
IRIS-4D Series
Compiler Guide

SiliconGraphics
Computer Systems

IRIS-4D Series

Document number: 007-0905-010

IRIS-4D Series
Compiler Guide

Version 1.0

Document Number 007-0905-010

Technical Publications:
Robert Reimann

Engineering:
Greg Boyd
Deborah Ryan

© Copyright 1987, Silicon Graphics, Inc.
All rights reserved.

This document contains proprietary information of Silicon Graphics,
Inc., and is protected by Federal copyright law. The information may
not be disclosed to third parties or copied or duplicated in any form, in
whole or in part, without prior written consent of Silicon Graphics, Inc.

The information in this document is subject to change without notice.

IRIS-4D Series Complier Guide
Version 1.0
Document Number 007-0905-010

Silicon Graphics, Inc.
Mountain View, California

UNIX is a registered trademark of AT&T.

()

(

(

Contents

1. The Compiler System
1.1 Overview ... 1-1
1 .2 The Drivers ... 1-3

1 .2. 1 Driver Commands .. 1-3
1.2.2 Files .. 1-3
1.2.3 Operational Overview 1-4
1 .2.4 Default Options .. 1-7
1 .2.5 Compiling MUlti-Language Programs 1-7
1.2;6 Linking Objects 1-8

1.3 Compilation Options 1-9
1.3.1 General Options 1-10
1.3.2 Debugging Options 1-13
1.3.3 Profiling Option 1-13
1.3.4 Optimizer Options 1-14
1.3.5 Compiler Development Options 1-14

1 .4 Including Common Files. .. 1-15
1.5 Link Editor ... 1-16

1.5.1 Running the Link Editor 1-17
1 .5.2 Specifying Libraries 1-17
1.5.3 Link Editor Options 1-18

1.6 Object File Tools. .. 1-22
1.6.1 Dumping Selected Parts of Files (dump) 1-23
1.6.2 Listing Symbol Table Information (nm) 1-25
1.6.3 Determining a File's Type (file) 1-28
1.6.4 Determining a File's Section Sizes (size) 1-29

1 .7 Archiver .. 1-30
1 .7. 1 Examples .. 1-31
1.7.2 Archiver Options 1-32

2. Improving Program Performance
2.1 Introduction ... 2-1
2.2 Profiling .. 2-2

2.2.1 Overview 2-2
2.2.2 How Basic Block Counting Works 2-9 (
2.2.3 Averaging Prof Results 2-11)
2.2.4 How PC-Sampling Works 2-12
2.2.5 Creating Multiple Profile Data Files 2-13
2.2.6 Running the Profiler (prof) .. 2-14

2.3 Optimization 2-18
2.3.1 Overview•................. 2-18
2.3.2 Optimization Options 2-22
2.3.3 Full Optimization (-03) 2-24
2.3.4 Optimizing Frequently Used Modules 2-26
2.3.5 Building a Ucode Object Library 2-29
2.3.6 Using Ucode Object Libraries 2-29
2.3.7 Improving Global Optimization 2-30
2.3.8 Improving Other Optimization 2-34

2.4 Limiting the Size of Global Pointer Data 2-36
2.4.1 Purpose of Global Pointer Data 2-37
2.4.2 Controlling the Size of Global Pointer Data 2-37
2.4.3 Obtaining Optimal Global Data Size 2-37
2.4.4 Examples (Excluding Libraries) 2-38 (
2.4.5 Example (Including Libraries) 2-39 .

(

1. The Compiler System

This chapter describes the components of the compiler system and how to
use them.

1.1 Overview

The components that comprise the compiler system and the task each per­
forms are summarized below:

Version 1.0 The Compiler System 1-1

1-2

Task

Write & Edit
Programs

Compile. Link. &
Load Programs

Debug Programs

Profile Programs

Optimize Programs

Examine Object
Files

Produce Necessary
Libraries

Compiler Guide

III
III

I
I
I

Tool

UNIX System Editors

The Link Editor & I the Compiler Drivers
()

The Symbolic I Debugger

The Profiler I
The Optimizer I

The nm. file. size. &
dump Tools (

The Archiver

(

IRIS-4D Series

1.2 The Drivers

Intelligent programs called drivers actually invoke the following major com­
ponents of the compiler system: the macro preprocessor (epp). the com­
piler (ee or /77), the assembler (as), and the link editor (ld). This sec­
tion gives an overview of driver operations and commands.

1.2.1 Driver Commands

The commands /77(1) and ee(l) run the drivers that cause your programs
to be compiled, optimized, assembled, and link edited.

Each command knows the appropriate libraries associated with the main
program and passes only those libraries to the link editor.

1.2.2 Files

The drivers recognize the contents of an input file by the suffix assigned
to the filename, as shown below.

Version 1.0 The Complier System 1-3

Suffix Description

.e en source

.r ratfor source

.S assembly source

.i source is assumed to be that of the
that of the processing driver. For
example:

f77 -c source.i

source.i is assumed to contain FORTRAN
source statements.

.C C source

.f Fortran 77 source

.U ucode object file

.h ucode object library

.0 object file

.a object library

NOTE: The assembly driver as assumes that any file, regardless of the
suffix, contains assembly language statements; as accepts only one input
source file.

1.2.3 Operational Overview

Figure i-ion the next page shows the relationship between the major
components of the compiler system and their primary inputs and outputs.

Note that FORTRAN uses preprocessors (see Figure 1-2) that the other
languages do not use. For more information, see the efl(l) , ratfor(l) ,
and m4(1) manual pages in the IRIS-4D User's Reference Manual.

1-4 Compiler Guide IRIS-4D Series

(!

(

(l

.s
FORTRAN

Preprocessors G I ..
Source files.

Macro
Preprocessor

(cpp)

Front Ends
Assembler (C, Pascal, Fortran)

Ucode library.

6
W -03 or -j

Ucode Link C) (uld)

I

Procedure Merge
(umerge)

I
-02_,.". Global Optimizer

\~ - (uopt)

I

-01"
-s

Code Generator

~ V
I

..... Assemble J
Q Assembler file.

-
~ I ~ Assembled

: .all Link Edit I ~~ :~~::: tHe.
L--______ --I ~ Object file.

Figure 1-1. The FORTRAN Compiler System Driver

Version 1.0 The Compiler System 1-5

1-6

.r
-m }--r---I

m4

rattor

-cpp driver option

C Macro
Preprocessor

(cpp)

FORTRAN
Front End

Source file.

Figure 1-2. The FORTRAN Preprocessors

Compiler Guide IRIS-4D Series

(

(

(

1.2.4 Default Options

At compilation, you can select one or more options that affect a variety of
program development functions, including debugging, optimization, and
profiling facilities, and the names assigned to output files.

Some options have defaults, which apply even if you don't specify them.
For example, the default names for output files are filename.o for object
files, where filename is the name of the source file; the default name for
executable program objects is a. out. The following example uses the de­
faults in compiling source files foo.c and bar.c:

% 00 foo.o bar.o

1.2.5 Compiling Multi-Language Programs

When the source language of the main program differs from that of a sub­
program, you should compile each program module separately with the
appropriate driver and then link them in a separate step. You can create
objects suitable for link editing by specifying the -c option, which stops
the driver immediately after the assembler phase. For example:

% 00 -0 main.o more.o

% f77 -0 rest.f

The Figure 1-3 below shows the compilation control flow for these two
commands.

Version 1.0 The Compiler System 1-7

~
main.c more.c rest.f

main.a more.o rest.o

Figure 1-3. Compilation Control Flow

1.2.6 Linking Objects

You can also use a driver command to link edit separate objects into one
executable program. The driver recognizes the .0 suffix as the name of a
file containing object code suitable for link editing and immediately in­
vokes the link editor.

For more information on the link editor and on specifying link libraries,
see the "Link Editor" section of this chapter. For a detailed listing of the
default libraries see the cc(l) and j77(1) manual pages in the IRIS-4D Us­
er's Reference Manual.

1-8 Complier Guide IRIS-4D Series

(

(

(l

1.3 Compilation Options

The tables on the following pages summarize the options you can specify
for the compilation phases, which include the preprocessing phase through
the assembly phase (Figure 1-1 shows these phases); the options summa­
ries are divided into the following major groups:

• General options.

• Debugging options.

• Profiling and compiling options. See Chapter 2 for information the
advantages of profiling and debugging, and how to use the profiler.

• Compiler development options.

NOTE: The tables list only the most frequently used options; they don't
list all available options. See the cc(l) and /77(1) manual pages in the
IRIS-4D User's Reference Manual for a complete list of options available.

Version 1.0 The Compiler System 1-9

1.3.1 General Options

The general options are listed in alphabetical order in the tables that fol­
low.

Option Name

-c

-c

-c

-E

-D name
-D name=def

Purpose

Prevents the link editor from linking your program
after compilation. This option forces the compiler
to produce an .0 file even when you compiler only
one program.

C driver only. Used with the -P or -E
options. Prevents the macro processor
from stripping comments. Use this option
when you suspect the preprocessor is not
emitting the intended code and you wish
examine the code with its comments.

Pascal and FORTRAN drivers only. Generates
code that causes range checking for subscripts
during program execution.

C driver only.
Runs only the C macro preprocessor and sends
results to the standard output. Specify also -C
to retain comments. Use - E when you suspect the
the preprocessor isn't emitting the intended code.

Defines a macro name as if you specified a
#define in your program. Unless you
specify a definition with name=def, the
compiler defines the name to be "1".

1-10 Comp,lIer Gl,Ilde·· IRIS-4D Series'

(

(

Option Name

-Gnum

-I dirname

-I

-nocpp

Version 1.0

Purpose

num is a decimal number that specifies the
maximum size in bytes of an item to be placed
in the global pointer area. The default is
512 bytes. You can raise or lower num to
control the number of data items placed in these
sections.

Note: If you receive the link editor message
"Too much data in the gp area ... ", you must
recompile the module lowering the value currently
specified for num.

Compiler searches the current directory,
dirname, and the default directory, JusT/include,
in that order for the include file.

When specified in addition to -I dirname,
the compiler searches only dirname
file (does not search the default directory).

Do not run the C macro preprocessor on FORTRAN,
C and assembly source files before processing.

The Compiler System 1-11

Option Name

-0 filename

-p

-pI or-p

-s

-Zv

-U name

-v

-v

-w

1-12 Compiler Guide

Purpose

Assigns the name filename to the program
object. When used with the -c option,
tells where to leave the .0 file.

The default filename is a.out.

Same as -E options, except puts results
in an .i file. Specify both -P and -C
to retain comments.

Permits program counter (pc) sampling. This
option provides operational statistics for use
in improving program performance. See
Chapter 2 for details.

Note: This option affects only the link editor
and is ignored by the compiler front-ends.
When link editing as a separate step from
compilation, be sure to specify this option if
pc sampling is desired.

Similar to -c, except produces assembly
code in an .s file instead of object code in
an .0 file.

Issues a warning message when the com­
piler finds a non-standard feature in the
programming language of your source
program.

Overrides a definition of a macro name
that you specified with the-D option,
or that is defined automatically by the
driver.

Lists compiler phases as they are executed.
Use this option when you suspect a phase
isn't being run as you intended. For example,
the option might reveal that you failed to specify
a library required by the link editor.

Prints the version number of the driver and
its phases. When reporting a suspected
compiler program, you must include this
number.

Suppresses warning messages.

IRIS-4D Series

(

(

(

1.3.2 Debugging Options

The table below lists the compiler options available for debugging source
code using dbx.

Option Name

-gO*

-gl

-g or -g2

-g3

*Default option.

Purpose

Produces a program object without debugging
information. Reduces the size of the
program object and should be used when
debugging is no longer required.
Retains all optimizations.

Permits accurate, but limited, source-level
debugging. This option does most
optimizations.

Permits full source-level debugging. These
options often suppress optimizations that
might interfere with full debugging.

Permits full, but inaccurate, debugging on
fully optimized code. Debugger output may
be confusing or misleading. Specify this
option for programs that malfunction only
after you attempt to optimize them.

1.3.3 Profiling Option

The compiler system permits the generation of profiled programs that,
when executed, provide operational statistics. This is done through com­
piler option -p (which provides pc sampling information) and the pixie
program (which provides profiles of basic block counts). See Chapter 2
for details.

Version 1.0 The Compiler System 1-13

1.3.4 Optimizer Options

The table below summarizes the options available for program optimiza­
tion. However, to fully understand the benefits of optimization and how
the compiler achieves optimization, you should read the "Optimization" (~

section in Chapter 2 of this manual.

Option Name

-0 or -02

-00

-01 *

-03

* Default option.

Purpose

Global optimization. Optimizes within the
bounds of individual compilation units. This
option executes global optimizer (uopt) phase.

No optimization. Prevents all optimizations,
including the minimal optimization normally
performed by the code generator and assembler.

The assembler and the code generator perform
as many optimizations as possible without affect­
ing compile-time performance.

All optimizations, including procedure inlining.
This option must precede all source file arguments.
With this option, a ucode object file is created for
each source file and is left in a '.u' file. If the -c
option is not present, the runtime startup routine,
runtime libraries, and ucode versions of the runtime
libraries are linked, as well as newly created ucode
object files and ucode object files specified on the
command line. If the -c option is present, only
the newly created ucode files and those specified on
the command line are linked. Procedure inlining is
done on the resulting linkred file. This file is compiled
and the object file is left in 'u.out.o' by default.
If -ko output is specified, the object file is left in
output with a suffix of '.0'.

1.3.5 Compiler Development Options

In addition to the standard options, each driver also has options that you
normally won't use. These options primarily aid compiler development
work. For information about how to use these options, consult the cc(l)
and /77(1) manual pages in the IRIS-4D User's Reference Manual.

1-14 Complier Guide IRIS-4D Series

(

(

1.4 Including Common Files (Definition Files)

When you write programs, often you have common definition files that
you share among a program's modules. Common files define things like
known constants or the parameters for system calls (for example, the files
that define the object file formats).

Because globally shared things should go in one place, you need a way to
put these things in a common place. Definition files (often called header
files in the C programming language) let you share common information
between many files in a program.

Many people call these files #include or "header" files. These files have a
".h" suffix. Typically, a manual page from the IRIS-4D User's Reference
Manual tells you to include a specific definition file.

Each supported language handles these files the same way, and you specify
these files in your program's source code.

NOTE: If you intend to debug your program using dbx, you should not
place executable code in an include file. The debugger recognizes an in­
clude file as one line of source code; none of the source lines in the file
appears during the debugging session.

To specify an include file in your program, put a line like this at the be­
ginning of your program:

#include "test.h"

You can include files in your program source files in either of two ways:

1. In column 1 of your source file, type:

#include "filename "

where filename is the name of the include file. Because you placed
filename within double quotation marks ("), the C macro preprocessor
searches in sequence the current directory and the default directory
lusrlinclude.

2. In column 1 of your source file, type:

#include < filename >

Version 1.0 The Compiler System 1-15

filename is the name of the include file. Because you placed filename
between the greater-than and less-than signs « », the C macro
preprocessor skips the current directory and searches only the default
directory lusr/include for the include file.

C, FORTRAN 77, and assembly code can reside in the same include files,
and then can be conditionally included in programs as required. To set
up a shareable include file, you must create an . h file and enter the re­
spective code as indicated in Figure 1-4:

#ifdef LANGUAGE_C

... C code

#endif
#ifdef LANGUAGE_FORTRAN

Fortran code

#endif
#ifdef LANGUAGE_ASSEMBLY

MIPS Assembly code

#endif

Figure 1-4.

NOTE: When you write your program, you need to include the" .h" file
that you created.

1.5 Link Editor

This section gives summarizes the functions of the link editor and how it
works. Refer to the Id(1) manual page in the IRIS-4D User's Reference
Manual for complete information on the link editor options and libraries.

The link editor combines one or more object files (in the order specified)
into one program object file, performing relocation, external symbol reso­
lutions, and all the other processing required to make object files ready
for execution. Unless you specify otherwise, the link editor names the

1-16 Compiler Guide IRIS-4D Series

(

(

(

program object file a.out. You can execute the program object or use it
as input for another link editor run.

The link editor supports all the standard command line features of other
UNIX system link editors except System V ifiles. (An ifile holds a descrip­
tion of a load module.)

1.5.1 Running the Link Editor

You can run the link editor by typing ld on the command line of your
shell or by using one of the driver commands as described in this chapter
in the section "Linking Objects". In most cases, the driver commands
should be used to call the link editor so that the object is linked with sys­
tem libraries and important link editor switches. The syntax of the ld
command is as follows:

Id -options object1 [object2 ... objectn 1

NOTE: The assembler driver as does not run the link editor. To link
edit a program written in assembly language, do either of the following:

• Assemble and link edit using one of the other driver commands (cc,
for example). The. s suffix of the assembly language source file
causes the driver to invoke the assembler procedures.

• Assemble the file using as, then link edit the resulting object file with
the ld command.

1.5.2 Specifying Libraries

If you compile multi-language programs, be sure to explicitly load any re­
quired runtime libraries. For a list of the libraries that a language uses,
see the manual pages for cc(l) and /77(1) in the IRIS-4D User's Refer­
ence Manual.

You may need to specify libraries when you use UNIX system packages
that are not part of a particular language. Most of the manual pages for
these packages list the required libraries.

NOTE: The link editor searches libraries in the order you specify.

Version 1.0 The Complier System 1-17

1.5.3 Link Editor Options

Table 1-1 summarizes the link editor options. Refer also to the list of
general options earlier in this chapter and to the ld(1) manual page in the
IRIS-4D User's Reference Manual for complete information on options (-
and libraries that affect link editor processing.

Option Name

-b

-Bnum

-Bstring

-d

-Dnum

-e epsym

1-18 Compiler Guide

Purpose

Tells ld not to merge symbolic information
entries from the same file into one entry
for that file. Use this option when a file
compiled for debugging has variables with
the same names but different attributes. This
can occur when compiling two object files
that use the same include file, and variables
with the same name differ because of
conditional statements within the file.

Sets the starting address of the uninitialized
data segment (bss) to the hexadecimal
address num. This option is valid only
when you've also specified the -N link
editor option described later in this table.

Appendstringto the libarary name created
by the -Ix or klx option.

Forces the definition of common storage and
link editor-defined symbols even if -r
is specified.

Sets the starting address of the data segment
(data) to the hexadecimal address num.
This option is valid only when you've
also specified the -N link editor option.

Sets the default entry point address for
the output file to the specified symbol
epsym.

Table 1-1. Link Editor Options

IRIS-4D System

(

(

Option Name

-f fill

-Gnum

-bestGnum

-count
-nocount
-countall

Purpose

Sets the fill pattern for "holes" within an
output section of an object file; fill is a four­
byte hexadecimal constant that defines the
fill pattern.

Specifies the maximum size (in decimal
bytes) of a .comm item that should be
allocated in the small uninitialized data
(sbss) section for reference by the
global pointer.

calculates the best-G num to use when compiling
and linking.

These options control which objects are counted as
recompilable for the best -G num calculation. By
default. the -bestGnum option assumes that all
files can be recompiled with a different -G num
option. If you can not recompile certain object
files or libraries, use these options to tell the link
editor so that it will calculate the proper-G num value.
-nocount states that the object file following it on
the command line can not be recompiled;
-countall overrides all-nocount
options following it on the command line.

Table 1-1. Link Editor Options (continued)

Version 1.0 The Compiler System 1-19

Option Name

-Ix

-Ldirname

-L

-m

-M

Purpose

Specifies the name of a link library, where x
is the library name. The link editor searches
for libx.a in llib, lusr/lib, and lusr/localllib
directories respectively. For example, if you
specify Icurses, the library pathnames can be:

Iliblcurses.a
/usrllib/curses. a
lusrilocalilibicurses. a

If a library relies on procedures or data
from another library, specify that library's
name first.

If a library resides in a directory other than
llib, lusr/lib, or lusr/localllib, use the -L
option to specify the appropriate directory
for that library.

Searches dirname for libraries specified in
the -I option before searching directories
!lib, /usrllib, or lusrilocalilib.

This option must precede the -I option.

If the link editor doesn't find the library
in dirname, then llib, lusr/lib, and lusr/localllib
are NOT searched. An-Ldirname option
must be specified with - L.

Produces a link editor memory map
in System V format.

Produces a link editor memory map
in BSD format.

Table 1-1. Link Editor Options (continued)

1-20 Complier Guide IRIS-4D System

(

(

Option Name

-0

-N

-0 filename

-pfile

-r

-s

-T num

-u symname

Purpose

* Creates an NMAGIC file. The text segment
is read-only and shareable by all users
of the file.

* Creates an OMAGIC file. The text segment
isn't readable and shareable by other users.
The data segment follows immediately after
after the text segment.

Specifies a name for your object file. If you
don't specify a name, the link editor uses
a. out as the default.

Preserve the symbol names listed infile when
loading ucode object files. The symbol names
in file are separated by blanks, tabs, or new
lines. See Optimizing Frequently Used
Modules in Chapter 2 for an example.

Performs a partial link-edit, retaining
relocation entries. This is required if
the object is to be re-link edited with
other objects in the future. The option
causes the link editor not to define common
symbols and to suppress messages on
unresolved references.

Strips Symbol table information from the
program object, reducing its size.
This option might be useful when linking
routines that are frequently linked into other
program objects.

Sets the origin for the text segment to the
specified hexadecimal number. The
default origin is OX 400000. The contents
and format of the text segment are described
in Chapter 9 of the Assembly Language
Programmer's Guide.

Makes symname undefined so that library
components that define symname are
loaded.

• See Chapter 9 of the Assembly Language Programmer's Guide for more
information on NMAGIC and OMAGIC flies.

Table 1-1. Link Editor Options (continued)

Version 1.0 The Compiler System 1-21

Option Name

-v

-v

-VSnum

-x

Purpose

Prints the name of each file as it is
processed by the link editor.

Prints the link editor version number.
You might need this number, for example,
when reporting a suspected bug in the link
editor.

Puts the specified decimal version stamp
numin the object file that the link editor
produces.

Retains external and static symbols in the
Symbol table to allow some debugging
facilities. Doesn't retain local (non-global)
symbols.

Table 1-1. Link Editor Options (continued)

1.6 Object File Tools

The following tools provide information on object files as indicated:

• odump: lists the contents (including the symbol table and header in­
formation) of an object file.

• om: lists only symbol table information.

• file: provides descriptive information on the general properties of the
specified file (for example, the programming language used).

• size: prints the size of the text, data, rdata, sdata, bss, and sbss sec-

(

(

tions. The format of these sections is described in Chapter 9 of the (-
Assembly Language Programmer's Guide.

The sections that follow describe these tools in detail.

1-22 Compiler Guide IRIS-4D System

1.6.1 Dumping Selected Parts of Files (odump)

The odump tool lists headers, tables, and other selected parts of an object
or archive file.

odump options filename1 [filname2 .. filenamenj

In the above syntax description, options is one or more of the options and
suboptions listed in Tables 1-2 and 1-3; filename is the name of one or
more object files whose contents are to be dumped. For more informa­
tion, see the odump(1) manual page in IRIS-4D User's Reference Manual.

Option Name

-a

-c

-f

-F
-g

-h

-i

-1

-0

-p

-r

-R

-8

-t

Version 1.0

Purpose

Dumps the archive header of each member
of the specified archive library file.

Dumps the string table.

Dumps each file header.

Dumps the file descriptor table.

Dumps the global symbols in the symbol
table of an archive library file.

Dumps the section headers.

Dumps the symbolic information header.

Dumps line number information.

Dumps each optional header.

Dumps the procedure descriptor table.

Dumps relocation information.

Dumps the relative file index table.

Dumps the section contents.

Dumps symbol table entries.

Table 1-2. Main odump Options

The Complier System 1-23

Option Name

-d number

+d number

-n name

-p

-t index

+t index

-v

-z name, number

+z number

Purpose

Dumps the section number, or a range of
section numbers, that starts at the specified
number and that ends with the last section
number or the number you specify with the
+d auxiliary option.

Dumps the sections in a range that starts with
the first section or with the section you
specify with the -d option.

Dumps information only for the named entry
name. Use this option with the -h, -s, -r,
-I, and -t options.

Suppresses the printing of headers.

Dumps only the indexed symbol table entry.
You can specify a range of table entries
by using the +t option with the -t option.

Dumps symbol table entries in a range that
ends with the indexed· entry. The range
begins with the first symbol table entry or
with the section that you specify with the
-t option.

Dumps information in symbolic rather than
numeric representation (for example, in
Static rather than OX02). Use this option
with alldump options except-so

Dumps the line number entry or a range
of entries that start at the specified
number for the named function.

Dumps the line number that starts at the
function name or the number specified
by the -z option and that ends at the
the number specified by the +z option.

Table 1-3. Auxilliary odump Options

1-24 Compiler Guide IRIS-4D System

(

(

(

1.6.2 Listing Symbol Table Information (nm)

The nm tool prints symbol table information for object files and archive
files.

nm options filenamel [filename2. ·filenamen 1

In the above syntax description, options is one or more of characters
(listed in Table 1-5) that specify the type of information to be printed;
filename specifies the object file(s) or archive file(s) from which symbol
table information is to be extracted. If you don't specify a file, om as­
sumes a. out.

The meanings of the character keys shown in an nm listing are described
in Table 1-4.

Version 1.0 The Compiler System 1-25

Key Description

N Nil storage class, which avoids loading of
unused external references.

T External text. (
t Local text.

D External initialized data.

d Local initialized data.

B External zeroed data.

b Local zeroed data.

A External absolute data.

a Local absolute data.

U External undefined data.

G External small initialized data.

S External small zeroed data. (
s Local small zeroed data.

R External read-only data.

r Local read-only data.

C Common data.

E Small common data.

V External small undefined.

Table 1-4. Character Key Meanings

(

1-26 Compiler Guide IRIS-4D System

Option Name

-A

-B

-a

-b

-d

-e

-h

-0

-0

-p

-r

Purpose

Prints the listing in System V format.
(Default) .

Prints the listing in BSD format.

Prints debugging information (turns BSD
output into System V format).

Prints the value field in octal.

Prints the value field in decimal (the
default for System V output).

Prints only external and static variables.

Suppresses printing of headers.

Sorts external symbols by name for System V
format. Borts all symbols by value for
Berkeley format (by name is the BSD
default output).

Prints value field in octal (System V output).
Prints the filename immediately before
each symbol name (BSD output).

Lists symbols in the order they appear in the
Symbol table.

Reverses the sort that you specified for
external symbols with the -0 and -v
options.

Table 1-5. Symbol Table Dump (nm) Options

Version 1.0 The Complier System 1-27

Option Name

-T

-u

-v

-v
-x

Purpose

Truncates characters in exceedingly long
symbol names; inserts an asterisk as the
last character of the truncated name. This
may make the listing easier to read.

Prints only undefined symbols.

Sorts external symbols by value (default
for Berkeley format).

Prints the version number of nm

Prints the value field in hexadecimal.

Table 1-5. Symbol Table Dump (nm) Options (continued)

1.6.3 Determining a File's Type (file)

The file tool lists the properties of program source, text, object, and other
files.

This tool often erroneously recognizes command files as C programs. For
more information, see the file(l) manual page in the IRIS-4D User's Ref­
erence Manual.

Syntax:

file filenamel [filename2 . .filenamen]

Example:

% file test.o a.out
test.o:mipsel demand paged pure executable not stripped

(

(

a.out: mipsel demand paged pure executable not stripped (
% .

1-28 Complier Guide IRIS-4D System

1.6.4 Determining a File's Section Sizes (size)

The size tool prints information about the text, rdata, data, sdata, bss,
and sbss sections of the specified object or archive file(s). The contents
and format of section data are described in Chapter 9 of the Assembly
Language Programmer's Guide.

Syntax:

size options [filenamel filename2 .. filenamen]

In the above syntax description, options is an alphabetic character (listed
in Table 1-6) that specifies the format of the listing; filename specifies the
object or archive file(s) whose properties are to be listed. If you don't
specify a file, size assumes a. out.

Below is an example of a size statement and the listing it produces.

% size -B -0 test.o

text data bss rdata sdata sbss decimal hex
test.o 31250 2010 40470 550 210 50 31232 7aOO

% size -B -d test.o

text data bss rdata sdata sbss decimal hex
test.o 12968 1032 166965 360 136 40 31232 7aOO

%

Version 1.0 The Compiler System 1-29

Option Name

-A

-B

-d

-0

-v

-x

1.7 Archiver

Purpose

Prints data section headers in System V
format. (Default)

Prints data section headers in Berkeley
format.

Prints the section sizes in decimal.

Prints the section sizes in octal.

Prints the version of size that you're
using.

Prints the section sizes in hexadecimal.

Table 1-6. Size Options

An archive library is a file that contains one or more routines in object
(.0) file format; the term object as used in this chapter refers to an .0 file
that is part of an archive library file. When a program calls an object not
explicitly included in the program, the link editor (lei) looks for that object
in an archive library. The editor then loads only that object (not the
whole library) and links it with the calling program.

The archiver (ar) creates and maintains archive libraries and has the fol- .
lowing main functions:

• Copying new objects into the library.

• Replacing existing objects in the library.

• Moving objects about the library.

(

• Copying individual objects from the library into individual object file. (

The sections that follow describe the syntax of the ar (archiver) command
and some examples of how to use it. See the ar(l) manual page in the
IRIS-4D User's Reference Manual for additional information.

1-30 Complier Guide IRIS-4D System

Syntax:

ar options [posObject] libName [objectl ... objectN]

The following explains the parameters in the above syntax description:

• options is one or more characters (listed in Tables 1-7 and 1-8) that
specify the action that the archiver is to take. When you specify more
than one option character, group the characters together with no
spaces between; don't place a dash (-) character before the option
characters.

• posObject is the name of an object within an archive library. It speci­
fies the relative placement (either before or after posObject) of an ob­
ject that is to be copied into the library or moved within the library.
A posObject is required when the m or r options are specified to­
gether with the a, b, or i suboptions. Example 4 below shows the use
of a posObject parameter.

• libName is the name of the archive library you are creating, updating,
or extracting information from.

• object is the name object(s) or object file(s) that you are manipulat­
ing.

1.7.1 Examples

1. Create a new library and add routines to it.

% ar cr libtest.a mcount.o monl.o string.o

Options c suppresses archiver messages during the creation process.
Options r creates the library libtest.a and adds mcount.o, monl.o, and
string.o.

2. Add or replace an object (.0) file to an existing library.

% ar r libtest.a monl.o

Option r replaces monl.o in the library Ubtest.a. If monl.o didn't
already exist, the new object monl.o would be added.

Version 1.0 The Compiler System 1-31

CAUTION: If you specify the same file twice in an argument list, it
appears twice in the archive.

3. Update the library's symdej table.

% ar ts libtest.a

Option s creates the symdej table and t lists the table of contents.

NOTE: After you create or change a library, you must always use the
s option to update the symdej (symbol definition) table of the archive
library. The link editor uses the symdef table to locate objects during
the link process.

4. Add a new file immediately before a specified file in the library.

% ar rb mcount.o libtest.a new.o

Option r adds new.o in the library Ubtest.a. Option b followed by
posObject mcount.o causes the archiver to place new.o immediately
before mcount.o.

1.7.2 Archiver Options

Table 1-7 lists the archiver options. You must specify at least one and
only one of the following options: d, m, p, q, r, or x. In addition, you
can optionally specify the c, I, s, t, and v options, and any of the archiver
suboptions listed in the following tables.

1-32 Complier Guide IRIS-4D System

(

(

(

Option Name

c

d

m

p

q

Version 1.0

Purpose

Suppresses the warning message that the
the archiver issues when it discovers
that the archive you specified doesn't
already exist.

Deletes the specified objects from the
archive.

Puts the archiver's temporary files in the
the current working directory. Ordinarily.
the archiver puts those files in /tmp.
This option is useful when /tmp is full.

Moves the specified files to the end of the
archive. If you want to move the object
to a specific position in the archive library,
specify an a, b, or i suboption together with
the posObject parameter.

Prints the specified object(s) in the
archive on the standard output device
(usually the terminal screen).

Adds the specified object files to the
end of the archive. An existing object
file with the same name isnot deleted, and
the link editor will continue to use the old
file. This option is similar to the r
option (described below), but is faster. Use
it when creating a new library.

Table 1-7. Archiver Options

The Compiler System 1-33

Option Name

r

s

t

v

x

Purpose

Adds the specified object files to the archive.
This option deletes duplicate objects in the
archive. If you want to add the object
at a specific position in the archive library,
specify an a, b, or i suboption together with
the posObject parameter. See Example 4 in the
preceding section for an example of using
the posObject parameter.

See also the u suboption.

Use ther option when updating existing
libraries.

Creates asymdeJ table in the archive. You
must use this option each time you create
or change the archive library.

At least one of the following options
must be specified with the s option: m, p, q
r, or t.

Prints a table of contents on the standard
output (usually the screen) for the
specified object or archive file.

Lists descriptive information during the
process of creating or modifying the
archive. When specified with the t
produces a verbose table of contents.

Copies the specified objects from the
archive and places them in the current
directory. Duplicate files are overwritten.
Thelast modified date is the current date,
unless you specify the 0 suboption. Then,
the date stamp on the archive file is
thelast modified date.

If no object are specified, copies all the
library objects into the current directory.

Table 1-7. Archiver Options (continued)

1-34 Compiler Guide IRIS-4D System

(

(

The archiver has these suboptions:

Suboption Name Use with option... Purpose

1

a mar r

b mar r

mar r

o x

u r

1 Specifies that the object file
follow the posObject file you
specify in the ar statement.

1 Specifies that the object file
precede the posObject file you
specify in the ar statement.

1 Same as -b

Used when extracting a file
from the archive to the
current directory. Forces
the last modified date of the
extracted to match that of
the archive file.

The archiver replaces the
existing object file when the
last modified date is earlier
(precedes) that of the new
object file.

See Example 4 in the preceding section for an example of using
the posObject parameter.

Table 1-8. Archiver Suboptions

Version 1.0 The Complier System 1-35

(\

(

(

2. Improving Program Performance

This chapter describes facilities that can help reduce the execution time of
your programs; it contains the following major sections:

• Profiling, which describes the advantages of the profiler and how to
use it. The profiler isolates those portions of your code where execu­
tion is concentrated and provides reports that indicate where you
should devote your time and effort for coding improvements.

• Optimization, which describes the compiler optimization facility and
how to use it. The section also gives examples showing optimization
techniques.

• Limiting the Size of Global Pointer Data, which describes the global
pointer area and how, through controlling the size of variables and
constants that the compiler places in this area, you can improve pro­
gram performance.

2.1 Introduction

The best way to produce efficient code is to follow good programming
practices:

• Choose good algorithms and leave the details to the compiler.

• Avoid tailoring your work for any particular release or quirk of the
compiler system.

As technological advances cause MIPS to make changes to the current
compiler system, anything you tailor now might negatively affect future
program performance. Moreover, tailored code might not work at all with
new versions of the system. To take action on possible compiler ineffi­
ciencies, report them dir~ctly to MIPS.

Version 1.0 Improving Program Performance 2-1

2.2 Profiling

This section describes the concept of profiling, its advantages and disad­
vantages, and how to use the profiler.

2.2.1 Overview

Profiling helps you find the areas of code where most of the execution
time is spent. In the typical program, execution time is confined to a
relatively few sections of code; it's profitable to concentrate on improving
coding efficiency in only those sections. The compiler system provides the
following profile information:

• pc sampling (pc stands for program counter), which highlights the exe­
cution time spent in various parts of the program.

You obtain pc sampling information by link editing the desired source
modules using the -p option and then executing the resulting program
object. which generates profile data in raw format.

(

• Invocation counting, which gives the number of times each procedure (
in the program is invoked.

• Basic block counting, which measures the execution of basic blocks (a
basic block is a sequence of instructions that is entered only at the
beginning and which exits only at the end). This option provides sta­
tistics on individual lines.

You obtain invocation counting and basic block counting information
using the pixie program. Pixie takes your source program and creates
an equivalent program containing additional code that counts the exe­
cution of each basic block. Executing pixie and the equivalent pro­
gram generate the profile data in raw format.

Using the prof program, you can create a formatted listing of the raw pro­
file data. The listings can indicate where to correct sub-optimal coding,
substitute better algorithms, or substitute assembly language. The listings
also indicate if your program has exercised all portions of the code.

Figure 2-1 gives an example of a pc sampling listing produced from a pro- (
gram compiled with the -p compiler option. The prof program produced
the listing from the raw profile data using the -procedure option.

2-2 Compiler Guide IRIS-4D Series

.16 seconds (66.7% of total eXI~C~lIIon I:!!lllili\l!i·iij::.·,ij'ji;:iii.::::i:·!:lii;1 time) were spent cumatlvely In the t::
main, write_string, write_char, and
write_Integer routines.

Figure 2-1. Profiler Listing for PC Sampling

Figures 2-2 through 2-6 show listings from raw data produced by pixie.
The prof option used is given at the top of each figure.

Version 1.0 Improving Program Performance 2-3

Procedures - Invocation Counting
Profller option: -pixie -Invocation

;--:iin;ocation;l-~;ini-ba;ic:blo~k-co~nt;:--------------------------------;
* the called procedures are sorted in desoending order by number of *
* oalls; a '7' in the oolumns marked '#oalls' or 'line' mElans that data *
* is unavailable beoause part of the program was oompiled without *
* profiling. *
----oalled-prooed~re--#calls-iCalls--from-line7-oalling-prooedure-,file):---

eof

writeln

readln

sbrk

olose
fflush

30 0.61
4014 81. 75

453 9.23
442 9.00

o 0.00
o 0.00
o 0.00

453 24.69
453 24.59
453 24.59
463 24.69

30 1. 63
o 0.00

463 60.00
463 50.00
463 93.40

30 6.19
1 0.21
1 0.21

453 93.60
SO 6.20
1 0.21

463 93.79
80 6.21
4 66.67
1 16.67
1 16.67
4 100.00
4 100.00
o 0.00

":",,11,::: .. /: "I"::;t :', (toutout.c)

225 write_integElr (.. /textoutput.C)
257 write_cardinal (.. /textoutput.O)
284 write_real (.• /textoutput.O)
286 write_real (.. /textoutput.c)

31 main (pix.p)
29 main (pix. p)
31 main (pix.p)
31 main (pix.p)
23 main (pix.p)

189 write_snum (.. /tsxtoutput.e)
31 main (pix. p)
31 main (pix.p)
45 main (pix. P)
23 main (Pix. P)
28 main (pix. p)
14 main (pix.p)
29 main (pix.p)
23 main (pix. P)
47 main (pix. p)
39 main (pix. P)
21 main (pix.p)

207 moreeore (.. /malloe.o)
110 malloe (.. /malloo.o)
115 malloe (.. /malloo.e)
108 fclose (.. /flsbuf.c)
107 felose (.. /flsbuf.e)

49 _filbuf (.. /filbuf.e)

Figure 2-2. Profiler Listing for Procedure Invocations

2-4 Compiler Guide IRIS-4D Series

('

(

(

Procedures - Basic Block Counts

Profller option: -pixie -procedure

.'1< -p[roceduresj using basic-block counts; *
* sorted in de.scending order by the number of cycles executed in each *
* procedure; unexecuted procedures are excluded *

82 0.00
55 0.00
35 0.00
15 0.00
13 0.00

0.00
0.00

cum % cycles
leal!

34
42443508

30
23
62

bytes procedure (file)
lline

.p
input.c)
Itextinput.c)
.. /textoutput.c)

(.. /textoutput.c)
(.. /textoutput.c)
xtinput.c)
extoutput.C)
nput. oj
lsbuf.c)

11
6
5
5

o . 00 L£lI2123.Jill22fill22232i..2f;£S£±2281Z.l. s)
0.00 100.00 5 5 creat (.. /stringargl.s)

Figure 2-3. Profiler Listing for Procedures Based on Basic Blocks
Counts

Version 1.0 Improving Program Performance 2-5

Procedures - Basic Block Counts (with clock time)

Profller option: -pixie-procedure -clock (
* -p[rocedures] using basic-blcck counts; *
* sorted in descending order by the number of cycles executed in each *
* procedure; unexecuted procedures are excluded *

148137751 cyc

48071708
42443503
28457938
20882328

4307932 .c)
3878408 .c)
1573858 18 write_string (•. /textoutput.c)

382700 28 87 readln (.• /textinput.c)
279002 20 80 writeln (.. /textoutput.c)
251152 19 44 eof (.• /textinput.c)

(30283 83 11 _flsbuf (.• /flsbuf.c)
13391 80 13 _refill (.. Irefill. c)

2923 8 8 write (•. /write.s)
1358 II 8 read (.. /read.s)

736 388 11 1II0recore (.. /malloc. c)
malloc (.• /lIIa11oc.c)
pad (.. /textoutput.c)

(.. /reset.c)
(.. /fopen.c)

(.. /sbrk.s)
te (.. /rewrite.c)

(.. /fstat.s)
(.. /isatty.c)

11 •. 00 100.00 0.0000 11 11 gtty (.. litty.c)
8 •. 00 100;00 0.0000 8 5 ioctl (.. /silllple.s)
5 0.00 100.00 0.0000 II II open (.. /stringarg1.s)
6 0.00 100.00 0.0000 5 5 creat (.. /stringarg1.s)

Figure 2-4. Profiler Listing for Procedures Based on Basic Blocks
Counts (with clock times) (

2-6 Complier Guide IRIS-4D Series

Heavy - Basic Block Counts
Profiler option: -pixie -heavy

* -h[eavy] using basic-block counts; *
* sorted in descending order by the number of cycles executed in each *
* line; unexecuted lines are excluded *

procedure

(.. /textoutput.c)

main (fixfont.p
read_char (.. /t xtinput.c)
main (fixfont.p

line

105
60
37

116
34
61

106
write_char (.. /textoutput.C) 111
eoln (.. /textinput.c) 27

88

28
20
12
40
16

8
8

12

cycles

28276478
22808688
19069136

% cum %

2736936 1.85 84.88
read_char (.. /textinput.c) ___ ~----~---C~nn~~-r7Zr-~~~
main (fixfont.p)
write_chars (.. /textoutput.c)
write_char (.. /textoutput.c) 106
write_char (.. /textoutput.c) 112
wri te_integer (.. /textoutput. c) 197
main (fixfont.p) 46
wri te_integer (.. /textoutput. c) 198
main (fixfont.p) 39
eoln (.. /textinput.c) 28
main (fixfont. p) 86
main (fixfont. p) 37
write_string (.. /textoutput. c) 160
write_chars (.. /textoutput.c) 48
write_chars (.. /textoutput.c) 47
write_chars (.. /textoutput.c) 49
write_chars (.. /textoutput.c) 18
main (fixfont.p) 31

44
4
4

28
20

100

671060 0.39 96.46
667865 0.38 95.84
667855 0.38 96.22
487387 0.33 96.56
348150 0.24 96.79
348000 0.23 97.02

Figure 2-5. Prafiler Listing for Heavy Line Usage

Version 1.0 Improving Program Performance 2-7

Lines - Basic Block Counts
Profller option: -pixie -lines

* -l[ines] using basic-block counts; *
(

... grouped by procedure. sorted by cyoles executed per procedure; *
* '1' means that because a procedure was compiled without profiling. *
... we lack line number information for it ...

line bytes cycles %cycles

main

0.00

(8 0.00
1 0.00

0.01
0.00
0.00
1.86
0.82
16.40

read_char C .. /textinput.c) 1.21
8.67
3.64
2.43

wri te_chars 0.24
19 8 139260 0.09
26 12 208890 0.14
28 4 139 0.00

Figure 2-6. Profiler Listing for Line Information

(

2-8 Complier Guide IRIS-4D Series

2.2.2 How Basic Block Counting Works

Figure 2-7 on the next pages gives the steps to follow in obtaining basic
block counts. Details of the steps shown in the figure are as follows:

1. Compile and link-edit. Do not use the -p option. For example:

cc -c myprog.c
cc -0 myprog myprog.o

2. Run the profiling program pixie. For example:

pixie -0 myprog.pixie myprog

Pixie takes myprog and writes an equivalent program containing addi­
tional code that counts the execution of each basic block. Pixie also
generates a file (myprog.Addrs) that contains the address of each of
the basic blocks. For more information, see the pixie(l) section in
the IRIS-4D User's Reference Manual.

3. Execute myprog.pixie, which was generated by pixie. For example:

myprog.pixie

This program generates the file myprog. Counts, which contains the
basic block counts. .

4. Run the profile formatting program prof, which extracts information
from myprog.Addr and myprog.Counts, and prints it in an easily read­
able format. For example:

prof -pixie myprog myprog.Addrs myprog.Counts

NOTE: Specifying myprog.Addrs and myprog. Counts is optional; pixie
searches by default for with names in having the formal
program_name . Addrs and program_name. Counts.

You can run the program several times, altering the input data, and
create multiple profile data files, if you desire. See the section Aver­
aging Prof Results later in this chapter for an example.

You can include or exclude information on specific procedures within
your program by using the -only or -exclude prof options (Table 2-1).

Version 1.0 Improving Program Performance 2-9

prof option:
-pixie

Step 1 ..-____,
Compile
and link ~
~,

_~ ~gram Step 2 .) pro

Step 3

Step 4

Executepixie

program. pixie program. Addrs

..-------.
Execute

program. pixie

Execute prof

~
program. Counts

lliiiii_~ prof options:
-pixie -feedback

For the programmer

A formatted listing
of profile statistics.

For the compiler
A feedback file that aids
the procedure merger
and global optmization
phases.

Figure 2-7. How Basic Block Counting Works

2-10 Compiler Guide IRIS-4D Series

(

(

(

2.2.3 Averaging Prof Results

A single run of a program may not produce the typical results you require.
You can repeatedly run the version of your program created by pixie,
varying the input with each run,; then, you can then use the resulting
.Counts files to produce a consolidated report. For example:

1. Compile and link-edit. Do not use the -p option. For example:

cc -c myprog.c
cc -0 myprog myprog.o

2. Run the profiling program pixie. For example:

pixie -0 myprog.pixie myprog

This step produces the myprog.Addrs file to be used in Step 4, as well
as the modified program myprog.pixie.

3. Run the profiled program as many times as desired. Each time you
run the program, a myprog. Counts file is created; rename this file be­
fore executing the next sample run. For example:

myprog.pixie < inputl > outputl
mv myprog.Counts myprogl.Counts
myprog.pixie < input2 > output2
mv myprog.Counts myprog2.Counts
myprog.pixie < input3 > output3
mv myprog.Counts myprog3.Counts

4. Create the report as shown below.

prof -pixie myprog myprog.Addrs myprog[123].Counts

prof takes an average of the basic block data in the myprogl. Counts,
myprog2.Counts, and myprog3.Counts files to produce the profile re­
port.

Version 1.0 Improving Program Performance 2-11

2.2.4 How PC-Sampling Works

Figure 2-8 gives the steps to follow in obtaining pc-sampling information.

Compiler
~p option.

prof format

Step 1 ...

Step 2

Step 3

option(s) ...

I

" " I ,

Compile and link .

Execute program.

(collect data)

Run prof

(format data)

... -

D

...

~
Profile

(m

~

"- ,
\ , ,

Data File
n.out)

r J
For the proorammer

A formatted listing
of profile statistics.

For the compiler

A feedback file that aids
the procedure merger
and global optmization
phases.

Figure 2-8. How PC-Sampling Works

2-12 Compiler Guide IRIS-4D Series

(!

(

(

Details of the steps shown in Figure 2-8 are as follows:

1. Compile and link-edit using the -p option. For example:

cc -c myprog.c
cc -p -0 myprog myprog..o

Note that the -p profiling option must be specified during the link ed­
iting step to obtain pc sampling information.

2. Execute the profiled program. During execution, profiling data is
saved in the profile data file (the default is man. out).

myprog

You can run the program several times, altering the input data, and
create multiple profile data files, if you desire. See the section Aver­
aging Prof Results later in this chapter for an example.

3. Run the profile formatting program prof, which extracts information
from the profile data file(s) and prints it in an easily readable format.

prof -procedure myprog mon.out

For more information on prof, see the prof(l) section in the IRIS-4D
User's Reference Manual.

You can include or exclude information on specific procedures within
your program by using the -only or -exclude profiler options (Table
2-1).

2.2.5 Creating Multiple Profile Data Files

When you run a program using pc-sampling, raw data is collected and
saved in the profile data file man. out. If you wish to collect profile data
in several files, or specify a different name for the profile data file, set the
environment variable PROFDIR as follows:

C Shell Bourne Shell

setenv PROFDIR string PROFDIR = string; export PROFDIR

This causes the results to be saved in the file string/pid.progname, where
pid is the process id of the executing program and progname is its name
as it appears in argv [OJ; string is the name of a directory you must create
before you run the program.

Version 1.0 Improving Program Performance 2-13

2.2.6 Running the Profiler (prof)

The profiler program converts the raw profiling information into either a
printed listing or an output file for use by the compiler. To run the pro­
gram, type in prof followed by the optional parameters indicated below:

prof [options] [pname] { [profileJilename ...] I
[pname. Addrs pname. Counts] }

The prof parameters are summarized below:

options is one of the keyword or keyword abbreviations shown in Table
2-1. (You can specify either the entire name or the initial character of
the option, as indicated in the table.)

pname specifies the name of your program. The default file is a. out.

profileJilename specifies one or more files containing the profile data
gathered when the profiled program executed. If you specify more than
one file, prof sums the statistics in the resulting profile listings.

pname.Addrs (produced by running pixie) and pname.Counts (produced
by running the pixie-modified version of the program).

The prof program takes defaults for profileJilename as follows:

• If you don't specify profileJilename, the profiler looks for the
mon.out file; if this file doesn't exist, it looks for the profile input data
file(s) in the directory specified by the PROFDIR environment variable
(see the preceding section Creating Multiple Profile Data Files).

• If you don't specify profileJilename, but do specify -pixie, then prof
looks for pname. Addrs and pname. Counts and provides basic block
count information if these files are present.

You might wish to consider using the -merge option when you have more
than one profile data file; this option merges the data from several profile
files into one file. See of Table 2-1 for information on the -merge op­
tion.

2-14 Complier Guide IRIS-4D Series

(

(

(

Name

-p [rocedures]

-pixie

-i[nvocations]

-l[ines]

Result

Lists the time spent in each procedure.

See Figure 2-3 for a sample output listing.

Basic block counting. Indicates that information is
to be generated on basic block counting, and that the
program. Addrsand program. Counts files produced
by pixie are to be used by default.

See Figures 2-3 through 2-6 for sample output.

Basic block counting. Lists the number of
times each procedure is invoked. The -exclude

and -only options described below apply to callees,

but not to callers.

See Figure 2-2 for sample output.

Basic block counting. List statistics for each line
of source code.

See Figure 2-6 for sample output.

-0 [nly] Reports information on only the procedure

procedure_name specified by procedure_name rather than the

entire program. You may specify more than

one -0 option. If you specify upper-case 0, prof

uses only the named procedure(s), rather than

the entire program, as the base upon which it

calculates percentages.

-e[xclude] Excludes information on the procedure(s)

procedure_name (and their descendants) specified by

procedure_name. If you specify upper-case E for

Exclude, prof also omits that procedure from the

base upon which it calculates percentages. The

-exclude option overrides the -include option.

-z[ero] Basic block counting. Prints a list of procedures that

are never invoked.

Table 2-1. Options for the Profile List Program (prof)

Version 1.0 Improving Program Performance 2-15

Name

-h[eavy]

-c[lock] n

-t[estcoverage]

Result

Basic block counting. Same as the -lines option,

but sorts the lines by their frequency of use.

See Figure 2-5 for a sample output listing.

Basic blockcountingLists the number of

seconds spent in each routine, based on the CPU

clock frequency n, expressed in megaHertz.

If you omitn, it defaults to 8.0. Never use the

default if the next argument program_name

or profile_filename begins with a digit.

See Figure 2-4 for a sample output listing.

Basic block counting. Lists line numbers that

contain code that is never executed.

-m[erge] filename This option is useful when multiple input files

of profile data (normally in mon.out) are used. It

causes the pro filer to merge the input files into

filename, making it possible to specify the name of

of the merged file (instead of several file names)
on subsequent profiler runs.

Table 2-1. Options for the Profile List Program (prof) (continued)

2-16 Complier Guide IRIS-4D Series

(

(

(I

Name

-q[uit] n

-q[uit] n%

-q [uit] ncum%

Result

Allows you to condense output listings by
truncating unwanted lines. You can truncate
by specifying n in three different ways:

n n is an integer. All lines after n
lines are truncated.

n% n is an integer followed by the per­
centage sign. All lines after the line
containing n% calls in the %calls
column are truncated.

ncum% n is an integer followed by cum and a per­
centage sign. All lines after the line
containing ncum% calls in the cum%
column are truncated.

For example, to eliminate the lines in the shaded
portion of the sample listing below, anyone of the
following could be specified:

-prof -q 4

-prof -q 13%

-prof -q 92cum%

calls %calls cum%

48071708
42443503
26457936

32.45 32.45
28.65 61.10
17.86 78.96

6.0090
5.3054
3.3072

Table 2-1. Options for the Profile List Program (prof) (continued)

Version 1.0 Improving Program Performance 2-17

2.3 Optimization

This section gives background on the compiler optimization facilities and
describes their benefits, the implications of optimizing and debugging, and
the major optimizing techniques.

2.3.1 Overview

Global Optimizer

The global optimizer is a single program that improves the performance of
e and FORTRAN object programs by transforming existing code into more
efficient coding sequences. Although the same optimizer processes e and
FORTRAN optimizations, it does distinguish between e and FORTRAN
programs to take advantage of the different language semantics involved.

Today, most compilers perform certain code optimizations, although the
extent to which they perform these optimizations varies widely. The MIPS
compilers perform more extensive optimizations compared with the average
compiler available. These advanced optimizations are the results of the
latest research into better and more powerful compiler techniques.

The MIPS compiler performs both machine-independent and machine-de­
pendent optimizations. MIPS machines and other machines with RISe
architectures provide a better target for machine-dependent optimizations.
This is because the low-level instructions of RISe machines provide more
optimization opportunities than the high-level instructions in other ma­
chines. Even optimizations that are machine-independent have been
found to be effective on machines with RISe architectures. Although
most of the optimizations performed by the global optimizer are machine­
independent, they have been specifically tailored to the MIPS environ­
ment.

Benefits

The primary benefits of optimization, of course, are faster running pro­
grams and smaller object code size. However, the optimizer can also
speed up development time. For example, your coding time can be re-

(

(

duced by leaving it up to the optimizer to relate programming details to (
execution time efficiency. This frees you up to focus on the more crucial
global structure of your program. Moreover, programs often yield op-
timizable code sequences regardless of how well you write your source pro-
gram.

2-18 Compiler Guide IRIS-4D Series

Optimization and Debugging

Optimize your programs only when they are fully developed and debugged.
Although the optimizer doesn't alter the flow of control within a program,
it may move operations around so that the object code doesn't correspond
to the source code. These changed sequences of code may create confu­
sion when using the debugger.

Loop Optimization

Optimizations are most useful in program areas that contain loops. The
optimizer moves loop-invariant code sequences outside loops so that they
are performed only once instead of multiple times. Apart from loop-in­
variant code, loops often contain loop-induction expressions that can be
replaced with simple increments. In programs composed of mostly loops,
global optimization can often reduce the running time by half.

The examples in Figure 2-9 show the results of loop optimization. The
source code below was compiled with and without the -0 compiler opti­
mization option:

void
left(a, distance)

char a[];
int distance;
{
int j, length;

length = strlen(a) - distance;
for (j 0; j < length; j++)

a[j] = a[j + distance];

Figure 2-9. Example of loop Optimization

Figure 2-10 shows the unoptimized and optimized code produced by the
compiler. Note that the optimized version contains fewer total instructions
and fewer instructions that reference memory. Wherever possible, the
optimizer replaces load and store instructions (which reference memory)
with the faster computational instructions that perform operations only in
registers.

Version 1.0 Improving Program Performance 2-19

Unoptimized:

loop is 13 instructions long using 8 memory references.

8 for (j=O ; j<length; j++)
sw $0, 36($sp) # j = ° (J
ble $24, 0, $33 # length >= j

$32:
9 a [j] = a[j+distance] ;

lw $25, 36($sp) # j
lw $8, 44($sp) # distance
addu $9, $25, $8 # j+distance
lw $10, 40 ($sp) # address of a
addu $11, $10, $9 # address of a[j+distance]
lbu $12, 0($11) # a [j+distance]
addu $13, $10, $25 # address of a[j]
sb $12, 0($13) # a [j]
lw $14, 36($sp) # j
addu $15, $14, 1 # j+l
sw $15, 36 ($sp) # j++
lw $3, 32($sp) # length
bIt $15, $3, $32 # j < length

$33:

Optimized: (
loop is 6 instructions long using 2 memory references.

8 for (j=O; j<length; j++)
move $5, $0 # j

= ° ble $4, 0, $33 # length >= j
move $2, $16 # address of a[j]
addu $6, $16, $17 # address of a[j+distance]

$32:
9 a[j] = a[j+distance] ;

lbu $3, 0($6) # a [j+distance]
sb $3, 0($2) # a [j]
addu $5, $5, 1 # j++
addu $2, $2, 1 # address of next a[j]
addu $6, $6, 1 # address of next a[j+distance]
bIt $5, $4, $32 # j < length

$33:
address of nexta[j+distance]

Figure 2-10. Unoptimized and Optimized Code (

2-20 Compiler Guide IRIS-4D Series

Register Allocation

MIPS architecture emphasizes the use of registers. Therefore, register us­
ages have significant impact on program performance. For example,
fetching a value from a register is significantly faster than fetching a value
from storage. Thus, to perform its intended function, the optimizer must
make the best possible use of registers.

In allocating registers, the optimizer selects those data items most suited
for registers, taking into account their frequency of use and their location
in the program structure. In addition, the optimizer assigns values to reg­
isters so that their contents move minimally within loops and during proce­
dure invocations.

Optimizing Separate Compilation Units

The optimizer processes one procedure at a time. Large procedures offer
more opportunities for optimization, since more inter-relationships are ex­
posed in terms of constructs and regions. However, because of their size,
large procedures require more time than smaller ones.

The uload and umerge phases of the compiler permit global optimization
among separate units in the same compilation. Often, programs are di­
vided into separate files, called modules or compilation units, which are
compiled separately. This saves compile time during program develop­
ment, since a change requires recompilation of only one compilation unit
rather than the entire program.

Traditionally, program modularity restricted the optimization of code to a
single compilation unit at a time rather than over the full breadth of the
program. For example, calls to procedures that reside in other modules
couldn't be fully optimized together with the code that called them.

The uload and umerge phases of the compiler system overcomes this defi­
ciency. The uload phase links multi-compilation units into a single compi­
lation unit. Then, umerge orders the procedures for optimal processing by
the global optimizer (uopt).

Version 1.0 Improving Program Performance 2-21

2.3.2 Optimization Options

Figure 2-11 on the next page shows the major processing phases of the
compiler and how the compiler -On option determines the execution se-
quence. The table belows summarizes the functions of each of the -0 (
options. .

Option

-03

-02

-01

-00

Result

The ulink and umerge phases process the output from the
compilation (C or FORTRAN) phase of the compiler,
which produces symbol table information and the program
text in an internal format called ucode.

The ulink phase combines all the ucode files and symbol
tables, and passes control to umerge. Umerge reorders the
ucode for optimal processing by uopt. Upon completion,
umerge passes control to uopt, which performs global op­
timizations on the program.

UUnk and umerge are bypassed, and only the global op­
timizer (uopt) phase executes. It performs optimization
only within the bounds of individual compilation units.

UUnk, umerge, and uopt are bypassed. However, the code
generator and the assembler perform basic optimizations in
a more limited scope.

UUnk, umerge, and uopt are bypassed, and the assembler
bypasses certain optimizations it normally performs.

NOTE: You should refer to the cc(l), 177(1) manual page, as applicable,
in the IRIS-4D User's Reference Manual for details on the -03 option
and the input and output files related to this option.

2-22 Compiler Guide IRIS-4D Series

(

(

Compilation

Ucode Link
(uloader)

Procedure Merg
(umerge)

r"r--..-t Global Optimizer
(uopt)

n.~-~ Code Generator

Assembler

Link Editor

D Binary
assembler file.

D Assembled
object file.

D Linked
object file.

Figure 2-11. Optimization Phases of the Compiler

Version 1.0 Improving Program Performance 2-23

2.3.3 Full Optimization (-03)

This section provides examples using the -03 option. The examples given
assume that the program foo consists of three files: a.c, h.c, and a.c.

To perform procedure merging optimizations (-03) on all three files, type (\
in the following:

% cc -03 -0 foo a.c b.c c.c

If you normally use the -c option to compile the .0 object file, follow
these steps:

1. Compile each file separately using the -j option by typing in the fol­
lowing:

% cc -j a.c
% cc -j b.c
% cc -j c.c

The -j option causes the compiler driver to produce a .u file (the
standard compiler front-end output, which is made up of ucode;
ucode is an internal language used by the compiler). None of the re­
maining compiling phases are executed, as illustrated below. The fig­
ure below illustrates the results after execution of the three commands
shown above.

DDD
a.c b.c c.c

C Compiler

"

Figure 2-12.

2-24 Complier Guide

~
DDD

a.u b.u c.u

IRIS-4D Series

(

2. Enter the the following statement to perform optimization and com­
plete the compilation process.

% cc -03 -0 foo a.u b.u c.U

Figure 2-13 illustrates the results of executing the above statement.

DDD ~ -03

S.u b.u C.u
~ UC~de Link

uld)

I
pro~edure Merge

umerge)

I
GIOb~1 O~timizer

uop)

I
Code Generator

I
Assembler

I
Link Edit

D
foo

Figure 2-13.

Version 1.0 Improving Program Performance 2-25

2.3.4 Optimizing Frequently Used Modules

You may want to compile and optimize modules that are frequently called
from programs written in the future. This can reduce the compile and
optimization time required when the modules are needed.

In the examples that follow, b.c and c.c represent two frequently used
modules that you wish to compile and optimize, retaining all the necessary
information to link them with future programs; Juture.c represents one
such program.

1. Compile b.c and c.c separately by entering the following statements:

23
% 00 -j b.o
% 00 -j 0.0

The -j option causes the front end (first phase) of the compiler to
produce two ucode files b.u and c.u.

2. Create manually a file containing the external symbols in b.c and c.c
to which Juture.c will refer. Each symbolic name must be separated
by at least one blank. Consider the following skeletal contents of b.c

(

and c.c shown in Figure 2-14. ()

b.o £000 0.0 x()
{ {

D D
D D

bar() help()
{ {

D D
D D

} }

zot 0 struot
{ {

D D
D D

} ddata;
struot yO

{ { (D D
D D

} work; }

Figure 2-14.

2-26 Compiler Guide IRIS-4D Series

In this example, future.c will call or reference only foo, bar, x, ddata,
and y in the b.c and c.c procedures. A file (named extern for this
example) must be created containing the following symbolic names:

foo bar x ddata y

(The structure work, and the procedures help and zot are used inter­
nally only by b.c and c.c, and thus aren't included in extern.)

If you omit an external symbolic name, an error message is generated
(see Step 4 below).

3. Now, optimize the b.u and c.u modules (Step 1) using the extern file
(Step 2) as follows:

% cc -c -03 -kp extern b.u c.U -0 keep.o

In the -kp option, k designates that the link editor option p is to be
passed to the ucode loader.

Figure 2-15 illustrates Step 3.

Version 1.0 Improving Program Performance 2-27

~,O3

DD,- Ucode Link
(uld)

b.u C.u

Procedure Merge
(umerge)

Global 0fltimizer
(uop)

Code Generator

Assembler

Figure 2-15.

~

-

D
ext ern

created
list file)

(hand-
symbol

D
keep.o

4. Create a ucode file and an optimized object code file (foo) for fU­
ture.c as follows:

% cc -j future. c
% cc -03 future.u keep.o -0 foo

2-28 Compiler Guide IRIS-4D Series

(

The following message may appear; it means that the code in future.c
is using a symbol from the code in b.c or b.c that was not specified in
the file extern.

zot: multiply defined hidden external (should have been pre­
served)

Go to Step 5 if this message appears.

5. Include zot, which the message indicates is missing, in the file extern
and recompile as follows:

% cc -03 -c -kp extern b.u c.u -0 keep.o
% cc -03 future.u keep.o -0 foo

2.3.5 Building a Ucode Object Library

Building a ucode object library is similar to building coff(S) object library.
First, compile the source files into ucode object files using the compiler
driver option -j and using the archiver just as you would for coff(S) object
libraries. Using the above example, to build a ucode library (libfoo.b) of
a source file, type in the following:

% cc -j a.c
% cc -j b.c
% cc -j c.c
% ar crs libfoo.b a.u b.u c.u

Conventional names exist for ucode object libraries (libx.b) just as they do
for coff(S) object libraries (libx. a).

2.3.6 Using Ucode Object Libraries

Using ucode object libraries is similar to using coff(S) object files. To
load from a ucode library, specify a -klx option to the compiler driver or
the ucode loader. For example, to load from the ucode library the file
created in the previous example, type in the following:

% cc -03 filel.u file2.u -klfoo -0 output

Remember that libraries are searched as they are encountered on the
command line, so the order in which you specify them is important. If a
library is made from both assembly and high level language routines, the
ucode object library contains code only for the high level language routines

Version 1.0 Improving Program Performance 2-29

and not all the routines as the coff(S) object library. In this case, you
must specify to the ucode loader both the ucode object library and the
coff(S) object library, in that order to ensure that all modules are loaded
from the proper library.

If the compiler driver is to perform both a ucode load step and a final
load step, the object file created after the ucode load step is placed in the
position of the first ucode file specified or created on the command line in
the final load step.

2.3.7 Improving Global Optimization

This section contains coding hints recommended to increase optimizing
opportunities for the global optimizer (uopt). You should read through
the recommendations in this section and, where possible, apply them to
your code.

C and FORTRAN Programs

Do not use indirect calls. Avoid indirect calls (calls that use routines or
pointers to functions as arguments). Indirect calls cause unknown side (
effects (that is, change global variables) that can reduce the amount of
optimization.

C Programs Only

Function return values. Use functions to return values instead of refer­
ence parameters.

Do while and repeat. Use do while (for C) instead of while or for
when possible. For do while, the optimizer doesn't have to duplicate the
loop condition in order to move code from within the loop to outside the
loop.

Unions and variant records. Avoid unions (in C) that cause overlap
between integer and floating point data types. This keeps the optimizer
from assigning the fields to registers.

Use local variables. Avoid global variables. In C programs, declare any
variable outside of a function as static, unless that variable is referenced
by another source file. Minimizing the use of global variables increases
optimization opportunities for the compiler.

2-30 Compiler Guide IRIS-4D Series

(

Value parameters. Use value parameters instead of reference parameters
or global variables. Reference parameters have the same degrading effects
as the use of pointers (see below).

Pointers and aliasing. Aliases can often be avoided by introducing local
variables to store dereferenced results. (A dereferenced result is the value
obtained from a specified address.) Dereferenced values are affected by
indirect operations and calls, whereas local variables aren't. Therefore,
they can be kept in registers. Figure 2-16 shows how the proper place­
ment of pointers and the elimination of aliasing lets the compiler produce
better code.

Consider the following example, which uses pointers. Because

the statement *p++ = a might modify len, the compiler cannot

place it in a register for optimal performance, but instead,

must load it from memory on each pass through the loop.

Source Code:

int len = 10;
char a[10];

void
zero ()

{
char *p;
for (p = a; p != a + len;
}

Generated Assembly Code:

8 for (p = a; p != a + len; q:: ii: ~:~
4, $4, $3

beq $24, $4, $33
$32:

sb $0, 0($2)

H5':~ , 4, $25
bne $8, $2, $32

$33:

Figure 2-16.

) *p++ 0;
p = a

a + len != a

*p = 0
p++

len + a != p

Version 1.0 Improving Program Performance 2-31

Two different methods can be used to increase the efficiency of this exam­
ple: using subscripts instead of pointers and using local variables to store
unchanging values.

Using subscripts instead of pointers. The use of subscripting in the pro-
cedure azero eliminates aliasing; the compiler keeps the value of len in a (.
register, saving two instructions, and still uses a pointer to access a effi-
ciently, even though a pointer isn't specified in the source code. See Fig-
ure 2-17.

Source Code:

void
azero ()

{
int i;
for (i = 0; i != len;
}

Generated Assembly Code:

for (i = 0; i != len; i++) a [i] = 0;
move $2, $0 # i = 0
beq $4, 0, $37 # len != 0
la $5, a

$36:
sb $0, 0($5) # *a = 0
addu $2, $2, 1 # i++
addu $5, $5, 1 # a++
bne $2, $4, $36 # i != len

$37:

Figure 2-17.

Using local variables. Specifying len as a local variable or formal argu­
ment (as shown in Figure 2-18) ensures that aliasing can't take place and
permits the compiler to place len in a register.

2-32 Compiler Guide IRIS-4D Series

(

(

Source Code:

char a[lO] ;
void

l(EU~:5
char *p;
for (p = a; p != a + len;) *p++
}

Generated Assembly Code:

8

$32:

$33:

for
move
addu
beq

sb
addu
bne

(p = a; p != a + len;
$2, $6
$5, $6, $4
$5, $6, $33

$0, 0($2)
$2, $2, 1
$5, $2, $32

Figure 2-18.

O' ,

*p++ = 0;
p a

a + len != a

*p = 0
p++
a + len != p

In the previous example, the compiler generates slightly more efficient
code for the second method.

C Programs Only

Write straightforward code. For example, don't use ++ and -- opera­
tors within an expression. When you use these operators for their values
rather than for their side-effects, you often get bad code.

For example:

Version 1.0 Improving Program Performance 2-33

Bad Good

while (n--) { while (n 1= 0) {

}
n--;

}

Use register declarations liberally. The compiler automatically assigns
variables to registers. However, specifically declaring a register type lets
the compiler make more aggressive assumptions when assigning register
variables.

Addresses. Avoid taking and passing addresses (& values). This can cre­
ate aliases, make the optimizer store variables from registers to their home
storage locations, and significantly reduce optimization opportunities that
would otherwise be performed by the compiler.

VARARGs. Avoid functions that take a variable number of arguments.
This causes the optimizer to unnecessarily save all parameter registers on
entry.

2.3.8 Improving Other Optimization

The global optimizer processes programs only when you explicitly specify
the -02 or -03 option at compilation. However, the code generator
and assembler phases of the compiler always perform certain optimizations
(certain assembler optimizations are bypassed when you specify the -00
option at compilation).

This section contains coding hints that, when followed, increase optimizing
opportunities for the other passes of the compiler.

C and FORTRAN Programs

1. Use tables rather than if-then-else or switch statements.

For example:

2-34 Compiler Guide IRIS-4D Series

(

(l

OK More Efficient

if (i 1) c "1"; c = "Ol"[i];

else c = "0";

2. As an optimizing technique, the compiler puts the first four parameters
of a parameter list into registers where they remain during execution
of the called routine. Therefore, you should always declare as the
first four parameters those variables that are most frequently manipu­
lated in the called routine with floating point parameters preceding
non-floating point.

3. Use word-size variables instead of smaller ones if enough space is
available. This may take more space but it is more efficient.

C Programs Only

1. Rely on libc functions (for example, strcpy, strlen, strcmp, bcopy,
bzero, memset, and memcpy). These functions were hand-coded for
efficiency.

2. Use the unsigned data type for variables wherever possible for the
following reasons: (1) because it knows the variable will always be
greater than or equal to zero (>=0), the compiler can perform op­
timizations that would not otherwise be possible, and (2) the compiler
generates fewer instructions for multiply and divide operations that use
the power of two. Consider the following example:

int i;

unsigned j;

return i/2 + j/2;

The compiler generates six instructions for the signed il2 operations:

000000 20010002 li r1,2
000004 0081001a div r4,r1
000008 14200002 bne r1,rO,Ox14
OOOOOe 00000000 nop
000010 03feOOOd break 1022
000014 00001812 mflo r3

Version 1.0 Improving Program Performance 2-35

The compiler generates only one instruction for the unsigned j/2 op­
eration:

000018 00050042 srI r24 • r5 • 1 # j / 2

In the example, il2 is an expensive expression; however, j/2 is inex­
pensive.

2.4 Limiting the Size of Global Pointer Data

Global pointer data are constants and variables that the compiler places in
the .sdata and .sbss portions of the data and bss segments shown in Fig­
ure 2-19. This area is referred to as the global pointer area.

Figure 2-19.

(The .rdata, .data, and .sdata sections contain initialized data, and the
.sbss and .bss sections reserve space for uninitialized data that is created
by the kernel loader for the program before execution and filled with ze­
ros. For more information on section data, see Chapter 9 of the Assem­
bly Language Programmer's Guide.)

2-36 Complier Guide IRIS-4D Series

(

(

(

2.4.1 Purpose of Global Pointer Data

In general, the compiler system emits two machine instructions to access a
global datum. However, by using a register as a global pointer (called
$gp), the compiler creates the 65536-byte global pointer area where a
program can access any datum with a single machine instruction-only half
the number of instructions required without a global pointer.

To maximize the number of individual variables and constants that a pro­
gram can access in the global pointer area, the compiler first places those
variables and constants that take the fewest bytes of memory. By default,
the variables and constants occupying 512 or fewer bytes are placed in the
global pointer area, and those occupying more than 512 bytes are placed
in the .data and .bss sections.

2.4.2 Controlling the Size of Global Pointer Data

The more data that the compiler places in the global pointer area, the
faster a program executes. However, if the data to be placed in the global
pointer area exceeds 65536 bytes, the link editor prints an error message
and doesn't create an executable object file. For most programs, the
512-byte default produces optimal results. However, the compiler pro­
vides the -G option to let you change the default size. For example, the
specification

-G 8

causes the compiler to place only those variables and constants that oc­
cupy eight or fewer bytes in the global pointer area.

2.4.3 Obtaining Optimal Global Data Size

The compiler places some variables in the global pointer area regardless of
the setting of the -G option. For example, a program written in assembly
language may contain .sdata directives that cause variables and constants
to be placed into the global pointer area regardless of size. Moreover, the
-G option doesn't affect variables and constants in libraries and objects
compiled beforehand. To alter the allocation size for the global pointer
area for data from these objects, you must recompile them specifying the
-G option and the desired value.

Version 1.0 Improving Program Performance 2-37

Thus, two potential problems exist in specifying a maximum size in the
-G option:

• Using a value that is too small can reduce the speed of the program.

• Using a value that is too large can cause more than the maximum (. '
65536 bytes to be placed in the data area, creating an error condition .
and producing an unexecutable object module.

The link editor -bestGnum option helps overcome these problems by
predicting an optimal value to specify for the -G option. The next sec­
tions give examples of using the -bestGnum option and the related
-nocount and -count options.

2.4.4 Examples (Excluding Libraries)

When using the -bestGnum option exclusive of -no count and -count,
the compiler driver assumes that you cannot recompile any libraries associ­
ated with the program; the driver causes the link editor not to consider
libraries when predicting the optimal maximum size.

If you specify the option as shown below:

cc -bestGnum bogus.c

the compiler produces a message giving the best value for -G; if all pro­
gram data fits into the global pointer area, a message indicates this. For
example:

All data will fit into the global pointer area
Best -G num value to compile with is 80 (or greater)

Because all data fits into the global pointer area, no recompilation is nec­
essary. Consider the following example, which specifies 70000 as the
maximum size of a data item to be placed in the global pointer area:

cc bogus.c -G 70000 -bestGnum

The above example produces the following messages:

Too much data in the gp area, recompile all objects with a
smaller -G num variable than 70000
Best -Gnum value to compile with is 1024

2-38 Compiler Guide IRIS-4D Series

(

(

In this example, the link editor doesn't produce an executable load mod­
ule and recommends a recompilation as specified below:

cc bogus.c -G 1024

2.4.5 Example (Including Libraries)

You can explicitly specify that the link editor either include or exclude
specific libraries in predicting the -G value. Consider the following exam­
ple:

cc -0 plotter -bestGnum plotter.o -nocount libieee.a -count
liblaser.a

In the above example, the link editor assumes that libieee.a cannot be
recompiled and will continue to occupy the same space in the global
pointer area. It assumes that plotter.o and liblaser.a can be recompiled
and produces a recommended -G value to use upon recompilation.

Version 1.0 Improving Program Performance 2-39

(

(,

..
Date

Your name

Title

Department

Company

Address

Phone

Silicon Graphics, Inc.

COMMENTS

Manual title and version _____________________ _

Please list any errors, inaccuracies, or omissions you have found in this manual

Please list any suggestions you may have for improving this manual

~
'---'"

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 45 MOUNTAIN VIEW, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Silicon Graphics, Inc.
Attention: Technical Publications
2011 Stierlin Road
Mountain View, CA 94043-1321

~ I"",

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

