Porting Applications
to the IRIS-40 Family

IRIS-40 Series

2 SiliconGraphics
Computer Systems

Documen t number: 007-0909-010

Porting Applications
to the IRIS-4D Family

Version 1.1

Document Number 007-0909-010
(Includes Porting Applications Update,
Document Number 007-0909-011)

Technical Publications:

Marcia Allen
Gail Kesner
Amy Smith
Diane Wilford

Engineering and Technical Marketing:

Kurt Akeley
Tom Davis
Gary Griffin
Todd Nordland
Mike Schulman
Thant Tessman
Mike Thompson
Chris Wagner
Mason Woo

© Copyright 1988, Silicon Graphics, Inc. - All rights reserved

This document contains proprietary and confidential information of
Silicon Graphics, Inc., and is protected by Federal copyright law. The
contents of this document may not be disclosed to third parties, copied
or duplicated in any form, in whole or in part, without the express
written permission of Silicon Graphics, Inc.

U.S. Government Limited Rights

Use, duplication or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (b) (2) of the Rights in Technical Data and Computer

Software clause at 52.227-7013. Contractor/manufacturer is Silicon
Graphics Inc., 2011 Stierlin Road, Mountain View, CA 94039-7311.

Porting Applications to the IRIS-4D Family
Version 1.1

Document Number 007-0909-010
(Includes Porting Applications Update,
Document Number 007-0909-011)

Silicon Graphics, Inc.
Mountain View, California

The words IRIS, Geometry Link, Geometry Partners, Geometry Engine
and Geometry Accelerator are trademarks of Silicon Graphics, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

1. Introduction

This book shows you how to port your application to the IRIS 4D family of
workstations. Most of the information is directed toward people who are
porting from an IRIS Series 2000 or 3000 workstation running GL2-
W2.5/3.5 or 3.6. However, regardless of your current platform, this book
provides useful porting information.

1.1 Developing a Porting Strategy

All IRIS-4D Series workstations run the same release of system software
from Silicon Graphics. This means that UNIX, languages, and compilers
are completely compatible across the 4D family; however, the IRIS 2000
and 3000 workstations cannot run this same release. This means that a port
from an IRIS Series 2000/3000 to an IRIS-4D Series workstation involves
changes in UNIX, languages, compilers, and graphics. In other words, this
port involves both moving from software release IRIS3.6 to 4D3.0, and
moving from 2000/3000 graphics to 4D graphics. This matrix illustrates
these two paths; yes indicates that the software release can run on the
workstation, no indicates that it cannot.

IRIS 3IXXX 4D/XX v 4D/XX GT : future 4Ds
Sy (3000 graphics 9——6} 4D graphics j
S/W T

v \
3.6 ! !
yes \ no X no . no
v \
4D2.0 no \ yes ! no ! no
N ! '
A 1
4D3.0 no X yes : yes : no
future \ X
4D no yes X yes . yes

Version 1.0 Introduction 1-1

Once you have ported to the 4D family, however, subsequent ports between
IRIS-4D Series workstations are much simpler and, at most, involve only
changes to graphics.

4D/XX 4D/XX GT ‘-@
4D graphics j

Because some Graphics Library subroutines are dependent on the
underlying hardware, there are some graphics differences between IRIS-4D
Series workstations that affect the portability of your code. You can ensure
that your application is completely portable from one 4D to another in two
ways:

¢ Use only the Graphics Library subroutines that are common to all
members of the family.

e Structure your code so it can use different subroutines depending on
which 4D it is currently using.

If you use the first approach, the same version of code will run on all
machines without modification. However, in most cases, the Graphics
Library subroutines that are specific to a particular IRIS 4D are those
subroutines that greatly increase graphics performance or take advantage of
unique features. If you use the second approach, your code will be
completely portable, and will also take advantage of the unique features of
each machine.

This book shows you how to port your application so that it will run on any
IRIS-4D Series workstation; it does not show you how to take advantage of
any features or subroutines that not all members of the 4D family offer.
Once you port your application according to the guidelines in this book,
Porting Applications Between IRIS-4D Series Workstations summarizes the
differences between members of the 4D family and shows you how to
optimize your code for a particular IRIS 4D.

1-2 Porting Applications IRIS-4D Series

1.2 How This Document is Organized

This book is divided into two sections. The Section 1, *‘IRIS 3000 to 4D
Compatibility Guide’’, describes compatibility issues in the areas of
languages and compilers, graphics, the operating system, networking, and
hardware. Itis a reference book that lists differences and modifications, and
gives suggestions about how the differences affect porting. It also provides
several tips for troubleshooting the port.

Section 2, *‘IRIS 3000 to 4D Conversion Tutorial’’, concentrates on the
graphics portion of your port. It is a step-by-step guide that shows you how
the differences affect your port. It presents this information through both
textual descriptions and sample programs.

Version 1.0 Introduction 1-3

Section 1:
IRIS 3000 to 4D
Compatibility Guide

Contents

1. Introduction

2. Porting C Code

2.1

2.2

23

Command Line Swntches
2.1.1 Supported cc Switches
2.1.2 Supported Id Switches
2.1.3 Unsupported cc Switches
2.1.4 Unsupported Id Switches
Code Compatibility .
2.2.1 Single and Double Precxsuon
2.2.2 Trigonometric Functions .
2.2.3 Unsigned Characters .
2.2.4 C DataFiles .
2.25 The BSD Compatible lerary
2.2.6 Miscellaneous Code Differences
2.2.7 New Reserved Words
2.2.8 Profiling .
2.2.9 Standard Libraries . .
2.2.10 Compiling Large Programs .
Making Libraries .o

3. Porting FORTRAN Code

3.1

3.2

Command Line Switches
3.1.1 Supported f77 Switches .
3.1.2 Unsupported f77 Switches
3.1.3 Supported Id Switches
3.1.4 Unsupported /d Switches
Code Compatibility
3.2.1 Compiler Directives
3.2.2 Functions and Subroutines .
3.2.3 /0O Compatibility
3.2.4 Non ANSI Standard Code

2-11
2-11
2-12
2-13
2-14

3.2.5 Miscellaneous Code Differences
3.2.6 Compiler Memory-Alignment Extensions
3.2.7 Compiling Large Programs _ .

3.3 Making Libraries e

4. Interlanguage Calls

5. Graphics Compatibility .
5.1 The Window Manager
5.2 Screen Resolution .
5.3 New Drawing Subroutines
5.4 Gouraud Shading
5.5 Drawing Modes .
5.6 Overlays and Underlays
5.7 Cursors .
5.8 Display Modes
5.9 Concave Polygons .
5.10 Feedback Parsing .
5.11 Textports and wsh .
5.12 Obsolete and'Modified- Subrouhnes
5.18 #include Files

6. Miscellaneous Compatibility Issues

6.1 Operating System, Communications, and Hardware

Issues .
6.2 Porting Device Dnvers
6.2.1 Mapping and Unmapping Devnces
6.2.2 Manipulating the User’s Virtual Region

7. Troubleshooting Tips

3-11
3-11
3-12

4-1

5-10
5-11
5-12
5-13
5-14

6-1

6-1
6-6
6-7
6-8

7-1

List of Tables

Table 3-1.

Table 3-2.

Table 5-1.
Table 5-2.

Table 5-3.

Table 5-4.
Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.

Default IRIS-4D Series Compiler
Directives

Unsupported Series 2000 and 3000 Compiler
Directives . . e e e .

Comparison of Old and New Subroutines

Subroutines Not Supported by IRIS-4D Series
Workstations . e e e e e e

Subroutines Supported by Only the Non-GT
Workstations . .. o e e

Subroutines that Work Differently
Graphics Tips

Language and Compiler Tips
Performance Tips

Hardware Tips

5-13
5-14
7-2
7-4
7-6
7-7

List of Figures

Figure 5-1. A Solid Concave Polygon

5-10

1. Introduction

This document describes issues that arise in porting applications written in
C or FORTRAN from an IRIS Series 2000 or 3000 workstation to any
IRIS-4D Series workstation. By using the information in this document,
you can write graphics code that will run on any IRIS-4D Series workstation
that is running the 4D1-3.0 software release. It covers these topics:

o C compiler (cc) and linker (Id) switch support and compatibility

e FORTRAN compiler (f77) and linker (Id) switch support and
compatibility

e interlanguage calling on the IRIS-4D Series workstations

¢ graphics compatibility
e operating system, networking, and hardware differences; information on
porting device drivers

e troubleshooting your port

Chapter 5, “‘Graphics Compatibility’’, gives an overview of differences in
graphics. Section 2 of this document, ‘‘IRIS 3000 to 4D Conversion
Tutorial”’, covers several of these differences in more depth through both
textual discussion and sample code. Read Chapter 5 first, then see Section 2

for more information.

Note: Because the IRIS Series 2000/3000 workstations use a different
processor than the IRIS-4D Series workstations, any application
written using assembly or machine language on the former must be
rewritten for the latter.

Version 1.0 Introduction 1-1

2. Porting C Code

This chapter covers porting code from IRIS Series 2000 and 3000 machines
to the IRIS-4D Series workstations. The chapter covers supported and
unsupported cc and Id switches, as well as code differences between the
machines.

2.1 Command Line Switches

This chapter contains lists of all supported and unsupported Series 2000 and
3000 compiler and linker switches.

2.1.1 Supported cc Switches

The IRIS-4D Series cc compiler driver supports the following Series 2000
and 3000 compiler driver switches.

—C Suppress the loading phase of compilation.

-C Prevent the macro prepocessor from removing C-style
comments.

-E Run the macro preprocessor and send to standard output.

—Idir Look in directory dir for missing include files. Caution: On

IRIS-4D Series workstations, —I without a dir argument will
cause the compiler not to look in default directories. This is
not supported on Series 2000 and 3000 machines.

-0 Do optimization.

Version 1.0 Porting C Code 2-1

-p Do profiling.

-P Run only the macro preprocessor and place results in file.i.

-0 Name the final output file.

—Dname Define name to preprocessor.

—Uname Remove any initial definition of name. (
-Zg Load necessary graphics files and libraries.

-S Leave assembly language in file.s.

-g Geinerate debugging information.

2.1.2 Supported I/d Switches

The IRIS-4D Series loader supports these Series 2000 and 3000 loader
switches:

—e The following argument is taken to be the name of the entry
point of the loaded program.

—Ix Search the specified library libx.a. Caution: —Lx must be (
placed after the modules containing references to library x.

-M Produce a primitive load map.

-n Make the text portion read only. Caution: When using 77 to

call /d, this switch is the default on Series 2000 and 3000
machines, but is not supported as such on IRIS-4D Series

workstations.

-0 Name output file.

-r Generate relocation bits.

—s “‘Strip’’ the output by removing all symbols except locals and
globals.

-T Set text segment origin with next argument.

-u Take following argument as symbol and enter it as undefined (

in symbol table.

2-2 Compatibility Guide IRIS-4D Series

-X Do not preserve local symbols in the output symbol table.
Caution: This switch is the default on Series 2000 and 3000
machines, but is not supported as such on IRIS-4D Series

workstations.
—ysym Trace symbol sym.
—Z Make the file ‘‘demand paged’’.
—d Force definition of common, even if —r flag is present.
=S Strip all output, except for locals and globals.
-v Output each file as processed.

2.1.3 Unsupported cc Switches

The following IRIS Series 2000 and 3000 switches are not supported by the
IRIS-4D Series cc compiler:

-ZA Pass remaining string to as. Note: Use this switch
combination in place of —ZA: —ta —Wa,string.

-ZC Pass remaining string to ccom.

-7t Cause instructions for floating point accelerator to be

generated. Note: This switch is transparent on the IRIS 4D
because it is handled automatically.

—ZF Pass remaining string to FORTRAN front end.

—Zi Use the specified file as the run-time startup, rather than the
standard C run-time startup. Note: Use this switch
combination in place of —Zi: —tr —hpath —B, where path is the
pathname to the startup files crtl.o and crn.0.

—-ZN Pass —N switch to cpp. Note: Use this switch combination in
place of —ZN: —Wp,—N.

—ZP Pass remaining string to pc front end.

-7z Print all calls to exec(). The IRIS-4D Series equivalent is —v.

—X Keep local symbols in output symbol table and suppress

default. This is the default on IRIS-4D Series workstations.

Version 1.0 Porting C Code 2-3

-n Cause loader to not load program with shared text. This is the
default on IRIS-4D Series workstations.

-Zq Time all subprocesses.
—Zr Load necessary remote graphics files and libraries.
-Zv Give additional diagnostics. (

—ZRlibroot Pass —R switch to Id. The —L flag provides a similar function.

2.1.4 Unsupported /d Switches

The following Series 2000 and 3000 switches are not supported by the
IRIS-4D Series version of Id:

—-A Specifies incremental loading; the resulting object may be read
into an already executing program.

-D Pad data segment.

-N Do not make text portion read only.

—Rlibroot Use libroot for the search path of the files named in the -/ : (
switch.

—t Print name of each file as it is processed. The IRIS-4D Series

equivalent is —v.

-X Save local symbols, except for label names.

2.2 Code Compatibility

Few changes need be made to Series 2000 and 3000 C code to allow it to
run on the IRIS-4D Series cc compiler.

2-4 Compatibility Guide IRIS-4D Series

2.2.1 Single and Double Precision

The C compiler on Series 2000 and 3000 workstations defines the types
float and double as single precision, and the type long float as double
precision. On IRIS-4D Series workstations, double is supported as double
precision. If you need single precision performance, you can use the —float
option with cc(1) to prevent type promotion in expressions, and ANSI C
prototypes, as used in the graphics library, to prevent unnecessary float to
double promotion (see /usr/include/gl.h). For more information, see the C
Language Reference Manual.

C on the IRIS Series 2000 and 3000 does not convert floats to double
precision in expressions, or when passing them as arguments in functions. C
on the IRIS 4D converts floats to double precision in expressions, or when
passing them as arguments in functions. C on the IRIS 4D also extends
floats to double precision (double) when passing them as parameters, unless
a corresponding function prototype is in force. To avoid this overhead, you
must create appropriate prototypes for their functions. (See Chapter 6 of the
C Reference Manual for information on appropriate prototypes.) This
difference affects functions whose floating-point parameters are accessed as
non-floating point data, as such functions on IRIS-4D Series workstations
must use the varargs facility (see section 2.6).

‘When the overhead associated with promoting floats to double in
expressions is not justified by the added precision, you can specify no
promotion by using the —float switch with cc(1). This switch informs the
compiler that expressions whose highest data type is float (i.e., where no
doubles occur) retain sufficient precision if they are evaluated in single
precision. Use of the —float switch does not affect coercion of floats to
doubles in parameter lists.

Note: Type double is synonymous with type float (32 bits) on Series
2000 and 3000 systems, but is synonymous with type long float (64
bits) on the IRIS-4D Series. Make sure that arguments in format
statements for scanf and printf reflect this change.

Version 1.0 * Porting C Code 2-5

2.2.2 Trigonometric Functions

The UNIX library trig functions on Series 2000 and 3000 systems do not
conform with System V standards. For performance reasons, the default trig
library functions are single precision, not double precision. Double
precision trig functions have names prepended with “‘_1"".

The IRIS-4D Series UNIX library more closely conforms to System V
standards, and supports only double precision trig functions. Trig function
names with prepended ‘‘_1’’ will compile correctly when math.k is included.

If your code uses math.h and the code contains redundant declarations for
functions that are defined in math.h, you receive warnings from the C
compiler. This can be alleviated by removing the redundant declarations.

Note: No C code changes are required for programs that include math.h;
however, if you define C library routines in-line, you must change
their C code to accommodate the differences in precision.

2.2.3 Unsigned Characters

The C compiler on Series 2000 and 3000 workstations treats characters as
signed by default. On IRIS-4D Series workstations, all characters are
treated as unsigned by default. To avoid conflict, use the —signed switch on
IRIS-4D Series workstations when compiling ported code.

Note: The C compiler on IRIS Series 2000 and 3000 workstations, and
IRIS-4D Series systems recognizes the reserved word signed as
well as unsigned (see section 2.7). New code which must be aware
of the signed-ness property of characters should specify either
signed or unsigned when declaring variables of this type.

2.2.4 C Data Files

The Series 2000 and 3000 C compiler aligns variables differently from the
IRIS-4D Series C compiler. On the IRIS Series 2000 and 3000 workstations,
character data is unaligned and all other data is aligned on 2-byte
boundaries. The IRIS-4D Series workstation alignment rules are much more
restrictive. See Section 2.2.6, ‘‘Miscellaneous Code Differences’’, for more
information. As a result of these alignment differences, you must be careful

2-6 = Compatibility Guide IRIS-4D Series

when you write code that will write and read data files on both IRIS Series
2000 and 3000 workstations, and IRIS-4D Series workstations. Such code
should follow these guidelines:

1. Floating-point values should always be read and written using double
precision (i.e., long float on the Series 2000 and 3000, double or long
float on the IRIS-4D Series).

2. Structures should be written in such a way so as to force the alignment
of elements to be that of IRIS-4D Series workstations. You can force
alignment by:

e placing the element with the most strict alignment as the first element
of the structure or union.

« ensuring that the offset of each subsequent element is correct with its
natural alignment. (Future problems will be avoided if the natural
alignment of all floating-point data is assumed to be 64-bits.)

2.2.5 The BSD Compatible Library

IRIS-4D Series workstations provide the Berkeley 4.3 compatible library in
lusr/lib/libbsd.a. If you need to include the BSD library, compile your
program with this command:

cc -I/usr/include/bsd filename —

To link object files together with the BSD library to create an executable
file, use this command:

cc -o oulput file filename.o -lbsd

See the intro(3M) manual page for more information.

If you are porting from an IRIS Series 3000 workstation running Release 3.4
or an earlier release, substitute the #include <sys/dir.h> file for <ndir>in
your programs on the IRIS 4D.

Version 1.0 Porting C Code 2-7

2.2.6 Miscellaneous Code Differences

The following differences exist between the implementation of C on IRIS-
4D Series workstations and that on the Series 2000 and 3000.

implementation-defined behavior, you should carefully consider

Note: Since some Series 2000 and 3000 C programs rely on (
these areas of incompatibility when porting your code.

» Post- incrementing (decrementing) in parameter lists. The ANSI C
standard specifies that the effect of a postfix auto-increment (decrement)
operator on a variable in a parameter list may be delayed until the call is
made. This liberty is taken by the C compiler on the IRIS-4D Series, and
not by the C compiler on older IRIS series. Thus, the code sequence

extern int count;
foo (count++, count++) ;
check (count) ;

produces different values for the parameters to foo on the IRIS-4D Series

as opposed to earlier systems, although the value of the global variable

count if it is accessed by foo agrees between the systems. Do not rely on

the (implementation-defined) value of data which has been so altered .
within a parameter list. (

 Alignment of global data. Series 2000 and 3000 C aligns adjacent
global data elements on a short boundary. IRIS-4D Series C aligns such
data on long boundaries unless the data item is a double or an aggregate
whose first element is a double. In this case, the global data is aligned on
a double boundary. This difference has no effect on ported code.

« Alignment of structure and array elements. Series 2000 and 3000 C
aligns non-character structure members and array elements on short
boundaries. Structure members and array elements of type char are not
aligned. IRIS-4D Series C aligns each datum on their ‘natural’
alignment; shorts are aligned on short boundaries and doubles on double
boundaries. This may cause errors when using unions in ported code.

Note: The alignment of single-precision floating point data on the)
IRIS-4D Series may be altered in a future release to match that of (
double-precision.

¢ Return values. When a function of type [unsigned] short or char is
called, Series 2000 and 3000 C relies on the caller to properly mask the

2-8 Compatibility Guide IRIS-4D Series

return value. IRIS-4D Series C expects the function to properly mask the
value before returning it. This discrepancy is transparent if a declaration
of the function type is visible to the caller. If the type of the function is
not visible to the caller, the convention used by IRIS-4D Series C
produces the correct return value, while that used by Series 2000 and
3000 C does not. The IRIS-4D Series convention repairs some bugs
existing in current C programs running on the Series 2000 and 3000 when
they are ported. Adverse effects occur only in code which relies on Series
2000 and 3000 conventions.

¢ Variable numbers of arguments. IRIS-4D Series C passes a certain
number of parameters in registers. The specific registers used depends on
the type of the datum. On Series 2000 and 3000 systems, you can use a
pointer to access parameters directly from the parameter area. This is not
allowed on the IRIS-4D; on these systems, functions whose argument list
is variable (e.g., printf) must conform to the following rules in order to
access these parameters:

— The varargs convention must be used.

— parameters must be scalar. (e.g., structures may not be passed in such
instances). A pointer to the base of an array, rather than the array itself,
is passed, so that arrays qualify as scalar parameters.

— the type of the first parameter must be 1ntegra1 or pointer. (¢.g.,
floating-point types are not allowed.)

e Direct C calls from FORTRAN. On the IRIS-4D, the class fortranis a
no-op.

— On the IRIS 4D, you must append an underbar to the name of the C
function that you can call from FORTRAN.

— On the IRIS 4D, the argument list for the function should not be
reversed.

« Bit fields. Bit fields on IRIS 2000 and 3000 systems are inherently
unsigned. Bit fields on the IRIS 4D have their most significant bit
interpreted as a sign bit unless they are declared unsigned. On the IRIS
3000, you see a warning message if a bit field is encountered that is not
declared as unsigned.

Bit fields in the C language tend to be one of its least portable constructs
due to the differences in machine byte- and bit- order. Although both
conform to standards, the IRIS Series 2000 and 3000 and the IRIS-4D

Version 1.0 Porting C Code 2-9

series differ in several important ways in the semantics of bit fields and
their underlying allocation.

One inherently non-portable use of bit fields is to overlay storage. Using
bit fields in this fashion necessitates the programmer knowing how
storage for a field is allocated, i.e., how the fields are packed. Upon
encountering a set of adjacent bit fields, the first bit field is placed in
newly-allocated storage aligned on an int boundary. (The term boundary
used in this section refers to the indicated boundary relative to the start of
the innermost structure which contains the field.) As indicated
previously, structures on the IRIS-4D are always aligned on a four-byte
boundary (an eight-byte boundary if the first element is a double).
Structures on the IRIS Series 2000 and 3000 are aligned on a two-byte
boundary.

A C restriction on the allocation of bit field storage dictates that a bit field
may not straddle an int boundary. Thus, upon encountering a bit field,
the width of the bit field is compared to the distance (in bits) to the next
int boundary. If the new field fits, it is packed adjacent to the previous
element. If it does not, storage is padded to that boundary before the field
is allocated. Unfortunately, the definition of an int boundary is different
on the IRIS-4D than on machines of the IRIS Series 2000 and 3000. On
the IRIS-4D, an int boundary is any address which is a multiple of four
bytes relative to the start of the structure, while on the IRIS Series 2000
and 3000, this boundary is any multiple of two bytes.

This latter difference has especially important ramifications for porting
code which assumes a knowledge of bit field allocation. For example, the
bit field-containing structure

struct {
unsigned a:14,b:22;
}

will have padding bits inserted between a and b on all IRIS systems.
However, the number of padding bits differs: two padding bits on 2000
and 3000 machines, 18 padding bits on the IRIS-4D.

To port code that both uses bit fields and assumes knowledge of their
underlying storage allocation, observe these rules:

e Only use fields of type unsigned.

2-10 Compatibility Guide IRIS-4D Series

« Upon encountering a field £, which follows element ¢ in a structure,
insert a field to pad to the next four-byte boundary if packing f adjacent
to e would cross a four-byte boundary.

2.2.7 New Reserved Words

The C compiler on the IRIS-4D Series is progressing towards
implementation of the emerging ANSI standard for C. To this effect,
function prototypes have been implemented, as well as the identifier class
volatile. This implementation of the new standard adds the following to the
list of reserved words in C:

const signed volatile

Code in which these identifiers are used for other purposes must be changed.

2.2.8 Profiling

The C compiler on the IRIS-4D Series supports enhanced profiling
capability. Basic profiling is provided by the standard UNIX —p switch
which must only be used in the link step on the IRIS 4D. This method
provides data on per procedure execution times in much the same way as it
is provided on older IRIS systems. However, unlike these, it does not
provide procedure invocation counts.

Further control over profiling may be obtained by using the program
pixie(1). Use pixie on an executable (which has not been linked with —p) to
produce a similar executable in which you have inserted instructions to
provide whatever profiling functions you want. (Refer to the manual page
on pixie(1).)

Neither profiling tool. prof or pixie, can be used on a program with shared
libraries. You must relink your program with the unshared versions of the
libraries before profiling it.

For more information, see the IRIS-4D Series Compiler Guide, Chapter 2.

Version 1.0 Porting C Code 2-11

2.2.9 Standard Libraries

This section lists the appropriate command line arguments for linking
functions found in various libraries on the IRIS 4D. These libraries are
identified below by the section number and letter used to identify them in
the IRIS-4D Programmer’s Reference Manual, Volume II.

(€19

(3G)

(3M)

(39)

(3B)

(3N)

2-12

These functions, together with those of Section 2 and those marked
(3S), constitute the Standard C Library libc, which is automatically
loaded by the C compiler, cc (1). The link editor /d (1) searches this
library under the —Ic option. Declarations for some of these
functions may be obtained from #include files indicated on the
appropriate pages.

These functions constitute the IRIS Graphics Library which are
documented in the Graphics Library User’s Guide. If the —Zg flag
is specified, the C compiler searches this library. Declarations for
these functions may be obtained from the #include file <gl.h>.
<device.h>, and <get.h> define other constants used by the
Graphics Library.

These functions constitute the Math Library, libm. The link editor
searches this library in response to the —lm option to ld(1) or cc(1).
Declarations for these functions may be obtained from the #include
file <math.h>.

These functions constitute the ‘‘standard I/O package’’ (see

stdio (3S)). These functions are in the library libc, already
mentioned. Declarations for these functions may be obtained from
the #include file <stdio.h>.

Berkeley compatibility routines. This library provides compatible
implementations of a limited subset of the functions provided by the
Standard C Library in the Berkeley 4.3 Distribution of UNIX.
Include files needed for routines in this library are in the tree
lusrlinclude/bsd. It is recommended that the -Vusr/include/bsd
compiler control be supplied when compiling programs that call
(3B) routines. This library will be searched by the loader when the
—lbsd flag is supplied.

These functions constitute the internet network library. Compiling
instructions are the same as for (3B) routines.

Compatibility Guide IRIS-4D Series

(3R) RPC services built on top of Sun’s Remote Procedure Call protocol.
To compile and link a program that calls any of these routines, use a
compile command of the form:

ce —-I/usr/include/sun -I/usr/include/bsd prog.c \
—-lrpcsve -lsun -lbsd

Note that this library is provided as part of the NFS option package,
So it may not be present on all systems.

(3Y) Yellow Pages routines and RPC support routines. This library
contains routines that provide a programmatic interface to SUN’s
Yellow Pages distributed lookup service. The library also contains
Yellow Pages versions of standard routines like getpwent(3) that are
different in a YP environment. The routines that implement the RPC
protocol also reside in this library. To compile and link a program
that calls (3Y) routines, use a compile command of the form:

cc -I/usr/include/sun -I/usr/include/bsd prog.c \
—-lsun -lbsd

This is required because routines in the (3Y) library call routines in
the (3B) library. Note that the order of the libraries must be as given
in order for the references to be resolved. This library is provided as
part of the NFS option package, so it may not be present on all
systems.

(3X) Various specialized libraries. The files in which these libraries are
found are given on the appropriate man pages.

2.2.10 Compiling Large Programs

The following list of suggestions should help ease the compilation of large
C programs on the IRIS 4D.

» Do not try to optimize your code until you are finished porting.

e Use the —g option if you will be using the symbolic debugger, dbx, or
edge (adb is not supported on the IRIS 4D).

¢ Use the —G 0 option for all modules when first compiling large programs.
After the code is debugged, link your code using the -bestGnum option
to determine what the best value for the -G num switch is, and recompile

Version 1.0 Porting C Code 2-13

all modules using that value. Failure to follow this suggestion could lead
to numerous GP relocation errors from /d.

 The optimizer no longer optimizes functions and subroutines whose
length exceeds the default limit of 500 basic blocks. If your functions and
subroutines exceed this limit, and you compile your program without the
optimization switch (—Olimit #), you see the message (

uopt: Warning: functionname: this procedure not optimized
because it exceeds size threshold; to optimize this procedure,
use -Olimit option with value >= number.

The optimizer has refused to optimize function function name, because its
length (number basic blocks) exceeds the default -Olimit value. To
optimize this function, you must add -Olimit » to your compilation step,
where n is greater than or equal to number.

For example, to change the default limit to 600 basic blocks, set the
optimization switch to 600 (or greater): -Olimit 600.

Note: The relationship between the time required to optimize a
function and its length is not linear.

« To obtain a load map of your program, compile all modules with the -g
switch, and run »nm on the resulting executable. (

¢ To resolve naming conflicts between user and system routines, use the
—Wl,—v switch. It passes the —v switch to /d, which enumerates each
module loaded from the libraries.

2.3 Making Libraries

When making your own libraries on the IRIS-4D, pass each module through
ld(1) before inserting it in the library. Doing this deletes duplicate symbols
and lessens the possibility of overflowing ld’s symbol table later. For
example, before adding the module foo to your library, use these commands:

ld -r foo.o
mv a.out foo.o

2-14 Compatibility Guide IRIS-4D Series

3. Porting FORTRAN Code

This chapter covers porting FORTRAN code from IRIS Series 2000 and
3000 machines to the IRIS-4D Series workstations.

The chapter is divided into two sections; the first lists supported and
unsupported f77 and Id command line switches, and the second covers code
compatibility between IRIS Series 2000 and 3000 machines and IRIS-4D
Series machines.

3.1 Command Line Switches

This chapter contains lists of all supported and unsupported Series 2000 and
3000 compiler and linker switches.

3.1.1 Supported 77 Switches

The IRIS-4D Series f77 compiler driver supports the following Series 2000
and 3000 compiler driver switches:

— Suppress the loading phase of compilation.

—Idir Look in directory dir for missing include files. Caution: On
the IRIS-4D Series workstations, —I without a dir argument
will cause the compiler not to look in default directories. This
is not supported on Series 2000 and 3000 machines.

-0 Do optimization.

-P Run only the macro preprocessor and place results in file.i.

Version 1.0 Porting FORTRAN Code 3-1

Generate debugging information.

Name the final output file.

Define name to preprocessor.

Remove any initial definition of name.

Load necessary graphics files and libraries.

Load necessary remote graphics files and libraries.
Time all subprocesses.

Give additional diagnostics.

Leave assembly language in file.s.

3.1.2 Unsupported 77 Switches

The following Series 2000 and 3000 switches are not supported by the
IRIS-4D Series f77 compiler:

-C

Prevent macro preprocessor from removing C style comments.
Caution: On IRIS-4D Series workstations, this switch
generates runtime subscript checking.

Pass remaining string to as. Note: You can use the following
switch combination in place of ~ZA: —ta —~Wa,string

Pass remaining string to ccom.

Cause instructions for the floating point accelerator to be
generated. Id will automatically generate code for the
accelerator if it exists.

Pass remaining string to the f77 front end.

Use the specified file as the run-time startup, rather than the
standard C run-time startup. Note: You can use the
following switch combination in place of —Zi:

—tr —hpath -B, where path is the pathname to the startup file
crt0.o.

Pass —N switch to cpp. Note: The following combination of
switches can be used in place of ~ZN: ~Wp,-N

3-2 Compeatibility Guide IRIS-4D Series

-L

Pass remaining string to pc front end.

Print all calls to exec(). See the IRIS-4D FORTRAN switch
-v.

Keep local symbols in output symbol table and suppress
default. This is the default on IRIS-4D Series workstations.

Cause loader to not load program with shared text. This is the
default on IRIS-4D Series workstations.

Run only the macro preprocessor ¢pp. Caution: On IRIS-4D
Series workstations, this switch passes arguments to EFL.

Produce a FORTRAN listing for each FORTRAN source file.

—ZRlibroot Pass —R switch to ld.

3.1.3 Supported Id Switches

The IRIS-4D Series loader supports these Series 2000 and 3000 loader

switches:

_e

Version 1.0

The following argument is taken to be the name of the entry
point of the loaded program.

Search the specified library libx.a. Caution: —lx must be
placed after the modules containing references to library x.

Produce a primitive load map.

Make the text portion read only. Caution: When using /77 to
call /d, this switch is the default on Series 2000 and 3000
machines, but is not supported as such on IRIS-4D Series
workstations.

Name output file.
Generate relocation bits.

*‘Strip’’ the output by removing all symbols except locals and
globals.

Set text segment origin with next argument.

Porting FORTRAN Code 3-3

-u Take following argument as symbol and enter it as undefined
in symbol table.

-X Do not preserve local symbols in the output symbol table.
Caution: This switch is the default on Series 2000 and 3000
machines, but is not supported as such on IRIS-4D Series

workstations. (
—ysym Trace symbol sym. A
-z Make the file ‘“‘demand paged’’.
—d Force definition of common, even if —r flag is present.
-S Strip all output, except for locals and globals.
-v Output each file as processed.

3.1.4 Unsupported /d Switches

The following Series 2000 and 3000 switches are not supported by the
IRIS-4D Series version of Id:

-A Specifies incremental loading; the resulting object may be read (
into an already executing program.

-D Pad data segment.

-N Do not make text portion read only.

—Rlibroot Use libroot for the search path of the files named in the -/
switch.

—t Print name of each file as it is processed. The IRIS-4D Series

equivalent is —v.

-X Save local symbols, except for.label names.

3-4 Compatibility Guide IRIS-4D Series

3.2 Code Compatibility

Few changes need be made to Series 2000 and 3000 ANSI standard
FORTRAN code to allow it to run on the IRIS-4D Series f77 compiler. Two
routines, GETARG and IARGC differ on the IRIS-4D Series. In addition, a
number of Series 2000 and 3000 f77 compiler directives are no longer
supported. This chapter also addresses issues concerning interlanguage
calls.

See Section 3.2.7, Compiling Large Programs, for information on porting.

3.2.1 Compiler Directives

The IRIS-4D Series compiler supports these Series 2000 and 3000 compiler
directives:

SINCLUDE filename
$SF66DO
$COL72

Table 3-1 provides a list of default directives for the IRIS-4D Series
compiler and the warnings the compiler produces when it encounters them.

Directive Warning

SNOARGCHECK IRIS-4D Series default
SNOTBINARY IRIS-4D Series default
$SYSTEM IRIS-4D Series default [underscore () only]
SCHAREQU IRIS-4D Series default

Table 3-1. Default IRIS-4D Series Compiler Directives

Version 1.0 Porting FORTRAN Code 3-5

Table 3-2 provides a list of directives which are not supported by the IRIS-
4D Series compiler and the warnings the compiler produces when it
encounters them.

Directive Warning

SARGCHECK not supported

SBINARY not supported
$SYSTEM not supported [percent (%) only]
SINT2 not supported
$LOG2 not supported
$XREF not supported

$SEGMENT not supported

Table 3-2. Unsupported Series 2000 and 3000 Compiler Directives

The IRIS-4D Series f77 switch —i2 performs the same functions as $INT
and S$SLOG.

Note: The $INCLUDE option does not correctly handle line numbers. To
avoid problems, use #include with the correct syntax to include
source files.

3.2.2 Functions and Subroutines

The IRIS-4D Series f77 compiler supports most Series 2000 and 3000
intrinsic functions and subroutines without special invocation. The
command line compiler switch —~ZG loads the remaining Series 2000 and
3000 compatible library routines, allowing you to compile without source
code change when referencing these library routines. You should modify
your FORTRAN source code to support these standard interfaces, except
when you must support code on Series 2000 and 3000 systems as well as
IRIS-4D systems. In this case, you should insert macro preprocessor
commands to define the boundary requirements for these intrinsic routines.
The code can then be compiled conditionally, according to the machine it is
running on.

3-6 Compatibility Guide IRIS-4D Series

The only changes which you must make in porting FORTRAN code from
Series 2000 and 3000 machines are to the indices of the intrinsic functions
GETARG and IARGC:

SUBROUTINE GETARG(I,C)
INTEGER*4 I
CHARACTER* (*) C

INTEGER FUNCTION*4 IARGC ()

In subroutine GETARG, the value of the I'th command line argument is
returned in the variable C. On Series 2000 and 3000 systems, the 1st
argument is the command name; on IRIS-4D Series workstations, the Oth
argument is the command name.

On each system, function IARGC returns the index of the last command
line argument as measured by the version of GETARG on that system.

A special compiler switch, —ZG, loads the Series 2000 and 3000 compatible
GETARG and IARGC objects. If possible, if is better to modify your code
to use the IRIS-4D versions.

3.2.3 1/0 Compatibility

FORTRAN I/0O handling differs between the IRIS-4D Series and Series
2000 and 3000 machines in a few ways; the assignment of preconnected unit
numbers, the format of FORTRAN files opened with specifier

FORM=' UNFORMATTED', FORM='BINARY’,or BUFFERED.

Carriage Control Processing

The IRIS 4D1-3.0 release FORTRAN compiler no longer processes carriage
control information on stdout by default. The 4D1-2.0 release compiler
processed the carriage control so that the first character from a print or write
statement was interpreted as a FORTRAN carriage control character. This
was changed in the 4D1-3.0 release compiler to be compatible with the IRIS
Series 2000 and 3000. If, however, you use the —vms switch, carriage
control information is processed, and the first character in the print
statement is interpreted as a FORTRAN carriage control character.

Version 1.0 Porting FORTRAN Code 3-7

Preconnected Unit Numbers

On IRIS-4D Series workstations, FORTRAN preconnects unit 5 to standard
input, unit 6 to standard output, and unit O to standard error. On Series 2000
and 3000 machines, FORTRAN connects unit O to standard input and
output, and unit 1 to standard error.

Unformatted and Binary Files

The utility uconv(1) converts a FORTRAN unformatted data file either from
Series 2000 and 3000 FORTRAN form to IRIS-4D FORTRAN form, or
vice versa. uconv allows you to port otherwise non-portable data files
opened as FORM=' UNFORMATTED"'.

Series 2000 and 3000 FORTRAN binary files have no record markers, thus
a general conversion tool can not be written. You can, however, write a
FORTRAN program that reads the binary file and writes to an unformatted
file. The FORTRAN programmer must know the format of the file. The
format of the file is determined by the sequence of variables written to the
file. Each WRITE statement defines a record that can be read by an
equivalent READ statement. The unformatted file can then be converted by
uconv, and read by the ported FORTRAN program running on the IRIS-4D
Series machine. If the ported FORTRAN program does not read the binary
file in the same format as it was written, changes to the code may be
required to read the records of the new unformatted file.

Note: uconv can not convert Series 2000 and 3000 FORTRAN data files
opened as either FORM='BINARY' or
FORM='UNFORMATTED' with the $BINARY option. Also,
IRIS-4D FORTRAN will not give an error message for bad FORM
specifiers.

Buffered Files

FORTRAN on the IRIS 4D does not support the OPEN statement. All
FORTRAN I/O is buffered on the IRIS 4D. IRIS 4D FORTRAN and IRIS
Series 3000 FORTRAN are not compatible for mixed C and FORTRAN
routines that read and write to stdin and stdout.

3-8 Compatibility Guide ' IRIS-4D Series

3.2.4 Non ANSI Standard Code

In general, non ANSI standard code is not portable. The IRIS-4D Series f77
compiler may not interpret non-standard code in exactly the same way as the
Series 2000 and 3000 compiler. The following are examples of non-
standard code which are interpreted differently by the two compilers:

DO 100, I =1, 10
I =I+1
100 CONTINUE

CALL XXX (A,B,C)

ENTRY XXX ()

3.2.5 Miscellaneous Code Differences

The following differences exist between the implementation of FORTRAN
on IRIS-4D workstations and that on the Series 2000 and 3000.

 The external names generated for FORTRAN subroutines differ between
the IRIS-4D and the IRIS Series 2000 and 3000. On the IRIS-4D, the
external symbol for a FORTRAN subroutine consists of the subroutine
name (truncated to 32 characters), with all characters in lower case, and
with an appended underbar. Thus, the external name generated for the
FORTRAN subroutine AnySub would be anysub_.

On the IRIS 2000 and 3000, the external symbol generated for a
FORTRAN subroutine consists of the subroutine name (truncated to 31
characters), with all characters in lower case.

» The FORTRAN compiler of the 4D1-3.0 release incorporates
enhancements to allow execution of programs which previously failed
due to misaligned data references. See the IRIS 4D1-3.0 FORTRAN
Release Notes or the FORTRAN Language Reference Manual for more
information.

Version 1.0 Porting FORTRAN Code 3-9

» The optimizer no longer optimizes functions and subroutines whose
length exceeds the default limit of 500 basic blocks. If your functions and
subroutines exceed this limit, and you compile your program without the
optimization switch (—Olimit »), you see the message

uopt: Warning: functionname: this procedure not optimized)
because it exceeds size threshold; to optimize this procedure,
use -Olimit option with value >= number.

The optimizer has refused to optimize function function name, because its
length (number basic blocks) exceeds the default -Olimit value. To
optimize this function, you must add -Olimit # to your compilation step,
where 7 is greater than or equal to number.

For example, to change the default limit to 600 basic blocks, set the
optimization switch to 600 (or greater): -Olimit 600.

Note: The relationship between the time required to optimize a
function and its length is not linear.

o The 4D1-3.0 compiler contains numerous VMS extensions. See
Appendix E in the FORTRAN Language Reference Manual for more
information.

s The IRIS 4D compiler only supports 19 continuation lines following (
ANSI standards; The IRIS 2000 and 3000 compiler supports up to 100
lines.

e The compiler on the IRIS-4D does not allow common blocks to have the
same names as subroutines.

o To allow the FORTRAN front end on the IRIS-4D Series to understand
the non ANSI-standard character\ (backslash), you must change all
incidences of the character in the code to read \ (backslash backslash).
This is done to be compatible with C. Be careful not to overflow your
code past column 72.

e The 4D1-3.0 compiler conforms to the ANSI standard, when you use the
—static switch. However, in Release 4D1-3.0, if you use the default mode,
(—automatic), the compiler does not accept intermixed data and function
statements. This will be fixed in a future release. (

3-10 Compatibility Guide IRIS-4D Series

3.2.6 Compiler Memory-Alignment Extensions

The IRIS-4D RISC architecture imposes certain rules governing how data
may be aligned in memory. A variable or array element of size 7 bytes must
be aligned on a boundary whose address is a multiple of n bytes, upto a
maximum of eight bytes. Release 4D1-3.0 provides a trap handler and
alignment switches to allow access to data which are not so aligned. See
version 1.1 of the FORTRAN Language Reference Manual.

3.2.7 Compiling Large Programs

The following list of suggestions should help ease the compilation of large
FORTRAN programs on the IRIS 4D.

» Do not try to optimize your code until you are finished porting.

e Use the —g option if you will be using the symbolic debugger, dbx, or
edge (adb is not supported on the IRIS 4D).

¢ FORTRAN on the IRIS-4D does not initialize all user variables to zero.
To work around this problem, follow these steps:

1. Compile your program with the -static switch.
2. Compile the same program with the -automatic switch.

3. Compare the results of this program with the results of the program
with the results from the program compiled with the -static switch.
Different results between the two programs mean that there are
unitialized variables in your program.

4. If you get different results, you must debug your program.

» Use the —G 0 option for all modules when first compiling large programs.
After the code is debugged, link your code using the -bestGnum option
to determine what the best value for the -G num switch is, and recompile
all modules using that value. Failure to follow this suggestion could lead
tonumerous GP relocation errors from /d.

¢ When using the optimizer, you must break up programs with more than
12,000 lines of source code into smaller modules. Use -Olimit N to
override the 500 basic block limit. The optimizer is very slow for
functions with more than 500 basic blocks.

Version 1.0 Porting FORTRAN Code 3-11

« To obtain a load map of your program, compile all modules with the -g
switch, and run nm on the resulting executable.

» To resolve naming conflicts between user and system routines, use the
—WIl,—v switch. It passes the —v switch to Id, which enumerates each
module loaded from the libraries.

« If your processor had subscript range checking, or you suspect that an
array reference is out of bounds, use —C, which enables runtime array
subscript range checking.

¢ When you compile very large FORTRAN programs (over 20,000 lines)
with —g, you see this error message:

st_fadd: number of files (4095) exceeds max (4095)

This internal error occurs because your program exceeds the maximum
number of COMMON and EQUIVALENCE statements. This restriction
will go away in a future release. The short term solution is to break the
file by subroutine into separate files. The system can deal with up to 4095
files.

3.3 Making Libraries

When making your own libraries on the IRIS-4D, pass each module through
1d(1) before inserting it in the library. Doing this deletes duplicate symbols
and lessens the possibility of overflowing /d’s symbol table later. For
example, before adding the module foo to your library, use these commands:

1ld -r foo.o
mv a.out foo.o

3-12 Compatibility Guide IRIS-4D Series

4. Interlanguage Calls

Series 2000 and 3000 machines support ‘‘wrappers’’ which rearrange the
stack and allow C and FORTRAN to call each other. These wrappers also
de-reference FORTRAN parameters to allow C routines to receive by value.

Wrappers are implemented on IRIS-4D Series workstations to call C from
FORTRAN only. They are transparent to makefiles already using wrappers.
The IRIS-4D Series workstations also support interlanguage calling without
wrappers, which is the interface of choice when writing new code. The
wrapper generator, mkf2c(1), also has several new features. See the mkf2c(1)
manual page for further information and Appendix C of the FORTRAN
Language Reference Manual.

You should modify Series 2000 and 3000 code that does not use wrappers
for interlanguage calling, and code that uses wrappers to call FORTRAN
from C.

Code that does not use wrappers must adhere to the following IRIS-4D
Series calling conventions:

¢ You must pass arguments on the stack in the same order in both
languages.

¢ You must represent FORTRAN character strings that are parameters as a
pointer and a length. Pass the pointer to the string in the usual argument
position. Pass the length as an additional parameter appended to the
argument list, where the length of the first character string is the first
additional parameter, the length of the second character string is the
second additional parameter, etc. You must add these additional
parameters when calling FORTRAN from C, and can use them to find the
end of the string (FORTRAN character strings are not null-terminated)
when calling C from FORTRAN.

Version 1.0 Interlanguage Calls 4-1

« C routines may not pass or receive value parameters when interfacing to
FORTRAN code. All parameters must be accessed indirectly by using
pointers. This restriction does not include the special parameters added to
the end of the argument list for character string lengths, which are value
parameters.

« External names of FORTRAN subroutines and functions are generated by (
the FORTRAN compiler by changing any uppercase characters to
lowercase, and by appending an underbar. The subroutine, Foo (in
FORTRAN source) would have the external name foo_, which is visible
to C.

4-2 Compatibility Guide IRIS-4D Series

5. Graphics Compatibility

This chapter describes the differences between graphics on the IRIS Series
2000 and 3000 workstations and IRIS-4D Series workstations, and how
these differences affect porting graphics code. Section 2 of this book
provides more detailed information on converting your code.

The Graphics Library for the IRIS-4D Series workstations is basically a
superset of the Graphics Library for IRIS Series 2000 and 3000
workstations. It has new subroutines and features that take advantage of the
different graphics hardware. However, because the underlying hardware is
different between these workstations, some incompatibilities exist. This
chapter covers these issues:

e window manager

e screen resolution

e new drawing subroutines
e Gouraud shading

e drawing modes

s overlays and underlays

e CUrsors

display modes

concave polygons

feedback parsing

texports and wsh
obsolete and modified subroutines

o #include files

Version 1.0 Graphics Compatibility 5-1

5.1 The Window Manager

The IRIS windowing system, 4Sight, runs by default when you log in.
Programs that do not use the window manager on the IRIS Series 2000 and
3000 can still run on 4Ds in one of two ways: (

e ginit opens a full-screen window on the IRIS 4D. When the user
presses the right mouse button, no menu appears. ginit works just as
it did on the IRIS Series 2000 and 3000 workstations.

e winopen can open a full-screen window like ginit, but this window
has a title bar, and will accept user input through the pop-up menus. The
drawback to this approach is that winopen does not work the same way
as ginit does with textports; you must use wsh instead. See section

5.10, ‘‘Textports and wsh’’.

4Sight replaces mex as the IRIS windowing system. 4Sight looks visually
different from mex, and introduces a few incompatibilities:

e 4Sight does not read the .mexrc file at login. Instead it reads user.ps.

o 4Sight does not read the .deskconfig file at login. You can add the same
type of information that was in .deskconfig to your user ps file. (

« The 4Sight window menu does not have an explicit ‘‘attach’’ item. Input
focus automatically goes to the window that is under the cursor. If you
want input to go to a window when the cursor is not over it, follow these

steps:

1. Position the cursor over the window.

2. Press any key.

3. While pressing the key, move the cursor out of the window.

As long as you keep the key depressed, the input continues to go to that
window.

4Sight has a number of new features that are described in Getting Started
with the IRIS-4D Series Workstation and Section 3 of the 4Sight User’s
Guide Volume 1. (

For more information on porting code to the window manager, see Section 2
of this book, ‘‘IRIS 3000 to 4D Conversion Tutorial’’, Chapter 2.

5-2 Compatibility Guide IRIS-4D Series

5.2 Screen Resolution

The screen resolution of the IRIS 4D is 67% higher than that of the IRIS
2000 and 3000 Series workstations. The new screen size is 1280 pixels
horizontally by 1024 vertically, where the old screen size was 1024 by 768
pixels. This change is reflected in graphics subroutines that take or return
absolute screen coordinates as values. Subroutines that accept or retumn
horizontal screen values of 0 to 1023 and vertical screen values of 0 to 767
on IRIS 2000 and 3000 systems can accept or return horizontal screen
values of O to 1279 and vertical screen values of 0 to 1023 on the IRIS 4D.

The higher screen resolution causes some visual differences:

e Cursors, raster fonts, screen images, and icons are about three-quarters the
height and width of those on IRIS Series 2000 and 3000 screens

e patterns and line styles are finer

o all user-defined states that use the IRIS 2000 and 3000 screen coordinates
look different on the IRIS 4D

To make your code more robust so it can adapt easily to changing screen
resolutions, use XMAXSCREEN and YMAXSCREEN instead of absolute
screen coordinates. This lets you specify coordinates as a fraction of the
resolution of the screen. For example, instead of specifying a the center of
the screen with x = 512 and y = 640, use x = XMAXSCREEN/2 and y =
YMAXSCREEN/2.

For more information, see Section 2, “‘IRIS 3000 to 4D Conversion
Tutorial”’, Chapter 3.

5.3 New Drawing Subroutines

Software release 4D1-3.0 introduced several new Graphics Library
subroutines for drawing and pixel access. Silicon Graphics recommends
converting old style routines to the new ones for three reasons:

¢ Your code will be more portable.

¢ On the GT and future products, the new subroutines will run up to 10
times faster than their old counterparts.

Version 1.0 Graphics Compatibility 5-3

e The new subroutines simplify the Graphics Library and allow for future
expansion.

In most cases, the conversion is simple — just substitute the new

subroutines for the old ones. Unfortunately, the new subroutines do not

work in display lists, so if your code is based primarily on display lists, the
solution is not so simple. ' (

This table gives a comparison of old and new subroutines.

Technique Old Subroutines New Subroutines
draw connected move, draw, draw bgnline,v3f,v3f,
line segments . endline

draw closed move, draw, draw bgnclosedline,v3f, v3f,

hollow polygons or poly endclosedline

draw filled pmv, pdr, pdr, pclos bgnpolygon, v3f,v3f,

pOlngIlS polfor splf endpolygon

draw points pnt, pnt bgnpoint,v3f,v3f,
endpoint

read pixels readpixels, readRGB rectread, lrectread

write pixels writepixels,writeRGB rectwrite, lrectwrite

draw triangular new bgntmesh,v3f, v3f,

meshes endtmesh

color(vector) RGBcolor cpack or c3i

surface normal normal n3f

clear screen, clear,zclear czclear

Z-buffer

create RGB RGBwritemask wmpack

writemask

Table 5-1. Comparison of Old and New Subroutines

For more information on these subroutines, see the GT Graphics Library _
User’s Guide, and Tuning Graphics Code for Your IRIS-4D Workstation. (

5-4 Compatibility Guide IRIS-4D Series

5.4 Gouraud Shading

Gouraud shading is a mode for drawing polygons that is toggled by
shademodel. The default mode is GOURAUD; this slows performance
considerably on the non-GT workstations, but makes no difference on the
GT. You should use this mode on the non-GT workstations only when
Gouraud shading is necessary. When your program is not drawing
Gouraud-shaded polygons, the shademodel subroutine should have this
form:

shademodel (FLAT) ;

For more information, see Section 2, ‘‘IRIS 3000 to 4D Conversion
Tutorial”’, Chapter 4.

5.5 Drawing Modes

The IRIS 4D uses the concept of drawing modes to shift between the 24
bitplanes used for normal displays, and the special bitplanes used for
overlays, underlays, pop-up menus, and cursors. Drawing modes are
changed using the drawmode subroutine:

drawmode (mode)
long mode;

On all IRIS-4D Series workstations, drawmode supports five modes:
¢ NORMALDRAW, which sets operations for RGB and color map modes;
¢ OVERDRAW, which sets operations for the overlay bitplanes;

e UNDERDRAW, which sets operations for the underlay bitplanes;

s PUPDRAW, which sets operations for pop-up menus;

¢ CURSORDRAW, which sets operations for the cursor bitplanes.

Some IRIS-4D Series workstations support additional modes. For more
information on drawmode, see Section 6.8 of the Graphics Library User’s
Guide, Volume I, that was shipped with your IRIS-4D. See also Section 2
of this book, ‘‘IRIS 3000 to 4D Conversion Tutorial’’, Chapter 5.

Version 1.0 Graphics Compatibility 5-5

5.6 Overlays and Underlays

On the IRIS Series 2000 and 3000, static overlays and underlays require the
use of writemask, which reduces the number of bitplanes available for
other purposes. The allocation of each bitplane halves the number of screen
colors available for other uses. Also, overlays and underlays may not be
used in RGB mode on an IRIS 2000 or 3000.

On the IRIS 4D, two bitplanes are reserved for static overlays or underlays.
These bitplanes are not shared with the standard bitplanes, so no colors are
lost. Overlays and underlays are compatible with RGB mode on IRIS-4D
Series workstations.

To initialize the bitplanes for overlays, use this code sequence once:

overlay (numplanes) ;
gconfig();

numplanes is the number of bitplanes used, and should be either O or 2.

Once the bitplanes are initialized, set the current drawing mode to
OVERDRAW.

drawmode (OVERDRAW) ;

Then you can define colors, set a writemask, and draw an object in the
bitplane(s).

To initialize the bitplanes for underlays, use this code sequence once:

underlay (numplanes) ;
gconfig();

numplanes is the number of bitplanes used, and should be either O or 2.

Once the bitplanes are initialized, set the current drawing mode to
UNDERDRAW.

drawmode (UNDERDRAW) ;

Then you can define colors, set a writemask, and draw an object in the
bitplane(s).

Note: Overlays and underlays cannot be used simultaneously.

For more information, see Section 2, ‘‘IRIS 3000 to 4D Conversion
Tutorial”’, Chapter 5.

56 Compatibility Guide IRIS-4D Series

5.7 Cursors

On the IRIS Series 2000 and 3000, the cursor icon is written directly into
the standard bitplanes. The IRIS 2000 and 3000 systems allow a cursor to
be only one size (16x16).

On the IRIS 4D, the cursor is not stored in any of the bitplanes. The
drawback to this is that there is now no way to guarantee that your cursor is
a different color from the background. The IRIS 4D system also provides
new cursor capabilities. A cursor can be defined as either a 16x16 or 32x32
pixel pattern or as a full-screen cross-hair. Pattern cursors can consist of up
to three colors (two bits).

The IRIS Series 2000 and 3000 subroutine defcursor is supported by
the IRIS 4D, but the cursor type must be declared before the subroutine is
called. The valid cursor types for all current and future 4Ds are C16X1,
C32X1, and CCROSS. All current 4Ds support a 2-bit cursor, so C16x2
and C32x2 are also valid; however, to keep your code as portable as
possible for future 4Ds, Silicon Graphics recommends using only the first
three cursor types.

Use the following procedures to create cursors on the IRIS 4D:

curstype (&ype) ;

defcursor (1, bitpattern) ;
curorigin (1, horiz,vert) ;
drawmode (CURSORDRAW) ;
mapcolor (colindex, red, green, blue) ;
drawmode (NORMALDRAW) ;
setcursor(l);

type is one of the cursor types enumerated above.

bitpattern is an array which defines the bit pattern for the cursor. For
single-color cursors, this array would consist of 16 values of type short for a
16x16 cursor, and 32 values of type long for a 32x32 cursor.

For multicolored cursors of both sizes, the number of values in each array is
doubled. The first half of these values define the pattern for cursor color bit
1 and the second half of these values define the pattern for cursor color bit 2.
For both sizes of multicolored cursor, the color index for each pixel is
determined from the sum of cursor bits 1 and 2; if a cursor pixel has both of
the values turned off, the cursor is transparent at that pixel.

Version 1.0 Graphics Compatibility 5-7

For the full screen cross-hair, bitpattern must be a (dummy) null array of
type short.

horiz and vert locate the ‘‘hot spot’’ of the cursor.

colindex is the color index for determining cursor color at a point in the bit
pattern of the cursor. For single-color cursors, this value should be 1. For
multicolored cursors, make two additional calls to mapcolor, using color
indices of 2 and 3, respectively.

red, green, and blue are integers between O and 255 that collectively
determine the color of the given index.

setcursor and RGBcursor do not use colors or writtmasks on the
IRIS 4D, because the cursor is not written into the standard bitplanes, and
cannot be writemasked with the rest of the colors. The cursor always
appears with the same colors no matter what is underneath it. Giving an
IRIS 4D cursor multiple colors helps to prevent it from "disappearing” over
background colors.

Cursor colors on the IRIS 4D aren’t fixed; you can change them in your
programs. However, changing any color index changes all 4Sight cursors.

For more information, see Section 2, ‘‘IRIS 3000 to 4D Conversion
Tutorial’’, Chapter 6. ’

5.8 Display Modes

Unlike the IRIS 2000 and 3000 Series workstations, IRIS-4D Series
workstations support at least 24-bit RGB color in single-buffer mode and
12-bit RGB color in double-buffer mode. In addition to this, the window
manager supports multiple windows running different color display modes
(RGB or color map) simultaneously.

5-8 Compatibility Guide IRIS-4D Series

Because RGB mode and double-buffer mode are not mutually exclusive on
IRIS-4D Series workstations, certain code sequences may cause different
effects. For example, consider this sequence:

doublebuffer () ;
gconfig () ;
RGBmode () ;
gconfig () ;

On the IRIS Series 2000 and 3000, this puts you into single-buffered RGB
mode. On the IRIS-4D Series, this puts you into double-buffered RGB
mode.

Note: All open windows on the IRIS 4D that use the color map must
share it as they do on the IRIS 2000 and 3000 Series workstations.

Color map mode, unlike the RGB mode, uses only 12 bitplanes to produce a
color map. In addition, the top 256 colors (3840-4095) of the color map are
occupied by the gamma ramp by IRIS non-GT workstations; this does not
happen on the GT. This may interfere with layering schemes using bitplane
partitions.

24-bit Z-buffering for hidden surface removal can be done in all graphics
modes at real-time speed, including double-buffer color map and RGB
modes. Note that using the Z-buffer does not reduce the number of drawing
colors available to you; the Z-buffer hardware is separate from the bitplanes.

The IRIS-4D lighting model facility automatically calculates color using
specified properties of defined objects and lights as input. Code that uses the
Graphics Library lighting subroutines will run much faster on the GT. For
information on how to use lighting models, see Chapter 14 of the Graphics
Library User’s Guide, or the GT Graphics Library User’s Guide.

For more information on display modes, see Section 2, *‘IRIS 3000 to 4D
Conversion Tutorial’’, Chapters 5 and 7.

Version 1.0 Graphics Compatibility 5-9

5.9 Concave Polygons

The IRIS 4D supports rendering of concave polygons. On the IRIS Series
2000 and 3000 concave polygons are not properly filled. The polygon fill
method works reliably for convex polygons. If you wanted to fill concave
polygons on the IRIS Series 2000 and 3000, you needed to split the
polygons with your own application program.

On the IRIS-4D, the graphics manager (in the rendering subsystem) separate
polygons into trapezoids. By default, the graphics manager is optimized to
process only convex polygons. The graphics manager can be set into a
different mode which splits concave polygons into trapezoids. In this mode,
convex polygons are filled more slowly.

The Graphics Library routine, concave (), switches the polygon fill
mode. ‘

e concave (TRUE) use only if concave polygons may be drawn
e concave (FALSE) is the default, optimized for convex polygons

The sample code below draws the concave polygon shown in Figure 9-1.

concave (TRUE);
color (RED);
pmv2i (100, 100);
pdr2i (300, 500);
pdr2i (500, 200);
pdr2i (x, y);
pclos ();
concave (FALSE);

Figure 5-1. A Solid Concave Polygon

5-10 Compatibility Guide IRIS-4D Series

When you draw concave polygons, you may encounter one of these
problems:

e clipped concave polygons may be filled incorrectly

¢ Gouraud shaded, concave polygons may be drawn with incorrect colors

5.10 Feedback Parsing

You can use feedback from the Geometry Pipeline to perform matrix
multiplication, scaling, and clipping on the IRIS 2000 and 3000 Series and
the IRIS-4D Series workstations. However, the data that the feedback
subroutines return is highly dependent on the underlying hardware, so your
application will need to parse feedback differently for each IRIS-4D Series
workstation. Because of this incompatibility, Silicon Graphics discourages
‘bp the use of these feedback subroutines:

feedback
endfeedback
passthrough
xfpt

xfpt, the feedback subroutine that transforms floating point values, is
supported by only the non-GT workstations. It is not supported by the GT,
and will not be supported by any future IRIS-4D Series workstations. The
sample code below shows how to convert code that uses xfpt to
completely portable code that can run on any current or future IRIS-4D.

The xfpt subroutines multiplied their arguments by the top matrix on the
stack, and left the result in the feedback buffer. To port this code, replace
the feedbackcallby a getmatrix call, and convert each xfpt
subroutine to a call that does a matrix multiplication of the argument by the
matrix retumned by getmatrix. The resulting values should then be
written to the appropriate data structures (wherever the subroutines that
parsed the raw feedback buffer would have put them). You should also
remove the endfeedback subroutine. This conversion should both
speed up the code, and make it completely portable.

Version 1.0 Graphics Compatibility 5-11

/* this code transforms the point (x, y, z) by the matrix
* at the top of the stack, and returns the value in
* xformedpoint.

*/

float x, y, z;
short feedbuf[20];

union {)
float floatdata;

short shortdatal[2];
} alignhack; /* for alignment problem */
long 1i;
float xformedpoint[4];
feedback (20, feedbuf);
xfpt(x, vy, z);
endfeedback (feedbuf) ;
for (1 = 0; 1 < 4; i++4) {
alignhack.shortdata[0] = feedbuf[l+i*2];
alignhack.shortdata[l] = feedbuf[2+i*2];
xformedpoint [1] = alignhack.floatdata;

It can be replaced by:

float mat[4][4];
float xformedpoint[4];

long 1i; (

getmatrix (mat);
for (1 = 0; 1 < 4; i++4)
xformedpoint [i] =
x*mat [1] [0]+y*mat [1] [1]+z*mat[i] [2]+mat [i] [3];

5.11 Textports and wsh

IRIS-4D Series workstations support textports through a user program, wsh,

while the IRIS Series 2000 and 3000 workstations support them in the

kernel. The textport subroutines in the Graphics Library control wsh

through a sequence of control characters. If your code uses winopen to

open a graphics window, the window manager treats wsh just as it does any

other user program; this means you may have to manually direct input focus

to the textport. You can do this by placing the cursor over the textport. (

Note: When you reattach to the text window, you disconnect from the
graphics window.

5-12 Compatibility Guide IRIS-4D Series

5.12 Obsolete and Modified Subroutines

A number of subroutines from the IRIS 2000 and 3000 Series Graphics
Library are considered obsolete on IRIS-4D Series workstations. These
subroutines do not generate errors on current IRIS 4D products, but serve no
useful function. Also, the non-GT workstations support a few subroutines
that the GT and all future products will not support. The tables below list
both types of subroutines.

Obsolete Subroutines

callfunc resetls
devport RGBcursor
getlsbackup setshade
getshade spclos
gflush textwritemask
gRGBcursor getmem
lsbackup winat
pagewritemask winattach

Table 5-2. Subroutines Not Supported by IRIS-4D Series Workstations

Non-GT Subroutines

clearhitcode resetls
gethitcode RGBcursor
getlsbackup xfpt
getresetls setslowcom
gRGBcursor setfastcom
lsbackup

Table 5-3. Subroutines Supported by Only the Non-GT Workstations

Version 1.0 Graphics Compatibility 5-13

This table lists which IRIS 2000 and 3000 subroutines have been modified
on the IRIS 4D, and how they are different.

Subroutine Difference

getcursor some variables return no values
setcursor

setvaluator

select this has been replaced by gselect

defpattern the 4D does not support 64 x 64 bit patterns

Table 5-4. Subroutines that Work Differently
5.13 #include Files

Graphics Librafy include files reside in the directory /usr/include/gl on the
IRIS 4D.

5-14 -~ Compatibility Guide IRIS-4D Series

6. Miscellaneous Compatibility
Issues

This chapter covers issues of compatiblity between IRIS-4D Series
workstations and IRIS Series 2000 and 3000 operating systems,
communications (NFS), and hardware. It also shows you how to port device
drivers to the IRIS-4D family.

6.1 Operating System, Communications, and
Hardware Issues

This sections describes issues that arise when you port your code to the
IRIS-4D family from an IRIS Series 2000 or 3000 workstation.

Operating System

e On the IRIS-4D Series, malloc(3) is derived from System V, and is
different from IRIS Series 2000 and 3000 mallocs. On the IRIS-4D
Series, the malloc() in libc allows you to allocate a zero-length block, but
libmalloc’s malloc() function returns NULL on a request to allocate zero
bytes. libmalloc has better virtual memory properties than the libc
malloc. For graphics applications, libmalloc usually provides much better
performance. However, unlike the libc malloc, libmalloc doesn’t allow
you to free memory and call realloc with a pointer to that memory.

e The dbx delete command on the IRIS-4D Series uses commas as the
delimiter for deleting multiple events. dbx on the IRIS Series 2000 and
3000 uses blanks as the delimiter.

Version 1.0 Miscellaneous Compatibility Issues 6-1

¢ The —s option to the grep command generates output on the IRIS-4D
Series, but not on the IRIS Series 2000 and 3000, where it returns only
the exit codes to the calling program. On the IRIS-4D Series, the —s
option causes grep not to complain if files don’t exist.

¢ The du command reports block usage in 512-byte blocks on the IRIS-4D
Series and in 1K units on the IRIS Series 2000 and 3000. The df
command reports block usage in 1K-byte blocks on both the IRIS-4D
Series and IRIS Series 2000 and 3000.

« If you log in to an IRIS Series 1000, 2000, or 3000 workstation from an
IRIS-4D Series, you may get the message:

terminal type iris-ansi-net is unknown

To prevent this problem, follow this procedure:
1. Login as root on the IRIS Series 1000, 2000, or 3000.

2. Edit /etc/termcap. Type the lines below at the end of /etc/termcap.
You must use the tab key for all of the indented lines. Type the up-
character (*) just as it appears by pressing the shift key and the 6-key
simultaneously. Also, look closely at the text below to distinguish the
letter el (1) from the number one (1). (

6-2 Compatibility Guide IRIS-4D Series

Silicon Graphics IRIS wsh terminal emulator. Can’t use vt100
entry directly because it contains delays. For ease of
comparison, keep in same order as iris-ansi terminfo entry.

S8|iris—ansi|IRIS emulating a 40 line ANSI terminal (vt100):P
:do="J:sf=ED:co#80:1i#40:P
:cl=E[HE[2J:am:cm=E[$1%2;%2H:P
:nd=E[C:up=E[A:ce=E[K:cd=E[J:P
:so=E[7m:se=E [m:us=E [4m:ue=E [m: P
:ks=E[?1hE=:ke=E[?11E>:P
:ho=E[H:sr=EM:P
:ku=EOA: kd=EOB: kr=EOC:k1=EOD :kb="H:P
:k1=EOp:k2=EOq: k3=EOr:k4=EOs:P
:al=E[L:d1=E[M:P
:is=E[?11E>E[?7h:P

:vs=E[10/yE[=1hE[=21E[=6h:ve=E[9/yE[12/yE[=61:P
tbs:pt:

24-line version
SD|iris—ansi-24:1i#24:tc=iris-ansi:
66-line version
SE|iris—ansi-66:1i#66:tc=iris—ansi:

Special value for $TERM so that local and remote shells can be
distinguished. The network programs do the coercing

of iris—-ansi into this.

S9|iris—ansi-net |IRIS connected to a remote host:tc=iris-ansi:

24-line version

SF|iris—ansi-24-net:1i#24:tc=iris-ansi-net:

66-line version

SG|iris—ansi-66-net:1i#66:tc=iris—-ansi-net:

« Some files that were in /usr/bin and /usr/include have been moved. If you
cannot find a file in these directories, look in the directories under /usr,
especially /usr/sbin, /usr/lbin, and /usr/bsd. You can put these directories
in your path list. A good way to set your path is this:

:/usr/bsd: /bin:/usr/bin: /usr/sbin: /usr/lbin
» There are two versions of rsh: the AT&T restricted shell in /bin and

Berkeley’s remote shell in /usr/bsd. For most users, it is a good idea to
put /usr/bsd early in their path so that they pick up the remote shell.

s ranlib is not supported on IRIS-4D Series workstations. It is not required
for 4D archives.

Version 1.0 Miscellaneous Compatibility Issues 6-3

e The —n option to echo does not exist in the Bourne shell on the IRIS 4D.
Use ‘“\¢’’ instead.

e Is, when performed by root on IRIS 2000 and 3000 systems, uses a
modified form of the —a option. This is not supported on the IRIS-4D.
By default, —C (column output) is not on.

e The curses package, which allows you to write screen management

programs, is upwardly compatible from the IRIS Series 2000 and 3000 to
the IRS-4D Series. terminfo(4), the IRIS-4D database containing A
descriptions of terminal capabilities, is a superset of termcap(4), the IRIS
Series 2000 and 3000 equivalent. Use the captoinfo(1M) command to
convert termcap 1o terminfo descriptions.

You must now use the —lcurses flag to compile programs that you
formerly compiled with —Itermcap or —ltermlib. Old makefiles still
work because Silicon Graphics currently provides the link to —lcurses.
For future portability, it is a good idea to change your makefiles.

curses programs are compatible from the IRIS Series 2000 and 3000 to
the IRIS-4D Series. IRIS-4D Series curses(3X) is a superset of Series
2000 and 3000 curses, and is much more powerful than the older version.
For example, IRIS-4D Series curses supports text windows and multiple
terminals. For more information on the curses/terminfo package, see
“‘curses/terminfo’’ in the IRIS-4D Programmer’s Guide.

¢ On the IRIS-4D Series, a new command, sar, gives information about the

system performance. This command covers the functionality of the IRIS
Series 2000 and 3000 commands vmstat and uptime. Here is a description
of some of sar’s most useful options:

The —u option gives information about CPU activity, including idle time
and kemel activity.

The —y option monitors the ttys. This option is useful for debugging
programs that make use of serial ports.

sar —m provides about the same information as vmstat. The —w option,
which tells how many context switches are occurring, is useful in
combination with the —m option. The —c option gives the number of
system calls.

The sar —q provides similar information to uptime. Without an additional
argument, the sampling rate is coarser. For finer granularity, see the sar
man page.

6-4 Compatibility Guide IRIS-4D Series

The —r option reports the free memory pool, in a more comprehensible
format than the information vmstat provides.

See the sar man page for more information.

e Start-up scripts are organized differently. They are now located in
letclinit.d, and are no longer prefixed with ‘rc’. For example, the tcp
startup script is /etc/init.d/tcp.

o The cron subsystem has changed considerably. cron scripts now reside in
the directory /usr/spool/cron/crontabs, with a script for each user id that
requires cron jobs. A new command, crontab(1), manipulates the scripts.

¢ The on-line man pages are no longer troff source, but rather pre-roffed
versions that reside in /usr/catman/* _man/cat[1-7].The man(1) command
no longer processes raw manual pages.

o varargs(4) are handled differently on the IRIS-4D.

o The math library libm.a differs significantly between IRIS-4D Series and
IRIS Series 3000. Most importantly, functions like sqrt(3M) now return a
double rather than a float. These changes should be transparent to code
that uses math.h.

e Certain mextools like mousewarp(1) are not shipped with the IRIS-4D
Series workstation.

« ps has different options; for example, to get a listing of all processes with
their arguments, use ps —ef.

« Device names for disks and tapes are different. In particular, /dev/tape is
always linked to the local streaming tape. /dev/nrtape is the no-rewind
version. Disk device names are now located in subdirectories: /dev/dsk
for block devices, and /dev/rdsk for character devices.

Networking

¢ The IRIS-4D NFS option is shipped with a crontab file that automatically
translates YP maps from the master server to the slave server. To
automatically update YP maps, edit the file /usr/spool/cron/crontabs/root
to remove the comment marks (#) from the beginning of the last three
lines in the file. See cron(1M).

Version 1.0 Miscellaneous Compatibility Issues 6-5

e uucp operates differently on the IRIS-4D Series than on the IRIS Series
2000 and 3000. See the chapter entitled ‘Basic Networking’’ in the
IRIS-4D System Administrator’s Guide.

o When using rsh, rcp, or rlogin, you must specify the user and host as
user@host rather than host.user.

Hardware

e The IRIS-4D Series keyboard emulates the IBM PC/RT keyboard; the
keyboard of the IRIS Series 2000 and 3000 emulates the VT100. Remote
VMS users cannot use EDT, which relies on the keyboard to generate
VT100 escape sequences.

e IRIS-4D Series serial ports take 9-pin connectors, while IRIS Series 3000
serial ports take 25-pin connectors.

6.2 Porting Device Drivers
The 4D1-3.0 software release includes new driver-kernel interface routines (
that allow you to map I/O devices directly into a user’s virtual address
space. These routines isolate the user-1/O driver from the workings of the
virtual memory system, which can change from release to release. If you’ve
written a device driver that manipulates virtual memory, you need to change
the driver to use the new interface routines. These changes will make your
driver work with release 4D1-3.0 and future IRIS-4D software releases.

With the new routines, you can map either the registers of a device or the
contents of a device (for example, a raw disk partition). You can also
provide a fast channel between the I/O device interrupt function and the user
process, so that most interrupt processing can be done at the user level.

6-6 Compatibility Guide IRIS-4D Series

6.2.1 Mapping and Unmapping Devices

The mmap(2) system call, new with release 4D1-3.0, provides a user-level
interface for manipulating virtual address space. mmap maps pages of
memory and returns a pointer into the user’s address space.

mmap calls the appropriate entry in the block or character device switch
‘table when:

e a user calls mmap, and

e the fd argument to mmap is associated with a special file. For example:

fd = open("/dev/special", O _RDWR);
addr = mmap (0, len, prot, flags, fd, off);

The entries in the block or character device switch table perform driver-
specific mapping and unmapping, and have the form drvmap and drvunmap,
where drv is the driver prefix. mmap calls drvmap; munmap calls
drvunmap. These routines, like all other driver entry points, do not have to
be present. If drvmap is not present, mmap doesn’t map the device, and sets
errno to ENODEV.

The arguments to drvmap are shown below. The kernel passes these
arguments to the driver.

drvmap (dev, vt, off, len, prot)

dev t dev; /* device number */
vhandle t *vt; /* handle to caller’s virtual address space */
off t of £; /* offset into device */
int len; /* # of bytes to map */
int prot; /* protections *x/

The vt argument is an opaque handle to the virtual space in the calling
process where the device will be mapped. This argument represents a data
structure within the kemel. The format of this data structure can change
from release to release. For compatibility, you can pass the v¢ handle from
the drvmap routine to other routines. The section below tells you how to
access parts of the data structure by using the vt handle.

The off argument to drvmap is the offset in bytes to the beginning of the
mapping. This field is device-specific. By convention, it should be the
offset (if any) from the beginning of the base address of the device. It could
also be an offset into the entire VME bus.

Version 1.0 Miscellaneous Compatibility Issues 6-7

len is the length in bytes of the region that the user wants to map. prot is the
protection argument from the mmap() call.

The arguments to drvunmap are shown below.

drvunmap (dev, vt)
dev_t dev; /* device number */ \
vhandle t *vt; /* handle to caller’s virtual address space */

The vt argument is the same as for drvmap, above. The system calls
drvunmap when you unmap the region, either by calling munmap or during
exit.

munmap() does sanity checking before it calls drvunmap. If the sanity
checks succeed, munmap unmaps the associated virtual memory pages, even
if drvunmap fails.

Note: If a driver provides drvmap but not drvunmap, munmap() returns
ENODEV. Itis a good idea to provide a dummy unmapping
routine if the driver doesn’t need to perform any action when it
unmaps the device.

6.2.2 Manipulating the User’s Virtual Region (

The kernel routines described in this section allow you to manipulate the
user’s virtual region. This section is divided into four parts:

¢ Allocating memory to share between the driver and an application
e Mapping the contents of a device
¢ Mapping device registers into the user’s address space

¢ Returning elements of the v¢ argument (opaque handle to the user’s
address space) ’

Note: To use the routines described below, make sure to include the files
sys/types.h and sys/region.h.

6-8 Compatibility Guide IRIS-4D Series

Allocating Memory to Share

To allocate memory to share between the driver and the application process,
the driver map routine follows these steps:

1.

Use the kvpalloc routine to allocate some pages in the kemnel. Use the
btoc() macro in sys/sysmacros.h to convert the len argument, which is in
bytes, to pages.

kvpalloc (npages, flags)
int npages;
int flags;

kvpalloc allocates physical memory and returns a kernel virtual address
associated with that memory. The physical memory is not subject to
paging. The possible flags bits are defined in sys/immu.h. If
VM_UNCACHED is set, kvpalloc returns an address whose data is not
cached. If only one page is required, set VM_DIRECT, whjch causes
kvpalloc to return a direct-mapped address—one that avoids the
translation lookaside buffer hardware. If VM_NOSLEEDP is set and
there is no memory immediately available, kvpalloc returns NULL.,

The operating system imposes a limit on the number of pages that can be
locked down (not pageable). Note that kvpalloc can return NULL if
there is not enough lockable memory available in the system. The driver
can reserve the right to allocate locked pages by first calling the routine
reservermem().

int
reservermem(npages)
int npages;

If reservermem returns 0, you can call kvpalloc afterwards with the
VM_RESERVED flag. In that case, the lockable-memory requirements
are ignored. Note that passing VM_RESERVED without first reserving
lockable pages can result in deadlocking the system.

Map the pages into the user’s address space by using v_mapphys. The
address argument, addr, is the virtual address returned by kvpaliloc.

To free the memory, use kvpfree.

kvpfree (addr, npages)
caddr_t addr;
int npages;

Version 1.1 Miscellaneous Compatibility Issues 6-9

Mapping the Contents of a Device

To map the contents of a device, the driver map routine calls the v_mapreg
routine.

int

v_mapreg(vt, off, len)
vhandle_t *vt;

int off;

int len;

This routine maps the file associated with vz, the opaque handle to the user’s
virtual address space. The mapping begins at offset off for len bytes into the
user’s virtual address space associated with vz. The kemel passes these three
arguments to the drvmap routine. Pages are faulted in on demand, and
written to the device in these three cases:

» The user issues an msync() command.
« The virtual memory system chooses to reassign the page.

o The user unmaps the address space.

Mapping Device Registers (

This section describes two ways to map device registers into the user’s
address space. The first way is to use the v_mapphys routine. The second
way is for drivers that only want to map device registers, with no storage
involved. In this case, you don’t need to write a driver specifically for this
purpose; instead, use a general interface via /dev/immem, a special file
associated with the general memory-mapping driver.

The v_mapphys routine sets up a virtual to physical mapping from vz to
addr. vt is the opaque handle to the user’s virtual address space (see
previous section).

int

v_mapphys (vt, addr, len)
vhandle_t *vt;

caddr_t addr; \
int len; '

addr can be a physical I/O device address or a kernel address, but it cannot
be a user virtual address. If a k1seg virtual address is used, or a physical

6-10 Compatibility Guide IRIS-4D Series

address that does not reference general memory, v_mapphys ensures that
user references to the mapped space are not cached. The address must be
page-aligned; the kernel supplies protections only on a page basis.
v_mapphys returns 0 on success; it sets errno and returns —1 on failure.

Caution: Be very careful when you map device registers to a user
process. Carefully check the range of addresses that the user
requests to make sure that the request references only the
requested device. Since protection is available only to a page
boundary, configure the addresses of I/O cards so that they
don’t overlap a page. If they are allowed to overlap, an
application process may be able to access more than one device,
possibly a system device (for example, the disk or Ethernet).
This is likely to cause problems.

The second way to map device registers is to use the general memory-
mapping driver. Follow these steps:

1. Become the superuser.

2. Edit the file /usr/sysgen/master.d/mem. Add an entry in the array for len
and off, where len is the size in bytes and off is the starting page-aligned
physical address of the registers to be mapped.

3. Use lboot to reconfigure the set of mappable addresses. See the lboot
man page and ‘‘Configuring a Kemel’’ in the IRIS-4D Series Owner’s
Guide.

4. When the user calls mmap, she or he passes a file descriptor associated
with /dev/immem, the special file associated with the general memory-
mapping driver.

fd = open ("/dev/mmem", O RDWR) ;
addr = mmap (0, len, prot, flags, fd, off);

len and off are the entries that you made in the array in
lusr/sysgen/master.d/mem.

Version 1.1 Miscellaneous Compatibility Issues 6-11

Returning Data Associated with the Opaque Handle

To return the unique identifier associated with v, the opaque handle to the
user’s virtual address space, use the v_gethandle command.

unsigned
v_gethandle (vt)
vhandle_t *vt;

Since the virtual handle points into the kernel stack, it is likely to be
overridden. Use v_gethandle if your driver must ‘‘remember’’ several
virtual handles.

To return the virtual address in the process where the space is attached, use
the v_getaddr command.

caddr_t
v_getaddr (vt) ‘
vhandle_t *vt;

|

To return the length in bytes of the virtual space, sue thl v_getlen command.

int
v_getlen(vt)
vhandle_t *vt;

6-12 Compatibility Guide IRIS-4D Series

7. Troubleshooting Tips

This section lists the most frequent problems you may encounter when you
port code from the IRIS Series 2000 or 3000 workstation to an IRIS-4D
Series workstation. The problems are divided into four categories:

e graphics
¢ programming problems and error messages
» performance/speed problems

e hardware

Each section lists the unexpected/undesireable behaviors that you may see,

tells you what may be causing the behaviors, and recommends ways to fix or
work around them.

Version 1.0 Troubleshooting Tips 7-1

Graphics

Problem Cause Solution
Colors are wrong or non- If your program runs in When using RGB mode,
existent. RGB mode, the gamma do not use the top
correction hardware 256 (3840-4095) colors.
uses the top 256 colors.
If you are using depth- See the setdepth
cueing and the colors man page in the Graphics
are wrong, the near Library User's Guide.
and far clipping planes
may also be reversed.
This is because the
arguments to setdepth
are different.
No graphics appear This happens when the Call swapbuffers for

in several windows
at once.

The window manager
won’t read input.

program uses multiple
windows per process, and
runs in more than one
graphics mode. Windows
are swapping buffers at
different times.

If the program calls
ginit, the system dis-
plays one window that
takes over the screen,
and attaches all input

to the window. The window
manager then ignores re-
quests for pop-up menus.
This provides an environ-
ment that is compatible
with mex on the

2000 and 3000.

runs on the 4D.

7-2 Compatibility Guide

each individual window.

Use winopen instead

of ginit. This makes

the program accept requests
for pop-ups, but your textports
work differently, and tpof £
will not work.

IRIS-4D Series

Window positions are
wrong, characters are
small, software pick-
ing doesn’t work
correctly.

The program crashes,
the Graphics Library
dumps core.

Windows are not
redrawn.

The new screen has
higher resolution
(1280x1024). Any po-
sitions you set using
absolute screen coor-
dinates will look
different.

This will happen if

you assign your own
subroutines the same
name as Graphics Library
subroutines.

This happens if you

use PIECECHANGE
tokens. These tokens are
no longer supported.

Don’t specify absolute
screen positions
(x=640, y=512).
Specify positions as
fractions of XMAXSCREEN
and YMAXSCREEN
(x=XMAXSCREEN/2,
y=YMAXSCREEN/2).
This way positions will
be correct regardless

of screen resolution.

Make sure your own sub-
routine names do no
conflict with Graphics
Library subroutines. Some
very common conflicts are

- normal and rotate.

Use REDRAW tokens
instead.

Version 1.0

Table 7-1. Graphics Tips

Troubleshooting Tips

7-3

Languages and Compilers

Problem

Cause

Solution

Bus error followed
by a core dump.
(Note: this can be
caused by several
different problems —
this is the most com-
mon cause.)

Makefiles don’t work.

Core dump while
parsing feedback
buffers.

During linking, you
see an error message
similar to this one:
Bad -G num value

Your program aborts and
reports an I/O error
on aread.

FORTRAN program
cannot find any input.
You see error messages
such as End of file

or write to unknown
unit.

7-4 Compatibility Guide

IRIS-4D Series work-
stations require data
alignment. Floating point
numbers have a 4-byte
boundary; double precision
numbers have an 8-byte
boundary.

UNIX System V has
smaller hash tables.

xfpt (feedback) does
not work properly

due to byte alignment
boundaries.

Your program is very
large.

FORTRAN file struc-
tures are different.

Default unit numbers
for FORTRAN now follow
the industry standard.

Start all variables at the
appropriate boundary, e.g.,
start floating points at

a 4-byte boundary, and
double precisions at an
8-byte boundary. In
general, be careful when
working with variables that
are smaller than their
boundaries.

Break up your Makefile
into smaller sections.

This is corrected
in the 4D1-3.0 release.

Add -G 0 to all
modules and libraries
when compiling and
linking. This may slow
performance slightly.

Run the program
uconv(3) on your
binary files.

Change your code 5o
it recognizes that
stdin =5, stdout = 6,
and stderr = 0.

IRIS-4D Series

While linking code
that uses interlanguage
calls, the linker can’t
find the routines that
are not written in the
primary language.

You see this error
message: devport:
command not found.

You see this error
message: ranlib:
command not found.

You run out of
disk space.

gettp doesn’t

work; you cannot find
out the size and posi-
tion of a textport.

Interlanguage calls
work differently.

devport is no
longer supported.

ranlib is no
longer supported.

IRIS 4D Series work-
stations are RISC
machines. Because of
this, object and exe-
cutable files are as

much as 1.5 times larger.

gettp works correctly
only after you use
textport to set

the position.

See Chapter #,
Interlanguage Calls

To configure software
for a new hardware
device (e.g., dial and
button box), edit
letclinittab. See

the installation document
that you received with’
the hardware device.

ranlib is not needed. If
the symbol table for an
archive is lost, use

ar ts lib.a.

Check the amount of
disk space your program
uses on a 3000 Series
workstation. If it just
fits, you need a

larger disk for your
IRIS 4D.

You must explicitly
set the size and
position of textports.

Table 7-2. Language and Compiler Tips

Version 1.0

Troubleshooting Tips

7-5

Performance

Problem

Cause

Solution

Animated objects with
shaded surfaces move
slowly.

Some graphics routines
run more slowly than
you expect.

The operating system
response is very slow
when running an appli-
cation.

Loading software
options takes much
longer.

The default argument to
shademodel is
GOURAUD, not FLAT.

The new hardware
doesn’t improve the
speed of a small
group of graphics
routines.

Over time, the more you
call malloc(3) to

request memory, the slower
the response becomes.

The IRIS-4D Series
workstations have a new
installation environment that
is more robust, but is

also slower.

Change GOURAUD to
FLAT in all appro-
priate uses of
shademodel.

If your program uses
mapcolor, depthcue,
gouraud, writemask,or
backface, you may

want to use different

routines to achieve

the same effect.

Use -Imalloc when you
link to improve the
efficiency of your
pointers.

If it’s appropriate, you
could install the new
software on only one
workstation, make a tape

of its filesystem, and rebuild
other workstations’ file-
systems from this tape.

Table 7-3. Performance Tips

7-6 Compatibility Guide

IRIS-4D Series

Hardware

Problem

Cause

Solution

Old serial cables don’t
fit.

After installing the

dial and button box or
digitizer tablet, the
device does not respond.

Serial ports on IRIS-4D
Series workstations take
9-pin connectors, while

You need either a

25 to 9 pin adaptor, or

new cables.

the Series 3000 workstations

take 25-pin connectors.

It’s easy to install the
cable from the device to

the workstation backwards.

If you tried to configure

the device using devport,
it will not work. devport

is no longer supported.

Try reversing the
cable.

Edit /etc/inittab. See
the document that came

with the device.

Sometimes the daemon has Kill and restart the
a false start. daemon.
Numeric keypad keys or The keyboard and the key See (X-ref to 4Sight
break key do not respond. mappings are different. document).
Table 7-4. Hardware Tips
Version 1.0 Troubleshooting Tips

7-7

Section 2:
IRIS 3000 to 4D
Conversion Tutorial

Contents

1. IRIS-4D Graphics Conversion

1.1

Approach to Porting to the IRIS-4D .

2. Window Manager Programming

2.1
22
2.3

24

25

User Interface
Programming with ginit .

Porting a Standalone Program to the W|ndow

Manager

2.3.1 Constraining Wmdow Charactenstlcs
2.3.2 Establishing New Window Constraints
2.3.3 Explore sample programs .
Processing the Event Queue .

2.4.1 Redrawing a window

2.4.2 Change in status of input devnces
2.4.3 Explore a sample program

Porting Multi-Window, Double Buffered Code

2.5.1 Swapping Buffers

2.5.2 Explore sample programs .
2.5.3 Processing REDRAW

2.5.4 Processing INPUTCHANGE .
2.5.5 Explore a sample program

3. Resolution and Aspect Ratio of the Screen .

3.1

3.2

3.3
3.4

Viewing Subroutines

3.1.1 Aspect Ratio

Window Constraints . .
3.2.1 Restricting Aspect Ratios .
3.2.2 Specifying Window Locations
Input . N
Raster Data

4. Shading Polygons

41
4.2

Gouraud Shading on the IRIS 2000/3000 .

Gouraud Shading on the IRIS-4D

4.2.1 Increasing the Speed of Polygon Fill

4.2.2 Graphics Library Routines for Gouraud
Shading

1-1

2-1
2-1
2-2

2-6

2-8

2-8
2-19
2-19
2-20
2-21
2-21
2-21
2-23
2-23
2-24
2-25

5.

6.

7.

8.

4.3 Gouraud Shaded Polygons in RGB Mode
Color and Drawing Modes .

5.1 Drawing Modes

5.2 Overlays

5.2.1 Creating Overlays on the IRIS 2000/3000

5.2.2 Creating Overlays on the IRIS-4D
5.2.3 Setting the Color Map for Overlays .
5.3 Underlays .
5.3.1 Creating Underlays on the IRIS 2000/3000
5.3.2 Creating Underlays on the IRIS-4D
5.4 Gamma Correction e e
5.5 Hidden Surface Removal

5.5.1 Using the Z-buffer in Double Buffer Mode

5.5.2 Using the Z-buffer in RGB Mode
Cursors
6.1 Porting Simple Cursors

6.1.1 Using defcursor .

6.2 Cross-hair Cursor

6.3 Cursors and The Window Manager
RGB Mode Capabilities

7.1 RGB Mode in the Window Manager
7.2 Double Buffer and RGB Modes

7.3 Depth Cueing in RGB ..
7.4 Supporting Multiple Display Modes .
7.5 Other Features Working with RGB
Multiple Windows Per Process

4-5

5-2
5-2
5-3
5-5

5-8

5-8
5-10
5-12
5-14
5-15
5-15

6-2
6-2
6-4
6-4

7-2
7-3

7-4
7-4
8-1

List of Tables

Table 4-1. Comparison of Old and New Shading
Subroutines e e e

Table 5-1. Comparison of Gamma Correction .

Table 7-1. RGB Mode in the Window Manager

List of Figures

Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 3-1.

Figure 5-1.
Figure 5-2.

Figure 5-3.
Figure 5-4.

Figure 5-5.

Figure 5-6.

A Window Manager REDRAW Event is
Received .

Swapping Buffers under mex on the IRIS
2000/3000

Swapping Buffers on One Window on the IRIS-
4D .

Aspect Ratio Distortion Resulting from Different
Screen Resolutions

Flight Simulator Gauges .

house and car are drawn in separate
bitplanes .

House drawn as an overlay over the car

House in Overlay Bitplane Overlaps Car in Standard

Bitplane

house drawn as an underlay beneath the
car .

On the IRIS-4D, house in underlay bitplane is drawn

beneath the car in a standard bitplane

2-19

2-22

2-22

3-2
5-3

5-10

1. IRIS-4D Graphics Conversion

This tutorial is designed to assist programmers in porting graphics code
from the IRIS Series 2000 and 3000 workstation to the IRIS-4D Series
workstations using subroutines and techniques that are common to all
members of the IRIS 4D family. It does not show you how to tune your
code for a particular IRIS-4D. Once you complete the port that this book
describes, see Tuning Graphics Code for Your IRIS-4D.

This tutorial is designed for programmers with substantial experience
programming with the IRIS Graphics Library. It covers these topics:

e using and programming in the window manager (special emphasis is put
on the 4D window manager features)

« understanding the effect of changes in the screen resolution
¢ shading polygons

« using drawing modes, overlays, underlays, gamma correction, and hidden
surface removal

» controlling the cursor
¢ using RGB mode
» using multiple windows per process

Programming examples illustrate many of the topics, some of which
compare Series 2000/3000 and 4D code.

s

Version 1.0 IRIS-4D Graphics Conversion 1-1

-

1.1 Approach to Porting to the IRIS-4D

The main differences between programming on the IRIS 2000 and 3000
workstations and the IRIS-4D workstations are explained below. Go

through this checklist and ask yourself these questions about your current

IRIS 2000/3000 application: (

¢ Does my IRIS 2000/3000 program use the window manager? If not,do I
rewrite it for the window manager? If my program already runs on the
IRIS 2000/3000 window manager, what changes do I make to run it on
the 4D?

» How do the 4D screen resolution and aspect ratio (which are different
from the 2000 and 3000) cause program changes?

e Do I use Gouraud shading in my application? CanIuse shademodel
to optimize the performance of my code on the IRIS-4D?

e« How do I use the 4D routines overlay, underlay, and
drawmode instead of writemask to create simple overlays,
underlays, cursors, and pop-up menus.

¢ Do I want to use RGB mode for my application? On the 4D, RGB mode
is compatible with other display modes and the window manager. Using (
RGB mode provides more colors than using color map mode and permits
Gouraud shading and depth-cueing without loading color ramps.

o Are there user-defined cursors in my program? Do I need to use more
complex cursor features such as multi-color cursors?

+ How many colors are available on the IRIS-4D? The window manager on
the IRIS 2000/3000 reduces the number of available colors by 75 percent.
The window manager on the non-GT 4D workstations reduces the number
of available colors by a mere 6.25 percent; on the GT there is no
reduction.

e Does my IRIS 2000/3000 program use hidden surface removal? How can
I take advantage of the increased speed of Z-buffering?

« How can I take advantage of the IRIS-4D capability to create filled -
concave polygons? What are the limits of concave polygon fill on the (
4D?

e Does my program use feedback to use the Geometry Pipeline for matrix
multiplication? In particular, does it use xfpt ()?

1-2 Conversion Tutorial IRIS-4D Series

This tutorial examines and contrasts some sample programs and code
fragments that use features that changed from the IRIS 2000/3000 series and
the IRIS-4D.

Version 1.0 IRIS-4D Graphics Conversion 1-3

2. Window Manager Programming

4Sight, the IRIS windowing system, is always active when you are logged in
to the IRIS-4D. 4Sight is the default operating environment and cannot be
killed without logging out. The 4D pop-up menu interface has been changed
from the IRIS Series 2000/3000.

On the Series 2000/3000, many applications have been written to run
without using the window manager. On the 4D, a program that uses
ginit or gbegin creates a window the same size as the screen.
However, porting your application to the window manager will make it
more robust and portable.

This chapter covers three topics:
« changes to the pop-up menu interface
e porting a program to the window manager

¢ changes to the window manager that affect programming, particularly
double buffer mode graphics

2.1 User Interface -

You use the mouse to control the orientation and activity of windows. The
mouse brings up pop-up menus from which you can exercise a series of
operations on the windows. The 4Sight interface is described at length in
Getting Started with the IRIS-4D Series Workstation.

Version 1.0 Window Manager Programming 2-1

The configuration of the window manager user interface (the functions that
are controlled from the keyboard and mouse) are specified from a file called
.mexrc. On the Series 2000/3000, when the window manager is initiated, it
searches for .mexrc in this order:

1. It looks for .mexrc in the current directory.

2. Ifit does not find this file, it looks for .mexrc in the user’s home
directory.

3. Ifit does not find this file, the window manager uses the file
lusr/lib/gl2/mexrc to define the user interface configuration.

On the IRIS-4D, 4Sight is started when the user logs in, and it uses a
different configuration file, user.ps, to set up the user interface environment.
It searches for user.ps in this order:

1. Itlooks for user.ps in the current directory.
2. Itlooks for user.ps in /usr/NeWS/lib.

To create your own, customized version of user.ps, copy
lusrINeWS/libluser.ps into your home directory, and make changes to this
copy. Then log out, and log in again to see the changes take effect.

A person communicates with the UNIX operating system by typing
commands into a text window. On the IRIS-4D, you type these commands
in wsh, the new window shell. ws# is controlled by a set of pop-up menus
that are different from the Series 2000/3000. For more information on the
4Sight interface, see Getting Started with the IRIS-4D Series Workstation;
for detailed information on customizing user.ps, see the 4Sight User’s Guide
Volume 1, Section 3, ‘‘Programming the GL Interface’’.

2.2 Programming with ginit

On the 4D, you can still run a graphics program that uses ginit and is not
designed to run under the window manager. ginit acts as if a window,
which is the size of the entire screen, is opened.

To port a program to the window manager, begin with a standalone
program, such as car.c below, that shows a moving car and a stationary
house. This standalone program compiles and runs on both the IRIS Series
2000/3000 and the IRIS-4D.

2-2 Conversion Tutorial IRIS-4D Series

W C Program: Car.c

/*

*

*

* 0% ok ok kX X * % F

car.c——IRIS 2000/3000 or IRIS-4D
This is the basic program which draws a car and a house.
This program runs on both the IRIS 2000/3000 and IRIS-4D.
On the 4D, its performance is not optimized. When the car
drives behind the house, the house is drawn on top. This

version does not use the window manager or overlays.

In subsequent programs, we examine steps needed to port a
program to the window manager on both the IRIS 2000/3000
and IRIS-4D. In several cases, a corresponding IRIS
2000/3000 implementation of a feature is compared with the
IRIS-4D.

#include "gl.h"
#include "device.h"

main () {

/*

*/

int oldx,oldy, dx,dy:;
int X,y

initialize ();

dx = XMAXSCREEN / 2;

dy = YMAXSCREEN / 2;

while (TRUE) {

check polled and queued input. In this example, input is
only polled: getvaluator and getbutton.

if (getbutton (ESCKEY)) {
gexit ();
exit (0);

}

oldx = x;

oldy '

X = getvaluator (MOUSEX):;

y = getvaluator (MOUSEY);

if (getbutton (LEFTMOUSE)) ({
dx = dx + (x - oldx);
dy = dy + (y - oldy);

Version 1.0 Window Manager Programming 2-3

drawscene (dx, dy);
swapbuffers ();

* initialize graphics, display mode, color map, cursors,
* polygon fill patterns, and anything else that only needs
to be called once.

*/

initialize () {
ginit ();
doublebuffer ();
gconfig ();

drawscene (x, y)

int X,¥Y;

{
color (BLACK);
clear ()
drawcar (x, y):;

drawhouse () ;

/* draw a car with several colors. The front window is drawn

* and then flipped over (scaled) for the rear window. The
* translate routine moves the car to an (x,y) position.

drawcar (x, V)
int X,Y;

{
float fx,

fy:
fx = (float) x;
fy = (float) y;

pushmatrix ();
translate (fx, fy, 0.0); /* move to mouse location */
color (BLUE); /* wheels */

2-4 Conversion Tutorial IRIS-4D Series

(

circfi (-75, -75, 20);

circfi (75, -75, 20);

color (RED); /* car body */
pmv2i (-150, -50);

pdr2i (-125, 0);

pdr2i (125, 0);

pdr2i (150, -50);

pclos ()7

color (YELLOW); /* front window */
drawwindow ();

color (GREEN):; /* rear window */

scale (-1.0, 1.0, 1.0);
drawwindow ();

popmatrix ()

/* draw a window for the car */

drawwindow () {
pmv2i (0, 0);
pdr2i (0, 50);
pdr2i (50, 50);
pdr2i (75, 0);
pclos ();

/* draw a house in two colors at a fixed position, specified
* by the translate routine.

*/

drawhouse () {
pushmatrix ();
translate (200.0, 100.0, 0.0);/* move house into position */
color (MAGENTA); /* roof *x/
pmv2i (0, 0);
pdr2i (0, 250);
pdr2i (350, 250);
pdr2i (350, 0);
pclos ();
color (CYAN):; /* 1st floor */
pmv2i (175, 400);

Version 1.0 Window Manager Programming 2-5

pdr2i (0, 250);
pdr2i (350, 250);
pclos ();
popmatrix ();

2.3 Porting a Standalone Program to the
Window Manager

A graphics program that runs under the window manager:
« redraws a window which becomes uncovered

e directs graphics to one or several windows on the screen
» can automatically attach input devices to a window

It is recommended that IRIS-4D graphics programs run under the window
manager to handle all situations with overlapping windows. Porting a
standalone program to the window manager involves two key steps:

e Initializing the window or windows. Prior to opening a window, specify
any constraints on the size, shape, or position of the window. Then open

it.

¢ Processing events that signal themselves by sending an entry to the device
queue. Such events can be requests to redraw the contents of a window or
to make input available to a process.

2.3.1 Constraining Window Characteristics

When programming without the window manager, call ginit before any
graphics commands are executed. In the window manager, call winopen
to initialize a window. Call only Graphics Library routines that define or
restrict the size, shape and position of a window are prior t0 winopen.

2-6 Conversion Tutorial IRIS-4D Series

For example, to limit the minimum or maximum size (in pixels) of a graphic
window, use these subroutines.

minsize (width, height);
maxsize (width, height);

To ensure the shape (aspect ratio) of a graphics window, use this subroutine.
keepaspect (width, height);

To fix the size of a graphics window, but still be able to move it around, use
this subroutine.

prefsize (width, height);

To open a graphics window and fix the location of it on the screen, use this
subroutine.

prefposition (left, right, bottom, top):

These constraints are applied the first time a window is opened. The
measures of the widths and heights do not include any banner created with
wintitle. There are other routines which are also called before
winopen: stepunit, fudge, imakebackground, noport,
and foreground. Referto the Graphics Library User’s Guide or the
IRIS-4D GT User’s Guide for more details on these routines.

To create a window with comers at (100, 300) and (500, 600), use these
subroutines:

prefposition (100, 500, 300, 600);
gid = winopen ("name");

gid is the graphics window identifier, which is a unique integer name
associated with each window. No two windows can have the same gid, even
if the windows are created by different programs. This identifier becomes
important when creating multiple windows per process.

Version 1.0 Window Manager Programming 2-7

2.3.2 Establishing New Window Constraints

Once a window is opened, you can move or resize a window by using the
title bar pop-up menu or the middle mouse button. The routines called
before winopen are saved in a list, that is used for subsequent changes to
the window. For example, if prefsize limits the size of the window,
then you can move the window around but not modify its size. If
prefposition fixes the position of the window, then you cannot move
the window at all.

To modify the existing list of constraints, use winconstraints.
Constraint routines made after winopen are saved in a list. When
winconstraints is called, the new list of constraints replaces the old
list. For example, start with a window with corners at (100, 300) and (500,
600).

prefposition (100, 500, 300, 600);
gid = winopen ("name");

To create a new list, call this additional sequence of subroutines:

keepaspect (4, 3);
minsize (400, 300);
winconstraints ();

keepaspect and minsize form anew list of window constraints.
winconstraints makes the new list the official constraints list,
replacing the previous prefposition. Now you can resize the window,
but the aspect ratio remains constant and the window is never smaller than
400 pixels wide by 300 pixels high. To remove all constraints from a
window, call winconstraints () with no window specifications
preceding it.

2.3.3 Explore sample programs

This section shows how the code example, car.c, is ported to the window
manager on both the Series 2000/3000, and the 4D. The file wincar.c is the
window manager version of car.c for the IRIS 2000/3000; windcar.c is the
version for the IRIS-4D. Later sections reexamine these programs to see

2-8 Conversion Tutorial IRIS-4D Series

different characteristics of the window manager. In each example, pay
special attention to:

e Initializing the window constraints
e Opening the window

o Creating a new list of window constraints

W C Program: wincar.c

/* wincar.c--IRIS 2000/3000

* The car.c program is modified to run in the window

* manager. Later, this code will be converted to features
* of the IRIS-4D.

*/

#include "gl.h"
#include "device.h"

main () {
int attached;
int oldx,
oldy,
dx,
dy;
int dev,
X,
V'
short val;
static int originx,

originy;

initialize ();
attached = 1;
getsize (&x, &y):;
dx = x / 2;

dy =y / 2;

while (TRUE) {

while (gtest ()) {
dev = qread (&val);
switch (dev) {

Version 1.0 Window Manager Programming 2-9

case REDRAW: /* window is moved or reshaped */
reshapeviewport ();
frontbuffer (TRUE);
drawscene (dx, dy);
frontbuffer (FALSE);
break;

case INPUTCHANGE: /* user attaches or detaches

* input focus */

attached = (int) val;
if (attached == 0) {
frontbuffer (TRUE);
drawscene (dx, dy);
frontbuffer (FALSE);
}
break;

case ESCKEY:
gexit ()
exit (0);
break;

default:
break;

}

if (!attached)

while (!qtest ())
swapbuffers ();

if (attached != 0) {
oldx = x;
oldy = y;
x = getvaluator (MOUSEX);
y = getvaluator (MOUSEY);
if (getbutton (LEFTMOUSE)) ({
dx = dx + (x - oldx);
dy = dy + (y - oldy);
}
drawscene (dx, dy);
swapbuffers ();

2-10 Conversion Tutorial IRIS-4D Series

/*

*

*

* % X *

initialize graphics for the window manager by using
winopen. prefposition() is used to perfectly center a 750
by 560 window. Once the window is opened, it can be
moved, but minsize () specifies a size limit, and
keepaspect () fixes an aspect ratio to the changing

window. winattach() immediately attaches the input
devices to the window, without going through the pop-up

menu.

initialize () {

L I .

prefposition ((XMAXSCREEN - 750) / 2,
(XMAXSCREEN + 750) / 2,
(YMAXSCREEN - 560) / 2,
(YMAXSCREEN + 560) / 2);

winopen ("car");

minsize (750, 560);

keepaspect (XMAXSCREEN, YMAXSCREEN) ;

winconstraints ()

doublebuffer ();

gconfig ();

winattach ()

The default projection transformation is based on the size
of the window. The default projection could also be
determined by these calls:

getsize (&x, &y);

ortho2 (-0.5, x - 0.5, -0.5, y - 0.5);

gdevice (REDRAW) ;
gdevice (INPUTCHANGE) ;
gdevice (ESCKEY);

drawscene (x, y)

int

X,

y;

color (BLACK);
clear ();
drawcar (x, y)-

Version 1.0 Window Manager Programming 2-11

drawhouse ();

/* draw a car with several colors.

The front window is drawn

* and then flipped over (scaled) for the rear window. The

* translate routine moves the car to an (x,y) position.

*/

drawcar (x, y)

int X,
Y’
{
float fx,
fy;
fx = (float) x;

fy (float) y;
pushmatrix ();

translate (fx, fy,
color (BLUE);
circfi (=75, -75,

cirefi (75, -75, 20);

color (RED);

pmv2i (-150, -50);

pdr2i (-125, 0);
pdr2i (125, 0);
pdr2i (150, -50);
pclos ();

color (YELLOW);
drawwindow () ;
color (GREEN) ;
scale (-1.0, 1.0,
drawwindow ();
popmatrix ();

/* draw a window for the car

drawwindow () {
pmv2i (0, 0);
pdr2i (0, 50);
pdr2i (50, 50);

2-12 Conversion Tutorial

front window

rear window

move to mouse location */

IRIS-4D Series

pdr2i (75, 0);
pclos ();

/* draw a house in two colors at a fixed position, specified
* by the translate routine.

*/

drawhouse () {
pushmatrix ();
translate (200.0, 100.0, 0.0);/* move house into position */
color (MAGENTA) ; /* roof *x/
pmv2i (0, 0);
pdr2i (0, 250);
pdr2i (350, 250);
pdr2i (350, 0);
pclos ();
color (CYAN):; /* 1st floor */
pmv2i (175, 400);
pdr2i (0, 250);
pdr2i (350, 250);
pclos ();
popmatrix ()

H C Program: windcar.c

/* windcar.c-—IRIS-4D

* The windcar.c program is modified to run in the window
* manager. On the 4D, there are three differences:

* 1) double buffering

* 2) screen resolution

* 3) lack of initial REDRAW token

*/

#include "gl.h"
#include "device.h"

/* On the IRIS 3000, a double buffered window manager program

* must swap buffers, even when the input devices are not
* attached to the window. On the IRIS-4D, each window

Version 1.0 Window Manager Programming 2-13

*

*/

controls its own display mode independently.

main () {

L A . A T I

L A

/*

*

*/

int attached;
int oldx,
oldy,
dx,
dy;
int dev,
X,
y;
short val;

initialize ();
attached = 1;
getsize (&x, &y):
dx = x / 2;

dy =y / 2;

process polled and queued input.

The key difference from the 3000 is how this code waits if
the input focus is not attached to the program. The while
(gtest ()) loop now also examines whether the input devices
are attached. If they are not attached, the gread() will
block, waiting for an INPUTCHANGE token to reattach and

awaken the program.

Also, you do not have to draw a still image into both
front and back buffers. On the 4D, a graphics program
does not have to swap between buffers when it is
unattached.

while (TRUE) {
On the 3000, this code was only:
while (gtest ()) {

while (gtest () || !attached) {
dev = gread (&val);
switch (dev) {

2-14 Conversion Tutorial IRIS-4D Series

/* On the 3000,

*
*
*
*

*

* input devices,

*/

}

but on the IRIS-4D, you don’'t.

case REDRAW: /* window is moved or reshaped */

reshapeviewport ();
drawscene (dx, dy);
swapbuffers ();
break;
case INPUTCHANGE:
/* user attaches or detaches
* input focus */
attached = (int) val;
break;
case ESCKEY:
gexit ()
exit (0);
break;
default:
break;

}

program, you swap buffers here:

if (!attached)
while (!gtest ())
swapbuffers ();

if (attached !'= 0) {

Version 1.0

oldx = x;

oldy = y;

x = getvaluator (MOUSEX) ;

y = getvaluator (MOUSEY);

if (getbutton (LEFTMOUSE)) ({
dx = dx + (x - oldx);

dy = dy + (y - oldy);

}

drawscene (dx, dy);
swapbuffers ();

Window Manager Programming

while input devices were not attached to the

To learn how to detach the
see how the INPUTCHANGE event is handled.

2-15

b T T

* %k 3k 3k %

*

*

*/

initialize graphics for the window manager by using
winopen. On the 3000, a 750 by 560 window is drawn, which
approximates the aspect ratio for the 3000 screen. On the
IRIS-4D, the aspect ratio is different. On the 4D, a
window of 750 by 600 more closely matches the aspect ratio

of the screen.

On the 3000, a REDRAW token would be entered into the event
queue of a program as it was opened. On the 4D, no
REDRAW token is issued. To ensure this REDRAW token is not
missed, you can:

1) use genter to force a REDRAW event onto the queue

2) initial all values that would have relied upon the
token. In this example, a REDRAW token is forced onto the
queue.

initialize () {

/*

prefposition ((XMAXSCREEN - 750) / 2,
(XMAXSCREEN + 750) / 2,
(YMAXSCREEN - 600) / 2,
(YMAXSCREEN + 600) / 2);

winopen ("car");

minsize (750, 600);

keepaspect (XMAXSCREEN, YMAXSCREEN) ;

winconstraints ();

doublebuffer ();

gconfig ();

winattach ();

The default projection transformation is based on the size
of the window. The default projection could also be
determined by these calls:

getsize (&x, &y);

ortho2 (-0.5, x - 0.5, -0.5, y - 0.5);

gdevice (REDRAW);
gdevice (INPUTCHANGE) ;

gdevice (ESCKEY);

genter (REDRAW, O0);

2-16 Conversion Tutorial IRIS-4D Setries

drawscene (x, y)
int X,

y;

color (BLACK) ;
clear ();
drawcar (x, y):

drawhouse ();

/* draw a car with several colors. The front window is drawn

* and then flipped over (scaled) for the rear window. The
* translate routine moves the car to an (x,y) position.

* This code is not different on the IRIS 3000.

*/

drawcar (x, y)
int X,

yi

float fx,

fy;
fx = (float) x;
fy = (float) y;

pushmatrix ();

translate (fx, fy, 0.0); /* move to mouse location */
color (BLUE); /* wheels */

circfi (=75, -75, 20);

circfi (75, -75, 20);

color (RED); /* car body */

pmv2i (=150, -50);

pdr2i (=125, 0);

pdr2i (125, 0);

pdr2i (150, -50);

pclos ();

color (YELLOW); /* front window */
drawwindow () ;

color (GREEN) ; /* rear window */

Version 1.0 Window Manager Programming 2-17

scale (-1.0, 1.0, 1.0);
drawwindow ();

popmatrix ();

/* draw a window for the car */ (i

drawwindow () {
pmv2i (0, 0);
pdr2i (0, 50);
pdr2i (50, 50);
pdr2i (75, 0);
pclos ();

/* draw a house in two colors at a fixed position, specified
* by the translate routine.
* This code is not different on the IRIS 3000.

*/
drawhouse () {
pushmatrix (); (j
translate (200.0, 100.0, 0.0);/* move house into position */
color (MAGENTA) ; /* roof */

pmv2i (0, 0);
pdr2i (0, 250);
pdr2i (350, 250);
pdr2i (350, 0);
pclos ();

color (CYAN); /* 1lst floor */
pmv2i (175, 400);
pdr2i (0, 250);
pdr2i (350, 250);
pclos ();
popmatrix ();

2-18 Conversion Tutorial IRIS-4D Series

2.4 Processing the Event Queue

The window manager communicates events by sending signals to the
graphics queue of a program. A window manager program must repeatedly
check and process these signals as they arrive on the queue. Without the
window manager, only changes of state to input devices (for example, a
pressed mouse button) signal the queue. To port a standalone program to the
window manager, you must process the event queue, keeping a careful eye
for special window manager events. There are two events of special
interest:

¢ REDRAW-—a window needs to be redrawn

» INPUTCHANGE—the activity of a window has changed; the input
devices have just become attached to or detached from a window

2.4.1 Redrawing a window

Under the window manager, redrawing must be processed by the graphics
program. Each time a window is uncovered or moved, the system must
redraw it. The window manager does not store any images or other data of
covered portions of windows. Instead, when a window is uncovered or
moved, a REDRAW event is entered into the queue. This REDRAW is not
really input, but is a signal from the window manager to a graphics program
to redraw a window. The queue receives REDRAW as the device part of the
event, and the value is the gid of the window to be redrawn.

device value
— | []
1. two overlapping event queue is
windows empty
=]
%ﬂh* device value
Sataza Rl —_— L REDRAW | gid |
[Fman
2. pop bottom event queue
window to the top receives REDRAW

Figure 2-1. A Window Manager REDRAW Event is Received

Your program continually examines the queue to see if an input event has
occurred. If something is on the queue, the first entry is removed and
examined. If the device is REDRAW, then the associated value is the
graphics window identifier (gid). The gid is the same number which is

Version 1.0 Window Manager Programming 2-19

returned by winopen when the window is originally opened. winset
directs all graphics to the current clipping window. In case the window has
been resized or moved, reshapeviewport reestablishes the size and
position of the clipping window. Then the scene is redrawn into the
window.

if (qtest ()) {
dev = gread (&val);
if (dev == REDRAW) {
winset (val);
reshapeviewport ()’
drawscene ();

2.4.2 Change in status of input devices

The other event to check for on the queue is the INPUTCHANGE event. If
the INPUTCHANGE event arrives, either you are attaching the input
devices (mouse and keyboard) to operate a program or detaching (removing)
those input devices. In other words, you are activating or deactivating a
program.

The value that accompanies the INPUTCHANGE event discriminates
between the two states. If the program is being deactivated, the value
accompanying the INPUTCHANGE token is 0. If the program is being
activated, the value is the graphics window identifier (gid).

In the example below, an ideal method for processing the INPUTCHANGE
token is described. Declare a Logical or Boolean variable called attached,
which always reflects the input state of the program, active or inactive. If
the value accompanying the INPUTCHANGE is non-zero, activate the
program; otherwise, deactivate it. Use the variable attached throughout the
program to activate or deactivate sections of code.

if (qtest ()) {
dev = gread (&val);
if (dev == INPUTCHANGE) {
if (val > 0)
attached = TRUE;
else if (val == 0)
attached = FALSE;

2-20 Conversion Tutorial IRIS-4D Series

Note: InFORTRAN, Graphics Library subroutines and constants are
normally shortened to the first six characters in its name. Be aware
of this exception: the literal constant INPUTCHANGE is
shortened to INPTCH, not INPUTC.

2.4.3 Explore a sample program

Now reexamine only the wincar.c program. Pay special attention to:
e the event queue

o the REDRAW event

o the INPUTCHANGE event

2.5 Porting Multi-Window, Double Buffered
Code

Window manager programs in double buffer mode are processed differently
than standalone programs. To port a standalone, double buffer mode
program to the window manager, you must change your program to control
how double buffer mode affects the window manager. Also, the window
manager on the IRIS 2000/3000 manages double buffer mode differently
than the IRIS-4D. To port an IRIS 2000/3000 window manager program
which uses double buffer mode to the IRIS-4D, you must modify its code.

2.5.1 Swapping Buffers

On the IRIS 2000/3000, the entire screen is involved with double buffering.
When one window wishes to swap buffers, it must wait for all other double
buffered windows to request to swap buffers. When all windows have
requested, then they are all swapped at one time. If just one double buffered
program does not swap, all the other windows wait, which can hang the
system.

Version 1.0 Window Manager Programming 2-21

system waits
until all windows
request to swap
buffers

e .

/ s L
A/ / all windows
HEES request to

swap buffers

Figure 2-2. Swapping Buffers under mex on the IRIS 2000/3000

The window manager on the IRIS-4D Series workstations makes it easier to
control double buffered windows. Each double buffered window is
independent of any other swapping windows. Therefore, many of the
programming gymnastics used to properly swap buffers on the Series
2000/3000 can be eliminated in 4D programs.

e s PR
o v -
one window L 2
requests to - .
swap buffers |3 e
A .

each window can
independently
swap buffers

Figure 2-3. Swapping Buffers on One Window on the IRIS-4D

For example, on the Series 2000/3000, a double buffered program
continually has to swap buffers, even when not attached. Otherwise, other
programs are held up, waiting for the program to swap. So if the program is
not attached, it checks the queue. If there are no entries on the queue (which
could activate the program), it swaps buffers. The Series 2000/3000 code
looks like this:

if (attached == FALSE) {
while (!gtest ())
swapbuffers ()

On the 4D, the program does not continually have to swap buffers. Each
program can swap buffers independently from any other window. The
constant swapping of buffers should be eliminated, and the previous code
sample also should be deleted from the 4D program. Instead, when the
program is not attached, it can use gread and wait until something enters
the queue. Using gread is the most efficient way to deactivate a program.

2-22 Conversion Tutorial IRIS-4D Series

The portion of code that tests and reads the queue on an IRIS Series
2000/3000 has this form:

while (gtest (}) {
dev = gread (&val);

To port this section of code to an IRIS-4D, change the code as follows:

while (gtest () || !attached) {
dev = gread (&val);

2.5.2 Explore sample programs

Now reexamine both the wincar.c and windcar.c programs. Pay special
attention to how they differ:

« where buffers are swapped

« where the queue is tested

2.5.3 Processing REDRAW

To process a REDRAW event on the Series 2000/3000, the same scene is
drawn into both front and back buffers. Otherwise, when the program is
deactivated, and the buffers are being continually swapped, there would be a
different image in each buffer and the sleeping program would appear to
jump around. This example shows such 2000/3000 code:

dev = gread (&val);

if (dev == REDRAW) {
reshapeviewport ();
frontbuffer (TRUE);
drawscene () ;
frontbuffer (FALSE);

}

One very subtle difference between the IRIS 2000/3000 and the IRIS-4D
window managers is the very first event which arrives on the event queue.
On the Series 2000/3000, a REDRAW event is issued for each opened
window. The first time the window is opened, the program automatically
receives a signal to display an image.

Version 1.0 Window Manager Programming 2-23

On the 4D, the program does not swap buffers while deactivated, so the
front and back buffers do not need the same image. You only need to
display the image in the visible (front) buffer. This example shows this 4D
code:

if (device == REDRAW) {
reshapeviewport ();
drawscene ();
swapbuffers ();

}

device = gread (&val); (’

Note that the final swapbuffers call displays the scene in the front
buffer.

On the IRIS-4D, no initial event is sent to a window. Therefore, an effort
must be made to draw graphics to the window, or the window remains a
black rectangle. A simple way to draw graphics in the window initially is to
force a REDRAW event onto the queue. This subroutine enters a
REDRAW event onto the queue:

genter (REDRAW, gid);

where gid is the graphics window identifier returned by the winopen (
routine.

2.5.4 Processing INPUTCHANGE

The INPUTCHANGE token notifies a program to activate or deactivate
itself. On the Series 2000/3000, when a program deactivates, the same
scene is drawn into both front and back buffers. Once again, this avoids a
different image in each buffer which, when swapped, makes a deactivated
program appear to jump around. When input devices become detached
(deactivated) from a program, every window must be redrawn in both
buffers:

dev = gread (&val);
if (dev == INPUTCHANGE) {
if (val > 0) (
attached = TRUE
else if (val == 0) {
attached = FALSE
frontbuffer (TRUE);

2-24 Conversion Tutorial IRIS-4D Series

drawscene ();
frontbuffer (FALSE);
}
}

On the 4D, once a program is deactivated, swapping does not occur. It is
not necessary to ensure both buffers have the same image in every window.

dev = gread (&val);
if (dev == INPUTCHANGE)
if (val > 0)
attached = TRUE;
else if (val == 0)
attached = FALSE;

2.5.5 Explore a sample program

Now again reexamine the wincar.c and windcar.c programs. Pay special
attention to how they differ in processing:

¢ the REDRAW event
¢ the INPUTCHANGE event

Version 1.0 Window Manager Programming 2-25

3. Resolution and Aspect Ratio of
the Screen

The screen resolution, aspect ratio, and density have changed from the IRIS
200073000 to the IRIS-4D. This affects many Graphics Library routines that
define 2-D screen regions or 3-D viewing volumes. The density change of
pixels also alters the appearance of text, polygon fill patterns, line styles,
and any bitmapped, 2-D, raster data.

On the Series 2000/3000, the screen is 1024 pixels wide and 768 pixels
high, an aspect ratio of 4 units of width for every 3 units of height. On the
4D, the screen is 1280 pixels wide and 1024 pixels high, an aspect ratio of 5
units of width for every 4 units of height.

3.1 Viewing Subroutines

The new resolution and aspect ratio distorts how objects are viewed. The

distortion can change how objects are perceived in 3-D space or how they

are projected onto the 2-D screen. You may need to change these types of
Graphics Library subroutines:

e define 2-D and 3-D viewing volumes

— ortho (left, right, bottom, top, near, far)
— ortho2 (left, right, bottom, top)

— perspective (fovyangle, aspect, near, far)

— window (left, right, bottom, top, near, far)

Version 1.0 Resolution and Aspect Ratio of the Screen 3-1

« define 2-D screen regions for gross and fine clipping

— viewport (left, right, bottom, top)

— getviewport (left, right, bottom, top)

— scrmask (left, right, bottom, top)

— getscrmask (left, right, bottom, top) (
 inversely map from screen space to viewing space

— mapw (vobj, ix, iy, x1, yl, zl, x2, y2, z2)

— mapw?2 (vobij, ix, i1y, x1, yl)

3.1.1 Aspect Ratio

The aspect ratio of the IRIS-4D monitor can distort how the 3-D viewing
routines, ortho, ortho2, perspective, and window project
objects onto the screen. To prevent distortion, the aspect ratio of the
viewing volume should be the same as the monitor. Using the literal
constants, XMAXSCREEN and YMAXSCREEN, you can avoid immutably
tying your application to the Series 2000/3000 screen size. In the gl.h and (
fgl.h include files, XMAXSCREEN and YMAXSCREEN are defined as the
number of pixels of width and height, respectively. (In FORTRAN, both
constants are shortened to six character names, XMAXSC and YMAXSC.)
On the IRIS 2000/3000, XMAXSCREEN is 1023 and YMAXSCREEN is 767.
On the IRIS-4D, XMAXSCREEN is 1279 and YMAXSCREEN is 1023.

To avoid distortion with perspective, set the aspect ratio of the 3-D
viewing volume to match that of the display as shown below.

perspective (fovyangle,
((float) XMAXSCREEN+1l) / ((float) YMAXSCREEN+1l), near, far)

On IRIS 200073000 Screen On IRIS-4D Screen Adijust aspect ratio on the 4D
1024 x 768 1280 x 1024 to eliminate distortion

same perspective
on both screens

perspective (400,1.33,5.0, 10.0) perspective (400,1.33. 5.0, 10.0) perspective (400, 1.2, 5.0, 10.0) (
distortion occurs, appears thinner

Figure 3-1. Aspect Ratio Distortion Resulting from Different Screen Resolutions

3-2 Conversion Tutorial IRIS-4D Series

With ortho, ortho2,and window, which do not define the aspect

ratio with one value, changing the aspect ratio is not as simple. To control

the aspect ratio with these three subroutines, alter the left, right,
bottomand top values.

The screen resolution change greatly affects the subroutines vi ewport

and scrmask, which define regions on the screen. viewport defines
the screen rectangle for clipping geometry and for the gross clipping of text.

scrmask defines the rectangle for the fine clipping of text. Code which
reads:

viewport (0, 1023, 0, 767)
should be changed to:

viewport (0, XMAXSCREEN, 0, YMAXSCREEN)

This is more flexible and is preferred over using numerical constants.
Similarly, mapw, the inverse viewing mapping from 2-D to 3-D, and
mapw2 are affected by the change in screen resolution.

Changing the aspect ratio of viewing volumes is necessary to prevent
distortion, but, unfortunately, the values are not always easy to choose.

3.2 Window Constraints

Graphics programs that run under the window manager can constrain the
size, aspect ratio or position of their windows. When porting a program
from the IRIS 2000/3000 to the 4D, a change in the window constraints
often improves the appearance of windows on the screen. Windows that
appear most harmonious:

« have the same aspect ratio as the monitor itself
« have a similar aspect ratio to other windows
 are centered on the screen

e cover the entire screen without overlapping

Version 1.0 Resolution and Aspect Ratio of the Screen

3-3

To achieve your desired visual effect, you may need to change these
subroutines:

e keepaspect (width, height)

e prefposition (left, right, bottom, top)
e prefsize (width, height)

e maxsize (width, height)

e winposition (left, right, bottom, top)

e winmove (orgx, orgy)

3.2.1 Restricting Aspect Ratios

keepaspect restricts the aspect ratio of opened windows. A flexible
aspect ratio, which works on both the IRIS 2000/3000 and the 4D, is
specified like this:

keepaspect (XMAXSCREEN+1l, YMAXSCREEN+1)

3.2.2 Specifying Window Locations

prefposition, winposition,and winmove specify window
locations. Because the 4D screen has a larger resolution, calls to these
routines may require changes. For example, the call below covers the entire
screen on the IRIS 2000/3000 workstation.

prefposition (0, 1023, 0, 767)

However, it does not cover the increased resolution of the 4D screen. Wise
use of the literal constants, XMAXSCREEN and YMAXSCREEN, solves this
problem.

3-4 Conversion Tutorial IRIS-4D Series

3.3 Input

Input values based on cursor position are affected by the new larger screen.
On the 4D, MOUSEX and MOUSEY become as large as 1279 and 1023,
respectively.

The larger screen affects input polled from the user with the
getvaluator function and the setvaluator routine, or input saved
in the queue for the MOUSEX and MOUSEY devices. When queueing,
these values frequently are tied to a mouse button. To make a Series
2000/3000 program that uses these subroutines run on a 4D, you may need
to make the following changes:

e polled input

— value = getvaluator (device);

— setvaluator (device, init, min, max):

e queued valuator input

— qgdevice (MOUSEX) ;

— qgdevice (MOUSEY) ;

— tie (BUTTONMOUSE, MOUSEX, MOUSEY);

— device = gread (&value);

Note: If you change the boundaries of the mouse movement with

setvaluatoxr, when the program is exited, the values are not
restored. Your program should reset them before exiting.

3.4 Raster Data

Because of the higher screen resolution on the 4D, graphic images, pixel
mapped characters and cursors, polygon fill patterns and line styles will
appear smaller and finer, about three-quarters the height and width of the
2000/3000. The screen location will also affect positioning graphic images
(screen dumps) and pixel mapped characters (text).

Version 1.0 Resolution and Aspect Ratio of the Screen 3-5

This affects these categories of Graphics Library subroutines:
e raster images
— readpixels (number, pixelarray);
— writepixels (number, pixelarray);
— readRGB (number, redarray, greenarray, bluearray);
— writeRGB (number, redarray, greenarray, bluearray);
e text
— cmov (X,Y, Z);
— charstr ("string");
— width = strwidth ("string");
e icons and other bitmaps
— defrasterfont (index, numchar, height, attributes, numraster, bitmap);
— deflinestyle (index, pattern);
— defpattern (index, size, pattern);

— defcursor (index, icon);

3-6 Conversion Tutorial IRIS-4D Series

4. Shading Polygons

Flat shading, which uses a single color for every filled polygon, is the fastest
and simplest method to shade a surface. However, the appearance of flat
shaded surfaces is not realistic. In particular, a seam forms where adjacent
flat shaded polygons meet.

Gouraud shading provides a more colorful and realistic representation of a
polygonal surface than flat shading. The Gouraud algorithm uses the colors
at each vertex to interpolate the colors for the pixels that lie within the edges
of the polygon.

4.1 Gouraud Shading on the IRIS 2000/3000

On the IRIS 2000/3000, splf and spclos are two routines that draw
Gouraud shaded filled polygons. With spclos, setshade specifies the
colors at the vertices of the polygons. At any time, you can use either flat
shading or Gouraud shading to fill a polygon. The IRIS 2000/3000
hardware finds the fastest way possible to meet your shading request.

This code fragment shows how to draw a shaded triangle on the IRIS Series
2000/3000 workstations.

/*set up arrays */
int parray[3][2] = {
100, 100, 300, 500, 500, 100
}:
unsigned short iarray[3] = {
8, 16, 23
}s

/* make color ramp from index 8 to 23 for Gouraud shading */
for (i = 0; 1 < 16; i++){

Version 1.0 Shading Polygons 4-1

mapcolor (i + 8, 0, i * 255 / 16, i * 255 / 16);
mapcolor (BACKGROUND, 80, 200, 200);

}
/* draw the shaded polygon */
drawpoly () { .

splf2i (3, parray, iarray):
}

C

This code fragment shows how to maintain gouraud shading on a triangle
while two vertices are fixed, and the user may move the third.

/* make color ramp from index 8 to 23 for Gouraud shading */
for (1 = 0; i < 16; i++) {
mapcolor (i + 8, 0, i * 255 / 16, i * 255 / 16);
mapcolor (BACKGROUND, 80, 200, 200);
}
drawpoly (x, y)
int X,
y:
{
setshade (8);
pmv2i (100, 100);
setshade (16);
pdr2i (300, 500);
setshade (23);

pdr2i (x, y); -
spclos (); (i

4.2 Gouraud Shading on the IRIS-4D

On IRIS-4D Series workstations, Gouraud shading is the default shading
technique. You can use the new shademodel subroutine to change the
default in order to speed up the rate of polygon filling.

4.2.1 Increasing the Speed of Polygon Fill

On the IRIS-4D, the shading hardware (in the rendering subsystem) operates (
in two different modes: FLAT and GOURAUD. In FLAT, flat shading is
optimized, but the system may become incapable of Gouraud shading. In
GOURAUD, polygon fill is optimized for Gouraud shading and flat shading is

slower.

4-2 Conversion Tutorial IRIS-4D Series

shademodel switches between shading modes on the IRIS-4D. The
default mode is GOURAUD, in which the shading hardware is optimized for
Gouraud shading. To achieve the highest performance on non-GT
workstations, use Gouraud shading only when it is necessary. To switch the
polygon fill mode to FLAT, add this line of code:

shademodel (FLAT) ;

In the majority of cases, follow these guidelines:

« Initially switch the polygon fill mode to FLAT until Gouraud shading is
actually requested.

» Switch to GOURAUD just prior to drawing Gouraud shaded polygons.
e Returnto FLAT when drawing Gouraud shaded polygons is finished.

¢ Avoid unnecessary shademodel calls, as they may slow performance.

4.2.2 Graphics Library Routines for Gouraud Shading

The IRIS-4D Graphics Library attempts to reduce redundant subroutines.
The 4D routine, color, denotes the color at a vertex, replacing the
2000/3000 routine, setshade. Onthe 4D, pclos closes a Gouraud
shaded polygon, replacing spclos. Both setshade and spclos are
included in the IRIS-4D Graphics Library for compatibility. Use color
and pclos, respectively, for Gouraud shading on the IRIS-4D
workstations.

Version 1.0 Shading Polygons 4-3

Technique 2000/3000 Subroutines IRIS-4D Subroutines

specify arrays of splf splf

coordinates and colors

specify vertex pmv, pdr pmv, pdr

coordinates (
specify vertex setshade color

colors

close and fill spclos pclos

polygon

Table 4-1. Comparison of Old and New Shading Subroutines

On the GT, use the high performance subroutines
bgnpolygon. . .endpolygon to specify a closed, shaded polygon. See
Tuning Graphics Code for Your IRIS-4D.

The following code fragments illustrate different ways to use the shading
subroutines.

This code uses shademodel and splf to draw a shaded triangle. (

int parray[3]1[2] = {
100, 100, 300, 500, 500, 100
}:

unsigned short iarray([3] = {
8, 16, 23
}:

/* make color ramp from index 8 to 23 for Gouraud shading */
for (1 = 0; 1 < 16; i++) {

mapcolor (i + 8, 0, 1 * 255 / 16, i * 255 / 16);

mapcolor (BACKGROUND, 80, 200, 200);

/* The shademodel is set to FLAT for the screen clear, but it
* is set to GOURAUD to draw the shaded polygon. After the
* polygon is drawn, it is reset to FLAT. The (x, y)
* position is the location for the third vertex.

*/ (:
shademodel (FLAT);
color (BACKGROUND) ;
clear ():
shademodel (GOURAUD) ;

4-4 Conversion Tutorial IRIS-4D Series

parray[2] [0]
parray[2] [1]
drawpoly ();
shademodel (FLAT);

X7
y;

(']

/* Use splf() to draw the shaded polygon */
drawpoly () {

splf2i (3, parray, iarray);
}

This code uses color, pmv, pdr and pclossince shademodel
takes care of the shading. Compare this to the code fragment in Section 4.1.

drawpoly (x, y)
int X,
y;

{
color (8);
pmv2i (100, 100);
color (16);
pdr2i (300, 500);
color (23);
pdr2i (%, y);
pclos ();

4.3 Gouraud Shaded Polygons in RGB Mode

The IRIS 2000/3000 only interpolate color map indices for Gouraud
shading. The 4D shading hardware can interpolate the red, green and blue
components in RGB mode. Gouraud shading in RGB mode works only
with pclos. Atevery vertex of the polygon, an RGBcolor is stated.

If you use Gouraud shading in RGB mode, you:
« do not have to load the color map with a ramp of colors.

» get more colors and smoother shading from RGB mode than from small
section of a color map.

The distinct disadvantage to using RGB mode is that the color values used
for shading are limited on some IRIS-4D Series workstations that have a
limited number of bitplanes.

Version 1.0 Shading Polygons 4-5

This code fragment shows how to draw the same shaded triangle from
Sections 4.1 and 4.2 in RGB mode.

drawpoly (x, y)
int X,
y;

{
RGBcolor (0, 0, 0);
pmv2i (100, 100);
RGBcolor (0, 127, 127);
pdr2i (300, 500);
RGBcolor (0, 255, 255);
pdr2i (x, y);
pclos ();

4-6 Conversion Tutorial IRIS-4D Series

5. Color and Drawing Modes

The IRIS 2000/3000 has one set of multipurpose bitplanes, which store a
variety of data: window manager pop-up menus, color values for standard
images, as well as depth values for hidden surface removal.

In contrast, the IRIS-4D has several different sets of single-purpose
bitplanes. There are up to 48 standard color bitplanes (on the GT), storing
48 bits of color information per pixel. There are also four overlay bitplanes.
The window manager takes two, and you can program the other two for
overlays or underlays. For Z-buffer hidden surface removal, 24 bits of depth
bitplanes is available as an option on all workstations except for the GT,
where they are standard.

Multi-mode graphics processor (MGP) custom chips accommodate different
sets of bitplanes. Programs can run with any combination of single or
double buffer mode, color map or RGB mode, and overlays or underlays.
The different sets of bitplanes work together and do not restrict the
functionality of others.

This chapter covers these topics:
¢ drawing modes

e overlays

¢ underlays

e gamma correction

e hidden surface removal

Version 1.0 Color and Drawing Modes 5-1

5.1 Drawing Modes

You can draw shapes into each set of bitplanes. The subroutines that draw

Graphics Library primitives (rectangle, circles, lines, points and polygons)

can draw shapes into all sets of bitplanes. Each set of bitplanes has its own
color map, writemask, and current drawing color.

A new Graphics Library subroutine, drawmode (mode), specifies the
current drawing mode, which is the current set of bitplanes affected by
Graphics Library routines. The initial drawing mode is NORMALDRAW,
which directs graphics subroutines to the standard bitplanes. drawmode
switches graphics subroutines between normal drawing, overlays, underlays,
and cursors. Callsto color, getcolor, writemask,
getwritemask, mapcolor,and getmcolor are affected by the
current drawing mode.

Drawing modes include:

o NORMALDRAW, which sets operations for 12-bit color map mode or RGB
mode

« OVERDRAW, which sets operations for the overlay

e UNDERDRAW, which sets operations for the underlay
¢ CURSORDRAW, which sets operations for the cursor

e PUPDRAW, which sets operations for the pop-up menu

Note: InFORTRAN the above drawing modes are NORMDR,
OVRDRW, UNDRDR, CURSDR, and PUPDRW.

5.2 Overlays

Static overlays are often painted on top of other objects. Since these
overlays are not moved, performance may be increased dramatically if the
overlays are only drawn once and not redrawn for every frame. For
example, the numerical scale on the gauges of the flight simulator is an
overlay. The system only updates the rectangle that indicates speed or fuel
consumption.

5-2 Conversion Tutorial IRIS-4D Series

On the IRIS 2000/3000, overlays are drawn to the standard bitplanes.
Overlays can use only the color map (not RGB mode), and, consequently,
reduce the number of available colors.

On the IRIS-4D, a three-color overlay can be drawn to the window manager
bitplanes. You can use these window manager bitplanes with RGB mode
without reducing the number of available colors.

TTTT

o o

11il

et

g
l

TTrrrt
b a2 o @

200"
Speed Climb
Knots fpm

Figure 5-1. Flight Simulator Gauges

5.2.1 Creating Overlays on the IRIS 2000/3000

On the IRIS 2000/3000, you make overlays by manipulating the color map
and using writemask. writemask controls whether you can write
upon (read/write) bitplanes or if you only can read and view (read only)
bitplane images. You can still use this technique, but the IRIS-4D Series
offers an easier method.

To create an overlay image, follow these steps:
1. Draw an image to a read/write bitplane.
2. Load colors into the color map.

3. Call writemask before entering the main loop of a program (where
you continually update and change an object) to preserve the image in
the overlay bitplane.

For instance, imagine a scene with a moving car that goes behind a house.
The house is a one-color static overlay. It doesn’t move and covers the car.
You draw the house into a bitplane. In color map mode, the bitplanes
contain the numerical index into the color map for each pixel. To draw the
house into bitplane 2, use color 2 for the house. Once you draw the house,
the new writemask preserves the contents of bitplane 2. The system draws
the car, clears and redraws it into bitplane 1 (with color 1) without damaging
the house in the other bitplane.

Version 1.0 Color and Drawing Modes 5-3

other standard =<,

bitplanes
g /\
bitplane 2
bitplane 1 = ,
|_— house is color 2

| car is color 1 (

Figure 5-2. house and car are drawn in separate bitplanes

This process is only the first step. When the car and house overlap, the color
index of a pixel is neither 1 (car) nor 2 (house). The color index of the pixel
is 1+ 2,i. e, 3, which is a completely different color in the map. Since the
house blocks the car, the overlap pixel should appear with the same red,
green and blue values as the house alone. The trick is to change the entry of
the color map for the overlap (car and house) color to match the color for the
house. The overlapping area blends into the house.

mapcolor (2, red, green, blue); /* house */
mapcolor (3, red, green, blue); /* overlap */

other standard =<<&;
bitplanes

SVAN
bitplane 2 i

Y screen

bitplane 1

|_—color 3 is created where
the house and car
overlap

Figure 5-3. House drawn as an overlay over the car

This code fragment demonstrates the implementation of an overlay, using

the standard bitplanes on the IRIS 2000/3000. The car uses four colors and

is drawn into bitplanes 1, 2, and 3. The house is drawn with colors 8§ and 16

into the bitplanes 4 and 5; the house is the overlay. Color map entries 8 to

15 cover every possible combination of the roof of the house overlapping

any part of the car. These color map entries are loaded with the color for the

roof of the house, so that when the car and roof of the house overlap, it

appears as the roof. For color map entries 16 to 23, the color for the first (
floor of the house is loaded.

5-4 Conversion Tutorial IRIS-4D Series

/* be sure that the REDRAW token redraws the overlay */
qdevice (REDRAW) ;

/* load the color map */
for (i = 8; 1 < 16; i++)
mapcolor (i, 255, 0, 255);
for (i = 16; 1 < 24; i++)
mapcolor (i, 0, 255, 255);

/* draw the overlay */
writemask (OxFFF);
frontbuffer (TRUE);
color (BLACK);

clear ();

drawhouse ();
frontbuffer (FALSE);
writemask (0x7):;

drawhouse () {
pushmatrix ();
translate (200.0, 100.0, 0.0);/* move house into position */
color (8); /* roof */
pmv2i (0, 0);
pdr2i (0, 250);
pdr2i (350, 250);
pdr2i (350, 0);
pclos ();
color (16); /* 1st floor */
pmv2i (175, 400);
pdr2i (0, 250);
pdr2i (350, 250);
pclos ();
popmatrix ()

5.2.2 Creating Overlays on the IRIS-4D

On the 2000/3000, static overlays (and underlays) require use of
writemask. writemask eliminates the number of usable image
bitplanes. The loss of each bitplane halves the number of colors. In RGB
mode on the 2000/3000, you cannot make overlays or underlays.

On the 4D, two window manager bitplanes are reserved for static overlays
(or underlays). These bitplanes are not shared with the standard image
bitplanes, so colors are not lost.

Version 1.0 Color and Drawing Modes 5-5

First, declare how you plan to use the special overlay/underlay bitplanes.
The two bitplanes are either used as overlays or underlays but not both at
once. To initialize the bitplanes for overlays, call this code sequence once:

overlay (2);
gconfig ();

The parameter, 2, specifies how many bitplanes are used.

Once the bitplanes are initialized, you must set the current drawing mode to
OVERDRAW.

drawmode (OVERDRAW) ;

Then you can define colors, set a writemask, and draw an object into the two
overlay bitplanes.

The multi-mode graphics processor (MGP) chips multiplex between data
found in the standard bitplanes and the overlay/underlay window manager
bitplanes. When in overlay drawing mode, if a zero value is found in the
overlay bitplanes for each pixel, then the color specified by the standard
bitplanes is drawn. If a non-zero value is in the overlay bitplanes, the MGPs
choose to draw the overlay color for that pixel. The overlay bitplanes
override the standard bitplanes in this simple hierarchy:

overlay bitplanes standard bitplanes
A y4

screen /

Figure 5-4. House in Overlay Bitplane Overlaps Car in Standard Bitplane

To create overlays with more than three colors, you may need more than
two bitplanes. In those situations, you can use writemask to reserve
standard bitplanes for overlays, just as is done on the IRIS 2000/3000.

5-6 Conversion Tutorial IRIS-4D Series

5.2.3 Setting the Color Map for Overlays

There is a small color map for the overlay colors and color map entries for
all non-zero overlay values. With two overlay bitplanes, three non-zero
overlay colors can be formed: binary 01, 10, and 11 (or in base 10: 1,2 and
3). Once in the overlay drawing mode, you can load the color map and
specify a writemask for the two bitplanes. Any effort to load color index 0
is ignored because color 0 cannot be defined for overlays.

drawmode (OVERDRAW) ;
mapcolor (1, 0, 255, 0);
mapcolor (2, 255, 255, 0);
mapcolor (3, 255, 0, 255);

To draw a shape into the overlay bitplanes, choose a color index and start
drawing. This sequence of code creates a green rectangle as an overlay.
The final drawmode call restores the drawing mode to use the standard
image bitplanes.

drawmode (OVERDRAW) ;
mapcolor (1, 0, 255, 0);
color (1):;

rectfi (200, 200, 300, 300);
drawmode (NORMALDRAW) ;

This code fragment shows the car and house example from the IRIS
2000/3000 written for the IRIS-4D to use the overlay capability.

/* On the IRIS 3000, the color map would be loaded for

* the overlays:

* for (1 = 8; 1 < 16; i++)

* mapcolor (i, 255, 0, 255);
* for (i = 16; 1 < 24; i++)

* mapcolor (i, 0, 255, 255);
*/

overlay (2);

gconfig ();

/* there is no frontbuffer or backbuffer for overlay */
drawmode (OVERDRAW) ;

mapcolor (1, 255, 0, 255);

mapcolor (2, 0, 255, 255);

drawmode (NORMALDRAW) ;

drawhouse ();

}

drawhouse ()} {

Version 1.0 Color and Drawing Modes 5-7

drawmode (OVERDRAW) ;

color (0);

clear ();

color (1); /* roof */
pmv2i (0, 0);

pdr2i (0, 250);

pdr2i (350, 250);

pdr2i (350, 0);

pclos ();

color (2); /* 1st floor */
pmv2i (175, 400);

pdr2i (0, 250);

pdr2i (350, 250);

pclos ();

drawmode (NORMALDRAW) ;

5.3 Underlays

A static underlay is like an overlay, except it is painted to be a background
for other objects. Using the familiar car and house example, if the house is
a static underlay, the car moves in front of it.

5.3.1 Creating Underlays on the IRIS 2000/3000

On the IRIS 2000/3000, you use writemask () to create underlays.
When the car and house overlap, the car should go in front of the house. To
create an underlay image, you must complete the same steps (on page xx) as
the overlay. Only the color map changes. As with underlays, you can still
use this technique on the IRIS-4D Series.

To achieve the proper effect, the underlay color (3) matches the same red,
green and blue values of the car.

mapcolor (1, red, green, blue); /* car */
mapcolor (3, red, green, blue); /* overlap */

5-8 Conversion Tutorial IRIS-4D Series

other standard
bitplanes :;
bitplane 2———"" Q

bitplane 1 —

screen ‘// where house

L and car overlap
creates color 3

Figure 5-5. house drawn as an underlay beneath the car

Compare this IRIS 2000/3000 underlay code fragment to its counterpart
overlay code fragment. Only the color map has been changed. Now when
the house and car overlap, the color of the car should dominate. For
example, color map entries 1, 9 (e.g., 8 + 1), and 17 (e.g., 16 + 1) are loaded
with the color for the car body. When the car body overlaps the roof of the
house (color 8) or the first floor of the house (color 16), it appears as the
color of the car body. The house appears to lic underneath the car.

mapcolor (8, 255, 0, 255); /* MAGENTA for house */

mapcolor (16, 0, 255, 255); /* CYAN for house */

for (1 = 0; 1 < 24; 1 =1 + 8) {
mapcolor (i + 1, 255, 0, 0); /* RED for 1, 9, 17 =*/
mapcolor (i + 2, 0, 255, 0); /* GREEN for 2, 10, 18 */
mapcolor (i + 3, 255, 255, 0); /* YELLOW for 3, 11, 19 */
mapcolor (i + 4, 0, 0, 255); /* BLUE for 4, 12, 20 */

}

writemask (OxFFF);
frontbuffer (TRUE);
color (BLACK);

clear ();

drawhouse ();
frontbuffer (FALSE);
writemask (0x7);

drawhouse () {
color (8); /* roof */
pmv2i (0, 0);
pdr2i (0, 250);
pdr2i (350, 250);
pdr2i (350, 0);

Version 1.0 Color and Drawing Modes 5-9

pclos ();

color (16); /* 1st floor */
pmv2i (175, 400);

pdr2i (0, 250);

pdr2i (350, 250);

pclos ();

5.3.2 Creating Underlays on the IRIS-4D

Creating IRIS-4D underlays is very similar to creating IRIS-4D overlays.
Initialize the window manager bitplanes with this sequence:

underlay (2);
gconfig ();

The underlay mode resembles the overlay mode, but the hierarchy is
different. Inunderlay drawing mode, the multi-mode graphics processors
check the value in the standard bitplanes for each pixel. If the standard
bitplanes contain a non-zero value, the processors draw the standard color
for that pixel. If the standard bitplanes contain a zero value, the processors
draw the color specified by the underlay bitplane. In other words, the
standard bitplanes override the underlay bitplane.

underlay bitplanes standard bitplanes
N -
/

s

Figure 5-6. On the IRIS-4D, house in underlay bitplane is drawn beneath the car in
a standard bitplane

For underlays, a zero value is accepted. Therefore, there can be as many as
four underlay colors, as opposed to three for overlays. The sequence below
creates a legitimate, blue rectangle underlay, and then restores the normal
color mode.

5-10 Conversion Tutorial IRIS-4D Series

drawmode (UNDERDRAW) ;
mapcolor (0, 0, 0, 255);
color (0);

rectfi (200, 200, 300, 300);
drawmode (NORMALDRAW) ;

On the IRIS-4D, two bitplanes are reserved for either overlays or underlays.
You cannot simultaneously use the bitplanes for both overlays and
underlays. You may need more than two bitplanes to create overlays with
more than three colors, underlays with more than four colors, or
simultaneous overlays and underlays. In those situations, you can still use
writemask to reserve standard bitplanes for overlays and underlays, just
as on the IRIS 2000/3000.

This is a 4D version of the car and house code fragment, using the underlay
bitplanes.

underlay (2);

gconfig ();

drawmode (UNDERDRAW) ;
mapcolor (0, 0, 0, 0);
mapcolor (1, 255, 0, 255);
mapcolor (2, 0, 255, 255);
drawmode (NORMALDRAW) ;
drawhouse ();

drawhouse () {
drawmode (UNDERDRAW) ;
color (0);
clear ();
color (1); /* roof */
pmv2i (0, 0);
pdr2i (0, 250);
pdr2i (350, 250);
pdr2i (350, 0);
pclos ();
color (2); /* 1st floor */
pmv2i (175, 400);
pdr2i (0, 250);
pdr2i (350, 250);
pclos ();
drawmode (NORMALDRAW) ;

Version 1.0 Color and Drawing Modes 5-11

5.4 Gamma Correction

Color ramps are created for smooth shading or intensity depth cueing. To
make a color ramp, start with a very dark shade of a color and increase its
brightness. It is easiest to increase the color brightness with linear steps, but
linear steps do not usually appear sharpest.

The perception of light depends upon two strong, non- linear factors:
e your eye
o the display screen (CRT)

To compensate for these non-linearities, create non-linear (gamma
corrected) color ramps. As stated in Foley and van Dam, the eye is
‘‘sensitive to ratios of intensity levels rather than to their absolute values.’’
In general, brightness levels should be increased logarithmically.

On the 2000/3000, shading and depth cueing are effective only in color map
mode. To make a gamma corrected color ramp, the color intensities loaded
into the color map are gamma corrected.

On all IRIS-4D Series workstations, shading and depth cueing can be
supported in RGB mode. The IRIS 4D non-GT workstations and the IRIS
4D/GT use different methods to do this. The GT does gamma correction
using special, dedicated hardware, while the non-GT workstations use this
method:

¢ In RGB mode, the actual values in the standard (RGB) bitplanes are not
directly drawn to the display. The RGB values reference the highest 256
colors in the color map (indices 3840-4095).

 The color drawn to the display is the color loaded into the corresponding
map index. For example, if the red value for a pixel is 200, then the color
drawn to the screen is the red value stored in the color map at index
3840+200, or 4040. If a previous command, such as mapcolor
(4040, 233, GREEN, BLUE),has been executed, then a red value
of 200 generates a displayed red value of 233.

« By default, these 256 colors are stored with a linear grey scale ramp.
That is, index 3840 contains R=G=B=0, index 3841 contains R=G=B=1,
and so forth, and there is no gamma correction.

5-12 Conversion Tutorial IRIS-4D Series

(

(

« This special intensity modulation affects RGB mode graphics and the
window manager color modes (pop-up menu, overlay, underlay, and
cursor). Colors loaded into the standard color map are not affected.

Note: Gamma correction affects the top 256 indices in the color map.
You should not use these colors for your application programs. If
you load these colors, there is no warning, but the cursor and pop-
up menus may be immediately affected. It is advised that you
restrict access to these top colors with gammaramp.

This table summarizes the differences.

Machine/Mode 4D non-GT 4D/GT

RGB Mode Uses top 256 colors; Uses special hardware;
may affect overlays and doesn’t use top 256 colors
underlays.

Color Map You create your own Uses special hardware;

Mode ramp using gamma and performances increases.
mapco lor; performance
may be slow.

Table 5-1. Comparison of Gamma Correction

The code fragment below demonstrates creating a gamma corrected color
ramp. You should enter three arguments to gamma. The first argument is
the gamma correction constant. The second and third arguments are the
color map indices for the beginning and end of the ramp. Use
gammaramp to load the 256 gamma correcting intensities on the IRIS-4D.
One argument, the gamma constant, is passed to the program.

/* gamma_spectrum —— This routine creates a gamma-corrected
* color ramp. gamma is the strength of gamma correction.
* The next six arguments are the starting and finishing RGB
* wvalues of the ramp. All the interim color values on the
* ramp are determined between these extremes.

*/

gamma_spectrum (gamma, brightred, brightgreen, brightblue,
darkred, darkgreen, darkblue)

float gamma;

unsigned char brightred,

Version 1.0 Color and Drawing Modes 5-13

brightgreen,
brightblue;
unsigned char darkred,
darkgreen,
darkblue;

int i;
float ginc;
short r[RAMPSIZE],
g[RAMPSIZE],
b[RAMPSIZE] ; /* gamma-corrected RGB */

for (i = 0; i < RAMPSIZE; i++) {

ginc = pow ((float) i / (float) (RAMPSIZE - 1),
1.0 / gamma) ;
r[i] = (short) (ginc *
(brightred - darkred) + darkred);
g[i] = (short) (ginc *
(brightgreen - darkgreen) + darkgreen);
b[i] = (short) (ginc *

(brightblue-darkblue) + darkblue);
}

gammaramp (r, g, b);

5.5 Hidden Surface Removal

On the IRIS 2000/3000, hidden surface removal requires a tradeoff between
programming effort and performance of the program. To render solid
objects with hidden surfaces properly removed, you:

e sort the order that polygons are drawn from different viewpoints. This
approach does not work for irregularly shaped objects (e. g., with woven
polygons). Also this approach does not systematically create an order to
draw the polygons so that hidden surfaces are removed.

e create a binary space partition tree to view an object with real-time
motion. To implement this approach, you must write a large amount of
code to create and traverse binary trees and process polygonal data.

e use the hardware Z-buffer for general and effective hidden surface
removal. On the IRIS 2000/3000, the Z-buffer cannot remove hidden
surfaces in real-time. In addition, the depth values for Z-buffer are kept
in the standard bitplanes, which deprives using the Z-buffer in tandem
with double buffer mode or RGB mode.

5-14 Conversion Tutorial IRIS-4D Series

On the IRIS-4D, the hidden surface removal capabilities of the hardware Z-
buffer are greatly improved over the IRIS 2000/3000:

« The resolution of the depth (z) values has increased from 16 to 24 bits.
« The speed of hidden surface removal is real-time.

The depth values are stored in depth bitplanes which are independent of
standard and window manager bitplanes. Accordingly, use of the Z-buffer
is compatible with double buffer mode and RGB mode.

The improvements in the Z-buffer can change the entire way you view
geometric objects. On the 2000/3000, with its slower Z-buffer, you would:

 control a wireframe of an object in real-time
« before solidly rendering the object, switch to single buffer mode

e receive an input event (typically, press the ’z’ key) to trigger use of the
Z-buffer to solidly render the object in a fixed position

On the IRIS-4D, you can:

» control a solidly rendered object in real-time with hidden surfaces
removed

o stay in double buffer mode

5.5.1 Using the Z-buffer in Double Buffer Mode

The Z-buffer is now compatible with double buffer mode. Therefore,
animated scenes with hidden surface removal can be drawn without
flickering.

If your program now uses Z-buffering, you can turn on double-buffering

using doublebuffer and swapbuffers, and the program will work
correctly.

5.5.2 Using the Z-buffer in RGB Mode

The Z-buffer is also compatible with RGB mode. See Chapter 7 for more
information on RGB mode.

Version 1.0 Color and Drawing Modes 5-15

6. Cursors

Control of the cursor (the icon which follows the movement of the input
device) has changed between the IRIS 2000/3000 to the IRIS-4D. The
IRIS-4D provides new cursor features: more colors, sizes and shapes. This
chart compares the cursor features of the two workstations.

2000/3000 4D
types square square and
cross-hair
colors 1 3
size in 16x16 16x16 and
pixels 32x32
hardware drawninto | handled by a special
bitplanes chip
writemask cursor no
writemask writemask

On the IRIS 2000/3000, the cursor icon is written directly into one of the
standard bitplanes. The data that the cursor icon replaces is stored in readily
accessible raster memory. As the cursor moves across the screen, the
system restores the data at the position from which it moves. It also saves
the data for the area the cursor covers.

The display of the IRIS-4D cursor is controlled by special chips. The cursor
is not stored in any of the bitplanes. Instead, for each pixel, the color is
determined by multiplexing the cursor color against values found in the
overlay, underlay or standard bitplanes. The cursor color always takes
precedence over any color in another bitplane.

Version 1.0 Cursors 6-1

6.1 Porting Simple Cursors

On the IRIS 2000/3000, you can only create a 16x16 pixel cursor of a single
color. defcursor loads the bit pattern for the cursor icon into a table of
cursors. setcursor uses a cursor from the cursor table. setcursor
requires three parameters: cursor table index, color, and writemask. This
2000/3000 code fragment creates a fly-shaped cursor.

static unsigned short fly[1l6] = {
0x0000, 0x1818, 0x2574, 0x2244,
0x2184, O0xAl85, 0xA1l85, 0xAl85,
0x518A, 0x2994, Ox1FF8, 0x15AS8,
0x2A54, 0x4BD2, 0x4422, 0x4002
}i

writemask (0x7);

/* Load cursor into first entry of the cursor table. Use
* curorigin() to center the "hot spot" (where getvaluator is
* measured) of the cursor. 1In this example, the origin is
* moved 8 units up and 8 units to the right.
*/ .
defcursor (1, fly);
curorigin (1, 8, 8);
/ If the window manager was not available, the cursor would
be drawn into the bitplane specified by the setcursor
subroutine. Since this program is written for the window
manager, the color and writemask (the last two parameters)
are ignored. In the 2000/3000 window manager, the color
* of the cursor is determined by the .mexrc
*/
setcursor (1, 32, 32);

¥ % o ¥

6.1.1 Using defcursor

On the IRIS-4D, defcursor is still used to load the cursor icon into the
table. However, there is a new cursor drawing mode and color map to
specify the color of the cursor.

Use drawmode for the cursor drawing mode and mapcolor to load
color 1 in the cursor color map. Color 1 is used for the default 16x16
‘cursor. drawmode is only used to get colors for the cursor. Routines
which affect the display of the cursor (setcursor, curson, and
cursoff, for example) work, even when not in the cursor drawing mode.

6-2 Conversion Tutorial IRIS-4D Series

There is no 4D cursor writemask, because the cursor is not written into a
bitplane. Accordingly, setcursor needs only one parameter, the cursor
table index.

defcursor (1, bitpattern);
drawmode (CURSORDRAW) ;
mapcolor (1, 255, 0, 0);
drawmode (NORMALDRAW) ;
setcursor (1)

This IRIS-4D code fragment defines and draws the same fly-shaped cursor
shown earlier.

static unsigned short fly[16] = {
0x0000, 0x1818, 0x2574, 0x2244,
0x2184, OxAl185, 0xAl185, 0xAl1l85,
0x518A, 0x2994, Ox1FF8, 0x15AS8,
0x2A54, 0x4BD2, 0x4422, 0x4002

make a blue cursor in the shape of a fly. Use defcursor ()
to load the cursor table. Load the blue RGB into the
cursor color map. On the 3000, to activate the cursor,
setcursor() is called with three parameters: cursor table
index, color and writemask. The curorigin () routine
makes the "hot spot" (where the valuator is read from) the
middle of the cursor. On the 4D, setcursor() takes only
one parameter: the entry in the cursor table. The cursor
color has already been defined, and the 4D cursor has no
writemask.

* % k¥ ok X A H *

*

*/
defcursor (1, fly);
curorigin (1, 8, 8);
drawmode (CURSORDRAW) ;
mapcolor (1, 0, 0, 255);
drawmode (NORMALDRAW) ;
setcursor (1);

Note: InFORTRAN, the setcursor subroutine is called SETCUR,
and it still requires three arguments: the cursor table index, and two
dummy arguments. In the above example, it would have this form:

CALL SETCUR (1, dummy, dummy)

Version 1.0 Cursors 6-3

6.2 Cross-hair Cursor

The cross-hair cursor consists of two intersecting lines that stretch
horizontally and vertically from screen edge to screen edge. The cursor has
no pattern. To define a cross-hair cursor, pass defcursor anull array for

a bit pattern. (

The cross-hair cursor can be drawn only in one color. Load the color for
your cursor into color 3 of the cursor color map.

For example, to make a pastel blue, cross-hair cursor, use this sequence of
routines:

short *nofly; /* dummy argument */
curstype (CCROSS) ;

defcursor (1, nofly);

drawmode (CURSORDRAW) ;

mapcolor (3, 100, 100, 255);

setcursor (1)

6.3 Cursors and The Window Manager (

On the IRIS 2000/3000, depending upon whether the window manager is
running, cursors behave differently. On the IRIS 2000/3000:

¢ the window manager is optional.

e the cursor color for the window manager is determined and fixed from the
.mexrc file, when the window manager is initially activated. The color
specified by setcursor calls is ignored, and the .mexrc cursor color is
used. The color can only be changed if the program enters the pop-up
menu mode: pupmode ().

s the window manager program controls the cursor, as long as the input
devices are attached to the program. When the input devices become
detached, the control of the cursor reverts to the window manager.

In contrast, on the IRIS-4D: (

o the window manager is mandatory.

6-4 Conversion Tutorial IRIS-4D Series

» the .mexrc file does not fix the cursor color. A graphics program uses a
small cursor color map, so cursors can have several color entries.

e the window manager program controls the cursor, as long as the input
devices are attached to the program. Cursor control to attached IRIS-4D
programs is the same as the IRIS 2000/3000.

The window manager on both the IRIS 2000/3000 and IRIS-4D allows
cursor control only for as long as input devices are attached to a program.
For example, on either machine, if cursoff is used to stop display of the
cursor, the cursor will reappear if you denote different states and actions of
the window manager.

On the 2000/3000, the window manager cursor color is determined in the
.mexrc file. On the 4D, the window manager cursor color is color 1 in the
cursor color map. This cursor color map is shared and controlled from
graphics programs. Therefore, if a graphics program changes cursor color 1,
all window manager cursors change color, as in the following sequence:

drawmode (CURSORDRAW) ;
mapcolor (1, red, green, blue);

Version 1.0 Cursors 6-5

7. RGB Mode Capabilities

On the IRIS-4D, the single and double buffer color map modes operate the
same way as on the IRIS 2000/3000. In single buffer mode, up to 12
bitplanes are used to create a color index from 0 to 4095, which references a
4096 entry color map. In double buffer mode, up to 24 bitplanes are split
into two equal-sized buffers. In color map mode, the value of the color
index is stored directly into the standard bitplanes.

In RGB mode, the red, green, and blue components for a colored pixel are
stored directly into the standard bitplanes. The color map is not referenced
to determine the displayed color.

On the IRIS 2000/3000, RGB mode programs are limited to run only in
single buffer mode and only without the window manager. On the IRIS-4D,
RGB mode is supported in a wide variety of situations and its use is

encouraged for real-time applications. On the 4D, RGB mode supports
these features:

« window manager

e double buffer mode
e Gouraud shading

¢ depth cueing

e Z-buffering

For most applications, RGB mode is preferred to color map mode due to
these advantages:

e More colors are available in RGB mode. Up to 16.7 million colors are
simultaneously available in RGB mode, as compared to 4096 in color
map mode. There are actually fewer pixels on the screen (1.3 million
pixels) than RGB colors.

Version 1.0 RGB Mode Capabilities 7-1

¢« RGB mode is more flexible for shading and depth cueing. For these
operations in color map mode, a ramp of adjacent color indexes must be
prepared. In RGB mode, the shading and depth cueing color values can
be stored directly.

The only drawback to using RGB mode on the non-GT appears when you
want to use double buffering. You have a small number of colors, and,
depending on the application, may run more slowly than a double-buffered
program that uses color map mode.

This table shows the contrasting RGB mode capabilities between the IRIS
2000/3000 and 4D workstations.

Display Mode 2000/3000 4D non-GT 4D/GT

single buffer no RGB in 4Sight 8 bit RGB 24 bit RGB

double buffer =~ no RGB in 4Sightor 4 bit RGB 12 bit RGB
double buffer mode

Table 7-1. RGB Mode in the Window Manager

7.1 RGB Mode in the Window Manager

On the 2000/3000, the window manager uses two standard bitplanes for
each buffer and reduces the number of colors to one-fourth of the colors
available without the window manager. A full complement of standard
bitplanes are necessary for RGB mode on the 2000/3000, so RGB mode
does not work in the window manager.

On the 4D, the window manager does not reduce the number of standard
bitplanes, so RGB mode programs can run in the window manager. In single
buffer mode, all 24 bitplanes comprise a full 24-bit RGB value, 8 bits for
each color component. On the GT, these values are doubled.

7-2 Conversion Tutorial IRIS-4D Series

7.2 Double Buffer and RGB Modes

The 4D also performs RGB mode and double buffering. On the non-GT 4D
workstations, the 24 bitplanes are divided into two buffers with 12 bitplanes
each. Each 12-bitplane buffer stores 4 bits for each color component (on the
GT these values are doubled). The 4 bits create an 8-bit number by
repeating the 4 bits in both the upper and lower bits in the 8-bit number. In
double buffered RGB mode on the non-GT workstations, there are only 16
different shades for each color component. Colors appear banded as they
change abruptly across smooth shaded and depthcued objects. The GT has
enough bitplanes to overcome this problem.

7.3 Depth Cueing in RGB

You do not have to load a ramp of colors into the color map to depth cue in
RGB mode. The graphics subroutine RGBrange, which is analogous to
the subroutine shaderange, is introduced. The color map entries which
contain the extreme dark and bright colors are passed to shaderange.
For RGBrange, the actual red, green and blue component values are
passed.

This code fragment demonstrates depth cueing in RGB mode.

setdepth (0xc000, Ox3fff);
perspective (400, 1.25, 100.0, 500.0);
translate (0.0, 0.0, -300.0);

/* This is analogous to the way depthcueing is done in color index
* mode using,
* shaderange (lowindex, highindex, zlow, zhigh)
* RGBrange (rlow, glow, blow, rhigh, ghigh, bhigh, zlow, zhigh)
*/

depthcue (TRUE) ;

RGBrange (0, 0, 0, 255, 255, 0, 0xc000, Ox3fff);
move (-50.0, -50.0, -200.0);

draw (50.0, 50.0, 200.0);

depthcue (FALSE);

Version 1.0 RGB Mode Capabilities 7-3

7.4 Supporting Multiple Display Modes

Many windows running different color display modes are simultaneously
supportable. The multi-mode graphics processors (MGP) use data from the
window bitplanes to determine whether to use the color map or RGB mode
to interpret the data read from the image bitplanes. The MGPs provide three
hardware mappings to control how the image bitplanes are read. Double
buffer mode uses two mapping devices; single buffer mode uses only one.

When a window is opened, the mapping devices are examined to see if any
are already being used to support its color display mode. If the new display
mode is single buffer, it first tries to share a mapping device with a double
buffer mode program of a similar color display mode. Failing in this,
mapping devices are allocated to support the new display mode. If all
mapping devices are used, some existing windows relinquish mapping
devices for the new window. This makes the window, which relinquishes
the mapping devices, appear with strange colors.

7.5 Other Features Working with RGB

Section 4.3 illustrates Gouraud shading in RGB mode. Section 5. Also, you
can now use Z-buffering in RGB mode.

7-4 Conversion Tutorial IRIS-4D Series

8. Multiple Windows Per Process

The window manager allows you to control several windows from a single
graphics program. Each window has a unique gid. On the 4D, a maximum
of sixteen windows is simultaneously displayable. On the 2000/3000, a
single program was limited to ten windows, but far more than sixteen
windows could be displayed at once.

The current graphics window is the window where drawing and window
manipulation takes place. Only one graphics window is current for any
program. To draw into a particular window, use the winset (gid)
subroutine to make gid the current window.

Every window has its own matrix stack. You can modify the matrix stack
for the current graphics window only.

All windows from a single program share the same event queue. When you
attach the keyboard, mouse and other input devices to a single window, you
are really attaching the devices to all the windows in that program.

If the REDRAW token is received on the queue, only the specified window
really needs to be redrawn. The value which is passed along with the
REDRAW token is the graphics identifier (gid) for the window you need to
redraw. Use the winset subroutine to select that window, and redraw its
contents.

device = gread (&val);

if (device == REDRAW) {
winset (val);
reshapeviewport ();
drawscene ();

}

Also, in double-buffer mode, you must call swapbuffers for each
window.

Version 1.0 Multiple Windows Per Process 8-1

