine clipping. Character strings that begin
outside the viewport are clipped out; this is called gross clipping. For an
illustration of character clipping, see Figure 3-1.

getcpos

Similar to getgpos but for character position, getcpos returns the current
character position’s screen coordinates into the locations pointed to by ix and
iy.

void getcpos (ix, 1iy)
Screencoord *ix, *iy;

Version 2.0 Characters and Fonts 3-3

3-4

viewport
Ve

before clipping)
; screenmas

after gross clipping / viewport
| - screenmask

after fine clipping / viewport
‘ e ‘ screenmask

or incidunt ut labore et dold

Ninimim veniami quis

Gross clipping removes all strings that start outside the
viewport. Fine clipping trims individual characters to the
screenmask.

Figure 3-1. Gross and Fine Clipping

Graphics Library Programming Guide IRIS-4D Series

(

The following example draws two lines of text. The program assumes that
the default font is less than 12 pixels high.

#include <gl/gl.h>

main ()
{
prefposition (100, 500, 100, 500);
winopen ("rasterchars2");
color (BLACK) ;
clear();
color (RED) ;
cmov2i (50,80);
charstr ("The first line is drawn ");

charstr("in two parts. ");

cmov2i (50, 66);

charstr("This line is 14 pixels lower. ");
sleep(3);

gexit () ;

exit (0) ;

}

This program illustrates two things. First, notice that the first line is drawn in
two parts. The first cmov2i sets the current character position to 50 pixels
over and 80 pixels up from the lower-left corner of the window. After the
first string is drawn, the current character position is advanced to follow the
space character at the end of the line. When “in two parts.” isdrawn, it
continues from the current character position. Finally, the character position
is reset to start below the beginning of the top line, and the second line is
drawn.

Note that the characters are drawn in the current color (RED). Because
nothing was mentioned in the program about fonts, all the strings are drawn
in the current font (font 0), which is defined when winopen is called.

The next example uses rotate (a subroutine that has not yet been covered)
that illustrates that character strings are drawn in the same orientation no
matter where they move, and that cmov is transformed like any other
geometry. Inthe example, rotate rotates about the zaxis (coming directly
out of the screen) by 5 degrees each time. The rotation is about the origin, so
vertex p/ should remain fixed. The vertex labels rotate with the vertices.

#include <gl.h>

Version 2.0 Characters and Fonts 3-5

float plf[] = {0.0, 0.0};
float p2[] = {0.6, 0.0};
" float p3[] = {0.0, 0.6};
main ()
{
long 1i;

prefposition (100, 500, 100, 500);
winopen ("rasterchars");
ortho2(-1.0, 1.0, -1.0, 1.0);

for (1 = 0; i < 40; i++) {

}

strwidth

color (BLACK) ;
clear();
rotate (50, 'z');
color (RED) ;
bgnpolygon () ;

v2f (pl); v2f(p2); v2f(p3);
endpolygon () ;
color (GREEN) ;
cmov2 (0.0, 0.0);
charstr ("vertl");
cmov2 (0.6, 0.0);
charstr ("vert2");
cmov2 (0.0, 0.6);
charstr ("vert3");
sleep(1l);
gexit ();
exit (0);

strwidth returns the width of a text string in pixels, using the character
spacing parameters in the current raster font. The string can be any null-
terminated ASCII string of characters. Note that all characters in some fonts
might not be the same width, so strwidth does not necessarily return the
width of a character times the number of characters in the string. The default
font has a fixed width of nine pixels, so if that is the current font, st rwidth
returns nine times the string’s length.

3-6 Graphics Library Programming Guide IRIS-4D Series

(

long strwidth (str)
string str;

Version 2.0 Characters and Fonts 3-7

3.2 Fonts

A font on the IRIS-4D is a collection of up to 255 rectangular arrays of
masks. If a 1 appears in a mask, then the corresponding pixel is turned on to
the current color and if a O appears, the pixel is left as it is. For example, the
following bitmasks might be used to draw the character “A”:

Binary Hexadecimal
0000011000000000 = 0x0600
0000011000000000 = 0x0600
0000111100000000 = OxOFO0O
0000111100000000 = 0xOFO0O0
0001100110000000 = 0x1980
0001100110000000 = 0x1980
0011000011000000 = 0x30CO
0011111111000000 = O0x3FCO
0110000001100000 = 0x6060
0110000001100000 = 0x6060
1100000000110000 = 0xCO030
1100000000110000 = 0xCO030

A font can have definitions for any character value between 1 and 255.
Typically, the bitmask entry for each ASCII character is a mask that draws
that character. For the example above, the ASCII value of “A” is 65
(decimal), so entry 65 in the font is associated with the bitmask above. If
such a font were defined, the string “AAA” would draw three copies of the
character whose bitmask appears above.

In addition to the bitmask information for each character, you need to know
the width and height of the character in pixels. The width cannot be inferred
from the bitmask, since all bitmask data comes in 16-bit words. In the letter
A example above, the width is 12 bits—at most 12 bits are written
horizontally for this character. The height above this character “A” is also 12
bits.

Normally, a character’s origin is at the lower-left corner of the bitmask, as is
the case for the A above. The character is placed by placing its bitmask so
that the bitmask’s origin is at the current character position. For a character
with a descender, such as g, j, ory, you needthe lowest couple of lines of the
bitmark to lie below the current character position, so the origin should not
be at the lower-left corner. Two values, the xoffset and the yoffset, tell how
far the character’s origin must be moved to bring it to the lower-left corner.
For characters with descenders, yoffset is typically negative (see Figure 3-2).

3-8 Graphics Library Programming Guide IRIS-4D Series

Finally, another number for each character indicates how far to the right the
current character position must be advanced after drawing the character.
This is usually different from the width, and is labeled the x increment. In
the A example above, the character position would probably be advanced by
14 pixels to leave a little space between it and the next character.

To define a single character, you need the bitmask itself, and the width,

height, xoffset, yoffset, andxincrement. The routine defrasterfont allows’
you to define a collection of characters so described (see Figure 3-2).

Version 2.0 Characters and Fonts 3-9

yoffset -2 -

3-10

baseline

xinc 9

defrasterfont (n, ht, nc, chars, nr, rasters);

chars['g’] ={ 724, 8,

byte offset w

into rasterarray

short N
rasterarray [1 ~ =1{.--
position 724 > 0x7EQ0,
0x7F00,
OX7EQO,
}

9, 0, -2, 9}
h xoffset yoffset xinc

0xC300, 0x0300, 0x0300,
0xC300, 0xC300, 0xC300,

Raster font characters are defined by a bitmap, 1 bit per
pixel. The width and height of the character, the number of
bits in one row of the bitmap, and the baseline position are
also specified. See the manual page defrasterfont in the
Reference Guide for a more complete example.

Figure 3-2. defrasterfont

Graphics Library Programming Guide

IRIS-4D Series

To simplify matters, the character bitmasks are packed together in one array
of 16-bit values (shorts), so the bitmask is determined by the offset into the
bitmask array. For example, if the font contains the letter A above as its first
character, and a bitmask for B as its second, the offset for B is 12 shorts (the
length of the bitmask definition of A). Note that the length and width
together determine the number of shorts in a character’s definition.

defrasterfont

defrasterfont defines a raster font. It takes six arguments—n, ht, nc,
chars, nr, and raster:

* nis a font number

* htis an integer that specifies the maximum height of the font characters in
pixels

* nc gives the number of characters in the font, which is the number of
elements in the chars array

* chars contains a description of each character in the font. The description
includes the height and width of the character in pixels, the offsets from the
character origin to the lower-left corner of the bounding box, an offset into
the array of rasters, and the amount to add to the current character x
position after drawing the character. charsis an array of structures of type
Fontchar, defined in the standard header file gl/gl.h. Figure 3-2 gives a
sample character definition.

* raster is an array of nr shorts of bitmap information. It is a one-
dimensional array of bitmask bytes ordered from left to right, then bottom
to top. Mask bits are left-justified in the character’s bounding box.

void defrasterfont (n, ht, nc, chars, nr, raster)
short n, ht, nc, nr;

Fontchar chars([];

short raster[];

Font 0 is the default raster font, which you cannot redefine. It is a Helvetica-
like font with fixed-pitch characters. If the viewport is set to the whole
screen, approximately 142 of the default characters fit on a line (1 character
occupies 9 pixels). If baselines are 16 pixels apart, 64 lines fit on the screen.

Version 2.0 Characters and Fonts 3-11

font

font selects the font that the system uses whenever charstr draws a text

string. Its argument is the font number assigned to the font built by
defrasterfont. This font remains the current font until you use font to

select another font. (

font (fntnum)
short fntnum;

Here is a sample program that defines a font with three characters—a
lowercase j, an arrow, and the Greek letter sigma. The j is assigned to the
ASCII value of j, and the arrow and sigma are assigned to ASCII values 1
and 2 (written \001 and \0O2 in the C code). Two sample strings are then
written out, the first of which contains only characters that are defined, while
the second contains undefined characters. Note that when characters are not
defined, no error occurs—but nothing is drawn out for them.

/* Define a font with three characters -- a lower-case j,
* an arrow, and a greek sigma. Use ascii values 1 and 2
* (\001l and \002) for the arrow and sigma. Use the
* ascii value of j (= \152) for the j character. (i
*/

#include <gl/gl.h>
#define EXAMPLEFONT 1

#define efont_ht 16
#define efont_nc 127

unsigned short efont_bits[] = {

/* lower-case j */

0x7000, 0xd800, 0x8c00, 0x0c00, 0x0c00, 0x0c00, 0x0cOO,
0x0c00, 0x0c00, 0x1c00, 0x0000, 0x0000, 0x0cO00, 0x0cOO,

/* arrow */
0x0200, 0x0300, 0x0380, OxafcO, OxafeO, Oxaff0, OxafeO,
OxafcO, 0x0380, 0x0300, 0x0200, (j

/* sigma */

0xffcO, OxcOcO, 0x6000, 0x3000, 0x1800, 0x0c00, 0x0600,
0x0c00, 0x1800, 0x3000, 0x6000, Oxcl80, Oxff80,

3-12 Graphics Library Programming Guide IRIS-4D Series

}i
#define efont_nr (sizeof efont_ bits)

#define ASSIGN (fontch, of, wi, he, xof, yof, wid) \
fontch.offset = of; \
fontch.w = wi; \
fontch.h = he; \
fontch.xoff = xof; \
fontch.yoff = yof; \
fontch.width = wid

Fontchar efont_chars[127];

main () {

ASSIGN (efont_chars{'j'], o, 6, 14, 0, -2, 8);
ASSIGN (efont_chars(['\001']}, 14, 12, 11, 0, 0, 14);
ASSIGN (efont_chars{'\002'], 25, 10, 13, 0, 0, 12);

winopen ("font") ;

color (BLACK) ;

clear () ;

defrasterfont (EXAMPLEFONT, efont_ht, efont_nc,
efont_chars,
efont_nr, efont_bits);

font (EXAMPLEFONT) ;

color (RED) ;

cmov2i (100, 100);

charstr ("3j\001\002\001j3\002") ;

cmov2i (100, 84);

charstr ("ajb\001c\002d") ;

sleep(10);

gexit ();

exit (0) ;

Version 2.0 Characters and Fonts 3-13

3.3 Font Query Subroutines

The following subroutines return information about the current font—what
number it is, how high the characters are, and the maximum descender any
character has.

getfont

get font returns the index of the current raster font.

long getfont ()

getheight

getheight returns the maximum height of a character in the current raster
font, including ascenders (present in tall characters, such as the letters ¢ and
h) and descenders (present in such characters as the letters y and p, which
descend below the baseline). It returns the height in pixels.

long getheight ()

getdescender

getdescender returns the longest descender in the current font. It returns
the number of pixels the longest descender goes below the baseline.

long getdescender():

3-14 Graphics Library Programming Guide IRIS-4D Series

4. Display and Color Modes

The framebuffer on the IRIS-4D is organized as a set of bitplanes. One
bitplane contains exactly 1 bit of information for each pixel on the screen.
The number of bitplanes varies from system to system. These bits store not
only color information, but information about depth, overlays and underlays,
and, on a GT with alpha planes, an alpha channel.

As described in Chapter 6, smooth motion requires the system to keep two
copies of the color information. This chapter discusses only color
information—for discussions of smooth motion (double buffering), refer to
Chapter 6; for depth information (z-buffering), Chapter 8; for overlays and
underlays, Chapter 11; and for the alpha buffer, Chapter 15.

The creation of graphics includes two basic steps: first, the drawing
subroutines write data into the bitplanes, and second, the display hardware
interprets that data as colors on the screen. The Graphics Library subroutines
control both the pattemns of zeros and ones that are written into the bitplanes
of each pixel and the interpretation of those patterns as colors on the screen.

This chapter begins with a general discussion of color and how the settings of
the three color guns relate to the colors displayed on the screen. It is
followed by a discussion of RGBmode, a color mode that gives direct access
to the settings of the color guns. Gouraud shading in RGBmode, which
allows you to draw smoothly shaded figures, is then covered, followed by a
discussion of color maps and how to draw shaded objects using a color map.
Finally, a series of miscellaneous subroutines related to color are described,
including gamma ramps, multimap mode, blinking colors, and getting the
current color.

Version 2.0 Display and Color Modes 4-1

4.1 Color Display

If you have a standard monitor, it has three color guns that sweep out the
entire screen area 60 times per second. During this sweep, each gun points
directly at each of the pixels for a very short time. The color guns shoot out
electrons that strike the screen and cause it to glow.

Each pixel on the screen is composed of three different phosphors that glow
red, green, or blue. One color gun activates only the red phosphors, one only
the green, and the third only the blue. As each color gun sweeps across the
pixels, the number of electrons shot out (the intensity) is modified on a pixel-
by-pixel basis. Consider just the red color gun. If no electrons are fired at a
pixel, its phosphors do not glow at all, and it appears black. If the gun is
turned on to its highest intensity, the phosphor glows bright red. At
intermediate intensities, the colors vary between the two—from black to
bright red. The same is true for the other guns, except that the colors vary
from black to bright green, or from black to bright blue. The color your eye
perceives at a pixel is the combination of all three colors. Different
combinations of intensity settings of the guns generate a wide variety of
colors.

Each color gun can be set to 256 different intensity levels, ranging from
completely off to completely on. Setting 0 is completely off, and setting 255
is completely on. The intensities of the red, green, and blue guns at the pixel
determine its color. This is expressed as an “RGB triple”: three numbers
between 0 and 255 indicating the red, green, and blue intensity, in that order.

Black is represented by (0,0,0), bright red by (255,0,0), bright green by
(0,255,0), and so on. A few other examples include: (255,255,0) = yellow,
(0,255,255) = cyan, (255,0,255) = magenta, (255,255,255) = white. The
colors represented by black = (0,0,0), (1,1,1), (2,2,2), ..., (255,255,255) =
white are different shades of gray ranging from black to white. Since each
gun has 256 different settings, there are 256x256x256 = 16777216 different
colors available.

Note: For a more detailed discussion of color, see J.D. Foley and V. Van
Dam, Fundamentals of Interactive Computer Graphics, Addison-
Wesley Publishing Co., 1982. Also, the first example in Section 4.2
allows you to experiment with the correspondence between RGB
triples and perceived colors.

4-2 Graphics Library Programming Guide IRIS-4D Series

4.2 RGB mode

The simplest way to interpret pixel data is to provide 8 bits each (255 values)
for red, green, and blue, and to display exactly those values of red, green, and

blue on the screen. This is called RGB mode and, as described here, it
requires 24 bits of data per pixel.

The color subroutines used in the previous examples take only a single

argument, e.g., BLACK, GREEN, etc. This is the default, color map mode,

which is discussed later in this chapter.

The following sample program draws 64 rectangles in RGB mode and
illustrates a few of the possible colors available.

#include <gl/gl.h>

short whitevec([3]
short blackvec[3]

{255, 255, 255};
{0, 0, 0};

main ()
{
long red, green, blue;
long i, j, k, majorx, majory;
char string[100];
short rgbvector([3];

prefposition(0, 1023, 0, 1023);
winopen ("rgbdemo") ;
RGBmode () ;
gconfig () ;
c3s (blackvec) ;
clear() ;
for (i = 0; 1 < 4; i++) {
rgbvector[0] = red = i*85;
for (3 = 0; J < 4; j++) {
rgbvector[l] = green = j*85;
for (k = 0; k < 4; k++) {
rgbvector[2] = blue = k*85;
c3s (rgbvector) ;
if (1 < 2)
majory = 80;
else
majory = 520;

Version 2.0 Display and Color Modes

4-3

if (L == 0 || 1 == 2)

majorx = 80;
else

majorx = 520;
rectfi(majorx + 110*j, majory + 110%*k,

majorx + 110*j + 80, majory + 110*k + 80);
c3s (whitevec) ;
cmov2i(majorx + 110*j, majory + 110*k - 12);
sprintf (string, "%d %d %d",red,green,blue);
charstr(string);

}
}
sleep(3);
gexit () ;
exit (0);
}

This program draws 64 squares with all combinations of red, green, and blue
chosen from 0, 85, 170, and 255. Each square is labeled with its RGB triple
below it.

After opening the window in the usual way, RGBmode is called, followed by
gconfig. RGBmode is one of many subroutines that must be followed by
gconfig before it takes effect. Machine reconfiguration is not a simple task,
so the most efficient way to do it is to give a series of subroutines that
describe the new configuration, and then call gcon£fig to reconfigure once.
Calls to gconfig are not automatically performed after each subroutine that
requires reconfiguration, because t0o many calls to it in one piece of code
might hurt performance. This simple example changes only one part of the
configuration (to RGB mode) and you must call gconfig to make it take
effect.

The next subroutine, c3s, sets the color to the RGB triple specified by the
vector blackvec, which is initialized to contain zeros for the red, green, and
blue components. Like the vertex subroutines described in Chapter 2, the
color subroutines have various sizes (three-component and four-component)
and types: short integers (16 bits), long integers (32 bits), or floating point
values. The first location is the red component, the second is the green, and
the third is the blue component. In the four-component case, the fourth
component is called the alpha value, which is described in Chapter 15. For
this example, set the fourth component to 255 (or 1.0).

Table 4—1 lists the subroutines that set the RGB color.

4-4 Graphics Library Programming Guide IRIS-4D Series

(

RGB RGBA

16-bit integer c3s cids
32-bit integer c3i cdi
32-bit floating point ¢3f c4f

Table 4-1. The c Subroutine

The floating point versions are different because the floating point range is
not 0 to 255, but rather 0.0 to 1.0. This is useful for lighting calculations
(Chapter 9). The floating point range from 0.0 to 1.0 is mapped linearly to
the range from 0 to 255. Floating point values larger than 1.0 are mapped to
255.

The rest of the code is straightforward—the color vector is built up to contain
the requisite red, green, and blue components, and filled rectangles are drawn
in that color. The sprintf command is a standard C library routine that is
used here to create an ASCII string representation of the three values of the
red, green, and blue components.

After drawing each rectangle, the color is changed to white (255,255,255),
and the string describing the red, green, and blue components of the color are
printed underneath. If you have never worked with the red, green, and blue
components of color, you might want to modify this program (or create
another one) to allow you to experiment with different combinations.

Another convenient subroutine that specifies the red, green, and blue
components of coloris cpack. It takes a single 32-bit argument that
contains the packed 8-bit values of the red, green, blue, and alpha
components. The red component is the low order 8 bits, green is next, then
blue, and alpha is the high order bits. cpack (0x01020304) sets the red,
green, blue, and alpha components to 4, 3, 2, and 1, respectively. Use
cpack in exactly the same way you use the other color subroutines.

Version 2.0 Display and Color Modes 4-5

4.2.1 RGBcolor

For compatibility, the Graphics Library also contains an old-style subroutine
to set the RGB color. It is RGBcolor and it takes as arguments the three
individual components of the color.

void RGBcolor (red, green, blue) (j
short red, green, blue;

RGBcolor is supported for compatibility only; it is recommended that you
use the c31i, ¢3s, c3f, orcpack subroutine in code for the IRIS-4D.

The following program illustrates the use of RGBcolor to clear the screen to
the color (0,100,200):

#include <gl/gl.h>

main ()

{
prefposition (100, 500, 100, 500);
winopen ("RGBcolordemo") ;
RGBmode () ; '

gconfig () ; (
RGBcolor (0, 100, 200); _

clear();
sleep (3);
gexit () ;
exit (0);

4-6 Graphics Library Programming Guide IRIS-4D Series

4.3 Gouraud Shading

In the examples thus far, all lines and polygons are drawn in a uniform
color—every pixel in the line or polygon has the same color. Uniformly
colored polygons are called flat shaded polygons. If the geometric object you
are modeling has only flat (polygonal) faces, this might be the way it should
look; however, in many cases, the polygonal faces are used to approximate a
smooth curved surface. If the true surface is curved, colors tend to vary in a
continuous way across the surface. A flat shaded polygonal approximation
to the surface has a tiled look.

One way to improve the appearance of an approximated polygonal surface is
to use a large number of smaller polygons in the approximation. An easier
way is to shade or vary the color across the polygons. This is called Gouraud
shading. You can calculate the correct color for the true surface at each
vertex of the approximating polygon, and the graphics hardware shades the
polygon based on those values.

The graphics hardware on the IRIS-4D/GT and Personal IRIS shades the
polygons rapidly. (You can also shade polygons using lighting models,
positions and colors of lights, surface properties, etc. See Chapter 9.)
Lighting models calculate the colors only at polygon vertices, and the
resulting shading is the same whether you or the lighting model hardware
calculate the vertex colors.

To achieve polygonal shading, the system linearly interpolates the (RGB)
colors at each vertex along the edges connecting them, then interpolates the
interpolated colors on the edges across the interior of the polygon. The result
is a smooth color variation across the entire polygon.

To achieve Gouraud shading in lines, the system uses the same process,
except that only the first step—interpolating the color between the
endpoints—is required.

The interpolation is linear in all three components. For example, suppose the
edge of a polygon that is 6 pixels long is colored (0,20,100) at one end and
(75,60,50) at the other. The six pixels are colored (0,20,100), (15,28,90),
(30,36,80), (45,44,70), (60,52,60), and (75,60,50). Notice that each of the
color components changes smoothly from each pixel to the next. The red
component increases by 15 each time, the green component increases by 8,
and the blue component decreases by 10 for each pixel. In this case, the
pixel color differences happen to work out nicely to whole numbers. Usually
this is not the case, but the approximation is done as accurately as possible.

Version 2.0 Display and Color Modes 4-7

After the colors of the pixels on the edges of the polygon are determined, the
same process is used to find the colors of the pixels on the interior. Figure 4-
1 shows the result of shading a triangle whose vertices have colors

(0,20,100), (75,60,50), and (0,0,0).

(0,20,100)

(15,28,90)

0,16,80)

(30,36,80)

(15,24,70)

(0,12,60)

(45.44,70)

(30,32,60)

(15,20,50)

(0,8,40)

(60,52,60)

(45.40,50)

(30,28.,40)

(15,16,30)

(0,4,20)

(75,60,50)

(60,48,40)

(45,36,30)

(30,24,20)

(15,12,10)

(0,0,0)

Figure 4-1. Shaded Triangle

To shade a polygon, set the color before each vertex. The following program
draws a large shaded triangle whose vertices are bright red, bright green, and
bright blue.

4-8 Graphics Library Programming Guide IRIS-4D Series

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

float blackvect[3] = {0.0, 0.0, 0.0};
float redvect[3] = {1.0, 0.0, 0.0};
float greenvect[3] = {0.0, 1.0, 0.0};
float bluevect[3] = {0.0, 0.0, 1.0};
long triangle[3][2] = {

{ 20, 20},

{ 20, 380},

{380, 20}
}i
main ()
{

if (getgdesc(GD_BITS NORM SNG RED) == 0) {

fprintf (stderr, "Single buffered RGB not available on
this machine\n");

return 1;
}
prefsize (400, 400);
winopen ("shadedtri");
RGBmode () ;
gconfig () ;

c3f (blackvect);

clear();

bgnpolygon () ;
c3f (redvect);
v2i(triangle[0]);
c3f (greenvect) ;
v21i (triangle(l]);
c3f (bluevect) ;
v2i(triangle[2]);

endpolygon () ;

sleep(10);

gexit ();

return O;

Version 2.0 Display and Color Modes 4-9

When you run this program, the colors change smoothly along each edge,
and across the interior of the triangle. You can modify the colors at the
triangle’s vertices to see how they affect the picture.

To shade a polyline, do the same thing—set the color before each vertex
between bgnline and endline. (

Typically, polygons are small and do not have wildly different colors at their
vertices as the example above does. The following program implements a
simple lighting model in user code and uses it to draw a cylinder. Real
programs would not implement simple lighting calculations in user code;
they would take advantage of the high-performance lighting hardware in the
graphics pipeline.

#include <gl/gl.h>
#include <math.h>

#define RADIUS .9

#define max (x,y) (((x) > (y)) 2?2 (x) : (v))

float whitevec[3] = {1.0, 1.0, 1.0};
float blackvec([3] = {0.0, 0.0, 0.0};
float light([3] = {3.0, 0.0, 1.2};

float dot (), dist2();

main ()

{
float p0([3], pl[3], p2[3], p3[3];
float c0[3], c1[3], c2[3], c3[3];
float n0[3], nl([3], n2[3], n3[3];
float theta, x, dx, dtheta;
long n;

prefposition (100, 600, 100, 600);
winopen ("cylinder") ;
RGBmode () ;
geconfig();
ortho2{-1.5, 1.5, -1.5, 1.5);
c3f (blackvec); (ii
ciear():;
for (n = 1; n < 10; nt++) {
dx = 3.0/n;

4-10 Graphics Library Programming Guide IRIS-4D Series

dtheta = M _PI/n;
for (x = -1.5; x < 1.5; x = x+dx) {
for (theta = 0.0; theta < M _PI; theta += dtheta)
pO0[0] = pl[0] = x;
pO[1l] = p3[1l] = RADIUS*cos (theta);
pO[2] = p3[2] = RADIUS*sin (theta);
pl[1l] = p2[1] = RADIUS*cos (theta+dtheta);
pl[2] = p2[2] = RADIUS*sin (theta+dtheta);
p2[0] = p3[0] = x+dx;
n0[{0] = 0; nO[l] = pO[1]/RADIUS; n0[2]
p0[2]/RADIUS;
nl[0] = 0; nl[1l] = pl([1l]/RADIUS; nl[2]
pl[2]/RADIUS;
n2[0] = 0; n2([1l] = p2[1]1/RADIUS; n2[2]
p2[2]/RADIUS;
n3[0] = 0; n3[1l] = p3[1]/RADIUS; n3[2]
p3[2]/RADIUS;
c0[0]=c0[1]=cO0[2]=max(0.0,dot (light,n0)/
(.5+dist2(light,p0)));
cl[0]=cl[l]=cl[2]=max(0.0,dot (light,nl)/
(.5+dist2 (1ight,pl)));
c2[0]=c2[1]=c2[2]=max(0.0,dot (light,n2)/
(.5+dist2 (1light,p2))):
c3[0]=c3[1]=c3[2]=max(0.0,dot (light,n3)/
(.5+dist2 (light,p3})));
bgnpolygon () ;
c3f (c0); v3f(p0);
c3f (cl); v3f(pl);
c3f (c2); v3f(p2);
c3f (c3); v3f(p3);
endpolygon () ;
}

}
sleep(5);
}

/* dot: find the dot product of two vectors */
float dot (vl, v2)
float v1([3], v2[3];

{
return v1[0]*v2[0] + v1[1l]*v2[1l] + v1[2]*v2([2];

Version 2.0 Display and Color Modes

4-11

/*dist2: find the square of the distance between two points*/

float dist2(vl, v2)
float v1([3], v2[3];
{
return ((v1[0] - v2[0])*(v1[O] - v2[0])
+(v1[1l] - v2[1])*(v1l[1l] - v2[1}])
+(v1[2] - v2[2])*(v1[2] - v2[2]));
}

Although this program looks complicated, it is simple for a program that
does its own lighting calculations. The program approximates a half cylinder
by a set of n*n rectangles whose vertices lie on the surface of the cylinder.
The equation for the cylinder is: y 2 + z2 = RADIUS 2, where y and are
parameterized by 6 y = cos@), z = sin(0),0<6<mand -1.5 <x < 1.5.

Because you fix your eye above the middle of the cylinder, there is no need
to draw the bottom half. Given x and 6, you can define a point on the surface
as: (x, RADIUS * cos (8), RADIUS * sin (0)). At that point, the normal
vector is: (0, cos (0), sin (0)).

Assume that the cylinder is in a completely black room whose walls reflect
no light, and there is a single point light source at (3.0, 0.0, 1.2), near the
right end and above the center of the cylinder. Youreye is directly above the
center of the cylinder and is looking straight down on it (this position is set
by ortho2 in the example).

The cylinder is uniformly white, so you see only the only colors between
white and black, i.e., only shades of gray where the red, green, and blue
components of the light are equal. This model assumes that the amount of
light reaching your eyes from a point on the cylinder depends on the distance
of the light source to the point on the cylinder, and on the angle it makes with
the cylinder’s surface. The larger the angle, the less light is reflected. If the
angle is more than 90 degrees, assume the color is black. The angular
dependence is given by the dot product of the light direction with the
cylinder’s normal vector, and that is attenuated by a factor of 1.0/(.5 +
dist?). This is not a realistic model, but it serves for this example. (See
Chapter 9 to learn how to use the built-in lighting models).

4-12 Graphics Library Programming Guide IRIS-4D Series

C

As written, the program loops on n, approximating the cylinder half first with
1 polygon, then 4, 9, 16, 25, ... 100 polygons. Each is presented for 5
seconds before the next one is drawn. The first one is completely black,
since the normal vectors are all perpendicular to the light vector, so each
corner is colored black. As the number of approximating polygons increases,
the representation gets better, and the last two or three images are similar.
Notice that there are a lot of artifacts in the first few images.

You can modify the program above to use different light vector positions or
different lighting models. You can also modify it to draw flat shaded
polygons (perhaps based on the normal vector at the center) to compare with
the Gouraud-shaded version. To get comparable pictures, many more
polygons would have to be drawn.

In the code itself, p0, p1, p2, andp3 are the points around each of the

approximating rectangles,;n0, ..., n3 are the corresponding normal vectors,
and c0, ..., ¢4 are the colors calculated at the points.

Version 2.0 Display and Color Modes 4-13

4.4 Color Map Mode

In RGB mode, the values in the bitplanes correspond exactly to the color to
be presented. Another way to write and interpret the data in the bitplanes is
by using color map mode. Many applications are better suited to color map
mode than to RGB mode, and it is currently the only color mode supported in
the overlay, underlay, and popup bitplanes.

Color map mode provides a level of indirection between the values stored in
the bitplanes and the RGB values displayed on the screen. This mode is
useful on systems that do not have enough bitplanes for RGB mode, and for
blinking and other applications where you want quick color map changes.

In color map mode, the zeros and ones stored in the standard bitplanes (up to
12 bits) are interpreted as a binary number and used as an index into a color
map. Each entry in the color map consists of a full 8 bits each of red, green,
and blue intensity. To figure out what color to present at a pixel on the
screen, take the 12 bits out of the bitplanes, interpret them as a binary
number between 0 and 4095, and look up the color map values for red, green,
and blue for that number. That red, green, and blue triple is the pixel color.

By default, the system is in color map mode, and the lowest 8 values in the
color map are loaded as follows:

Location Red Green Blue Color
0 0 0 0 BLACK
1 255 0 0 RED
2 0 255 0 GREEN
3 255 255 0 YELLOW
4 0 0 255 BLUE
5 255 0 255 MAGENTA
6 0 255 255 CYAN
7 255 255 255 WHITE

Table 4-2. Lowest Eight Values of Color Map

4-14 Graphics Library Programming Guide IRIS-4D Series

(

In the examples in Chapters 1, 2 and 3, the subroutine call
color (GREEN) ;

actually sets the current color to 2, so every drawing subroutine (lines, points,
polygons, or characters) puts the value 2 in the affected bitplanes. Since the
display is in color map mode, pixel values of 2 were looked up in the color
map, and the RGB triple (0,255,0) = bright green was presented.

These map entries or any other map entries can be changed. Since there is
only one color map in the system, whenever you modify the map, it is
modified for all the other applications running in different windows.
However, applications running in RGB mode are not affected.

To enter color map mode, call cmode followed by gconfig. (The system is
in color map mode by default; consequently, you need only call cmode if the
system is in RGB mode.) color sets the current color to be used in drawing.
It can be any number between 0 and the system’s limit: 255 for the Personal
IRIS in single-buffer mode, 15 for the Personal IRIS in double-buffer mode,
and 4095 for other systems. Multimap mode, described in Section 4.4, is a
special case. (Other limits apply to the overlay, underlay, and popup
bitplanes.)

The only remaining question is how to change color map entries. This is
done withmapcolor. mapcolor takes four arguments: an index into the
color map, and the red, green, and blue components to load into the map for
that index. The index is between 0 and the system’s limit, and the red, green,
and blue components are integers between 0 and 255. (Multimap mode has
only 256 map entries. See Section 4.4, “Onemap and Multimap Modes.”)
The calling sequence is:

mapcolor (index, red, green, blue);

Note: On the IRIS-4D/G Series systems, the top 256 entries of the color
map cannot be used if the system simultaneously has windows
running in RGB and color map mode. This restriction does not exist
on other IRIS-4D Series systems, but if you are writing code to run
on all types of machines, do not use entries 3840 to 4095.

Because of their hardware architecture, IRIS-4D/G Series systems

cannot simultaneously run double-buffered windows in RGB mode
and color map mode.

Version 2.0 Display and Color Modes 4-15

The following sample program draws a gray rectangle around a pink circle.
Here GRAY and PINK are indices into the color map. They are chosen to be
larger than 63 so as not to conflict with the color map entries used by the
window system (note that the code uses the predefined BLACK to clear the
screen).

#include <gl/gl.h>

#define GRAY 8

#define PINK 9

main ()

{
prefposition (100, 500, 100, 500);
winopen ("pink-n-gray");
mapcolor (GRAY, 150, 150, 150);
mapcolor (PINK, 255, 80, 80);
color (BLACK):;
clear ().
color (GRAY);
recti (0, O, 100, 100);
color (PINK) ;
circi (50, 50, 50);
sleep(3);
gexit ();
exit (0);

}

color and colorf

In the second program in Section 4.2.4, the color and colorf statements
set the color index in the current draw mode of the active framebuffer:
normal, pop-up, overlay, or underlay. The framebuffer must be in color map
mode for color t0 work. Because most drawing commands copy the current
color index into the color bitplanes of the current framebuffer, the system

retains the value of color for each framebuffer when you exit and reenter a
particular draw mode.

color takes a single argument, ¢, which represents a color index. ¢ can have
a value between 1 and 2”-1, where » is the number of bitplanes available in

the current draw mode. Color indices larger than 2”-1 are clamped to 2”-1;
color indices smaller than 0 yield undefined results. The color indices of all
framebuffers are set to 0 when gconfig is called.

4-16 Graphics Library Programming Guide IRIS-4D Series

colorf isidentical to color, except that it expects a floating point value.
Before the value is written into memory, however, it is rounded to the nearest
integer value. If you are using Gouraud shading, systems that iterate color
indices with fractional precision yield more precise shading results with
colorf than with color. IRIS-4D/B/G/GT/GTX systems and Personal
IRIS systems with early serial numbers do not iterate with fractional
precision,. To determine whether your system supports fractional iteration,
use getgdesc (GD_CIFRACT). The results of color and colorf are
indistinguishable when using shademodel (FLAT).

Do not call color orcolorf when the framebuffer is in RGB mode.

4.41 Gouraud Shading in Color Map Mode

Gouraud shading works in color map mode, but it is more difficult to use
than in RGB mode. The colors at the vertices of lines or polygons are
interpolated to the interior points, but only the color map index is
interpolated—mnot the red, green, and blue components. Thus, a shaded
6-pixel line whose endpoints are colored 1 (red) and 6 (cyan) has its six
pixels colored 1, 2, 3, 4, 5, 6 (red, green, yellow, blue, magenta, cyan,
respectively), assuming that the default color map is used. Although the line
produced might be pretty or interesting, it is probably not what you had in
mind.

To shade in color map mode, you must first load a portion of the color map
with a color ramp. Since the variation is one-dimensional (only the color
index varies; in RGB mode, the red, green, and blue components can vary
individually), the effects are more restricted.

Version 2.0 Display and Color Modes 4-17

The following sample program draws a color map mode, Gouraud-shaded
polygon:

/***

rampshade.c - draw a colorindex gouraud-shaded polygon
*kk [

#include <gl/gl.h>

float *

pack3f(x, y, z)
float x, y, 2;

{

static float v[3]:;

v[0] = x;
v[l] = y;
v[2] = z;

return v;

int
main ()
{

int 1i;

prefsize (300, 300);
(void) winopen ("shade");
color (BLACK) ;

clear();

/* create a magenta ramp but avoid first 16 colors */
for (i = 0; i < 256; i++) mapcolor(i + 16, i, 0, 1i);

bgnpolygon () ;

color (0 + 16);

v3f (pack3f(50.0, 50.0, 0.0));
color (100 + 16);

v3f (pack3£f£(200.0, 50.0, 0.0));
color (250 + 16);

v3f (pack3f (250.0, 250.0, 0.0));
color (100 + 16);

v3f (pack3f (50.0, 200.0, 0.0));
endpolygon () ;

4-18 Graphics Library Programming Guide IRIS-4D Series

sleep(3);

gexit () ;

exit (0);
}

The Personal IRIS supports dithered rendering, and uses it to approximate
the color represented by non-integral color indices. The following sample
program is a version of the previous one that interpolates colors between the
adjacent color indices BLACK and RED.

#include <stdio.h>
#include <gl/gl.h>

float v[4][3] = {
{50.0, 50.0, 0.0},
{200.0, 50.0, 0.0},
{250.0, 250.0, 0.0},
{50.0, 200.0, 0.0}
};

main ()
{

if (getgdesc(GD_CIFRACT) == 0) {

fprintf (stderr, "Fractional color index shading not"
"available on this machine\n");

return 1;

}

prefsize (400, 400);

winopen ("dithershade") ;

color (BLACK) ;

clear();

bgnpolygon () ;
colorf (BLACK + 0.0);
v3f(v[0]);
colorf (BLACK + 0.25);
v3f(v[l}]);
colorf (BLACK + 1.0); /* = RED */
v3f(v[2]);
colorf (BLACK + 0.5);
v3f(v([3]);

endpolygon () ;

sleep (10);

gexit ();

return 0;

Version 2.0 Display and Color Modes 4-19

4.4.2 Blinking

(Blinking is an advanced topic and can be skipped on the first reading.) The
blink subroutine changes a color map entry at a specified rate. It specifies a
blink rate (rate), a color map index (i), andred, green, and blue values. rate
indicates the number of vertical retraces at which the system updates the
color located ati in the current color map. (See Section 4.4, “Onemap and
Multimap Modes,” for a definition of vertical retrace.) Each rate retraces,
the color map entry i is remapped so that it alternates between the new red,
green, blue value and the original value. You can have up to 20 colors
blinking simultaneously, each at a different rate; the 20-color limit is for each
system, not for each window. You can change the blink rate by calling
blink a second time with the same i but a different rate. To terminate
blinking and restore the original color, call blink withrate = 0 when i
specifies a blinking color map entry. To terminate blinking of all colors, call
blink with rate = -1. When you setrate to -1, the other parameters are
ignored.

Note: Program termination does not stop the color map blinking; you must
explicitly terminate blinking when you exit the program.

blink (rate, i, red, green, blue)
short rate;

Colorindex 1i;

short red, green, blue;

The following program draws 20 rectangles on the window, and blinks each
one between white and red at a different rate. The leftmost rectangle blinks
every retrace, the second blinks every second retrace, the third blinks every
third retrace, and so on. After the blinking rectangles are displayed for 20
seconds, blink is called with a rate of -1 to turn off all the blinking in the
system. If you kill this program before it completes, map entries 110 through
119 continue to blink.

4-20 Graphics Library Programming Guide IRIS-4D Series

#include <gl/gl.h>

main ()
{
register i, 3;
prefposition (100, 800, 100, 800);
winopen ("blinker");
ortho2(190.0, 600.0, 90.0, 510.0);
color (BLACK) ;
clear();
for (i = 10; i < 30; i++) {
mapcolor (i+100, 255, 255, 255);
color (i+100);
rectfi (i*%20, 100, i*20 + 10, 500);
blink (i-9, i+100, 255, 0, 0);
}
sleep(20);
blink (-1, 0, 0, 0, 0);
gexit () ;
exit (0);

Version 2.0 Display and Color Modes 4-21

4.5 Getting Color information

The Graphics Library provides three subroutines to get color information:
getcolor, gRGBcolor and getmcolor. Inmost cases, getcolor and
RGBcolor simply return the most recently set color or RGB color triple;
however, when using the automatic lighting models, the system can change
the current color as a side effect of lighting calculations. getmcolor returns
the setting of the color map for a given index.

getcolor

getcolor returns the current color for the current drawing mode. It returns
the index into the color map set by color. The result of getcolor is
undefined in RGB mode; use getcolor only in color map mode.

long getcolor ()

gRGBcolor

gRGBcolor returns the current RGB values. Use grRGBcolor only in RGB
mode.

void gRGBcolor(red, green, blue)
short *red, *green, *blue;

getmcolor

getmcolor returns the red, green, and blue components of a color map
entry. i is the index into the color map, and red, green, and blue are the RGB
intensities associated with that index.

void getmcolor(i, red, green, blue)

Colorindex 1i;
short *red, *green, *blue;

4-22 Graphics Library Programming Guide IRIS-4D Series

4.6 Onemap and Multimap Modes

(This is an advanced topic; you can skip it on the first reading.) onemap
organizes the color map as a single map with 4096 entries (256 on some
systems). multimap organizes the color map as 16 small maps, each with a
maximum of 256 RGB entries.

When you are in color map mode and in the default onemap mode, the value
of the color bitplanes is used as an index into the color map to determine the
color displayed on the screen. An alternative mode, multimap mode, uses
only 8 bits from the bitplanes (using 256 entries in the color map) but allows
up to 16 completely independent 256-entry color maps. Multimap mode is
useful on systems with only 8 bitplanes (or 16 in double-buffer mode; see
Section 6.2) but it can be used on other systems for techniques such as color
map animation.

Call gconfig to activate the onemap Ormultimap settings.
multimap

multimap organizes the color map as 16 small maps, each with a maximum
of 256 RGB entries. The number of entries in each map is 256. multimap
does not take effect until gconfigq is called.

void multimap ()

onemap

onemap Organizes the color map as a single map with 4096 entries (256 on
some systems). You must call gconfig for onemap to take effect. onemap
is the default mode.

void onemap ()

You can use the following routines with onemap and multimap:
getcmmode , which returns the current color map mode; setmap, which
selects which of the small maps the system uses in multimap mode; getmap,
which returns the number of the current color map; and cyclemap, which
cycles through the color maps at a selected rate.

Version 2.0 Display and Color Modes 4-23

getcmmode

getcmmode returns the current color map mode. FALSE indicates multimap
mode; TRUE indicates onemap mode.

Boolean getcmmode ()

setmap (

In multimap mode, setmap makes one of the 16 small color maps current.
All display is done using the current small map, and mapcolor affects that
map. setmap selects which of the small maps (0 through 15) the system
uses in multimap mode.

void setmap (mapnum)
short mapnum;

getmap

getmap returns the number (from O to 15) of the current color map. In
onemap mode, getmap always retumns 0.

long getmap () (j

cyclemap

cyclemap cycles through color maps at a specified rate. It defines a
duration (in vertical retraces), the current map, and the map that follows
when the duration lapses. (See Section 4.3, “Blinking,” for a definition of
vertical retrace.) For example, the following routines set up multimap mode
and cycle between two maps, leaving map 1 on for ten vertical retraces and
map 3 on for five retraces.

multimap();
geconfig();
cyclemap (10, 1, 3);
cyclemap (5, 3, 1);

When you kill a window or attach to a new one, the maps stop cycling. (

void cyclemap (duration, map, nextmap)
short duration, map, nextmap;

4-24 Graphics Library Programming Guide IRIS-4D Series

4.8 Gamma Correction

(This is an advanced topic; you can skip it on the first reading.)

The light output of any video display is controlled by the input voltage to the
monitor. The relationship between input voltage and the brightness of the
display, however, is not linear. For instance, assume that 100 percent of a
monitor’s input voltage produces 100 percent brightness. If you reduce the
voltage to 50 percent of its initial value, the monitor displays only 19 percent
of its initial brightness.

To achieve a linear response from the monitor, the system must vary the
input voltage by an exponent. The exponent is called the monitor’s gamma.
Linear response is achieved on standard IRIS-4D monitors with a gamma of
2.4. The system uses a hardware look-up table to compensate for nonlinear
response.

gammaramp

gammaramp supplies another level of indirection for all color map and RGB
values. It affects only the display of color, not the values that are written in
the bitplanes. You use it to provide gamma correction, to equalize monitors
with different color characteristics, or to modify the color warmth of the
monitor.

gamma ramp affects the entire screen and all running processes. It stays in
effect until another call to gamma ramp is made, or until the graphics
hardware is reset. The default setting assigns the gamma value a curve with
a slope of 1.7.

When objects are drawn on the screen in RGB mode, red, green, and blue are
stored in the bitplanes and are displayed as (r{red], g[green], b[blue]) where
r.g,b are the arrays last specified bygammaramp. Similarly, in color map
mode if color i is mapped to red, green, blue, objects written in color i are
displayed as (r[red], g[green], b [blue]).

void gammaramp(r,g,b)
short r[256],g[256],b[256]

Usually, the gamma ramp map is loaded with gamma corrections, but it can

be loaded with any values. Note that on IRIS-4D/G systems, the gamma
ramp is stored in the top 256 entries of the color map.

Version 2.0 Display and Color Modes 4-25

The following program takes a floating point argument, gamma, calculates a
standard gamma ramp, and installs it using gammaramp .

#include <gl/gl.h>
#include <stdio.h>
#include <math.h>

short tab[256];

main(argc,argv)
int argc;
char **argv;
{
int i;
float gamma;

if (arge<2) {
fprintf (stderr, "usage: %s value\n", argv([0]);
exit (1);

}

gamma = atof (argv[l]);

noport () ;

winopen ("setgamma") ;

for (i=0; i<256; i++)
tab[i] = 255.0*pow(i/255.0,1.0/gamma)+0.5;

gammaramp (tab,tab,tab);

gexit ();

exit (0);

}

The program sets the same gamma ramp for red, green and blue, although a
more general mapping is possible. In addition, the program uses the
noport hint to the window manager in the same way that prefsize does.
It tells the graphics that no physical screen space is required, but that the
graphics hardware will be accessed. You can open a tiny window, but
nothing of interest is displayed in it. (See the 4Sight Programmer’s Guide
for more information about noport.)

As a final example of the gamma ramp, here is a program that sets the
gamma ramp to a set of discrete values. For example, if the number is 3, the
highest third of the ramp is mapped to full intensity; the middle third to
middle intenstiy, and the lowest third to lowest intensity. It basically
provides thresholding in red, green, and blue simultaneously. If a picture is
drawn entirely with shades of gray, this loading of the gamma ramp displays
the picture as if it were drawn with a small set of discrete gray values.

4-26 Graphics Library Programming Guide IRIS-4D Series

#include <stdio.h>
#include <gl/gl.h>

main (argc,argv)
int argc;
char *argvl[];

{

nt nsteps;

noport () ;

winopen ("stepmap") ;

if (argc !'= 2) {
fprintf (stderr, "usage: %s numsteps\\n", argv[0]);
exit (1);

}

nsteps = atoi(argv(l]);

if (nsteps >= 2)
stepgen (nsteps) ;

gexit () ;

exit (0);

short ramp[256];

stepgen (nsteps)
int nsteps;
{
int i, wval;
for (i=0; 1i<256; i++) {
val = ((nsteps*i)/256) * 255 / (nsteps-1);
if (val>255)
val = 255;
ramp[i] = val;
}
gammaramp (ramp, ramp, ramp);

}

It is interesting to look at some shaded RGB polygons with a small number
of steps.

Version 2.0 Display and Color Modes 4-27

5. Input Subroutines

The Graphics Library supports three classes of input devices:

valuators, which return an integer value. For example, a dial on a dial
and button box is a valuator. A mouse is a pair of valuators: one
reports horizontal position and the other reports vertical position.

buttons, which return a Boolean value: FALSE when they are not
pressed (open) and TRUE when they are pressed (closed). Keys on an
unencoded keyboard, buttons on a mouse, and the switches on a dial
and button box are all buttons.

* pseudo-devices, which return information about other system events.

For example, the keyboard returns ASCII characters. Most of these
pseudo-devices register events. The keyboard device reports character
values when keys (or combinations of keys) are pressed. If you press
the a key, an ASCII a is reported; if you press the <shift>key,
nothing is reported, but if you hold down the <shift>key and then
press the a key, an ASCII A is reported.

Devices are named by a unique integer within the domain of 1 to 32767,
inclusive. Ranges within this domain are set aside for the three device
classes. Table 5-1 shows how the domain is organized.

Version 2.0 Input Subroutines

5-1

Range ‘ "~ Device Class

0x001 — 0xOFF Buttons
1-0xFFF: 0x100 — Ox1FF Valuators
Reserved 0x200 — 0x2FF Pseudo-devices
Devices 0x300 — OxEFF Reserved

0xFO0 — OxFFF Additional Buttons
0x1000 — Ox7FFF: 0x1000 — 0x2FFF Buttons
User-definable 0x3000 — 0x3FFF Valuators
Devices 0x4000 — 0x7FFF Pseudo-devices

Table 5-1. Class Ranges in the Device Domain

In addition to input subroutines, there are subroutines that control the
characteristics of the peripheral input/output devices. These subroutines
turn the keyboard click on and off, ring the keyboard bell, and control the
lights and text on the dial and button box. See Tables 5-2 and 5-3 for a
listing of devices and their descriptions. Section 5.4 describes other
special devices.

Devices Description
MOUSEX x valuator on mouse
MOUSEY y valuator on mouse
DIALO...DIAL7 Dials on dial and button box
BPADX x valuator on digitizer tablet
BPADY y valuator on digitizer tablet
CURSORX x valuator attached to cursor
(usually MOUSEX)
CURSORY y valuator attached to cursor
(usually MOUSEY)
GHOSTX x ghost valuator
GHOSTY y ghost valuator

TIMERO...TIMER3 Timer devices

Table 5-2. Input Valuators

5-2 Graphics Library Programming Guide IRIS-4D Series

Devices Description

MOUSE1 Right mouse button
MOUSE2 Middle mouse button
MOUSE3 Left mouse button
RIGHTMOUSE Right mouse button
MIDDLEMOUSE Middle mouse button
LEFTMOUSE Left mouse button
SWO0...SW31 32 buttons on dial and button
box
AKEY..PADENTER All the keys on the keyboard
BPADO Pen stylus or button for
digitizer tablet
BPAD1 Button for digitizer tablet
BPAD2 Button for digitizer tablet
BPAD3 Button for digitizer tablet

MENUBUTTON Menu button

Table 5-3. Input Buttons
Facilities exist to let you define your own input devices. Additional

information is available in the Graphics Library Reference Manual, C
Edition.

Version 2.0 Input Subroutines 5-3

5.1 Polling and Queueing

Buttons and valuators have an associated value. If the input device is a
button, the value is either 1 or 0. If the device is a valuator, such as a dial
or the x position of the mouse, its value is an integer that indicates the
position of the device. Pseudo-devices do not have a current value. It
does not make much sense to talk about the current ASCII character on
the keyboard.

A program can get the value from input devices in two ways: polling or
queueing.

« Polling immediately returns the value of a device that is a button or
valuator. For example, getbutton (LEFTMOUSE) returns 1 if the left
button of the mouse is down and returns 0 if it is up.

» Queueing uses an event queue to save changes in device values and
other input events so the program can read them later.

In most programs, you queue buttons so that the program does not miss a
rapid up-and-down transition of the button. You can queue or poll
valuators depending on the situation. If a program can keep up with
valuator changes, then it is usually more efficient to queue the valuator
because the queue captures all changes. Polling, however, always returns
the most current value and can often give a more responsive feel to the
user.

Another difference between queuing and polling is the effect that the
window system has on them. When you queue buttons and valuators, an
event is generated only for the process controlling the window that
currently has focus. Polling, on the other hand, returns the current value
of a device regardless of which window has focus. Programs that use
polling should watch for changes to input focus and adjust their behavior
accordingly.

You can decide which devices, if any, to queue, and establish rules about

what constitutes a state change, or event, for those devices. By default,
only the pseudo-devices INPUTCHANGE and REDRAW are queued.

5-4 Graphics Library Programming Guide IRIS-4D Series

5.2 Polling a Device

You can poll a device at any time to determine its current state.

getvaluator

You determine the values of valuators with getvaluator. You can poll
any valuator, whether it is queued or not. The argument to
getvaluator is a valuator device number (val). Its value reflects the
current state of the device.

long getvaluator(val)
Device val;

getbutton

getbutton polls a button and returns its current state. num is the
number of the device you want to poll. getbutton returns either TRUE
or FALSE. TRUE indicates the button is pressed. This routine functions
whether the device in question is queued or not.

Boolean getbutton (num)
Device num;

getdev

getdev polls up to 128 valuators and buttons at one time. You specify
the number of devices you want to poll (r) and an array of device
numbers (devs). (See Tables 5-1, 5-2, and 5-3 for listings of device
numbers.) vals returns the state of each device in the corresponding
array location.

void getdev (n, devs, vals)
long n;

Device *devs;

short *vals;

Version 2.0 Input Subroutines 5-5

5.3 The Event Queue

Input devices can make entries in the event queue. Each entry includes
the device number and a device value. gdevice enables queueing of
events from an input device. unqdevice disables queuing of a device.
isqueued tells you if a specific device is queued. The three subroutines
most commonly used for queuing are qdevice, gread, and qtest.

The input queue can contain up to 101 events at a time. To check for
overflow, you can queue the device QFULL. This inserts a QFULL event
in the graphics input queue of a GL program at the point where queue
overflow occurred. This event is returned by gqread at the point in the
input queue at which data was lost.

qdevice

\‘\
gdevice queues the specified device (dev) (for example, a keyboard,
button, or valuator). The argument of gdevice is a device number.
Each time the device changes state, an entry is made in the event queue.

void gdevice (dev)

Device dev;

qtest

gtest returns the device number of the first entry in the event queue; if -
the queue is empty, it returns zero. qtest always returns immediately to
the caller, and makes no changes to the queue.

long gtest ()

5-6 Graphics Library Programming Guide IRIS-4D Series

(

qgread

qread, like gtest, returns the device number of the first entry in the
event queue. However, if the queue is empty, it waits until an event is
added to the queue. gread returns the device number, writes the data
part of the entry into the short pointed to by data, and removes the entry
from the queue.

long gread(data)
short *data;

qreset

qgreset removes all entries from the queue and discards them.

void greset ()

qgetfd

qget f£d allows a GL program to use the select system call to
determine when there are events waiting to be read in the graphics input
queue. A call to gget £d retumns a file descriptor that may be used as
part of the readfds parameter of the select system call. When
select indicates that the file descriptor associated with the graphics
input queue is ready for reading, a call to gread or blkgread will not
cause the program to block. See the description of select in the IRIX
Programmer’ s Reference Manual for more information.

Version 2.0 Input Subroutines

5-7

Example—Polling and Queueing

The following sample program uses both polling and queueing to control
a simple drawing program.

#include <gl/gl.h>
#include <gl/device.h>

#define X 0
#define Y 1
#define XY 2

main ()

{
short mval[XY], lastval([XY]:;
Device mdev[XY];
short wval;
long org[XY], size[XY];
Boolean run;

prefsize (400, 400);

winopen ("input") ;

gdevice (LEFTMOUSE) ;

gdevice (ESCKEY) ;

color (BLACK) ;

clear ()

getorigin (&oxrg[X], &org([Y]):
getsize (&§size[X], &size[Y]);
mdev[X] = MOUSEX;

mdev (Y] = MOUSEY;

5-8 Graphics Library Programming Guide IRIS-4D Series

run = TRUE;
while (run)
switch (gread(&val)) {
case LEFTMOUSE:
if (val == 1) {
getdev (XY, mdev, mval);
color (WHITE) ;

lastval [X] = mval[X] - org[X]:
mval [Y] - org[Y]:

lastval(Y]

while (getbutton (LEFTMOUSE) == TRUE) {

getdev (XY, mdev, mval);

mval [X] -= org[X]:;
mval[Y] orglY];

if (mval[X] < 0 || mval([X]

>= size[X] ||

mval[Y] < O || mval[Y] >= size[Y])

continue;
else {
bgnline () ;
v2s (lastval);
v2s (mval) ;
endline () ;

lastval [X] = mval[X];
lastval[Y] = mvall[Y];
}

}

}

break;

case ESCKEY:
if (val == 0)
run = FALSE;
break;

}

}

gexit () ;

return 0O;

Version 2.0

Input Subroutines

5-9

tie

You can tie a queued button to one or two valuators so that whenever the

button changes state, the system records the button change and the

current valuator position in the event queue. tie takes three arguments:

a button b and two valuators v/ and v2. Whenever the button changes

state, three entries are made in the queue that record the current state of (
the button and the current position of each valuator. You can tie one

valuator to a button by making v2 equal to 0. You can untie a button

from valuators by making both v1 and v2 equal to 0.

void tie(b, vl1, v2)
Device b, vl, v2;

attachcursor

attachcursor attaches the cursor to the movement of two valuators.
Both of its arguments, vx and vy, are valuator device numbers that
correspond to the device that controls the horizontal and vertical location
of the cursor, respectively. By default, vx is MOUSEX and vy is
MOUSEY.

The valuators at vx and vy determine the cursor position in screen (
coordinates. Every time the values at vx or vy change, the system
redraws the cursor at the new coordinates.

void attachcursor (vx, vy)
Device vx, vy;

To control cursor position from within a program, attach the cursor to

GHOSTX and GHOSTY. The program can then use setvaluator on
GHOSTX and GHOSTY to move the cursor.

5-10 Graphics Library Programming Guide IRIS-4D Series

curson and cursoff

curson and cursof£ determine the visibility of the cursor in the current
window. Use them to control the state of the cursor while drawing in the
selected window.

curson makes the cursor visible in the current window; cursoff makes
itinvisible. By default, the cursor is on when a window is created.

Use getcursor to find out whether the cursor is visible. See Chapter
11, “Drawing Modes,” for more information on getcursor.

void curson ()
void cursoff ()

noise

Some valuators are noisy; that is, they report small fluctuations in value,
indicating movement when no event has occurred. noise allows you to
set a lower limit on what constitutes a move. The value of a noisy
valuator v must change by at least delta before the motion is significant.
noise determines how often queued valuators make entries in the event
queue. Forexample, noise (v, 5) means that valuator v must move at
least five units before a new queue entry is made.

void noise (v, delta)

Device v;
short delta;

genter

genter creates event queue entries. It places entries directly into the
program’s own event queue. genter takes two 16-bit integers, gtype
and val, and enters them into the event queue.

void genter (gtype, val)
short gtype, val;

Version 2.0 Input Subroutines

5-11

ungdevice

Use ungdevice to disable the queueing of events from a device. If the
device has recorded events in the queue that have not been read, those
events remain in the queue. (You canuse greset to flush the event
queue.)

void ungdevice (dev)
Device dev;

isqueued

isqueued indicates whether a specific device is queued. It returns a
Boolean value. TRUE indicates that the device is enabled for queuing;
FALSE indicates that the device is not queued.

boolean isqueued (dev)
short dev;

blkqread

blkqgread returns multiple queue entries. Its first argument, data, is an
array of short integers, and its second argument, #, is the size of the array
data. blkgread returns the number of shorts returned in the array data,
which is filled alternately with device numbers and device values. Note
that the number of entries read is twice the number of queue entries,
hence it can be at most n.

You can also use blkqread when only the last entry in the event queue
is of interest (for example, when a user-defined cursor is being dragged
across the screen and only its final position is of interest).

long blkgread(data, n)
short *data
short n;

5-12 Graphics Library Programming Guide IRIS-4D Series

5.4 Special Devices

There are two types of special devices: keyboard and window devices.

5.4.1 Keyboard Devices

The keyboard device returns ASCII values that correspond to the keys
typed on the keyboard. The device interprets keyboard movements in the
standard manner; for instance, it reports an event only on a downstroke,
taking into account the <ctrl> and <shift> keys.
Be careful to understand the difference between the device and the values
it returns when you queue the keyboard. If your program contains the
instruction:

gdevice (KEYBD) ;
then the statement:

dev = gread(&val);

returns the following:

dev = KEYBD
val the ASCII integer index of the character pressed.

To test for individual keystrokes, you can use instructions of the format;
qgdevice (AKEY) ;

This returns the device AKEY when the a key is pressed.

Version 2.0 Input Subroutines

5-13

5.4.2 Window Manager Devices

The devices listed below are associated with window manager events.
See Section 1, Using the GL Interface, in the 4Sight Programmer’s

Guide, Volume I.

REDRAW

REDRAWICONIC

DEPTHCHANGE

WINSHUT

WINQUIT

The window manager inserts a redraw token each
time the window needs to be redrawn. The
REDRAW token is queued automatically. The
value returned is the window identification
number of the window that the event pertains to.

Queues automatically when iconsize is called.
The window manager sends this token when a
window needs to be redrawn as an icon by the
program itself. The value returned is the window
identification number of the window that the event
pertains to.

Indicates an open window has been pushed or
popped. Use windepth to determine the
stacking order. The value returned is the window
identification number of the window that the event
pertains to.

When queued, the window manager sends this
token when the Close item is selected from a
program’s Window (frame) menu, or when the
close fixture is selected from the title bar of a
program’s window. If WINSHUT is not queued,
the Close item on the program’s Window menu
appears greyed-out, and has no effect if selected.
The value returned is the window identification
number of the window that the event pertains to.

When queued, the window manager sends this
token rather than killing a process when Quit is
selected from a program’s Window (frame) menu.

5-14 Graphics Library Programming Guide IRIS-4D Series

WINFREEZE/WINTHAW If queued, the window manager sends
these tokens when windows are stowed to
icons and later unstowed, rather than
blocking the processes of the stowed
windows. These devices should be
queued if the program plans to draw its
own icon (see iconsize) oris a multi-
window application.

INPUTCHANGE Indicates a change in the input focus. If
the value is 0, input focus has been
removed from the process. If the value is
non-0, it indicates the window number of
the window that has just gained input
focus.

5.5 Valuators

The following devices are valuators that return specific information
about the system.

5.5.1 Timer Devices

The timer devices record an event every retrace interval. You can use a

timer device to synchronize a graphics program with a real clock. To

record events less frequently, use noise. For example, if you call:
noise (TIMERO, 30)

only every 30th event is recorded, so an event queue entry is made each

half second.

5.5.2 Cursor Devices

The cursor devices are pseudo-devices that are equivalent to the
valuators currently attached to the cursor. (See attachcursor for
more information.)

Version 2.0 Input Subroutines 5-15

5.5.3 Ghost Devices

Ghost devices, GHOSTX and GHOSTY, do not correspond to any
physical devices, although they can be used to change a device under
program control. For example, to drive the cursor from software, use
attachcursor (GHOSTX, GHOSTY) to make the cursor position depend
on the ghost devices. Then use setvaluator on GHOSTX and
GHOSTY to move the cursor.

5.6 Controlling Peripheral Input/Output Devices

setvaluator

Valuators are single-value input devices. The value is a 16-bit integer.
The horizontal and vertical motion of the mouse, or the turning of a dial,
are valuators. setvaluator assigns an initial value init to a valuator.
min and max are the minimum and maximum values the device can
assume.

void setvaluator(val, init, min, max)

Device val;

short init, min, max;
In addition to routines that poll and queue input devices, there are
routines that control the characteristics and behavior of the system’s
peripheral input/output devices. For example, some of these routines
turn the keyboard click on and off (c1kon and clkoff), or set the
keyboard bell. You set these controls to your preference or needs.

clkon

clkon tums on the keyboard click.

void clkon ()

5-16 Graphics Library Programming Guide IRIS-4D Series

clkoff

clkoff turns off the keyboard click.

void clkoff ()

lampon

lampon and lampof£ control the four lamps on the keyboard. Each 1in
the four lower-order bits of the lamps argument to lampon turns on the
corresponding keyboard lamp.

void lampon (lamps)
char lamps;

lampoff

Each 1 in the four lower-order bits of the lamps argument to lampof £
turns off the corresponding keyboard lamp.

void lampoff (lamps)
char lamps;

ringbell

ringbell rings the keyboard bell.

void ringbell ()

setbell

setbell sets the duration of the keyboard bell: 0 is off, 1 is a short
beep, and 2 is a long beep.

void setbell (mode)
char mode;

Version 2.0 Input Subroutines 5-17

dbtext

dbtext writes text to the LED display in a dial and button box. The
string str must be eight or fewer uppercase characters.

void dbtext (str)

string str; (

setdblights

setdblights controls the 32 lighted switches on a dial and switch
box. For example, to turn on switches 3 and 7, the third and seventh bits
to the right of mask must be set to 1; that is, (1<<3)I(1<<7) .

void setdblights (mask)
unsigned_ long mask;

5.7 Determining the Status of Video Options (

You can determine and control the status of video options on your
IRIS-4D Series system with the Graphics Library commands getvideo,
setvideo, and videocmd. You can also determine information about
the monitor type used on your system with the commands getmonitor
and getothermonitor. The commands setmonitor, blankscreen,
and blanktime allow you to specify operating parameters for the
monitor on your system.

setvideo

setvideo sets the specified video hardware register, reg, to the

specified value. reg expects the name of the register to access. value

expects the value to be placed into reg. setvideo (and its counterpart,

getvideo, described below) supports several different video boards (see (
Table 5-4).

5-18 Graphics Library Programming Guide IRIS-4D Series

Video Option Board

Register

Display Engine Board

CG2 Composite Video and Genlock Board

VP1 Live Video Digitizer Board

DE_R1

CG_CONTROL
CG_CPHASE
CG_HPHASE
CG_MODE

VP_ALPHA
VP_BRITE
VP_CMD
VP_CONT
VP_DIGVAL
VP_FBXORG
VP_FBYORG
VP_FGMODE
VP_GBXORG
VP_GBYORG
VP_HBLANK
VP_HEIGHT
VP_HUE
VP_MAPADD
VP_MAPBLUE
VP_MAPGREEN
VP_MAPRED
VP_MAPSRC
VP_MAPSTROBE
VP_PIXCNT
VP_SAT
VP_STATUSO
VP_STATUS1
VP_VBLANK
VP_WIDTH

Table 5-4. setvideo and getvideo Register Values

Version 2.0

Input Subroutines

5-19

The DE_RI1 register is actually present only on the video board used in
IRIS-4D/B/G/GT/GTX models. It is emulated on all other models.

The Live Video Digitizer is available as an option for IRIS-4D/GTX
models only.

void setvideo (reg, value)
long reg, value; (j

getvideo

getvideo retums the value of the specified video hardware register.
The returned value of getvideo is the one read from register reg, or -1.
-1 indicates that reg is not a valid register or that you queried a video
register on a system without that particular board installed. The legal
values for reg are the same as those described in setvideo.

long getvideo (reg)
long reg;

videocmd (

videocmd initializes the Live Video Digitizer peripheral board
(optionally available for IRIS-4D/GTX systems only). You can initialize
the Live Video Digitizer in either RGB or composite video mode, for
both NTSC and PAL format video sources. videocmd takes one
parameter, cmd, a command value that initiates the specified command
sequence.

5-20 Graphics Library Programming Guide IRIS-4D Series

The accepted values for cmd are:

VP_INITNTSC_COMP Initialize the optional Live Video Digitizer for
a composite NTSC video source

VP_INITNTSC_RGB Initialize the Live Video Digitizer for an RGB
NTSC video source

VP_INITPAL_COMP Initialize the Live Video Digitizer for a
composite PAL video source

VP_INITPAL_RGB Initialize the Live Video Digitizer for an RGB
PAL video source

These symbolic constants are defined in the file gl/vpl.h.

void videocmd (cmd)
long cmd;

setmonitor

setmonitor sets the monitor to one of the following types (Table 5-5).
Those constants are defined in the file gl/get.h.

Value of type Monitor Type

HZ30 30 Hz interlaced

HZ30_SG 30 Hz noninterlaced with sync on green
HZ60 60 Hz noninterlaced

NTSC NTSC

STR_RECT Optional Stereo mode (1280 x 492 x 2)
PAL PAL or SECAM

Table 5-5. Monitor Types

void setmonitor (type)
short type;

Version 2.0 Input Subroutines 5-21

The DE_R1 register is actually present only on the video board used in
IRIS-4D/B/G/GT/GTX models. It is emulated on all other models.

The Live Video Digitizer is available as an option for IRIS-4D/GTX
models only. -

void setvideo (reg, value)
long reg, value;

getvideo

getvideo returns the value of the specified video hardware register.
The returned value of getvideo is the one read from register reg, or -1.
-1 indicates that reg is not a valid register or that you queried a video
register on a system without that particular board installed. The legal
values for reg are the same as those described in setvideo.

long getvideo (reg)
long reg;

videocmd

videocmd initializes the Live Video Digitizer peripheral board
(optionally available for IRIS-4D/GTX systems only). You can initialize
the Live Video Digitizer in either RGB or composite video mode, for
both NTSC and PAL format video sources. videocmd takes one
parameter, cmd, a command value that initiates the specified command
sequence.

5-22 Graphics Library Programming Guide IRIS-4D Series

blanktime

blanktime sets the screen blanking timeout. By default, the screen
blanks (turns black) after the system receives no input for about 15
minutes. This protects the color display. blanktime changes the
amount of time the system waits before blanking the screen. It can also
disable the screen blanking feature.

nframes specifies the screen blanking timeout in frame times based on
the standard 60 Hz monitor. For software compatibility, the factor of 60
is used, regardless of the monitor type. To calculate the value of nframes,
multiply the desired blanking latency period (in seconds) by 60. For

example, when nframes is 1800, the blanking latency period is 5 minutes.

There are 60 frames per second; nframes is 60 times the number of
seconds that the system waits before blanking the screen. When nframes
is 0, screen blanking is disabled.

void blanktime (nframes)
long nframes;

Version 2.0 Input Subroutines

5-23

5.8 Spaceball™ Devices

Table 5-6 lists the devices returned by gread () when the optional
Spaceball input device sends an event onto the queue.

Devices Description

SBPERIOD Number of periods of 0.25 ms
since sending the last non-0 set of
Spaceball data

SBTX Right/left push

SBTY Up/down push

SBTZ Away/towards push

SBRX Twist about right/left axis

SBRY Twist about up/down axis

SBRZ Twist about away/towards axis

SBBUT1 Button 1

SBBUT2 Button 2

SBBUT3 Button 3

SBBUT4 Button 4

SBBUTS Button 5

SBBUT6 Button 6

SBBUT7 Button7

SBBUTS Button 8

SBPICK Pick button

Table 5-6. Spaceball Input Buttons
For more information about the optional Spaceball input device, see the

manual Using and Programming the Spaceball, document number
007-6209-010.

5-24 Graphics Library Programming Guide IRIS-4D Seri

6. Animation

Up to now, all the programs draw single images on the screen. Using the
techniques presented so far, it is possible to make only the simplest images
appear to move smoothly. This chapter introduces a technique called double
buffering, which allows you to create graphics that appear to change
smoothly.

6.1 Double Buffering

The IRIS-4D Series workstation lets you address frame buffer memory in
either of two modes:

* single buffer mode, in which a program addresses frame buffer memory as
a single buffer whose pixels are always visible

* double buffer mode, in which a program addresses frame buffer memory as
if it were two buffers, only one of which is displayed at a time

By default, the system is in single buffer mode. Whatever you draw into the
bitplanes is immediately visible on the screen. For static drawings, this is
acceptable, but it does not provide smooth animated motion. If you try to
animate a drawing in single buffer mode, you can see a visible flicker in all
but the simplest drawing operations.

For smooth motion, it is preferable to display a completely drawn image for a

certain time (for instance, a few 60ths of a second), then present the next
frame, also completely drawn, during the next time period, and so on.

Version 2.0 Animation 6-1

Double buffering provides this capability. The system's standard bitplanes
are divided into two halves; one half is displayed while the other half is
rendering. When the drawing is complete, the system swaps buffers, the
previously invisible buffer (now containing the next frame) becomes visible,
and the previously visible buffer becomes invisible and becomes available
for drawing the next frame.

The currently visible buffer is called the front buffer and the invisible,
drawing buffer is the back buffer. Double buffering works in either RGB
mode or color map mode.

6.2 Double Buffer Mode

doublebuffer

doublebuffer sets the display mode to double buffer mode. It does not
take effect until you call gconfig. In double buffer mode, the bitplanes are
partitioned into two groups, the front bitplanes and the back bitplanes. In
double buffer mode, only the front bitplanes are displayed, and drawing
routines normally update only the back bitplanes; frontbuffer and
backbuffer can override the default. gconfig sets frontbuffer to
FALSE and backbuffer to TRUE in double buffer mode.

void doublebuffer ()

swapbuffers

The display hardware in the system constantly reads the contents of the
visible buffer (the front buffer in double buffer mode), and displays those
results on the screen. On a standard monitor, the electron guns sweep from
the top of the screen to the bottom, refreshing all pixels, 60 times each
second. If the graphics hardware changes the contents of the visible frame
buffer, the next time the refresh hardware reads a changed pixel, the system
draws the new value instead of the old one.

6-2 Graphics Library Programming Guide IRIS-4D Series

After sweeping out the entire frame, the guns are reset to the top of the
screen. This takes a short time, called the vertical retrace, or screen refresh,
and during this period (much shorter than 60th of a second), nothing can
change on the screen. swapbuffers exchanges the front and back buffers
in double buffer mode during the next vertical retrace.

After the entire frame is rendered into the back buffer, swapbuffer is called
to make it the visible buffer. The swapbuffer subroutinewaits for the next
screen refresh before actually swapping the front and back buffer.s If it did
not happen, a frame would be drawn partly in one buffer, and partly in the
other, causing a serious visual disturbance. Because screen refresh occur
every 60th of a second on the standard monitor, swapbuffers can block the
running process for up to that long. (The default monitor is refreshed 60
times per second. Other options can have other retrace periods. See
setmonitor and getmonitor.)

void swapbuffers ()

Because swapbuffer blocks the user program until the next screen refresh
(1/60 sec), every frame takes » screen refreshes to render and display, where
n is the ceiling function of the actual rendering time. For example, if a scene
takes 1.9 refreshes to render, then every frame takes 2 refreshes to render and
display. Therefore, the application performs at 60/2 or 30 frames per second.
If you add another polygon to the scene, and it now takes 2.1 refreshes to
render, or 3 refreshes to render and display, the frame rate drops from 30 to
60/3 or 20 frames per second. There is no smooth degradation. Properly
tuning such a program can be tricky if you require smooth motion. Keep in
mind that while the geometry is moving about, the time it takes to render
each frame varies.

The swapbuffer call is ignored in single buffer mode.

Version 2.0 Animation 6-3

mswapbuffers

On IRIS-4D/VGX Series systems, both overlay and underlay planes can also
be double buffered. The mswapbuffers subroutine lets you swap any
combination of the available frame buffers at the same time.

void mswapbuffers (fbuf)
long fbuf;

The constants you can use as the value of fbuf are:

NORMALDRAW Swap the front and back buffers of the normal color

bitplanes

OVERDRAW Swap the front and back buffers of the overlay
bitplanes

UNDERDRAW Swap the front and back buffers of the underlay
bitplanes

These constants can be bit-ORed together to swap multiple buffers
simultaneously. For example, to swap front and back for the normal frame
buffer and for the underlay planes, include the following line in your
program:

mswapbuffers (NORMALDRAW | UNDERDRAW) ;

Just like swapbuffers, mswapbuffers blocks until the next vertical
retrace period. Itisignored by frame buffers that are not in double buffer
mode.

6-4 Graphics Library Programming Guide IRIS-4D Series

(

gconfig

Before drawing anything, you must set the frame buffers into the correct
configuration, such as colorindex or RGB mode. The gconfig subroutine
performs this function. Configuring the frame buffer is a two-step process:

1. You must indicate how to configure the frame buffer.

2. Youmust call gconfig to set the system into that particular
configuration.

The following configurations are available: acsize, cmode,
doublebuffer, multimap, onemap, overlay, RGBmode, singlebuffer,
stensize, and underlay. These subroutines must be followed by
gconfig to take effect.

After a gconfig call, writemask and color are no longer defined. The
contents of the color map do not change.

void gconfig ()

Version 2.0 Animation 6-5

The following program illustrates the use of double buffer mode. It draws a
set of balls bouncing around a square, starting at random positions and going
at random speeds:

#include <gl/gl.h>
#define MAXBALLS 1000

float vO[] = {-1.05, -1.05};

float v1[] = {-1.05, 1.05};
float v2[] = {1.05, 1.05};
float v3[] = {1.05, -1.05};

long balls;

float xpos[MAXBALLS], ypos[MAXBALLS], dx[MAXBALLS];
float dy[MAXBALLS];

long col [MAXBALLS];

float randfloat ()

{
float numerator, denominator;
numerator = rand()&O0x7£f£f;
denominator = O0x7fff;
return numerator/denominator;

main (argc, argv)
int argc;

char **argv;

{

long 1i;

if (argc != 2) {
printf ("usage: %s <ball count>\\n", argv[O0]);
exit (1);

}

balls = atoi(argv([l]);

for (1 = 0; i < balls; it++) {
xpos [i] randfloat () ;
ypos[1] randfloat ();
dx[i] = randfloat()/50.0;
dy[i] = randfloat()/50.0;
col[i] = rand()&Oxffffff;

6-6 Graphics Library Programming Guide IRIS-4D Series

keepaspect (1, 1);
winopen ("bounce") ;
doublebuffer();
RGBmode () ;
gconfig();
ortho2(-1.1, 1.1, -1.1, 1.1);
while (1) {
for (i = 0; 1 < balls; i++) {

xpos[i] = xpos([i] + dx[i];
ypos[i] = ypos[i] + dy[i];
if ((xpos[i] >= 1.0) || (xpos[i] <= -1.0))
dx[i] = -dx[i];
if ((ypos[i] >= 1.0) || (ypos[i] <= -1.0))
dy[i] = -dy[il];
}
cpack(0) ;
clear();

cpack (Oxff££f£ff);
bgnclosedline();
v2f (v0); v2f(vl); v2f(v2); v2£(v3);
endclosedline () ;
for (i = 0; i < balls; i++) {
cpack (col[i]);
circf (xpos[i], ypos[i], .05);
}
swapbuffers();

singlebuffer

In single buffer mode, the system simultaneously updates and displays the
image data in the active bitplanes; consequently, incomplete or changing
pictures can appear on the screen. singlebuffer does not take effect until
gconfigis called. Single buffer mode is the default.

void singlebuffer ()

Version 2.0 Animation 6-7

frontbuffer

Note: The subroutine calls contained in the remainder of this chapter might
be considered advanced topics. You do not need to use these calls
unless you are tuning your program for maximum performance.

Sometimes in double buffer mode, it is useful to be able to write the same
thing into both buffers at once. For example, suppose an animated image has
both a fixed part and a changing part. The fixed part needs to be drawn only
once, but into both buffers. It is most easily done by enabling the front
buffer (as well as the back buffer) for writing, drawing the image, and then
disabling the front buffer. The animation then proceeds by drawing the
changing part of the image using the usual double buffering techniques.
frontbuffer (TRUE) in double buffer mode enables simultaneous
updating of (or writing into) both the front and the rear buffers. Its argument
is a Boolean value.

When the value of b is FALSE (the default value), the front buffer is not
enabled for writing. When the value of b is TRUE, the front buffer is
enabled for writing. This routine is useful only in double buffer mode.

gconfig sets frontbuffer to FALSE.

void frontbuffer (b)
Boolean b;

backbuffer

It is sometimes convenient to update both the front and the back buffers, or to
update the front buffer instead of the back. backbuffer enables updating in
the back buffer. Its argument is a Boolean value. When the value of b is
TRUE, the default, the back buffer is enabled for writing. When the value of
b is FALSE, the back buffer is not enabled for writing.

6-8 Graphics Library Programming Guide IRIS-4D Series

gconfig sets backbuffer to TRUE.

void backbuffer (b)
Boolean b;

getbuffer

getbuffer indicates which buffer(s) are enabled for writing in double
buffer mode. The returned values operate as a bitmask (that is, the number
returned represents the numeric value of all the bits currently set). The
default, 1, means the back buffer is enabled (as does any odd value); 2 means
that the front buffer is enabled (or any value in which the 2 bit is set); and 3
(or value in which the 3 bit is set) means that both are enabled. getbuffer
returns zero if neither buffer is enabled or if the system is not in double
buffer mode. If the z-buffer (see Chapter 8) is enabled for drawing,
getbuffer canreturn4, 5, 6, or 7.

long getbuffer()

Each of the possible values also has an associated symbolic value that you
can use in the call to getbuffer (Table 6-1):

Value Buffer Enabled Symbolic Name
0 none NOBUFFER
1 back buffer BCKBUFFER
2 front buffer FRNTBUFFER
3 both buffers BOTHBUFFERS
4 z buffer drawing DRAWZBUFFER
5 z buffer plus back

buffer
6 zbuffer plus front

buffer
7 z buffer plus both

buffers

Table 6-1. Symbolic Values for getbuffer Statement

Version 2.0 Animation 6-9

swapinterval

swapinterval defines a minimum time between buffer swaps. For

example, a swap interval of 5 refreshes the screen at least five times between
execution of successive calls to swapbuffer. swapinterval is typically

used when you want to show frames at a constant rate, but the images vary in
complexity. To achieve a constant rate, set the swap interval long enough (
that even the most complex frame can be drawn in that time. For drawing a

simple frame, the user’s process simply blocks and waits until the swap

interval is used up. The default interval is 1.

swapinterval is valid only in double buffer mode.
void swapinterval (i)

short i;

getdisplaymode

getdisplaymode retumns the current display mode. 0 indicates RGB single
buffer mode; 1 indicates single buffer mode; 2 indicates double buffer mode;
5 indicates RGB double buffer mode. Modes 3 and 4 are unused.

long getdisplaymode () (

6-10 Graphics Library Programming Guide IRIS-4D Series

gsync

gsync pauses execution until a vertical retrace occurs. It was intended as a
method to synchronize drawing with the vertical retrace to achieve animation
in single buffer mode. It does not work well. Some users also called gsync
a number of times to get short time delays (since each call waited until the
next 60th of a second). Use the system call sginap instead.

gsynec is also used for rubberbanding in single buffer mode.

gsync is included primarily for compatibility with systems that might not
have enough bitplanes to use double buffer mode. The IRIS-4D/GT always
has two complete sets of color bitplanes. The Personal IRIS with 24 bits per
pixel standard, permits double buffering by using two buffers with 12-bit
pixels. gsync waits for the next vertical retrace period. Due to pipeline and
operating system delays, smooth motion in single buffer mode is often
impossible. gsync should be used only as a last resort, and it might not
work.

void gsync()

Version 2.0 Animation 6-11

7. Coordinate Transformations

When displaying 3-D shapes, it is useful to be able to move the shapes
around relative to one another and to the viewer, to rotate and scale them,
and to be able to change the viewer's point of view, field of view, and
orientation. The subroutines in this chapter allow you to manipulate
geometric figures and viewpoints in 3-D space in general ways.

Three-dimensional transformations tend to be difficult to describe, and there
are many ways to visualize and think about them. Do not be discouraged if
the subject is not perfectly clear after one reading. Reread the chapter, and
try experiments with the sample code segments included here. Try writing
your own programs. This chapter provides only one viewpoint; other books
on computer graphics present the subject in slightly different ways that may
be clearer to you.

To understand how IRIS-4D Series systems convert 3-D coordinates of
geometric figures into pixels on the screen, consider these two sets of
operations:

* A et of 3-D operations, such as rotation, translation, and scaling, that
move the objects and viewpoint to the desired position for a given scene

* An operation that maps 3-D points to 2-D screen coordinates, taking into
consideration the portion of 3-D space (as well as its orientation with
respect to the screen) that is visible during a given scene

The 3-D operations can be further divided into projection, viewing, and
modeling transformations. Conversion from the original 3-D figures to the
2-D pixels on the screen is handled by another set of subroutines, including
viewport and lsetdepth.

Version 2.0 Coordinate Transformations 7-1

There are also subroutines to save and restore transformations that can be
useful in a hierarchical display structure, which is extremely convenient for
3-D graphics.

7.1 Coordinate Systems

Figure 7-1 illustrates the coordinate systems used at different stages of the
drawing process. The coordinate systems begin with a 3-D system defined
in right-handed cartesian floating point coordinates—in other words,
vertices are specified in (x, y, z) triplets. Call this the object coordinate
system. There are no limits to the size of sensible coordinates (other than
the largest legal floating point value).

The eye coordinate system is the result of object coordinates transformed by
the modeling and viewing (or ModelView) matrix. The eye coordinate
system is the system in which lighting calculations are performed internally.
When the IRIS transforms objects expressed in eye coordinates by the
Projection matrix, the output is expressed in clip coordinates. It is in this
coordinate system that values returned by a call to getgpos are expressed.

The next system is called the normalized coordinate system. It is discussed
in much more detail later. Clip coordinates are converted to normalized
coordinates by first limiting x, y, and z to the range -w < x,y,z <w (clipping),
then dividing x, y, and z by w. The result is normalized coordinates in the
range -1 < x,y,z < 1. The space of normalized coordinates is called the 3-D
unit cube.

The x and y coordinates of this 3-D unit cube are scaled directly into the
next coordinate system, usually called the window coordinate system.
Depth-cueing occurs in the window coordinate system. If you draw into an
arbitrarily placed window on the screen, the pixel at the lower-left corner of
the window has window coordinates (0,0). These window coordinates, once
modified by a window offset that represents the window’s location on the
screen, represent the screen coordinate system, which corresponds to pixel
values.

Screen coordinates are typically thought of as 2D, but in fact all three
dimensions of the normalized coordinates are scaled, and there is a screen z
coordinate that can be used for many things, such as hidden surface removal
or depth cueing.

7-2 Graphics Library Programming Guide IRIS-4D Series

All coordinate systems, including window and screen, are continuous. All
current IRIS-4D Series models represent coordinate values in eye, clip, and
normalized coordinates with single-precision, floating point numbers. All
accept object coordinate values as 16-bit integers, 32-bit integers (with
signed 24-bit range), and single- and double-precision floating point
numbers. The format and precision of window and screen coordinates vary
from model to model, and as a function of the GL subpixel mode. These
coordinates are not limited to integer values, however.

Coordinate System Operation
Object coordinates |]
ModelView matrix
———
Eye coordinates
y L
Projection matrix
«———
Clip coordinates
I
Divide by w
-
Normalized
coordinates l
Viewport
transform
.]
Window
coordinates > .
Window offset
» —
Screen
coordinates SN
Pixel values

Figure 7-1. Coordinate Systems

A note on “world coordinates”: If the Model View matrix were separated
into a Model matrix and a View matrix, the coordinate system between
these matrices would be correctly referred to as the world coordinate
system. Because the GL concatenates modeling and viewing
transformations on a single matrix (ModelView), there are no world
coordinates.

Version 2.0 Coordinate Transformations 7-3

By default, the Graphics Library combines the Model View and the
Projection matrix into a single “transformation” matrix. Because this
single-matrix operation mode does not support many of the advanced
features of the GL, it is not described in this chapter. Rather, this chapter
discusses only the multimatrix mode, in which separate ModelView and
Projection matrices are maintained.

7.2 Projection Transformations

Viewing items in perspective on the computer screen is like looking through
a rectangular piece of perfectly transparent glass at the items. If you draw a
line from your eye through the glass until it hits the item, imagine coloring a
dot on the glass where the line passes through the same color as the item
that the line intersects. If this were done for all possible lines through the
glass, the coloring were perfect, and the eye not allowed to move, then the
picture painted on the glass would be indistinguishable from the true scene.

The collection of all the lines leaving your eye and passing through the glass
would form an infinite four-sided pyramid with its apex at your eye.
Anything outside the pyramid would not appear on the glass, so the four
planes passing through your eye and the edges of the glass would clip out
invisible items. These are called the left, right, bottom, and top clipping
planes. The geometry hardware also provides two other clipping planes that
eliminate anything too far from or too near the eye. They are called the
near and far clipping planes. Near and far clipping is always turned on, but
it is possible to set the near plane very close to the eye and/or the far plane
very far from the eye so that all the geometric items of interest are visible.

Because floating point calculations are not exact, it is a good idea to move
the near plane as far as possible from the eye, and to bring in the far plane
as close as possible. This gives optimal resolution for distance-based
operations such as hidden surface removal and depth-cueing, discussed in
later chapters.

Thus, for a perspective view, the visible region of the world looks like an

Egyptian pyramid with the top sliced off. The technical name for this is a
frustum, or rectangular viewing frustum.

7-4 Graphics Library Programming Guide IRIS-4D Series

perspective

perspective defines a Projection matrix that maps a frustum of eye
coordinates so that it exactly fills the unit cube (after x, y, and z are each
divided by w). The particular frustum so mapped is part of a pyramid
whose apex is at the origin (0.0, 0.0, 0.0). The base of the pyramid is
parallel to the x-y plane, and it extends along the negative z axis. In other
words, it is the view obtained with the eye at the origin looking down the
negative z axis, and the plate of glass is perpendicular to the line of sight.

perspective has four arguments: the field of view in the y direction, the
aspect ratio, and the distances to the near and far clipping planes. The field
of view is an angle made by the top and bottom clipping planes that is
measured in tenths of degrees (so 900 is a right angle). The aspect ratio is
the ratio of the x dimension of the glass to its y dimension. It is a floating
point number. For example, if it is 2.0, the glass is twice as wide as it is
high. Typically, you choose the aspect ratio so that it is the same as the
aspect ratio of the window on the screen, but it need not be. The distances
to the near and far clipping planes are floating point values.

Version 2.0 Coordinate Transformations 7-5

The following program illustrates a simple use of perspective:

#include <gl/gl.h>

float vO[3] {-3.0, 3.0, 0.0};

float v1([(3] = {-3.0, -3.0, 0.0};
float v2[3] = {2.0, -3.0, -4.0};
float v3[3] = {2.0, 3.0, -4.0};
main ()

{
keepaspect (1, 1);
winopen ("perspective");
mmode (MVIEWING) ;
perspective (900, 1.0, 2.0, 5.0);
RGBmode () ;
gconfig();
cpack (0x0) ;
clear();
bgnpolygon () ;
cpack (0xff); v3£f(v0); v3f(vl);
cpack (0x£f£00); v3f(v2); v3f(v3);
endpolygon();
sleep (20);
}

This program draws a single rectangle whose shade varies from bright red at
z=0.0 to bright green at z=-4.0. Because the eye is at (0.0, 0.0, 0.0), the
rectangle recedes into the distance, and because the field of view is 90
degrees and the near clipping plane is at 2.0, the rectangle is clipped by the
top, bottom, and near clipping planes. Because the rectangle is clipped by
the near clipping plane, the visible part of the polygon nearest the eye is not
bright red, but already looks yellowish. If you bring in the near clipping
plane, the near end of the polygon looks more and more red. Figure 7-2
shows a top view. The heavy line is the rectangle.

7-6 Graphics Library Programming Guide IRIS-4D Series

far left

x L

near

\ Z

N\

right
Figure 7-2. The perspective Subroutine

keepaspect tells the window manager to assure that the window has the x
and y dimensions in a 1 to 1 ratio, i.e., a square. An equally accurate picture
could be made by setting a 2 to 1 ratio, but then the aspect ratio in

. perspective would have to be changed to 2.0. You might try this. Also
try varying other parameters of perspective —change the field of view
and the near and far clipping planes to see the effects.

In a real application, you probably want to match the aspect ratio of
perspective to the aspect ratio of the window when you sweep out a
window of arbitrary shape and size. See the window manager
documentation on getsize to learn how to find the shape of the current
window.

All the projection transformations work basically the same way. A viewing
volume is mapped into the unit cube, the geometry outside the cube is
clipped out, and the remaining data is linearly scaled to fill the window
(actually the viewport, which is discussed later). The only differences
between the projection transformations are the definitions of the viewing
volumes.

void perspective (fovy, aspect, near, far)
Angle fovy;

float aspect;

Coord near, far;

Version 2.0 Coordinate Transformations 7-7

window

Another projection transformation that shows the world in perspective is
window. It is similar to perspective, butits viewing frustum is defined
in terms of distances to the left, right, bottom, top, and near and far clipping
planes.

void window (left, right, bottom, top, near, far)
Coord left, right, bottom, top, near, far;

Because window allows separate specifications at all six surfaces of the
viewing frustum, it can be used to specify asymmetric volumes. These are
useful in special circumstances, such as multiple view simulations, and for
special operations, such as antialiasing using the accumulation buffer (see
Chapter 15).

window specifies the position and size of the rectangular viewing frustum
closest to the eye (in the near clipping plane), and the location of the far
clipping plane. window projects the image onto the screen with perspective
(see Figure 7-3).

The other two projection subroutines that are part of the Graphics Library
are the orthogonal transformations. Their viewing volumes are rectangular
parallelepipeds (rectangular boxes). They correspond to the limiting case of
a perspective frustum as the eye moves infinitely far away and the field of
view decreases appropriately.

Another way to think of the ortho subroutines is that the geometry outside
the box is clipped out, and then the geometry inside is projected parallel to
the z axis onto a face parallel to the x-y plane.

ortho allows you to specify the entire box—the x, y, and z limits. ortho2
requires a specification of only the x and y limits. The z limits are assumed
to be -1 and 1. ortho2 is usually used for 2-D drawing, where all the z
coordinates are zero. It is really a 3-D transformation, and if you use
ortho2 and try to draw objects with z coordinates outside the range

1.0 £z < 1.0, they will be clipped out.

7-8 Graphics Library Programming Guide IRIS-4D Series

(0, 0, far)

[P |

window (-5.,5.,-3.,3.,1.,3.);
translate (0.,0.,-2.)

window defines a viewing window in the x-y plane looking
down the -z axis. A perspective view of the image is
projected onto the window.

Figure 7-3. The window Subroutine

Version 2.0 Coordinate Transformations 7-9

ortho

ortho defines a box-shaped enclosure in the eye coordinate system. left,
right, bottom, and top define the x and y clipping planes. near and far are
distances along the line of sight and can be negative. In other words, the z
clipping planes are located at z = -near and z = -far. Figure 7-4 shows an
example of a 3-D orthographic projection.

void ortho(left, right, bottom, top, near, far)
Coord left, right, bottom, top, near, far;

ortho2

ortho2 defines a 2-D clipping rectangle. Because of the transformation of
floating point values to integers as the coordinate systems are modified to
use screen coordinates, and because of the need to align lines on pixels
rather than on interpixel boundaries, the ortho2 statement in the following
fragment defines the correct clipping rectangle for the window created with
the corresponding prefposition statement:

prefposition (100, 500, 100, 500);
ortho2(99.5, 500.5, 99.5, 500.5);

This causes the clipping rectangle to clip only items that are completely
within the window defined by the prefposition statement. These two
statements ensure that the ortho2 statement clips on (and point-samples
within) boundaries that are completely visible within the window defined by
the prefposition statement.

void ortho2 (left, right, bottom, top)
Coord left, right, bottom, top;

7-10 Graphics Library Programming Guide IRIS-4D Series

(

Cautlon Because ortho allows separate specification of the left, right,
bottom, and top chppmg planes (rather than just width and
height of the viewing volume), it can move the effective
viewpoint off the positive z axis. (Recall that both
perspective and window force the viewpoint to the origin.)
Thus, ortho incorporates some aspects of a viewing
transformation, as well as of a projection transformation. Be
careful when using ortho with asymmetric volume boundaries
that you do not duplicate this viewpoint offset in your viewing
transformation (see Section 7.3).

7.3 Viewing Transformations

All the projection transformations discussed so far have assumed that the
eye is at least looking toward the negative z axis, and the two perspective
subroutines actually assume that the eye is at the origin. For the orthogonal
transformations, it does not make sense to talk about the exact pesition of
the eye, only about the direction it is looking.

The viewing transformations allow you to specify the position of the eye in
the world coordinate system, and to specify the direction toward which it is
looking. polarview and lookat provide convenient ways to do this.
polarview assumes that the object you are viewing is near the origin, and
the eye's position is specified by a radius (distance from the origin) and by
angles measuring the azimuth and elevation. The specification is similar to
polar coordinates; hence, the name. There is still one degree of freedom,
because these values tell only where the eye is relative to the object. A twist
argument tells what direction is up.

Version 2.0 Coordinate Transformations 7-11

N J

ortho (-5.,5.,-3.,3.,1.,3.);
translate (0.,0.,-2.);

ortho defines a viewing window in the x-y plane, looking
down the -z axis. An orthographic view of the object between
the near and far planes is projected onto the window.

Figure 7-4. The ortho Subroutine

7-12 Graphics Library Programming Guide IRIS-4D Series

lookat allows you to specify the eye's position in space and a point at
which you are looking. Both points are given with cartesian x, y, and z
coordinates. Again, a twist argument is required to eliminate the last degree
of freedom. Note that once you specify the eye position, the point you are
looking at could be any point along a line, and the identical transformation
is specified.

Both viewing subroutines work with a projection subroutine. If you want to
view the point (1, 2, 3) from the point (4, 5, 6) in perspective, use
perspective with lookat as described below. When the orthogonal
projections are used, the exact position of the eye used in the viewing
subroutines does not make a difference. All that matters is the viewing line
of sight.

The viewing transformations work mathematically by transforming, via
rotations and translations, the position of the eye to the origin and the
viewing direction so that it lies along the negative z axis.

polarview

polarview defines the viewer's position in polar coordinates. The first
three arguments, dist, azim, and inc, define a viewpoint. dist is the distance
from the viewpoint to the world space origin. azim is the azimuthal angle in
the x-y plane, measured from the y axis. inc is the incidence angle in the y-z
plane, measured from the z axis. The line of sight is the line between the
viewpoint and the world space origin.

twist rotates the viewpoint around the line of sight using the right-hand rule.
All angles are specified in tenths of degrees and are integers. Figure 7-5
shows examples of polarview .

void polarview(dist, azim, inc, twist)

Coord dist;
Angle azim, inc, twist;

Version 2.0 Coordinate Transformations 7-13

N /

polarview(0.,0,0,0);

4 N

=

N /

polarview(10.,0,0,0);

polarview has four arguments: the viewing distance from the
origin, an incidence angle measured from the z-axis in the
y-z plane, an azimuthal angle measured from the y-axis in
the x-y plane, and a twist around the line of sight. Each
frame shows the viewpoint and viewed image as additional
arguments to polarview are supplied.

Figure 7-5. The polarview Subroutine

7-14 Graphics Library Programming Guide IRIS-4D Series

lookat

lookat defines a viewpoint and a reference point on the line of sight in
world coordinates. The viewpoint is at (vx, vy, vz)and the reference point is
at (px, py, pz). These two points define the line of sight. twist measures
right-hand rotation about the z axis in the eye coordinate system. Figure 7-6
illustrates lookat .

void lookat (vx, vy, vz, pX, py, Pz, twist)
Coord vx, vy, vz, pX, pY, PZ;

Angle twist;

The following program illustrates how to use a viewing transformation with
a projection transformation.

#include <gl/gl.h>

long vO[3] = {-1, -1, -1};
long v1{3] = {-1, -1, 1};
long v2[3] = {-1, 1, 1};

long v3[3] = {-1, 1, -1};
long v4[3] = {1, -1, -1};
long v5[3] = {1, -1, 1};
long v6[3] = {1, 1, 1};

long v7[3] = {1, 1, -1};

Version 2.0 Coordinate Transformations 7-15

main ()

{
keepaspect (3, 2);
winopen ("lookat") ;
mmode (MVIEWING) ;
perspective (900, 1.
lookat (5.0, 4.0, 6.
color (BLACK) ;
clear();
color (WHITE);
bgnline();
v3i(v0); v3i(vl); v3i(v2); v3i(v3);
v3i(v0); v3i(v4); v3i(v5); v3i(v6);
v3i(v7); v3i(v4); v3i(v5); v3i(vl);
v3i(v2); v3i(v6); v3i(v7); v3i(v3);
endline () ;
sleep (3)
gexit () ;
exit (0);

}

, .1, 10.0);

5
0o, 1.0, 1.0, 1.0, 0);

This program draws a wire-frame cube centered at the origin. Notice that
the window has an aspect ratio of 3:2, or 1.5:1, so the aspect ratio of
perspectiveis 1.5 to match. lookat looks from the point (5.0, 4.0, 6.0)
at the corner (1.0, 1.0, 1.0) of the cube, so that corner appears centered in
the window.

The near and far clipping planes are at .1 and 10.0. Nothing is clipped out
on the near end but the far comner of the cube is about 10.49 away from the
eye, so the far clipping plane clips a bit of the corner. Try modifying various
aspects of the above program and notice their effects.

7-16 Graphics Library Programming Guide IRIS-4D Series

line of sight T\

/
lookat (V, Vy' V. 0.,0.0.0);

- /
lookat (V, V. V., 0.0.0.300);

lookat defines a viewpoint, a reference point along the line of
sight, and a twist angle. The top illustrations show the viewer
and viewed image with no twist; twist is added to the lower
illustrations.

Figure 7-6. The lookat Subroutine

Version 2.0 Coordinate Transformations 7-17

7.4 Modeling Transformations

When you create a graphical object, or geometric model, the system creates
it with respect to its own coordinate system. You can manipulate the entire
object using the modeling transformation subroutines: rotate, rot,
translate, and scale. By combining or linking drawing subroutines,
you can create more complex modeling transformations that express
relationships among different parts of a complex object.

rotate

rotate rotates graphical objects; it specifies an angle and an axis of
rotation. The angle is given in tenths of degrees according to the right-hand
rule, which is as follows: as you look down the positive rotation axis to the
origin, positive rotation is counterclockwise. A character, either x, y, or z,
defines the axis of rotation. (The character can be upper- or lowercase.) For
example, the object shown in Figure 7-7(a) is rotated 30 degrees with
respect to the y axis in Figure 7-7(b). All objects drawn after rotate
executes are rotated. This means that you must pay close attention to the
order in which you specify transformation operations, or your program
might provide you with some surprising results. The ordering of
transformations is discussed later in this chapter.

void rotate(a, axis)

Angle a;
char axis;

7-18 Graphics Library Programming Guide IRIS-4D Series

(

?m’ . X
(a) original object at (0,0,0) (b) rotate (300 ,2),
y y
] |
> X »l X
(c) translate (1.,1.,0.); (d) scale (- 5,5,1.);

y

(e) scale (2.,1.,1.);

The modeling routines are rotate, translate, and scale. The
object shown in (a) is rotated in (b), translated in (c), and
scaled in (d) and (e).

Figure 7-7. Modeling Commands

Version 2.0 Coordinate Transformations 7-19

rot

rot is the same as rotate ; it specifies an angle and an axis of rotation in
floating point values. The angle is measured in degrees.

void rot(a, axis)

float a;
char axis;

translate

translate moves the object origin to the point specified in the current
object coordinate system. The object in Figure 7-7(a) is translated in Figure
7-7(c). All objects drawn after translate executes are translated.

void translate(x, y, 2z)
Coord x, vy, z;

7-20 Graphics Library Programming Guide , IRIS-4D Series

scale

scale shrinks, expands, and mirrors objects. Its three arguments (x, y, z)
specify scaling in each of the three coordinate directions. Values with
magnitude of more than 1 expand the object; values with magnitudes of less
than 1 shrink it. Negative values cause mirroring.

All objects that are drawn after scale executes are scaled. The object
shown in Figure 7-7(a) is shrunk to one-quarter of its original size and is
mirrored about the y axis in Figure 7-7(d). It is scaled only in the x
direction in Figure 7-7(e).

You can combine rotate, rot, translate, and scale to produce more
complicated transformations. The order in which you apply these
transformations is important. Figure 7-8 shows two sequences of
translate and rotate;each sequence has different results.

void scale(x, y, z)
float x, y, z;

Version 2.0 Coordinate Transformations 7-21

Yy y y
A A
A
= -0 /S
. % \ : (\ //
— > L X " - X
(a) rot (600,'2'); trans (4.,0.,0);
y y ' y

po

Y
3

(b) trans (4.,0.,0); rot (600,'2');

The modeling routines are not commutative: if you reverse
the order of operations, you can get different results. (a)
shows a rotation of 60 degrees about the origin followed by a
translation of 4 degrees in the x-direction. (b) shows the
same operations performed in the reverse order. Note that
rotations are about the origin of the coordinate system. (

Figure 7-8. The translate and rotate Subroutines

7-22 Graphics Library Programming Guide IRIS-4D Series

7.5 Controlling the Order of Transformations

Each time you specify a transformation such as rotate or translate, the
software automatically generates a transformation matrix that specifies the
amount by which the object's coordinate system is to be rotated or
translated. The current transformation matrix is then premultiplied by the
generated matrix, effecting the desired transformation. The actual
transformations are done in an order opposite to that specified. In other
words, you specify the viewing matrix first, followed by the modeling
transformations, so that vertices are first positioned correctly in world
coordinates, then the eye point moves to the origin looking down the
negative z axis.

The reason for the reverse order is that the transformations are
accomplished in the hardware by matrix multiplication, and historically, the
matrix multiplication hardware allows only left multiplications. Thus, a
vector v, transformed by a modeling transformation M and a viewing
transformation V (in that order), undergoes the following multiplications:

v=>vM =2 (VM)V =vMV

The hardware concatenates modeling and viewing transformations onto one
matrix to save time, but because it performs multiplication only on the left,
it must start with V, then generate MV. Because the Projection matrix is
stored separately from the ModelView matrix, it does not matter whether
projection is specified before or after the modeling and viewing
transformations.

7.5.1 Current Matrix Mode (mmode)

The graphics system maintains three transformation matrices—the
ModelView matrix, the Projection matrix, and the Texture matrix. As
described at the beginning of this chapter, the Model View matrix transforms
coordinates from object coordinates to eye coordinates. The Projection
matrix transforms coordinates from eye coordinates to clip coordinates. The
Texture matrix transforms texture coordinates directly from object
coordinates to clip coordinates. Its transformation is typically unrelated to
that specified by the Model View and Projection matrices.

Version 2.0 Coordinate Transformations 7-23

Projection commands, such as perspective, window, and ortho, always
replace the Projection matrix, regardless of the current matrix mode.
Modeling and viewing commands, however, modify the “current”
transformation matrix, as specified by the current matrix mode. When
matrix mode is MVIEWING, modeling and viewing commands premultiply
the Model View matrix. When matrix mode is MPROJECTION, these
commands premultiply the Projection matrix. And when mmode is
MTEXTURE, modeling and viewing commands premultiply the Texture
matrix. Modeling commands include rot, translate, and scale; the
viewing commands are lookat and polarview.

A fourth matrix mode, MSINGLE, reconfigures the graphics system to have
only a single matrix that transforms vertices directly from object
coordinates to clip coordinates. This mode is obsolete, and should not be
used in code you develop. Itis not used in any of the examples that follow
this chapter. For historical reasons, however, MSINGLE matrix mode is the
default operating mode of the Graphics Library. For this reason, all
programs should set matrix mode to MVIEWING, MPROJECTION, or
MTEXTURE before any matrix operations are performed.

mmode specifies which of three matrices is the current matrix: ModelView
(MVIEWING), Projection (MPROIJECTION), or Texture MTEXTURE).
The current matrix is the one modified by modeling and v1ewmg
commands, and the one returned by getmat rix.

void mmode (m)
short m;

7.5.2 Hierarchical Drawing with the Stack Matrix

A drawing can be composed of many copies of simpler drawings, each of
which can be composed of still simpler drawings, and so on. For example,
if you were writing a program to draw a picture of a bicycle, you might
want to have one subroutine that draws a wheel, and to call that subroutine
twice to draw two wheels, appropriately translated. The wheel itself might
be drawn by calling the spoke drawing subroutine 36 times, appropriately
rotated. In a still more complicated drawing of many bicycles, you might
like to call the bicycle drawing routine many times.

7-24 Graphics Library Programming Guide IRIS-4D Series

Suppose the bicycle is described in a coordinate system where the bottom
bracket (the hole through which the pedal crank's axle runs) is the origin.
You would draw the frame relative to this origin, but translate forward a
few inches before drawing the front wheel (defined, say, relative to its axis).
Then you would like to remove the forward translation to get back to the
bicycle's frame of reference, and translate back to draw another instance of
the wheel.

What is happening mathematically is this: suppose the modeling
transformation that describes the bicycle's frame of reference is M, and that
S and T are transformations (relative to M) to move forward for drawing the
front wheel, and back for the back wheel respectively. You would like to
draw the wheel using transformation SM for the front wheel and TM for the
back wheel.

This is easily accomplished using the Model View matrix stack. At any point
in a drawing, there is a current Model View matrix that sits at the top of the
matrix stack, and is composed of all the modeling and viewing
transformations composed thus far. In the bicycle example, this lumped-
together transformation is called M. Any vertex is transformed by the top
matrix, which is just what you want to do for drawing the frame.

Two subroutines, pushmatrix,and popmatrix, push and pop the
ModelView matrix stack. pushmat rix pushes the matrix stack down and
copies the current matrix to the new top. Thus, after a pushmatrix, there
are two copies of M on top. translate (by a translation matrix S) leaves
the stack with SM on top and M underneath. The wheel is then drawn once
using the SM transformation. popmat rix eliminates the SM on top, leaving
M, and another pushmat rix makes two copies of M.

Version 2.0 Coordinate Transformations 7-25

Translating by T puts TM on top, so you can now draw the back wheel; after
popping the matrix stack again, M is on top, and you can draw the rest of
the frame. The code to draw the bicycle might look like:

. /* code to get' M on top of the stack */

pushmatrix();

translate (-dist_to_back_wheel, 0.0, 0.0);
drawwheel () ;

popmatrix();

pushmatrix () ;

translate (dist_to_front_wheel, 0.0, 0.0);
drawwheel () ;

popmatrix () ;

drawframe () ;

Note that the subroutine drawwheel might easily push and pop matrices
itself before calling the drawspoke subroutine.

pushmatrix

pushmat rix pushes down the transformation stack, duplicating the current
matrix. If the transformation stack contains one matrix, M, after a
pushmatrix, it will contain two copies of M. You can modify only the
top copy. Because only the Model View matrix is stacked, you should call
pushmat rix only while mmode is MVIEWING.

void pushmatrix ()

popmatrix

popmat rix pops the transformation stack. You should call popmatrix
only while mmode is MVIEWING.

void popmatrix()

7-26 Graphics Library Programming Guide IRIS-4D Series

Example—Hierarchical Description

This example of a simple program uses a hierarchical description of a car. It
is so simple that the car body is a rectangle and the wheels are square, and
everything is 2D. Note that the positions and orientations of the nine cars
are independent, and each wheel has a different rotation.

#include <gl/gl.h>

float carbody([][2] = {{-.1, -.05},

{.1, -.05},{.1, .05}, {-.1, .05}};

float wheel[][2] = {{-.015, -.015},

main ()

{

{.015, -.015},{.015, .015}, {-.015, .015}};

float xoffset, yoffset;

keepaspect (1, 1);

winopen ("hierarchy");

mmode (MVIEWING) ;

ortho2(-1.0, 1.0, -1.0, 1.0);
color (BLACK) ;

clear();
for (xoffset = -.5; xoffset <= .5; xoffset += .5)
for (yoffset = -.5; yoffset <= .5; yoffset += .5) {

pushmatrix () ;

translate (xoffset, yoffset, 0.0);
rotate (rand () &Oxf££f, 'z');

drawcar () ; -
popmatrix () ;

}

sleep(3);
gexit ();
exit (0);

Version 2.0

Coordinate Transformations 7-27

drawcar ()
{
float xwheel, ywheel;

color (RED) ;

bgnpolygon () ;

v2f (&carbody[0] [0]);

v2f (&carbody[1] [0]);

v2f (&carbody[2] [0]);

v2f (&carbody([3][0]);
endpolygon () ;
pushmatrix();
translate(-.1, -.05, 0.0);
rotate(ZOd, 'tz');
drawwheel () ;

popmatrix () ;
pushmatrix();

translate (.1, -.05, 0.0);
rotate (400, 'z');
drawwheel () ;

popmatrix () ;
pushmatrix();
translate(.1, .05, 0.0);
rotate (600, 'z');
drawwheel () ;

popmatrix () ;
pushmatrix();
translate(-.1, .05, 0.0);
rotate (800, 'z');
drawwheel () ;

popmatrix () ;

}

drawwheel ()

{
color (GREEN) ;
bgnpolygon() ;
v2f (&wheel[0] [0]);
v2f (&wheel[1] [0]);
v2f (&wheel[2] [0]);
v2f (&wheel[3][0]);
endpolygon() ;

7-28 Graphics Library Programming Guide IRIS-4D Series

Example—Spirals

This shorter and perhaps more interesting program illustrates hierarchy and
more complex transformations. It is a computer model of the children's toy
called “Spirograph.” In the toy, one plastic gear is pinned to a piece of
paper, and another gear is allowed to turn around it. You place a pen
through a hole in the moving gear off center, and, as the moving gear rolls
around the fixed gear, you draw interesting patterns.

#include <gl/gl.h>

#define PEN_TQ_CENTER 0.2
#define R1 .6
#define RO .35

drawdot ()
{
translate(PEN_TQ_CENTER, 0.0, 0.0);
bgnpoint () ;
v2i (0,0);
endpoint () ;

drawl (theta)

float theta;

{
pushmatrix();
rot (theta, 'z');
translate (Rl + RO, 0.0, 0.0);
rot (-theta*R1/RO, 'z');
drawdot () ;
popmatrix () ;

Version 2.0 Coordinate Transformations 7-29

main ()

{
float theta;

keepaspect (1, 1);

winopen ("spirograph") ;

mmode (MVIEWING) ;

ortho2(-2.0, 2.0, -2.0, 2.0);

color (BLACK) ;

clear ()

color (WHITE) ;

for (theta = 0; theta < 3600.0; theta += .25)
drawl (theta) ;

sleep(2);

gexit () ;

exit (0);

}

In this example, RO and R/ are the radii of the two gears, and
PEN_TO_CENTER is the distance from the pen to the center of the moving
gear. With a slight modification of this program, you can build a super
spirograph that has three levels of gears, each moving along the next at a
uniform rate. It would be difficult to build this one out of plastic.

#include <gl/gl.h>

#define PEN_TO_CENTER 0.2
#define R2 .8

#define R1 .6

#define RO .35

drawdot ()
{
translate (PEN_TO CENTER, 0.0, 0.0);
bgnpoint ();
v21i(0,0);
endpoint () ;

7-30 Graphics Library Programming Guide IRIS-4D Series

drawl (theta)
float theta;
{

pushmatrix();

rot (theta, 'z');

translate (R1 + RO,
rot (-theta*R1/RO,

drawdot () ;
popmatrix () ;

drawx (theta)

float theta;

{
pushmatrix();
rot (theta, 'z');

translate (R2 + R1,

rot (-theta*R2/R1,
drawl (theta) ;
popmatrix () ;

main ()

{
float theta;

keepaspect (1,

1);

0.0,
'z');

0.0);

0.0,
'z');

0.0);

winopen ("spirograph") ;

ortho2(-3.0, 3.0,

color (BLACK) ;
clear();

color (WHITE) ;
for (theta =

sleep(2);

gexit () ;
exit (0);

Version 2.0

0; theta < 18000.0; theta +=
drawx (theta) ;

-3.0, 3.0);

.25)

Coordinate Transformations 7-31

7.6 Viewports, Screenmasks, and Scrboxes

The viewport is the area of the window that displays an image. You specify
it in window coordinates, where the coordinates of the pixel at the lower-left
corner of the window are (0, 0). The total visible screen area varies from
system to system.

viewport

viewport specifies, in window coordinates, the area of the window that
displays an image. By default, when you open a window on the screen, its
viewport is set to cover the whole window. Its arguments (left, right,
bottom, top) define a rectangular area on the window by specifying the left,
- right, bottom, and top coordinates. The portion of eye coordinates that
window, ortho, Or perspective describes is mapped into the viewport.

void viewport (left, right, bottom, top)
Screencoord left, right, bottom, top;

Although window coordinates are continuous, not discrete, the
parameters passed to viewport are integer values. Thus, the
viewport is always an integer number of pixels wide and high. Pixel
x,y is included in the viewport if x 2 left and x <right and y 2 bottom
and y < top. Because pixel centers have integer coordinates in the
continuous window coordinate space, the window area included in a
viewport is exactly (left-0.5) < x < (right+0.5), (bottom-0.5) < y < (top+0.5).

7-32 Graphics Library Programming Guide IRIS-4D Series

getviewport

getviewport returns the current viewport. Its arguments (left, right,
bottom, top) are the addresses of four memory locations. These are assigned
the left, right, bottom, and top coordinates of the current viewport.

void getviewport (left, right, bottom, top)
Screencoord *left, *right, *bottom, *top;

scrmask

viewport sets both the viewport and the screenmask to the same area.
(The screenmask is a specified rectangular area of the screen to which all
drawings are clipped.) The viewport maps coordinates to the window and
the screenmask specifies the portion of the window to which the geometry
can be drawn. The screenmask is a setting that regards only the physical
display within the window. The screenmask and viewport are usually set to
the same area. scrmask sets only the screenmask, which must be placed
entirely within the viewport.

void scrmask(left, right, bottom, top)
Screencoord left, right, bottom, top;

Version 2.0 Coordinate Transformations 7-33

getscrmask

getscrmask returns the coordinates of the current screenmask in the
arguments left, right, bottom, and top.

void getscrmask (left, right, bottom, top)
Screencoord *left, *right, *bottom, *top;

pushviewport

The system maintains a stack of viewports, and the top element in the stack
is the current viewport. pushviewport duplicates the current viewport and
screenmask and pushes them on the stack.

pushviewport ()

popviewport

popviewport pops the stack of viewports and sets the viewport and
screenmask. The viewport on top of the stack is lost.

void popviewport ()

7-34 Graphics Library Programming Guide IRIS-4D Series

scrbox

scrbox is a dual of the scrmask capability. Rather than limiting drawing
effects to a screen-aligned subregion of the viewport, it tracks the screen-
aligned subregion (screen box) that has been affected. Unlike scrmask,
which defaults to the viewport boundary if not explicitly enabled, scrbox
must be explicitly turned on to be effective.

While enabled (mode SB_TRACK), scrbox maintains leftmost, rightmost,
lowest, and highest window coordinates of all pixels that are scan-
converted. By default, scrbox is reset (mode SB_RESET), forcing the
leftmost and lowest screen box values to be greater than the rightmost and
highest screen box values. While scrbox is set to mode SB_HOLD, the
current boundary values are unchanged, regardless of any drawing
operations.

Because scrbox operates on the pixels that result from the scan conversion
of points, lines, polygons, and characters, it correctly handles wide lines,
antialiased (smooth) points and lines, and characters.

scrbox results are only guaranteed to bound the modified frame buffer
region, but they might exceed the bounds of this region due to
implementation.

void scrbox (arg)
long arg;

getscrbox

getscrbox retums to current scrbox limits in the variables left, right,
bottom, and top.

void getscrbox(left, right, bottom, top)
long *left, *right, *bottom, *top;

Version 2.0 Coordinate Transformations 7-35

7.7 Additional Clipping Planes

Geometry is always clipped against the boundaries of the six-plane frustum
defined by the current Projection matrix. clipplane allows the
specification of additional planes, not necessarily perpendicular to the x, y, or
z axes, against which all geometry is clipped. You can specify up to six
additional planes. Because the resulting clipping region is always the
intersection of the (up to) 12 half-spaces, it is always convex.

clipplane uses the following format:

void clipplane (index, mode, params)
long index,mode;
float params|[];

where its arguments have the following meanings:

index Expects an integer in the range 0 through 5. Indicates which
of the six clipping planes is being modified.

mode Expects one of three tokens:
CP_DEFINE Use the plane equation passed in params to

define a clipping plane. The clipping plane
is neither enabled nor disabled.

CP_ON Enable the (previously defined) clipping
plane.
CP_OFF Disable the clipping plane. (default)

params Expects an array of four floats that specify a plane equation.
A plane equation is usually thought of as a four-vector
A,B,C,D. In this case, A is the first component of the params
array, and D is the last. A four-component vertex array (see
v4f) can be passed as a plane equation, where vertex X
becomes A, Y becomes B, etc.

7-36 Graphics Library Programming Guide IRIS-4D Series

(

clipplane specifies a half-space using a four-component plane equation.
When it is called with mode CP_DEFINE, this object coordinate plane
equation is transformed to eye coordinates using the inverse of the current
ModelView matrix. (You cannot call or use clipplane when the matrix
mode is MSINGLE.)

P object =

Ao o

Poye =M _Imodelview *P object

Once you have defined a clipping plane, you enable it by calling clipplane
with the CP_ON argument, and with arbitrary values passed in params.
While the program is drawing after a clipping plane has been defined and
enabled, each vertex is transformed to eye coordinates, where it is dotted
with the clipping plane Peye. Eye coordinates whose dot product with Peye
is positive or zero are in, and require no clipping. Those eye coordinate
vertices whose dot product is negative are clipped. Because clipplane
clipping is done in eye coordinates, changes to the Projection matrix have no
effect on its operation.

By default, all six clipping planes are undefined and disabled. The behavior
of an enabled but undefined clipping plane is also undefined.

It is sometimes convenient to define a clipping plane based on a point, and a

direction in object coordinates. A point and a normal are converted to a
plane equation by the following arithmetic:

Version 2.0 Coordinate Transformations 7-37

point = [Px,Py,Pz]

normal

Nx
Ny
Nz
B]
plane equation = A = Nx (
C Nz
D - [Px,Py,Pz] - Nx
Ny
Nz

7.8 User-Defined Transformations

Modeling and viewing transformation commands premultiply the current

matrix (one of ModelView, Projection, or Texture) with a 4 x 4 matrix that (
they compute based on their parameters. You can also premultiply, or

replace, the current matrix with a 4 x 4 matrix of your own description.

multmatrix

multmatrix premultiplies the current matrix by the given matrix. That s,
if T is the current matrix, multmatrix (M) replaces T with MT . The
current matrix is the Model View matrix on the top of the ModelView stack
(if mmode is MVIEWING), the Projection matrix (if mmode is
MPROJECTION), or the Texture matrix (if mmode is MTEXTURE).

multmatrix (m)
Matrix m;

7-38 Graphics Library Programming Guide IRIS-4D Series

getmatrix

getmatrix copies the current matrix to an array provided by the user. The
current matrix is the ModelView matrix on the top of the ModelView stack
(if mmode is MVIEWING), the Projection matrix (if mmode is
MPROIJECTION), or the Texture matrix (if mmode is MTEXTURE).

getmatrix (m)
Matrix m;

loadmatrix

loadmatrix loads a 4x4 floating point matrix onto the stack, replacing the
current top of the stack.

loadmatrix (m)
Matrix m;

loadmat rix replaces the current matrix with matrix m. The current matrix
is the Model View matrix on the top of the Model View stack (if mmode is
MVIEWING), the Projection matrix (if mmode is MPROJECTION), or the
Texture matrix (if mmode is MTEXTURE).

Version 2.0 Coordinate Transformations 7-39

8. Hidden Surface Removal

By default, IRIS-4D Series systems do no hidden surface removal—figures
are rendered on the screen in the order they are drawn. For most 3-D
drawings, it is important to draw only those surfaces that are nearest to the
eye, at least for opaque objects; all other surfaces would be obscured by those
nearer the eye. The time it takes the system to draw surfaces that will not be
visible in the final scene can cause a noticeable degradation of performance
in complex scenes where drawing speed is important.

There are many ways to do hidden surface removal, depending on the types
of figures being rendered. The primary method used on IRIS-4D Series
systems is a z-buffer, which calculates the distance to the eye from the
surfaces covering each pixel, and draws only the surface that is the closest.
The calculation has to be done on a per-pixel basis, because it is possible to
have a set consisting of as few as three polygons, each of which is
overlapped by another in the set (see Figure 8-1).

Figure 8-1. Overlapping Polygons

Version 2.0 Hidden Surface Removal 8-1

Another hidden surface removal method supported by IRIS-4D Series
systems is backfacing polygon removal. For many objects including all
convex polygonal 3-D figures, if each polygonal face is drawn in
counterclockwise order when viewed from outside the object, then after
transformation, the faces on the front are in counterclockwise order and those
on the back are in clockwise order. The system can be put in a mode where
only counterclockwise polygons are drawn, and for cases such as this, the 3-
D figures are correctly rendered with hidden surfaces removed.

Backfacing polygon removal is not as general as z-buffering, but z-buffering
is much slower than backface removal on earlier systems. backface and
frontface are also useful for operations other than hidden surface removal.

8.1 z-buffering

The z-buffer is a set of 24-bit integers, one associated with each pixel on the
screen. To use it, turn on z-buffering mode and set all the numbers to the
largest possible positive value. Then as each polygon, line, point, or
character is rendered, its x and y screen coordinates are calculated in the
usual way; however, before the pixel is set to the polygon’s color, the z
coordinate is also calculated. The z coordinate is effectively the distance to
the eye. This z value is compared to the z-buffer value for that pixel. If the z
value is smaller than the value in the z-buffer, the pixel is colored, and the
pixel’s z-buffer value is set to the new z value. Thus at any point in the
drawing, the values in the z-buffer represent the distance to the item that is
currently closest to the eye. The color value stored in the bitplanes represents
the color of that item. The z comparison is signed on IRIS-4D/B/G/VGX
systems and on Personal IRIS systems; it is unsigned on IRIS-4D/GT/GTX
systems.

Another consideration when using z-buffering is that the near and far values
in the call to perspective have a profound effect on the resolution of the z-
buffer's comparison facility. Because the z-buffer contains a fixed and finite
number of integer values that can be used to compare against the z value of
the object in the scene, you control the resolution of the z-buffer by setting
the near and far values. The more closely you can bracket the objects
between the near and far clipping planes, the better z-compare resolution you
achieve. It is particularly important to move the near clipping plane as far
from the viewer position as possible.

8-2 Graphics Library Programming Guide IRIS-4D Series

(

(

Version 2.0

The program illustrates z-buffering:

#include <gl/gl.h>
#include <device.h>

float vO0[3] = {-1.0, -1.0, -1.0};
float v1([3] = {(-1.0, -1.0, 1.0};
float v2[3] = {-1.0, 1.0, 1.0};
float v3[3] = {-1.0, 1.0, -1.0};

float v4[3] = {1.0, -1.0, -1.0};
float v5[3] = {1.0, -1.0, 1.0};
float v6[3] {1.0, 1.0, 1.0};
float v7([3] {1.0, 1.0, -1.0};

long delaycount;

main(argc, argv)

int argc;
char *argvl([];
{

long xrot, yrot, zrot;

xrot = yrot = zrot = 0;
if (argc == 1)
delaycount = 0;

else

delaycount = 1;
keepaspect (1, 1);
winopen (argv([0]);
RGBmode () ;

if (delaycount == 0)
doublebuffer();
gconfig();

mmode (MVIEWING) ;
ortho(-4.0, 4.0, -4.0, 4.0, -4.0,
while (1) {
pushmatrix();

rotate (xrot, 'x');
rotate(yrot, 'y'):
rotate (zrot, 'z');

xrot += 11;

yrot += 15;

4.0);

Hidden Surface Removal

8-3

if (xrot + yrot > 3500) zrot += 23;
if (xrot > 3600) xrot -= 3600;
if (yrot > 3600) yrot —-= 3600;
if (zrot > 3600) zrot -= 3600;
cpack (0) ;
clear();
if (getbutton (LEFTMOUSE)) {

zbuffer (TRUE) ;

zclear ();
} else

zbuffer (FALSE) ;
pushmatrix();
scale(l1.2, 1.2, 1.2);
translate (.3, .2, .2);
drawcube () ;
popmatrix();
pushmatrix () ;
rotate (450+zrot, 'x');
rotate (300-xrot, 'y');
scale (1.8, .8, .8);
drawcube () ;
popmatrix () ;
pushmatrix();
rotate (500+yrot, 'z');
rotate(-zrot, 'x');
translate(-.3, -.2, .6);
scale(1.4, 1.2, .7);
drawcube () ;
popmatrix () ;
if (delaycount == 0)

swapbuffers () ;
popmatrix () ;

}

delay ()

{
sleep (delaycount) ;

8-4 Graphics Library Programming Guide IRIS-4D Series

drawcube ()
{
cpack (0xff) ;
bgnpolygon() ;
v3f (v0); v3f(vl); v3f(v2); v3f(v3);
endpolygon () ;
delay () ;
cpack (0xf£00) ;
bgnpolygon () ;
v3f(v0); v3f(vd); v3f(v5); v3f(vl);
endpolygon () ;
delay () ;
- cpack (0x££0000) ;
bgnpolygon () ;
v3f(v4d); v3f(v7); v3f(v6); v3f(v5);
endpolygon() ;
delay (};
cpack (Oxf£f£ff);
bgnpolygon() ;
v3f(v3); v3f(v7); v3f(vée); v3f(v2);
endpolygon () ;
delay () ;
cpack (Oxf£f00£ff) ;
bgnpolygon () ;
v3f(vh); v3f(vl); v3f(v2); v3f(v6);
endpolygon () ;
delay();
cpack (Oxf£££00) ;
bgnpolygon () ;
v3f (v0); v3f(vd); v3f(v7); v3f(v3);
endpolygon () ;
}

The program draws three cubical objects (they are all originally perfect
cubes, but scale stretches them along their axes). The objects tumble
through each other and the whole scene is also rotating. While the left mouse
button is up, the scene is drawn without z-buffering; when you press it, z-
buffering is enabled. If the program is called with an argument, there is a
short delay between drawing each polygon. In this mode, the left mouse
button still controls the z-buffering.

Version 2.0 Hidden Surface Removal 8-5

The key part of the program that turns on the z-buffering is the pair of
subroutines:

zbuffer (TRUE) ;
zclear (),

The first routine enables z-buffer comparisons to be made before each write,
and the second sets all the z values to the largest possible value for pixels in
the viewport. In this example, zbuffer (TRUE) is called for every frame;
however, this is not necessary because a typical program turns it on at the
beginning. The code is written as it is because the left mouse button can
come up at any time, in which case z-buffering should be turned off.

getzbuffer returns TRUE or FALSE depending on whether z-buffering is
enabled or not. By default, z-buffering is turned off.

8-6 Graphics Library Programming Guide IRIS-4D Series

8.2 Controlling z values

Just as viewport controls the scaling of the x and y coordinates, there is a
subroutine, 1setdepth, that controls the scaling of the z coordinates. It
takes two arguments of type long, corresponding to the near and far planes.
By default, near is set to the minimum value that can be stored in the z-buffer
and far is set to the maximum value. These values are system-dependent
(see Table 8-1),

System Model Minimum Value Maximum Value
BorG 0x4000 0x3FFF

GT or GTX 0 Ox7FFFFF
Personal IRIS or VGX 0x800000 0x7FFFFF

Table 8-1. Isetdepth Values for IRIS-4D Series Systems

czclear

A common code sequence in programs that do z-buffering is:

color (0);
clear():;
zclear():;

This code clears the color bitplanes to zero and clears the z-buffer bitplanes
to the maximum value. Unfortunately, it takes a relatively long time,
because clear touches each pixel, then zclear touches each pixel. In some
hardware implementations (for example, IRIS-4D/GT/GTX systems), the
hardware can in certain cases simultaneously clear the color planes and the z-
buffer planes. czclear does this.

czclear (color, zval)
long color, zval

czclear clears the bitplanes to color and the z-buffer to zval
simultaneously.

Version 2.0 Hidden Surface Removal 8-7

IRIS-4D GT and GTX systems can do a simultaneous clear only under the
following circumstances:

» In RGB mode, the 24 least significant bits of color (red, green, and blue)
must be identical to the 24 least significant bits of zval. In the case of
RGB mode, it is common to set the background color to black (all zeros).
This makes it necessary for you, in effect, to reverse the orientation of
the z-buffer near/far clipping values. The following two function calls
reverse the z-buffer orientation so that the maximum distance to which
you can initially clear all z values is O instead of Ox7fffff :

lsetdepth (Ox7f£f££f£f, 0xO0);
zfunction (ZF_GEQUAL) ;

At this point, all that has changed is that the system has positioned the
viewer so that all z compares take place with near mapped to a large
number and far mapped to 0.

« In color map mode, the 12 least significant bits of color must be identical
to the 12 least significant bits of zval. Because the color parameter is
expected to be an index into the color map in color map mode, only the
lowest 12 bits are significant.

On IRIS-4D/GT/GTX systems, use czclear to clear both the z-buffer and
the bitplanes to the same values at the same time. A simultaneous clear
happens if circumstances allow it.

On the Personal IRIS, you can speed up czclear by as much as a factor of
four for common values of zval if you call zfunction with it, so that one
of the conditions in Table 8-2 is met:

zval zfunction
0x800000 ZF_GREATER or ZF_GEQUAL
Ox7EEfFE ZF_LESS or ZF_LEQUAL

Table 8-2. zfunction Values for Personal IRIS

8-8 Graphics Library Programming Guide IRIS-4D Series

8.3 Special features

This section discussed special features that control z-buffering. Most of them
are rarely used, so this section can be skipped on first reading. Topics
include: writing directly into the z-buffer, using alternate depth comparison
functions and sources, and using writemasks for the z-buffer.

8.3.1 Drawing into the z-Buffer

There are certain applications where it is useful to write values directly into
the z buffer.

zclear is actually a special case of this, where the values in the z-buffer are
all set to some depth value. In a flight simulator, for example, suppose that
the view on the screen includes an instrument panel wrapped around a
window. If the instrument panel does not change from frame to frame, there
is no reason to redraw it, so it might be nice to clear only the portion of the
screen and z-buffer corresponding to the plane's window and simply redraw
the outside scene for each frame.

To do this, set the “color” to the value returned by the call to

getgdesc (GD_ZMAX) on your system, use zdraw to draw these values into
the z-buffer, and draw the polygon(s) representing the window. When the
outside view is drawn, it is always masked by the plane’s window frame and
instrument panel (which should be closer to the eye). Thus an extremely
complex instrument panel is possible, since it needs to be drawn only once.

The following sample program illustrates the above technique using a
spinning cube as the outside scene, and an array of 25 circles as the window.

#include <gl/gl.h>

float vertO[3] = {-1.0, -1.0, -1.0};
float vertl([3] = {-1.0, -1.0, 1.0};
0, 1.0, 1.0};

float vert3[3] = {-1.0, 1.0, -1.0};
float vert4[3] = {1.0, -1.0, -1.0};
float vert5[3] = (1.0, -1.0, 1.0};
float vert6[3] = {1.0, 1.0, 1.0};

float vert7[3] = {1.0, 1.0, -1.0};

{-1
{-1

float vert2[3] = {-1.
{-1
{

Version 2.0 Hidden Surface Removal 8-9

drawcube ()

{
cpack (0x££0000) ;
bgnpolygon () ;
v3f (vert0); v3f(vertl); v3f(vert2);
endpolygon () ;

cpack (0x££00) ;

bgnpolygon () ;

v3f (vert3); v3f(vert2); v3f(verté);
endpolygon() ;

cpack (Oxffff);

bgnpolygon() ;

v3f (vert7); v3f(vert6); v3f (verth):;
endpolygon() ;

cpack (Oxf£££00) ;

bgnpolygon () ;

v3f (vertd); v3f(vertb); v3f(vertl);
endpolygon () ;

cpack (Oxf£f00ff) ;

bgnpolygon () ;

v3f (vertl); v3f(vert2); v3f(vert6);
endpolygon() ;

cpack (Oxffffff) ;

bgnpolygon() ;

v3f (vert0); v3f(vertd); v3f(vert?);
endpolygon () ;

main ()

{
long i, 3j;
float x, y;

8-10 Graphics Library Programming Guide

v3f (vert3);

v3f (vert7);

v3f (vertd);

v3f (vert0);

v3f (vert5);

v3f (vert3);

IRIS-4D Series

keepaspect (1, 1);
winopen ("zdraw");
RGBmode () ;
doublebuffer();
gconfig() ;
mmode (MVIEWING) ;
ortho(-2.0, 2.0, -2.0, 2.0, -2.0, 2.0);
zbuffer (TRUE) ;
zclear();
cpack (0x£ff) ;
pushmatrix();
translate (0.0, 0.0, 1.9);
frontbuffer (TRUE) ;
rectf (-3.0, -3.0, 3.0, 3.0);
frontbuffer (FALSE) ;
popmatrix () ;
while (1) {
cpack (Ox7f£££ff) ;
zbuffer (FALSE) ;
zdraw (TRUE) ;
for (x = -1.0; x <= 1.0; x += .5)
for (y = -1.0; y <= 1.0; y += .5)
circf(x, y, 0.2);
zdraw (FALSE) ;
zbuffer (TRUE) ;
pushmatrix () ;
translate (0.0, 0.0, -1.9);
cpack (0x00) ;
rectf(-3.0, -3.0, 3.0, 3.0);
popmatrix();
pushmatrix () ;
rotate (i, 'x');
rotate(j, 'y'):;
i +=11; j += 17;
if (i > 3600) i -= 3600;
if (j > 3600) j -= 3600;
drawcube () ;
popmatrix();

swapbuffers();
}

Version 2.0 Hidden Surface Removal 8-11

This program is written in RGB mode, because in color map mode, every
color, including the “color’” drawn into the z-buffer, is masked to 12 bits.
When zdraw is TRUE, zbuffer must be set to FALSE; otherwise, both
would try to alter the z-buffer contents simultaneously.

The idea behind the program is that a red plane is drawn nearer the eye than
anything else drawn. This sets all the z-buffer values so they record data near
the eye. In the main loop, 25 holes are drilled into the red plane by setting
the z-buffer values in the circles to indicate that the surface is far away. Then
a black background is drawn farther from the eye than any part of the cube.
Finally, the cube is drawn. It is visible only through the 25 holes.

zdraw is similar to frontbuffer and backbuffer in that it permits
writing into the z-buffer bank. Normally, if you are writing into the z-buffer,
you do not want to write into the front buffer or back buffer at the same time.
In the example above, this does not matter, since the first subroutine called
after the z-buffer is written to clears to black. Usually, drawing into the z-
buffer should be bracketed by subroutines that set backbuffer (FALSE)
and then backbuffer (TRUE) afterward (assuming the program is in double
buffer mode).

In single buffer mode, frontbuffer normally has no effect. However, if
you call frontbuffer (FALSE), a flag is set so that when zdraw is TRUE,
the front buffer (the only buffer in single buffer mode) is not written. If
zdraw is FALSE, frontbuffer (FALSE) has no effect.

8-12 Graphics Library Programming Guide IRIS-4D Series

8.3.2 Alternative Comparisons

In the default mode, the z coordinate of the incoming pixel is compared to the
z coordinate of the geometry already drawn at that pixel. If the incoming z
value shows that the new geometry is closer to the eye than the old one, the
values of the old pixel and of the old z value are replaced by the new ones.

Thus the new value is compared to the old, and if it is less than the old, the
old quantities are replaced. It is possible to change the comparison function
from less-than to many other things. The available comparisons are:

ZF_NEVER Never overwrite the source pixel value.

ZF_LESS Overwrite the source pixel value if the z of the source
pixel value is less than the z of the destination value.

ZF_EQUAL Overwrite the source pixel value if the z of the source
pixel value is equal to the z of the destination value.

ZF_LEQUAL (default) Overwrite the source pixel value if the z of the
source pixel value is less than or equal to the z of the
destination value.

ZF_GREATER Overwrite the source pixel value if the z of the source
pixel value is greater than the z of the destination value.

ZF_ NOTEQUAL Overwrite the source pixel value if the z of the source
pixel value is not equal to the z of the destination value.

ZF_GEQUAL Overwrite the source pixel value if the z of the source
pixel value is greater than or equal to the z of the
destination value.

ZF_ALWAYS Always overwrite the source pixel value regardless of
destination value.

Using various comparisons, it is possible to use the z-buffer for various

things. To change the comparison function, use zfunction, a subroutine
that takes a single argument chosen from among the eight listed above.

Version 2.0 Hidden Surface Removal 8-13

It is also possible to do comparisons on color buffers rather than on the z-
buffer. This is useful primarily for drawing antialiased lines that cross each
other (see Chapter 15). The function that changes the source buffer for z-
buffer type comparisons is called zsource. It has a single argument that can
be either ZSRC_DEPTH (the default) or ZSRC_COLOR.

8.3.3 z-buffer Writemasks

Finally, zwritemask can be used like other writemasks to control writing
into the z-buffer. It might be useful for a very complicated background into
which a few objects are going to be drawn and moved quickly. Setting
zwritemask to zero locks the background information in, and prevents its
modification, but the new objects are drawn or not depending on the depth
comparison.

8.3.4 Stenciling on IRIS-4D/VGX Systems

IRIS-4D/VGX systems support an additional z-buffer, like test, that uses a
different algorithm from the one described previously in this chapter. This
test uses the VGX’s flexible frame buffer configuration and lets you allocate
stencil planes to be used for this test.

Stenciling, like z-buffering, enables and disables drawing on a per-pixel
basis. You draw into the stencil planes using GL drawing primitives, and
then render geometry and images, using the stencil planes to mask out
portions of the screen. Stenciling is typically used in multi-pass rendering
algorithms to achieve special effects, like decals, outlining, and constructive
solid geometry rendering.

8-14 Graphics Library Programming Guide IRIS-4D Series

stensize

stensize lets you define the bitplanes that you wish to use as the stencil.
You can define up to 8 stencil planes. IRIS-4D/VGX systems without the
optional alpha bitplanes allocate the stencil bitplanes from the least
significant planes of the z-buffer. Use getgdesc to determine whether your
system has alpha bitplanes.

Once you have allocated some number of bitplanes for use as a stencil, these
planes can be used to store information that is later used by the stencil
statement.

void stensize (planes)
long planes;

sclear

sclear sets the value of every pixel in the currently allocated stencil buffer.
You pass the desired value to sclear as sval. The clearing operation is
limited by the current viewport and scrmask statements in effect, and is
masked by the current swritemask.

void sclear (sval)
unsigned long sval;

swritemask

swritemask lets you specify which of the stencil bitplanes can be modified
by sclear and normal stencil operation.

void swritemask (mask)
unsigned long mask;

Version 2.0 Hidden Surface Removal 8-15

stencil

The stencil statement controls testing of stencil bitplanes before the
system writes to the frame buffer. The first argument to stencil enables or
disables it. When stenciling is enabled, the system tests the defined stencil
bitplanes for each pixel against a programmed reference value before writing
to that pixel. Based on the contents of the stencil bitplanes and the
programmed tests defined by the stencil statement, the system then
conditionally modifies the pixel’s contents (both for the color bitplanes and
also for the z-buffer) by some programmed value, as defined in the call to
stencil.

To enable stenciling, call stencil with enable set to TRUE. If you call
stencil with enable set to FALSE, the following parameters are ignored
and stencil testing is not performed.

void stencil(enable, ref, func, mask, fail, pass, zpass)
long enable;

unsigned long ref;

long func;

unsigned long mask;

long fail, pass, zpass;

Once you enable stenciling, the system tests the color and z-buffer bitplanes
for each pixel. The results of the tests are determined by a reference value,
passed through the argument ref, the value in the stencil bitplanes, and a
stencil function that operates on them both. This function, passed as the
argument func, can be one of the following:

SF_NEVER Do not perform the specified stencil update (passed as the
value of pass, fail, and zpass) regardless of the results of
the comparison.

SF_LESS Perform the specified stencil update (specified as the
value of pass, fail, and zpass) if ref is less than the value
in the stencil planes.

SF_EQUAL Perform the specified stencil update (specified as the

value of pass, fail, and zpass) if ref is equal to the value
in the stencil planes.

8-16 Graphics Library Programming Guide IRIS-4D Series

SF_LEQUAL Perform the specified stencil update (specified as the
value of pass, fail, and zpass) if ref is less than or equal
to the value in the stencil planes.

SF_GREATER Perform the specified stencil update (specified as the
value of pass, fail, and zpass) if ref is greater than the
value in the stencil planes.

SF_NOTEQUAL Perform the specified stencil update (specified as the
value of pass, fail, and zpass) if ref is not equal to the
value in the stencil planes.

SF_GEQUAL Perform the specified stencil update (specified as the
value of pass, fail, and zpass) if ref is greater than or
equal to the value in the stencil planes.

SF_ALWAYS Perform the specified stencil update (specified as the
value of pass, fail, and zpass) regardless of the results of
the comparison.

The mask argument to stencil defines which stencil bitplanes are significant

during the comparison operation. Use this argument to ignore individual

planes you do not want to use in the stencil test.

When stencil performs its test as defined by func, it returns one of three
possible values :

fail The stencil test (defined in the call to stencil) fails

pass The stencil test passes (but the z-buffer test fails

zpass The stencil test passes, and the z-buffer test passes

(If the z-buffer is not enabled, only fail and pass are considered.)

These three possible values are reflected as the arguments fail, pass, and
zpass (the last three arguments passed to stencil). These arguments define
the operation to be performed based on the results of the stencil test. The

system performs one of the functions defined by the value of fail, pass, and
zpass as passed to stencil.

Version 2.0 Hidden Surface Removal 8-17

You must pass one of the following flags as the arguments fail, pass, and
zpass:

ST_KEEP Keep the value currently in the bitplanes (no change).
ST_ZERO Replace the contents of the pixel with zeros.
ST_REPLACE Replace the contents of the pixel with the value of ref. (

ST_INCR Add 1 to the contents of the pixel. This is clamped to
the maximum value of the pixel at that location.

ST_DECR Subtract 1 from the contents of the pixel. This is
clamped to O.

ST_INVERT Invert all bits in that pixel.

Based on the results of the test, the system performs the function that applies
to the conditions. For example, in the following case:

stencil (TRUE, 220, SF_EQUAL, Oxff, ST REPLACE,
ST _KEEP, ST KEEP);

the system compares 220 against the contents of the stencil planes. (Because (
mask is Ox{f, all eight planes are valid in this comparison.) The test is to see
whether the stencil planes are exactly equal to ref, which is 220. If the test

fails — that is, if the contents of the stencil planes do not equal ref — the

system replaces them with the value of ref (220). Both pass and zpass are set

to ST_KEEP, which means that there is no change to the pixels or to the z-

buffer if the test passes. If the z-buffer is enabled, color and depth are drawn

only in the zpass case (meaning that both color and z-buffer planes pass the

test). If the z-buffer is not enabled, zpass is ignored and only the pass

function is performed.

8-18 Graphics Library Programming Guide IRIS-4D Series

The following program is an example that uses the stenciling capability to
render the outline of an object in an arbitrary image. Because the bitmap of
an image takes a lot of space, the example code mimics drawing the image
by actually drawing polygons.

void backface (b)
Boolean b;

#include <stdio.h>
#include <gl/gl.h>

float rect0[4][2] = {
{-0.5, -0.5},
{ 0.5, -0.5},
{ 0.5, 0.5},
{-0.5, 0.5},
};
main ()
{
if (getgdesc(GD_BITS STENCIL) == 0) {

fprintf (stderr, "stencil not available on this
machine\n") ;

return 1;

}

prefsize (400, 400);

winopen ("stencil”);

RGBmode () ;

stensize (3);

geconfig();

mmode (MVIEWING) ;

ortho2(-10.0, 10.0, -10.0, 10.0);

cpack (0) ;

clear();
sclear (0);

Version 2.0 Hidden Surface Removal 8-19

wmpack (0) ;

stencil (1, 0x0, SF_ALWAYS,

ST_INCR);
viewport (O,
checker () ;
viewport (1,
checker () ;
viewport (1,
checker () ;
viewport (O,
checker () ;

stencil (1, 0x0, SF_NOTEQUAL,

ST_KEEP) ;

398,

399,

399,

398,

0, 398);

0, 398);

1, 399);

1, 399);

wmpack (Oxff£££££f) ;

scale (15.0,

15.0,

bgnpolygon () ;
v2f (rect0[0]);
v2f (rectO[1]);
v2f (rect0[2]);
v2f (rect0[3]);
endpolygon() ;

sleep(10);
gexit ();
return 0;

0.0);

0x7, ST_INCR, ST INCR,

8-20 Graphics Library Programming Guide

0x3, ST _KEEP, ST_KEEP,

IRIS-4D Series

checker ()

{

int i,3;

cpack (0x0000££00) ;
pushmatrix();
translate(-5.0, -5.0, 0.0);
for (i=0; 1i<9; i++) {
for (3j=0; 3<9; Jj++) {
translate (1.0, 0.0, 0.0);
if ((i~3) & Oxl) | /* checker board */
bgnpolygon () ;
v2f (rect0[0]);
v2f (rectO0[1]);
v2f (rect0[2]);
v2f (rect0[3]);
endpolygon () ;
}
}
translate(-9.0, 1.0, 0.0);
}
popmatrix () ;

}

The image is a basic checkerboard on black background. It “jitters” four
times and increments the stencil value each time a pixel is hit. This leaves
the outlines with stencil values of Ox1, 0x2, and 0x3, while pixels with
stencil values of 0x0 and Ox4 are completely outside and inside the object,
respectively. The last step is to render a polygon over the entire region,
turning on only those pixels that are on the outline.

Version 2.0 Hidden Surface Removal 8-21

8.4 Eliminating Backfacing Polygons

In a scene composed entirely of opaque surfaces, backwards-facing (or

backfacing) polygons are never visible. Eliminating these invisible polygons

from the scene has an obvious benefit — it speeds drawing time by not

drawing some of the polygons in the scene. In this way, eliminating

backfacing polygons is done by a subset of hidden-surface removal. (

A backfacing polygon is defined as a polygon whose vertices appear in
clockwise order in screen space. When backfacing polygon removal is
turned on, only polygons whose vertices appear in counterclockwise order
are displayed, that is, polygons that point toward you. Therefore, the vertices
of all polygons should be specified in counterclockwise order.

The idea is that if the polygons making up a surface are all oriented the same
way, and if the surface is convex, after transformation, all the polygons on
the front have one orientation and all those on the back have the opposite
orientation. A special mode can be turned on to check whether the
transformed polygons were to be drawn clockwise or counterclockwise, and
only those oriented counterclockwise are drawn. The method does not
always work if the object being drawn is not convex, or if there is more than
one object.

8-22 Graphics Library Programming Guide IRIS-4D Series

backface

backface initiates or terminates backfacing polygon removal. The backface
utility is used to improve the performance of programs that represent solid
shapes as collections of polygons. The vertices of the polygons on the “far”
side of the solid are in clockwise order and are not drawn.

backface takes a single argument. TRUE enables backface polygon
elimination, and FALSE (the default) disables it.

void backface (b)
Boolean b;

getbackface

getbackface returns the state of backfacing filled-polygon removal. If
backface removal is on, the system draws only those polygons that face the
viewer. If backfacing polygon removal is enabled, 1 is returned; otherwise 0
is returned.

long getbackface ()

Version 2.0 Hidden Surface Removal 8-23

8.5 Alpha Comparison

On IRIS-4D/VGX systems, you can also use the alpha planes to determine
whether to draw pixels by comparing incoming alpha values to a reference
constant value.

The afunction statement compares source alpha values against a reference
value that you include in the afunction call. You also specify a
comparison function, which determines the conditions under which
afunction permits the system to draw pixels.

void afunction(ref, func)
long ref, func;

afunction compares alpha values of source pixels to the value of ref.
Then, depending on the value of func, afunction determines whether a
pixel is completely transparent and draws the pixel conditional to its
transparency. afunction assumes that alpha values are proportional to
pixel coverage, which is the case if you are using pointsmooth and
linesmooth.

To make the system avoid drawing invisible pixels, call afunction as
follows:

afunction (0, AF_NOTEQUAL) ;

This call makes the system draw pixels only if their alpha value is not equal
to 0. Pixels with 0 alpha are presumed to be completely transparent
(according to the conventions of pointsmooth and linesmooth).

To return the system to its default operation, call afunction as follows:

afunction (0, AF_ALWAYS);

This call causes the alpha hardware to compare the values of all pixels in the
normal manner.

8-24 Graphics Library Programming Guide IRIS-4D Series

The following example uses afunction to define the shape of a building
and its windows. (See Chapter 18 to understand how to use the texturing
capability.)

#include <stdio.h>
#include <gl/gl.h>

float mtO[3][3] = { /* mountain 0 coordinates */
{-15.0, -10.0, -15.0},
{ 10.0, -10.0, -15.0},
{ -5.0, 5.0, -15.0},

}:

float mtl[3][3] = { /* mountain 1 coordinates */
{-10.0, -10.0, -17.0},
{ 15.0, -10.0, -17.0},
{ 6.0, 12.0, -17.0},

};

float bldg[4][3] = { /* building coordinates */

{-8.0, -10.0, -12.0},

{ 8.0, -10.0, -12.0},

{ 8.0, 10.0, -12.0},

{-8.0, 10.0, -12.0},
}:
float tbldg[4][2] = { /* building texture coordinates
*/

{0.0, 1.0},

{1.0, 1.0},

{1.0, 0.0},

{0.0, 0.0},

Version 2.0 , Hidden Surface Removal 8-25

/*
* Building texture and texture environment

*/ -

unsigned long bldgtex[8*%4] = {
Oxffffffff, Oxf£££0000, 0x00000000, 0x00000000,
OxffffFffff, Oxf£f££0000, 0x0000ffcf, Oxffcfffcf,
Oxfff£f0000, Oxff£f£f0000, O0x0000ffcf, 0x0000ffcft,
OxXfEffEfEfff, OxEffffffff, Oxffffffcf, Oxffcfffcf,
Oxffff0000, Oxffffffff, Oxffffffcf, 0x0000ffcf,
OxXFffEffff, OxfEfffffff, Oxffffffcf, Oxffcfffcft,
0xff££f0000, Oxff£ff0000, 0x0000ffcf, 0x0000ffcf,
OxffffEfEff, OxE££f£0000, O0x0000ffcf, Oxffcfffcf,

float txlist[]

[

{TX_MAGFILTER, TX_POINT, TX_NULL};

float tvlist[] = {TV_NULL};
main ()
{
if (getgdesc(GD_BITS NORM ZBUFFER) == 0) {

fprintf (stderr, "Z-buffer not available on this
machine\n") ;

return 1;

}

if (getgdesc(GD_TEXTURE) == 0) {

fprintf (stderr, "Texture mapping not available on this
machine\n") ;

return 1;

}

if (getgdesc(GD_AFUNCTION) == 0) {

fprintf (stderr, "afunction not available on this
machine\n") ;

return 1;

}

prefsize (400, 400);

winopen ("afunction");

RGBmode()f

gconfig(};

mmode (MVIEWING) ;

ortho (-20.0, 20.0, -20.0, 20.0, 10.0, 20.0);
zbuffer (TRUE) ;

czclear (0, getgdesc(GD_ZMAX));

8-26 Graphics Library Programming Guide IRIS-4D Series

/*
* Draw 2 mountains
*/
cpack (OXxf£3£703f) ;
bgnpolygon () ;
v3f(mtO[0]);
v3f (mt0[1]);
v3f (mt0[2]);
endpolygon () ;

cpack (0x££234£00) ;
bgnpolygon () ;
v3f(mtl[0]);

v3f (mtl([1l]);
v3f(mtl[2]);
endpolygon () ;

/*

* Draw the building

*/
texdef2d(l, 2, 8, 8, bldgtex, 0, txlist);
tevdef (1, 0, tvlist);
texbind (TX_TEXTURE 0, 1);
tevbind (TV_ENVO, 1);
afunction (0, AF_NOTEQUAL) ;
cpack (OxXffffffff);
bgnpolygon () ;
t2f (tbldg[0]);
v3f (bldg[0]);
t2f (tbldg[1]);
v3f (bldg[1]);
t2f (tbldg([2]);
v3f (bldg[2]);
t2f (tbldg[3]);
v3f (bldg([31);
endpolygon () ;
sleep (10);
gexit () ;
return 0;

Version 2.0 Hidden Surface Removal 8-27

9. Lighting

This chapter describes the Graphics Library lighting facility and shows how
you can use this facility to create lighted objects in 3-D.

9.1 What is GL Lighting?

The interaction between light and objects is far more complicated than can be
simulated in real time. Lighting on the IRIS-4D achieves a balance between
realistic appearance and real-time drawing speed.

The GL interface to lighting lets you control the lights and the materials with
which you draw polygons and other primitives.

In the real world, when light falls on an opaque object, some of this light is
absorbed by the object and the rest of the light is reflected. Our eyes use this
reflected light to interpret the shape, color, and other details about the object.
The light from the illumination source is called the incident light; that which
reflects off the object’s surface is called reflected light.

The interaction between the incident light and the surface material creates the
reflected light. You can control the way lighting creates images by
manipulating the characteristics of the incident light and the surface of the
objects.

Version 2.0 Lighting 9-1

9.1.1 Light Source and Surface Characteristics

The Graphics Library lighting model determines how the incident light is
modified when it reflects from objects in the scene. For example, an object
can appear blue for either of the following reasons:

+ a white light source shines on the object and it reflects only the
wavelengths that our eyes interpret as blue. Although other wavelengths
of light are present, the object absorbs them and reflects only blue.

» the object reflects blue light and possibly other wavelengths, but only
blue light is shining on it. In this case, there are no other wavelengths for
the object to reflect.

In the lighting model, as in the real world, the characteristics of the light
source determine the direction, intensity, and wavelength with which the
object is illuminated; the characteristics of the surface material determine the
direction, intensity, and the frequency of the reflected light. Some of the
characteristics that determine reflected light are inherent in the object’s shape
(as defined by its geometry); other characteristics of an object’s surface are
controlled by the GL lighting model.

To return to the example, the GL lighting model permits both-ways of
making an object appear to be blue: you can define a blue light and shine it

on a white object, or you can define a white light and shine it on a blue
object.

9.2 Material Reflectance

In GL lighting, the material characteristics of an object determine how it
reflects light. Once light reaches an object, it is reflected in three ways:

« diffuse, which shows up as a matte or flat reflection
» specular, which shows up as highlights

« ambient, which simulates indirect light

9-2 Graphics Library Programming Guide IRIS-4D Series

9.2.1 Diffuse Reflectance

Diffuse reflectance gives the appearance of a matte or flat reflection from an
object’s surface. The direction of the light as it falls on the surface
determines how bright the surface’s diffuse reflection is. Diffuse reflection is
brightest when the incident light strikes perpendicular to the surface.

For example, consider a distant light source shining directly on the north pole
of a sphere. The diffuse reflectance of the sphere causes the sphere to appear
brightest at the north pole. The brightness falls off as you look farther down
the sides of the sphere. South of the equator, there is no diffuse reflectance
at all.

Because diffuse light reflects equally in all directions, the position of the
viewer has no effect on an object’s diffuse reflection.

9.2.2 Specular Reflectance

Specular reflectance creates highlights and is dependent on the position of
the viewpoint. For example, consider the glare in a rearview mirror from the
headlights of a car behind you. If you shift your head a few inches to the
right or left, you cannot see the glaring headlights in your mirror.

The intensity of specular reflection is typically highest along the direct angle
of reflection.

9.2.3 Ambient Reflectance

Diffuse and specular reflectance simulates how objects in the scene reflect
light that comes directly from a light source. Ambient reflectance, on the
other hand, simulates light reflected from other objects in the scene, rather
than directly from the light source. For example, if you look under your desk
(presuming that you have a light on your desk that does not shine directly
under it), you can still see things, even though the area under your desk is not
directly illuminated. In reality, this ambient light is reflected from other
surfaces in the room.

The ambient component is most noticeable on portions of the object that
receive no direct illumination.

Version 2.0 Lighting 9-3

9.2.4 Emission

The final lighting component that objects can have is an emitted component.
Emission is fairly limited in use. For one thing, an object that emits light
does not also act as a light source: it does not add illumination to a scene.
Furthermore, emission is featureless: a sphere that emits light appears as a
featureless disc in the scene because it emits light equally in all directions.
Adding an emitted component is useful for simulating the appearance of
lights in the scene. '

9.3 Setting Up GL Lighting

This section introduces fundamental GL lighting concepts such as surface
normals, material properties, and light sources. First, it covers all that you
need to create a static lighting environment. Section 9.4 discusses methods
to change the lighting characteristics dynamically. Section 9.5 covers
additional basic topics. Beyond these basics, section 9.6 describes advanced
topics such as spotlights and high-performance lighting. Code fragments
from real programs are used extensively to encourage a learn-by-example
approach. A complete program is included at the end of the chapter.

9.3.1 Surface Normals

Surface normals are unit-length vectors that are perpendicular to a given
surface. They are required for GL lighting. They serve as input to the
lighting formula. ' '

The GL maintains a current normal. The current normal is analogous to the
current color. It stays the same until changed. '

Here is an example of a point with a normal:

static float np[3] = {0, .7071, .7071};
static float vp[3] {o, o0, -1};

bgnpoint () ;
n3f (np) ;
v3f(vp):
endpoint () ;

9-4 Graphics Library Programming Guide IRIS-4D Series

You can also provide normals at each vertex.

Here is an example of a triangle with normals:

static float np[3][3] =

{{-.08716, 0, .9962}, {.08716, 0, .9962}, {0, O, 1}};
static float vp[3][3] =

{{-.08716, 0, .9962}, {.08716, O, .9962}, {0, .1, 1}};

bgnpolygon () ;
n3f (np[0]);
v3£f (vp[0]);
n3f (np[1]);
v3f (vp[l]);
n3f (npl2]);
v3f(vpl[2]);
endpolygon () ;

The relationship between the order of the vertexes and the direction of the
normal is significant. When the order of the vertexes of a triangle is viewed
as counterclockwise, the triangle is facing the viewer. In this case, the
normals of the triangle should also face the viewer. The triangle in the
example follows this convention. This is often referred to as the right-hand
rule. The right-hand rule makes it possible to distinguish between the front
and the back sides of the triangle. Although it is not always necessary to
follow this rule when using lighting, it allows you to use backface
elimination. A feature called two-sided lighting, described later, requires you
to follow this rule.

Points, lines, polygons, and character strings can all be lighted. As a general
rule, any GL primitive that uses the current color can also be lighted. The
lighting calculation is performed at each vertex of a primitive.

When using GL NURBS surfaces (see Chapter 14, “Curves and Surfaces”),
normals can be generated automatically from the surface descriptions.

Version 2.0 Lighting 9-5

9.3.2 Setting Up Lighting Components

You configure three lighting components: the material, the light sources, and
the lighting model. The material represents a set of properties that
determines how it behaves under illumination. Each light source has a
position and a light color. The lighting model defines the characteristics of
the lighting environment. The combination of these three components
determines the appearance, or more specifically the color, at each lighted
vertex.

You configure each of these three components using a two-step process. The
first step is one of definition using 1mdef. The second is one of activation
using 1mbind. This two-step process is analogous to defining and setting a
pattern with defpattern and setpattern.

The first example configures a material. First, we define a material in terms
of a set of properties. Here is an example of a greenish plastic-like material:

static float mat[] = {
AMBIENT, .1, .1, .1,
DIFFUSE, 0, .369, .165,
SPECULAR, .5, .5, .5,
SHININESS, 30,
LMNULL

lmdef (DEFMATERIAL, 39, 0, mat);

Note that an array of type £1oat holds a sequence of material properties.
This sequence is terminated by the special constant LMNULL, which must
always be the last float in a property array. Each property expects a fixed
number of floats to follow it. For example, the DIFFUSE property is
followed by three floats that are the red, green, and blue diffuse reflectance
coefficients. Similarly, the AMBIENT and SPECULAR properties are each
followed by three floats which represent the ambient and specular reflectance
coefficients, respectively. All color components should be in the range O

to 1.

SHININESS is followed by one float that controls the size and apparent
brighimess of a specular highlight. The shininess value can range from 0 to
128. Higher values result in smaller, more focused specular highlights. A
shininess value of 0 is special, and disables specular reflection entirely.

9-6 Graphics Library Programming Guide IRIS-4D Series

1mdef associates the properties in a property array with an integer index and
copies these properties at the time of the call. The first argument to 1mdef
determines whether the properties in the array apply to a material, a light
source, or a lighting model. In this example, the 1mdef call remembers the
material properties in the mat array. This creates a material definition that
will be referenced later by its integer index, 39, specified by the second
parameter t0 1mdef. The third parameter has an obscure purpose and is
ignored when set to zero. For simplicity, the examples in this section always
set it to zero.

The next example defines a slightly reddish-colored light source:

static float 1t[] = {
LCOLOR, 1, .8, .8,
POSITION, 0, 1.5, -.5, 1,
LMNULL

}:

lmdef (DEFLIGHT, 27, 0, 1lt);

Although you use the same syntax for a light source as for a material, the
actual properties are different. In this case, the LCOLOR property is followed
by three floats that are the red, green, and blue components of the light
source color. A light source is normally omnidirectional — that is, it emits
light of equal intensity in all directions.

POSITION is followed by four floats that are the x, y, z, and w coordinates of
the light source. A light source position is defined in homogeneous
coordinates. Whenever the w component of the position is non-zero, we are
defining a point light source. For our purposes, when the w coordinate is
one, the x, y, andz coordinates simply represent the three-dimensional
position of the light source. The current matrix does not affect the light
source position at the time of this 1mdef call. We will discuss later how the
POSITION property is transformed by current matrix. This light source
definition will be referenced later by its integer index, 27.

The next example defines a typical lighting model:

static float 1Im[] = {
AMBIENT, .1, .1, .1,
LOCALVIEWER, 1,
LMNULL

};

Version 2.0 Lighting 9-7

lmdef (DEFLMODEL, 14, 0, 1m);

Once again, you use the same syntax for a lighting model as for a material or
light source. The AMBIENT property specifies the color of ambient light.
This ambient light is non-directional. It interacts only with the ambient
reflectance of a material.

Specular reflection from a point on a surface depends on the normal, the
direction to the light source, and the direction to the viewpoint. The
LOCALVIEWER property is a flag that determines whether the direction to the
viewpoint needs to be recalculated at each vertex. It is followed by a single
float. A value of 1 indicates that the flag is on and a value of 0 indicates that
the flag is off. Turning on the LOCALVIEWER flag places the viewpoint at the
origin looking down the negative z axis. More about LOCALVIEWER is
described in section 9.5.2.

At this point, we have defined the three components of lighting. This
completes the first step. The second step is to activate these components.
Before activating any lighting definitions, you must be in multi-matrix mode:

mmode (MVIEWING) ;

The next example shows how to activate, or bind, a material, a light source,
and a lighting model.

lmbind (MATERIAL, 39);
lmbind (LIGHTO, 27);
lmbind (LMODEL, 14);

Material index 39 represents the material definition from the example above.
You activate this material definition by binding it to the target MATERIAL.
Only one material can be active at any time. Light source 27 represents the
light source definition from a previous example. It is made active by binding
it to the target LIGHTO.

The current ModelView matrix transforms the position of the light source
when you call 1mbind (see Chapter 7, “Coordinate Transformations”). In
this example, the position of the light source has a non-zero w component.
This makes it a point light source. Its position is transformed in the same
way that a point is transformed.

9-8 Graphics Library Programming Guide IRIS-4D Series

There are at least eight light source targets available, named LIGHTO,
LIGHTI, LIGHTZ2, and so on. The actual number of these targets is defined
in gl.h by the constant MAXLIGHTS. Any of the light source targets can be
active at any time. You can bind a light definition to only one light source
target.

Lighting model index 14 represents the lighting model definition from a
previous example. You activate it by binding it to the target LMODEL. Only
one lighting model can be active at any time.

At this point, lighting is enabled. More specifically, lighting is enabled when
both a material and a lighting model are bound. The indexes 39, 27, and 14
were chosen for this example and are arbitrary. You could use index 1 for all
three components because indexes for materials are separate from those of
lights, and so on. Any index between 1 and 65535 is legal. Index O has a
special purpose and will be described in the next section.

9.4 Changing Lighting Settings

Now that we have discussed how to turn lighting on, it is only natural to ask
how to turn it off. As mentioned previously, lighting is enabled when both a
material and a lighting model are bound. To turn off lighting, simply unbind
either the material or the lighting model. Here is one way to turn lighting
off:

lmbind (LMODEL, O0);

Index O has a special purpose. You can only use it with lmbind. Index 0 is
used to unbind a material, light, or lighting model.

This example turns off a light source:

lmbind (LIGHTO, O0);

Assume that lighting is on at this point. Note that after this 1mbind call,
lighting remains on because the presence of active lights is not necessary for
lighting.

Version 2.0 Lighting 9-9

Suppose you want to use more than one material for some geometry that you
are drawing. Assume that you have defined a second material . When you
bind this second material definition, it becomes the active material,
overriding the previously bound material.

Suppose you want to change an existing definition instead of creating a new
definition for each variation. You can use 1mdef to change the properties of
an existing definition.

Recall the point light source definition 27 from before. Here is an example
of changing this light source definition to produce a greenish color.

static float 1lt[] = {
LCOLOR, .8, 1, .8,
LMNULL

}:

lmdef (DEFLIGHT, 27, 0, 1lt);

If light source definition 27 is currently bound to LIGHTO, then the light
color change takes effect immediately. Because LCOLOR is the only property
in this array, only this property is changed.

A light source position is transformed by the Model View matrix at the time
of the 1mbind call. This transformed position remains. It can be
retransformed by binding it again. An active light source can only be
boundto the same light target. This is often used to make a light move from
frame to frame.

9-10 Graphics Library Programming Guide IRIS-4D Series

(

(

9.5 Moré Lighting Features

Sections 9.3 and 9.4 discussed the components for basic lighting. This
section covers additional topics that are still at a basic level.

9.5.1 Infinite Lights

Recall the POSITION property that is used to define a light source. A light
source position is defined in homogeneous coordinates. If the w coordinate
is zero, then the x, y, andz coordinates represent a light source direction.
This is called an infinite light source and can be a good approximation for a
distant light source.

Here is an example of a white light source that is positioned infinitely far
away on the positive z axis:

static float 1lt[] = {
LCOILOR, 1, 1, 1,
POSITION, O, O, 1, O,
LMNULL

};

lmdef (DEFLIGHT, 27, 0, 1lt);

Note that the light source direction points from the vertex to the light source.
The GL normalizes the light source direction.

Infinite light sources have a performance advantage over point light sources.

9.5.2 Infinite Viewpoint

Earlier, we showed how to place the viewpoint at the origin. This is called a
local viewpoint. You can also place the viewpoint infinitely far away on the
positive z axis.

Here is a lighting model with an infinite viewpoint:
static float 1lm[] = { LOCALVIEWER, 0, LMNULL };

lmdef (DEFLIGHT, 14, 0, 1lm);

Version 2.0 Lighting 9-11

Setting an infinite viewpoint has a performance advantage. In some cases,
the results look identical to a local viewpoint because the viewpoint is
needed only to determine the specular reflection. Actually, if the SPECULAR
material property is set to all zeroes, a local viewpoint has no benefit. By
default, the viewpoint is infinite.

When you use an infinite viewpoint with infinite lights, primitives with the
same normal and material properties produce identical colors. In practice,

this means that flat surfaces are lighted with constant color, which might
appear slightly unrealistic.

9.5.3 Ambient Light and Emission

Section 9.3.2 shows how you can specify an ambient light source as part of
the lighting model. You can also specify additional ambient light with each
light source. The syntax for this is the same as for the lighting model.

The ambient light sonrce color is multiplied by the ambient material
property. This product is one component of the color computed by lighting.

The emission material property is another component of this computed color.

Here is an example of a material that only has emission:
static float mat[] = {

EMISSION, 0, .369, .165,
LMNULL

}:

lmdef (DEFMATERIAL, 39, 0, mat);

9.5.4 Non-Unit-Length Normals

Earlier we mentioned that normals must be unit-length. This is true by
default. The GL does have the ability to handle non-unit-length normals.
There is often a performance penalty for doing this.

Here is how to configure the GL to normalize normals automatically:

nmode (NNORMALIZE) ;

9-12 Graphics Library Programming Guide IRIS-4D Series

Lighting does not have to be on to set this mode. This feature can be
disabled with:

nmode (NAUTO) ;

This is the default.

9.6 Advanced Lighting Features

This section covers advanced lighting features. Not all lighting features are
supported on all systems. Consult the Graphics Library Reference Manual
to determine whether a feature is available.

9.6.1 Attenuation

In reality, the effect of a light source on a surface diminishes as the distance
between the light source and the surface increases. You can simulate this
effect with the attenuation feature of GL lighting. Attenuation is defined
inthe lighting model and applies to all point light sources. Attenuation does
not apply to infinite or ambient light sources.

Attenuation is a function of the distance between a point light source and the
surface it illuminates. The formula for attenuation is:

attenuation factor = 1 | (kO + k1*dist + k2*dist*dist)
dist is the distance between the vertex and the point light source. This
distance is never negative. k0 controls constant attenuation, kI controls

linear attenuation, and k2 controls distance-squared attenuation. The
attenuation formula is calculated for each lighted vertex.

Version 2.0 Lighting 9-13

Here is an example of adding linear attenuation to a previously defined
lighting model with index 14:

static float atten[] = {
ATTENUATION, .1, 1,
LMNULL

}:

lmdef (DEFLMODEL, 14, 0, atten);

The ATTENUATION property is followed by two non-negative floats. These
floats specify k0 and k! of the attenuation formula.

Here is an example that adds distance-squared attenuation to lighting model
14:

static float atten[] = {
ATTENUATION, .1, O,
ATTENUATIONZ, 1,
LMNULL

}:

lmdef (DEFLMODEL, 14, 0, atten);

The ATTENUATIONZ property is followed by one non-negative float.

The defaults are that k0 = 1, kI =0 and k2 = 0. These values define a

lighting model without attenuation. You can disable attenuation by restoring
these default values.

Both of these examples use a small but non-zero value for the constant term
k0. As dist approaches zero, a non-zero k0 bounds the maximum value of the
attenuation formula, otherwise it would approach infinity.

9-14 Graphics Library Programming Guide IRIS-4D Series

9.6.2 Spotlights

It was mentioned earlier that a point light source is omnidirectional. This is
true by default. You can make a point light source into a spotlight using the
SPOTLIGHT property.

A spotlight emits a cone of light that is centered along the spotlight direction.
The intensity of a spotlight is a function of the angle between the spotlight
direction and the direction to the vertex being illuminated. Typically, the
intensity falls off as this direction angle increases.

You can control the shape of a spotlight’s intensity falloff with two values:
an exponent and a spread angle. An exponent of 1 produces a gradual
falloff that is actually the cosine of the direction angle. An exponent of 128
gives the sharpest possible falloff. An exponent of 0 gives a constant
intensity. The spread angle defines a cone outside of which no light is
emitted. The intensity falloff as controlled by the exponent is cut off by this
cone. The cone defined by the spread angle is independent of the intensity
falloff controlled by the exponent.

Here is an example that defines and binds a white spotlight:

static float spot[] = {
LCOIOR, 1, 1, 1,
POSITION, O, 2, O, 1,
SPOTDIRECTION, 0, -1, O,
SPOTLIGHT, 100, 45,
LMNULL

}:

lmdef (DEFLIGHT, 11, 0, spot);
lmbind (LIGHTO, 11);

The sPOTLIGHT property is followed by two floats specifying the exponent
and spread angle of the light cone. An exponent of 100 specifies a very
sharp falloff. The exponent can range from 0 to 128. A spread angle of 45
defines a cone with a radius angle of 45 degrees. The spread angle can range
from O to 90 degrees. A special value of 180 degrees is also permitted, and is
used in the next example.

Version 2.0 Lighting 9-15

The SPOTDIRECTION property is followed by three floats, the x, y, and

z coordinates of the spotlight direction vector. It is automatically normalized.
This example points the spotlight in the direction of the negative y axis. The

spotlight direction vector is transformed by the current ModelView matrix in

the same manner as a normal.

Notice that the POSITION property specifies a point light source. This is

necessary for a spotlight. The SPOTLIGHT property is ignored for an infinite
light source.

Here is an example that turns off the spotlight effect:
static float spotoff[] = { SPOTLIGHT, 0.0, 180.0, LMNULL };

lmdef (DEFLIGHT, 11, 0, spotoff);

The combination of setting the exponent to 0.0 and the spread angle to 180.0
turns off the spotlight effect. By default, a point light source is not a
spotlight. The SPOTDIRECTION property is ignored while the light source is
not a spotlight.

You can combine spotlights with attenuation to yield an effect that is
reminiscent of a real spotlight. The spotlight effect can create a highly
nonlinear intensity gradient across a surface. Ensure that the vertexes of a
surface illuminated by a spotlight are closely spaced so that the
approximation of this gradient is accurate.

9.6.3 Two-sided Lighting

In general, lighting calculations are correct only when you view the side of a
polygon where the normal faces toward you. If you use the right-hand rule to
define the polygons and their normals, lighting calculations are then correct
for the front faces of those polygons. This is called one-sided lighting. With
two-sided lighting, the backfacing polygons are also correct.

Here is an example that adds two-sided lighting to a lighting model
definition:

static float two[] = { TWOSIDE, 1, LMNULL };

1lmdef (DEFLMODEL, 14, 0, two);

9-16 Graphics Library Programming Guide IRIS-4D Series

The TwoSIDE property is followed by one float, either 1 or 0, that specifies
whether the two-sided lighting feature should be enabled or disabled,
respectively. It is disabled by default.

Two-sided lighting applies only to primitives with facets, such as polygons
or triangle meshes. Two-sided lighting is ignored for other lighted
primitives, such as points or lines.

With two-sided lighting, the material properties of the front and back faces
are normally identical — that is, the active material is used for both the front
and the back. You can also specify independent front and back material
properties. Independent front and back materials can be useful to distinguish
between the inside and the outside of an object. This feature is quite

effective when combined with user-defined clipping planes. See Chapter 8,
“Hidden Surface Removal.”

This example binds material definition 40 to the back material as follows:

lmbind (BACKMATERIAL, 40);

You unbind the back material by binding it to 0:

lmbind (BACKMATERIAL, O0);

By default, the back material is bound to 0. Whether a back material is
bound or not has no effect on whether lighting is on or off.

Version 2.0 Lighting 9-17

9.6.4 Fast Updates to Material Properties

We have already learned how to change the properties of an existing
definition using 1mdef. When you change an active definition, those
changes take effect immediately.

Assume that material definition 39 exists. The following example changes
its DIFFUSE property:

static float mat[] = {
DIFFUSE, .369, 0, .165,
LMNULL

}i

lmdef (DEFMATERIAL, 39, 0, mat);

Once again, if this material is currently bound, the change takes effect
immediately. This mechanism provides a general method for changing the
properties of a material, a light source, or a lighting model.

An efficient method of changing material properties can be desirable. For
example, it is reasonable to change a specific material property at each vertex
of many polygons. For this reason, the GL provides a higher performance
method of updating material properties.

lmcolor sets a mode where the current color updates a specific material
property. The current color should be set explicitly after the call to lmcolor
and before a vertex or normal is issued. The current color can be set with c,
cpack, Or RGBcolor.

Some of the color commands specify red, green, blue, and alpha as integers
in the range of 0 to 255. This range is mapped to a 0.0 to 1.0 range when
used to update material properties.

Here is an another method of updating the DIFFUSE property of the current
material. '

lmcolor (LMC_DIFFUSE) ;

RGBcolor (94, 0, 42);
lmcolor (LMC_COLOR) ;

9-18 Graphics Library Programming Guide IRIS-4D Series

The first call t0 1mcolor sets LMC_DIFFUSE mode. In this mode, the
RGBcolor call directly updates the diffuse property. The second call to
1lmcolor restores the default mode.

This example sets the diffuse property of the active material to roughly the
same values as the previous example, but there is an important difference.
When you use 1mdef to change an active material, the material definition
also changes. When you use 1mcolor to change an active material, the
change has no effect on the material definition. Actually, any changes made

to the active material using 1mcolor are lost when you use lmbind to bind
another material.

Here is an example of updating the ambient and diffuse properties of the
current material at each vertex of a polygon.

lmcolor (LMC_AD) ;
bgnpolygon () ;
cpack (0x800000ff) ;
n3f (np[0]);
v3£(vp[0]);

cpack (0x8000££00) ;
n3f (np[1]);

v3f (vp[l]);

cpack (0x80££0000) ;
n3f (np[2]);

v3f (vp[2]);
endpolygon () ;
lmcolor (LMC_COLCR) ;

This example uses a normal array, np, and a vertex array, vp, in the same
manner as the triangle example in section 9.3.1. The call to

lmcolor (LMC_AD) sets a mode where the calls to cpack directly update the
ambient and diffuse material properties simultaneously.

The two modes LMC_AD, which updates both the ambient and diffuse
properties, and LMC_DIFFUSE, which updates only the diffuse property, also
update the ALPHA material property with the alpha component of the current
color. Note that the alpha component in this example is set to 0x80 (roughly
0.5) at each vertex.

Version 2.0 Lighting 9-19

The default mode, LMC_COLOR, has an interesting property. If no normals
are present for a primitive, that primitive is not lighted. More exactly, if a
color command follows the last normal before a primitive is drawn, that
primitive is not lighted.

LMC_EMISSION, LMC_AMBIENT, and LMC_SPECULAR update their
corresponding material properties.

In MC_NULL mode, color commands are ignored while lighting is enabled.

If two-sided lighting is enabled and no BACKMATERIAL is bound, then such
changes to material properties will affect both the front and back faces. If a

BACKMATERIAL is bound, changes to material properties affect only the front
face.

9.6.5 Default Settings

The following example sets the defaults for lighting:

lmdef (DEFMATERIAL, 39, 0, NULL):;
lmdef (DEFLIGHT, 27, 0, NULL);
lmdef (DEFLMODEL, 14, 0, NULL);

Passing NULL as the fourth parameter creates a definition of a default set of
properties. Also, it is equivalent to pass an array of type float that has one
element, the special constant LMNULL.

When you create a definition with Imdef, the properties are first set to their
default values. Properties specified in the array override these defaults.
Later, when you change this definition with 1mde £, properties not specified
in your array are left unchanged.

These definitions contain the default settings for material, light source, and
lighting model: '

static float mat[] = {
EMISSION, 0, 0, O,
AMBIENT, .2, .2, .2,
DIFFUSE, .8, .8, .8,
SPECULAR, 0, 0, O,
SHININESS, O,
ALPHA, 1,

9-20 Graphics Library Programming Guide IRIS-4D Series

COLORINDEXES, 0, 127.5, 255,
LMNULL

};

static float 1lt[] = {
AMBIENT, 0, O, O,
LCOIOR, 1, 1, 1,
POSITION, O, O, 1, O,
SPOTLIGHT, 0, 180,
SPOTDIRECTION, O, O, -1,
LMNULL

}:

static float 1m[] = {
AMBIENT, .2, .2, .2,
LOCALVIEWER, O,
TWOSIDE, O,
ATTENUATION, 1, O,
ATTENUATION2, O,
LMNULL

}i

9.6.6 Transparency

Normally, materials are opaque. You can control the transparency of a
material with alpha. Inlighting, alpha is specified in the material definition.

static float mat[] = {
ALPHA, .5,
LMNULL

};

The ALPHA property is followed by one float. When used in conjunction
with blendfunction, a transparent effect can be achieved. The use of

LMC_DIFFUSE or LMC_AD mode overrides the ALPHA material property with
the alpha of the current color.

The ALPHA property works with two-sided lighting. You can achieve
different front and back transparencies by binding material definitions with
different ALPHA properties to MATERIAL and BACKMATERIAL.

Version 2.0 Lighting 9-21

9.6.7 Lighting With Multiple Windows

You can use lighting in more than one GL window. The definitions that
1mdef creates and modifies are shared among all windows. On the other
hand, the material, light sources, and lighting model that 1mbind activates
are specific to the window that was active at the time of the 1mbind call.

9.6.8 Restrictions on ModelView and Projection Matrices

Many GL programs change the Model View matrix using only rot, rotate,
scale, and translate. They change the projection matrix using only
ortho2, ortho, perspective, andwindow. These calls all work with
lighting. loadmatrix and multmatrix let you specify a general 4 x 4
matrix. Certain restrictions apply to this general matrix when lighting is
used.

No projection components are allowed in the Model View matrix. More
specifically, the rightmost column of the matrix mustbe [0 0 0 1].

Two restrictions apply to the projection matrix. First, no rotation is allowed.
Second, the top two elements of the right column must be 0. The IRIS-4D
VGX permits a general 4 x 4 projection matrix, and so these restrictions do.
not apply.

9-22 Graphics Library Programming Guide IRIS-4D Series

9.7 Lighting Performance

This section gives a general feeling for the performance implications of
specific lighting features. The performance of a given feature might vary
between the different graphics products as well as between different software
releases on the same product. Nevertheless, there are some guidelines you
can follow.

Each additional light source takes extra computation. The more you use, the
longer it takes to compute the color for a vertex.

A difficult calculation that can occur in lighting is the square root operation.
It is used for a local viewpoint, a point light source, and in normalizing non-
unit-length normals. The use of any of these features adversely affects
performance.

In some cases, nor:nals transformed by the Model View matrix will not

maintain their uric length. The GL detects this condition of the matrix and
automatically renormalizes the transformed normals. To avoid this extra
calculation, u¢: scale (x, y, z) onlyifx =y =z Similarly, ensure that
you use an orthonormal matrix with loadmatrix Or multmatrix.

The two-sided lighting feature takes extra computation, but its performance
should be better than half the performance of one-sided lighting.

The use of GL calls other thann, v, ¢, cpack, and RGBcolor between bgn
and end calls might incur a performance penalty. In fact, only a limited set
of calls are allowed between a bgn and end call. This list is included in the
man page for bgnpolygon.

The use of 1mcolor with an argument other than LMC_COLOR Or LMC_NULL
might incur a slight performance penalty.

A natural question to ask is, “how do I get the highest possible performance
from lighting?” Here are some suggestions:

» use an infinite viewpoint by setting LOCALVIEWER to 0, the default

* use a single infinite light source
» use the default Imcolor (LMC_COLOR) Or use lmcolor (LMC_ NULL)

¢ use the default nmode (NAUTO)

Version 2.0 Lighting 9-23

- take advantage of drawing primitives that share vertices for lines or

polygons; for instance, use bgntmesh Or bgngstrip for polygon
drawing

On IRIS-4D VGX Series systems, the use of less than one normal per vertex
(such as one normal per polygon) does not reduce the lighting calculation
specifically. However, it does reduce the amount of data transferred to the

geometry engines. (

9.8 Color Map Lighting

There is a way to do lighting in color map mode, but it is designed for
systems without enough bit planes to support RGB mode. On graphics
systems with enough bitplanes, RGB mode lighting is recommended.

Color map lighting generates a pseudo-intensity which is a function of the

direction to the light source and the direction to the viewpoint. This pseudo-
intensity is mapped to a color map value. A well-chosen range of color map

values gives a reasonable lighting effect. You can represent multiple

materials by creating a color map range for each material. Color map .
lighting is enabled when both lighting and color map mode are enabled. (

Color map lighting has some inherent limitations, and many of the advanced
lighting features are not supported. Color map lighting recognizes only a
limited set of properties, described here.

A material definition uses only the COLORINDEXES property.
static float mat[] = {
COLORINDEXES, 512, 576, 639,

LMNULL
}:

9-24 Graphics Library Programming Guide IRIS-4D Series

This property is followed by three floats, representing an ambient index, a
diffuse index, and a specular index. These indices should correspond to
appropriate values in the color map. Lighting produces values that range
from the ambient index to the specular index. Lighting generates the ambient
index when there is no diffuse or specular reflection. It generates the diffuse
index when the diffuse reflection is at a maximum, but there is no specular
reflection. It generates the specular index when the specular reflection is at a
maximum. The specular index must be greater than or equal to the diffuse
index, which must in turn be greater than or equal to the ambient index. All
other material properties are ignored.

A light source definition uses only the POSITION property.

static float 1lt[] = {
POSITION, O, O, 1, O,
LMNULL

}:

Only infinite light source positions are allowed. This requires that you set
the w component of POSITION to 0. All other light source properties are
ignored. You can specify zero or more light sources. Each light source
contributes its full intensity.

A lighting model definition uses only the LOCALVIEWER property.
static float 1m[] = {

LOCALVIEWER, O,
LMNULL

};

Only an infinite viewpoint is allowed. LOCALVIEWER can only be set to 0,
which is the default.

Version 2.0 Lighting 9-25

9.9 Sample Lighting Program

The following example program demonstrates the GL lighting facility.

#include <math.h>
#include <gl/gl.h>
#include <gl/device.h>

Matrix Identity =

{1, 0, 0, 0, 0,1, 0, O, O,

float mat[] = {
AMBIENT, .1, .1, .1,
DIFFUSE, 0, .369, .165,
SPECULAR, .5, .5, .5,
SHININESS, 10,
LMNULL,

static float 1lm[] = {
AMBIENT, .1, .1, .1,
LOCALVIEWER, 1,
LMNULL

};

static float 1t[] = {
LCOLOR, 1, 1, 1,
POSITION, O, O, O, 1,
LMNULL

}i

main ()

{

long xorig, yorig, xsize, ysize;
float rx, ry:

short val;

9-26 Graphics Library Programming Guide

IRIS-4D Series

winopen ("cylinder");

getorigin (&xorig, &yorig);
getsize (&xsize, &ysize);
RGBmode () ;

doublebuffer():;

gconfig () ;

lsetdepth (0, Ox7fffff);
zbuffer(l);

mmode (MVIEWING) ;

loadmatrix (Identity);
perspective (600, xsize/(float)ysize, .25, 15.0);
lmdef (DEFMATERIAL, 1, O, mat);
lmdef (DEFLIGHT, 1, 0, 1lt);
lmdef (DEFLMODEL, 1, 0, 1m);
lmbind (MATERIAL, 1);

lmbind (LMODEL, 1);

lmbind (LIGHTO, 1);
translate (0, 0, -4);

while (!getbutton (ESCKEY)) {
ry=300* (2.0* (getvaluator (MOUSEX) -xorig) /xsize-1.0);
rx=-300* (2.0* (getvaluator (MOUSEY) ~yorig) /ysize-1.0);
czclear (0x404040, Ox7fffff);
pushmatrix () ;
rot(xy, 'y'):
rot (rx, 'x');
drawcyl ()
popmatrix();
swapbuffers();

drawcyl ()

{

double dy = .2;

double theta, dtheta = 2*M PI/20;
double x, vy, z;

float n[3], v[3];

int i, 3;

Version 2.0 Lighting 9-27

for (i =0, y =-1; 1 < 10;

bgntmesh () ;

for (j=0, theta=0; 3j<=20
if (j == 20) theta =
X = cos (theta);
z = sin(theta);
n[0] = x; nll] = 0;
n3f (n);
v[0] = x; v[1l] =y’
v3f (v);
vil] =y + dy;
v3f(v);

}

endtmesh () ;

9-28 Graphics Library Programming Guide

’

i++,

0;

nl2]

vi[2]

y +=dy) |

j++, thetat=dtheta) {

z;

z;

IRIS-4D Series

10. Pixels

Pixels, like raster fonts, are not nearly as easy to transform (rotate, scale, etc.)
as geometric figures. Code that reads and writes pixels on the screen often
knows (or has to find out) something about the window dimensions, the
screen resolution, and so on.

Another problem with reading and writing pixels is that the contents of each
pixel can mean different things depending on the display mode for that pixel.
The same physical bitplanes are used to store either color map indices or
RGB values; accordingly, the mode of the pixel determines whether the
contents are interpreted as RGB triples or as indices into the color map.

The IRIS-4D supports three styles of pixel access:

The first provides a high-performance interface to a flexible set of pixel
routines—1lrectwrite, lrectread, rectcopy pixmode, and rectzoom
These routines operate on arbitrarily sized rectangles made up of arbitrarily
sized pixels. The behavior of these routines can be modified by setting
parameters for offset, stride, pixel size, zoom, and other features described
later. Note that these functions operate in either RGB or color map mode.

The second style is compatible with older versions of the Graphics Library.
It provides a high-performance interface to operate on arbitrarily sized
rectangles. This set of routines includes rectwrite, rectread, and
rectzoom. The behavior of these routines can be modified only for zoom.
Note that these functions operate in either RGB or color map mode, but
because they operate with 16-bit pixels, they are not generally useful for
RGB mode.

The third is compatible with even older versions of the Graphics Library. It
provides mode-dependent routines to deal with, at most, one scanline at a
time, which is positioned according to the system’s “current character
position”. They include writepixels, writeRGB, readpixels, and
readrGB. Continued use of these routines is not suggested because higher-
performance, more flexible routines are available.

Version 2.0 Pixels 10-1

10.1 Pixel Formats

The following formats constitute the standard Silicon Graphics pixel formats:

RGBA (Red-Green-Blue-Alpha) data is interpreted as four 8-bit values
packed into each 32-bit word. Bits 0-7 represent red, bits 8-15 represent
green, bits 16-23 represent blue, and bits 24-31 represent alpha.

For examplé, 0X01020304 corresponds to a pixel whose RGBA values
are 4, 3, 2, and 1, respectively. This is exactly the same format cpack
uses. (See Chapter 4, “Display and Color Modes,” for more
information.)

CI (Color Index) data is interpreted as 12-bit (low order) indices into a
single, 4096-entry color map. The high-order 20 bits should be zero.

z-buffer data is interpreted as 24-bit (low order) data. The high-order 8
bits should be zero.

Other data used in overlay, underlay, and pop-up planes is interpreted as
a type of color map data. Because different systems and different
configurations support different pixel sizes for these resources, the
number of entries contained in the auxiliary color map vary.

All systems in all configurations support the pixel formats listed above.

The pixel formats described above are frame buffer formats. The format of
the pixel data in host memory can be packed in a more efficient format if
pixmode is used with 1rectread and 1rectwrite. Default behavior is
backward-compatible and therefore unpacked. pixmode features are
described later in this chapter.

10-2

Graphics Library Programming Guide IRIS-4D Series

10.2 Pixel Sources and Destinations

The following routines establish sources and destinations for pixel
operations, as well as other drawing routines. You can specify more than one
destination. Sources apply to reads and copies; destinations apply to writes
and copies.

readsource

readsource(rsource) determines the source of pixels read by rectread,
lrectread, rectcopy, readpixels, and readRGB. The default value is
SRC_AUTO, which selects the front buffer in single buffer mode and the
back buffer in double buffer mode. SRC_FRONT always reads from the
front buffer (this is always valid), and SRC_BACK always reads from the
back buffer (valid only in double buffer mode). SRC_ZBUFFER reads
24-bit data from the z-buffer. Other sources such as
SRC_FRAMEGRABBER are available if special hardware is installed.

drawmode, frontbuffer, backbuffer, zdraw()

drawmode(mode) determines the drawing mode, hence, the destination for
pixel operations. NORMALDRAW is the default; OVERDRAW,
UNDERDRAW and PUPDRAW are options. In NORMALDRAW mode,
frontbuffer(frontflag), backbuffer(backflag), and zbuf fer(zflag)
apply. If you assert more than one destination in NORMALDRAW mode,
more than one destination is written.

Version 2.0 Pixels 10-3

10.3 Reading/Writing Pixels Efficiently

This section describes subroutines that read and write pixels with the highest
possible performance. No color mode checking is done, so RGB data written
in color map mode, as well as the reverse, can return undesired results.

rectread and Irectread

rectread(xl, yl, x2, y2, sarray) reads a rectangular array of pixels from the
window where (xI,yl) are the coordinates for the lower-left comner of the
rectangle and (x2,y2) are the coordinates for the upper-right corner. All
coordinates are relative to the lower-left corner of the window in screen
coordinates. sarray is an array of 16-bit values. Only the low-order 16 bits
of each pixel are read, so rectread is useful primarily for windows drawn
in color map mode. The data is loaded into sarray left to right and bottom to
top. In other words, if the pixel data on the screen looks like this:

1 2 3 4
5 6 7 8
9 10 11 12

sarray contains {9,10,11,12,5,6,7,8,1,2,3 4}, i.e., sarray[0]=9, sarray[1]=10,
etc. rectread returns the number of pixels successfully read. Normally,
this is:

(x2 - x1 + 1) * (y2 - yl + 1)

If any part of the specified rectangle is off the screen, or if the coordinates are
mixed up, the behavior of rectread is undefined.

Errors occur only outside the screen, not outside the window. It is possible
to read pixels outside a window, as long as they are on the physical screen.
This can be useful for certain applications that magnify data from other
windows, or do image processing on images produced by other programs.
The main difficulty is that the data can come from areas of the screen that are
in different color modes (color map or RGB mode). Because rectread is
not restricted to the current window, any or all of the coordinates can be
negative.

10-4 Graphics Library Programming Guide IRIS-4D Series

lrectread(xl,yl, x2, y2, larray) is similar to rect read except that larray
contains 32-bit quantities and the behavior of 1rectread is affected by
pixmode settings. Using pixmode with 1rectread provides useful data
manipulation functions as well as data packing functions to store and transfer
data more efficiently.

rectwrite and Irectwrite

rectwrite(xl, yl, x2, y2, sarray) writes a rectangular array of pixels to the
window, where (x/,yl) are the coordinates for the lower-left corner of the
rectangle and (x2,y2) are the coordinates for the upper-right corner. All
coordinates are relative to the lower-left comer of the window in screen
coordinates. sarray is an array of 16-bit values. Only the low-order 16 bits
of each pixel are written, so rectwrite is useful primarily for windows in
color map mode. The data is written from sarray from left to right and
bottom to top as described above. rectwrite obeys the zoom factors set by
rectzoom (see rectzoombelow). writemask and scrmask apply as
with other drawing primitives. '

lrectwrite(xl,yl, x2,y2, larray) is similar to rectwrite except that
larray contains 32-bit quantities and the behavior of 1rectwrite is affected
by pixmode settings. Using pixmode with 1rectwrite() provides useful
data manipulation functions as well as data unpacking functions to store and
transfer data more efficiently.

rectcopy

rectcopy(xl,yl, x2, y2, newx, newy) copies the pixels from a rectangular
region of the screen to a new region. As with rectread and 1rectread,
the source rectangle must be on the physical screen, but not necessarily
constrained to the current window. The bitplane source is determined by
readsource and the bitplane destination is determined by drawmode,
frontbuffer, backbuffer, and zdraw.

During a rectcopy, the source rectangle can be zoomed by parameters

established with rect zoom. In addition, data manipulation and mirroring
can be accomplished through pixmode settings.

Version 2.0 Pixels 10-5

rectzoom

rectzoom(xzoom, yzoom) sets the independent x and y zoom factors for
rectwrite, lrectwrite, and rectcopy. xzoom and yzoom are positive
floating point values. Values less than 1.0 are allowed and cause rectangles
to shrink. Some hardware platforms are not capable of providing non-integer
zoom, so only the integer portion of the zoom parameters apply in that case.

If the following rectangle is copied after calling rectzoom(2.0, 3.0):

12
34

the following copy is made:

w w werr PP P
w w wE P
SO N NN
SO D NN

10-6 Graphics Library Programming Guide IRIS-4D Series

The following program is a simple magnification program. It magnifies the
rectangular area above and to the right of the cursor to fill the window.

#include <gl/gl.h>
#include <device.h>

main ()

{
long xsize, ysize, readxsize, readysize, x, y;
long xorg, yorg;

winopen ("zoom") ;
getsize (&xsize, &ysize);
getorigin (&xorg, &yorg);
readxsize = xsize/3;
readysize = ysize/3;
rectzoom(3.0, 3.0);
while (1) {
x = getvaluator (MOUSEX) ;
y = getvaluator (MOUSEY);
rectcopy (x-xorg, y-yorg, x-xorgtreadxsize,
y-yorg+readysize, 0, 0);

}

After determining the size and shape of the window, the program simply
loops, copying an appropriately sized rectangle above and to the right of the
cursor into the window magnified by a factor of 3 in each direction. The
expressions x-xorg and y-yorg convert the cursor’s screen coordinates into
window coordinates.

To be a useful tool, the program should have a mechanism to change to and
from RGB mode, perhaps a method to change zoom factor, and perhaps
some code to avoid rect copy if the mouse has not moved since the last
time. It might also make a better user interface if the region around the
cursor is magnified rather than the area above and to the right of it. Using
this tool as is, note that regions of the screen drawn in RGB mode appear
incorrect, and color-mapped portions look fine. Also, notice that with
double-buffered programs, the zoom window appears to blink. This is
caused by buffer swapping in the double-buffered program, while zoom is
always rcading from the same buffer. If the zoom window is magnified, a
zoom recursion takes place and the effects are interesting.

Version 2.0 Pixels 10-7

10.4 Using pixmode

pixmode allows you to customize pixel operations when you use
lrectwrite, lrectread, Or rectcopy. It can be used to specify pixel
operations such as shifting, expansion, offsetting, and packing and
unpacking. Each function is selected by calling pixmode with an argument
indicating the operation and a value for that operation. Any or all functions
can be used in combination. Once you select a pixmode operation, it
remains in effect until you change it. pixmode operations have no effect on
rectread or rectwrite or any of the old-style pixel access subroutines.

10.4.1 Shifting Pixels

32-bit pixel data can be shifted left or right before being written to a frame
buffer destination or before being read into memory using the pixmode
operation PM_SHIFT. For example, to shift all pixels written with
lrectwrite left by eight bits so that the red byte is placed in the green
byte’s position, the green byte is placed in the blue byte’s position, the blue
byte is placed in the alpha byte’s position, and the alpha byte is lost, call:

pixmode (PM_SHIFT, 8) ;

before calling 1rectwrite to write the pixel data. To disable shifting after
you have enabled it, use:

pixmode (PM_SHIFT, 0) ;

You can achieve the same effect when copying pixel data using rectcopy.
The same call also affects 1rectread, but in this case a right shift is
indicated with a negative value. Thus, if you perform the sequence of
operations:

pixmode (PM_SHIFT, 8) ;
lrectwrite();

then call 1rectread to read the pixels you just wrote, the pixels you get are
exactly the same (unshifted) pixels you wrote, but with the alpha byte
stripped off. This is because the pixels were shifted left eight bits when they
were written and then shifted right eight bits when they were read back.

10-8 Graphics Library Programming Guide IRIS-4D Series

The allowable values for PM_SHIFT are 0, £1, +4, 48, £12, +16, and £24. A
positive value indicates a left shift for lrectwrite and rectcopy and a
right shift for 1rectread; a negative value indicates a right shift for
lrectwrite and rectcopy and a left shift for 1rect read. The default
value is 0.

10.4.2 Expanding Pixels

You can expand a single-bit pixel into one of two 32-bit values using
PM_EXPAND with PM_CO0 and PM_C1. When you set the pixmode value
PM_EXPAND to 1, the least significant bit of a pixel’s value controls the
conversion of that bit into PM_CO0 or PM_C1. If the bit is 0, PM_CO0 is
selected; if itis 1, PM_C1 is selected. For example, to convert a series of
single-bit pixels (32-bit pixels whose most significant 31 bits are ignored)
into blue for 0 and green for 1 in RGB mode, call:

pixmode (PM_EXPAND, 1);
pixmode (PM_CO, 0x00f££0000);
pixmode (PM_C1, 0x0000££00);

before calling 1rectwrite, lrectread, Or rectcopy, depending on
whether you want to expand pixels to be written, read, or copied. The call
pixmode(PM_EXPAND,1) turns expansion on. The next two calls set the
expansion values for the single-bit values 0 and 1, respectively.

To turn expansion off, call pixmode(PM_EXPAND, 0). This is the default.
You can set PM_CO0 and PM_C1 to any 32-bit value. In color map mode, the
value of the color index is replaced by either PM_CO or PM_C1. Their
default values are 0.

PM_SHIFT can be used with PM_EXPAND to cause expansion based on a
bit other than the least significant one.

Version 2.0 Pixels 10-9

10.4.3 Adding Pixels

You can add a constant signed 24-bit value to each pixel transferred by
calling: ‘

pixmode (PM_ADD24, value);
where value is the signed 24-bit value. This feature is most effectively used (

when transferring z data, but it also affects color data. To tumn off pixel
addition, call pixmode(PM_ADD?24, 0). This is the default.

10.4.4 Pixels Destined for the z-Buffer

You can specify that pixels be sent to the z-buffer by setting:
pixmode (PM_ZDATA, 1) ;
Unlike setting zdraw(TRUE), using pixmode(PM_ZDATA,1) treats
transferred pixels as z data rather than color data. If you have called
zbuf fer(TRUE), the writing is conditional based on a comparison of the
pixel’s value with the value present in the corresponding location of the z-
buffer. The current setting of zfunction determines the write condition. (
To turn off this feature, call:

pixmode (PM_ZDATA, O0);

This is the default. PM_ZDATA has no effect on 1rectread.

10-10 Graphics Library Programming Guide IRIS-4D Series

10.4.5 Changing Pixel Fill Directions

The default directions for reading, writing, and copying pixel rectangles are
left-to-right and bottom-to-top. For example, when writing a rectangle, the
first pixel is placed in the lower left-hand comer of the specified rectangle,
the next at the same screen y value but at a screen x value of one greater, and
so on until a line of pixels is complete. The next line is placed on top of the
last until the rectangle is complete.

You can change the default reading, writing, and copying directions.
Calling:

pixmode (PM_TTOB, 1);
makes the pixel transfer direction top-to-bottom.
pixmode (PM_RTOL, 1);

makes the fill direction right-to-left. For instance, you can mirror a pixel
rectangle that is already in the frame buffer about a vertical line to produce a
new rectangle by calling:

pixmode (PM_RTOL, 1);
rectcopy(...);

You can set both PM_TTOB and PM_RTOL to 1 if you choose. Reset the
directions to the defaults with:

pixmode (PM_TTOB, O0);
pixmode (PM_RTOL, O0);

which spccify bottom-to-top and left-to-right fill directions, respectively.

These functions change the order in which pixels are filled, but do not affect
the fundamental row-major ordering of pixels. That is, a horizontal line of
pixels always occupies a set of contiguous words in memory, and a group of
words representing one line of pixels is followed in memory by a group of
words representing the next. Pixels are always arranged so that a group of
contiguous words forms a horizontal line, never a vertical line. Changing fill
directions does not allow interchanging a horizontal line of pixels for a
vertical one.

Version 2.0 Pixels 10-11

Fill direction does not affect the location of the destination rectangle for
rectcopy. The destination rectangle is always specified by its lower-left
pixel, regardless of fill direction.

There are no restrictions on using these modes with 1rectwrite or
lrectread.

10.4.6 Subimages within Images

Using pixmode allows you to read and write pixel subrectangles to and from
a larger pixel rectangle. Suppose you have a 2000 x 1500 pixel image and
want to work with a 100 x 200 subimage whose origin is at (150,500) in the
larger rectangle. You need to tell the GL the width of the larger rectangle
with pixmode:

pixmode (PM_STRIDE, 2000);

PM_STRIDE specifies the number of 32-bit words per scanline of your
rectangle. Next you need to compute the address of the starting pixel of your
subrectangle within the large rectangle. If p points to the lower-left pixel of
the large rectangle, then, assuming the default pixel fill directions, this
address is:

p + (2000 * 500) + 150
You can then call lrectread Or lrectwrite:

lrectread(x, y, x + 99, y + 199, p + (2000 * 500) + 150);
lrectwrite(x, y, x + 99, y + 199, p + (2000 * 500) + 150);

to read or write the subimage from or to the location (x,y) on the screen. The
GL figures out where the appropriate subimage is located in CPU memory to
effect the desired transfer within the larger rectangle. You can use this
method to work with subrectangles of any size and offset as long as you tell
the GL the width of the whole rectangle using PM_STRIDE.

The default value for PM_STRIDE is 0. PM_STRIDE has no effect on
rectcopy.

10-12 Graphics Library Programming Guide IRIS-4D Series

10.4.7 Packing and Unpacking Pixel Data

You can specify a number of bits-per-pixel other than 32 for pixels in CPU
memory using the pixmode function PM_SIZE. You can use this feature to
obtain more efficient packing of pixel data in CPU memory. Setting
PM_SIZE to a value other than 32 (the default value) unpacks pixels from
CPU memory when written using 1rectwrite and packs pixels into CPU
memory when using 1rectread. ,

If you are ignoring alpha values and are using RGB mode, you can specify a
PM_SIZE of 24 and pack four RGB values into three words. If you set
PM_SIZE to n (allowable values are 1, 4, 8, 12, 16, 24, and 32), the first
pixel goes in the # most significant bits of the first word. The next pixel is
packed adjacent to the first, so that if » is less than 32, its bits are placed in
the next most significant bits of the first word after the first n. If there is not
enough room in the first word for all the bits of this second pixel, the leftover
bits fill the most significant bits of the following word. The second word is
packed tightly in the same way, and so on for the rest of the words until the
end of a line of pixels.

The next line of pixels starts in the most significant bit of a new word, even if
the last pixel of the previous line did not completely fill the last word of the
previous line.

For instance, for a 3 x 3 rectangle with PM_SIZE set to 12, the first pixel
occupies the first 12 most significant bits of the first word, the second pixel
occupies the next most significant 12 bits of the first word, and the third pixel
occupies the last 8 bits of the first word and the first 4 most significant bits of
the second word. The next pixel begins a new line, so it occupies the 12
most significant bits of the third word, and so on.

The packing scheme makes 8- and 16-bit packing equivalent to char and

short arrays, respectively, for a line of pixels. Recall, however, that an
address passed to 1rectwrite Or lrectread must be long-word aligned.

Version 2.0 Pixels 10-13

If PM_SIZE is not 32, pixels cannot begin on a word boundary. This might
require using another pixzmode function, PM_OFFSET, when accessing
subrectangles within rectangles. Calling:

pixmode (PM_OFFSET, n)

where 7 is a value between 0 and 31, indicates that the most significant » bits
of the first word of each scanline are to be ignored. Assume you have a
subrectangle of 100 x 200. Your whole image is 1250 x 1250, the origin is at
(150,500), and your pixels are packed at 24 bits-per-pixel instead of 32. In
this case, you have 1250 pixels at 24 bits per pixel, or 30000 pixels in each
scanline. Thus there are 30000/32 (rounded up to the nearest integer,
because each scanline begins with a new word), or 938 words per scanline.
To find the address of the beginning of the subrectangle, you must find the
offset of the 150th pixel from the first word of a scanline in the large
rectangle. This offset is (150 * 24)/32, or 111, when rounded down. But 111
words is actually (111 * 32) / 24 = (exactly) 148 pixels. The 149th pixel
occupies the most significant 24 bits of the the 112th word, so the 150th pixel
begins 24 bits from the beginning of the 112th word.

Therefore, to access the subimage in this example, call:

pixmode (PM_SIZE, 24);
pixmode (PM_STRIDE, 938);
pixmode (PM_OFFSET, 24);

and give the pointer:
p + (500 * 938) + 112

to lrectread or lrectwrite as the location of the first pixel in the
subimage. The offset of (300 * 938) accounts for the first 300 lines of the
large rectangle that must be skipped, while the offset of 112 brings the
pointer to the word containing the 150th pixel in the scanline. The call to
pizxmode(PM_OFFSET, 24) effects the additional requlred offset of 24 bits
to get to the 150th pixel itself.

Setting packing and unpacking parameters (PM_SIZE and PM_OFFSET) has
no effect on rectcopy.

10-14 Graphics Library Programming Guide IRIS-4D Series

10.4.8 Order of Pixel Operations

Various pixmode functions can be used together. The order of calls to
pixmode is immaterial. This is because pixmode functions happen in a
predefined order. For lrectwrite, this order is:

unpack =» shift =>» expand =» add24 =>» zoom

For 1rectread, the order is:

shift =» expand =» add24 = pack

For rectcopy the order is:
shift =» expand =?» add24 =» zoom.

As an example, one useful combination is to display a black and white image
in RGB mode from an efficiently packed 1-bit-per-pixel encoding in
memory. To do this, make the following calls:

pixmode (PM_SIZE, 1);
pixmode (PM_EXPAND, 1);
pixmode (PM_CO, 0x00000000);
pixmode (PM_Cl, O0xO00ffffff);

before writing the image with 1rectwrite. You might also set
PM_STRIDE and PM_OFFSET if you want to handle a subimage.

You can also read and pack a black and white image using a similar method
with 1rect read, but you would have to be certain that the black pixels had
least significant bits of 0 and the white pixels least significant bits of 1,
because the packing discards all but one bit. Also, when reading back the
image, there would be no need for expansion. In any case, the order in which
you make the pixmode calls is unimportant.

Version 2.0 Pixels 10-15

10.5 Old-Style Pixel Access

The subroutines in this section read and write pixels. They determine the

location of the pixels on the basis of the current character position (see

cmove and getcpos). They attempt to read or write up to n pixel values,

starting from the current character position and moving along a single

scanline (constant y) in the direction of increasing x. The system updates that (
position to the pixel that follows the last one read or written. The current

character position becomes undefined if the next pixel position is greater than
XMAXSCREEN. The system paints pixels from left to right and clips them

to the current screenmask.

These routines do not automatically wrap from one line to the next, and they
ignore zoom factors set by rectzoom. They are sensitive to color mode.
The current color mode should be set appropriately when calling the
following routines. The behavior of readpixels and writepixels is
undefined in RGB mode. The behaviors of readRGB and writeRGB are
undefined in color map mode.

writepixels()

writepixels(n, colors) paints a row of pixels on the screen in color map (
mode. n specifies the number of pixels to paint and colors specifies an array
containing a color for each pixel.

writeRGB()

writeRGB(n, red, green, blue) paints a row of pixels on the screen in RGB
mode. n specifies the number of pixels to paint. red, green, and blue specify
arrays of colors for each pixel. writeRGB supplies a 24-bit RGB value

(8 bits each for red, green, and blue) for each pixel and writes that value
directly into the bitplanes.

readpixels()

readpixels(n, colors) reads up to n pixel values from the bitplanes in color (
map mode. it returns the number of pixels the system actually reads. The
values of pixels read outside the physical screen are undefined.

10-16 Graphics Library Programming Guide IRIS-4D Series

readRGB()

readRGB(#, red, green, blue) reads up to n pixel values from the bitplanes in
RGB mode. It returns the number of pixels the system actually reads. The
values of pixels read outside the physical screen are undefined.

Version 2.0 Pixels 10-17

11. Frame Buffers and Drawing Modes

This chapter describes modes used for drawing into the various bitplane
configurations that can be found on IRIS-4D Series systems. Personal IRIS
owners with the minimum bitplane configuration (8 bitplanes) can skip the
sections dealing with overlay and underlay bitplanes, because these are not
present on the 8-bitplane Personal IRIS.

The IRIS physical frame buffer is divided into four separate Graphics Library
frame buffers. Normmally, you draw into the standard color frame buffer, and

the data you write into it is interpreted either as RGB data (if you are in RGB
mode) or as indices into a color map (if you are in color map mode). All this

color data is optionally modified by a gamma correction ramp.

The color represented in the color frame buffer is not necessarily the color
drawn on the screen. As the cursor moves over a pixel, the cursor’s color
obscures the pixel’s color, and the pixel returns to its normal color after the
cursor passes. Similarly, when a pop-up menu is drawn over one of your
windows, the underlying colors are temporarily obscured, but reappear when
the pop-up menu disappears.

This chapter discusses how you can control information that is overlaid on
top of the standard pixel contents. There is also an underlay capability.

The system’s physical frame buffer contains some number of bits (the exact
number varies from system to system). The GL can address these bits as if
they were logically separate frame buffers, or sets of bitplanes. Setting a
drawing mode selects one of these GL frame buffers for access. These
logical GL frame buffers are the pop-up, overlay, normal, and underlay frame
buffers.

Version 2.0 Drawing Modes 11-1

Overlay bitplanes supply additional bits of information at each pixel. You
can configure the system to have from 0 up to a system-dependent maximum
number of bitplanes. Whenever all the overlay bitplanes contain O at a pixel,
the color of the pixel from the standard color bitplanes is presented on the
screen. If the value stored in the overlay planes is not 0, the overlay value is
looked up in a separate color table, and that color is presented instead.

Underlay bitplanes are similar in concept, in that there are extra bits for each
pixel, but their values are normally ignored unless the color in the standard
bitplanes is 0. In that case, the underlay color is looked up in a color map
and is presented. Thus, the underlay color shows up only if there is
“nothing” (the pixel value = 0) in the standard bitplanes. With 2 underlay
bitplanes, there are four possible underlay colors.

Overlay bitplanes are useful for such things as menus, construction lines,
rubber-banding lines, etc. Underlay planes might be used for background
grids that appear wherever nothing else is drawn.

The system actually has several physical bitplanes that can be used for either
overlay or underlay. Two of the available bitplanes are normally reserved for
window manager use; the user is free to allocate the others among overlay
bitplanes, underlay bitplanes, or neither.

The 2 bitplanes normally reserved by the window manager for pop-up menus
are accessible (either by themselves using a special drawing mode, or by
allocating all the available overlay and underlay bitplanes). You must be
careful, however, not to conflict with the window manager’s use for them, so
using the reserved bitplanes is discouraged.

The cursor is handled with special cursor hardware. When the color guns
scan out the screen, as they cross the square region of the screen where the
cursor is to be drawn, they look at the corresponding position in.the cursor
mask to see which color to draw there. The cursor mask can be 1 or 2 bits
deep. If the cursor mask is 0, the normal color is presented. If the mask is
non-0, the mask value is looked up in a color table (again, similar to overlay)
to find out which color to draw. The cursor color takes precedence over even
the overlay color. As with overlays, if the cursor mask is 1 bit deep, there is
only one possible color; if it is 2 bits deep, the cursor can have up to three
colors.

11-2 Graphics Library Programming Guide IRIS-4D Series

All the same operations are available for operating on overlay or underlay
bitplanes as are available for the standard bitplanes in color map mode.
Rather than introduce a new set of subroutines, the color map subroutines are
used and they affect the overlay and underlay bitplanes if the system is in
overlay or underlay mode.

Many routines that affect the operation of the standard bitplanes should not
be used while in overlay or underlay drawing mode. They include
singlebuffer (on all except VGX systems), doublebuffer (on all
except VGX systems), RGBmode, cmode, zbuffer, and multimap. VGX
systems support double-buffered underlay and overlay.

For example, in overlay mode, color sets the overlay color; getcolor gets
the current overlay color; mapcolor affects entries in the overlay map, and
getmcolor reads those entries. In overlay mode, all drawing routines draw
into the overlay bitplanes rather than into the standard bitplanes. The
routines are similarly redefined for underlay mode. Use drawmode
(described in the next section) to get into overlay or underlay mode.

drawmode puts the system into overlay or underlay mode, or back into
normal mode. drawmode (OVERDRAW) and drawmode (UNDERDRAW) put the
system into overlay and underlay mode. drawmode (NORMALDRAW) returns
the system to the condition where the color subroutines refer to the standard
bitplanes.

Some system resources are shared among the logical frame buffers, while in
other cases the system maintains individual resources for each frame buffer.
Each of the four logical frame buffers (pop-up, overlay, normal, and
underlay) maintains a separate version of each of the following modes, which
are modified and read back based on the current drawing mode:

backbuffer

cmode

color or RGBcolor

doublebuffer

frontbuffer

mapcolor (acomplete separate color map)
readsource

RGBmode

singlebuffer

writemask or RGBwritemask

Version 2.0 Drawing Modes 11-3

The following modes, on the other hand, affect only the operation of the
normal frame buffer. You can modify these modes only while the normal

frame buffer is selected (see drawmode).

acsize
blink
cyclemap
multimap
onemap
setmap
stencil
stensize
swritemask
zbuffer
zdraw
zfunction
zsource
zwritemask

All other modes, including matrices, viewports, graphics and character
positions, lighting, and many primitive rendering options are shared among

the four GL frame buffers.

11-4

Graphics Library Programming Guide

IRIS-4D Series

(

11.1 Configuring Overlay and Underlay Bitplanes

To set the number of user-defined bitplanes you want to use for overlay color
or underlay color, call overlay or underlay, respectively. Not all systems
support overlay and underlay user-defined bitplanes simultaneously
(Personal IRIS and IRIS-4D/G/GT/GTX systems support only one or the
other at any one time). Call gconfig after overlay Or underlay to
activate their settings.

overlay

overlay sets the number of user-defined bitplanes used for overlay colors.

void overlay (planes)
long planes;

planes is the number of bitplanes you want to use for the overlay color,
which varies from system to system. By default, the overlay frame buffer
contains 2 bitplanes in single-buffer, color-map mode. Use overlay to
change the number of bitplanes allocated for overlay mode; use drawmode to
specify the overlay planes as the destination for drawing mode changes. For
example, to make the overlay bitplanes operate in double-buffer mode, issue
the following sequence of programming statements:

drawmode (OVERDRAW) ;

doublebuffer();
gconfig();

Version 2.0 Drawing Modes 11-5

The number of available overlay bitplanes varies from system to system, as
follows:

« Personal IRIS systems: O or 2 single-buffer, color-map mode overlay
bitplanes. (There are no overlay bitplanes in the minimum configuration of
the Personal IRIS.)

 IRIS-4DI/GIGTIGTX systems: 0, 2, or 4 single-buffer, color-map mode
overlay bitplanes. (Use of 4 is discouraged, because of interference with
the window manager pop-up bitplanes.)

» IRIS-4D/VGX systems: 0, 2, 4, or 8 single- or double-buffer color map
mode overlay bitplanes. The 4- and 8-bitplane configurations use the alpha
bitplanes, which are then unavailable for use in NORMALDRAW mode.
Furthermore, your system must have the alpha bitplane option for you to
use 4 or 8 overlay bitplanes with an IRIS-4D/VGX system.

Call gconfig after you specify the overlay number. ove rléy takes effect
only after gconfig is called, which is when all bitplane requests are
resolved.

underlay

underlay sets the number of user-defined bitplanes used for underlay color.
It is the same as overlay except it affects the underlay colors. The default
value is 0.

void underlay (planes)
long planes;

On models that cannot support simultaneous overlay and underlay, setting
underlay to 2 forces overlay to 0 and vice versa. If underlayis 2,
there are four available colors that mapcoloxr can define. This is one more
than the available number of overlay colors because of the way the
precedence of the frame buffers works. If the overlay planes contain O at any
location, the system displays the contents of the normal frame buffer at that
location. If the underlay planes contain O at a given location, the system
displays the color at index 0 of the underlay frame buffer’s color map when
the normal bitplanes do not obscure them.

11-6 Graphics Library Programming Guide IRIS-4D Series

To set the contents of the underlay frame buffer’s color map, you might issue
the following sequence of programming statements:

drawmode (UNDERDRAW) ;
underlay(2); /* two bitplanes, four colors */
gconfig();

mapcolor (0, 0.0, 0.0, 0.0); /* black as color 0 */
mapcolor(l, 1.0, 0.0, 0.0); /* red as color 1 *x/
mapcolor(2, 0.0, 1.0, 0.0); /* green as color 2 */
mapcolor(3, 0.0, 0.0, 1.0); /* blue as color 3 *x/

This loads the color map for the underlay buffers with black, red, green, and
blue.

The number of available underlay bitplanes varies from system to system, as
follows:

« Personal IRIS systems: 0 or 2 single-buffer, color-map mode underlay
bitplanes. (There are no underlay bitplanes in the minimum configuration
of the Personal IRIS.)

« IRIS-4DI/GIGTIGTX systems: 0, 2, or 4 single-buffer, color map mode
underlay bitplanes. (Use of 4 is discouraged, because of interference with
the window manager pop-up bitplanes.)

« IRIS-4D/VGX systems: 0, 2, 4, or 8 single- or double-buffer color map
mode underlay bitplanes. The 4- and 8-bitplane configurations use the
alpha bitplanes, which are unavailable for use in NORMALDRAW mode.
Furthermore, your system must have the alpha bitplane option for you to
use 4 or 8 underlay bitplanes with an IRIS-4D/VGX system.

Call gconfig after you specify the underlay number. underlay takes
effect only after gconfig is called, which is when all bitplane requests are
resolved.

Version 2.0 Drawing Modes 11-7

11.2 Drawing Modes

This chapter, and previous chapters, discuss subroutines that can change the
InodesofthesyM£nJ:RGBmode,cmode,singlebuffer,doublebuffer,
multimap, onemap, overlay, and underlay. All must be followed by a
call to gconfig to take effect.

In fact, you must call gconfig only after any valid set has been described.
For example, to get into double-buffer RGB mode, writing into the standard
bitplanes, issue the following code:

RGBmode () ;
doublebuffer();
drawmode (NORMALDRAW) ;
geconfig();

When gconfig is called, all the mode changes take place. There is nothing
wrong with calling gconfig after each of the subroutines listed above,
» although it takes longer to execute.

By default, the system behaves as though the following subroutines were
executed in initialization:

cmode () ;

gconfig();
singlebuffer();
drawmode (NORMALDRAW) ;

To change just one, for example, to go to RGB mode after initialization, use
the following:

RGBmode () ;
gconfig();

The system remains in NORMALDRAW mode and single-buffer mode
unless you explicitly change them.

11-8 Graphics Library Programming Guide IRIS-4D Series

drawmode

drawmode sets the current mode for the color and writemask routines.
mode defines the drawing mode. Callsto color, getcolor,
getwritemask, writemask, mapcolor, and getmcolor are affected by
the current drawing mode. Each drawing mode has its own color and
writemask. By default, the writemask enables all planes, and the color is not
defined. As you switch from one drawing mode to another, the current colo:
and writemask are saved, and the previously saved color and writemask for
the new mode are restored. For example, if you are in NORMALDRAW,
then switch to OVERDRAW, and then switch back to NORMALDRAW, th
color and writemask that were active before you switched to OVERDRAW
are automatically restored.

void drawmode (mode)
long mode;

Drawing modes include:
UNDERDRAW Sets operations for the underlay planes

NORMALDRAW Sets operations for the normal color index or RGB
planes; also sets z bitplanes

OVERDRAW Sets operations for the overlay planes

PUPDRAW Sets operations for the pop-up menu planes (this
drawing mode is maintained for compatibility only
and is not recommended)

CURSORDRAW Sets operations for the cursor planes

In cursor mode, only mapcolor and getmcolor perform a function;
color, getcolor, writemask, and getwritemask are ignored.

The physical frame buffer on IRIS-4D Series systems is addressed as four
sets of bitplanes: drawmode specifies which of these four buffers is the
intended destination for the bits produced by subsequent drawing (that is,
geometry) and mode commands. In addition, there is a special area reserved:
for cursor images (Section 11.4).

Version 2.0 Drawing Modes 11-9

You can use Gouraud shading, i.e., shademodel (GOURAUD) in
NORMALDRAW mode. On the Personal IRIS, when you draw polygons in
the overlay and underlay bitplanes, or pop-up menus, the shading model is
automatically set to FLAT.

getdrawmode

getdrawmode returns the current drawing mode specified by drawmode.

long getdrawmode ()

11.3 Writemasks

In all cases when the system uses color maps (the standard bitplanes in color
map mode, and the overlay and underlay bitplanes), a writemask is available
that can limit the drawing into the bitplanes. By default, the writemask is set
up so that there are no drawing restrictions, but it is sometimes useful to limit
the effects of the drawing routines. The two most common cases are to
provide the equivalent of extra overlay bitplanes and to display a layered
scene where the contents of the layers are independent of one another. In
previous systems, overlay and underlay modes were not available;
consequently, writemasks had a more significant function.

The writemask is described in terms of the standard drawing bitplanes, but
exactly the same comments are true if the system is in overlay or underlay
mode. This discussion assumes that only 8 of the 12 bitplanes are used,
although the discussion applies equally well to different numbers.

With 8 bitplanes, the color is a number from 0 to 255, which can be
represented by 8 binary bits. For example, color 68 is 01000100. Without
writemask controls, if the color is set to 68, every drawing subroutine puts
01000100 into the 8 bitplanes of the affected pixels.

11-10 Graphics Library Programming Guide IRIS-4D Series

A writemask would restrict this. If, in the example above, the writemask
were 15 (= 00001111), only the bottom 4 bits of the color are written into the
bitplanes (that is, with writemask, 1 enables that bitplane for writing, and 0
disables that bitplane). If the color is 68, any pixels hit by a drawing
subroutine contain wxyz0100, where wxyz are the 4 bits that were previously
there. The zeros (0s) in the writemask prevent those bits from writing. The
default writemask is entirely 1s, so there is no restriction (see Figure 11-1).

Version 2.0 Drawing Modes 11-11

new color index

a; a, a,

final color index

current color index in bitplanes

Writemasks determine whether or not a new value can be
stored in each bitplane. A "1" in the writemask allows the
system to store a new value (0 or 1) in the corresponding
bitplane. A "0" prevents the system from storing a new value
and the corresponding bitplane retains its current value. In
this example, the values in the first and second bits (b4 and
b,) do not change because the corresponding positions in
the writemask are zero. All the other values (originally bg,b,,
... bg) change to asa,, ... ag because the corresponding
positions in the writemask are 1. Each value a,, ... ag and b,
... bg is either 0 or 1.

Figure 11-1. The writemask Subroutine

11-12 Graphics Library Programming Guide IRIS-4D Series

As a simple example, suppose you want to draw two completely independent
electronic circuits on the screen: power and ground. You want the power
grid to be drawn in blue, the ground grid to be drawn in black, and short-
circuits (where both power and ground appear) to be drawn in red. The
background color is white.

Initialize the program as follows:

#define BACKGROUND 0 /*=00%/
#define POWER 1 /*=01%*/
#define GROUND 2 /*=10%/
#define SHORT 3 /*=11%/
mapcolor (0, 255, 255, 255); /*white*/
mapcolor(l, 0, 0, 255); /*blue*/
mapcolor(2, 0, 0, 0); /*black*/
mapcolor (3, 255, 0, 0); /*red*/

Then draw all the power circuitry into bitplane 1 and the ground circuitry
into bitplane 2. Where both power and ground appear, there is a 1 in both
bitplanes, making color 3.

To clear the window before drawing:
writemask (3);

color (BACKGROUND) ;
clear();

To draw power circuitry without affecting ground circuitry:
writemask (1)
color(l);
<drawing subroutines>

To draw ground circuitry without affecting power circuitry:
writemask (2);

color(2);
<drawing subroutines>

Version 2.0 Drawing Modes 11-13

To erase all power circuitry:

writemask (1) ;
color (0);
clear():;

To erase all ground circuitry:

writemask (2);
color (0);
clear();

Here is a simple complete program that draws the power and ground
circuitry. The interface consists of the keys p (draw power rectangles),

G (draw ground rectangles), C (clear the window,) and Q (quit). To draw a
rectangle, press the left mouse button at one corner, hold it down, slide to the

other corner, and release it.

When you use the program, be sure to exit by typing g—this resets the four
lowest entries in the color map (which are used by all the windows) back to
the default values. If you forget, your text will be white against a white
background, and hence a bit tough to read. If this happens, type a couple of
carriage returns, followed by gclear and another carriage return. The

program gclear resets the color map back to the default.

#include <gl/gl.h>
#include <gl/device.h>

#define BACKGROUND O /* = 00 */
#define POWER 1 /* =01 */
#define GROUND 2 /* =10 */
#define SHORT 3 /*x =11 */

long xorg, yorg, xsize, ysize;

11-14 Graphics Library Programming Guide

IRIS-4D Series

(

main ()

{
short val, drawtype;
short x1, yl1l, x2, y2;

drawtype GROUND;
winopen ("circuit");
mmode (MVIEWING) ;

getorigin (&xorg, &yorg):;

mapcolor (0, 255, 255, 255);

mapcolor(l, 0, 0, 255);

mapcolor (2, 0, 0, 0);

mapcolor (3, 255, 0, 0);

gdevice (PKEY) ; /* draw power rectangles */
gdevice (GKEY) ; /* draw ground rectangles */
gdevice (CKEY) ; /* clear screen */

gdevice (QKEY) ; /* quit */

qdevice (LEFTMOUSE); /*
tie (LEFTMOUSE, MOUSEX,
color (0);
clear():;
while (TRUE)
switch (gread(&val))
case PKEY:
drawtype
break;
case GKEY:
drawtype
break;
case CKEY:
clearscreen() ;
break;
case QKEY:

{

POWER

Version 2.0

mark rectangle corners */
MOUSEY) ;

’

GROUND;

Drawing Modes 11-15

/* restore default colors */
mapcolor (0, 0, 0, 0);
mapcolor (1, 255, 0, 0);
mapcolor (2, 0, 255, 0);
mapcolor (3, 255, 255, 0);
return;

case LEFTMOUSE:

gread (&x1) ;

gread (&yl) ;

qread(&val);

qgread (&x2) ;

qread (&y2) ;

if (drawtype == POWER)
powerrect (xl-xorg, yl-yorg, x2-xorg,
y2-yorg);

else

groundrect (xl-xorg, yl-yorg, x2-xorg,
y2-yorq);
break;

clearscreen ()

{
writemask (3);
color (BACKGROUND) ;
clear();

powerrect (x1, yl, x2, y2)
short x1, yl1, x2, y2;
{

writemask (1) ;

color(l);

rectfs(xl, yl, x2, y2);

groundrect (x1, yl, x2, y2)
short x1, yl, x2, y2;
{

writemask (2);

color(2);

rectfs(x1l, yl, x2, y2);

11-16 Graphics Library Programming Guide IRIS-4D Series

writemask

writemask grants write permission to available bitplanes. It protects
bitplanes, in the current drawing mode, that are reserved for special uses
from ordinary drawing subroutines. wtm is a mask with 1 bit available per
bitplane. Whenever there are 1s in the writemask, the corresponding bits in
the color index are written into the bitplanes. Zeros in the writemask mark
bitplanes as read-only. These bitplanes are unchanged, regardless of the bits
in the color. If the drawing mode is NORMALDRAW, writemask affects
the standard bitplanes; if it is OVERDRAW, it affects the overlay bitplanes;
if it is UNDERDRAW, it affects the underlay bitplanes. Use
RGBwritemask in RGB mode.

void writemask (wtm)
Colorindex wtm;

It is very important to understand that although writemask allows you to
protect certain bits from being overwritten, all the bits stored at any pixel are
still taken as a single integer or color index value.

Consider as an example the following program:

#include <gl/gl.h>
main ()
{
prefposition (100, 750, 100, 750);
winopen (“Circles”);
mmode (MVIEWING) ;
color (BLACK) ;
clear();
color (RED) ;
circfi (200, 400, 200);
writemask (OxFFF - 1); /* Zero the #1 bitplane */
color (GREEN) ;
circfi (400, 400, 200);
writemask (OxFFF - 3); /* Zero the #1 & #2 bitplanes */
color (BLUE);
circfi (300, 250, 200);
sleep (3);
gexit ();
exit (0);

Version 2.0 Drawing Modes 11-17

This program draws overlapping circles. Because of the writemask calls, the
overlapping colors form their compound color — that is, where the red and
the green circle overlap, the shared area is yellow; where the red and the blue
circle overlap, the shared area is magenta, etc.

getwritemask

getwritemask returns the current writemask of the current drawing mode.
It is an integer with up to 12 significant bits, one for each available bitplane.
Use gRGBmask in RGB mode.

long getwritemask ()

RGBwritemask

RGBwritemask is the same as writemask, except it functions in RGB
mode. red, green, and blue are masks for each of the three sets of bitplanes.
In the same way that writemasks affect drawing in bitplanes in
NORMALDRAW color map mode, separate red, green, and blue masks can
be applied in NORMALDRAW RGB mode.

void RGBwritemask (red, green, blue)
short red, green, blue;

wmpack

wmpack is the same as RGBwritemask, except it accepts a single packed
argument, rather than three separate masks. Bits O through 7 specify the red
mask, 8 through 15 the green mask, 16 through 23 the blue mask, and 24
through 31 the alpha mask. For example, wmpack(0xff804020) has the same
effect as RGBwritemask(0x20,0x40,0x80).

wmpack (pack)
unsigned long pack;

11-18 Graphics Library Programming Guide IRIS-4D Series

gRGBmask

gRGBmask returns the current RGB writemask as three 8-bit masks.
gRGBmask places masks in the low order 8-bits of the locations redm,
greenm, and bluem address. The system must be in RGB mode when this
routine executes.

void gRGBmask (redm, greenm, bluem)
short *redm, *greenm, *bluem;

11.4 Cursor Techniques

The system supports five cursor types: a 16x16-bit cursor in one or three
colors; a 32x32-bit cursor in one or three colors; and a cross-hair, one-color
cursor. To specify a cursor completely, you need to specify not only its type,
but its shape and color(s). In addition, every cursor has an origin, or “hot
spot,” and can be turned on or off. See Figure 11-2 for examples of a 16x16
one-color cursor. Three-color cursors might not be supported on all future
versions of hardware. To write code that is guaranteed to be 100 percent
portable, use only single-color cursors.

There is a default cursor, cursor number zero (0), which is an arrow pointing
to the upper-left corner of the cursor glyph, and whose origin is at (0, 15), the
tip of the arrow. The default cursor (number 0) cannot be redefined, and can
always be used. The position of the origin of the cursor, or the cursor’s hot
spot, is set to the current values of the valuators that are attached to the
CUrsor.

To define and use a new cursor, follow these steps:

1. Set the cursor type to one of the five allowable types with curstype.

2. Define the cursor’s shape and assign it a number with defcursor.

3. If necessary, define its origin (or hot spot) with curorigin, and its
color(s) with drawmode and mapcolor.

4. Finally, the new cursor becomes the current cursor with a call to
setcursor.

Version 2.0 Drawing Modes 11-19

11

Cursor arrow = { 0 x FE00, 0x FCO00, 0x F800, 0x F800,
0x FC00, 0xDEOO, 0x8F00, 0x0780,
0x03C0, 0xO01E0, 0x00F0, 0x0078,
0x003C, 0xO001E, 0xO000E, 0x 0004}

Cursor hourglass = { 0x 1FF0, 0x 1FF0, 0x0820, 0x 0820,
0x 0820, 0x0C60, 0x06C0O, 0x0100,
0x 0100, 0x06CO, 0x0C60, 0x0820,
0x 0820, 0x0820, 0x1FF0, Ox1FFO}

Cursor martini={0x 1FF8, 0x0180, 0x0180, 0x0180,
0x0180, 0x0180, 0x0180, 0x0180,
0x 0180, 0x0240, 0x0720, 0x0B10,
0x 1088, 0x3FFC, 0x4022, 0x8011}

A cursor is a 16X16 array of bits with the origin in the lower- (
left corner. The cursor is defined bottom-up, just as raster
characters are defined.

Figure 11-1. Sample Cursors

11-20 Graphics Library Programming Guide IRIS-4D Series

If an application needs a number of different cursors, it typically defines all
of them on initialization, then switches from one to another using
setcursor (and perhaps mapcolor). Although they do not physically do
$0, cursors can be thought of as occupying 1 or 2 bitplanes of their own,
which behave like overlay bitplanes as described above. A one-color cursor
uses one bitplane, and a three-color cursor occupies two. Where there are Os
in the cursor’s bitplane(s), the contents of the standard, overlay, and underlay
bitplanes appear. In the same way that overlay colors are defined, drawmode
and mapcolor define the cursor’s color(s).

For a one-color cursor, first, call:
drawmode (CURSORDRAW)

followed by:

mapcolor(l, r, g, b)
For a three-color cursor, call;

mapcolor(l, ri, gy, bp)
mapcolor (2, rp, gy, by)
mapcolor(3, r3, g3, bz)

Whenever the cursor pattern (described below) contains a 1(=01), (r1, r1, g1,
by) is presented; when it is 2(=10), (12, 1o, go, by) appears, and so on. Be
sure to call drawmode (NORMALDRAW) after you have defined the cursor’s
colors.

The color of the cross-hair cursor is set by mapping color index 3.

Version 2.0 Drawing Modes 11-21

11.4.1 Cross-Hair Cursor

The cross-hair cursor is formed with 1-pixel wide intersecting horizontal and
vertical lines that extend completely across the screen. Its origin is at the
intersection of the two lines. It is a one-color cursor, which always uses
cursor color 3 as its color.

The cross-hair cursor is formed from a default glyph, which cannot be (
changed. If you assign a value to it with defcursor, the user-defined
glyph is ignored.

curstype

curstype defines the current cursor type. type is one of C16X1, C16X2,
C32X1, C32X2, and CCROSS. Itisused by defcursor to determine the
dimensions of the arrays that define the cursor’s shape. C16x1 is the default
value. CCROSS is a predefined cross-hair cursor, which is one pixel wide.
The hot spot is at the center of the cross. Its default center is (15, 15).
CCROSS uses cursor color 3.

After you call curstype, call defcursor to specify the appropriately sized
array and to assign a numeric value to the cursor glyph.

void curstype (typ)
long type;

11-22 Graphics Library Programming Guide IRIS-4D Series

defcursor

defcursor defines a cursor glyph. n defines the cursor number, and curs is
an array of bits of the correct size, depending on the current cursor type. The
format of the array of bits is exactly the same as that for characters in a
font—the 16-bit word at the lower-left is given first, then (if the cursor is 32
bits wide) the word to its right. Continue in this way to the top of the cursor
for either 16 or 64 words. If the cursor is three-colored, another set of 16 or
64 words follows, again beginning at the bottom, for the second plane of the
mask.

void defcursor(n, curs)
short n;
Cursor curs;

curorigin

curorigin sets the origin of a cursor. The origin is the point on the cursor
that aligns with the current cursor valuators. The lower-left corner of the
cursor has coordinates (0,0). Before calling curorigin, you must define
the cursor with defcursor. nis an index into the cursor table created by
defcursor. curorigin does not take effect until there a a call to
setcursor.

void curorigin(n, xorigin, yorigin)
short n, xorigin, yorigin;

setcursor

setcursor sets the cursor characteristics. It selects a cursor glyph from
among those defined with defcursor. index picks a glyph from the
definition table. color and wtm are ignored. They are present for
compatibility with older systems that made use of them. Set color for the
cursor with mapcolor and drawmode.

void setcursor(index, color, wtm)

short index;
Colorindex color, wtm;

Version 2.0 Drawing Modes 11-23

getcursor

getcursor returns the cursor characteristics. It returns two values: the
cursor glyph (index) and a boolean value (b), which indicates whether the
cursor is visible.

Note: color and wtm are included for compatibility with previous versions; (
they provide no useful information.

The default is the glyph index 0 in the cursor table, displayed with the color
1, drawn in the first available bitplane, and automatically updated on each
vertical retrace.

void getcursor(index, color, wtm, b)
short *index;

Colorindex *color, *wtm;

Boolean *b;

Here is a sample program that defines a three-color 32x32 cursor in the shape

of a United States flag. Unfortunately, 32x32 is small, so there is room for

only 12 stars. (Note that a three-color cursor is not supported on the Personal

IRIS; hence, C16X2 and C32X2 cursor types are not available on the

Personal IRIS.) (

#include “gl/gl.h”

main ()

{
winopen ("flag");
setflag();
color(0);
clear():;
sleep (20);

11-24 Graphics Library Programming Guide IRIS-4D Series

setflag()
{

static short curs2[128] = {
o, o, 0, 0,
o, o, 0, 0,
o, 0, o, 0,

Oxffff, Oxffff, Oxffff, Oxffff,
Oxffff, Oxffff, Oxffff, Oxffff,
Oxffff, Oxffff, Oxffff, Oxffff,
Oxffff, Oxffff, Oxffff, Oxffff,
Oxffff, Oxffff, Oxffff, Oxffff,
Oxffff, Oxffff, Oxffff, Oxffff,
Oxffff, Oxffff, Oxffff, Oxffff,

o, Oxffff, 0x6666, Oxffff,
0x6666, Oxffff, 0, Oxffff,
o, Oxffff, 0x6666, Oxffff,
0x6666, Oxffff, 0, Oxffff,
0, Oxffff, 0x6666, Oxffff,
0x6666, Oxffff, 0, Oxffff,
o, 0, o, 0,

0, 0, 0, 0,

0, 0, 0, 0,

o, 0, 0, o,
Oxffff, Oxffff, Oxffff, Oxffff,
0, o, 0, 0,
Oxffff, Oxffff, Oxffff, Oxffff,

0, 0, 0, o,

Oxffff, Oxffff, Oxffff, Oxffff,
o, 0, o, 0,
Oxffff, Oxffff, Oxffff, Oxffff,
Oxffff, 0, Oxffff, 0,
Oxffff, Oxffff, Oxffff, Oxffff,
Oxffff, 0, Oxffff, 0,
Oxffff, Oxffff, Oxffff, Oxffff,
Oxffff, 0, Oxffff, 0 };

Version 2.0 Drawing Modes 11-25

curstype (C32X2) ;
drawmode (CURSORDRAW) ;
mapcolor(l,255,0,0);
mapcolor(2,0,0,255);
mapcolor (3,255,255, 255);
defcursor (1, curs2);
setcursor(1,0,0);
drawmode (NORMALDRAW) ;

11-26 Graphics Library Programming Guide IRIS-4D Series

12. Picking and Selecting

Up to now, you have learned how to define objects in world coordinates so
the system can draw them on the screen. This chapter discusses the reverse
process: how to determine what routines draw objects in a specified area of
the screen. There are two ways to do this:

» mapw takes 2-D screen coordinates and identifies the corresponding 3-D
world coordinates

» pick and select, which identify objects drawn in a specified 3-D area

Because the mapw command uses graphical objects to map between screen
and world coordinates, this command is discussed in Chapter 16, “Graphical
Objects.” This chapter discusses picking and selecting.

12.1 Picking

Picking mode identifies objects on the screen that appear near the cursor. To
use picking effectively, your software must be structured in such a way that
you can regenerate the picture on the screen whenever picking is required.
When it is, set the system into picking mode, using pick, redraw the image
on the screen, and finally, call endpick. The results of the pick appear in
the buffer specified by pick and endpick.

Version 2.0 Picking and Selecting 12-1

While it is in picking mode, the system does not draw anything on the screen.
Instead, drawing routines that would have been drawn near the cursor cause
hits to be recorded in the picking buffer in a manner described below. With
one exception, all the standard drawing routines cause hits, including clear,
points, lines, polygons, arcs, circles, curves, and patches. Raster objects,
such as character strings and pixels drawn with charstr, do not cause hits,
but cmov does. Thus, to be picked, the cursor must be near the lower-left
corner of the string. Note also that since readpixels and readRGB are
often preceded by cmov, these routines can appear to cause hits. See Figure
12-1.

To identify the object(s) on the screen that caused hits, a name stack is
supported. The name stack is a stack of 16-bit names whose contents are
controlled by 1oadname, pushname, popname, and initname. In picking
mode, when you issue one of the routines that alters the name stack or when
you exit picking mode with endpick (or endselect, which is described in
a later section), the contents of the name stack is recorded if a hit occurred
since the last time the name stack was altered.

For example, suppose that your application draws three points widely spaced
on the screen, and you want to find which one is close to the cursor using
picking mode. Your point-drawing code (that is executed both to draw
points and to redraw them in a picking operation), might look something like
this:

ortho (<ortho parameters>);
lookat (<lookat parameters>);
translate (-x, -y, -z);
rotate(30,v'y');
translate(x, y, z);
loadname (0) ;

pnt (<point 0>);
loadname (1) ;

pnt (Kpoint 1>);
loadname (2) ;

pnt (<point 2>);

12-2 Graphics Library Programming Guide IRIS-4D Series

'TH|S TEXT IS PICKED
THIS TEXT!IS NO PICKED

In picking mode, you can identify the parts of an image that
lie near the cursor. The cursor is shown as an arrow. The
small box at the tip of the arrow is the picking region. The
large shaded circle is picked. The text string whose origin is
in the picking region is also picked. The shaded triangle and
the other text string are not picked.

Figure 12-1. Picking

Version 2.0 Picking and Selecting 12-3

You must have the complete specification for drawing the picture, including
any viewing and transformation routines. When this code segment is
executed in picking mode, if the cursor is near point 1, the buffer returned
after endpick contains the name 1; if it is near point 2, the buffer contains
the name 2. If the cursor is not near any of the points, the system returns an
empty buffer.

If hierarchical objects are drawn (for example, a car with four instances of a (
wheel, each wheel with five instances of a bolt, and you want to pick an

individual bolt from the picture), the name stack can be used effectively.

You might have one piece of code to draw each wheel that contains the

sequence:

pushname (0) ;
<draw bolt 0>
popname () ;
pushname (1) ;
<draw bolt 1>
popname () ;

The car drawing code might look like this: (

loadname (0) ;
<translate>
<draw wheel>
loadname (1) ;
<translate>
<draw wheel>

Each hit on a bolt occurs with the name stack containing two names: the first
is the wheel number and the second is the bolt number on that wheel. Deeper
nesting of the hierarchy is also possible.

12-4 Graphics Library Programming Guide IRIS-4D Series

The names reported on hits are completely application-dependent. Many
drawing routines can occur between changes to the name stack, and if any of
those routines cause a hit, the contents of the name stack is reported.
Because the contents of the name stack is reported only when it changes, one
hit is reported no matter how many of the drawing routines actually draw
something near the cursor. If the application requires more accuracy than
this, it must simply modify the name stack more often. In the code below, if
all three points caused hits, three identical name stacks would be reported:

loadname (1) ;
pnt (=) ;
loadname (1) ;
pnt (=) ;
loadname (1) ;
pnt (=) ;

pick

pick puts the system in picking mode. The numnames argument to pick
specifies the maximum number of values that the buffer can store. The
graphical items that intersect the picking region are hits and store the
contents of the name stack in bujfer.

pick (buffer, numnames)
short buffer[];
long numnames;

12.1.1 Using the Name Stack

You maintain the name stack with loadname, pushname, popname, and
initnames. To exit picking mode, use endpick. Each name in the name
stack is 16 bits long, and you can store up to 1,000 names in a name stack.
You can intersperse these routines with drawing routines, or you can insert
them into object definitions. See Chapter 16, “Graphical Objects,” for a
discussion of objects.

Version 2.0 Picking and Selecting 12-5

loadname

loadname puts name at the top of the name stack and erases what was there
before.

loadname (name)
short name;

pushname

pushname puts name at the top of the stack and pushes all the other names in
the stack one level lower.

pushname (name)
short name;

Before the first loadname () is called, the current name is unpredictable.
Calling pushname () before calling 1loadname () can cause unpredictable
results.

popname

popname discards the name at the top of the stack and moves all the other
names up one level.

popname ()

12-6 Graphics Library Programming Guide IRIS-4D Series

(

initnames

initnames discards all the names in the stack and leaves the stack empty.

initnames ()

endpick

endpick takes the system out of picking mode and returns the number of
hits that occurred in the picking session. If endpick returns a positive
number, the buffer stored all of the name lists. If it returns a negative
number, the buffer was too small to store all the name lists; the magnitude of
the returned number is the number of name lists that were stored.

buffer contains all of the name lists stored in picking mode, one list for each
valid hit. The first value in each name list is the length of a name list. If a
name stack is empty when a hit occurs, the first and only entry in the list for
that hit is “0.”

long endpick (buffer)
short buffer[]:;

Version 2.0 Picking and Selecting 12-7

12.1.2 Defining the Picking Region

Picking loads a projection matrix that makes the picking region fill the entire
viewport. This picking matrix replaces the projection transformation matrix
that is normally used when drawing routines are called. Therefore, you must
restate the original projection transformation after pick to ensure the system
maps the objects to be picked to the proper coordinates. If no projection (
transformation was originally issued, you must specify the default, ortho2.
When the transformation routine is restated, the product of the transformation
matrix and the picking matrix is placed at the top of the matrix stack. If you
do not restate the projection transformation, picking does not work properly.
Instead, the system typically picks every object, regardless of cursor position
and pick size.

Specifying or defining the default ortho2 parameters brings up the issue of
creating a graphics window that has a one-t0-one mapping between screen
space (viewport) and world space (in this case, ortho2).
T
In the following example, assume a graphics window that is 4 pixels wide by -«
6 pixels high. This window runs from coordinates Oto 3inxandOto 5iny. .
In order to set up a mapping between world space (floating point coordinates)
and screen space (integer coordinates) that makes pixel (1,2) centered exactly
at the point (1.0, 2.0) in the ortho2 world space, you need to make the
following two calls: (

viewport (0, 3, 0, 5):
ortho2(-0.5, 3.5, -0.5, 5.5);

12-8 Graphics Library Programming Guide IRIS-4D Series

To understand why these values are correct, consider the x component. The
width in x of this window is 4 pixels, which are integer values; it makes no
sense to talk about pixel 1.3. In world coordinates, however, an x location of
1.3 is valid. The mapping from world to screen coordinates attempts to
convert the x world coordinate 1.3 to the nearest whole-number pixel box it
can find. Rounding off 1.3 points the GL at pixel 1. The call to ortho?2
runs between x values of -0.5 and 3.5 to let the rounding operation center the
four x world space whole number values of 0.0, 1.0, 2.0, and 3.0 in the
middle of each pixel in the x dimension. In this scheme, think of -0.5 as the
extreme left-hand edge of the window, 3.5 as the extreme right-hand edge,
1.5 as the boundary between pixel 1 and pixel 2, etc. This lets you define the
xrange in ortho2 so that, in effect, the world coordinates straddle the
discrete whole number boundaries and center the whole numbers (0.0, 1.0,
2.0, 3.0) in the middle of each pixel (0, 1, 2, 3).

Extrapolate from this and assume a situation where the graphics window has
been resized and you need to redefine a current ortho2 based on the new
size. To do this, use the following three statements:

getsize (&xsize, &ysize);

viewport (0, xsize - 1, 0, ysize - 1);

ortho2 (-0.5, (float) (xsize-0.5),
-0.5, (float) (ysize-0.5) ;

In the call to viewport, you must subtract 1 from the value of xsize and
ysize because they start at 0, not at 1. Likewise, in the call to ortho2, you
need to start at -0.5, so you need to subtract -0.5 from xsize and ysize to
create the straddling effect described earlier.

picksize

The default height and width of the picking region is 10 pixels centered at the
cursor. You can change the picking region with picksize. deltax and
deltay specify a rectangle centered at the current cursor position (the origin of
the cursor glyph). (See Chapter 11, “Drawing Modes,” for a discussion of
cursors.)

picksize (deltax, deltay)
short deltax, deltay;

Version 2.0 Picking and Selecting 12-9

Example

The following program draws an object consisting of three shapes; then it
loops, until you press the right mouse button. Each time you press the
middle mouse button, the system:

1. enters pick mode

2. calls the object

3. records hits for any routines that draw into the picking region
4. prints out the contents of the picking buffer

Note: When you call an object in picking mode, the screen does not
change. Because the picking matrix is recalculated only when you
call pick, the system exits and reenters picking mode to obtain new
cursor positions.

/***

pick.c - example of picking
XKk /

#include <gl/gl/gl.h>
$include <device.h>

#define BUFSIZE 50

void

drawit ()

{
color (RED) ;
loadname (1) ;
rectfi(20,20,100,100);
loadname (2) ;
pushname (21) ;
circi (50, 500, 50);
popname () ;
pushname (22) ;
circi (50, 530, 60);
popname () ;

12-10 Graphics Library Programming Guide IRIS-4D Series

int

main ()

{

short dev, wval;

short buffer[BUFSIZE];
int hits;

int xsize, ysize;

int i;

prefsize (600, 600);

(void) winopen ("pick");

getsize (&xsize, &ysize);

color (BLACK) ;

clear ();

gdevice (LEFTMOUSE) ;

qgdevice (ESCKEY) ;

for (i = 0; 1 < BUFSIZE; i++) buffer[i] = 0;

drawit () ;

while (1) {
dev = gread(&val);
switch (dev) {
case LEFTMOUSE:
if (val == 0) break;
pick (buffer, BUFSIZE);
ortho2(-0.5, xsize + 0.5,
-0.5, ysize + 0.5);
drawit () ; /* no actual drawing takes place */
hits = endpick (buffer);

Version 2.0 Picking and Selecting 12-11

/* display hit information */
{

int index, items, h, i;

printf ("hit count: 3%d hits: ", hits);

index = 0;

for (h = 0; h < hits; h++) |

items = buffer[index++]; (i

printf (" (");
for (1 = 0; i < items; i++) {
if (1 '= 0) printf (" ");
printf ("$d", buffer[index++]);
}
printf (") ");
}
printf ("\n");
}

break;
case ESCKEY: /* exit program */
return 0;

break;

} . -
} (
}
When you run the program, five outcomes are possible for each picking
session (the circles can be picked together because they overlap):
« nothing is picked = “hit count: O hits:”
« the square is picked = “hit count: 1 hits: (1)”
« the bottom circle is picked = “hit count: 1 hits: (2 21)”
« the top circle is picked = “hit count: 1 hits: (2 22)”

« both the top and bottom circles are picked = “hit count: 2 hits: (2 21)
2 22)”

12-12 Graphics Library Programming Guide IRIS-4D Series

12.2 Selecting

Selecting is a more general mechanism than picking for identifying the
routines that draw to a particular region. A selecting region is a 2-D or 3-D
area of world space. When gselect turns on selecting mode, the region
represented by the current viewing matrix becomes the selecting region. You
can change the selecting region at any time by issuing a new viewing
transformation routine. To use selecting mode:

1. Issue a viewing transformation routine that specifies the selecting region.
2. Call gselect.

3. Call the objects or routines of interest.

b

Exit selecting mode and look to see what was selected.

gselect

gselect tumns on the selection mode. gselect and pick are identical,
except gselect allows you to create a viewing matrix in selection mode.

numnames specifies the maximum number of values that the buffer can store.
Names are 16-bit numbers, which you can store on the name stack. Each
drawing routine that intersects the selecting region causes the contents of the
name stack to be stored in buffer. The name stack is used in the same way as
itis in picking.

gselect (buffer, numnames)

short buffer(];
long numnames;

Version 2.0 Picking and Selecting 12-13

endselect

endselect tums off selecting mode. buffer stores any hits the drawing

routines generated between gselect and endselect. Each name list

represents the contents of the name stack when a routine was called that drew

into the selecting region. endselect returns the number of name lists in

buffer. If the number is negative, more routines drew into the selecting (

region than were specified by numnames.

long endselect (buffer)
short buffer([];

The following program uses selecting to determine if a rocket ship is
colliding with a planet. The program calls a simplified version of the planet
and draws a box representing the ship each time you press the left mouse
button. The program prints CRASH and exits when the ship collides with the

planet.

VAR

crash.c — example of selecting
kkk)

#include <gl/gl.h>
#include <device.h>

#define BUFSIZE 50
#define PLANET 109
#define SHIPWIDTH 20
#define SHIPHEIGHT 10

void
drawplanet ()

{
circfi (200, 200, 20);

12-14 Graphics Library Programming Guide

IRIS-4D Series

int

main ()

{

short dev, val;

short buffer[BUFSIZE];

int count, i;

float shipx, shipy, shipz;
int xorigin, yorigin;

minsize (300, 300);

(void) winopen ("crash");
getorigin (&xorigin, &yorigin);
qgdevice (LEFTMOUSE) ;

gdevice (ESCKEY) ;

color (BLACK) ;

clear ()

for (i = 0; i < BUFSIZE; i++) buffer[i] = 0;

color (RED) ;
drawplanet () ;

while (TRUE) {

dev = gread(&val);

switch (dev) {
case LEFTMOUSE:

if (val) {
shipz = 0;
shipx = getvaluator (MOUSEX) - xorigin;
shipy = getvaluator (MOUSEY) - yorigin;

color (BLUE) ;
rect (shipx, shipy,
shipx + SHIPWIDTH, shipy + SHIPHEIGHT);

Version 2.0 Picking and Selecting 12-15

/* specify the selecting region to be a box
surrounding the rocket ship */

pushmatrix();

ortho2 (shipx, shipx + SHIPWIDTH,

shipy, shipy + SHIPHEIGHT);

initnames () ;

gselect (buffer, BUFSIZE); /%enter selecting mode*/
loadname (PLANET) ; (i
drawplanet (); /* mo actual drawing takes place */
count = endselect (buffer); / exit select mode */
popmatrix () ;

/* check to see if PLANET was selected */
if ((count > 0) &&
(buffer[0] == 1) &&
(buffer[l] == PLANET)) {
printf ("CRASH!\n");

}

break;

case ESCKEY:

return 0;
break; (
}

12-16 Graphics Library Programming Guide IRIS-4D Series

13. Depth-Cueing

Chapter 8 discussed how to make an image appear more realistic by
removing the hidden lines and surfaces from the image. This chapter
discusses another technique that can make an image appear more realistic:
depth-cueing—modifying object color based on depth. Two methods are
presented in this chapter. The first method, color replacement, can be used
with points, lines, polygons, and characters. The second method, color
blending, can be used with points, lines, and polygons, but not characters.
This method blends true object color with another color, where the blend
ratio is determined by the depth of the object.

You can use color replacement to achieve an effect known as depth-cueing,
which gives the appearance that objects closer to the viewer are brighter than
those far from the viewer. Color blending is also useful for achieving such
effects, but is better known for simulating atmospheric phenomena such as
fog and smoke.

Depth-cueing is a fairly advanced topic. You do not need to read this on
your first approach to the Graphics Library.

Version 2.0 Depth-Cueing 13-1

13.1 Depth-Cueing

Depth-cueing makes an image appear 3-D by replacing the color of all

points, lines, and polygons with colors determined by their z values. First,

turn on depth-cueing with the depthcue command. Then, specify a

mapping of z values to color by using either the 1shaderange or (
1RGBrange command. In color index mode, use 1shaderange to describe

a mapping from z values to color index values. In RGB mode, use

1RGBrange to describe a mapping from z values to RGB values.

depthcue

depthcue turns depth-cue mode on and off. If mode is TRUE, all lines,
points, characters, and polygons that the system draws are depth-cued. When
mode is FALSE, depth-cue mode is off.

For depth cueing to work properly, the color map locations that

1shaderange specifies must be loaded with a series of colors that gradually
increase or decrease intensity.

depthcue (mode) (i

short mode;

getdem

getdcm indicates whether depth-cue is on or off. TRUE (1) means depth-cue
mode is on; FALSE (0) means depth-cue mode is off.

long getdcm()

13-2 Graphics Library Programming Guide IRIS-4D Series

Ishaderange

lshaderange specifies the low-intensity color map index (lowindex) and
the high-intensity color map index (highindex). These values are mapped to
the near and far z values specified by znear and zfar.

The values of znear and zfar should correspond to or lie within the range of z
values specified by 1setdepth. lsetdepth is the entire transformation
range. lshaderange is the range of values where all of the shading will
occur.

void lshaderange (lowindex, highindex, znear, zfar)
Colorindex lowindex, highindex;
long zl, z2;

The entries for the color map between the low index and the high index
should reflect the appropriate sequence of intensities for the color being
drawn. When a depth-cued point is drawn, its z value is used to determine its
intensity. When a depth-cued line is drawn, the intensities of its points are
linearly interpolated from the intensities of its endpoints, which are
determined from their z values. You can achieve higher resolution if the near
and far clipping planes bound the object as closely as possible. The following
equation yields the color map index for a point with z coordinate. Note that this
equation yields a nonlinear mapping when z is outside the range of znear . . .
zfar and the color is limited to [highindex, lowindex]. Because depth-cued
lines are linearly interpolated between endpoints, an endpoint outside the
range of zI and z2 can result in an undesirable image.

The valid range of znear and zfar depends on the compatibility mode
specified by the call to glcompat. If GLC_ZRANGEMAP is 0, the value
range for znear and zfar depends on the graphics hardware: the minimum is
the value returned by getgdesc(GD_ZMIN) and the maximum is the value
returned by getgdesc(GD_ZMAX). If GLC_ZRANGEMAP is 1, the
minimum is 0 and the maximum is Ox7FFFFF.

Version 2.0 Depth-Cueing 13-3

highindex, _ ifz<z1;
highindex—lowindex

color, =14 (Yz—z 1) + lowindex, ifz1<z<22;
z2-z1
lowindex, ifz2<z.
IRGBrange

1RGBrange sets the range of color indices to use for depth-cueing in RGB
mode. rmin and rmax are the minimum and maximum values stored in the
red bitplanes. Likewise, gmin, gmax, bmin, and bmax define the minimum
and maximum values stored in the green and blue bitplanes, respectively.
znear and zfar define the z values that are mapped linearly into the RGB
range. z values nearer than znear are mapped to rmax, gmax, and bmax;
values farther than zfar are mapped to rmin, gmin, and bmin.

void 1RGBrange (rmin, gmin, bmin, rmax, gmax, bmax, zmin,
zZmax)
short rmin, gmin, bmin, rmax, gmax, bmax;

long zmin, zmax;

13-4 Graphics Library Programming Guide IRIS-4D Series

The following program draws a cube filled with points that rotates as you
move the mouse. Because the image is drawn in depth-cue mode, the edges
of the cube and the points inside the cube that are closer to the viewer are
brighter than the edges and points farther away .

/***

depthcue.c - RGB depth-cued cube filled with stars
kkk)

#include <gl/gl.h>
#include <gl/device.h>
#include <math.h>

#define NUMPOINTS 100
float Points[NUMPOINTS] [3];

/* draws a cube centered at the origin */
void
drawcube ()
{
typedef struct { int x, y, z; } Vector3i;
static Vector3i corner[8] = {
{-1,-1,-1}, {(-1,1,-1}, {1,-1,-1}, {1,1,-1},
{-1,-1,1}, {-1,1,1}, {1,-1,1}, {1i,1,1},
};
static int line[12][2] = {
{o,1}, {1,3}, {3,2}, {2,0},
(4,35}, (5,7}, {7,6}, {6,4},
{0,4}, (1,5}, {2,6}, {3,7},

Version 2.0 Depth-Cueing 13-5

int i;

for (i = 0; i < 12; i++) {
bgnline();

v3i (corner[line([i]]);

v3i (corner[line([il]);
endline () ;

}

void
drawit ()
{

int 1i;

bgnpoint () ;
for (i = 0; 1 < NUMPOINTS; i++) v3f(Points[i]);
endpoint () ;

drawcube () ;

int

main ()

13-6 Graphics Library Programming Guide IRIS-4D Series

{
float xrot, yrot;
short wval;

int 1i;

prefsize (800, 800);

(void) winopen ("depthcue");
doublebuffer () ; '
RGBmode () ;

geconfig();

qgdevice (ESCKEY) ;

cpack (0) ;

clear();

swapbuffers () ;

clear():;

ortho(-1.8, 1.8, -1.8, 1.8, -1.8, 1.8);

/* set the range of z values to be used */
lsetdepth (0, 0x7£0000);

/* set up the mapping of z values to cyan intensity */
1RGBrange (0, 0, 0, 0, 255, 255, 0, 0x7£0000);

/* now z values control the intensity */

depthcue (TRUE) ;

/* generate random points */

for (i = 0; i < NUMPOINTS; i++) {
Points[i] [0] 1.9 * (drand48() - 0.5);
Points[i] [1] 1.9 * (drand48() - 0.5);
Points[i] [2] 1.9 * (drand48() - 0.5);
}

Version 2.0 Depth-Cueing 13-7

while (TRUE) {
if (qtest () && (gread(&val) == ESCKEY)) break;

xrot = (getvaluator (MOUSEY) -
0.5 * YMAXSCREEN) / YMAXSCREEN;
yrot = (getvaluator (MOUSEX) -
0.5 * XMAXSCREEN) / XMAXSCREEN; (
rot (xrot * 4.0, 'x');
rot (yrot * 4.0, 'y'):;
cpack (0) ;
clear();
drawit () ;
swapbuffers () ;
}

return 0;

13.2 Atmospheric Effects

A variety of special effects are now available in IRIS-4D/VGX systems by
using the new fogvertex command. The command allows you to modify
the color of an object based on the distance of the object from the view point.
As its name suggests, fogvertex simulates atmospheric effects such as fog
or smoke. It can also provide other distance-varying functions such as depth-
cueing.

Consider looking down the runway at an approaching aircraft. On a clear

sunny day, the aircraft is seen in full detail, limited only by your visual acuity

(the resolution of your eye). On a foggy day, however, your view of the

airplane is impaired and the apparent color of the plane is a combination of

the fog color and the true color of the plane. As the plane approaches,

though, your eye begins to detect the true color of the plane. (

13-8 Graphics Library Programming Guide IRIS-4D Series

Such an effect can be easily simulated with the fogvertex command. The
idea is that true color is blended with a “fog color” based on the distance of
the object to the viewer to produce apparent color. “True color” is the color
of an object if there were no fog, i.e., the color of an object computed after
lighting, shading, and texture mapping (if any). Fog color is provided as an
argument to the fogvertex command.

Real fog varies in density and this density is not uniform throughout a single
patch of fog. Such non-uniformity is difficult to simulate quickly.

Therefore, the fogvertex command allows the specification of a single fog
density, a value that varies from 0.0 to 1.0. A fog density 0.0 is really no fog
at all, i.e., the apparent color is the same as the real color. A fog density 1.0
is very thick fog, i.e., at a distance of one unit in eye coordinates, such a fog
totally obscures the true color of the viewed object.

In addition to simulating fog and smoke, the fogvertex command can
implement other simple distance varying modifications of real color. One is
blending real color with “background celor.” The effect is that an object
moving away from the viewer appears to fade into the background. This is
another form of depth cueing. An advantage of this method over using
depthcue/1lshaderange is that it is independent of the color of the
viewed objects, i.e., 1shaderange must be called each time the object
color changes, whereas fogvertex need only be called with the
background color changes.

fogvertex take two arguments. The first is mode, indicating whether you
are defining, enabling, or disabling fog effects. Note that defining a fog
effect does not enable it. This must be done with a separate call. Values for
mode can be:

void fogvertex (mode,params)
long mode;
float *params;

FG_DEFINE Interpret params as a specification for subsequent
fog density and color.

FG_ON Enable the previously defined fog effect.

FG_OFF Disable fog effects. This is the default.

Version 2.0 Depth-Cueing 13-9

The second argument to fogvertex is params. params is an array of
floating point values. The first value in this array is the fog density. The
next three are the red, green, and blue components, respectively, of the fog
color, ranging in value from 0.0 to 1.0.

The proportion of the true color that contributes to the apparent color is
called the blend factor, Vfog. When you enable fog effects, the blend factor
is computed at the vertices of each graphics primitive. Then vertex blend
factors are interpolated much like texture coordinates to determine the blend
factor at other pixels covered by the graphics primitive. Finally, true color,
Cp, is combined with fog color, Cf, to give apparent color, C:

C= Cp * Vf()g + Cf *(1.0 - Vfog)

Computing blend factors at vertices is done according to the following
formula:

Viog = e(Cpo g * density * Zey o).
In this equation, Zeye denotes the z coordinate in eye space. When density
and Zeye is 1, then Viog is effectively 0. (Note that when density equals 0,
Vfog equals 1.)
fogvertex presumes a negative z orientation, i.e., the viewer is looking
down the negative z axis from the origin. This is true for each of the GL
projection matrix setting calls perspective, window, and ortho and
when the last column of your projection matrix has the form (0.0 - 1.0).

You must be in RGB mode to use fogvertex.

13-10 Graphics Library Programming Guide IRIS-4D Series

(’\

14. Curves and Surfaces

The IRIS Graphics Library provides routines that render curved lines and
surfaces. The first section in this chapter describes the interface to the
Graphics Library support for non-uniform rational B-splines (NURBS). The
rest of the chapter describes previous methods for drawing curves and
surfaces.

Curves and surfaces are an advanced topic of the Graphics Library.

14.1 Non-Uniform Rational B-Splines (NURBS)

This section describes the routines in the Graphics Library that draw
parametric non-uniform rational B-spline surfaces (NURBS) that can be
trimmed with non-uniform rational B-spline curves and piecewise linear
curves.

In its complete generality, the NURBS surface model can be quite complex.
This chapter approaches NURBS gradually, first by examining uniform
polynomial splines with no rational component, then by discussing how non-
uniformity affects the splines.

The GL efficiently converts NURBS surfaces into a series of GL primitives
(triangle meshes and quadrilateral strips). Therefore, as with most other
Graphics Library primitives, you can transform NURBS curves and surfaces
with the standard GL modeling commands. You can also use the standard
lighting models when rendering NURBS curves and surfaces.

Version 2.0 Curves and Surfaces 14-1

14.1.1 What Are B-Spline Curves and Surfaces?

Figure 14-1 illustrates a uniform cubic B-spline with no rational component.
You define such a spline with a set of eight control points. Notice how the
spline (the curve) is attracted to the control points, but does not necessarily
pass through any of them.

Figure 14-1. Uniform Cubic B-spline with No Rational Component

Figure 14-2 shows the effects of moving the sixth control point from the left,
and the corresponding B-splines as the control points move to a series of
locations. Notice that moving the control point affects only a portion of the
curve near the control point. This is an important property of B-splines—the
influence of the control points is local.

14-2 Graphics Library Programming Guide - IRIS-4D Series

Figure 14-2. Effects of Moving a Control Point

For cubic B-splines, each small segment of the curve is controlled by the
positions of four control points. In the example above, the curve is actually
drawn as five small segments. The first is controlled by points 1, 2, 3, 4; the
second by 2, 3, 4, 5; and so on.

The last segment is controlled by control points 5, 6, 7, and 8. When the
sixth control point is moved, the only parts of the spline affected are those
controlled by points 3, 4, 5, 6, points 4, 5, 6, 7, and points 5, 6, 7, 8.

In the two examples above, the control points are evenly spaced in the
horizontal direction. This is not necessary. In Figure 14-3, the control points
are unevenly spaced.

Version 2.0 Curves and Surfaces 14-3

03 .7 8
.

o4

ol .2 .5

Figure 14-3. Uneven Control Point Spacing

You can use any number of control points greater than four to define a cubic
B-spline. The spline is actually drawn in segments, each of which is
controlled by successive sets of four control points.

14.1.2 NURBS Interface Overview

A parametric NURBS surface is the image of a rectangle in the s-¢ plane,
called the domain. To describe a NURBS surface, you must specify these
controlling factors:

« aset of nondecreasing knot values in both the s and ¢ directions

» the order (which is the degree + 1) of the surface in both directions

« arectangular set of control points
Certain dependencies exist between the surface orders, the knot counts, and
the number of control points. You specify the surface orders and the knot
counts to determine the number and arrangement of the control points. If Os
and Ot are the surface orders in the s and t directions, and if Ks and Kt are the

knot counts in those directions, then the control points must form a
rectangular array of size (Ks - Os)*(Kt - Of).

14-4 Graphics Library Programming Guide IRIS-4D Series

14.1.3 NURBS Surface Description

To create a NURBS surface, call nurbssurface within a
bgnsurface/endsurface pair. Within this surface description, the
nurbssurface routine lets you define three kinds of NURBS surfaces:

« A parametric surface that has shape in three dimensions. With no other
modifications, this surface appears in the currently bound material and
with the currently bound lights and lighting model.

» An array of color values determining the color of the geometric surface.
This color has no effect when lighting is on (unless you have called
lmcolor with an appropriate argument), just as color commands have
no effect on polygons when lighting is on. Unlike the parametric surface
array, the color array has no underlying geometry of its own, but is rather
a function that is applied to the NURBS geometry as defined by the
parametric surface geometry.

+ A texture array that determines texture coordinates for the geometric
surface, taking into account the current color defined by the current
lighting model in conjunction with any color defined by a color
nurbssurface call. You must call texbind to define a current
texture for the texture coordinates to have any effect.

You must define one (and only one) geometric surface within each
bgn/endsurface pair. You can optionally specify one color array and one
texture array per parametric surface. If you do, the defined color or texture is
applied to the NURBS surface in much the way that color-per-vertex or
texture mapping is applied to polygons.

For color and texture arrays, the number, spacing, or sequence of the control
points is completely independent of the number, spacing, or sequence of the
parametric control points that define the surface’s shape. To take a simple
example, consider the chromaticity diagram with which you might be
familiar — the diagram showing the spectral colors of a theoretical black
body at various radiating temperatures. In the nurbssurface model, you
make two calls to nurbssurface to create this image. The first call
contains the geometric parameters, and defines the shape of the chromaticity
diagram (a bilinear, or flat, surface). The second call contains an array of
color values that are applied to the shape that the first call defines.

For texture mapping, the texture array passed to the nurbssurface call
must contain an array of s and ¢ texture coordinates that are associated with
the surface geometry. For more information on defining textures, see
Chapter 18, “Texture Mapping”.

Version 2.0 Curves and Surfaces 14-5

A parametric surface is defined by a function such as:

fs,)=(x,y,2)

or, for rational components:
fGs,) =(x,y, z, w) = (wx, wy, wz, w)

You specify this mapping with a call to nurbssurface that defines the
geometric data. A call to nurbssurface with color data augments this
function so that it becomes:

Je(s, =(x,y,2,1,80b,0)

where r, g, b, and a give the color of the surface at (x, y, z). Specifying
texture coordinates gives the function:

ftex(s, t) = (X, , 2, Stex, trex)

Specifying both color and texture gives the most general function:

fetex(s,)= (x,y,2,r, 8 b, a, Stex, trex)

nurbssurface

The implementation of NURBS surfaces shown below permits orders of 8 or
less in either dimension.

void nurbssurface (sknot_count, s_knot, tknot_count, t_knot,
s_offset, t_offset, ctlarray, s_order,
t_order, type)
long sknot_count;
double s_knot[];
long tknot_count;
double t_knot[];
long s_byte;stride;
long t_byte stride;
double *ctlarray;
long s_order;
long t_order;

long type;

14-6 Graphics Library Programming Guide IRIS-4D Series

The parameters to nurbssurface have the following meaning:

sknot_count

tknot_count

s_knot[]

t_knot[]

s_order

t _order

type

Version 2.0

Indicates the number of knots in the parametric s
direction.

Indicates the number of knots in the parametric ¢
direction.

An array of length sknot_count, containing the
non-decreasing knot values in the parametric s
direction.

An array of length tknot_count, containing the
non-decreasing knot values in the ¢ direction.

The order of the surface in the s direction.
The order of the surface in the ¢ direction.

Defines the kind of NURBS surface to be created by
the call to nurbssurface. Can be one of several
constants with the following interpretations:

N_V3D Indicates that the array of control points
consists of double-precision 3-D
positional coordinates in non-rational (x,
y, and z) form.

N_V3DR Asfor N_V3D, but indicates that the
array’s elements are in rational (wx, wy,
wz, and w) form.

N_C4D Indicates that the array consists of
double-precision color coordinates in
four-component (R, G, B, and A)
format.

N_C4DR Asfor N_C4D, but indicates that the
array’s elements are in rational form.

N_T2D Indicates that the array consists of
double-precision texture coordinates in a
two-dimensional (s and ¢) coordinate
space.

Curves and Surfaces 14-7

s_offset

t offset

ctlarray

N_T2DR Asfor N_T2D, but indicates that the
array’s elements are in rational form.

You must have exactly one call to nurbssurface
using type N_V3D (or N_V3DR, depending on
whether you are using three-dimensional or rational
components) inside each bgnsurface/
endsurface loop. You can optionally include one
call that specifies one of the color types (N_C4D or
N_C4DR) and one that specifies one of the texture
types (N_T2D or N_T2DR).

Indicates the offset (in bytes) between successive
control points in the s direction.

Indicates the offset (in bytes) between successive
control points in the ¢ direction.

An array containing control points for the NURBS
surface. The coordinates must appear as triples or
quadruples, depending on the value of type
selected. Thatis, if you specify type N_v3D
indicating non-rational values for the point
geomelry, ct larray must contain elements in the
form of (x, y, z) triples. For a call to
nurbssurface that specifies N_C4D, that is, using
non-rational color values, ct larray must contain
an array of (R, G, B, A) specifications in double-
precision form. The values of s_offset and
t_offset tell the system how many bytes make up
each control point in ctlarray.

This interface is powerful in that the only requirement is that the x, y, z, and
possibly w coordinates are placed in successive memory locations. The data
can be a part of a larger data structure, or the points can form part of a larger
array. For example, suppose the data appears as follows:

struct ptdata {

points[5][6];

14-8

long tagl, tag2;

float x, y, z, w;

Graphics Library Programming Guide IRIS-4D Series

Sets_offset 10 sizeof (struct ptdata),t_ offset 1o
6*sizeof (struct ptdata), and ctlarray to ptdata or
& (points[0] [0].x).

As another example, suppose that you declared the data as above, but you
needed only a square of 4 by 4 control points from the middle of the array,
including everything between and including points (1] [1] and
points[4][4]. Inthat case, set s_offset and t_offset as above, but
set ctlarray to & (points[1][1].x).

In both examples, type would be N_v4D, since the data includes the
homogeneous w coordinate.

14.1.4 Trimming

A trimming curve or trimming loop defines the visible regions in a NURBS
surface. You can define trim curves either by NURBS curves, using the
nurbscurve function, or by piecewise linear curves, using the function
pwlcurve, Or by any combination of the two. In either case, the trim curve
must be closed—that is, the coordinates of the first and last points of the
trim curve must be identical (within the tolerance 10-6). Since a NURBS
curve normally does not pass through any of its control points, one way to
assure a closed curve is to repeat the coordinates for a control point a number
of times equal to the order of the curve—for example, quadruple the control
points for a fourth-order curve if you wish to make the curve pass through
that point. Another technique is to construct a knot vector that generates
positional continuity of the endpoints of the curve. Trim curves can be up to
order 8.

When error checking is activated (see Section 14.1.5), the software sends
error messages and does not display the NURBS surfaces associated with the
faulty trim data. Likewise, the end points of piecewise linear curves and
NURBS curves used to form a compound trim curve must touch.

A NURBS surface is the result of a mathematical function that maps domain
space to model space. You determine the visible parts of the NURBS surface
by defining a trim region. A trim region is an area in s-¢ space defined by a
closed directed loop where the interior of the region is to the left of a portion
of the loop when that portion is directed upwards. The surface domain can
be trimmed by many such loops, as long as they describe a consistent region.
The loops can ncither touch nor intersect (except at their end points, which
must touch), and their orientations must also be consistent. Figure 14-4
illustrates a set of 5 loops that describe a valid trimming region. The image
of the shaded portion is the trimmed NURBS surface.

Version 2.0 Curves and Surfaces 14-9

Figure 14-4. NURBS Trimming Loops

If no trimming information is provided, the trim region is effectively a square
with corners at (0,0) and (1,1). If any trim loops are given, the outer loop (or
loops) must be counter-clockwise. Thus, to describe a region that consists of
the whole surface minus a small circle in the middle, two trim loops must be
specified; one running clockwise around the circle, and another running
counterclockwise around the entire s-t domain.

A trimming loop can be described either as piecewise linear curves (a series

of s-t coordinates locating successive points along a path), or as NURBS

curves in the s-¢ plane. A loop can be described either by a single NURBS (
curve or by a piccewise linear curve, or as a series of curves (of either type)

joined head to tail.

14-10 Graphics Library Programming Guide IRIS-4D Series

In general, a sequence of calls to define a trimmed NURBS surface has a
format like this: '

bgnsurface () ;
nurbssurface(. . .);
bgntrim();
nurbscurve (. . .);
endtrim();
bgntrim();
pwlcurve(. . .);
endtrim();
bgntrim();
nurbscurve(. . .);
pwlcurve(. . .);
nurbscurve (. . .);
endtrim();

endsurface () ;

Each trimming loop is surrounded by a bgntrim() and an endtrim()
pair. A single curve defines the first two trim loops; the third loop consists
of three segments, connected head to tail. The last point of each curve
segment must touch the first point of the next, and the last point of the last
segment must touch the first point of the first segment. nurbssurface()
describes the untrimmed surface, and appears before any trimming
information. The trimmed surface description is bracketed by a
bgnsurface () and endsurface () call.

You can use all the routines above except getnurbsproperty () indisplay
lists. In this implementation, NURBS surfaces described in display lists
usually run faster, since some of the display computations can be cached
between display list traversals. In future implementations, this might not be
true, but you can expect NURBS in display lists always to be no slower than
immediate mode NURBS display.

All the arguments are passed with call-by-value semantics. This means that
the system copies all values, including trim points and control points, at the
time of the call. For example, if you have an array containing control points,
and you define a NURBS surface in a display list using it, and then change
the value in your array, the display list continues to draw the surface using
the original control point values.

Version 2.0 Curves and Surfaces 14-11

nurbscurve

Use nurbscurve () to define NURBS trim curves:

void nurbscurve (knot_count, knot_list, offset,

ctlarray, order, type)

long knot_count;

double

knot_list[];

long offset;

double

*ctlarray;

long order;

long type;

knot_count

knot_list

offset

ctlarray

order

type

The number of knots in the NURBS curve. As with NURBS
surfaces, you define the knots and the order of the curve to
obtain the control points. NURBS curves, however, being
one-dimensional, have only one parametric coordinate
instead of two.

An array of non-decreasing knot values.

The offset (in bytes) between successive curve control points
in ctlarray (below)

An array containing control points for the NURBS trimming
curve. The coordinates must appear either as (x,y) pairs
(requiring type N_P2D) or (wx, wy, w) triples (requiring type
N_P2DR). The offset between successive control points in
ctlarray is given by offset.

The order or the NURBS curve. The order is equal to the
degree plus one; for instance, a cubic curve is a fourth-order
curve.

A value indicating the control point type. Can be one of the
following:

N_P2D non-rational coordinates (x, y pairs) in double-
precision format

N_P2DR rational coordinates (wx, wy, w triples) in
double-precision format

14-12 Graphics Library Programming Guide IRIS-4D Series

In the current implementation, you can use nurbscurve () only in curves of
up to order 8.

The structure of the parameters is analogous to those for the
nurbssurface () routine, except that there is only one dimension to
describe.

If a single curve defines the entire trimming loop, both ends of the curve
must lie at the same point and must be included in the parameter count.

When you trim a NURBS surface with a NURBS trimming curve, the
software analytically calculates coordinates on the surface and their
corresponding normal vectors for each point on the tessellated NURBS
trimming curve.

The system displays the regions of the NURBS surface that lie to the left of a
portion of the trim curve when that portion is directed upwards (upwards is
defined by the direction of increasing curve parameter). For example, if your
trim curve describes a counterclockwise circle, the system displays the region
inside the curve. A clockwise curve causes the system to display the portion
of the surface outside the trim curve (see Figure 14-4).

pwlcurve

To define a piecewise linear trimming curve, use pwlcurve () :

void pwlcurve (n, data_array, byte size, type)
long n, byte size, type;

double *data_array;

The trim curve in the s-¢ plane is drawn by connecting each point in the
array to the next. Itis equally important to increment the trim point count
as it is to duplicate the last point—in other words, although the last and first
points are identical, they must be specified and counted twice.

type expects a value that indicates the point type. Currently, the only data
type supported is N_PwD, which corresponds to pairs of s-z coordinates. The
byte_size parameter specifies an offset which is used if the curve points are
part of an array of larger structural elements. pwlcurve searches for the nth
coordinate pair beginnint at data_array + n * byte_size.

Version 2.0 i Curves and Surfaces 14-13

14.1.5 Controlling Display Properties

The only other routines that are specifically related to the properties of
NURBS surfaces are setnurbsproperty () and getnurbsproperty ().
These routines allow you to set and get drawing parameters of various types.

The routine setnurbsproperty () changes various properties that control
the rendering of NURBS curves and surfaces. The call uses this format:

void setnurbsproperty (long property, float value)

A list of properties is defined in gl/gl.h, and includes

N PIXEL TOLERANCE,N ERRORCHECKING, N _DISPLAY, and

N CULLING Each has some reasonable default value, but can be changed
to affect the accuracy of some part of the rendering. You can get the current
value of any of these properties with the call:

getnurbsproperty (long property, float *value)

For maximum generality, express the value of a property in floating point.
For some properties, only integer values make sense, but you must still pass
them in floating point form.

The values of the properties are global to a process, and each call to
setnurbsproperty () changes this global state.

The propertics have the following meanings:

N_PIXEL_TOLERANCE A positive floating point value that bounds
the maximum length (in pixels) of an edge
of any polygon generated in the tessellation
of the surface.

N_ERRORCHECKING A Boolean value that, when TRUE, instructs

the GL to send NURBS-related error
messages to standard error.

14-14 Graphics Library Programming Guide IRIS-4D Series

N_DISPLAY An enumeration that dictates the rendering
format. Possible values are N_FILL,
N_OUTLINE_POLY, and
N_OUTLINE_PATCH. N_FILL instructs
the GL to fill all polygons generated in the
tessellation of the surface.
N_OUTLINE_POLY instructs the GL to
outline all polygons generated.
N_OUTLINE_PATCH instructs the GL to
outline the boundary of all patches and trim
curves.

N_CULLING A Boolean value that, when TRUE, instructs
the GL to discard before tessellation all
patches that are outside the current viewport.

14.2 Old Style Curves and Surfaces

The remainder of this chapter describes the models, mathematics, and
programming statements for drawing curves and surfaces that were available
before the NURBS functions included in the Graphics Library for release 3.2
of the IRIX system software. These techniques and GL functions are still
supported for compatibility with programs written for earlier versions of the
software. Use of these statements is not recommended.

14.2.1 Overview

You draw a curve segment by specifying:
» a set of four control points

+ a basis, which defines how the system uses the control points to
determine the shape of the segment

You create complex curved lines by joining several curve segments end to
end. The curve facility provides the means for making smooth joints between
the segments.

Version 2.0 Curves and Surfaces 14-15

Three-dimensional surfaces, or patches, are represented by a ‘wireframe’ of

curve segments. You draw a patch by specifying:

« a set of 16 control points

« the number of curve segments to be drawn in each direction of the patch

» the two bases that define how the control points determine the shape of (

the patch

You can create complex surfaces by joining several patches into one large

patch.

14.3 Curve Mathematics

The mathematical basis for the IRIS curve facility is the parametric cubic
curve. The curves in most applications are too complex to be represented by
a single curve scgment and instead must be represented by a series of curve
segments joined end to end. To create smooth joints, you must control the -
positions and curvatures at the endpoints of curve segments. Parametric cubic
curves are the lowest-order representation of curve segments that provide
continuity of position, slope, and curvature at the point where two curve

segments mect.

A parametric cubic curve has the property that x, y, and z can be defined as

third-order polynomials for variable ¢ :
x(t) = axtS + byi? + cxt + dy
(1) = ayt3 + byt + cyt + dy

Z(t) = azt3 + bz t2 + czt + dz

1416 Graphics Library Programming Guide

IRIS-4D Series

A cubic curve segment is defined over a range of values for ¢ (usually
O<=t<= 1), and can be expressed as a vector product:

Clt)=atd +b2 +ct+d

The IRIS approximates the shape of a curve segment with a series of straight
line segments. You can compute the endpoints for all the line segments by
evaluating the vector product C(z) for a series of ¢ values between 0 and 1.
The shape of the curve segment is determined by the coefficients of the
vector product, which are stored in column vector M. These coefficients can
be expressed as a function of a set of four control points. Thus, the vector
product becomes

Ct)=TM=T(BG)

where G is a set of four control points, or the geometry, and B is a matrix
called the basis . The basis matrix is determined from a set of constraints that
express how the shape of the curve segment relates to the control points. For
example, a constraint might be that one endpoint of the curve segment is
located at the first control point, or the tangent vector at that endpoint lies on
the line segment formed by the first two control points. When the vector
product C is solved for a particular set of constraints, the coefficients of the
vector product arc identified as a function of four variables (the control
points). Then, given four control points, you can use the vector product to
generate the points on the curve segment. Three classes of cubic curves are
discussed here: Bezier, Cardinal spline, and B-spline.The set of constraints
that define each class is given, along with the basis matrix derived from those
constraints. Section 14.4, Drawing Curves, tells how to use the basis
matrices to draw curve segments.

Version 2.0 Curves and Surfaces 14-17

14.3.1 Bezier Cubic Curve

A Bezier cubic curve segment passes through the first and fourth control
points and uses the second and third points to determine the shape of the
curve segment. Of the three kinds of curves, the Bezier form provides the
most intuitive control over the shape of the curve. The Bezier basis matrix is
derived from the following four constraints:

One endpoint of the segment is located at p1:
Bezier(0) = p]

The other endpoint is located at p4:
Bezier(1) = p4

The first derivative, or slope, of the segment at one endpoint is equal to this .
value:

Bezier(0)=3 (p2- p1)
The first derivative at the other endpoint is equal to this value:
Bezier(1)'=3 (p4 - p3)

Solving for thesc constraints yields the following equation:

-1 -3

3 —:-56 3 (1) b1

, | .32 y)
Bezzer(t)—[t t tl] 3 3 0 0||ps
1 0 0 0]|P4

=TM,G,

You can generate all the points on the Bezier cubic curve segment from p
to p4 by evaluating Bezier(t) for0<t <1.

(It is more efficient, however, to construct a forward difference matrix that
generates the points in a curve segment incrementally. Forward difference
matrices are discussed in Section 14.2.)

14-18 Graphics Library Programming Guide IRIS-4D Series

Figure 14-4 shows three Bezier curve segments. The first segment uses
points 0, 1, 2, and 3 as control points. The second uses 1, 2, 3, and 4. The
third uses 2, 3, 4, and 5. You can use the technique of overlapping sets of
control points more effectively with the following two classes of cubic
curves to create a single large curve from a series of curve segments.

14.3.2 Cardinal Spline Cubic Curve

A spline curve segment passes through the two interior control points and is
continuous in the first derivative at the points where segments meet. The
curve segment starts at p2 and ends at p3, and uses p; and p4 to define the
shape of the curve. The mathematical derivation of the Cardinal spline basis
matrix can be found in James H. Clark, Parametric Curves, Surfaces and
Volumes in Computer Graphics and Computer-Aided Geometric Design,
Technical Report No. 221, Computer Systems Laboratory, Stanford
University.

Version 2.0 Curves and Surfaces 14-19

Bezier

_10 30 -30

30 -60 30

(@) _30 30 00
10 00 00

Cardinal Spline

_05 15 -15
10 -25 20
(b) _05 00 05
00 10 00
B- Spline
_10 30 -30

1 | 30 -60 30
s |-30 00 30
10 40 10

1.0
0.0
0.0
00

05
-05
00
0.0

1.0
00
00
00

a
A

1
3
0o
5
0
2
.)
4 (/\
1

Three different curves are shown with appropriate basis

matrices.

With the Bezier basis matrix, three sets of

overlapping control points result in three separate curve
segments. With the Cardinal spline and B-spline matrices,
the same overlapping sets of control points result in three

joined curve segments.

Figure 14-4. Bezier, Cardinal, and B-Spline Curves

14-20

Graphics Library Programming Guide

IRIS-4D Series

(
(

(

The Cardinal spline basis matrix is derived from the following four
constraints:

Cardinal(0) = p2

Cardinal(1) = p3

Cardinal(0)' = a(p3-pJ)

Cardinal(1)' = a(p4 - p2)

The scalar coefficient @ must be positive; it determines the length of the
tangent vector at point py : tangenty = a(p3-py)and

p3: tangenty = a(py - pp). Solving for these constraints yields the
following equation:

—a 2-a —2+a a P
2a =3+a 3-2a -a P2
-a 0 a 01]|ps

0 1 0 0| |P4

Cardinal (t) = [rf’ t2¢ 1]

- TM ch

The three joined Cardinal spline curve segments in Figure 14-1 use the same
three sets of control points as the Bezier curve segments. Many different
bases have Cardinal spline properties. You can derive the different bases by
trying different values of a.

Version 2.0 Curves and Surfaces 14-21

14.3.3 B-Spline Cubic Curve

In general, a B-spline curve segment does not pass through any control
points, but is continuous in both the first and second derivatives at the points
where segments meet. Thus, a series of joined B-spline curve segments is
smoother than a series of Cardinal spline segments (see Figure 14-6).

The B-spline basis matrix is derived from the following four constraints:

B —spline (0) = _(ES;_pll
B—spline (1) = Lp%”)

B —spline (0)” =p—2p,+p3

B—spline (1)” =p,—2p3+p4

Solving for these constraints yields the following equation:

-1 3 -3 17,
3 -6 3 0||p,

. 1
B—splme(t)=[t3t2t1]"g -3 0 3 0||ps
1 4 1 0|P4

=TMBGR

14-22 Graphics Library Programming Guide IRIS-4D Series

14.4 Drawing Curves

Drawing a curve segment on the screen involves four steps:
1. Define and name a basis matrix with defbasis .

2. Select a defined basis matrix as the current basis matrix with
curvebasis.

3. Specify the number of line segments used to approximate each curve
segment with curveprecision.

4. Draw the curve segment using the current basis matrix, the current curve

precision, and the four control points with crv . rcrv draws a rational
curve.

defbasis

defbasis defines and names a basis matrix to generate curves and patches.
mat is saved and is associated with id. Use id in subsequent calls to
curvebasis and patchbasis.

void defbasis (id, mat)

long id;

Matrix mat;

curvebasis

curvebasis sclects a basis matrix (defined by defbasis) as the current
basis matrix to draw curve segments.

void curvebasis (basisid)

short basisid;

Version 2.0 Curves and Surfaces 14-23

curveprecision

curveprecision specifies the number of line segments used to draw a
curve. Whenever crv, crvn, rcrv, Of rcrvn executes, a number of
straight line scgments (nsegments) approximates each curve segment. The
greater the valuc of nsegments, the smoother the curve, but the longer the
drawing time.

void curveprecision (nsegments)

short nsegments;

crv

crv draws the curve segment using the current basis matrix, the current
curve precision, and the four control points specified in the argument to cxv .

void crv(geom)
Coord geom[4] [3];

When you issue crv, a matrix is built from the geometry, the current basis,
and the current precision:

M=F precisionM basis Ggeom

- 6 -

—— 0 0 0
n3
6 2

= 2 00

n® n?

= 1 1 1 0 Mbasingeom

n® n? n
0 0 01

14-24 Graphics Library Programming Guide IRIS-4D Series

(

where n = the current precision. The bottom row of the resulting
transformation matrix identifies the first of # points that describe the curve.
To generate the remaining points in the curve, the following algorithm is
used to iterate the matrix as a forward difference matrix. The third row is
added to the fourth row, the second row is added to the third row, and the
first row is added to the second row. The fourth row is then output as one of
the points on the curve.

/* This is the forward difference algorithm */
/* M is the current transformation matrix */
move (M[3][0]/M[3]([3], M[3]1[1]1/M[3][3], M[3]1[2]/M[3]([3]);
/* iteration loop */
for (cnt = 0; cnt < iterationcount; cnt++) {

for (i=3; 1i>0; i--)

for (j=0; j<4; j++)
MI1] (3] = M[i]1[J] + M[i-1]1[3]):
draw (M[3] [0]/M[3]([3], M[3][11/M[3]1[3], M[3][2]/M[3][3]);

Each iteration draws one line segment of the curve segment. Note that if the
precision matrix on the previous page is iterated as a forward difference
matrix, it gencratcs the sequence of points:

(0001)(()3()2 1)(()3()2—1)(()3()2—1)
This is the same sequence of points generated by

23
peRTRR

t=0,l‘1
n

for the vector
(t3, tsup 2, t,1).

The following program draws the three curve segments in Figure 14-5. All
use the same sct of four control points, which is contained in geoml. The
three basis matrix arrays (beziermatrix, cardinalmatrix, and bsplinematrix)
contain the valucs discussed in the previous section. Before you call crv (or
rcry), you must define a basis and precision matrix. This is also true if the
routines are compiled into an object.

Version 2.0 Curves and Surfaces 14-25

Bezier
1 4
3
Cardinal spline
1 . ° 4
) 3
2
B-spline
1. -4
3

Each of the above curve segments uses the same set of four
control points and the same precision, but a different basis

matrix.
Figure 14-5. Curve Segments

14-26 Graphics Library Programming Guide IRIS-4D Series

Example—Curve Segments

The following program illustrates the use of curve segments in the C
programming language.

VAL A

curvel.c
*kk /

#include <gl/gl.h>

#define BEZIER 1
#define CARDINAL 2
#define BSPLINE 3

Matrix beziermatrix = ({
{ -1, 3, -3, 11},
{ 3, -6, 3, 01},
{ -3, 3, 0, 01},
{1, o, 0, 0},

bi

Matrix cardinalmatrix = {
{ -0.5, 1.5, -1.5, 0.5 },
{ 1.0, -2.5, 2.0, -0.5 },
{ -0.5, 0, 0.5, 0 },
{ 0, 1, 0, O},

};

Matrix bsplinematrix = {
{ -1.0/6.0, 3.0/6.0, -3.0/6.0, 1.0/6.0 },
{ 3.0/6.0, -6.0/6.0, 3.0/6.0, 0 },
{ -3.0/6.0, 0, 3.0/6.0, O },
{1.0/6.0, 4.0/6.0, 1.0/6.0, 0 },

Version 2.0 Curves and Surfaces 14-27

Coord geoml[4][3] = {

{ 100.0, 100.0, 0.0 },

{ 200.0, 200.0, 0.0 1},
{ 200.0, 0.0, 0.0},
{ 300.0, 100.0, 0.0 },
};
int
main ()

{

prefsize (400, 400);
(void) winopen ("curvel");
color (BLACK) ;

clear () ;

/* define a basis matrix called BEZIER */
defbasis (BEZIER, beziermatrix):;
/* identify the BEZIER matrix as the current basis

matrix */

14-28

curvebasis (BEZIER) ;

/* set the current precision to 20

(the curve segment will be drawn using 20
line segments) */

curveprecision(20);

color (RED) ;

/* draw the curve based on the four control
points in geoml */

crv (geoml) ;

/* a new basis is defined */

defbasis (CARDINAL, cardinalmatrix);

/* the current basis is reset */

/* note that the curveprecision does not have to
be restated unless it is to be changed */
curvebasis (CARDINAL) ;

color (RLUE) ;

/* a new curve segment 1s drawn */

crv (geoml) ;

Graphics Library Programming Guide IRIS-4D Series

/* a new basis is defined */
defbasis (BSPLINE, bsplinematrix);
/* the current basis is reset */
curvebasis (BSPLINE) ;

color (GREEN) ;

/* a new curve segment is drawn */

crv (geoml) ;

sleep (3);
gexit () ;
exit (0) ;

crvn

crvn takes a scries of n control points and draws a series of cubic spline or
rational cubic spline curve segments using the current basis and precision;
rcrvn draws rational splines. The control points specified in geom
determine the shapes of the curve segments and are used four at a time. If the
current basis is a B-spline, Cardinal spline, or basis with similar properties,
the curve segments are joined end to end and appear as a single curve.
Calling crvn has the same effect as calling a sequence of crv with
overlapping control points (see Figure 14-1).

void crvn (n, geom)
long n;

Coord geom(][3];

When you call crvn with a Cardinal spline or B-spline basis, it produces a
single curve. Howcver, calling crvn with a Bezier basis produces several
separate curve scgments. As with crv and rcrv, a precision and basis must
be defined before calling crvn or rcrvn . This is true even if the routines
are compiled into objects. See Chapter 16 for more information on graphical
objects. The following program draws the three joined curve segments in
Figure 14-6 using cxvn . geom2 contains six control points.

Version 2.0 Curves and Surfaces 14-29

Example—Joined Curve Segments

The following program demonstrates the use of joined curve segments in the
C programming language.

/***

curve2.c - draw a curve with a bezier,
cardinal, and b-spline basis

***/

#include <gl/gl.h>

#define BEZIER 1
#define CARDINAL 2
#define BSPLINE 3

Matrix beziermatrix = {
{ -1, 3, -3, 1},
{ 3, -6, 3, 0},
{ -3, 3, 0, 01},
{1, o, 0, 01},

};

Matrix cardinalmatrix = {
{ -0.5, 1.5, -1.5, 0.5 },
{1.0, -2.5, 2.0, -0.5 1},
{ -0.5, 0, 0.5, 0},
{0, 1, 0, 01},

}i

Matrix bsplinematrix = {
{ -1.0/6.0, 3.0/6.0, -3.0/6.0, 1.0/6.0 },
{ 3.0/6.0, -6.0/6.0, 3.0/6.0, 0 },
{ -3.0/6.0, 0, 3.0/6.0, 0},
{ 1.0/6.0, 4.0/6.0, 1.0/6.0, 0 1},
};

14-30 Graphics Library Programming Guide IRIS-4D Series

Coord geom2[6][3] = {

}:

int

{ 150.0, 400.0, 0.0 },
350.0, 100.0, 0.0 },
200.0, 350.0, 0.0 1},

0.0 },

{
{
{ 50.0, 0.0,
{ 0.0, 200.0, 0.0},
{

100.0, 300.0, 0.0 },

main ()

{

prefsize (500, 500);

(void) winopen ("curve2");

color (BLACK) ;

clear () ;

/* define bezier, cardinal, and b-spline bases */

defbasis (BEZIER, beziermatrix);

defbasis (CARDINAL,

cardinalmatrix);

defbasis (BSPLINE, bsplinematrix);

Version

curveprecision(20); /* the precision is set to 20 */

/* the Bezier matrix becomes the current basis */

curvebasis (BEZIER) ;
color (RED) ;

/* the crvn command called with a bezier

basis causes three separate curve

segments to be drawn */

crvn (6, geom2);

/* the cardinal basis becomes the current basis */

curvebasis (CARDINAL) ;
color (GREEN) ;

/* the crvn command called with a cardinal

spline basis causes a smooth curve to be drawn */

crvn (6, geom2);

2.0

Curves and Surfaces 14-31

14-32

/* the b-spline basis becomes the

current basis */

curvebasis (BSPLINE) ;

color (BLUE) ;

/* the crvn command called with a b-spline
basis causes the smoothest curve to be drawn */

crvn (6, geom2);

sleep (10);

return O;

Graphics Library Programming Guide IRIS-4D Series

curveit

The iteration loop of the forward difference algorithm is implemented in the
Geometry Pipcline. curveit provides direct access to this facility, making it
possible to generate a curve directly from a forward difference matrix.
curveit iterates the current matrix (the one on top of the matrix stack)
iterationcount times. Each iteration draws one of the line segments that
approximate the curve. curveit does not execute the initial move in the
forward difference algorithm. A move (0.0, 0.0, 0.0) must precede

curveit so that the correct first point is generated from the forward
difference matrix.

void curveit (iterationcount)

short iterationcount;

Example—Bezier Curve

The following program demonstrates the use of the Bezier curve in the C
programming language.

VALES
curve3.c - example of curveit ()

***/

#include <gl/gl.h>
#define BEZIER 1

Matrix beziermatrix = {
{ -1, 3, =3, 11},
{ 3, -6, 3, 0},
{ -3, 3, 0, 01},
{1, 0, 0, 01},

}i

Version 2.0 Curves and Surfaceé 14-33

I

Matrix geoml[4] [3] {

{ 100.0, 100.0, 0.0, 1.0 },
{ 200.0, 200.0, 0.0, 1.0 },
{ 200.0, 0.0, 0.0, 1.0},
{ 300.0, 100.0, 0.0, 1.0 },
}i
Matrix precisionmatrix = ({

6.0/8000.0, 0, 0, 0 },

6.0/8000.0, 2.0/400.0, 0, O },
1.0/8000.0, 1.0/400.0, 1/20.0, 0 },
0, 0, 0, 11},

}:

int

main ()

{
prefsize (500, 500);
(void) winopen ("curve3");
color (BLACK) ;

clear();

pushmatrix(); /* the current transformation (ortho2)
matrix on the matrix stack is saved */

multmatrix (geoml); /* the product of the current
transformation matrix and the matrix containing the
control points becomes the new current
transformation matrix */

multmatrix (beziermatrix); /* the product of the
basis matrix and the current transformation matrix
becomes the new current transformation matrix */

multmatrix (precisionmatrix); /* the product of the
precision matrix and the current transformaticn

- matrix becomes the new current transformation- - -

matrix */

14-34 Graphics Library Programming Guide IRIS-4D Series

color (RED) ;
move (0.0, 0.0, 0.0); /* this command must be issued
so that the correct first point is generated by the
curveit command */
curveit (20); /* a curve consisting of 20 line segments
is drawn */
popmatrix () ; /* the original transformation matrix

is restored */

sleep (3);
gexit () ;
exit (0);

14.4.1 Rational Curves

Cubic splines have been the focus of discussion. Cubic splines are splines
whose x, y, and z coordinates can be expressed as a cubic polynomial in ¢.

The IRIS graphics hardware actually works in homogeneous coordinates x, Y,
z, and w, where 3-D coordinates are given by xw, yw, and zw. w is normally
the constant 1, so the homogeneous character of the system is hidden.

In fact, the w coordinate can also be expressed as a cubic function of ¢, so that
the 3-D coordinates of points along the curve are given as a quotient of two
cubic polynomials. The only constraint is that the denominator for all three
coordinates must be the same. When w is not the constant 1, but some cubic
polynomial function of ¢, the curves generated are usually called rational
cubic splines.

Version 2.0 Curves and Surfaces 14-35

A circle is a uscful example. There is no cubic spline that exactly matches
any short segment of a circle, but if x, y, z, and w are defined as:

x(t)=12-1
W) =2t
z(t) =0

w(t) =12 +1

the real coordinates

2t

x/w,ylw,ziw) = (_12_—“}_ —_—
Y 241 12417

all lie on the circle with center at (0,0,0) in the x-y plane with radius /
(exactly). All the conic sections (ellipses, hyperbolas, parabolas) can be
similarly defincd.

For rational splines, the basis definitions are identical to those for cubic
splines as arc the precision specifications. The only difference is that the

geometry matrix must be specified in four-dimensional homogeneous
coordinates. This is done with rcrv:

rcrv (geom)

coord geom[4] [4];

rcrv is exactly analogous to cxv except that w coordinates are included in
the control point definitions.

rcrv

rcrv draws a rational curve segment using the current basis matrix, the
current curve precision, and the four control points specified in its argument.

void rcrv (geom)

Coord geom[4] [4];

14-36 Graphics Library Programming Guide IRIS-4D Series

rcrvn

rcrvn takes a series of n control points and draws a series of rational cubic
spline curve segments using the current basis and precision. The control
points specified in geom determine the shapes of the curve segments and are
used four at a time.

void rcrvn(n, geom)
long n;
Coord geom[][4];

14.5 Drawing Surfaces

The method for drawing surfaces is similar to that for drawing curves. A
surface patch appears on the screen as a ‘wireframe’ of curve segments. A
set of user-defined control points determines the shape of the patch. You can
create a complex surface consisting of several joined patches by using
overlapping sets of control points and the B-spline and Cardinal spline curve
bases discussed in Section 14.2.

The mathematical basis for the IRIS surface facility is the parametric bicubic
surface . Bicubic surfaces can provide continuity of position, slope, and
curvature at the points where two patches meet. The points on a bicubic
surface are defined by parametric equations for x, y, and z
The parametric equation for x is:

x(,v) = ayudvi+apuviapudviau®
+a21u2v3+a22u2v2+a23u2v+a24u2

3 2

+azjuv-+azpuv-t+azzuvtassi

+a41v 34a 42v2+a 43V+aaq

Version 2.0 Curves and Surfaces 14-37

(The equations for y and z are similar.) The points on a bicubic patch are
defined by varying the parameters u and v from O to 1. If one parameter is

held constant and the other is varied from 0 and 1, the result is a cubic curve.

Thus, you can create a wireframe patch by holding u constant at several
values and using the IRIS curve facility to draw curve segments in one
direction, and then doing the same for v in the other direction.

To draw a surface patch, follow these steps:

1.

The appropriate curve bases are defined using defbasis (see Section
14.1). A Bezier basis provides intuitive control over the shape of the
patch. The Cardinal spline and B-spline bases allow smooth joints to be
created between patches.

You must specify a basis for each of the directions in the patch, and v,

must be specified with patchbasis . Note that the u basis and thev
basis do not have to be the same.

Use patchcurves to specify the number of curve segments to be
drawn in each direction . A different number of curve segments can be
drawn in each direction.

Use patchprecision to specify the precisions for the curve
segments in each direction. The precision is the minimum number of
line segments approximating each curve segment and can be different for
each direction. The actual number of line segments is a multiple of the
number of curve segments being drawn in the opposing direction. This
guarantees the u and v curve segments that form the wireframe actually
intersect.

Use patch to draw the surface. The arguments topatch contain the
16 control points that govern the shape of the patch. geomx is a 4x4
matrix containing the x coordinates of the 16 control points; geomy
contains the y coordinates; geomz contains the z coordinates. The curve
segments in the patch are drawn using the current linestyle, linewidth,
color, and writemask.

rpatch is the same as patch, except it draws a rational surface patch.

14-38 Graphics Library Programming Guide IRIS-4D Series

(

patchbasis

patchbasis sets the current basis matrices (defined by defbasis) for the
u and v parametric directions of a surface patch. patch uses the current u
and v when it executes.

void patchbasis (uid, vid)

long uid, vid;

patchcurves

patchcurves sets the number of curves used to represent a patch. It sets
the current number of u and v curves that represent a patch as a wire frame.

void patchcurves (ucurves, vcurves)

long ucurves, vcurves;

patchprecision

patchprecision sets the precision at which curves defining a wire frame
patch are drawn. The u and v directions for a patch specify the precisions
independently. Patch precisions are similar to curve precisions--they specify
the minimum number of line segments used to draw a patch.

void patchprecision (usegments, vsegments)

long usegments, vsegments;

Version 2.0 Curves and Surfaces 14-39

patch, rpatch

patch and rpatch draw a surface patch using the current patchbasis,
patchprecision, and patchcurves . rpatch draws a rational surface
patch. The control points geomx, geomy, and geomz determine the shape of
the patch. geomw specifies the rational component of the patch to rpatch.

void patch(geomx, geomy, geomz)

Matrix geomx, geomy, geomz;

void rpatch (geomx, geomy, geomz, geomw)

Matrix geomx, geomy, geomz, geomw;

Figure 14-6 shows the same number of curve segments and the same
precisions, but different basis matrices. All three use the same set of 16
control points.

The following program draws three surface patches similar to those shown in
Figure 14-6.

14-40 Graphics Library Programming Guide IRIS-4D Series

Bezier 0 3

Each patch is drawn using the same set of 16 control points,
the same number of curve segments, the same precisions,
but different basis matrices.

Figure 14-6. Surface Patches

Version 2.0 Curves and Surfaces 14-41

CARDINAL SPLINE

0] 3
1 2 3
0 1 2 3 (
1 2
1 2
3
B-SPLINE S
o 3
0 1 2 3 (
0 1 /\I\'—-—\/(\ 2 3
1 ﬁ 2
1 2 o

Figure 14-6. Surface Patches (continued)

14-42 Graphics Library Programming Guide IRIS-4D Series

/***

patch.c - draw a patch with a bezier,

cardinal, and b-spline basis
Kk)

#include <gl.h>

#define BEZIER 1
#define CARDINAL 2
#define BSPLINE 3

Matrix beziermatrix = ({
{ -1, 3, -3, 11},
{3, -6, 3, 01},

{ -3, 3, 0, 01},
{1, o, 0, 0},
b;

Matrix cardinalmatrix = {
{ -0.5, 1.5, -1.5, 0.5 1},
{1.0, -2.5, 2.0, -0.5 },
{ -0.5, 0.0, 0.5, 0.0},
{ 0.0, 1.0, 0.0, 0.0 },
}i

Matrix bsplinematrix = {
{ -1.0/6.0, 3.0/6.0, -3.0/6.0, 1.0/6.0 },
{ 3.0/6.0, -6.0/6.0, 3.0/6.0, 0.0 },
{ -3.0/6.0, 0.0, 3.0/6.0, 0.0 },
{ 1.0/6.0, 4.0/6.0, 1.0/6.0, 0.0 },

Version 2.0 Curves and Surfaces 14-43

Matrix geomx[4][4] = {

{ 0.0, 100.0, 200.0, 300.0
{ 0.0, 100.0, 200.0, 300.0

{ 700.0, 600.0, 500.0,
{ 700.0, 600.0, 500.0,
}:

Matrix geomy[4] [4] = {
{ 400.0, 500.0, 600.0,

400

700.

{ 0.0, 100.0, 200.0, 300.0
{ 0.0, 100.0, 200.0, 300.0

{ 400.0, 500.0, 600.0,
}:

Matrix geomz([4] [4] = {
{ 100.0, 200.0, 300.0,
{ 100.0, 200.0, 300.0,
{ 100.0, 200.0, 300.0,
{ 100.0, 200.0, 300.0,
}i

int
main ()

{

int xsize, ysize;

prefsize (700, 700);

winopen ("patch") ;

700.

400.
400.
400.
400.

getsize (&xsize, &ysize);

RGBmode () ;
gconfig();
cpack (0) ;

clear();

b,
b

-0},
400.

0},

01,
e

b,
0},

},
e

o O O O

},

14-44 Graphics Library Programming Guide

IRIS-4D Series

ortho (0.0, (float) =xsize,
0.0, (float) ysize,

(float) xsize, —(float) =xsize);

/* define a basis matrix called BEZIER */
defbasis (BEZIER, beziermatrix);

/* define a basis matrix called CARDINAL */
defbasis (CARDINAL, cardinalmatrix);

/* define a basis matrix called BSPLINE */
defbasis (BSPLINE, bsplinematrix);

/* seven curve segments will be drawn in
the u direction and four in the v direction */

patchcurves (4, 7);

/* the curve segments in the u direction
will consist of 20 line segments (the lowest
multiple of vcurves greater than usegments)
and the curve segments in the v direction will
consist of 21 line segments (the lowest
multiple of ucurves greater than vsegments) */

patchprecision (20, 20);

/* a Bezier basis will be used for
both directions in the first patch */
patchbasis (BEZIER, BEZIER);

cpack (0xff); /* red */

wmpack (0xff) ;

/* the patch is drawn based on

the sixteen specified control points */

patch (geomx, geomy, geomz);

/* the bases for both directions are reset */
patchbasis (CARDINAL, CARDINAL);

Version 2.0 Curves and Surfaces 14-45

cpack (0x£f£00) ; /* green */
wmpack (0x££00) ;
/* another patch is drawn using
the same control points but a different basis */

patch (geomx, geomy, geomz);

/* the bases for both directions are reset again */
patchbasis (BSPLINE, BSPLINE);

cpack (0x£f£0000); /* blue */

wmpack (0x££0000) ;

patch (geomx, geomy, geomz);

sleep (3);
gexit () ;
exit (0);

You can join patches together to create a more complex surface by using the
Cardinal spline or B-spline bases and overlapping sets of control points. The
surface in Figure 14-7 consists of three joined patches and was drawn using a
B-spline basis.

14-46 Graphics Library Programming Guide IRIS-4D Series

(

(

The above surface consists of three joined patches. The
patches are drawn with overlapping sets of control points,
using a Cardinal spline basis matrix.

Figure 14-7. Joined Patches

Version 2.0 Curves and Surfaces 14-47

15. Antialiasing

This chapter discusses methods that make objects drawn on a discrete
device—the display screen—appear smooth. The problem of smooth, or
antialiased, scan conversion is discussed in Section 15.1. A prerequisite for
accurate scan conversion of points, lines, and polygons is ensuring that their
vertices are projected to the screen with subpixel precision. The subpixel
routine is also discussed in Section 15.1. Some of the techniques for
antialiasing RGB images use a pixel-filling technique called blending, which
is discussed in Section 15.2.

Techniques for quickly generating antialiased points, lines, and polygons are
described in Section 15.3. These techniques are fast enough to allow
interactive image generation, but are sometimes difficult to use, especially in
the case of polygons. A more general technique is described in Section 15.4.
This technique, called accumulation , is an iterative process that converges
on a very accurate image. It easily handles all combinations of points, lines,
and polygons, but it cannot typically be used to generate an interactive
image.

.040510
.040510
878469
.434259
.007639
141435
759952
.759952
.141435
.007639
434258
.878469
.040510
.040510

\ z

J/V/L>M

o
Q
s
P
ZZCR=—TIQTEUOE >

> a

Figure 15-1. Antialiased Line

Version 2.0 Antialiasing 151

15.1 Accurate sampling

For reasons of both history and performance, the default points, lines, and
polygons drawn by an IRIS-4D graphics system have jagged edges, and
move from frame to frame in discrete jumps. Lines appear jagged, for
example, because the true mathematical line is approximated by a series of
points that are forced to lie on the pixel grid. Except in a few special cases
(horizontal, vertical, and 45-degree lines) many of the approximating pixels
are not on the mathematical line. Near-horizontal and near-vertical lines
appear especially jagged, because their pixel approximations are a sequence
of exactly horizontal or vertical segments, each offset one pixel from the
next. The following program illustrates the problem:

/*
* Drag a color map aliased line with the cursor.
*/

#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400

Device devs[2] = {MOUSEX, MOUSEY};
float orig[2] = {100.,100.};

~main ()
{
short val, vals[2];
long xorg, yorg;
float vert([2];

presize (WINSIZE, WINSIZE);

winopen (" jagged");

mmode (MVIEWING) ;

ortho2 (-0.5, WINSIZE-0.5, -0.5, WINSIZE-0.5);
doublebuffer();

gconfig();

gdevice (ESCKEY);

getorigin (&xorg, &yorg);

15-2 Graphics Library Programming Guide IRIS-4D Series

while (! (gqtest() && gread(&xval) == ESCKEY && val == 0 y)
color (BLACK) ;
clear();
getdev (2,devs,vals);
vert [0] = vals[0] - xorg;
vert[l] = vals[l] - yorg;
color (WHITE) ;
bgnline();
v2f (orig);
v2f (vert) ;
endline();
swapbuffers();
}
gexit ();
return O;

}

This example draws a line from the point (100,100) to the current cursor
position. Move the cursor around, and notice how jagged the line appears,
especially when it is nearly horizontal or nearly vertical. Even at angles far
from vertical or horizontal there is some jaggedness, although it is not as
noticeable.

The jaggedness that you see is called aliasing, and techniques to eliminate or
reduce aliasing are called antialiasing. The line you see on the screen is
aliased because it is composed of discrete pixels, each set either to the color
of the line or to the background color. A much better approximation can be
developed by considering the exact mathematical line to be the center line of
a rectangle of width one, extending the full length of the line. A correct,
antialiased sampling of this rectangle onto the pixel grid takes into account
the fraction of each pixel that is obscured by the rectangle, rather than simply
selecting the pixels most obscured by it. Each pixel is then set to a color
between the color of the line and the color of the background, based on the
fraction of the pixel that is obscured, or covered, by the line’s rectangle.

To correctly sample a point, line, or polygon, the fraction of every pixel
covered by the exact projection of the primitive must be computed, and that
fraction must be used to determine the color of the resulting pixel. Because
mathematical points and lines have no area, and therefore cannot be sampled,
it is necessary to define a geometry to be used for their sampling. Points are
best thought of as circles of diameter one, centered around the exact
mathematical point. Lines are rectangles of width one, centered around the
exact mathematical line.

Version 2.0 Antialiasing 15-3

{

subpixel

In addition to poor sampling, there is another problem with the default
operation of IRIS-4D rendering. Vertices, after they have been transformed
and projected to screen coordinates, are rounded to the nearest pixel center,
rather than being treated with full precision. Points, lines, and polygons that
are accurately sampled based on the perturbed vertices often look good in
static images, but show motion artifacts when drawn in rapid animations.
This is because primitives drawn with non-subpixel-positioned vertices move
in discrete steps, rather than continuously. In some cases non-subpixel-
positioned vertices also reduce the quality of static images. An example is a
smooth curve drawn correctly sampled, but with non-subpixel-positioned
vertices. This curve appears to wiggle slightly, because its component lines
have been forced to end at pixel centers.

void subpixel (b)
Boolean b;

subpixel controls the placement of point, line, and polygon vertices in
screen coordinates. By default, subpixel is FALSE, causing vertices to be
snapped to the center of the nearest pixel after they have been transformed to
screen coordinates. When subpixel is TRUE, vertices are positioned with
at least 3 bits of fractional precision, and typically many more, up to 10 bits.

In addition to its effect on vertex position, subpixel also modifies the scan
conversion of lines. Specifically, non-subpixel positioned lines are drawn
closed, meaning that connected line segments both draw the pixel at their
shared vertex. Subpixel positioned lines are drawn half open, meaning that
connected line segments share no pixels. Thus subpixel positioned lines
produce better results when Logicop orblendfunction are used, but will
produce different, possibly undesirable results in 2-D applications, where the
endpoints of lines have been carefully placed.

15-4 Graphics Library Programming Guide IRIS-4D Series

For example, using the standard 2—D projection:

ortho2(left-0.5, right+0.5, bottom-0.5,top+0.5);
viewport (left, right,bottom,top);

subpixel positioned lines match non-subpixel positioned lines pixel for pixel,
excapt that they omit either the right-most or top-most pixel. Thus the non-
subpixel positioned line drawn from (0,0) to (0,2) fills pixels (0,0), (0,1), and
(0,2), while the subpixel positioned line drawn between the same coordinates
only fills pixels (0,0) and (0,1).

subpixel is not supported by all models for all primitives. Refer to the man
page for details.

In most cases, drawing performance of the IRIS-4D VGX model is increased
substantially when subpixel is true.

Version 2.0 Antialiasing 15-5

15.2 Blending

Not all systems support blending. See the man page for blendfuction for
details.

By default, IRIS-4D Series systems draw pixels by replacing the pixel color
value in the frame buffer with the incoming pixel color. When operating in
RGB mode, however, it is possible to replace the color components of the
frame buffer (destination) pixel with values that are a function of both the
incoming (source) pixel color components and of the current frame buffer
color components. This operation is called blending.

The antialiasing techniges described in Section 15.3 require blending when
operating in RGB mode. Blending has other uses, including drawing
transparent objects, and compositing images. Blending is specified with the
blendfunction command.

void blendfunction (sfactr,dfactr)
long sfactr, dfactr;

blendfunction arguments sfactr and dfactr specify how frame buffer
(destination) pixels are computed, based on the incoming (source) pixel
values and the current frame buffer values. By default, sfactr is setto
BF_ONE and dfactr is set to BF_ZERO, resulting in simple replacement of
the frame buffer color components:

Rdestination = Rsource

Gdestination Gsource
Bdestination = Bsource

Adestination = Asource

When blendfunction is called with sfactr set to a value other than
BF_ONE, or dfactr set to a value other than BF_ZERO, a more complex
expression defines the frame buffer replacement algorithm.

Rdest = min (255, ((Rsource * sfactr) + (Rdest * dfactr)))
Gdest = min (255, ((Gsource * sfactr) + (Gdest * dfactr)))
Bdest = min (255, ((Bsource * sfactr) + (Bdest * dfactr)))
Adest = min (255, ((Asource * sfactr) + (Adest * dfactr)))

15-6 Graphics Library Programming Guide IRIS-4D Series

Each frame buffer color component is replaced by a weighted sum of the
current value and the incoming pixel value. This sum is clamped to a
maximum of 255. Blending factors sfactr and dfactr are chosen from
the following list:

symbolic name value in expression notes

BF_ZERO 0.0

BF_ONE 1.0

BF_SA Asource / 255

BF_MSA 1.0 - (Asource / 255)

BF DA Adestination / 255 requires alpha bitplanes
BF MDA 1.0 - (Adestination / 255) requires alpha bitplanes
BF_SC RGBAsource / 255 dfactr only

BF_MSC 1.0 - (RGBAsource / 255) dfactr only

BF_DC RGBAdestination / 255 sfactr only

BF_MDC 1.0 —(RGBAdestination / 255) sfactr only
BF_MIN_SA MDA min (BF_SA, BF_MDA) requires alpha bitplanes,

changes expression

Table 15-1. Blending Factors

All the blending factors are defined to have values between 0.0 and 1.0
inclusive. In most cases, this range is obtained by dividing a color
component value, in the range 0 through 255, by 255. The blending
arithmetic is done such that a blending factor with a value of 1.0 has no effect
on the color component that it weights. Also, a blending factor of 0.0 forces
its corresponding color component to 0. Because the weighting factors are
all positive, and because each weighted sum is clamped to 255, colors blend
toward white, rather than wrapping back to low-intensity values.

Version 2.0 Antialiasing 15-7

Blending factors BF_DA, BF_MDA, and BF_MIN_SA_MDA require alpha
bitplanesfor correct operation. You can check to see if your machine has
alpha bitplanes by calling:

getgdesc(GD_BITS_NORM_SNG_ALPHA)

and testing for a non-zero return value. Blending functions specified without (
using these three symbolic constants work correctly, regardless of the '
availability of alpha bitplanes.

Blending factors BF_SC, BF_MSC, BF_DC, and MF_MDC weight each
color component by the corresponding weight component. For example, you
can scale each framebuffer color component by the incoming color
component with the blending function:

blendfunction (BF_DC,BF_ZERO)

Rdestination = min (255, (Rsource * (Rdestination / 255)))

Gdestination = min (255, (Gsource * (Gdestination / 255)))
*
*

Bdestination = min (255, (Bsource (Bdestination / 255)))
Adestination = min (255, (Asource (Adestination / 255)))

The special blending factor BF_MIN_SA_MDA is intended to support (
polygon antialiasing, as described in Section 15.3.3. It must be used only for
sfactr, and only while dfactr is BF_ONE. In this case, the blending

equations are:

blendfunction (BF_MIN_SA MDA, BF_ONE)

Rdestination min (255, ((Rsource * sfactr) + Rdestination)
min (255, ((Gsource * sfactr) + Gdestination)
Bdestination = min (255, ((Bsource * sfactr) + Bdestination)
sfactr = mind ((Asource/255), (1.0 - (Adestination/255)))

Adestination = sfactr + Adestination

Gdestination

This special blending function accumulates pixel contributions until the pixel

is fully specified, then allows no further changes. Frame buffer alpha

bitplanes, which must be present, store the accumulated contribution

percentage, or “‘coverage”. (

15-8 Graphics Library Programming Guide IRIS-4D Series

Although many blending functions are supported, the function
blendfunction (BF_SA,BF_MSA)

stands out as the single most useful one. It weights incoming color
components by the incoming alpha value, and frame buffer components by
one minus the incoming alpha value. In other words, it blends between the
incoming color and the frame buffer color, as a function of the incoming
alpha. This function renders transparent objects by drawing them from
farthest to nearest, specifying opacity as incoming alpha. Most of the
antialiased primitives described in the next section also use this function.

The example below illustrates a different use of blending: image
composition. Three images, represented by colored circles, are blended such
that the first image is weighted by 0.5, the second by 0.35, and the third by
0.15. Blending function

blendfunction (BF_SA,BF_ONE)

is used, causing the circles to be added to each other, rather than blended in
the sense of the paragraph above. Thus the order in which the circles are
drawn makes no difference. Because the three weights add up to exactly 1.0,
no clamping is done.

#include <stdio.h>
#include <gl/gl.h>

#define WINSIZE 400

#define RGB_BLACKOx000000
#define RGB_RED 0x0000ff
#define RGB_GREENOX00ff00
#define RGB BLUE 0xff0000

main ()
{
if (getgdesc (GD_BITS NORM_SNG RED) == 0 {
fprintf (sterr, "Single buffered RGB not available\n");
return 1;
}
if (getgdesc(GD_BLEND) == 0) {
fprintf (sterr, "Blending not available\n");
return 1;

Version 2.0 Antialiasing 15-9

prefsize (WINSIZE,WINSIZE) ;
winopen ("blendcircs");
mmode (MVIEWING) ;

RGBmode () ;

gconfig();

mmode (MVIEWING) ;

ortho2(-1.0, 1.0, -1.0, 1.0);

glcompat (GLC_OLDPOLYGON, 0); (i<

blendfunction (BF_SA, BF_ONE) ;

cpack (RGB_BLACK) ;

clear();

cpack (0x80000000 | RGB_RED); /* red with alpha = 128/255 */
circf(0.25, 0.0, 0.7);

sleep(2);

cpack (0x4£000000 | RGB GREEN); /* green with alpha =79/255 */
circf (-0.25, 0.25, 0.7);

sleep(2);

cpack (0x30000000 | RGB BLUE); /* blue with alpha = 48/255 */
circf(-0.25, -0.25, 0.7);

sleep (10);

gexit () ;

return O;

15-10 Graphics Library Programming Guide IRIS-4D Series

15.3 One-Pass Antialiasing—the Smooth
Primitives

Aliasing artifacts are especially objectionable in image animations, because
jaggies often introduce motion unrelated to the actual direction of motion of
the primitives. The techniques described in this section improve the sampling
quality of primitives without requiring that the primitives be drawn more
than once. These techniques therefore perform well enough to animate
complex scenes.

Modes are provided to support the drawing of antialiased points and lines in
both color map and RGB modes. Because their interactions are more critical
to the antialiasing quality, antialiased polygons are supported only in the
more general RGB mode. If you are drawing an image composed entirely of
points and/or lines, the routines in this section are always the right choice for
antialiasing. If you include polygons in the image, you should consider both
the techniques described in this section and the multipass accumulation
technique described in Section 15.4.

15.3.1 High-Performance Antialiased Points—pntsmooth

Not all systems support pnt smooth. Refer to the manual page for details.

By default, IRIS-4D Series systems sample points by selecting and drawing
the pixel nearest the exact projection of the mathematical point. You can
improve the sampling quality of points, and therefore draw them antialiased,
by setting two modes:

subpixel (TRUE) ;
pntsmooth (SMP_ON) ;

When you enable subpixel mode, you defeat the default behavior of
rounding projected vertices to the nearest pixel center. Exact point position is
made available to the sampling hardware. By enabling pnt smooth mode,
you replace the default sampling of points with coverage sampling of a unit-
diameter circle centered around the exact mathematical point position. All
that remains is instructing the system on how to use the computed pixel
coverage to blend between the background color and the point color at each
pixel. This instruction differs based on whether the drawing is done in color
map mode or in RGB mode.

Version 2.0 Antialiasing 15-11

When you enable pnt smooth while in color map mode, the antialiasing

hardware uses computed pixel coverage to replace the 4 least significant bits

of the point’s color. Therefore, for color map antialiased points to blend

correctly, you must initialize a 16-entry colormap block (whose lowest entry
location is a multiple of 16) to a ramp between the background color (lowest

index) and the point color (highest index). Before drawing points, clear the
background to the same color used as background in the colormap ramp. (

When you draw a point with a color index in the range of the specified ramp,
pixels in the area of the exact mathematical point are written with color
indices that select ramp values based on the fraction of the pixel that is
obscured by the point’s unit-diameter circle. Because the sampling hardware
modifies only the 4 least significant bits of the point’s color, you can
initialize and use multiple color ramps, each with a different point color, in
the same image. Note that all ramps must blend to the same background
color, which must be the color of the background used for the image.

The following example illustrates the difference in image quality when you
use pntsmooth and subpixel together to antialias color map points. The
antialiased points and lines drawn by these example programs look better if
you set gamma correction to 2.4, instead of the default value of 1.7 (type
gamma 2.4 in any wsh window on the screen).

. (

*Drag a string of color map antialiased points with the cursor.
*Disable antialiasing while the left mouse button is pressed.
*Disable subpixel positioning while the middle mouse button is
*pressed.

*/

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400

#define RAMPBASE 64 /* avoid the first 64 colors */
#define RAMPSIZE 16

#define RAMPSTEP (255 / (RAMPSIZE-1))

#define MAXPOINT 25

Device devs[2] = {MOUSEX,MOUSEY}; (:

15-12 Graphics Library Programming Guide IRIS-4D Series

main ()
{
short val, vals([2];
long i, xorg, yorg;
float vert[2], x, y, interp;

if (getgdesc(GD_PNTSMOOTH_ CMODE) == 0) {
fprintf (stderr, "Color map mode point antialiasing not\
available\n");
return 1;

if (getgdesc(GD_BITS_NORM DBL_CMODE) < 8) {
fprintf (stderr, "Need 8 bitplanes in doublebuffer color\
map mode\n");
return 1;

}

prefsize (WINSIZE, WINSIZE);

winopen ("pntsmooth. index") ;

mmode (MVIEWING) ;

ortho2(-0.5, WINSIZE-0.5, -0.5, WINSIZE-0.5);

doublebuffer();

gconfig();

gdevice (ESCKEY) ;

gdevice (LEFTMOUSE) ;

gdevice (MIDDLEMOUSE) ;

getorigin (&xorg, &yorg):;

for (i = 0; i1 < RAMPSIZE; i++)
mapcolor (i + RAMPBASE, i * RAMPSTEP, i * RAMPSTEP,
i * RAMPSTEP) ;

while (! (gtest() && gread(&val) == ESCKEY && val == 0)) {
color (RAMPBASE) ;
clear();
getdev (2,devs, vals);
x = vals[0] - xorg;
y = vals[l] - yorg;
pntsmooth (getbutton (LEFTMOUSE) ? SMP_OFF : SMP_ON) ;
subpixel (getbutton (MIDDLEMOUSE) ? FALSE : TRUE);
color (RAMPBASE+RAMPSIZE-1) ;

Version 2.0 Antialiasing 15-13

bgnpoint () ;
for (i=0; 1i<=MAXPOINT; i++) {
interp = (float)i / (float)MAXPOINT;

vert[0] = 100.0 * interp + x * (1.0 - interp):
vert[l] = 100.0 * interp + y * (1.0 - interp);
va2f (vert) ;

}
endpoint () ; (i—

swapbuffers();
}
gexit () ;
return O0;

}

Notice how smoothly the antialiased points move as you move the cursor.
Now defeat the antialiasing by pressing the left mouse button, and notice that
the points move less smoothly, and that they do not line up nearly as well as
the antialiased points. The image quality degrades in exactly the same way
when you defeat subpixel positioning by pressing the middle mouse button.

The antialiased points look good when they are not drawn touching each

other. However, when you move the cursor near the lower-left comer of the
window, causing the points to bunch together, the image quality again

degrades. This is because pixels that are obscured by more than one point

take as their value the color computed for the last point drawn. There is no (
general solution to the problem of overlapping primitives while drawing in

color map mode.

The problem of overlapping primitives is handled well when antialiasing in
RGB mode. When you enable pnt smooth in RGB mode, the antialiasing
hardware uses computed pixel coverage to scale the alpha value of the
point’s color. If the alpha value of the incoming point is 1.0, scaling it by the
computed pixel coverage results in a pixel alpha value that is directly
proportional to pixel coverage. For RGB antialiased points to draw correctly,
set blendfunction to merge new pixel color components into the frame
buffer using the incoming alpha value.

15-14 Graphics Library Programming Guide IRIS-4D Series

The following example illustrates RGB mode point antialiasing:

/
Drag a string of RGB antialiased points with the cursor.
Change from a merge-blend to an accumulate-blend when the
left mouse button is depressed.

Use the "smoother" antialiasing sampling algorithm when the
middle mouse button is depressed.

L S T

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400
#define MAXPOINT 25

Device devs[2] = {MOUSEX,MOUSEY};

main ()
{
short val, vals[2];
long i, xorg, yorg;
float vert[2], x, y, interp;

if (getgdesc(GD_PNTSMOOTH_RGB) == 0) {
fprintf (stderr, "RGB mode point antialiasing not \
available\n");

return 1;

}

prefsize (WINSIZE, WINSIZE);

winopen ("pntsmooth.rgb") ;

mmode (MVIEWING) ;

ortho2(-0.5, WINSIZE-0.5, -0.5, WINSIZE-0.5);

doublebuffer();

RGBmode () ;

gconfig();

gdevice (ESCKEY) ;

gdevice (LEFTMOUSE) ;

gdevice (MIDDLEMOUSE) ;

getorigin (&xorg, &yorg);

subpixel (TRUE) ;

Version 2.0 Antialiasing 15-15

while (! (qtest() && gread(&val) == ESCKEY && val == 0)) {
cpack (0) ;
clear();
getdev (2,devs, vals);
x = vals[0] - xorg;
y = vals[l] - yorg;
cpack (OxfEf£fE£££E);
blendfunction(BF_SA,getbutton(LEFTMOUSE) ?
BF_ONE : BF_MSA);
pntsmooth(getbutton(MIDDLEMOUSE) ?
(SMP_ON | SMP__SMOOTHER) : SMP_ON) ;
bgnpoint () ;
for (i=0; i<=MAXPOINT; i++) {
interp = (float)i / (float)MAXPOINT;
vert[0] = 100.0 * interp + x * (1.0 - interp);
vert[l] = 100.0 * interp + y * (1.0 - interp);
v2f (vert) ;
}
endpoint () ;
swapbuffers();
}
gexit () ;
return 0;

}

Unlike the color map antialiased points, the RGB antialiased points look
good when they are bunched together. This is because RGB blending allows
multiple points to contribute to a single pixel in a meaningful way. In this
demonstration a blend function that interpolates between the incoming and
frame buffer color components, based on the incoming alpha, is used by
default.

blendfunction (BF_SA,BF_MSA)

Press the left mouse button to switch to a blend function that simply
accumulates color, again scaled by incoming alpha:

blendfunction (BF_SA,BF_ ONE)
The difference between blendfunction (BF_SA, BF_MSA) and
blendfunction (BF_SA,BF_ONE) is more apparent when you draw lines

(see Section 15.3.2). In this demonstration, note that bunched points are a
little brighter when you select the accumulating blending function

15-16 Graphics Library Programming Guide IRIS-4D Series

You can switch from the standard antialiasing sampling algorithm to a
“smoother” algorithm by pressing the middle mouse button. Not all systems
support the higher-quality point sampling algorithm. Refer to the manal page
for details. This algorithm modifies more pixels per antialiased point than
does the standard antialiasing algorithm. As a result, it produces slightly
higher-quality antialiased points, at the price of slightly reduced
performance. Set the “smoother” algorithm by calling

pntsmooth (SMP_ON | SMP_SMOOTHER) ;

Because RGB mode antialiased points are blended into the frame buffer, they
can be drawn in any color and over any background. Unless you want to
draw transparent, antialiased points, however, be sure to specify alpha as 1.0
when drawing antialiased RGB points.

15.3.2 High-Performance Antialiased Lines—linesmooth

Not all systems support 1inesmooth. Refer to the manual page for details.

By default, IRIS-4D Series systems sample lines by selecting and drawing
the pixels nearest the projection of the mathematical line. You can improve
the sampling quality of lines, and therefore draw them antialiased, by setting
two modes:

subpixel (TRUE) ;
linesmooth (SML_ON) ;

When you enable subpixel mode, you defeat the default behavior of
rounding projected vertices to the nearest pixel center . Exact line endpoint
position is made available to the sampling hardware. By enabling
linesmooth mode, you replace the default sampling of lines with coverage
sampling of a unit-width rectangle centered around the exact mathematical
line. All that remains is instructing the system on how to use the computed
pixel coverage to blend between the background color and the line color at
each pixel. This instruction differs based on whether the drawing is done in
color map mode or in RGB mode.

Version 2.0 Antialiasing 15-17

When you enable 1inesmooth while in color map mode, the antialiasing

hardware uses computed pixel coverage to replace the 4 least significant bits

of the line’s color. Therefore, for color map antialiased lines to appear

correct, you must initialize a 16-entry colormap block (whose lowest entry

location is a multiple of 16) to a ramp between the background color (lowest

index) and the line color (highest index). Before drawing lines, clear the

background to the same color used as background in the color map ramp. (

When you draw a line with a color index in the range of the specified ramp,
pixels in the area of the exact mathematical line are written with color indices
that select ramp values based on the fraction of the pixel that is obscured by
the line’s unit-width rectangle. Because the sampling hardware modifies only
the 4 least significant bits of the line’s color, you can initialize and use
multiple color ramps, each with a different line color, in the same image.
Note that all ramps must blend to the same background color, which must be
the color of the background used for the image.

The following example illustrates the difference in image quality when you
use linesmooth and subpixel together to antialias color map lines. The
program draws a single straight line, made up of several individual line
segments.

/*

* Drag a string of color map antialiased line segments with (f
* the cursor. Disable antialiasing while the left mouse

* button is pressed. Disable subpixel positioning while

* the middle mouse button is pressed.

*/

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400

#define RAMPBASE 64 /* avoid the first 64 colors */
#define RAMPSIZE 16

#define RAMPSTEP (255 / (RAMPSIZE-1))

#define MAXVERTEX 10

Device devs[2] = {MOUSEX,MOUSEY}; (:

15-18 Graphics Library Programming Guide IRIS-4D Series

main ()
{
short val, vals[2];
long i, xorg, yorg;
float vert[2], x, y, interp;

if (getgdesc(GD_LINESMOOTH_CMODE) == 0) {
fprintf (stderr, "Color map mode line antialiasing not\
available\n");

return 1;
}
if (getgdesc(GD_BITS NORM DBL_CMODE) < 8) ({
fprintf (stderr, "Need 8 bitplanes in doublebuffer color\
map mode\n") ;
return 1;
}
prefsize (WINSIZE, WINSIZE);
winopen ("linesmooth.index") ;
mmode (MVIEWING) ;
ortho2(-0.5, WINSIZE-0.5, -0.5, WINSIZE-0.5);
doublebuffer();
gconfig();
gdevice (ESCKEY) ;
gdevice (LEFTMOUSE) ;
qgdevice (MIDDLEMOUSE) ;
getorigin (&xorg, &yorg);
for (i = 0; i < RAMPSIZE; i++)
mapcolor (i + RAMPBASE, i * RAMPSTEP, i * RAMPSTEP,
i * RAMPSTEP);

while (!(gtest() && qread(&val) == ESCKEY && val == 0)) {
color (RAMPBASE) ;
clear();

getdev (2,devs,vals);

x = vals[0] - xorg;

y = vals[l] - yorg:;

linesmooth (getbutton (LEFTMOUSE) ? SML_OFF : SML _ON);
subpixel (getbutton (MIDDLEMOUSE) ? FALSE : TRUE) ;
color (RAMPBASE+RAMPSIZE-1) ;

Version 2.0 Antialiasing 15-19

bgnline();
for (i=0; i<=MAXVERTEX; i++) {
interp = (float)i / (float)MAXVERTEX;
vert[0] = 100.0 * interp + x * (1.0 - interp);
vert[1l] = 100.0 * interp +y * (1.0 - interp);
v2f (vert);
}
endline ()
swapbuffers () ;
}
gexit () ;
return 0;

}

Notice how smooth the edges of the antialiased lines are, and how smoothly
they move as you move the cursor. Now defeat the antialiasing by pressing
the left mouse button, and notice that the lines become jagged. When you
defeat subpixel positioning by pressing the middle mouse button, the
individual line segments that make up the long line remain antialiased, but
they no longer combine to form a single straight line. This is because the
endpoints of the segments have been coerced to the nearest pixel centers,
which are rarely on the exact mathematical line. Thus, you can antialias lines,
unlike points, while subpixel mode is FALSE. However, the image quality is
still greatly enhanced when you enable subpixel positioning of vertices.

Like color map antialiased points, color map antialiased lines interact poorly
when they intersect on the screen. The problem of overlapping primitives is
handled well when antialiasing in RGB mode. When you enable 1inesmooth
in RGB mode, the antialiasing hardware uses computed pixel coverage to
scale the alpha value of the line’s color. If the alpha value of the incoming
line is 1.0, scaling it by the computed pixel coverage results in a pixel alpha
value that is directly proportional to pixel coverage. For RGB antialiased
lines to draw correctly, set blendfunction to merge new pixel color
components into the frame buffer using the incoming alpha value.

15-20 Graphics Library Programming Guide IRIS-4D Series

The following example illustrates RGB mode line antialiasing:

/

L I S T B

~

Rotate a pinwheel of antialiased lines drawn in RGB mode.
Change to the "smoother" sampling function when the left
mouse button is pressed. Change to the "end-corrected"
sampling function when the middle mouse button is
pressed. Change to a "color index like" blend function
when the i-key is pressed. Change from merge-blend to
accumulate-blend when the a-key is pressed.

Disable subpixel positioning when the s-key is pressed.

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400
#define MAXLINE 48
#define ROTANGLE (360.0 / MAXLINE)

float vert0([2] = {0.0,0.0};
float vertl([2] = {0.8,0.0};
main ()
{

int i;

int smoothmode;
short val;

if (getgdesc(GD_LINESMOOTH RGB) == 0) {
fprintf (stderr, "RGB mode line antialiasing not)\
available\n");
return 1;

}

prefsize (WINSIZE, WINSIZE);

winopen ("linesmooth.rgb") ;

mmode (MVIEWING) ;

ortho2(-1.0,1.0,-1.0,1.0);

doublebuffer();

RGBmode () ;

gconfig();

gdevice (ESCKEY) ;

Version 2.0 Antialiasing 15-21

15-22

gdevice (LEFTMOUSE) ;
gdevice (MIDDLEMOUSE) ;

while (! (gtest() && gread(&val) == ESCKEY && val == 0))
cpack (0) ;
clear();
cpack (OXfEff££££E) ;
smoothmode = SML_ON;
if (getbutton (LEFTMOUSE))
smoothmode |= SML SMOOTHER;
if (getbutton (MIDDLEMOUSE))
smoothmode |= SML_END CORRECT;
linesmooth (smoothmode) ;
if (getbutton (IKEY))
blendfunction (BF_SA,BF_ZERO) ;
else if (getbutton (AKEY))
blendfunction (BF_SA,BF_ONE) ;
else
blendfunction (BF_SA,BF_MSA);
subpixel (getbutton (SKEY) ? FALSE : TRUE);
pushmatrix();
rot (getvaluator (MOUSEX) / 25.0,'z');
for (i=0; i<MAXLINE; i++) {
bgnline () ;
v2f (vert0);
v2f (vertl);
endline ()
rot (ROTANGLE, 'z"');
}
popmatrix();
swapbuffers();
}
gexit () ;
return 0;

Graphics Library Programming Guide IRIS-4D Series

{

(

Notice that the RGB mode antialiased lines look good where they intersect at
the center of the pinwheel. This is because RGB blending allows multiple
lines to contribute to a single pixel in a meaningful way. In this
demonstration a blend function that interpolates between the incoming and
frame buffer color components, based on the incoming alpha, is used by
default:

blendfunction (BF_SA,BF_MSA)

You can switch to a blend function that simply accumulates color, again
scaled by incoming alpha, by pressing the <A> key:

blendfunction (BF_SA,BF_ ONE)

This blending function makes the slight noise at the center of the pinwheel
disappear, because these pixels all accumulate and clamp at full brightness.
This technique works well with white lines on a black background, but does
not do well in other situations.

You can simulate the appearance of color map mode lines by pressing the
<i> key, which forces a blending function that overwrites pixels:

blendfunction (BF_SA,BF_ZERO);

When you defeat subpixel positioning of line endpoints by pressing the <s>
key, the pinwheel ceases to behave like a rigid object, and instead appears to
wiggle and twist as it is rotated.

You can switch from the standard antialiasing sampling algorithm to a
“smoother” algorithm by pressing the left mouse button. Not all systems
support the higher-quality line sampling algorithm. Refer to the man page for
details. This algorithm modifies more pixels per unit line length than does
the standard antialiasing algorithm. As a result, it produces slightly higher-
quality antialiased lines, at the price of slightly reduced performance. Set the
“smoother” algorithm by calling 1inesmooth (SMP_ON |
SMP_SMOOTHER) .

Version 2.0 Antialiasing 15-23

Notice that when it is selected, lines at all angles appear to have the same

width, and the “cloverleaf” pattern at the center of the pinwheel disappears.

‘When you rotate the pinwheel with the left mouse button pressed, the only

image artifact that remains is the sudden changing of line length observed at

the ends of the lines. Press the middle mouse button to select a sampling

algorithm that correctly samples line length as well as line cross-section.

Invoke this “end-corrected” algorithm by calling 1inesmooth (SMP_ON | (
SMP_END_CORRECT) .

When you select both “smoother” and “end-correct”, the rotating pinwheel
appears absolutely rigid, with even width lines and no jagged edges.

Caution: Because RGB antialiased lines are blended, they interact well at
intersections. However, when two RGB antialiased lines are
drawn between the same vertices, the line quality is reduced
noticeably. When the polygons in a standard geometric model
are drawn as lines, either explicitly or using polymode, lines at
the edges of adjacent polygons are drawn twice, and therefore do
not antialiased well in RGB mode. For best results, modify the
database traversal so that edges of adjacent polygons are drawn
only once.

Because RGB antialiased lines are blended into the frame buffer, they can be (
drawn in any color over any background. Unless you want to draw

transparent, anti-aliased lines, however, be sure to specify alpha as 1.0 when
drawing antialiased RGB lines.

15-24 Graphics Library Programming Guide IRIS-4D Series

15.3.3 High-Performance Antialiased Polygons—
polysmooth

Not all systems support polysmooth. Refer to the manual page for details.
By default, IRIS-4D Series systems sample polygons by selecting and
drawing the pixels whose exact center points are within the boundary
described by the projection of the mathematical polygon edges. You can
improve the sampling quality of polygons, and therefore draw them
antialiased, by setting two modes:

subpixel (TRUE) ;
polysmooth (PYSM_ON) ;

When you enable subpixel mode, you defeat the default behavior of
rounding projected vertices to the nearest pixel center. Exact polygon vertex
positions are made available to the sampling hardware. By enabling
polysmooth mode, you replace the default sampling of polygons with
coverage sampling—the fraction of each pixel covered by the polygon is
computed. All that remains is instructing the system how to use the computed
pixel coverage to blend between the background color and the polygon color
at each pixel. Because this blending operation is more critical for polygon
antialiasing than it is for point or line antialiasing, polygon antialiasing is
supported only in RGB mode, not in color map mode.

The following program draws a single antialiased triangle:

/*
* Rotate a single antialiased triangle drawn in RGB mode.
* Disable antialiasing when the left mouse button is pressed.
* Disable subpixel positioning when the middle mouse button
* is pressed.
*/
#include <stdio.h>
#include <gl/gl.h>

#include <gl/device.h>

#define WINSIZE 400

float vertO[2] = {0.0,0.0};
float vertl[2] = {0.8,0.0};
float vert2[2] = {0.4,0.4};

Version 2.0 Antialiasing 15-25

main ()

{

short val;

if (getgdesc(GD_POLYSMOOTH) == 0) {
fprintf (stderr, "polygon antialiasing not available\n");
return 1; (i;

}

prefsize (WINSIZE, WINSIZE);
winopen ("polysmooth.rgb");
mmode (MVIEWING) ;
ortho2(-1.0,1.0,-1.0,1.0);
doublebuffer():;

RGBmode () ;

gconfig () ;

gdevice (ESCKEY) ;

gdevice (LEFTMOUSE) ;

gdevice (MIDDLEMOUSE) ;
blendfunction (BF_SA,BF_MSA) ;

while (! (gtest() && gread(&val) == ESCKEY && val == 0)) {
cpack (0) ;

clear():; (
cpack (Oxffff££f£ff);

polysmooth (getbutton (LEFTMOUSE) ? PYSM OFF : PYSM ON);
subpixel (getbutton (MIDDLEMOUSE) ? FALSE : TRUE);
pushmatrix () ;
rot (getvaluator (MOUSEX) / 25.0,'z');
rot (getvaluator (MOUSEY) / 10.0,'x');
bgnpolygon () ;
v2f (vert0);
v2f (vertl);
v2f (vert2);
endpolygon () ;
popmatrix();
swapbuffers();
}
gexit ();
return 0;

} (

15-26 Graphics Library Programming Guide IRIS-4D Series

Move the cursor left and right to rotate the triangle, and note the smoothness
of its edges. When you move the cursor toward the top of the screen, the
triangle rotates away from you until it becomes perpendicular to your
viewing direction. Note that when it is perpendicular, it disappears
completely. This is because the projection of a triangle on edge covers no
area on the screen, and therefore all pixel coverages are zero.

When you press the left mouse button, the triangle is drawn aliased. When
you press the middle mouse button , the triangle vertices are no longer
subpixel positioned. Notice that the edges remain smooth, but that the
triangle motion is no longer smooth, and the triangle no longer appears rigid.

This simple example of a single antialiased triangle drawn on a black
background works correctly with the standard blending function:

blendfunction (BF_SA,BF_ MSA)

However, when multiple antialiased triangles are drawn with adjacent edges,
the standard blending function no longer produces good results. The
following program draws a bowtie-shaped object, constructed of four
triangles in a planar mesh:

/*
* Rotate a patch of antialiased triangles drawn in RGB mode.
* Disable special polygon-blend when the left mouse button
* is pressed. Disable subpixel positioning when the middle
* mouse button is pressed.

*x/
#include <stdio.h>
#include <gl/gl.h>

#include <gl/device.h>

#define WINSIZE 400

float vert0[2] = {0.0,0.0};
float vertl[2] = {0.0,0.4};
float vert2([2] = {0.4,0.1};
float vert3[2] = {0.4,0.3};
float vert4[2] = {0.8,0.0};
float vert5[2] = {0.8,0.4};

Version 2.0 Antialiasing 15-27

main ()
{

short val;

if (getgdesc(GD_POLYSMOOTH) == 0) {

fprintf (stderr,
return 1;

}

"polygon antialiasing not available\n");

prefsize (WINSIZE, WINSIZE)
winopen ("polysmooth2.rgb") ;

mmode (MVIEWING) ;

ortho(-1.0,1.0,-1.0,1.0,-1.0,1.0);

doublebuffer();
RGBmode () ;
gconfig();

gdevice (ESCKEY) ;
qdevice (LEFTMOUSE) ;

gdevice (MIDDLEMOUSE) ;

polysmooth (PYSM_ON)
shademodel (FLAT) ;

’

while (! (qtest() && gread(&val) == ESCKEY && val == 0)) ({

cpack (0) ;
clear();
cpack (Oxfffffff£

)i

if (getbutton (LEFTMOUSE))
blendfunction (BF_SA,BF_MSA);

else

blendfunction (BF_MIN_SA MDA, BF_ONE) ;
subpixel (getbutton (MIDDLEMOUSE) ? FALSE : TRUE);

pushmatrix();

rot (getvaluator (MOUSEX) / 25.0,'z"');
rot (getvaluator (MOUSEY) / 10.0,'x");

bgntmesh () ;
v2f (vertO);
v2f (vertl);
v2f (vert2);
v2f (vert3);
v2f (vertd);
v2f (vertb);
endtmesh () ;
popmatrix();
swapbuffers();

15-28 Graphics Library Programming Guide IRIS-4D Series

(

(

gexit () ;
return 0;

}

Notice that the internal edges of the four triangles that make up the bowtie
are visible. Press the left mouse button, enabling the special polygon
blending function, and note that these internal edges disappear. They are
visible when you use the standard blending function because the standard
blending function operates with uncorrelated coverages, such as those
generated by antialiased points and lines. Two adjacent polygons generate
pixel coverages that are highly correlated—they always sum to 100% for
pixels covered by the shared edge—and are therefore inappropriate for the
standard blending function. Consider, for example, a pixel that is covered
60% by the first polygon that intersects it, and 40% by a second polygon
adjacent to the first. Assuming white polygons and a black background, the
first polygon raises the pixel intensity to 0.6, which is the correct value.
However, the second polygon raises the pixel intensity to only 0.76, rather
than to 1.0 as is desired. This is because the standard blending function
assumes that the 60% and 40% coverages are uncorrelated, so 60% of the
additional 40% is assumed to have been covered by the original 60%. Thus
in uncorrelated coverage arithmetic, 60% plus 40% equals 76%, not 100%.

The special blending function blendfunction (BF_MIN_SA MDA, BF_ONE) WOIKS
with correlated coverages, the kind generated by antialiased polygon images.
As the example code illustrated, the correlated blend does a good job with
polygonal data. It is, however, much more difficult to use correlated blending
than uncorrelated blending. The requirements for its use are:

1. You must have alpha bitplanes.

2. You must draw polygons in order from the nearest to the farthest.

3. You must not draw backfacing polygons (use backface).

4. The background color bitplanes, including the alpha bitplanes, must be
cleared to zero before drawing starts.

5. [If the background is any color other than black, it must be filled as a
polygon (i.e. not with a clear command) after all polygons are drawn.

6. You must draw all primitives (points, lines, and polygons) using the
correlated blending function.

Version 2.0 Antialiasing 15-29

The correlated blending function works by accumulating pixel coverage in
the frame buffer alpha bitplanes. The coverage granted each pixel write is
limited by the total remaining at that pixel. When no coverage is left,
additional writes to that pixel are ignored.

Because polygons must be drawn in depth-sorted order, you cannot use the
z-buffer to eliminate hidden surfaces. Thus, polygon antialiasing, unlike
point and line antialiasing, requires significant changes to the way the object
data are traversed. It is therefore more difficult to use than are point and line
antialiasing. If performance is not an absolute requirement, the accumulation
buffer technique described in Section 15.4 is a better choice for polygon
antialiasing.

The following example demonstrates correct polygon antialiasing of two
cubes against a non-black background:

/*
* Rotate two antialiased cubes in RGB mode.
* Disable antialiasing by depressing the left mouse button.

*/

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400
#define SIZE (0.2)
#define OFFSET (0.5)
#define CUBEO OFFSET
#define CUBEl (-OFFSET)

float vertO[4)
float vertl[4]
float vert2[4]
float vert3[4]
float vert4d[4]
float vert5(4]
float vert6[4]
float vert7(4]

{-SIZE,-SIZE, SIZE};
{ SIZE,-SIZE, SIZE};
{-SIZE, SIZE, SIZE};
{ SIZE, SIZE, SIZE};
{-SIZE, SIZE,-SIZE};
{ SIZE, SIZE,-SIZE};
{-SIZE,-SIZE,-SIZE};
{ SIZE,-SIZE,-SIZE};

15-30 Graphics Library Programming Guide IRIS-4D Series

float cvert0[2] = {-1.0,-1.0};
float cvertl([2] = { 1.0,-1.0};
float cvert2([2] = { 1.0, 1.0};
float cvert3[2] = {-1.0, 1.0};
main ()
{
short wval;
float xang;
if (getgdesc(GD_POLYSMOOTH) == 0) {

fprintf (stderr, "polygon antialiasing not available\n");
return 1;
}
prefsize (WINSIZE, WINSIZE);
winopen ("polysmooth3.rgb");
mmode (MVIEWING) ;
ortho(-1.0,1.0,-1.0,1.0,-1.0,1.0);
doublebuffer();
RGBmode () ;
geconfig();
gdevice (ESCKEY) ;
qgdevice (LEFTMOUSE) ;
blendfunction (BF_MIN_SA MDA,BF_ONE) ;
subpixel (TRUE) ;
backface (TRUE) ;
shademodel (FLAT) ;

while (! (qtest() && gread(&val) == ESCKEY && val == 0)) {
cpack (0) ;
clear();
polysmooth (getbutton (LEFTMOUSE) ? PYSM OFF : PYSM ON);
pushmatrix () ;
xang = getvaluator (MOUSEY) / 5.0;
rot (xang, 'x');
rot (getvaluator (MOUSEX) / 5.0,'z"');
if (xang < 90.0) {
drawcube (CUBEO) ;
drawcube (CUBEL) ;
} else {
drawcube (CUBE1l) ;
drawcube (CUBEO) ;
}

popmatrix () ;

Version 2.0 Antialiasing 15-31

drawbackground() ;
swapbuffers();

}

gexit();

return 0;

drawcube (offset)

float offset;

{
pushmatrix();
translate(0.0,0.0,0ffset);
bgntmesh () ;
v3f (vert0);
v3f (vertl);
cpack (Oxf£f0000£f) ;
v3f (vert2);
v3f (vert3d);
cpack (Oxff00££00) ;
v3f (vertd);
v3f (vertS);
cpack (Ox££££0000) ;
v3f (vert6);
v3f (vert?);
cpack (Oxff00££f£f) ;
v3f (vert0);
v3f (vertl);
endtmesh () ;
bgntmesh () ;
v3f (vertO);
v3f (vert2);
cpack (Oxf£££f00££) ;
v3f (vert6);
v3f (vertd);
endtmesh () ;
bgntmesh () ;
v3f (vertl);
v3f (vert?7);
cpack (Oxff££££00) ;
v3f (vert3d);
v3f (vert5);
endtmesh () ;
popmatrix () ;

15-32 Graphics Library Programming Guide IRIS-4D Series

drawbackground () ({
cpack (OXffffffff);
bgnpolygon () ;
v2f (cvertO) ;
v2f (cvertl);
v2f (cvert2);
v2f (cvert3);
endpolygon () ;

}

Note that the nearer cube is drawn first, that cube faces are not sorted
because back face elimination handles the sorting of convex solids, and that
the background is drawn last as a single polygon.

When you press the left mouse button, antialiasing is disabled, but the

correlated blend function remains enabled. Otherwise, the drawing order of
the primitives would have to be changed.

Version 2.0 Antialiasing 15-33

15.4 Multipass Antialiasing with the Accumulation
Buffer

Section 15.3 describes techniques for computing pixel area coverage for

various primitives, and using this coverage information to blend pixels into

the framebuffer. This section describes an alternative approach to (
antialiasing. Called accumulation, it provides an elegant solution to the

aliasing problem for points, lines, and polygons, and also has application in

other advanced rendering techniques.

Accumulation is somewhat like blending, in that multiple images are
composited to produce the final image. It differs from blending, however, in
that its operation is completely separated from the rendering of a single
frame. The accumulation buffer is an extended range bitplane bank in the
normal frame buffer. You do not draw images into it; rather, images drawn in
the front or back buffer of the normal frame buffer are added to the contents
of the accumulation buffer after they are completely rendered.

acsize

it. acsize specifies the number of bitplanes to be allocated for each color
component in the accumulation buffer. Currently, 0 and 16 are the only sizes
acsize accepts. A 16-bit accumulation buffer actually allocates 64
bitplanes, 16 each for red, green, blue, and alpha. Color components are
signed values, so the range for each component is -32768 through 32767.
You must call gconfig afteracsize to activate the new specification.

Before you can use the accumulation buffer, you must allocate bitplanes for (

After bitplanes have been allocated for the accumulation buffer, you can use
the acbuf command to add the contents of the front or back bitplanes of the
normal frame buffer to the accumulation buffer, and to return the
accumulation buffer contents to either the front or back bitplanes. Call
acbuf only while the normal frame buffer is in RGB mode.

void acsize (planes)
long planes;

15-34 Graphics Library Programming Guide IRIS-4D Series

acbuf

acbuf operates on the accumulation buffer, which must already have been
allocated using acsize and gconfig. When op iS AC_CLEAR, each
component of the accumulation buffer is set to value. Whenop is
AC_ACCUMULATE, pixels are taken from the current readsource (front,
back, or z-buffer). Pixel components red, green, blue, and alpha are each
scaled by <value>, which must be in the range -256.0 <= value <= 256.0,
aud added to the current contents of the accumulation buffer.

Finally, when op is AC_RETURN, pixels are taken from the accumulation
buffer. Each pixel component is scaled by value, which must be in the range
0.0 through 1.0, clamped to the integer range 0 through 255, and returned to
the currently active drawing buffer (as specified by the frontbuffer,
backbuffer, and zdraw commands). All special pixel operations—
including z-buffer, blending function, logical operation, stenciling, and
texture mapping—are ignored during this transfer.

void acbuf (op,value)
long op;
float value;

(These commands implement several other accumulation buffer operations.
See the manual page for details on these operations.)

Accumulation buffer pixels map one-to-one with pixels in the window. All
accumulation buffer operations affect the pixels within the viewport, limited
by the screen mask and by the edges of the window itself. Like front, back,
and z-buffer pixels, accumulation buffer pixels corresponding to window
pixels that are obscured by another window, or are not on the screen, are
undefined.

Version 2.0 Antialiasing 15-35

You can use the accumulation buffer to average many renderings of the same
scene into one final image. By jittering the viewing frustum slightly for each
image, you can produce a single antialiased image as the result of many
averaged images. For this to work, you must

1. Completely render the image for each pass, including using the z-buffer
to eliminate hidden surfaces, if appropriate.

2. Enable subpixel positioning of all primitives used (see subpixel).

3. Slightly perturb the viewing frustum before rendering each image. By
slightly perturbing the projection transformation before rendering each
image, you can effectively move the sample position in each pixel away
from the pixel center. This is particularly easy to implement when you
use an orthographic projection.

The following example draws an antialiased circle using a 2-D orthographic
projection:

/*

* Draw an antialiased circle using the accumulation buffer.

*

Disable antialiasing when the left mouse button is pressed.

*

Disable subpixel positioning when the middle mouse button
* is pressed.

*/

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 100
#define SAMPLES 3
#define DELTA (2.0 / (WINSIZE * SAMPLES))

main ()

{
long x, ¥y
short val;

if (getgdesc(GD_BITS_ACBUF) == 0) {

fprintf (stderr, "accumulation buffer not available\n");
return 1;

15-36 Graphics Library Programming Guide IRIS-4D Series

(

prefsize (WINSIZE, WINSIZE);
winopen ("acbuf.rgb");

mmode (MVIEWING) ;

glcompat (GLC_OLDPOLYGON, 0) ; /* point sample the circle */
doublebuffer();

RGBmode () ;

acsize(16);

gconfig();

qgdevice (ESCKEY) ;

qgdevice (LEFTMOUSE) ;

gdevice (MIDDLEMOUSE) ;

while (! (qtest() && qread(&val) == ESCKEY && val == 0)) {
subpixel (getbutton (MIDDLEMOUSE) ? FALSE : TRUE);
if (getbutton (LEFTMOUSE)) {
drawecirc(0.0,0.0);
} else {
acbuf (AC_CLEAR,0.0) ;
for (x=0; x < SAMPLES; x++) {
for (y=0; y < SAMPLES; y++) {
drawcirc((x— (SAMPLES/2)) *DELTA, \
(y- (SAMPLES/2)) *DELTA) ;
acbuf (AC_ACCUMULATE,1.0);

}
acbuf (AC_RETURN, 1.0/ (SAMPLES*SAMPLES)) ;
}
swapbuffers () ;
}
gexit ()
return 0;

drawcirc(xdelta,ydelta)
float xdelta,ydelta;
{
ortho2(-1.0 + xdelta, 1.0 + xdelta, -1.0 + ydelta,\
1.0 + ydelta);
cpack (0) ;
clear();
cpack (OXffEffffff) ;
circf(0.0,0.0,0.8);

Version 2.0 Antialiasing 15-37

The circle is drawn nine times on a regular three-by-three grid. After the
ninth accumulation, the resulting image is returned to the back buffer, and
the buffers are swapped, making the antialiased circle visible. Note that the
edges of the circle are smooth, and that when you press the left mouse
button, the edges become jagged (they are now aliased). Also note the
reduction in image quality when you defeat subpixel positioning by pressing
the middle mouse button.

Some other points about this example:

1. The orthographic projection is perturbed by multiples of DELTA, a
constant that is a function of the ratio of units in orthographic coordinates
to window coordinates, and of the resolution of the subsampling. Note
that you cannot use the viewport to jitter the sample points, both because
the viewport is specified with integer coordinates, and because pixels
near the viewport boundary would sample incorrectly.

2. 0ld polygon mode is defeated. Otherwise the circle would be drawn
with the old fill style, rather than the new point-sampled style. Point
sampling and subpixel positioning are both required to use the
accumulation buffer accurately.

3. Each drawing pass clears the back buffer to black, then draws the circle.

In general, all drawing operations (such as clearing and using the z-
buffer) must be duplicated for each pass.

15-38 Graphics Library Programming Guide IRIS-4D Series

Of course, you can perform accumulation buffer antialiasing with perspective
projections as well as orthographic projections. The following subroutines do
all the arithmetic required to implement pixel jitter using the perspective and
window projection calls:

#include <math.h>

void subpixwindow (left, right,bottom, top, near, far, pixdx, pixdy)
float left,right,bottom,top,near,far,pixdx,pixdy;

{
short vleft,vright, vbottom, vtop;
float xwsize,ywsize,dx,dy;
int xpixels,ypixels;

getviewport (&vleft, &vright, &vbottom, &vtop) ;
xpixels = vright - vleft + 1;

ypixels = vtop - vbottom + 1;

xwsize = right - left;

ywsize = top - bottom;

dx = -pixdx * xwsize / xpixels;

dy = -pixdy * ywsize / ypixels;
window(left+dx,right+dx,bottom+dy,top+dy,near,far);

void subpixperspective (fovy,aspect,near, far,pixdx, pixdy)
Angle fovy;
float aspect, near, far, pixdx, pixdy;

float fov2,left,right,bottom, top;

fov2 = ((fovy*M PI) / 1800) / 2.0;

top = near / (fcos(fov2) / fsin(fov2));

bottom = -top;

right = top * aspect;

left = -right;
subpixwindow(left,right,bottom,top,near,far,pixdx,pixdy);

Version 2.0 Antialiasing 15-39

In many applications, you can condition use of the accumulation buffer on

user input. For example, when mouse position determines view angle, you

can accumulate and display a progressively higher-quality antialiased image

while the mouse is stationary. At any time during an antialiasing

accumulation, the contents of the accumulation buffer represent a better

image than the aliased image. You might choose a sample pattern that

optimizes the intermediate results, then display each intermediate result, (
rather than waiting for the accumulation to be complete.

The antialiasing example implements a box filter—samples are evenly
distributed inside a square pixel, and each sample has the same effect on the
resulting image. Antialiasing filter quality improves when the samples are
distributed in a circular pattern that is larger than a pixel, perhaps with a
diameter of 0.75 pixels or so. You can further improve the filter quality by
shaping it as a symmetric Gaussian function, either by changing the density
of sample locations within the circle, or by keeping the sample density
constant and assigning different weights to the samples. The weight of a
sample is specified by <value> when you call acbuf (AC_ACCUMULATE,
value) . A circularly symmetric Gaussian filter function yields smoother
edges than does a unit-size box filter.

Regardless of the filter function, fewer samples are required to achieve a
given antialiasing quality level when the samples are distributed in a random
fashion, rather than in regular rows and columns.

The accumulation buffer has many rendering applications other than
antialiasing. For example, to limit depth of field, you can average images
projected from slightly different viewpoints and directions. To produce
motion blur, you can average images with moving objects rendered in
different locations along their trajectories. To implement a filter kernel, you
can convolve images with rectcopy () and the accumulation buffer.
Because the accumulation buffer operates on signed color components, and
clamps these components to the display range of 0 through 255 when they
are returned to the display buffer, you can implement filters with negative
components in their kernels.

Additional details of the theory and use of the accumulation buffer, as well as
example images, are available in “The Accumulation Buffer: Hardware

Support for High-Quality Rendering”, in SSIGGRAPH *90 Conference

Proceedings, Volume 24, Number 3 (August 1990). (

15-40 Graphics Library Programming Guide IRIS-4D Series

16. Graphical Objects

It is sometimes convenient to group together a sequence of drawing routines
and give it an identifier. The entire sequence can then be repeated with a
single reference to the identifier rather than by repeating all the drawing
routines. In the Graphics Library, such sequences are called graphical
objects; in other systems they are sometimes known as display lists. A
graphical object is a list of graphics primitives (drawing routines) to display.
For example, a drawing of an automobile can be viewed as a compilation of
smaller drawings of each of its parts: windows, doors, wheels, etc. Each part
(for example, a wheel) might be a graphical object—a series of point,
line, and polygon routines.

To make the automobile a graphical object, you would first create objects
that draw its parts—a wheel object, a door object, a body object, and so on.
The automobile object would be a series of calls to the part objects, which
together with appropriate rotation, translation, and scale routines, would put
all the parts in their correct places.

Version 2.0 Graphical Objects 16-1

16.1 Defining an Object

To create a graphical object, you call makeob3, call the same drawing
routines you would normally call to draw the object, and then call
closeobj. Between the makeobsj and closeob] calls, drawing routines do
not result in immediate drawing on the screen; rather, they are compiled into
the object that is being created.

Thus, a graphical object is a list of primitive drawing routines to be executed.
Drawing the graphical object consists of executing each routine in the listed
order. There is no flow control, such as looping, iteration, or condition tests
(except for bbox2,; see Section 16.2).

Note: Although the fast drawing routines (such as bgn/endpoint,
bgn/endline, n3f, c3f, etc.) can now be included within graphical
objects, not all Graphics Library routines can be included within a
graphical object. A general rule is to include drawing routines and
not to include routines that return values. If you have a question
about a particular routine, check its man page in the appropriate
Reference Guide.

makeobj

makeob7 creates a graphical object. It takes one argument, a 31-bit integer
that is associated with the object. If obj is the number of an existing object,
the contents of that object are deleted.

When makeob 3 executes, the object number is entered into a symbol table
and an empty graphical object is created. Subsequent graphics routines are
compiled into the graphical object instead of being executed immediately.

void makeobj (obj)
Object obj;

16-2 Graphics Library Programming Guide IRIS-4D Series

closeobj

closeobj terminates the object definition and closes the open object. All the
routines in the graphical object between makeobj and closeob3 are part of
the object definition.

void closeobj ()

Figure 16-1 shows an object definition of a simple shape named sphere, and
the figure it draws when called.

If you specify a numeric identifier that is already in use, the system replaces
the existing object definition with the new one. To ensure that your object’s
numeric identifier is unique, use isobj and genobj.

isobj

isobj tests whether there is an existing object with a given numeric
identifier. Its argument obj specifies the desired numeric identifier. isobj
returns TRUE if an object exists with the specified numeric identifier and
FALSE if none exists.

long isobj (obj)
Object obj;

Version 2.0 Graphical Objects 16-3

makeobj (sphere=genobij ());
for (phi=0; phi<PI; phi+=PI/16) {
bgnclosedline () ;
for (theta=0; theta<2*PI; theta+=PI/18) {
vert[0] = sin(theta) * cos(phi);
vert[l] = sin(theta) * sin(phi);
vert[2] = cos(theta);
v3f (vert) ; (i
}
endclosedline();

}
closeobij () ;

The sphere above is defined as a graphical object. makeobj
creates a new object containing Graphics Library routines
between makeoby and closeobs.

Figure 16-1. Object Definition for a Simple Shape (Sphere)

16-4 Graphics Library Programming Guide IRIS-4D Series

genobj

genob3j generates a unique numeric identifier. It does not generate current
numeric identifiers. genob3j is useful in naming objects when it is impossible
to anticipate what the current numeric identifier will be when the routine is
called.

Object genobj ()

delobj

delobj deletes an object. It frees all memory storage associated with the
object. The numeric identifier is undefined until it is reused to create a new
object. The system ignores calls to deleted or undefined objects.

delobj (obj)
Object obj;

Version 2.0 Graphical Objects 16-5

16.2 Using Objects

Once you create an object, you can use callobj to draw it. You can enable
dynamic bounding box pruning and minimum feature size culling by using
bbox2.

callobj

callobj draws a created object on the screen. Its argument obj takes the
numeric identifier of the object you want to draw.

void callobj (obj)
Object obj;

You canuse callobj to call one object from inside another. You can draw
more complex pictures when you use a hierarchy of simple objects. For
example, the program below uses a single callobj (pearls) todraw the
object, a string of pearls, by calling the previously defined object pearl
seven times.

Object pearl = 1, pearls = 2

makeobj (pearl);
coloxr (BLUE) ;
for (angle=0; angle<3600; angle=angle+300) {
rotate (300, 'y');
circ (0.0, 0.0, 1.0);
}
closeobij();
makeobj (pearls);
for (i=0; i<7; i=i+l1) {
translate (2.0, 0.0, 0.0);
color (i);
callobij(pearl);
}

closeobj();

16-6 Graphics Library Programming Guide IRIS-4D Series

Figure 16-2 is another example of using simple objects to build more
complex ones. It defines a solar system as a hierarchical object. Calling one
object solarsystem draws all the other objects named in its definition (the
sun, the planets, and their orbits).

The system does not save global attributes before callobj takes effect.
Thus, if an attribute, such as color, changes within an object, the change can
affect the caller as well. You can use pushattributes and
popattributes to preserve global attributes across callobj.

When you call a complex object, the system draws the whole hierarchy of
objects in its definition. For example, in Figure 16-2, because the system
draws the whole object solarsystem it can draw objects that are not visible
in the viewport.

bbox2

bbox2 determines whether or not an object is within the viewport, and
whether it is large enough to be seen. It performs the graphical functions
known as pruning and culling. Culling determines which parts of the picture
are less than the minimum feature size, and thus too small to draw on the
screen. Pruning calculates whether an object is completely outside the
viewport.

bbox2 takes as its arguments an object space bounding box (x/, y1, x2, y2) in
coordinates, and minimum horizontal and vertical feature sizes (xmin, ymin)
in pixels. The system calculates the bounding box, transforms it to screen
coordinates, and compares it with the viewport. If the bounding box is
completely outside the viewport, the routines between bbox2 and the end of
the object are ignored. If the bounding box is within the viewport, the
system compares it with the minimum feature size. Ifit is too small in both
the x and y dimensions, the rest of the routines in the object are ignored.
Otherwise, the system continues to interpret the object.

void bbox2 (xmin, ymin, x1, yl, x2, y2)

Screencoord xmin, ymin;
Coord x1, yl, x2, y2;

Version 2.0 Graphical Objects 16-7

J/v‘
(
|
i
filled circle
planets—\—\—circle _
\fiued circle
circle
solarsystem — sun = sphere
\ illed circle
planetstcircle .
filled circle
circle

Solarsystem, a complex object, is defined hierarchically, as
shown in the tree diagram. Branches in the tree represent

callobj routines. (

Figure 16-2. Defining a Hierarchical Object (solarsystem)

16-8 Graphics Library Programming Guide IRIS-4D Series

Figure 16-3 shows some of the objects within solarsystem juxtgposed on
specified bounding boxes. The bounding box‘es can perform pruning to
determine which objects are partially in the viewport.

2D bounding boxes

@ vi (wport
— /

\ \ 5 - /
S | e Vs
e e’ P ~
A\\ -

B

_

Bounding boxes are computed to determine which objects
are outside the screen viewport. If the bounding box is
entirely outside the viewport, the rest of the object display list
is not traversed. The sphere in the bounding box that lies
partially within the viewport is drawn and clipped to the edge
of the viewport.

Figure 16-3. Bounding Boxes

Version 2.0 Graphical Objects 16-9

16.3 Editing Objects

You can change an object by editing it. Editing requires that you identify
and locate the drawing routines you want to change. You use two types of
routines when you edit an object:

« editing routines, which add, remove, or replace drawing routines (

» tag routines, which identify locations of drawing routines within an
object

If you have to edit graphical objects frequently, you should build your own
custom data structures and traversal routines, rather than use graphical
objects. The editing routines that follow are best suited for infrequent and
simple editing operations.

editobj

To open an object for editing, use editobj. A pointer acts as a cursor that

appends new routines. The pointer is initially set to the end of the object.

The system appends graphics routines to the object until either a closeobj

or a pointer positioning routine objdelete, (objinsert, or objreplace) (
executes.

The system interprets the editing routines following editobj. Use
closeobj to terminate your editing session. If you specify an undefined
object, an error message appears.

void editobj(obj)
Object obj;

16-10 Graphics Library Programming Guide IRIS-4D Series

getopenobj

To determine if any object is open for editing, use get openob. If an object
is open, it returns the object's numeric identifier. It returns -1 if no object is
open.

Object getopenobj ()

16.3.1 Using Tags

Tags locate items within a graphical object that you want to edit. Editing
routines require tag names as arguments. STARTTAG is a predefined tag that
goes before the first item in the list; it marks the beginning of the list.
STARTTAG does not have any effect on drawing or modifying the object.
Use it only to return to (find) the beginning of the list. ENDTAG is a
predefined tag that is positioned after the last item on the list; it marks the
end of the list. Like STARTTAG, ENDTAG does not have any effect on
drawing or modifying the object. Use it to find the end of the graphical
object. When you call makeob3j to create a list, STARTTAG and ENDTAG
automatically appear. You cannot delete these tags. When an object is
opened for editing, there is a pointer at ENDTAG, just after the last routine in
the object. To perform edits on other items, refer to them by their tags.

Version 2.0 Graphical Objects 16-11

maketag

You can use tags to mark items you might want to change. You explicitly
tag routines with maketag. You specify a 31-bit numeric identifier and the
system places a marker between two items. You can use the same tag name
in different objects.

void maketag(t) (i

Tag t;

newtag

newtag also adds tags to an object, but uses an existing tag to determine its
relative position within the object. newtag creates a new tag that is offset
beyond the other tag by the number of lines given in its argument offst.

void newtag(newtg, oldtg, offst)

Tag newtg, oldtg;
long offst;

16-12 Graphics Library Programming Guide IRIS-4D Series

istag

istag tells whether a given tag is in use within the current open object.
istagreturns TRUE if the tag is in use, and FALSE if it is not. The result is
undefined if there is no currently open object.

Boolean istag(t)
Tag t;

gentag

gentag generales a unique integer to use as a tag within the current open
object.

Tag gentag ()

deltag

deltag deletes tags from the object currently open for editing. Remember,
you cannot delete the special tags STARTTAG and ENDTAG.

void deltag(t)
Tag t;

Version 2.0 Graphical Objects 16-13

16.3.2 Inserting, Deleting, and Replacing within Objects

The routines objinsert, objdelete, and objreplace allow you to add,
delete, or replace routines in a graphical object.

objinsert

Use objinsert to add routines to an object at the location specified in z.
objinsert takes a tag as an argument, and positions an editing pointer on
that tag. The system inserts graphics routines immediately after the tag. To
terminate the insertion, use closeob3j or another editing routine
(objdelete, objinsert, objreplace).

void objinsert (t)
Tag t;

objdelete

objdelete removes routines from the current open object. It removes
everything between tagl and tag2—it deletes routines and other tag names.
For example, objdelete (STARTTAG, ENDTAG) would delete every
routine. The system ignores objdelete if no object is open for editing.
This routine leaves the pointer at the end of the object after it executes.

void objdelete(tagl, tag2)
Tag tagl, tag2;

16-14 Graphics Library Programming Guide IRIS-4D Series

objreplace

objreplace combines the functions of objdelete and objinsert. It
provides a quick way to replace one routine with another that occupies the
same amount of space in the graphical object. Its argument is a single tag, ¢.
Graphics routines that follow objreplace overwrite existing routines until
a closeob]j or editing routine (objinsert, objreplace, objdelete)
terminates the replacement. '

Note: objreplace requires that the new routine to be exactly the
same length in characters as the previous one. Use objdelete
and objinsert for more general replacement.

void objreplace (t)
Tag t;

Example—Editing an Object

The following is an example of object editing. First, the object star is
defined:

makeobj (star) ;
color (GREEN) ;
maketag (BOX) ;
recti(l, 1, 9, 9);
maketag (INNER) ;
color (BLUE) ;
poly2i (8, Inner);
maketag (OUTER) ;
color (RED) ;
poly2i (8, Outer);
maketag (CENTER) ;
color (YELLOW) ;
pnt2i (5, 5);

closeobj();

Version 2.0 Graphical Objects 16-15

Then, star is edited with the following routine to give a modified object:

editobj(star);
circi(l, 5, 5);
objinsert (BOX) ;
recti (0, 0, 10, 10);
objreplace (INNER) ;
color (GREEN) ;
closeobj () ;

The object resulting from the editing session is equivalent to an object
created by the following code:

makeobj (star) ;
color (GREEN) ;
maketag (BOX) ;
recti (0, 0, 10, 10);
recti(l, 1, 9, 9):
maketag (INNER) ;
color (GREEN) ;
poly2i (8, Inner);
maketag (OUTER) ;
color (RED) ;
poly2i (8, Outer);
maketag (CENTER) ;
color (YELLOW) ;
pnt2i (5, 5);
circi(l, 5, 5);

closeobij();

16-16 Graphics Library Programming Guide IRIS-4D Series

16.3.3 Managing Object Memory

Editing can require large amounts of memory. compactify and
chunksize perform memory management tasks.

compactify

As memory is modified by the various editing routines, an open object can
become fragmented and be stored inefficiently. When the amount of wasted
space becomes large, the system automatically calls compactify during the
closeobj opcration. This routine allows you to perform the compaction
explicitly. Unless you insert new routines in the middle of an object,
compaction is not necessary.

Note: compactify uses a significant amount of computing time. Do
not call it unless the amount of available storage space is
critical; use it sparingly when performance is a consideration.

void compactify (obj)
Object obj;

chunksize

chunksize lets you specify the minimum chunk of memory necessary to
accommodatc the largest GL command you want to call. Normally, this is a
call to poly or polf with alarge number of vertices. If there is a memory
shortage, you can use chunksize to allocate memory differently to an
object. chunksize specifies the minimum amount of memory that the
system allocates to an object. The default chunk is 1020 bytes. When you
specify chunk, its size should vary according to the needs of the application.
As the objcct grows, more memory is allocated in units of size chunk. You
call chunksize only once after winopen, and before the first makeob3.

Version 2.0 Graphical Objects 16-17

chunksize can help you use memory economically. For example, if you
are using graphical objects that require very little memory, you can use the
system more c{ficiently by specifying smaller chunks of memory. There are
drawbacks to the use of chunksize. There is both memory and execution
time overhead associated with each chunk; for this reason, using many small
chunks can be inefficient.

void chunksize (chunk)
long chunk;

16.4 Mapping Screen Coordinates to World
Coordinates

mapw

mapw takes a 2-D screen point and maps it onto a line in 3-D world space. Its
argument vobj contains the viewing, projection, and viewport
transformations that map the current displayed objects to the screen.

mapw reverses these transformations and maps the screen coordinates back to
world coordinates. It returns two points (wx!/, wyl,wzl) and (x2, wy2, wz2),
which specify the endpoints of the line. The length of the line is arbitrary. sx
and sy specify the screen point to be mapped.

void mapw (vobj, sx, sy, wxl, wyl, wzl, wx2, wy2, wz2)
Object vobj;

Screencoord sx, sy;

Coord *wxl, *wyl, *wzl, *wx2, *wy2, *wz2;

16-18 Graphics Library Programming Guide IRIS-4D Series

mapw2

mapw? is the 2-D version of mapw. In 2D, the system maps screen
coordinates (o0 world coordinates rather than to a line. Again, vobj contains
the projection and viewing transformations that map the displayed objects to
world coordinates; sx and sy define screen coordinates. wx and wy return the
corresponding world coordinates. If the transformations in vobj are not 2D
(i.e., not orthogonal projections), the result is undefined.

void mapw2 (vobj, sx, sy, wx, wy)
Object vobj;

Screencoord sx, sy;

Coord *wx, *wy;

Version 2.0 Graphical Objects 16-19

17. Feedback

Note: Feedback is different on each IRIS-4D Series system. Avoid using
the feedback mechanism unless it is absolutely necessary.

Feedback is a system-dependent mechanism that uses the Geometry Pipeline
to do calculations and to return the results of those calculations to the user
process. From a hardware point of view, the net result of most Graphics
Library calls is to send a series of commands and data down the Geometry
Pipeline. In the pipeline, points are transformed, clipped, and scaled; lighting
calculations are done and colors computed; the points, lines and polygons are
scan-converted; and finally, pixels in the bitplanes are set to the appropriate
values.

When the system is put into feedback mode, the Graphics Library commands
send exactly the same information into the front of the graphics pipeline, but
the pipeline is short-circuited, and the results of some of the calculations are
returned before the standard drawing process is complete. The pipeline can
be broken down into many distinct stages, the first of which is composed of
Geometry Engines. The Geometry Engines transform, clip, and scale
vertices to screen coordinates, and do the basic lighting calculations. In
feedback mode, the raw output from the Geometry Engines is sent back to
the host process, and no further calculations are done.

The hardware that makes up the Geometry Engine subsection of the pipeline
is different on all Silicon Graphics systems. The command and data format
differs and certain calculations are done on some systems and not on others.
In spite of object code compatibility, the results of feedback are not
compatible. If you use feedback, your code must be written differently for
every system, and each time a new system is introduced, it will probably
have to be modified.

Version 2.0 Feedback 17-1

Almost all feedback-type calculations can easily be done in portable host
software. There are, however, a few places where feedback might be

valuable. If you have code that draws an object on the screen, and you would
like to draw the same picture on a plotter with a different resolution than that

of the screen, you can change just the viewport subroutine (which
controls the scaling of coordinates) so that it scales to your plotter
coordinates, and then draw the picture in feedback mode. The transformed
data returned to your process can often be interpreted and used to drive a
plotter. feedback puts the system into feedback mode, and any set of
graphics subroutines can then be issued, followed by endfeedback . All
the commands and data that come out of the Geometry Engine subsection as
a result are stored in a buffer supplied when the initial call to feedback

was made.

The following IRIS-4D/GT/GTX program transforms some simple geometric

figures and the results are returned in a buffer. The program does no
interpretation—it simply prints out the contents of the buffer. The
interpretation of the feedback data is covered later in this chapter; this
example simply illustrates the mechanism for getting into and out of

feedback mode.

#include <gl/gl.h>

float vert[3][2] = {{1.0, 2.0}, {3.0,

main ()

{
short feedbuf[100];
long i, count;

17-2 Graphics Library Programming Guide

4.0}, {2.0, 8.0}};

IRIS-4D Series

(

(

winopen (" feedback") ;

feedback (feedbuf, 100);
bgnpoint () ;

v2f (&vert [0] [0]);

v2f (&vert[1][0]);

v2f (&vert[2][0]);

endpoint () ;

bgnpolygon () ;

v2f (&vert[0][0]);

v2f (&vert[1][0]);

v2f (&vert[2][0]);
endpolygon () ;

count = endfeedback (feedbuf) ;
for (i = 0; i < count; i =i + 1)
printf("$d ", feedbuf[i]);

In this example, feedback puts the system to into feedback mode, and tells
the system to return all data in the buffer named feedbuf. In addition, the 100
indicates that the size of the buffer is 100 data items. If more than 100 items
of data are generated, only the first 100 are saved. The geometry is drawn (in
feedback mode), and endfeedback ends the feedback session.
endfeedback retumns the total number of items returned in the buffer. If
an overflow occurs, the system returns 100. Finally, the loop at the end
prints out the contents of the feedback buffer.

After a feedback session, the feedback buffer can contain any or all of the
following data: points, lines, moves, draws, polygons, character move,
passthrough, z-buffer, 1inestyle, setpattern, linewidth, and
lsrepeat values.

On the IRIS-4D/VGX and Personal IRIS, feedback returns 32-bit floating
point values instead of 16-bit integers. On all other IRIS-4D Series systems,
feedback returns 16-bit integers.

In feedback mode, all the graphical subroutines are transformed, clipped, and
scaled by the viewport, and all lighting calculations are done. Because of

Version 2.0 Feedback 17-3

clipping, more or fewer vertices might appear in the feedback buffer than
were sent in. For example, a point might either make it through or be clipped
out. A line drawn by the sequence:

bgnline () ;
v3f (vertl);
v3f (vert2);)
v3f (vert3); (i

endline () ;

can come out as nothing, as a move-draw, as a move-draw-draw, or as a
move-draw-move-draw. A three-sided polygon can come out with up to nine
sides, due to clipping against all six canonical clipping planes (see Figure
17-1), even more sides if user-defined arbitrary clipping planes are enabled.
You can experiment with the effects of clipping on feedback by altering the
ortho2 parameters in the above example.

Because the length of the output is not generally predictable from the input,
passthrough marks divisions in the input data. For example, if you send
this sequence:

pnt (A);

passthrough (1) ; (i
pnt (B) ;

passthrough (2) ;

pnt (C);

passthrough (3) ;

pnt (D) ;

the parsed information in the feedback buffer might look like this:
transformed point (X)
passthrough (1)
passthrough (2)

transformed point (Y)
passthrough (3)

Point X is the transformed version of point A, and point Y is the transformed
version of point C. Points B and D must have been clipped out. (

The feedback data types are in the file gl/feed.h for your reference. All
returned information is raw and system-specific.

17-4 Graphics Library Programming Guide IRIS-4D Series

a)

~ The sequence: move(<A>)
ﬁm‘ draw()
o draw(<C>)

becomes: move(<1>)
/ draw(<2>)
/ move(< 3>)
/ draw(<4>)

The sequence: pmv (<A>)
pdr ()
pdr (<C>)
pclos

becomes: pmv (<A>)

pdr (<1>)
pdr (<2>)
pdr (<3>)
pdr (<4>)
pdr (<5>)
pdr (<6>)
pclos

The clipping subsystem of the Geometry Pipeline can
generate new routines; (a) shows a new move inserted in the
routine stream while (b) shows a three-point polygon that
turns into a seven-point polygon.

Figure 17-1. Effects of Clipping on Feedback

Version 2.0 Feedback 17-5

17.1 Feedback on IRIS-4D/GT/GTX Systems

Feedback data comes in groups of 8n+2 shorts, where # is the number of
vertices involved:

Short # Data

1 <data type>
2 <count>

3 thru (count+2) <vertex data>

Table 17-1. IRIS-4D/G/GT/GTX Feedback Data

The vertex data is always arranged in groups of 8 (so count is a multiple of 8)
and contain the values:

x, y, zhigh, zlow, r, g, b, alpha

x is the screen (not window) x-coordinate, y-1024 is the screen y-coordinate,-
(zhigh<<16)+zlow is the z-coordinate, and, r, g, b, andalpha are the red,
green, blue, and alpha values.

By the time the data makes it through the geometry hardware, all the
transformations have been done to it, including translations to put the data in
the proper window. In the IRIS-4D/GT/GTX, the hardware screen
y-coordinates begin at 1024 (for the bottom of the screen) and increase to
2047. Thus, 1024 must be subtracted to get what you would consider the
screen y-coordinate.

24 bits of z-coordinate data is returned in two 16-bit chunks. The two chunks
must be concatenated to get the full 24 bits of data. Finally, the red, green,
blue, and alpha values are the colors that would be written into the frame
buffer at the vertex. In RGB mode, all values vary between 0 and 255; in
color map mode, the color index is sent as the red value and is in the range
0to 4095. In color map mode, the values in the green, blue and alpha
components are meaningless.

There are five possible kinds of data type: FB_POINT, FB_LINE,
FB_POLYGON, FB_CMOV, and FB_PASSTHROUGH.

17-6 Graphics Library Programming Guide IRIS-4D Series

If three points come out of the Geometry Pipeline, the returned data consists
of 26 shorts:

FB POINT 24

x1, yl, zhighl, zlowl, ril, gl, bl, alphal
x2, y2, zhigh2, zlow2, r2, g2, b2, alpha2
x3, y3, zhigh3, zlow3, r3, g3, b3, alpha3

FB_LINE and FB_POLYGON are similar. FB_CMOV and

FB_PASSTHROUGH always have 8 shorts of data as follows:

FB_CMOV 8
xl, y1, zhighl, zlowl, rl, gl, bil, alphal

FB_PASSTHROUGH 8
value, junk, junk, junk, junk, junk, Junk, junk

Version 2.0 Feedback 17-7

17.2 Feedback on the Personal IRIS

The Personal IRIS has the following feedback tokens defined in gl/feed.h:

FB_POINT
FB_MOVE
FB_DRAW
FB_POLYGON
FB_CMOV
FB_PASSTHROUGH
FB_ZBUFFER
FB_LINESTYLE
FB_SETPATTERN
FB_LINEWIDTH
FB_LSREPEAT

Each group of feedback data begins with one of the above tokens to indicate
data type. Vertex data for points, lines, and polygons always appears in
groups of six floating-point values:

X, ¥, 2, ¥, g, b

x and y are screen (not window) coordinates,z is the z value, and r, g, b are
the red, green, and blue (RGB) values.

The RGB values are the colors that would be written into the frame buffer at
the vertex. In RGB mode, all values vary between 0 and 255. In color map
mode, the r value is the color index (between 0 and 4095) and the g and b
values are ignored.

If a move, draw, or point (as in this example) comes out of the Geometry
Pipeline, the returned data consists of seven floats:

FB_POINT

X, Y, 2, ¥, g, b

For polygons, feedback data includes a count number as well as the data type
number. This number indicates how many of the next float values apply to
the polygon. There are six for each vertex, so this number is always a
multiple of six (6, 12, etc.).

17-8 Graphics Library Programming Guide IRIS-4D Series

For example, the returned data for a triangle consists of 20 floats:

FB_POLYGON 18.0

x1, yl, z1, rl, gl, bl
X2, y2, z2, r2, g2, b2
x3, y3, z3, r3, g3, b3

The 18.0 indicates three vertices with six values in each, and the 18 values
follow it.
FB_CMOY returns only three floats of data:

FB_CMOV
X, Y, 2Z

The rest of the commands (FB_PASSTHROUGH, FB_ZBUFFER,
FB_LINESTYLE, FB_SETPATTERN, FB_LINEWIDTH, FB_LSREPEAT)
return only one float. For example, FB_PASSTHROUGH returns:

FB_PASSTHROUGH
value

Version 2.0 Feedback 17-9

17.3 Feedback on IRIS-4D/VGX Systems

The IRIS-4D/VGX returns 32-bit floating point numbers in feedback mode.
The feedback data is in the following format:

<data type> <count> <count words of data>

There are five data types: FB_POINT, FB_LINE, FB_POLYGON,
FB_CMOV, and FB_PASSTHROUGH. The actual values of these data
types are defined in gl/feed.h. Following is the feedback format:

FB_POINT, count (9.0), x, y, 2z, ¥, g, b, a, s, t.

FB-LINE, count (18.0), x1, yl1l, zl, rl, gl, bl, al, sl, tl,
x2, y2, z2, r2, g2, b2, a2, s2, t2.

FB_POLYGON, count (27.0), x1, yl1l, z1, rl, gl, bl, al, sl,
tl, x2, y2, z2, r2, g2, b2, a2, s2, t2, x3, y3, z3, r3, g3,
b3, a3, s3, t3.

FB_PASSTHROUGH, count (1.0), passthrough.
FB-CMOV, count (3.0), x, y, z.

The x and y values are in floating point screen coordinates, the z value is the
floating point transformed z. Red, green, blue, and alpha are floating point
values ranging from 0.0 to 255.0 in RGB mode. In color map mode, the
color index is stored in the red value and ranges from 0.0 to 4095.0. The
green, blue, and alpha values are undefined in color map mode. The s and ¢
values are in floating point texture coordinates.

17-10 Graphics Library Programming Guide IRIS-4D Series

17.4 Additional Notes on Feedback

Any graphics subroutines can be called between feedback and
endfeedback, but only subroutines generating points, lines, polygons,
cmovs, or passthroughs can generate values in the feedback buffer. If, for
example, you are writing code to generate both a display and data for a
plotter, certain data can be lost (polygon pattering, for example). If it is
necessary to use this information in the plotting package, you should encode
it somehow into passthrough commands.

Also note that subroutines such as curve, patch, and mesh, generate

feedback buffer data, because they are converted in the graphics pipeline into
a series of lines or polygons.

Version 2.0 Feedback 17-11

18. Textures

This chapter introduces the texture mapping features of the Graphics Library.
Currently these features are available only on IRIS-4D/VGX systems. If you
are not using a VGX system, you might want to skip this chapter.

Texture mapping is a powerful visualization aid that can efficiently add detail
and realism to a raster image. A texture is a function defined in texture space
that is warped, or mapped, by a specified mapping into an object space.
Although the texture function, or texture for short, can be an arbitrarily
dimensioned array of data, this chapter focuses on 2-D images, the most
commonly used textures. Similarly, this chapter considers mappings only
onto geometric primitives in 3-D space, namely polygons, lines, and points.

Texture mapping is a general technique. In a scientific visualization setting,
it can simulate physical properties of objects. For example, a 1-D image of
temperature represented by color can bé mapped onto an object to illustrate
thermal gradients. For photorealistic applications, texture mapping can
simulate a wide variety of lighting effects, including specular and diffuse
reflections, transparency, and shadows. A common and illustrative use of
texturing is to map surface color and patterns to enhance visual realism. For
example, a 2-D image of wood grain wrapped around a rectangular solid can
generate a realistic-looking two-by-four board. You can create paiterned
surfaces such as brick walls and fabrics by repeating textures across a
surface.

This chapter concentrates on the three major functional blocks that constitute

the texture mapping process (Figure 18-1)—texture coordinates, texture
function, and texture environment.

Version 2.0 Textures 18-1

. Texture }
Texture Coordinates | Coordinates] Texture Function

t »

texgen s, t texdef2d
scrsubdivide texbind
Frame
T Buffer
R,G,B,A,I exture
[RGB,]tex Values
Geometric
Primitive =]
[R,G,B,A] Texture [R,G,B,A]
in Environment out
Input tevdef Output
} Color tevbind Color
Scan Conversion
Shading >
Xs,Ys,Zs

Figure 18-1. Functional Overview of Texture Mapping
A simplified description of the texture mapping process is:

1. First you assign texture coordinates to vertices to define a mapping from
texture space to geometry in object space. Section 18.1 describes the
mechanisms for assigning texture coordinates and the methods for
interpolating them to produce texture coordinates at pixels. (

2. Next the GL produces texture values from the texture coordinates
according to the texture function. This step, which includes sampling
and filtering issues, is discussed in Section 18.2.

3. Finally, the texture environment determines final color from input values
produced by shading and the texture function. Section 18.3 describes
this.

Section 18.4 concludes the chapter with a discussion on strategies for
achieving the maximum texture mapping performance from the Graphics
Library.

To illustrate the mechanics of texture mapping using the Graphics Library,

refer to the following program, which replicates a brick pattern across a
quadrilateral. A more complex example program is included at the end of

this chapter. It illustrates the use of multiple textures, including a 1-D texture (
that uses texture alpha for blending.

Version 2.0 Textures 18-2

Program Example 1

#include<stdio.h>
#include<gl/gl.h>
#include<gl/device.h>

float texprops[] = {TX_MINFILTER, TX_ POINT,
TX MAGFILTER, TX POINT,
TX_WRAP, TX_REPEAT, TX_ NULL};

/* Texture color is brick-red */
float tevprops[] = {TV_COLOR, .75, .13, .06, 1.,
TV_BLEND, TV_NULL};

/* Subdivision parameters */
float scrparams[] = {0., 0., 10.};

unsigned long bricks[] = /* Define texture image */
{OxO00ffffff, Oxffffffff,
OxOQOffffff, Oxffffffff,
OxOO0ffffff, Oxffffffff,
0x00000000, 0x00000000,
Oxffffffff, OxQ0ffffff,
Oxffffffff, OxO0ffffff,
Oxffffffff, OxO00ffffff,
0x00000000, 0x00000000};

/* Define texture and vertex coordinates */

float tO[] = {0., 0.}, vo[] = {-2., -4., 0.};
float tl1l[] = {16., 0.}, v1[] = (2., -4., 0.};
float t2[] = {16., 32.}, v2[] = {2., 4., 0.};
float t3[] = {0., 32.}, v3[] = {-2., 4., 0.};
main ()
{

if (getgdesc(GD_TEXTURE) == 0) {

fprintf (stderr, "texture mapping not available on
this machine\n");
return 1;

Version 2.0 Textures 18-3

keepaspect (1, 1);

winopen ("brick");
subpixel (TRUE) ;
RGBmode () ;

lsetdepth (0x0, Ox7fffff);
doublebuffer();

gconfig(); (
mmode (MVIEWING) ;

ortho(-4., 4., -4., 4., 1., 16.);

texdef2d (1, 1, 8, 8, bricks, 0, texprops);
tevdef (1, 0, tevprops);

texbind (TX_TEXTURE_O, 1);

tevbind (TV_ENVO, 1);

scrsubdivide (SS_OFF, scrparams);/* Screen subdivision */
translate (0., 0., —-6.); /* Move poly away from viewer */
while (!getbutton (LEFTMOUSE)) {

cpack (0x0) ;
clear();

pushmatrix(); (i

rotate (getvaluator (MOUSEX) *5, 'y');
rotate (getvaluator (MOUSEY) *5, 'x');

cpack (Oxffcceceec) ; /* Cement color */
bgnpolygon () ; /* Draw textured rectangle */
t2f (t0); v3f (v0);

t2f (tl); v3f(vl);

t2f£(t2); v3f(v2);

t2f (£3); v3f (v3);

endpolygon () ;
popmatrix () ;
swapbuffers () ;

texbind (TX_TEXTURE 0, 0); /* Turn off texturing */ (ij

Version 2.0 Textures 18-4

18.1 Texture Coordinates—t, texgen, scrsubdivide

This section describes how to map textures onto geometry using texture
coordinates and how texture coordinates are generated at screen pixels. In
Figure 18-2, coordinate axes S and T define 2-D texture space. By definition,
a texture lies in the range 0 to 1 along both axes. (s,t) pairs not necessarily
limited to this range index the texture.

To define a mapping, assign texture coordinates to the vertices of a geometric
primitive; this process is called parameterization. Figure 18-2 shows a
parameterized triangle and how the parameterization defines the mapping
between coordinate systems. You can either assign texture coordinates
explicitly with the t subroutine, or you can let the system automatically
generate and assign texture coordinates using the texgen subroutine.

Next, the current texture matrix transforms the texture coordinates. This
matrix is set while in mmode (MTEXTURE) and is a standard 2-D
transformation matrix. Thus, the (s,?) pair is treated as a 2-D point and is
transformed accordingly.

The final step generates s and ¢ at every pixel center inside a geometric
primitive by interpolating between the vertex texture coordinates during
scan-conversion. The IRIS-4D/VGX uses hardware to linearly interpolate
texture coordinates. Although hardware interpolation is very fast, it is
incorrect for perspective projections. The scrsubdivide subroutine
improves s and ¢ interpolation—and consequently image quality—for
perspective projections.

Version 2.0 Textures 18-5

Texture Space Object Space

T 1,1 (0, 10) = (.2, .8)
O, ‘l ----------- s ——
Mapping
(s1,11) = (.4, 2 (
............... e
(2,12 = (8, 4)
0,0 1,0
S
Figure 18-2. Mapping from Texture Space to Geometry in Object Space

t
The t subroutines specify texture coordinates. Currently supported forms (

take a two-element array whose type can be short, long, float, or double
(Table 18-1). The first array component is s, the second is ¢.

Array Type 2-D Form
short integer t2s
long integer t21
float t2f
double t2d

Table 18-1. The t Subroutine

In the sample program, notice that a t subroutine is invoked before each v
subroutine to assign different texture coordinates to each vertex. This

particular parameterization defines a simple mapping that preserves the

rectangular shape of the brick texture. Because the s and ¢ values are greater

than 1, the texture is repeated. (

Version 2.0 Textures 18-6

Although the given mapping is straightforward, you can stretch, squash, or
otherwise distort the texture as it is mapped onto the polygon by changing the
texture coordinates and/or polygon geometry. For example, change the 3
texture coordinate definition in the sample program to float t3[] =

{0., 8.}; note how the brick pattern is stretched in one half of the polygon.

texgen

texgen generates texture coordinates as a function of object geometry.
Current generation algorithms compute the distance of a vertex from a
specified plane and calculate texture coordinates proportional to this distance.
The TG_LINEAR mode defines the plane in object coordinates so the
parameterization is fixed with respect to object geometry. For example, you
can use this mode to texture map terrain using sea level as the reference
plane. In this case, the altitude of a terrain vertex is its distance from the
reference plane. You canuse TG_LINEAR so that vertex altitude indexes the
texture to map white snow onto peaks and green grass onto foothills.

The TG_CONTOUR mode defines the specified plane in eye coordinates. The
ModelView matrix in effect at the time of mode definition transforms the
plane equation. Thus, the transformation matrix is not necessarily the same
as that applied to vertices. This mode establishes a “field” of texture
coordinates that can produce dynamic contour lines on moving objects.

Coordinates are generated on a per-vertex basis and override coordinates
specified by the t commands. You can independently control the generation
of either or both texture coordinates. If you generate only one coordinate, the
other is specified by the t subroutines.

The form of the plane equation used is Ax + By + Cz + D = 0 and is
represented by the values A, B, C, andD. In this formulation, the plane
normal is the vector [A,B,C] and the plane constant is D. For example, the
plane X=Y is defined by {1.,-1.,0.,0.}.

The following code fragment illustrates how to use the TG_LINEAR function
to generate s coordinates proportional to vertex distance from the object
coordinate plane, X=Y . The first call to texgen defines the generation
algorithm for the s coordinate; the second call activates s coordinate
generation so that the system generates an s coordiante for each vertex..

Version 2.0 Textures 18-7

float tgparams([] = {1., -1., 0., 0.}
texgen (TX_S, TG_LINEAR, tgparams) ;
texgen (TX_S, TG_ON, tgparams) ;

scrsubdivide

On the IRIS-4D/VGX, texture coordinates are linearly interpolated in screen
space by hardware the same way color is interpolated. Although this
produces fast rendering, it is mathematically incorrect for perspective
projections. For example, you can modify the sample program by replacing
the ortho subroutine with perspective (600, 1., 1., 16.),which
introduces perspective distortion. Because of incorrect interpolation, textures
no longer appear fixed to a surface but shift as the surface moves. This effect
is called “swimming.”

Swimming occurs because texture coordinates are interpolated after the
perspective division (in screen coordinates) when they should be interpolated
in eye coordinates. Because the hardware does not support eye coordinate
interpolation, you can use screen subdivision, scrsubdivide, 10 improve
texture coordinate interpolation. Screen subdivision can also improve the
accuracy of fog by correctly interpolating w (see Chapter 13).

The SS_DEPTH algorithm subdivides polygons and lines into smaller pieces.
Colors, texture coordinates, and the homogeneous coordinate w at newly
generated vertices are correctly interpolated in eye coordinates rather than in
screen coordinates. Because incorrect interpolation is limited to smaller
pieces, error globally decreases and image quality increases. Consequently,
you can “tune” image quality by modifying the amount of subdivision.

Note: scrsubdivide is most effective for large, non-tessellated polygons
and lines. Highly tessellated surfaces (e.g., curved surfaces) have, in
essence, already been subdivided and thus benefit little from further
subdivision.

Version 2.0 Textures 18-8

SS_DEPTH subdivision slices screen coordinate polygons and lines by a
fixed grid in Z. Spacing between Zplanes is constant throughout the grid and
is determined by the three scrsubdivide parameters: maximum screen Z,
minimum screen size, maximum screen size. The first value in the parameter
list specifies the desired distance between subdivision planes in units set by
lsetdepth. If polygon slices generated using this metric span a distance in
pixels less than minimum screen size, the distance between subdivision
planes is increased until the slices are larger than the minimum screen size.
This can occur when a polygon is oriented edge-on, so that it spans little
screen distance. If polygon slices generated using the maximum screen Z
metric span a distance in pixels greater than maximum screen size, the
distance between subdivision planes is decreased until the slices are smaller
than the maximum screen size. This parameter is often useful for polygons
with little perspective that suffer from too little subdivision.

In practice, the minimum and maximum screen size parameters are used to
keep slices from becoming too small or too big, respectively. However,
these parameters can introduce situations where polygons that share an edge
are sliced by differently spaced grids. This generates T-vertices that can
cause pixel dropout along the shared edges. To avoid T-vertices, you can
“turn off” the screen size parameters by setting them to 0 so only the
maximum screen Z parameter is used. You can turn off any parameter by
setting it to 0. For example, a parameter list of {0., 0., 10.} specifies
subdivision every 10 pixels.

The following code fragment illustrates how the sample program uses screen
subdivision:

float scrparams[] = {0., 0., 10.};
scrsubdivide (SS_OFF, scrparams);

To turn on screen depth subdivision, change the SS_OFF mode to
SS_DEPTH. With the parameter list of {0., 0., 10.}, the quadrilateral is
subdivided every 10 pixels and the image quality is improved. You can view
the tessellation produced by scrsubdivide by drawing only polygon
outlines using the polymode(PYM_ LINE) subroutine (see Chapter 2).

Version 2.0 Textures 18-9

18.2 Texture Functions—texdef2d, texbind

The previous section addressed how texture coordinates are assigned to and
interpolated across geometric primitives. This section discusses how texture
values are computed from given texture coordinates. How texture values are
used to modify the color and opacity of a pixel is the subject of Section 18.3,
where tevdef and tevbind are discussed.

Note: All geometry including polygons, lines, points, and characters are
texture mapped. Characters always have texture coordinates (0.,0.).

This section introduces texture function—a function that returns one or more
values for a given texture coordinate. The GL subroutine texdef2d defines
such a function. The subroutine texbind activates a texture function. The
texdef2d and texbind combination is similar to the lighting and material
subroutines, 1mdef and 1mbind. texdef2d and 1mdef both define
functions and assign a unique index for each function defined. An optional
set of attributes is associated with each function. Texture functions can be
redefined by calling texdef2d with the index of a previously defined
function. As with materials, only one texture function can be active, or
bound, at a time. The binding process and defining process are separated for
performance reasons—it takes substantially less time to activate a texture
than to define one.

A texture function consists of an image defined as a 2-D array of pixels with
one to four components per pixel, and a set of properties that determine how
samples are derived from the image. Regardless of the pixel dimensions, the
image is mapped into an st-coordinate range such that its lower-left corner is
(0.,0.) and its upper-right corner is (1.,1.). The texture function’s property set
determines how the texture image is sampled and how the texture function
evaluates outside the range (0.,0.) , (1.,1.).

For each pixel to be textured, the texture function generates texture values
based on the texture coordinates of the pixel’s center, and the area in texture
pixels onto which the pixel maps.

Version 2.0 Textures 18-10

The brick texture function in the example program is created with the
following texde f2d subroutine:

float texprops[] = {TX_MINFILTER, TX POINT,
TX_MAGFILTER, TX POINT,
TX WRAP,TX REPEAT, TX_NULL};

texdef2d(1, 1, 8, 8, bricks, 0, texprops);
The brick texture is activated using the texbind call:

texbind (TX_TEXTURE_0, 1);

The texture image array format is consistent with 1rect read. The image is
a packed array of pixels stored as an array of unsigned long words. Each
row of pixels starts 1ong word aligned, so rows must be byte-padded as
necessary. The image array has one to four components per pixel and is
stored in the following format:

Components Pixel Type Byte Ordering
1-Component Intensity 10, I, 12, I3, 14, ...
2-Component Intensity-Alpha A0,10, AL 11, A2, ..
3-Component Red, Green, Blue BO, GO, RO, B1, G1, ...
4-Component Red, Green, Blue, Alpha A0, B0, GO, RO, A1, ...

Table 18-2. Texture Image Array Format

In the texdef2d subroutine, the first parameter specifies the unique index,
or name, that identifies the texture. The second parameter specifies the
number of 8-bit components per texture pixel and the corresponding number
of 8-bit components that each texture sample produces. The third and fourth
parameters specify the width and height, in pixels, of the texture image. The
fifth parameter is a pointer to the image array. The last two parameters
specify a list of optional properties to modify the texture function.

Version 2.0 Textures 18-11

The optional parameter list is an array of symbols terminated with the
TX_NULL symbol. In this example, texprops explicitly specifies
TX_MINFILTER, the filter function for minifying texture (used whenever the
pixel being textured maps to an area greater than one square texture pixel),
and TX_MAGFILTER, the filter function used when the pixel being textured
maps 1o an area less than or equal to one texture pixel. (See Section 18.2.1
for a discussion of minification and magnification filters.) In this example,
TX_MINFILTER and TX_MAGFILTER are sct to use point sampling. (
TX_WRAP, which specifies what to do when st coordinates are outside the
range (0.,1.), is set to TX_REPEAT, which specifies that only the fractional
parts of the texture coordinates are used, thereby creating a repeating pattern.

By setting TX_WRAP [0 TX_REPEAT, the small 8x8 pattern is repeated across
the polygon, creating an entire wall of bricks. If you replace TX_REPEAT
with TX_cramp, you would see the brick pattern only once, in the corner of
the polygon, where the s and ¢ coordinates are in the range (0.,1.). The edges
of the texture would be smeared across the rest of the polygon. TX_CLAMP is
useful for preventing wrapping artifacts when mapping a single image onto
an object.

18.2.1 Minification and Magnification Filters (

During the texture mapping process, the texture function computes texture
values based on the texture coordinates at the center of a pixel being textured
and the area in texture space onto which the pixel maps. One of two filtering
algorithms is used depending on the size of this area. If the area is less than
the area of one texture pixel, the texture is magnified at this pixel, and the
texture function’s magnification algorithm is used. Conversely, if the area is
greater than the area of one texture pixel, the texture is minified at this pixel,
because the pixel being textured maps onto more than one texture pixel. In
this case the texture function’s minification filter is used.

Version 2.0 Textures 18-12

Computing filtered samples or values from the texture function is
computationally the most expensive part of the texture mapping process. The
GL provides a variety of minification and magnification filters from which to
choose. The filter performances vary in terms of speed and image quality.
There is not a minification/magnification filter pair that is ideal for all
applications; it is wise to experiment with various combinations. The
following filters are available:

TX_MAGFILTER TX_MINFILTER

TX_POINT TX_POINT

TX_BILINEAR TX_BILINEAR
TX_MIPMAP_POINT
TX_MIPMAP_LINEAR
TX_MIPMAP BILINEAR

Table 18-3. texdef2d Filter Choices

There are two magnification filters to choose from: TX POINT and
TX_BILINEAR. TX POINT returns the value of the texture pixel that maps
the closest to the center of the pixel being textured. TX BILINEAR returns
the weighted average of the four texture pixels that map the closest to the
center of the pixel. TX_POINT is faster than TX_ BILINEAR, but has the
drawback that mapped textures can appear boxy, as there is not as smooth a
transition between texture pixels as there is with TX_BILINEAR. If the
texture image does not have sharp edges, this effect might not be noticeable.

The TX_POINT or TX BILINEAR algorithms can be used for minification
as well. The drawback of using one of these filters for minification is that
only one or four of the texture pixels that map onto the area of the pixel
being textured are considered in the texture value computation. If the texture
is mapped so that it is shrunk by a factor greater than two, it might appear to
shimmer as it moves or even appear to have a moire pattern on top of it.
These aliasing artifacts result from undersampling, or not including in the
texture value computation the contributions of all of the texture pixels that
map onto the pixel being textured. The artifacts can be alleviated by using
one of the MipMap filters.

Version 2.0 Textures 18-13

The MipMap filters work with an array of prefiltered versions of the texture
image called a MipMap. Each image in the array has half the resolution of
the image before it, but still maps into the texture coordinate range (0.,0.) to
(1.,1.). For any minification factor, there is one image in the MipMap with
texture pixels that map to an area in texture space less than or equal to the
area that the pixel being textured maps into. Samples interpolated from this
image do not have the undersampling artifacts discussed above. The
minification filters TX MIPMAP_ POINT and TX MIPMAP BILINEAR
determine the correct MipMap image to sample from, then perform the same
filtering computations as their non-MipMapped counterparts.

In applications where texture scaling varies widely across a polygon, the
polygon can have samples from many different images of a MipMap, and the
discrete transition between images of a MipMap can be distracting. In these
situations, TX MIPMAP LINEAR might be the minification filter of choice.
TX_ MIPMAP "LINEAR linearly interpolates between point samples of the
two images of the MipMap that have the closest scale factor, or area
mapping, to the area that the pixel being textured maps into. The weighting
of the interpolation is based on the relative closeness of the images’ scale
factors to the texture scale factor for the pixel being textured.

Sometimes you might not want the blurring from MipMap filtering, as is
frequently the case when texture alpha is used to approximate geometry, such
as in a row of trees. In these circumstances, TX_BILINEAR is a good
minification filter choice. The textured object appears sharp at the cost of
additional aliasing.

Both aliasing and blockiness of the textured polygon in the example program
are reduced if you change the texprops array to:

float texprops[] = {TX_MINFILTER, TX_MIPMAP BILINEAR,
TX_MAGFILTER, TX BILINEAR,
TX_WRAP, TX REPEAT, TX NULL};

Version 2.0 Textures 18-14

18.3 Texture Environments—tevdef, tevbind

A texture environment specifies how texture values modify the color and
opacity of an incoming shaded pixel. The tevdef subroutine defines a
texture environment, and the tevbind subroutine makes it active. As with
texbind, there can be only one bound texture environment.

The texture environment function takes a shaded, incoming pixel color
(Rin,GinBinAin) and computed texture values (tex) as input, and outputs a
new color (Rout,Gout,Bout,Aout).

There are three texture environment types: TV_MODULATE, TV_BLEND, and
TV_DECAL. Eachbehaves differently based on the number of components
the ¢ currently bound texture has.

TV_MODULATE Incoming color components are multiplied by texture
values. Which texture value multiplies which incoming
color component is a function only of the number of
texture components (see texdef).

Rout= Gout= Bout= Aout=
1-component Rin*Itex Gin*Itex Bin*Itex Ain
2-component Rin*Itex Gin*tex Bin*Itex Ain*Atex
3-component Rin*Rtex Gin*Gtex Bin*Btex Ain
4-component Rin*Rtex Gin*Gtex Bin*Btex Ain*Atex
TV_BLEND Texture values are used to blend the incoming color and

the active texture environment color, which is a single
RGBA constant (Rconst,GconstBconst,Aconst). The
texture environment color is specified with the
TV_COLOR parameter.

Version 2.0 Textures 18-15

Blend Equations

1-component Rout = Rin*(1-Itex) + Rconst*Itex
Gout = Gin*(1-Itex) + Geonst*Itex
Bout = Bin*(1-Itex) + Bconst*Itex
Aout = Ain

2-component Rout = Rin*(1-Itex) + Rconst*Itex
Gout = Gin*(1-Itex) + Geonst*Itex
Bout = Bin*(1-Itex) + Bconst*Itex
Aout = Ain*Atex

3-component not available

4-component not available

TV_DECAL Texture alpha (referred to as Atex in the equations
below) is used to blend the incoming color and the
texture color. ‘

Blend Equations

1-component not available
2-component not available
3-component ' Rout = Rtex
Gout = Gtex
Bout = Btex
Aout = Ain)
4-component Rout = Rin*(1-Atex) + Rtex*Atex

Gout = Gin*(1-Atex) + Gtex*Atex
Bout = Bin*(1-Atex) + Btex*Atex
Aout = Ain

In the example program, the texture environment is defined using the
following call to tevdef:

float tevprops([] = {TV_COLOR, .75, .13, .06, 1.,
TV_BLEND, TV_NULL};
tevdef (1, 0, tevprops);

It is set to be the active texture environment using the following call to
tevbind:

tevbind (TV_ENVO, 1);

Version 2.0 Textures 18-16

The brick texture used is an intensity map. The texture environment creates a
colored brick pattern by blending the gray polygon color and the red texture
environment color based on the intensity of the brick texture map.

18.4 Texture Programming Hints

After you understand the basics of the Graphics Library’s texture mapping
routines, the following hints can be useful in getting the optimal performance
from your IRIS-4D/VGX system.

scrsubdivide

Turn on scrsubdivide only when you need it

Because scrsubdivide generates many polygons from each incoming
polygon, it is wise to turn off this feature when it is not needed, such as
when you are drawing non-texture mapped polygons or highly tessellated
texture mapped polygons.

Use only as much subdivision as you need

Choose the scrsubdivide parameters carefully. For maximum
performance, only use as much subdivision as is necessary. Textures
without high frequencies need less subdivision than those with high
frequencies.

Version 2.0 Textures 18-17

texdef2d

The GL resizes images when necessary

Internally, the Graphics Library works only with images whose

dimensions are powers of two. texdef2d automatically resizes images

as necessary. To avoid resizing, pass texdef2d images that have widths

and heights that are powers of two. (

Use as few components as necessary

The more components a texture has, the longer it takes to map the texture
onto a polygon; for optimal speed, use as few components as possible. If
you are not taking advantage of a texture’s alpha, define the texture as a
one- or three-component texture. If you do not need a full-color texture,
define the texture with one or two components.

Use the simplest filter you need

The per-pixel speed of the texture filter functions is related to the number
of interpolations the filter has to perform. The filters in order from
fastest to slowest are : TX_POINT, TX MIPMAP_POINT,

TX MIPMAP_LINEAR, TX_ BIL INEAR, andX MIPMAP BILINEAR.

There is some overhead per polygon for using MipMap filters. If a scene (
has a large number of textured polygons, or if the polygons are

subdivided finely, performance is improved if MipMap filters are not

used.

High-resolution textures

Textures that exceed the maximum dimensions of the graphics hardware
are resized to the maximum dimensions. The maximum dimensions for
textures using MipMapping are half of those that do not. The effect is
that large textures using MipMapping are fuzzier than those that do not.

Alphaless systems

Systems without alpha memory also lack storage for a fourth texture
component. On such systems, the alpha component of four-component
textures always appears to be 255. One-, two-, and three-component
textures behave the same on systems with or without alpha.

(.

Version 2.0 Textures 18-18

texdef2d makes a copy of the texture image

The image passed to texdef2d is copied. This copy and all other data
associated with the texture, such as its MipMap, are saved in the user's
memory space until the texture is redefined or the program exits.

texbind

Bind textures as infrequently as possible

texbind can be a time-consuming operation, especially if the texture is
not resident in the graphics hardware. To achieve maximum
performance, draw all of the polygons using the same texture all
together.

Texture caching

Hardware texture memory is a finite resource managed by the IRIX
kernel. The kernel guarantees that the currently bound texture of a
program resides in this memory, whenever the program owns the
graphics pipe. Beyond that, the kernel keeps as many additional textures
as possible in the hardware texture memory. 10-span VGX systems have
2.5 times as much texture memory as 5-span systems as long as the
accumulation buffer is not used. When a texture is bound, if it is not
resident in the texture memory and there is not enough room remaining
for this texture, one or more of the resident textures are swapped out. To
minimize the frequency of this swapping, use smaller textures or try to
switch them less often.

General

Use afunction for fast drawing of objects with texture alpha

When the alpha component of a texture is used to approximate geometry
(such as when a texture is used to describe a tree), the polygons must be
blended into the scene in sorted order to properly realize the coverage
defined by the alpha component. This sorting and blending requirement
can be removed by using afunction. afunction (0, AF_NOTEQUAL)
specifies that only pixels with non-zero alpha be drawn. See the
afunction man page for more details.

Version 2.0 Textures 18-19

Texture calls between bgn/end sequences

With the exception of the t commands, the texture subroutines
described in this chapter cannot be called in the middle of bgn/end
sequences such as bgnpolygon/endpolygon.

Turn off texturing when you are not texturing

A common bug in texturing applications is forgetting to turn off (
texturing when drawing non-textured objects. Not supplying texture
coordinates does not disable texturing. Texturing is disabled only with

one of the following subroutine calls: texbind (TX_TEXTURE_0, 0) Or
tevbind(TV_ENVO0,0).

Texturing only works in RGB mode

The behavior of texturing is not defined in color index mode.

Program Example 2

The following code illustrates the use of multiple textures, including a 1-D
texture that uses texture alpha for blending. (
#include<stdio.h>
#include<gl/gl.h>
#include<gl/device.h>

/* Texture environment */
float tevprops{] = {TV_MODULATE, TV_NULL};

/* 1D RGBA texture map representing temperature as color and
* opacity */

float texheat[] = {TX_WRAP, TX_CLAMP, TX_NULL};

/* Black->blue->cyan->green->yellow->red->white */

unsigned long heat[] = /* Translucent -> Opaque */
{0x00000000, 0x55££0000, O0x77f££££00, 0x9900££00,
0xbbOOffff, Oxdd0000ff, Oxffffffff};

Version 2.0 Textures 18-20

/* Point sampled 1 component checkerboard texture */
float texbgd[] = {TX_MAGFILTER, TX_POINT,TX_ NULL};
unsigned long check[] =
{ 0x££800000, /* Notice row byte padding */
0x80££0000};

/* Subdivision parameters */
float scrparams{] = {0., 0., 10.};

/* Define texture and vertex coordinates */

float tO[] = {0., 0.}, vO[] = {-2., —-4., 0.};
float t1[] = {.4, 0.}, v1[] = {2., -4., 0.};
float t2[] = {1., 0.}, v2[] = {2., 4., 0.};
float t3[] = {.7, 0.}, v3[] = {-2., 4., 0.};
main ()
{

if (getgdesc(GD_TEXTURE) == 0) {

fprintf (stderr,
"texture mapping not available on this machine\n");
return 1;
}
keepaspect (1, 1);
winopen ("heat") ;
subpixel (TRUE) ;
RGBmode () ;
lsetdepth (0x0, OxX7fffff);
doublebuffer();
gconfig();

blendfunction (BF_SA,BF_MSA) ; /* Enable blending */

mmode (MVIEWING) ;
perspective (600, 1, 1., 16.);

/* Define checkerboard */

texdef2d(1, 1, 2, 2, check, 0, texbgd);
/* Define heat */

texdef2d(2, 4, 7, 1, heat, 0, texheat);
tevdef (1, 0, tevprops);

tevbind (TV_ENVO, 1);

Version 2.0 Textures 18-21

translate (0., 0., —-6.);

while (!getbutton (LEFTMOUSE)) {
cpack (0x00000000) ;

clear():;

scrsubdivide (SS_OFF, scrparams);/* Subdivision off */
texbind (TX_TEXTURE_ 0, 1); /* Bind checkerboard */
cpack (0x£f£102040) ; /* Background rectangle color */
bgnpolygon () ; /* Draw textured rectangle */
t2f(vO0); v3£f(vO0); /* Notice vertex */
t2f(vl); v3f (vl); /* coordinates used *x/
t2f(v2); v3f(v2); /* as texture coordinates */
t2£(v3); v3f(v3);

endpolygon () ;

pushmatrix();
rotate (getvaluator (MOUSEX) *5, 'y"');
rotate (getvaluator (MOUSEY) *5, 'x');

/* Subdivision on */
scrsubdivide (SS_DEPTH, scrparams) ;

texbind (TX_TEXTURE_O, 2); /* Bind heat */ (
cpack (Oxf£f£££££f); /* Heated rectangle base color */
bgnpolygon () ; /* Draw textured rectangle */

t2f (t0); v3f(v0);

t2£(tl); v3f(vl);

t2f(t2); v3f(v2);
t2£(t3); v3f(v3);
endpolygon () ;
popmatrix();

swapbuffers ()’

texbind (TX_TEXTURE_ O, 0); /* Turn off texturing */

Version 2.0 Textures 18-22

Appendix A. Scope of GL Statements

Each of the Graphics Library programming statements has a given scope
within the IRIS-4D hardware or software. Some statements affect the state
of the currently selected framebuffer, other statements affect the state of the
current window, still others affect the state of the current process, etc. This
appendix lists all the GL statements and defines the scope of each statement.

This appendix includes three tables. Tables A-1 and A-2 define codes that
are used in Table A-3. Table A-1 defines the codes used to represent the
state types of each GL programming statement, as well as the system
resource on which the statement operates. This code is used in the leftmost
column of Table A-3. Table A-2 defines codes used to convey additional
information about each of the programming statements. Not every statement
has a code as defined in Table A-2; when a statement does include one of
these codes, it is in the rightmost column of Table A-3.

State types Operates on
f framebuffer (i.e. drawmode-dependent)
m mmode dependent
c colormap (there is a separate screen-wide color map for each
framebuffer)
w window
s screen
p process
t textport (affects a different process from the caller's)
d display (a collection of screens and input devices)

obsolete

o]

renders into current framebuffer (selected by drawmode) or
non-modal framebuffer state (such as texture coordinates,
trimming curves)

Table A-1. GL State Types

Version 2.0 Scope of GL Statements A-1

The scope of each GL statement is limited according to the state types listed
in Table A-1. These state types are used as abbreviations in the list of GL
statements included in Table A-3.

Table A-2 lists additional information, included in the rightmost column of
Table A-3 for each GL programming statement.

Code Description

a attribute (affected by pushattributes and
popattributes)

g only takes affect when gconfig() is executed

v can be changed between bgn*/end* calls

w applies to next

winopen/swinopen/winconstraints call

Table A-2. Additional information codes

Table A-3 lists all the GL programming statements with their respective state
types and other information included for reference. Table A-4 lists the GL
programming statements you can call before winopen, ginit, orgbegin.

A-2 Graphics Library Programming Guide IRIS-4D Series

Version 2.0

State Code

Statement Other

T g T80T g T =

-~ N = =~ = = = =

~ VoV T O £ 0 o0

= =

=

acbuf

acsize
afunction
addtopup
arc*
attachcursor
backbuffer a
backface
bbox2*
bgnclosedline
bgnline
bgnpoint
bgnpolygon
bgngstrip
bgnsurface
bgntmesh
bgntrim
blankscreen
blanktime
blendfunction
blink
blkgread

ot

callfunc
callobj
charstr
chunksize
circ*

clear
clearhitcode

v,a

Table A-3. GL Programming Statments

Scope of GL Statements

A-3

A-4

State Code Statement

Other

clipplane
clkoff
clkon
closeobj
cmode
cmov”
color*
compactify
concave
cpack
crv

-‘—us-c—«s—n-oo_o_s

crvn
curorigin
cursoff
curson
curstype
curvebasis

£ T £ 70T 7

curveit
curveprecision
cyclemap
czclear

dbtext
defbasis

O s =

defcursor
deflinestyle
defpattern
defpup
defrasterfont
delobj
deltag

T T U T U T T T Q =

9.a

v,a

v,a

Table A-3. GL Programming Statments (continued)

Graphics Library Programming Guide

IRIS-4D Series

Version 2.0

State Code

Statement Other

s~ s YU £~~~V DOV OT s

5'10'1-1

-

-

£ TV UV £ £ £ =

depthcue

dglclose

dglopen

dopup

doublebuffer g
draw*

drawmode a
editobyj

endclosedline

endfeedback

endfullscrn

endline

endpick

endpoint

endpolygon

endpupmode

endgstrip

endselect

endsurface

endtmesh

endtrim

feedback

finish

fogvertex

font a
foreground

freepup

frontbuffer a
frontface

Table A-3. GL Programming Statments (continued)

Scope of GL Statements

A-5

A-6

State Code

Statement

Other

"‘EEEEEEE“’EE*UEOEEE"‘SQ"EUUEUU’EE

fudge

fullscrn
gammaramp
gbegin
gconfig
genobj
gentag
getbackface
getbuffer
getbutton
getcmmode
getcolor
getcpos
getcursor
getdcm
getdepth
getdescender
getdev
getdisplaymode
getdrawmode
getfont
getgdesc
getgpos
getheight
gethitcode
getlsbackup
getlsrepeat -
getlstyle
getlwidth
getmap

[V I < V]

Table A-3. GL Programming Statments (continued)

Graphics Library Programming Guide

IRIS-4D Series

State Code

Statement Other

T £V T "g »®» o g 0= £ 0% £ 0= 70T £ 0 g 03

° s

getmatrix

getmcolor

getmmode

getmonitor

getnurbsproperty

getopenobj

getorigin -

getothermonitor

getpattern

getplanes

getport

getresetls

getscrbox

getscrmask

getshade

getsize

getsm a

getvaluator

getvideo

getviewport

getwritemask a

getwscrn

getzbuffer

gexit

gflush

ginit

glcompat
GLC_OLDPOLYGON
GLC_ZRANGEMAP

Table A-3. GL Programming Statments (continued)

Scope of GL Statements

A-7

A-8

State Code

Statement

. Other

s s 0oa0asfsDDODDOS=s3s s 50 £ 70 ™8

s £ £ £

greset
gRGBcolor
gRGBcursor
gRGBmask
gselect
gsync
gversion
iconsize
icontitle
imakebackground
initnames
ismex
isobj
isqueued
istag
keepaspect
IRGBrange
lampoff
lampon
linesmooth
linewidth
Imbind
BACKMATERIAL
MATERIAL
LMODEL
LIGHT
Imcolor

Table A-3. GL Programming Statments (continued)

Graphics Library Programming Guide

IRIS-4D Series

State Code Statement Other

Imdef
BACKMATERIAL
MATERIAL v
LMODEL
LIGHT

loadmatrix

loadname

logicop

lookat

Irectread

Irectwrite

Isbackup

Isetdepth

Ishaderange

Isrepeat a

makeobj

maketag

O DT =22 g3 £ 39070V TVTD

mapcolor (there is a separate screen-wide color map
for each framebuffer)

mapw

mapw2

maxsize w
minsize w

£ £ £ €

mmode
move”

-

mswapbuffers
multimap g

-

multmatrix

n* v
newpup

newtag

nmode

€ © T g 3

Table A-3. GL Programming Statments (continued)

Version 2.0 Scope of GL Statements A-9

A-10

State Code

Statement

Other

~ s s£s3~ s~ £ "33 "ODDOVDDOV T O0=F7DTE=

s -

noborder
noise

noport
normal
nurbscurve
nurbssurface
objdelete
objinsert
objreplace
onemap
ortho
ortho2
overlay
pagecolor
passthrough
patch
patchbasis
patchcurves
patchprecision
pclos

pdr*
perspective
pick
picksize
pixmode
pmv*

pnt*
pntsmooth
polarview

Table A-3. GL Programming Statments (continued)

Graphics Library Programming Guide

IRIS-4D Series

Version 2.0

State Code

Statement Other

T oOUUTDUTUVTUTAQa~Tzg =3 T 0=x=g=g=23 = g8 "

- =

—

polf*

poly*
polymode
polysmooth
popattributes
popmatrix
popname
popviewport
prefposition w
prefsize w
pupmode
pushattributes
pushmatrix
pushname
pushviewport
pwlcurve
gcontrol
gdevice
genter

qgetfd

gread

greset

qgtest

rerv*

rdr*

readRGB
readpixels
readsource
rect”

rectcopy

Table A-3. GL Programming Statments (continued)

Scope of GL Statements A-11

A-12

State Code

Statement

a+0 0 s s ~ =

-~ ~ 3 3 ~

[—

0o o s ao=T as £ £ T3

rectread
rectwrite
rectzoom
resetls

reshapeviewport

RGBcolor
RGBcursor
RGBmode
RGBrange

RGBwritemask

ringbell
rmv*
rot
rotate

rpatch

rpdr*

rpmv*

sbox*

scale

sclear
scrbox
screenspace
scrmask
scrnattach
scrnselect
scrsubdivide
setbell
setcursor
setdblights
setdepth

Graphics Library Programming Guide

Table A-3. GL Programming Statments (continued)

IRIS-4D Series

State Code Statement Other

setlinestyle a
setmap

setmonitor
setnurbsproperty

setpattern a
setpup

setshade

setvaluator

setvideo

shademodel a
haderange

singlebuffer g
smoothline

spclos

splf*

stencil

O 0O ~0 s »” 000D s s O —~ =5

stensize
stepunit
strwidth a
subpixel
swapbuffers
swapinterval
swaptmesh
swinopen
swritemask
tevbind
tevdef
texbind
texdef2d

T £V g " ggsg g gz T

Table A-3. GL Programming Statments (continued)

Version 2.0 Scope of GL Statements A-13

State Code Statement Other

texgen
textcolor
textinit
textport

t*

tie

tpoff

tpon

translate
underlay g
ungdevice

v

videocmd
viewport
winattach
winclose
winconstraints
windepth
window
winget
winmove
winopen
winpop
winposition
winpush
winset

wintitle
wmpack a

-~ s s ssssss£3sss0g® "0V s3 T TOD =TT 7TZ

Table A-3. GL Programming Statments (continued)

A-14 Graphics Library Programming Guide IRIS-4D Series

Version 2.0

State Code

Statement Other

- e —h =k = —h =

writeRGB

writemask a
writepixels

xfpt*

zbuffer

zclear

zdraw

zfunction

zsource

zwritemask

Table A-3. GL Programming Statments (continued)

Scope of GL Statements A-15

Table A-4 lists the GL programming statements you can call before calling
the firstwinopen, ginit, Or gbegin).

Statements

fudge
foreground
imakebackground
iconsize
keepaspect
maxsize
minsize
noborder
noport
prefposition
prefsize
stepunit
getgdesc
gversion
ismex
scrnselect

Table A-4. GL Programming Statements called before
winopen, ginit, or gbegin

A-16 Graphics Library Programming Guide IRIS-4D Series

Index

A

acbuf, 15-35
accumulation buffer, 15-34
accumulation, 15-1, 34
acsize, 15-34
aliasing, 15-3
alpha bitplanes, 15-8
animation 6-1
antialiased polygons, 15~-11
antialiasing, 15-1, 15-3
in color map mode, 15-12
in RGB mode, 15-14
lines, 15-17
polygons, 15-25
arcs, 2-37, 2-38
filled, 2-39
attachcursor 5-10

B

B-spline cubic curve 14-22
backbuffer 6-8, 8-12
backface 8-23
backfacing polygon removal 8-1
bbox2 16-7
bgnclosedline, 2-9
bgnline, 2-4, 4-10
bgnpoint, 2-10
bgngstrip, 2-27
bgntmesh, 2-21
bitplanes 11-1, 10, 4—1

overlay 11-1

underlay 11-1

writing to 11-17
blanking time 1-24
blankscreen 1-23
blanktime 1-24
blendfunction, 15-6
blending factors, 15-7

blending function, accumulating, 15-16

blending, 15-1, 156

blink, 4-20

blkqread 5-12

bowtie polygons, 2-12, 2-15, 2-16

Version 2.0

buffer
back 6-8, 8-12
front 6-8, 8-12
swapping 6-10
writing to 6-9
buffering
double 6-1
single 6-1
swapping 6-2
buttons 5-1, 3, 25
mouse 5-4

C

¢ subroutine, 4-6
callobj 16-6
Cardinal spline cubic curve 14-19
character position, current, 3-3, 3-8
character, defining, 3-9
characters, 1, 3-2, 3-8
charstr, 3-2, 3-3, 3-13
chunksize 16-17
circ, 2-35
circles, 2-35
filled, 2-35
clear 8-7
clipping
fine, 3-3, 3—4
gross, 3-3, 3—4
clkoff 5-17
clkon 5-16
closed lines, 2-9
closeobj 16-3
cmode 6-5
cmode 11-8
cmode, 4-15
cmov, 3-2, 3-5
color 11-3, 9, 24
color information, getting, 4-22
color map mode 9-24, 4-14, 4-17
antialiasing in, 15-12
line aliasing in, 15-18
color map
initialization of 1-6
color modes, 4-1
color ramps, 15-12

Index

color, 4-1, 4-2 D
compatibility 8-2, 11-19, 24, 4-6

concave polygons, 2—-12, 2-14 dbtext 5-18
convex polygons, 2—12 default cursor 11-19
coordinate systems 7-2 defbasis 14-23
coordinate transformations 7-1 defcursor 11-19, 23
coordinates deflinestyle, 2—47
homogeneous, 2-7 defpattern, 2-50
normalized 7-2 defrasterfont, 3-9, 3-10
screen 7-2 deltag 16-13
world 7-2 depth-cue mode
cpack, 4-5 setting color map indices—
cross-hair cursor 11-22 Ishaderange 13-3
crv 14-24 setting range of color indices—
crvn 14-29 IRGBrange 13-4
cubic curve testing if off or on—getdecm 13-2
B-spline 14-22 turning off and on—depthcue 13-2
cardinal spline 14-19 depthcue 13-2
parametric 14-16 device.h 5-1
curorigin 11-19, 23 devices
current character position, 3-3, 3-8 : cursor 5-15, 25
current font, 3-2 ghost 5-16
cursor 5-13, 1-2 input/output 5-16
cursor devices 5-15 keyboard 5-13
cursor glyph, defining 11-23 timer 5-2, 15
cursor techniques 11-19 window manager 5-14
cursor type 11-22 dial and button box 5-2, 18
cursor dials 5-2
cross-hair 11-22 digitizer tablet 5-3, 25
default 11-19 display modes 6-10, 4-1
defining 11-19 double buffer mode 6-1, 11-8
get characteristics of 11-24 doublebuffer 6-5, 11-8
origin of 11-23 draw, 2-43
set characteristics 11-23 drawing curves,
CURSORDRAW 11-9 crv 14-24
cursors 11-20 crvn 14-29
curstype 11-19, 22 setup, curvebasis 14-23
curve mathematics setup, curveprecision 14-24
B-spline cubic curve 14-22 setup, defbasis 14-23
overview 14-16 drawing into the z-buffer 8-9
rational curves 14-35 drawing modes 11-1, 8
B-spline cubic 14-22 drawing rational curves,
cardinal spline 14-19 rcrv 14-36
cubic parametric 14-16 rcrvn 14-36
drawing on the screen 14-23 drawing subroutines, arguments, 2-31
rational 14-35 drawing surfaces,
curvebasis 14-23 overview 14-37
curveit 14-33 patch 14-40
curveprecision 14-24 patchbasis 14-39
cyclemap, 4-283, 4-24 patchcurves 14-39

patchprecision 14-39
rpatch 14-40
drawing text, 3-5

ii Graphics Library Programming Guide IRIS-4D Series

drawing, 2-1
curves 14-23
high-level, 2-31
high-performance, 2-3
line, 2—4
old-style, 2—-40
11-9, 19

E

editobj 16-10
endclosedline, 2-9
endline, 2-5
endline, 4-10
endpick 12-7
endpoint, 2-10
endgstrip, 2-27
endtmesh, 2-21
event queue 5-6
event, defined 5-4

F

fine clipping, defined, 3-3
font query subroutines, 3-15
font, 3-13
font, defining, 3-13
fonts, 3-1, 3-8

raster, 3-2, 9
frame buffer, 156
frontbuffer 6-8, 8-12

G

gamma correction 11-1, 4-25
gammaramp, 4-25
gconfig 6-5, 11-5, 8, 4-23
genlock 1-23

genobj 16-5

gentag 16-13
getbackface 8-23
getbuffer 6-9

getbutton 5-4, 5
getcmmode, 4-23, 4-24
getcolor 11-3, 9, 4-22
getcursor 11-24

getdcm 13-2
getdescender 3—-15
getdev 5-5
getdisplaymode 6-10
getdrawmode 11-10
getfont, 3-15

getgdesc 1-7

Version 2.0

getgpos, 2—-41

getheight, 3-15

getlsrepeat, 2—-49

getlstyle, 2—48

getlwidth, 2—49

getmap, 4-23, 4-24

getmapcolor 11-9

getmatrix 7-39

getmcolor 11-3, 4-22

getmonitor 1-23

getopenobj 16-11

getothermonitor 1-23

getpattern, 2-50

getplanes 1-6

getscrbox 7-35

getscrmask 7-34

getsize 7-7

getvaluator 5-5

getvideo 1-21

getviewport 7-33

getwritemask 11-9, 18

gexit 1-6

gexit, 1-6

ghost devices 5-13, 16

glcompat 1-9, 2—-40

global state attributes 1-1, 6, 10

Gouraud shading, 4-7, 4-17

graphical object
culling/pruning—bbox2 16-7
deleting list item—objdelete 16-14
deleting—delobj 16-5
drawing—callobj 16-6
editing definition of 16-10
generate identifier for—genobj 16-5
inserting list item—objinsert 16-14
listing objects open for editing 16-11
memory management for 16-17
overview 16-1
replacing list item 16-15
testing for—isobj 16-3
end definition—closeobj 16-3
overview 16-2
start definition—makeobj 16-2

graphics position, current, 2-41, 43, 3-2

greset 1-6

gross clipping, defined, 3-3

gselect 12-13

gsync 6-11

gversion 1-8

Index iii

H

hidden surface removal 8-1
highlights, simulating 9-3
homogeneous coordinates, 27

initnames 12-7

input devices 5-1

input subroutines 5-1
input/output devices 5-16
isobj 16-3

isqueued 5-12

istag 16-13

jaggies, 15-2

K

keepaspect 7-7

keyboard 5-2, 4, 13, 16, 18
keyboard devices 5-13
keys 5-3, 25

L

light ing
enabling 9-9
light source
defining 9-7
infinite 9-8, 11, 12
transforming the position of 9-8
light sources, number of 9-8
light
direction of 9-2
incident 9-1
intensity of 9-2
reflected 9-1
lighting facility 9-1
lighting model, defining 9-7
lighting performance 9-23
lighting
activating 9-8
ALPHA component of 9-21
ambient 9-3
ambient component of 9-6, 8, 19
attenuation of 9-13
changing settings for 9-10
configuration for 9-6
default settings of 9-20
diffuse component of 9-6, 19
disabling 9-9
emission component of 9-4, 12

iv Graphics Library Programming Guide

fundamentals of GL 9-4
properties of 9-6
specular component of 9-6
SPOTLIGHT property of 9-15
two-sided 9-16
line aliasing
in color map mode, 15—-18
in RGB mode, 15-20
lines, 2-43
antialiasing, 15-17
closed, 2-9
poly, 2-6
relative, 2—43
linesmooth, 15—-17
linestyle, 2-48
definition of, 2—47

linewidth, 2-48

Live Video Digitizer option 1-21
loadmatrix 7-39

loadname 12-6

lookat 7-11, 15

IRGBrange 13-4

Isetdepth 8-7

Ishaderange 13-3

Isrepeat, 48

makeobj 16-2

maketag 16-12

mapcolor 4-15, 11-3, 5, 9, 19, 21

mapping screen to world coordinates,
mapw 16-18, 19

mapw?2 16-19

material properties, efficient changes to

9-18
material
configuring 9-6
reflectance characteristics of 9-2
surface 9-1, 6
lighting restrictions on use of 9-22
matrix stack 7-25
matrix
loading 7-39
premultiplying 7-38
returning 7-39
meshes, 2-20, 27
meshes, triangular, 2-20
mode change 5-4, 14
mode
color map 9-24, 4-14, 4-17
double buffer 6-1
double buffer 11-8

IRIS-4D Series

(

(

multimap, 4-23

onemap, 4-23

RGB 11-8, 4-2, 4-3

single buffer 6-1, 8-12, 11-8
modeling subroutines 7-19
modeling transformations 7-18
modes

color, 4—1

drawing 11-1, 8
mouse buttons 5-4
move, 2-43
multimap 4-23, 6-5, 11-8
multimap mode, 4-23
multmatrix 7-38

N

name stack functions
initnames 12-7
loadname 12-6
popname 12-6
pushname 12-6

newtag 16-12

noise 5-11

non-simple polygons, 2-15

NORMALDRAW 11-17

normalized coordinates 7-2

normals, surface 9-4, 12, 23

o)

objdelete 16-14
object space

mapping texture coordinates to 18-1

objinsert 16-14
objreplace 16-15
onemap 4-23, 11-8
ortho 7-8, 10, 12
ortho2 4-12, 7-8, 10
OVERDRAW 11-9, 17
overlay 6-5, 11-5, 8
overlay bitplanes 11-1

P

parametric cubic curve 14-16
patch 14-40

patchbasis 14-39
patchcurves 14-39
patchpresision 14-39
patterns, 2-50

pdr, 2—44

perspective 7-5, 7, 13

Version 2.0

pick 12-5
picking mode
defining size of picking region—
picksize 12-8
ending function endpick 12-7
overview 12-1
starting function pick 12-5
picksize 12-8
pmv, 2—44
pnt, 2-42
pntsmooth, 15-11
point sampled polygons, 2-17, 2-18
points, 2-10, 42
antialiasing, 15-11
polarview 7-11, 13, 14
polling 5-4, 5
polygon antialiasing, 15-8

polygon subdivision for texture mapping

18-8
polygons, 2—44
antialiased, 15-11
antialiasing, 15-25
bowtie, 2-12, 2-15
concave, 2-12, 2-14
convex, 2-12
definition of, 2—12
filled, 2—44, 2—-45
flat shaded, 4-7
non-simple, 2-15
point sampled, 2-17, 2-18
relative, 2—44
simple, 2-12
true, 2-16
unfilled, 2—45
rendering, 2-29
polylines, 2-6
polymode, 2-29
polysmooth, 15-25
pop-up menus 11-2
popattributes 1-10
popmatrix 7-25, 26
popname 12-6
popviewport 7-34
projection transformations 7-4
PUPDRAW 11-9
pushattributes 1-10
pushmatrix 7-25, 26
pushname 12-6
pushviewport 7-34

Index

Q

qdevice 5-6
genter 5-11
gread 5-7
qreset 5-7
gtest 5-6
quadrilateral strips, 2-27
queue
event 5-6
input 5-4

R

rational curve 14-35
rcrv 14-36
rcrvn 14-36
rect, 2-32
rectangles, 2-31, 2-32
filled, 2-32
screen boxes, 2-34
redraw 5-4, 14
reflectance
ambient 9-2, 3
diffuse 9-2, 3
kinds of 9-2
specular 9-2, 3

RGB mode 8-12, 11-8, 17, 4-3, 15-15

line aliasing, 15-20

point aliasing, 15-14
RGBcolor, 46
RGBmode 6-5, 11-8
RGBwritemask 11-18

right-hand rule, backfacing polygons and

the 9-5
ringbell 5-17
rot 7-20, 21

rotate 7-18, 22
rpatch 14-40

S

scale 7-21

scrbox 7-35

scrboxes 7-32

screen boxes, 2-34

screen coordinates 7-2

screenmask, 3-3, 7-32
defined 7-33

scrmask 7-33

scrsubdivide statement 18-8

select mode

turning off endselect 12-14

turning on gselect 12-13

setbell 5-18

setcursor 11-19, 20, 23
setdblights 5-18
setlinestyle, 2—47
setmap, 4-23, 4-24
setmonitor 1-22
setpattern, 2-50
setvaluator 5-16
setvideo 1-19

shading, Gouraud, 4-7, 4-17
significant bits, 2-31
simple polygons, 2—-12

single buffer mode 6-1, 8-12, 11-8

singlebuffer 6-5, 7, 11-8
sprintf, 4-5

stack, matrix 7-25

strips, quadrilateral, 2-27
strwidth, 3—6

stylus 5-3, 25

subpixel positioning, 154
subpixel, 15-1, 15-4
subroutines, modeling 7-19
surfaces

automatic normal generation from

9-5
drawing 14-37

swapinterval 6-10
swaptmesh, 2-21, 2-22
systems, coordinate 7-2

T

t subroutine 18-6
tablet, digitizer 5-3, 25

tag

text

creation of—maketag 16-12

creation of—newtag 16-12
deleting—deltag 16-13

generating unique—gentag 16-13

testing for—istag 16-13
items in display lists 16-11

display of, 3—1
drawing, 3-5

texture coordinates

vi Graphics Library Programming Guide

contouring of 18-7
distortion of 18-6
generating 18-5

generation from object geometry

18-7

how to compute texture values from

18-10

IRIS-4D Series

(

mapping 18-5
texture environment 18-15
texture mapping 18-1
texture matrix 18-5
tie 5-10
timer 5-13
timer devices 5-2, 15
transformations

coordinate 7-1

modeling 7-18

projection 7-4

user-defined 7-38

viewing 7-11
translate 7-20, 22
triangular mesh, 2-20
true polygons, 2-16

U

UNDERDRAW 11-9, 17
underlay 11-5, 8
underlay bitplanes 11-1
unqgdevice 5-12

\'

valuators 5-1, 3, 16

version number of Graphics Library 1-8
version number of Graphics Library, 1-8

vertex, 2-7

video options 1-19
videocmd 1-21

viewing transformations 7-11

viewpoint, infinite (lighting) 9-11

viewport 7-32

viewport, 3-3

viewpont, defined 7-32
viewports 7-32

viewports, popping 7-34
viewports, pushing 7-34
viewports, returning 7-33
viewports, screen box 7-35

w

window 7-7, 8, 9

window devices 5-13

window manager 5-4

window manager devices 5-14
winopen 1-5

winopen, 1-5

world coordinates 7-2
writemask 11-9, 10, 12, 17, 24

Version 2.0

getting 11-18
z-buffer 8-14

Z

z coordinate comparisons 8-13
z values, 2-D versus 3-D, 2-8
z-buffer writemasks 8-14
z-buffer, drawing into 8-9
z-buffering 8-2

advanced 8-9
zbuffer 8-12
zclear 8-7
zdraw 8-9, 12
zfunction 8-13
zsource 8-13
zwritemask 8-14

Index

vii

